SH7000/7600 Series
Super H RISC Engine ’

Programming Manual




Notice

When using this document, keep the following in mind:

L.
2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi’s permission.

Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when
planning to use the products in MEDICAL APPLICATIONS.




Hitachi
Single-Chip RISC
Microcomputer
-~ SH7000 and SH7600 Series

Programming Manual



Introduction

The SH7000 and SH7600 series are new-generation RISC (Reduced instruction set computer)
microcomputers that integrate a RISC-type CPU and the peripheral functions required for system
configuration onto a single chip to achieve high-performance operation. It can operate in a power-
down state, which is an essential feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

This programming manual describes in detail the instructions for the SH7000 and SH7600 series
and is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH7000 and SH7600 series. For informatiorn on the hardware,
refer to the hardware manual for the product in question.

Related Manuals

* SH7032, SH7034 Hardware Manual (Document No. ADE-602-062).
* SH7020, SH7021 Hardware Manual (Document No. ADE-602-074)
* SH7604 Hardware Manual

For development support tools, contact your Hitachi sales office.



Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items
and the sections listed within this manual that cover those items.

Table 1 Manual Organization
Category Section Title Contents
Introduction 1. Features CPU features
Architecture (1) 2. Register Types and configuration of general registers,
Configuration control registers and system registers
3. Data Formats Data formats for registers and memory
Introduction to 4. Instruction Instruction features, addressing modes, and
instructions Features instruction formats

5. Instruction Sets

Summary of instructions by category and list in
alphabetic order

Detailed information

6. Instruction

Operation of each instruction in alphabetical order

on instructions Descriptions
Architecture (2) 7. Processing States  Power-down and other processing states
8. Pipeline Operation  Pipeline flow, and pipeline flows with operation for
each instruction
Instruction code Appendixes: Operation code map

Instruction Code




Table 2 Subjects and Corresponding Sections

Category Topic Section Title
~ Introduction and CPU features 1. . Features
features Instruction features 4.1 RISC-Type Instruction Set
Pipelines 8.1 Basic Configuration of
Pipelines
8.2 Slot and Pipeline Flow
Architecture Register configuration Register Configuration
Data formats Data Formats
Processing states, reset state, exception 7. Processing States
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode
Pipeline operation 8. Pipeline Operation
Introduction to Instruction features 4. Instruction Features
instructions Addressing modes 4.2 Addressing Modes
Instruction formats 4.3 Instruction Formats
List of Instruction sets 5.1 Instruction Set by
instructions Classification
5.2 Instruction Set in
Alphabetical Order
Appendix A.1 Instruction Set by
Addressing Mode
Appendix A.2 Instruction Set by
Instruction Format
Instruction code Appendix.A.3 Instruction Set in
Order by
Instruction Code
Appendix A.4 Operation Code
Map
Detailed Detailed information on instruction 6. Instruction Description '
information on  operation 8.7 Instruction Pipeline
instructions

Operations

Number of instruction execution states

8.3 Number of Instruction
Execution States




Functions Listed by CPU Type

This manual is common for both the SH7000 and SH7600 series. However, not all CPUs can use
all the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type
Item SH7000 Series SH7600 Series
Instructions BF/S No Yes
BRAF No Yes
BSRF No Yes
BT/S No Yes
DMULS.L No Yes
DMULU.L No Yes
DT No Yes
MAC.L No Yes .
MAC.W*! (MAC)*2 16x16 +42 > 16 x 16 + 64 — 64
42
MUL.L No Yes
. All others Yes Yes
States for multiplication 16 x 16 — 32 Executed in 1-3*3  Executed in 1-3*3states

operation

(MULS.W, MULU.W)*2

states

32x32— 32(MULL) No Executed in 2—4 *3states
32x32 - 64 No Executed in 2—4 *3states
(DMULS.L, DMULU.L)

States for multiply and 16 x 16 + 42 — 42 Executed in No

accumulate operation ~ (SH7000, MAC.W) 3/(2)*3 states
16 x 16 + 64 — 64 No Executed in states 3/(2)*3
(SH7600, MAC.W)
32x32+64 — 64 No ‘Executed in 2—4 states
(MACL) 3/(2~4y*3

Processing status Module stop mode No Yes (Supply of clock to

specified module can be
halted)

Notes: 1.

MAC.W works differently on different LSls.

2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the

number in contention with preceding/following instructions).



Contents

SECLON 1 FRALUIES .....oceeiireeriseieessie sttt bsessesese s sessesssases st sasse s e ssessasne 1
Section 2 Register Configuration ..., revtrenrssaraaes 2
2.1 General REGISIETS....cocivviieiicirieienticnr ettt sttt sese st sas e b s e s nssasresasasesane 2
2.2 CONLIOl REZISLETS .....cviviuinrerricrerenniiseresstsstsrssstsissssssesssisessesssussssisasssnmsssasassssssessasssssssass 2
23 SyStem REGISIEIS....cciiirieiiiiiniieiiecent ettt sttt b asassassassse e sansbessssassnes 3
2.4 Initial Values of REISLELS ........ccooiciiriirierieiiniisnreres i sstsceessesiesesneesssssssssossnssessassnne -4
Section 3 Data FOIMALS ..........cccevcrenrnnrrenineennireennissnesessssssssessresessesesssessssssssssssessesscsess 5
3.1  Data Format in REISLETS ......cccceeriverurcerseereninieniieniennrneateseeseseestssissessesssssesessesnsssessenne 5
3.2 Data FOrmat in MEIMOTY ......ccccectivenrerniersessecrssnessssmseesssssosesessssessnssssssssssessssnessssssasesssssssssnss 5
3.3  Immediate Data FOMMAt ........ccccooiieniiennnininiiminineiemsioimnimeesssessssensas 6
Section 4  InStruction FEAtUIES ...........cccveueerneremnrireisirecsresneeseemsensenmssmssnasessensemserasesnsnns -1
4.1  RISC-Type INStruCtion SEL ........ccviiiviimnrnimniiiinisiiiiissseseissesnnesas 7
4.1.1 16-Bit Fixed Length ......cccooveeiveniiiiniciiineiincnicnnniisesnnesesisssnesesnrssesseses 7
4.1.2  One INStruCtion/CyCIE ......covieerirrinrinisnsiescntiiirsesesnnisinsisssniesssssensessosesss 7
4.1.3 Data Lengthi .....c.ciiiciieiireccreiicreentecnensnesnsssnessisssisssesessessesisessssssssssssssseneens 7
4.14 Load-Store ArChiteCtUre.......c.ovvivuremninimiiiiririsisesiniiiiesasemseeisassesssansrsseaseses 7
4.1.5 Delayed Branch INStrUCHIONS .......cccouinerenniiiciesnnisssiinesesininiissssiseseseesesesans 7
4.1.6  Multiplication/Accumulation Operation ...........cocecuvevrnnrenirirnnniisnnsesiisnsenene 8
41T TBI et sessen e s sesnssessssesesassssssesentsesasesenes eeesaenerrnes 8
4.1.8 Immediate Data ... 8
4.19 ADbSOIULE AQAIESS .....vocvrrircirrtrne st rsne s 9
4.1.10  16-Bit/32-Bit Displacement 9
42 Addressing MOAES .....c.c.ccovivuriermernenmeresnisnecinneescsemsiseesssassesnesesesssssessestsscssssssesasesssassssasens . 10
43 INStruction FOTMAL .......cccccviviveniierineiiniensniesssseesesseteseesssnsesesstssesssssessssssasssensesssssseseesas 13
Section 5 INSIIUCHON SEL.......ccvvreerrireinrieineisennessiensssessssssesssessesseesssesarssssessesssesssscses 16
5.1  Instruction Set by ClassifiCation .........ccceverererriereeniinerieniesreerersesseesssssnssessessrersassassassressasns 16
5.5.1 Data Transfer INSrUCHONS ......ccccceruerererrrirerernisesessesesaesessssercsessrsessnssssssessescesses 21
5.1.2 Arithmetic INStIUCIONS ...c.ceveveererirereecrnrienenseisesesesessenmsesrecstesreesnssssnsessesesesas 23
513 Logic Operation INStrUCLIONS .......ccccvecriveirenrennrecsessesnneseseeesstssistnssnsessssssssseesson 25
514 Shift INSIIUCHIONS ...cucovverirernrreninnsierirsisesnnesisessssnsessessesesiesesesesssssssessassassrsssesssses 26
5.15 Branch INSIUCHONS ....ccocveviniericiiineniiisneseresenssssesssessoissesessssssnesssnsssssssssesssies 27
5.1.6 System Control INStIUCHIONS ........ucereiisesenenimeisiiseriiiitsassesiiescsssasssessssessenes 28
5.2 Instruction Set in Alphabetical Order ..........cviertvnenrsiiniseiinrei et 29
Section 6 InStruction DESCIIPHONS ..........veecirrcereererecrsssiesisssssssesssanesssssesssessens 37

6.1  Sample Description (Name): Classification ........c..veveireeenrsenceinenninneiinnenegeensesssisesssens 37



6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44

ADD (ADD Binary): Arithmetic INStrUCLION .......ccovvererireeiererieennreererrererseeesseseesesessenns 40

ADDC (ADD with Carry): Arithmetic INStrUCHON .......cevreeeerireenrsisesrereeesesreeescassesesesnaens 41
ADDYV (ADD with V Flag Overflow Check): Arithmetic Instruction ..........c.ccccevevuenuenee. 42
AND (AND Logical): Logic Operation INStrUCHON .........cccevererinercenscneriesiinscssirseesesaes 43
BF (Branch if False): Branch INSIUCHON ......cocevevevevmreescrireincec st seeceice e sesesaeesesnes 45
BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600) ........ccccooevireenenne. 46
BRA (Branch): Branch INSIIUCHON .........eve.eecveeeseeeeesseseeeessseemssessesessesesseesssssasesessasesssesens 48
BRAF (Branch Far): Branch Instruction (SH7600) ......c.ccccouoniriniiireniininininicssseisinnnnns 49
BSR (Branch to Subroutine): Branch INStruction ..........ccceeeeveevnencninnieecnnnccesnnesseeneeens 50
BSRF (Branch to Subroutine Far): Branch Instruction (SH7600) .......c.cccocovvveiceenucenene. 52
BT (Branch if True): Branch INStruCtion ........cccececiecceveesieniennnmereeseesessessesnnesesesssessessaens 53
BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)...........cc.cooveerverunnn. 54
CLRMAC (Clear MAC Register): System Control InsStruction ............ceccoceevesecrescrnnenne. 56
CLRT (Clear T Bit): System Control INStruction .........cc.ceeeeveeseriereesisseeeneieneeseesssseeseesens 57
CMP/cond (Compare Conditionally): Arithmetic Instruction...........ceceeereeevreecenrnscrcnnnnne. 58
DIVOS (Divide Step 0 as Signed): Arithmetic InStruction ..........c.ceeeeeeeeevernieeresrncrseensenes 62
DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction ............ et entenes 63
DIV1 (Divide Step 1): Arithmetic INStrUCHON.........ccviieereererererreerecirtsesn e 64
DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH7600) ........ 69
DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction (SH7600)... 71
DT (Decrement and Test): Arithmetic Instruction (SH7600)..........cccecvevmerureerreereesensnennes 73
EXTS (Extend as Signed): Arithmetic INStTUCHION ......c.cevvvveveruiniecrencerenrerenirieeseesecesneenes 74
EXTU (Extend as Unsigned): Arithmetic INSIrUCHON .....cccovurvrreereerernisererssseeseseessasens 75
JMP (Jump): Branch Instruction...........ceeceeceevercrrvenrererecnens eerterreesrre et e e st en e s e e e e ssaneseten 76
JSR (Jump to Subroutine): Branch INSEUCHON cvvevreeeeee e eeeses e seeseessseesseseressesessereseesreee 77
LDC (Load to Control Register): System Control InStruction ..........eceeeereeervereesceseesuerennes 79
LDS (Load to System Register): System Control Instruction ..........cccovvereemrercseerenssienens 81
MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH7600).................. 83
MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000).........coecereeeerrurnnncne. 86
MAC.W (Multiply and Accumulate Word): Arithmetic Instruction (SH7600)................. 87
MOV (Move Data): Data Transfer TNSEIUCHON «.vververeeeeeerevesseesssessseseeesesesssesesesesesseesness s 90
MOV (Move Immediate Data): Data Transfer InStruction ..............cccceeeeevevmnvereeseeseesvereens 95
MOV (Move Peripheral Data): Data Transfer Instruction ..........cccecevecevveveriersecnveenensenns. 97
MOV (Move Structure Data): Data Transfer INStruction ............ecceeeeeeeveneieereereeesveereennen 100
MOVA (Move Effective Address): Data Transfer INStruction ...........ccceeeeeeeveeeverveeseersnnnens 103
MOVT (Move T Bit): Data Transfer INStruCtion ..........cccecevveeeieeeieeintererennesseesseesseesseeens 104
MUL.L (Multiply Long): Arithmetic Instruction (SH7600) .........ccccccevrenencincnnennnneenen. 105
MULS.W (Multiply as Signed Word): Arithmetic InStruction ..........ccccocveecrececrecrvennnne. 106
MULU.W (Multiply as Unsigned Word): Arithmetic InStruction .............icevecevvecreennnene 107
NEG (Negate): Arithmetic INSIIUCLION ......ceeeeeireerrivientineeeeneestisiesaessee e eesseessesssessesseenns 108
NEGC (Negate with Carry): Arithmetic INStruction .........c.ccoeeeeeeeeneeceerereeciinesseresesseseenes 109
NOP (No Operation): System Control INStruCtion .........c.cceviveeeerceseeierenienniesieessesessesssenns 110

NOT (NOT—Logical Complement): Logic Operation Instruction .............ceceveevecvvennnens 111



6.45 OR (OR Logical) Logic Operation InStruction............ccceeeecivneesiiisrcnnsencnnas tesssssrssassseseans 112
6.46 ROTCL (Rotate with Carry Left): Shift InStruction .........cccceceveenrecernenvienrcce e 114
6.47 ROTCR (Rotate with Carry Right): Shift InStruction........ccccceiiinnnniniinnnnssinnns 115
6.48 ROTL (Rotate Left): Shift INStrUCHON.....cccccceerieiereierceresenieiececetreet et sn e 116
6.49 ROTR (Rotate Right): Shift INSIUCHON .....cvvvveeerereereeeseesseseessiessssessesssesaesssssesssessesssssanes 117
6.50 RTE (Return from Exception): System Control INStruction ..........cocoveensusicseessnansesninns 118
6.51 RTS (Return from Subroutine): Branch INStruction .........cccccovcevevevveeivereeereeceesinesvesseens 119
6.52 SETT (Set T Bit): Systemn Control INStruction .........cec.cceceereniernecrneenscsionneneeneenseressesnnnes 120
6.53 SHAL (Shift Arithmetic Left): Shift INStrUCtion .........cccovveriniinveirercrrnnrescsrnerennrecensceenrees 121
6.54 SHAR (Shift Arithmetic Right): Shift InStruction..........cccoocceevvvcvnisnenncniiiieneeee 122
6.55 SHLL (Shift Logical Left): Shift InStruction...........cccoenvvniniicvinniinnnnncsicncenee 123
6.56 SHLLn (Shift Logical Left n Bits): Shift InStruction ......c...coeecevevvivvinriiinercnsccsicninenns 124
6.57 SHLR (Shift Logical Right): Shift INStrUCtiON ......cccecceverieriirnrersreesiirinesecs e 126 -
6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction .............ccevvvenevneiiniciinninnene, . 127
6.59 SLEEP (Sleep): System Control INStruCtioN.......ccccieeveeeevrerneereiressisressesserensessessassnssssesnsss 129
6.60 STC (Store Control Register): System Control InStruction............cceceeeeersvnreeeneesercrersennns 130
6.61 STS (Store System Register): System Control INStruction ..........ceccevereservecrenncscscreerenenns 132
6.62 SUB (Subtract Binary): Arithmetic INStruction..........cceceerereeurveresreneerecnrererereerereesennenns 134
6.63 SUBC (Subtract with Carry): Arithmetic INStruCtion ........c.cc.vvevvevereeerireresivneerenseienene 135
6.64 SUBYV (Subtract with V Flag Underflow Check): Arithmetic Instruction ........c...ccevvencen. 136
6.65 SWAP (Swap Register Halves): Data Transfer INStruction ..........c..ccoeeevmveeccieeneneenencnne 137
6.66 TAS (Test and Set): Logic Operation INStrUCHION...........vereeeeereererereesererrersssereeseseressssenenes 138
6.67 TRAPA (Trap Always): System Control INStruction ..........eceoveeivvnvineccnncneneiennnns eee 139
6.68 TST (Test Logical): Logic Operation INStruction..........c.covccvereninvcnnniienniesensinesineeene 140
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction..........coeocivrenceeruerennnenns v 142
6.70 XTRCT (Extract): Data Transfer INStrUCtion ..........cceevueeveerieereeriverirerciencnnneeeseeresesseiannees 144
Section 7 ProCesSing SLALES .........c.oovcrcererienerinniceresseesresesseesseesessesse s ssecssessessessesss 145
7.1 State TIANSIIONS ....coceecieeiiiirerceereeeeeterneseer et e e saee e et et anaes st eseeeaeseeasessesasessesesstaseann 145
7.1.1 RESEE SLALE ...cueierirreiniiricriteree et st s ee e st s e e ae e st et essassssassmsesnesnaenans 147
712 Exception Processing State .........ocoveeiniinineiniciiciniitsceicnsiseeecnne 147
713 Program EXecution State ..........ccccociviieinnecncnnciiniennennicnesnieseeeseee st 147
7.14 POWET-DOWI StAte ......coeiiieiiieieeeccrtecee sttt eb ettt se e smee st e ene 147
7.15 Bus Release State ........cccccuevuerernieiieneceireniesesesee e stesrese e st ese st eee s e e smsstseeseens 147
T2 POWET-DOWR SEALE ...coooerurenirieieieeetnennineee et ee s ee e sttt e e s seesesessa s se s et s sabat s s s 148
72.1 Sleep Mode ......ccvevvenneererenesiveeenenns rereeeee e ettt b s st sa s e e 148
722 Software Standby MOdE.........cccerereiririenreireecerereneses s etseeseseesesessesesessanes 148
7.2.3 Module Standby Function (SH7600 Only) .......ccccevivirivecrnieencrvenresecsenesesenerens 148
7.3  Master Mode and Slave Mode (SH7600 Series Only) ......cccoovveevreecnsesnenensenesesserensenee 150
Section 8  Pipeline OPEration ............cceeveneunmeinneeneeecrsiinsesssssesssersssssssssssssssssssssssans 151
8.1  Basic Configuration of PIPEHNES ........ceeereeicuiienereriarnireeeenreninseecese s rseessssssssseesesessseses 151
8.2 Slot and PIpelineg FIOW......cc.coiereiviiirnreneeieiiineeneretresssenasssessseeseesssssessssssseseseseesasenes 152



83

8.2.2  SIOt ShACING .eveuieeeeiiriiristieestnr ittt en et ss bt s st s e naen 152
8.2.3 SIOt LEngth ..ottt ssseessssesssesenes 153
Number of Instruction EXECUtION SLates .........coeeerererriireeenirernieinisnisisiesesreesesssseseesesesenns 154
8.4  Contention Between Instruction Fetch (IF) and Memory Access (MA)....ccccevevererreennn 155
. 8.4.1 Basic Operation When IF and MA are in Contention ...........c.ceveeeevrereseeeienens 155
8.4.2  The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip MEMOTY .....coeceeveereetererireeieeseeeeenenssnssesessesesssessansnes 156
843 Relationship Between Position of Instructions Located in On-Chip
ROM/RAM or On-Chip Memory and Contention Between IF and MA ........... 157
8.5  Effects of Memory Load Instructions on Pipelines ........cccecevrveviecerecerieneniresensesseerenseneas 158
8.6  Programming GUIAE ......c.cccecereerivinrininenirerersineessesessessessessesssessarsssessessasssnssassassonsessassasses 159
8.7  Operation of Instruction PIPELINES ..........cccvveerrieieriererineeceniereniissesecsesseenseeiessasssesassasensnes 160
8.7.1 Data Transfer INStrUCLIONS ........cccoveeeerereeeneeriieieereeneereesisetreee et ssssensesnenis 167
8.7.2 Arithmetic INStIUCHONS .....coeiviiiviiriiiiiicrnenieencnsirest s s esneenes 170
8.7.3 Logic Operation INStIUCHONS .......cccocevieviieninicennniniciiiceneessesesnessssenes 225
8.74 Shift INSIIUCHIONS ...c.cvietiiiiirieeretcttreeere ettt setes b et s sre st srssssssnsse e 228
8.7.5 Branch INSIIUCHONS ......ocevviiiiniiniiiiinsniseieinsiessssres s ssssses 229
8.7.6 System Control INStrUCLIONS......cccceveverrirrirerirerereeeieeeenesie e e ireereserssesseseenes 232
8.7.7 Exception Processing .......cccocvvnniinieincnininincnniensnenssresesessssens 244
Appendix A INSLruCtion COde.........o.ovevervirernrirninirreisreseissise e sssssesssss s sssssessns 247
A.l1 Instruction Set by Addressing Mode ..........ccecerevererennnns e st st ae e et 247
ALL  NOOPEIANA coovroreeeeoenereeeeeeneeeeessessssssssseesesssssessssssssessessssansessonss e 249
A.12  Direct RegiSter AJAIESSING .....eveveveeeererervereesisererseeennessisneneerseeienssessesenesessenns 250
A.1.3  Indirect Register AddIessing .........ccooeverermirerrenemrsnncrcrennineniecsnsienesssessesensessesas 253
A.14  Post Increment Indirect Register AAAIeSSing ........cooo.ueeeereeerreesrusenssssnsseesesenns 253
A.1.5  Pre Decrement Indirect Register Addressing.........ccoceveeveevivircnecnnncsicnnninennncn. 254
A.1.6  Indirect Register Addressing with Displacement ...........cccooeveeevenicioreresesenenns 255
A.1.7  Indirect Indexed Register Addressing .........cceceviererereenicesesecsneereenesessesesnsensosenes 255
A.1.8  Indirect GBR Addressing with Displacement ...........ccccceveeecnscnriesesreesessenennes 256
A.19  Indirect Indexed GBR Addressing ...............coovevrrervnererrnseee S 256
A.1.10 PC Relative Addressing with Displacement ............ccoeceeveerivueierrnieseseeseessnneennns 256
A.1.11  PCRelative Addressing With Rn ........o.ociivencinmiicncicenn, 257
A.1.12  PCRelative Addressing .......coeeevveveenmcninirnneeeniieneencsenisessesesesssesnesessecscssesesanes 257
ALI3 IMMEAIALE ..ottt ettt ettt tea st st s s e ssas e s s anes 258
A2 Instruction Sets by Instruction FOrmat .........c.cccevverueierereenenivininenieeesieiessensesesessssnsnens 258
A21  OFOIMAL ..ttt st sttt e se bbb st e b s snne 260
A22  DNFOMMAL ...ttt ettt s ere et s b ssesesesese st sn s st st sbetnsnasases 261
A23  MEPOMMAL ...ttt ss e sess s sba st nes et e e s s esesssbesannann 263
A24 DM FOIMAL ...ttt et sttt s esss s e sesaa e sa e s 264
A25  MAFOMMAL ...ttt sestsesseretnbssessasas s e ssnssebasasansesannans 267 .

8.2.1 INStrUCtion EXECULION ... ccovviiiiiecitiecireciicicieeeeeeessentissvassssesessescssesssesesssnsonsensans 152

A26 N4 FOIMAL .....ccvviiviiiieeteeeeccr et es st sttt st s se e s e b et et s st e sesenesanassassnane 267



A277  DIMAFOIMAL ....coueeeeereeeeieeeiieieeresseseeeeseseseeseeseesaresssssessessensessersessesssssassassssasans 267

A28  dFOImMAt ...ttt e sae e s n 268
A2.9  AI2FOIMAL .....cureecirreerreresieieterersesseseetsessesessesessessnsssessssesesessessasesssesssssssssssssanns 269
A2.10  NAB FOMAL ...c.uovreiereiecrereevererrcrne et e e see st svesasnaessinesee st suesassesassassesncecanes 269
A2 1T FFOIMMAL ..c..ouiceeececerec sttt see sttt s s s et sbe e s e saese e s s basesnesesensesassanes 269
A2.12  NEFOIMAL ..ottt aese e st et s st s e sestesbesessessesessansasaesasssssensannen 270
A3 Instruction Set in Order by INStruction COAE .........c.uvuivremrersecieiseseessnssssseseaesssssssssssssans 270
A4 Operation Code Map......cccovecceeniniiinnencrersstsisineesese st et see s sssts st sasesseseesesessssesesons 278

Appendix B Pipeline Operation and Contention ............c.oeeeeenecrserernesseesesecssenne 281



Section 1 Features

The SH7000 and SH7600 series have RISC-type instruction sets. Basic instructions are executed
in one clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 Iists the SH7000 and
SH7600-series CPU features.

Table1.1 SH7000 and SH7600-Series CPU Features

ftem Feature

Architecture , * Original Hitachi architecture
e 32-bit internal data paths

General-register machine ¢ Sixteen 32-bit general registers
¢ Three 32-bit control registers
* Four 32-bit system registers

Instruction set * Instruction length: 16-bit fixed length for improved code efficiency

* Load-store architecture (basic arithmetic and logic operations are
executed between registers)

* Delayed branch system used for reduced pipeline disruption
* Instruction set optimized for C language

Instruction execution time ¢ One instruction/cycle for basic instructions

Address space * Architecture makes 4 Gbytes available

On-chip multiplier ~* Multiplication operations (16 bits x 16 bits — 32 bits) executed in 1

(SH7000) to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits + 42 bits — 42 bits) executed in 3/(2)* cycles

On-chip multiplier * Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits

(SH7600) — 32 bits) or 2 to 4 cycles (32 bits x 32 bits — 64 bits), and

multiplication/accumulation operations executed in 3/(2)*cycles (16
bits x 16 bits + 64 bits — 64 bits) or 3/(2 to 4)* cycles (32 bits x 32
bits + 64 bits — 64 bits)

Pipeline * Five-stage pipeline

Processing states * Reset state
* Exception processing state
* Program execution state
* Power-down state
* Bus release state

Power-down states ¢ Sleep mode
¢ Standby mode
* Module stop mode (SH7600 only)

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

1 Hitachi



Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1  General Registers

There are 16 general registers (Rn) numbered RO-R15, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an index
register. Several instructions use RO as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

31 0
: RO*' 1. RO functions as an index register in the
R1 indirect indexed register addressing
mode and indirect indexed GBR
R2 addressing mode: In some instructions,
R3 RO functions as a fixed source register
R4 or destination register.
R5
Reé
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer) *2| 2. R15 functions as a hardware stack
pointer (SP) during exception
processing.

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

2 Hitachi



data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

31 98 76543210
SR| ———————o MQI3I21110 --ST | SR: Status register

—_ — | Ly T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTR/L, and
ROTCRIL instructions also use bit T
to indicate carry/borrow or overflow/
underflow
— S bit: Used by the multiply/accumulate
instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.
L—————— Bits 13—10: Interrupt mask bits.

»M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
31 0 Indicates the base address of the indirect
GBR GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

31 ‘ 0 Vector base register (VBR):
VBR Indicates the base address of the exception
processing vector area.

Figure 2.2 Control Registers

2.3  System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The
multiply and accumulate registers store the results of multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
stores program addresses to control the flow of the processing.

3 Hitachi




31 9 0

. Multiply and accumulate (MAC)
(SH7000) (sign extended) MACH registers high and low (MACH/L):
MACL Store the results of multiply and
accumulate operations. In the
31 0 SH7000, MACH is sign-extended
(SH7600) MACH to 32 bits when read because only
the lowest 10 bits are valid. In the
MACL SH7600, all 32 bits of MACH are
' valid.

31 0

r PR Procedure register (PR): Stores a
: return address from a subroutine
procedure.

31 0  Program counter (PC): Indicates the
| PC fourth byte (second instruction) after
the current instruction.

Figure 2.3 System Registers

2.4 . Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1  Initial Values of Registers

Classification Register Initial Value
General register  R0-R14 Undefined

R15 (SP) Value of the stack pointer in the vector address table
Control register SR Bits 13-10 are 1111 (H'F), reserved bits are 0, and

_ other bits are undefined

GBR Undefined

VBR H'00000000
System register MACH, MACL, PR Undefined

PC Value of the program counter in the vector address

table

4 Hitachi



Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only a
byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

Longword

Figure 3.1 Longword Operand

3.2  Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because
this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

Addressm+1 Addressm + 3

Address m | Address m + 2
81y 23y 154 7 307

Bytel Byte | Byte l Byte

(

Address 2n-» Word Word
Address 4n—» Longword
L Big endian ~

Figure 3.2 Byte, Word, and Longword Alignment

5 Hitachi




SH7604 has a function that allows access of CS2 space (area 2) in little endian format, which
enables memory to be shared with processors that access memory in little endian format (figure
3.3). Byte data is arranged differently for little endian and the usual big endian.

Addressm+2 Address m

Address m + 3 | Address m + 1
T3y 23y 154 7 yO"

Bytel Byte | Byte | Byte

{

Word Word <« Address 2n
Longword <« Address 4n
A Little endian L

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

33 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and calculated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register. :

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a
memory table. The memory table is accessed by an immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

6 Hitachi




Section 4 Instruction Features

4.1  RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1  16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2  One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with

- longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zero-
extended for logic operations. It also is calculated with longword data.

Table4.1 Sign Extension of Word Data

SH7000/SH7600-Series CPU  Description Example for Other CPU
MOV.W @(disp,PC),R1  Datais sign-extendedto 32  ADD.W #H'1234,R0
ADD R1,R0 bits, and R1 becomes

H'00001234. It is next
""""" - operated upon by.an ADD
.DATA.W H'1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

4.14 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

4.1.,5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

7 Hitachi



Table 4.2 Delayed Branch Instructions

SH7000/7600-Series CPU Description Example for Other CPU
BRA TRGET ] Executes an ADD before ADD.W R1,RO
ADD R1,R0 branching to TRGET. BRA TRGET

4.1.6 Multiplication/Accumulation Operation

SH7000: 16bit x 16bit — 32-bit multiplication operations are executed in one to three cycles.
16bit x 16bit + 42bit — 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH7600: 16bit x 16bit — 32-bit multiplication operations are executed in one to two cycles. 16bit
x 16bit + 64bit — 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit x 32bit — 64-bit multiplication and 32bit x 32bit + 64bit — 64-bit
multiplication/accumulation operations are executed in two to four cycles.

417 TBit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 4.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table4.3 T Bit

SH7000/7600-Series CPU  Description Example for Other CPU
CMP/GE R1,RO T bitis setwhen RO2R1. The cMP.W R1,RO
BT TRGETO program branches to TRGETO0 . ' TRGETO

~ when RO 2 R1 and to TRGET1
BF TRGE'I"l when RO < R1. BLT TRGET1
ADD #-1,R0 T bitis not changed by ADD. T suB.w #1,R0
CMP/EQ  #0,RO0 bit is set when RO = 0. The BEQ TRGET

program branches if RO = 0.
BT TRGET

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

8 Hitachi



Table4.4 Immediate Data Accessing

Classification SH7000/7600-Series CPU Example for Other CPU
8-bit immediate MoV #H'12,R0 MOV.B #H'12,R0
16-bit immediate MOV.W @(disp, PC),RO MOV.W #H'1234,R0

.................

.DATA.W H'1234

32-bit immediate MOV.L @(disp, PC),RO MOV.L #H'12345678,R0

.DATA.L H'12345678

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.9  Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 4.5 Absolute Address

Classification SH7000/7600 Series CPU Example for Other CPU

Absolute address MOV.L @(disp, PC),R1 MOV.B  @H'12345678,R0
MOV.B @R1,R0

.DATA.L  H'12345678

4,1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

9 Hitachi



Table 4.6

Displacement Accessing

Classification SH7000/7600 Series CPU Example for Other CPU
16-bit displacement MOV.W @(disp,PC),RO MOV.W @(H'1234,R1l),R2
MOV.W @(RO,R1),R2
.DATA.W H'1234
4.2  Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. (The operand is —
register the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
register : -~
addressing Rn > Rn
Post- " @Rn+ The effective address is the content of register Rn. A Rn
increment constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a longword executed)
addressing operation.
Byte: Rn + 1
[ A0 | B
0 —Rn
. Longword:
1214 Rn +4 — Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn -1
decrement subtracting a constant from Rn. 1 is subtractedfora — Rn
indirect byte operation, 2 for a word operation, or 4 for a Word: Rn -2
register longword operation. = Rn
addressing
Longword:
Rn-4 - An

(Instruction
executed with
Rn after
calculation)

10 Hitachi



Table4.7 Addressing Modes and Effective Addresses (cont)
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Indirect @(disp:4,  The effective address is Rn plus a 4-bit displacement Byte: Rn +
register Rn) (disp). The value of disp is zero-extended, and disp
addressing remains the same for a byte operation, is doubled for
with a word operation, or is quadrupled for a longword Word: Rn +
displace- operation. disp x 2
ment Longword:
Rn + disp x4
disp Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn)  The effective address is the Rn value plus RO. Rn + RO
indexed
addressing
®
Indirect @(disp:8, The effective address is the GBR value plus an 8-bit  Byte: GBR +
GBR GBR) displacement (disp). The value of disp is zero- disp
addressing extended, and remains the same for a byte
with operation, is doubled for a word operation, or is Word: GBR +
displace- quadrupled for a longword operation. disp x 2
ment '
Longword:
GBR GBR + disp x
disp " _ GBR 4
(zero-extended) + disp x 1/2/4
X

1/2/4
Indirect @(Ro, The effective address is the GBR value plus RO. GBR + RO
indexed GBR) ‘
GBR
addressing

GBR + RO

11

Hitachi



Table4.7 Addressing Modes and Effective Addresses (cont)
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
PCrelative  @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing  PC) displacement (disp). The value of disp is zero- dispx 2
with extended, and disp is doubled for a word operation, Longword:
displace- or is quadrupled for a longword operation. For a PC &
ment longword operation, the lowest two bits of the' PC are ' L'eFFEFFEC
masked. +disp x4
{for longword)
PC + disp x 2
H'FFFFFFFC or
_ PC&H'FFFFFFFC
disp + disp x 4
(zero-extended) |
PC relative  disp:8 The effective address is the PC value sign-extended PC + disp x2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp x2

with a 12-bit displacement (disp), doubled, and
added to the PC.

disp
(sign-extended)

PC+dispx 2

12 Hitachi



Table4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
PC relative Rn The effective address is the register PC plus Rn. PC + Rn
addressing )

(cont)

(—{ Fermo ]

Immediate #imm:8

_ The 8-bit immediate data (imm) for the TST, AND,

addressing OR, and XOR instructions are zero-extended.
#imm:8 The 8-bit immediate data (imm) for the MOV, ADD, —

and CMP/EQ instructions are sign-extended.
#imm:8 Immediate data (imm) for the TRAPA instructionis  —

zero-extended and is quadrupled.

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

e xxxx: Instruction code

e mmmm: Source register

* nnnn: Destination register

» iiii: Immediate data
¢ dddd: Displacement

Table4.8 Instruction Formats

Source ~ Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
XXXX  XXXX  XXXX  XXXX
n format — nnnn: Direct MOVT Rn
register
15 0  Control register  nnnn: Direct STS MACH,Rn
XXXX | AnAN | XXxx  XXxx or system register
register

13 Hitachi



Table 4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
n format (cont) — nnnn: Direct JMP  @Rn
' register
Control register  nnnn: Indirect pre- STC.L. SR,@-Rn
or system decrement
register register
— nnnn: PC relative BRAF  Rn
using Rn
m format mmmm: Direct Control register or LDC Rm, SR
register system register
15 0 - mmmm: Indirect Control register or LDC.L @Rm+, SR
XXXX Immmm XXXX  XXXX post-increment  system register
register
nm format mmmm: Direct nnnn: Direct ADD Rm, Rn
register register
15 mmmm: Direct nnnn: Indirect MOV.L Rm,@Rn
| XXXX | nnnn lmmmm XXXX register register
mmmm: Indirect MACH, MACL MAC.W
post-increment @Rm+, @Rn+
register (multiply/
accumulate)
nnnn*: Indirect
post-increment
register (multiply/
accumulate)
mmmm: Indirect  nnnn: Direct MOV.L @Rm+,Rn
post-increment . register
register
mmmm: Direct nnnn: Indirect pre- MOV.L Rm,@-Rn
register decrement
register
mmmm: Direct nnnn: Indirect MOV.L
register indexed register  Rm, @(RO,Rn)
md format mmmmdddd: RO (Direct MOV.B
15 0 indirect register  register) @(disp,Rm) ,RO
XXX Xxxx [mmmm| dddd with
displacement
nd4 format RO (Direct nnnndddd: MOV.B
15 Q  register) Indirect register RO, @(disp,Rn)
Dxxx %0 | nnnn | dddd with displacement

Note:

In multiply/accumulate instructions, nnnn is the source register.

14 Hitachi



Table 4.8 Instruction Formats (cont)
v Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm: Direct  nnnndddd: Indirect Mov.L
15 0  register register with Rm, @ (disp,Rn)
xxxx | nnnn jmmmm| dddd displacement
mmmmdddd: nnnn;: Direct MOV.L
Indirect register  register @(disp,Rm) ,Rn
with
displacement
d format dddddddd: RO (Direct register) Mov.L
15 o Indirect GBR @(disp,GBR),R0
xxxx  xxxx | dddd dddd W.'th
displacement
RO(Direct dddddddd: Indirect Mov.L
register) GBR with RO, @(disp, GBR)
displacement
dddddddd: PC RO (Direct register) MOvA
relative with @(disp,PC),R0O
displacement
— dddddddd: PC BF label
relative
d12 format — dddddddddddd: BRA label
15 0 PC relative (label = disp +
oo | dddd dddd dddd 7C)
nd8 format dddddddd: PC  nnnn: Direct MOV.L
15 o relative with register @(disp,PC),Rn
Lxxxx l nnnn ‘ dddd dddd displacement
i format iiiiiiii: Immediate Indirect indexed AND.B
GBR #imm, @ (RO, GBR)
15 0 iiiiiiii: Immediate RO (Direct register) AND  #imm, RO
XXXX XXX | @iii o diii
iiiiiiii: Inémediate — TRAPA #imm
ni format iiiiiiii: Immediate  nnnn: Direct ADD #imm, Rn
15 0 register
XXXX | nnnn | diii diii

15 Hitachi



Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

16 Hitachi



Table 5.1 Classification of Instructions

Applicable
Instructions
Operation SH SH No. of
Classification  Types Code Function 7600 7000 Instructions
Data transfer 5 MOV Data transfer v v 39
Immediate data transfer
Peripheral module data transfer
Structure data transfer
MOVA Effective address transfer v v
MOVT T-bit transfer v v
SWAP Swap of upper and lower bytes v v
XTRCT Extraction of the middle of 4 v
registers connected
Arithmetic 21 ADD Binary addition 4 4 33
operations ADDC Binary addition with carry v Vv
ADDV ~  Binary addition with overflow v 4
check
CMP/cond Comparison v 4
DIV1 Division 4 4
DIVOS Initialization of signed division v/ v
DIvou Initialization of unsigned v v
division
DMULS Signed double-length 4
"multiplication -
DMULU Unsigned double-length 4
multiplication
DT Decrement and test 4
EXTS Sign extension v v
EXTU Zero extension 4 v
MAC Multiply/accumulate, double- 4 v
length multiply/accumulate
operation*1
MUL Double-length multiplication 4 v
MULS Signed multiplication 4 v
MULU Unsigned multiplication v v
NEG Negation v v
NEGC Negation with borrow v v .
SuB Binary subtraction v v
SuBC Binary subtraction with borrow ¢ v
susv Binary subtraction with 4 v
underflow check

Notes 1. Double-length multiply/accumulate is an SH7600 function.

17 Hitachi



Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation SH SH No. of
Classification  Types Code Function 7600 7000 Instructions
Logic 6 AND Logical AND v v 14
operations NOT Bit inversion v v
OR Logical OR 4 v
TAS Memory test and bit set v 4
TST Logical AND and T-bit set v v
XOR Exclusive OR v v
Shift 10 ROTL One-bit left rotation v v 14
ROTR One-bit right rotation 4 4
ROTCL One-bit left rotation with T bit v v
ROTCR One-bit right rotation with T bit v v
SHAL One-bit arithmetic left shift v v
SHAR One-bit arithmetic right shift v v
SHLL One-bit logical left shift v v
SHLLn n-bit logical left shift 4 4
SHLR One-bit Iogiéal right shift v v
SHLRn n-bit logical right shift v v
Branch 9 BF Conditional branch, conditional ¢ v 11
branch with delay*2 (T = 0)
BT Conditional branch, conditional ¢
branch with delay*2 (T = 1)
BRA Unconditional branch v 4
BRAF Unconditional branch v
BSR Branch to subroutine procedure ¢ v
BSRF Branch to subroutine procedure v/
JMP Unconditional branch v v
JSR Branch to subroutine procedure v v
RTS Return from subroutine v v
procedure

Notes 2. Conditional branch with delay is an SH7600 function.

18 Hitachi



Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation ' SH SH No.of
Classification Types Code Function 7600 7000 Instructions
System 11 CLRT T-bit clear v 31
control CLRMAC  MAC register clear v v
LDC Load to control register v v
LDS Load to system register 4 v
NOP No operation v 4
RTE Return from exception 4 "4
processing
SETT T-bit set v 4
SLEEP Shift into power-down mode v/ 4
STC Storing control register data ¢/ 4
STS Storing system register data ¢/ v
TRAPA Trap exception processing Vv vV
Total: 62 142

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

19 Hitachi



Table 5.2

_ ltem

Instruction Code Format

Format

Explanation

Instruction
mnemonic

OP.Sz SRC,DEST

OP: Operation code

Sz: Size

SRC: Source

DEST: Destination

Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction
code

MSB < LSB

mmmm: Source register
nnnn: Destination register
0000: RO
0001: R1

iii: Immediate data
dddd: Displacement

Operation
summary

<<n, >>n

Direction of transfer
Memory operand

Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit left/right shift

Execution
cycle

Value when no wait states are inserted

Instruction
execution
cycles

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory — register) and the register used by the next
instruction are the same.

Value of T bit after instruction is executed

T bit

No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

20 Hitachi



5.1.1

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Data Transfer Instructions

Table 5.3  Data Transfer Instructions
Execu-
tion T
Instruction Instruction Code Operation State Bit
MoV #imm, Rn 1110nmnnniiiiiiii imm — Sign extension — 1 —
. Rn
MOV.W @(disp,PC),Rn  1001lnnnndddddddd (disp x2 + PC) — Sign 1 —
. extension - Rn
MOV.L @(disp,PC),Rn  110lnnnndddddddd (disp x 4 + PC) — Rn 1 —
MOV Rm, Rn 0110nnnnmmmm0011 Rm— Rn 1 —_—
MOV.B Rm,@Rn 001 0nnnnmmmm0000 BRm — (Rn) 1 —
MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm — (Rn) 1 —
MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B @Rm,Rn 01 10nnnnmomm0 000 (Rm) — Sign extension > 1 —_
Rn
MOV.W @Rm,Rn 0110nnnnnemm0001 (Rm) — Sign extension —»* 1 —
Rn
MOV.L @Rm,Rn 01 10nnnnmmmm0010 (Rm)— Rn 1 —_
MOV.B 'Rm,@-Rn 001 0nnnnrm mm0100 Rn-1 — Rn, Rm — (Rn) 1 —
MOV.W Rm,@-Rn 0010nmnnmmmm0101  Rn-2 —» Rn, RAm — (Rn) 1 -
MOV.L Rm,@-Rn 0010nnnnmmm0110 Rn—-4 — Rn, Rm — (Rn) 1 —
MOV.B @Rm+,Rn 01 10nnnnmmmm0100 (Rm) — Sign extension » 1 —
Rn,Am +1 — Rm
MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — Sign extension —» 1 —
RBRn,Bm +2 —» Rm
MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm)—» Rn,RAm+4 -Rm 1 —_
MOV.B RO,@(disp,Rn)  10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO, @(disp,Rn) 10000001nnnndddd RO — (disp x 2 + Rn) 1 —
MOV.L Rm,@(disp,Rn)  000lnnnnmmmmdddd Rm — (disp x 4 + Rn) 1 —
MOV.B @(disp,Rm),R0  10000100mmmmdddd (disp + Rm} — Sign 1 —_
extension — RO
MOV.W @(disp,Rm),R0  10000101lmmmmdddd (disp x 2 + Rm) — Sign 1 —
extension —» RO
MOV.L @(disp,Rm),Rn 010 1nnnnmmmmdddd (disp x 4 + Rm) — Rn 1 —
MOV.B Rm,@(R0O,Rn) 0000nnnnmmrm0100 Rm — (RO + Rn) 1 —
MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0 101 Rm — (RO + Rn) 1 —
21 Hitachi



Table 5.3

Data Transfer Instructions (cont)

Execu-
tion T
Instruction Instruction Code Operation State Bit
MOV.L  Rm,@(RO,Rn) 0000nnnnmmm0110 Rm — (RO + Rn) 1 —
MOV.B  @{RO,Rm),Rn 0000nnnnmmmam1100 (RO + Rm) — Sign 1 —
~ ’ extension — Rn
MOV.W  @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — Sign 1 —
extension - Rn
MOV.L. @(RO,Rm),Rn 0000nnnnmmm1110 (RO + Rm) — Rn 1 —
MOV.B RO,@(disp,GBR)  11000000ddddddadd RO — (disp + GBR) 1 —
MOV.W RO, @(disp,GBR) 11000001ddddddda RO — (dispx2+GBR) 1 —
MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x 4+ GBR) 1 _
MOV.B  @(disp,GBR),R0O  11000100d4ddddddd (disp + GBR) — Sign 1 —
extension —» RO
MOV.W @(disp,GBR),RO0  11000101dddddddd (disp x2+ GBR) — Sign 1 —
extension —» RO
MOV.L  @(disp,GBR),RO  11000110dddddddd (disp x 4 + GBR) — RO 1 —
MOVA @(disp, PC),RO 11000111dddddddd dispx 4+ PC — RO 1 —
MOVT Rn 0000nnnn00101001 T—-An 1 _
SWAP.B Rm,Rn 0110nnnnmrmm1 000 Rm — Swap upper and 1 —
lower 2 bytes— Rn
SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm — Swap upper and 1 -
lower word — Rn
XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rmand 1 —
Rn—Rn

22 Hitachi



5.1.2 Arithmetic Instructions
Table 5.4  Arithmetic Instructions
Execution
Instruction Instruction Code Operation State T Bit
ADD Rm, Rn 0011nnnnmmmm1100 Rn + Rm — Rn 1 —
ADD #imm, Rn O0lllnnnniiiiiiii Rn+imm— Rn. 1 —
ADDC Rm, Rn 001lnnnnmmmmi110 Rn+Rm+T—>ARn, 1 Carny
Cany—>T
ADDV Rm, Rn 001lnnmnnmmallil  Rn+ Rm — Rn, 1 Overflow
Overflow »T
CMP/EQ  #imm,RO 10001000iiiiiiii W RO=imm,1 »T 1 Compariso
n result
CMP/EQ Rm,Rn 0011nnnnmmmm0000 I Rn=Rm,1 >T 1 C_ompariso
v n result
CMP/HS FRm,Rn 0011nnnnmerm0010  If Rn>Rm with 1 Compariso
unsigned data, 1 - T n result
CMP/GE  Rm,Rn 0011lnnnnmmmm0011  If Rn> Rm with 1 Compariso
signed data, 1 - T n result
CMP/HI  Rm,Rn 0011lnnnnmmmm0110  If Rn > Rm with 1 Compariso
’ unsigned data, 1 > T n result
CMP/GT  Rm,Rn 0011lnnnnmmmm0111  If Rn > Rm with 1 Compariso
signed data, 1 > T n result
CMP/PL Rn 0100nnnn00010101  Rn>0,1 T 1 Compariso
‘ n result
CMP/PZ Rn 0100nnnn00010001 IfRn20,1->T 1 Compariso
n result
CMP/STR Rm,Rn 0010nnnnmmom1100  If Rn and Rm have an 1 Compariso
equivalent byte, 1 —» n result
T
DIVl Rm, Rn 0011nnnnmmmm0100  Single-step division 1 Calculation
(Rn/Rm) result
DIVOS Rm, Rn 0010nmnnmmmm0111  MSB of Rn — Q, 1 Calculation
MSB of Rm —» M, M A result
QT
DIVOU 0 ->MQT 1 0

0000000000011001

23 Hitachi



Table 5.4

Instruction

Arithmetic Instructions (cont)

Instruction Code

Operation

Execution
State

T Bit

DMULS.L Rm,Rn*?2

0011nnnnmmmm1101

Signed operation of
Rn x Rm —» MACH,
MACL

32 x 32 — 64 bits

2to 4*1

DMULU.L Rm,Rn*?2

001 1lnnnnmmmm0101

Unsigned operation of
Rn x Rm —» MACH,
MACL

32 x 32 — 64 bits

2to 4"

DT Rn*2

0100nnnn00010000

Rn-1 - Rn, when
Rnis 0,1 — T. When
Rnis nonzero,0 > T

Compariso
n result

EXTS.B Rm,Rn

0110nnnnmmran1110

A byte in Rm is sign-
extended — Rn

EXTS.W Rm,Rn

0110nnnnmmmm1ill

A word in Rm is sign-
extended — Rn

EXTU.B Rm,Rn

0110nnnnmmmm1100

A byte in Rm is zero-
extended — Rn

EXTU.W Rm,Rn

0110nnnnmmmm1101

A word in Rm is zero-
extended — Rn

MAC.L @Rm+, @GRn+

*2

0000nnnnnmmmm1111

Signed operation of
(Rn) x (Rm) + MAC
- MAC

32 x 32 + 64— 64 bits

3/(2 to 4)*1

@Rm+, @Rn+

0100nnnnmmmm1111

Signed operation of
(Rn) x (Rm) + MAC
— MAC

(SH7600) 16 x 16 +
64 — 64 bits

(SH7000) 16 x 16 +
42 - 42 bits

3/(2)*1

MUL.L  Rm,Rn*2

0000nnnnmmmm0111

Rn x Rm - MACL,
32 x 32 — 32 bits

2to4*1

MULS.W Rm,Rn

0010nnnnmmmm1111

Signed operation of
Rn x Rm — MAC

16 x 16 — 32 bits

1t03*1

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

24 Hitachi



Table 5.4

Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit
MULU.W Rm,Rn 0010nnnnmmmm1110  Unsigned operation of 1 to 3*1 —
Rn x Rm — MAC
16 x 16 — 32 bits
NEG Rm,Rn 0110nmnnmmmm1011  0-Rm — Rn 1 —
NEGC Rm, Rn 0110nnnnmmmm1010  0-Rm-T — Rn, 1 Borrow
Borrow —» T
SUB Rm, Rn 001 1nnnnmmmm1.000 Rn—-Rm — Rn 1 —_
SUBC Rm, Rn 0011lnnnnmmmm1010  Rn-Rm-T — Rn, 1 Borrow
Borrow —» T
SUBV Rm, Rn 0011lnnnnmmmm1011  Rn-Bm — Rn, 1 Underflow
Underflow - T
Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)
5.1.3 Logic Operation Instructions
Table 5.5 Logic Operation Instructions
Execution
Instruction Instruction Code Operation State T Bit
AND Rm, Rn 0010nnnnmmmm1001  Rn & Rm — Rn 1 —
AND #imm, RO 11001001iiiiiiii RO & imm — RO 1 —
AND.B #imm,@(RO,GBR)  11001101iiiiiiii (RO+GBR)&imm —» 3 —
(RO + GBR)
NOT Rm,Rn 0110nnnnmmmm0111 ~Bm — Rn 1 —
OR Rm,Rn 0010nmnmmmmm1 011 BnlRm — Rn 1 —
OR #imm, RO 11001011iiiiiiii  ROlimm — RO 1 —_
OR.B  #imm,@(RO,GBR)  11001111iiiiiijii (RO + GBRY)!limm — 3 —
, (RO + GBR)
TAS.B @Rn 0100nnnn00011011  [f(Rn)is0,1 > T; 1> 4 Test
MSB of (Rn) result
TST Rm, Rn 001 0nnnnmmmm1 000 Rn & Rm; if the resultis 1 Test
0,1-T result
TST #imm, RO 11001000iiiiiiii RO &imm; if the result 1 Test
is0,1->T result

25 Hitachi



Table 5.5 Logic Operation Instructions (cont)
Execution _
* Instruction Instruction Code Operation State T Bit
TST.B  #imm,@(RO,GBR)  11001100iiiiiiii (RO + GBR) & imm;if 3 Test
' theresultis0,1 > T result
XOR Rm, Rn 0010nnmnnmmmm1010  Rn”~Rm — Rn 1 —
XOR #imm, RO 11001010iiiiiiii  ROAimm - RO 1 —
XOR.B  #imm, @(RO,GBR)  11001110iiiiiiii (RO+GBR)Aimm —> 3 —
(RO + GBR)
5.1.4  Shift Instructions
Table 5.6  Shift Instructions
Instruction Instruction Code Operation Execution State T Bit
ROTL Rn 0100nnnn00000100 T « Rn« MSB 1 MSB
ROTR Rn 0100nnmn00000101 LSB -Rn -»T 1 LSB
ROTCL Rn 0100nnnn00100100 T« Rn¢eT 1 MSB
ROTCR Rn 0100nnnn00100101 T —Rn—T 1 LSB
SHAL  Rn 0100nnnn00100000 T« Rn«0 1 MsB
SHAR  Rn 0100nnnn00100001  MSB— Rn—T 1 LsB
SHLL.  Rn 0100nnnn00000000 T« Rn«0 1 MSB
SHLR Rn 0100nnnn00000001 0 RN -T 1 LSB
SHLL2 Rn 0100nnnn00001000  Rn<<2 — Rn 1 —
SHLR2 Rn 0100nnnn00001001  Rn>>2 — Rn 1 —
SHLL8 Rn 0100nnnn00011000  Rn<<8 — Rn 1 —
SHLRS Rn 0100nnnn00011001  Rn>>8 —Rn 1 —
SHLL16 Rn 0100nnnn00101000  Rn<<16 — Rn 1 —
SHLR16 Rn 0100nnnn00101001  Rn>>16 —Rn 1 —

26 Hitachi



5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Execution
Instruction Instruction Code Operation State T Bit
BF label 10001011dddddddd fT=0,dispx2+PC—->PC; ifT= 31 *3 —

1, nop (where label is disp x 2 + PC)

BF/S label*? 100011113ddddddd Delayed branch, if T =0, disp x2 + 2/1*3 —_
PC — PC; if T =1, nop

BT label 10001001dddddddd fT=1,dispx2+PC - PC; ifT= 3/1*3 —
0, nop (where label is disp + PC)

BT/S label*? 10001101dddddddd  Delayed branch, if T=1,disp x2+ 2/1 *3 —_
PC— PC; if T =0, nop :

BRA label 10104ddddddddddd  Delayed branch, disp x2+PC - 2 —

PC

BRAF Rn*? 0000nnnn00100011  Delayed branch, Rn + PC — PC 2 —

BSR label 1011dddddddddddd  Delayed branch, PC — PR, dispx2 2 —
+PC - PC

* BSRF Rn*? 0000nnnn00000011  Delayed branch, PC — PR, Rn + 2 —

PC— PC

JMP @Rn 0100nnnn00101011  Delayed branch, Rn — PC 2 —

JSR GRn 0100nnnn00001011  Delayed branch, PC — PR, Rn — 2 —
PC

RTS 0000000000001011  Delayed branch, PR — PC 2 =

Notes: 2. SH7600 instruction
3. One state when it does not branch

27 Hitachi



5.1.6

System Control Instructions

Table 5.8 System Control Instructions

Execution T
Instruction Instruction Code Operation State Bit
CLRT 0000000000001000 0 T 1 0
CLRMAC 0000000000101000 0 — MACH, MACL 1 —
LDC  Rm,SR 0100mmm00001110  Rm — SR 1 LSB
LDC Rm, GBR 0100mmmm00011110 Rm— GBR 1 —
LDC Rm, VBR 0100mmmm00101110  Rm— VBR 1 —
LDC.L @Rm+,SR 0100mmmm00000111 ~ (Rm)— SR, Rm+ 4 — Rm 3 LSB
LDC.L @Rm+,GBR 0100mmmm00010111  (Rm)— GBR, Rm+4 - Rm 3 —
LDC.L  @Rm+,VBR 0100mmmm00100111  (Rm)— VBR, Rm+4 »Rm 3 —
LDS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —
1DS Rm, MACL 0100mmmm00011010  Rm — MACL 1 —
LDS Rm, PR 0100mrrm00101010  Rm— PR 1 —
LDS.L @Rm+,MACH 0100mmmm00000110  (Rm) - MACH, Rm +4 — 1 —

Rm
LDS.L  @Rm+,MACL 0100mmmm00010110  (Rm) » MACL, Rm+4 —» Rm 1 —
LDS.L @Rm+, PR 0100mmmm00100110  (Rm) —» PR, Rm+ 4 — Rm 1 —
NOP 0000000000001001  No operation ' 1 —
RTE 0000000000101011  Delayed branch, stackarea —» 4 LSB
' PC/SR

SETT 0000000000011000 1 T 1 1
SLEEP 0000000000011011  Sleep 34 —
STC SR,Rn 0000nnnn00000010 SR — Rn 1 —
STC GBR, Rn 0000nnnn00010010  GBR — Rn 1 —_
STC VBR, Rn 0000nnnn00100010  VBR — Rn 1 —
STC.L. SR, @-Rn 0100nnnn00000011  Rn—4 — Rn, SR — (Rn) 2 —
STC.L GBER,@-Rn 0100nnnn00010011  Rn—<4 — Rn, GBR — (Rn) 2 —
STC.L VER,@-Rn 0100nnnn00100011  Rn—4 — Rn, VBR — (Rn) 2 —
STS MACH, Rn 0000nnnn00001010  MACH — Rn 1 —
STS ' MACL,Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR — Rn 1 -

28 Hitachi



Table 5.8 System Control Instructions (cont)
Execution T
Instruction Instruction Code Operation State Bit
STS.L MACH, @-Rn 0100rmnn00000010 Rn—4 — Rn, MACH — (Rn) 1 —
STS.L MACL,@-Rn 0100nnnn00010010 Rn-4 — Rn, MACL — (Rn) 1 —
STS.L PR,@-Rn 0100nnnn00100010 Rn—4 — Rn, PR — (Rn) 1 —
TRAPA  #imm 11000011iiiiiiii  PC/SR — stack area, immx 8 -
4 +VBR) —» PC

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory — register) is the same as the register

used by the next instruction.

5.2  Instruction Set in Alphabetical Order
Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.
Table 5.9 Instruction Set
Execu-
tion
Instruction Instruction Code Operation State T Bit
ADD #imm, Rn 01llnnnniiiiiiii  Rn+imm — Rn 1 —_
ADD Rm, Rn 001innnnmmmm1100 Rn+ Rm — Rn 1 —
ADDC  Rm,Rn 001lnnnnmmm1110  Rn+Rm+T— Rn, 1 Carry
Carry > T
ADDV  Rm,Rn 001llnnnnmmmml111l  Rn+ Rm — Rn, 1 Overflow
Overflow - T
AND  #imm,RO 11001001iiiiiiii RO &imm — RO 1 =
AND  Rm,Rn 0010nnnnmmmm1001  Rn & Rm — Rn —_
AND.B #imm, @(RO,GBR) 11001101iiiiiiii (RO+ GBR) &imm 3 —
— (RO + GBR)
BF label 10001011ddddddad IfT=0,dispx 2+  3/1*3 —
PC—-PC; ifT=1,
nop
BF/S  label*? 10001111dddddddd fT=0,disp x2+ 2/1*3 —
PC—-PC; ifT=1,
nop
29 Hitachi



Table 59 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code - Operation State T Bit
BRA label 1010d4dddddddddad Delayed branch, 2 —
dispx 2+ PC —
PC
BRAF  Rn*? 0000nnnn00100011 Delayed branch, Rn 2 —
+PC - PC
BSR label 1011dddddddddddd Delayed branch, 2 —_
PC — PR, dispx 2
+PC —».PC
BSRF  Rn*2 0000nnmn00000011 Delayed branch, 2 —
PC — PR, Rn + PC
- PC
BT label 10001001dddddddd fT=1,disp x2+ 3/13 —
PC— PC; ifT=0,
nop
BT/S  label*? 10001101dddddddd fT=1dispx2+ 2/1*3 —
PC—> PC; ifT=0,
nop
CLRMAC 0000000000101000 0 -»MACH,MACL 1 —
CLRT 0000000000001000 0-T 1 0
CMP/EQ #imm,RO 10001000iiiiiiii fRO=imm,1 »>T 1 Comparison
result
CMP/EQ Rm,Rn 0011nnnnmmm0000 fRh=Rm,1 ->T 1 Comparison
result
CMP/GE Rm,Rn 0011nnnnmmmm0011 If Rn 2 Rm with 1 Comparison
signed data, 1 > T result
CMP/GT Rm,Rn 0011innnnmmmm0111 If Rn > Rm with 1 Comparison
signeddata, 1 > T result
CMP/HI Rm,Rn 001 1nnnnmmmm0110 if Rn > Rm with 1 Comparison
unsigned data, 1 —» result
T
CMP/HS Rm,Rn 0011lnnnnmmmm0010 - If Rn > Rm with 1 Comparison
unsigned data, 1 - result
T
CMP/PL Rn 0100nnnn00010101 fRn>0,1 T 1 Comparison
result
CMP/PZ Rn 0100nnnn00010001 fRn20,1-T 1 Comparison
‘ result

Notes: 2. SH7600 instructions
3. One state when it does not branch

30 Hitachi



Table 5.9

Instruction

Instruction Set (cont)

Instruction Code

Operation

Execu-
tion
State

T Bit

CMP/STR Rm,Rn

0010nnnnmmmm1 100

If Rn and Rm have
an equivalent byte,
15T

Comparison
result

DIVOS Rm, Rn

001 0nnnnmmmm0111

MSB of Rn — Q,
MSB of Rm - M, M
AQ-T

Calculation
result

DIVOU

0000000000011001

0 ->MQT

0

DIVl Rm, Rn

001 1nnnnmmmm0100

Single-step division
(Rn/Rm)

Calculation
result

DMULS.L Rm,Rn*2

001 Innnnmmrmnl1101

Signed operation of
Rn x Rm —» MACH,
MACL

2to 4*1

DMULU.L Rm,Rn*2

001 1lnnnnmmmm0101

Unsigned operation
of Rn x Rm —
MACH, MACL

2 to 4*1

0100nnnn00010000

Rn-1— Rn, when
Rnis0,1 »T.
When Rn is
nonzero,0 > T

Comparison
result

EXTS.B Rm, Rn

0110nnnnmmmm1110

A byte in Rm is
sign-extended —
Rn

EXTS.W Rm, Rn

0110nnnnmmm1111

Awordin Rmis
sign-extended —
Rn

EXTU.B Rm, Rn

0110nnnnnmmm11.00

Abyte in Rmis
zero-extended —
Rn

EXTU.W Rm, Rn

0110nnnnmmmm1101

Awordin Rmiis
zero-extended —
Rn

JMP @Rn

0100nnnn00101011

Delayed branch, Rn 2

—PC

Notes: 1. The normal minimum number of execution states
2. SH7600 instructions

Hitachi



Table 5.9

Instruction Set (cont)

Execu-
) tion
Instruction Instruction Code Operation State T Bit
JSR @Rn 0100nnnn00001011 Delayed branch, 2 —
PC — PR,Rn —
PC
LDC Rm, GBR 0100mmmm00011110 Rm — GBR 1 —
LDC Rm, SR 0100mmmm00001110 Rm— SR 1 LSB
1DC Rm, VER 0100mmmm00101110 Rm - VBR 1 —
LDC.L  @Rm+,GBER 0100mmmm00010111 (Rm) -» GBR, Rm 3 —
+4— Rm v
LDC.L  @Rm+,SR 0100mmmm00000111 (Rm)— SR, Rm+ 3 LSB
4 -»Bm
LDC.L  @Rm+,VBR 0100mmmm00100111 (Rm)»> VBR, Rm 3 —
+4 — Bm
LDS Rm, MACH 0100mmm00001010 Rm — MACH 1 —_
LDS Rm, MACL 0100mmmm00011010 Rm — MACL 1 -_—
LDS Rm, PR 0100nmmmm00101010 Rm— PR 1 —
LDS.L  @Rm+,MACH 0100mmmm00000110 {Rm) - MACH, 1 —_
Rm + 4 — Rm
LDS.L  @Rm+,MACL 0100mmmm00010110 (Rm) - MACL, Rm 1 —
+4 — Bm
1DS.L,  @Rm+,PR 0100mmmm00100110 (Rm) » PR,Rm+ 1 —
4 ->RBm
MAC.L  @Rm+,@Rn+*2  0000nnnnmmmmllll Signed operation of 3/(2to —
(Rn) x (Rm) + MAC  4)*1
— MAC
MAC.W  @Rm+,G@Rn+ 0100nnnnmmrm1111  Signed operation of 3/(2)*! —
(Rn) x (Rm) + MAC
— MAC
MOV #irm, Rn 1110nnnniiiiiiii imm — Sign 1 —
extension —» Rn
MOV Rm, Rn 0110nnnnmmnm0011 BRm — Rn 1 —

Notes: 1. The normal minimum number of execution states (the number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

32 Hitachi



Sign extension —
RO

Table 5.9 Instruction Set (cont) ‘
Execu-
tion
Instruction Instruction Code Operation State  TBit
MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) — 1 —_
Sign extension —
RO
MOV.B @{disp,Rm),RO 100001 00mmmmdddd (disp + Rm) — Sign 1 —_
extension — RO
MOV.B  @(RO,Rm),Rn 0000nnnnmrmm1100 (RO +Rm)— Sign 1 —
extension — Rn
MOV.B  @Rm+,Rn 0110nnnnmmmm0100 (Rm) — Sign 1 —
extension — Rn,
Rm+1 — BRm
MOV.B  @Rm,Rn 0110nnnnm mmm0000 (Rm) — Sign 1 —
extension — Rn
MOV.B RO, @(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —
MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp+Rn) 1 —
MOV.B  Rm,@(RO,Rn) 0000nnnnmmmm0100 Rm — (RO + Rn) 1 —
MOV.B  Rm,G-Rn 0010nnnnrmm0100 Rn-1 > Rn, Rm > 1 —_
_ (Rn)
MOV.B Rm,@Rn 00 10nnnnmmmm0000 Rm — (Rn) 1 —_
MOV.L @(disp,GBR),R0  11000110dddddddd (disp x4 +GBR) —» 1 —
RO
"MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp x4+PC) » 1 —
Rn
MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp x4 +Rm)—> 1 —
Rn
MOV.L  @(RO,Rm),Rn 0000nnnnmmmm1110 (RO + Rm) > Rn 1 —
MOV. @Rm+,Rn 0110nnnnmmm0110 (Rm) > Rn,Rm +4 1 —
- — BRm
MOV.L  @Rm,Rn 011 0nnnnmmmm0010 (Rm) - Rn 1 —
MOV.L RO, @(disp,GBER) 11000010dddddddd RO — (dispx 4 + 1 —
GBR)
MOV.L  Rm,@(disp,Rn) 0001nnnnmmmmddd Rm — (disp x 4 + 1 —
Rn)
MOV.L - Rm,@(RO,Rn) 0000nnnnnenram0110 BRm — (RO + Fiy) 1 —
MOV.L  Rm,@-Rn 0010nnnnmmm0110 Rn4 —- Rn, Bm —> 1 —
(Bn)
MOV.L  Rm,@Rn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.W @(disp,GBR),R0O 11000101ddddddadd (disp x2+ GBR) » 1 —

33 Hitachi



Table 5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
MOV.W @({disp,PC),Rn 1001nnnndddddddd (disp x2+PC) —» 1 —_
Sign extension —
RBn
MOV.W  @(disp,Rm),RO 1000010 lmrmemdddd (disp x2+Rm)—» 1 —_
Sign extension —
RO
MOV.W  @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — Sign 1 —
extension — Rn
MOV.W  @Rm+,Rn 0110nnnnmomm0101 (Rm) — Sign 1 —
extension — Rn,
_ BRm+2 —» Rm
MOV.W  @Rm,Rn 011 0nnnnmrm0001 (Rm) — Sign 1 _
extension — Rn
MOV.W  RO,@(disp,GBR)  11000001dddddddd RO — (disp x 2+ 1 —
GBR)
MOV.W RO, @(disp,Rn) 10000001nnnndddd RO (disp x2+ 1 —
Rn)
MOV.W  Rm,@(RO,Rn) 000 0nnnnmmmm0101 Bm — (RO + Rn) 1 —_—
MOV.W  Rm,@-Rn 0010nnnnmmmm0101 Rn-2 - Rn, Rm —» 1 —
(Rn) '
MOV.W  Rm,@Rn 0010nnnrmmmm0001 Bm — (Rn) 1 —_
MOVA @(disp, PC),R0O 11000111dddddddd dispx 4+ PC - R0 1 —
MOVT Rn 0000nnnn00101001 T—Rn 1 —
MUL.L  Rm,Rn*? 0000nnnnmmrm0111 Rnx Rm — MACL 2t0o4*! —
MULS.W Rm,Rn 0010nnnnmrrml111 Signed operationof 1t03*1 —
Rn x Rm —» MAC
MULU.W Rm,Rn 0010nmnnmrrml110 Unsigned operation 1to3*1 —
of Rn x Rm — MAC
NEG Rm, Rn 011 0nnnnmmmml1 011 0-BRm — Rn 1 —
NEGC Rm, Rn 011 0nnnnmmmm1 010 0-Rm-T — Rn, 1 Borrow
Borrow —» T
NOP 0000000000001001 No operation 1 —
NOT Rm, Rn 0110nnnnmromm0111 ~Bm — Rn 1 —
OR #imm, RO 11001011iiiiiiii RO | imm —-> RO 1 —
OR Rm,Rn 001 0nnnnrmmml 011 "Rn!BRm— Rn 1 —_

Notes: 1. The normal minimum number of execution states
2. SH7600 instructions

34 Hitachi



Table5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
" OR.B #imm, @ (RO, GBR) 11001111iiiiiiid (RO+GBR)limm 3 —
— (RO + GBR)
ROICL Rn 0100nnnn00100100 T«RneT 1 MSB
ROICR Rn 0100nnnn00100101 ToRn>T 1 LSB
ROTL Rn 0100nnnn00000100 T « Rn« MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB -»Rn >T 1 LSB
RTE 0000000000101011 Delayed branch, 4 LSB
stack area —
PC/SR
RTS 0000000000001011 Delayed branch, 2 —
PR— PC
SETT 0000000000011000 15T 1 1
SHAL Rn 0100nnnn00100000 T«Rne0 1 MSB
SHAR Rn 0100nnnn00100001 MSB—-»> Rn—>T 1 LSB
SHLL Rn 0100nnnn00000000 T« RneO 1 MSB
SHLL2 Rn 0100nnnn00001000 Rn<<2 —Rn 1 —
SHLL8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —
SHLR Rn 0100nnnn00000001 0—->Rn->T 1 LSB
SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —
SLEEP 0000000000011011 Sleep 3 —
STC GBR, Rn 0000nnnn00010010 GBR — Rn 1 —
STC SR,Rn 0000nnnn00000010 SR—- Rn 1 —_
STC VER, Rn 0000nnnn00100010 VBR - Rn 1 —
STC.L  GBR,@-Rn 0100nnnn00010011 Rn—4 - Rn, GBR 2 -
— (Rn)
STC.L  SR,@-Rn 0100nnnn00000011 Rn—4 - Rn, SR> 2 —_
(Rn)
STC.L  VBR,@-Rn 0100nnnn00100011 Rn—4 - Rn, VBR 2 —
— (Rn)
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —

35 Hitachi



Rm and Rn — Rn

Table 5.9 Instruction Set (cont)
1 .
Execu-
tion
Instruction Instruction Code Operation State T Bit
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —_
STS PR,Rn 0000nnnn00101010 PR — Rn 1 —
STS.L MACH, @-Rn 0100nnnn00000010 Rn—4 — Rn, 1 —
MACH — (Rn)
STS.L.  MACL,@-Rn 0100nnnn00010010 Rn—4 — Rn, MACL 1 —
v — (Rn)
STS.L PR, @-Rn 0100nnnn00100010 Rn4—->Rn, PR> 1. —
(Rn)
SUB Rm,Rn 001 1lnnnnmmmml000 Rn—-Rm — Rn 1 —
SUBC Rm, Rn 001 1lnnnnmmmml1 010 Rn—-Bm-T — Rn, 1 Borrow
Borrow —» T
SUBV Rm,Rn 0011lnnnnmmmm1011 Rn-Rm — Rn, 1 Underflow
Underflow - T
SWAP.B Rm,Rn 0110nnnnnem1 000 Rm — Swap upper 1 —
and lower 2 bytes —
Rn
SWP.W  Rm,Rn 0110nnnnrmmml 001 Rm — Swap upper 1 —
: and lower word—
Rn
TAS.B  GRn 0100nnnn00011011 f(Rn)is0,1 -»T; 4 Test
1 — MSB of (Rn) result
TRAPA #3imm 11000011iiiiiiii PC/SR — stack 8 —_
area, (imm x 4 +
VBR) —» PC
TST #imm, RO 11001000iiiiiiii RO & imm; if the 1 Test
resultis0,1->T result
TST Rm, Rn 001 0nnnnnmmm1 000 Rn & Rm; if the 1 Test
resultis0,1 > T result
TST.B #irm, @(RO,GER) 11001100iiiiiiii (RO + GBR) & imm; 3 Test
if the result is 0, 1 result
» ->T
XOR #irmm, RO 11001010iiiiiiii ROAimm — RO 1 —
XOR Rm,Rn 0010nnnnmmmm1 010 RnARm — Rn 1 —
XR.B #irm, @ (RO, GER) 11001110iiiiiiii (RO +GBR)Aimm 3 —
= (RO + GBR)
XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of 1 —

36 Hitachi



Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1  Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code State T Bit
Assembler input format; A brief description of  Displayed in Number of  The value of
imm and disp are operation order MSB “LSB states when T bit after the
numbers, expressions, : thereis no instruction is
or symbols wait state executed

Description: Description of operation
Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

¢ Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte (unsigned long Addr);
unsigned short Read_Word(unsigned long Addr);
unsigned long Read_Long(unsigned long Addr);

* Writes data of each length to address Addr. An address error will occur if word data is written to
an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short Write_Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long(unsigned long Addr, unsigned long Data);

« Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4);,
execution starts from an instruction at address O rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot (unsigned lohg Addr) ;

37 Hitachi



* List registers:

unsigned long R[16];
unsigned long SR,GBR,VBR;
unsigned long MACH,MACL, PR;
unsigned long PC;

¢ Definition of SR structures:

struct SRO {
unsigned long dummy0:22;
unsigned long MO0:1;
unsigned. long Q0:1;
unsigned long I0:4;
unsigned long dummyl:2;
unsigned long S0:1;
unsigned long TO0:1;

}i

¢ Definition of bits in SR:

#define M ((*(struct SRO *) (&SR)) .MO)

#define Q ((*(struct SRO *) (&SR)) .Q0)

#define S ((*(struct SRO *) (&SR)).S0)

#define T ((*(struct SRO *) (&SR)).TO)
* Error display function:

Error( char *er );

-

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

38 Hitachi



.org
.data.w
.data.l
.sdata
.align 2
.align 4
.arepeat 16
.arepeat 32
.aendr

Location counter set

Securing integer word data
Securing integer longword data
Securing string data

2-byte boundary alignment
2-byte boundary alignment
16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Note: . The SH-series cross assembler version 1.0 does not support the conditional assembler

functions.

Notes: 1. In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (x1, x2, x4) according to the
operand size is written. This is done to show clearly the operation of the LSI; see the
assembler notation rules for the actural assembler descriptions.

@(disp:4, Rn):  Register indirect with displacement
@(disp:8, GBR): GBR indirect with displécement
@(disp 8, PC):  PC relative with displacement
disp:8, disp:12:  PC relative

. Among the 16 bits of the instruction code, a code not assigned as an instruction is
treated as a general illegal instruction, and will result in illegal instruction exception
processing, This-includes the case where an instruction code for the SH7600 series
only is executed on the SH7000 series.
Example 1: HFFF [General illegal instruction in both SH7000 and
SH 7600]
Example 2: H'3105 (=DMUL.L RO, R1)[Illegal instruction in SH7000]

. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example 1 ...
BRA Label
. data. W H'FFFF ¢ Slotillegal instruction
k [H'FFF is fundamentally a general illegal
instruction]

Example 2 RTE
BT/S Label « Slot illegal instruction

39 Hitachi



6.2  ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit
ADD Rm,Rn Rm + Rn— Rn 001 1nnnnmmmml100 1 —
ADD #imm,Rn  Rn+imm > Rn  0lllnnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The contents
of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn */
{

RIn]+=R[m];

PC+=2;

}

ADDI (long i, long n) /* ADD #imm,Rn */
.
if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);:
else R[n]+=(OXFFFFFFO0 | (long)i);
PC+=2;
}
Examples:

ADD RO,R1 Before execution RO = H'7FFFFFFF, R1 = H'00000001
: After execution R1 = H'80000000

ADD #H'01,R2  Before execution  R2 =H'00000000
After execution R2 =H'00000001

ADD #H'FE,R3  Before execution = R3 = H'00000001
After execution  R3 = H'FFFFFFFF

40 Hitachi



6.3 ADDC (ADD with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

ADDC Rm, Rn Rn+Rm+T— Rn,carry » T  0011lnnnnmmmml110 1 Canry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:
ADDC (long m,long n) /* ADDC Rm,Rn */
( .
" unsigned long tmpO,tmpl;

trpl=R[n]+R[m] ;

tmp0=R[n] ;
R[n]=tmpl+T;
if (tmpO>tmpl) T=1;
else T=0;
if (tmpl>R([n]) T=1;
PC+=2;
}
Examples:
CLRT RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)
ADDC  R3,R1 Before execution T =0, R1 = H'00000001, R3 = HFFFFFFFF
After execution T = 1, R1 = H'0000000
ADDC  R2,R0 Before execution T=1,R0= H'00000000, R2 = H'OOOOOOCO

After execution T =0, RO = H'00000001

41 Hitachi



6.4 ADDYV (ADD with V Flag Overflow Check): Arithmetic Instruction
Format Abstract Code State T Bit

ADDV  Rm,Rn Rn + Rm — Rn, overflow —» T 001 1nnnnmmmmllll 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
" occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) /*ADDV Rm,Rn */
{

long dest, src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R([m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (srec==0 || sre==2) {
if (ans==1) T=1;
else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV - RO,R1 Before execution RO = H'00000001, R1 = H7FFFFFFE, T = 0
After execution R1 =H'7FFFFFFF, T =0

ADDV  RO,R1 Before execution RO = H'00000002, R1 = H'7FFFFFFE, T =0
After execution R1=H'80000000, T=1

42 Hitachi



6.5  AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T Bit

AND Rm,Rn Rn&RBm — Rn 0010nnnnmmmm1 001 1 —

AND #imm, RO RO & imm — RO 11001001iiidiiiii 1 —

AND.B #imm,@(RO,GBR) (RO + GBR)&imm — (RO+ 11001101iiiiiiii 3 —
GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.
Operation:

AND(long m, long n) /* AND Rm,Rn */
{

R[n)&=R[m]

PC+=2;
}

ANDI(long i) /* AND #imm,RO */
{
R[0] &= (0x000000FF & (long)i);
PC+=2;
}

ANDM(long i) /* AND.B #imm,@(R0O,GBR) */
( .
long temp;

temp=(long)Read_Byte (GBR+R[0]);
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0], temp) ;
PC+=2;

43 Hitachi



Examples:

AND RO,R1

AND #H' OF,RO

AND.B #H'80,@(RO,GBR)

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO =H'AAAAAAAA, R1 = H'55555555
R1 = H'00000000

RO = HFFFFFFFF

RO = H'0000000F

@(RO,GBR) = H'AS
@(RO,GBR) = H'80

44 Hitachi



6.6  BF (Branch if False): Branch Instruction

Format Abstract , Code  State TBit
BF 1label WhenT=0,disp x2+PC— PC; 10001011dddddadd 3n —
When T =1, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like. '

Note: When branching, three cycles; when not branching, one cycle.
Operation:

BF (long d4) /* BF disp */
{
long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);

if (T==0) PC=PC+(disp<<l)+4;

else PC+=2;

}
Example:

CLRT T is always cleared to 0
BT TRGET_T Does not branch, because T =0
BF TRGET F Branches to TRGET_F, because T = 0

NOP
NOP <~ The PC location is used to calculate
the
branch destination address of the BF
instruction
TRGET_F: < Branch destination of the BF instruction

45 Hitachi



6.7  BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit
BF/S When T =0, disp x 2 + PC — PC; 10001111ddddddadd 21 —
label When T =1, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF executes the
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is —256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF/S with the BRA instruction or the
like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after is a
branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instructioﬁ; when not branching, one cycle.
Operation:

BFS(long d) /* BFS disp */
{

long disp;

unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0XFFFFFF00 | (long)d);
if (T==0) {(
PC=PC+ (disp<<l)+4;
Delay Slot (temp+2);
}
else PC+=2;

46 Hitachi



Example:

CLRT
BT/S TRGET_T

NOP

BF/S TRGET_F

ADD RO,R1

NOP
TRGET_F:

T is always O
Does not branch, because T = 0

Branches to TRGET, because T = 0

Executed before branch

« The PC location is used to calculate the branch destination
address of the BF/S instruction

< Branch destination of the BF/S instruction

47 Hitachi



6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRA label dispx 2 + PC—> PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is
4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowlédged as an illegal slot
instruction,

Operation:

BRA(long d) /* BRA disp */
{
unsigned long temp;

long disp;
if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF000 | d);
temp=PC;
PC=PC+ (disp<<l)+4;
Delay_Slot (temp+2);
}

Example:

BRA TRGET Branches to TRGET
ADD RO,R1 Executes ADD before branching

NOP < The PC location is used to calculate the branch destination address
of the BRA instruction -
TRGET: <« Branch destination of the BRA instruction

48 Hitachi



6.9 BRAF (Branch Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRAF Rn Rn+PC —» PC 0000nnn00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRAF(long n) /* BRAF Rn */

{
unsigned long temp;
temp=PC;
PC+=R[n]; .
Delay_Slot (temp+2);
}
Example:
MOV.L #(TRGET-BSRF_PC) ,RO  Sets displacement
BRAF @RO Branches to TRGET
ADD RO,R1 Executes ADD before branching
BRAF_PC: « The PC location is used to calculate
the branch destination address of
the BRAF instruction
NOP
TRGET: <« Branch destination of the BRAF instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

49 Hitachi



6.10 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSR label PC— PR,dispx2+PC -PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is 4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction. ’

Operation:

BSR(long d) /* BSR disp */
{
long disp;
if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF000 | 4);
PR=PC; o
PC=PC+ (disp<<l)+4;
Delay_Slot (PR+2);

50 Hitachi



Example:

TRGET:

BSR
MOV

.....

MOV
RTS
MoV

TRGET
R3,R4
RO,R1

Branches to TRGET
Executes the MOV instruction before branching

¢« The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

« Procedure entrance

Returns to the above ADD instruction
Executes MOV before branching

51 Hitachi



6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSRF Rn PC - PR,Rn+PC — PC 0000nnnn00000011 2 - —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS. :

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation‘:
" BSRF(long n) /* BSRF Rn */
{

PR=PC;
PC+=R[n];
Delay_Slot (PR+2);
}
Example:
MOV.L #(TRGET-BSRF_PC) ,R0 Sets displacement
BRSF  @RO Branches to TRGET
MOV R3,R4 ‘ Executes the MOV instruction before
branching
BSRF_PC: .« The PC location is used to
: calculate the branch destination
with BSRF
ADD RO,R1
TRGET: <« Procedure entrance
MOV R2,R3 .
RTS . Returns to the above ADD instruction
MOV #1,RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will

“still be made using the value of the register prior to the change as the branch destination
address.

52 Hitachi



6.12 BT (Branch if True): Branch Instruction

Format Abstract ' Code State T Bit
BT label WhenT=1,disp x2+PC > 10001001dddddddd an —
PC;
When T =0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC + displacement.
The PC points to the starting address of the second instruction after the branch instruction. The 8-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is =256 to +254 bytes. If the displacement is too short to reach the branch destination,
use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT (long 4) /* BT disp */
{
long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==1) PC=PC+(disp<<l)+4;

else PC+=2;
}

Example:
SETT T is always 1
BF TRGET_F Does not branch, because T = 1
BT TRGET_T Branches to TRGET_T, because T =1
NOP '
NOP « The PC location is used to calculate the branch destination

address of the BT instruction .
TRGET_T: « Branch destination of the BT instruction

53 Hitachi



6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)

Format Abstract Code State T Bit
BT/S label WhenT=1,disp x2+PC — 10001101dddddddd 21 —
PC;
When T =0, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is ~256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
the like. ‘

Note: Since this is a delay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles;
when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */
(
long disp;
~ unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==1) {
PC=PC+ (disp<<l)+4;
Delay_ Slot (temp+2) ;
}
else PC+=2;

54 Hitachi



Example:

SETT

BF/S TRGET_F
NOP

BT/S TRGET_T
ADD RO,R1
NOP

TRGET_T:

T is always 1
Does not branch, because T = 1

Branches to TRGET, because T = 1
Executes before branching.

« The PC location is used to calculate the branch destination
address of the BT/S instruction

< Branch destination of the BT/S instruction

55 Hitachi



6.14 CLRMAC (Clear MAC Register): System Control Instruction
Format Abstract Code State TBit

CLRMAC 0 — MACH, MACL 0000000000101000 1 —

Description: Clears the MACH and MACL registers.

Operation:

CLRMAC () /* CLRMAC */
{
MACH=0;
MACL=0;
PC+=2;
}

Example:

CLRMAC Initializes the MAC register
MAC.W  @RO+,@R1+ Multiply and accumulate operation
MAC.W @RO+, @R1+

56 Hitachi



6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract . Code

State

T Bit

CLRT 0-T. 0000000000001000

1

0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */
{

T=0;
PC+=2;
}
Example:
CcLRT Before execution T=1
After execution T=0

57 Hitachi



6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code State T Bit

CMP/EQ Rm,Rn WhenRn=Rm,1->T 001 innnnmmmm0000 1 Comparison
result

CMP/GE Rm,Rn  When signed and Rn > 001 1nnnnnemmm0011 1 Comparison
Rm,1-T result

CMP/GT  Rm,Rn When signed and Rn > 0011nnnnmmmm0111 1 Comparison
K BRm,1->T result

CMP/HI  Rm,Rn When unsignedand Rn > 001 1nnnnmmmm0110 1 Comparison
BRm,1->T , result

CMP/HS Rm,Rn When unsigned and Rn>  0011nnnnmmmm0010 1 Comparison
Rm,1->T result

CMP/PL Rn WhenRn>0,1-T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn WhenRn20,1 5T 0100nnnn00010001 1 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals  0010nnnnmmmm1100 1 Comparison

abyteinRm,1-T ' result '

CMP/EQ  #imm,R0 WhenRO=imm,1 5T 10001000iiiiiiii 1 Comparison

result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.1 shows the
mnemonics for the conditions.

58 Hitachi



Table 6.1 CMP Mnemonics

Mnemonics Condition
CMP/EQ Rm,Rn fRn=Rm, T=1
CMP/GE Rm,Rn If Rn = Rm with signed data, T = 1
CMP/GT Rm, Rn If Rn > Rm with signed data, T =1
CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1
CMP/HS Rm,Rn If Rn = Rm with unsigned data, T = 1
CMP/EL Rn fRn>0,T=1
CMP/PZ Rn . IfRn20,T=1
CMP/STR Rm,Rn If a byte in Rn equals a byteinRm, T=1-
CMP/EQ #imm, RO IfRO=imm, T =1
Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

{
if (R{n]==R[m]) T=1;

else T=0;
PC+=2;
}
CMPGE (long m, long n) /* CMP_GE Rm,Rn */
{
if ((long)R[n]>=(long)R[m]) T=1;
else T='0;
PC+=2;
}
CMPGT (long m,long n) /* CMP_GT Rm,Rn */
{
if ((long)R[n]>(long)R[m]) T=1;
else T=0;
PC+=2;
}

59 Hitachi



CMPHI (long m, long n) /* CMP_HI Rm,Rn */
{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;
PC+=2;
}
CMPHS(long m, long n) /* CMP_HS Rm,Rn */
{
if ((unsigned long)R[n]>=(unsigned long)}R[m]) T=1;
else T=0;
PC+=2;
}
CMPPL (long n) /* CMP_PL Rn */
{
if ((long)R[nl>0) T=1;
else T=0;
PC+=2;
}

CMPPZ (long n) /* CMP_PZ Rn */
{
if ((long)R[n]>=0) T=1;
else T=0;
PC+=2;

60 Hitachi



CMPSTR (long m,long n) /* CMP_STR Rm,Rn */
{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]"R[m];

HH= (temp&OxXFF000000) >>12;
HL=(temp&0x00FF0000) >>8;
LH=(temp&0x0000FF00) >>4;
LL=temp&0x000000FF;
HH=HH&&HL&&LH&ELL ;

if (HH==0) T=1;

else T=0;
PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,RO */

{
long imm;
if ((i1&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0XFFFFFF00 | (long i));
if (R[0]==imm) T=1;
else T=0;
PC+=2;

}

Example:

CMP/GE RO,R1 RO = H'7FFFFFFF, R1 = H'80000000
BT " TRGET_T Does not branch because T =0
CMP/HS RO,R1 RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T Branches because T = 1
CMP/STR  R2,R3 R2 =“ABCD”, R3 = “XYCZ”
BT TRGET_T Branches because T =1

61 Hitachi



6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State TBit
DIVOS Rm,Rn MSBof Rn —» Q, MSB of Rm —» 0010nnnnmmmm0111 1 Calculation
M, MA\Q - T result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOS(long m,long n) /* DIVOS Rm,Rn */
{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q) ;

PC+=2;
}

Example: See DIV1.

62 Hitachi



6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction
Format Abstract Code State TBit

DIVOU 0 - M/QT 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOU() /* DIVOU */
{

M=Q=T=0;
PC+=2;
}
Example: See DIV1.

63 Hitachi



6.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract ‘ Code State T Bit
DIVI Rm,Rn 1-step division (Rn + Rm) 0011lnnnnmmm0100 1 Calculation
resuit

Description: Uses single-step division to divide one bit of the 32-bit data in general'register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient

bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a

division, first find the quotient using a DIV1 instruction, then find the remainder as follows:
(Dividend) — (divisor) ] (quotient) = (remainder)

with the SH7600 series in which a divider is installed as a peripheral function, the remainder can

be found as a function of the divider.

- Zero division, overflow detection, and remainder operation are not supported Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

64 Hitachi



Operation:

DIV1(long m, long n) /* DIV1 Rm,Rn */
{
unsigned long tmp0;
unsigned char old_q, tmpl;
old_qg=0;
0= (unsigned char) ( (0x80000000 & R[n]) !=0);
R[n]<<=1;

R[n] |=(unsigned long)T;
switch(old_q) {
case 0:switch(M) {
case 0:tmp0=R[n];
R[n)-=R[m];
tmpl=(R[n]>tmp0) ;
switch(Q) {
case 0:Q=tmpl;
break;
case 1:Q=(unsigned char) (tmpl==0);
break;
}
break;
case 1:tmp0=R[n];
R[n]+=R[m];
tmpl=(R[n]<tmp0);
switch(Q) {
case 0:Q=(unsigned char) (tmpl==0);

break;
case 1:Q=tmpl;
break;
}
break;
}
break;

65 Hitachi



case l:switch(M) {
case 0:tmp0=R[n];
R[n]+=R[m];
tmpl= (R [n] <tmp0) ;
switch(Q) {
case 0:Q=tmpl;
break;
case 1:Q=(unsigned char) (tmpl==0);
break;
}
break;
case 1l:tmpO=R[n];
R{n]-=R[m];
trmpl=(R[n]>tmp0) ;
switch(Q) {
case 0:Q=(unsigned char) (tmpl==0);
break;
case 1l:Q=tmpl;
break;
}
break;
}
break;
}
T=(Q==M) ;
PC+=2;

66 Hitachi



Example 1:
R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned

SHLL16 RO Upper 16 bits = divisor, lower 16 bits =0
TST RO, RO Zero division check )
BT ZERO_DIV

CMP/HS RO,R1 Overflow check

BT OVER_DIV

DIVOU Flag initialization

.arepeat 16

DIVl RO,R1 Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 R1 = Quotient

Example 2:
R1:R2 (64 bits)/RO (32 bits) = R2 (32 bits):Unsigned

TST RO, RO Zero division check

BT ZERO_DIV '

CMP/HS RO,R1 Overflow check

BT OVER_DIV

DIVOU Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIVl . RO,R1
.aendr

ROTCL R2 R2 = Quotient

67 Hitachi



~ Example 3:

SHLL16
EXTS.W
XOR
MoV
ROTCL

DIVOS
.arepeat
DIVl
.aendr
EXTS.W
ROTCL

EXTS.W

Example 4:

ROTCL
SUBC
XOR
SUBC

DIVOS
.arepeat
ROTCL
DIV1
.aendr
ROTCL
ADDC

RO

R1,R1
R2,R2
R1,R3

R2,R1
RO,R1

16
RO,R1

R1,R1

R2,R1

R1,R1

R2,R3

R1,R1
R3,R3
R3,R2

RO,RL

32

RO,R1

R3,R2

R1 (16 bits)/RO (16 bits) = R1 (16 bits):Signed
Upper 16 bits = divisor, lower 16 bits =0
Sign-extends the dividend to 32 bits

R2=0

Decrements if the dividend is negative
Flag initialization

Repeat 16 times

R1 = quotient (one’ s complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1

R1 = quotient (two’s complement) -
R2 (32 bits) / RO (32 bits) = R2 (32 bits):Signed

Sign-extends the dividend to 64 bits (R1:R2)
R3=0

Decrements and takes the one’s complement if the dividend is
negative '

Flag initialization

Repeat 32 times

R2 = Quotient (one’s complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’s complement)

68 Hitachi



6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic

Instruction (SH7600)
Format ) Abstract Code State T Bit
DMULS.L Rm,Rn - With signed, Rn x Rm — 0011nnnnmmmml 101 2t04 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,long n) /* DMULS.L‘ Rm,Rn */

{
unsigned long RnL, RnH,RmL,RmH, Res0,Resl,Res2;
unsigned long tempO, templ, temp2, temp3;
long tempm, tempn, fnlml;

tempn=(long)R[n];

tempm= (long)R[m] ;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long) (R[n]1"R[m])<0) fnLml=-1;
else fnLmlL=0;

templ=(unsigned long)tempn;
temp2=(unsigned long) tempm;

RnL=templ&0x0000FFFF;
RnH=(templ>>16) &0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH= (temp2>>16) &0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

69 Hitachi



Res2=0
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Resl<<16)&0xFFFF0000;
ResO=temp0+templ;
if (ResO<tempQ) Res2++;

Res2=Res2+ ( (Resl>>16) &0x0000FFFF) +temp3;

if (fnLmL<0) {
Res2=~Res2;
if (Res0==0)
Res2++;
else
Res0=(~Res0)+1;
}

MACH=Res2;

MACL=Res0;

PC+=2;
}

Example:
DMULS RO,R1 Before execution RO = HFFFFFFFE, R1 = H'00005555
After execution MACH = HFFFFFFFF, MACL = H'FFFF5556

STS MACH, RO Operation result (top) '
STS MACL, RO Operation result (bottom)

70 Hitachi



6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic

Instruction (SH7600)
Format Abstract Code State T Bit
DMULU.L Rm,Rn  Without signed, Rn xRm — 001 1nnnnmmmm0101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU(long m,long n) /* DMULU.L Rm,Rn */

{
unsigned 1long RnL,RnH,RmL,RmH,Res0,Resl,Res2;
unsigned long tempO,pempl,tempz,temp3;

RnL=R[n]&0x0000FFFF;
RnH=(R[n)>>16) &0x0000FFFF;

RmL=R [m] &0x0000FFFF;
RmH= (R [m] >>16) &0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0

Resl:templ+temp2;

if (Resl<templ) Res2+=0x00010000;
templ= (Resl<<16)&0XFFFF0000;
ResO=temp0+templ;

if (ResO<temp(Q) Res2++;

Res2=Res2+ ( (Res1>>16) &0x0000FFFF) +temp3 ;

71 Hitachi



MACH=Res2;

MACL=Res0;

PC+=2;
}

Example:
DMULU  RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACH = H'00005554, MACL = HFFFF5556

STS MACH, RO Operation result (top)
STS MACL,RO  Operation result (bottom)

72 Hitachi



6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600)

Format Abstract . Code State T Bit
DT Rn Rn-1— Rn; 0100nnnn00010000 1 Comparison
WhenRnis 0,1 - T, result

when Rnis nonzero,0 » T

Description: The contents of general register Rn is decremented by 1 and the result is compared to
0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operétion:
DT(long n) /* DT Rn */
{
R[n]--;
if (R[n]==0) T=1;
else T=0;
PC+=2;
}
Example:

MOV ' #4,R5 Sets the number of loops.
LOOP:
ADD RO,R1
DT RS Decrements the RS value and checks whether it has become 0.
BF LooP  Branches to LOOP if T=0. (In this example, loops 4 times.)

73 Hitachi



6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code State T Bit
EXIS.B  Rn,Rn Sign-extended Rm frombyte > 01 10nnnnmmmm1110 1 —
EXIS.W Ru,Rn Rn 0110nnnnmmmm1111 1 —

Sign-extended Rm from word —

Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is specified, the
bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{
R[n]=R[m];

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n] |=0xFFFFFF00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{
R[n]=R[m];
if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n] |=0xFFFF0000;
PC+=2;

}

Examples:

EXIS.B  RO,R1 Before execution
After execution
EXTS.W RO,R1 Before execution

After execution

RO = H'00000080
R1 = HFFFFFF80
RO = H'00008000
R1 = HFFFF8000

74 Hitachi



6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit
EXTU.B Rm,Rn Zero-extend Rm from byte 5> Rn  0110nnnnmmmm1100 1 —_
EXTU.W Rm,Rn Zero-extend Rm fromword - Rn  0110nnnnmmmm1101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0 is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to bits
16 to 31 of Rn.

Operation:

EXTUB(long m, long n)
{

/* EXTU.B Rm,Rn */

R[n]=R[m];
R[n]&=0x000000FF;
PC+=2;

}

EXTUW (long m, long n)
{

/* EXTU.W Rm,Rn */

R[n]=R[m];
R[n] &=0x0000FFFF;
PC+=2;
}
Examples:

EXTU.B RO,R1

EXIUW RO,RL

Before execution
After execution
Before execution

After execution

RO = H'FFFFFF80
R1 =H'00000080
RO = HFFFF8000
R1 =H'00008000

75 Hitachi



6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rn Rhn—» PC . 0100nnnn00101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit data in general register Rn.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction. :

Operation:

JMP (long n) /* JMP @Rn */
{
unsigned long temp;

temp=PC;
PC=R([n]+4;
Delay_Slot (temp+2) ;

}
Example:
MOV.L JMP_TABLE,RO  Address of RO = TRGET
JMP @RO Branches to TRGET
MOV RO,R1 Executes MOV before branching
.align 4
JMP_TABLE: .data.l TRGET Jump table

TRGET: ADD #1,R1 < Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will still
be made using the value of the register prior to the change as the branch destination address.

76 Hitachi



6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rn PC— PR,Rn— PC 0100nnnn00001011 2 -

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PR. The jump
destination is an address specified by the 32-bit data in general register Rn. The PC points to the
starting address of the second instruction after JSR. The JSR instruction and RTS instruction are
‘used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR (long n) /* JSR @Rn */

{

PR=PC;

PC=R[n]+4;

Delay Slot (PR+2);
}

77 Hitachi



Example:

MOV.L
JSR
XOR

JSR_TABLE: .data.l
TRGET': NoP

JSR_TABLE, RO
@RO

R1,R1

RO,R1

'R2,R3

#70,R1

RO = Address of TRGET
Branches to TRGET
Executes XOR before branching

 Return address for when the
subroutine procedure is completed
(PR data)

Jump table

< Procedure entrance

Returns to the above ADD instruction
Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination

address.

78 Hitachi



6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract ' Code State T Bit
LbC Rm, SR Rm — SR 0100mmmm00001110 1 LSB
LDC Rm, GBR Rm — GBR 0100mmm00011110 1 —
LDC Rm, VBR Rm — VBR 0100mmmm00101110 1 —
LDC.L @Rm+,SR (Rm) - SR, Rm + 4 — Rm 0100mmmm00000111 3 LSB
ILDC.L @Rm+,GBR (Rm)— GBR, Rm+4 — Rm 0100mmmm00010111 3 —
LDC.L @Rm+,VBR  (Rm)— VBR, Rm+4 — Rm 0100mmmm00100111 3 —

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR(long m) /* LDC. Rm,SR */
{
SR=R[m] &0x000003F3;

PC+=2;
} ;
LDCGBR (long m) /* LDC Rm,GBR */
(\

GBR=R[m] ;

PC+=2;
}
LDCVBR(long m) /* LDC Rm,VBR */
{

VBR=R[m] ;

PC+=2;

79 Hitachi



LDCMSR(long m)

{
SR=Read_Long(R[m] ) &0x000003F3;
R[m]+=4;
PC+=2;

}

LDCMGER (long m)
{
GBR=Read_Long (R[m]) ;
R{m]+=4;
PC+=2;
}

LDCMVBR (long m)
{
VBR=Read_Long (R[m] ) ;
R[m]+=4;
PC+=2;
}

Examples:

LDC

RO, SR Before execution

After execution

LDC.L  @R15+,GBR Before execution

After execution

/* LDC.L @Rm+,SR */

/* LDC.L @Rm+,GBR */

/* LDC.L @Rm+,VBR */

RO = HFFFFFFFF, SR = H'00000000
SR = H'000003F3 -

R15 = H'10000000
R15 = H'10000004, GBR = @H'10000000

80 Hitachi



6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDS Rm, MACH Rm — MACH 0100mmmm00001010 1 —
LDS Rm,MACL . Rm— MACL 0100mmmm00011010 i —
1DS Rm, PR Rm— PR 0100mmmm00101010 1 —
LDS.L @Rm+,MACH (Rm)— MACH,Rm+4 —Rm  0100mmmm00000110 - 1 —
IDS.L @Rm+,MACL (Rm)— MACL, Rm+4 -Rm  0100mmm00010110 1 —

1 —_—

LDS.L @Rm+,PR ~ (Rm)— PR,Rm+4 — Rm 0100mmm00100110

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH7000, the lower 10 bits are stored in MACH. For the SH7600, 32 bits are stored in
MACH.

Operation:

LDSMACH (long m) /* LDS Rm,MACH */

{
MACH=R [m] ;
if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH7000 (these 2 lines
else MACH|=0xFFFFFCO0; not needed for SH7600)
PC+=2;

}

LDSMACL (long m) | /* LDS-Rm,MACL */

{
MACL=R([m] ;
PC+=2;

}

LDSPR(long m) /* LDS Rm,PR */

{
PR=R[m] ;
PC+=2;

}

81 Hitachi



LDSMMACH (long m) /* LDS.L @Rm+,MACH */
o
MACH=Read_Long (R[m]) ;

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH7000 (these 2 lines
else MACH|=0xFFFFFC00; not needed for SH7600)
R[m]+=4;
PC+=2;

}

LDSMMACL (long m) /* LDS.L @Rm+,MACL */

{
MACL=Read_Long (R[m]);

Rm]+=4;
PC+=2;
}
LDSMPR (long m) /* LDS.L @Rm+,PR */
(
PR=Read_Long (R[m] ) ;
R[m]+=4;
PC+=2;
}
Examples:
"1LDS RO, PR Before execution RO =H'12345678, PR = H'00000000
After execution PR =H'12345678
LDS.L. @R15+,MACL . Before execution - R15 = H'10000000

After execution R15 = H'10000004, MACL = @‘H'IOOOOOOO

82 Hitachi



6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
(SH7600)

Format Abstract Code State T Bit

MAC.L @Rm+,@Rn+ Signed operation, (Rn) x (Rm) + 0000nnnnmmmm1111 3/(2to —
MAC - MAC 4

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m, long n) /* MAC.L @Rm+,@Rn+*/

{
unsigned long RnL,RnH, RmL,RmH, Res0,Resl,Res2;
unsigned long tembo , templ, temp2, temp3;
long tempm, tempn, fnlmL;

tempn= (long)Read_Long(R[n]);
R[n]+=4;
tempm= (long)Read_Long(R{m]);
R[m]+=4;

if ((long) (tempn”tempm)<0) fnLml=-1;
else fnLmL=0; ‘

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

83 Hitachi



RnL=templ&0x0000FFFF;
RnH= (templ>>16) &0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH= (temp2>>16) &0x0000FFFF;

tempO0=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0;
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Resl<<16)&0xFFFF0000;
ResO=temp0+templ;
if (ResO<temp0) Res2++;

Res2=Res2+ ( (Res1>>16) &0x0000FFFF) +temp3;

if (fnLm<0) {
Res2=~Res2;
if (Res0==0) Res2++;
else ResO=(~Res0)+1;

}

if(s==1){
Res0=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=(MACH&0x0000FFFF) ;

if (((long)Res2<0)&& (Res2<0xXFFFF8000)) {
Res2=0x00008000;
Res0=0x00000000;

}

if (({(long)Res2>0)&& (Res2>0x00007FFF).) {
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

};

84 Hitachi



MACH=Res2;

MACL=Res0;

}

else {
Res0=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=MACH
MACH=Res2;
MACL=Res0;

}

PC+=2;

}
Example: .
MOVA TBLM, RO Table address
MoV RO,R1
MOVA TBLN, RO Table address
CLRMAC MAC register initialization
MAC.L @RO+,@R1+
MAC.L QRO+, @R1+
STS MACL, RO Store result into RO
align 2

TBLM .data.l H'1234ABCD
.data.l H'5678EF01
TBLN .data.l H'0123ABCD
.data.l H'4567DEF0

85 Hitachi



6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)

Format Abstract Code State T Bit
MAC.W @Rm+,@Rn+ With signed, (Rn) x (Rm) + MAC .0100nnnnmmmm1111 3/(2) —
- MAC

Description (SH7000): Multiplies 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by
two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFEF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

86 Hitachi



6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
(SH7600)

Format * Abstract ’ Code State T Bit

MAC.W @Rm+,@Rn+ Signed operation, (Rn) x (Rm) + 0100nnnnmmmm1111 32 —
MAC @Rm+, @Rn+ MAC — MAC

Description (SH7600): Signed-multiplicates 16-bit operands obtained using the contents of
general registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC
register, and the final result is stored in the MAC register. Everytime an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to 0, the operation is 16 X 16 + 64 — 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 x 16 + 32 — 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH7600 series performs a 16 x 16 + 64 — 64 bit multiply and
accumulate operation and the SH7000 series performs a 16 x 16 +42 — 42 bit multiply and
accumulate operation.

Operation:

MACW(long m,long n) /* MAC.W @QRm+, @Rn+*/
{
long tempm, tempn,dest, src,ans;
unsigned long templ;
tempn= (long)Read_Word(R[n]) ;
R[n]+=2;
tempm= (long)Read Word(R[m]) ;
R{m]+=2; ‘
templ=MACL;
tempm=( (long) (short) tempn* (long) (short) tempm) ;

87 Hitachi



if ((long)MACL>=0) dest=0;

- else dest#l;

if ((long)tempr>=0 {
src=0;
tempn=0;

}

else {
src=1;
tempn=0xFFFFFFFF;

}

sr¢+=dest;

MACL+=tempm;

if ((long)MACL>=0) ans=0;

else ans=1;

ans+=dest;

if (S==1) {(

if (ans==1) (

if (sre==0 || src==2)
MACH | =0x00000001;

For SH7000 (these 2 lines
not needed for SH7600)

if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
else {
MACH+=tempn;
if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0)
MACH&=0x000003FF;
else MACH|=0xFFFFFCO00;

For SH7000 (these 3 lines
not needed for SH7600)

}
PC+=2; .

88

Hitachi



Example:

TBLM, RO
RO,R1
TBLN, RO

@RO+,@R1+
@RO+, @R1+
MACL,RO

......

Table address
Table address

MAC register initialization

Store result into RO

89 Hitachi



6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State T Bit
MOV Rm,Rn Rm— Rn 0110nnnnmmmm0011 1 -
MOV.B Rm,@Rn Rm — (Rn) 0010nNNNmwm0000 1 —_
MOV.W Rm, @Rn Rm — (Rn) 0010nnnnmmmm0001 1 —
MOV.L Rm,@Rn Rm — (Rn) 0010nnnnmmmm0010 1 —
MOV.B @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmm0000 1 _
MOV.W @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmm0001 1 —
MOV.L @Rm,Rn (Rm) > Rn _ 0110nmnnmmmm0010 1 —
MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmmm0100 1 —
MOV.W Rm,@-Rn Rn-2 — Rn, Rm — (Rn) 0010nnnnmmmm0101 1 —_
MOV.L Rm,@-Rn Rn—4 — Rn, Rm — (Rn) 0010nnnnmmmm0110 1 —
MOV.B @Rm+,Rn (Rm) — sign extension — Rn, Rm  0110nnnnmmen0100 1 —_
+1—->Rm
MOV.W @Rm+,Rn (Rm) — sign extension — Rn, Rm  0110nnnnmmm0101 1 —
+2— Rm
MOV.L @Rm+,Rn (Rm) —» Rn, Rm +4 — Rm 0110nnnnmmm0110 1 —
MOV.B Rm,@(RO,Rn)  Rm— (RO + Rn) 0000nnnnrrm0100 1 —
MOV.W Rm,@(RO,Rn) Rm— (RO + Rn) 0000nnnnmmrrm0101 1 —
MOV.L Rm,@(RO,Rn) Rm — (RO + Rn) 0000nnnnmmeem0110 1 —
MOV.B @(RO,Rm),Rn (RO + Rm) — sign extension — 0000nnnnmen1 100 1 —_
MOV.W @(RO,Rm),Rn T 0000nnnnmmn1101 1 —
MOV.L @(RO,Rm),Rn  (R0+RAmM)—>signextension »  4400nmnnmmmm1110 1 —

Rn
(RO + Rm) - Rn

Description: Transfers the source operand to the destination. When the operand is stored in

memory, the transferred data can be a byte, word, or longword. When the source operand is in

memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

MOV(long m,long n)

{
R[n]=R[m];
PC+=2;

/* MOV Rm,Rn */

90 Hitachi



MOVBS (long m, long n) /*
{
Write_Byte(R[n],R[m]);

MOV.B Rm,@Rn */

MOV.W Rm,@Rn */

MOV.L Rm,@Rn */

MOV.B @Rm,Rn */

MOV.W @Rm,Rn */

MOV.L @Rm,Rn */

PC+=2;

}

MOVWS (long m, long n) /*

; .
Write_Word(R[n],R[m]);
PC+=2;

}

MOVLS (long m, long n) /*

{

Write Long(R[n],R([m]);
PC+=2;

}

MOVBL (long m, long n) /*

{

R[n]=(long)Read_Byte(R[m});

if ((R[n]&0x80)==0) R[n)&0x000000FF;
else R[n] |=0xFFFFFF00;

PC+=2;

}

MOVWL (long m, long n) /*

{

R[n]=(long)Read_Word(R[m]);

if ((RIn]&0x8000)==0) R[n]&0x0000FFFF;
else R[n] |=0xFFFF0000;

PC+=2;

}

MOVLL (long m, long n) /*

{

R[n]l=Read_Long(R([m]);
PC+=2; |
}

91 .. Hitachi



MOVEM(long m, long n) /* MOV.B Rm,@-Rn */
{
Write Byte(R[n]-1,R[m]);

R[n]-=1;
PC+=2;
}
MOVWM(long m, long n) /* MOV.W Rm,@~Rn */
{
Write Word(R[n]-2,R[m]);
R[n]-=2;
PC+=2;
}
MOVLM(long m, long n) /* MOV.L Rm,@-Rn */
{
Write_Long(R[n]-4,R[m]);
R[n]-=4;
PC+=2;
}

MOVBP(long m, long n) /* MOV.B @Rm+,Rn */
{
R[n]=(long)Read Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else Rln] |=0XFFFFFF00; '
if (n!=m) R[m]+=1;
PC+=2;
}

MOVWP (long m, long n) /* MOV.W @Rm+,Rn */
{
R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n) |=0xFFFF0000;
if (n!=m) R[m]+=2;
PC+=2;

- 92 Hitachi



MOVLP(long m,long n) /* MOV.L @Rm+,Rn */
{
R[n]=Read_Long(R[m]);

if (n!=m) Rlml+=4;

PC+=2;
}
MOVBSO (long m,long n) /* MOV.B Rm,@(RO,Rn) */
{

Write Byte(R[n]+R[0],R[m]);

PC+=2;
}
MOVWSO (long m,long n) /* MOV.W Rm,@(RO,Rn) */
{

Write Word(R[n]+R[0],R[m]);

VPC+=2;
}
MOVLSO (long m, long n) /* MOV.L Rm,@(RO,Rn) */
{

Write_Long(R[n]+R[0],R[m]);

PC+=2;
}
MOVBLO (long m, long n) /* MOV.B @(RO,Rm),Rn */
{

R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n] |=0xFFFFFF00;

PC+=2;
}
MOVWLO (long m, long n) /* MOV.W @(RO,Rm) ,Rn */
. .

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n] |=0xFFFF0000;

PC+=2; '
}

93 Hitachi



MOVLLO (long m, long n)

{

R[n}=Read_Long (R[m]+R[0]);

PC+=2;
}

Example:

MOV RO,R1
MOV.W RO,@R1
MOV.B @RO,R1
MOV.W RO,@-R1
MOV.L: G@RO+,R1

MOV.B

MOV.W

R1,@(RO,R2)

@(RO,R2),RLl

Before execution

After execution

Before execution

After execution

Before execution

After execution

Before execution

After execution

Before execution

After execution

Before execution

After execution

Before execution

After execution

/* MOV.L @(RO,Rm),Rn */

RO = HFFFFFFFF, R1 = H'00000000
R1 = HFFFFFFFF

RO = HFFFF7F8u
@R1 =H'7TF80

@RO = H'80, R1 = H'00000000
R1 = HFFFFFF80

RO = HAAAAAAAA, R1 = HFFFFTF80
R1 = HFFFFTFTE, @R1 = HAAAA

RO =H'12345670
RO = H'12345674, R1 = @H'12345670

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

94 Hitachi



6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV #imm, Rn imm — sign extension - Rn  1110nnnniiiiiiii 1 —

MOV.W @(disp,PC),Rn  (disp x 2 + PC) — sign 1001nnnndddddddad 1 —
extension — Rn

MOV.L @(disp,PC),Rn  (disp x4+ PC) — Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the -
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MoVI(long i,long n) /* MOV #imm,Rn */

{
if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
else R[n]=(0xFFFFFFO0 | (long)i);

PC+=2;
}
MOVWI (long d,long n) /* MOV.W @(disp,PC),Rn */
{

long disp;

95 Hitachi



disp=(0x000000FF & (long)d);
R[n]=(long)Read Word (PC+(disp<<l));

if ((R[n)&0x8000)==0) R[n]&=0x0000FFFF;
else R[n] |=0xFFFF0000; '

/* MOV.L @(disp,PC),Rn */

disp=(0x000000FF & (long)d);
R[n]=Read_Long ( (PC&0XFFFFFFFC) + (disp<<2));

PC+=2;
}
MOVLI(long d,long n)
{
long disp;
PC+=2;
}
Example:
Address
1000 MoV
1002 MOV.W
1004 ADD
1006 TST
1008 MOVT
100a BRA
100C MOV.L
100E IMM .data.w
1010 .data.w
1012 NEXT JMP
1014 CMP/EQ
.align
1018 .data.l

#H'80,R1
IMM, R2
#-1,R0
RO, RO

R13

NEXT
@(4,pC),R3
H'9ABC
H'1234

@R3

#0,R0

4
H'12345678

R1 = HFFFFFF80
R2 = HFFFF9ABC, IMM means @(H'08,PC)

& PC location used for address calculation for the
MOV.W instruction

Delayed branch instruction
R3 =H'12345678

Branch destination of the BRA instruction

« PC location used for address calculation for the
MOV.L instruction

96 Hitachi



6.34 MOV (Move Peripheral Data): Data Transfer Instruction
Format Abstract Code State  TBit

MOV.B @(disp,GBR),R0  (disp + GBR) — sign 11000100dddddddd 1 —
extension — RO

MOV.W @(disp,GBER),RO (disp x 2 + GBR) — 11000101dddddddd 1 —
sign extension — RO

MOV.L @(disp,GBR),R0 (disp x 4+ GBR) - RO 11000110dddddddd
MOV.B RO,@(disp,GBR) RO — (disp + GBR) 11000000dddddddd
MOV.W RO,@(disp,GBR) RO — (disp x 2 + GBR) 11000001dddddddd
MOV.L RO,@(disp,GBR) RO — (disp x 4 + GBR) 11000010dddddddd

-t ok ed b

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but the
register is fixed to RO.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is a longword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within +1020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(R0,Rn) mode must be used after the GBR data is
transferred to a general register. When the source operand is in memory, the loaded data is stored
in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always RO. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 6.1 Using RO after MOV

97 Hitachi




Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Byte(GBR+disp) ;

if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFF00;

PC+=2;
}
MOVWLG (long d) /* MOV.W @(disp,GBR),R0 */
{
long disp;
disp=(0x000000FF & (long)d);
R[0]=(long)Read_Word (GBR+ (disp<<1));
if ((R[0)&0x8000)==0) R[0]&=0x0000FFFF;
else R[0] |=0xFFFF0000;
PC+=2;
}
MOVLLG(long 4) /* MOV.L @(disp,GBR),R0 */
{
long disp;
disp=(0x000000FF & (long)d);
R[0]=Read_Long (GBR+ (disp<<2));
PC+=2; .
}
MOVBSG(long d) /* MOV.B RO,@(disp,GBR) */
{
long disp;

98 Hitachi



disp=(0x000000FF & (long)d);
Write_Byte(GBR+disp,R[0]);

PC+=2;
}
MOVWSG (long d) /* MOV.W RO,@(disp,GBR) */
{
long disp;
disp=(0x000000FF & (long)d):
Write Word(GBR+ (disp<<l1),R[0]);
PC+=2;
}
MOVLSG (long d) /* MOV.L RO,@(disp,GBR) */
{
long disp;
disp=(0x000000FF & (long)d);
Write_Long (GBR+ (disp<<2),R[0]);
PC+=2;
}
Examples:

MOV.L. @(2,GBR),RO Before execution @(GBR + 8) =H'12345670
After execution RO = @H'12345670

MOV.B RO,Q@(1,GBR) Before execution RO = HFFFF7F80
After execution @(GBR + 1) = HFFFF7F80

99 Hitachi



6.35 MOV (Move Structure Data): Data Transfer Instruction
Format Abstract - Code State T Bit

MOV.B RO, @(disp,Rn) RO — (disp + Rn) 10000000nnnndddd 1 —
MOV.W RO,@(disp,Rn) RO — (disp x2+Rn)  10000001nnnndddd
MOV.L Rm,@(disp,Rn) Rm — (disp x 4 + Rn) 000 1 nnnnmrmdddd

MOV.B * @(disp,Rm),R0  (disp + Rm) — sign 1000010 0mmrmdddd
extension —» RO

MOV.W @(disp,Rm),RO (disp x 2 + Rm) —» sign 1000010 1mmmmdddd 1 _—
extension —» RO

MOvV.L @(disp,Rm),Rn  (disp x4+ Rm) — Rn 0101nnnnmmmmdddd 1 —

[ G G

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register is fixed. When the data is a byte, the 4-bit displacement is
zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the data is a longword, the 4-bit displacement is zero-extended and
quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too
short to reach the memory operand, the aforementioned @(R0,Rn) mode must be used. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to a
longword.

Note: When byte or word data is loaded, the destination register is always R0. RO cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B @2, R1), RO MOV.B @2, R1), RO

AND #80, RO >< ADD #20, R1
ADD - #20, R1 AND #80, RO

Figure 6.2 Using R0 after MOV

100 Hitachi




Operation:

MOVBS4 (long d,long n) /* MOV.B RO,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Write_Byte(R[n])+disp,R[0]);

PC+=2;
}
MOVWS4 (long 4, long n) /* MOV.W RO,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d):
Write Word(R[n]+(disp<<1),R[0]);
PC+=2;
}

MOVLS4 (long m, long d,long n)
/* MOV.L Rm,@(disp,Rn) */

long disp;

disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;

}

MOVBL4 (long m, long d) /* MOV.B @(disp,Rm),R0 */
{
long disp;

disp=(0x0000000F & (long)d);

R[0] =Read_Byte (R[m] +disp) ;

if ((R[01&0x80)==0) R[0]&=0x000000FF;
else R[0] | =0xFFFFFF00;

PC+=2;

101 Hitachi



MOVWL4 (long m,long d) /* MOV.W @(disp,Rm),R0 */
{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Word (Rm]+(disp<<1));

if ((R[0]&0x8000)==0) R[0])&=0x0000FFFF;
else R[0] |=OXFFFF0000;

}

MOVLL4 (long m,long d,long n)
/* MOV.L @(disp,Rm),Rn */

long disp;

disp=(0x0000000F & (long)d);
R{n]=Read_Long (R[m]+(disp<<2));

PC+=2;
}
Examples:
MOV.L @(2,R0),R1 Before execution @(RO + 8) = H'12345670
After execution R1 = @H'12345670
MOV.L RO,@(H'F,R1) Before execution RO = HFFFF7F80

After execution @(R1 + 60) = HFFFF7F80

102 Hitachi



6.36 MOVA (Move Effective Address): Data Transfer Instruction
Format Abstract Code State T Bit

MOVA @(disp,PC),RO disp x4+ PC — RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register RO. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOVA instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA (long d) /* MOVA @(disp,PC),R0 */
{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(PC&OXFFFFFFFC) + (disp<<2) ;

PC+=2;
}
Example:

Address .org H'1006

1006 MOVA STR, RO Address of STR — RO

1008 MOV.B @RO,R1 R1="X" « PC location after correcting the lowest
two bits

100A ADD R4,R5 « Original PC location for address calculation for the
MOVA instruction

.align 4

100C  STR: .sdata “XYZP12”

2002 BRA TRGET Delayed branch instruction

2004 MOVA @(0,pc),R0  Address of TRGET + 2 £ RO

103 Hitachi



6.37 MOVT (Move T Bit): Data Transfer Instruction
Format Abstract Code State T Bit

MovT Rn T—Rn 0000nnnn00101001 1 -—

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

Operation:

MOVT (long n) /* MOVT Rn */
{
R[n]=(0x00000001 & SR);

PC+=2;
}
Example:

XOR R2,R2 R2=0
CMP/PZ R2 T=1
MOVT RO RO =
CLRT T=0
MOVT Rl R1=0

104 Hitachi



6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600) -
Format Abstract Code State T Bit

MUL.L Rm,Rn Rnx Rm — MACL 0000nnnnmmmm0111 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change. ’

Operation:

MULL (long m, long n) /* MUL.L Rm,Rn */

{
MACL=R[n] *R[m] ;

PC+=2;
}
Example:
MULL RO,R1l Before execution RO = HFFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MACL,RO Operation result

105 Hitachi



6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract ‘Code State T Bit
MULS.W  Rm,Rn Signed operation, Rn x Bm —»  0010nnnnmmmm1111 1t0o3 —
MULS Rm, Rn MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS (long m, long n) /* MULS Rm,Rn */

{
MACL=( (long) (short)R[n] * (long) (short)R[m]) ;
PC+=2;

}

Example:

MULS RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = HFFFF5556
STS MACL,RO  Operation result

106 Hitachi



6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
Format Abstract Code State T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm — MAC 001 0nnnnmmmml 110 103 —
MULU Rm, Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU (long m,long n) /* MULU Rm,Rn */
{
MACL=( (unsigned long) (unsigned short)R[n]
* (unsigned long) (unsigned short)R[m]);
PC+=2;
}

Example.

MULU RO,R1 Before execution RO = H'00000002, R1 = HFFFFAAAA
After execution MACL =H'00015554
STS MACL,RO  Operation result

107 Hitachi



641 NEG (Negate): Arithmetic Instruction
Format Abstract Code State T Bit

NEG Rm, Rn 0-Rm —=Rn 0110nnnnrrmm1 011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:
NEG(long m,long n) /* NEG Rm,Rn */
{
R[n]=0-Rm];
PC+=2;
}
Example:
NEG RO,R1 Before execution RO =H'00000001

After execution R1 = HFFFFFFFF

108 Hitachi



6.42 NEGC (Negate with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

NEGC Rm, Rn 0-Bm-T- Rn,Borrow - T  0110nnnnmmmml 010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC (long m, long n) /* NEGC Rm,Rn */
{
unsigned long temp;

temp=0-R[m] ;
R[n]=temp-T;
if (O<temp) T=1;
else T=0;
if (temp<R{[n]) T=1;
PC+=2;

}

Examples:

CLRT Sign inversion of R1 and RO (64 bits)

NEGC R1,R1  Before execution R1 =H'00000001, T=0
After execution R1 =H'FFFFFFFF, T =1

NEGC RO,R0  Before execution RO =H'00000000, T=1
After execution RO = H'FFFFFFFF, T =1

109 Hitachi



6.43 NOP (No Operation): System Control Instruction
Format Abstract Code State T Bit

NoP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.
Operation:

NOP () /* NOP */
{

PC+=2;
}

Example:

NOP Executes in one cycle

110 Hitachi



6.44 NOT (NOT—Logical Complement): Logic Operation Instruction
Format Abstract ‘ Code State T Bit

NOT Rm,Rn ~Rm - Rn 011 0nnnnmmmm0111 1 —_

* Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

{
R[n]=~R[m];
PC+=2;
}
Example:

NOT RO,R1 Before execution RO=HAAAAAAAA
After execution R1 ="H'55555555

111 Hitachi



6.45 OR (OR Logical) Logic Operation Instruction

Format Abstract Code ' State T Bit
OR  Rm,Rn RnlIRm - Rn 0010nnnnmmmm1011 1 —
OR #imm, RO RO | imm — RO 11001011iiiiiiii _—

OR.B #imm, @(RO,GBR)

GBR)

(RO + GBR) | imm — (RO +

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

{
R[n] |=R[m];
PC+=2;

}

ORI (long i) /* OR #imm,RO */

{
R[0] |=(0x000000FF & (long)i);
PC+=2;

}

ORM(1long i) /* OR.B #imm,@(RO,GBR) */

{
long temp;
temp=(long)Read Byte(GBR+R[0]) ;
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0], temp) ;
PC+=2;

}

112 Hitachi



Examples:

OR RO,R1 Before execution RO =H'AAAA5555, R1 = H'55550000
After execution R1 = HFFFF5555

OR #H'FO,RO Before execution RO = H'00000008
After execution RO = H'000000F8

OR.B  #H'50,@(RO,GBR) Before execution @(RO,GBR) = H'AS
After execution ~ @(RO,GBR)=HF5

113 Hitachi



646 ROTCL (Rotate with Carry Left): Shift Instruction
Format Abstract Code - State T Bit

ROICL Rn T—RneT 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

MSB LSB

ROTCL

Figure 6.3 Rotate with Carry Left
Operation:

ROTCL(long n) /* ROTCL Rn */
{
long temp;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n1<<=1;
if (T==1) R[n]|=0x00000001;
else R[n)&=0xXFFFFFFFE;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Example:

ROTCL RO Before execution RO =H'80000000, T=0
After execution RO =H'00000000,T=1

114 Hitachi




6.47 ROTCR (Rotate with Carry Right): Shift Instruction
Format Abstract Code State T Bit

ROTCR Rn ToRn->T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

rotcR [ ] » |

Figure 6.4 Rotate with Carry Right
Operation:

ROTCR(long n) /* ROTCR Rn */
{
long temp;

if ((R[n]&0x00000001)==0) temp=0;
else temp=1;

Rln]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;
PC+=2;
}
Examples:

ROTCR RO Before execution RO =H'00000001, T=1
' After execution RO = H'80000000, T = 1

115 Hitachi




6.48 ROTL (Rotate Left): Shift Instruction
Format Abstract Code State T Bit
ROTL Rn T « Rn < MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL

Figure 6.5 Rotate Left
Operation:

ROTL (long n) /* ROTL Rn */

{
if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n)<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
PC+=2;

}

Examples:

ROTL RO Before execution RO =H'80000000, T =0
After execution RO =H'00000001, T=1

116 Hitachi



6.49 ROTR (Rotate Right): Shift Instruction
Format Abstract ‘Code State T Bit

ROTR Rn LSB -Rn -»T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTR ‘ -

Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{
if ((R[n]&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Examples:

ROTR RO Before execution RO =H'00000001, T=0
After execution RO =H'80000000, T =1

117 Hitachi



6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area — PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTE() /* RIE */-

{
unsigned long temp;
temp=PC;
PC=Read_Long(R[15])+4;
R[15]+=4;
SR=Read_Long (R[15])&0x000003F3;
R[15]+=4;
Delay_Slot (temp+2) ;
}
Example:
RTE Returns to the original routine
ADD #8,R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

118 Hitachi



6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR — PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTS() /* RTS */
{
unsigned long temp;

temp=PC;
PC=PR+4;
Delay_Slot (temp+2) ;
}
Example:
MOV.L TABLE, R3 R3 = Address of TRGET
JSR @R3 Branches to TRGET
NOP Executes NOP before JSR _
ADD RO,R1 < Return address for when the subroutine procedure is
completed (PR data)
TABLE: .data.l TRGET Jump table
TRGET: MOV R1,R0 « Procedure entrance
RTS PR data —» PC
MOV #12,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

119 Hitachi



6.52 SETT (Set T Bit): System Control Instruction
Format Abstract Code

State

T Bit

SETT 1T 0000000000011000

1

1

Description: Sets the T bitto 1.
Operation:

SETT() /* SETT */
{

T=1;
PC+=2;
}
Example:

SErT  Before execution T=0
After execution T=1

120 Hitachi



6.53 SHAL (Shift Arithmetic Left): Shift Instruction
Format Abstract Code State T Bit

SHAL Rn T« Rne«0 - 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit

(figure 6.7).

MSB LSB

SHAL , 0

Figure 6.7 Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{
if ((R[n]&0x80000000)==0) T=0;

else T=1;
R[n]<<=1;
PC+=2;
}
Example:

SHAL  RO. Before execution RO =H'80000001, T=0
After execution RO =H'00000002, T=1

121 Hitachi



654 SHAR (Shift Arithmetic Right): Shift Instruction
Format Abstract Code . State T Bit

SHAR Rn MSB—- Rn—>T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.8).

LSB

MSB
T
SHAR l .|

Figure 6.8 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */
{
long temp;

if ((R[n]&0x00000001)==0) T=0;
else T=1;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;

R[n)>>=1;
if (t ==1) R([n] |=0x80000000;
else R[n]&=0x7FFFFFFF; '
" PC+=2;
}
Example:
SHAR RO Before execution RO =H'80000001, T=0

After execution RO =H'C0000000, T=1

122 Hitachi




6.55 SHLL (Shift Logical Left): Shift Instruction
Format Abstract Code State T Bit

SHLL Rn T« Rne0 0100nnnn00000000 1 MSB

- Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

MSB LSB

SHLL —0

Figure 6.9 Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{
if ((R[n)&0x80000000)==0) T=0;

else T=1;
Rn)<<=1;
PC+=2;

}

Examples:

SHLL RO Before execution RO =H'80000001, T=0
After execution RO =H'00000002, T=1

123 Hitachi



6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code State TBit
SHLL2 Rn Rn<<2 —»ARn 0100nnnn00001000 1 —_
SHLLS Rn Rn<<8 - Rn 0100nnnn00011000 1 —_
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 _

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

MSB___ - LSB

SHLL2

SHLL16

Figure 6.10 Shift Logical Left n Bits
Operation:

SHLL2 (long n) /* SHLL2 Rn */

R{n]<<=2;
PC+=2;

124 Hitachi



SHLL8 (long n)
{

R[n]<<=8;

PC+=2;
}

SHLL16 (long n)

{
R[n]<<=16;
PC+=2;

}

Examples:

SHLL2 RO

SHLLS RO

SHLL16 RO

/* SHLL8 Rn */

/* SHLL16 Rn */

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO =H'12345678
RO =H'48D159E0

RO =H'12345678
RO =H'34567800

RO = H'12345678
RO = H'56780000

125 Hitachi



6.57 SHLR (Shift Logical Right): Shift Instruction
Format Abstract Code State TBit
SHLR  Rn 0—-Rn T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

MSB LSB
SHLR 0—»

Figure 6.11 Shift Logical Right

Operation:

SHLR (long n) /* SHLR Rn */

{
if ((R[n]}&0x00000001)==0) T=0;

else T=1;
R[n]>>=1;
R[n] &=0xX7FFFFFFF;
PC+=2;
}
Examples
SHLR RO Before execution RO = H'80000001, T=0

After execution RO = H'40000000, T = 1

126 Hitachi



6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit
SHLR2 Rn Rn>>2 — Rn 0100nnnn00001001 1 —
SHLRS8 Rn Rn>>8 — Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 — Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

MSB LSB

SHLR8

- SHLR16

Figure 6.12 Shift Logical Right n Bits

Operation:

SHLR2 (long n) /* SHLR2 Rn */
{

R[n]>>=2;

R[n] &=0x3FFFFFFF;

PC+=2;

127 Hitachi



SHLR8 (long n)
{
R[n]>>=8;

/* SHLR8 Rn */

R([n] &=0x00FFFFFF;

PC+=2;
}

SHLR16(long n)

{

/* SHLR16 Rn */

R[n] &=0x0000FFFF;

R[n]>>=16;
PC+=2;
}
Examples:
SHLR2 RO
SHLRS8 RO
SHLR16 RO

Before execution
After execution
Before execution
After execution
Before execution

After execution

RO = H'12345678
RO = H'048D159E
RO = H'12345678
RO = H'00123456
RO = H'12345678
RO = H'00001234

128 Hitachi



6.59 SLEEP (Sleep): System Control Instruction
Format Abstract Code State T Bit

SLEEP Sleep . 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.
Operation:

SLEEP () /* SLEEP */
{

PC-=2;

Error{(“Sleep Mode.”);
}

Example:

SLEEP  Transits power-down mode

129 Hitachi



6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STC SR, Rn SR— Rn 0000nnnNn00000010 1 —
SIC  GER,Rn GBR - Rn 0000nnNN00010010 1 —
STC VER, Rn VBR — Rn 0000nnnn00100010 1 —
STC.L SR,@-Rn Rn-4 — Rn, SR — (Rn) 0100nnnn00000011 2 —
STC.L GER,@-Rn Rn-4 — Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L. VER,@-Rn Rn-4 — Rn, VBR — (Rn) 0100nnnn00100011 2 —

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:
STCSR(long n) /* STC SR,Rn */
{
R[n]=SR;
PC+=2;
}
STCGBR(long n)  /* STC GBR,Rn */
{
R[n)=GBR;
PC+=2;
}
STCVBR (long n) /* STC VBR,Rn */
{
R[n)=VBR;
PC+=2;
}

130 Hitachi



STCMSR (long n)

{
R[n]-=4;
Write_Long(R[n),SR);
PC+=2;

}

{

STCMGBR (long n)

{
R[n]-=4;
Write_Long(R[n],GBR);
PC+=2;

}

STCMVER (long n)
{

R[n]-=4;
Write_Long(R[n],VBR);
PC+=2;
}
Examples

STC SR, RO Before execution
After execution
STC.L GER,@-R15 Before execution

After execution

/* STC.L SR,@-Rn */

/* STC.L GBR,@-Rn */

/* STC.L VBR,@-Rn */

RO = HFFFFFFFF, SR = H'00000000
RO = H'00000000

R15 = H'10000004

R15 = H'10000000, @R15 = GBR

131 Hitachi



6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STS MACH, Rn MACH — Rn 0000nnnn00001010 1 —
STS MACL, Rn MACL — Rn 0000nnnn00011010 1 —
SIS  PR,Rn PR - Rn 0000nnnn00101010 1 —
STS.L. MACH,@-Rn Rn-4 — Rn, MACH — (Rn) 0100nnnn00000010 1 —
STS.L. MACL,@-Rn Rn-4— Rn, MACL — (Rn) 0100nnnn00010010 1 —
STS.L  PR,@-Rn Rn-4 - Rn, PR — (Rn) 0100nnnn00100010 1 —

‘Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted. ‘

If the system register is MACH in the SH7000 series, the value of bit 9 is transferred to and stored
in the higher 22 bits (bits 31 to 10) of the destination. With the SH7600 series, the 32 bits of
MACH are stored directly. .

Operation:

STSMACH (long n) /* STS MACH,Rn */
{

R[n]=MACH;
if ((R[n]&0x00000200)==0) For SH7000 (these 2 lines
R[n]&=0x000003FF; : not needed for SH7600)

else R[n] |=0xFFFFFC00;

PC+=2;
}

STSMACL (long n) /* STS MACL,Rn */
{

R[n]=MACL;

PC+=2;

132 Hitachi



STSPR(long n)

{
R[n]=PR;
PC+=2;

}

STSMMACH (long n)

{
R[n)-=4;

/* STS PR,Rn */

/* STS.L MACH,@-Rn */

if ((MACH&0x00000200)==0)
Write_Long(R[n],MACH&0x000003FF) ;

else Write Long
(RIn],MACH | OXFFFFFC00)

For SH7000

Write_Long(R[n], MACH);

PC+=2;
}

STSMMACL (long n)

{
R[n]-=4;
Write_Long(R[n],MACL);
PC+=2;

}

STSMPR (long n)
{

R[n}-=4;
Write Long(R[n],PR);
PC+=2;
}
Example:

STS MACH, RO Before execution

After execution

STS.L. PR,@-R15 Before execution

After execution

For SH7600

/* STS.L MACL,@-Rn */

/* STS.L PR,@-Rn */

RO = HFFFFFFFF, MACH = H'00000000
RO = H'00000000

R15 = H'10000004
R15 = H'10000000, @R15 = PR

133 Hitachi



6.62 SUB (Subtract Binary): Arithmetic Instruction
Format Abstract Code State T Bit

SUB Rm, Rn Rn—-Rm — Rn 001 1nnnnnmrmm1 000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */
(

R[n]-=R[m];

PC+=2;
}

Example:

SUB RO,R1 Before execution RO =H'00000001, R1 = H'80000000
After execution R1 = H'7FFFFFFF

134 Hitachi



6.63 SUBC (Subtract with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

SUBC  Rm,Rn Rn—RBm-T — Rn, Borrow - T 0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. This instruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBC (long m, long n) /* SUBC Rm,Rn */
{
unsigned long tmpO0, tmpl;

tmpl=R[n]-R[m];
tmp0=R[n];
R[n]=tmpl-T;
if (tmpO<tmpl) T=1;
else T=0;
if (tmpl<R[n]) T=1;
PC+=2;
}
Examples:
CLRT RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)
SUBC  R3,R1  Before execution T =0, R1 = H'00000000, R3 = H'00000001
After execution T =1, R1 = HFFFFFFFF
SUBC R2,R0  Before execution T = 1, RO = H'00000000, R2 = H'00000000
After execution T =1, RO = HFFFFFFFF

135 Hitachi



6.64 SUBY (Subtract with V Flag Underflow Check): Arithmetic

Instruction
Format Abstract Code State T Bit

SUBV Rm,Rn Rn-Rm — Rn, Underflow - T 001 1lnnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

' SUBV(long m, long n) /* SUBV Rm,Rn */
(

long dest, src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;

if ((long)R[m]>=0) src=0;
else src=1;

src+=dest;

R[n]-=R[m];

if ((long)R[n]>=0) ans=0;
else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;
}
else T=0;
PC+=2;
}
Examples:

SUBV RO,R1 Before execution RO = H'00000002, R1 = H'80000001
After execution R1=H'7FFFFFFF, T=1

SUBV R2,R3 Before execution R2 = HFFFFFFFE, R3 = H7FFFFFFE
After execution R3 =H'80000000, T=1

136 Hitachi



6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit
SWAP.B Rm,Rn Rm — Swap upper and lower 0110nnnnmmmm1000 1 -
halves of lower 2 bytes — Rn
~ SWAP.W Rm,Rn Rm — Swap upper and lower 0110nnnnmmrml 001 1 -
word — Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are

swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

{
unsigned long tempO, templ;

tempO0=R[m] &0x££££0000;
templ=(R[m]&0x000000£f) <<8;
R[n]=(R[m] &0x0000££00)>>8;
R[n]=R[n] | templ | tempO;
PC+=2;

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

{
unsigned long temp;
temp=(R[m]>>16) &0x0000FFFF;
R[n]=R[m]<<16;

R[n] |=temp;
PC+=2;
}
Examples

SWAP.B 'RO,R1 Before execution

After execution

SWAP.W RO,R1 Before execution

After execution

RO =H'12345678
R1 =H'12347856

RO =H'12345678
R1 =H'56781234

137 Hitachi



6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit
TAS.B @Rn When (Rn)is0,1 - T,1 - MSBof (Rn) 0100nnnn00011011 4 Test
' results

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is O, or clears the T bit to O if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(iong n) /* TAS.B @Rn */
{
long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */
if (temp==0) T=1;

else T=0;

temp | =0x00000080;

Write Byte(R[n],temp); /* Bus Lock disable */

PC+=2;
}
Example:
_LOOP TAS.B @R7 R7 =1000
BF _LOOP Loops until data in address 1000 is O

138 Hitachi



6.67 TRAPA (Trap Always): System Control Instruction

Format Abstract Code State T Bit
TRAPA  #imm PC/SR —» Stack area, (imm x4 +  11000011iiiiiiii 8 —
VBR) - PC

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the
starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

TRAPA (long i) /* TRAPA #imm */
{

long imm;

imm=(0x000000FF & 1i);

R[15]-=4;
Write_Long(R[15],SR);
R[15]-=4;

Write_Long(R[15],PC-2);
PC=Read_Long (VBR+ (imm<<2) ) +4;

}
Example:
Address
VBR+H' 80 .data.1 10000000
TRAPA  #H'20 Branches to an address specified by data in address VBR +
H'80
TST #0,R0 « Return address from the trap routine (stacked PC value)
100000000  XOR RO,RO <« Trap routine entrance
100000002  RTE Returns to the TST instruction
100000004 NOP Executes NOP before RTE

139 Hitachi



6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract ‘ Code State T Bit
TST Rm,Rn Rn & Rm, whenresultis 001 0nnnnmmmm1000 1 Test
0,1 ->T results
TST #imm, RO RO & imm; when result is 110010001iiiiiii 1 Test
0,1->T . results
TST.B #imm, @ (RO, GBR) (RO + GBR) & imm, when 11001100iiiiiiii 3 Test
resultis0,1—>T results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:

TST(long m, long n)

{

}

TSTI(long i)

{

}

TSTM(long i)

{

if ((R[n]&R[m])==

else T=0;
PC+=2;

long temp;

/* TST Rm,Rn */

0) T=1;

/* TEST #irm,RO */

temp=R[0]& (0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;
PC+=2;

long temp;

/* TST.B #imm, @(RO,GBR) */

140 Hitachi



temp= (long)Read_Byte (GBR+R[0]) ;
temp&=(0x000000FF & (long)i);
if (temp==0) T=1;

else T=0;
PC+=2;
}
Examples:
TST RO, RO Before execution RO = H'00000000
After execution T=1
TST #H'80,R0 Before execution RO = HFFFFFF7F
' After execution T=1

- TST.B #H'A5,@(R0O,GBR) Before execution @(R0O,GBR) =H'AS5
After execution T=0

141 Hitachi



6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit
XOR  Rm,Rn RnARm — Rn 0010nnnnmmmm1 010 1 —
XOR  #imm,RO ROAImMmM > RO 11001010iiiiiiii 1 —
XOR.B #imm, @(RO,GBR) (RO+GBR)Aimm — (RO 11001110iiiiiiii 3 —

+ GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rm,Rn */
{
R[n]”*=R[m];

PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{
R[0]~=(0x000000FF & (long)i):
PC+=2;

}

XORM(1long i) /* XOR.B #imm, @(RO,GBR) */

{
long temp;
temp=(long)Read Byte (GBR+R[0]) ;
temp”=(0x000000FF & (long)i);
Write_ Byte(GBR+R[0], temp) ;
PC+=2;

}

142 Hitachi



Examples:

XOR RO,R1

XOR #H'FO,RO

XOR.B #H'A5,@(R0O,GBR)

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO =H'AAAAAAAA, R1 = H'55555555
R1 = HFFFFFFFF
RO = HFFFFFFFF
RO = H'FFFFFFOF

@(RO,GBR) = H'AS
@(RO,GBR) = H'00

143 Hitachi



6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit
XTRCT Rm,Rn Center 32 bits of Rm and Rn —» 0010nnnnmmmm1101 1 —_
Rn

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13).

MSB LSB MSB LSB
Rm

Rn

Figure 6.13 Extract
Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */
{
unsigned long temp;

temp=(R[m] <<16) &0xFFFF0000;
R{n]=(R[n]>>16)&0x0000FFFF;
R[n] |=temp;

PC+=2;

}
Example:

XTRCT RO,R1 Before execution RO =H'01234567, R1 = H'89ABCDEF
After execution R1 =H'456789AB

144 Hitachi




Section 7 Processing States

7.1 State Transitions

The CPU has five processing states: reset, exception processing, bus release, program execution
and power-down. The transitions between the states are shown in figure 7.1. In the SH7600 series,
the transitions in the bus release state are indicated for master mode. For more information, see the
SH Hardware Manual.

145 Hitachi



From any state when From any state when
RES =0 and NMI =1 RES =0and NMI =0

Power-on reset state Manual reset state

RES =1, ‘ Reset states
NMI =0

RES =1,

When an interrupt source NMI = 1
or DMA address error occurs
Exception processing state

NMI interrupt

4 source error
Bus request
cleared Bus request
generated
Exception Exception
N ; rocessin
B}J_S\ release state - processing p oo g
source occurs
Bus request Bus request
Bus request generated cleared
generated '
BUSI requ;st Program execution state
cleare :
. SBY bit set
SBY bit i for SLEEP
C'Ea’ed for  / msTP 'MSTP instruction
< LEE'.: bit cleared bit set
instruction
' Sleep mode ' Standby mode :
Z Module standby :
; (SH7600 only) !

Power-down state

Figure 7.1 Transitions Between Piocessing States

146 Hitachi




7.1.1 Reset State

In the reset state, the CPU is reset. This occurs when the RES pin level goes low. When the NMI
pin is high, the result is a power-on reset; when it is low, a manual reset will occur.

In the power-on reset, all CPU internal states and on-chip peripheral module registers are
initialized: During manual reset, all on-chip peripheral module registers and CPU internal states,
with the exception of the bus state controller (BSC) and pin function controller (PFC), are
initialized. During manual reset the BSC is not initialized, allowing the refresh operation to
continue.

7.1.2  Exception Processing State
The exception processing state is a transient state that occurs when the CPU’s processing state

flow is altered by exception processing sources such as resets or interrupts.

For a reset, the initial values of the program counter PC (execution start address) and stack pointer
SP are fetched from the exception processing vector table and stored; the CPU then branches to
the execution start address and execution of the program begins.

For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and status
register (SR) are saved to the stack area. The exception service routine start address is fetched
from the exception processing vector table; the CPU then branches to that address and the program
starts executing, thereby entering the program execution state.

7.1.3  Program Execution State

In the program execution state, the CPU sequentially executes the program.

7.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has two modes: sleep mode and
standby mode. See section 7.2 for more details. The SH7600 also has a module standby function.

7.1.5 Bus Release State

In the bus release state, the CPU releases access rights to the bus to the device that has requested
them.

147 Hitachi



7.2 Power-Down State

In addition to the ordinary program execution states, the CPU also has a power-down state in
which CPU operation halts and power consumption is lowered (table 7.1). There are two power-
down state modes: sleep mode and standby mode.

7.2.1  Sleep Mode

When standby bit SBY (in the standby control register SBYCR) is cleared to 0 and a SLEEP

instruction executed, the CPU moves from the program execution state to sleep mode. In the sleep
mode, the CPU halts and the contents of its internal registers and the data in on-chip cache (RAM)
are maintained. The on-chip peripheral modules other than the CPU do not halt in the sleep mode.

To return from sleep mode, use a reset, any interrupt, or a DMA address error; the CPU returns to
the ordinary program execution state through the exception processing state.

7.2.2  Software Standby Mode

To enter the standby mode, set the standby bit SBY (in the standby control register SBYCR) to 1
and execute a SLEEP instruction. In standby mode, all CPU, on-chip peripheral module and
oscillator functions are halted. CPU internal register contents and on-chip cache(RAM) data are
held.

To return from standby mode, use a reset or an external NMI interrupt. For resets, the CPU returns
to the ordinary program execution state through the exception processing state when placed in a
reset state after the oscillator stabilization time has elapsed. For NMI interrupts, the CPU returns to
the ordinary program execution state through the exception processing state after the oscillator
stabilization time has elapsed. In this mode, power consumption declines markedly, since the
oscillator stops.

7.2.3  Module Standby Function (SH7600 Only)

The module standby function is available for the multiplier (MULT), divider (DIVU), 16-bit free-
running timer (FRT), serial communication interface (SCI), and the DMA controller (DMAC) for
the on-chip peripheral modules.

The supply of the clock to these on-chip peripheral modules can be halted by setting the
corresponding bits 4-0 (MSTP4-MSTPO) in the standby control register (SBYCR). Using this
function can reduce the power consumption in sleep mode.

148 Hitachi



The external pins of the on-chip peripheral modules in module standby are reset and all registers
except DMAC, MULT, and DIVU are initialized. (The master enable bit (bit 0) of the DMAC's
DMA operation register (DMAOR) is initialized to 0.)

Module standby function is cleared by clearing the MSTP4-MSTPO bits to O.

Table 7.1 Power-Down State
State
On-Chip
Peripheral CPU /0
Mode Condition Clock CPU Module Register RAM Port Canceling
Sleep Executes Run Halt  Run Held Held Held 1. Interrupt
1n§truct|on . address
with SBY bit error
clearedto 0
in SBYCR 3. Power-
on reset
4. Manual
reset
Standby Executes Halt Halt  Halt and Held Held Heldor 1. NMI
[ORTTRR T | .
mode ﬁ:tErEcl;Dtion initialize ;1g1h 2 Power-
on reset
with SBY bit °
setto 1in 3. Manual
SBYCR reset
Module  Sets Run Halt  Supply of Held Held Held Clears
standby MSTP4- clock to MSTP4-
function  MSTPO bits affected MSTPO bits
(SH7600 of SBYCR module is of SBYCR
only) to1- halted and to0
module is
initialized.*2
Notes: 1. Depends on the peripheral module and pin. For details, see the Hardware Manual.
2. Interrupt vectors maintain their settings.

149 Hitachi



7.3 Master Mode and Slave Mode (SH7600 Series Only) )

The SH7600 series has two master modes and a slave mode for bus rights that can be selected with
the MD5 pin. The master modes consist of a total master mode and a partial-share naster mode,
which are specified using the MD5 pin and the partial-share space specification bit (PSHR) in bus
control register 1 (BCR1). When the slave mode is selected with the MDS5 pin, the device enters
total slave mode. When the master mode is selected with the MDS5 pin and partial space share is
specified with the PSHR bit, the device enters the partial-share master mode. When partial space
share is not specified with the PSHR bit, the device enters the total master mode.

The master mode has rights to bus use. External devices can be accessed freely. When a slave
CPU requests the bus right, the master CPU can give the bus right to the slave CPU.

The total slave mode does not have rights to bus use. To access an external device, bus rights have
to be requested to the master CPU, permission to use the bus gained, and then the external device
accessed.

The partial-share master mode lacks bus rights only for CS2 space. To access the CS2 space, bus
rights have to be requested to the master CPU, permission granted and then the CS2 space can be
accessed. This mode has bus rights for all other space and does not need to request the bus when

accessing them.

Table 7.2 Master Modes and Slave Mode (SH7600)

MD5 (Total Slave Mode PSHR

Specification Pin) (Partial-Share

Mode Bit) Function

Total slave 1 (Not used) Has no bus rights. To use a bus,

mode requests the bus and receive
permission from the master CPU to
access.

Partial-share 0 1 Has bus rights to CS0, CS1, and CS3

master spaces. Lacks continuing bus rights

mode only to CS2. To access CS2, first
requests and be granted bus rights.

Total master 0 0] Always has bus rights. Gives bus rights

mode to slave CPUs.

150 Hitachi



Section 8 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1  Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

¢ IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.
¢ ID (Instruction decode) Decodes the instruction fetched.

EX (Instruction execution) Performs data operations and address calculations according to the
results of decoding.

* MA (Memory access) Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

WB (Write back) Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some
exceptions.

As shown in figure 8.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is
as shown in figure 8.1; some pipelines differ, however, because of contention between IF and MA.
In figure 8.1, the period in which a single stage is operating is called a slot.

“r > > 4> 4> <> 4> <> <> <> Slot

Instruction1 IF ID EX MA WB Instruction
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WwWB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB

_—

Time

Figure 8.1 Basic Structure of Pipeline Flow

151 Hitachi




8.2  Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

8.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more -
stages cannot be executed within one slot (figure 8.2), with exception of WB and MA. Since WB

is executed immediately after MA, however, some instructions may execute MA and WB within
the same slot. ' /

P —> 4> > <> 4> 4> <> <> St
Instruction1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Note: 1D and EX of instruction 1 are being executed in the same slot.

Figure 8.2 Impossible Pipeline Flow 1

8.2.2  Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 8.3).

<> > > > > > > > > > : St
Instruction1 IF ID EX MA WB
Instruction2 IF ID EX MA WB

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

_ Figure 8.3 Impossible Pipeline Flow 2

152 Hitachi




8.2.3

Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

oS:

(the cycles of the stage with the highest number of cycles of all instruction stages contained

in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

* The number of execution cycles for each stage:

IF The number of memory access cycles for instruction fetch
ID Always one cycle

EX Always one cycle '

MA The number of memory access cycles for data access

WB Always one cycle

As an example, figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is

being stalled.
v' > ¢—> 4> ¢+————p <> <> : Sot
2 @ M @ (1) (1) < Number of
Instruction1 IF IF ID — EX MA MA MA WB cycles
Instruction 2 IF IF D EX — — MA WB

Figure 8.4 Slots Requiring Multiple Cycles

153 Hitachi




8.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 8.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using an MOV Rm, Rn that follows instruction 3. (In the case of figure 8.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 8.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 8.5 is seven states (5 + 1 + 1).

“—> ¢—Pp 4—» «———p 4> <> : St

@) @) ) (4) M
Instruction1 IF IF ID — — MA MA MA WB
Instruction 2 IF IF D — — — —
Instruction 3 F IF — — — ID MA
(Instruction 4: MOV Rm, Rn IF 1D [EX])

Figure 8.5 How Instruction Execution States Are Counted

154 Hitachi




8.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

8.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF
and MA stages both try to access memory within the same slot, the slot splits as shown in figure
8.6. When there is a WB, it is executed immediately after the MA ends.

A B C D E F G
“+“r O 4> 4> O D> <> 4> <> Slot

Instruction1 IF ID EX wB MA of instruction 1 and IF of instruction 4

Instruction 2 IF ID EX wB contend at D

Instruction 3 IF ID EX MA of instruction 2 and IF of instruction 5
contend at E

Instruction 4 ID EX

Instruction 5 ID EX

When MA and IF are in contention, the following occurs:

A B C D E F G

> > > —> ¢—> 4> <> : Sot
Instruction1 IF D EX WB splitatD
Instruction 2 IF ID — EX wB Splitat E
Instruction 3 ‘ IF — ID — EX
Instruction 4 — ID EX
Instruction 5 ID EX

Figure 8.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first half
(when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed
simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is executed in
slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

155 Hitachi



84.2  The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the SH
microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a
single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and AQ = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as ‘if’. These ‘if’s always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is A1 = 1, A0 = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 8.7 illustrates
these operations. ‘

156 Hitachi



< 32bits

<« > “> > > > > > > 4> 4> <> Slot
Instruc-|| Instruc- | -+ Instruction 1 ID EX

tion1 | tion2 Instruction 2 if ID EX

Instruc-)| Instruc- | -+ Instruction3 . ID EX

tion3 || tion4 Instruction 4 if ID EX

instruc-| instruc- | -+ Instruction 5 , ID EX

tion5 || tion 6 Instruction 6 if ID EX

(On-chip memory

or on-chip cache) : Bus cycle generated

if : Nobuscycle

Fetching from an instruction (instruction 1) located on a longword boundary

<> 4> D> > 4> <> > 4> > > Sot

Instruc-
tion2 || Instruction 2 , ID EX
- Instruction 3 ID EX
Instruc-|| Instruc- . i
tion 3 || tion 4 Instruction 4 if ID EX
-- Instruction 5 ID EX
Instruc-|| Instruc- . .
tion 5 {| tion6 Instruction 6 if ID EX

: Bus cycle generated
if : Nobuscycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 8.7 Relationship Between IF and Location of Instructions in On-Chip Memory

8.4.3  Relationship Between Position of Instructions Located in On-Chip ROM/RAM or
On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages (‘if” written in lower case) that do not generate bus cycles as explained in
section 8.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when
an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such
slots execute in the number of states the MA requires for memory access, as illustrated in figure
8.8.

‘When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the

157 Hitachi




position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0) because the
MA of the instruction falls in the same slot as ifs that follow. ‘

<32bits » <—><—><—><‘-\><B———><-><—>-<—><—>:Slot
instruc-|| Instruc- | - Instruction 1 IF ID EX iMA: WB .

tion1 || tion2 | |nstruction 2 if ID EX :MA: WB

Instruc-|| Instruc- | -+ Instruction 3 IF ID — EX

tion3 || tion 4 Instruction 4 iifl — ID EX

Instruc-|| Instruc- |+ Instruction 5 ID EX

tion5 || tion6 Instruction 6 if ID EX

(On-chip memory . Splits

or on-chip cache) .

{if : : Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 8.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

8.5  Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus come after the EX stage of the instruction that immediately follows it
(instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. The destination register of load instruction 1 is the same as the destination (not the
source) of instruction 2, so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

¢ When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1.

¢ When instruction 2 is Mac @Rm+ , @Rn+, and the destination of load instruction 1 are the
same.

158 Hitachi




The number of states in the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, as illustrated in figure 8.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

> > 4> «—> <> <> Slot
Load instruction 1 (MOV.W @R0, R1) IF ID EX WB

Instruction 2 (ADD R1, R2) IF ID —
Instruction 3 IF — ID EX
Instruction 4 IF ID -

Figure 8.9 Effects of Memory Load Instructions on the Pipeline

8.6  Programming Guide

To improve instruction execution speed, consider the following when programming:

» To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and AO = 0) wherever possible.

* The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

* Locate instructions that use the multiplier nonconsecutively.

159 Hitachi




8.7  Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”’. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with a few exceptions. When a slot has split, see section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given

there.

Table 8.1 lists the format for number of instruction stages and execution states:

Table 8.1 Format for the Number of Stages and Execution States for Instructions
Type Category Stage  State Contention Instruction
Functional Instructions Number Number Contention that Corresponding instructions
types are catego- of of occurs represented by mnemonic
rized stages  execu-
basedon inan tion
operations instruc- states
tion when
no
conten-
tion
occurs
Table 8.2  Number of Instruction Stages and Execution States
Type Category Stage  State Contention Instruction
Data Register- 3 1 — MOV #imm, Rn
gransfer. register MOV Rm, Rn
instructions transfer .
instructions MOVA  @(disp,PC),RO
MOVT Rn

SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT Rm, Rn

160 Hitachi



Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage  State Contention Instruction

Data Memory 5 1 * Contention occurs MOV.W  @(disp,PC),Rn
?ransfer. .!oad _ if the instruction v 1 g (disp, PC) ,Rn
instructions  instructions placed

(cont) immediately after MOV.B  @Rm,Rn

this one usesthe MOV.W  @Rm,Rn
same destination

X MOV.L  @Rm,Rn
register

. MOV.B @Rm+, Rn
¢ MA contends with
F MOV.W @Rm+,Rn

MOV.L  @Rm+,Rn

MOV.
MOV.
MOV.

RO, @(disp,GBR)
RO, @ (disp,GBR)
RO, @ (disp,GBR)

MOV.B @(disp,Rm),RO
MOV.W @(disp,Rm),R0O
MOV.L . @(disp,Rm),Rn
MOV.B @(RO,Rm),Rn
MOV.W @(RO,Rm),Rn
MOV.L @(RO,Rm),Rn
MOV.B @(disp,GBR),R0
MOV.W @(disp,GBR),R0
MOV.L @(disp,GBR),RO
Memory 4 1 ¢ MA contends with MOV.B  Rm, @Rn
store IF MOV.W Rm,@Rn
instructions
MOV.L  Rm,@Rn
MOV.B  Rm,@-Rn
MOV.W Rm,@-Rn
MOV.L  Rm,@-Rn
MOV.B RO,@(disp,Rn)
MOV.W RO,@(disp,Rn)
MOV.L Rm,@(disp,Rn)
MOV.B Rm,@(RO,Rn)
MOV.W' Rm,@(RO,Rn)
MOV.L  Rm,@(RO,Rn)
B
w
L

161 Hitachi



Table 8.2

Number of Instruction Stages and Execution States (cont) .

Type Category Stage  State Contention Instruction
Arithmetic  Arithmetic 3 1 — ADD Rm,Rn
instructions instructions ADD #imm, Rn
between
registers ‘ ADDC Rm,Rn
(exﬁ?Fl{t ADDV Rm,Rn
multiplic- ( .
ation CMP/EQ  #imm,RO
instruc- ' CMP/EQ Rm,Rn
tions)

CMP/HS Rm,Rn
CMP/GE Rm, Rn
CMP/HI Rm, Rn
CMP/GT Rm,Rn

CMP/PZ Rn
CMP/PL  Rn
CMP/STR Em,Rn
DIVl Rm, Rn
DIVOS Rm, Rn
DIVOU

DT Rn*3

EXTS.B Rm,Rn
EXTS.W Rm,Rn
EXTU.B Rm, Rn
EXTU.W Rm,Rn

NEG Rm,Rn
NEGC Rm, Rn
SUB Rm,Rn
SUBC Rm,Rn
. SUBV Rm, Rn
Multiply/ 7/8*1 3/(2)*2  « Multiplier contention MAC.W  @Rm+, @Rn+
accumulate occurs when an )
instructions instruction that uses the

multiplier follows a
MAC instruction

¢ MA contends with IF

Notes 1.

In.the SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages : '

The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

SH7600 instructions

162 Hitachi



Number of Instruction Stages and Execution States (cont)

Table 8.2
Type Category Stage  State Contention Instruction
Arithmetic  Double- 9 3/(2to e Multiplier MAC.L @Rm+, @Rn+*3
instructions length 4)*2 contention occurs
(cont) multiply/ when an
accumulate instruction that
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction
 MA contends with
IF
Multiplic-  6/7*1 11032 « Multiplier MULS.W  Rm,Rn
'atlon _ contentlo_n OCCUrs oty .w Rm, Rn
instructions when an instruc-
tion that uses the
multiplier follows a
MUL instruction
¢ MA contends with
IF
Double- 9 2t04*2 « Multiplier CMULS.L Rm,Rn*3
Ieng?h contention occurs DMULU.L Rm,Rn*3
multiply/ when an 5
accumulate instruction that MUL.L  Rm,Rn*
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction
¢ MA contends with
IF
Logic Register- 3 1 — AND Rm, Rn
operation  register AND #1mm, RO
instructions logic '
operation NOT Rm, Rn
instructions OR Rm, Rn
" OR #imm, RO
TST Rm, Rn
TST #imm, RO
XOR Rm, Rn
XOR #imm, RO
Notes 1. Inthe SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6

stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply

instructions 7 stages

The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

SH7600 instructions

163 Hitachi



Table 8.2

Number of Instructio_n Stages and Execution States (cont)

Type Category Stage  State Contention Instruction
Logic Memory logic 6 3 e MAcontends AND.B  #imm, @ (RO,GBR)
f.)peratic'm f)peratic-ms with IF OR.B #imm, @ (RO, GBR)
instructions instructions ‘
(cont) TST.B  #imm, @(RO,GBR)
XOR.B  #imm, @ (RO, GBR)
TAS 6 4 * MA contends TAS.B '@Rn
instruction with IF
Shift Shift 3 1 — ROTL Rn
instructions instructions ROTR Rn
ROICL Rn
ROTCR Rn
SHAL Rn
SHAR  Rn
SHLL.  Rn
SHLR Rn
SHLL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn
Branch Conditional 3 314 — BF label
instructions 'branch‘ BT 1abel
instructions
Delayed 3 211" — BF/S  label*3
conditional BT/S 1abel*3
branch
instructions
(SH7600 only)
Unconditional 3 2 — BRA label
pranch. BRAF Rn*3
instructions
BSR label
BSRF Rn*3
JMP @Rn
JSR @Rn
RTS

Notes 3. SH7600 instruction
4, One state when there is no branch

164 Hitachi



Table8.2 Number of Instruction Stages and Execution States (cont)
Type Category Stage  State Contention Instruction
System System 3 1 — CLRT
control control
LDC Rm, SR
instructions ALU
instructions LDC Rm, GBR
LDC Rm,VBR
LDS Rm, PR
NOP
SETT
STC SR,Rn
STC GBR, Rn
STC VER, Rn
STS PR,Rn
STC.L 4 2 * MA contends with STC.LL  SR,@-Rn
instructions IF STC.L  GER,@-Rn
STC.L  VER,@-Rn
LDS.L 5 1 e Contention occurs LDS.L.  @Rm+,PR
instructions when an
(PR) instruction that
uses the same
destination
register is placed
immediately after
this instruction
¢ MA contends with
IF
STS.L 4 1 e MA contends with STS.L.  PR,@-Rn
instruction IF
(PR)

165 Hitachi



Table 8.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage  State Contention Instruction
System Register > 4 1 ¢ Contention occurs CLRMAC
?r?s'::tﬂtions ':f:n(;fer i multpler LDS R, MACH
¢ MA contends with
(cont) instruction IF LDS Rm, MACL,
Memory —» 4 1 » Contentionoccurs LDS.L  @Rm+,MACH
MAC with multiplier LDS.I,  @Rm+, MACL
transfer * MA contends with
instructions IF
MAC —» 5 1 ¢ Contention occurs STS MACH, Rn
register with multiplier STS MACL Rn
transfer « Contention occurs
instruction when an
instruction that
uses the same
destination
" register is placed
immediately after
this nstruction
¢ MA contends with
IF
MAC —» 4 1 ¢ Contentionoccurs STS.L  MACH, @-Rn
memory with multiplier STS.I.  MACL,@-Rn
transfer * MA contends with
instruction IF
RTE 5 4 — RTE
instruction
TRAP 9 8 — TRAPA  #imm
instruction
SLEEP 3 3 — SLEEP
instruction

166 Hitachi



8.7.1  Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

*« MOV #imm, Rn

« MOV Rm, Rn

« MOVA @(disp, PC), RO
* MOVT Rn

« SWAP.B Rm, Rn

e SWAP.W Rm, Rn

¢ XTRCT Rm, Rn

> 4> 4> <> > <> Sot
lnstruction A IF__ID__EX]
Next instruction IF ID EX -
Third instruction IF ID EX -«

Figure 8.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

167 Hitachi




Memory Load Instructions: Include the following instruction types:

* MOV.W @(disp, PC), Rn

« MOV.L @(disp, PC), Rn
« MOVB @Rm, Rn

« MOV.W @Rm, Rn

¢« MOV.L @Rm, Rn

« MOVB @Rm+, Rn

* MOV.W @Rm+, Rn

« MOV.L @Rm+, Rn

« MOV.B @(disp, Rm), RO
« MOV.W @(disp, Rm), RO
* MOV.L @(disp, Rm), Rn
« MOVB @(RO, Rm), Rn

« MOV.W @(RO, Rm), Rn

« MOVL @(RO, Rm), Rn

« MOV.B @(disp, GBR), RO
« MOV.W @(disp, GBR), RO
« MOVL @(disp, GBR), RO

<> > > <> > <> Sot
[InstructonA_IF _ID EX MB_WB]|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.11). If an instruction
that uses the same destination register as this instruction is placed immediately after it, contention
will occur. (See Section 8.5, Effects of Memory Load Instructions on Pipelines.)

168 Hitachi




Memory Store Instructions: Include the following instruction types:

« MOV.B Rm, @Rn

« MOV.W Rm, @Rn

« MOVL Rm, @Rn

« MOV.B Rm, @-Rn

« MOV.W Rm, @-Rn

+ MOV.L " Rm, @-Rn

- MOVB RO, @(disp, Rn)

« MOV.W RO, @(disp, Rn)

e MOVLL Rm, @(disp, Rn)
« MOV.B Rm, @(RO, Rn)

¢ MOV.W Rm, @(RO, Rn)

e MOV.L Rm, @(RO, Rn)

¢« MOV.B RO, @(disp, GBR)
*« MOV.W RO, @(disp, GBR)
« MOV.L RO, @(disp, GBR)

> 4> 4> <> <> <> Sot
lInstructon A IF__ID__EX_ MA]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.12). Data is not returned to
the register so there is no WB stage.

169 Hitachi




8.7.2  Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types: '

¢ ADD Rm, Rn
* ADD #imm, Rn
* ADDC Rm, Rn
+ ADDV Rm, Rn

« CMP/EQ #imm, RO
« CMP/EQ Rm, Rn
o CMP/HS Rm, Rn
« CMP/GE Rm, Rn
« CMP/HI Rm, Rn
» CMP/GT Rm, Rn
» CMP/PZ Rn

« CMP/PL Rn

« CMP/STR  Rm,Rn

* DIV1 Rm, Rn

* DIVOS Rm, Rn

e DIVOU

e DT Rn (SH7600 only)
 EXTS.B Rm, Rn

« EXTSW  Rm,Rn
« EXTUB Rm, Rn
« EXTUW  Rm,Rn

* NEG Rm, Rn
« NEGC Rm, Rn
« SUB Rm, Rn
+ SUBC Rm, Rn
« SUBV Rm, Rn

170 Hitachi



> 4> 4> > <> > St
[Instruction A IF 1D EX MA]

Next instruction IF ID EX -

Third instruction IF ID EX

Figure 8.13 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage via the ALU.

171 Hitachi




Multiply/Accumulate Instruction (SH7000): Includes the following instruction type:

« MACW @Rm+, @Rn+

<—><'—><—><—><¥><—><—><->:Slot
(MACW IF_ID EX MA MA mm_mm_ mm]
Next instruction IF — 1D EX MA WB
Third instruction IF ID EX MA WB

......

Figure 8.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of
the MAC.W instruction, when they contend with IF, split the slots as described in section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC.W instruction is located immediately after another MAC.W instruction
When a MULS. W instruction is located immediately after a MAC. W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When an LDS (register) instruction is located immediately after a MAC.W instruction

SN

When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

172 Hitachi




1.

When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
8.15).

<> > > > > > —> <> 4> <> St

[MACW IF ID EX MA MA '
MAC.W IF — ID EX

Third instruction IF —

> > > > > > P > > > <> <> Sot
[MACW IF ID EX MA MA mm mm  mm:
Other instruction IF — ID EX MA WB

MAC.W IF ID EX MA iMA: mm mm mm -

Figure 8.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 8.16 illustrates a case of this
type. This figure assumes MA and IF contention.

> > 4> 4> > > — Ppa>t—— P> e+—>e>: Slot
(MACW if ID EX MA MA mm mm mm:
MAC.W IF — ID EX MA — IMA:mmimm mm:

MAC.W if — — ID EX MA:N\
MAC.W IF — ID EX — !

Figure 8.16 Consecutive MAC.Ws without Misalignment

173 Hitachi




When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 8.17 illustrates a case of this type. This
figure assumes MA and IF contention.

> > > A—> > > P 4> > > <> <> Sot

MAC.W f — — ID EX MAM—A:mm mm mm
Other instruction IF — EX MA ...
Other instruction if — — ID EX -
_Other instruction IF

Figure 8.17 MA and IF Contention

174 Hitachi




When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the

. MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause

- stalling. When the MULS.W MA and IF contend, the slot is split.

4> 4P AP > > 4> > > > > <> Sot

[MACW IF
MULS.W

Other instruction IF ID EX — — MA ...

O > O > O > > > > > > 4> > Sot

[MACW IF ID EX MA MA mm mm_ mm;

Other instruction IF — ID EX
MULSW IF ID EX i{M—A :mm mm mm
Other instruction IF ID EX — MA ...

> 4 > 4D 4D D D > D > > 4> > > Sot

[MACW IF ID EX MA MA mm mm mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W - IF ID EXMAimm mm mm
Other instruction : IF ID EX MA ...

Figure 8.18 MULS.W Instruction Immediately After a MAC.W Instruction

175 Hitachi




When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.19) to create a single slot. The MA of the STS contends with the IF. Figure 8.19
illustrates how this occurs, assuming MA and IF contention.

[MACW

- > > —> >« > 4> 4> > > Sot
IF ID EX MA

STS
Other instruction
Other instruction
Other instruction

if — —

f — — — IDEX

[MAC.W if
STS IF — ID — EX:M—A:WB
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX .-

Figure 8.19 STS (Register) Instruction Immediately After a MAC.W Instruction

176 Hitachi




4.  When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 8.20) to create a single slot. The MA of the STS contends with the IF.
Figure 8.20 illustrates how this occurs, assuming MA and IF contention.

> 4> > —> > < > 4> <> 4> Sot

[MAC.W

IF

STS.L
Other instruction
Other instruction
Other instruction

f — — — — ID EX
IF ID EX ---oe

00004—»4—5000000:8]0t

[MAC.W

if

STS.L
Other instruction
Other instruction
Other instruction

Figure 8.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

177 Hitachi




5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.21) to create a single slot. The MA of this LDS contends with IF. Figure 8.21
illustrates how this occurs, assuming MA and IF contention.

> > > — > > < > 4> 4> <> <> 4> Slot
[MACW IF ID EX MA — MA imm_mm_mm:
LDS if — — i
Other instruction
Other instruction f — — — ID EX

Other instruction IF ID EX -

> P > > P P > O > > > > Sot

[MACW if “mm:
LDS F — ID — EX iM—A
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 8.21 LDS (Register) Instruction Immediately After a MAC.W Instruction.

178 Hitachi




When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to-the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.22) to create a
single slot. The MA of the LDS contends with IF. Figure 8.22 illustrates how this occurs,
assuming MA and IF contention.

> 4> > —> > < ' > 4> 4> <> <> <> Slot
[MACW IF ID EX MA — MA mm_mm_mm:
LDSL T M ............................. A
Other instruction IF b — — — EX
Other instruction f — — — ID EX

Other instruction ' IF ID EX -

> 4> 4> 4> 4> ——P 4> 4> 4> 4> > 4> Sot

[MACW if ID EX MA MA mm imm mm;

LDS.L f — ID — EX M—A:
Other instruction if — ID EX
Other instruction IF ID — EX MA
Other instruction if — ID EX ‘-

Figure 8.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

179 Hitachi




Multiply/Accumulate Instruction (SH7600): Includes the following instruction type:

» MAC.W @Rm+, @Rn+

, <> 4> 4> 4> 4> 4> > > Slot
[MACW IF ID EX MA MA mm mm]|

Next instruction IF — ID EX MA WB

Third instruction IF ID EX MA WB

Figure 8.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 8.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the slots as described in Section 8.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases: ’

When a MAC.W instruction is located immediately after another MAC.W instruction
When a MAC.L instruction is located immediately after a MAC.W instruction

When a MULS. W instruction is located immediately after a MAC.W instruction

When a DMULS.L instruction is located immediately after a MAC.W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC.W instruction
When an LDS (register) instruction is located immediately after a MAC.W instruction

X NS AE W=

When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

180 Hitachi




1.  When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

> 4> 4> 4> > > > 4> 4> > > Slot

[MACW IF :
MAC.W IF — ID EX MA iMA: mm mm
Third instruction IF — ID EX MA

Figure 8.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by

MA and IF contention. Figure 8.25 illustrates a case of this type. This figure assumes MA and
IF contention.

4> 4> 4> 4> > —> 4> 4> > 4> <> <> <> Slot
|MTC.W if ID EX MA MA mm mm|

MAC.W IF — ID EXMA — MA mm mm
MAC.W if — — ID EX MA MA mm mm
MAC.W IF — ID EX MA MA mm -

Figure 8.25 Consecutive MAC.Ws with Misalignment

181 Hitachi




When the second MA of the MAC. W instruction contends with IF, the slot will split as usual.
Figure 8.26 illustrates a case of this type. This figure assumes MA and IF contention.

> 4> > P P> P 4P —> 4> 4> > <> Slot

[MACW IF ID EX MA — MA mm mmi

MAC.W f — — ID EX MA:MA:mm mm
Other instruction IF — ID — EX MA
Other instruction if — ID EX
Other instruction IF

Figure 8.26 MA and IF Contention
2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 8.27).

> 4> 4> 4> > 4> 4> 4> > > <> Sot

[MACW IF ID EX MA MA mm :mm;
~ MAC.L - IF — ‘
Third instruction IF — ID EX MA

Figure 8.27 MAC.L Instructions Immediately After a MAC.W Instruction

182 Hitachi




When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.28) to
create a single slot. When one or more instructions not related to the multiplier come between
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

- > 4> P> > P 4> > > > > > <> Slot

[MACW IF ID EX MA MA:
MULS.W IF — ID EX:

Other instruction IF ID

- > > 4> 4> 4 > > > > 4> > <> Sot

[MACW IF ID EX MA MA mm mm:

Other instruction IF — ID EX
MULS.W IF ID EX:MA:mm mm
Other instruction IF ID EX MA

Figure 8.28 MULS.W Instruction Immediately After a MAC.W Instruction
When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 8.29).

4> > D O > O D > > > > Sot

[MACW IF ID EX MA
DMULS.L IF — ID
Other instruction IF — ID EX MA

Figure 8.29 DMULS.L Instructions Immediately After a MAC.W Instruction

183 Hitachi




When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.30) to create a single slot. The MA of the STS contends with the IF. Figure 8.30
illustrates how this occurs, assuming MA and IF contention.

> P> 4> C—P 4> ———— P 4> <> > > > Sot

MACW IF
STS
Other instruction IF D — — EX MA
Other instruction ' if — — ID EX
Other instruction ' IF ID EX

MAC.W if
STS
Other instruction
Other instruction IF ID EX MA
Other instruction if ID EX

Figure 8.30 STS (Register) Instruction Immediately After a MAC.W Instruction

184 Hitachi




When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled.

Figure 8.31 illustrates how this occurs, assuming MA and IF contention.

4> > > P 4> P > 4> 4> 4> 4> <> Slot

STS.L if — —
Other instruction EX MA
Other instruction if — — ID EX
Other instruction IF ID EX

<> 4> > D> —> > > > > 4> > <> Slot
[MACW if ID EX MA MA mm}

STS.L IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if 1D EX

Figure 8.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

185 Hitachi




7. When an LDS (register) instruction is located immediately after a MAC.W instruction

- When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.32) to create a single slot. The MA of this LDS contends with IF. Figure 8.32
illustrates how this occurs, assuming MA and IF contention.

<> P> P> > > > > 4> > 4> <> Slot
MACW IF ID EX MA — MA

LDS f — — ID EXM—A
Other instruction IF D — — EX MA
Other instruction f — — ID EX

Other instruction IF ID EX

> > D> > > 4> > > > > > > Sot

[MACW if ID EX MA MA mmmm:

LDS F — ID — EXMA:
Other instruction it — ID EX
Other instruction ' IF ID EX
Other instruction if ID EX

Figure 8.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

186 Hitachi




When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (nm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.33) to create a
single slot. The MA of the LDS contends with IF. Figure 8.33 illustrates how this occurs,
assuming MA and IF contention.

> P > P > > > > 4> 4> > Slot

LDS.L f — — ID EX M—A
Other instruction IF ID — — EX
Other instruction if — — ID EX
Other instruction IF ID EX

MAC.W if

LDS.L IF

Other instruction
Other instruction
Other instruction

Figure 8.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

187 Hitachi




Double-Length Multiply/Accumulate Instruction (SH7600): Includes the following instruction
type:

« MACL @Rm+, @Rn+ (SH7600 only)

> > > <> > > > > > : Slot
[ MACL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
8.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC.L instruction is located immediately after another MAC.L instruction
When a MAC.W instruction is located immediately after a MAC.L instruction

When a DMULS.L instruction is located immediately after a MAC.L instruction

When a MULS. W instruction is located immediately after a MAC.L instruction

When an STS (register) instruction is located immediately after a MAC.L instruction
When an STS.L (memory) instruction is located immediately after a MAC.L instruction
When an LDS (register) instruction is located immediately after a MAC.L instruction
When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

P NN A LN -

188 Hitachi



When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 8.35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

<> 4> 4> <> <> <+» <> Siot
LMAC.L IF ID EX MA MA
MAC.L IF — ID EX

Third instruction IF —

mm mm

> 4P 4> > D 4D O D 4> 4> > <> <> Slot

[MACL IF ID EX MA MA mm mm mm :mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MAIMAimm mm mm mm

Figure 8.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 8.36 illustrates
a case of this type, assuming MA and IF contention.

> > > 4 P P — P> ——p> 4> > Slot

[MACL if ID EX MA MA mm mm:mm mm:

MAC.L IF — ID EX MA — :M—A imm mm mm mm
MAC.L f — — ID EX — MA M———-A mm mm mm mm
MAC.L IF — ID EX — — — MA

Figure 8.36 Consecutive MAC.Ls with Misalignment

189 Hitachi




When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 8.37 illustrates a case of
this type, assuming MA and IF contention.

> 4> > > 4P 4> ——p 4> <> <> Slot
fMAC.L IF ID EX MA — ) n‘i'il
MAC.L f — — ID EX MAi M—A :mm mm mm mm

Other intruction F — D — — — EX
Other intruction f — — — ID
Other intruction : IF

......

Figure 8.37 MA and IF Contention

190 Hitachi




When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 8.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W-
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

> 4> 4> > 4> > <—p 4> <> Slot

[MACL IF ID EX MA MA mm:imm mm_mm:

MAC.W IF — ID EX MA:MA———A:mm mm

Third instruction IF — ID EX — — MA .

<> 4> 4P 4> > 4> 4> 4> <> 4> <> Sot

[MACL IF ID EX MA MA mm mm mm :mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA:MAimm mm

Figure 8.38 MAC.W Instruction Immediately After a MAC.L Instruction

191 Hitachi




When a DMULS.L instruction is located immediately after a MAC.L instruction

- DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.39) to
create a single slot. When two or more instructions not related to the multiplier come between
the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not cause
stalling. When the DMULS.L MA and IF contend, the slot is split.

“—r > O 4> >

- — > 4> <> <> <> <> Slot

[MAC.L

IF ID EX MA MA

DMULS.L
Other instruction

IF ID EX
IF

<> 4> > > > D D> ——> > > > <> > Sot
[MACL IF ID EX MA MA mm mm:mm_mm
Other instruction IF — ID EX
DMULS.L IF ID EX MA;M—A imm mm mm mm
Other instruction IF — ID — EX MA ..
4> > > > 4> O > > > > > 4> > <> Sot
IMACL IF ID EX MA MA mm mm mm :mm.
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
DMULS.L IF ID EX MA:iMAimm mm mm mm
Other instruction IF — ID EX MA -

Figure 8.39 DMULS.L Instruction Immediately After a MAC.L Instruction

192 Hitachi




When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 8.40) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

198 Hitachi



+“r 4> O > >

[MACL IF ID EX MA MA
MULS.W IF — ID EX
Other instruction IF —

“—r 4> > D> >

[MACL IF ID EX MA MA mm imm_mm._mm:
Other instruction IF — ID EX

MULS.W IF ID EX M———=A.imm mm
Other instruction IF ID EX — — MA ...

> O D D D O 4D > > > > Sot
[MACL IF ID EX MA MA mm mm mm._mm]
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX \M—A :mm mm
Other instruction IF ID EX — MA -
| > 4> > > > > O > > > Sot
[MACL IF ID EX MA MA mm mm mm :imm:
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W “IF ID EX IMAimm mm
Other instruction IF ID EX MA ...

Figure 8.40 MULS.W Instruction Immediately After a MAC.L Instruction

194 Hitachi




When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.41) to create a single slot. The MA of the STS contends with the IF. Figure 8.41
illustrates how this occurs, assuming MA and IF contention.

P> 4> > P> P>t ———————p4Pa>> <> Slot

[MACL IF ID EX MA — MA': :

STS if — — ID EX:

Other instruction IF ID
Other instruction if

Other instruction

[ MAC.L

STS

Other instruction
Other instruction
Other instruction

Figure 8.41 STS (Register) Instruction Immediately After a MAC.L Instruction

195 Hitachi




When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.42 illustrates how this occurs, assuming MA and IF
contention.

> > > —> > < > 4> <> 4> <>; Slot
[MACL IF ID EX MA — MA'm ) mm.mm

STS.L if — — ID EXi{M———"-A;
Other instruction IF ID —
Other instruction if —

Other instruction

D > > P> P 4> > > > > Sot
[ MAC.L if
STS.L
Other instruction
Other instruction

Other instruction

Figure 8.42 STS.L (Memory) Instruction Inmediately After a MAC.L Instruction

196 Hitachi




7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.43) to create a single slot. The MA of this LDS contends with IF. Figure 8.43
illustrates how this occurs, assuming MA and IF contention.

> > > > > < > <><><><>: Slot
[MACL IF ID EX MA — '
LDS if — — ID EX:M—
Other instruction IF EX MA
Other instruction f — — — — ID EX
Other instruction ‘ IF ID EX e

[ MAC.L

LDS

Other instruction
Other instruction
Other instruction

Figure 8.43 LDS (Register) Instruction Inmediately After a MAC.L Instruction

197 Hitachi



When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.44) to create a
single slot. The MA of the LDS contends with IF. Figure 8.44 illustrates how this occurs,
assuming MA and IF contention.

<> > > —> > < > 4> <> <> <> Slot
[MACL IF ID EX MA — MA: ¥

LDS.L f — — ID EXiM
Other instruction IF ID
Other instruction if

Other instruction

[MACL i ID EX MA MA mm .mm . mm. mm.

LDS.L IF — D — EX:M—A
Other instruction if — ID EX
Other instruction , IF D — — EX
Other instruction if — — ID EX -

Figure 8.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

198 Hitachi




Multiplication Instructions (SH7000): Include the following instruction types:

¢ MULS.W Rm, Rn
« MULUW Rm, Rn

<> > 4> 4> <> > > <> Slot
[MULSW IF ID EX MA mm mm mm]
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.45 Multiplication Instruction Pipeline

. Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when
it contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS.W instruction

‘When a MULS.W instruction is located immediately after another MULS.W instruction
When an STS (register) instruction is located immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction
When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

SN LA LN -

199 Hitachi




1.

When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions
does not cause stalls (figure 8.46).

> > > > > —> > > > 4> <> Sot

[MULSW IF ID EX MA mm imm_mm:

MAC.W IF ID EX MA:M—A :mm mm mm

Third instruction IF — ID EX — MA_ -----

<> 4> 4> 4> <> 4> <> > <> 4> > <> Sot

[MULSW IF ID EX MA mm mm :mm]

Other instruction IF ID EX MA WB
MAC.W IF ID EX MA I MA:mm mm mm -

Figure 8.46 MAC.W Instruction Immediately After a MULS.W Instruction

200 Hitachi




When a MULS. W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS. W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

ﬂﬂﬂﬁﬂ——bﬂﬂd—boﬂﬂﬂlsmt

[MULS.W

IF _ID EX

MULS.W
Other instruction

IF ID
IF

> 4> 4> 4> 4> D> > 4> D> > > > <> Slot

[MULSW IF ID EX MA mm imm mm: |
Other instruction IF ID EX

MULS.W IF ID EX :M—A :mm mm mm
Other instruction IF ID EX — MA -

<> 4> <> 4> 4> 4> > 4> 4> 4> > 4> <> 4> Slot

[MULS.W

IF ID EX MA mm mm mm:

Other instruction
Other instruction

MULS.W
Other instruction

IF ID EX MA WB
IF ID EX MA WB

Figure 8.47 MULS.W Instruction Immediately After Another MULS.W Instruction

201 Hitachi




When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the slot, as is normal. Figure 8.48 illustrates a case of this type, assuming

MA and IF contention.

<« A > > p 4> 4> > <> <> > St

[MULSW IF ID EX MA'm

MULS.W if ID EX:M————-~A mm mm mm

Other instruction IF D — — — EX MA ...
Other instruction f — — — ID EX -
IE ID -«

Other instruction

Figure 8.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention) '

202 Hitachi



When an STS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.49) to create a single slot. The MA of the STS contends with the IF. Figure 8.49
illustrates how this occurs, assuming MA and IF contention.

<> <> > > < > <> <> <> <> > > Slot

[MULS.W IF
STS
Other instruction EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm:mm_mm:

STS IF ID — EX:M—A:WB
Other instruction if — ID EX
Other instruction IF ID —
Other instruction if — ID EX -

Figure 8.49 STS (Register) Instruction Immediately After a MULS.W Instruction

203 Hitachi




4, When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 8.50) to create a single slot. The MA of the STS contends with the IF.
Figure 8.50 illustrates how this occurs, assuming MA and IF contention.

<> > <> <> < > 4> 4> <> <> <> <> Slot
[MULSWIF ID EX MA: )
STS.L if
Other instruction
Other instruction f — — — — ID EX
Other instruction IF 'ID EX -

> > > —> P 4> > > > > <> <> Slot

IMULS.W if
STS.L
Other instruction
Other instruction
Other instruction

.....

......

Figure 8.50 STS.L (Memory) Instruction Immediately After a MULS. W Instruction

204 Hitachi



5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 8.51 illustrates how this
occurs, assuming MA and IF contention.

> 4> <> > <« > <> 4> <> > <> <> Siot
[MULSW IF ID "EX MA imm mm mm
LDS if
Other instruction EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -
> > A P P 4> > > > <> > > Slot
[MULS.W if '
LDS

Other instruction
Other instruction
Other instruction f — ID EX -

Figure 8.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

205 Hitachi



When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.52) to create a
single slot. The MA of the LDS contends with IF. Figure 8.52 illustrates how this occurs,
assuming MA and IF contention.

(MULS.W

LDS.L

Other instruction
Other instruction f — — — ID EX

Other instruction IF ID EX -

......

- 4> > —> —> 4> > 4> > 4> 4> <> Slot
[MULSW if ID EX MA mm: Ei

LDS.L IF ID — EXiM—A:
Other instruction f — ID EX
Other instruction IF ID — EX
Other instruction : if — ID EX -

Figure 8.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

206 Hitachi




Multiplication Instructions (SH7600): Include the following instruction types:

+ MULS.W Rm, Rn
 MULUW Rm, Rn

<> 4> 4> 4> <> > <> 4> : Slot
[MULSW IF_ID EX MA mm mm]
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.53 Multiplication Instruction Pipelihe

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS.W instruction

When a MAC.L instruction is located immediately after a MULS.W instruction

When a MULS.W instruction is located immediately after another MULS.W instruction
When a DMULS.L instruction is located immediately after a MULS.W instruction

When an STS (fegistci') instruction is located immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after a MULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction
When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

P NN AL

207 Hitachi




1. 'When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

“r > >

<> > 4> > > <> > <> Sot

MA mm mm|

MULS.W IF ID EX
MAC.W IF ID
Third instruction IF

EX MA MA mm mm
— ID EX MA e

Figure 8.54 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

+“r > <>

<> 4> 4> <> <> <> 4> <> Sot

MA mm mm]|

[MULSW IF ID EX
MAC.L IF ID
Third instruction IF

EX MA MA mm mm mm mm
— ID EX MA -

Figure 8.55 MAC.L Instruction Immediately After a MULS.W Instruction

208 Hitachi




3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS. W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.56) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS.Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

> 4P 4D D > > > 4> > > 4> > Slot

[MULSW IF
MULS.W
Other instruction

4> 4> 4> 4> 4> > 4> > > 4> 4> 4> <> Sot

[MULSW IF ID EX MA mmimm:

Other instruction IF ID EX
MULS.W IF ID EXiMA: mm mm
Other instruction IF ID EX MA -

Figure 8.56 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 8.57 illustrates a case of this type,
assuming MA and IF contention.

O > D> D> ——p 4> O > > > > Slot

[MULSW IF_ID EX MAimm.mm}|

MULS.W if ID EX:M——A:mm mm
Other instruction IF D — — EX MA ...
Other instruction f — — ID EX -
Other instruction IF ID oo

Figure 8.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
' MA contention)

209 Hitachi




4. 'When a DMULS.L instruction is located immediately after a MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. The MA of the
MULS.W instruction does not contend with the operating multiplier (mm) of the DMULS.L

instruction.

> > > > > P O D > > > > > St
[MULSW IF ID EX MA mm mm |
DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA -

Figure 8.58 DMULS.L Instruction Inmediately After a MULS.W Instruction

210 Hitachi



When an STS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.59) to create a single slot. The MA of the STS contends with the IF. Figure 8.59
illustrates how this occurs, assuming MA and IF contention.

> > > > ———— > > > > > > > Sot

[MULSW IF
STS :
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

<> 4> D> G——> 4> D 4> > 4> 4> 4> <> Slot

[MULSW if ID EX MA mm mm:

STS IF ID — EXiMA: WB
Other instruction it — ID EX
Other instruction IF ID EX
Other instruction if ID EX e

Figure 8.59 STS (Register) Instruction Immediately After a MULS.W Instruction

211 Hitachi




When an STS.L (memory) instruction is located immediately after a MULS.W instruction

‘When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.60 illustrates how this occurs, assuming MA and IF
contention.

<> 4> O P> 4C———— > 4> 4> 4> 4> 4> > Sot
[MULSW IF ID EX MAim 1|

STS.L if ID EX:M——A:
Other instruction IF Ib — — EX MA
Other instruction f — — ID EX

Other instruction IF ID EX -

<P > 4> “—> 4—P 4> 4> <> > 4> <> <> Slot

[MULS.W if :
STS.L IF ID — EX MA:
Other instruction f — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 8.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

212 Hitachi




When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

> > 4> D> —P> 4> > 4> 4> 4> <> Slot

[MULSW IF _ID EX MAImm_mm:
LDS if ID EXiM—A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX )
Other instruction IF ID EX -

<> 4> 4> 4—P> 4P 4> 4P 4> > > 4> <> Slot

IWJLS.W if ID EX MA mm:imm:

LDS F ID — ‘MA

Other instruction if —
Other instruction

Other instruction

Figure 8.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

213 Hitachi




8.

When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mmy), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.62) to create a
single slot. The MA of the LDS contends with IF. Figure 8.62 illustrates how this occurs,
assuming MA and IF contention.

> D > — P > > > > > > Sot

[MULSW _IF_ID_EX MA _mm.mm]

LDS.L if ID EXIM—A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX - _

<> 4P > —> > P > > > > <> <> Sot

[MULS.W if
LDS.L IF ID —
Other instruction if —
Other instruction IF ID EX
Other instruction if ID EX e

Figure 8.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

214 Hitachi




Double-Length Multiplication Instructions (SH7600): Include the following instruction types:

» DMULS.L  Rm, Rn (SH7600 only)
« DMULU.L Rm, Rn (SH7600 only)
* MUL.L Rm, Rn (SH7600 only)

> > > 4> > <> > <> > > > Sot
[DMULS.L IF ID EX MA MA mm mm mm mm|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.63 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operatiﬁg. The mm operates for
four cycles after the MA ends, regardless of a slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 8.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal. This occurs in the following cases:

When a MAC.L instruction is located immediately after a DMULS.L instruction

When a MAC.W instruction is located immediately after a DMULS.L instruction

When a DMULS.L instruction is located immediately after another DMULS.L instruction
When a MULS. W instruction is located immediately after a DMULS.L instruction

When an STS (register) instruction is located immediately after a DMULS.L instruction
When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
When an LDS (register) instruction is located immediately after a DMULS.L instruction
When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

S A o

215 Hitachi




1.

When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a preceding
multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M—A
shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 8.64).

<> > D D> ———— > > 4> > <> Sot

[DMULS.L IF ID EX MA MA mm :
MAC.L IF — ID EX MA:

Third instruction IF — ID

<P 4 4> 4> D > > > 4> D 4> > > Got

[DMULSL IF ID EX MA MA mm mm mm mm.:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MAMA:mm mm mm mm

Figure 8.64 MAC.L Instruction Immediately After a DMULS.L Instruction

216 Hitachi




2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructiqns, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 8.65).

> 4> 4> > > > ———p 4> > > <> Sot

[DMULSL IF ID EX MA MA mm :mm.mm.mm.

MAC.W IF — ID EX MA: M—A :mm mm

Third instruction IF — ID EX — — MA -

<> D> 4 > > 4> > 4> > 4> 4> > > Sot

[DMULSL IF ID EX MA MA mm mm mm .mm.
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA i MA:mm mm

Figure 8.65 MAC.W Instruction Immediately After a DMULS.L Instruction

217 Hitachi




‘When a DMULS.L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

P 4> 4 4> > 4>

<> <> <> 4> <> Slot

| DMULS.L IF
DMULS.L IF — ID EX MA M—A mm mm mm mm
Other instruction IF — ID EX — — MA -

<> 4> > 4 O > D> —p 4> 4> > <> <> Sot
[DMULS.L IF ID EX MA MA

Other instruction IF — ID EX
DMULS.L IF ID
Other instruction IF

<P 4> 4> O 4 4> O 4> 4> 4> 4> 4> 49> <> Sot
[DMULSL IF ID EX MA MA mm mm mm.mm. .

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

DMULS.L IF ID EX MA{MA: mm mm mm mm
Other instruction IF — ID EX MA ...

Figure 8.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

218 Hitachi




When the MA of the DMULS.L instruction is extended until the mm ends, contention

between the MA and IF will split the slot in the usual way. Figure 8.67 illustrates a case of
this type, assuming MA and IF contention.

<+ O 4> > YO >«

» <> <> <> :Siot

DMULS.L if — EX — ID MA:M———A : mm mm mm mm
Other instruction IF D — — — EX

Other instruction if — — — ID EX
Other instruction IF ID e

Figure 8.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

219 Hitachi




4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the

~ MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L instruction,
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULS.L instruction and the MULS.W instruction, contention between the

DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and IF contend,
the slot is split..

<> 4> > 4> > ——————————p 4> 4> 4> <> <> ;Slot
[DMULS.L IF ID EX MA MA:im

MULS.W IF — :

Other instruction IF D EX — — — MA ...

4 > 4> 4> > 4> 4 O 4> 4 > > > > Sot
[DMULS.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EXiMAi MA mm mm

Other instruction IF ID EX MA ..

Figure 8.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.69 illustrates a case of
this type, assuming MA and IF contention.

4> 4> 4> 4“—>r> <« ‘ - » 4> 4> 4> <> Siot
[DMULS.L IF ID EX MA — MA mm._mm mm.mm |

MULS.W it — — ID EXM—————A. mm mm
Other instruction F D — — — — EXMA---
Other instruction f — — — — ID EX e
Other instruction IF ID -

Figure 8.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and MA
Contention)

220 Hitachi




5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.70) to create a single slot. The MA of the STS contends with the IF. Figure 8.70
illustrates how this occurs, assuming MA and IF contention.

P> paP > > Sot

STS if — —
Other instruction
Other instruction f — — — — ID EX
Other instruction . IF ID EX -

STS IF — ID
Other instruction if
Other instruction
Other instruction

......

Figure 8.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

221 Hitachi




When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.71 illustrates how this occurs, assuming MA and IF
contention.

> 4> 4> —> > < > 4> <> 4> <> <> Slot
[DMULSLL IF ID EX MA — MA:mm mm mmmm:
STS.L if — — ! A
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX

STS.L IF — ID — EX{M———A!

Other instruction it — ID EX
Other instruction IF ID — — EX
Other instruction f — — ID EX

Figure 8.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

222 Hitachi




7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figure illustrates
how this occurs, assuming MA and IF contention.

4P P 4P C—————p 4> 4> 4> > > Sot

LDS if — —
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX

LDS IF — ID
Other instruction if
Other instruction
Other instruction

Figure 8.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

223 Hitachi




When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.73) to create a
single slot. The MA of the LDS contends with IF. Figure 8.73 illustrates how this occurs,
assuming MA and IF contention.

> > > —> <> > 4> 4> <> <> <> Slot
DMULS.L IF ID EX MA —
LDS.L f — —
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX

LDS.L
Other instruction
Other instruction
Other instruction

Figure 8.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

224 Hitachi




8.7.3  Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

¢« AND Rm,Rn
e AND #imm, RO
¢ NOT Rm,Rn
e OR  Rm,Rn
¢« OR  #imm, RO
¢ TST Rm,Rn
+ TST #imm, RO
¢« XOR Rm,Rn
e XOR #imm, RO

> 4> 4> <> <> <> Sot
[InstructonA IF 1D EX|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.74 Register-Register Logic Operation Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

225 Hitachi




Memory Logic Operation Instructions: Include the following instruction types:

« ANDB #imm, @(RO, GBR)
OR.B #imm, @(R0, GBR)
TSTB  #imm, @(RO, GBR)
XOR.B #imm, @(RO, GBR)

<> 4> 4> 4> > > 4> > <> Sot
[InstructionA IF  ID EX MA EX MA]
Next instruction IF — — ID EX -

Third instruction IF ID EX

Figure 8.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

226 Hitachi



TAS Instruction: Includes the following instruction type:

* TASB @Rn

> 4> 4> 4> 4> 4> 4> 4> <> : Slot
[Instruction A IF 1D EX MA EX MA]
Next instruction F — — — ID EX -
Third instruction IF ID EX -

Figure 8.76 TAS Instruction Pipeline

Operafion: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.76). The ID of the
next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

227 Hitachi




8.7.4  Shift Instructions

Shift Instructions: Include the following instruction types:

* ROTL
* ROTR
* ROTCL
*« ROTCR
* SHAL
* SHAR
« SHLL

*« SHLR
* SHLL2
* SHLR2
* SHLL8
* SHLR8
* SHLL16
« SHLR16

g g

§rrFegegggggeeyd

> > > > 4> > > > <> Slot

[Instruction A IF_ID _EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.77). The data operation is

completed in the EX stage via the ALU.

228 Hitachi



8.7.5  Branch Instructions
Conditional Branch Instructions: Include the following instruction types:

e BF label
e BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage. Conditional branch instructions are not delayed branch.

1. 'When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 8.78).

<> 4> 4> 4> 4> > <> 4> <> Sot
[Instructon A IF 1D EX]

Next instruction IF — (Fetched but discarded)
Third instruction IF — (Fetched but discarded)
Branch destination — IF ID EX -
...... IF ID EX o

Figure 8.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.79).

<+ 4> > 4> 4> 4> 4> 4> 4> Sot
Linstructon A IF_ ID EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX .o

Figure 8.79 Branch Instruction When Condition is Not Satisfied

229 Hitachi




Delayed Conditional Branch Instructions (SH7600 only): Include the following instruction
types:

* BF/S label (SH7600 only)
e BT/S label  (SH7600 only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.80).

> > > > > > > > > Sot
[InstructonA IF 1D EX]

Next instruction IF ID — EX MA WB
Third instruction IF  —  (Fetched but discarded)
Branch destination IF ID EX ..
...... IF ID EX -«

Figure 8.80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.81).

> 4> 4> 4> 4> 4> 4> 4> <> : Slot
|Instructon A IF_ID _EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX .-

Figure 8.81 Branch Instruction When Condition is Not Satisfied

230 Hitachi



Unconditional Branch Instructions: Include the following instruction types:

« BRA
* BRAF
* BSR
= BSRF
« JMP
* JSR
* RTS

label
Rn
label
Rn
@Rn
@Rn

(SH7600 only)

(SH7600 only)

> > 4> > > > <> > > Sot

[Instruction A IF 1D EX|

Delay slot IF — ID EX MA WB

Branch destination

IF

ID EX -
IF ID EX -

Figure 8.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of instruction

A

231

Hitachi




8.7.6  System Control Instructions

System Control ALU Instructions: Include the following instruction types:

« CLRT
« LDC Rm, SR
« LDC Rm, GBR
« LDC Rm, VBR
« LDS Rm, PR
. NOP

« SETT

« STC SR,Rn

« STC GBR,Rn
« STC VBR,Rn
+ STS PR,Rn

<> 4> 4> 4> 4> 4> <> <> <> Slot
[InstructionA IF_ID _EX]
Next instruction IF ID EX -
Third instruction IF ID EX -«

Figure 8.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.83). The data operation is
completed in the EX stage via the ALU.

232 Hitachi




LDC.L Instructions: Include the following instruction types:

e LDCL @Rm+, SR
« LDCL @Rm+, GBR
* LDC.L @Rm+, VBR

> > > > > > > > <> St
{InstructionA IF 1D EX MA EX]|
Next instruction IF — — ID EX -
Third instruction IF ID EX -

Figure 8.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 8.84). The ID of the
following instruction is stalled for two slots.

233 Hitachi




STC.L Instructions: Include the following instruction types:

+ STCL SR, @-Rn
« STCL  GBR, @-Rn
« STCL VBR, @-Rn

<—><—><—><—><—><—><—><—><—>:Slot‘
Linstruction A IF_ID EX MA]
Next instruction IF — ID EX -«
Third instruction IF ID EX -

......

Figuré 8.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.85). The ID of the next
instruction is stalled for one slot.

234 Hitachi




LDS.L Instruction (PR): Includes the following instruction type:
e« LDSL @Rm+, PR

<> <> 4> 4> 4> > <> <> <> : St
[InstructonA IF_ID EX MA WB]
Next instruction IF ID EX -

Third instruction IF ID EX -

------

Figure 8.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.86). It is the same as
an ordinary load instruction.

235 Hitachi




STS.L Instruction (PR): Includes the following instruction type:

*+ STSL PR, @-Rn

<> 4> 4> > 4> 4> <> <> <> : Sot
[ Instruction A

IF_ 1D _EX MA]
‘Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.87). It is the same as an
ordinary store instruction.

236 Hitachi




Register - MAC Transfer Instructions: Include the following instruction types:

* CLRMAC
* LDS Rm, MACH
* IDS Rm, MACL

> > > > > 4> > > 4> Sot
[instructionA _IF__ID EX MA]
Next instruction IF ID EX .
Third instruction IF ID EX -«

Figure 8.88 Register —» MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store
instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL

instructions.

237 Hitachi



Memory — MAC Transfer Instructions: Include the following instruction types:

 LDSL @Rm+, MACH
« LDSL @Rm+, MACL

<> 4> 4> 4> 4> 4> 4> 4> <> Slot
[InstructonA IF _ID EX MA]

Next instruction IF ID EX
Third instruction IF

Figure 8.89 Memory — MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as

ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions. ‘

238 Hitachi




MAC — Register Transfer Instructions: Include the following instruction types:

* STS MACH,Rn
* STS MACL,Rn

> 4> > > > 4> 4> > <> Sot
[InstructonA IF_ID EX MA_WB]
Next instruction IF ID EX .
Third instruction IF ID EX -

Figure 8.90 MAC — Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

239 Hitachi




MAC — Memory Transfer Instructions: Include the following instruction types:

* STSL MACH, @-Rn
* STSL MACL, @-Rn

<> > > <> 4> <> > <> <> Sot
[InstructionA IF_ID EX MA WB|
Next instruction IF ID EX .o
Third instruction IF ID EX -

Figure 8.91 MAC — Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.91). The MA is a stage for
accessing the multiplier. The MA contends with IF. This makes it the same as ordinary store
instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions. :

240 Hitachi




RTE Instruction: Includes the following instruction type:

* RTE

P> 4> > <> > 4> > > <> St
[RTE_IF_ID EX MA MA]
Delayslot  IF — — — ID EX -
Branch destination IF ID EX -«

Figure 8.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 8.92). The MAs contend with the
IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3
slots. The IF of the branch destination instruction starts from the slot following the MA of the
RTE.

241 Hitachi




TRAP Instruction: Includes the following instruction type:

« TRAPA #imm

> 4> > D > > D > > > > > <> Sot
[TRAPA _IF_ID _EX EX MA MA MA EX EX|
Next instruction IF
Third instruction IF
Branch destination IF ID EX -«
...... IF ID EX -

Figure 8.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.93). The MAs
contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

242 Hitachi




SLEEP Instruction: Includes the following instruction type:

* SLEEP

4—»4—»4—»4—»4—»4—»4—»4—»4—» Slot
[SLEEP IF ID EX]
Next instruction IF

Figure 8.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 8.94). It is issued until the IF of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

243 Hitachi




.8.7.7  Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

* Interrupt exception processing

> > O D O D D > > > > > > Sot
Unterrupt ([EID: EX EX MA MA EX MA EX EX]
Next instruction IF ' v
Branch destination IF ID EX -

...... ' IF ID e

Figure 8.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception-
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

244 Hitachi



Address Error Exception Processing: Includes the following instruction type:

* Address error exception processing

4> 4> 4> 4> 4> 4> > > 4> > > > > Sot

Next instruction IF
Branch destination IF ID EX .
....... IF ID -

Figure 8.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the
.address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on-chip peripheral register
causes an instruction fetch address error. Accessing word data from other than a word boundary,
accessing longword data from other than a longword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause a read or write address error.

245 Hitachi




Tllegal Instruction Exception Processing: Includes the following instruction type:

¢ Illegal instruction exception processing

<P > > > > 4P 4> > > 4> 4> > <> Sot

lllegal instruction :IF 1D: EX EX MA MA MA EX EX|

Next instruction IF
(Third instruction IF)

Branch destination IF ID EX -
...... IF ID -

Figure 8.97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.97). Illegal instruction
exception processing is not a delayed branch. In illegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
as well depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot directly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception »
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction

OCCUTS.

246 Hitachi




Appendix A Instruction Code
See “6. Instruction Descriptions” for details.

Al  Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

247 Hitachi



processing vector

‘Table A.1 Instruction Set by Addressing Mode
Types
Addressing Mode - Category Sample Instruction SH SH
' 7600 7000
No operand — . NOP 8 8
Direct register Destination operand only =~ MOVT  Rn 18 17
addressing
Source and destination ADD Rm, Rn 34 31
operand
Load and store with control LDC Rm, SR 12 12
register or system register o MACH. R v
Indirect register Destination operand only JMP @Rn 3 3
addressing Data transfer with direct ~ MOV.L  Rm,@Rn 6 6
register addressing
Post increment indirect  “Multiply/accumulate MAC.W = @Rm+, @Rn+ 2 1
register addressing operation
Data transfer from direct MOV.L @Rm+,Rn 3 3
register addressing .
Load to control registeror  LDC.L @Rm+,SR 6 6
system register
Pre decrement indirect Data transfer from direct MOV.L Rm,@-Rn 3 3
register addressing register addressing
Store from control register STC.L SR, @-Rn 6 6
or system register
Indirect register Data transfer with direct MOV.L Rm,@(disp,Rn) 6 6
addressing with register addressing
displacement '
Indirect indexed register  Data transfer with direct MOV.L Rm,@(RO,Rn) 6 6
addressing register addressing
Indirect GBR addressing Data transfer with direct MOV.L R,@(disp,GBR) 6 6
with displacement register addressing
Indirect indexed GBR Immediate data transfer AD.B  #imm,@(R0,GER) 4 4
addressing :
PC relative addressing Data transfer to direct MOV.L @(disp,PC),Rn 3 3
with displacement register addressing
PC relative addressing Branch instruction BRAF ~ Rn 2 0
with Rn
PC relative addressing Branch instruction BRA label 6 4
Immediate addressing Arithmetic logical ADD #imm, Rn 7 7
operations with direct
register addressing ,
Specify exception TRAPA  #imm 1 1

248 Hitachi



Total: 142 133

A.1.1 No Operand
Table A.2 No Operand

Instruction Code . Operation State T Bit
CLRT 0000000000001000 0T 1 0
CLRMAC 0000000000101000 0 - MACH, MACL 1 —_
DIVOU 0000000000011001 0 - MQT 1 0
NOP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, Stack area 4 LSB
— PC/SR

RTS 0000000000001011 Delayed branch, PR —» PC 2 —
SETT 0000000000011000 15T 1 1
SLEEP 0000000000011011 Sleep 3 —

249 Hitachi



A.1.2 Direct Register Addressing

Table A.3 Destination Operand Only

Rn&Rm — Rn

Instruction Code Operation State T Bit
CMP/PL  Rn 0100nnnn00010101  Rn>0,1->T 1 Comparison result
CMP/PZ Rn 0100nnnn00010001 Rn>0,1 >T 1 Comparison result
DT Rn* 0100nnnn00010000 Rn—1— Rn 1 Comparison result
WhenRnis 0,1 - T,
when Rn is nonzero,
0-T
MOVT Rn 0000nnnn00101001 T—-An 1 —
ROTL Rn 0100nnnn00000100 T « Rn « MSB 1 MSB
ROTR Rn 0100nnnn00000101  LSB -Rn —»T 1 LSB
ROTCL Rn 0100nnnn00100100 T« Rn«T 1 MSB
ROTCR Rn 0100nnnn00100101 T->Rh—>T 1 LSB
SHAL Rn 0100nnnn00100000 T« Rne0 1 MSB
SHAR Rn 0100nnnn00100001  MSB— Rn—>T 1 LsB
SHLL Rn 0100nnnNn00000000 T«Rne0 1 MSB
SHLR Rn 0100nnnn00000001 0->Rn>T 1 LSB
SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —
SHLR2 Rn 0100nnnn00001001  Rn>>2 — Rn 1 —
SHLLS8 Rn 0100nmn00011000 Rn<<8 — Rn 1 —
SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —_
| SHIL16 Rn 0100nnnn00101000  Rn<<16 — Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 -
Note: SH7600 instruction
Table A4  Source and Destination Operand
Instruction Code Operation State T Bit
ADD Rm,Rn  001lnnnnmmmmll00 Rn + Rm — Rn 1 —
ADDC Rm,Rn  00llnnnnmmmml110 Rn+Rm+ T — Rn, 1 Carry
carry » T
ADDV Rm,Rn  001lnnnnmmmmllll Rn+ Rm — Rn, 1 Overflow
: overflow - T
AND Rm,Rn  0010nnnnmmmml001 1 —

250 Hitachi



Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit
CMP/EQ Rm,Rn 001 1nnnnmmmm0000 WhenRn=Bm,1->T 1 Comparison
result
CMP/HS Rm,Rn 001 Innnnmmm0 010 When unsigned and Rn 1 Comparison
2Rm,1 -»T result
CMP/GE Rm,Rn 0011lnnnnmmmm0011 When signedand Rn> 1 Comparison
Rm,1->T result
CMP/HI = Rm,Rn 001 1nnnnmmmm0110 When unsigned and Rn 1 Comparison
>BRm, 1T result
CMP/GT Rm,Rn 0011nnnnmmmm0111 When signedand Rn> 1 Comparison
Rm,1->T result
CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn 1 Comparison
equals bytes in Rm, 1 result
->T
DIVl Rm, Rn 001 lnnnnmmm0100 1-step division (Rn + 1 Calculation
’ Rm) result
DIV0S Rm, Rn 0010nnnnmmmm0111 MSBofRn—» Q,MSB 1 Calculation
of Rm—-> M, MAQ >T result
DMULS.L Rm,Rn*? 001lnnnnmmmmll0l Signed, Rn x Rm — 2to 4! —
MACH, MACL
DMULU.L Rm,Rn*? 001lnnnnmman0101 Unsigned, Rnx Rm —» 2to4*! —
MACH, MACL
EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign — extends Rm 1 -
from byte —» Rn
EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign — extends Rm 1 —
: from word — Rn
EXTU.B Rm,Rn 011 0nnnnrmmmm1100 Zero — extends Rm 1 —
from byte —» Rn
EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero — extends Rm 1 —
from word — Rn
MOV Rm,Rn 0110nnnnmmmm0011 Bm — Rn 1 —
MUL.L  Rm,Rn*?  0000nnnnmmmm0111 Rnx Rm — MACL 2to 41 —
MULS.W Rm,Rn 0010nnnnmmaml11l Signed, Rn x Rm — 1031 —
MAC
MULU.W Rm,Rn 001 0nnnnmmmm1110 Unsigned, Rn x Am —- 1to3*1 __
MAC
NEG Rm, Rn 0110nnnnmmmm1011 0-Rm —ARn 1 _
NEGC Rm, Rn 011 0nnnnmmmml 010 0-Bm-T - Rn, 1 Borrow
Borrow —» T
Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

251 Hitachi



Table A4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit
NOT Rm,Rn  0110nnnnmmmm0111 ~Rm — Rn 1 —
OR Rm,Rn  0010nnnnmmmm1011 RniRm — Rn 1 —_
SUB Rm,Rn  0011lnnnnmomml000 Rn-Rm — Rn 1 —
SUBC Rm,Rn  00llnnnnmmmml010 Rn—Rm-T — Rn, 1 Borrow
Borrow — T ‘
SUBV Rm,Rn  00llnnnnmmmml011 Rn—ARm — Rn, 1 Underflow
Underflow - T
SWAP.B  Rm,Rn  0110nnnmmmmm1000 Rm — Swap upper and 1 —
lower halves of lower 2
~ bytes— Rn
SWAP.W Rm,Rn  0110nnnnmmmml001 Rm — Swap upper and 1 —
lower word — Rn
TST Rm,Rn  0010nnnnmmmml000 Rn & Rm, when resultis 1 Test results
0,1->T
XOR Rm,Rn 0010nnnnmoml010 RnARm — Rn 1 —
XTRCT ~ Rm,Rn  0010nnnnmmmml101 Center 32 bits of Rmand 1 —
Rn — Rn
Table A.5 Load and Store with Control Register or System Register
Instruction Code Operation State T Bit
LDC Rm, SR 0100mmmm00001110 Rm— SR 1 LSB
LDC  Rm,GBR 0100mmmm00011110 Rm — GBR 1 —
LDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —
LDS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —
LDS Rm, MACL 0100mmmm00011010 Rm — MACL 1 —
LDS Rm, PR 0100mmmm00101010 ‘Rm— PR 1 —
STC SR,Rn 0000nnnn00000010 SR - Rn 1 —
STC GBR,Rn 0000nnnn00010010 GBR — Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 -
STS MACL,Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR - Rn 1 —

252 Hitachi



A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code

Operation State

T Bit

JMP @Rn 0100nnnn00101011

. Delayed branch, Rn — PC 2

JSR @Rn 0100nnnn00001011

Delayed branch, PC — PR, 2

Rn—- PC

TAS.B @Rn 0100nnnn00011011

When (Rn)is 0,1 - T,1 — 4

MSB of (Rn)

Test results

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@Rn  0010nnnnmmmm0000 Rm — (Rn) 1 -

MOV.W Rm,@Rn  0010nnnnmmmm0001 Rm — (Rn) 1 —

MOV.L Rm,@Rn 001 0nnnnnmmm001.0 Rm — (Rn) 1 -

MOV.B  @Rm,Rn 0110nnnnnmnm0000 (Rm) — sign extension - Rn 1 —_

MOV.W @Rm,Rn 0110nnnnmmm0001 (Rm) — sign extension - Rn 1 —

MOV.L @Rm,Rn 011 0nnnnmmmm0010 (Rm) — Rn 1 —

A.14 Post Increment Indirect Register Addressing

Table A.8 Multiply/Accumulate Operation

Instruction Code Operation State T Bit

MAC.L @Rm+,@Rn+*2  0000nnmnmmmmllll Signed, (Rn) x (Rm) + MAC ~ 3Rto4! —
- MAC

MAC.W @Rm+,@Rn+ 0100nnnnmmm1111 Signed, (Rn) x (Rm) + MAC  3/(2)*" —

— MAC

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH7600 i

nstruction

253 Hitachi



Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State  TBit

MOV.B @Rm+,Rn 011 0nnnnmmmm0100 (Rm) — sign extension — 1 —
Bn, Rm+1 —> Rm

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign extension — 1 —
Rn, Rm +2 — Rm

MOV.L @Rm+,Rn 011 0nnnnmmmm0110 (Rm) - BRn, Rm + 4 - Rm 1 —

Table A.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) = SR, Rm + 4 — Rm 3 LSB

LDC.L @Rm+,GBR 0100rmmrm00010111 (Rm) —» GBR, Rm + 4 —» Rm 3 —_

LDC.L @Rm+,VER 0100mmmm00100111 (Rm) - VBR, Rm + 4 — Rm 3 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) - MACH,Rm+4 - Rm 1 —

LDS.L -@Rm+,MACL 0100mmmm00010110 (Rm) —» MACL, Bm + 4 - Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) —» PR, Rm + 4 — Rm 1 —

A.1l.5 Pre Decrement Iﬁdirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@-Rn 001 Onnnnmmmm0 100 Rn-1 - Rn, Rm = (Rn) 1 —

MOV.W Rm,@-Rn 0010nnnnmmm0101  Rn -2 — Rn, Rm — (Rn) 1 —

MOV.L Rm,@-Rn 001 0nnnnmmmm0110 Rn -4 — Rn, Rm — (Rn) 1 —

254 Hitachi



Table A.12 Store from Control Register or System Register

Instruction Operation State T Bit
STC.L  SR,@-Rn 0100nnnn00000011 Rn—-4 — Rn, SR — (Rn) 2 —
STC.L GBR,@-Rn 0100nnnn00010011 Rn-4—- Rn,GBR - (Rn) 2 —
SIC.L VBR,@-Rn 0100nnnn00100011 Rn-4— Rn,VBR— (Rn) 2 —
STS.L MACH,@-Rn 0100nnnn00000010 Rn -4 — Rn, MACH — (Rn) 1 —
STS.L  MACL,@-Rn 10100nnnn00010010 Rn—-4— Rn, MACL —» (Rn) 1 —
STS.L PR,@-Rn 0100nnnn00100010  Rn-4— Rn, PR — (Rn) 1 —
A.1.6 Indirect Register Addressing with Displacement
Table A.13 Indirect Register Addressing with Displacement
Instruction Code Operation State T Bit
MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO,@(disp,Rn) 10000001nnnndddd RO — (disp x2+Rn) 1 —
MOV.L Rm,@(disp,Rn) 0001nnnnmmrmdddd Rm — (disp x 4+ Rn) 1 —
MOV.B @(disp,Rm),RO 1000010 0nmmmdddd (disp + Rm) — sign 1 —
extension — RO
MOV.W @(disp,Rm),R0 10000101mmnmdddd  (disp x 2 + Rm) — sign 1 —
_ extension —» RO
MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp x4+Rm) > Rn 1 —
A.1.7 Indirect Indexed Register Addressing
Table A.14 Indirect Indexed Register Addressing
Instruction Code Operation State T Bit
MOV.B Rm,@(RO,Rn) 0000nnnnmmum0100 Rm — (RO + Rn) 1 —
MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —
MOV.L Rm,@(RO,Rn) 0000nnnnmmmm0110 Rm — (RO + Rn) 1 —
MOV.B @(RO,Rm),Rn 0000nnnnmmmm1100 (RO + Rm) — sign extension 1 —
— Rn
MOV.W @(RO,Rm),Rn  0000nnnnmmmmll101 (RO + Rm) — sign extension 1 —
— Rn
MOV.L @(RO,Rm),Rn 0000nnnNMmMmM1110 (RO + Rm) — Rn 1 —

255 Hitachi



A.l8

Indirect GBR Addressing with Displacement

Table A.15 Indirect GBR Addressing with Displacement

T Bit

Instruction Code Operation - State
MOV.B RO, @(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —
MOV.W RO,@(disp,GER) 11000001dddddddd RO — (disp x2 + 1 _—
' GBR)
MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x4 + 1 —_
GBR) |
MOV.B @(disp,GBER),R0O 11000100dddddddd (disp + GBR) — sign 1 —_
extension — RO
MOV.W @(disp,GER) ,R0 11000101dddddddd ~ (disp x 2+ GBR) —» 1 —_
sign extension —» RO
MOV.L @(disp,GBR),RO 11000110dddddddd  (disp x 4 + GBR) —» 1 —
RO
A.1..9 Indirect Indexed GBR Addressing
Table A.16 Indirect Indexed GBR Addressing
Instruction Code Operation State T Bit
AND.B #imm,@(RO,GBR)  11001101iiiiiiii (RO+GBR)&imm—> 3 —
(RO + GBR) o
OR.B  #imm,@(R0,GBR) 11001111iiiiiiii  (RO+ GBR)limm —» (RO 3 —
' "+ GBR)
TST.B #imm, @ (RO, GBR) 11001100iiiiiiii (RO + GBR) & imm, when 3 Test
resultis0,1 > T results
XOR.B #imm, @ (RO, GBR) 11001110iiiiiiii  (RO+ GBR)Aimm —» (RO 3 —
+ GBR)
A.1.10 PC Relative Addressing with Displacement
Table A.17 PC Relative Addressing with Displacement
Instruction Code Operation State  TBit
MOV.W @(disp,PC),Rn  100lnnnndddddddd (disp x2+PC) - sign 1 —
extension — Rn
MOV.L @(disp,PC),Rn  110lnnnndddddddd  (disp x4+PC) -»Rn 1 —
MOVA @(disp, PC) ,RO 11000111dddddddd - disp x4+ PC — R0 1 —

256 Hitachi



A.1.11 PC Relative Addressing with Rn
Table A.18 PC Relative Addressing with Rn

Instruction Code Operation State T Bit
BRAF  Rn*? 0000nnnn00100011  Delayed branch, Rn + PC — PC 2 —
BSRF  Rn*2  0000nnnn00000011 Delayed branch, PC - PR, Rn+ PC 2 —
- PC
Notes: 2. SH7600 instruction
A.1.12 PC Relative Addressing
Table A.19 PC Relative Addressing
Instruction Code Operation State T Bit
BF label 10001011ddddddad When T =0, dis_p x2+PC— PC; 3/1*3 —
When T =1, nop
BF/S label*?  10001111dddddddd  WhenT =0, disp x2+PC— PC; 2/1*3 —
When T =1, nop
BT  label 10001001dddddddd ~ WhenT=1,disp x2+ PC— PC; 313  —
When T =0, nop
BT/S label*? 10001101dddddddd WhenT=1,disp x2+PC— PC; 21 3 —
WhenT=0,nop
BRA  label 1010ddddddddddda  Delayed branch, dispx 2+ PC —» 2 —
» PC
BSR  label 1011ddddddddddad Delayed branch, PC — PR, dispx 2 —_

2+PC—- PC,

Notes: 2. SH7600 instruction

‘3. One state when it does not branch

257 Hitachi



A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State T Bit

ADD #imm,Rn  0lllnnnniiiiiiii Rn +imm — Rn 1 —

AND  #imm,R0O 11001001iiiiiiii RO &imm — RO 1 —

CMP/EQ #imm,RO  10001000iiiiiiii When RO=imm,1->T 1 Comparison

result

MoV #imm,Rn  1110nnnniiiiiiii imm — sign extension —» Rn 1 —

OR #imm,RO  11001011iiiiiiii RO | imm — RO 1 —_

TST #imm,RO 11001000iiiiiiii RO & imm, whenresultis 0, 1 Test results
15T

XOR #imm,R0  11001010iiiijijii RO Aimm — RO 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR — Stack area, (imm x4+ 8 —

VBR) —» PC

A2

Instruction Sets by Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

258 Hitachi



Table A.22 Instruction Sets by Format

v Types
Format Category Sample Instruction SH SH
7600 7000
0 —_ NoP 8 8
n  Direct register addressing MOVT Rn 18 17
Direct register addressing (store with control ~ sTS MACH, Rn 6 6
or system registers) :
Direct register addressing JMP @Rn 3 3
" Pre decrement indirect register addressing ~ STC.L SR, @-Rn 6 6
PC relative addressing with Rn BRAF Rn 2 0
m Direct register addressing (load with control  LDC Rm, SR 6 6
or system registers)
Post increment indirect register addressing LDC.L @Rm+,SR 6 6
nm Direct register addressing ADD Rm, Rn 34 3
Indirect register addressing MOV.L Rm,@Rn 6 6
Post increment indirect register addressing MAC.W @Rm+,@Rn+ 2 1
(multiply/accumulate operation)
Post increment indirect register addressing MOV.L @Rm+,Rn 3 3
Pre decrement indirect register addressing MOV.L Rm,@-Rn 3 3
Indirect indexed register addressing MOV.L Rm,@(RO,Rn) 6 6
md Indirect register addressing with MOV.B @(disp,Rm),R0 2 2
displacement ,
nd4 Indirect register addressing with MOV.B RO, @(disp,Rn) 2 2
displacement
nmd Indirect register addressing with MOV.L ' Rm, @(disp,Rn) -2 2
displacement
d Indirect GBR addressing with displacement ~ MOV.L. RO, @(disp,GBR) 6 6
Indirect PC addressing with displacement MOVA  @(disp,PC),RO 1 1
PC relative addressing BF label 4 2
di2 PC relative addressing BRA label 2 2
nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2
i Indirect indexed GBR addressing AND.B #imm,@ (RO, GBR) 4 4
Immediate addressing (arithmetic and logical AND ~  #imm,R0 5 5

operations with direct register)

Immediate addressing (specify exception TRAPA #imm 1 1
processing vector)
ni Immediate addressing (direct register ADD #imm, Rn 2 2

arithmetic operations and data transfers )

Total: 142 133

259 Hitachi



A.2.1 O0Format

Table A.23 0 Format

Instruction Code Operation State T Bit

CLRT - 0000000000001000 0-T 1 0

CLRMAC' 0000000000101000 0 — MACH, MACL 1 —

DIVOU 0000000000011001 0 —->MWQT 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack 4 LSB
-area — PC/SR

RTS 0000000000001011 Delayed branching, PR - 2 —
PC

SETT 0000000000011000 15T 1 1

SLEEP 0000000000011011 Sleep 34 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

260 Hitachi



A2.2

n Format

Table A;24 Direct Register Addressing

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn>0,1-T 1 Comparison resuit

CMP/PZ Rn 0100nnnn00010001 - Rn20,1 »T 1 Comparison result

DT Rn*2  0100nnnn00010000 Rn-1 - Rn; 1 Comparison result
fRnis0,1— T,ifRn
isnonzero,0 » T

MOVT Rn 0000nnnn00101001 T-Rn 1 —

ROTL Rn 0100nnnn00000100 T < Rn« MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB -Rn »T 1 LSB

ROTCL Rn 0100nnnn00100100 T<RneT 1 MSB

ROTCR Rn 0100nnnn00100101 T->RnoT 1 LSB

SHAL Rn 0100nnnn00100000 T« Rn«0 1 MSB

SHAR Rn 0100nnnn00100001 MSB—- Rn—->T 1 LSB

SHLL Rn 0100nnnn00000000 T« Rne0 1 MSB

SHLR Rn 0100nnnn00000001 0—->Rn->T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —

SHLR2 Rn  0100nnnn00001001  Rn>>2 —Rn 1 —

SHLLS8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —

Notes: 2. SH7600 instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit
STC SR,Rn 0000nnNnn00000010 SR - Rn 1 —
STC GBR, Rn 0000nnnn00010010 GBR — Rn 1 —_
STC VBR,Rn 0000nnnn00100010 VBR — Rn 1 —
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —
STS MACL,Rn © 0000nnnn00011010 MACL - Rn 1 —
STS FR,Rn 0000nnnn00101010 PR — Rn 1 —

261 Hitachi



Table A.26 Indirect Register Addressing

Instruction  Code Operation State T Bit

JMP  @Rn 0100nnnn00101011 Delayed branch, Rn — PC 2 —

JSR @Rn  0100nnnn00001011  Delayed branch, PC — PR, 2 —
Rn— PC

TAS.B @Rn 0100nnnn00011011  When (Rn)is 0,1 - T,1 > 4 Test results
MSB of (Rn)

Table A.27 Pre Decrement Indirect Register

Instruction Code Operation State T Bit
STC.L SR,@-Rn 0100nnnn00000011 Rn-4— Rn, SR — (Rn) 2 —
STC.L GBR,@-Rn 0100nnnn00010011 Rn-4—- Rn,GBR— (Rn) 2 —
STC.L VBR,@-Rn 0100nnnn00100011 Rn-4—- Rn,VBR—> (Rn) 2 —

STS.L MACH,@-Rn 0100nnnn00000010 Rn-4 — Rn, MACH — (Rn) 1 —

STS.L. MACL,@-Rn . 0100nnnn00010010 Rn-4 — Rn, MACL —» (Rn) 1 —_

STS.L PR,@-Rn 0100nnnn00100010 Rn-4— Rn, PR — (Rn) 1 —

Table A.28 PC Relative Addressing With Rn

Instruction Code Operation State T Bit

BRAF  Rn*? 0000nnnn00100011 Delayed branch, Rn + PC — PC 2 —

BSRF  Rn*?  0000nnnn00000011 Delayed branch, PC — PR, Rn + PC 2 —
- PC

Notes: 2.. SH7600 instruction

262 Hitachi



A.2.3 mFormat

Table A.29 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit
LDC Rm, SR 0100mmmm00001110 Rm — SR 1 LSB
LDC  Rm,GER 0100mmm00011110 Rm — GBR 1 —

LDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —_

1LDS Rm, MACH 0100mmmm00001.010 Rm — MACH 1 —

LDS Rm, MACL 0100mmmm00011010 Rm — MACL 1 —

LDS Rm, PR 0100mmmm00101010 Rm— PR 1 —
Table A.30 Post Increment Indirect Register

Instruction Code Operation State T Bit
LDC.L @Rm+,SR 0100mmmm00000111 (Rm) - SR, Rm + 4 — Rm 3 LSB
LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) —» GBR, Rm + 4 — Rm 3 —
LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) — VBR, Rm + 4 —» Rm 3 —
LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) » MACH,Rm+4 - Rm 1 —
LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) - MACL,Rm+4 -Rm 1 —_
LDS.L @Rm+,PR 0100mmmm00100110 (Rm) - PR, Rm + 4 - Rm 1 —

263 Hitachi



A24

nm Format

Table A.31 Direct Register Addressing

Instruction Code Operation State  TBit
ADD Rm, Rn 001 1lnnnnmmmm1100 Rn+Rm—= Rn 1 —
ADDC Rm,Rn 0011nnnnmmmm1110 Rn+Rm+T— Rn,carry 1 Carry
->T
ADDV Rm, Rn 0011lnnnnmmmmllll Rn + Rm — Rn, overflow 1 Overflow
-T
AND Rm,Rn 0010nnnnnmmmm1001 Rn & Rm — Rn 1 —
CMP/EQ Rm, Rn 0011nnnnmmmm0000 WhenRn=Rm,1 > T 1 Comparison
result
CMP/HS Rm, Rn 0011nnnnmmmm0010 When unsigned and Rn> 1 Comparison
Rm, 15T result
CMP/GE  Rm,Rn 0011lnnnnmmmm0011  When signed and Rn > 1 Comparison
Rm,1->T result
CMP/HI Rm,Rn 0011lnnnnmumm0110 When unsigned and Rn> 1 Comparison
Rm, 15T result
CMP/GT Rm, Rn 0011nnnnmmmm0111 When signed and Rn > 1 Comparison
BRm, 1T result
CMP/STR  Rm,Rn 0010nnnnmmmm1100 When a byte in Rn equals 1 Comparison
abyteinBm,1->T result
DIV1 Rm, Rn 0011nnnnmmmm0100 1-step division (Rn+~Rm) 1 Calculation
result
DIVOS Rm, Rn 0010nnnnmmmm0111 MSBof Rn—» Q,MSBof 1 Calculation
Rm—- M, MA (3 -T result
DMULS.L Rm,Rn*2  001lnnnnmmmml101 Signed, Rn x Rm — 2t0 47 —
MACH, MACL
DMULU.L Rm,Rn*?2 00llnnnnmmm0101  Unsigned, Rn x Rm — 2to 41 —
MACH, MACL
EXTS.B Rm, Rn 0110nnnnmmmm1110 Sign-extends Rm from 1 —
byte — Rn
EXTS.W Rm, Rn 0110nnnnrmmmm1111 Sign-extends Rm from 1 —
’ word — Rn
EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero-extends Rm from 1 —
byte — Rn
EXTU.W Rm, Rn 0110nnnnmmmm1101 Zero-extends Rm from 1 —
word — Rn
MOV Rm, Rn 0110nnnnmmmm0011 Rm— Rn 1 —
Notes: 1. The normal minimum number of execution states
2. SH7600 instruction

264 Hitachi



Table A.31 Direct Register Addressing (cont)

Instruction Code Operation State T Bit
MUL.L.  Rm,Rn*? 0000nnnnmmmm0111 Rn x Bm — MACL 2t04*" —
MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rnx Rm - MAC 1to 31—
MULU.W Rm,Rn  0010nnnnmmmm1110 Unsigned, Rn x Rm — 1t03*1 _
MAC
NEG Rm, Rn 0110nnnnmmom1 011 0-RBm —An 1 —
NEGC Rm, Rn 0110nnnnmmnm1010 0—-RBm-T— Rn, borrow 1 Borrow
-T
NOT Rm, Rn 0110nnnnmmmm0111 ~Bm - Rn 1. —_
OR Rm, Rn 001 0nnnnmmmm1011 Rn|Rm— Rn 1 —
SUB Rm, Rn 001 lnnnnmmmml 000 Rn—-Rm — Rn 1 —
SUBC Rm, Rn 001 1nnnnmmmm1010 Rn-Rm-T — Rn, 1 Borrow
borrow - T
SUBV Rm,Rn  001lnnnnmmmml011 Rn-Rm - Rn, underflow 1 Underflow
->T
SWAP.B Rm,Rn 011 Onnnnmmm1 000 Rm — Swap upper and 1 —
‘ lower halves of lower 2
bytes - Rn
SWAP.W Rm,Rn  0110nnnnmmmml001 Rm— Swap upperand 1 —
lower word — Rn
TST Rm,Rn 001 0nnnnmmmm1 000 Rn & Rm, when result is 1 Test results
0,1-T
XOR Rm, Rn 001 0nmnnmmrmm1 010 RnARm — Rn 1 —
XTRCT Rm,Rn 001 0nnnnmmmm1101 Center 32 bits of Rm and 1 —
_ Rn — Rn
Notes: 1. The normal minimum number of execution cycles.
2. SH7600 instructions
Table A.32 Indirect Register Addressing
Instruction Code Operation State T Bit
MOV.B  Rm,@Rn 0010nnnnmramm0 000 Rm — (Rn) 1 —
MOV.W ' Rm,@Rn 001 0nnnnmmmm0001 BRm — (Rn) 1 —
MOV.L  Rm,@Rn 0010nnnnmmmm0010 Rm— (Rn) . 1 —
MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) — sign extension —» Rn 1 —
MOV.W @Rm,Rn 0110nnnnmrrmm0001 (Rm) — sign extension — Rn 1 —
MOV.L  @Rm,Rn 0110nnnnmmmm0010 (Rm) — Rn 1 —

265 Hitachi



Table A.33 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

MAC.L  @Rm+,@Rn+*? 0000nnnnmmmm1111  Signed, (Rn) x (Rm) + 3/(2to —
MAC — MAC 4y

MAC.W  @Rm+, @Rn+ 0100nnnnmmrm1111  Signed, (Rn) x (Rm) + 3@t —
MAC —» MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH7600 instruction.

Table A.34 Post Increment Indirect Register

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 011 0nnnnmmmm0100 (Rm) — sign extension — 1 —
Rn, Rm+ 1 — Bm

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign extension — 1 —
Rn, RBm + 2 - Rm

MOV.L  @Rm+,Rn 0110nnnnmmmm0110 (Rm) —» RBRn, Rm + 4 —» Rm 1 —

Table A.35 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

MOV.B Rm,@-Rn 001 0nnnnmmem0100 Rn-1— Rn, Rm — (Rn) 1 —

MOV.W Rm,@-Rn 0010nnnnmmmm0101 Rn-2 — Rn, Rm — (Rn) 1 —

MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn-4— Rn, Rm — (Rn) 1 —

Table A.36 Indirect Indexed Register

Instruction Code Operation Cycles T Bit

MOV.B Rm,@(RO,Rn) 0000nnnnmmam0100 Rm — (RO + Rn) 1 —

MOV.W Rm,@(RO,Rn) 000 0nnnnmmmm0101 Rm — (RO + Rn) 1 —

MOV.L Rm,@(RO,Rn) 0000nnnnmmmm0110 Rm — (RO + Rn) 1 —_

MOV.B @(RO,Rm),Rn  0000nnnnmmmml100 (RO + BRm) — sign extension 1 —

—Rn
MOV.W @(RO,Rm),Rn  0000nnnnmmmml101 (RO + Rm) — sign extension 1 —
- Rn
MOV.L @(RO,Rm),Rn  0000nnnnmmmmll110 (RO + Rm) —» Rn 1 —

266 Hitachi



A.2.5 md Format
Table A.37 md Format

Instruction Code Operation State T Bit
MOV.B @(disp,Rm),RO 1000010 0mmmmdddd (disp + Rm) — sign 1 —
extension — RO
MOV.W @(disp,Rm),RO 1000010 1mmmmdddd (disp x 2 + Rm) —» 1 —
sign extension —
RO
A.2.6 nd4 Format
Table A.38 nd4 Format
Instruction Code Operation State T Bit
MOV.B RO, @ (disp, Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO, @ (disp,Rn) 10000001nnnndddad RO — (disp x 2+ Rn) 1 —
A;2.7 nmd Format
Table A.39 nmd Format
Instruction Code Operation State T Bit
MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm— (disp x4 +Rn) 1 —
MOV.L @(disp,Rm),Rn 01 01nnnnmmmmdddd (disp x 4+ Rm) — Rn 1 —

267 Hitachi



A28 dFormat

Table A.40 Indirect GBR with Displacement

Instruction Code Operation State T Bit
MOV.B RO, @(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —
MOV.W  RO,@(disp,GBR) 11000001dddddddd RO — (disp x 2 + 1 —
GBR)
MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x 4 + 1 —
GBR)
MOV.B @(disp,GBR),R0 11000100d4dddddadd  (disp + GBR) — sign 1 —
extension — RO
MOV.W @(disp,GBR),R0 11000101dddddddd  (disp x2+ GBR) —» 1 —
sign extension — RO
MOV.L @(disp,GBR),RO 11000110dddddddd  (disp x4 + GBR) —» 1 —
RO
Table A.41 PC Relative with Displacement
Instruction Code Operation State T Bit
MOVA @(disp, PC),RO 11000111dddddddd dispx 4+ PC — RO 1 —
Table A.42 PC Relative Addressing
Instruction Code Operation ~ State  TBit
BF label 10001011dddddddd When T =0, disp. x 2 + PC — PC; 3/1*3 —
When T =1, nop
BF/S label*? 10001111dddddddd WhenT =0, disp x 2+ PC — PC; 2/1*8 —
When T =1, nop
BT label 10001001dddddddad WhenT =1, disp x 2+ PC — PC; 3/1*3 —
When T =0, nop
BT/S label*?  10001101dddddddd WhenT =1, disp x 2+ PC — PC; 248 —
: : When T =0, nop
Notes: 2. SH7600 instruction

3. One state when it does not branch

268 Hitachi



A.29 di12 Format
Table A.43 d12 Format

Instruction Code Operation State T Bit

BRA label 1010d4ddddddddadd Delayed branch, disp x2+ PC »>PC 2 —

BSR label 1011dddddddddddd Delayed branching, PC — PR, dispx2 2 —

+PC - PC

A.2.10 nd8 Format

Table A.44 nd8 Format

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn  100lnnnndddddddd  (disp x 2 + PC) — sign 1 —_

extension — Rn

MOV.L @(disp,PC),Rn  110lnnnndddddddd  (disp x 4 + PC) — Rn 1 —

A.2.11 iFormat

Table A.45 Indirect Indexed GBR Addressing

Instruction Code Operation State  TBit

AND.B #imm, @ (RO,GBR) 11001101iiiiiiii (RO + GBR) & imm — 3 -
(RO + GBR)

OR.B #imm, @ (RO, GBR) 110011114ii4iiii (RO + GBR) | imm — 3 —
(RO + GBR)

TST.B #imm, @ (RO, GER) 11001100iiiiiiii (RO + GBR) & imm, 3 Test
whenresultis0,1->T results

XOR.B #imm, @ (RO,GBR) 11001110iiiiiiii (RO + GBR)”Aimm — 3 —

(RO + GBR)

269 Hitachi



Table A.46 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #imm, RO 11001001iiiiiiii RO & imm — RO 1 —

CMP/EQ  #imm,RO 10001000iiiiiiii  WhenRO=imm,1>T 1 Comparison

v , results
OR #imm, RO 11001011iiiiijiii RO limm — RO 1 _
TST #imm, RO 11001000iiiiiiii RO & imm, whenresult 1 Test results
is0,1 -»T
XOR #imm, RO 11001010iiiiiiii - ROAimm — RO 1 —

Table A.47 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State T Bit

TRAPA  #imm 11000011iiiiiiii PC/SR — Stack area, (imm x4+ 8 —
VBR) — PC

A.2.12 niFormat

Table A.48 ni Format

Instruction Code Operation State T Bit

ADD  #imm,Rn 011lnnnniiiiiiii Rn +imm — Rn 1 —

MOV  #imm,Rn  1110nnnniiiiiiii imm — sign extension — Rn 1 —

A3  Instruction Set in Order by Instruction Code

Table A.49 lists instruction codes and execution states in order by instruction code.

Table A.49 Instruction Set by Instruction Code

Instruction Code Operation State T Bit

CLRT 0000000000001000 0-T 1 0

NOP 0000000000001001 No operation 1 —

RTS 0000000000001011 Delayed branch, PR - 2 —
PC

SETT 0000000000011000 1T 1

DIVOU 0000000000011001 0 ->MWQT 1 0

270 Hitachi



Table A.49 Instruction Set by Instruction Code (cont)

 Instruction Code Operation State T Bit
SLEEP 0000000000011011 Sleep 3 —
CLRMAC 0000000000101000 0 - MACH, MACL 1 —
RTE . 0000000000101011 Delayed branch, stack 4 LSB
area — PC/SR
STC SR,Rn 0000nnnn00000010 SR— Rn 1 —
BSRF  Rn*? 0000nMnn00000011 Delayed branch, PC—» 2 —
PR, Rn+PC—> PC
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —
sTC GBR,Rn 0000nnnn00010010 GBR — Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STC VER,Rn 0000nnnn00100010 VBR — Rn 1 —
BRAF  Rn*? 0000nnnn00100011 Delayed branch, Rn + 2 —
PC - PC
MOVT  Rn 0000nnnn00101001 T—An 1 —
STS PR,Rn 0000nNNN00101010 PR— Rn 1 —
MOV.B  Rm,@(RO,Rn) 0000nnnnmmMm0100 Rm — (RO + Rn) 1 _
MOV.W  Rm, @(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —
MOV.L  Rm,@(RO,Rn) 0000nnnNmmmM0110 Rm — (RO + Rn) 1 —
MUL.L  Rm,Rn*2 0000nnnnmmrm0111 Rn x Rm — MACL (2 o —
to 4)*

—t

MOV.B  @(RO,Rm),Rn 0000nnnnmmm1 100 (RO + Rm) — sign
. extension - Rn

MOV.W @(RO,Rm),Rn 0000nnnnmmmm1 101 (RO + Rm) — sign 1 —
' extension — Rn .

MOV.L.  @(RO,Rm),Rn 0000nnnnmmm1 110 (RO + Rm) - Rn 1 —

MAC.L  @Rm+, @Rn+*2 0000nnnnmmmm1111 Signed, (Rn) x (Rm) + 3/ (2 —
MAC - MAC to 4)*1

MOV.L  Rm,@(disp,Rn)  0001nnnnmmmmdddd Rm— (disp x4 +Rn) 1 —

MOV.B  Rm,@Rn 0010nnnnmmmm0 000 Rm — (Rn) 1 —

MOV.W  Rm,@Rn 0010nnnnmmmm0 001 Rm — (Rn) 1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instruction

271 Hitachi



Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
MOV.L Rm, @Rn 001 0nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B Rm, @-Rn 001 0nnnnmmmm0100 Rn-1- Rn,Rm— 1 —
- (Rn)
MOV.W Rm, @-Rn 001 0nnnnmmmm0101 Rn-2 - Rn, Rm — 1 —_
(Rn) ;
MOV.L Rm, @-Rn 001 0nnnnmmm0110 Rn-4—- Rn,RAm— 1 —
(Rn)
DIVOS Rm,Rn 0010nnnnmmmm0111 MSBof Rn —» Q, MSB 1 Calculation
of Rm—-> M MAQ > result
T
TST Rm,Rn 001 0nnnnmmmm1 000 Rn & Rm, when result 1 Test results
i is0,1-T
AND Rm, Rn 001 0nnnnmmmm1001 Rn & Rm — Rn 1 —
XOR Rm, Rn 001 0nnnnmmmm1010 RnARBRm — Rn 1 —
OR Rm, Rn 001 0nnnnmmmm1011 Rn1Rm — Rn 1 —
CMP/STR Rm,Rn 001 0nnnnmmmm1100 When a byte in Rn 1 Comparison
_equals a byte in Rm, 1 result
-T
XTRCT Rm, Rn 0010nnnnmmmm1101 Center .32 bits of Rm 1 —
and Rn — Rn
MULU.W  Rm,Rn 0010nnnnmmrm1110  Unsigned, Rn x Rm —» 110 3*1
MAC
MULS.W Rm,Rn 0010nnnnmmmm1111  Signed, Rnx Rm —»  1to3*! —
MAC
CMP/EQ Rm,Rn 001 1nnnnmomm0000 WhenRn=Rm,1->T 1 Comparison
' result
CMP/HS © Rm,Rn 001 1nnnnmmmm0010 When unsigned and 1 Comparison
Rn>2Rm,1 -»T result
CMP/GE  Rm,Rn 001 1nnnnmmmm0011 When signed and Rn2> 1 Comparison
Rm,1->T result
DIVl Rm, Rn 001 1nnnnmmmm0100 1-step division (Rn + 1 Calculation
Rm) result
DMULU.L Rm,Rn*2 001lnnnnmmmm0101  Unsigned, Rn x Rm —» 2to4*! —
MACH, MACL
Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

272 Hitachi



Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

CMP/HI Rm, Rn 0011nnnnmmmm0110 When unsigned 1 Comparison
and Rn > Rm, 1 result
->T

CMP/GT  Rm,Rn 0011lnnnnmmmm0111 When signed and 1 Comparison
Rn>Bm, 15T result

SUB Rm, Rn 0011nnnnmmmml000 Rn—-Rm — Rn 1 —

SUBC Rm, Rn 0011lnnnnmmmml 010 Rh-Bm-T— 1 Borrow
Rn, borrow = T

SUBV Rm, Rn 001 1nnnnmmmm1011 Rn-Rm — Rn, 1 Underflow
underflow —»T

ADD Rm,Rn 001 1nnnnmmmm1100 Rm+Rn— Rn 1 —

DMULS.L Rm,Rn*2 001lnnnnmmmm1101  Signed, Rn xRm  2to 4*1 —

' — MACH, MACL -

ADDC Rm, Rn 0011lnnnnmmmml1110 Rn+Bm+T— 1 Carnry
Rn,carry - T

ADDV Rm, Rn 001 1nnnnmmml.111 Rn + Rm — Rn, 1 Overflow
overflow - T

SHLL Rn 0100nnnn00000000 T<Rne0 1 MSB

SHLR Rn 0100nnnn00000001 0-Rn->T 1 LSB

STS.L MACH, @-Rn 0100nnnn00000010 Rn-4 — Rn, 1 —
MACH — (Rn)

STC.L SR, @-Rn 0100nnnn00000011 Rn-4—- Rn,SR 2 —
— (Rn)

ROTL Rn 0100nnnn00000100 T « Rn « MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB -Rn -»T 1 LSB

LDS.L @Rm+, MACH 0100mmrm0 0000110 (Rm) - MACH, 1 —

' Rm+4 — Rm

LDC.L @Rm+, SR 0100mmm00000111 (Rm)— SR,Rm 3 LSB
+4—- Bm

SHLL2 Rn 0100nnnn00001000 Rn<<2 — Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —

LDS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —

Notes: 1. The normal minimum number of execution states
2. SH7600 instruction

273 Hitachi



Table A.49 Instruction Set by Instruction Code (cont)

274 Hitachi

Instruction Code Operation State T Bit
JSR @Rn 0100nnnn00001011 Delayed branch, PC 2 —
— PR,Rn—- PC
LDC Rm, SR 0100mmmm00001110 Rm— SR 1 LSB
DT Rn*2 0100nnnn00010000 Rn-1- Rn;ifRnis 1 Comparison
0,1 —>T,ifRnis result
nonzero, 0 > T - '
CMP/PZ Rn 0100nnnn00010001 Rn=0,1 5T 1 Comparison
result
STS.L, MACL,@-Rn  0100nnnn00010010 Rn-4 - Rn, MACL 1 —
— (Rn)
STC.L  GBR,@-Rn 0100nnnn00010011 Rn-4—-» Rn,GBR-> 2 —
’ (Rn)
CMP/PL Rn 0100nnnn00010101 Rn>0,1->T 1 Comparison
v result
LDS.L  @Rm+,MACL  0100mmmm00010110 (Rm) » MACL, Rm + 1 —
4 - Rm
LDC.L ~ @Rm+,GBR 0100mmmm00010111 (Rm)—- GBR,Rm+4 3 —
— Rm
SHLLS8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —_
SHLRS8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —_
1DS Rm, MACL 0100mmmMm00011010 Rm — MACL 1 —
TAS.B @Rn 0100nnnn00011011 When (Rn)is 0,1 — 4 Test results
T, 1 — MSB of (Rn)
LDC Rm, GBR 0100mmmm00011110 Rm — GBR 1 —
SHAL Rn 0100nnnn00100000 T« Rne«0 1 MSB
SHAR Rn 0100nnnn00100001 MSB—- Rn—>T 1 LSB
STS.L PR, @-Rn 0100nnnn00100010 Rn-4 - Rn, PR —> 1 —
(Rn)
STC.L VBR, @-Rn 0100nnnn00100011 Rn-4—-Rn,VBR—> 2 —_
(Rn)
ROTCLL Rn 0100nnnn00100100 T—RneT 1 MSB
ROTCR Rn 0100nnnn00100101 T->Rn->T 1 LSB
LDS.L  @Rm+,PR 0100mmm00100110 (Rm) — PR, Rm + 4 1 —
— Rm .
LDC.L @Rm+, VBR 0100mmmm00100111 (Rm)—> VBR,Rm+4 3 —_
- Rm
Notes: 2. SH7600 instruction .



Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —_
LDS Rm, PR 0100mmmm00101010 BRm— PR 1 —_
JMP @Rn 0100nnnn00101011 Delayed branch, Rn 2 —
— PC
LDC Rm, VBR 0100mmmm00101110 Rm — VBR 1 —_
MAC.W  @Rm+,@Rn+ 0100nnnnmomm1 111 Signed, (Rn) x (Rm)  3/(2)*' —
+MAC —» MAC
MOV.L @(disp,Rm),Rn 0101 nnnnmmmmdddd (disp + Rm) —» Rn 1 —
MOV.B  @Rm,Rn 0110nnnnmmmem0000 (Rm) — sign 1 —
extension —» Rn
MOV.W  @Rm,Rn 0110nnnnmmmm0001 (Rm) — sign 1 —
extension — Rn
MOV.L  @Rm,Rn 0110nnnnmmmm0010 (Rm) — Rn 1 —
MoV Rm, Rn 011 0nnnnmmrm0011 Rm — Rn 1 —
MOV.B  @Rm+,Rn 011 0nnnnmmm0100 (Rm) — sign 1 —
extension — Rn, Rm
+1—->RBm
MOV.W  @Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign 1 —_
extension — Rn, Rm
+2—> RBm
MOV.L  @Rm+,Rn 0110nnnnmmmm0110 (Rm) - BRn,Rm+4 1 —
— Rm
NOT Rm,Rn 0110nnnnmmmm0111 ~BRm — Rn 1 —
SWAP.B Rm,Rn 0110nnnnmmmm1 000 Rm — Swap upper 1 —
and lower halves of
lower 2 bytes — Rn
SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm — Swap upper 1 —
and lower word — Rn
NEGC Rm, Rn 0110nnnnmmmm1 010 0-Rm-T - Rn, 1 Borrow
borrow —T
NEG Rm,Rn 0110nnnnmmmm1011 0-Rm —Rn 1 —
Notes: 1 The normal minimum number of execution states (The number in parentheses is the

number in contention with preceding/following instructions)

275 Hitachi



Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
EXTU.B Rm,Rn 0110nnnnrmmm1100 Zero-extends Rm 1 —
i from byte — Rn
EXTU.W Rm,Rn 0110nnnnrmmmm1101 Zero-extends Rm 1 —
_ from word — Rn
EXTS.B Rm,Rn 0110nnnnmmmml110 Sign-extends Rm 1 —
from byte — Rn
EXTS.W Rm,Rn 0110nnnnmmeml111 Sign-extends Rm 1 —
from word — Rn
ADD #imm, Rn 0lllnnnniiiiiiii Rn +imm — Rn 1 —
MOV.B RO,@(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO,@(disp,Rn) 10000001lnnnndddd RO — (dispx 2 + 1 —
Rn)
MOV.B  @(disp,Rm),RO  10000100mmmmdddd (disp + Rm) — sign 1 —
extension — RO
MOV.W @(disp,Rm),R0  10000101mmmmdddd (disp x2 + Rm) —» 1 —
sign extension —» RO
CMP/EQ #imm, RO 10001000iiiiiiii When RO = imm, 1 1 Compariso
->T n results
BT label 10001001dddddddd When T =1, disp x2 38 —
+PC — PC;
When T = 0, nop.
BT/S  label* 10001101dddddddd ~ When T =1, disp x2 218 —
+PC — PC;
When T = 1, nop.
BF label 10001011dddddddd ~ When T =0, disp x2 318 —
+PC - PC;
When T =0, nop ‘
BF/S label* 10001111dddddddad When T = 0, disp x2 21*3  —
+PC — PC;
When T =1, nop
MOV.W @(disp,PC),Rn  100lnnnndddddddd (disp x2 + PC) —» 1 —
sign extension — Rn
BRA label 1010dddddddddddd Delayed branch, 2 —
dispx 2 +PC— PC
Notes: 2. SH7600 instruction

3. One state when it does not branch

276 Hitachi



Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State  TBiIt

BSR label 1011dddddddddddd  Delayed branch, PC 2 —
— PR, dispx 2+ PC
- PC

MOV.B RO, @(disp,GBR) 11000000ddddddad RO — (disp + GBR) 1 —_

MOV.W RO, @(disp,GER) 11000001dddddddd RO — (disp x 2 + 1 —
GBR)

MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (disp x 4 + 1 —_—
GBR)

TRAPA #imm 11000011iiiiiiii PC/SR — Stack 8 —
area, (immx 4 +
VBR) — PC

MOV.B @(disp,GER),R0 11000100ddddddad  (disp + GBR) — sign 1 —
extension —» RO

MOV.W @(disp,GBR),R0 11000101ddddddad  (disp x 2 + GBR) — 1 —
sign extension — RO

MOv.L @(disp,GBR),RO 110001104ddddddd  (disp x 4 + GBR) — 1 —

’ RO

MOVA @(disp, PC),RO 11000111dddddddd dispx4+PC —>R0O 1 —

TST #imm, RO 11001000iiiiiiii RO & imm, when 1 Test results
resultis0,1 > T

AND #imm, RO 11001001iiiiiiii RO &imm — RO 1 —_

XOR #imm, RO 110010104iiiiiiidi ROAimm — RO 1 —

OR #imm, RO 11001011iiiiiiii ROlimm— RO 1 —

TST.B #imm, @ (RO,GBR) 11001100iiiiiiii (RO +GBR) &imm, 3 Test results
when resultis 0, 1 —»
T

AND.B #imm, @ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm 3 —
— (RO + GBR)

XOR.B #imm, @ (RO,GBR) 11001110iiiiiiii (RO +GBR)Aimm — 3 —
(RO + GBR)

OR.B  #imm,@(RO,GBR) 11001111iiiiiiii (RO+GBR)lIimm— 3 —
(RO + GBR)

MOV.L @(disp,PC),Rn 1101lnnnndddddddd  (disp x4 + PC) - Rn 1 —

MOV #imm, Rn 1110nnnniiiiiiii  imm — sign 1 —

extension — Rn

277 Hitachi



A4  Operation Code Map

Table A.50 is an operation code map.

-Table A.50 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB [MD: 00 MD: 01 MD: 10 MD: 11

0000 {Rn  |Fx 0000

0000 {Rn |Fx 0001

0000 {Rn Fx 0010 |sTC SR,Rn* |STC GBR,Rn [STC  VBR,Rn

0000 {Rn Fx 0011 |BSRF Rn* BRAF Rn*

0000 {Rn Rm {01MD|Mov.B MOV.W MOV.L MUL.L

. Rm, @ (RO, Rn) Rm, @ (RO, Rn) Rm, @ (RO, Rn) Rm, Rn*

0000 }0000 |Fx 1000 |CLRT SETT CLRMAC

0000 |0000 |Fx 1001 |NOP DIVOU

0000 |0000 |Fx 1010

0000 {0000 |Fx 1011 |RTS SLEEP RTE

0000 |[Rn  JFx 1000

0000 |Rn {Fx 1001 MOVT Rn

0000 {Rn Fx 1010 [STS MACH,Rn |STS MACL,Rn |STS PR,Rn

0000 |Rn  |Fx 1011

0000 |Rn Fx 11MD|MOV.B MOV.W MOV.L MAC.L
@(RO,Rm) ,Rn |@(RO,Rm),Rn |[@(RO,Rm) ,Rn |@Rm+,@Rn+*

0001 |An Bm |disp |MOV.L Rm,@(disp:4,Rn)

0010 |Rn  |Rm jOOMD|MOV.B Rm,@Rn |MOV.W Rm,@Rn |MOV.L Rm,@Rn

001.0 Rn BRm {01MD{MovV.B MOV.W MOV.L DIVOS Rm,Rn
Rm, @-Rn Rm, @-Rn Rm, @-Rn

0010 {Rn Bm {1OMD|TST FRm,Rn |AND Rm,Rn |[XOR Rm,Rn |OR Rm, Rn

0010 {Rn Rm {11MD|cMp/STR XTRCT Rm,Rn |MULU.W Rm,Rn |[MULS.W Rm,Rn
Rm,Rn’

0011 |Rn  |Bm |{0OMD|CMP/EQ Rm,Rn CMP/HS Rm,Rn |CMP/GE Rm,Rn
0011 {Rn Rm }{0IMD|DIVl Rm,Rn |DMULU.L CMP/HI Rm,Rn |[CMP/GT Rm,Rn
Rm, Rn*

0011 {Rn Rm {1OMD|suB Rm,Rn SUBC Rm,Rn |SUBV Rm,Rn
0011 {Rn |Rm j11MD|aDD Rm,Rn |DMULS.L ADDC Rm,Rn (ADDV Rm,Rn

' Rm, Rn*
0100 |Rn  |Fx 0000 [SHLL Rn DT Rn* SHAL - Rn
0100 {Rn Fx 0001 |SHLR Rn CMP/PZ Rn SHAR Rn

278 Hitachi




Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 {Rn Fx 0010 |sTS.L STS.L STS.L
MACH, @-Rn MACL, @-Rn PR, @-Rn
0100 {Rn Fx 0011 |sTC.L STC.L STC.L
SR, @-Rn GBR, @-Rn VER, @-Rn
0100 {Rn Fx 0100 {ROTL Rn ROTCL Rn
0100 {Rn Fx 0101 [ROTR Rn CMP/PL Rn ROTCR Rn
0100 {Rm |Fx 0110 |LDS.L LDS.L LDS.L
@Rm+, MACH @Rm+, MACL @Rm+, PR
0100 {Rm |Fx 0111 |LDC.L LDC.L LDC.L
@Rm+, SR @Rm+, GER @Rm+, VBR
0100 {Rn Fx 1000 [SHLL2 Rn SHLL8 Rn SHLL16 Rn
0100 {Rn Fx 1001 [SHLR2 Rn SHLR8 Rn SHLR16 Rn
0100 {Rm |{Fx 1010 |ILDS Rm,MACH |LDS Rm,MACL |LDS Rm, PR
0100 {Rn Fx 1011 |JSR  @Rn TAS.B @Rn JMP @Rn
0100 {Rm |{Fx 1100
0100 {Rm |Fx 1101
0100 {Rn Fx 1110 [LDC Rm,SR  |(ILDC Rm,GBR |(LDC  Rm,VBR
0100 {Rn Rm 1111 {MAC.W @Rm+, @Rn+ :
0101 {Rn Rm |disp |MOV.L @(disp:4,Rm),Rn
0110 {Rn Rm [0OMD|MOV.B Rm,Rn [MOV.W @Rm,Rn [MOV.L @Rm,Rn |MOV Rm, Rn
0110 {Rn Rmn JjOIMD|MOV.B Rm+,Rn |MWV.W @Rw,Rn|MW.L  @mu+,Rn | NOT Rm, Rn
0110 {Rn BRm {10MD|swaP.B SWAP.W NEGC Rm,Rn |NEG Rm,Rn
Rm,Rn Rm,Rn
0110 {Rn BRm {11MD|EXTU.B Rm,Rn|EXTU.W Rm,Rn |EXTS.B Rm,Rn |EXTS.W .Rm,Rn
0111 {Rn imm ADD #imm:8,Rn
1000 {0OMD;Rn disp |MW.B RO, MWV.W RO,
' @(disp:4,Rn) @(disp:4,Rn)
1000 jOIMD{Rm idisp [MOV.B MOV.W
@(disp:4, @(disp:4,
Rm) ,RO Rm) , RO
1000 {1OMD{ imm/disp |CMP/EQ BT label:8 BF label:8
#irmm: 8,R0O
1000 {11MD}| imm/disp BT/S BF/S
label:8* label:8*

279 Hitachi




Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

1001 {Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA  label:12

1011 disp BSR label:12

1100 {OOMD} imm/disp |MOV.B RO, MOV.W RO, MOV.L RO, TRAPA #imm:8
@(disp:8, @(disp:8, @(disp:8,
GER) GBR) GBER)

1100 |O1MD disp MOV.B MOV.W MOV.L MOVA
@(disp:8, @(disp:8, @(disp:8, @(disp:8,
" GBR),RO GBR) , RO GBR) ,R0O PC),RO

1100 {10MD imm TST AND XOR OR
#imm:8,R0O #imm:8,R0 #imm:8,R0O #imm: 8, RO

1100 {11MD imm TST.B AND.B XOR.B OR.B
#inm:S, #imm: 8, #imm: 8, #imm: 8,
@(RO,GBR) @(RO,GBR) @(RO,GBR) @(RO,GBR)

1101 {Rn disp MOV.L @(disp:8,PC),RO

1110 {Rn imm MOV #imm:8,Rn

1111

Note:  SH7600 instructions

280 Hitachi




Appendix B Pipeline Operation and Contention

The SH7000 series is designed so that basic instructions are executed in one state. Two or more
states are required for instructions when, for example, the branch destination address is changed by
a branch instruction or when the number of states is increased by contention between MA and IF.
Table B.1 gives the number of execution states and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions experience contention in the following ways:
*» Operations and transfers between registers are executed in one state with no contention.
* No contention occurs, but the instruction still requires 2 or more cycles.

« Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

— MA contends with IF

— MA contends with IF and sometimes with memory loads as well

— MA contends with IF and sometimes with the multiplier as well

— MA contends with IF and sometimes with memory loads and sometimes with the multiplier

281 Hitachi



Table B.1 Instructions and Their Contention Patterns

Contention State Stage  Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers
Shift instruction
System control ALU instruction

2 3 Unconditional branche
3/1%3 3 Conditional branche
3 3 SLEEP instruction
4 5 RTE instruction
8 9 TRAP instruction
MA contends with IF 1 4 Memory store instruction and STS.L
instruction (PR)
2 4 STC.L instruction
3 6 Memory logic operations
4 6 " TAS instruction
MA contends with IF and 1 5 Memory load instructions and LDS.L
sometimes with memory loads as instruction (PR)
well 3 5 LDC.L instruction
MA contends with IF and 1 4 _Register to MAC transfer instruction,
sometimes with the multiplier as memory to MAC transfer instruction and
well MAC to memory transfer instruction
1t03*2 /7" Multiplication instruction
3/2)*2  7/8" Multiply/accumulate instruction
3/2to 9 Double-length multiply/accumulate
4y2 instruction (SH7600 only)
2t04*2 9 Double-length muttiplication instruction
(SH7600 only)
MA contends with IF and 1 5 MAC to register transfer instruction

sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH7600, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH7000, multiply/accumulate instructions are 8
stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

282 Hitachi












HITACHI

@ HitacHi AMERICA, LTD.

Semiconductor & I.C. Division
San Francisco Center

2000 Sierra Point Parkway
Brisbane, CA 94005-1835

(415) 589-8300

Fax: (415) 583-4207

Engineering Facility
Hitachi Micro Systems, Inc.
179 East Tasman Drive
San Jose, CA 95134

Manufacturing Facility

Hitachi Semiconductor (America) Inc.
6431 Longhorn Drive

Irving, TX 75063-2712

AREA OFFICES |
Eastern Central Western

Hitachi America, Ltd. Hitachi America, Ltd. Hitachi America, Ltd.

5511 Capital Center Drive Two Lincoln Centre 1740 Technology Drive

Suite 204 5420 LBJ Freeway Suite 500

Raleigh, NC 27606
(919) 233-0800

San Jose, CA 95110
(408) 451-9570

Suite 1446
Dallas, TX 75240
(214) 991-4510

RecioNAL OFFicEs s = DiSTRICT OFFICES I

Northeast

Hitachi America, Ltd.

77 S. Bedford Street

Burlington, MA 01803
(617) 229-2150

North Central
Hitachi America, Ltd.
500 Park Boulevard
Suite 415

ltasca, IL 60143
(708) 773-4864

Southwest

Hitachi America, Ltd.
2030 Main Street
Suite 450

Irvine, CA 92714
(714) 553-8500

Mountain Pacific
Hitachi America, Ltd.
4600 S. Ulster Street
Suite 690

Denver, CO 80237
(303) 779-5535

DISTRIBUTORS L]

AT&T

Hitachi America, Ltd.
325 Columbia Turnpike
Suite 203

Florham Park, NJ 07932
(201) 514-2100

Automotive

Hitachi America, Ltd.
Fairlane Plaza South
Suite 311

290 Town Center Drive
Dearborn, Ml 48126
(313) 271-4410

IBM

Hitachi America, Ltd.
21 Old Main Street
Suite 104

Fishkill, NY 12524
(914) 897-3000

Cronin Electronics, Inc. ¢ Marsh Electronics, Inc.
Marshall Industries « Milgray Electronics, Inc
Reptron Electronics « Sterling Electronics e

~Vantage Components Inc.

© 1994 Hitachi America, Ltd.
Printed in U.S.A.

Southeast

Hitachi America, Ltd.
4901 N.W. 17th Way
Suite 302

Ft. Lauderdale, FL 33309
(305) 491-6154

Mid-Atlantic

Hitachi America, Ltd.
325 Columbia Turnpike
Suite 203

Florham Park, NJ 07932
(201) 514-2100

Bloomington

Hitachi America, Ltd.
3800 W. 80th Street
Suite 1050 .
Bloomington, MN 55431
(612) 896-3444

South Central

Hitachi America, Ltd.
One Westchase Center
Suite 1040

10777 Westheimer Road
Houston, TX 77042
(713) 974-0534

IBM Engineering
Hitachi America, Ltd.
9600 Great Hills Trail
Suite 150W

Austin, TX 78759

~(512) 502-3033

Ottawa

Hitachi (Canadian) Ltd.
320 March Road

Suite 602

Kanata, Ontario,
Canada K2K2E3

(613) 591-1990

REPRESENTATIVE OFFICES I

Electri-Rep ® Electronic Sales & Engineering » EIR, Inc.

Jay Marketing Associates * Longman Sales, Inc. ¢

M. Gottlieb Associates, Inc. « Mycros Electronica

The Novus Group, Inc. * Parker-Webster Company ¢ QuadRep |
QuadRep/Crown, Inc. * QuadRep Southern, Inc.

Robert Electronic Sales ¢ Strategic Sales, Inc. ¢ Sumer inc.
System Sales of Arizona * System Sales of New Mexico e
Technology Sales, Inc. * TekRep, Inc.
Thompson & Associates, Inc. ¢ West Associates ¢

Wes Tech Associates

{5 Printed on Recycled Paper

295/1500/Banta/N
Order Number: M27T






HITACHI |

@ Hitachi America, Ltd.

Engineering Facility
Hitachi Micro Systems, Inc.
179 East Tasman Drive

Manufacturing Facility
Hitachi Semiconductor (America) Inc. %
6321 Longhorn Drive

Semiconductor &
I.C. Division
San Francisco Center

2000 Sierra Point Parkway
Brisbane, CA 94005-1835
- (415) 583-4207

Area Offices

Western

Hitachi America, Ltd.
1740 Technology Drive
Suite 500

San Jose, CA 95110
(408) 451-9570

Regional Offices

Western

Hitachi America, Ltd.

2030 Main Street

Suite 450 :
Irvine, CA 92714

(714) 553-8500

Hitachi America, Ltd.
4600 S. Ulster Street
Suite 690

Denver, CO 80237
(303) 779-5535

District Offices

Central

Hitachi America, Ltd.
3800 W. 80th Street
Suite 1050
Bloomington, MN 55431
(612) 896-3444

Hitachi America, Ltd.
One Westchase Center
1077 Westheimer Drive
Suite 1040

Houston, TX 77042
(713) 974-0534

San Jose, CA 95134

Central

Hitachi America, Ltd.
Two Lincoln Centre
5420 LBJ Freeway

Suite 1446

Dallas, TX 75240
(214) 991-4510

Central

Hitachi America, Ltd.”
500 Park Boulevard
Suite 415

Itasca, IL 60143

(708) 773-4864

Hitachi America, Ltd.
Fairlane Plaza South
Suite 311

290 Town Center Drive
Dearborn, M| 48126
(313) 271-4410

Hitachi America, Ltd.
9600 Great Hills Trail
Suite 150 W

Austin, TX 78754
(512) 502-3033

Irving, TX 75063-2712

Eastern

Hitachi America, Ltd.

5511 Capital Center Drive

Suite 204

Raleigh, NC 27606
(919) 233-0800

Eastern

Hitachi America, Ltd.
77 S. Bedford Street
Burlington, MA 01803
(617) 229-2150

Hitachi America, Ltd.
325 Columbia Turnpike
Suite 203

Florham Park, NJ 07932
(201) 514-2100

Eastern

Hitachi America, Ltd.
4901 N.W. 17th Way
Suite 302

Ft. Lauderdale, FL 33309
(305) 491-6154

Hitachi America, Ltd.
325 Columbia Turnpike
Suite 203

Florham Park, NJ 07932
(201) 514-2100

4

Hitachi America, Ltd.
21 0ld Main Street
Suite 104

Fishkill, NY 12524
(914) 897-3000

Hitachi (Canadian) Ltd.
320 March Road

Suite 602

Kanata, Ontario,
Canada K2K2E3

(613) 591-1990

For litagature fulfillment request contact Hitachi Literature Fulfillment at 1-800-285-1601

295/1.5M/Banta/MFM
Order Number: M27T021

- © 1994 Hitachi America, Ltd,
«  Printed in US.A.

@ Printed on Recycled Paper

-




