ATl

i

Application Note

Digital Echo Canceler and
Complex Adaptive Equalizers Using the
WE® DSP16/DSP16A Digital Signal Processor

Contents Page Contributed by: Shen Tu
INtroduction ... 1 Introduction
Digital Echo Canceler Implementation 2
Digital Echo Canceler for Echo cancellation techniques have been widely
Baseband Data Transmissioncccccoeee. 2 used in baseband digital transmission systems to
DSP16/DSP16A Implementation provide full duplex data traffic over a two-wire
of the Echo Canceler.........ccccooveviiiiineeneen. 4 network. The implementation of an echo canceler
Simulation Results of the Echo Cancelers 4 using the WE DSP16/DSP16A Digital Signal
CoNCIUSION......cueviiii e 6 Processor (DSP) is given in the first section of this
ReferenCescceviiiiiee i 6 application note. The DSP16/DSP16A is a general-
Program Listing 1. Echo Canceler — purpose, 16-bit DSP. The echo canceler is based
Single-Precisioncccoveeienninciece, 6 on an adaptive transversal filter using the least
Program Listing 2. Echo Canceler — mean square (LMS) algorithm to update the filter
Double-Precision ..., 8 coefficients. Two examples are given: one employs
Complex Adaptive Equalizerscccceovveeriicnenn 11 single-precision filter coefficients as well as single-
System Description and Algorithm 12 precision algorithm calculations; the other uses
DSP16/DSP16A Implementation of double-precision arithmetic, except that the input
Complex Adaptive Equalizersc.ccceuueee 13 and output data are represented as single-precision
Testing of the Equalizer.........ccccccovvieiiiinnnnen. 15 words. The trade-offs between the two systems are
CONCIUSIONSeoeiiiieeiiiiiieee e 16 the data rate and echo rejection. The double-
RefErenCesooeeeviiieiei e 16 precision implementation can offer better echo
Program Listing 3. Complex Linear rejection while the single-precision design allows a
EQUaliZer ..o 20 system with a higher data rate.
Program Listing 4. Complex Decision

Complex adaptive equalizers are a widely used
building block in digital communications systems.
Their function is to equalize channel distortions in
order to reduce intersymbol interferences (ISI) at the
receiver. The second section of this application note
describes complex adaptive equalizer
implementations for both linear equalizers (LE) and
decision feedback equalizers (DFE) using the
DSP16/DSP16A. The LMS adaptation algorithm is
employed to update the equalizer coefficients. Each
equalizer is tested by applying a 16-point quadrature
amplitude modulated (16-QAM) signal transmitted
through a long-haul voiceband telephone channel.
For an 8-tap LE, the DSP16/DSP16A program takes
a maximum of 239 cycles to process each input data
symbol. For a DFE consisting of a 3-tap forward
equalizer and a 5-tap feedback equalizer, the
program execution takes 265 cycles. Using a 55 ns
DSP16/DSP16A processor, the throughputs for the

Feedback Equalizer.........c.cccceevvveeeeiiicniinennnn, 23

Digital Echo Canceler and Complex Adaptive Equalizers

linear and decision feedback equalizers are under
14 us and 15 us, respectively.

Digital Echo Canceler
Implementation

A two-wire, full duplex baseband data transmission
system usually relies on an echo canceler to
decouple the outgoing transmitted signal and the
incoming received signal. An example of this
system is the integrated service digital network’s
(ISDN) U interface which supports 160 Kbit/s (80K
baud using 2B1Q - two binary to one quaternary —
line code) data rate on a subscriber loop over
distances up to 5 Km [1]*. The application of the
echo canceler in systems of various data rates and
distance coverages has also been reported [2,3]. In
most systems, the worst case signal attenuation of
40—50 dB can be expected. Therefore, in order to
achieve a signal-to-echo ratio of 20 dB as required
for low bit error rate (BER) transmission, the echo
canceler has to provide 60—70 dB echo rejection.

The echo canceler can be implemented as an
adaptive transversal filter which automatically
adapts its coefficients to the impulse response of the
echo path. If the echo path is a linear system and
the transversal filter contains sufficient taps to cover
the entire period of the echo’s impulse response, the
echo replica generated by the transversal filter can
completely cancel out the echo signal from the
received signal. However, due to the finite precision
of the DSP and the tap misadjustments inherent to
the adaptation algorithm, a small residual echo
always exists.

The LMS algorithm [4] is the most popular algorithm
used in adaptive transversal filters. The
computational requirements (measured by the
multiplication/addition operation) is 2N+1 operations
per data sample, where N is the number of taps.
The implementation of the LMS adaptive filter using
a fixed-point processor introduces two major
sources of error: one is from the quantization error in
the filter coefficients, and the other arises when the
tap updates become smaller than the least
significant digit of the processor. This causes the
adaptation process to stall.

In this section, a 48-tap echo canceler implemented
using both single-precision and double-precision
arithmetic is described. Both implementations are
tested using a simulated two-wire circuit which
consists of a 22-gauge 10 Km loop, the termination
network, and the transmit and receive filters. The

results are compared with those obtained from using
floating point arithmetic.

Digital Echo Canceler for Baseband Data
Transmission

A two-wire data transmission system with echo
cancellation is shown in Figure 1. Let the input
signal sequence to the echo canceler be a(n), and
the coefficients of the transversal filter be c(n). Then
the echo replica at the output of the echo canceler
is:

N-1

1) &(n) = T ci(n)a(n-i).
i=0

The input to the receiver is the the far-end signal
s(n) and the echo signal e(n). At the echo canceler
output, the received signal is :

2) r(n) =s(n) + e(n) — &(n).

The mean square residual echo E((e(n) — &(n))?)
can be minimized by reducing the received signal
E(r?(n)); if s(n) and e(n) — &(n) are uncorrelated.
Using the LMS algorithm, the coefficient adaptation
follows:

3) ci(n+1) =c;(n) + pr(n)a(n).

In order to achieve a high degree of cancellation
and due to the far-end signal acting as noise to the
adaptation process, the convergence factor p must
be set to a small value to reduce the coefficient
misadjustment at steady-state. However, a small
value of u results in slow convergence. Also, as
mentioned earlier, the echo canceler utilizing the
adaptive transversal filter technique is only capable
of canceling the linear echo term. The non-linear
echo that might be introduced by a buffer ampilifier,
hybrid transformer, analog-to-digital converter, etc.
will remain uncanceled.

Because of the timing requirements in the data
transmission system, e.g., the ISDN, the echo
canceler of data symbol rate is usually not
adequate. Since the input rate is equal to symbol
rate, this implies that the echo canceler should have
a higher output rate than the input rate. Figure 2

*

[lindicates a reference listed at the end of this section, pg. 6.

Digital Echo Canceler and Complex Adaptive Equalizers

s(n) + e(n)

a(n)

HYBRID

HYBRID
¢(n)

a(n)

R out r(n) s(n) + e(n)

Figure 1. Diagram of Two-Wire Data Transmission System With Echo Canceler (ec)

@
O
O
s(n) + e(n)
ATF 1
ATF 2
O—=
a(n)
ATF 3
[
ATF 4 +) >

ATF = Adaptive Transversal Filter.
Figure 2. Block Diagram of Echo Canceler With Interpolation Factor R = 4

Digital Echo Canceler and Complex Adaptive Equalizers

shows the block diagram of an echo canceler with
an interpolation factor of 4 (R=4). It consists of four
independent transversal filters, each 12 taps. The
input to the echo canceler is the transmitted data
symbol sequence of rate 1/T. The output rate is 4/T,
which corresponds to the echo replica of four
samples in one symbol interval.

DSP16/DSP16A Implementation of the
Echo Canceler

The implementation of the echo canceler using the
DSP16/DSP16A processor involves programming
the three operations described in equations (1)—(3)
according to the block diagram in Figure 2. To
perform the convolution of equation (1) using the
DSP16/DSP16A, all multiplication products must be
represented exactly using a 32-bit product register
and rounding should be performed only after they
are summed (in a 36-bit accumulator), i.e., at the
filter output.* In this case, the output roundoff noise
is uniformly distributed between —Q/2 and Q/2 with a
mean of zero and a variance of Q%/12, where Q is
the quantization step size. The same roundoff noise
is true for equation (2). In equation (3), if ¢ is
represented as a 16-bit word, any tap update
smaller than the value rounded to a 16-bit word will
be dropped, and the adaptation process cannot go
any further to reach the minimum mean square
error. In other words, adaptation stops when

4) least significant digit of the coefficient > pr(n)a(n).

Therefore, in a fixed-point implementation of an
adaptive transversal filter, there exists an optimum p
at which the inherent tap misadjustment is equal to
the least significant digit of the coefficient.

If the level of cancellation cannot be met by single-
precision arithmetic, double precision coefficients
and coefficient update algorithm should be used
instead. Using double-precision, the adaptation
stopping criteria, equation (4), can be reduced by a
factor of 2'®. However, the roundoff noise from the
transversal filter should remain unchanged since the
data in both cases is rounded off to 16-bit words.
The DSP16/DSP16A is a 16-bit device which

Rounding instead of truncation should be performed in
equations (1)—(3) in order to obtain the zero mean statistics;
also, the bias as a result of numerical truncation in the
adaptive filter coefficients can seriously degrade filter
performance.

features a 16-bit data bus, a 16x16 2’s complement
multiplier that generates a full 32-bit product, and
two 36-bit accumulators. To use double-precision
(32-bit) coefficients, the 32-bit word must be broken
into two 16-bit words for storage as well as
arithmetic operations. One way to do this is to
represent a 32-bit number in accumulator a0 as

5) a0 =alysw + a0 sw 216

where aOysw is the 2’s complement most significant
word and a0,gw is the 2’s complement least
significant word of a0 defined by the following
equations:

6) alpsw = rnd(aO);
rmd() = DSP16/DSP16A rounding instruction

7) aOLSW =a0l 216;
all=lower half of a 32—bit word

This method utilizes three DSP16/DSP16A special
function instructions: rounding, right shift 16 bits,
and left shift 16 bits. There is no need to perform
software unsigned multiplication that may be
required using other approaches.

The program listings of echo cancelers using both
single-precision and double-precision arithmetic are
at the end of this section.

Simulation Results of the Echo Cancelers

The echo canceler programs are tested in the env16
(an integrated DSP16/DSP16A assembler and
simulator) environment. The input sequence to the
echo canceler is a 19.2 Kbit/s random data
sequence using bipolar coding. The echo path
impulse response is shown in Figure 3, which
corresponds to a 22-gauge, 10 Km loop with
termination network and the transmit/receive filters.
The far-end impulse response is'shown in Figure 4.
The echo canceler used in this case has a total of
48 taps and an interpolation factor R=4. The
maximum impulse response duration is 12 input
symbol intervals. The results of single-precision,

Digital Echo Canceler and Complex Adaptive Equalizers

]Illllllllllll[llllllllllllllIlllr]lllllllllllli

4 ~

ECHO

AN L ! !
0 |||v|l\va|llll]1||||l||||I|I1|||||||||l|er||||l|

EERE NN ANNENE NSNS N NSRS RRENEARANESRNNI ARRRE RN

5 10 15 20 25 30 35 40 45

SAMPLES

Figure 3. Echo Path Impulse Response

double-precision, and floating-point*
implementations of the same echo canceler are
listed in Table 1.

Table 1. Signal to Echo Ratio (dB) vs

lterations
No. of Floating- Single- Double-
Symbols Point Precision Precision
u=0.016 u=0.016 u=0.016

0 -29.06 —-29.06 -29.06

2000 -9.79 -9.82 -9.79

4000 2.43 1.90 2.43

6000 4.81 4.00 4.81

8000 5.40 4.67 5.40

10000 5.65 5.09 5.66

12000 5.70 5.01 5.71
u=0.00025 u=0.01 u=0.00025

14000 11.46 7.09 11.40

16000 18.69 7.27 18.56

18000 20.04 7.21 20.01

At the start of adaptation, all coefficients are set to
zero. The initial u is chosen to be 0.016 for fast
convergence, but the steady-state signal-to-echo
ratio is only 5.7 dB. By using a smaller p to continue
the adaptation process, both floating-point and

*

The floating-point results are obtained from a C program on a
SUN 3 computer using 32-bit single-precision floating-point
arithmetic.

ECHO

TTTTT T T T T P [T T[T T T [T T T[T T T[T T[T v [rvr

.008 — —

0 :..‘}';I'.‘=...=l‘.:..‘g...' R | T T

poa e b ba g by o byl

100 120 140 160 180 200

RN EEEE R

20 40 60 80

SAMPLES

Figure 4. Far-End Impulse Response

double-precision implementations achieved the 20
dB signal-to-echo ratio. Notice that the results
between the floating-point and double-precision
implementations are very close. The slight
discrepancy can be attributed to the quantization
noise after rounding the echo canceler output (r(n))
to a 16-bit word. By imposing the criteria described
by equation (4) on p, the minimum p that can be
used without making the adaptation process stop is
0.01 in the single precision implementation. The
final echo level is 7.21 dB below the received far-
end signal. This is also close to 7.77 dB obtained
using floating-point arithmetic with the same p.

The single-precision implementation of a 48-tap
echo canceler takes 445 machine cycles while the
same canceler with double-precision arithmetic
takes 1065 cycles to process each input data
symbol and output four samples of far-end signal
without echo. For a 33 ns version DSP16A, the data
output rate is 3.7 and 8.8 us, respectively. The
single-precision implementation requires 101 words
of ROM and 59 words of RAM. On the other hand,
177 words of ROM and 107 words of RAM are
needed using double-precision program.

Digital Echo Canceler and Complex Adaptive Equalizers

Conclusion References

The implementation of two digital echo cancelers for
baseband data transmission using the
DSP16/DSP16A DSP is described in this application
note. The single-precision echo canceler has a
throughput advantage and occupies less memory

[1] O. Agazzi, "Cable Transmission Techniques for
ISDN: A Tutorial", Proceedings of the Il
Congresso da Sociedade Brasileira de
Microeletronica, July, 1987, Sao Paulo, Brazil,

space than its double-precision counterpart. Pp. 623-632.

However, the double-precision echo canceler offers [2] T. Alvestad, T. J.-C. Eriksen, "Echo Canceler
much greater degree of cancellation and is limited for Two-Wire Data Modems", Electrical

only by the 16-bit quantization noise. The speed and Communication, Vol. 59, No. 3, 1985, pp. 333-
flexibility of the DSP16/DSP16A device lends itself 337.

to the implementation of echo cancelers in two-wire

full duplex baseband data transmission systems. [3] N.A.M. Verhoeckx et al. "Digital Echo

Cancellation for Baseband Data Transmission",
IEEE Trans. Acoust., Speech, Signal
Processing, Vol. ASSP-27, pp. 768-781, Dec.
1979.

[4] B. Widrow, S. D. Sterns,Adaptive Signal
Processing, Prentice-Hall, Englewood Cliffs,
New Jersey, 1985.

Program Listing 1. Echo Canceler — Single-Precision

/* */
/* Digital Echo Canceler for Two-Wire Data */
/* Transmission - Single Precision Coefficients */
/* */
/* by S. Tu, AT&T Bell Laboratories, Allentown, PA 10/28/88 */
/* */
.ram
datl: 1l1*int /* allocate 12 ram spaces for 12-tap */
datl2: int /* delay lines */
cfl: 12*int /* 12 coef. for sub-canceler 1 *x/
cf2: 12*int /* 12 coef. for sub-canceler 2 */
cf3: 12*int /* 12 coef. for sub-canceler 3 */
cfd: 12*int /* 12 coef. for sub-canceler 4 */
rx: int
.endram
start: auc=0x02 /* set alignment for Q14 format */
pt=CF1 /* pt - coef. in rom */
r2=cfl /* r2 - coef. in ram */
do 48 { /* transfer start-up coef. */
y=a0 X=*pt++ /* from rom to ram (y=a0 is a *x/
r2++=x / dummy fetch) *x/
}
rl=datl2
r3=rx
rb=datl /* rb points to beginning, re */
re=datl2 /* to end of modulo. */
j=-12
i=0
c0=0 /* initialize counter c0 to 0 */
loop: *r3=sdx /* read s(n)+e(n) from SIO */

Digital Echo Canceler and Complex Adaptive Equalizers

if cOlt goto cnvl /* read a(n) from PIO every */
rl++=pdx0 / 4th loop. *x/
c0=-3 /* set c0 to -3 */
r2=cfl
/* start convolution routine *x/
cnvl: aO=p X=*r2++ /* load x, y and clear aO0. */
a0=a0-p y=*rl++
do 11 { /* perform convolution to */
p=x*y x=*r2++ /* obtain echo estimate. */
a0=aO0+p y=*rl++
}
p=x*y
a0=a0+p *r2++3 /* end of convolution routine */
y=*r3 /* subtract estimated echo */
a0=al0-y /* from received signal then *x/
a0=-al /* output the result to SIO */
a0=rnd (a0) /* after rounding * /
sdx=a0
/* start tap adaptation routine */
lms: y=a0 x=*pt++i /* scale a0 by the factor U */
p=x*y /* then load to y for tap *x/
al0=p x=*rl++ /* update calculation */
a0=rnd (a0)
y=a0
do 11 { /* update filter coefficients */
p=x*y al=*r2
a0=a0+p x=*rl++
a0=rnd (a0)
*r2++=a0

}
p=x*y aO=*r2
a0=aO+p
a0=rnd (a0)
r2+4+4+=a0 / end of adaptation routine */

end: goto loop

/* filter final coef. settings */

CF1l: int 0.00043
int -0.00098
int 0.00177
int 0.00360
int 0.00592
int 0.00879
int -0.00037
int 0.14478
int 0.01013
int -0.00085
int -0.00079
int 0.0
int 0.00055
int -0.00220
int 0.00153
int 0.00323
int 0.00500
int 0.00983
int 0.02832
int 0.30933
int 0.01343
int ~-0.00128
int -0.00110
int 0.00043
int 0.00055

Digital Echo Canceler and Complex Adaptive Equalizers

int -0.00189
int 0.00116

int 0.00269

int 0.00421

int 0.00885

int 0.03125

int 0.24213

int -0.03455
int -0.0044¢6
int -0.00098
int 0.00031

int 0.00012

int -0.00049
int 0.00055

int 0.00256

int 0.00378

int 0.00757

int 0.01325

int 0.06293

int -0.02692
int -0.00574
int 0.0

int 0.00037

int 0.01

Program Listing 2. Echo Canceler — Double Precision

/* */
/* Digital Echo Canceler for Two-Wire Data */
/* Transmission - Double Precision Coefficients */
/* */
/* by S. Tu, AT&T Bell Laboratories, Allentown, PA 11/28/88 */
/* */
.ram
datl: 1ll1*int /* allocate 12 ram spaces for 12-tap */
datl2: int /* delay lines */
cfl: 24*int /* 12 coef. for sub-canceler 1 */
cf2: 24*int /* 12 coef. for sub-canceler 2 */
cf3: 24*int /* 12 coef. for sub-canceler 3 */
cfd: 24*int /* 12 coef. for sub-canceler 4 */
scl: 2*int
rx: int
.endram
start: auc=0x02 /* set alignment for Q14 format
pt=CF1 /* pt - rom coef. pointer
r2=cfl /* r2 - ram coef. pointer
do 96 ({ /* transfer start-up coef.
y=a0 x=*pt++ /* from rom to ram (y=a0 is a
r24++=x / dummy fetch)
}
rO=scl
rl=datl2
r3=rx
rb=datl /* rb points to beginning, re
re=datl?2 /* to end of modulo.
j=-24
i=0
c0=0 /* initialize counter cO0 to O
loop: *r3=sdx /* read s(n)+e(n) from SIO

*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

Digital Echo Canceler and Complex Adaptive Equalizers

if c0lt goto cnvl /* read a(n) from PIO every */
rl++=pdx0 / 4th loop iteration. */
c0=-3 /* set c0 to -3 */
r2=cfl
/* start convolution routine */
cnvl: aO=p x=*r2++ /* load x, y and clear a0,al */
al0=al0-p y=*rl++
al=a0
do 11 { /* perform double precision */
p=x*y x=*r2++ /* convolution to obtain echo */
a0=al0+p p=x*y y=*rl++ /* estimate */
al=al+p x=*r2++

}
p=x*y xX=*r2++

a0=al0+p p=x*y /* a0- convolution output (LSW) */
al=al+p X=*r2++j /* al- convolution output (MSW) */
/* end of convolution routine */
a0=a0>>16 /* align a0 with al */
y=al /* transfer alh to yh first, x/
al=al<<1lé6 /* then all to yl. */
yl=al
a0=al+y y=*r3 /* add a0 and al to yield echo */
/* estimate; fetch s(n)+e(n) *x/
a0=al0-y /* subtract estimated echo */
a0=-a0 /* from received signal, then */
al=rnd(a0) /* output result to SIO after */
sdx=al /* rounding */
y=al x=*pt++1i /* fetch canceler output to y, */
/* convergence factor to x */

/* start lms adaptation routine */

lms: p=x*y x=*rl++ /* multiply x and y to yield 32 */
al0=p /* bit product;convert p to two */
rO++=a0l / 16 bit words and store in */
a0=rnd (a0) /* ram location pointed to by r0 */
*rO0--=a0

move y=*r0++

do 11 { /* update filter coefficients */
p=x*y y=*r0-—-— /* perform 32 x 16 -> 32 */

a0=p p=x*y x=*rl++ /* multiplication to yield 32 */
a0=a0>>16 /* bit coefficient update */
aO0=al+p y=*r2++
al=rnd(a0) /* al - tap update (MSW) */
a0=a0<<16 /* a0 - tap update (LSW) */
a0=al+y y=*fr2-— /* update the LSW of the coef. */
al0=a0>>16
al=al+y *r2++=a0l /* update the MSW of the coef. */
a0=rnd (a0)
y=a0
al=al+y y=*r0++
*r2++=al

}

p=x*y y=*r0--
a0=p p=x*y
al0=a0>>16
a0=aO0+p y=*r2++

al=rnd(a0)
a0=a0<<16

Digital Echo Canceler and Complex Adaptive Equalizers

a0=al+y y=*r2--
a0=a0>>16

al=al+y *r2++=a0l

aO0=rnd (a0)

y=a0

al=al+y

r2++=al / end of adaptation routine */

end: goto loop
/* filter final coef. settings */

CFl: int 0.83484
int -0.00024
int -1.17218
int 0.00037
int -1.12122
int 0.00177
int -0.19501
int 0.00336
int 0.58185
int 0.00610
int -1.71277
int 0.00873
int 0.93817
int 0.00012
int -0.39166
int 0.14514
int -1.84900
int 0.01007
int -1.12067
int -0.00043
int -1.42810
int -0.00055
int -1.91608
int -0.00024
int -0.77722
int -0.00055
int -1.00397
int -0.00024
int 1.43420
int 0.00104
int -1.47412
int 0.00256
int 1.48413
int 0.00464
int -1.12616
int 0.00934
int -0.84863
int 0.02875
int -1.06116
int 0.30914
int 1.70483
int 0.01263
int 0.95929
int -0.00055
int 0.95587
int -0.00092
int 1.71930
int -0.00037
int -0.64282
int -0.00049
int 0.57837
int -0.00024
int -0.49121
int 0.00092
int 0.26746

10

Digital Echo Canceler and Complex Adaptive Equalizers

int 0.00220
int -0.26996
int 0.00421
int 0.10040
int 0.00818
int -0.78595
int 0.03174
int -0.57611
int 0.24237
int -0.25562
int -0.03516
int 1.80664
int -0.00372
int -1.50757
int -0.00055
int 0.93994
int -0.00031
int -1.84192
int -0.00012
int -0.39398
int 0.
int 1.40552
int 0.00092
int 0.29498
int 0.00226
int 1.03375
int 0.00403
int 1.17072
int 0.00757
int -1.82428
int 0.01349
int -0.10437
int 0.06342
int -0.08191
int -0.02716
int 0.14935
int -0.00543
int 1.98663
int 0.
int -0.93744
int -0.00018
U: int 0.00025

Complex Adaptive Equalizers

Transmitting high bit-rate data successfully through
a switched telephone network, microwave or
satellite link, etc., often requires adaptive
equalization to remove excessive channel
distortions (i.e., amplitude and phase distortion or
multipath fading distortion). The adaptive equalizer
~ is usually implemented using transversal filters with
certain algorithms controlling the update of the
coefficients [1].* The two most popular structures
used in adaptive equalization are the LE and DFE.

* [] indicates a reference listed at the end of this section, pg.
16.

The LE, shown in Figures 5 and 6, derives its output
by linearly combining the past received signals
weighted by the coefficients. The DFE, shown in
Figures 7 and 8, is comprised of both a forward
equalizer and a feedback equalizer. The output of
the DFE is the sum of the two equalizers. The DFE
is found to be particularly effective when the channel
is highly distorted. In addition, it offers the
advantages of being less sensitive to symbol timing
accuracy and having less noise enhancement
problems, as compared to linear equalizers.

11

Digital Echo Canceler and Complex Adaptive Equalizers

In this section, the implementations of an 8-tap
complex linear equalizer and a DFE of 3 forward
taps and 5 feedback taps using the DSP16/DSP16A
processor are presented. Included is a description of
the system blocks and the algorithm, the
DSP16/DSP16A programs, and the testing results of
the equalization of a 16-QAM signal sent through a
dispersive voiceband telephone channel.

/ !
y1
d1
COMPLEX °
ADAPTIVE FILTER le

/ d2
y2
/ e2

Figure 5. Complex Linear Equalizer Block
Diagram

x1

A

X2

System Description and Algorithm

Figure 5 shows the block diagram of a complex
adaptive equalizer. Inputs x1 and x2 correspond to
the real and imaginary data paths. Outputs y1 and
y2 of the complex transversal filter (Figure 6) are
given in the following equations:

8) y1(n)= Nz_‘:ch(n)x1 (n=i) — N2—3102i(n)x2(n—i);
i=0 i=0

N = number of taps

9) y2(n) = Eczi(n)ﬂ (n—i) + Nz_;c1i(n)x2(n—i)
=0 i=0

The well-known LMS algorithm [2] is used to update
coefficients ¢1 and c2 to minimize the mean square
error, E[e12 + e22]. With a quadratic error function,
the minimum mean square error is obtained where

5(R) {X)

-1 -1 -1 -1

N
N

x1

020

z z z
TR

c.’zo c2 1 ':‘ c2 2 ':‘ c23 ."‘ c24 .:‘ c25 ’x‘ c26
-1 -1 -1 -1 -1 -1

x2 z z z V4 4 4

o R NET RN R

Figure 6. Complex Transversal Filter

12

Digital Echo Canceler and Complex Adaptive Equalizers

the gradient is zero. The estimated gradient for c1
is e1x1 + e2x2 and for c2 is e2x1 —e1x2. The
coefficient adaptation follows

10) c1i(n+1)=c1;(n)+mufe(n)x1(n-i)+e2(n)x2(n—i)]

11) c2i(n+1)=c2;(n)+mu[e2(n)x1(n—i)—e1(n)x2(n-i)].

Error signals e1 and e2 are derived from the
difference between the filter outputs and the desired
outputs (d1 and d2). When the filter is used as a
data equalizer, d1 and d2 are obtained from the
quantized value of y1 and y2. In the case of a 16-
QAM system, d1 and d2 can be represented by 2
bits. Therefore, a 2-bit quantizer is employed. The
parameter p is the convergence factor which
determines the speed of convergence and the
misadjustment of adaptation process.

Figures 7 and 8 show block diagrams of a complex
adaptive DFE which consists of forward and
feedback equalizers. The forward equalizer is used
to equalize the pre-cursor ISI, while the feedback
equalizer cancels the post-cursor ISI. The outputs,
which correspond to the real and imaginary data
paths of the DFE, are z1 = f1 + y1 and

z2 = f2 + y2. The forward equalizer outputs, y1
and y2, and the tap update equations are the same
as those for the LE. The feedback equalizer
outputs, f1 and {2, and coefficient adjustments are
given in the following equations:

2b1 yd1(n-i) Zb2 nyd2(n-i);
M = number of taps

Zb2)d1(n— |)+Zb1)d2(n-i)

i=1

14) b1,(n+1) = b1,(n) + ple1(n)d1(n-i) + e2(n)d2(n—i)]
e1(n)d2(n-i)]

15) b2;(n+1) = b2;(n) + p[e2(n)d1 (n—i) —

All coefficients in the forward and feedback
equalizer are adjusted simultaneously using the
LMS algorithm to minimize the mean square error,
E[e1? + e22].

One problem unique to the DFE occurs when either
d1 or d2 is detected incorrectly. In this case, the
erroneous data stays in the feedback equalizer for
several symbol periods, depending on the length of
the tap. As a result, the incorrect data may cause
successive errors. This effect is known as error
propagation.

DSP16/DSP16A Implementation of
Complex Adaptive Equalizers

The implementation of either the LE or DFE using
the DSP16/DSP16A processor involves
programming the convolution and tap adaptation
algorithms described by equations (7)—(15) and the
quantizer for obtaining signals d1 and d2. Before
the program enters into the main loop, the
initialization procedure transfers the start-up
coefficient settings and the constants used by the
quantizer from ROM to RAM. Although the
constants can be left in ROM, they can be fetched in
one cycle when they are stored in RAM, whether the
instructions used to fetch the constants are
executed from within the cache or not. The data is
input and output via the serial I/O (SIO) port. Real
and imaginary data inputs are transferred from SIO
register sdx to data memory and then moved to the
tapped delay line before each new iteration begins.
Since the complex adaptive equalizer requires two
consecutive input/output operations for synchronous
data transfer, the sdx read/write commands are
carefully placed within the program to insure that all
data is shifted in/out before the next 1/O.
Asynchronous I/O can also be used by adding a
simple polling routine before the sdx read/write
command. (Refer to the WE™ DSP16 and DSP16A
Digital Signal Processors Information Manual for an
example of a polling routine.)

In the LE, the convolution calculation of both data
paths, described by equations (8) and (9), is
executed from the cache with data and coefficients
in RAM. The data memory for the tapped delay line
is arranged as follows: x1(0), x2(0), x1(-1), x2(-1),
....... x1(=7), x2(-7). The coefficients are arranged
in memory the same way. The data memory
organization is shown in Figure 9. The modulo
addressing capability of the DSP16/DSP16A is most
suitable for convolution computation and, therefore,
is used in performing this function. The error used
in the coefficient update calculation is the difference
between the input and output of the quantizer. The
calculation of coefficients follows equations (10) and
(11). The negative convergence factor, —|u, is stored
in ROM, and its value is determined by the system
parameters (i.e., the number of equalizer taps, the
characteristics of the channel, etc.).

The difference between the LE and DFE is the
addition of the feedback equalizer in the DFE.
Therefore, the programming of the DFE involves
switching tasks between the forward and feedback

13

Digital Echo Canceler and Complex Adaptive Equalizers

x1 —P

X2 ———

FORWARD
EQUALIZER
(c1, c2)

y1

z1

y2

z2

f1

f2

Figure 7. Complex Decision Feedback Equalizer Block Diagram

Figure 8. Complex Transversal Filters in the DFE

14

B d1
QUANTIZER
B> B d2
e2
FEEDBACK
EQUALIZER
(b1, b2)
di -
QUANTIZER
7! |

Digital Echo Canceler and Complex Adaptive Equalizers

dati: b — | x1(0) |« r1 coeft: c10
dat2: x2(0) coef2: c20
x1(-1) ¢l
x2(-1) c21
x1(-6) c16
x2(-6) C2g
edat1: x1(-7) cl,
edat2: re — | x2(-7) 027
erri: el buf:
err2: e2
trh: -0.2
0.0
0.2
qtz: -0.3
-0.1
0.1
0.3

Figure 9. Data Memory Organization of Linear
Equalizer

equalizers. Pointers rb, re and r1 are used to
configure the forward tapped delay line and must be
saved for the next data input. The new pointer
settings must be transferred to these registers
before the feedback equalizer can be computed.
Using the compound addressing feature provided by
DSP16/DSP16A, such memory and register content
swaps can easily be accomplished. The data
memory organization of the DFE is shown in Figure
10.

The 2-bit quantizer is implemented as a subroutine
which can be called to obtain both signals d1 and
d2. Also, it can easily be replaced by a different
subroutine (i.e., 3-bit quantizer in a 64-QAM case)
without altering the main program. The complete
program listings for the LE and DFE are given in
Programs 3 and 4, respectively.

dt1: | x1(0) cft: c10 trh: | -0.2
x2(0) €2, 0.0
x1(-1) c1y 0.2
x2(-1) 021 qtz: | 0.3
x1(-2) cl, -0.1

edt1: | x2(-2) ecfi: c2, 0.1

dt2: | di(-1) cf2: | bi, 0.31
d2(-1) b21 pnt: rb
d1(-2) b1, b
d2(-2) b2, re
d1(-3) b1, buf: | x2(1)
d2(-3) b2, x1(1)
di(-4) b1, z2(0)
d2(-4) b2, d1(0)
d1(-5) b1 5 d2(0)

edt2: | d2(-5) ecf2: b25 err: el

e2

Figure 10. Data Memory Organization of
Decision Feedback Equalizer

Testing of the Equalizer

A computer-generated test signal was applied to the
input of the equalizer. A CCITT V.22 bis-compatible
signal, which is a 16-point QAM signal, was used in
this example. Its baseband pulse was shaped to a
75% raised cosine frequency spectrum. Figure 11
shows the eye-pattern plot of the baseband signal.
The modulating carrier is 2400 Hz, which allows the
transmission of 600 baud data through the higher
frequency band of the voiceband telephone channel.
The simulated channel represents the worst-case
long-haul connection, according to the delay and
amplitude distortion data published by a 1969
connection survey [3].

The LE and DFE programs were run under the
env16 environment (an integrated DSP16/DSP16A

15

Digital Echo Canceler and Complex Adaptive Equalizers

Figure 11. Eye Pattern of Baseband Data Signal

assembler and simulator) to obtain the following
results. Figures 12 and 13 show the learning curves
of the adaptation process in which the ratio of error
power, e1? + e22, and the average transmitted
signal power are plotted against the number of
iterations. The constellation plots of the input and
output of the equalizer (Figures 14—18)
demonstrate the effectiveness of the equalizer in
improving the 1Sl caused by channel distortions.

For the LE, there are a maximum of 239 cycles
required to process each data point and 85 cycles to
initialize the program. The entire program occupies
132 ROM words and 43 RAM words. The decision
feedback equalizer takes slightly more execution
cycles (265) and memory spaces (178 ROM words
and 48 RAM words).

Conclusion

Implementations of an 8-tap complex linear
equalizer and a decision feedback equalizer of 3
forward taps and 5 feedback taps using the
DSP16/DSP16A DSP are given in this application
note. Using a 55 ns processor, the throughputs of
the LE and DFE are under 14 us and 15 pus,
respectively. The misadjustments of both adaptive
equalizers at steady state are very low even though
the full dynamic range (-2 < X <2-27" of Q14
format; signal range is —0.4 < X < 0.4) is not utilized.

16

This low level of misadjustment is achieved by
taking advantage of the two 36-bit accumulators and
by using rounding instead of truncation (default
operation) prior to the transfer of data from an
accumulator to data memory or other 16-bit
registers. The execution of the LMS complex
adaptive filter alone takes 17 cycles per tap
including rounding the new coefficient and writing it
to the data memory.

References

[1] S. U. H. Qureshi, "Adaptive Equalization"
Proceedings IEEE, Vol. 73, No.9, Sept. 1985,
pp. 1349-1387.

[2] B. Widrow, S. D. Sterns, Adaptive Signal
Processing, Prentice-Hall, Englewood Cliffs, New
Jersey, 1985.

[3] F. P. Duffy, T. W. Thatcher, "Analog
Transmission Performance on the Switched
Telecommunications Network" BSTJ, Vol. 50,
No. 4. Apr. 1971, pp. 1311-1346.

Digital Echo Canceler and Complex Adaptive Equalizers

_10.

d -20H I il

-3Q

y i
! \ 1 I . mi
| | |
i llrﬂ.ﬁ\.l A
200 400 6800 800 1000
iterations
Error-power to average-transmitted-power ratio vs number of iterations

Figure 12. Learning Curve (LE)

T

-la.

i

]h 1 |ilt || Md'““ll ‘ L) Hl

200 400 800
iterations

Error-power to average-transmitted-power ratio vs number of iterations

Figure 13. Learning Curve (DFE)

17

Digital Echo Canceler and Complex Adaptive Equalizers

* <+ + + * <+
whigs, * S ;“3’;, ﬂ:m;ﬂf
+ ;.p "m’

Y * 33 9ud * *
A YEL A S he hofiyg tLELE
A +*t - e + *
+ + + + ++
+ ;# + & *#3 +
e | c¥a | TES | Bt
e L %
* * M + b g
¥ % :; A re t
3 P ++ *

Figure 14. Constellation Plot of Input Data to Adaptive
Equalizer (1200 samples)

+
+
+ I‘* + Y X4 ‘
Cad et *. . 4
+4 + 4+ -
+ +
=+ +
b

1 e .
+ +
+ + + + + L+
+ . + + +
E 4 . B
+ + * *

+* 5+ + + *
.&“’ ‘ g *?f

Figure 15. Constellation Plot of LE Output (data 1—600)

18

Digital Echo Canceler and Complex Adaptive Equalizers

¢ L4 L4 [4
L4 L4 ® L}
® ¢ ® ®
® L 4 ® ®

- + + +,
& +
- b i o <
3
+4 *e "&’t + * ;
- *
- -
* >
= 2 K 3 ~ . Al
+
-
+ - + ++
1‘. + R +
+
+ + + + + + *
+ oy

Figure 17. Constellation Plot of DFE Output (data 1—600)

19

Digital Echo Canceler and Complex Adaptive Equalizers

f 4 ¢ ®
¢ ® ®
¢ ® ®
¢ @ ®

Figure 18. Constellation Plot of DFE Output (data 601—1200)

Program Listing 3. Complex Linear Equalizer

/*

*/

/* Complex Linear Equalizer rev. 1.0 */
/* by S. Tu, AT&T Bell Laboratories, Allentown, PA 12/20/88 */

.ram
datl: int
dat2: 13*int

edatl: int

edat2: int
errl: int
err2: int
trh: 3*int
gtz: 4*int
coefl: int
coef2: 13*int
ecefl: int
ecef2: int
buf: 3*int
.endram
start: auc=0x02
pt=CI
r2=coefl
do 16 {
*r2++=x
}
rO=trh
do 7 {
*rO0++=x

20

/*
/*

/*
/*
/*
/*
/*
/*

/*

allocate 16 ram spaces for*/

8-tap complex data */

errl - real error signal */
err2 -imag. error signal */
decision threshold levels */
quantized signal levels */
allocate 16 ram spaces for */

8-tap complex coefficients */

temporary data storage */

/* set alignment for Q14 format

/* pt -> coef. in rom

/* r2 -> coef. in ram

/* transfer coefficients from
y=a0 x=*pt++ /* rom to ram (y=a0 is a dummy

/* fetch)

/* r0 -> threshold in ram

/* transfer threshold levels
y=a0 x=*pt++ /* and quantization levels

/* from rom to ram

*/
*/
*/
*/
*/
*/

*/
*/
*/

Digital Echo Canceler and Complex Adaptive Equalizers

loop:

cnvl:

do

rl=datl
rb=datl
re=edat2
j=2

i=0

rO=buf
*rO0++=sdx
r2=coefl
r3=coef2

al0=p x=*r2
a0=a0-p y=*rl++
al=a0
p=x*y x=*r3++7j
{
al0=al+p p=x*y y=*rl++
al=al+p p=x*y x=*r2++7j
al0=al0-p p=x*y y=*rl++
al=al+p x=*r2
p=x*y X=*r3++j
}
a0=al0+p p=x*y y=*rl++
al=al+p p=x*y X=*r2++]

al0=al0-p p=x*y
al=al+p

aO=rnd (a0)
al=rnd(al)

*rO++=sdx
*rO=al
sdx=a0

/* error signal calculation of 16-QAM case

r3=errl
call dec
y=*r2
a0=a0-y

p=x*y
al0=p
a0=rnd (a0)
*r3++=a0

al=al
call dec
y=*r2
al0=al-y
y=a0 x=*pt++i
p=x*y
a0=p
a0=rnd(ao0)
*r3=a0

/*
/*
/*

/*
/*

/*

/*
/*
/*

/*
/*
/*
/*
/*

*/
/*
/*
/*
/*
/*
/*

/*

rl -> data pointer
set virtual shifting
registers rb, re

main loop
input real data from SIO

convolution

x = cl

clear a0; y = x1
clear al

p = xl*cl; x = c2

p = xl*c2; y = x2

p = x2*c2; x = cl

p = x2*cl; y = x1(-1)

x =cl 1

p=x1(-1)*cl 1; x = c2_1
roundoff equalizer output

al0,al to 16-bit word

input imag. data from SIO
store imag. output data
output real data to SIO

r3 -> error signal (real)
call subroutine dec

fetch quantized level dl
calculate -el = yl - dl
fetch convergence factor u

calculate el = -u*(-el)

write el to ram (errl)

repeat for e2 calculation

write e2 to ram (err2)

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

*/

21

Digital Echo Canceler and Complex Adaptive Equalizers

/* coefficient adaptation using the LMS algorithm

lms:

do

/* subroutine:

dec:

22

r2=errl
r3=err2
rO=coefl
X=*r2
y=*rl++

{

p=x*y
a0=p p=x*y
al=p p=x*y
a0=a0+p p=x*y
a0=rnd(a0)
al0=al0+y
al=al-p
al=rnd(al)
al=al+y
*rO++=al
}

p=x*y
al=p p=x*y
al=p p=x*y
a0=al0+p p=x*y
aO=rnd (a0)
a0=al+y
al=al-p
al=rnd(al)
al=al+y
*rO++=al

y=*r0++
*rl++=y
y=*r0++
*rl--=y
sdx=*r0
goto loop

rO=trh
r2=qtz
y=*r0++

al0-y

if le return

*r2++
y=*xrO0++
al-y

if le return

*r2++
y=*r0
al0-y
if le return

*r2++
return

x=*r3
y=*rl++
xX=*r2
y=*r0++

y:*ro__
*rO++=a0

y=*rl++

x=*r3
y=*rl--
xX=*r2
y=*r0++

y=*r0--
*r0++=a0

dec - 2-bit quantizer

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

*/

/*
/*
/*
/*
/*

/*
/*

/*
/*

*/
r2 —> errl
r3 —-> err2

r0 -> coefl

x = el

y = x1

p = el*xl; x = e2

p = e2*xl; y = x2

p = e2*x2; x = el

p = el*x2; y = cl

a0 = cl(n+l); y = c2
update cl

al = c2(n+l); y = x1
update c2

transfer new data to delay

line

output imag. data to SIO
return to main loop

r0 -> trh
r2 -> gtz
fetch threshold level -0.2

to y and compare with a0
if greater, increment r2

compare with threshold O,
if greater,increment r2

compare with threshold 0.2
if greater, increment r2

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/

*/

Digital Echo Canceler and Complex Adaptive Equalizers

CI: int
CQ: int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
TRH: int
int
int
QTZ: int
int
int
int
U: int

/* start of real coef. */
/* start of imaginary coef. */

|

/* threshold levels *x/

1

[eNeNeoNeNoNeNeoNoNeoNoNeoNoNoNoNeoNeol leoloNeoNelNeNe]

2
0
2
.3 /* quantization levels */
1
1
3
0

|
o

625 /* —(convergence factor) */

Program Listing 4. Complex Decision Feedback Equalizer

/* * /
/* Complex Decision Feedback Equalizer rev. 1.0 */
/* by S. Tu, AT&T Bell Laboratories, Allentown, PA 1/10/89 */

.ram
dtl: 5*int /* Allocate 6 RAM spaces for */
edtl: int /* 3-tap forward equalizer. */
dt2: 9*int /* Allocate 10 RAM spaces for */
edt2: int /* 5-tap feedback equalizer. */
cfl: 5*%int /* Allocate 6 RAM spaces for */
ecfl: int /* 3-tap forward equalizer coef. */
cf2: 9*int /* Allocate 10 RAM spaces for */
ecf2: int /* 5-tap feedback equalizer coef. */
trh: 3*int /* decision threshold level */
qtz: 4*int /* quantized signal level */
pnt: 3*int /* pointer rl,rb and re */
buf: 5*int /* temporary data storage buffer */
err: 2*int /* error signal */
.endram
start: auc=0x02 /* set alignment for Q14 format */
j=2
i=0
pt=CI /* pt —=> coef. in ROM */
rO=cfl /* r2 -> coef. in RAM */
do 23 { /* Transfer coefficients and */
y=a0 x=*pt++ /* constants from ROM to RAM */
rO++=x / (y=a0 is a dummy fetch). */
}
rl=dt2 /* rl -> data pointer */
rb=dt2 /* Configure tapped delay line */
re=edt2 /* using rb, re for feedback */
r0++=rl / equalizer, save pointers */
rO0++=rb / in RAM. */
*rO++j=re

23

Digital Echo Canceler and Complex Adaptive Equalizers

loop:

cnvll:

do

cnvl2:

/* error signal calculation for 16-QAM case

24

do

rl=dtl
rb=dt1l
re=edtl
*rO=sdx
r2=cfl
a0=p x=*r2++
a0=a0-p y=*rl++
al=a0
p=x*y X=*r2--—
{
a0=al0+p p=x*y y=*rl++
al=al+p p=x*y x=*r2++7j
al0=al0-p p=x*y y=*rl++
al=al+p X=*r2++
p=x*y X=*k12——
}
a0=al0+p p=x*y y=*rl++
al=al+p p=x*y X=*r2++j
a0=a0-p p=x*y
al=al+p X=*r2++
rO=pnt
*rOzp:rl
*rO0zp:rb
*rOzp:re
y=*rl++
p=x*y X=*r2--—
{
a0=a0+p p=x*y y=*rl++
al=al+p p=x*y X=*r2++j
a0=a0-p p=x*y y=*rl++
al=al+p x=*r2++
p=x*y X=*r2--—
}
al0=al0+p p=x*y y=*rl++
al=al+p p=x*y X=*r2++j

al0=al0-p p=x*y
al=al+p

a0=rnd(ao0)
al=rnd(al)

*r0++j=sdx
sdx=a0
*rO++=al

call dec
y=*r2

al0=al-y *r0++j=y

y=a0 x=*pt++i

p=x*y
a0=p
a0O=rnd(a0)
*r0--=a0

al0=al

/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*

/-k
/*
/*
/*

*/
/*
/*
/*
/*
/*

/*
/*

/*

Configure tapped delay line
for forward equalizer.

main loop

input real data from SIO
convolution - forward eqglzr
x =cl

clear a0; y=xl1

clear al

p = xl*cl; x = c2

p = xX1*c2; y = x2

p = x2*c2; x = cl

p = x2*cl; y = x1(-1)

x = cl 1

p=x1(-1)*cl 1; x = c2_1
x = bl

Exchange rb, re, ril
contents with data in RAM
for the feedback equalizer
convolution.

y = dil

p = dl*bl; x = b2

p = dl*b2; y = d2

p = d2*b2; x = bl

p = d2*bl; y = dl(-1)

x = bl 1

p =dl(-1)*bl 1; x = b2 1

Roundoff equalizer output
a0, al to 16-bit word.

input imag. data from SIO
output real data to SIO
Save imag. output data
for later writing to sdx.

call subroutine dec

fetch quantized level dl
-el = yl-dl; save dl

fetch convergence factor u
el = -u*(-el)

round el to 16 bit
save el in ram (errl)

repeat for e2 calculation

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/

Digital Echo Canceler and Complex Adaptive Equalizers

call dec
y=*r2
a0=a0-y *rO0++j=y
y=a0 x=*pt++i

p=x*y
aO=p
a0=rnd(a0)
*r0-—-=a0

/* feedback equalizer coefficient adaptation using the LMS algorithm */
r2=err
r3=cf2
Ilmsl: x=*r2++ /* x = el */
y=*rl++ /* y = dl x/
do 4 {

p=x*y X=*r2--— /* p = el*dl; x = e2 */
a0=p p=x*y y=*rl++ /* p = e2*dl; y = d2 */
al=p pP=xX*y X=*r2++ /* p = e2*d2; x = el */
a0=al0+p p=x*y y=*r3++ /* p = el*d2; y = bl */
a0=rnd (a0) /* dbl=rnd(el*dl+e2*d2) */
a0=a0+y y=*r3-- /* bl(l)=bl(0)+dbl; y = b2 */
al=al-p *r3++=a0 /* update bl in ram */
al=rnd(al) /* db2=rnd(e2*dl-el*d2) */
al=al+y y=*rl++ /* b2(1l)=b2(0)+db2; y = dl */
r3++=al / update b2 in ram */
}

p=x*y x=*r2--—
al=p p=x*y y=*rl
al=p p=x*y x=*r2
al0=al+p p=x*y y=*r3++
a0=rnd(ao0)
a0=al+y y=*r3--
al=al-p *r3++=a0
al=rnd(al)
al=al+ty *r0--
*r3++=al
y=*r0-- /* Update the feedback eglzr */
rl-—=y / delay line elements d1(0), */
y=*r0 /* d2(0) . */
*rl=y
rO=pnt
rO0zp:rl / Exchange the pointer */
rO0zp:rb / settings for the forward */
rOzp:re / equalizer tap update. */

25

Digital Echo Canceler and Complex Adaptive Equalizers

/* forward equalizer coefficient adaptation using the LMS algorithm

lms2:

do

/* subroutine:

dec:

26

r3=cfl
X=*r2++
y=*rl++
{

p=x*y X=*r2--—
a0=p p=x*y y=*rl++
al=p p=x*y x=*r2++
al0=al0+p p=x*y y=*r3++
a0=rnd(a0)
al0=a0+y y=*r3--
al=al-p *r3++=a0
al=rnd(al)
al=al+y y=*rl++
*r3++=al
}

p=x*y X=*kr2--—
al0=p p=x*y y=*rl--
al=p p=x*y x=*r2++
a0=al0+p p=x*y y=*r3++
aO0=rnd (a0)
a0=al+y y=*r3--
al=al-p *r3++=a0
al=rnd(al)
al=al+y *rO++
*r3++=al
y=*r0--
*rl++=y
y=*r0++j
*rl--=y
sdx=*r0--
goto loop

dec - 2-bit quantizer
r3=trh
r2=qtz
y=*r3++
al-y

if le return

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/-k
/*

/*
/*

/*
/*
/*
/*
/*

X = el

y = x1

p = el*xl; x = e2

p = e2*x1; y = x2

p = e2*x2; x = el

p = el*x2; y = cl

dcl = rnd(el*xl+e2*x2)

cl(l) = cl(0)+dcl; y = c2
update cl in ram

dc2 = rnd(e2*xl-el*x2)
c2(l) = c2(0)+dc2; y = x1
update ¢2 in ram

Transfer new data to forward
equalizer delay line elements
x1(0), x2(0).

output imag. data to SIO
return to main loop

*/

r3 -> trh

r2 -> gtz

fetch threshold level -0.2
to y and compare with a0
if greater, increment r2

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/

Digital Echo Canceler and Complex Adaptive Equalizers

*r2++
y=*r3++ /* compare with threshold 0, */
a0-y /* 1if greater,increment r2 */

if le return

*r2++
y=*r3 /* compare with threshold 0.2 *x/
al0-y /* if greater, increment r2 */

if le return

*r2++
return

CIl: int
CQ: int
int
int
int
int
BCI: int
BCQ: int
int
int
int
int
int
int
int
int
TRH: int
int
int
QTZ: int
int
int
int
U: int

/* forward equalizer coef. */

/* feedback equalizer coef. */

/* threshold levels */

[eNeoNeoNeoNoNeoNoNoNeNoNeNoNeNeNoNoNoNeol leolNeNeoNeo

/* quantization levels */

|

OWwWRrRrFWMNMDONDN

|
o

5 /* —(convergence factor) */

27

For additional information, contact
your AT&T Account Manager, or call:

H AT&T Microelectronics
Dept. 52AL330240
555 Union Boulevard
Allentown, PA 18103
1-800-372-2447

In Canada, call:
1-800-553-2448

AT&T Microelectronics
AT&T Deutschland GmbH
Bahnhofstr. 27A

D-8043 Unterfoehring
West Germany

Tel. 089/950 86-0
Telefax 089/950 86-111

B AT&T Microelectronics Asia/Pacific
14 Science Park Drive
#03-02A/04 The Maxwell
Singapore 0511
Tel. (65) 778-8833
FAX (65) 777-7495
Telex RS 42898 ATTM

WE is a registered trademark of AT&T.

ATA&T reserves the right to make changes to
the product(s), software, or circuit(s)
described herein without notice. No liability
is assumed as a result of their use or
application. No rights under any patent
accompany the sale of any such product or
circuit.

Copyright © 1989 AT&T
All Rights Reserved
Printed in U. S. A.

June 1989
AP89-009DMOS

Y
P—

== ATal

=== The right choice.

AT&T Microelectronics
AT&T Japan Ltd.
31-11, Yoyogi 1-chome
Shibuya-ku, Tokyo 151
Japan

Tel. (03) 5371-2700
FAX (03) 5371-3556

AT&T Microelectronica Espaiia
C/ .Albacete, 5 - 2.2planta
28027 Madrid

Spain

Tel. 404 60 12

FAX 404 34 69

Telex 41494 AMESP

