

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi's permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user's unit according to this
document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi's products are requested to notify the relevant Hitachi sales offices when
planning to use the products in MEDICAL APPLICATIONS.

Hitachi
Single-Chip RISC
Microcomputer

SH7000 and SH7600 Series

Programming Manual

Introduction

The SH7000 and SH7600 series are new-generation RISC (Reduced instruction set computer)
microcomputers that integrate a RISC-type CPU and the peripheral functions required for system
configuration onto a single chip to achieve high-performance operation. It can operate in a power­
down state, which is an essential feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

This programming manual describes in detail the instructions for the SH7000 and SH7600 series
and is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH7000 and SH7600 series. For information on the hardware,
refer to the hardware manual for the product in question.

Related Manuals

• SH7032, SH7034 Hardware Manual (Document No. ADE-602-062).

• SH7020, SH7021 Hardware Manual (Document No. ADE-602-074)

• SH7604 Hardware Manual

For development support tools, contact your Hitachi sales office.

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items
and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register Types and configuration of general registers,
Configuration control registers and system registers

3. Data Formats Data formats for registers and memory

Introduction to 4. Instruction Instruction features, addressing modes, and
instructions Features instruction formats

5. Instruction Sets Summary of instructions by category and list in
alphabetic order

Detailed information 6. Instruction Operation of each instruction in alphabetical order
on instructions Descriptions

Architecture (2) 7. Processing States Power-down and other processing states

8. Pipeline Operation Pipeline flow, and pipeline flows with operation for
each instruction

Instruction code Appendixes: Operation code map
Instruction Code

Table 2 Subjects and Corresponding Sections

Category Topic Section Title

Introduction and CPU features 1 .. Features
features Instruction features 4.1 RISC-Type Instruction Set

Pipelines 8.1 Basic Configuration of
Pipelines

8.2 . Slot and Pipeline Flow

Architecture Register configuration 2. Register Configuration

Data formats 3. Data Formats

Processing states, reset state, exception 7. Processing States
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode

Pipeline operation 8. Pipeline Operation

Introduction to Instruction features 4. Instruction Features
instructions Addressing modes 4.2 Addressing Modes

Instruction formats 4.3 Instruction Formats

List of Instruction sets 5.1 Instruction Set by
instructions Classification

5.2 Instruction Set in
Alphabetical Order

Appendix A.1 I nstruction Set by
Addressing Mode

Appendix A.2 Instruction Set by
Instruction Format

Instruction code Appendix.A.3 Instruction Set in
Order by
Instruction Code

Appendix A.4 Operation Code
Map

Detailed Detailed information on instruction 6. Instruction Description
information on operation 8.7 Instruction Pipeline
instructions Operations

Number of instruction execution states 8.3 Number of Instruction
Execution States

Functions Listed by CPU Type

This manual is common for both the SH7000 and SH7600 series. However, not all CPUs can use
all the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type

Item

Instructions

States for multiplication
operation

States for multiply and
accumulate operation

Processing status

BF/S

BRAF

BSRF

BT/S

DMULS.L

DMULU.L

DT

MAC.L

MAC.W*1 {MAC)*2

MUL.L

All others

16x16-732
{MULS.W, MULU.W)*2

32 x 32 -7 32 (MUL.L)

32 x 32 -764
(DMULS.L, DMULU.L)

16 x 16 + 42 -7 42
(SH7000, MAC.W)

16x16+64-764
(SH7600, MAC.W)

32 x 32 + 64 -7 64
(MAC.L)

Module stop mode

SH7000 Series

No

No

No

No

No

No

No

No

16 x 16 + 42-7
42

No

Yes

Executed in 1-3*3
states

No

No

Executed in
3/(2)* 3 states

No

No

No

Notes: 1. MAC.W works differently on different LSls.

SH7600 Series

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

16 x 16 + 64 -764

Yes

Yes

Executed in 1-3*3 states

Executed in 2-4 * 3states

Executed in 2-4 * 3states

No

Executed in states 3/(2)*3

Executed in 2-4 states
3/{2-4)*3

Yes (Supply of clock to
specified module can be
halted)

2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the
number in contention with preceding/following instructions).

Contents

Section 1 Features

Section 2 Register Configuration .. .
2.1 General Registers .. .
2.2 Control Registers .. .
2.3 System Registers
2.4 Initial Values of Registers

Section 3 Data Formats
3.1 Data Format iri Registers
3.2 Data Format in Memory
3.3 Immediate Data Format .. .

Section 4 Instruction Features
4.1 RISC-Type Instruction Set

4.1.1 16-Bit Fixed Length .. .
4.1.2 One Instruction/Cycle
4.1.3 DataLength
4.1.4 Load-Store Architecture .. .

2
2
2
3
4

5
5
5
6

7
7
7
7
7
7

4.1.5 Delayed Branch Instructions .. 7
4.1.6 Multiplication! Accumulation Operation 8
4.1.7 TBit ... 8
4.1.8 Immediate Data .. 8
4.1.9 Absolute Address ... 9
4.1.10 16-Bitl32-Bit Displacement ... 9

4.2 Addressing Modes.... 10
4.3 Instruction Format 13

Section 5 Instruction Set...... 16
5.1 Instruction Set by Classification .. 16

5.5.1 Data Transfer Instructions .. 21
5.1.2 Arithmetic Instructions .. 23
5.1.3 Logic Operation Instructions ... 25
5.1.4 Shift Instructions .. 26
5 .. 1.5 Branch Instructions .. 27
5.1.6 System Control Instructions 28

5.2 Instruction Set in Alphabetical Order .. 29

Section 6 Instruction Descriptions .. 37
6.1 Sample Description (Name): Classification .. 37

6.2 ADD (ADD Binary): Arithmetic Instruction .. 40
6.3 ADDC (ADD with Carry): Arithmetic Instruction.. 41
6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction 42
6.5 AND (AND Logical): Logic Operation Instruction .. 43
6.6 BF (Branch if False): Branch Instruction .. 45
6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600) 46
6.8 BRA (Branch): Branch Instruction .. 48
6.9 BRAF (Branch Far): Branch Instruction (SH7600) .. 49
6.10 BSR (Branch to Subroutine): Branch Instruction .. 50
6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600) 52
6.12 BT (Branch if True): Branch Instruction 53
6.13 BT/S (Branch "if True with Delay Slot): Branch Instruction (SH7600)............................. 54
6.14 CLRMAC (Clear MAC Register): System Control Instruction .. 56
6.15 CLRT (Clear T Bit): System Control Instruction .. 57
6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction... 58
6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction 62
6:18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction ... 63
6.19 DIVI (Divide Step 1): Arithmetic Instruction... 64
6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH7600) 69
6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction (SH7600)... 71
6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600).. 73
6.23 EXTS (Extend as Signed): Arithmetic Instruction .. 74
6.24 EXTU (Extend as Unsigned): Arithmetic Instruction ... 75
6.25 JMP (Jump): Branch Instruction.. 76
6.26 JSR (Jump to Subroutine): Branch Instruction .. 77
6.27 LDC (Load to Control Register): System Control Instruction .. 79
6.28 LDS (Load to System Register): System Control Instruction ... 81
6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH7600) 83
6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)............................... 86
6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction (SH7600) 87
6.32 MOV (Move Data): Data Transfer Instruction .. 90
6.33 MOV (Move Immediate Data): Data Transfer Instruction .. 95
6.34 MOV (Move Peripheral Data): Data Transfer Instruction ... ,.... 97
6.35 MOV (Move Structure Data): Data Transfer Instruction .. 100
6.36 MOVA (Move Effective Address): Data Transfer Instruction .. 103
6.37 MOVT (Move T Bit): Data Transfer Instruction 104
6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600) 105
6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction ... 106
6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction ; 107
6.41 NEG (Negate): Arithmetic Instruction ; .. 108
6.42 NEGC (Negate with Carry): Arithmetic Instruction ... 109
6.43 Nap (No Operation): System Control Instruction .. 110
6.44 NOT (NOT-Logical Complement): Logic Operation Instruction 111

6.45 OR (OR Logical) Logic Operation Instruction .. 112
6.46 ROTCL (Rotate with Carry Left): Shift Instruction .. 114
6.47 ROTCR (Rotate with Carry Right): Shift Instruction .. 115
6.48 ROTL (Rotate Left): Shift Instruction ... 116
6.49 ROTR (Rotate Right): Shift Instruction .. 117
6.50 RTE (Return from Exception): System Control Instruction 118
6.51 RTS (Return from Subroutine): Branch Instruction .. 119
6.52 SETT (Set T Bit): System Control Instruction .. 120
6.53 SHAL (Shift Arithmetic Left): Shift Instruction ... 121
6.54 SHAR (Shift Arithmetic Right): Shift Instruction ... 122
6.55 SHLL (Shift Logical Left): Shift Instruction ... 123
6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction .. 124
6.57 SHLR (Shift Logical Right): Shift Instruction ... 126 .
6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction .. ~. 127
6.59 SLEEP (Sleep): System Control Instruction .. 129
6.60 STC (Store Control Register): System Control Instruction ... 130
6.61 STS (Store System Register): System Control Instruction .. 132
6.62 SUB (Subtract Binary): Arithmetic Instruction ... 134
6.63 SUBC (Subtract with Carry): Arithmetic Instruction .. 135
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction 136
6.65 SWAP (Swap Register Halves): Data Transfer Instruction .. 137
6.66 TAS (Test and Set): Logic Operation Instruction .. 138
6.67 TRAPA (Trap Always): System Control Instruction .. 139
6.68 TST (Test Logical): Logic Operation Instruction .. 140
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction ; : 142
6.70 XTRCT (Extract): Data Transfer Instruction .. 144

Section 7 Processing States .. 145
7.1 State Transitions .. 145

7.1.1 Reset State .. 147
7.1.2 Exception Proc~ssing State .. 147
7.1.3 Program Execution State .. 147
7.1.4 Power-Down State ... 147
7.1.5 Bus Release State ... 147

7.2 Power-Down State ... 148
7.2.1 Sleep Mode 148
7.2.2 Software Standby Mode......................... 148
7.2.3 Module Standby Function (SH7600 Only) .. 148

7.3 Master Mode and Slave Mode (SH7600 Series Only) .. 150

Section 8 Pipeline Operation .. 151
8.1 Basic Configuration of Pipelines.......... 151
8.2 Slot and Pipeline Flow ... 152

8.2.1 Instruction Execution ... 152
8.2.2 Slot Sharing .. 152
8.2.3 Slot Length ... 153

8.3 Number of Instruction Execution States .. 154
8.4 Contention Between Instruction Fetch (IF) and Memory Access (MA) 155

8.4.1 Basic Operation When IF and MA are in Contention....... 1.55
8.4.2 The Relationship Between IF and the Location of Instructions in On-Chip

ROMIRAM or On-Chip Memory .. 156
8.4.3 Relationship Between Position of Instructions Located in On-Chip

ROMIRAM or On-Chip Memory and Contention Between IF and MA 157
8.5 Effects of Memory Load Instructions on Pipelines ... 158
8.6 Programming Guide ; .. 159
8.7 Operation of Instruction Pipelines ... 160

8.7.1 Data Transfer Instructions 167
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7

Appendix A

Arithmetic Instructions 170
Logic Operation Instructions 225
Shift Instructions 228
Branch Instructions 229
System Control Instructions ... 232
Exception Processing... 244

Instruction Code .. 247
A.1 Instruction Set by Addressing Mode ... : 247

A.I.1
A.1.2
A.I.3
A.l.4
A.1.5
A.I.6
A.1.7
A.I.8
A.1.9
A.1.10
A.1.11
A~1.12

A.1.13

No Operand .. 249
Direct Register Addressing 250
Indirect Register Addressing................... 253
Post Increment Indirect Register Addressing .. 253
Pre Decrement Indirect Register Addressing........ 254
Indirect Register Addressing with Displacement .. 255
Indirect Indexed Register Addressing .. 255
Indirect GBR Addressing with Displacement .. 256
Indirect Indexed GBR Addressing......... 256
PC Relative Addressing with Displacement .. 256
PC Relative Addressing with Rn ; ... 257
PC Relative Addressing 257
Immediate .. 258

A.2 Instruction Sets by Instruction Format .. 258
A.2.1 0 Format............ 260
A.2.2 n Format 261
A.2.3 m Format .. 263
A.2.4 nm Format .. 264
A.2.5 md Format .. 267 .
A.2.6 nd4 Format 267

A.2.7
A.2.8
A.2.9
A.2.10
A.2.11

A.2.12

nmd Format .. 267
d Format.. 268
d 12 Format 269
nd8 Format. 269
i Format 269
ni Format.. 270

A.3 Instruction Set in Order by Instruction Code 270
A.4 Operation Code Map .. 278

Appendix B Pipeline Operation and Contention ... 281

Section 1 Features

The SH7000 and SH7600 series have RISC-type instruction sets. Basic instructions are executed
in one clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH7000 and
SH7600-series CPU features.

Table 1.1 SH7000 and SH7600·Series CPU Features

Item Feature

Architecture • Original Hitachi architecture

• 32-bit internal data paths

General-register machine • Sixteen 32-bit general registers

Instruction set

Instruction execution time

Address space

On-chip multiplier
(SH7000)

On-chip multiplier
(SH7600)

Pipeline

Processing states

Power-down states

• Three 32-bit control registers

• Four 32-bit system registers

• Instruction length: 16-bit fixed length for improved code efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language

• One instruction/cycle for basic instructions

• Architecture makes 4 Gbytes available

• Multiplication operations (16 bits x 16 bits ~ 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits + 42 bits ~ 42 bits) executed in 3/(2)* cycles

• Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits
~ 32 bits) or 2 to 4 cycles (32 bits x 32 bits ~ 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits x 16 bits + 64 bits ~ 64 bits) or 3/(2 to 4)* cycles (32 bits x 32
bits + 64 bits ~ 64 bits)

• Five-stage pipeline

• Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

• Sleep mode

• Standby mode

• Module stop mode (SH7600 only)

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

1 Hitachi

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered RO-R15, which are 32 bIts in length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an index
register. Several instructions use RO as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

31

RO·1

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

o
1. RO functions as an index register in the

indirect indexed register addressing
mode and indirect indexed GSR
addressing mode; In some instructions,
RO functions as a fixed source register
or destination register.

R15, SP (hardware stack pointer)·2 2. R15 functions as a hardware stack
pointer (SP) during exception
processing.

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

2 Hitachi

data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

31 9 8 7 6 5 4 32 1 0

SR I ----------- M Q 13 12 11 10 -- S T I SR: Status register

-----r--- -_ -- ~ T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and ClRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHAR/l, SHlAll, ROTAll, and
ROTCR/l instructions also use bit T
to indicate carry/borrow or overflow/
underflow

~ S bit: Used by the multiply/accumulate
instruction.

'--------+---+--+----i .. ~Reserved bits: Always reads as 0, and should
always be written with o.

'-------i=-.Bits 13-10: Interrupt mask bits.
L-______ -!'-.. M and Q bits: Used by the DIVOU/S and

DIV1 instructions.

Global base register (GBR):
3r-1 ______________ --;0 Indicates the base address of the indirect

I GBR I GBR addressing mode. The indirect GBR
'---_____________ ----1 addressing mode is used in data transfer

for on-chip peripheral module register
areas and in logic operations.

3.,.;-1 ______________ --i0 Vector base register (VBR):
I VBR I Indicate~ the base address of the exception
'---_____________ ----1 processing vector area.

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers

(MACH and MACl), the procedure register (PR), and the program counter (PC) (figure 2.3). The

multiply and accumulate registers store the results of multiply and accumulate operations. The

procedure register stores the return address from the subroutine procedure. The program counter

stores program addresses to control the flow of the processing.

3 Hitachi

31 9 0

(SH7000) (sign extended) MACH
Multiply and accumulate (MAC)

... registers high and low (MACH/L):
MACL Store the results of multiply and

accumulate operations. In the
31 0 SH7000, MACH is sign-extended

(SH7600)I MACH

I
to 32 bits when read because only
the lowest 10 bits are valid. In the

MACL SH7600, all 32 bits of MACH are
valid.

31 0

I PR I
Procedure register (PR): Stores a
return address from a subroutine
procedure.

31 0 ~rogram counter (PC): Indicates the

I PC I fourth byte (second instruction) after
the current instruction.

Figure 2.3 System Registers

2.4 . Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1 Initial Values of Registers

Classification Register Initial Value

General register RQ-R14 Undefined

R15 (SP) Value of the stack pointer in the vector address table

Control register SR Bits 13-10 are 1111 (H'F), reserved bits are 0, and
other bits are undefined

System register

GBR Undefined

VBR H'OOOOOOOO

MACH, MACL, PR Undefined

PC Value of the program counter in the vector address
table

4 Hitachi

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only a
byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 o
Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because

this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

Address m + 1 Address m + 3

Add'lSS m 1 Add,es~ m + 21
'~1 23 15 7 O'"t-

Address 2n--.

Address 4n-.

,..~

Byte I Byte I Byte I Byte

Word I Word

Longword

Big.endian "'v

Figure 3.2 Byte, Word, and Longword Alignment

5 Hitachi

SH7604 has a function that allows access of CS2 space (area 2) in little endian format, which
enables memory to be shared with processors that access memory in little endian format (figure
3.3). Byte data is arranged differently for little endian and the usual big endian.

Address m + 2 Address m

Address m + 31 Address m + 11
'"["31 + 23 15 + 7 O"'~

Bytel Byte 1 Byte I. Byte

Word I Word + Address 2n

Longword +Address4n

........ Little endian ... ""

Figure 3.3 Byte, Word, and Longword Alignment in little end ian format (887604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOY,
ADD, and CMPIEQ instructions is sign-extended and calculated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a
memory table. The memory table is accessed by an immediate data transfer instruction (MOY)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

6 Hitachi

Section 4 Instruction Features

4.1 RISe-Type Instruction Set

All instructions are RISe type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with

. longword data (table 4.1). Immediate data is sign-exten~ed for arithmetic operations or zero­
extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH7000/SH7600-Series CPU

MOV.W

ADD

@(disp,PC) ,Rl

Rl,RO

• DATA.W H'1234

Description

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction .

Example for Other CPU

ADD.W #H'1234,RO

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

7 Hitachi

Table 4.2 Delayed Branch Instructions

SH7000nSOO-Series CPU

BRA

ADD

TRGET

Rl,RO

Description

Executes an ADD before
branching to TAGET.

4.1.6 Multiplication! Accumulation Operation

Example for Other CPU

ADD.W

BRA

Rl,RO

TRGET

SH7000: 16bit x 16bit ~ 32-bit multiplication operations are executed in one to three cycles.
16bit x 16bit + 42bit ~ 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH7600: 16bit x 16bit ~ 32-bit multiplication operations are executed in one to two cycles. 16bit
x 16bit + 64bit ~ 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit x 32bit ~ 64-bit multiplication and 32bit x 32bit + 64bit ~ 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 4.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table 4.3 TBit

SH7000nSOO-Series CPU Description Example for Other CPU

CMP/GE Rl,RO T bit is set when AO ~ A1. The CMP.W Rl,RO

BT TRGETO program branches to TAGETO BGE TRGETO
when AO ~ A1 and to TAGET1

BF TRGETl when AO < A1. BLT TRGETl

ADD #-l,RO T bit is not changed by ADD. T SUB.W #l,RO

CMP/EQ #O,RO bit is set when AO = O. The
program branches if AO = O.

BEQ TRGET

BT TRGET

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

8 Hitachi

Table 4.4 Immediate Data Accessing

Classification SH7000n600-Series CPU Example for Other CPU

8-bit immediate MOV #H'12,RO MOV. B #H' 12 , RO

16-bit immediate MOV.W @(disp,PC) ,RO MOV.W #H'1234,RO

.DATA.W H'1234

32-bit immediate MOV.L @(disp,PC) ,RO MOV.L #H'12345678,RO

.DATA.L H'12345678

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 4.5 Absolute Address

Classification

Absolute address

SH7000n600 Series CPU

MOV.L

MOV.B

@(disp, PC) , R1

@R1,RO

.DATA.L H'12345678

4.1.10 16-Bitl32-Bit Displacement

Example for Other CPU

MOV.B @H'12345678,RO

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

9 Hitachi

Table 4.6 Displacement Accessing

Classification SH7000nsoo Series CPU Example for Other CPU

16-bit displacement MOV.W

MOV.W

@(disp,PC) ,RO

@(RO,Rl) ,R2

MOV.W @(H'1234,Rl),R2

.DATA.W H'1234

4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses

Addressing Instruction
Mode Format Effective Addresses Calculation

Direct Rn
register
addressing

Indirect
register
addressing

Post­
increment
indirect
register
addressing

Pre­
decrement
indirect
register
addressing

@Rn

@Rn+

@-Rn

The effective address is register Rn. (The operand is
the contents of register Rn.)

The effective address is the content of register Rn.

Rn ~I Rn

The effective address is the content of register Rn. A
constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a longword
operation.

Rn

The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a word operation, or 4 for a
longword operation.

Rn -1/214

10 Hitachi

Formula

Rn

Rn

(After the
instruction is
executed)

Byte: Rn + 1
~Rn

Word: Rn + 2
~Rn

Longword:
Rn+4~ Rn

Byte: Rn-1
~Rn

Word: Rn-2
~Rn

Longword:
Rn-4~ Rn
(I nstruction
executed with
Rn after
calculation)

11 Hitachi

Table 4.7

Addressing
Mode

PC relative
addressing
with
displace-
ment

PC relative
addressing

Addressing Modes and Effective Addresses (cont)

Instruction
Format

@(disp:8,
PC)

disp:8

Effective Addresses Calculation

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word operation,
or is quadrupled for a longword operation. For a
longword operation, the lowest two bits of the" PC are
masked.

PC

PC + disp x 2
H'FFFFFFFC or

PC&H'FFFFFFFC
disp

(zero-extended)
+ disp x 4

2/4

The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and
added to the PC.

PC

disp
(sign-extended)

2

PC + disp x 2

Formula

Word: PC +
disp x 2

Longword:
PC&
H'FFFFFFFC
+ disp x4

PC + disp x2

disp:12 The effective address is the PC value sign-extended PC + disp x 2
with a 12-bit displacement (disp), doubled, and
added to the PC.

PC

disp
(sign-extended)

2

PC + disp x 2

12 Hitachi

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction
Mode Format Effective Addresses Calculation

PC relative Rn
addressing
(cont)

Immediate #imm:8
addressing

#imm:8

#imm:8

The effective address is the register PC plus Rn.

PC

PC+ RD

RD

The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

Immediate data (imm) for the TRAPA instruction is
zero-extended and is quadrupled.

4.3 Instruction Format

Formula

PC+ Rn

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

• xxxx: Instruction code

• mmmm: Source register

• nnnn: Destination register

• iiii: Immediate data

• dddd: Displacement

Table 4.8 Instruction Formats

Instruction Formats

D format

15 0

I xxxx xxxx xxxx xxxx I
n format

15 0

I xxxx I nnnn I xxxx xxxx I

Source
Operand

Destination
Operand

nnnn: Direct
register

Control register nnnn: Direct
or system register
register

13 Hitachi

Example

Nap

MOVT Rn

STS MACH,Rn

Table 4.8 Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example

n format (cont) nnnn: Direct JMP @Rn
register.

Control register nnnn: Indirect pre- STC.L SR,@-Rn
or system decrement
register register

nnnn: PC relative BRAF Rn
using Rn

m format mmmm: Direct Control register or LOC Rm,SR
register system register

15 0 mmmm: Indirect Control register or LOC.L @Rm+,SR

I xxxx Immmmi xxxx xxxx I
post-increment system register
register

nm format mmmm: Direct nnnn: Direct ADD Rm,Rn
register register

15 0 mmmm: Direct nnnn: Indirect MOV.L Rm,@Rn

I xxxx nnnn Immmmi xxxx I register register

mmmm: Indirect MACH,MACL MAC.W
post-increment @Rm+,@Rn+
register (multiply!
accumulate)

nnnn*: Indirect
post-increment
register (multiply!
accumulate)

mmmm: Indirect nnnn: Direct MOV.L @Rm+,Rn
post-increment register
register

mmmm: Direct nnnn: Indirect pre- MOV.L Rm,@-Rn
register decrement

register

mmmm: Direct nnnn: Indirect MOV.L
register indexed register Rm,@(RO,Rn)

md format mmmmdddd: RO (Direct MOV.B

15 0 indirect register register) @(disp,Rm) ,RO

I xxxx xxxx Immmmi dddd I with
displacement

nd4 format RD (Direct nnnndddd: MOV.B

15 0 register) Indirect register RO,@(disp,Rn)

I xxxx xxxx I nnnn I dddd I with displacement

Note: In multiply!accumulate instructions, nnnn is the source register.

14 Hitachi

Table 4.8 Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example

nmd format mmmm: Direct nnnndddd: Indirect MOV.L

15 0 register register with Rm,@(disp,Rn)

I xxxx nnnn Immmmi dddd I
displacement

mmmmdddd: nnnn: Direct MOV.L
Indirect register register @(disp,Rrn) , Rn
with
displacement

d format dddddddd: RD (Direct register) MOV.L

15 0 Indirect GSR @(disp,GBR),RO

I XXXX xxxx I dddd dddd I with
displacement

RD(Direct dddddddd: Indirect MOV.L
register) GSR with RO,@(disp,GBR)

displacement

dddddddd: PC RD (Direct register) MOVA
relative with @(disp,PC) ,RO
displacement

dddddddd:PC BF label
relative

d12 format dddddddddddd: BRA label
15 0 PC relative (label =disp +

I xxxx I dddd dddd dddd I PC)

nd8 format dddddddd: PC nnnn: Direct MOV.L

15 0 relative with register @(disp,PC),Rn

I xxxx I nnnn I dddd dddd I displacement

i format iiiiiiii: Immediate Indirect indexed AND.B
GSR #imm,@(RO,GBR)

15 0 iiiiiiii: Immediate RD (Direct register) AND #imm,RO

I xxxx xxxx iii i iii i I
iiiiiiii: Immediate TRAPA #imm

ni format iiiiiiii: Immediate nnnn: Direct ADD #imm,Rn

15 0 register

I xxxx nnnn I iii i iii i I

15 Hitachi

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

16 Hitachi

Table 5.1 Classification of Instructions

Applicable
Instructions

Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions

Data transfer 5 MOV Data transfer t/ t/ 39
Immediate data transfer
Peripheral module data transfer
Structure data transfer

MOVA Effective address transfer t/ t/

MOVT T -bit transfer t/ t/

SWAP Swap of upper and lower bytes t/ t/

XTRCT Extraction of the middle of t/ t/
registers connected

Arithmetic 21 ADD Binary addition t/ t/ 33
operations ADDC Binary addition with carry t/ t/

ADDV Binary addition with overflow t/ t/
check

CMP/cond Comparison t/ t/

DIV1 Division t/ t/

DIVOS Initialization of signed division t/ t/

DIVOU Initialization of unsigned t/ t/
division

DMULS Signed dOUble-length t/
multiplication·

DMULU Unsigned double-length t/
multiplication

DT Decrement and test t/

EXTS Sign extension t/ t/

EXTU Zero extension t/ t/

MAC Multiply/accumulate, double- t/ t/
length multiply/accumulate
operation*1

MUL Double-length multiplication t/ t/

MULS Signed multiplication t/ t/

MULU Unsigned multiplication t/ t/

NEG Negation t/ t/

NEGC Negation with borrow t/ t/

SUB Binary subtraction t/ t/

SUBC Binary subtraction with borrow t/ t/

SUBV Binary subtraction with t/ t/
underflow check

Notes 1. Double-length multiply/accumulate is an SH7600 function.

17 Hitachi

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions

Logic 6 AND Logical AND t/ t/ 14
operations NOT Bit inversion t/ t/

OR Logical OR t/ t/

TAS Memory test and bit set t/ t/

TST Logical AND and T-bit set t/ t/

XOR Exclusive OR t/ t/

Shift 10 ROTL One-bit left rotation t/ t/ 14

ROTR One-bit right rotation t/ t/

ROTCL One-bit left rotation with T bit t/ t/

ROTCR One-bit right rotation with T bit t/ t/

SHAL One-bit arithmetic left shift t/ t/

SHAR One-bit arithmetic right shift t/ t/

SHLL One-bit logical left shift t/ t/

SHLLn n-bit logical left shift t/ t/

SHLR One-bit logical right shift t/ t/

SHLRn n-bit logical right shift t/ t/

Branch 9 BF Conditional branch, conditional t/ t/ 11
branch with delay· 2 (T = 0)

BT Conditional branch, conditional t/ t/
branch with delay· 2 (T = 1)

BRA Unconditional branch t/ t/

BRAF Unconditional branch t/

BSR Branch to subroutine procedure t/ t/

BSRF Branch to subroutine procedure t/

JMP Unconditional branch t/ t/

JSR Branch to subroutine procedure t/ t/

RTS Return from subroutine t/ t/
procedure

Notes 2. Conditional branch with delay is an SH7600 function.

18 Hitachi

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions

System 11 CLRT T-bit clear t/ t/ 31
control CLRMAC MAC register clear t/ t/

LDC Load to control register t/ t/

LOS Load to system register t/ t/

NOP No operation t/ t/

RTE Return from exception t/ t/
processing

SEn T-bit set t/ t/

SLEEP Shift into power-down mode t/ t/

STC Storing control register data t/ t/

STS Storing system register data t/ t/

TRAPA Trap exception processing t/ t/

Total: 62 142

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

19 Hitachi

Table 5.2 Instruction Code Format

Item

Instruction
mnemonic

Instruction
code

Operation
summary

Execution
cycle

Instruction
execution
cycles

Tbit

Format Explanation

OP.Sz SRC,DEST OP: Operation code

MSBHLSB

~,~

(xx)
M/oo
&
I
A

«n,»n

Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

mmmm: Source register
nnnn: Destination register

OOOO:RO
0001: R1

1111: R15
iiii: Immediate data
dddd: Displacement

Direction of transfer
Memory operand
Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit left/right shift

Value when no wait states are inserted

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory ~ register) and the register used by the next
instruction are the same.

Value of T bit after instruction is executed

No change

Note: Scaling (x1, x2, x4) is performed according to the. instruction operand size. See "6.
Instruction Descriptions" for details.

20 Hitachi

5.1.1 Data Transfer Instructions

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Table 5.3 Data Transfer Instructions

Execu-
tion T

Instruction Instruction Code Operation State Bit

'MOV #imm,Rn 1110nnnniiiiiiii imm ~ Sign extension ~ 1
An

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp x 2 + PC) ~ Sign
extension ~ An

MOV.L @(disp,PC) ,Rn 1101nnnndddddddd (disp x4+ PC) ~ An

'MOV Rrn,Rn 0110nnnnrnmmm0011 Am~An

MOV.B Rrn,@Rn OOlOnnnnrnmmmOOOO Am~ (An)

MOV.W Rrn,@Rn 0010nnnnrnmmmOO01 Am ~ (An)

MOV.L Rrn,@Rn 0010nnnnrnmmm0010 Am~ (An)

MOV.B @Rrn,Rn OllOnnnnrnmmmOOOO (Am) ~ Sign extension ~
An

MOV.W @Rrn,Rn 0110nnnnrnmmmOO01 (Am) ~ Sign extension ~-
An

MOV.L @Rrn,Rn 01 1 OnnnnrnmmmO 0 10 (Am)~ An

MOV.B Rrn,@-Rn 0010nnnnrnmmm0100 An-1 ~ An, Am ~ (An)

MOV.W Rrn,@-Rn 0010nnnnrnmmm0101 An-2 ~ An, Am ~ (An)

MOV.L Rrn,@-Rn 0010nnnnrnmmm0110 An-4 ~ An, Am ~ (An)

MOV.B @Rrn+,Rn 0110nnnnrnrnmm0100 (Am) ~ Sign extension ~
An,Am+1 ~Am

MOV.W @Rrn+,Rn 0110nnnnrnrnmm0101 (Am) ~ Sign extenSjion ~
An,Am+2 ~Am

MOV.L @Rrn+,Rn 01 10nnnnrnrnmmO 110 (~m) ~ An,Am + 4 ~ Am

MOV.B RO,@(disp,Rn) 10000000nnnndddd AD ~ (disp + An)

MOV.W RO,@(disp,Rn) 1000000lnnnndddd AD~ (disp x 2 + An)

MOV.L Rrn,@(disp,Rn) OOOlnnnnmmmmdddd Am ~ (disp x 4 + An)

MOV.B @(disp,Rrn),RO lOOOOlOOmmrrandddd (disp + Am) ~ Sign
extension ~ AD

MOV.W @(disp,Rrn),RO 10 00 0 101mmmmdddd (disp x 2 + Am) ~ Sign
extension ~ AD

MOV.L @(disp,RIri),Rn OlOlnnnnmmmmdddd (disp x 4 + Am) ~ An

MOV.B Rrn,@(RO,Rn) 0000nnn.ruimmt0100 Am~ (AD+ An)

MOV.W Rrn,@(RO,Rn) 00 OOnnnnmmmmO 101 Am~ (AD+ An)

21 Hitachi

TableS.3 Data Transfer Instructions (cont)

Execu-
tion T

Instruction Instruction Code Operation State Bit

MOV.L Rm,@(RO,Rn) 00 00nnnnnumun011 0 Rm~ (RO+ Rn)

MOV.B @{RO,Rm),Rn 00 o Onnnnnumun1 10 0 (RO + Rm) ~ Sign
extension ~ Rn

MOV.W @(RO,Rm),Rn 00 00nnnnnumun110 1 (RO + Rm) ~ Sign
extension ~ Rn

MOV.L @(RO,Rm),Rn OOOOnnnnnumun1110 (RO+ Rm) ~ Rn 1

MOV.B RO,@(disp,GBR) 11000000dddddddd RO ~ (disp + GBR) 1

MOV.W ROi@(disp,GBR) 11000001dddddddd RO ~ (disp x 2 + GBR) 1

MOV.L RO,@(disp,GBR) 11000010dddddddd RO ~ (disp x 4+ GBR)

MOV.B @(disp,GBR),RO 11000100dddddddd (disp + GBR) ~ Sign
extension ~ RO

MOV.W @(disp,GBR) ,RO 11000101dddddddd (disp x 2 + GBR) ~ Sign 1
extension ~ RO

MOV.L @(disp,GBR) ,RO 11000110dddddddd (disp x 4 + GBR) ~ AO 1

MOVA @(disp,PC) ,RO 11000111dddddddd dispx 4+ PC ~ RO 1

MOVT Rn 0000nnnn00101001 T~Rn

SWAP.B Rm,Rn 01 1 Onnnnnumun1 0 0 0 Rm ~ Swap upper and
lower 2 bytes~ Rn

SWAP.W Rm,Rn 0110nnnnnumun1001 Am ~ Swap upper and
lower word ~ Rn

XTRcr Rm,Rn 0010nnnnnumun1101 Center 32 bits of Rm and
Rn~Rn

22 Hitachi

5.1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Execution
Instruction Instruction Code Operation State T Bit

ADD Rro,Rn 0011nnnnmmmm1100 Rn+Rm~ Rn

ADD #inm,Rn 0111nnnniiiiiiii Rn+imm~ Rn.

ADOC Rro,Rn 0011nnnnmmmm1110 Rn + Rm + T ~ Rn, Carry
·Carry~ T

ADDV Rro,Rn 0011nnnnmmmml111 Rn+Rm~ Rn, Overflow
Overflow ~T

CMP/EQ #inm,RO 10001000iiiiiiii If RO = imm, 1 ~ T Compariso
n result

CMP/EQ Rro,Rn 00 11nr.rrrrrrmmnm00 00 If Rn = Rm, 1 ~ T Compariso
n result

CMP/HS Rro,Rn 0011nr.rrrrrrmmnm0010 If Rn~Rm with Compariso
unsigned data, 1 ~ T n result

CMP/GE Rro,Rn 0011nr.rrrrrrmmnm0011 If Rn ~ Rm with Compariso
signed data, 1 ~ T n result

CMP/HI Rro,Rn 0011nr.rrrrrrmmnm0110 If Rn > Rm with Compariso
unsigned data, 1 ~ T n result

CMP/GT Rro,Rn 0011nr.rrrrrrmmnm0111 If Rn > Rm with Compariso
signed data, 1 ~ T n result

CMP/PL Rn 0100nnnnOO010101 If Rn > 0, 1 ~ T Compariso
n result

CMP/PZ Rn 0100nnnnOO010001 If Rn ~ 0, 1 ~ T Compariso
n result

CMP/STR Rro,Rn 00 10nnnnmmmm110 0 If Rn and Rm have an Compariso
equivalent byte, 1 ~ n result
T

DIV1 Rro,Rn o o 11nr.rrrrrrmmnm0 100 Single-step division Calculation
(Rn/Rm) result

DIVOS Rro,Rn 0010nr.rrrrrrmmnm0111 MSBofRn~ 0, Calculation
MSB of Rm ~ M, M A result
O~T

DIVOU 0000000000011001 ·0 ~M/Q/T 0

23 Hitachi

Table 5.4 Arithm~tic Instructions (cont)

Execution
Instruction Instruction Code Operation State TBit

DMULS.L Rm,Rn*2 0011nnnnmmrnm1101 Signed operation of 2 to 4*1
Rn x Rm ~ MACH,
MACL

32 x 32 ~ 64 bits

DMULU.L Rm,Rn*2 0011nnnnmmrnm0101 Unsigned operation of 2 to 4*1
Rn x Rm ~ MACH,
MACL

32 x 32 ~ 64 bits

or Rn*2 0100nnnnOO010000 Rn - 1 ~ Rn, when Compariso
Rn is 0, 1 ~ T. When n result
Rn is nonzero, 0 ~ T

EXTS.B Rm,Rn 0110nnnnmmrnm1110 A byte in Rm is sign-
extended ~ Rn

EXTS.W Rm,Rn o 110nnnnmmrnm1111 A word in Rm is sign-
extended ~ Rn

EXTU.B Rm,Rn o 110nnnnmmrnm11 0 0 A byte in Rm is zero-
extended ~ Rn

EXTU.W Rm,Rn 0110nnnnmmrnm1101 A word in Rm is zero-
extended ~ Rn

MAC.L @Rm+,@Rn+ OOOOnnnnmmrnm1111 Signed operation of 3/(2 to 4)*1

*2 (Rn) x (Rm) + MAC
~MAC

32 x 32 + 64~ 64 bits

MAC.W @Rm+,@Rn+ 0100nnnnmmrnm1111 Signed operation of 3/(2)*1
(RI')) x (Rm) + MAC
~MAC

(SH7600) 16 x 16 +
64 ~64bits

(SH7000) 16 x 16 +
42 ~42bits

MUL.L Rm,Rn*2 00 o OnnnnmmrnmO 111 Rn x Rm ~ MACL, 2 to 4*1
32 x 32 ~ 32 bits

MULS.W Rm,Rn 0010nnnnmmrnm1111 Signed operation of 1 to 3*1
Rnx Rm ~ MAC

16 x 16 ~ 32 bits

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

24 Hitachi

Table 5.4 Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State TBit

MULU.W Rro,Rn 0010nnrmmmmm1110 Unsigned operation of 1 to 3*1
Rn x Rm --7 MAC

16 x 16 --732 bits

NEX3 Rro,Rn 0110nnrmmmmm1011 ~Rm--7 Rn

NEGC Rro,Rn o 110nnrmmmmm1 0 10 ~Rm-T --7 Rn, Borrow
Borrow --7 T

SUB Rro,Rn 0011nnnnmmmmlOOO Rn-Rm --7 Rn

SUBC Rro,Rn 00 11nnnnmmmml010 Rn-Rm-T --7 Rn, Borrow
Borrow --7 T

SUBV Rro,Rn 0011nnnnmmmml011 Rn-Rm --7 Rn, Underflow
Underflow --7 T

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Execution
Instruction Instruction Code Operation State TBit

AND Rro,Rn 0010nnnnmmmmlO01 Rn & Rm --7 Rn

AND #imm,RO 11001001iiiiiiii RO & imm --7 RO

AND.B #imm, @ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm --7 3
(RO + GBR)

NO!' Rro,Rn 0110nnnnmmrnm0111 -Rm --7 Rn

OR Rro,Rn 0010nnnnmmmml011 Rn I Rm --7 Rn

OR #imm,RO 11001011iiiiiiii RO I imm --7 RO

OR.B #imm,@(RO,GBR) 11001111iiiiiiii (RO + GBR) I imm --7 3
(RO + GBR)

TAS.B @Rn 0100nnnnOO011011 If (Rn) is 0, 1 --7 T; 1 --7 4 Test
MSB of (Rn) result

TST Rro,Rn 0010nnrmmmmm1000 Rn & Rm; if the result is Test
0,1 --7T result

TST #imm,RO 11001000iiiiiiii RO & imm; if the result Test
is 0,1 --7 T result

25 Hitachi

Table 5.5 Logic Operation Instructions (cont)

Execution
I.' Instruction Instruction Code Operation State TBit

TST.B #imm,@(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm; if 3 Test
the result is 0, 1 ~ T result

XOR Rm,Rn 00 10nnr.rrummmn10 10 Rn"Rm~ Rn

XOR #imm,RO 11001010iiiiiiii RO" imm ~ RO

XOR.B #imm,@(RO,GBR) 11001110iiiiiiii (RO + GBR) "imm ~ 3
(RO + GBR)

5.1.4 Shift Instructions

Table 5.6 Shift Instructions

Instruction Instruction Code Operation Execution State TBit

RaI'L Rn 0100nnnnOOOO0100 T ~ Rn~ MSB MSB

ROTR Rn 0100nnnnOOOO0101 LSB ~Rn ~T LSB

ROTCL Rn 0100nnnn00100100 T~Rn~T MSB

RareR Rn 0100nnnn00100101 T~Rn~T LSB

SHAL Rn OiOOnnnn00100000 T~Rn~O MSB

SHAR Rn 0100nnnn00100001 MSB~ Rn~T LSB

SHLL Rn OlOOnnnnOOOOOOOO T~Rn~O MSB

SHLR Rn 0100nnnnOOOOOO01 o ~Rn ~T LSB

SHLL2 Rn 0100nnnnOOO01000 Rn«2 ~Rn

SHLR2 Rn 0100nnnnOOO01001 Rn»2 ~Rn 1

SHLL8 Rn 0100nnnnOO011000 Rn«8 ~ Rn

SHLR8 Rn 0100nnnnOO011001 Rn»8 ~Rn

SHLL16 Rn 0100nnnn001010OO Rn«16 ~ Rn

SHLR16 Rn 0100nnnn00101001 Rn»16 ~ Rn

26 Hitachi

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Execution
Instruction Instruction Code Operation State TBit

BF label 10001011dddddddd If T = 0, disp x 2 + PC ~ PC; if T = 3/1*3
1, nap (where label is disp x 2 + PC)

BF /S label *2 10 00 1111dddddddd Delayed branch, if T = 0, disp x 2 + 211*3
PC ~ PC; if T = 1, nap

BT label 10001001dddddddd If T = 1, disp x 2 + PC ~ PC; if T = 3/1*3
0, nap (where label is disp + PC)

BT/S label*2 10001101dddddddd Delayed branch, if T = 1, disp x 2 + 211*3
PC ~ PC; if T = 0, nap

BRA label 1010dddddddddddd Delayed branch, disp x 2 + PC ~ 2
PC

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + PC ~ PC 2

BSR label 10 11dddddddddddd Delayed branch, PC ~ PR, disp x 2 2
+ PC ~ PC

BSRF Rn*2 0000nnnnOOOOO011 Delayed branch, PC ~ PR, Rn + 2
PC~ PC

JMP @Rn 0100nnnn00101011 Delayed branch, Rn ~ PC 2

JSR @Rn 0100nnnnOOO01011 Delayed branch, PC ~ PR, Rn ~ 2
PC

RTS 0000000000001011 Delayed branch, PR ~ PC 2

Notes: 2. SH7600 instruction

3. One state when it does not branch

27 Hitachi

5.1.6 System Control Instructions

Table 5.8 System Control Instructions

Execution T
Instruction Instruction Code Operation State Bit

CLRT 0000000000001000 O~T 0

CLRMAC 0000000000101000 o ~ MACH, MACL

LIX: Rm,SR 0100mmmmOOO01110 Rm~SR LSB

LIX: Rm,GBR 0100mmmmOO011110 Rm~GBR

LIX: Rm,VBR 0100mmmm00101110 Rm~ VBR 1

LOC.L @Rm+,SR 0100mmmmOOOO0111 (Rm) ~ SR, Rm+4 ~Rm 3 LSB

LIX:.L @Rm+,GBR 0100mmmmOO010111 (Rm) ~ GBR, Rm + 4 ~ Rm 3

LIX:.L @Rm+,VBR 0100mmmm00100111 (Rm)~ VBR, Rm+4 ~Rm 3

LDS Rm,MACH 0100mmmmOOO01010 Rm~MACH

LDS Rm,MACL 0100mmmmOO011010 Rm~ MACL

LDS Rm,PR 0100mmmm00101010 Rm~PR

LDS.L @Rm+,MACH 0100mmmmOOOO0110 (Rm)~ MACH, Rm+4~
Am

LDS.L @Rm+,MACL 0100mmmmOO010110 (Rm) ~ MACL, Rm + 4 ~ Rm

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) ~ PR, Rm + 4 ~ Rm

NOP 0000000000001001 No operation 1

RTE 0000000000101011 Delayed branch, stack area ~ 4 LSB
PC/SR

SEIT 0000000000011000 1 ~T

SLEEP 0000000000011011 Sleep 3*4

STC SR,Rn 0000nnnnOOOOO010 SR~ Rn

STC GBR,Rn 0000nnnnOO010010 GBR~ Rn

STC VBR,Rn 0000nnnn00100010 VBR~ Rn

STC.L SR,@-Rn 0100nnnnOOOOO011 Rn-4 ~ Rn, SR ~ (Rn) 2

STC.L GBR,@-Rn 0100nnnnOO010011 Rn-4 ~ Rn, GBR ~ (Rn) 2

STC.L VBR,@-Rn 0100nnnn00100011 Rn-4 ~ Rn, VBR ~ (Rn) 2

STS MACH,Rn 0000nnnnOOO01010 MACH ~ Rn

STS MACL,Rn 0000nnnnOO011010 MACL~· Rn

STS PR,Rn 0000nnnn00101010 PR~ Rn

28 Hitachi

Table 5.8 System Control Instructions (cont)

Execution T
Instruction Instruction Code Operation State Bit

STS.L MACH,@-Rn 0100nnnnOOOOO010 An-4 -7 An, MACH -7 (An)

STS.L MACL,@-Rn 0100nnnnOO010010 An-4 -7 An, MACL -7 (An)

STS.L PR,@-Rn 0100nnnn00100010 An-4 -7 An, PA -7 (An)

TRAPA #imn 11000011iiiiiiii PC/SA -7 stack area, (imm x 8
4+ VSA) -7 PC

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory -7 ,register) is the same as the register
used by the next instruction.

5.2 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.

Table 5.9 Instruction Set

Execu-
tion

Instruction Instruction Code Operation State TBit

ADD #irmn,Rn Olllnnnniiiiiiii An + imm -7 An

ADD Rm,Rn 00 llnnnnmmrnmllO 0 An + Am -7 An

ADDC Rm,Rn 00 llnnnnmmrnmlll 0 An + Am + T -7 An, Carry
Carry -7 T

ADDV Rm,Rn OOllnnnnmmrnmllll An+ Am-7 An, Overflow
Overflow -7 T

AND #irmn,RO 11001001iiiiiiii AO&imm -7 AO

AND Rm,Rn OOlOnnnnmmrnmlOOl An & Am -7 An 1

AND.B #imn,@(RO,GBR) 11001101iiiiiiii (AO + GSA) & imm 3
-7 (AO + GSA)

BF label 10001011dddddddd If T = 0, disp x 2 + 3/1*3
PC-7 PC; ifT= 1,
nop

BF/S label*2 10001111dddddddd If T = 0, disp x 2+ 211*3
PC-7 PC; itT= 1,
nop

29 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State TBit

BRA label 1010dddddddddddd Delayed branch, 2
dispx 2+ PC ~
PC

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn 2
+PC ~ PC

BSR label 10 11dddddddddddd Delayed branch, 2
PC ~ PR, disp x 2
+ PC ~.PC

BSRF Rn*2 0000nnnnOOOOO011 Delayed branch, 2
PC ~ PR, Rn + PC
~PC

BT label 10001001dddddddd If T = 1, disp x 2+ 3/1*3
PC~ PC; ifT=O,
nop

BT/S label *2 10001101dddddddd If T = 1, disp x 2 + 211*3
PC~ PC; ifT=O,
nop

CLRMAC 0000000000101000 o ~ MACH, MACL

CLRT 0000000000001000 O~T 0

CMP/EQ #imrn,RO 10001000iiiiiiii If RO = imm, 1 ~ T Comparison
result

CMP/EQ Rm,Rn 0011~0000 If Rn = Rm, 1 ~ T Comparison
result

CMP/GE Rm,Rn 0011~0011 If Rn ~ Rm with Comparison
signed data, 1 ~ T result

CMP/GT Rm,Rn 0011nnnnrnmmm0111 If Rn > Rm with Comparison
signed data, 1 ~ T result

CMP/HI Rm,Rn 0011~0110 If Rn > Rm with Comparison
unsigned data, 1 ~ result
T

CMP/HS Rm,Rn 0011nnnnrnmmm0010 If Rn ~ Rm with Comparison
unsigned data, 1 ~ result
T

CMP/PL Rn 0100nnnnOO01010l If Rn>O, 1 ~T Comparison
result

CMP/PZ Rn 0100nnnnOO010001 If Rn ~O, 1 ~ T Comparison
result

Notes: 2. SH7600 instructions

3. One state when it does not branch

30 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State TBit

CMP/STR Rrn,Rn 0010nnnnmrnnun1100 If Rn and Rm have Comparison
an equivalent byte, result
1 ~T

DIVOS Rrn,Rn 0010nnnnmrnnun0111 MSBofRn~ 0, Calculation
MSB of Rm ~ M, M result
AO~T

DIVOU 0000000000011001 o ~M1arr 1 0

DIV1 Rrn,Rn 0011nnnnmrnnun0100 Single-step division 1 Calculation
(Rn/Rm) result

DMULS.L Rrn,Rn*2 0011nnnnmrnnun1101 Signed operation of 2 to 4*1
Rn x Rm ~ MACH,
MACL

DMULU.L Rrn,Rn*2 0011nnnnmrnnun0101 Unsigned operation 2 to 4*1
of Rnx Rm~
MACH,MACL

Dr Rn*2 0100rmnnOO010000 Rn - 1 ~ Rn, when Comparison
Rn isO, 1 ~T. result
When Rn is
nonzero, 0 ~ T

EXTS.B Rrn,Rn 0110nnnnmrnnun1110 A byte in Rm is
sign-extended ~
Rn

EXTS.W Rrn,Rn 0110nnnnmrnnun1111 A word in Rm is
sign-extended ~
Rn

EXTU.B Rrn,Rn 0110nnnnmrnnunl100 A byte in Rm is
zero-extended ~
Rn

EXTU.W Rrn,Rn o 110nnnnmrnnun110 1 A word in Rm is
zero-extended ~
Rn

JMP @Rn 0100rmnn00101011 Delayed branch, Rn 2
~PC

Notes: 1. The normal minimum number of execution states

2. SH7600 instructions

31 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State TBit

JSR @Rn 0100nnnnOOO01011 Delayed branch, 2
PC -7 PR, Rn -7
PC

LIX: Rm,GBR 0100rnrnmmOO011110 Rm-7 GBR

LIX: Rm,SR 0100rnrnmmOOO01110 Rm-7 SR LSB

LIX: Rm,VBR 0100rnrnmm00101110 Rm-7 VBR 1

LDC.L @Rm+,GBR 0100rnrnmmOO01011i (Rm) -7 GBR, Rm 3
+4-7 Rm

LDC.L @Rm+,SR 0100rnrnmmOOOO0111 (Rm) -7 SR, Rm + 3 LSB
4 -7Rm

LDC.L @Rm+,VBR 0100rnrnmm00100111 (Rm) -7 VBR, Rm 3
+ 4 -7 Rm

LDS Rm,MACH 0100rnrnmmOOO01010 Rm-7 MACH

LDS Rm,MACL 0100rnrnmmOO011010 Rm-7 MACL

LDS Rm,PR 0100rnrnmm00101010 Rm-7 PR

LDS.L @Rm+,MACH 0100rnrnmmOOOO0110 (Rm) -7 MACH,
Rm+4 -7 Rm

LDS.L @Rm+,MACL 0100rnrnmmOO010110 (Rm) -4 MACL, Rm
+4-7 Rm

LDS.L @Rm+,PR 0100rnrnmm00100110 (Rm) -7 PR, Rm +
4 -7Rm

MAC.L @Rm+,@Rn+*2 00 o Onnnnmrnmm1 111 Signed operation of 3/(2 to
(Rn) x (Rm) + MAC 4)*1
-7 MAC

MAC.W @Rm+,@Rn+ 010 Onnnnmrnmm111 1 Signed operation of 3/(2)* 1
(Rn) x (Rm) + MAC
-7 MAC

MOV #imm,Rn 1110nnnniiiiiiii imm-7 Sign
extension -7 Rn

MOV Rm,Rn 0110nnnnmrnmm0011 Rm-7 Rn

Notes: 1. The normal minimum number of execution states (the number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

32 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State T Bit

MOV.B @(disp,GBR) ,RO 1100 01 OOdddddddd (disp + GBR) ~ 1
Sign extension ~
RD

MOV.B @(disp,Rm) ,RO 10 00 0 100mmmrndddd (disp + Rm) ~ Sign
extension ~ RD

MOV.B @(RO,Rm) ,Rn 0000nnnnmmmml100 (RD + Rm) ~ Sign
extension ~ Rn

MOV.B @Rm+,Rn 01 10nnnnmmmm010 0 (Rm)~ Sign
extension ~ Rn,
Rm+1 ~Rm

MOV.B @Rm,Rn OllOnnnnmmmmOOOO (Rm) ~ Sign
extension ~ Rn

MOV.B RO,@(disp,GBR) 11000000dddddddd RD ~ (disp + GBR)

MOV.B RO,@(disp,Rn) 10000000nnnndddd RD ~ (disp + Rn)

MOV.B Rm,@(RO,Rn) 0000nnnnmmmm0100 Rm~ (RD+ Rn)

MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn-1 ~ Rn, Rm~
(Rn)

MOV.B Rm,@Rn OOlOnnnnmmmmOOOO Rm~ (Rn)

MOV.L @(disp,GBR),RO 11000110dddddddd (disp x 4 + GBR) ~
RD

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp x4+ PC) ~
Rn

MOV.L @(disp,Rm) ,Rn OlOlnnnnmmmmdddd (disp x 4 + Rm) ~
Rn

MOV.L @(RO,Rm) ,Rn 0000nnnnmmmm1110 (RD+ Rm) ~ Rn

MOV.L @Rm+,Rn 0110nnnnmmmrn0110 (Rm) ~ Rn, Rm + 4
~Rm

MOV.L @Rm,Rn 01 10nnnnmmmrn001 0 (Rm) ~ Rn

MOV.L RO,@(disp,GBR) 1100 00 10dddddddd RD ~ (disp x 4 +
GBR)

MOV.L Rm,@(disp,Rn) 000 1nnnnmmmrnddd ~ Rm ~ (disp x 4 +
Rn)

MOV.L Rm,@(RO,Rn) 0000nnnnmmmrn0110 Rm ~ (RD + FUj)

MOV.L Rm,@-Rn 00 10nnnnmmmrn011 0 Rn-4~ Rn, Rm~
(Rn)

MOV.L Rm,@Rn o 010nnnnmmmrn001 0 Rm~ (Rn)

MOV.W @(disp,GBR) ,RO 1100 010 1dddddddd (disp x 2 + GBR) ~
Sign extension ~
RD

33 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State TBit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp x 2 + PC) -7
Sign extension -7
Rn

MOV.W @(disp,Rm),RO 100 0010 lmmrnmdddd (disp x 2 + Rm) -7
Sign extension -7
RD

MOV.W @(RO,Rm),Rn 0000nnnnrrmmm1101 (RD + Rm) -7 Sign
extension -7 Rn

MOV.W @Rm+,Rn 0110nnnnrrmmm0101 (Rm) -7 Sign
extension -7 Rn,
Rm+2 -7 Rm

MOV.W @Rm,Rn 0110nnnnrrmmmOO01 (Rm) -7 Sign
extension -7 Rn

MOV.W RO,@(disp,GBR) 110 000 0 1dddddddd RD -7 (disp x 2+
GBR)

MOV.W RO,@(disp,Rn) 100 0000 1nnnndddd RD -7 (disp x 2 +
Rn)

MOV.W Rm,@(RO,Rn) 0000nnnnrrmmm0101 Rm -7 (RD + Rn)

MOV.W Rm,@-Rn 0010nnnnrrmmm0101 Rn-2 -7 Rn, Rm -7
(Rn)

MOV.W Rrn,@Rn 0010nnnnrranmmOO01 Rm -7 (Rn)

MOVA @(disp,PC) ,RO 110 00 111dddddddd dispx 4+ PC -7 RD

MOVT Rn 0000nnnn00101001 T -7 Rn

MUL.L Rrn,Rn*2 0000nnnnrranmm0111 Rn x Rm -7 MACL 2 to 4*1

MULS.W Rrn,Rn 0010nnnnrranmm1111 Signed operation of 1 to 3*1
Rnx Rm -7 MAC

MULU.W Rrn,Rn 0010nnnnrranmm1110 Unsigned operation 1 to 3*1
of Rn x Rm -7 MAC

NID Rrn,Rn 0110nnnnrrmmm1011 o-Rm-7 Rn

NIDC Rrn,Rn o 11 Onnnnrrmmm1 0 10 o-Rrn-T -7 Rn, Borrow
Borrow -7 T

NOP 0000000000001001 No operation

NO!' Rrn,Rn o 11 OnnnnrrmmmO 111 -Rm -7 Rn

OR #inun,RO 11001011iiiiiiii RD I imm -7 RD 1

OR Rm,Rn 001 Onnnnrrmmm10 11. Rn I Rm -7 Rn 1
Notes: 1. The normal minimum number of execution states

2. SH76DD instructions

34 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State TSit

OR.B #imm,@(RO,GBR) 11001111iiiiiiii (RO + GBR) I imm 3
~ (RO+GBR)

ROI'CL Rn 0100nnnn00100100 T f- Rn f- T MSB

ROI'CR Rn 0100nnnn00100101 T~Rn~T LSB

ROTL Rn 0100nnnnOOOO0100 T f- Rn f- MSB MSB

ROTR Rn 0100nnnnOOOO0101 LSB ~Rn ~T LSB

RTE 0000000000101011 Delayed branch, 4 LSB
stack area -7

PC/SR

RTS 0000000000001011 Delayed branch, 2
PR~ PC

SErI' 0000000000011000 1 ~T 1

SHAL Rn 0100nnnn00100000 T f- Rnf- 0 MSB

SHAR Rn 0100nnnn00100001 MSB -7 Rn -7 T LSB

SHLL Rn 0100nnnnOOOOOOOO T f- Rnf- 0 MSB

SHLL2 Rn 0100nnnnOOO01000 Rn«2 ~Rn

SHLL8 Rn 0100nnnnOO011000 Rn«B ~Rn

SHLL16 Rn 0100nnnn00101000 Rn«16 ~Rn

SHLR Rn 0100nnnnOOOOOO01 o ~Rn-7T LSB

SHLR2 Rn 0100nnnnOOO01001 Rn»2 -7 Rn

SHLR8 Rn 0100nnnnOO011001 Rn»B ~Rn

SHLR16 Rn 0100nnnn00101001 Rn»16 -7 Rn 1

SLEEP 0000000000011011 Sleep 3

STC GBR,Rn 0000nnnnOO010010 GBR~ Rn

STC SR,Rn 0000nnnnOOOOO010 SR~ Rn

STC VBR,Rn 0000nnnn00100010 VBR~ Rn

STC.L GBR,@-Rn 0100nnnnOO010011 Rn-4 ~ Rn, GBR 2
~ (Rn)

STC.L SR,@-Rn 0100nnnnOOOOO011 Rn-4 ~ Rn, SR ~ 2
(Rn)

STC.L VBR,@-Rn 0100nnnn00100011 Rn-4 ~ Rn, VBR 2
~(Rn)

STS MACH,Rn 0000nnnnOOO01010 MACH ~ Rn

35 Hitachi

Table 5.9 Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State TBit

STS MACL,Rn 0000nnnnOOOll010 MACL~ Rn 1

STS PR,Rn 000Onnnn00101010 PR~ Rn

STS.L MAClt,@-Rn 0100nnnnOOOOO010 Rn-1~ Rn,
MACH ~ (Rn)

STS.L MACL,@-Rn 0100nnnnOO010010 Rn-1 ~ Rn, MACL
~(Rn)

STS.L PR,@-Rn 0100nnnn00100010 Rn-1 ~ Rn, PR ~ 1
(Rn)

SUB Rm,Rn OOllnnnnmmrrmlOOO Rn-Rm ~ Rn

SUBC Rm,Rn 0011nnnnmmrrml010 Rn-Rm-T ~ Rn, Borrow
Borrow ~T

SUBV Rm,Rn OOllnnnnmmrrmlOll Rn-Rm ~ Rn, umfbN
Underflow ~ T

SWAP.B Rm,Rn OllOnnnnmmrrmlOOO Rm ~ Swap upper
and lower 2 bytes ~
Rn

EWb.P.w Rm,Rn OllOnnnnmmrrmlOOl Rm ~ Swap upper
and lower word~
Rn

TAS.B @Rn OlOOnnnnOOOllOll If (Rn) is 0,1 ~ T; 4 Test
1 ~ MSB of (Rn) result

TRAPA #imn 11000011iiiiiiii PC/SR ~ stack 8
area, (imm x 4 +
VBR) ~ PC

TST #imn,RO 11001000iiiiiiii RO & imm; if the Test
result is 0, 1 ~ T result

TST Rm,Rn OOlOnnnnmmrrmlOOO Rn & Rm; if the Test
result is 0, 1 ~ T result

'l'SI'.B #mm, @(OO,GER) 11001100iiiiiiii (RO + GBR) & imm; 3 Test
if the result is 0, 1 result
~T

XOR #imn,RO 11001010iiiiiiii RO"imm~ RO

XOR Rm,Rn 0010nnnnmmrrml010 Rn"Rm~. Rn 1

»:R.B #mm, @(OO,GER) 11001110iiiiiiii (RO + GBR) " imm 3
-4 (RO + GBR)

XTRCT Rm,Rn 00 10nnnnmmmm110 1 Center 32 bits of
Rmand Rn ~ Rn

36 Hitachi

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code State TBit

Assembler input format; A brief description of Displayed in Number of The value of
imm and disp are operation order MSB ' LSB states when T bit after the
numbers, expressions,
or symbols

Description: Description of operation

Notes: Notes on using the instruction

there is no
wait state

instruction is
executed

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte (unsigned long Addr) ;

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr) ;

• Writes data of each length ·to address Addr. An address error will occur if word data is written to
an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte (unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long (unsigned long Addr, unsigned long Data) ;

• Starts execution from the slot instruction located at an address (Addr - 4). For Delay_Slot (4);,
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot (unsigned long Addr) ;

37 Hitachi

• List registers:

unsigned long R[16);

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL, PR;

unsigned long PC;

• Definition of SR structures:

struct SRO {

unsigned long dummyO:22;

unsigned long MO: 1;

unsigned. long QO: 1;

unsigned long IO:4;

unsigned long dummy1:2;

unsigned long SO: 1;

unsigned long TO: 1;

} i

• Definition of bits in SR:

#define M ((*(struct SRO *) (&SR)) .MO)

#define Q ((*(struct SRO *) (&SR)) .QO)

#define S ((*(struct SRO *) (&SR)) .SO)

#define T ((* (struct SRO *) (&SR)) .TO)

• Error display function:

Error (char * er);

The PC should point to the location four bytes (the second instruction) after the current instruction.

Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

38 Hitachi

·org Location counter set

.data.w Securing integer word data

Securing integer longword data

Securing string data

.data.l

.sdata

.align 2

.align 4

.arepeat

.arepeat

.aendr

16

32

2-byte boundary alignment

2-byte boundary alignment

16-repeat expansion

32':'repeat expansion

End of repeat expansion of specified number

Note:. The SH-series cross assembler version 1.0 does not support the conditional assembler
functions.

Notes: 1. In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (xl, x2, x4) according to the
operand size is written. This is done to show clearly the operation of the LSI; see the
assembler notation rules for the actural assembler descriptions.

@(disp:4, Rn): Register indirect with displacement
@(disp:8, GBR): GBR indirect with displacement
@(disp 8, PC): PC relative with displacement
disp:8, disp: 12: PC relative

2. Among the 16 bits of the instruction code, a code not assigned as an instruction is
treated as a general illegal instruction, and will result in illegal instruction exception
processing, This includes the case where an instruction code for the SH7600 series
only is executed on the SH7000 series.

Example I: H'FFF [General illegal instruction in both SH7000 and
SH 7600]

Example 2: H'3105 (=DMUL.L RO,Rl) [Illegal instruction in SH7000]

3. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example 1
BRA Label
. data. W H'FFFF

Example 2 RTE

~ Slot illegal instruction
[H'FFF is fundamentally a general illegal
instruction]

BT / S Label ~ Slot illegal instruction

39 Hitachi

6.2 ADD (ADD Binary): Arithmetic Instruction

Format

ADD

ADD

Rm,Rn .

#inun,Rn

Abstract

Rm+Rn~ Rn

Rn+imm~ Rn

Code

00 11nnnnrrmrm1100

0111nnnniiiiiiii

State T Bit

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The contents
of Rncan also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn * /

R[n)+=R[m);

PC+=2;

ADDI(long i,long n) /* ADD #inun,Rn */

}

if ((i&Ox80)==0) R[n)+=(OxOOOOOOFF & (long)i);

else R[n)+=(OxFFFFFFOO I (long)i);

PC+=2;

Examples:

ADD RO,Rl Before execution RO = JI'7FFFFFFF, Rl = H'OOOOOOOI

After execution Rl = H'80000000

ADD #H' 01, R2 Before execution R2 = H'OOOOOOOO

After execution R2 = H'OOOOOOO 1

ADD #H'FE,R3 Before execution R3 = H'OOOOOOOI

After execution R3 = H'FFFFFFFF

40 Hitachi

6.3 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

ADOC Rrn,Rn Rn + Rm + T ~ Rn, carry ~ T OOllnnnnnmnmlllO Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADOC (long m,long n) /* ADOC Rrn, Rn * /

unsigned long trnpO,trnpl;

trnpl=R [n] +R [m] ;

trnpO=R [n] ;

R[n]=trnpl+T;

if (tmpO>trnpl) T=l;

else T=O;

if (tmpl>R[n]) T=l;

PC+=2;

Examples:

CLRT RO:RI (64 bits) + R2:R3 (64 bits) = RO:RI (64 bits)

ADOC R3,Rl

ADOC R2,RO

Before execution

After execution

Before execution

After execution

T = 0, RI = H'OOOOOOOI, R3 = H'FFFFFFFF

T = I, RI = H'OOOOOOO

T = I, RO = H'00000OOO,R2 = H'OOOOOOOO

T = 0, RO = H'OOOOOOO I

41 Hitachi

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code State T Bit

ADDV Rro,Rn Rn + Rm -7 Rn, overflow -7 T 00 llnnnnmrnrmnllll 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
. occurs, the T bit is set to 1.

Operation:

ADDV(long rn,long n) /*ADDV Rro,Rn * /

long dest,src,ansi

if ((long)R[n]>=O) dest=Oi

else dest=li

if ((long)R[rn]>=O) src=Oi

else src=l;

src+=desti

R[n]+=R[rn]i

if ((long)R[n]>=O) ans=Oi

else ans=li

ans+=desti

if (src==O I I src==2)

if (ans==l) T=li

else T=Oi

else T=Oi

PC+=2i

Examples:

ADDV RO,Rl

ADDV RO,Rl

Before execution

After execution

Before execution

After execution

RO = H'OOOOOO01 , R1 = H'7FFFFFFE, T = 0

Rl = H'7FFFFFFF, T = 0

RO = H'OOOOOO02, R 1 = H'7FFFFFFE, T = 0

R 1 = H'80000000, T = 1

42 Hitachi

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State TBit

AND Rm,Rn An&Am ~ An OOlO~lOOl

AND #imm,RO AD&imm ~ AD 11OOlOOliiiiiiii

AND.B #imm, @ (RO, GBR) (AD + GSA) & imm ~ (AD + 11OOllOliiiiiiii 3
GSA)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate

data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to O.

Operation:

AND(long m,long n)

R[n)&=R[m)

PC+=2i

/* AND Rm,Rn * /

ANDI(long i) /* AND #imm,RO */

R[O)&=(OxOOOOOOFF & (long)i)i

PC+=2;

ANDM(long i) /* AND.B #imm,@(RO,GBR) */

long tempi

temp=(long)Read_Byte(GBR+R[O))i

temp&=(OxOOOOOOFF & (long)i);

Write_Byte(GBR+R[O),temp);

PC+=2;

43 Hitachi

Examples:

AND RO,Rl Before execution RO = H'AAAAAAAA, Rl = H'55555555

After execution R 1 = H'OOOOOOOO

AND #H'OF,RO Before execution RO = H'FFFFFFFF

After execution RO = H'OOOOOOOF

AND.B #H'80,@(RO,GBR) Before execution @(RO,GBR) = H'A5

After execution @(RO,GBR) = H'80

44 Hitachi

6.6 BF (Branch if False): Branch Instruction

Format Abstract

BF label When T = 0, disp x 2 + PC --7 PC;
When T = 1, nap

Code

lOOOlOlldddddddd

State T Bit

311

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is -256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(long d) /* BF disp */

long disPi

if «d&Ox80)==O) disp=(OxOOOOOOFF & (long)d)i

else disp=(OxFFFFFFOO I (long)d)i

if (T==O) PC=PC+(disp«1)+4i

else PC+=2i

Example:

CLRT T is always cleared to 0

BT TRGET_T Does not branch, because T = 0

BF TRGET_F Branches to TRGET_F, because T = 0

NOP

NOP ~The PC location is used to calculate
the
branch destination address of the BF
instruction

~ Branch destination of the BF instruction

45 Hitachi

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format

BF/S
label

Abstract

When T = 0, disp x 2 + PC ~ PC;
When T = 1 , nap

Code State T Bit

10 00 1111dddddddd 211

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF executes the
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubled ..

Consequently, the relative interval from the branch destination is -256 to +254 bytes. If the
displacemen·t is too short to reach the branch destination, use BF/S with the BRA instruction or the

like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after is a
branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

long disPi

unsigned long tempi

temp=PCi

if ((d&Ox80)==0) disp=(OxOOOOOOFF & (long)d)i

else disp=(OxFFFFFFOO I (long)d)i

if (T==O) {

PC=PC+(disp«1)+4;

Delay_Slot(temp+2);

else PC+=2;

46 Hitachi

Example:

CLRT

BT/S TRGET_T

NOP

BF/S TRGET_F

ADD RO,Rl

NOP

TRGET_F:

T is always 0

Does not branch, because T o

Branches to TRGET, because T = 0

Executed before branch

~ The PC location is used to calculate the branch destination
address of the BFIS instruction

~ Branch destination of the BF/S instruction

47 Hitachi

6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRA label disp x 2 + PC ~ PC lOlOdddddddddddd 2

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is
-4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(long d) /* BRA disp */

unsigned long tempi

long disPi

if ((d&Ox800)==O) disp=(OxOOOOOFFF & d)i

else disp=(OxFFFFFOOO I d)i

temp=PCi

PC=PC+(disp«1)+4i

Delay_Slot(temp+2)i

Example:

BRA TRGEI' Branches to TRGET

ADD RO I Rl Executes ADD before branching

NOP ~ The PC location is used to calculate the branch destination address
of the BRA instruction

TRGET: ~ Branch destination of the BRA instruction

48 Hitachi

6.9 BRAF (Branch Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRAF Rn Rn+PC ~ PC OOOOnnnn001000ll 2

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRAF(long n) /* BRAF Rn */

unsigned long temp i

temp=PCi

PC+=R[n] i

Delay_Slot(temp+2)i

Example:

MOV.L #(TRGET-BSRF_P~),RO

BRAF @RO

ADD RO,Rl

BRAF_PC:

NOP

TRGET:

Sets displacement

Branches to TRGET

Executes ADD before branching

f- The PC location is used to calculate
the branch destination address of
the BRAF instruction

f- Branch destination of the BRAF instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

49 Hitachi

6.10 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSR label PC --7 PR, disp x 2 + PC --7 PC lOlldddddddddddd 2

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value. is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is -4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */

long disPi

if ((d&Ox800)==O) disp=(OxOOOOOFFF & d)i

else disp= (OxFFFFFOOO I d)i

PR=PCi

PC=PC+ (disp«l) +4i

Delay_Slot(PR+2)i

50 Hitachi

Example:

BSR TRGEl'

MOV R3,R4

ADD RO,Rl

Branches to TRGET

Executes the MOV instruction before branching

~ The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data»

TRGEl': ~ Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #l,RO Executes MOV before branching

51 Hitachi

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSRF Rn PC ~ PR, Rn + PC ~ PC OOOOnnnnOOOOOOll 2

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PRo The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSRF(long n) /* BSRF Rn */

PR=PC;

PC+=R[n] ;

Delay_Slot(PR+2);

Example:

TRGET:

MOV.L #(TRGET-BSRF_PC),RO

BRSF @RO

MOV R3,R4

ADD RO,Rl

MOV R2,R3

RTS
MOV #l,RO

Sets displacement
Branches to TRGET
Executes the MOV instruction before
branching
~ The PC location is used to
calculate the branch destination
withBSRF

~ Procedure entrance

Returns to the above ADD instruction
Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

52 . Hitachi

6.12 BT (Branch if True): Branch Instruction

Format

BT label

Abstract

When T = 1, disp x 2 + PC ~
PC;
When T = 0, nop

Code

lOOOlOOldddddddd

State T Bit

3/1

Description: ReadS the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC. + displacement.
The PC points to the starting address of the second instruction after the branch instruction. The 8-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is -256 to +254 bytes. If the displacement is too short to reach the branch destination,
use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(long d) /* BT disp */

long disp;

if «d&Ox80)==O) disp=(OxOOOOOOFF & (long)d);

else disp=(OxFFFFFFOO I (long)d);

if (T==l) PC=PC+(disp«l) +4;

else PC+=2;

Example:

SE'IT T is always 1

BF TRGEI'_F Does not branch, because T = 1

BT TRGEI'_T Branches to TRGET_T, because T = 1

NOP

NOP f-- The PC location is used to calculate the branch destination
address of the BT instruction

f-- Branch destination of the BT instruction

53 Hitachi

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)

Format

BT/S label

Abstract

When T = 1, disp x 2 + PC --?

PC;
When T = 0, nap

Code State T Bit

lOOOllOldddddddd 211

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is -256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles;
when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

long disp;

unsigned long temp;

temp=PC;

if «d&Ox80)==O) disp=(OxOOOOOOFF & (long)d);

else disp=(OxFFFFFFOO I (long)d);

if (T==l) {

PC=PC+(disp«1)+4;

Delay_Slot(temp+2);

else PC+=2i

54 Hitachi

Example:

SE'IT T is always 1

BF /S TRGEl'_F Does not branch, because T = 1

NOP

BT/S TRGEl'_T Branches to TRGET, because T = 1

ADD RO,Rl

NOP

Executes before branching.

f- The PC location is used to calculate the branch destination
address of the BT/S instruction

f- Branch destination of the BT/S instruction

55 Hitachi

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code

CLRMAC o -7 MACH, MACL 0000000000101000

Description: Clears the MACH and MACL registers.

Operation:

}

CLRMAC () / * CLRMAC * /

MACH=Oi

MACL=Oi

PC+=2i

Example:

CLRMAC

MAC.W

MAC.W

@RO+,@R1+

@RO+,@R1+

Initializes the MAC register

Multiply and accumulate operation

56 Hitachi

State T Bit

6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract

CLRT o -7T

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

T=Oi

PC+=2i

Example:

CLRT Before execution T = 1

After execution T = 0

Code

0000000000001000

57 Hitachi

State TSit

o

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code State TBit

CMP/EQ Rm,Rn When Rn = Rm, 1 ~ T 0011nnr.crmrnmmn0000 Comparison
result

CMP/GE Rm,Rn When signed and Rn ~ 0011nnr.crmrnmmn0011 Comparison
Rm,1 ~T result

CMP/GT Rm,Rn When signed and Rn > 0011nnr.crmrnmmn0111 Comparison
Rm, 1 ~T result

CMP/HI Rm,Rn When unsigned and Rn > 00 11nnr.crmrnmmn0 110 Comparison
Rm,1 ~T result

CMP/HS Rm,Rn When unsigned and Rn ~ 0011nnr.crmrnmmn0010 Comparison
Rm,1 ~T result

CMP/PL Rn When Rn > 0, 1 ~ T 0100nnnnOO010101 Comparison
result

CMP/PZ Rn When Rn ~ 0, 1 ~ T 0100nnnnOO010001 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals OOlonnnnmmmmalOO Comparison
a byte in Rm, 1 ~ T result

CMP/EQ #irmn,RO When RO = imm, 1 ~ T 100OlOOOiiiiiiii Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to I'if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and O. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.1 shows the
mnemonics for the conditions.

58 Hitachi

Table 6.1 CMP Mnemonics

Mnemonics Condition

CMP /EQ Rm, Rn If Rn = Rm, T = 1

CMP /GE Rm, Rn If Rn ~ Rm with signed data, T = 1

CMP /GT Rm, Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP /HS Rm, Rn If Rn ~ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ~ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

Q1P/EQ #imm,RO If RO = imm, T = 1

Operation:

Q1PEQ(long m,long n) /* CMP_EQ Rm,Rn */

if (R[n]==R[m]) T=l;

else T=O;

PC+=2;

O:'IPGE(long m,long n)

if ((long)R[n]>=(long)R[m]) T=l;

else T=O;

PC+=2;

O:'IPGT(long m,long n)

if ((long)R[n]>(long)R[m]) T=l;

else T=O;

PC+=2;

59 Hitachi

CMPHI(long m,long n) /* CMP_HI Rro,Rn * /

}

if ((unsigned long)R[n]>(unsigned long)R[m]) T=li

else T=Oi

PC+=2i

CMPHS(long m,long n)

}

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=li

else T=Oi

PC+=2i

CMPPL (long n)

if ((long)R[n]>O) T=li

else T=Oi

PC+=2i

CMPPZ (long n) /* CMP _PZ Rn * /

if ((long)R[n]>=O) T=li

else T=Oi

PC+=2i

60 Hitachi

CMPSTR(long m,long n)

unsigned long temp i

long HH,HL,LH,LLi

temp=R[n] "R[m] i

HH=(temp&OxFFOOOOOO»>12i

HL= (temp&OxOOFFOOOO) »8i

LH=(temp&OxOOOOFFOO»>4i

LL=temp&OxOOOOOOFFi

HH=HH&&HL&&LH&&LLi

if (HH==O) T=li

else T=Oi

PC+=2i

CMPIM (long i) /* CMP_EQ #imm,RO */

long inmi

if ((i&Ox80)==O) imm=(OxOOOOOOFF & (long i));

else inm= (OxFFFFFFOO I (long i) ') i

if (R[O]==inm) T=li

else T=Oi

PC+=2i

Example:

CMP/GE RO,Rl

BT TRGET_T

CMP/HS RO,Rl

BT TRGET_T

CMP/STR R2,R3

BT TRGET_T

RO = H'7FFFFFFF, Rl = H'80000000

Does not branch because T = 0

RO = H'7FFFFFFF, Rl = H'80000000

Branches because T = 1

R2 = "ABCD", R3 = "XYCZ"

Branches because T = 1

61 Hitachi

6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code

DIVOS Rm, Rn MSB of Rn -7 0, MSB of Rm -7 0010nnnnmmnmOlll
M, M"O-7T

State T Bit

Calculation
result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by

repeatedly dividing in combination with the DIVl or another instruction that divides for each bit
after this instruction. See the description given with DIVl for more information.

Operation:

DIVOS(long m,long n) /* DIVOS Rm, Rn * /

if ((R[n]&Ox80000000)==O) Q=Oi

else Q=li

if ((R[m]&Ox80000000)==O) M=Oi

else M=li

T=! (M==Q) i

PC+=2i

Example: See DIVl.

62 Hitachi

6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

DIVOU o ~M/Qff 0000000000011001 o

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIVl or another instruction that divides for each bit
after this instruction. See the description given with DIVl for more information.

Operation:

DIVOU()

{

/* DIVOU */

M=Q=T=Oi

PC+=2i

Example: See DIVl.

63 Hitachi

6.19 DIVI (Divide Step 1): Arithmetic Instruction

Format Abstract Code

DIVl Rm,Rn 1-step division (Rn + Rm) OOllnr.rrrrummnm0100

State T Bit

Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M. Q. and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIYl instruction, then find the remainder as follows:

(Dividend) - (divisor)] (quotient) = (remainder)
with the SH7600 series in which a divider is installed as a peripheral function, the remainder can
be found as a function of the divider .

. Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIVI for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or mor~ bits. place
ROTCL before DIVI. For the division sequence, see the following examples.

64 Hitachi

Operation:

DIV1(long m,long n) /* DIVl Rm,Rn */

unsigned long tmpO;

unsigned char old_q, tmpl;

old_q=Q;

Q=(unslgned char) ((Ox80000000 & R[n]) !=O);

R[n]«=l;

R[n] 1= (unsigned long)T;

switch (old_q) {

case O:switch(M){

case O:tmpO=R[n];

,R[n] -=R[m];

tmpl=(R[n]>tmpO);

switch(Q) {

case O:Q=tmpl;

break;

case l:Q=(unsigned char) (tmpl==O);

break;

break;

case l:tmpO=R[n];

R[n]+=R[m];

tmpl=(R[n]<tmpO);

switch(Q){

case O:Q=(unsigned char) (tmpl==O);

break;

case l:Q=tmpl;

break;

break;

break;

65 Hitachi

case l:switch(M){

case O:tmpO=R[n];

R[n]+=R[rn];

tmpl=(R[n]<tmpO);

8witch(Q) {

case O:Q=tmpl;

break;

case l:Q=(unsigned char) (tmpl==O);

break;

break;

case l:tmpO=R[n];

R[n]-=R[rn];

tmpl=(R[n]>tmpO);

switch(Q) {

case O:Q=(unsigned char) (tmpl==O);

break;

case l:Q=tmpl;

break;

break;

break;

T= (Q==M);

PC+=2;

66 Hitachi

Example 1:

Rl (32 bits) I RO (16 bits) = Rl (16 bits):Unsigned

SHLL16 RO Upper 16 bits = divisor, lower 16 bits = 0

TST RO,RO Zero division check

BI' ZERO_DIV

CMP/HS RO,R1 Overflow check

BI' OVER_DIV

DIVOU Flag initialization

.arepeat 16

DIV1 RO,R1 Repeat 16 times

.aendr

ROI'CL R1

EXTU.W R1,R2 Rl = Quotient

Example 2:

Rl :R2 (64 bits)IRO (32 bits) = R2 (32 bits):Unsigned

TST RO,RO Zero division check

BI' ZERO_DIV

CMP/HS RO,R1 Overflow check

BI' OVER_DIV

DIVOU Flag initialization

.arepeat 32

ROI'CL R2 Repeat 32 times

DIV1 RO,R1

.aendr

ROI'CL R2 R2 = Quotient

67 Hitachi

Example 3:

SHLL16

EXTS.W

XOR

MOV

RarcL

SUBC

DIVOS

.arepeat

DIV1

.aendr

EXTS.W

RarcL

ADDC

EXTS.W

Example 4:

MOV

ROI'CL

SUBC

XOR

SUBC

DIVOS

.arepeat

RarcL

DIV1

.aendr

ROTCL

ADDC

RO

R1,R1

R2,R2

R1,R3

R3

R2,R1

RO,R1

16

RO,R1

R1,R1

R1

R2,R1

R1,R1

R2,R3

R3

R1,R1

R3,R3

R3,R2

RO,R1

32

R2

RO,R1

R2

R3,R2

Rl (16 bits)IRO (16 bits) = Rl (16 bits):Signed

Upper 16 bits = divisor, lower 16 bits = 0

Sign-extends the dividend to 32 bits

R2=O

Decrements if the dividend is negative

Flag initialization

Repeat 16 times

Rl = quotient (one's complement)

Increments and takes the two's complement if the MSB of the
quotient is 1

Rl = quotient (two's complement)

R2 (32 bits) I RO (32 bits) = R2 (32 bits):Signed

Sign-extends the dividend to 64 bits (Rl :R2)

R3=O

Decrements and ta~es the one's complement if the dividend is
negative

Flag initialization

Repeat 32 times

R2 = Quotient (one's complement)

Increments and takes the two's complement if the MSB of the
quotient is 1. R2 = Quotient (two's complement)

68 Hitachi

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH7600)

Format Abstract Code State T Bit

DMULS. L Rrn, Rn With signed, Rn x Rm ~ OOllnnnnmmmrn1101 2 t04
MACH,MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is a signed arithmetic
operation.

Operation:

DMULS (long m, long n) / * DMULS. L Rm, Rn * /

unsigned long RnL,RnH,RmL,RmH,ResO,Resl,Res2;

unsigned long tempO,templ,temp2,temp3;

long tempm,tempn,fnLrnL;

tempn=(long)R[n];

temprn=(long)R[rn];

if (tempn<O) tempn=O-ternpn;

if (temprn<O) temprn=O-ternpm;

if ((long) (R[n]AR[rn])<O) fnLmL=-l;

else fnLmL=O;

templ=(unsigned long)tempn;

temp2=(unsigned long)temprn;

RnL=templ&OxOOOOFFFF;

RnH=(templ»16)&OxOOOOFFFF;

RmL=temp2&OxOOOOFFFF;

RmH=(temp2»16)&OxOOOOFFFF;

tempO=RmL*RnL;

templ=RmH*RnL ;

temp2 =RmL *RnH;

temp3 =RmH*RnH;

69 Hitachi

Res2=O

Resl=templ+temp2;

if (Resl<templ) Res2+=Ox00010000;

templ=(Resl«16)&OxFFFFOOOO;

ResO=tempO+templ;

if (ResO<tempO) Res2++;

Res2=Res2+((Resl»16)&OxOOOOFFFF)+temp3;

if (fnLmL<O) {

Res2=-Res2;

if (ResO==O)

Res2++;

else

ResO=(-ResO)+l;

MACH=Res2;

MACL=ResO;

PC+=2;

Example:

DMULS RO,Rl

STS

STS

MACH,RO

MACL,RO

Before execution RO = H'FFFFFFFE, R 1 == H'OOOO5555

After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

Operation result (top)

Operation result (bottom)

70 Hitachi

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH7600)

Format Abstract

DMULU . L Rm, Rn Without signed, An x Am ~
MACH,MACL

Code State T Bit

00 11nnnnmmrnmO 101 2t04

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU (long m, long n) / * DMULU. L Rm, Rn * /

unsigned long RnL,RnH,RmL,RmH,ResO,Res1,Res2i

unsigned long tempO,temp1,temp2,temp3i

RnL=R[n]&OxOOOOFFFFi

RnH=(R[n]»16)&OxOOOOFFFFi

RmL=R[m]&OxOOOOFFFFi

RmH=(R[m]»16)&OxOOOOFFFFi

tempO=RmL*RnLi

temp1=RmH*RnL i

temp2 =RmL *RnH i

temp3 =RmH*RnH i

Res2=0

Res1=temp1+temp2i

if (Res1<temp1) Res2+=Ox00010000i

temp1=(Res1«16)&OxFFFFOOOOi

ResO=tempO+temp1i

if (ResO<tempO) Res2++i

Res2=Res2+((Res1»16)&OxOOOOFFFF)+temp3i

71 Hitachi

}

MACH=Res2i

MACL=ResOi

PC+=2i

Example:

DMULU RO,Rl

STS MACH,RO

STS MACL,RO

Before -execution RO = H'FFFFFFFE, R 1 = H'OOOO5555

After execution MACH = H'OOO05554, MACL = H'FFFF5556

Operation result (top)

Operation result (bottom)

72 Hitachi

6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600)

Format Abstract Code State T Bit

Rn Rn -1 ~ Rn;
When Rn is 0, 1 ~ T,
when Rn is nonzero, 0 ~ T

OlOOnnnn00010000 Comparison
result

Description: The contents of general register Rn is decremented by 1 and the result is compared to
o (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to O.

Operation:

IJl' (long n) /* IJl' Rn */

R[n]--i

if (R[n]==O) T=li

else T=Oi

PC+=2i

Example:

MOV ' #4, RS Sets the number of loops.

LOOP:

ADD RO,Rl

or RS Decrements the R5 value and checks whether it has become O.

BF LOOP Branches to LOOP if T=O. (In this example, loops 4 times.)

73 Hitachi

6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format

~.B Rn,Rn

~.W Rn,Rn

Abstract

Sign-extended Rm from byte ~
Rn

Sign-extended Rm from word ~
Rn

Code

0110nnnnmrnmmlll0

o 110nnnnmrnmmllll

State T Bit

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is specified, the
bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

R[n]=R[m]i

if ((R[m]&Ox00000080)==O) R[n]&=OxOOOOOOFFi

else R[n] I=OxFFFFFFOOi

PC+=2i

EXTSW(longm,long n) /* EXTS.W Rm,Rn */

R[n]=R[m]i

if ((R[m]&Ox00008000)==O) R[n]&=OxOOOOFFFFi

else R[n] I=OxFFFFOOOOi

PC+=2i

Examples:

EXIS.B RO, Rl

EXIS.W RO,Rl

Before execution

After execution

Before execution

After execution

RO = H'OOOO0080

Rl = H'FFFFFF80

RO = H'OOOO8000

R 1 = H'FFFF8000

74 Hitachi

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format

EXTU. B Rm, Rn

EXTU . W Rm, Rn

Abstract Code

Zero-extend Am from byte -7 An 01 10nnnnmmmml 10 0

Zero-extend Am from word -7 An 0110nnnnmnmn1101

State T Bit

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0 is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to bits
16 to 31 ofRn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */

R[n]=R[m]i

R[n]&=OxOOOOOOFFi

PC+=2i

EXTUW (long m, long n) / * EXTU. W Rm, Rn * /

R[n] =R[m] i

R[n]&=OxOOOOFFFFi

PC+=2i

Examples:

EXIU.B RO, R1

EXIU.W RO,R1

Before execution RO = H'FFFFFF80

After execution R 1 = H'OOOOOO80

Before execution

After execution

RO = H'FFFF8000

R 1 = H'00008000

75 Hitachi

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rn Rn~ PC OlOOnnnn001010ll 2

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit data in general register Rn.

Note: Sincethis is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP(long n) /* JMP @Rn */

unsigned long tempi

temp=PCi

PC=R[n]+4i

Delay_Slot(temp+2)i

Example:

MOV.L

JMP

MOV

. align

. data.l

TRGET: ADD

JMP_TABLE,RO

@RO

RO,Rl

4

TRGET

#l,Rl

Address of RO = TRGET

Branches to TRGET

Executes MOV before branching

Jump table

f- Branch destination .

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will still
be made using the value of the register prior to the change as the branch destination address.

76 Hitachi

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rn PC -7 PR, Rn -7 PC OlOOnnnn000010ll 2

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PRo The jump
destination is an address specified by the 32-bit data in general register Rn. The PC points to the
starting address of the second instruction after JSR. The JSR instruction and RTS instruction are
used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
bra~ching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long n) /* JSR @Rn */

PR=PC;

PC=R[n] +4;

Delay_Slot(PR+2);

77 Hitachi

Example:

JSR_TABLE:

TRGET:

MOV.L

JSR

XOR

ADD

JSR_TABLE,RO

@RO

Rl,Rl

RO,Rl

...........

. align 4

.data.l TRGET

NOP

MOV R2,R3

RTS

MOV #70,Rl

RO = Address of TRGET

Branches to TRGET

Executes XOR before branching

f-- Return address for when the
subroutine procedure is completed .
(PR data)

Jump table

f-- Procedure entrance

Returns to the above ADD instruction

Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

78 Hitachi

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

LOC Rm,SR Rm~SR 0100mmmmOOOOlll0 LSS

LOC Rm,GBR Rm~ GBR 0100mmmmOOOllll0

LOC Rm,VBR Rm~ VBR 0100mmmmOO10lll0

LOC.L @Rm+,SR (Rm) ~ SR, Rm + 4 ~ Rm 0100mmmmOOOOOlll 3 LSB

LOC.L @Rm+,GBR (Am) ~ GSR, Rm + 4 ~ Rm 0100mmmmOOO10lll 3

LOC.L @Rm+,VBR (Rm) ~ VBR, Rm + 4 ~ Rm 0100mmmmOO100lll 3

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LOCSR(long m) /* LOC Rm,SR */

SR=R[m]&Ox000003F3;

PC+=2;

LOCGBR (long m) /* LOC Rm,GBR * /

GBR=R[m] ;

PC+=2;

LOCVBR (long m) /* LOC Rm, VBR * /

VBR=R[m] ;

PC+=2;

79 Hitachi

LDCMSR (long m) /* LDC.L @Rm+,SR */

SR=Read_Long(R[m])&Ox000003F3;

R[m] +=4;

PC+=2;

}

LDCMGBR (long m) /* LDC.L @Rm+,GBR */

GBR=Read_Long(R[m])i

R[m]+=4;

PC+=2;

LDCMVBR (long m) /* LDC.L @Rm+,VBR */

VBR=Read_Long(R[m]);

R[m]+=4i

PC+=2;

Examples:

LDC RO,SR

LDC.L @R15+,GBR

Before execution

After execution

Before execution

After execution

RO = H'FFFFFFFF, SR = H'OOOOOOOO

SR = H'OO0003F3

R15 = H'lOOOOOOO

Rl5 = H'lOOOOOO4, GBR = @H'lOOOOOOO

80 Hitachi

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

LDS Rm,MACH Am~MACH OlOOmmmmOOOO101O

LDS Rm,MACL Am~ MACL OlOOmmmmOOOl101O

LDS Rm,PR Am~PA OlOOmmmmOO10101O

LDS.L @Rm+,MACH (Am) ~ MACH, Am + 4 ~ Am OlOOmmmmOOOOOllO

LDS.L @Rm+,MACL (Am) ~ MACL, Am + 4 ~ Am OlOOmmmmOOO1OllO

LDS.L @Rm+,PR (Am) ~ PA, Am + 4 ~ Am OlOOmmmmOO1OOllO

Description: Stores the source operand into the system registers MACH, MACL, or PRo

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH7000, the lower 10 bits are stored in MACH. For the SH7600, 32 bits are stored in
MACH.

Operation:

LDSMACH (long m) /* LDS Rm,MACH */

MACH=R[m] i

if «MACH&Ox00000200)==O) MACH&=Ox000003FFi

else MACH/=OxFFFFFCOOi

PC+=2i

LDSMACL (long m) /* LDS·Rm,MACL */

MACL=R[m] ;

PC+=2;

LDSPR (long m) /* LDS Rm,PR */

PR=R[m] i

PC+=2;

}

81 Hitachi

For SH7000 (these 2 lines

not needed for SH7600)

LDSMMACH (long m) /* LDS.L @Rm+,MACH */

MACH=Read_Long(R[m])i

if ((MACH&Ox00000200)==O) MACH&=Ox000003FFi

else MACHI=OxFFFFFCOOi

For SH7000 (these 21ines

not needed for SH7600)

R[m]+=4i

PC+=2i

LDSMMACL (long m)

MACL=Read_Long(R[m])i

R[m]+=4i

PC+=2i

/* LDS.L @Rm+,MACL */

LDSMPR (long m) /* LDS.L @Rm+,PR */

}

PR=Read_Long(R[m])i

R[m]+=4i

PC+=2i

Examples:

. LDS RO,PR

LDS.L @R15+,MACL

Before execution RO = H'12345678, PR = H'OooOooOO

After execution PR = H'12345678

Before execution' R 15 = H' 10000000

After execution R15 = H'100oo004, MACL = @H'loo0oo00

82 Hitachi

6.29 MAC.L (Multiply ~nd Accumulate Long): Arithmetic Instruction
(SH7600)

Format Abstract Code

MAC. L @Rm+, @Rn+ Signed operation, (Rn) x (Rm) + OOOOnnnnmrnmmllll
MAC~ MAC

State T Bit

3/(2 to
4)

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is~set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to
H'OOO07FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

unsigned long RnL,RnH,RmL,RmH,ResO,Resl,Res2i

unsigned long tempO,templ,temp2,temp3i

long tempm,tempn,fnLmLi

tempn=(long)Read_Long(R[n])i

R[n]+=4i

tempm=(long)Read_Long(R[m])i

R[m]+=4i

if ((long) (tempnAtempm) <0) fnLmL=-li

else fnLmL=Oi

if (tempn<O) tempn=O-tempni

if (tempm<O) tempm=O-tempmi

templ=(unsigned long)tempni

temp2=(unsigned long)tempmi

83 Hitachi

RnL=templ&OxOOOOFFFF;

RnH= (templ»16) &OxOOOOFFFF;

RmL=temp2&OxOOOOFFFF;

RmH=(temp2»16)&OxOOOOFFFF;

temp 0 =RmL *RnL;

temp 1 =RmH*RnL ;

ternp2=RmL*RnH;

ternp3=RmH*RnH;

Res2=O;

Resl=templ+temp2;

if (Resl<templ) Res2+=Ox00010000;

templ= (Resl«16) &OxFFFFOOOO;

ResO=tempO+templ;

if (ResO<tempO) Res2++;

Res2=Res2+((Resl»16)&OxOOOOFFFF)+temp3;

if (fnLm<O){

Res2=-Res2;

if (ResO==O) Res2++;

else ResO=(-ResO)+l;

if(S==l){

ResO=MACL+ResO;

if (MACL>ResO) Res2++;

Res2+=(MACH&OxOOOOFFFF);

if(((long)Res2<O)&&(Res2<OxFFFF8000)){

Res2=Ox00008000;

ResO=OxOOOOOOOO;

if(((long)Res2>O)&&(Res2>Ox00007FFF)){

Res2=Ox00007FFF;

ResO=OxFFFFFFFF;

} ;

84 Hitachi

MACH=Res2i

MACL=ResOi

else

ResO=MACL+ResOi

if (MACL>ResO) Res2++i

Res2+=MACH

MACH=Res2i

MACL=ResOi

PC+=2i

}

Example:

TBLM

TBLN

MOVA TBLM,RO

MOV RO,Rl

MOVA

CLRMAC

MAC.L

MAC.L

STS

TBLN,RO

@RO+,@Rl+

@RO+,@Rl+

MACL,RO

...............

. align 2

.data.l H'1234ABCD

.data.l H'5678EFOl

.data.l H'0123ABCD

.data.l H'4567DEFO

Table address

Table address

MAC register initialization

Store result into RO

85 Hitachi

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (S87000)

Format Abstract Code State T Bit

MAC. W @Rm+ I @Rn+ With signed, (Rn) x (Rm) + MAC 0100nnnrunmmmllll 3/(2)
~MAC

Description (8H7000): Multiplies 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

86 Hitachi

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
(SH7600)

Format Abstract Code State T Bit

MAC. W @Rm+, @Rn+ Signed operation, (Rn) x (Rm) + 0100nnnnmmmmllll 3/(2)
MAC @Rm+, @Rn+ MAC -7 MAC

Description (S87600): Signed-multiplicates 16-bit operands obtained using the contents of
general registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC
register, and the final result is stored in the MAC register. Every time an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to 0, the operation is 16 x 16 + 64 ~ 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 x 16 + 32 ~ 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH7600 series performs a 16 x 16 + 64 ~ 64 bit multiply and
accumulate operation and the SH7000 series performs a 16 x 16 + 42 ~ 42 bit multiply and
accumulate operation.

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

long terrpm,tempn,dest,src,ansi

unsigned long terrpl i

terrpn=(long)Read_Word(R[n])i

R[n]+=2i

terrpm=(long)Read_Word(R[m])i

R[m]+=2i

temp 1 =MACL i

terrpm=((long) (short) tempn* (long) (short)tempm)i

87 Hitachi

if ((long)MACL>=O) dest=O;

else dest=l;

if ((long)tempm>=O

src=O;

tempn=O;

else {

src=l;

tempn=OxFFFFFFFF ;

src+=dest;

MACL+=tempm;

if ((long)MACL>=O) ans=O;

else ans=l;

ans+=dest;

if (S==l) {

if (ans==l)

if (src==O \ \ src==2)

MACH\=Ox00000001;

if (src==O) MACL=Ox7FFFFFFFi

if (src==2) MACL=Ox80000000;

else

MACH+=tempn;

if (templ>MACL) MACH+=l;

if ((MACH&Ox00000200)==O)

MACH&=Ox000003FFi

else MACH r= OxFFFFFC 0 0 ;

PC+=2;

88 Hitachi

For SH7000 ~these 2 lines

not needed for SH7600)

For SH7000 (these 3 lines

not needed for SH7600)

Example:

MOVA TBLM,RO Table address

MOV RO,Rl

MOVA TBLN,RO Table address

CLRMAC MAC register initialization

MAC.W @RO+,@Rl+

MAC.W @RO+,@Rl+

STS MACL,RO Store result into RO

...............

. align 2

TBLM .data.w H'1234

.data.w H'5678

TBLN .data.w H'0123

.data.w H'4567

89 Hitachi

6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State TBit

IDV Rm,Rn Rm~Rn 0110nnnnmmmm0011

MOV.B Rm,@Rn Rm~ (Rn) OOlOnnnnmmmmOOOO

MOV.W Rm,@Rn Rm~ (Rn) 0010nnnnmmmmOO01

MOV.L Rm,@Rn Rm~ (Rn) 0010nnnnmmmm0010

MOV.B @Rm,Rn (Rm) ~ sign extension ~ Rn OllOnnnnmmmmOOOO

MOV.W @Rm,Rn (Rm) ~ sign extension ~ Rn 0110nnnnmmmmOO01

MOV.L @Rm,Rn (Rm)~ Rn 0110nnnnmmmm0010

MOV.B Rm,@-Rn Rn - 1 ~ Rn, Rm ~ (Rn) 0010nnnnmmmm0100

MOV.W Rm,@-Rn Rn-2 ~ Rn, Rm ~ (Rn) 0010nnnnmmmm0101

MOV.L Rm,@-Rn Rn - 4 ~ Rn, Rm ~ (Rn) 00 10nnnnmmmmO 110

MOV.B @Rm+,Rn (Rm) ~ sign extension ~ Rn, Rm 0110nnnnmmmm0100
+1 ~Rm

MOV.W @Rm+,Rn (Rm) ~ sign extension ~ Rn, Rm 0110nnnnmmmm0101
+2~Rm

MOV.L @Rm+,Rn (Rm) ~ Rn, Rm + 4 ~ Rm 0110nnnnmmmm0110

MOV.B Rm,@(RO,Rn) Rm~ (RO+ Rn) 0000nnnnmmmm0100

MOV.W Rm,@(RO,Rn) Rm~ (RO+ Rn) 0000nnnnmmmm0101

MOV.L Rm,@(RO,Rn) Rm~ (RO+ Rn) 000 OnnnnmmmmO 110

MOV.B @(RO,Rm),Rn (RO + Rm) ~ sign extension ~ 0000~100

MOV.W @(RO,Rm) ,Rn Rn 0000~101

MOV.L @(RO,Rm) ,Rn (RO + Rm) ~ sign extension ~
Rn

0000~110

(RO+ Rm) ~ Rn

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. When the source operand is in
memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

MOV(long rn,long n)

{

R[n]=R[rn];

PC+=2;

}

/* MOV Rm,Rn */

90 Hitachi

MOVBS(long rn,long n)

}

Write_Byte(R[n),R[rn));

PC+=2;

MOVWS(long rn,long n)

Write_Word(R[n),R[rn));

PC+=2;

MOVLS(long rn,long n)

Write_Long(R[n),R[rn));

PC+=2;

MOVBL(long m,long n)

/* MOV.B Rrn,@Rn */

/* MOV.W Rrn,@Rn */

/* MOV.L Rrn,@Rn */

/* MOV.B @Rrn,Rn */

R[n)=(long)Read_Byte(R[rn));

}

if ((R[n)&Ox80)==O) R[n)&OxOOOOOOFF;

else R[n) I=OxFFFFFFOO;

PC+=2;

MOVWL(long m,long n) /* MOV.W @Rrn,Rn */

R[n)=(long)Read_Word(R[rn));

if ((R[n)&Ox8000)==O) R[n)&OxOOOOFFFF;

else R[n) I=OxFFFFOOOO;

PC+=2;

MOVLL(long rn,long n)

R[n)=Read_Long(R[rn));

PC+=2;

/* MOV.L @Rrn,Rn */

91. Hitachi

MOVBM(long m,long n) /* MOV.B Rm,@-Rn */

Write_Byte(R[n]-l,R[rn])i

R[n]-=li

PC+=2i

MOVWM(long m,long n) /* MOV.W Rm,@-Rn */

}

Write_Word(R[n]-2,R[m])i

R[n]-=2i

PC+=2i

MOVLM(long m,long n) /* MOV.L Rm,@-Rn */

Write_Long(R[n]-4,R[m])i

R[n]-=4i

PC+=2i

MOVBP(long m,long n) /* MOV.B @Rm+,Rn */

R[n]=(long)Read_Byte(R[m])i

if ((R[n]&Ox80)==O) R[n]&OxOOOOOOFFi

else R[n] \=OxFFFFFFOOi

if (n!=m) R[m]+=li

PC+=2i

MOVWP(long rn,long n) /* MOV.W @Rm+,Rn */

{,

R[n]=(long)Read_Word(R[m])i

if ((R[n]&Ox8000)==O) R[n]&OxOOOOFFFF;

else R[n] I=OxFFFFOOOOi

if (n!=m) R[m]+=2i

PC+=2i

.92 Hitachi

MOVLP(long rn,long n) /* MOV.L @Rrn+,Rn */

R[n]=Read_Long(R[rn])i

if (n!=rn) R[rn]+=4i

PC+=2i

MOVBSO(long rn,long n) /* MOV.B Rrn,@(RO,Rn) */

Write_Byte(R[n]+R[O],R[m])i

PC+=2i

MOVWSO(long rn,long n) /* MOV.W Rrn,@(RO,Rn) */

Write_Word(R[n]+R[O],R[rn])i

PC+=2i

MOVLSO(long m,long n) /* MOV.L Rrn,@(RO,Rn) */

Write_Long(R[n]+R[O],R[m]) i

PC+=2i

MOVBLO(long rn,long n) /* MOV.B @(RO,Rrn),Rn */

R[n]=(long)Read_Byte(R[m]+R[O])i

if ((R[n]&Ox80)==O) R[n]&OxOOOOOOFFi

else R[n] I=OxFFFFFFOOi

PC+=2;

MOVWLO(long m,long n) /* MOV.W @(RO,Rm),Rn */

}

R[n]=(long)Read_Word(R[rn]+R[O])i

if ((R[n]&Ox8000)==O) R[n]&OxOOOOFFFFi

else R[n] I=OxFFFFOOOOi

PC+=2i

93 Hitachi

MOVLLO(long rn,long n) /* MOV.L @(RO,Rrn),Rn */

R[n)=Read_Long(R[rn)+R[O));

PC+=2;

Example:

MOV RO,Rl Before execution RO = H'FFFFFFFF, Rl = H'OooOooOO

After execution Rl = H'FFFFFFFF

MOV.W RO,@Rl Before execution RO = H'FFFF7F8lJ

After execution @Rl =H'7F80

MOV.B @RO,Rl Before execution @RO = H'80, Rl = H'OooOOOoo

After execution Rl = H'FFFFFF80

MOV.W RO,@-Rl Before execution RO = H'AAAAAAAA, Rl = H'FFFF7F80

After execution Rl = H'FFFF7F7E, @Rl = H'AAAA

MOV.L @RO+,Rl Before execution RO = H'12345670

After execution RO = H'12345674, Rl = @H'12345670

MOV. B Rl , @ (RO , R2) Before execution R2 = H'OOOOO004, RO = H'l 0000000

After execution Rt = @H'lOooOOO4

MOV • W @ (RO , R2) , Rl· Before execution R2 = H'OOOOO004, RO = H't 0000000

After execution Rl = @H'lOooOOO4

94 Hitachi

6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV #irmn,Rn imm ~ sign extension ~ Rn 1110nnnniiiiiiii

MOV.W @ (disp, PC) ,Rn (disp x 2 + PC) ~ sign 1001nnnndddddddd
extension ~ Rn

MOV.L @ (disp, PC) ,Rn (disp x 4 + PC) ~ Rn 1101nnnndddddddd

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the'
starting address of the second instruction after this MaV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MaV instruction, but the lowest two bits of the PC are corrected to B'OO.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MaV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVI(long i,long n) /* MOV #irmn,Rn */

if ((i&Ox80)==O) R[n]=(OxOOOOOOFF & (long)i);

else R[n]=(OxFFFFFFOO I (long)i);

PC+=2i

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

long disPi

95 Hitachi

disp=(OxOOOOOOFF & (long)d)i

R[n]=(long)Read_Word(PC+(disp«l))i

if ((R[n]&Ox8000)==0) R[n]&=OxOOOOFFFFi

else R[n] I=OxFFFFOOOOi

PC+=2i

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

long disPi

disp=(OxOOOOOOFF & (long)d)i

R[n]=Read_L~ng((PC&OxFFFFFFFC)+(disp«2))i

PC+=2i

Example:

Address

1000 MOV #H'.80,R1 Rl = H'FFFFFF80

1002 MOV.W IMM,R2 R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #-l,RO

1006 TST RO,RO f- PC location used for address calculation for the
MOV.W instruction

1008 MOVT R13

100A BRA NEXT Delayed branch instruction

100C MOV.L @(4,PC) ,R3 R3 = H'12345678

100E IMM .data.w H'9ABC

1010 .data.w H'1234

1012 NEXT JMP @R3 Branch destination of the BRA instruction

1014 CMP/EQ #O,RO f- PC location used for address calculation for the
MOV.L instruction

. align 4

1018 .data.l H'12345678

96 Hitachi

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV.B @(disp,GBR) ,RO (disp + GSR) ~ sign 1100 010 Odddddddd 1
extension ~ RO

MOV.W @(disp,GBR),RO (disp x 2 + GSR) ~ 11000101dddddddd 1
sign extension ~ RO

MOV.L @(disp,GBR),RO (disp x 4+ GSR) ~ RO 11000110dddddddd 1

MOV.B RO,@(disp,GBR) RO ~ (disp + GSR) 11000000dddddddd 1

MOV.W RO,@(disp,GBR) RO ~ (disp x 2 + GSR) 11000001dddddddd

MOV.L RO,@(disp,GBR) RO ~ (disp x 4 + GSR) 11000010dddddddd 1

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but the
register is fixed to RO.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is a longword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within + 1 020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(RO,Rn) mode must be used after the GBR data is
transferred to a general register. When the source operand is in memory, the loaded data is stored
in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always RO. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND

ADD

#80,RO ~ ADD

#20, R1 ---------. AND

#20,R1

#80,RO

Figure 6.1 Using RO after MOV

97 Hitachi

Operation:

MOVBLG (long d) /* MOV.B @(disp,GBR),RO */

long disPi

disp=(OxOOOOOOFF & (long)d)i

R[O]=(long)Read_Byte(GBR+disp)i

if ((R[O]&Ox80)==O) R[O]&=OxOOOOOOFFi

else R[O] I=OxFFFFFFOOi

PC+=2i

MOVWLG(long d) /* MOV.W @(disp,GBR),RO */

long disPi

disp=(OxOOOOOOFF & (long)d)i

R[O]=(long)Read_Word(GBR+(disp«l))i

if ((R[O]&Ox8000)==O) R[O]&=OxOOOOFFFFi

else R[O] I=OxFFFFOOOOi

PC+=2i

MOVLLG (long d) /* MOV.L @(disp,GBR),RO */

long disPi

disp=(OxOOOOOOFF & (long)d)i

R[O]=Read_Long(GBR+(disp«2))i

PC+=2i

MOVBSG (long d) /* MOV.B RO,@(disp,GBR) */

long disPi

98 Hitachi

disp=.(OxOOOOOOFF & (long)d);

Write_Byte (GBR+disp, R[Ol) ;

PC+=2;

MOVWSG(long d) /* MOV.W RO,@(disp,GBR) */

}

long disp;

disp=(OxOOOOOOFF & (long)d);

Write_Word(GBR+(disp«l),R[O]);

PC+=2;

MOVLSG (long d) /* MOV.L RO,@(disp,GBR) */

}

long disp;

disp=(OxOOOOOOFF & (long)d);

Write_Long(GBR+(disp«2),R[O]);

PC+=2;

Examples:

MOV.L @(2,GBR) ,RO

MOV.B RO,@(l,GBR)

Before execution

After execution

Before execution

After execution

@(GBR+ S) = H'12345670

RO = @H'12345670

RO = H'FFFF7FSO

@(GBR + 1) = H'FFFF7FSO

99 Hitachi

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State TBit

MOV.B RO,@(disp,Rn) RO ~ (disp + Rn) 10000000nnnndddd

MOV.W RO,@(disp,Rn) RO ~ (disp x 2 + Rn) 10 00 000 1nnnndddd

MOV.L Rrn,@(disp,Rn) Rm~ (disp x 4+ Rn) OOOlnnnnmmmmdddd 1

MOV.B @(disp,Rrn),RO (disp + Rm) ~ sign 10 00010 Omrnmmdddd 1
extension ~ RO

MOV.W @(disp,Rrn),RO (disp x 2 + Rm) ~ sign 10000101mrnmmdddd
extension ~ RO

MOV.L @(disp,Rrn) ,Rn (disp x 4 + Rm) ~ Rn OlOlnnnnmmmmdddd

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register is fixed. When the data is a byte, the 4-bit displacement is

zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the data is a longword, the 4-bit displacement is zero-extended and

quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too
short to reach the memory operand, the aforementioned @(RO,Rn) mode must be used. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to a
longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be

accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.S @(2, R1), RO MOV.S @(2, R1), RO

AND

ADD·

#80,RO ~ ADD

#20, R1 ----------. AND

#20,R1

#80,RO

Figure 6.2 Using RO after MOV

100 Hitachi

Operation:

MOVBS4(long d,long n) /* MOV.B RO,@(disp,Rn) */

long disPi

disp=(OxOOOOOOOF & (long)d)i

Write_Byte(R[n]+disp,R[O])i

PC+=2i

MOVWS4(long d,long n) /* MOV.W RO,@(disp,Rn) */

}

long disPi

disp=(OxOOOOOOOF & (long)d)i

Write_Word(R[n]+(disp«l),R[O])i

PC+=2i

MOVLS4(long m,long d,long n)

/* MOV.L Rm,@(disp,Rn) */

}

long disPi

disp=(OxOOOOOOOF & (long)d)i

Write_Long(R[n]+(disp«2),R[m])i

PC+=2i

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),RO */

long disPi

disp=(OxOOOOOOOF & (long)d)i

R[O]=Read_Byte(R[m]+disp)i

if ((R[O]&Ox80)==O) R[O]&=OxOOOOOOFFi

else R[O] I=OxFFFFFFOO;

PC+=2i

101 Hitachi

MOVWL4(long m,long d) /* MOV.W @(disp,RID),RO */

long disPi

disp=(OxOOOOOOOF & (long)d)i

R[O]=Read_Word(R[m]+(disp«l))i

if ((R[O]&Ox8000)==O) R[O]&=OxOOOOFFFFi

else R[O] I=OxFFFFOOOOi

PC+=2i

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

long disPi

disp=(OxOOOOOOOF & (long)d)i

R[n]=Read_Long(R[m]+(disp«2))i

PC+=2i

}

Examples:

MOV.L @(2,RO) ,Rl

MOV.L RO,@(H'F,Rl)

Before execution @(RO+ S) = H'12345670

After execution Rl = @H'12345670

Before execution RO = H'FFFF7FSO

After execution @(Rl + 60) = H'FFFF7FSO

102 Hitachi

6.36 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code State T Bit

MOVA @(disp,PC),RO disp x4+ PC ~ RO 11000111dddddddd

Description: Stores the effective address of the source operand into general register RO. The'8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOVA instruction, but the lowest two bits of the PC are corrected to B'OO.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),RO */

long disPi

disp=(OxOOOOOOFF & (long)d);

R[0]=(PC&OxFFFFFFFC)+(disp«2);

PC+=2i

Example:

Address .org

1006 MOVA

1008 MOV.B

100A ADD

. align

100C STR: .sdata

...............
2002

2004

2006

BRA

MOVA

NOP

H'1006

STR,RO

@RO,R1

R4,R5

4

"XYZP12 II

Address of STR ~ RO

R 1 = "X" f- PC location after correcting the lowest
two bits

f- Original PC location for address calculation for the
MOV A instruction

TRGET Delayed branch instruction

@ (0, pc) , RO Address of TRGET + 21£ RO

103 Hitachi

6.37 MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code State T Bit

MOVT Rn T --7 Rn OOOOnnnn0010100l

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

R[n]=(OxOOOOOOOl & SR);

PC+=2;

Example:

XOR R2,R2 R2=0

CMP/PZ R2 T=l

MOVT RO RO= 1

CLRT T=O

MOVT R1 Rl =0

104 Hitachi

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600)

Format Abstract Code State T Bit

MUL.L Rm,Rn Rnx Rm ~ MACL 00 OOnnnnmrnmrnO 111 2 to 4

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL(long m,long n) /* MUL.L Rm,Rn */

MACL=R [n] *R [m] i

PC+=2i

Example:

MULL RO,R1 Before execution RO = H'FFFFFFFE, Rl = H'00005555

After execution MACL = H'FFFF5556

STS MACL,RO Operation result

105 Hitachi

6.39 MULS. W (Multiply as Signed Word): Arithmetic Instruction

Format

MULS • W Rm, Rn
MULS Rm,Rn

Abstract 'Code

Signed operation, Rn x Rm -7 0010nnnnmrcumnllll
MACL

State T Bit

1 to 3

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn * /

MACL=((long) (short)R[n] * (long) (short)R[m])i

PC+=2i

Example:

MULS RO,Rl Before execution

After execution

STS MACL, RO Operation result

RO = H'FFFFFFFE, Rl = H'OOOO5555

MACL = H'FFFF5556

106 Hitachi

6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format

MULU . W Rm, Rn

MULU Rm,Rn

Abstract

Unsigned, Rn x Rm ~ MAC

Code State T Bit

00 1 0nnnnmmmm1 1 10 1 to 3

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm, Rn * /

MACL=((unsigned long) (unsigned short)R[n]

* (unsigned long) (unsigned short)R[m])i

PC+=2i

Example~

MULU RO,R1 Before execution

After execution

STS MACL, RO Operation result

RO = H'00000002, Rl = H'FFFFAAAA

MACL = H'OOO 15554

107 Hitachi

6.41 NEG (Negate): Arithmetic Instruction

Format Abstract Code State T Bit

NEG Rrn,Rn 0- Rm --7 Rn o 110nnnnmmmm10 11

Description: Takes the two's complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rrn, Rn * /

R[n]=O-R[m];

PC+=2;

Example:

NEG RO,R1 Before execution

After execution

RO = H'OOOOOOO 1

RI = H'FFFFFFFF

108 Hitachi

6.42 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

NEGC Rro,Rn 0- Rm - T ~ Rn, Borrow ~ T OllOnrummmmml010 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.

lf a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC (long m, long n) / * NEGC Rm, Rn * /

unsigned long temp;

temp=O-R [m] i

R[n]=temp-Ti

if (O<temp) T=li

else T=Oi

if (temp<R[n]) T=l;

PC+=2i

Examples:

CLRT Sign inversion ofRl and RO (64 bits)

NEGC Rl,Rl Before execution Rl = H'OOOOOOOl, T = 0

After execution

NEGC RO, RO Before execution

After execution

Rl = H'FFFFFFFF, T = 1

RO = H'OOOOOOOO, T = 1

RO = H'FFFFFFFF, T = 1

109 Hitachi

6.43 NOP (No Operation): System Control Instruction

Format Abstract Code

NOP No operation 0000000000001001

Description: Increments the PC to execute the next instruction.

Operation:

NOP () / * NOP * /

PC+=2;

}

Example:

NOP Executes in one cycle

110 Hitachi

State T Bit

6.44 NOT (NOT-Logical Complement): Logic Operation Instruction

Format Abstract Code State T Bit

NCYl'Rrn,Rn -Rm ~ Rn 0110nnnnmrnmmOlll

Description: Takes the one's complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NCYl'(long m,long n) /* NCYl' Rrn, Rn * /

R[n] =-R[m] i

PC+=2i

Example:

NOT RO, Rl Before execution RO = H'AAAAAAAA

After execution RI =H'55555555

111 Hitachi

6.45 OR (OR Logical) Logic Operation Instruction

Format Abstract Code State TBit

OR Rm,Rn Rn I Rm~ Rn 0010nnnnmmmm1011

OR #imm,RO RO I imm~. RO 11001011iiiiiiii

OR.B #imm,@(RO,GBR) (RO"+ GSR) I imm ~ (RO + 11001111iiiiiiii 3
GSR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result iri
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

R[n] I=R[m];

PC+=2;

}

ORI(long i) /* OR #imm,RO */

R[O] 1= (OxOOOOOOFF & (long)i);

PC+=2;

ORM(1ong i) /* OR.B #imm,@(RO,GBR) */

long terrp;

terrp=(long)Read_Byte(GBR+R[O]);

terrpl=(OxOOOOOOFF & (long)i);

Write_Byte(GBR+R[O],terrp);

PC+=2;

112 Hitachi

Examples:

OR RO,Rl Before execution RO = H'AAAA5555, Rl = H'55550000

After execution Rl = H'FFFF5555

OR #H'FO,RO Before execution RO = H'OOOOOOO8

After execution RO = H'OOOOOOF8

OR.B #H'SO,@(RO,GBR) Before execution @(RO,GBR) = H'A5

After execution @(RO,GBR) = H'F5

113 Hitachi

6.46 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code State T Bit

ROTCL Rn T f- Rn f- T OlOOnnnn00100100 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

MSB LSB

ROTCL
~'-----b

Figure 6.3 Rotate with Carry Left

Operation:

RaI'CL(long n) /* ROTCL Rn */

long terrq;>;

if ((R[n]&Ox80000000)==O) terrq;>=O;

else terrq;>=l;

R[n]«=l;

if (T==l) R[n] I=Ox00000001;

else R[n]&=OxFFFFFFFE;

if (terrq;>==l) T=l;

else T=O;

PC+=2;

Example:

RarcL RO Before execution

After execution

RO = H'80000000, T = 0

RO = H'OOOOOOOO, T = 1

114 Hitachi

6.47 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code State T Bit

RareR Rn T~Rn~T OlOOnnnnOOlOOlOl LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTeR d'------------'~
Figure 6.4 Rotate with Carry Right

Operation:

RareR (long n) / * RareR Rn * /

long tempi

if ((R[n]&OxOOOOOOOl)==O) temp=Oi

else temp=li

R[n]»=li

if (T==l) R[n] I=Ox80000000i

else R[n]&=Ox7FFFFFFFi

if (temp==l) T=li

else T=Oi

PC+=2i

Examples:

RareR RO Before execution

After execution

RO = H'OOOOOOOl, T = 1

RO = H'80000000, T = 1

115 Hitachi

6.48 ROTL (Rotate Left): Shift Instruction

Format Abstract Code State T Bit

R0rL Rn T~ Rn~ MSB OlOOnnnn00000100 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL ~----,h
Figure 6.5 Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

if ((R[n]&Ox80000000)==O) T=Oi

}

else T=li

R[n]«=li

if (T==l) R[n] I=OxOOOOOOOli

else R[n]&=OxFFFFFFFEi

PC+=2;

Examples:

ROTL RO Before execution

After execution

RO = H'80000000, T = 0

RO = H'OOOOOOOI, T = 1

116 Hitachi

6.49 ROTR (Rotate Right): Shift Instruction

Format Abstract 'Code State T Bit

ROTR Rn LSB ~Rn ~T OlOOnnnn0000010l LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTR d--------'I I ~~
Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

}

if ((R[n]&Ox00000001)==O) T=Oj

else T=lj

R[n]»=l;

if (T==l) R[n] I=Ox80000000j

else R[n]&=Ox7FFFFFFFj

PC+=2j

Examples:

ROTR RO Before execution

After execution

RO = H'OOOOOOOl, T = 0

RO = H'80000000, T = 1

117 Hitachi

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area ~ PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTE () / * RTE * /
{

}

unsigned long tempi

temp=PCi

PC=Read_Long(R[15])+4i

R[15]+=4i

SR=Read_Long(R[15])&Ox000003F3i

R[15]+=4i

Delay_Slot(temp+2)i

Example:

RTE

ADD #8,R14

Returns to the original routine

Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

118 Hitachi

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR --7 PC 0000000000001011 2

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTS () / * RTS * /
{

unsigned long tempi

temp=PCi

PC=PR+4i

Delay_Slot (temp+2),i

Example:

MOV.L

JSR

NOP

ADD

TABLE,R3

@R3

RO,R1

TABLE: . da ta . 1 TRGEI'

TRGEI': MOV

RTS
MOV

R1,RO

#12,RO

R3 = Address of TRGET
Branches to TRGET
Executes NOP before JSR
~ Return address for when the subroutine procedure is
completed CPR data)

Jump table

~ Procedure entrance
PRdata ~PC
Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

119 Hitachi

6.52 SETT (Set T Bit): System Control Instruction

Format Abstract

SErI' 1 ~T

Description: Sets the T bit to 1.

Operation:

SET!' () / * SETI' * /

}

T=l;

PC+=2;

Example:

SET!' Before execution T = 0

After execution T = 1

Code

0000000000011000

120 Hitachi

State T Bit

6.53 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code State T Bit

SHAL Rn T~Rn~O OlOOnnnn00100000 MSB

Description: Arithmetically shifts the contents of geperal register Rn to the left by one bit, and

stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

MSB LSB

SHAL [2}-1 ___ ~_--,\+-o

Figure 6.7 Shift Arithmetic Left

Operation:

SHAL (long n) / * SHAL Rn (Same as SHLL) * /

if «R[n]&Ox80000000)==O) T=Oi

}

else T=li

R[n]«=li

PC+=2i

Example:

SHAL RO. Before execution RO = H'8000000 1, T = 0

After execution RO = H'OOOOOOO2, T = 1

121 Hitachi

6.54 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code State T Bit

SEAR Rn MSB~ Rn~T OlOOnnnn0010000l LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.S).

MSB LSB

SHAR dJ,------~
Figure 6.S Shift Arithmetic Right

Operation:

SHAR (long n) / * SHAR Rn * /

long temp;

if ((R[n]&Ox00000001)==O) T=O;

else T=l;

if ((R[n]&Ox80000000)==O) temp=O;

else temp=l;

R[n]»=l;

if (temp==l) R[n] I=Ox80000000;

else R[n]&=Ox7FFFFFFF;

PC+=2;

}

Example:

SHAR RO Before execution

After execution

RO = H'SOOOOOOI, T = 0

RO = H'COOOOOOO, T = 1

122 Hitachi

6.55 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code State T Bit

SHLL Rn T f- Rn f- 0 OlOOnnnnOOOOOOOO MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

MSB LSB

SHLL [2}-1L-____ ----Ir-0

Figure 6.9 Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */

if ((R[n]&Ox80000000)==O) T=Oi

else T=li

R[n]«=li

PC+=2i

Examples:

SHLL RO Before execution

After execution

RO = H'8000000 1, T = 0

RO = H'OOOOOOO2, T = 1

123 Hitachi

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format

SHLL2 Rn

SHLL8 Rn

SHLL16 Rn

Abstract

Rn«2 ~Rn

Rn«B ~Rn

Rn« 16 ~Rn

Code

OlOOrmnn00001000

OlOOrmnnOOOllOOO

OlOOrmnn00101000

State T Bit

1

1

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

Operation:

SHLL2

SHLLB

SHLl16

o

o

MSB LSB

:~ 1iiiI~~o
Figure 6.10 Shift Logical Left n Bits

SHLL2 (long n) /* SHLL2 Rn * /

}

R[n]«=2;

PC+=2;

124 Hitachi

SHLL8(long n) /* SHLL8 Rn * /

R[n]«=8;

PC+=2;

}

SHLL16 (long n) /* SHLL16 Rn * /

R[n]«=16;

PC+=2;

}

Examples:

SHLL2 RO Before execution RO = H'12345678

After execution RO = H'48D159EO

SHLL8 RO Before execution RO = H'12345678

After execution RO = H'34567800

SHLL16 RO Before execution RO = H'12345678

After execution RO = H'56780000

125 Hitachi

6.57 SHLR (Shift Logical Right): Shift Instruction

Format Abstract COde State T Bit

SHLR Rn o ~Rn ~T OlOOnnnnOOOOOOOl LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

MSB LSB
SHLR o-+j'----_____ ~

Figure 6.11 Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

}

if ((R[n]&Ox00000001)==O) T=Oi

else T=li

R[n]»=li

R[n]&=Ox7FFFFFFF;

PC+=2i

Examples

SHLR RO Before execution

After execution

RO = H'80000001, T = 0

RO = H'40000000, T = 1

126 Hitachi

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format

SHLR2 Rn

SHLR8 Rn

SHLR16 Rn

Abstract

Rn»2 ~Rn

Rn»B ~Rn

Rn»16 ~ Rn

Code

OlOOnnnn0000100l

OlOOnnnnOOOllOOl

OlOOnnnn0010100l

State T Bit

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

SHLR2

o

SHLRB

o

SHLR16

Figure 6.12 Shift Logical Right n Bits

Operation:

SHLR2(long n) /* SHLR2 Rn */

}

R[n]»=2;

R[n]&=Ox3FFFFFFF;

PC+=2i

127 Hitachi

SHLR8(long n) /* SHLR8 Rn */

R[n]»=8i

R[n]&=OxOOFFFFFFi

PC+=2i

SHLR16 (long n) /* SHLR16 Rn */

R[n]»=16i

R[n]&=OxOOOOFFFFi

PC+=2i

Examples:

SHLR2 RO Before execution

After execution

SHLR8 RO Before execution

After execution

SHLR16 RO Before execution

After execution

RO = H'l 2345678

RO = H'048D I 59E

RO = H' I 2345678

RO = H'OO I 23456

RO = H' I 2345678

RO = H'OOOO1234

128 Hitachi

6.59 SLEEP (Sleep): System Control Instruction

Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP() /* SLEEP */

PC-=2;

Error("Sleep Mode.");

Example:

SLEEP Transits power-down mode

129 Hitachi

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

STC SR,Rn SA~ An OOOOnnnnOOOOOO1O

STC GBR,Rn GBA~ An OOOOnnnnOOO1OO1O

STC VBR,Rn VBA~ An OOOOnnnnOO1OOO1O

STC.L SR,@-Rn An -4 ~ An, SA ~ (An) OlOOnnnnOOOOOOll 2

STC.L GBR,@-Rn An - 4 ~ An, GBA ~ (An) OlOOnnnnOOO1OOll 2

STC.L VBR,@-Rn An-4 ~ An, VBA ~ (An) OlOOnnnnOO1OOOll 2

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(long n) /* STC SR,Rn */

R[n]=SRi

PC+=2i

STCGBR(long n) /* STC GBR,Rn */

R[n]=GBRi

PC+=2i

}

STCVBR(long n) /* STC VBR, Rn * /

R[n]=VBRi

PC+=2;

}

130 Hitachi

STCMSR(long n) /* STC.L SR,@-Rn */

R[n]-=4i

Write_Long(R[n],SR)i

PC+=2i

STCMGBR(long n) /* STC.L GBR,@-Rn */

}

R[n]-=4i

Write_Long(R[n],GBR)i

PC+=2i

STCMVBR(long n) /* STC.L VBR,@-Rn */

R[n]-=4i

Write_Long(R[nl., VBR) i

PC+=2i

Examples

STC SR, RO Before execution

After execution

STC.L GBR,@-R15 Before execution

After execution

RO = H'FFFFFFFF, SR = H'OOOOOOOO

RO = H'OOOOOOOO

R15 = H'lOOOOOO4

R15 = H'lOOOOOOO, @R15 = GBR

131 Hitachi

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State TBit

STS MACH,Rn MACH ~ Rn OOOOnnnnOOOO101O 1

STS MACL,Rn MACL~ Rn OOOOnnnnOOOl101O 1

STS PR,Rn PR~ Rn OOOOnnnnOO10101O

STS.L MACH,@-Rn Rn - 4 ~ Rn, MACH ~ (Rn) OlOOnnnnOOOOOO1O

STS.L MACL,@-Rn Rn - 4 ~ Rn, MACL ~ (Rn) OlOOnnnnOOO1OO1O

STS.L PR,@-Rn Rn -4 ~ Rn, PR ~ (Rn) OlOOnnnnOO1OOO1O

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

If the system register is MACH in the SH7000 series, the value of bit 9 is transferred to and stored
in the higher 22 bits (bits 31 to 1,0) of the destination. With the SH7600 series, the 32 bits of
MACH are stored directly.

Operation:

STSMACH(long n) /* STS MACH,Rn */

R[n]=MACH;

if ((R[n]&Ox00000200)==O)

R[n]&=Ox000003FFi

else R[n] I=OxFFFFFCOO;

PC+=2;

}

STSMACL(long n) /* STS MACL,Rn */

R[n]=MACL;

PC+=2i

}

For SH7000 (these 2 lines

not needed for SH7600)

132 Hitachi

STSPR(long n) /* STS PR,Rn */

R[n]=PR;

PC+=2;

STSMMACH(long n) /* STS.L MACH,@-Rn */

R[n]-=4;

if ((MACH&Ox00000200)==O)

Write_Long(R[n],MACH&Ox000003FF);

else Write_Long
(R[n],MACHIOxFFFFFCOO)

Write_Long(R[n], MACH); For SH7600

PC+=2;

ForSH7000

STSMMACL(long n) /* STS.L MACL,@-Rn */

R[n]-=4;

Write_Long (R[n] ,MACL);

PC+=2;

STSMPR(long n) /* STS.L PR,@-Rn */

}

R[n]-=4;

Write_Long(R[n],PR);

PC+=2;

Example:

STS MACH,RO Before execution

After execution

STS. L PR, @-R15 Before execution

After execution

RO = H'FFFFFFFF, MACH = H'OOOOOOOO

RO = H'OOOOOOOO

R15 = H'lOOOO004

R15 = H'lOOOOOOO, @R15 = PR

133 Hitachi

6.62 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code State T Bit

SUB Rm,Rn Rn-Rm -7 Rn o OllnnnnmrnmmlOO 0

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn * /

R[n)-=R[m)i

PC+=2i

Example:

SUB RO, Rl Before execution

After execution

RO = H'OOOOOOO 1, R 1 = H'80000000

R 1 = H'7FFFFFFF

134 Hitachi

6.63 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

SUBC Rrn,Rn Rn - Rm- T -7 Rn, Borrow -7 T OOllnnn.nnunmml010 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. This instruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rrn,Rn */

unsigned long tmpO,tmpl;

tmpl=R [n] -R [m] ;

tmpO=R[n] ;

R [n] =tmpl-T;

if (tmpO<tmpl) T=l;

else T=O;

if (tmpl<R[n]) T=l;

PC+=2;

Examples:

CLRT RO:Rl(64 bits) - R2:R3(64 bits) = RO:Rl(64 bits)

SUBC R3 , Rl Before execution

After execution

SUBC R2 , RO Before execution

After execution

T = 0, Rl = H'OOOOOOOO, R3 = H'OOOOOOOI

T = 1, R 1 = H'FFFFFFFF

T = 1, RO = H'OOOOOOOO, R2 = H'OOOOOOOO

T = 1, RO = H'FFFFFFFF

135 Hitachi

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic
Instruction

Format Abstract Code State T Bit

SUBV Rm, Rn Rn - Rm ~ Rn, Underflow ~ T OOllnnnnmmrmnlOll Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m, long n) /* SUBV Rm,Rn */

long dest,src,ansi

if ((long)R[n]>=O) dest=Oi

else dest=li

if ((long)R[m]>=O) src=Oi

else src=li

src+=desti

R[n]-=R[m]i

if ((long)R[n]>=O) ans=Oi

else ans=li

ans+=desti

if (src==l)

if (ans==l) T=li

else T=Oi

else T=Oi

PC+=2i

Examples:

SUBV RO,Rl

SUBV R2,R3

Before execution

After execution

Before execution

After execution

RO = H'OOOOOO02, R1 = H'80000001

R1 = H'7FFFFFFF, T = 1

R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

R3 = H'80000000, T = 1

136 Hitachi

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State TBit

SWAP.B Rm,Rn Rm ~ Swap upper and lower 01 1 Onnnnmmnml 0 0 0 1
halves of lower 2 bytes ~ Rn

SWAP.W Rm,Rn Rm ~ Swap upper and lower 01 10nnnnmmmm100 1
word ~ Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

unsigned long tempO,temp1i

tempO=R[m]&OxffffOOOOi

temp1=(R[m]&OxOOOOOOff)«8i

R[n]=(R[m]&OxOOOOffOO»>8i

R[n]=R[n] !temp1!tempOi

PC+=2i

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

unsigned long temp i

temp=(R[m]»16)&OxOOOOFFFFi

R[n]=R[m]«16i

R [n] ! = temp i

PC+=2i

Examples

SWAP. B RO, R1 Before execution

After execution

SWAP. W RO , R1 Before execution

After execution

RO = H'12345678

Rl = H'12347856

RO = H'12345678

Rl = H'56781234

137 Hitachi

6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit

TAS.B @Rn When (Rn) is 0, 1 ~ T, 1 ~ MSB of (Rn) 0100nnrmOOOll0ll 4 Test
results

Description: Reads byte data from the address specified by general.register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not O. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B @Rn */

long tempi

temp=(long)Read_Byte(R[n])i

if (temp==O) T=li

else T=Oi

templ=Ox00000080i

/* Bus Lock enable */

Write_Byte(R[n],temp)i /* Bus Lock disable */

PC+=2i

Example:

_LOOP TAS. B @R7 R7 = 1000

BF Loops until data in address 1000 is 0

138 Hitachi

6.67 TRAPA (Trap Always): System Control Instruction

Format

TRAPA #inm

Abstract Code

PC/SR ~ Stack area, (imm x 4 + 11000011iiiiiiii
VBR) ~ PC

State T Bit

8

Description: Starts the trap exception processing. The PC and SR values are s~ored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the
starting address of the next instruction. TRAP A and RTE are both used for system calls.

Operation:

TRAPA(long i) /* TRAPA #imm * /

long inm;

imm=(OxOOOOOOFF & i);

R[15]-=4;

Write_Long(R[15],SR);

R[15]-=4;

Write_Long(R[15],PC-2);

PC=Read_Long(VBR+(imm«2))+4;

}

Example:

Address

VBR+H'80 .data.l

TRAPA #H'20

TST #O,RO

100000000 XOR

100000002 RTE

100000004 NOP

RO,RO

10000000

Branches to an address specified by data in address VBR +
H'80

f- Return address from the trap routine (stacked PC value)

f- Trap routine entrance

Returns to the TST instruction

Executes NOP before RTE

139 Hitachi

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State TBit

TST Rm,Rn Rn & Rm, when result is OOlOnrrrrrummnmlOOO Test
0,1 -7T results

TST #inm;RO RO & imm; when result is 11OOlOOOiiiiiiii Test
0,1 -7T results

TST.B #inm, @ (RO, GBR) (RO + GSR) & imm, when 11OOllOOiiiiiiii 3 Test
result is 0, 1 -7 T results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1

if the result is 0 or clears the T bit to 0 if the result is not O. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:

TST(long m,long n) / * TST Rm, Rn * /

if ((R[n]&R[m])==O) T=l;

else T=O;

PC+=2;

TSTI(long i) /* TEST #inm,RO */

}

long temp;

temp=R[O]&(OxOOOOOOFF & (long)i);

if (temp==O) T=lj

else T=O;

PC+=2;

TSTM(long i) /* TST.B #inm,@(RO,GBR) */

long temp;

140 Hitachi

temp=(long)Read_Byte(GBR+R[O])i

temp&=(OxOOOOOOFF & (long)i)i

if (temp==O) T=li

else T=Oi

PC+=2i

Examples:

TST RO,RO Before execution

After execution

TST #H' 80,RO Before execution

After execution

. TST.B #H'AS,@(RO,GBR) Before execution

After execution

RO = H'OOOOOOOO

T=l

RO = H'FFFFFF7F

T=l

@(RO,GBR) = H'A5

T=O

141 Hitachi

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit

XOR Rrn,Rn Rn" Rm -7 Rn OOlOnnnnrrmnmlO1O 1

XOR #imm,RO RD " imm -7 RD 11OOlOlOiiiiiiii

XOR.B #imm,@(RO,GBR) (RD + GSR) " imm -7 (RD 11OOlllOiiiiiiii 3
+ GSR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rrn,Rn */

R[n)"=R[m);

PC+=2;

}

XORI(long i) /* XOR #imm,RO */

R[O)"=(OxOOOOOOFF & (long)i);

PC+=2;

}

XORM(long i) /* XOR.B #imm,@(RO,GBR) */

long tenp;

tenp=(long)Read_Byte(GBR+R[O);

tenp"=(OxOOOOOOFF & (long)i);

Write_Byte(GBR+R[O),tenp);

PC+=2;

142 Hitachi

Examples:

XOR RO,Rl

XOR #H'FO,RO

XOR.B #H'AS,@(RO,GBR)

Before execution RO = H'AAAAAAAA, Rl = H'55555555

After execution Rl = H'FFFFFFFF

Before. execution RO = H'FFFFFFFF

After execution RO = H'FFFFFFOF

Before execution @(RO,GBR) = H'A5

After execution @(RO,GBR) = H'OO

143 Hitachi

6.70 XTRCT (Extract): Data Transfer Instruction

Format

XTRCl' Rm,Rn

Abstract Code

Center 32 bits of Rm and Rn ~ o o lOnnnnrrunmmllO 1
Rn

State T Bit

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13).

MSB

I Rm

Figure 6.13 Extract

Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */

unsigned long tempi

temp=(R[m]«16)&OxFFFFOOOOi

R[n]=(R[n]»16)&OxOOOOFFFFi

R[n] I =tempi

PC+=2i

Example:

Rn"

XTRCl' RO,Rl Before execution RO = H'01234567, Rl = H'89ABCDEF

After execution Rl = H'456789AB

144 Hitachi

LSB

I

Section 7 Processing States

7.1 State Transitions

The CPU has five processing states: reset, exception processing, bus release, program execution
and power-down. The transitions between the states are shown in figure 7.1. In the SH7600 series,
the transitions in the bus release state are indicated for master mode. For more information, see the
SH Hardware Manual.

145 Hitachi

From any state when
RES = 0 and NMI = 1

,- - - - - - - - - - - - - - - --

,

From any state when __ ----,
RES = 0 and NMI = 0

RES = 0, NMI = 0
•

, 4.~-------

!- --------------- ------~~ ~~ -~~~ --- -- -----R~$~i ~~i~s
When an interrupt source NMI = 1 NMI = 0

or DMA address error occurs

Bus request
cleared

SBY bit

Exception
processing

source occurs

Exception
processing

ends

Module standby
(SH7600 only)

SBY bit set
for SLEEP
instruction

Power-down state

Figure 7.1 Transitions Between Processing States

146 Hitachi

7.1.1 Reset State

In the reset state, the CPU is reset. This occurs when the RES pin level goes low. When the NMI
pin is high, the result is a power-on reset; when it is low, a manual reset will occur.

In the power-on reset, all CPU internal s~ates and on-chip peripheral module registers are
initialized. During manual reset, all on-chip peripheral module registers and CPU internal states,
with the exception of the bus state controller (BSC) and pin function controller (PFC), are
initialized. During manual reset the BSC is not initialized, allowing the refresh operation to
continue.

7.1.2 Exception Processing State

The exception processing state is a transient state that occurs when the CPU's processing state
flow is altered by exception processing sources such as resets or interrupts.

For a reset, the initial values of the program counter PC (execution start address) and stack pointer
SP are fetched from the exception processing vector table and stored; the CPU then branches to
the execution start address and execution of the program begins.

For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and status
register (SR) are saved to the stack area. The exception service routine start address is fetched
from the exception processing vector table; the CPU then branches to that address and the program
starts executing, thereby entering the program execution state.

7.1.3 Program Execution State

In the program execution state, the CPU sequentially executes the program.

7.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has two modes: sleep mode and
standby mode. See section 7.2 for more details. The SH7600 also has a module standby function.

7.1.5 Bus Release State

In the bus release state, the CPU releases access rights to the bus to the device that has requested
them.

147 Hitachi

7.2 Power-Down State

In addition to the ordinary program execution states, the CPU also has a power-down state in
which CPU operation halts and power consumption is lowered (table 7.1). There are two power­
down state modes: sleep mode and standby mode.

7.2.1 Sleep Mode

When standby bit SBY (in the standby control register SBYCR) is cleared to 0 and a SLEEP
instruction executed, the CPU moves from the program execution state to sleep mode. In the sleep
mode, the CPU halts and the contents of its internal registers and the data in on-chip cache (RAM)
are maintained. The on-chip peripheral modules other than the CPU do not halt in the sleep mode.

To return from sleep mode, use a reset, any interrupt, or a DMA address error; the CPU returns to
the ordinary program execution state through the exception processing state.

7.2.2 Software Standby Mode

To enter the standby mode, set the standby bit SBY (in the standby control register SBYCR) to 1
and execute a SLEEP instruction. In standby mode, all CPU, on-chip peripheral module and
oscillator functions are halted. CPU internal register contents and on-chip cache(RAM) data are
held.

To return from standby mode, use a reset or an external NMI interrupt. For resets, the CPU returns
to the ordinary program execution state through the exception processing state when placed in a
reset state after the oscillator stabilization time has elapsed. For NMI interrupts, the CPU returns to
the ordinary program execution state through the exception processing state after the oscillator
stabilization time has elapsed. In this mode, power consumption declines markedly, since the
oscillator stops.

7.2.3 Module Standby Function (SH7600 Only)

The module standby function is available for the multiplier (MULT), divider (DIVU), 16-bit free­
running timer (FRT), serial communication interface (SCI). and the DMA controller (DMAC) for
the on-chip peripheral modules.

The supply of the clock to these on-chip peripheral modules can be halted by setting the
corresponding bits 4-0 (MSTP4-MSTPO) in the standby control register (SBYCR). Using this
function can reduce the power consumption in sleep mode.

148 Hitachi

The external pins of the on-chip peripheral modules in module standby are reset and all registers
except DMAC, MULT, and DIVU are initialized. (The master enable bit (bit 0) of the DMAC's

DMA operation register (DMAOR) is initialized to 0.)

Module standby function is cleared by clearing the MSTP4-MSTPO bits to O.

Table 7.1 Power-Down State

State

On-Chip
Peripheral CPU 1/0

Mode Condition Clock CPU Module Register RAM Port Canceling

Sleep Executes Run Halt Run Held Held Held 1. Interrupt
mode SLEEP 2. DMA

instruction address
with SBY bit error
cleared to 0
in SBYCR 3. Power-

on reset

4. Manual
reset

Standby Executes Halt Halt Halt and Held Held Held or 1. NMI
mode SLEEP initialize*1 high- 2. Power-

instruction 2*1
on reset

with SBY bit
set to 1 in 3. Manual

SBYCR reset

Module Sets Run Halt Supply of Held Held Held Clears
standby MSTP4- clock to MSTP4-
function MSTPO bits affected MSTPO bits
(SH7600 of SBYCR module is of SBYCR
only) to 1· halted and to 0

module is
initialized. *2

Notes: 1. Depends on the peripheral module and pin. For details, see the Hardware Manual.

2. Interrupt vectors maintain their settings.

149 Hitachi

7.3 Master Mode and Slave Mode (SH7600 Series Only)

The SH7600 series has two master modes and a slave mode for bus rights that can be selected with
the MD5 pin. The master modes consist of a total master mode and a partial-share naster mode,
which are specified using the MD5 pin and the partial-share space specification bit (PSHR) in bus
control register 1 (BCR 1). When ~he slave mode is selected with the MD5 pin, the device enters
total slave mode. When the master mode is selected with the MD5 pin and partial space share is
specified with the PSHR bit, the device enters the partial-share master mode. When partial space
share is not specified with the PSHR bit, the device enters the total master mode.

The master mode has rights to bus use. External devices can be accessed freely. When a slave
CPU requests the bus right, the master CPU can give the bus right to the slave CPU.

The total slave mode does not have rights to bus use. To access an 'external device, bus rights 'have
to be requested to the master CPU, permission to use the bus gained, and then the external device
accessed.

The partial-share master mode lacks bus rights only for CS2 space. To access the CS2 space, bus
rights have to be requested to the master CPU, permission granted and then the CS2 space can be
accessed. This mode has bus rights for all other space and does not need to request the bus when
accessing them.

Table 7.2 Master Modes and Slave Mode (S87600)

MD5 (Total Slave Mode PSHR
Specification Pin) (Partial-Share

Mode Bit) Function

Total slave (Not used) Has no bus rights. To use a bus,
mode requests the bus and receive

permission from the master CPU to
access.

Partial-share 0 Has bus rights to CSO, CS1, and CS3
master spaces. Lacks continuing bus rights
mode only to CS2. To access CS2, first

requests and be granted bus rights.

Total master 0 0 Always has bus rights. Gives bus rights
mode to slave CPUs.

150 Hitachi

Section 8 Pipeline Operation

This s~ction describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

• IF (Instruction fetch)

• ID (Instruction decode)

Fetches an instruction from the memory in which the program is
stored.

Decodes the instruction fetched.

• EX (Instruction execution) Performs data operations and address calculations according to the
results of decoding.

• MA (Memory access)

• WB (Write back)

Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some
exceptions.

As shown in figure 8.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is
as shown in figure 8.1; some pipelines differ, however, because of contention between IF and MA.
In figure 8.1, the period in which a single stage is operating is called a slot.

.. : Slot

Instruction 1 IF 10 EX MA WB ! Instruction
Instruction 2 IF 10 EX MA WB stream

Instruction 3 IF 10 EX MA WB
Instruction 4 IF 10 EX MA WB
Instruction 5 IF 10 EX MA WB
Instruction 6 IF 10 EX MA WB

~

Time

Figure 8.1 Basic Structure of Pipeline Flow

151 Hitachi

8.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules

described below.

8.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more

stages cannot be executed within one slot (figure 8.2), with exception of WB and MA. Since WB
is executed immediately after MA, however, some instructions may execute MA and WB within

the same slot.

.. 4"--•• ~ Slot

Instruction 1 IF 10 EX MA WB

Instruction 2 IF 10 EX MA WB

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 8.2 Impossible Pipeline Flow 1

8.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the ·stage of the first instruction. Identical stages from two different instructions may

never be executed within the same slot (figure 8.3).

.... Slot

Instruction 1 IF 10 EX MA WB
Instruction 2 IF 10 EX MA WB
Instruction 3 IF 10 EX MA WB
Instruction 4 IF 10 EX MA WB
Instruction 5 IF 10 EX MA WB

Note: Same stage of another instruction is being executed in same slot.

. Figure 8.3 Impossible Pipeline Flow 2

152 Hitachi

8.2.3 810t Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the

following conditions:

• S = (the cycles of the stage with the highest number of cycles of all instruction stages contained
in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

• The number of execution cycles for each stage:

IF The number of memory access cycles for instruction fetch

ID Always one cycle

EX Always one cycle

MA The number of memory access cycles for data access

WB Always one cycle

As an example. figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles. the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

~ • ~ . ~ ~ . ~ ~: Slot

(2) (2) (1) (3) (1) (1) + Number of

Instruction 1 IF IF ID EX MA MA MA WB
cycles

Instruction 2 IF IF ID EX - MA WB

Figure 8.4810ts Requiring Multiple Cycles

153 Hitachi

8.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 8.5, the EX stage interval between
instructions I and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4, .
using an MOV Rm, Rn that follows instruction 3. (In the case of figure 8.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 8.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 8.5 is seven states (5 + 1 + 1).

• ~ • ~ • ~ • ~ Slot

(2) (2) (2) (4) (1) (1)

Instruction 1 IF IF 10 IEXI MA MA MA WB

Instruction 2 IF IF 10 IEXI
Instruction 3 IF IF 10 IEXI MA

(Instruction 4: MOV Rm, Rn IF 10 IEXI)

Figure 8.S How Instruction Execution States Are Counted

154 Hitachi

8.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

8.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF
and MA stages both try to access memqry within the same slot, the slot splits as shown in figure
8.6. When there is a WB, it is executed immediately after the MA ends.

A B C D E F G : Slot

Instruction 1 IF ID EX IMAI WB MA of instruction 1 and IF of instruction 4

Instruction 2 IF ID EX IMAI WB contend at D

Instruction 3 IF ID EX MA of instruction 2 and IF of instruction 5

[ill
contend at E

Instruction 4 ID EX

Instruction 5 [ill ID EX

When MA and I F are in contention, the following occurs:

A B C D E F G • : Slot

Instruction 1 IF ID EX IMAI WB Split at D

Instruction 2 IF ID EX IMAI WB Split at E

Instruction 3 IF ID EX

Instruction 4 [ill - ID EX

Instruction 5 [ill ID EX

Figure 8.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first half
(when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed
simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is executed in

slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

155 Hitachi

8.4.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROMIRAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the SH
microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed .at 16 bits, so basically 2 instructions can be fetched in a
single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is Al = 0 and AO = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as 'if. These 'if s always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are lOis Al = 1, AO = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 8.7 illustrates
these operations.

156 Hitachi

~
32 bits

~

IIlnstruc- Instruc-
tion 1 tion 2

Illnstruc- Instruc-
tion 3 I tion 4

Illnstruc-, Instruc-
tion 5 tion 6

On-chi memo (p ry
or on-chip cache)

... Instruction 1 DE]
Instruction 2

... Instruction 3

Instruction 4

... Instruction 5

Instruction 6

10 EX
if 10 EX

DE] 10 EX
if 10 EX

DE] 10

if

DE] : Bus cycle generated

if : No bus cycle

EX
10 EX

Fetching from an instruction (instruction 1) located on a longword boundary

Iinstruc-I
tion 3

Iinstruc-I
tion 5

Instruc-I
tion 2

Instruc-
tion 4

Instruc-
tion 6

... Instruction 2

... Instruction 3

Instruction 4

... Instruction 5

Instruction 6

DE] 10 EX
DE] 10 EX

if 10 EX
DE] 10 EX

if 10 EX

DE] : Bus cycle generated

if No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 8.7 Relationship Between IF and Location of Instructions in On-Chip Memory

8.4.3 Relationship Between Position of Instructions Located in On-Chip ROMIRAM or
On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROMIRAM) or on-chip cache, there are
instruction fetch stages ('if written in lower case) that do not generate bus cycles as explained in
section 8.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when

an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such
slots execute in the number of states the MA requires for memory access, as illustrated in figure
8.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,

MA, (WB) prevent stalls When they start from the longword boundaries in on-chip memory (the

157 Hitachi

position when the bottom 2 bits of instruction address are 00 is Al = 0 and AO = 0) because the
MA of the instruction falls in the same slot as ifs that follow.

A B 32 bits ~~--.......... Slot ... - _ ..
~ ~

Instruc-I Instruc-
tion 1 tion 2

Iinstruc-I Instruc-
tion 3 tion 4

Iinstruc-I Instruc-
tion 5 tion 6

On-chi memo (p ry
or on-chip cache)

... Instruction 1 IF

Instruction 2

... Instruction 3

Instruction 4

... Instruction 5

Instruction 6

10

if

EX \"A WB

10 EX ~:MA WB

IF 10 EX
:--ir: - 10 ____ J

DE]

00 Splits

[~ ~ ~ j Ooes not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

EX
10 EX
if 10 EX

Figure 8.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

8.5 F;ffects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus come after the EX stage of the instruction that immediately follows it
(instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. The destination register of load instruction 1 is the same as the destination (not the
source) of instruction 2, so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

• When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1.

• When instruction 2 is Mac @Rm+ , @Rn+, and the destination of load instruction 1 are the
same.

158 Hitachi

The number of states in the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, as illustrated in figure 8.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

... 4 ~ : Slot

Load instruction 1 (MOV.W @RO, R1) IF ID EX IMAI WB

Instruction 2 (ADD R1, R2) IF ID IEXI

Instruction 3 IF ID EX

Instruction 4 IF ID

Figure 8.9 Effects of Memory Load Instructions on the Pipeline

8.6 Programming Guide

To improve instruction execution speed, consider the following when programming:

• To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is Al = 0 and AD = 0) wherever possible.

• The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

• Locate instructions that use the multiplier nonconsecutively.

159 Hitachi

8.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
states can be calculated.

In the following figures, "Instruction A" refers to the instruction being described. When "IF' is
written in the instruction fetch stage, it may refer to either "IF' or "if'. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with a few exceptions. When a slot has split, see section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 8.1 lists the format for number of instruction stages and execution states:

Table 8.1 Format for the Number of Stages and Execution States for Instructions

Type Category Stage State Contention Instruction

Functional Instructions Number Number Contention that Corresponding instructions
types are catego- of of occurs represented by mnemonic

rized stages execu-
based on in an tion
operations instruc- states

tion when
no
conten-
tion
occurs

Table 8.2 Number of Instruction Stages and Execution States

Type Category Stage State Contention Instruction

Data Register- 3 MOV #imm,Rn
transfer register
instructions transfer

MOV Rm,Rn

instructions MOVA @(disp,PC) ,RO

MOvr Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRcr Rm,Rn

160 Hitachi

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Data Memory 5 • Contention occurs MOV.W @(disp, PC) , Rn
transfer . load if the instruction MOV.L @(disp,PC) ,Rn
instructions instructions placed
(cont) immediately after MOV.B @Rm,Rn

this one uses the MOV.W @Rm,Rn
same destination MOV.L @Rm,Rn
register

• MA contends with
MOV.B @Rm+,Rn

IF MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @ (disp, Rm) , RO

MOV.W @ (disp, Rm) , RO

MOV.L @(disp,Rm) ,Rn

MOV.B @(RO,Rm) ,Rn

MOV.W @(RO,Rm) ,Rn

MOV.L @(RO,Rm) ,Rn

MOV.B @(disp,GBR) ,RO

MOV.W @(disp,GBR) ,RO

MOV.L @(disp,GBR) ,RO

Memory 4 • MA contends with MOV.B Rm,@Rn
store IF
instructions

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B Rm,@-Rn

MOV.W Rm,@-Rn

MOV.L Rm,@-Rn

MOV.B RO,@(disp,Rn)

MOV.W RO,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm, @ (RO, Rn)

MOV.W Rm,@(RO,Rn)

MOV.L Rm,@(RO,Rn)

MOV.B RO,@(disp,GBR)

MOV.W RO,@(disp,GBR)

MOV.L RO,@(disp,GBR)

161 Hitachi

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic Arithmetic 3 ADD Rrn,Rn
instructions instructions ADD #imm,Rn

between
registers ADDC Rrn,Rn
(except ADDV Rrn,Rn
multiplic-

CMP/EQ #imm,RO ation
instruc- CMP/EQ Rrn,Rn
tions) CMP/HS Rrn,Rn

CMP/GE Rrn,Rn

CMP/HI Rrn,Rn

CMP/GT Rrn,Rn

CMP/pz Rn

CMP/PL Rn

CMP/STR Rrn,Rn

DIVl Rrn,Rn

DIVOS Rrn,Rn

DIVOU

Dr Rn*3

EXTS.B Rrn,Rn

EXTS.W Rrn,Rn

EXTU.B Rrn,Rn

EXTU.W Rrn,Rn

NOO Rrn,Rn

NEX:;C Rrn,Rn

SUB Rrn,Rn

SUBC Rm,Rn

SUBV Rm,Rn

Multiply/ 7/8*1 3/(2)*2 • Multiplier contention MAC.W @Rm+,@Rn+
accumulate occurs when an
instructions instruction that uses the

multiplier follows a
MAC instruction

• MA contends with IF

Notes 1. In the SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

3. SH7600 instructions

162 Hitachi

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic Double- 9 3/(2 to • Multiplier MAC.L @Rm+,@Rn+*3

instructions length 4)*2 contention occurs
(cont) multiply/ when an

accumulate instruction that
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction

• MA contends with
IF

Multipli~- 617*1 1 to 3*2 • Multiplier MULS.W Rm,Rn

ation contention occurs MULU.W Rm,Rn
instructions when an instruc-

tion that uses the
multiplier follows a
MUL instruction

• MA contends with
IF

Double- 9 2 to 4*2 • Multiplier DMULS.L Rm,Rn*3

length contention occurs DMULU.L Rm,Rn*3
multiply/ when an
accumulate instruction that MUL.L Rm,Rn*3

instruction uses the multiplier
(SH7600 follows a MAC
only) instruction

• MA contends with
IF

Logic Register- 3 AND Rm,Rn

operation register
AND #inm,RO

instructions logic
operation Nor Rm,Rn

instructions OR Rm,Rn

OR #inm,RO

TST Rm,Rn

TST #inm,RO

XOR Rm,Rn

XOR #inm,RO

Notes 1. In the SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

3. SH7600 instructions

163 Hitachi

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Logic Memory logic 6 3 • MA contends AND.B #imn,@(RO,GBR)
operation operations with IF OR.B #imn,@(RO,GBR)
instructions instructions
(cont) TST.B #imn,@(RO,GBR)

XOR.B #imn,@(RO,GBR)

TAS 6 4 • MA contends TAS.B @Rn
instruction with IF

Shift Shift 3 ROTL Rn

instructions instructions ROTR Rn

ROTCL Rn

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

Branch Conditional 3 3/1*4 BF label
instructions branch BT label

instructions

Delayed 3 211*4 BF/S label *3
conditional BT/S label *3
branch
instructions
(SH7600 only)

Unconditional 3 2 BRA label
branch
instructions

BRAF Rn*3

BSR label

BSRF Rn*3

JMP @Rn

JSR @Rn

RTS

Notes 3. SH7600 instruction

4. One state when there is no branch

164 Hitachi

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System System 3 CLRT
control control LIX:: Rm,SR
instructions AlU

instructions LIX:: Rm,GBR

LIX:: Rm,VBR

LDS Rm,PR

NOP

SETI'

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STS PR,Rn

STC.l 4 2 • MA contends with STC.L SR,@-Rn
instructions IF STC.L GBR,@-Rn

STC.L VBR,@-Rn

lDS.l 5 • Contention occurs LDS.L @Rm+,PR
instructions when an
(PR) instruction that

uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

STS.l 4 • MA contends with STS.L PR,@-Rn
instruction IF
(PR)

165 Hitachi

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System Register ~ 4 • Contention occurs CLRMAC

control MAC with multiplier
LOS Rm,MACH

instructions transfer • MA contends with
(cont) instruction LOS Rm,MACL

IF

Memory~ 4 • Contention occurs LDS.L @Rm+,MACH

MAC with multiplier
LDS~L @Rm+,MACL

transfer • MA co ntends with
instructions IF

MAC~ 5 • Co ntention occurs STS MACH,Rn

register with multiplier
STS MACL,Rn

transfer • Contention occurs
instruction when an

instruction that
uses the same
destination
register is placed
immediately afte r
this nstructbn

• MA co ntends with
IF

MAC~ 4 • Contention occurs STS.L MACH,@-Rn

memory with multiplier
STS.L MACL,@-Rn

transfer • MA co ntends with
instruction IF

RTE 5 4 RTE
instruction

TRAP 9 8 TRAPA #inm
instruction

SLEEP 3 3 SLEEP

instruction

166 Hitachi

S.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

• MOV #imm, Rn

• MOV Rm,Rn

• MOVA @(disp, PC), RO

• MOVT Rn

• SWAP.B Rm,Rn

• SWAP.W Rm,Rn

• XTRCT Rm,Rn

............ :810t

I Instruction A IF 10 EX I
Next instruction IF 10 EX

Third instruction IF 10 EX

Figure S.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

167 Hitachi

Memory Load Instructions: Include the following instruction types:

• MOV.W @(disp, PC), Rn

• MOV.L @(disp, PC), Rn

• MOV.B @Rm,Rn

• MOV.W @Rm,Rn

• MOV.L @Rm,Rn

• MOV.B @Rm+,Rn

• MOV.W @Rm+,Rn

• MOV.L @Rm+,Rn

• MOV.B @(disp, Rm), RO

• MOV.W @(disp, Rm), RO

• MOV.L @(disp, Rm), Rn

• MOV.B @(RO, Rm), Rn

• MOV.W @(RO, Rm), Rn

• MOV.L @(RO, Rm), Rn

• MOV.B @(disp, GBR), RO

• MOV.W @(disp, GBR), RO

• MOV.L @(disp, GBR), RO

.. : Slot

Iinstruction A IF 10 EX MB WBI

Next instruction IF 10 EX
Third instruction IF 10 EX

Figure 8.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.11). If an instruction
that uses the same destination register as this instruction is placed immediately after it, contention
will occur. (See Section 8.5, Effects of Memory Load Instructions on Pipelines.)

168 Hitachi

Memory Store Instructions: Include the following instruction types:

• MOV.B Rm, @Rn

• MOV.W Rm, @Rn

• MOV.L Rm, @Rn

• MOV.B Rm, @-Rn

• MOV.W Rm, @-Rn

• MOV.L Rm,@-Rn

• MOV.B RO, @(disp, Rn)

• MOV.W RO, @(disp, Rn)

• MOV.L Rm, @(disp, Rn)

• MOV.B Rm, @(RO, Rn)

• MOV.W Rm, @(RO, Rn)

• MOV.L Rm, @(RO, Rn)

• MOV.B RO, @(disp, GBR)

• MOV.W RO, @(disp, GBR)

• MOV.L RO, @(disp, GBR)

.................. :Slot

I Instruction A IF 10 EX MAl

Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.12). Data is not returned to
the register so there is no WB stage.

169 Hitachi

8.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

• ADD Rm,Rn

• ADD #imm,Rn

• ADDC Rm,Rn

• ADDV Rm,Rn

• CMPIEQ #imm, RO

• CMPIEQ Rm,Rn

• CMPIHS Rin, Rn

• CMP/GE Rm,Rn

• CMPIHI Rm,Rn

• CMP/GT Rm,Rn

• CMPIPZ Rn

• CMPIPL Rn

• CMP/STR Rm,Rn

• DNI Rm,Rn

• DIVOS Rm,Rn

• DNOU

• DT Rn (SH7600 only)

• EXTS.B Rm,Rn

• EXTS.W Rm,Rn

• EXTU.B Rm,Rn

• EXTU.W Rm,Rn

• NEG Rm,Rn

• NEGC Rm,Rn

• SUB Rm,Rn

• SUBC Rm,Rn

• SUBV Rm,Rn

170 Hitachi

~ ~ ~ ~ ~~: Slot

I Instruction A IF 10 EX MAl

Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.13 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage via the ALU.

171 Hitachi

Multiply/Accumulate Instruction (807000): Includes the following instruction type:

• MAC.W @Rm+, @Rn+

.. : Slot

IMAC.W IF 10 EX MA MA mm mm mml

Next instruction IF 10 EX MA WB

Third instruction IF 10 EX MA WB

Figure 8.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
mUltiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of
the MAC.W instruction, when they contend with IF, split the slots as described in section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the inultiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MULS. W instruction is located immediately after a MAC. W instruction

3. When an STS (register) instruction is located immediately after a MAC.W instruction

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

172 Hitachi

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC. W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure

8.15).

... --.~ : Slot

I MAC.W IF 10 EX MA MA mm ~.m·m·.·.·.·mmd

MAC.W IF 10 EX MA c.~~:·.·.·.·.·.·A:) mm mm mm
Third instruction IF 10 EX MA

... Slot

I MAC.W IF 10 EX MA MA mm mm ~:mm~1
Other instruction IF 10 EX MA WB

MAC.W IF 10 EX MA f.~.A.: mm mm mm

Figure 8.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF

contention causes misalignment of instruction execution. Figure 8.16 illustrates a case of this
type. This figure assumes MA and IF contention .

.. --.~ ... 4--.~ f---.~ .. : Slot

IMAC.W if 10 EX MA MA mm mm ~.ij:i.ij:i":1
MAC.W

MAC.W

MAC.W

IF 10 EX MA

if 10 EX MA ~::~~A::jmm j~~j~~}
IF 10 EX - ~.t0.AL~~A::~mm

Figure 8.16 Consecutive MAC.Ws without Misalignment

173 Hitachi

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 8.17 illustrates a case of this type. This
figure assumes MA and IF contention .

.. I--~~ f----~~ : Slot

I MAC.W IF 10 EX MA

MAC.W if

Other instruction

Other instruction

Other instruction

MA mm ~mm::mriq
10 EX MA ::~C::::A:: mm mm mm
IF 10 EX MA

if 10 EX

IF

Figure 8.17 MA and IF Contention

174 Hitachi

2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multip1ier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multip1ier (mm), the MA is
extended unti1 the mm ends (the M-A shown in the dotted 1ine box in figure 8.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause

. sta11ing. When the MULS.W MA and IF contend, the slot is split.

.................... f-----.................... : Slot

IMAC.W IF 10 EX MA MA :mm:::ril:ril:::mm:1
MULS.W IF 10 EX ~.'.~.'.'.'''''''''''''.'''''''.'/~''''~ mm mm mm

Other instruction IF 10 EX - MA

..................... :Slot

I MAC.W IF ID EX MA MA mm :!'D:ril:::iji.i:DJ
Other instruction IF 10 EX

MULS.W IF 10 EX ::.to:::::::A::: mm mm mm
Other instruction IF 10 EX - MA

.. :Slot

I MAC.W IF 10 EX MA MA mm mm :h1itU
Other instruction IF 10 EX MA WB

Other instruction

MULS.W

Other instruction

IF 10 EX MA WB

IF ID EX :.MA .. :mm mm mm
IF 10 EX MA

Figure 8.18 MULS.W Instruction Immediately After a MAC.W Instruction

175· Hitachi

3.· When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.19) to create a single slot. The MA of the STS contends with the IF. Figure 8.19

illustrates how this occurs, assuming MA and IF contention.

I MAC.W IF 10 EX MA MA ~mm:::m:m:::mm~1
STS if 10 EX L~.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·~.·.·j WB

Other instruction IF 10 EX MA

Other instruction if 10 EX

Other instruction IF 10 EX

~ ... ~ ~.. ~ ~ ~ ~ ~ ... ~: Slot

I MAC.W if 10 EX MA MA mm ~.th.th.·.·"m"ITd
STS IF 10 EX j~f.~·.·.·.·.A·.~ WB

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX
10 EX

Figure 8.19 STS (Register) Instruction Immediately After a MAC.W Instruction

176 Hitachi

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M-A shown in the dotted
line box in figure 8.20) to create a single slot. The MA of the STS contends with the IF.

Figure 8.20 illustrates how this occurs, assuming MA and IF contention.

............ ~"'''''''~:Slot

IMAC.W IF 10 EX MA MA ~~.i:i:C.ijl.rjC.i:D:rJJ".:1
STS.L if 10 EX l·j~f.:·.·.·.·.·.::·.·.·.·.:·.·.·.·.·.:A.·.·} WB

Other instruction

Other instruction

IF 10

if

EX MA

10 EX

Other instruction IF 10 EX

............... • : Slot

IMAC.W if 10 EX MA MA mm ~.ijj.ijj.·.·.ijjmn
STS.L IF 10 EX j~L::::·.::::::A:::

Other instruction if 10 EX

Other instruction IF 10 EX

Other instruction if 10 EX

Figure 8.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

177 Hitachi

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.21) to create a single slot. The MA of this LDS contends with IF. Figure 8.21
illustrates how this occurs, assuming MA and IF contention.

I MAC.W IF 10 EX MA MA ~mm:::r:n:m::mm~1
LOS if 10 EX Cf0.::::::::::::::A>

Other instruction IF 10 EX MA

Other instruction

Other instruction

if 10 EX

IF 10 EX

............ ~ ~ ~ ~ : Slot

IMAC.W if 10 EX MA MA mm ~mi:li.·"rrjrrd
LOS IF 10 EX j~·.·.·.·.·.·.·.·A·.·j

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX·

10 EX

Figure 8.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

178 Hitachi

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-,-A shown in the dotted line box in figure 8.22) to create a
single slot. The MA of the LDS contends with IF. Figure 8.22 illustrates how this occurs,
assuming MA and IF contention~

.-. .-. .-. --.~.-. f.-----~ • .-..-..-..-..-.: Slot

IMAC.W IF 10 EX MA MA ~mn1".·Jiirifji:i.6.1J
LOS.L

Other instruction

Other instruction

Other instruction

if 10 EX [.... fX1 "A :
IF 10 EX

if 10 EX

IF 10 EX

.-. .-. .-. .-...-. .-. .-. .-.-.: Slot

IMAC.W if 10 EX MA MA mm ~mijl.·.·.·m·mJ
LOS.L if 10 EX j~(.·.·.·.·.·.A·.·j

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX MA

10 EX

Figure 8.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

179 Hitachi

Multiply/Accumulate InstruCtion (SH7600): Includes the following instruction type:

• MAC.W @Rm+. @Rn+

.......... : Slot

IMAC.W IF 10 EX MA MA mm mml
Next instruction IF 10 EX MA WB

Third instruction IF 10 EX MA WB

Figure 8.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID. EX, MA, MA, mm and mm (figure 8.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction. when they contend with IF, split the slots as described in Section 8.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normal1y. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MAC.L instruction is located immediately after a MAC.W instruction

3. When a MULS.W instruction is located immediately after a MAC.W instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

5. When an STS (register) instruction is located immediately after a MAC.W instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

180 Hitachi

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC. W instruction does not contend with an mm generated by a
preceding multiplication instruction.

... : Slot

IMAC.W IF 10 EX MA MA mm ~hJhfl
MAC.W IF 10 EX MA f."M"A.·~ mm mm

Third instruction IF 10 EX MA

Figure 8.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by
MA and IF contention. Figure 8.25 illustrates a case of this type. This figure assumes MA and
IF contention .

IMAC.W

MAC.W

MAC.W

MAC.W

............... I--.~ : Slot

if 10 EX MA MA mm mml
IF - 10 EX MA MA mm mm

if - - 10 EX MA MA mm mm
IF 10 EX MA MA mm

Figure 8.25 Consecutive MAC.Ws with Misalignment

181 Hitachi

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual.
Figure 8.26 illustrates a case of this type. This figure assumes MA and IF contention.

.......... • : Slot

IMAC.W IF 10 EX MA MA mm :.r:D.r:D.·d

MAC.W if 10 EX MA :.MA.·~ mm mm

Other instruction IF 10 EX MA

Other instruction

Other instruction

if 10 EX

IF

Figure 8.26 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 8.27) .

............ :Slot

IMAC.W IF 10 EX MA MA mm ~liiD\:1
MAC.L

Third instruction

IF 10 EX MA ~'."M"A"~ mm mm mm mm

IF 10 EX MA

Figure 8.27 MAC.L Instructions Immediately After a MAC.W Instruction

182 Hitachi

3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the mUltiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M-A shown in the dotted line box in figure 8.28) to
create a single slot. When one or more instructions not related to the mUltiplier come between
the MAC.W and MULS.W instructions. MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

.......... ~ ~ :810t

IMAC.W IF 10 EX MA MA ~omrijoooooii!°~ooq
MUL8.W IF 10 EX)~(:::::oA::~ mm mm

Other instruction IF 10 EX - MA

............ :810t

IMAC.W IF 10 EX MA MA mm jrim:d
Other instruction IF 10 EX

MUL8.W IF 10 EX foOMOAoOj mm mm

Other instruction IF 10 EX MA

Figure 8.28 MULS.W Instruction Immediately After a MAC.W Instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the mUltiplier, but there is no
DMULS.L MA contention while the MAC.W instruction mUltiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 8.29). .

................ :Slot

IMAC.W IF 10 EX MA MA mm ~mm:d
OMULS.L IF 10 EX MA)~OAoOj mm mm mm mm

Other instruction IF 10 EX MA

Figure 8.29 DMULS.L Instructions Immediately After a MAC.W Instruction

183 Hitachi

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.30) to create a single slot. The MA of the STS contends with the IF. Figure 8.30
illustrates how this occurs, assuming MA and IF contention .

.... ~--.. ~ ~~---..~ : Slot

IMAC.W IF 10 EX MA

STS

Other instruction

Other instruction

Other instruction

if 10

IF 10

if

EX MA

10 EX
IF 10 EX

.... ~--~ : Slot

IMAC.W if 10 EX MA MA mm f~'~'iI
STS IF 10 EX LMA:~ WB

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10 EX MA

if 10 EX

Figure 8.30 STS (Register) Instruction Immediately After a MAC.W Instruction

184 Hitachi

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled.
Figure 8.31 illustrates how this occurs, assuming MA and IF contention .

.. ~I---..... ~ : Slot

IMAC.W IF 10 EX MA MA !~'M;;~'~:}I
STS.L if 10 EX ~.M~A.}

Other instruction IF 10 EX MA

Other instruction if 10 EX
Other instruction IF 10 EX

........ ~ .. ~ :Slot

IMAC.W if 10 EX MA MA mmLijj.ijj.H
STS.L IF - 10 EX)~'A.'j

Other instruction

Other instruction
Other instruction

if 10 EX

IF 10 EX
if 10 EX

Figure 8.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

185 Hitachi

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.32) to create a single slot. The MA of this LDS contends with IF. Figure 8.32
illustrates how this occurs, assuming MA and IF contention .

.. ~!--.. ~ .. "'~I----~" : Slot

IMAC.W IF 10 EX MA MA iriiriijjjhfI
LOS if 10 EX J~:::::::A:::

Other instruction IF 10 EX MA
Other instruction

Other instruction

if

IMAC.W if 10 EX MA MA mm:·.ijj.ijjj

LOS IF 10 EX j~A. .. :
Other instruction if 10 EX

IF 10 EX

10 EX

IF 10 EX

Other instruction

Other instruction if 10 EX

Figure 8.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

186 Hitachi

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M..,--A shown in the dotted line box in figure 8.33) to create a
single slot. The MA of the LDS contends with IF. Figure 8.33 illustrates how this occurs,
assuming MA and IF contention .

...... ,. ... ,. : Slot

IMAC.W IF 10 EX MA MA fmrifjjjm:~ I
LOS.L if 10 EX }/:::::)<~

Other instruction IF 10 EX

Other instruction

Other instruction

if

IMAC.W if 10 EX MA MA mm ,ijj,ijj-H
LOS.L IF 10 EX :MA:~

if 10 EX

IF 10 EX

10 EX

IF 10 EX

Other instruction

Other instruction

Other instruction if 10 EX

Figure 8.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

187 Hitachi

Double-Length Multiply/Accumulate Instruction (887600): Includes the following instruction
type:

• MAC.L @Rm+, @Rn+ (SH7600 only)

........................... :810t

MAC.L IF 10 EX MA MA mm mm mm mm

Next instruction

Third instruction

IF 10 EX MA WB

IF 10 EX MA WB

Figure 8.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
8.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX,MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.L instruction is located immediately after another MAC.L instruction

2. When a MAC.W instruction is located immediately after a MAC.L instruction

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

4. When a MULS.W instruction is located immediately after a MAC.L instruction

5. When an STS (register) instruction is located immediately after a MAC.L instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

188 Hitachi

1. When a MAC.L instruction is located immediately after another MAC.L instruction

I

When the second MA of the MAC.L instruction contends with the mm produced by 'the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M­
A shown in the dotted line box in figure 8.35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

............... • :810t

I MAC.L IF 10 EX MA MA mm ~:Iil:Iil:::mm:::rn:r:r:d
MAC.L IF 10 EX MA ~::M:::::::::::::::A::~ mm mm mm mm

Third instruction IF , 10 EX - - MA

...................... :810t

I MAC.L IF 10 EX MA MA mm mm mm jiim',~1
Other instruction IF 10 EX MA WB

Other instruction IF 10 EX MA WB

MAC.L IF 10 EX MA ~"~"A,'j mm mm mm mm

Figure 8.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 8.36 illustrates
a case of this type, assuming MA and IF contention .

.. 4f---..4'---~...4t-------.~ : Slot

MAC.L if 10 EX MA MA mm mm ~:mm:::m:m:~1
MAC.L IF 10 EX MA i:M::::::::A::imm mm mm mm

MAC.L if 10 EX MA M A mm mm mm mm

MAC.L IF 10 EX MA

Figure 8.36 Consecutive MAC.Ls with Misalignment

189 Hitachi

When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 8.37 illustrates a case of
this type, assuming MA and IF contention.

............ • : Slot

I MAC.L IF 10 EX MA MA mm ~:mm:::ijI:ijI:::mm I
MAC.L if 10 EX MA C~:::::::::::::::A: mm mm mm mm

Other intruction

Other intruction

Other intruction

IF 10

if

Figure 8.37 MA and IF Contention

190 Hitachi

EX
10

IF

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M­
A shown in the dotted line box in figure 8.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W·
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

.. 4 ~ :Slot

I MAC.L IF 10 EX MA MA mm ~:rjJ:m::mm:::m:mJ
MAC.W IF 10 EX MA)~1A:::::::::::::A:~ mm mm

Third instruction IF 10 EX - - MA

...................... :Slot

I MAC.L IF 10 EX MA MA mm mm mm ~iilmJ
Other instruction

Other instruction

MAC.W

IF 10

IF

EX
10

IF

MA WB

EX MA WB

10 EX MA }~i~.·jmm mm

Figure 8.38 MAC.W Instruction Immediately After a MAC.L Instruction

191 Hitachi

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M-A shown in the dotted line box in figure 8.39) to
create a single slot. When two or more instructions not related to the multiplier come between
the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not cause
stalling. When the DMULS.L MA and IF contend, the slot is split.

.............. ~ :Slot

I MAC.L IF 10 EX MA MA mm ~:r:n:r:n:::mm:::m:mj
OMULS.L IF 10 EX MA ~::M::::::::::::::A::~ mm mm mm mm

Other instruction IF 10 - EX MA

................ ~ :Slot

I MAC.L IF 10 EX MA MA mm mm ~:m:m:::mm::I
Other instruction IF 10 . EX

OMULS.L

Other instruction

IF 10 EX MA ~)Yf.·.·.·.·.·.·A".·j mm mm mm mm
IF 10 - EX MA

............................ :Slot

I MAC.L IF 10 EX MA MA mm mm mm jiifii.H
Other instruction IF 10 EX MA WB

Other instruction

OMULS.L

Other instruction

IF 10

IF

EX MA

10 EX
IF

WB

MA rMA:}mm mm mm mm
10 EX MA

Figure 8.39 DMULS.L Instruction Immediately After a MAC.L Instruction

192 Hitachi

4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M-A shown in the dotted line box in figure 8.40) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention doesnot
cause stalling. When the MULS.W MA and IF contend, the slot is split.

193 Hitachi

.................... ~ : Slot

I MAC.L· IF 10 EX MA MA mm ~:rit:m::mm:::m:mj
MULS.W IF - 10 EX MA LM::::::::::::::A::~ mm mm

Other instruction IF - 10 EX - - MA

.................... ~ :Slot

I MAC.L IF 10 EX MA MA mm ~mm:::m:m:::mm::I
Other instruction

MULS.W

Other instruction

I MAC.L

Other instruction

Other instruction

MULS.W

Other instruction

IF -10 EX

IF 10 EX t·)0.·.·.·.·.·.·.·.·.·.·.·.·.·.·A.·.·j mm mm

IF 10 EX - - MA

....................... ~ :Slot

IF 10 EX MA MA mm mm ~mm::m:mJ
IF - 10 EX MA WB

IF 10 EX MA WB

IF 10 EX jvL:::::A:t mm mm
IF 10 EX - MA

..................... :Slot

I MAC.L IF 10 EX MA MA mm mm mm ~m:mJ
Other instruction

Other instruction

Other instruction

MULS.W

Other instruction

IF - 10 EX

IF 10

IF

MA WB

EX MA WB

10 EX MA WB

IF 10 EX rMA~ mm mm

IF 10 EX MA

Figure 8.40 MULS.W Instruction Immediately After a MAC.L Instruction

194 Hitachi

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.41) to create a single slot. The MA of the STS contends with the IF. Figure 8.41
illustrates how this occurs, assuming MA and IF contention .

.. -~ I--------~ : Slot

I MAC.L IF 10 EX MA

.STS if

Other instruction

Other instruction

10 EX ~:M:::::::::::::::::::::::::A:: WB

IF 10

if

EXMA

10 EX

Other instruction IF 10 EX

.......... ... • : Slot

I MAC.L if 10 EX MA MA mm :.·m·m·.· .. mm.·.·.n.i.n.iJ
STS IF 10 EX r).;f.·.·.·.·.·.·.·.·.·.·.·.·.i~.·.·~ WB

Other instruction if 10 EX

Other instruction IF 10 EX

Other instruction if 10 EX

Figure 8.41 STS (Register) Instruction Immediately After a MAC.L Instruction

195 Hitachi

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.42 illustrates how this occurs, assuming MA and IF
contention.

.-. .-. .-. ... --. .. .-. I--------~ .. .-. .-. .-. .-.: Slot

I MAC.L IF 10 EX MA MA ~:mm:mm::mm:m:mJ
STS.L if 10 EX C~:::::::::::::::::::::::A~

Other instruction

Other instruction

Other instruction

IF 10

if

EX MA

10 EX

IF 10 EX

.-. .-. .-. .-.-. .-. .-. .-. .-. : Slot

I MAC.L if 10 EX MA MA mm ~·!T)'rh".ijl.ijf.iiimJ
STS.L IF - 10 EX LM.·.·.·.·.·.·.·.·.·.·.·.·.·.·.A·.~

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX

10 EX

Figure 8.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

196 Hitachi

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.43) to create a single slot. The MA of this LDS contends with IF. Figure 8.43
illustrates how this occurs, assuming MA and IF contention .

......... III! ~ ... III! ~ :Slot

I MAC.L IF 10 EX MA MA ~"mm".·.ijjm.·.·.i:1:l.i:1:l.·.·.·mm":1
LOS if 10 EX ~::M:::::::::::::::::::::::A:}

Other instruction IF 10 EX MA

Other instruction if 10 EX

Other instruction IF 10 EX

............... ~ III! ~ :Slot

I MAC.L if 10 EX MA MA mm ~"m"IT!·.·.·mm.·.·.m.mJ
LOS IF 10 EX t")~(.·.·.·.·.'.·.·.·.·.·.·.·.·A.·.·~

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX
10 EX

Figure 8.43 LDS (Register) Instruction Immediately After a MAC.L Instruction

197 Hitachi

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-A shown in the dotted line box in figure 8.44) to create a
single slot. The MA of the LDS contends with IF. Figure 8.44 illustrates how this occurs,
assuming MA and IF contention.

........... • : Slot

I MAC.L IF 10 EX MA MA ~."!TImjjjm.·.·.i:l:l.i:l:l.·.·"miiH

LOS.L if 10 EX :::~L:::::::::::::::::::::A::~
Other instruction IF 10 EX MA

Other instruction if 10 EX

Other instruction IF 10 EX

.............. ... • : Slot

I MAC.L if 10 EX MA MA mm ~"IT~·m·.·.·mm.·.·.m.mJ
LOS.L IF - 10 EX t)y(·.·:.·.·.·.·.·.·.·.·.·.·.A.·.·:

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX

10 EX

Figure 8.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

198 Hitachi

Multiplication Instructions (887000): Include the following instruction types:

• MULS.W

• MULU.W

Rm,Rn

Rm,Rn

I MULS.W

Next instruction

Third instruction

........................ :
IF 10 EX MA mm mm mml

IF 10 EX MA WB

IF 10 EX MA WB

Figure 8.45 Multiplication Instruction Pipeline

Slot

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when
it contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-sta~e pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MULS.W instruction is located immediately after another MULS.W instruction

3. When an STS (register) instruction is located immediately after a MULS.W instruction

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

199 Hitachi

1. When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions
does not cause stalls (figure 8.46) .

....................... • :Slot

IMULS.W IF 10 EX MA mm ~:rit:rit:::mm~1
MAC.W IF 10 EX MA j~(.·.·.·.·.·.A.·.·jmm mm mm

Third instruction IF 10 EX - MA

.. :Slot

IMULS.W IF 10 EX MA mm mm ~.m.m.·:1
Other instruction IF 10 EX MA WB

MAC.W IF 10 EX MA ~·M.A:~ mm mm mm

Figure 8.46 MAC.W Instruction Immediately After a MULS.W Instruction

200 Hitachi

2. When a MlJLS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

IMULS.W IF 10 EX MA ~mm·.·.·.rii.rii.·.·.iji.ijiJ
MULS.W IF 10 EX r. . .f0 A. ... j mm mm mm

Other instruction I FlO EX - - MA

IMULS.W IF 10 EX MA mm ~mij1".)Tirri~

Other instruction IF 10 EX
MULS.W IF 10 EX L~.·.·.·.·.·.·.·.A.·j mm mm mm

Other instruction IF 10 EX - MA

IMULS.W IF 10 EX MA mm mm :.m.rjH
Other instruction IF 10 EX MA WB

Other instruction IF 10 EX MA WB

MULS.W IF 10 EX ~.M~.: mm mm mm

Other instruction IF 10 EX MA

Figure 8.47 MULS. W Instruction Immediately After Another MULS. W Instruction

201 Hitachi

When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the slot, as is normal. Figure 8.48 illustrates a case of this type, assuming
MA and IF contention .

.......... ~ ~ :Slot

I MULS.W IF 10 EX MA ~mm·.·.·.riJ"flJ".·.".ijl.ijiJ
MULS.W if 10 EX [".·M.·.·.·.·.·.·.·.·.·.·.·.·.·.·.A.·.·j mm mm mm

Other instruction

Other instruction

Other instruction

IF 10

if

EX MA

10 EX

IF 10

Figure 8.48 MULS.W Instruction Immediately After Another MULS. W Instruction (IF and
MA Contention)

202 Hitachi

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.49) to create a single slot. The MA of the STS contends with the IF. Figure 8.49
illustrates how this occurs, assuming MA and IF contention.

.............. • :Slot

I MULS.W IF 10 EX MA mhfjjim·.·.·.~.~J
STS if 10 EX .)~(.......................... f.. ... j WB

Other instruction IF 10 EX MA

Other instruction

Other instruction

if 10 EX

IF 10 EX

.......... ... • : Slot

I MULS.W if 10 EX MA mm ~·m·m·.·.·.~.~J
STS IF 10 EX L·.r0·.·.·.·.·.·.·.·A·.·jWB

Other instruction if 10 EX

Other instruction

Other instruction

IF 10

if 10 EX

Figure 8.49 STS (Register) Instruction Immediately After a MULS.W Instruction

203 Hitachi

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating mUltiplier
(mm), the MA is extended until one cycle after the mm ends (the M-A shown in the dotted
line box in figure 8.50) to create a single slot. The MA of the STS contends with the IF.
Figure 8.50 illustrates how this occurs, assuming MA and IF contention .

... 4f-------~ : Slot

IMULS.W IF 10 EX MA ~mm::m:m::mmn
STS.L if 10 EX }~:::::::::::::::::::::A:~

Other instruction

Other instruction

Other instruction

IF 10

if
EX MA

10 EX
IF 10 EX

......... 4 .4 : Slot

IMULS.W if 10 EX MA mm ~mm::mIiH

STS.L IF 10 EX ~M:::::::::::::::A
Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if
EX
10 EX

Figure 8.50 STS.L (Memory) Instruction Immediately After a MULS. W Instruction

204 Hitachi

5. When an LDS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 8.51 illustrates how this
occurs, assuming MA and IF contention .

... 1--------+ : Slot

I MULS.W IF 10 "EX MA ~mh1".·.·iiiiif'.·.ro.roJ
LOS if 10 EX t·.·.M.·.·.·.·.·.·::.·.·.·.·.·.·.A.·.·~

Other instruction

Other instruction

Other instruction

IF 10

if

I MULS.W if 10 EX MA mm jii.lii.·.·.ro.roJ

LOS IF 10 EX ~ ~~f.·.·.· A.·~
Other instruction if 10 EX

Other instruction

Other instruction

IF 10

if

EX MA

10 EX

IF 10 EX

EX
10 EX

Figure 8.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

205 Hitachi

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-A shown in the dotted line box in figure 8.52) to create a
single slot. The MA of the LDS contends with IF. Figure 8.52 illustrates how this occurs,
assuming MA and IF contention .

... f-------. : Slot

I MULS.W IF 10 EX MA ~mrh.·jii.ii:i.·".rj1.mJ
LOS.L if 10 EX t·.·.M.·.·.·.·.·.·.·.·:::.·.·.·.A·.·j

Other instruction IF 10 EX MA

Other instruction

Other instruction

if 10 EX

IF 10 EX

........... ... • : Slot

I MULS.W if 10 EX MA mm ji.l.m rj1.rj1.~1
LOS.L IF 10 EX L·M·::.·.·.·.·:A:j

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

EX

10 EX

Figure 8.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

206 Hitachi

Multiplication Instructions (S87600): Include the following instruction types:

• MULS.W

• MULU.W

Rm,Rn

Rm,Rn

........................ Slot

I MULS.W IF 10 EX MA mm mm I
Next instruction IF 10 EX MA WB

Third instruction IF 10 EX MA WB

Figure 8.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

3. When a MULS.W instruction is located immediately after another MULS.W instruction

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

5. When an STS (register) instruction is located immediately after a MULS.W instruction

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

207 Hitachi

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with ~he mm generated by a
preceding multiplication instruction .

...................... :510t

IMUL5.W IF 10 EX MA mm mml
MAC.W

Third instruction

IF 10 EX MA MA mm mm
IF 10 EX MA

Figure 8.54 MAC. W Instruction Immediately After a MULS. W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction .

...................... :510t

IMUL5.W IF 10 EX MA mm mml
MAC.L

Third instruction

IF 10 EX MA MA mm mm mm mm
IF 10 EX MA

Figure 8.55 MAC.L Instruction Immediately After a MULS.W Instruction

208 Hitachi

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS. W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.56) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS.Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

~~~~ III ~ ~~~~~~~: Slot 

I MULS.W IF 10 EX MA ~:i:rii:ri::mm::1 
MULS.W IF 10 EX L·~~f.·.·.·.·.·.·A.·j mm mm 

Other instruction IF 10 EX - MA 

~~~~~~ ~~~~~~~:Slot 

IMULS.W IF 10 EX MA mm ~·.m.m·.q
Other instruction

MULS.W

Other instruction

IF 10 EX

IF 10 EX LM.Aj mm mm

IF 10 EX MA

Figure 8.56 MULS. W Instruction Immediately After Another MULS. W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 8.57 illustrates a case of this type,
assuming MA and IF contention.

~........... ~ ~:Slot

IMULS.W IF 10 EX MA~:i:rii:ri::mm::1
MULS.W if 10 EX L·~~f.·.·.·.·.·."f.~·.·j mm mm

Other instruction

Other instruction

Other instruction

IF 10

if

EX MA

10 EX

IF 10

Figure 8.57 MULS. W Instruction Immediately After Another MULS. W Instruction (IF and
MA contention)

209 Hitachi

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. The MA of the
MULS.W instruction does not contend with the operating mUltiplier (mm) of the DMULS.L
instruction .

............ :810t

I MUL8.W IF 10 EX MA mm mm I
OMUL8.L IF 10 EX MA MA mm mm mm mm

Other instruction IF 10 EX MA

Figure 8.58 DMULS.L Instruction Immediately After a MULS.W Instruction

210 Hitachi

5. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.59) to create a single slot. The MA of the STS contends with the IF. Figure 8.59
illustrates how this occurs, assuming MA and IF contention.

!MULS.W IF 10 EX MA ·mm·····m·q m
STS if 10 EX ·.·~f·.·.·.·.:·.·A·.} WB

Other instruction IF 10 EX MA

Other instruction if 10 EX

Other instruction IF 10 EX

......... :Slot

! MULS.W if 10 EX MA mm ~mm-n
STS IF 10 EX)~·A.·~ WB

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10 EX

if 10 EX

Figure 8.59 STS (Register) Instruction Immediately After a MULS. W Instruction

211 Hitachi

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.60 illustrates how this occurs, assuming MA and IF
contention .

........ ~ • :Slot

IMULS.W IF ID EX MA :mm::mm::I
STS.L if ID EX ·~~f.·.·.·.·.·.·.·.·.A

Other instruction I F I D EX MA

Other instruction

Other instruction

if ID EX

IF ID EX

...... ~ .~ : Slot

I MULS.W if ID EX MA mm ~mmJ

STS.L IF ID EX ~:t0:A:~
Other instruction

Other instruction

Other instruction

if ID EX

IF ID EX

if ID EX

Figure 8.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

212 Hitachi

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

IMULS.W IF 10 EX MA :mm::mm:q
LOS if 10 EX ·.r~l·.·.·.·.·.·.·A·.·j

Other instruction IF 10 EX MA

Other instruction if 10 EX

Other instruction IF 10 EX

......... CI i) : Slot

I'MULS.W if 10 EX MA mm ~miid
LOS IF 10 EX ~·~.i"A·~

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10 EX

if 10 EX

Figure 8.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

213 Hitachi

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-Ashown in the dotted line box in figure 8.62) to create a
single slot. The MA of the LDS contends with IF. Figure 8.62 illustrates how this occurs,
assuming MA and IF contention .

... ~f----.................... : Slot

I MULS.W IF 10 EX MA ~:mm::mm:=I
LOS.L if 10 EX L·~~(."""""""" "" "A" "j

Other instruction IF 10 EX MA

Other instruction if 10 EX

Other instruction IF 10 EX

......... ~ :Slot

I MULS.W if 10 EX MA mm ~mi:lil
LOS.L IF 10 EX)~"A""~

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10 EX

if 10 EX

Figure 8.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

214 Hitachi

Double-Length Multiplication Instructions (SH7600): Include the following instruction types:

• DMULS.L

• DMULU.L

• MUL.L

Rm, Rn (SH7600 only)

Rm, Rn (SH7600 only)

Rm, Rn (SH7600 only)

.............................. :810t

IOMUL8.L IF 10 EX MA MA mm mm mm mm I

Next instruction

Third instruction

IF 10 EX MA WB

IF 10 EX MA WB

Figure 8.63 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA,MA, mm, mm, mm, and mm (figure 8.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
four cycles after the MA ends, regardless of a slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 8.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

215 Hitachi

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a preceding
multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M-A
shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 8.64) .

............ ~ :810t

OMUL8.L IF 10 EX MA MA mm jrii:i:i.::mm:::m:m:::1
MAC.L IF 10 EX MA rj~f.·.·.·.·.·.·.·.·.·.·.·.·.'A·.·.·! mm mm mm mm

Third instruction IF 10 EX - - MA

.................. :810t

OMUL8.L IF 10 EX MA MA mm mm mm ~mm:::1
Other instruction IF 10 EX MA WB

Other instruction I FlO EX MA WB

MAC.L IF 10 EX MA l'.MA.·.j mm mm mm mm

Figure 8.64 MAC.L Instruction Immediately After a DMULS.L Instruction

216 Hitachi

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 8.65) .

............ III :810t

DMUL8.L IF ID EX MA MA mm :mm::mm:::rri:rriJ
MAC.W IF ID EX MA ·j~f.·.~·.·.·.·.·.·.·.·.·.·.·A.·.·; mm mm

Third instruction IF ID EX - - MA

.................... :810t

DMUL8.L IF ID EX MA MA mm mm mm jji.riiJ
Other instruction IF ID EX MA WB

Other instruction I F I D EX MA WB

MAC.W IF ID EX MA ~·.·MA.·j mm mm

Figure 8.65 MAC.W Instruction Immediately After a DMULS.L Instruction

217 Hitachi

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

............ ~ ~ :Slot

OMULS.L IF 10 EX MA MA mm :rii.m::mm:::mm:::1
OMULS.L IF 10 EX MA ·.·.M·.·.·.:·.·.·.:·.:::·.·.·!.\".·.·! mm mm mm mm

Other instruction IF 10 EX - - MA

.................. .. ~ ~ :Slot
~----------------------------m--m~~~~m~.~m~~·.~~~·~m=.m~~~~1 OMULS.L IF 10 EX MA MA mm

Other instruction IF 10 EX

OMULS.L IF 10 EX MA ~::M:::::::A:~ mm mm mm mm

Other instruction IF - 10 EX MA

........................ :Slot

OMULS.L IF 10 EX MA MA mm mm mm ~"rrin1'.·: I
Other instruction IF

Other instruction

OMULS.L

Other instruction

10

IF

EX

10

IF

MA

EX

10

IF

WB

MA WB

EX MA ~ .. ~A.~ mm

10 EX MA

mm mm mm

Figure 8.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

218 Hitachi

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.67 illustrates a case of
this type, assuming MA and IF contention .

............ III! :810t

OMUL8.L IF 10 EX MA MA mm ~:mm::mm:::rrim::q
OMUL8.L if - EX - 10 MA j~{ : :"A .. } mm mm mm mm

Other instruction

Other instruction

Other instruction

IF 10

if
EX

10 EX

IF 10

Figure 8.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

219 Hitachi

4. When a MULS. W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMVLS.L instruction,
the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 8.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULS.L instruction and the MULS.W instruction, contention between the
DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and IF contend,
the slot is split..

.................. ~ :Slot

DMULS.L IF ID EX MA MA ~"IT1IT1.·.·"IT1IT1.·"mm.·.·.m.m.J

MULS.W IF ID EX j0:::::::::::::::::::::::::A::~ mm mm
Other instruction IF ID EX - MA

................. :Slot

DMULS.L IF ID EX MA MA mm mm mm ~·.i:i:i.ijiil
Other instruction IF ID EX MA WB

Other instruction IF ID EX MA WB

Other instruction IF ID EX MA WB

MULS.W IF ID EX [::~.A:[MA mm mm

Other instruction IF ID EX MA

Figure 8.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.69 illustrates a case of
this type, assuming MA and IF contention .

............ ~... ~"'''''''''':Slot

DMULS.L IF ID EX MA MA ~mm·.·.·.m·m·.·."ijjm.·.·.m.riiq
MULS.W if ID EX rM.·A ... j mm mm

Other instruction

Other instruction

Other instruction

IF ID

if

EX MA

ID EX

IF ID

Figure 8.69 MULS. W Instruction Immediately After a DMULS.L Instruction (IF and MA
Contention)

220 Hitachi

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the mUltiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in
figure 8.70) to create a single slot. The MA of the .STS contends with the IF. Figure 8.70
illustrates how this occurs, assuming MA and IF contention .

...... • ~---. ... ~ ~ : Slot

10MULS.L IF 10 EX MA MA)rim.·.i:i:i.mjrim.·mmJ

STS if 10 EX ~.·M.·.A)WB
Other instruction IF 10 EX MA

Other instruction if - - - - 10 EX
Other instruction IF 10 EX

............ ~ ~ :Slot

I OMULS.L. if 10 EX MA MA mmf:ij1.·ij1jijhi:ffiffin
STS IF - 10 EX ~:M::::::::::::::A:~WB

Other instruction

Other instruction

Other instruction

if 10 EX

IF 10

if

- EX
10 EX

Figure 8.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

221 Hitachi

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.71 illustrates how this occurs, assuming MA and IF
contention.

.... --.~ ~ : Slot

10MULS.L IF 10 EX MA MA fmm.·.mm·.·mm"mm.~ I
STS.L if 10 EX)~f.·.A·~

Other instruction IF 10 EX MA

Other instruction if - - - - 10 EX

Other instruction IF 10 EX

.................. ~... ~ :Slot

10MULS.L if 10 EX MA MA mmj'\ijljnm"mm.~ I
STS.L IF - 10 EX L~.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·~.·j

Other instruction if 10 EX

Other instruction IF 10 EX
Other instruction if 10 EX

Figure 8.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

222 Hitachi

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register ·using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figure illustrates
how this occurs, assuming MA and IF contention .

...... ~..... ~""",,":Slot

I OMULS.L IF 10 EX MA MA fmm.·.mmjjjm.·rrifu} I
LOS if - - 10 EX ~)~f.·.A~

IF 10 EX MA Other instruction

Other instruction
Other instruction

if - - - - 10 EX
IF 10 EX

......... • :Slot

10MULS.L if 10 EX MA MA mmj:i:Wr:Cmm.·mmJ I
LOS IF - 10 EX t·M".·.·.·.·.·.·.·.·.·.·.·.·.·.A·.·~

Other instruction

Other instruction
Other instruction

if 10 EX

IF 10

if

EX
10 EX

Figure 8.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

223 Hitachi

8. When an LOS.L (memory) instruction is located immediately after a OMULS.L instruction

When the contents of a MAC register are loaded from memory using an LOS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M-A shown in the dotted line box in figure 8.73) to create a
single slot. The MA of the LOS contends with IF. Figure 8.73 illustrates how this occurs,
assuming MA and IF contention .

........ 4 ~ .. 4 ~ : Slot

10MULS.L IF 10 EX MA - MA tmm.·.i:i:1i:i:1·jjjmjjjmH
LOS.L if - - 10 EX ~"M.·.·.·.·.·.·.·.·".·.·.·.·.·".·.·.·.·.·.·.·A"~

Other instruction IF 10 EX MA

Other instruction

Other instruction

if - - - - 10 EX

IF 10 EX

........ 4 ~ 4 ~ : Slot

10MULS.L if 10 EX MA MA mmJI~:ijl::mm:mmH
LOS.L IF - 10 EX [:~(:·.:::·.::·.:·.·.:A·.~

Other instruction .if 10 EX

Other instruction

Other instruction

IF 10

if
EX
10 EX

Figure 8.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

224 Hitachi

8.7.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

• AND Rm,Rn

• AND #imm,RO

• NOT Rm,Rn

• OR Rm,Rn

• OR #imm, RO

• TST Rm,Rn

• TST #imm, RO

• XOR Rm,Rn

• XOR #imm,RO

............... "':Slot

!Instruction A IF 10 EX I
Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.74 Register-Register Logic Operation Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

225 Hitachi

Memory Logic Operation Instructions: Include the following instruction types:

• AND.B #imm, @(RO,GBR)

• OR.B #imm, @(RO,GBR)

• TST.B #imm, @(RO, GBR)

• XOR.B #imm, @(RO, GBR)

........................... :Slot

I Instruction A IF 10 EX MA EX MAl

Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

226 Hitachi

TAS Instruction: Includes the following instruction type:

• TAS.B @Rn

I Instruction A

Next instruction

Third instruction

............. ..-... :Slot

IF 10 EX MA EX MAl

IF 10 EX

IF 10 EX

Figure 8.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.76). The ID of the
next instruction stalls for 3 slots.The MA of theTAS instruction contends with IF.

227 Hitachi

8.7.4 Shift Instructions

Shift Instructions: Include the following instruction types:

• ROTL

• ROTR

• ROTCL

• ROTCR

• SHAL

• SHAR

• SHLL

• SHLR

• SHLL2

• SHLR2

• SHLL8

• SHLR8

SHLL16

• SHLR16

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

Rn

.................. :Slot

I Instruction A IF 10 EX I
Next instruction

Third instruction

IF 10 EX

IF 10 EX

Figure 8.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.77). The data operation is
completed in the EX stage via the ALD.

228 Hitachi

8.7.5 Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

• BF label

• BT label

Operation: The pipeline has three stages: IF, ill, and EX. Condition verification is performed in
the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 8.78).

.. :810t

I Instruction A IF 10 Exi
Next instruction IF (Fetched but discarded)

Third instruction IF (Fetched but discarded)

Branch destination IF 10 EX

IF 10 EX

Figure 8.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.79) .

.. : Slot

I Instruction A IF 10 Exi
Next instruction IF 10 EX

Third instruction IF ID EX
IF 10 EX

Figure 8.79 Branch Instruction When Condition is Not Satisfied

229 Hitachi

Delayed Conditional Branch Instructions (SH7600 only): Include the following instruction
types:

• BF/S label

• BT/S label

(SH7600 only)

(SH7600 only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.80) .

... : Slot

I Instruction A IF 10 Exi
Next instruction IF 10 EX MA WB

Third instruction IF (Fetched but discarded)

Branch destination IF 10 EX
IF 10 EX

Figure 8.80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.81) .

... :810t

I Instruction A IF 10 Exi
Next instruction IF 10 EX

Third instruction IF 10 EX
IF 10 EX

Figure 8.81 Branch Instruction When Condition is Not Satisfied

230 Hitachi

UnconditionallJranch Instructions: Include the following instruction types:

• BRA label

• BRAF Rn (SH7600 only)

• BSR label

• BSRF Rn (SH7600 only)

• lMP @Rn

• JSR @Rn

• RTS

... "':Slot

I Instruction A IF ID Exi
Delay slot IF ID EX MA WB

Branch destination IF ID EX
IF 10 EX

Figure 8.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of instruction
A

231 Hitachi

8.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

• CLRT

• LOC

• LOC

• LOC
• LDS

• NOP

• SEIT

• STC

• STC

• STC

• STS

Rm,SR

Rm,GBR

Rm, VBR

Rm,PR

SR,Rn

GBR,Rn

VBR, Rn

PR,Rn

.................. :Slot

I Instruction A IF 10 EX I
Next instruction

Third instruction

IF 10 EX

IF 10 EX

Figure 8.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.83). The data operation is
completed in the EX stage via the ALU.

232 Hitachi

LDC.L Instructions: Include the following instruction types:

• LDC.L

• LDC.L

• LDC.L

@Rm+,SR

@Rm+,GBR

@Rm+,VBR

.............. · :Slot

I Instruction A IF 10 EX MA EX I
Next instruction

Third instruction

IF 10 EX

IF 10 EX

Figure 8.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 8.84). The ID of the

following instruction is stalled for two slots.

233 Hitachi

STC.L Instructions: Include the following instruction types:

• STC.L

• STC.L

• STC.L

SR,@-Rn
GBR,@-Rn
VBR,@-Rn

.......................... :Slot

I Instruction A IF 10 EX MA I
Next instruction

Third instruction

IF 10 EX

IF 10 EX

Figure 8.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages: IF,ID, EX, and MA (figure 8.85). The ID of the next
instruction is stalled for one slot.

234 Hitachi

LDS.L Instruction (PR): Includes the following instruction type:

• LDS.L @Rm+,PR

.................................... :Slot

I Instruction A IF 10 EX MA WB I
Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.86). It is the same as
an ordinary load instruction.

235 Hitachi

STS.L Instruction (PR): Includes the following instruction type:

• STS.L PR,@-Rn

I Instruction A

. Next instruction

Third instruction

............ :510t

IF 10 EX MAl

IF 10 EX

IF 10 EX

Figure 8.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.87). It is the same as an
ordinary store instruction.

236 Hitachi

Register ~ M~C Transfer Instructions: Include the following instruction types:

• CLRMAC

• IDS Rm, MACH

• IDS Rm, MACL

.................. :810t

I Instruction A IF 10 EX MA I
Next instruction

Third instruction

IF 10 EX

IF 10 EX

Figure 8.88 Register ~ MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store
instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

237 Hitachi

Memory ~ MAC Transfer Instructions: Include the following instruction types:

• LDS.L

• LDS.L

@Rm+,MACH

@Rm+,MACL

............ :810t

I Instruction A IF 10 EX MA I
Next instruction

Third instruction

IF 10 EX

IF 10 EX

Figure 8.89 Memory ~ MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

238 Hitachi

MAC ~ Register Transfer Instructions: Include the following instruction types:

• STS MACH, Rn

• STS MACL, Rn

.................................... :510t

I Instruction A IF 10 EX MA WB I
Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.90 MA C ~ Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

239 Hitachi

MAC ~ Memory Transfer Instructions: Include the following instruction types:

• STS.L

• STS.L

MACH,@-Rn

MACL,@-Rn

.................. :Slot

I Instruction A IF 10 EX MA WB I
Next instruction IF 10 EX

Third instruction IF 10 EX

Figure 8.91 MAC ~ Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.91). The MA is a stage for
accessing the multiplier. The MA contends withIF. This makes it the same as ordinary' store
instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

240 Hitachi

RTE Instruction: Includes the following instruction type:

·RTE

.................. :Slot

IRTE IF 10 EX MA MAl

Delay slot I FlO EX

Branch destination IF 10 EX

Figure 8.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 8.92). The MAs contend with the
IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3
slots. The IF of the branch destination instruction starts from the slot following the MA of the
RTE.

241 Hitachi

TRAP Instruction: Includes the following instruction type:

• TRAPA #imm

ITRAPA IF 10 EX EX MA MA MA EX Exi
Next instruction IF
Third instruction IF

Branch destination IF 10 EX
IF 10 EX

Figure 8.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.93). The MAs
contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

242 Hitachi

SLEEP Instruction: Includes the following instruction type:

• SLEEP

~ : Slot

I SLEEP IF ID EX I
Next instruction IF

Figure 8.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 8.94). It is issued until the IF of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

243 Hitachi

8.7.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

• Interrupt exception processing

.................................. :Slot

I Interrupt fiF.::]t}~ EX EX MA MA EX MA EX Exi
Next instruction IF

Branch destination IF 10 EX

IF 10

Figure 8.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception'
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

244 Hitachi

Address Error Exception Processing: Includes the following instruction type:

• Address error exception processing

.................................... :Slot

I Interrupt dF.::Jtf EX EX MA MA EX MA EX EX I
Next instruction

Branch destination

IF

IF 10 EX

IF 10

Figure 8.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the
.address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on..;chip peripheral register
causes an instruction fetch address error. Accessing word data from other than a word boundary,
accessing]ongword data from other than a longword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause a read or write address error.

245 Hitachi

Dlegal Instruction Exception Processing: Includes the following instruction type:

• Illegal instruction exception processing

........................... :810t

1 Illegal instruction ~jF..·.·.·.·jtt EX EX MA MA MA EX EX I

Next instruction

(Third instruction

Branch destination

IF

IF)

IF ID EX

IF ID

Figure 8.97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.97). Illegal instruction
exception processing is not a delayed branch. In illegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
as well depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot di"rectly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction
occurs.

246 Hitachi

Appendix A Instruction Code

See "6. Instruction Descriptions" for details.

A.I Instruction Set by Addressing Mode

Table A.I lists instruction codes and execution states by addressing modes.

247 Hitachi

TableA.l Instruction Set by Addressing Mode

Types

Addressing Mode Category Sample Instruction SH SH
7600 7000

No operand NOP 8 8

Direct register Destination operand only MOVT Rn 18 17
addressing

Source and destination ADD Rrn,Rn 34 31
operand

Load and store with control LDC Rrn, SR 12 12
register or system register STS MACH,Rn

Indirect register Destination operand only JMP @Rn 3 3
addressing Data transfer with direct MOV.L Rrn,@Rn 6 6

register addressing

Post increment indirect . Multiply/accumulate MAC.W @Rrn+,@Rn+ 2
register addressing operation

Data transfer from direct MOV.L @Rrn+,Rn 3 3
register addressing

Load to control register or LOC.L @Rrn+,SR 6 6
system register

Pre decrement indirect Data transfer from direct MOV.L Rrn,@-Rn 3 3
register addressing register addressing

Store from control register STC.L SR,@-Rn 6 6
or system register

Indirect register Data transfer with direct MOV.L Rrn,@(disp,Rn) 6 6
addressing with register addressing
displacement

Indirect indexed register Data transfer with direct MOV.L Rrn,@(RO,Rn) 6 6
addressing register addressing

Indirect GBR addressing Data transfer with direct MOV.L R,@(disp,GBR) 6 6
with displacement register addressing

Indirect indexed GBR I mmediate data transfer AID.B #imn,@(RO,GER) 4 4
addressing

PC relative addressing Data transfer to direct MOV.L @(disp,PC) ,Rn 3 3
with displacement register addressing

PC relative addressing Branch instruction BRAF Rn 2 0
with Rn

PC relative addressing Branch instruction BRA label 6 4

Immediate addressing Arithmetic logical ADD #imm,Rn 7 7
operations with direct
register addressing

Specify exception TRAPA #imm
processing vector

248 Hitachi

Total: 142 133

A.I.I No Operand

TableA.2 No Operand

Instruction Code Operation State TBit

CLRT 0000000000001000 O~T 0

CLRMAC 0000000000101000 o ~ MACH, MACL

DIVOU 0000000000011001 o ~ M/Qff 0

NOP 0000000000001001 No operation 1

RTE 0000000000101011 Delayed branch, Stack area 4 LSB
~ PC/SR

RTS 0000000000001011 Delayed branch, PR ~ PC 2

SETI' 0000000000011000 1 ~T

SLEEP 0000000000011011 Sleep 3

249 Hitachi

A.1.2 Direct Register Addressing

TableA.3 Destination Operand Only

Instruction Code Operation State TBit

CMP/PL Rn OlOOnnnnOOO101Ol Rn > 0,1 -7 T Comparison result

CMP/PZ Rn OlOOnnnnOOO1OOOl Rn ~ 0,1 -7 T Comparison result

Dr Rn* OlOOnnnnOOO1OOOO Rn -1 -7 Rn Comparison result
When Rn is 0, 1 -7 T,
when Rn is nonzero,
o -7T

MOVT Rn OOOOnnnnOO101OOl T -7 Rn

ROTL Rn OlOOnnnnOOOOO1OO T ~ Rn~ MSB MSB

ROTR Rn OlOOnnnnOOOOO1Ol LSB -7 Rn -7 T LSB

ROTCL Rn OlOOnnnnOO1OO1OO T~Rn~T MSB

ROTCR Rn OlOOnnnnOO1OO1Ol T -7 Rn -7 T LSB

SHAL Rn OlOOnnnnOO1OOOOO T~Rn~O MSB

SHAR Rn OloonnnnOOiOOOOl MSB -7 Rn -7 T LSB

SHLL Rn OlOOnnnnOOOOOOOO T~Rn~O MSB

SHLR Rn OlOOnnnnOOOOOOOl 0-7 Rn -7 T LSB

SHLL2 Rn OlOOnnnnOOOO1OOO Rn«2 -7 Rn

SHLR2 Rn OlOOnnnnOOOO1OOl Rn»2 -7 Rn

SHLL8 Rn OlOOnnnnOOOllOOO Rn«8 -7 Rn

SHLR8 Rn OlOOnnnnOOOllOOl Rn»8 -7 Rn

SHLL16 Rn OlOOnnnnOO101OOO Rn«16 -7 Rn

SHLR16 Rn OlOOnnnnOO101OOl Rn»16 -7 Rn

Note: SH7600 instruction

TableA.4 Source and Destination Operand

Instruction Code Operation State TBit

ADD Rrn,Rn OOllnrrrrrrrmmnmllOO Rn + Rm -7 Rn

ADIX.:: Rrn,Rn OOllnrrrrrrrmmnmlllO Rn + Rm + T -7 Rn, Carry
carry -7 T

ADDV Rrn,Rn OOllnrrrrrrrmmnmllll Rn + Rm -7 Rn, Overflow
overflow -7 T

AND Rrn,Rn OOlOnrrrrrrrmmnmlOOl Rn&Rm -7 Rn

250 Hitachi

TableA.4 Source and Destination Operand (cont)

Instruction Code Operation State TBit

CMP/EQ Rm,Rn 0011nnnnmrnmmOOOO When Rn = Rm, 1 ~ T Comparison
result

CMP/HS Rm,Rn 0011~OO10 When unsigned and Rn Comparison
~Rm, 1 ~T result

CMP/GE Rm,Rn 0011nnnnmrnmm0011 When signed and Rn ~ Comparison
Rm, 1 ~T result

CMP/HI Rm,Rn 0011nnnnmrnmm0110 When unsigned and An Comparison
>Am, 1 ~T result

CMP/GT Rm,Rn 0011nnnnmrnmm0111 When signed and An > Comparison
Am, 1 ~T result

CMP/STR Rffi,Rn 0010nnnnmrnmm1100 When a byte in An Comparison
equals bytes in Am, 1 result
~T

DIV1 Rm,Rn 0011nnnnmrnmm0100 1-step division (Rn + Calculation
Am) result

DIVOS Rm,Rn 0010nnnnmrnmm0111 MSB of An ~ a, MSB Calculation
of Am ~ M, M 1\ a ~ T result

DMULS.L Rm,Rn*2 0011nnnnmrnmm1101 Signed, An x Am ~ 2 to 4*1
MACH,MACL

DMULU.L Rm,Rn*2 0011nnnnmrnmm0101 Unsigned, An x Am ~ 2 to 4*1
MACH, MACL

EXTS.B Rm,Rn o 110nnnnmrnmm1110 Sign - extends Am
from byte ~ An

EXTS.W Rm,Rn o 110nnnnmrnmm1111 Sign - extends Rm
from word ~ An

EXTU.B Rm,Rn o 110nnnnmrnmm1100 Zero - extends Am
from byte ~ An

EXTU.W Rm,Rn 0110nnnnmrnmm1101 Zero - extends Am
from word ~ An

MOV Rm,Rn o 11 OnnnnmrnmmO 0 11 Am~ An

MUL.L Rm,Rn*2 0000nnnnmrnmm0111 Anx Am ~ MACL 2 to 4*1

MULS.W Rm,Rn 0010nnnnmrnmm1111 Signed, Rn x Am ~ 1 to 3*1
MAC

MULU.W Rm,Rn 0010nnnnmrnmm1110 Unsigned, An x Am ~ 1 to 3*'
MAC

NEG Rm,Rn 0110nnnnmrnmm1011 O-Am ~An

NEGC Rm,Rn 011 Onnnnmrnmm10 10 O-Am-T ~ An, Borrow
Borrow ~T

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

251 Hitachi

TableA.4 Source and Destination Operand (cont)

Instruction Code Operation State TBit

NOr Rm,Rn 0110Il11Il11IrlrCUl0111 -Rm ~ Rn

OR Rm,Rn o 010Il11Il11IrlrCUl10 11 Rnl Rm~ Rn

SUB Rm,Rn 0011Il11Il11IrlrCUl1000 Rn-Rm ~ Rn

SUBC Rm,Rn 0011Il11Il11IrlrCUl1010 Rn - Rm - T ~ Rn, Borrow
Borrow ~ T

SUBV Rm,Rn 0011Il11Il11IrlrCUl1011 Rn-Rm ~ Rn, Underflow
Underflow ~ T

.SWAP.B Rm,Rn o 110Il11Il11IrlrCUl10 00 Rm ~ Swap upper and
lower halves of lower 2
bytes ~ Rn

SWAP.W Rm,Rn o 110Il11Il11IrlrCUl10 01 Rm ~ Swap upper and
lower word ~ Rn

TST Rm,Rn 0010Il11Il11IrlrCUl1000 Rn & Rm, when result is Test results
0, 1 ~T

XOR Rm,Rn 0010Il11Il11IrlrCUl1010 RnARm~ Rn

XTRcr Rm,Rn 0010Il11Il11IrlrCUl1101 Center 32 bits of Rm and
Rn~ Rn

TableA.5 Load and Store with Control Register or System Register

Instruction Code Operation State TBit

LOC Rm,SR 0100nmmnOOO01110 Rm~SR 1 LSB

LOC Rm,GBR 0100nmmnOO011110 Rm~ GBR

LOC Rm,VBR 0100nmmn00101110 Rm~ VBR 1

LDS Rm,MACH 0100II'lII1r'i1mOOO01010 Rm~MACH 1

LDS Rm,MACL 0100nmmnOO011010 Rm~ MACL

LDS Rm,PR 0100nmmn00101010 Rm~PR 1

STC SR,Rn 0000nnnnOOOOO010 SR~ Rn

STC GBR,Rn 0000nnnnOOO10010 GBR~ Rn

STC VBR,Rn 0000nnnn00100010 VBR~ Rn 1

STS MACH,Rn 0000nnnnOOO01010 MACH ~ Rn 1

STS MACL,Rn 0000nnnnOO011010 MACL~ Rn 1

STS PR,Rn 0000nnnn00101010 PR~ Rn 1

252 Hitachi

A.I.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code Operation

JMP @Rn OlOOnnnn00101011 . Delayed branch, Rn ~ PC

JSR @Rn 0100nnnnOOO01011 Delayed branch, PC ~ PR,
Rn~ PC

TAB.B @Rn 0100nnnnOO011011 When (Rn) is 0, 1 ~ T, 1 ~
MSB of (Rn)

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation

MOV.B Rm,@Rn OOlOnnnnmmmmOOOO Rm~ (Rn)

MOV.W Rm,@Rn 0010nnnnmmmmOO01 Rm~ (Rn)

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm~ (Rn)

State

2

2

4

MOV.B @Rm,Rn OllOnnnnmmmmOOOO (Rm) ~ sign extension ~ Rn

MOV.W @Rm,Rn 0110nnnnmmmmOO01 (Rm) ~ sign extension ~ Rn

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) ~ Rn

A.I.4 Post Increment Indireci Register Addressing

Table A.S Multiply! Accumulate Operation

Instruction Code Operation

MAC.L @Rm+ , @Rn+*2 0000nnnnmmmm1111 Signed, (Rn) x (Rm) + MAC
~MAC

MAC.W @Rm+,@Rn+ 01 00nnnnmmmm111 1 Signed, (Rn) x (Rm) + MAC
~MAC

TBit

Test results

State T Bit

State T Bit

3'(2 to 4)*1

3/(2)* 1

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH7600 instruction

253 Hitachi

Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State TBit

MOV.B @Rrn+,Rn o 110rumnmmmm0100 (Rm) ~ sign extension ~
Rn, Rm+ 1 ~ Rm

MOV.W @Rrn+,Rn OllOrumnmmmm01Ol (Rm) ~ sign extension ~
Rn, Rm+2~ Rm

MOV.L @Rrn+,Rn OllOrumnmmmmOllO (Rm) ~ Rn, Rm +4 ~ Rm

TableA.IO Load to Control Register or System Register

Instruction Code Operation State TBit

LDC.L @Rrn+,SR OlOOmmmmOOOOOlll (Rm) ~ SR, Rm + 4 ~ Rm 3 LSB

LDC.L @Rrn+,GBR OlOOmmmmOOO1Olll (Rm) ~ GBR, Rm + 4 ~. Rm 3

LDC.L @Rrn+,VBR OlOOmmmmOO1OOlll (Rm) ~ VBR, Rm + 4 ~ Rm 3

LDS.L @Rrn+,MACH OlOOmmmmOOOOOllO (Rm) ~ MACH, Rm + 4 ~ Rm

LDS.L @Rrn+,MACL OlOOmmmmOOO1OllO (Rm) ~ MACL, Rm + 4 ~ Rm

LDS.L @Rrn+,PR OlOOmmmmOO1OOllO (Rm) ~ PR, Rm + 4 ~ Rm

A.I.S Pre Decrement Indirect Register Addressing

Table A.II Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rrn,@-Rn OOlOrumnmmmm01OO Rn - 1 ~ An, Rm ~ (Rn)

MOV.W Rrn,@-Rn OOlOrumnmmmm01Ol Rn - 2 ~ Rn, Rm ~ (Rn)

MOV.L Rrn,@-Rn OOlOrumnmmmmOllO Rn-4 ~ Rn, Rm ~ (Rn)

254 Hitachi

Table A.12 Store from Control Register or System Register

Instruction Code Operation

STC.L SR,@-Rn 0100nnnnOOOOO011 Rn -4 ~ Rn, SR ~ (Rn)

STC.L GBR,@-Rn 0100nnnnOO010011 Rn -4 ~ Rn, GSR ~ (Rn)

STC.L VBR,@-Rn 0100nnim00100011 Rn -4 ~ Rn, VSR ~ (Rn)

STS.L MACH,@-Rn 0100nnnnOOOOO010 Rn - 4 ~ Rn, MACH ~ (Rn)

STS.L MACL,@-Rn 0100nnnnOO010010 Rn - 4 ~ Rn, MACL ~ (Rn)

STS.L PR,@-Rn 0100nnnn00100010 Rn -4 ~ Rn, PR ~ (Rn)

A.l.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation

MOV.B RO,@(disp,Rn) 10000000nnnndddd RD ~ (disp + Rn)

MOV.W RO,@(disp,Rn) 10000001nnnndddd RD ~ (disp x 2 + Rn)

MOV.L Rm,@(disp,Rn) OOOlnnnnmmmmdddd Rm ~ (disp x 4 + Rn)

MOV.B @(disp,Rm) ,RO 10000100mmmmdddd (disp + Rm) ~ sign
extension ~ RD

MOV.W @(disp,Rm) ,RO 1000010lmmmmdddd (disp x 2 + Rm) ~ sign
extension ~ RD

MOV.L @(disp,Rm),Rn 01 0 1nnnnmmmmdddd (disp x 4 + Rm) ~ Rn

A.l.7 Indirect Indexed Register Addressing

Table A.14 Indirect Indexed Register Addressing

Instruction Code Operation

MOV.B Rm,@(RO,Rn) 0000nnnnmmmm0100 Rm~ (RD+ Rn)

MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0101 Rm~ (RD+ Rn)

MOV.L Rm,@(RO,Rn) 0000nnnnmmmm0110 Rm ~ (RD + Rn)

MOV.B @(RO,Rm) ,Rn 00 00nnnnmmmm110 0 (RD + Rm) ~ sign extension
~Rn

MOV.W @(RO,Rm) ,Rn 00 0 Onnnnmmmm1 10 1 (RD + Rm) ~ sign extension
~Rn

MOV.L @(RO,Rm) ,Rn 00 00nnnnmmmm111 0 (RO +Rm)~· Rn

255 Hitachi

State TBit

2

2

2

1

State TBit

1

1

State TBit

A.I.S Indirect GBR Addressing with Displacement

TableA.15 Indirect GBR Addressing with Displacement

Instruction Code Operation

MOV.B RO,@(disp,GBR) 110 000 0 Odddddddd RO ~ (disp + GBR)

MOV.W RO,@(disp,GBR) 110 0000 1dddddddd RO ~ (disp x 2 +
GBR)

MOV.L RO,@(disp,GBR) 110 00 010dddddddd RO ~ (disp x 4 +
GBR)

MOV.B @(disp,GBR),RO 11000100dddddddd (disp + GBR) ~ sign
extension ~ RO

MOV.W @(disp,GBR) ,RO 110 0010 1dddddddd (disp x 2 + GBR) ~
sign extension ~ RO

MOV.L @(disp,GBR),RO 11000 110dddddddd (disp x 4 + GBR) ~
RO

A.I.9 Indirect Indexed GBR Addressing

TableA.16 Indirect Indexed GBR Addressing

Instruction Code Operation

AND.B #inun, @(RO,GBR) 11001101iiiiiiii (RO + GBR) & imm ~ .
(RO + GBR)

OR.B #inun,@(RO,GBR) 11001111iiiiiiii (RO + GBR) I imm ~ (RO
+GBR)

TST.B #inun, @ (RO, GBR) 11001100iiiiiiii (RO + GBR) & imm, when
result is 0, 1 ~ T

XOR.B #inun, @ (RO, GBR) 11001110iiiiiiii (RO + GBR) 1\ imm ~ (RO
+GBR)

A.I.IO PC Relative Addressing with Displacement

Table A.17 PC Relative Addressing with Displacement

Instruction Code Operation

MOV.W @(disp,pc) ,Rn 1001nnnndddddddd (disp x 2 + PC) ~ sign
extension ~ Rn

MOV.L @(disp, PC) , Rn 11 0 1nnnndddddddd (disp x 4+ PC) ~ Rn

MOVA @(disp,PC),RO 11000111dddddddd disp x 4 + PC ~ RO

256 Hitachi

State T Bit

State TBit

3

3

3 Test
results

3

State TBit

A.I.II PC Relative Addressing with Rn

Table A.18 PC Relative Addressing with Rn

Instruction Code Operation

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + PC ~ PC

BSRF Rn*2 0000nnnnOOOOO011 Delayed branch, PC ~ PR, Rn + PC
~PC

Notes: 2. SH7600 instruction

A.I.12 PC Relative Addressing

Table A.19 PC Relative Addressing

Instruction Code Operation

BF label 10 00 10 11dddddddd When T = 0, disp x 2 + PC ~ PC;
When T = 1 , nop

BF/S label*2 10001111dddddddd When T = 0, disp x 2 + PC ~ PC;
When T = 1 , nop

BT label 10001001dddddddd When T = 1 , disp x 2+ PC ~ PC;
When T = 0, nop

BT/S label*2 10 00 1101dddddddd When T = 1 , disp x 2 + PC ~ PC;
When T = 0, nop

BRA label 1010dddddddddddd Delayed branch, disp x 2 + PC ~
PC

BSR label 1011dddddddddddd Delayed branch, PC ~ PR, disp.x
2+PC~ PC.

Notes: 2. SH7600 instruction

3. One state when it does not branch

257 Hitachi

State TBit

2

2

State TBit

3/1*3

211 *3

'3/1 *3

211*3

2

2

A.l.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State TBit

ADD #inun,Rn 0111nnnniiiiiiii Rn+imm~ Rn

AND #imm,RO 11001001iiiiiiii RO&imm ~ RO

CMP/EQ #inun,RO 10001000iiiiiiii When RO = imm, 1 ~ T Comparison
result

MOV #inun,Rn 1110nnnniiiiiiii imm ~ sign extension ~ Rn

OR #imm,RO 11001011iiiiiiii ROlimm~ RO

TST #inun,RO 11001000iiiiiiii RO & imm, when result is 0, Test results
1 ~T

XOR #inun,RO 11001010iiiiiiii ROAimm~ RO

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State TBit

TRAPA #inun 11000011iiiiiiii PC/SR ~ Stack area, (imm x 4 + 8
VBR) ~ PC

A.2 Instruction Sets by Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

258 Hitachi

Table A.22 Instruction Sets by Format

Types

Format Category Sample Instruction SH SH
7600 7000

0 NOP 8 8

n Direct register addressing MOVT Rn 18 17

Direct register addressing (store with control STS MACH,Rn 6 6
or system registers)

Direct register addressing JMP @Rn 3 3

Pre decrement indirect register addressing STC.L SR,@-Rn 6 6

PC relative addressing with Rn BRAF Rn 2 0

m Direct register addressing (load with control ux::: Rm,SR 6 6
or system registers)

Post increment indirect register addressing LDC.L @Rm+,SR 6 6

nm Direct register addressing ADD Rm,Rn 34 31

Indirect register addressing MOV.L Rm,@Rn 6 6

Post increment indirect register addressing MAC.W @Rm+,@Rn+ 2
(multiply/accumulate operation)

Post increment indirect register addressing MOV.L @Rm+,Rn 3 3

Pre decrement indirect register addressing MOV.L Rm,@-Rn 3 3

Indirect indexed register addressing MOV.L Rm,@(RO,Rn) 6 6

md Indirect register addressing with MOV.B @(disp,Rm) ,RO 2 2
displacement

nd4 Indirect register addressing with MOV.B RO,@(disp,Rn) 2 2
displacement

nmd Indirect register addressing with MOV.L Rm,@(disp,Rn) 2 2
displacement

d Indirect GSR addressing with displacement MOV.L RO,@(disp,GBR) 6 6

Indirect PC addressing with displacement MOVA @(disp,I:>C) ,RO 1

PC relative addressing BF label 4 2

d12 PC relative addressing BRA label 2 2

nd8 PC relative addressing with displacement MOV.L @(disp,PC) ,Rn 2 2

Indirect indexed GSR addressing AND.B #imm,@(RO,GBR) 4 4

Immediate addressing (arithmetic and logical AND #imm,RO 5 5
operations with direct register)

Immediate addressing (specify exception TRAPA #irrm
processing vector)

ni Immediate addressing (direct register ADD #imm,Rn 2 2
arithmetic operations and data transfers)

Total: 142 133

259 Hitachi

A.2.t o Format

Table A.23 o Format

Instruction Code Operation State TBit

CLRT 0000000000001000 O~T 0

CLRMAC 0000000000101000 o ~ MACH, MACL

DIVOU 0000000000011001 o ~ Mloo 0

NOP 0000000000001001 No operation

RTE 0000000000101011 Delayed branching, stack 4 LSB
area ~ PC/SR

RTS 0000000000001011 Delayed branching, PR ~ 2
PC

SEl'T 0000000000011000 1 ~T

SLEEP 0000000000011011 Sleep 3*4

Notes: 4. This is the number of states until a transition is made to the Sleep state.

260 Hitachi

A.2.2 nFormat

Table A.24 Direct Register Addressing

Instruction Code Operation State TBit

CMP/PL Rn OlOOnnnnOOO101Ol Rn > 0, 1 ~ T 1 Comparison result

CMP/pz Rn OlOOnnnnOOO1OOOl Rn~O, 1 ~T 1 Comparison result

IJI' Rn*2 OlOOnnnnOOO1OOOO Rn -1 ~ Rn; Comparison result
If Rn is 0, 1 ~ T, if Rn
is nonzero, 0 ~ T

MOvr Rn OOOOnnnnOO101OOl T~Rn

ROTL Rn OlOOnnnnOOOOO1OO T f- Rn f- MSB MSB

ROTR Rn OlOOnnnnOOOOO1Ol LSB ~Rn ~T LSB

RareL Rn OlOOnnnnOO1OO1OO T f- Rn f- T MSB

RareR Rn OlOOnnnnOO1OO1Ol T~Rn~T LSB

SHAL Rn OlOOnnnnOO1OOOOO T f- Rn f- 0 MSB

SHAR Rn OlOOnnnnOO1OOOOl MSB~ Rn~T LSB

SHLL Rn OlOOnnnnOOOOOOOO T f- Rn f- 0 MSB

SHLR Rn OlOOnnnnOOOOOOOl O~Rn~T LSB

SHLL2 Rn OlOOnnnnOOOO1OOO Rn«2 ~Rn

SHLR2 Rn OlOOnnnnOOOO1OOl Rn»2 ~Rn

SHLL8 Rn OlOOnnnnOOOllOOO Rn«8 ~Rn

SHLR8 Rn OlOOnnnnOOOllOOl Rn»8 ~Rn

SHLL16 Rn OlOOnnnnOO101OOO Rn«16 ~ Rn

SHLR16 Rn OlOOnnnnOO101OOl Rn»16 ~ Rn

Notes: 2. SH7600 instruction.

Table A.2S Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State TBit

STC SR,Rn OOOOnnnnOOOOOO1O SR~ Rn

STC GBR,Rn OOOOnnnnOOO1OO1O GBR~ Rn

STC VBR,Rn OOOOnnnnOO1OOO1O VBR~ Rn

STS MACH,Rn OOOOnnnnOOOO101O MACH ~ Rn

STS MACL,Rn OOOOnnnnOOOl101O MACL~ Rn

STS PR,Rn OOOOnnnnOO10101O PR~ Rn

261 Hitachi

Table A.26 Indirect Register Addressing

Instruction Code Operation State TBit

JMP @Rn OlOOnnnnOO101Oll Delayed branch, Rn -7 PC 2

JSR @Rn OlOOnnnnOOOO1Oll Delayed branch, PC -7 PR, 2
Rn -7 PC

TAS.B @Rn OlOOnnnnOOOllOll When (Rn) is 0, 1 -7 T, 1 -7 4 Test results
MSS of (Rn)

Table A.27 Pre Decrement Indirect Register

Instruction Code Operation State TBit

STC.L SR,@-Rn OlOOnnnnOOOOOOll Rn - 4 -7 R~, SR -7 (Rn) 2

STC.L GBR,@-Rn OlOOnnnnOOO1OOll Rn - 4 -7 Rn, GSR -7 (Rn) 2

STC.L VBR,@-Rn OlOOnnnnOO1OOOll Rn - 4 -7 Rn, VSR -7 (Rn) 2

STS.L MACH,@-Rn OlOOnnnnOOOOOO1O Rn - 4 -7 Rn, MACH -7 (Rn)

STS.L MACL,@-Rn OlOOnnnnOOO1OO1O Rn - 4 -7 Rn, MACL -7 (Rn)

STS.L PR,@-Rn OlOOnnnnOO1OOO1O Rn - 4 -7 Rn, PR -7 (Rn)

Table A.28 PC Relative Addressing With Rn

Instruction Code Operation State TBit

BRAF Rn*2 OOOOnnnnOO1OOOll Delayed branch, Rn + PC -7 PC 2

BSRF Rn*2 OOOOnnnnOOOOOOll Delayed branch, PC -7 PR, Rn + PC 2
-7 PC

Notes: 2. SH7600 instruction

262 Hitachi

A.2.3 mFormat

Table A.29 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State TBit

ux::: Rrn, SR 0100rrmnmOOOOlll0 Rm~SR LSB

ux::: Rrn,GBR 0100rrmnmOOOlll10 Rm~ GBR

ux::: Rrn,VBR OlOOrrmnmOO1OlllO Rm~ VBR

LDS Rrn,MACH OlOOrrmnmOOOO101O Rm~MACH

LDS Rrn,MACL OlOOrrmnmOOOl101O Rm~ MACL

LDS Rrn, PR OlOOrrmnmOO10101O Rm~ PR

Table A.30 Post Increment Indirect Register

Instruction Code Operation State TBit

LOC.L @Rrn+,SR OlOOrrmnmOOOOOlll (Rm) ~ SR, Rm + 4 ~ Rm 3 LSB

LOC.L @Rrn+,GBR OlOOrrmnmOOO1Olll (Rm) ~ GBR, Rm + 4 ~ Rm 3

LOC.L @Rrn+,VBR OlOOrrmnmOO1OOlll (Rm) ~ VBR, Rm + 4 ~ Rm 3

LDS.L @Rrn+,MACH OlOOrrmnmOOOOOllO (Rm) ~ MACH, Rm + 4 ~ Rm

LDS.L @Rrn+,MACL OlOOrrmnmOOO1OllO (Rm) ~ MACL, Rm + 4 ~ Rm

LDS.L @Rrn+,PR OlOOrrmnmOO100110 (Rm) ~ PR, Rm + 4 ~ Rm

263 Hitachi

A.2.4 nmFormat

TableA.31 Direct Register Addressing

Instruction Code Operation State TBit

ADD Rm,Rn 00 11nnnnmmmm11 0 0 Rn + Rm -) Rn

ADOC Rm,Rn 00 11nnnnmmmm111 0 Rn + Rm + T -) Rn, carry Carry
-)T

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm -) Rn, overflow Overflow
-)T

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm -) Rn

CMP/EQ Rm,Rn 0011nnnnmmmmOOOO When Rn = Rm, 1 -) T Comparison
result

CMP/HS Rm,Rn 00 11nnnnmmmm001 0 When unsigned and Rn ~ Comparison
Rm,1 -) T result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ~ Comparison
Rm,1 -) T result

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn > Comparison
Rm,1 -) T result

CMP/GT Rm,Rn 00 11nnnnmmmmO 111 When signed and Rn > Comparison
Rm,1 -) T result

CMP/STR Rm,Rn 00 1 Onnnnmmmm11 0 0 When a byte in Hn equals Comparison
a byte in Rm, 1 -) T result

DIV1 Rm,Rn 00 11nnnnmmmm010 0 1-step division (Rn + Rm) Calculation
result

DIVOS Rm,Rn 0010nnnnmmmm0111 MSB of Rn -) 0, MSB of Calculation
Rm -) M, MAO -) T result

DMULS.L Rm,Rn*2 00 11nnnnmmmm110 1 Signed, Rn x Rm -) 2 to 4*1
MACH,MACL

DMULU.L Rrri, Rn*2 0011nnnnmmmm0101 Unsigned, Rn x Rm -) 2 to 4*1
MACH,MACL

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign-extends Rm from
byte -) Rn

EXTS.W Rm,Rn o 110nnnnmmmm111 1 Sign-extends Rm from
word -) Rn

EXTU.B Rm,Rn o 110nnnnmmmm11 0 0 Zero-extends Rm from
byte -) Rn

EXTU.W Rm,Rn o 110nnnnmmmm1101 Zero-extends Rm from
word -) Rn

MOV Rm,Rn 0110nnnnmmmm0011 Rm-) Rn

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

264 Hitachi

Table A.31 Direct Register Addressing (cont)

Instruction Code Operation State TBit

MUL.L Rm, Rn*2 OOOOnrrrrrummnm0111 Rnx Rm ~ MACL 2 to 4*1

MULS.W Rm,Rn OOlOnrrrrrummnm1111 Signed, Rn x Rm· ~ MAC 1 to 3*1

MULU.W Rm,Rn OOlOnrrrrrummnm111O Unsigned, Rn x Rm ~ 1 to 3*1
MAC

NEG Rm,Rn o 110nrrrrrummnm10 11 O-Rm ~Rn

NEGC Rm,Rn o 110nrrrrrummnm10 10 0- Rm - T ~ Rn, borrow Borrow
~T

Nor Rm,Rn 0110nrrrrrummnm0111 -Rm ~ Rn

OR Rm,Rn 0010nrrrrrummnm1011 Rn I Rm~ Rn

SUB Rm,Rn 0011nrrrrrummnm100O Rn-Rm ~ Rn

SUBC Rm,Rn OOllnrrrrrummnm1010 Rn - Rm - T ~ An, Borrow
borrow ~T

SUBV Rm,Rn 0011nrrrrrummnm1011 Rn - Rm ~ Rn, underflow Underflow
~T

SWAP.B Rm,Rn 0110nrrrrrummnm1000 Rm ~ Swap upper and
lower halves of lower 2
bytes ~ Rn

SWAP.W Rm,Rn 0110nrrrrrummnm1001 Rm ~ Swap upper and
lower word ~ Rn

TST Rm,Rn OOlOnrrrrrummnm10OO Rn & Rm, when result is Test results
0, 1 ~T

XOR Rm,Rn 0010nrrrrrummnm1010 Rn" Rm ~ Rn

XTRCT Rm,Rn OOlOnrrrrrummnmllOl Center 32 bits of Rm and
Rn~ Rn

Notes: 1. The normal minimum number of execution cycles.

2. SH7600 instructions

Table A.32 Indirect Register Addressing

Instruction Code Operation State TBit

MOV.B Rm,@Rn OOlOnrrrrrummnmOOOO Rm~ (Rn)

MOV.W Rm,@Rn 0010nrrrrrummnmOO01 Rm~ (Rn)

MOV.L Rm,@Rn 0010nrrrrrummnm0010 Rm~ (Rn).

MOV.B @Rm,Rn OllOnrrrrrummnmOOOO (Rm) ~ sign extension ~ Rn

MOV.W @Rm,Rn 0110nnnnmmrnmOO01 (Rm) ~ sign extension ~ Rn

MOV.L @Rm,Rn 0110nnnnmmrnm0010 (Rm) ~ Rn

265 Hitachi

Table A.33 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State TBit

0000nnnnmmmm1111 Signed, (Rn) x (Rm) + 3/{2 to

MAC~ MAC 4)*1
MAC. L @Rm+ , @Rn+*2

MAC. W @Rm+, @Rn+ 01 00nnnnmIDmm1 111 Signed, (Rn) x (Rm) + 3/(2)* 1

MAC~ MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH7600 instruction.

Table A.34 Post Increment Indirect Register

Instruction Code Operation State TBit

MOV.B @Rrn+,Rn 0110nnnnmrnmm0100 (Rm) ~ sign extension ~

Rn, Rm+ 1 ~ Rm

MOV.W @Rrn+,Rn 0110nnnnmrnmm0101 (Rm) ~ sign extension ~

Rn, Rm+2~ Rm

MOV.L @Rm+,Rn o 11 Onnnnmrnmm01 10 (Rm) ~ Rn, Rm + 4 ~ Rm

Table A.35 Pre Decrement Indirect Register

Instruction Code Operation State TBit

MOV.B Rrn,@-Rn 0010nnnnmrnmmOl00 Rn - 1 ~ Rn, Rm ~ (Rn)

MOV.W Rrn,@-Rn o 010nnnnmrnmm01 01 Rn - 2 ~ Rn, Rm ~ (Rn)

MOV.L Rrn,@-Rn 0010nnnnmrnmm0110 .Rn -4 ~ Rn, Rm ~ (Rn)

TableA.36 Indirect Indexed Register

Instruction Code Operation Cycles TBit

MOV.B Rrn,@(RO,Rn) 0000nnnnmrnmm0100 Rm~ (RO+ Rn) 1

MOV.W Rrn,@(RO,Rn) o o 00nnnnmrnmm010 1 Rm~ (RO+ Rn)

MOV.L Rm,@(RO,Rn) o o 00nnnnmrnmffi011 0 Rm~ (RO+ Rn)

MOV.B @(RO,Rm) ,Rn 0000nnnnmrnmm1100 (RO + Rm) ~ sign extension
~Rn

MOV.W @(RO,Rm),Rn OOOOnnnnmrnmml101 (RO + Rm) ~ sign extension
~Rn

MOV.L @(RO,Rrn),Rn OOOOnnnnmrnmm1110 (RO+ Rm)~ Rn

266 Hitachi

A.2.S md Format

Table A.37 md Format

Instruction

MOV.B @(disp,Rm) ,RO

MOV.W @(disp,Rm) ,RO

A.2.6 nd4 Format

Table A.38 nd4 Format

Instruction

MOV.B RO,@(disp,Rn)

MOV.W RO,@(disp,Rn)

A.2.7 nmd Format

Table A.39 nmd Format

Instruction

MOV.L Rm,@(disp,Rn)

MOV.L @(disp,Rm),Rn

Code

10000100mrnmmdddd

10 00010 1mrnmmdddd

Code

10000000nnnndddd

10000001nnnndddd

Code

OOOlnnnnmmmmdddd

OlOlnnnnmmmmdddd

Operation State

(disp + Am) -7 sign
extension -7 AD

(disp x 2 + Am) -7

sign extension -7

AD

Operation

AD -7 (disp + An)

AD -7 (disp x 2+ An)

State

Operation State

Am -7 (disp x 4 + An)

(disp x 4+ Am) -7 An

267 Hitachi

lBit

lBit

lBit

A.2.S d Format

Table A.40 Indirect GBR with Displacement

Instruction Code Operation State TBit

MOV.B RO,@(disp,GBR) 11000000dddddddd RO ~ (disp + GSR)

MOV.W RO,@(disp,GBR) 1100 00 0 1dddddddd RO ~ (disp x 2 +
GSR)

MOV.L RO,@(disp,GBR) 11000010dddddddd RO ~ (disp x 4 +
GSR)

MOV.B @(disp,GBR) ,RO 11 00 0 100dddddddd (disp + GSR) ~ sign
extension ~ RO

MOV.W @(disp,GBR) ,RO 11000101dddddddd (disp x 2 + GSR) ~
sign extension ~ RO

MOV.L @(disp,GBR),RO 11000110dddddddd (disp x 4 + GSR) ~
RO

Table A.41 PC Relative with Displacement

Instruction Code Operation State TBit

MOVA @(disp,PC),RO 11000111dddddddd disp x 4 + PC ~ RO

TableA.42 PC Relative Addressing

Instruction Code Operation State TBit

BF label 10 00 10 11dddddddd When T = 0, disp. x 2 + PC ~ PC; 3/1*3
When T = 1, nap

BF/S label *2 10001111dddddddd WhenT=O, disp x 2+ PC ~ PC; 211*3
When T = 1, nap

BT label 10001001dddddddd When T = 1, disp x 2 + PC ~ PC; 3/1*3
When T = 0, nap

BT/S label *2 10 00 11 0 1dddddddd When T = 1, disp x 2 + PC ~·PC; 211*3
When T = 0, nap

Notes: 2. SH7600 instruction

3. One state when it does not branch

268 Hitachi

A.2.9 dl2 Format

Table A.43 dl2 Format

Instruction Code Operation State

BRA label 1010dddddddddddd Delayed branch, disp x 2+ PC -+ PC 2

BSR label 10 11dddddddddddd Delayed branching, PC -+ PR, disp x 2 2
+ PC -+ PC

A.2.10 ndS Format

Table A.44 DdS Format

Instruction Code Operation

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp x 2 + PC) -+ sign
extension -+ Rn

MOV.L @(disp,PC),Rn 11 0 1nnnndddddddd (disp x 4 + PC) -+ Rn

A.2.11 iFormat

TableA.45 Indirect Indexed GBR Addressing

Instruction Code Operation

AND.B #irnn,@(RO,GBR) 11001101iiiiiiii (RD + GSR) & imm -+
(RD + GSR)

OR.B #imm,@(RO,GBR) 11001111iiiiiiii (RD + GSR) I imm -+
(RD + GSR)

TST.B #irnn,@(RO,GBR) 11001100iiiiiiii (RD + GSR) & imm,
when result is 0, 1 -+ T

XOR.B #irnn,@(RO,GBR) 11001110iiiiiiii (RD + GSR) "imm -+
(RD + GSR)

269 Hitachi

State

State

3

3

3

3

T Bit

T Bit

TBit

Test
results

Table A.46 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #imn,RO 11001001iiiiiiii RO&imm ~ RO

CMP/EQ #imn,RO 10001000iiiiiiii When RO = imm, 1 ~ T Comparison
results

OR #imm,RO 11001011iiiiiiii ROlimm~ RO

TST #imm,RO 11001000iiiiiiii RO & imm, when result Test results
isO, 1 ~T

XOR #imn,RO 11001010iiiiiiii ROAimm ~ RO

Table A.47 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State TBit

TRAPA #imn 11000011iiiiiiii PC/SR ~ Stack area, (imm x 4 + 8

A.2.12 ni Format

Table A.4S ni Format

Instruction Code

ADD #imn,Rn 0111nnnniiiiiiii

MOV #imn,Rn 1110nnnniiiiiiii

VBR) ~ PC

Operation

Rn + imm ~ Rn

imm ~ sign extension ~ Rn

A.3 Instruction Set in Order by Instruction Code

State

Table A.49 lists instruction codes and execution states in order by instruction code.

Table A.49 Instruction Set by Instruction Code

Instruction Code Operation State

CLRT 0000000000001000 O~T

NOP 0000000000001001 No operation 1

RTS 0000000000001011 Delayed branch, PR ~ 2
PC

SETT 0000000000011000 1 ~T

DIVOU 0000000000011001 o ~ M/Q/T

270 Hitachi

TBit

TBit

0

1

0

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

SLEEP 0000000000011011 Sleep 3

CLRMAC 0000000000101000 o ~ MACH, MACL 1

RTE 0000000000101011 Delayed branch, stack 4 LSB
area ~ PC/SR

STC SR,Rn 0000nnnnOOOOO010 SR~ Rn 1

BSRF Rn*2 0000nnnnOOOOO011 Delayed branch, PC ~ 2
PR, Rn + PC ~ PC

STS MACH,Rn 0000nnnnOOO01010 MACH ~ Rn 1

STC GBR,Rn 0000nnnnOO010010 GBR~ Rn 1

STS MACL,Rn 0000nnnnOO011010 MACL~ Rn

STC VBR,Rn 0000nnnn00100010 VBR~ Rn 1

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + 2
PC~ PC

MOW Rn 0000nnnn00101001 T~Rn 1

STS PR,Rn 0000nnnn00101010 PR~ Rn 1

MOV.B Rm,@(RO,Rn) 000 OnnnnmmrmnO 10'0 Rm~ (RO+ Rn)

MOV.W Rm,@(RO,Rn) 0000nnnnmmrmn0101 Rm~ (RO+ Rn)

MOV.L Rm,@(RO,Rn) o OOOnnnnmmrmnO 110 Rm~ (RO+ Rn)

MUL.L Rm,Rn*2 00 OOnnnnmmrmnO 111 RnxRm~ MACL 2
{to 4)*1

MOV.B @(RO,Rm) ,Rn 00 o Onnnnmmrmnl 10 0 (RO + Rm) ~ sign 1
extension ~ Rn

MOV.W @(RO,Rm) ,Rn 0000nnnnmmrmnl101 (RO + Rm) ~ sign
extension ~ Rn

MOV.L @(RO,Rm) ,Rn 0000nnnnmmrmnl110 (RO+ Rm) ~ Rn 1

MAC.L @Rm+, @Rn+*2 00 OOnnnnmmrmnl 111 Signed, (Rn) x (Rm) + 3/{2
MAC~ MAC to 4)*1

MOV.L Rm, '@ (disp, Rn) 0001nnnnmmmmdddd Rm~{dispx4+Rn) 1

MOV.B Rm,@Rn 0010nnnnmmrmnOOOO Rm~ (Rn) 1

MOV.W Rm,@Rn 0010nnnnmmrmnOO01 Rm~ (Rn) 1

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instruction

271 Hitachi

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

MOV.L Rm,@Rn 001 OnnnnmmmmOO 10 Rm~ (Rn)

MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn - 1 ~ Rn, Rm ~
(Rn)

MOV.W Rm,@-Rn 0010nnnnmmmm0101 Rn-2~ Rn, Rm~
(Rn)

MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn-4~ Rn, Rm ~
(Rn)

DIVOS Rm,Rn 0010nnnnmmmm0111 MSB of Rn ~ 0, MSB Calculation
of Rm ~ M, MAO ~ result
T

TST Rm,Rn 00 10nnnnmmmm10 00 Rn & Rm, when result Test results
isO,1 ~T

AND Rm,Rn 001 Onnnnmmmm10 01 Rn&Rm ~ Rn

XOR Rm,Rn 001 Onnnnmmmm10 10 RnA Rm ~ Rn

OR Rm,Rn 0010nnnnmmmm1011 Rn I Rm~ Rn

CMP/STR Rm,Rn o 010nnnnmmmm110 0 When a byte in Rn Comparison
equals a byte in Rm, 1 result
~T

XTRCl' Rm,Rn 0010rinnnmmmm1101 Center 32 bits of Rm
and Rn ~ Rn

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn x Rm ~ 1 to 3*1
MAC

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn x Rm ~ 1 to 3*1
MAC

CMP/EQ Rm,Rn OOllnnnnmmmmOOOO When Rn = Rm, 1 ~ T Comparison
result

CMP/HS Rm,Rn o OllnnnnmmmmOO 10 When unsigned and Comparison
Rn~Rm,1 ~T result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ~ Comparison
Rm,1 ~T result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn + Calculation
Rm) result

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned, Rn x Rm ~ 2 to 4*1
MACH,MACL

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

272 Hitachi

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

CMP/HI Rm,Rn 0011nnnnmrnmm0110 When unsigned Comparison
and Rn > Rm, 1 result
~T

CMP/GT Rm,Rn 0011nnnnmrnmm0111 When signed and Comparison
Rn> Rm, 1 ~T result

SUB Rm,Rn 0011nnnnmrnmm1000 Rn-Rm ~ Rn

SUBC Rm,Rn 0011nnnnmrnmm1010 Rn-Rm-T~ Borrow
Rn, borrow ~ T

SUBV Rm,Rn 00 11nnnnmrnmm10 11 Rn-Rm ~ Rn, Underflow
underflow ~ T

ADD Rm,Rn 0011~1100 Rm+Rn~ Rn

DMULS.L Rm,Rn*2 0011nnnnmrnmm1101 Signed, Rn x Rm 2 to 4*1
~MACH, MACL

ADOC Rm,Rn 0011nnnnmrnmm1110 Rn+Rm+T~ Carry
Rn, carry ~ T

ADDV Rm,Rn 0011nnnnmrnmm1111 Rn+Rm~ Rn, Overflow
overflow ~ T

SHLL Rn OlOOnnnnOOOOOOOO T f- Rn f- 0 MSB

SHLR Rn 0100nnnnOOOOOO01 O~Rn~T LSB

STS.L MACH,@-Rn 0100nnnnOOOOO010 Rn-4~ Rn,
MACH ~ (Rn)

STe.L SR,@-Rn 0100nnnnOOOOO011 Rn-4~ Rn, SR 2
~(~n)

ROI'L Rn 0100nnnnOOOO0100 T f- Rn f- MSB MSB

ROTR Rn' 0100nnnnOOOO0101 LSB ~Rn ~T LSB

LOS.L @Rm+,MACH 0100mmmmOOOO0110 (Rm)~ MACH,
Rm+4~Rm

LOC.L @Rm+,SR 0100mmmmOOOO0111 (Rm)~ SR, Rm 3 LSB
+4~Rm

SHLL2 Rn 0100nnnnOOO01000 Rn«2 ~ Rn

SHLR2 Rn 0100nnnnOOO01001 Rn»2 ~Rn

LOS Rm,MACH 0100mmmmOOO01010 Rm~MACH

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

273 Hitachi

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

JSR @Rn OlOOnnnnOOOO1Oll Delayed branch, PC 2
~ PR, Rn~ PC

LOC Rm,SR OlOOmmrnmOOOO1110 Rm~SR LSB

DT Rn*2 OlOOnnnnOOO1OOOO Rn - 1 ~ Rn; if Rn is Comparison
0, 1 ~ T, if Rn is result
nonzero, ° ~ T

CMP/PZ Rn OlOOnnnnOOO1OOOl Rn~O, 1 ~T Comparison
result

STS.L MACL,@-Rn OlOOnnnnOOO1OO1O Rn-4~ Rn, MACL
~ (Rn)

STC.L GBR,@-Rn OlOOnnnnOOO1OOll Rn - 4 ~ Rn, GBR ~ 2
(Rn)

CMP/PL Rn OlOOnnnnOOO101Ol Rn>O, 1 ~T Comparison
result

LDS.L @Rm+,MACL OlOOmmmmOOO1OllO (Rm) ~ MACL, Rm +
4~Rm

LDC.L @Rm+,GBR OlOOmmmmOOO1Olll .(Rm) ~ GBR, Rm + 4 3
~Rm

SHLL8 Rn OlOOnnnnOOOllOOO Rn«B ~ Rn

SHLR8 Rn OlOOnnnnOOOllOOl Rn»B ~ Rn

LDS Rm,MACL OlOOmmmmOOOl101O Rm~ MACL

TAS.B @Rn OlOOnnnnOOOllOll When (Rn) is 0, 1 ~ 4 Test results
T, 1 ~ MSB of (Rn)

LOC Rm,GBR OlOOmmmmOOOllllO Rm~GBR

SHAL Rn OlOOnnnnOO1OOOOO T f- Rn f- ° MSB

SHAR Rn OlOOnnnnOO1OOOOl MSB~ Rn~T LSB

STS.L PR,@-Rn OlOOnnnnOO1OOO1O Rn-4~ Rn, PR ~
(Rn)

STC.L VBR,@-Rn OlOOnnnnOO1OOOll Rn - 4 ~ Rn, VBR ~ 2
(Rn)

ROI'CL Rn OlOOnnnnOO1OO1OO T f- Rn f- T MSB

RareR Rn OlOOnnnnOO1OO1Ol T~Rn~T LSB

LDS.L @Rm+,PR OlOOmmmmOO1OOllO (Rm) ~ PR, Rm + 4
~Rm

LDC.L @Rm+,VBR OlOOmmmmOO1OOlll (Rm) ~ VBR, Rm + 4 3
~Rm

Notes: 2. SH7600 instruction

274 Hitachi

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

SHLL16 Rn 0100nnnn00101000 Rn«16 -7 Rn

SHLR16 Rn 0100nnnn00101001 Rn»16 -7 Rn

LDS Rm,PR 0100rmrmn00101010 Rm-7 PR

JMP @Rn 0100nnnn00101011 Delayed branch, Rn 2
-7 PC

LIX:: Rm,VBR 0100rmrmn00101110 Rm-7 VBR 1

MAC.W @Rm+,@Rn+ 0100nnnnrmrmn1111 Signed, (Rn) x (Rm) 3/(2)* 1

+MAC-7 MAC

MOV.L @(disp,Rm) ,Rn 01 0 1nnnnrmrmndddd (disp + Rm) -7 Rn

MOV.B @Rm,Rn OllOnnnnrmrmnOOOO (Rm) -7 sign
extension -7 Rn

MOV.W @Rm,Rn o 110nnnnrmrmnOO 0 1 (Rm) -7 sign
extension -7 Rn

MOV.L @Rm,Rn 0110nnnnrmrmn0010 (Rm) -7 Rn

MOV Rm,Rn 0110nnnnrmrmn0011 Rm-7 Rn

MOV.B @Rm+,Rn 0110nnnnrmrmn0100 (Rm) -7 sign
extension -7 Rn, Rm
+ 1 -7 Rm

MOV.W @Rm+,Rn 0110nnnnrmrmn0101 (Rm) -7 sign
extension -7 Rn, Rm
+2 -7 Rm

MOV.L @Rm+,Rn 0110nnnnrmrmn0110 (Rm) -7 Rn, Rm + 4
-7Rm

Nor Rm,Rn 0110nnnnrmrmn0111 -Rm -7 Rn

SWAP.B Rm,Rn 0110nnnnrmrmn1000 Rm -7 Swap upper
and lower halves of
lower 2 bytes -7 Rn

SWAP.W Rm,Rn 01 1 Onnnnrmrmn1 0 0 1 Rm -7 Swap upper
and lower word -7 Rn

NEGC Rm,Rn 0110nnnnrmrmn1010 0- Rm - T -7 Rn, Borrow
borrow -7'T

NEG Rm,Rn 0110nnnnrmrmn1011 O-Rm -7Rn

Notes: The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions)

275 Hitachi

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

EXW.B Rm,Rn o 110nr.rrrrummnm110 0 Zero-extends Rm
from byte ~ Rn

EXW.W Rm,Rn 0110nr.rrrrummnm1101 Zero-extends Rm
from word ~ Rn

EXTS.B Rm,Rn 0110nr.rrrrummnm1110 Sign-extends Rm
from byte ~ Rn

EXTS.W Rm,Rn o 110nr.rrrrummnm111 1 Sign-extends Rm
from word ~ Rn

ADD #imm,Rn Olllnnnniiiiiiii Rn+imm~ Rn

MOV.B RO,@(disp,Rn) 10 00 00 OOnnnndddd RO ~ (disp + Rn)

MOV.W RO,@(disp,Rn) 10000001nnnndddd RO ~ (disp x 2 +
Rn)

MOV.B @(disp,Rm),RO 10 00 010 Ommmmdddd (disp + Rm) ~ sign
extension ~ RO

MOV.W @(disp,Rm) ,RO 10 00 01 Olmmmmdddd (disp x 2 + Rm) ~
sign extension ~ RO

CMP/EQ #imm,RO 10001000iiiiiiii When RO = imm, 1 Compariso
~T n results

BT label 10001001dddddddd When T = 1, disp x2 3/1*3
+ PC ~ PC;
When T = 0, nop.

BT/S label * 10 00 1101dddddddd When T = 1, disp x2 211*3
+ PC ~ PC;
When T = 1, nop.

BF label 10001011dddddddd When T = 0, disp x2 3/1*3
+ PC ~ PC;
When T = 0, nop

BF/S label * 10001111dddddddd When T = 0, disp x2 211*3
+PC ~PC;
When T = 1, nop

MOV.W @(disp,PC) ,Rn 1001nnnndddddddd (disp x 2 + PC) ~
sign extension ~ Rn

BRA label 1010dddddddddddd Delayed branch, 2
disp x 2 + PC ~ PC

Notes: 2. SH7600 instruction

3. One state when it does not branch

276 Hitachi

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State TBit

BSR label 1011dddddddddddd Delayed branch I PC 2
~ PR, disp x 2 + PC
~PC

MOV.B RO,@(disp,GBR) 11000000dddddddd RD ~ (disp + GSR)

MOV.W RO,@(disp,GBR) 11000001dddddddd RD ~ (disp x 2 +
GSR)

MOV.L RO,@(disp,GBR) 11000010dddddddd RD~.(disp x 4 +
GSR)

TRAPA #inun 11000011iiiiiiii PC/SR ~ Stack 8
area, (imm x 4 +
VSR) ~ PC

MOV.B @(disp,GBR) ,RO 1100 010 Odddddddd (disp + GSR) ~ sign
extension ~ RD

MOV.W @(disp,GBR) ,RO 11000101dddddddd (disp x 2 + GSR) ~
sign extension ~ RD

MOV.L @(disp,GBR) ,RO 1100 0 110dddddddd (disp x 4 + GSR) ~
RD

MOVA @(disp,PC),RO 1100 o 111dddddddd disp x 4 + PC ~ RD

TST #irnm,RO 11001000iiiiiiii RD & imm, when Test results
result is D, 1 ~ T

AND #irnm,RO 11001001iiiiiiii RD&imm ~ RD

XOR #irnm,RO 11001010iiiiiiii RDAimm ~ RD

OR #irnm,RO 11001011iiiiiiii RDI imm~ RD

TST.B #imm,@(RO,GBR) 11001100iiiiiiii (RD + GSR) & imm, 3 Test results
when result is D, 1 ~
T

AND.B #irnm,@(RO,GBR) 11001101iiiiiiii (RD + GSR) & imm 3
~ (RD + GSR)

XOR.B #irnm,@(RO,GBR) 11001110iiiiiiii (RD + GSR) A imm ~ 3
(RD + GSR)

OR.B #irnm,@(RO,GBR) 11001111iiiiiiii (RD + GSR) I imm ~ 3
(RD + GSR)

MOV.L @ (disp , PC) , Rn 11 0 1nnnndddddddd (disp x 4 + PC) ~ Rn

MOV #irnm, Rn 1110nnnniiiiiiii imm ~sign
extension ~ Rn

277 Hitachi

A.4 Operation Code Map

Table A.50 is an operation code map .

. Table A.SO Operation Code Map

Instruction Code Fx:OOOO Fx:0001 Fx:0010 Fx:0011-1111

MSB LSB MD:OO MD:01 MD: 10 MD: 11

0000 Rn Fx 0000

0000 Rn Fx 0001

0000 Rn Fx 0010 STC SR,Rn* STC GBR,Rn STC VBR,Rn

0000 Rn Fx 0011 BSRF Rn* BRAF Rn*

0000 Rn Pm 01MD MOV.B MOV.W MOV.L MUL.L
Rm,@(RO,Rn) Rm,@(RO,Rn) Rm,@(RO,Rn) Rm,Rn*

0000 0000 Fx 1000 CLRT SET!' CLRMAC

0000 0000 Fx 1001 NOP DIVOU

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS SLEEP RTE

0000 Rn Fx 1000

0000 Rn Fx 1001 MOVT Rn

0000 Rn Fx 1010 STS MACH,Rn STS MACL,Rn STS PR,Rn

0000 Rn Fx 1011

0000 Rn Fx 11MD MOV.B MOV.W MOV.L MAC.L
@(RO,Rm),Rn @(RO,Rm) ,Rn @(RO,Rm) ,Rn @Rm+,@Rn+*

0001 Rn Pm disp MOV.L Rm,@(disp:4,Rn)

0010 Rn Pm OOMD MOV. B Rm, @Rn MOV.W Rm,@Rn MOV. L Rm, @Rn

0010 Rn f3m 01MD MOV.B MOV.W MOV.L DIVOS Rm,Rn
Rm,@-Rn Rm,@-Rn Rm,@-Rn

0010 Rn Pm 10MD TST Rm,Rn AND Rm,RI1 XOR Rm,Rn OR Rm,Rn

0010 Rn Pm 11MD CMP/STR XTRCT Rm,Rn MULU.W Rm,Rn MULS.W Rm,Rn
Rm,Rn

0011 Rn Pm OOMD CMP/EQ Rm, Rn CMP/HS .Rm,Rn CMP/GE Rm,Rn

0011 Rn Pm 01MD DIVl Rm,Rn DMULU.L CMP/HI Rm,Rn CMP/GT Rm,Rn
Rm,Rn*

0011 Rn Pm 10MD SUB Rm,Rn SUBC Rm,Rn SUBV Rm,Rn

0011 Rn Pm 11MD ADD Rm,Rn DMULS.L ADDC Rm,Rn ADDV Rm,Rn
Rm,Rn*

0100 Rn Fx 0000 SHLL Rn Dr Rn* SHAL Rn

0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn

278 Hitachi

Table A.SO Operation Code Map (cont)

Instruction Code Fx:OOOO Fx: 0001 Fx:0010 Fx:0011-1111

MSB LSB MD:OO MD:01 MD: 10 MD: 11

0100 Rn Fx 0010 STS.L STS.L STS.L
MACH,@-Rn MACL,@-Rn PR,@-Rn

0100 Rn Fx 0011 STC.L STC.L STC.L
SR,@-Rn GBR,@-Rn VBR,@-Rn

0100 Rn Fx 0100 RarL Rn R0rCL Rn

0100 Rn Fx 0101 RarR Rn CMP/PL Rn R0rCR Rn

0100 Am Fx 0110 LOS.L LDS.L LDS.L
@Rm+,MACH @Rm+,MACL @Rm+,PR

0100 Am Fx 0111 LDC.L LDC.L LDC.L
@Rm+,SR @Rm+,GBR @Rm+,VBR

0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn

0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16 Rn

0100 Am Fx 1010 LOS Rm,MACH LOS Rm,MACL LOS Rm,PR

0100 Rn Fx 1011 JSR @Rn TAS.B @Rn JMP @Rn

0100 Am Fx 1100

0100 Am Fx 1101

0100 Rn Fx 1110 LDC Rm,SR LDC Rm,GBR LDC Rm,VBR

0100 Rn Am 1111 MAC.W @Rm+,@Rn+

0101 Rn Am disp MOV.L @(disp:4,Rm) ,Rn

0110 Rn Am OOMD MOV.B Rm,Rn MOV . W @Rm, Rn MOV.L @Rm,Rn MOV Rm,Rn

0110 Rn Am 01MD MOV.B Rm+,Rn IDl.W @Rn+-,Rn IDl.L @Rn+-,Rn NOT Rm,Rn

0110 Rn Am 10MD SWAP.B SWAP.W NEGC Rm,Rn NEX3 Rm,Rn
Rm,Rn Rm,Rn

0110 Rn Am 11MD EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W .Rm,Rn

0111 Rn imm ADD #imn:8,Rn

1000 OOMD Rn disp IDl.B RO, KN.W RO,
@(disp:4,Rn) @(disp:4,Rn)

1000 01MD Am disp MOV.B MOV.W
@(disp:4, @(disp:4,
Rm) ,RO Rm) ,RO

1000 10MD imm/disp CMP/EQ BT label: 8 BF label: 8
#imn:8,RO

1000 11MD imm/disp BT/S BF/S
label: 8* label: 8*

279 Hitachi

Table A.SO Operation Code Map (cont)

Instruction Code Fx:OOOO Fx:0001 Fx:0010 Fx:0011-1111

MSB LSB MD:OO MD:01 MD:10 MD: 11

1001 Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label: 12

1011 disp BSR label: 12

1100 OOMD immldisp MOV.B RO, MOV.W RO, MOV.L RO, TRAPA #inm:8
@(disp:8, @(disp:8, @(disp:8,
GBR) GBR) GBR)

1100 01MD disp MOV.B MOV.W MOV.L MOVA
@(disp:8, @(disp:8, @(disp:8, @(disp:8,
GBR) ,RO GBR) ,RO GBR) ,RO PC) ,RO

1100 10MD imm TST AND XOR OR
#irrun:8,RO #irrun:8,RO #irrun:8,RO #irrun:8,RO

1100 11MD imm TST.B AND.B XOR.B OR.B
#inm:8, #inm:8, #inm:8, #inm:8,
@(RO,GBR) @(RO,GBR) @(RO,GBR) @(RO,GBR)

1101 Rn disp MOV.L @ (disp: 8, PC) ,RO

1110 Rn imm MOV #irrun: 8, Rn

1111 ...
Note: SH7600 instructions

280 Hitachi

Appendix B Pipeline Operation and Contention

The SH7000 series is designed so that basic instructions are executed in one state. Two or more
states are required for instructions when, for example, the branch destination address is changed by
a branch instruction or when the numbe~ of states is increased by contention between MA and IF.
Table B.t gives the number of execution states and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions experience contention in the following ways:

• Operations and transfers between registers are executed in one state w~th no contention.

• No contention occurs, but the instruction still requires 2 or more cycles.

• Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

MA contends with IF

MA contends with IF and sometimes with memory loads as well

MA contends with IF and sometimes with the multiplier as well

MA contends with IF and sometimes with memory loads and sometimes with the multiplier

281 Hitachi

Table B.1 Instructions and Their Contention Patterns

Contention State Stage

None 3

2 3

3/1*3 3

3 3

4 5

8 9

MA contends with IF 4

2 4

3 6

4 6

MA contends with I F and 5
sometimes with memory loads as
well 3 5

MA contends with I F and 4
sometimes with the multiplier as
well

1 to 3 *2 6/7*1

3/(2)*2 7/8*1

3/(2 to 9
4)*2

2 to 4*2 9

Instruction

Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers

Shift instruction

System control ALU instruction

Unconditional branche

Conditional branche

SLEEP instruction

RTE instruction

TRAP instruction

Memory store instruction and STS.L
instruction (PR)

STC.L instruction

Memory logic operations

. T AS instruction

Memory load instructions and LDS.L
instruction (PR)

LDC.L instruction

. Register to MAC transfer instruction,
memory to MAC transfer instruction and
MAC to memory transfer instruction

Multiplication instruction

Multiply/accumulate instruction

Double-length multiply/accumulate
instruction (SH7600 only)

Double-length multiplication instruction
(SH7600 only)

MA contends with IF and 5 MAC to register transfer instruction
sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH7600, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH7000, multiply/accumulate instructions are 8
stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

282 Hitachi

HITACHI®
• HITACHI AMERICA, LTD.

Semiconductor & I.C. Division
San Francisco Center

Engineering Facility
Hitachi Micro Systems, Inc.
179 East Tasman Drive
San Jose, CA 95134

Manufacturing Facility
Hitachi Semiconductor (America) Inc.
6431 Longhorn Drive 2000 Sierra Point Parkway

Brisbane, CA 94005-1835
(415) 589-8300
Fax: (415) 583-4207

AREA OFFICES

Eastern
Hitachi America, Ltd.
5511 Capital Center Drive
Suite 204
Raleigh, NC 27606
(919) 233-0800

REGIONAL OFFICES

Northeast
Hitachi America, Ltd.
77 S. Bedford Street
Burlington, MA 01803
(617) 229-2150

North Central
Hitachi America, Ltd.
500 Park Boulevard
Suite 415
Itasca, IL 60143
(708) 773-4864

Southwest
Hitachi America, Ltd.
2030 Main Street
Suite 450
Irvine, CA 92714
(714) 553-8500

Mountain Pacific
Hitachi America, Ltd.
4600 S. Ulster Street
Suite 690
Denver, CO 80237
(303) 779-5535

DISTRIBUTORS

Irving, TX 75063-2712

Central Western
Hitachi America, Ltd.
Two Lincoln Centre
5420 LBJ Freeway
Suite 1446

Hitachi America, Ltd.
1740 Technology Drive
Suite 500
San Jose, CA 95110
(408) 451-9570

AT&T

Dallas, TX 75240
(214) 991-4510

Hitachi America, Ltd.
325 Columbia Turnpike
Suite 203
Florham Park, NJ 07932
(201) 514-2100

Automotive
Hitachi America, Ltd.
Fairlane Plaza South
Suite 311
290 Town Center Drive
Dearborn, MI 48126
(313) 271-4410

IBM
Hitachi America, Ltd.
21 Old Main Street
Suite 104
Fishkill, Ny' 12524
(914) 897-3000

DISTRICT OFFICES ---------
Southeast
Hitachi America, Ltd.
4901 N.W. 17th Way
Suite 302
Ft. Lauderdale, FL 33309
(305) 491-6154

Mid-Atlantic
Hitachi America, Ltd.
325 Columbia Turnpike
Suite 203
Florham Park, NJ 07932
(201) 514-2100

Bloomington
Hitachi America, Ltd.
3800 W. 80th Street
Suite 1050
Bloomington, MN 55431
(612) 896-3444

South Central
Hitachi America, Ltd.
One Westchase Center
Suite 1040
10777 Westheimer Road
Houston, TX 77042
(713) 974-0534

IBM Engineering
Hitachi America, Ltd.
9600 Great Hills Trail
Suite 150W
Austin, TX 78759
(512) 502-3033

Ottawa
Hitachi (Canadian) Ltd.
320 March Road
Suite 602
Kanata, Ontario,
Canada K2K2E3
(613) 591-1990

REPRESENTATIVE OFFICES

Cronin Electronics, Inc. • Marsh Electronics, Inc. •

Marshall Industries • Milgray Electronics, Inc •

Reptron Electronics • Sterling Electronics •

Electri-Rep • Electronic Sales & Engineering • EIR, Inc. •
Jay Marketing Associates • Longman Sales, Inc. •
M. Gottlieb Associates, Inc. • Mycros Electronica •

. Vantage Components Inc. •

© 1994 Hitachi America, Ltd.
Printed in U.S.A.

The Novus Group, Inc. • Parker-Webster Company • QuadRep I
QuadRep/Crown, Inc. • QuadRep Southern, Inc. •
Robert Electronic Sales • Strategic Sales, Inc. • Sumer Inc. •
System Sales of Arizona • System Sales of New Mexico •
Technology Sales, Inc. • TekRep, Inc. •
Thompson & Associates, Inc. • West Associates •
Wes Tech Associates

o Printed on Recycled Paper
295/1500/Banta/~

Order Number: M27T

Area OHices

San Jose, CA 95110

Regional OHices

Hitachi America, Ltd.
4600 S. Ulster Street

District CJHices

Hitachi America, Ltd.
Falrlane P.laza Soutti

Hitachi America, Ltd.
325 Columola Turnpike

325 Columola Turnpike

I •

II

For litfilliil ture fulfillment request contact Hitachi Literature Fulfillment at 1-800-285-1601

O· 'II·' ., -,.'

