m

Microcontrollers Advanced
1988 Data Book/Handbook M!cro
Devices

Advanced Micro Devices

Microcontroller
Handbook

© 1988 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in order to
improve design or performance characteristics.

This Handbook neither states nor implies any warranty of any kind, including but not limited to implied
warranties of merchantability or fitness for a particular application. AMD assumes no responsibility for
the use of any circuitry other than the circuitry embodied in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication,
but is subject to change without notice. AMD assumes no responsilbility for any errors or omissions,
and disclaims responsibility for any consequences resulting from the use of the information included
herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or
parameters.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

PC-DOS, IBM-PC, IBM PC-PS/2, IBM-XT and IBM PC-AT are registered trademarks of IBM Corporation.
Macintosh is a trademark licensed to Apple Computer Corporation.

Sun 3 Workstation is a registered trademark of Sun Microsystems Inc.

CP/M is a trademark of Digital Research.

EZ-PRO is a registered trademark of American Automation.

MetalCE and MicrolCE are trademarks of MetalLink Corporation.

MCS-51 is a registered trademark of Intel Corporation.

VAX is a registered trademark of Digital Equipment Corporation.

UNIX is a registered trademark of AT&T Technologies Inc.

MS-DOS and CodeView are registered trademarks of Microsoft Corporation.
PROMIink is a trademark of Data 1/0.

All 8051 instruction mnemonics are copyrighted by Intel Corporation 1980.

Note: Chapters 1 through 6 and Chapter 9 contain information reprinted with
permission from Intel Corporation.

Advanced Micro Devices provides a wide variety of innovative products. Microcontrollers are no
exception. Based on the widely used 8051 family, AMD’s 8-bit microprocessor family provides the
performance, availability and price you need to bring advanced systems to market.

AMD brings you innovative products and the important support tools to make your job simpler. Our
EPROM versions, documentation, development support information and software simplify design
and shorten the system-to-market cycle. Much of this information is included in this handbook.

If you need more information or want to investigate new product introductions in this family, call your
nearest AMD sales office, representative or distributor.

e iz

George Rigg

Vice President

Processor Products Division
Advanced Micro Devices

Preface

This handbook offers complete information on the wide variety of microcontroller products from
Advanced Micro Devices. AMD desires not only to offer you the best product, but also the necessary
documentation and support tools you require.

Advanced Micro Devices’ commitment to the 8051 Family of microcontrollers continues to grow. The
most recent introductions include the CMOS 80C521 and the 80515. The 80C521 contains double
the ROM and RAM of the 80C51 core device, a programmable Watchdog Timer and Dual Data
Pointers. The 80515 features an on-chip analog-to-digital converter and pulse-width modulation
capability.

A key to the success of the 8051 Family is the availability of efficient and highly flexible support tools.
Excellent emulators, compilers, and programmers are available from multiple sources to meet your
individual requirements. Abrief description of some of these isincludedin Section ll. AMD also offers
compatible EPROM versions of the 8051 Famiily to simplify prototyping, assist in starting production,
or to provide a tool for immediate program changes.

SECTION |

This section contains general information on the 8051 Family of devices and serves as a “core” that
is useful for designing with all of AMD’s microcontrollers. The term “8051” refers to the entire line of
8051-based microcontrollers, each executing anidentical instruction set. The device name “8051AH”"
refers specifically to the NMOS 8051AH device.

SECTION I

This section focuses on specific products, and includes data sheets, device-specific application
information and software routines. The data sheets emphasize features unique to the device and do
not generally repeat information common to the entire 8051 Family.

Table of Contents

SECTION 1|
CHAPTER 1

CHAPTER 2

CHAPTER 3

8051 Family Architectural Description

8051 Family Overview

Members of the Family
8051AH/8031AH/8751H
8053AH/8753H/8052/80C52T2/80C32T2

80515/80535

80C51BH/80C31BH/87C51
80C521/80C321/87C521/80C541/87C541
80C525/87C525

Memory Organization of 8051 Family Devices
Logical Separation of Program and Data Memory
Program Memory
Data Memory

8051 Family Architecture

Memory Organization
Oscillator and Clock Circuit
CPU Timing

Port Structures and Operation

Accessing External Memory
Timer/Counters

Serial Interface

Interrupts

Single-Step Operation

Reset

Power-Saving Modes of Operation
8751H

More About the On-Chip Oscillator
Internal Timing

8051 Pin Descriptions

Programmer’s Guide

Memory Organization
Program Memory
Data Memory
Direct and Indirect Address Area

Special Function Registers
Contents of SFRs After Power-On
SFR Memory Map
Program Status Word (PSW)
Power Control Register (PCON)

1-1

1-4

2-1

CONTINUED

Table of Contents
Interrupts 3-10
Interrupt Enable Register (IE) 3-10
Assigning Higher Priority Levels 3-11
Interrupt Priority Register (IP) 3-11
Timer/Counter Control Register (TCON) 3-12
Timer/Counter Mode Control Register (TMOD) 3-12
Timer Set-Up 3-13
Timer/Counter 0 3-13
Timer/Counter 1 3-13
Timer/Counter 2 Control Register (T2CON) 3-15
Timer/Counter 2 Set-Up 3-16
Serial Port Control Register (SCON) 3-17
Serial Port Set-Up 3-17
Generating Baud Rates 3-18
CHAPTER 4 Instruction Set 4-1
Program Status Word 4-1
Addressing Modes 4-1
Arithmetic Instructions 4-2
Logical Instructions 4-3
Data Transfers 4-4
Boolean Instructions 4-6
Jump Instructions 4-8
Instruction Set Summary 4-10
Instruction Definitions 4-14
CHAPTER 5 Software Routines 5-1
8051 Programming Techniques 5-1
Radix Conversion Routines 5-1
Multiple Precision Arithmetic 5-2
Table Look-Up Sequences 5-2
Saving CPU Status During Interrupts 5-4
Passing Parameters on the Stack 5-4
N-Way Branching 5-6
Computing Branch Destinations at Run Time 5-7
In-Line-Code Parameter-Passing 5-8
Peripheral Interfacing Techniques 5-9
1/0 Port Reconfiguration (First Approach) 5-9
/O Port Reconfiguration (Second Approach) 5-10
Simulating a Third Priority Level in Software 5-11
Software Delay Timing 5-11
Serial Port and Timer Mode Configuration 5-12
Simple Serial I/0 Drivers 5-12
Transmitting Serial Port Character Strings 5-13
Recognizing and Processing Special Cases 5-13
Buffering Serial Port Output Characters 5-14
Synchronizing Timer Overflows 5-15
Reading a Timer/Counter “On-the-Fly” 5-16

vi

CONTINUED

Table of Contents
CHAPTER 6 8051 Family Boolean Processing Capabillities 6-1
Boolean Processor Operation 6-1
Boolean Processor Applications 6-11
Bit Permutation 6-12
Software Serial IO 6-15
Combinatorial Logic Equations 6-18
Automotive Dashboard Functions 6-21
SECTION Il 8051 Family Device Description
CHAPTER 7 Basic NMOS Devices 71
8031AH/8051AH/8053AH(data sheet) 7-1
8751H/8753H (data sheet) 7-21
Single Chip Microcontroller with 8K Bytes of EPROM
Offers Important Design Advantages 7-37
CHAPTER 8 Enhanced NMOS Devices 8-1
80515/80535 (data sheet) 8-1
Heating and Air Conditioning Control in Cars with the
80515 Microcontroller R 8-35
CHAPTER 9 Basic CMOS Devices 9-1
80C51BH/80C31BH (data sheet) 9-1
87C51 (data sheet) 9-12
Designing with the 80C51BH 9-27
CHAPTER 10 Enhanced CMOS Devices 10-1
80C52T2/80C32T2 (data sheet) 10-1
80C521/80C321 (data sheet) 104
80C541 (data sheet) 10-25
87C521/87C541 (data sheet) 10-26
80C525/80C325 (data sheet) 10-43
87C525 (data sheet) 10-48
Software Routines 10-49
Dual Data Pointer Routines 10-49
Block Move in External RAM 10-49
Higher Performance Interrupt Routines 10-51
Full Duplex Transmit/Receive Buffering 10-52
Tree Structure Manipulation . 10-52
ROM Table Access 10-53
Creating an External Stack 10-53
Watchdog Timer Routines 10-54
WDT Enable, Clear, and Reset Cause 10-55
Power-Down Operation 10-57
Testing the Watchdog Timer 10-57
Using the Watchdog Timer as a Standard Timer 10-57
Software Reset Routines 10-59
Using Software Reset 10-59
Improving Reliability with Software Reset 10-60

vii

CONTINUED

Table of Contents
CHAPTER 11 Third-Party Support Products 11-1
Vendor/Product Listings 1141
Hewlett-Packard Development System 11-3
MetaLink Development System 11-8
American Automation Development System 11-13
Huntsville Microsystems Development System 11-14
Micro Computer Control 8051 C Compiler 1115
Archimedes C-8051 Compiler 11-20
Data I/0O Programmers 11-24
CHAPTER 12 Package Outlines 12-1
Plastic Dual-in-Line Package 12-1
Ceramic Hermetic Dual-in-Line Packages 12-2
Plastic Leaded Chip Carriers 12-3
Ceramic Leadless Chip Carriers 12-5
NUMERICAL DEVICE LISTING
8031AH Single-Chip 8-Bit Microcontroller 7-1
80C31BH CMOS Single-Chip Microcontroller 9-1
80C32T2 CMOS Single-Chip Microcontroller 10-1
80C321 CMOS Single-Chip Microcontroller 10-4
80C325 CMOS Single Chip Microcontroller 10-43
8051AH Single-Chip 8-Bit Microcontroller 7-1
80C51BH CMOS Single-Chip Microcontroller 9-1
80515 Single-Chip 8-Bit Microcontroller 8-1
80C52T2 CMOS Single-Chip Microcontroller 10-1
80C521 CMOS Single-Chip Microcontroller 10-4
80C525 CMOS Single-Chip Microcontroller 10-43
8053AH Single-Chip 8-Bit Microcontroller 7-1
80535 Single-Chip 8-Bit Microcontroller 8-1
80C541 CMOS Single-Chip Microcontroller 10-25
8751H Single-Chip 8-Bit Microcontroller 7-21
87C51 CMOS Single-Chip 8-Bit Microcontroller with
4K Bytes of EPROM 9-12
87C521 CMOS Single-Chip 8-Bit Microcontroller with
8K Bytes of EPROM 10-26
87C525 CMOS Single-Chip Microcontroller with
8K Bytes of EPROM 10-43
8753H Single-Chip 8-Bit Microcontroller 7-21
87C541 CMOS Single-Chip 8-Bit Microcontroller with
16K Bytes of EPROM 10-26

viii

Section | | :l
8051 Architectural Description

Section | presents “core” information applicable to all
members of the 8051 Microcontroller Family. In Chap-
ter 1, each member is discussed briefly; an in-depth
description of the family’s memory organization follows.
The information flows naturally into chapters on archi-

tecture, programming, the instruction set, software rou-
tine, and Boolean processing capabilities.

As AMD adds more devices to the 8051 Family, this
section will continue to serve as a one-stop reference for
both hardware and software designers.

Overview
Boolean Processing Architecture
Capabilities
8051
Family
Software Programmer's
Routines Guide

Instruction Set

09757A-013A

CHAPTER 1

8051 Family Overview

Members of the Family
8051AH/8031AH/8751H
8053AH/8753H/8052/80C52T2/80C32T2

80515/80535

80C51BH/80C31BH/87C51
80C521/80C321/87C521/80C541/87C541
80C525/87C525

Memory Organization of 8051 Family Devices
Logical Separation of Program and Data Memory
Program Memory
Data Memory

1-1

1-2

1-3
1-3
1-4
1-5

8051 Family Overview

CHAPTER 1

¢

MEMBERS OF THE FAMILY

The 8051 microcontroller family is based upon the architectural structure shown in Figure 1-1. The AMD product
offering based on the 8051 architecture is shown in Table 1-1.

FREQUENCY
REFERENCE

OSCILLATOR
&
TIMING

INTERRUPTS

INTERRUPTS

]
1
i
i
]
1
1]
1
1
1
]
1
I
1
1
1 cPU <
i
]
I
I
1
1
i
1
1
1
]
1
i
1
i
i
i

COUNTERS
}{ ___ J{
1
1
]
i
TWO 16-BIT I
ROM/EPROM RAM TIMEREVENT | !
COUNTERS !
]
1
AN AN !
]
1
]
1
]
1
7 |
N/ H
SR | |

IAL POR
64K BYTE BUS i
EXPANSION PROGRAMMABLE 1O *FULL DUPLEX 1
CONTROL UART [
-SYNCHRONOUS |
SHIFTER i
i
1
{ ! . i
1
____________________ H_ H_ﬁ_ [V W S |
CONTROL PARALLEL PORTS SERIAL SERIAL
ADDRESS DATA BUS N ouT
AND 1O PINS

09757A-001A

Figure 1-1. Architectural Structure of the 8051 Family

1-1

CHAPTER 1
8051 Family Overview

Table 1-1. AMD’s 8051 Family Products

Internal Memory

Other
ROM EPROM RAM Timers Enhanced
Device Type (bytes) (bytes) (bytes) (16-bit) Features
8031AH NMOS — — 128 2 —_
8051AH NMOS 4K —_— 128 2 —_
8053AH NMOS 8K — 128 2 —
8751H NMOS — 4K 128 2 —
8753H NMOS — 8K 128 2 —
80515 NMOS 8K — 256 3 YES
80535 NMOS —_ — 256 3 YES
80C31BH CMOS —_ — 128 2 —
80C51BH CMOS 4K — 128 2 —
87C51 CMOS — 4K 128 2 —
80C32T2 CMOS —_ —_ 256 2 -
80C52T2 CMOS 8K — 256 2 —
80C321 CMOS — 256 2 YES
80C521 CMOS 8K — 256 2 YES
80C541 CMOS 16K — 256 2 YES
87C521 CMOS — 8K 256 2 YES
87C541 CMOS — 16K 256 2 YES
80C525 CMOS 8K — 256 2 YES
87C525 CMOS — 8K 256 2 YES
8051AH/8031AH/8751H memory. The 8751H replaces the on-chip program

The 8051AH is the basic NMOS member of the 8051
Family of single-chip microcontrollers. It provides hard-
ware features and instructions that make it a powerful
and cost-effective controller for use in computation, com-
munication, industrial and consumer applications: It in-
cludes the following features:

* 8-bit CPU optimized for control applications

* 4K bytes of on-chip Program Memory

* 128 bytes of on-chip Data Memory

* Two 16-bit Timer/Counters

¢ Full duplex UART

¢ 5-source interrupt structure with two priority
levels

* On-chip oscillator

¢ Boolean processor

* Bit-addressable RAM

* 64K Program-Memory space
* 64K Data-Memory space

The 8031AH isidenticalto the 8051 AH exceptthatitdoes
not have the on-chip program ROM. Instead, the
8031AH fetches all instructions from external program

memory with 4K bytes of EPROM. EPROM versions
make excellent prototyping tools, and are also useful in
production because they allow immediate program
changes to be made in a new product. If the 8031AH
device is used, the prototyping may be accomplished
with an external EPROM.

8053AH/8753H/8052/80C52T2/80C32T2

The 8053AH is identical to the 8051AH, except that it
contains 8K bytes of on-chip program ROM. The 8753H
is the EPROM version of the 8053AH that contains
8K bytes of on-chip EPROM memory. Both devices are
fully pin-compatible with the 8051AH, making up-
grading easy.

The “8052” architecture referred to in this manual is an
8051 with 8K bytes of ROM, 256 bytes of RAM, and a third
timer. AMD does not produce an 8052; however, if only
extra ROM is required, the 8053AH is a more cost-
effective solution. If extra RAM is also required the
80C52T2 can be used. If the third timer is also required,
the 80515 will fit the bill, since itis a superset of the 8052.

The 80C52T2is a CMOS 8052 with two rather than three
timers. Itis pin-compatible and function-compatible with
the 80C52 as long as the third timer is not used. The
80C32T2 is the ROM-less version of the 80C52T2.

CHAPTER 1
8051 Family Overview

80515/80535

The 80515, an enhanced version of the 8051AH, offers
the following additional features:

* 8K bytes of on-chip ROM
* 256 bytes of on-chip RAM
* Three timer/counters

* 8-bit A/D converter

* Two additional ports

* Watchdog Timer

Because of the A/D converter, the 80515 is ideal for
motor control applications ranging from automotive
engines to vending machines. The additional timer has
excellent PWM capability with four capture/compare
registers. The two additional ports are useful to regain
the ports lost when external memory is used. The
watchdog timer also adds dependability to the system
design. The 80535 is the ROM-less version of the
80515.

80C51BH/80C31BH/87C51

The 80C51BH is a CMOS version of the 8051AH,
offering approximately 80% less power consumption
and faster operating speeds. In addition to the power
savings during normal operation, the 80C51BH offers
idle and power-down modes. In the idle mode, the CPU
is turned off while the RAM and other on-chip peripherals
continue to operate. Current draw is typically 15% of the
current draw when the device is fully active. In the
power-down mode, all on-chip activities are suspended
while the RAM holds its data. In this mode, the device
typically draws less than 10 pA.

The 80C51BH and 8051AH are functionally compat-
ible. The 80C31BH is identical to the 80C51BH except
that it contains no on-chip ROM. The 87C51 is the
EPROM version of the 80C51BH. Further information
on the distinctions between the CMOS and NMOS
8051 Family members may be found inchapter9 (page
9-25): Designing with the 80C51BH.

80C521/80C321/87C521/80C541/87C541
The 80C521 is an enhanced version of the 80C51. lts
additional features include the following:

* 8K bytes of on-chip ROM

* 256 bytes of on-chip RAM

* Programmable Watchdog Timer

¢ Dual Data Pointers

* Software Reset

The 80C521 is pin-compatible and function-compatible
with the 80C51. The Programmable Watchdog Timer is
specially designed to be both flexible and dependable. It
provides needed protection from the effects of electro-
static discharge (ESD), external noise, unexpected ex-
ternal events or program input conditions, and program-
ming anomalies. The Dual Data Pointers facilitate exter-
nal memory operations such as block moves, saving both
time and code space. The 80C321 is the ROM-less
version of the 80C521. The 87C521 is the EPROM
version of the 80C521, and contains special options for
additional Watchdog Timer reliability. The 80C541 is
identical to the 80C521 except that it contains 16K bytes
of ROM. The 87C541 replaces the 80C541 ROM with
16K bytes of EPROM.

80C525/87C525

The 80C525, an enhanced version of the 80C521, offers
the following additional features:

* Slave Interface with
- 16 bytes of Dual-port RAM
- Two 20-byte FIFOs
- Programmable Maskable Address Recognizer
- General Purpose Interrupt

* Bus Arbitration Unit

* Two and one-half additional ports when the
slave interface is not used

* Three additional interrupt sources

The 80C525 excels at processor-to-processor communi-
cation. The slave interface allows efficient transfers of
data between the 80C525 and an external processor or
DMA controller. The bus arbitration unit allows the
80C525 to share its local bus with other bus masters.
Also, the part may also function as an 80C521 with two
and one-half additional on-chip ports. The 87C525isthe
8K byte EPROM version of the 80C525.

MEMORY ORGANIZATION IN 8051
FAMILY DEVICES

Logical Separation of Program and Data
Memory

All 8051 Family devices have separate address spaces
for program and Data Memory, as shown in Figure 1-2.
The logical separation of Program and Data Memory
allows the Data Memory to be accessed by 8-bit ad-
dresses, which can be more quickly stored and manipu-
lated by an 8-bit CPU. Nevertheless, 16-bit DataMemory
addresses can also be generated through the DPTR
register.

1-3

CHAPTER 1
8051 Family Overview

PROGRAM MEMORY
(READ ONLY)

FFFFH:

EXTERNAL

\
f

fA=0
EXTERNAL

fA=1

INTERNAL

0000 —p

P R T T Y P P P P P T PR L L R PR R LR L L X)
P T T T P P P Y L X X

PSEN

DATA MEMORY

(READ/ WRITE)
rrecnencsensscsncsecnsanacnagy
[}]
' FFFFH:]
[}]
) [)
))
' []
[} ‘
' :
: EXTERNAL —§ :
' :
[})
i i
]

) < <]
; > > |
[} [}
) '
)]
']
' :
: INTERNAL [}
: FFH::'.'--- :
' H '
' H !
¢ i
) [)
[} [}
' :
)

' 00 0000 '
[} [)
i ‘[_ { i
leecsessaccscnccncscscscahoecdaned

RD WR

Figure 1-2. 8051 Memory Structure

Program Memory can only be read, not written to. There
can be up to 64K bytes of Program Memory. In the
8051AH, 80C51BH, and their EPROM versions, the
lowest 4K bytes of Program Memory are are on-chip. The
read strobe for external Program Memory is the signal
PSEN (Program Store Enable).

Data memory occupies a separate address space from
Program Memory. Up to 64K bytes of external RAM can
be addressed in the external Data Memory space. The
CPU generates read and write signals, RD and WR as
needed during external Data Memory accesses.

External Program Memory and external Data Memory
may be combined if desired by applying the RD and
PSEN signals to the inputs of an AND gate and using the
output of the gate as a read strobe to the external
Program/Data Memory.

Program Memory

Figure 1-3 shows a map of the lower part of Program
Memory. After reset, the CPU begins execution from
location 0000H.

As shown in Figure 1-3, each interrupt is assigned a fixed
location in Program Memory. The interrupt causes the

CPU to jump to that location, where it commences
execution of the service routine. External Interrupt 0, for
example, is assigned to location 0003H. If External
Interrupt 0 is going to be used, its service routine must
begin at location 0003H. If the interrupt is not going to be
used, its service location is available as general purpose
Program Memory.

/

~N\~—_

(0033H)
002BH

0023H

INTERRUPT

LOCATIONS 0018H

IB BYTES
0013H

0008H

0003H
0000H

Figure 1-3. 8051 Program Memory

1-4

CHAPTER 1
8051 Family Overview

Interrupt service locations are spaced at 8-byte intervals:
0003H for External interrupt 0, 000BH for Timer 0, 0013H
for External Interrupt 1, 001BH for Timer 1, etc. If an
interrupt service routine is short enough (as is often the
case in control applications), it can reside entirely within
that 8-byte interval. Longer service routines can use a
jump instruction to skip over subsequent interrupt loca-
tions, if other interrupt locations are in use.

The lowest 4K (or 8K in the 8053AH) bytes of Program
Memory can be either in the on-chip ROM or in an
external ROM. This selection is made by strapping the
EA (External Access) pin to either Vi or V.

Inthe 8051, if the EA pinis strapped to V., then program
fetches to addresses 0000H through OFFFH are directed

to the internal ROM. Program fetches to addresses

1000H through FFFFH are directed to external ROM.

In the 8053AH, EA = V,, selects addresses 0000H
through 1FFFH to be internal, and addresses 2000H
through FFFFH to be external.

If the EA pin is strapped to Vg, then all program fetches
are directed to external ROM. The ROMless parts must
have this pin externally strapped to V¢ to enable themto
execute from external Program Memory.

The read strobe to external ROM, PSEN, is used for all
external program fetches. PSEN is not activated for
internal program fetches.

The hardware configuration for external program execu-
tionis shown in Figure 1-4. Note that 16 I/O lines (Ports
0 and 2) are dedicated to bus functions during external
Program Memory fetches. Port 0 (PO in Figure 1-4)
serves as a multiplexed address/data bus. It emits the
low byte of the Program Counter (PCL) as an address,

and the goes into a float state awaiting the arrival of the
code byte from the Program Memory. During the time
that the low byte of the Program Counter is valid on
PO, the signal ALE (Address Latch Enable) clocks this
byte into an address latch. Meanwhile, Port 2 (P2 in
Figure 1-4) emits the high byte of the Program Counter
(PCH). Then PSEN strobes the EPROM and the code
byte is read into the microcontroller.

Program Memory address are always 16 bits wide, even
though the actual amount of Program Memory used may
be less than 64K bytes. External Program execution
sacrifices two of the 8-bit ports, PO and P2, to the function
of addressing the Program Memory.

Data Memory

The right half of Figure 1-2 shows the internal and
external Data Memory spaces available to the 8051
Family user.

Figure 1-5 shows a hardware configurationforaccessing
up to 2K bytes of external RAM. The CPU inthis caseis
executing from internal ROM. Port 0 serves as a multi-
plexed address/data bus to the RAM, and 3 lines of Port
2 are being used to page the RAM. The CPU generates
RD and WR signals as needed during external RAM
accesses.

There can be up to 64K bytes of external Data memory.
External Data Memory addresses can be either 1 or 2
bytes wide. One-byte addresses are often used in
conjunction with one or more other I/0 lines to page the
RAM, as shown in Figure 1-5. Two-byte addresses can
also be used, in which case the high address byte is
emitted at Port 2.

8051 EPROM

o e

INSTR.

(}t

"
ALEp— > —‘—:)
LATCH ADDR
o .
PSEN] OF

Figure 1-4. Executing from External Program Memory

ey 121 PO (: > DATA
gos1 EA=vee
WITH INTERNAL LATCH f—N]] Ram
ROM aE > —V
ADDR
Y
AW,
— IP3 P2
RD K:—_J‘>| /0 Lpace
ﬁ WR BITS W o

Figure 1-5. Accessing External Data Memory.
If the Program Memory is Internal, the Other
Bits of P2 are Available as /O

CHAPTER 1
8051 Family Overview

V ACCESSIBLE | ACCESSIBLE
UPPER » BY INDIRECT | BY DIRECT
128 ¢ ADDRESSING | ADDRESSING
' ONLY
[}
80H 80H
7FH ACCESSIBLE \—SPECIAL
LOWER | BY DIRECT FUNCTION] s?ETTUss AND
128 AND INDIRECT REGISTERS | coNTROL BITS
ADDRESSING
TIMER
REGISTERS
STACK POINTER
ACCUMULATOR
(€7C.)

Figure 1-6. Internal Data Memory

7FH
BANK 2FH]
SELECT BIT-ADDRESSABLE SPACE
BTS N (BIT ADDRESSES 0-7F)
i X)
n TFH])
18H
10{ ‘oM 7HE | 4 Banks oF
=1 | 8 REGISTERS
RO=R7
o1 08H
0o 07Hl— RESET VALUE OF
0 } STACK POINTER

Figure 1-7. The Lower 128 Bytes of Internal RAM

Internal Data Memory is mapped in Figure 1-6. The
memory space is shown divided into three blocks, which
are generally referred to as the Lower 128, the Upper
128, and SFR space.

Internal Data Memory addresses are always one byte
wide, which implies an address space of only 256 bytes.
However, the addressing modes for internal RAM canin
fact accommodate 384 bytes, using a simple trick. Direct
addresses higher than 7FH access one memory space,
and indirect addresses higher than 7FH access a differ-
ent memory space. Thus Figure 1-6 shows the Upper
128 and SFR space occupying the same block of ad-
dresses, 80H through FFH, although they are physically
separate entities.

The Lower 128 bytes of RAM are present in all 8051
Family devices as mapped in Figure 1-7. The lowest 32
byes are grouped into 4 banks of 8 registers. Program
instructions call out these registers as R0 through R7.
Two bits inthe Program Status Word (PSW) select which
register bank is in use. This allows more efficient use of
code space, since register instructions are shorter than
instructions that use direct addressing.

The next 16 bytes above the register banks form a block
of bit-addressable memory space. The 8051 Family

instruction set includes a wide selection of single-bit
instructions, and the 128 bits in this area can be directly
addressed by these instructions. The bit addresses in
this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by
either direct or indirect addressing. The Upper 128
(Figure 1-8) can only be accessed by indirectaddressing.
The Upper 128 bytes of RAM are not implemented in the
8051.

Figure 1-9 gives a brief look at the Special Function
Register (SFR) space. SFRs include the Port latches,
timers, peripheral controls, etc. These registers canonly
be accessed by direct addressing. In general, all 8051
Family microcontrollers have the same SFRs as the
8051, and at the same addresses in SFR space. How-
ever, enhancements to the 8051 have additional SFRs
that are not present in the 8051, nor perhaps in other
proliferations of the family.

Sixteen addresses in SFR space are both byte- and bit-
addressable. The bit-addressable SFRs are those
whose address ends in 000B. The bit addresses in this
area are 80H through FFH.

1-6

CHAPTER 1
8051 Family Overview

80H

FFH|

Figure 1-8. The Upper 128 Bytes of Internal RAM

NO BIT-ADDRESSABLE
SPACES

AVAILABLE AS STACK
SPACE IN 8052

NOT IMPLEMENTED IN 8051

FFH

EOH

BOH

AOH

90H

80H

ACC

PORT 3

PORT 2

PORT 1

PORT 0

REGISTER~MAPPED PORTS

ADDRESSES THAT END IN
OH OR 8H ARE ALSO
BIT=ADDRESSABLE

=PORT PINS
=ACCUMULATOR
-PSW

(ETC.)

Figure 1-9. SFR Space

1-7

CHAPTER 2

8051 Family Architecture

Memory Organization
Oscillator and Clock Circuit
CPU Timing

Port Structures and Operation

Accessing External Memory
Timer/Counters

Serial Interface

Interrupts

Single-Step Operation

Reset

Power-Saving Modes of Operation
8751H

More About the On-Chip Oscillator
Internal Timing

8051 Pin Descriptions

21
2-2
23
2-4
25

2-8

2-10
2-13
2-23
2-26

2-26
2-27
2-28
2-30
2-32
2-32

CHAPTER 2

¢

8051 Family Architecture

INTRODUCTION

The entire 8051 Family of 8-bit microcontrollers is based on
the “core” architecture shown in Figure 2-1. The original
member of this family is produced under the name 8051AH.
The term “8051”, however, is often used generically to refer
to all of the 8051 Family members.

In this chapter the term “8052” is used to refer to an 8051AH
with a double amount of ROM and RAM, and an extra timer

called Timer 2. It is also included in this “core” discussion
because its features are often found in other enhanced 8051
Family members. (see Members of the Family in Chapter 1).

The latter section of this data book details both the basic and
enhanced 8051 Family members in separate chapters, but
concentrates on the new features beyond the basic core archi-
tecture. Thus, the new reader should first concentrate on the
features discussed in this chapter and the rest of Section I.

P0.0-PO.7 P2.0-P2.7
Hit
________ 7 — —_————— e — —
vee r L PORT 0 I I |
___| DRIVERS DRIVERS |
ves | 1 ? |
I les I
S] '
| EY RAM PORT 0 PORT 2 E:noc:ﬁw N———— |
I LATCH LATCH
|
| |
: 1
t I
: |
== ol e
‘ REGISTER |
l B T™P2 y |
| Lrecisten @ BUFFER <:> |
| PCON | SCON [TMOD]| TCON |
T2cONT THO | TLO | TH1
[TLY | TH2' | TL2® |RCAP2H" PC |
[ReaPaL| SBUF | 1E Iy INCREMENTER ;
INTERRUPT, SERIAL |
| PORT AND TIMER I
PROGRAM
| COUNTER @ I
PSEN <] P |
ALE - TIMING 5E < <:>
— AND (] DPTR
EA —#~ CONTROL ,’3_‘3 LJ !
RST 13 |
i :
l A I
| |
| I
| osc |
| |
e — S gEEE— — — — — — — — Y — — — — — — J
XTAL1 O XTAL 2 *Resident in 8052/8032 only.

P1.0-P1.7

P3.0-P3.7

Figure 2-1. 8051 Family Architecture

2-1

CHAPTER 2
8051 Family Architecture

Table 2-1 8051 Family Core Members

On-Chip On-Chip
Part Technology Program Data

Memory RAM

(bytes) (bytes)
8051AH NMOS 4K ROM 128
8031AH NMOS - 128
8751H NMOS 4K EPROM 128
8052 NMOS 8K ROM 256
80C51 CMOS 4K ROM 128
80C31 CMOS - 128

The major 8051 Family features are:

® 8-Bit CPU

® On-Chip oscillator and clock circuitry

® 32 I/O lines

® 64K bytes address space for external Data Memory

® 64K bytes address space for external Program
Memory

® Two 16-bit timer/counters (three on 8032/8052)

® A five-source interrupt structure (six sources on
8032/8052) with two priority levels

¢ Full duplex serial port

® Boolean Processor

MEMORY ORGANIZATION

The 8051 has separate address spaces for Program Memory
and Data Memory. The Program Memory can be up to 64K
bytes long. The lower 4K bytes (8K for 8052) may reside on-
chip. The Data Memory can consist of up to 64K bytes of off-
chip RAM, in addition to which it includes 128 bytes of on-
chip RAM (256 bytes for the 8052), plus a number of ‘SFRs”
(Special Function Registers) as listed below.

Symbol Name Address
*ACC Accumulator 0EOH
‘B B Register OFOH
*PSW Program Status Word 0DOH

SP Stack Pointer 81H
DPTR Data Pointer (con- 83H

sisting of DPH and DPL 82H
*PO Port 0 80H
*P1 Port 1 90H

Symbol Name Address
*P2 Port 2 0AOH
*P3 Port 3 0BOH
‘P Interrupt Priority Control 0B8H
*IE Interrupt Enable Control 0A8BH

TMOD Timer/Counter Mode i

Control 89H
*TCON Timer/Counter Control 88H
+*T2CON Timer/Counter 2 Control 0C8H
THO Timer/Counter 0

(high byte) 8CH
TLO Timer/Counter 0

(low byte) 8AH
TH1 Timer/Counter 1

(high byte) 8DH
TLY Timer/Counter 1

(low byte) 8BH
+TH2 Timer/Counter 2

(high byte) O0CDH
+TL2 Timer/Counter 2

(low byte) - OCCH

+RCAP2H Timer/Counter 2 Capture

Register (high byte) 0CBH

+RCAP2L Timer/Counter 2 Capture
Register (low byte) O0CAH:
*SCON Serial Control 98H
SBUF Serial Data Buff 99H
PCON Power Control 87H

The SFRs marked with an asterisk (*) are both bit- and
byte-addressable. The SFRs marked with a plus sign
(+) are present in the 8052 only. The functions of the
SFRs are described as follows.

Accumulator

ACC is the Accumulator register. The mnemonics for ac-
cumulator-specific instructions, however, refer to the ac-
cumulator simply as A.

B Register
The B register is used during multiply and divide opera-

tions. For other instructions it can be treated as another
scratch pad register.

Program Status Word

The PSW register contains program status information as
detailed in Figure 2-2.

2-2

CHAPTER 2
8051 Family Architecture

(MSB)

(LSB)

[[ev T ac | f0 | mst

] mso [ov | — 1 rp]

Symbol Position Name and Significance Symbol Position Name and Significance
cYy PSW.7 Carry flag. ov PSW.2 Overflow flag.
AC PSW.6 Auxiliary Carry flag. - PSW.1 (reserved)
(For BCD operations.)
P PSW.0 Parity flag.
Set/cleared by hardware each instruc-
tion cycle to indicate an odd/even
FO PSW.5 Flag 0 number of “one” bits in the accumu-
(Available to the user for general lator, i.e., even parity.
purposes.)
Note— the contents of (RS1, RS0) enable the working register
RS1 PSW.4 Register bank Select control bits 1 & 0. banks as follows:
Set/cleared by software to determine (0.0)—Bank 0 (00H-07H)
RSO PSW.3 working register bank (see Note). (0.1)—Bank1 (08H-OFH)
(1.0)—Bank2 (10H-17H)
(1.1)—Bank3 (18H-1FH)

Figure 2-2. PSW: Program Status Word Register

Stack Pointer

The Stack Pointer register is 8 bits wide. It is incremented
before data is stored during PUSH and CALL executions.
While the stack may reside anywhere in on-chip RAM,
the Stack Pointer is initialized to O7H after a reset. This
causes the stack to begin at location O8H.

Data Pointer

The Data Pointer (DPTR) consists of a high byte (DPH)
and a low byte (DPL). Its intended function is to hold a
16-bit address. It may be manipulated as a 16-bit register
or as two independent 8-bit registers.

Ports 0to 3

PO, P1, P2, and P3 are the SFR latches of Ports 0, 1,2, and 3,
respectively.

Serial Data Buffer

The Serial Data Buffer is actually two separate registers,
a transmit buffer and a receive buffer register. When data
is moved to SBUF, it goes to the transmit buffer where
it is held for serial transmission. (Moving a byte to SBUF
is what initiates the transmission.) When data is moved
from SBUF, it comes from the receive buffer.

Timer Registers
Register pairs (THO, TLO), (THI1, TL1), and (TH2, TL2)

are the 16-bit counting registers for Timer/Counters 0, 1,
and 2, respectively.

Capture Registers

The register pair (RCAP2H, RCAP2L) are the capture
registers for the Timer 2 ‘‘capture mode.’’ In this mode,
in response to a transition at the 8052’s T2EX pin, TH2
and TL2 are copied into RCAP2H and RCAP2L. Timer
2 also has a 16-bit auto-reload mode, and RCAP2H and
RCAP2L, hold the reload value for this mode. More about
Timer 2's features on page 2-12.

Control Registers

Special Function Registers IP, IE, TMOD, TCON,
T2CON, SCON, and PCON contain control and status
bits for the interrupt system, the timer/counters, and the
serial port. They are described in later sections.

OSCILLATOR AND CLOCK CIRCUIT

XTALI and XTAL2 are the input and output of a single-stage
on-chip inverter, which can be configured with off-chip com-
ponents as a Pierce oscillator, as shown in Figure 2-3. The on-
chip circuitry, and selection of off-chip components to con-
figure the oscillator are discussed on page 2-30.

30 pf * 10 pf FOR CRYSTALS
40 pf + 10 pf FOR CERAMIC RESONATORS

[18
1 € XTAL 2
_L—0 I l
]'\L P, XTAL 1
30 pf - 10 pf FOR CRYSTALS

40 pf - 10 pf FOR CERAMIC RESONATORS
Figure 2-3. Crystal/Ceramic Resonator Oscillator

2-3

CHAPTER 2
8051 Family Architecture

The oscillator, drives the internal clock generator, which CPU TIMING

provides the internal clocking signals to the chip. The internal

clocking signals are at half the oscillator frequency, and A machine cycle consists of six states (12 oscillator periods).

define the internal phases, states, and machine cycles, de- Each state is divided into a Phase 1 half, during which the

scribed in the next section. Phase 1 clock is active, and a Phase 2 half, during which the
Phase 2 clock is active. Thus, a machine cycle consists of 12
oscillator periods, numbered S1P1 (State 1, Phase 1) through

READ NEXT
| OPCODE (DISCARD).

—

st | s2 | s3 | sa | ss | s6 | s1 | s2 | s3 | sa [s5 | s6 | s1
osc. P1 P2 |P1 P2 [P1 P2 [P1 P2 IP1 P2 [P1 P2 |P1 P2 [P1 P2 IP1 P2 IP1 P2 IP1 P2 IP1 P2 IP1 P2
(XTAL2)
| | |
ALe | N I LT 1 { I
]
| l |
I READOPCODE. peap NEXT | |
[OPCODE
| (DISCARD). READ NEXT OPCODE AGAIN. |
----- [[s2] ss s4|sslssL_———' |
I ! I
a. 1-byte, 1-cycle Instruction, e.g., INC A. | l
|
: READ OPCODE. ‘ |
| READ2NDBYTE. __ ReAD NEXT OPCODE. |
________ | Ly '
______ [st [s2 [ss] sa]ss]se I
|
b. 2-byte, 1-cycle instruction, e.g., ADD A, #data l |
| | |
| READ OPCODE. | READ NEXT OPCODE' AGAIN.]
|

| | |

[s1 [s2 [sa [sa [ss [s6| s1] s2 [ss| safss | se]

c. 1-byte, 2-cycle Instruction, e.g., INC DPTR. | I

i
I | READ NEXT OPCODE AGAIN.
| &%&)OPCODE o |
| ‘ Roi‘c\:%ggxgnscmn FETCH. NO FETCH. |
: () 1 [~ NOALE |
[st [s2 [s3 | sa [ss [se | s1 | s2| ss | sa]ss|s6]
‘ |:non | DATA J !
d. MOVX (1-byte, 2-cycle) I
| ACCESS EXTERNAL MEMORY |

Figure 2-4. 8051 Fetch/Execute Sequences

2-4

CHAPTER 2
8051 Family Architecture

S6P2 (State 6, Phase 2). Each phase last for one oscillator
period. Each state lasts for two oscillator periods. Typically,
arithmetic and logical operations take place during Phase 1
and internal register-to-register transfers take place during
Phase 2.

The diagrams in Figure 2-4 show the fetch/execute timing
referenced to the internal states and phases. Since these inter-
nal clock signals are not user accessible, the XTAL2 oscilla-
tor signal and the ALE (Address Latch Enable) signal are
shown for external reference. ALE is normally activated
twice during each machine cycle: one during S1P2 and S2P1,
and again during S4P2 and S5P1.

Execution of a one-cycle instruction begins at S1P2, when the
opcode is latched into the Instruction Register. If itis a 2-byte
instruction, the second byte is read during S4 of the same
machine cycle. If itis a 1-byte instruction, there is still a fetch
at S4, but the byte read (which would be the next opcode) is
ignored, and the Program Counter is not incremented. In any
case, execution is complete at the end of S6P2. Figure 2-4a
and 2-4b show the timing for a 1-byte, 1-cycle instruction and
for a 2-byte, 1-cycle instruction.

Most 8051 instructions execute in one cycle. MUL (mul-
tiply) and DIV (divide) are the only instructions that take
more than two cycles to complete. They take four cycles.

Normally, two code bytes are fetched from Program Mem-
ory during every machine cycle. The only exception to
this is when a MOVX instruction is executed. MOVX is
a 1-byte 2-cycle instruction that accesses external Data
Memory. During a MOVX, two fetches are skipped while
the external Data Memory is being addressed and strobed.
Figures 2-4c and 2-4d show the timing for a normal 1-byte,
2-cycle instruction and for a MOVX instruction.

PORT STRUCTURES AND OPERATION

All four ports in the 8051 are bidirectional. Each consists
of a latch (Special Function Registers PO through P3), an
output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buffers
of Port 0, are used in accesses to external memory. In this
application, Port O outputs the low byte of the external
memory address, time-multiplexed with the byte being

ADDR/DATA

Vce
READ CONTROL
LATCH :D"'
INT. BUS
WRITE %————4
TO $ MUX
LATCH
READ
PIN
a. Port 0 Bit
ADDR
CONTROL Yoc
READ INTERNAL
LATCH PULL-UP %
INT. MUX
BUS D P2.XQ "\
WRITE LATCH %
TO cL Q = o
LATCH
READ
PIN
c. Port 2 Bit

*See Figure 2-6 for details of the internal pull up.

READ

LATCH
Vee
INTERNAL
INT. BUS PULL-UP#*
TO
LATCH
READ
PIN
b. Port 1 Bit
ALTERNATE
OUTPUT
FUNCTION

READ
LATCH Vee
INTERNAL
INT. BUS PULL-UP %
WRITE
TO

ALTERNATE
INPUT
FUNCTION

d. Port 3 Bit

Figure 2-5. 8051 Port Bit Latches and I/O Buffers

2-5

CHAPTER 2
8051 Family Architecture

written or read. Port 2 outputs the high byte of the external
memory address when the address is 16 bits wide. Oth-
erwise the Port 2 pins continue to emit the P2 SFR content.

All the Port 3 pins, and (in the 8052) two Port 1 pins are

multifunctional. They are not only port pins, but also serve
the functions of various special features as listed below:

PORT PIN ALTERNATE FUNCTION

*P1.0 T2 (Timer/Counter 2
external input)
*P1.1 T2EX (Timer/Counter 2
capture/reload trigger)
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt)
P3.3 INT1 (external interrupt)
P3.4 TO (Timer/Counter 0 external
input) _
P3.5 T1 (Timer/Counter 1 external
input)
P3.6 WR (external Data memory
write strobe)
P3.7 RD (external Data memory

read strobe)
*P1.0 and P1.1 serve these alternate functions only on the
8052.

The alternate functions can only be activated if the cor-
responding bit latch in the port SFR contains a 1. Oth-
erwise the port pin is stuck at 0.

I/0 Configurations

Figure 2-5 shows a functional diagram of a typical bit latch
and I/O buffer in each of the four ports. The bit latch (one bit
in the port’s SFR) is represented as a Type D flip-flop, which
will clock in a value from the internal bus in response to a
“write to latch” signal from the CPU. The Q output of the flip-
flop is placed on the internal bus in the response to a “read
latch” signal from the CPU. The level of the port pin itself is
placed on the internal bus in response to a “read pin” signal
from the CPU. Some instructions that read a port activate the
“read latch” signal, and others activate the “read pin” signal.
More about that on page 2-8.

As show in Figure 2-5, the output drivers of Ports 0 and 2 are
switchable to an internal ADDR and ADDR/DATA busby an
internal CONTROL signal for use in external memory ac-
cesses. During external memory accesses, the P2 SFR re-
mains unchanged, but the PO SFR gets 1s written to it.

Also show in Figure 2-5, is that if a P3 bit latch contains a 1,
then the output level is controlled by the signal labeled “alter-
nate output functions.” The actual P3.X pin level is always
available to the pin’s alternate input function, if any.

Ports 1, 2, and 3 have internal pull-ups. Port 0 has open-
drain outputs. Each I/O line can be independently used as
an input or an output. (Ports 0 and 2 may . not be used as
general purpose I/O when being used as the ADDR/DATA
BUS.) To be used as an input, the port bit latch must
contain a 1, which turns off the output driver FET. Then,
for Ports 1, 2, and 3, the pin is pulled high by the internal
pull-up, but can be pulled low by an external source.

Port 0 differs in not having internal pullups. The pullup
FET in the PO output driver (see Figure 2-5a) is used only
when the Port is emitting 1s during external memory ac-
cesses. Otherwise the pullup FET is off. Consequently PO
lines that are being used as output port lines are open
drain. Writing a 1 to the bit latch leaves both output FETs
off, so the pin floats. In that condition it can be used as
a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pullups they
are sometimes called ‘‘quasi-bidirectional’’ ports. When
configured as inputs they pull high and will source current
(IIL, in the data sheets) when externally pulled low. Port
0, on the other hand, is considered ‘‘true’’ bidirectional,
because when configured as an input it floats.

All the port latches in the 8051 have 1s written to them
by the reset function. If a 0 is subsequently written to a
port latch, it can be reconfigured as an input by writing
altoit.

Writing to a Port

In the execution of an instruction that changes the value
in a port latch, the new value arrives at the latch during
S6P2 of the final cycle of the instruction. However, port
latches are in fact sampled by their output buffers only
during Phase 1 of any clock period. (During Phase 2 the
output buffer holds the value it saw during the previous
Phase 1.) Consequently, the new value in the port latch
won’t actually appear at the output pin until the next Phase
1, which will be at S1P1 of the next machine cycle.

If the change requires a 0-to-1 transition in Port 1, 2, or
3, an additional pull-up is turned on during S1P1 and
S1P2 of the cycle in which the transition occurs. This is
done to increase the transition speed. The extra pull-up
can source about 100 times the current that the normal
pull-up can. It should be noted that the internal pull-ups
are field-effect transistors, not linear resistors. The pull-
up arrangements are shown in Figure 2-6.

2-6

CHAPTER 2
8051 Family Architecture

In NMOS versions of the 8051, the fixed part of the pull-up
is a depletion-mode transistor with the gate wired to the
source. This transistor will allow the pin to source about 0.25
mA when shorted to ground. In parallel with the fixed pull-up
is an enhancement-mode transistor, which is activated during
S1 whenever the port bit does a 0-to-1 transition. During this
interval, if the port pin is shorted to ground, this extra
transistor will allow the pin to source an additional 30 mA.

In the CMOS versions, the pull-up consists of three pFETS. It
should be noted that an n-channel FET (nFET) is turned on
when logical 1 is applied to its gate, and is turned off when a
logical O is applied to its gate. A p-channel FET (pFET) is the
opposite: it is on when its gate sees a 0, and off when its gate
sees a 1.

Transistor pFET 1 in Figure 2-6 is turned on for two oscillator
periods after a 0-to-1 transition in the port latch. While it’s on,
it turns on pFET 3 (a weak pull-up) through the inverter. This
inverter and pFET 3 form a latch which holds the 1.

Note that if the pin is emitting a 1, a negative glitch on the pin
from some external source can turn off pFET 3, causing the
pin to go into a float state; pFET 2 is a very weak pull-up
which is on whenever the nFET is off, in traditional CMOS
style. It'sonly about 1/10 the strength of pFET 3. It's function
is to restore a 1 to the pin in the event the pin had a 1 and lost
it to a glitch.

2 OSC. PERIODS

ENHANCEMENT MODE FET

DEPLETION MODE FET

PORT
PIN

Qo—e 1
a. NMOS Configuration
Vce Vee Vce
2 0SC. PERIODS
PORT
PIN
Q OD—e
FROM PORT
LATCH

INPUT
DATA

READ

PORT

PIN

b. CMOS Configuration

Figure 2-6. Ports 1 and 3 NMOS and CMOS Internal Pull-up Configurations.
(Port 2 is similar except that it holds the strong pull-up on while emitting 1s that are address bits.)

2-7

CHAPTER 2
8051 Family Architecture

Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive four LS
TTL inputs. These ports on NMOS versions can be driven in
anormal manner by any TTL or NMOS circuit. Both NMOS
and CMOS pins can be driven by open-collector and open-
drain outputs, but note that 0-to-1 transitions will not be fast.
In the NMOS device, if the pin is driven by an open collector
output, a 0-to-1 transition will have to be driven by the
relatively weak depletion mode FET in Figure 2-6a. In the
CMOS device, an input 0 turns off pull-up pFET3, leaving
only the very weak pull-up pFET?2 to drive the transition.

Port 0 output buffers can each drive 8 LS TTL inputs.
They do, however, require external pull-ups to drive
NMOS inputs, except when being used as the ADDRESS/
DATA bus.

Read-Modity-Write Feature

Some instructions that read a port, also read the latch, and
others read the pin. Which ones do which? The instructions
that read the latch rather than the pin are the ones that read a
value, possibly change it, and then rewrite it to the latch.
These are called “read-modify-write” instructions, listed
below. When the destination operand is a port or a port bit,
these instructions read the latch rather than the pin:

ANL (logical AND, e.g., ANL P1,A)

ORL (logical OR, e.g., ORL P2,A)

XRL (logical EX-OR, e.g., XRL
P3,A)

JBC (jump if bit = 1 and clear bit,
e.g., JBC P1.1, LABEL)

CPL (complement bit, e.g., CPL
P3.0)

INC (increment, e.g., INC P2)

DEC (decrement, e.g., DEC P2)

DJNZ (decrement and jump if not

zero, e.g., DUNZ P3, LABEL)
MOV PX.Y,C (move carry bit to bit Y of
Port X)
(clear bit Y of Port X)
(set bit Y of Port X)

CLR PX.Y
SET PX.Y

It is not obvious that the last three instructions in this list
are read-modify-write instructions, but they are. They read
the port byte, all 8 bits, modify the addressed bit, then
write the new byte back to the latch.

The reason that read-modify-write instructions are directed
to the latch rather than the pin is to avoid a possible
misinterpretation of the voltage level at the pin. For ex-

ample, a port bit might be used to drive the base of a
transistor. When a 1 is written to the bit, the transistor is
turned on. If the CPU then reads the same port bit at the pin
rather that the latch, it will read the base voltage of the
transistor and interpret it as a 0. Reading the latch rather
than the pin will return the correct value of 1.

ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses
to external Program Memory and accesses to external Data
Memory. Accesses to external Program Memory use sig-
nal PSEN (program store enable) as the read strobe. Ac-
cesses to external Data Memory use RD or WR (alternate
functions of P3.7 and P3.6) to strobe the memory.

Fetches from external Program Memory always use a 16-
bit address. Accesses to external Data Memory can use
either a 16-bit address (MOVX @DPTR) or an 8-bit ad-
dress (MOVX @Ri).

Whenever a 16-bit address is used, the high byte of the
address comes out on Port 2, where it is held for the
duration of the read or write cycle. Note that the Port 2
drivers use the strong pullups during the entire time that
they are emitting address bits that are 1s. This is during
the execution of a MOVX @DPTR instruction. During
this time the Port 2 latch (the Special Function Register)
does not have to contain 1s, and the contents of the Port
2 SFR are not modified. If the external memory cycle is
not immediately followed by another external memory
cycle, the undisturbed contents of the Port 2 SFR will
reappear in the next cycle.

If an 8-bit address is being used (MOVX @Ri), the con-
tents of the Port 2 SFR remain at the Port 2 pins throughout
the external memory cycle. This will facilitate paging.

In any case, the low byte of the address is time-multiplexed
with the data byte on Port 0. The ADDR/DATA signal
drives both FETs in the Port O output buffers. Thus, in
this application the Port O pins are not open-drain outputs,
and do not require external pull-ups. Signal ALE (address
latch enable) should be used to capture the address byte
into an external latch. The address byte is valid at the
negative transition of ALE. Then, in a write cycle,_the
data byte to be written appears on Port 0 just before WR
is activated, and remains there until after WR is deacti-
vated. In a read cycle, the incoming byte is accepted at
Port O just before the read strobe is deactivated.

During any access to external memory, the CPU writes
OFFH to the Port 0 latch (the Special Function Register),
thus obliterating whatever information the Port 0 SFR may
have been holding.

2-8

CHAPTER 2
8051 Family Architecture

External Program Memory is accessed under two conditions:

1) Whenever signal EA is active; or
2) Whenever the program counter (PC) contains a number
that is larger than OFFFH (1FFFH for the 8052).

This requires that the ROMiIess versions have EA wired
low to enable the lower 4K (8K for the 8032) program
bytes to be fetched from external memory.

When the CPU is executing out of external Program Memory,
all 8 bits of Port 2 are dedicated to an output function and may
notbe used for general purpose I/O. During external program
fetches they output the high byte of the PC. During this time
the Port 2 drivers use the strong pull-ups to emit PC bits that
are 1s.

PSEN

The read strobe for externao fetches is PSEN, which is not
activated for internal fetches. When the CPU is accessing

external Program Memory, PSEN is activated twice every
cycle (except during a MOVX instruction) whether or not the
byte fetched is actually needed for the current instruction.
When PSEN is activated, its timing is not the same as RD. A
complete RD cycle, including activation and deactivation of
ALE and RD, takes 12 oscillator periods. A complete PSEN
cycle, including activation and deactivation of ALE, and
PSEN, take 6 oscillator periods. The execution sequence for
these two types of read cycles is shown in Figure 2-7 for
comparison.

ALE

The main function of ALE is to provide a properly timed
signal to latch the low byte of an address from PO to an
external latch during fetches from external Program Mem-
ory. For that purpose ALE is activated twice every ma-
chine cycle. This activation takes place even when the
cycle involves no external fetch. The only time an ALE
pulse doesn’t come out is during an access to external

ONE MACHINE CYCLE ONE MACHINE CYCLE
’s1|sz|sa|sa|ss|ss|s1|sz|sa|sa|ss

-]

e —J 1 1 [T1 11 [
| | |
| i J
B s W e B s BN o o B
—_ ! | N | |
RD N | ' | | a.
; ! | ! 1 Without a
P2 PCH OUTX TPCH outr X | PCHOUTJ_i PCH OUT X‘ PCH OUT chuom’ MovX
|
() m ()) m &) m () E
tpcn. ouTt LPCL ouTt tPCL ouT f_ PCL OUT
VALID VALID VALID VALID
CYCLE 1 } CYCLE2 |
st |s2|s3|sa|ss|ss|s1|s2|sa|sa]ss|se
we LT B
| |
] i +
PSEN [[| L__I_J:_
C p—— : , :
| | 1____._1 | \
1 | ! ! b.
P2 PCH OUT)(PCH OUT X f ppHouTorRP20uT X ! pcHouT X PCHOUT With a
_ i MOVX
XD~ ——— P~
ouT IN ouT,
1 "
t PCLOUT t aoorout Y ecLour
VALID VALID VALID

Figure 2-7. External Program Memory Execution

2-9

CHAPTER 2
8051 Family Architecture

Data Memory. The first ALE of the second cycle of a
MOVX instruction is missing (see Figure 2-7). Conse-
quently, in any system that does not use external Data
Memory, ALE is activated at a constant rate of 1/6 the
oscillator frequency, and can be used for external clocking
or timing purposes.

Overlapping External Program and Data
Memory Spaces

In some applications it is desirable to execute a program
from the same physical memory that is being used to store
data. In the 8051, the external Program and Data Memory
spaces can be combined by ANDing PSEN and RD. A
positive-logic AND of these two signals produces an ac-
tive-low read strobe that can be used for the combined
physical memory. Since the PSEN cycle is faster than the
RD cycle, the external memory needs to be fast enough
to accommodate the PSEN cycle.

TIMER/COUNTERS

The 8051 has two 16-bit timer/counter registers: Timer
0 and Timer 1. The 8052 has these two plus one more:
Timer 2. All three can be configured to operate either as
timers or event counters.

In the *‘timer”’ function, the register is incremented every
machine cycle. Thus, one can think of it as counting
machine cycles. Since a machine cycle consists of 12
oscillator periods, the count rate is 1/12 of the oscillator
frequency.

In the “‘counter’’ function, the register is incremented in
response to a 1-t0-0 transition at its corresponding external

input pin, TO, T1 or (in the 8052) T2. In this function, the
external input is sampled during SS5P2 of every machine
cycle. When the samples show a high in one cycle and a
low in the next cycle, the count is incremented. The new
count value appears in the register during S3P1 of the
cycle following the one in which the transition was de-
tected. Since it takes 2 machine cycles (24 oscillator
periods) to recognize a 1-to-O transition, the maximum
count rate is 1/24 of the oscillator frequency. There are no
restrictions on the duty cycle of the external input signal,
but to ensure that a given level is sampled at least once
before it changes, it should be held for at least one full
machine cycle.

In addition to the ‘‘timer’’ or ‘‘counter’’ selection, Timer
0 and Timer 1 have four operating modes from which to
select. Timer 2, in the 8052, has three modes of operation:
‘‘capture,”’ ‘‘auto-reload’’ and ‘‘baud rate generator.”’

Timer 0 and Timer 1

These timer/counters are present in both the 8051 and the
8052. The “timer” or “counter” function is selected by control
bits C/T in the Special Function Register TMOD (Figure
2-8). These two timer/counters have four operating modes,
which are selected by bit-pairs (M1, M0) in counters. Mode
3 is different. The four operating modes are described below.

Mode 0

Putting either Timer into mode 0 makes it look like an 8048
Timer, which is an 8-bit counter with a divided-by-32 pres-
caler. Figure 2-9 shows the mode 0 operation as it applies to
Timer 1.

(MSB) (LSB)
[cate | ¢ | m | mo | cate [@ [mi | wo |
— N J/
~" ~
TIMER 1 TIMER O
GATE Gating Control When set. Timer/counter M1 Mo Operating Modes.
“x” is enabled only while “INTx” pin is 0 0 8048 TIMER "TLx" serves as
high and “TRx” control pin is set. When 5-bit prescaler.
cleared Timer “x” is enabled 0 1 16-bit Timer/Counter “THx" and
whenever “TRx” control bit is set. “TLx” are cascaded; there is no prescaler.
cT Timer or Counter Selector Cleared for 1 0 8-bit auto-reload timer-counter “THx”
Timer operation (input from internal hold a value which is to be reloaded
system clock). Set for Counter operation into “TLx"” each time it overflows.
(input from “Tx” inpui pin).
1 1 (Timer 0) TLO is an 8-bit timer-counter
controlled by the standard
Timer 0 control bits.
THO is an 8-bit timer only
controlled by Timer 1 control
bits.
1 1 (Timer 1) Timer-counter 1 stopped.

Figure 2-8. TMOD: Timer/Counter Mode Control Register

2-10

CHAPTER 2
8051 Family Architecture

In this mode, the timer register is configured as a 13-bit
register. As the count rolls over from all 1s to all Os, it
sets the timer interrupt flag TF1. The counted input is
enabled to the Timer when TR1 = 1 and either GATE
= 0orINTI = I. (Setting GATE = 1 allows the Timer
to be controlled by external input INT1, to facilitate pulse
width measurements.) TR1 is a control bit in the Special

Function Register TCON (Figure 2-10). GATE is in
TMOD.

The 13-bit register consists of all 8 bits of TH1 and the
lower 5 bits of TL1. The upper 3 bits of TL1 are inde-
terminate and should be ingored. Setting the run flag (TR1)
does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer
1. Substitute TRO, TFO and INTO for the corresponding
Timer 1 signals in Figure 2-9. There are two different
GATE bits, one for Timer 1 (TMOD.7) and one for Timer
0 (TMOD.3).

Mode 1

Mode 1 is the same as Mode 0, except that the Timer
register is being run with all 16 bits.

Mode 2

Mode 2 configures the timer register as an 8-bit counter
(TL1) with automatic reload, as shown in Figure 2-11.
Overflow from TL1 not only sets TF1, but also reloads
TL1 with the contents of TH1, which is preset by software.
The reload leaves TH1 unchanged.

Mode 2 operation is the same for Timer/Counter 0.

Mode 3

Timer 1 in Mode 3 simply holds its count. The effect is
the same as setting TR1 = 0.

osc +12

TL1 TH1 -

TF1 — INTERRUPT

(5Bits) | (8Bits)

CiT=1 !
CONTROL
T1PIN

TR1
GATE
INT1 PIN
Figure 2-9. Timer/Counter 1 Mode 0: 13-bit Counter
(MSB) (LSB)
[vfr] vm | 1o [rmo | it | m | w0 [mo |
Symbol Position Name and Significance Symbol Position Name and Significance
TF1 TCON.7 Timer 1 overflow Flag. Set by hardware IE1 TCON.3 Interrupt 1 Edge flag. Set by hardware
on timer/counter overflow. Cleared when external interrupt edge detected.
by hard when p Cleared when interrupt processed.
vectors to interrupt routine. 1Tt TCON.2 Interrupt 1 Type control bit. Set/cleared
TR1 TCON.6 Timer 1 Run control bit. Set/cleared by software to specify falling edge/low
by software to turn timer/counter level triggered external interrupts.
on/off. IEQ TCON.1 Interrupt 0 Edge flag. Set by hardware
TFO TCON.5 Timer 0 overflow Flag. Set by hardware when external interrupt edge detected.
on timer/counter overflow. Cleared Cleared when interrupt processed.
by hard when p IT0 TCON.0 Interrupt 0 Type control bit. Set/cleared
vectors to interrupt routine. by software to specify falling edge/low level
TRO TCON.4 Timer 0 Run control bit. Set/cleared by triggered external interrupts.

software to turn timer/counter on/off.

Figure 2-10. TCON: Timer/Counter Control Register

CHAPTER 2
8051 Family Architecture

Timer 0 in Mode 3 establishes TLO and THO as two sep-
arate counters. The logic for Mode 3 on Timer 0 is shown
in Figure 2-12. TLO uses the Timer O control bits: C/T,
GATE, TRO, INTO, and TF0. THO is locked into a timer
function (counting machine cycles) and takes over the use
of TR1 and TF1 from Timer 1. Thus, THO now controls
the ““Timer 1"’ interrupt.

Mode 3 is provided for applications requiring an extra 8-
bit timer or counter. With Timer 0 in Mode 3, an 8051
can look like it has three timer/counters, and an 8052, like
it has four. When Timer O is in Mode 3, Timer 1 can be

turned on and off by switching it out of and into its own
Mode 3, or can still be used by the serial port as a baud
rate generator, or in fact, in any application not requiring
an interrupt.

Timer 2

Timer 2 is a 16-bit timer/counter which is present only in
the 8052. Like Timers O and 1, it can operate either as a
timer or as an event counter. This is selected by bit
C/T2 in the Special Function Register T2CON (Figure
2-13). It has three operating modes: ‘‘capture,”” ‘‘auto-

osC +12

C/T=0 "
oL (8 Bits) TF1 | INTERRUPT
CiT=1 :
CONTROL
T1PIN
R —— RELOAD
GATE TH1
(8 Bits)
INTO PIN

Figure 2-11. Timer/Counter 1 Mode 2: 8-bit Auto-Reload

osC +12

— 1/121gsc

1/12 fOSC
‘ C/T=0 o
1 T
— 4: f (8 bits) TFO |———= INTERRUP
TOPIN ...____} C/T=1 !
CONTROL
TRO
GATE
INTO PIN
: ' THO
12fosc o/t (8 bits) TR | INTERRUPT
CONTROL
TR1

Figure 2:12. Timer/Counter 0 Mode 3: Two 8-bit Counters

212 ©

CHAPTER 2
8051 Family Architecture

(MSB) (LSB)
[rr2 | exr2] rok | tok | Exen2 | Rz | c72 | ceRiz |
Symbol Position Name and Significance
TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by soft-
ware. TF2 will notbe set when either RCLK = 1or TCLK = 1.

EXF2 T2CON.6 Timer2external flag set when either a capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When Timer 2 interruptis enabled, EXF2= 1
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be
cleared by software.

RCLK T2CON.5 Receive clock flag. When set, causes the serlal port to use Timer 2 overflow
pulses foritsr clock inmodes 1 and 3. RCLK = 0 causes Timer 1 overflow
to be used for the recelve clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow

Ises for its tr it clock in modes 1 and 3. TCLK = 0 causes Timer 1 over-
flows to be used for the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occuras a
result of a negative transition on T2EX if Timer 2is not being used to clock the
serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.
c/T2 T2CON.1 Timer or counter select. (Timer 2)
0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).
CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at

T2EX if EXEN2 = 1. When cleared, auto reloads will occur either with Timer 2
overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK
=1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on

Timer 2 overflow.

Figure 2-13. T2CON: Timer/Counter 2 Control Register

Load” and “baud rate generator” which are selected by bits in
T2CON as shown in Table 2-2.

Table 2-2. Timer 2 Operating Modes

RCLK + TCLK| CP/RL2 |TR2 MODE
0 0 1 | 16-bit auto-reload
0 1 1 | 16-bit capture
1 X 1 | baud rate generator
X X 0 | (off)

In the capture mode there are two options which are se-
lected by bit EXEN2 in T2CON. If EXEN2 = 0, then
Timer 2 is a 16-bit timer or counter which upon over-
flowing sets bit TF2, the Timer 2 overflow bit, which can
be used to generate an interrupt. If EXEN2 = 1, then
Timer 2 still does the above, but with the added feature
that a 1-to-0 transition at external input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to
be captured into registers RCAP2L and RCAP2H, re-
spectively. (RCAP2L and RCAP2H are new Special Func-
tion Registers in the 8052.) In addition, the transition at
T2EX causes bit EXF2 in T2CON to be set, and EXF2,
like TF2, can generate an interrupt.

The capture mode is illustrated in Figure 2-14.

In the auto-reload mode there are again two options, which
are selected by bit EXEN2 in T2CON. If EXEN2 = 0,
then when Timer 2 rolls over it not only sets TF2 but also
causes the Timer 2 registers to be reloaded with the 16-
bit value in registers RCAP2L and RCAP2H, which are
preset by software. If EXEN2 = 1, then Timer 2 still
does the above, but with the added feature that a 1-to-0
transition at external input T2EX will also trigger the 16-
bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 2-15.

The baud rate generator mode is selected by RCLK = 1
and/or TCLK = 1. It will be described in conjunction
with the serial port.

SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and
receive simultaneously. It is also receive-buffered, mean-
ing it can commence reception of a second byte before
a previously received byte has been read from the receive
register. (However, if the first byte still hasn’t been read
by the time reception of the second byte is complete, one
of the bytes will be lost). The serial port receive and
transmit registers are both accessed at Special Function
Register SBUF. Writing to SBUF loads the transmit reg-

2-13

CHAPTER 2
8051 Family Architecture

osc +12
e T o T2 TH2 —»! TF2
- | (8-BITS) (8-BITS)
1 CT2=1 1
T2PIN Icomnou. l |
TRz
CAPTURE j > » TIMER 2
INTERRUPT
TRANSITION l RCAP2L I RCAP2H]
[_ DETECTOR
T2EX PIN —>] -_ a/:c »| EXF2 —
L
CONTROL
EXEN2

Figure 2-14. Timer 2 in Capture Mode

ister, and reading SBUF accesses a physically separate
receive register.

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RXD. TXD
outputs the shift clock. 8 bits are transmitted/received: 8
data bits (LSB first). The baud rate is fixed at 1/12 the
oscillator frequency.

Mode 1: 10 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
Special Function Register SCON. The baud rate is
variable.

Mode 2: 11 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TB8 in SCON) can be assigned the value
of 0 or 1. Or, for example, the parity bit (P, in the PSW)
could be moved into TB8. On receive, the 9th data bit
goes into RB8 in Special Function Register SCON, while
the stop bit is ignored. The baud rate is programmable to
either 1/32 or 1/64 the oscillator frequency.

Mode 3: 11 bits are transmitted (through TXD) or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit and a stop bit (1). In fact,
Mode 3 is the same as Mode 2 in all respects except the
baud rate. The baud rate in Mode 3 is variable.

In all four modes, transmission is initiated by any instruc-
tion that uses SBUF as a destination register. Reception
is initiated in Mode 0 by the condition RI=0and REN=1.
Reception is initiated in the other modes by the incoming
start bit if REN=1. '

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received.
The 9th one goes into RB8. Then comes a stop bit. The
port can be programmed such that when the stop bit is
received, the serial port interrupt will be activated only
if RB8 = 1. This feature is enabled by setting bit SM2
in SCON. A way to use this feature in multiprocessor
systems is as follows.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an address
byte which identifies the target slave. An address byte
differs from a data byte in that the 9th bit is 1 in an address
byte and 0 in a data byte. With SM2 = 1, no slave will
be interrupted by a data byte. An address byte, however,
will interrupt all slaves, so that each slave can examine
the received byte and see if it is being addressed. The
addressed slave will clear its SM2 bit and prepare to re-
ceive the data bytes that will be coming. The slaves that
weren’t being addressed leave their SM2s set and go on
about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used
to check the validity of the stop bit. In a Mode 1 reception,
if SM2 = 1, the receive interrupt will not be activated
unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status is the Special Function
Register SCON, shown in Figure 2-16. This register contains
not only the mode selection bits, but also the 9th data bit for
transmit and receive (TB8 and RBS), and the serial port
interrupt bits (T1 and R1).

CHAPTER 2
8051 Family Architecture

osc

+12

cA2=1 :
T2 PIN _—1 I CONTROL

CA2=0

TL2
(8-BITS)

TH2
(8-BITS)

=

TR2
RELOAD
TRANSITION RCAP2L RCAP2H
I_Derscvon TF2
TIMER 2
INTERRUPT
T2EX PIN — -_ g/ih —
L
ICONTROL
EXEN2
Figure 2-15. Timer 2 in Auto-Reload Mode
(MSB) (LSB)
[S5m0 | SM1 | SM2 | REN | 788 | RB8 | T1I | RI |

where SM0, SM1 specify the serial port mode, as foliows:

e TB8 is the 9th data bit that will be
transmitted in modes 2 and 3. Set
SMO SM1 Mode Description Baud Rate or clear by software as desired.
[] 0 0 shift register fogc./12
0 1 1 8-bit UART variable e RB8 in modes 2 and 3, is the 9th data bit
1 0 2 9-bit UART fosc./64 that was received. In mode 1, if
or SM2 = 0, RBS is the stop bit that
fosc./32 was received. In mode 0, RB8 is
not used.
1 1 3 9-bit UART variable
Tl is transmit interrupt flag. Set by
e SM2 enables the multiprocessor com- hardware at the end of the 8th bit
ication feature in modes 2 and time in mode 0, or at the beginning
3. In mode 2 or 3, if SM2 is set to 1 of the stop bit in the other modes,
then Rl will not be activated if the in any serial transmission. Must be
received 9th data bit (RB8) is 0. In cleared by software.
mode 1, if SM2 = 1 then RI will
not be activated if a valid stop bit e Ri is receive interrupt flag. Set by
was not received. In mode 0, SM2 hardware at the end of the 8th bit
should be 0. time in mode 0, or halfway through
the stop bit time in the other
o REN bles serial reception. Set by modes, in any serial reception (ex-
f to bl ption. Clear cept see SM2). Must be cleared
by sof! to disabl pti by software.
Figure 2-16. SCON: Serial Port Control Register
Baud Rates

The baud rate in Mode 0 is fixed:

Mode 0 Baud Rate =

Oscillator Frequency
12

The baud rate in Mode 2 depends on the value of bit
SMOD in Special Function Register PCON. If SMOD
= 0 (which is its value on reset), the baud rate is 1/64
the oscillator frequency. If SMOD = 1, the baud rate is

1/32 the oscillator frequency.

Mode 2 Baud Rate = 2

SMOD

x (Oscillator Frequency)

CHAPTER 2
8051 Family Architecture

In the 8051, the baud rates in Modes 1 and 3 are deter-
mined by the Timer 1 overflow rate. In the 8052, these
baud rates can be determined by Timer 1, or by Timer 2,
or by both (one for transmit and the other for receive).

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the baud
rates in Modes 1 and 3 are determined by the Timer 1
overflow rate and the value of SMOD as follows:

Modes 1, 3
Baud Rate =

SMOD

32

The Timer 1 interrupt should be disabled in this appli-
cation. The Timer itself can be configured for either
‘““timer’’ or ‘‘counter’’ operation, and in any of its 3 run-
ning modes. In the most typical applications, it is confi-
gured for ‘‘timer’’ operation, in the auto-reload mode
(high nibble of TMOD = 0010B). In that case, the baud
rate is given by the formula

x (Timer 1 Overflow Rate)

25MOD Qscillator Frequency
32 X T12x[256 — (THD)]

Modes 1, 3 Baud Rate =

One can achieve very low baud rates with Timer 1 by
leaving the Timer 1 interrupt enabled, and configuring the
Timer to run as a 16-bit timer (high nibble of TMOD

= 0001B), and using the Timer 1 interrupt to do a 16-bit
software reload.

Figure 2-17 lists various commonly used baud rates and how
they can be obtained from Timer 1.

TIMER 1
BAUD RATE tosc SMOD | C/T | MODE | RELOAD
VALUE
MODE 0 MAX: IMHZ | 12MHZ X X X X
MODE 2 MAX: 375K 12MHZ 1 X X X
MODES 1,3: 62.5K 12 MHZ 1 0 2 FFH
19.2K 11.059 MHZ 1 0 2 FDH
9.6K 11.059 MHZ 0 0 2 FDH
4.8K 11.059 MHZ 0 0 2 FAH
24K 11.059 MHZ [} 0 2 F4H
1.2K 11.059 MHZ 0 0 2 E8H
1375 11.986 MHZ 0 0 2 1DH
10 6 MHZ [} 0 2 72H
110 12MHZ] 0 1 FEEBH

Figure 2-17. Timer 1 Generated Commonly
Used Baud Rates

Using Timer 2 to Generate Baud Rates

In the 8052, Timer 2 is selected as the baud rate generator by
setting TCLK and/or RCLK in T2CON (Figure 2-13). Note
then the baud rates for transmit and receive can be simultane-
ously different. Setting RCLK and/or TCLK puts Timer 2 into
its baud rate generator mode, as shown in Figure 2-18.

Note: OSC. freq. is divided by 2, not 12,

TIMER 1
OVERFLOW

cm2=0 o T2 TH2
o 1 & (8-BITS) (8-BITS)
Cr2=1 L
T2 PIN -———1 I CONTROL
TR2

RELOAD

TRANSITION

[RCAP2L | RCAP2H J

DETECTOR

-
A oot —

Il
CONTROL
EXEN2

T2EX PIN —>

“TIMER 2"
INTERRUPT

Z—-Note Availability of Additional External Interrupt

Figure 2-18. Timer 2 in Baud Rate Generator Mode

2-16

CHAPTER 2
8051 Family Architecture

The baud rate generator mode is similar to the auto-reload
mode, in that a rollover in TH2 causes the Timer 2 reg-
isters to be reloaded with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes 1 and 3 are determined by
Timer 2’s overflow rate as follows:

Timer 2 Overflow Rate
16

Modes 1, 3 Baud Rate =

The Timer can be configured for either ‘‘timer’’ or
“‘counter’’ operation. In the most typical applications, it
is configured for ‘‘timer’’ operation (C/T2 = 0). ‘‘Timer”’
operation is a little different for Timer 2 when it’s being
used as a baud rate generator. Normally as a timer it would
increment every machine cycle (thus at 1/12 the oscillator
frequency). As a baud rate generator, however, it incre-
ments every state time (thus at 1/2 the oscillator fre-
quency). In that case the baud rate is given by the formula

"Modes 1, 3

Oscillator Frequency
Baud Rate =

32x[65536 — (RCAP2H, RCAP2L)]

where (RCAP2H, RCAP2L) is the content of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 2-18.
This Figure is valid only if RCLK + TCLK = 1 in
T2CON. Note that a rollover in TH2 does not set TF2,
and will not generate an interrupt. Therefore, the Timer
2 interrupt does not have to be disabled when Timer 2 is
in the baud rate generator mode. Note too, that if EXEN2
is set, a 1-to-0 transition in T2EX will set EXF2 but will
not cause a reload from (RCAP2H, RCAP2L) to (TH2,
TL2). Thus when Timer 2 is in use as a baud rate gen-
erator, T2EX can be used as an extra external interrupt,
if desired.

It should be noted that when Timer 2 is running (TR2 =
1) in “‘timer’’ function in the baud rate generator mode,
one should not try to read or write TH2 or TL2. Under
these conditions the Timer is being incremented every
state time, and the results of a read or write may not be
accurate. The RCAP registers may be read, but shouldn’t
be written to, because a write might overlap a reload and
cause write and/or reload errors. Turn the Timer off (clear
TR?2) before accessing the Timer 2 or RCAP registers, in
this case.

More About Mode 0

Serial data enters and exits through RXD. TXD outputs
the shift clock. 8 bits are transmitted/received: 8 data bits

(LSB first). The baud rate is fixed at 1/12 the oscillator
frequency.

Figure 2-19 shows a simplified functional diagram of the
serial port in mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The ‘‘write to SBUF"’ signal at
S6P2 also loads a 1 into the 9th bit position of the transmit
shift register and tells the TX Control block to commence
a transmission. The internal timing is such that one full
machine cycle will elapse between *‘write to SBUF,”’ and
activation of SEND.

SEND enables the output of the shift register to the al-
ternate output function line of P3.0, and also enables
SHIFT CLOCK to the alternate output function line of
P3.1. SHIFT CLOCK is low during S3, S4, and S5 of
every machine cycle, and high during S6, S1 and S2. At
S6P2 of every machine cycle in which SEND is active,
the contents of the transmit shift register are shifted to the
right one position.

As data bits shift out to the right, zeros come in from the
left. When the MSB of the data byte is at the output
position of the shift register, then the 1 that was initially
loaded into the 9th position, is just to the left of the MSB,
and all positions to the left of that contain zeros. This
condition flags the TX Control block to do one last shift
and then deactivate SEND and set T1. Both of these ac-
tions occur at S1P1 of the 10th machine cycle after *‘write
to SBUE.”

Reception is initiated by the condition REN = 1 and RI
= 0. At S6P2 of the next machine cycle, the RX Control
unit writes the bits 11111110 to the receive shift register,
and in the next clock phase activates RECEIVE.

RECEIVE enables SHIFT CLOCK to the alternate output
function line of P3.1. SHIFT CLOCK makes transitions
at S3P1 and S6PI1 of every machine cycle. At S6P2 of
every machine cycle in which RECEIVE is active, the
contents of the receive shift register are shifted to the left
one position. The value that comes in from the right is
the value that was sampled at the P3.0 pin at S5P2 of the
same machine cycle.

As data bits come in from the right, 1s shift out to the
left. When the O that was initially loaded into the rightmost
position arrives at the leftmost position in the shift register,
it flags the RX Control block to do one last shift and load
SBUF. At S1P1 of the 10th machine cycle after the write
to SCON that cleared RI, RECEIVE is cleared and Rl is
set.

CHAPTER 2
8051 Family Architecture

8051 INTERNAL BUS

1

X

WRITE
TO T RXD
SBUF pSa SBUF —*———:D__ P3.0 ALT
=12, OUTPUT
SHIET FUNCTION
ZERO DETECTOR
. N
START SHIFT __]
TX CONTROL
6 TXCLOCK 14 SEND
SERIAL
PORT(‘_G:, Pat ALT
INTERRUPT -
ERRU SHIFT OUTPUT
CLOCK FUNCTION
RxcLock R RECEIVE
REN RXCONTROL gupt
-ﬁ:D'—'STAHT 11111110
RXD
P30 ALT
INPUT
FUNCTION
LOAD
SBUF
READ .
SBUF
8051 INTERNAL BUS
SASSSSI S152 5354 S5 6 ‘S\ 5253545556 ‘ 1525354 5556 I 15253545586 l $152 53545556 | S182 53545556 l S!SZSJS‘SSSSI $15253548586 | S1 5253548556 l5|5253545556 I st
ALE
[|WRITE TO SBUF
|
SEND. S6P2
SHIFT . I Il L) n n e
RXD(DATAOUT)_B0 X B7 X 02 X"B3 Y04 X066 "X B X BT T TRANSMIT
TXD (SHIFT CLOCK) !
T s3p1t sep1 —
[LWRITE TO SCON (CLEARRI)
Rl L —_—
RECEIVE I
S RECEIVE
SHIFT n n_ 1l 1 N n n N
RXD (DATA IN) oo g0t o2 o3 04 008 s 097

LS5P2
TXD (SHIFT CLOCK)

Figure 2-19. Serial Port Mode 0

2-18

CHAPTER 2
8051 Family Architecture

More About Mode 1

Ten bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), and
a stop bit (1). On receive, the stop bit goes into RB8 in
SCON. In the 8051 the baud rate is determined by the
Timer 1 overflow rate. In the 8052 it is determined either
by the Timer 1 overflow rate, or the Timer 2 overflow
rate, or both (one for transmit and the other for receive).

Figure 2-20 shows a simplified functional diagram of the
serial port in Mode 1, and associated timings for transmit
and receive.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The ‘‘write to SBUF’’ signal also
loads a 1 into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmission
is requested. Transmission actually commences at S1P1
of the machine cycle following the next rollover in the
divide-by-16 counter. (Thus, the bit times are synchro-
nized to the divide-by-16 counter, not to the ‘‘write to
SBUF"’ signal).

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that.

As data bits shift out to the right, zeros are clocked in
from the left. When the MSB of the data byte is at the
output position of the shift register, then the 1 that was
initially loaded into the 9th position is just to the left of
the MSB, and all positions to the left of that contain
zeroes. This condition flags the TX Control unit to do one
last shift and then deactivate SEND and set TI. This occurs
at the 10th divide-by-16 rollover after ‘‘write to SBUF.”’

Reception is initiated by a detected 1-to-O transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and IFFH is written into the input shift
register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into
16ths. At the 7th, 8th, and 9th counter states of each bit
time, the bit detector samples the value of RXD. The value
accepted is the value that was seen in at least 2 of the 3
samples. This is done for noise rejection. If the value
accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for
another 1-to-0 transition. This is to provide rejection of
false start bits. If the start bit proves valid, it is shifted

into the input shift register, and reception of the rest of
the frame will proceed.

As data bits come in from the right, Is shift out to the
left. When the start bit arrives at the leftmost position in
the shift register, (which in mode 1 is a 9-bit register), it
flags the RX Control block to do one last shift, load SBUF
and RB8, and set RI. The signal to load SBUF and RBS,
and to set RI, will be generated if, and only if, the fol-
lowing conditions are met at the time the final shift pulse
is generated.

1) RI = 0, and
2) Either SM2 = 0, or the received stop bit = 1

If either of these two conditions is not met, the received
frame is irretrievably lost. If both conditions are met, the
stop bit goes into RB8, the 8 data bits go into SBUF, and
Rl is activated. At this time, whether the above conditions
are met or not, the unit goes back to looking for a 1-to-
0 transition in RXD.

More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On transmit,
the 9th data bit (TB8) can be assigned the value of 0 or
1. On receive, the 9th data bit goes into RB8 in SCON.
The baud rate is programmable to either 1/32 or 1/64 the
oscillator frequency in mode 2. Mode 3 may have a var-
iable baud rate generated from either Timer 1 or 2 de-
pending on the state of TCLK and RCLK.

Figures 21aand b show a functional diagram of the serial port
in modes 2 and 3. The receive portion is exactly the same as
in mode 1. The transmit portion differs from mode 1 only in
the 9th bit of the transmit shift register.

Transmission is initiated by any instruction that uses SBUF
as a destination register. The ‘‘write to SBUF’’ signal also
loads TB8 into the 9th bit position of the transmit shift
register and flags the TX Control unit that a transmission
is requested. Transmission commences at SI1P1 of the
machine cycle following the next rollover in the divide-
by-16 counter. (Thus, the bit times are synchronized to
the divide-by-16 counter, not to the ‘‘write to SBUF”’
signal.)

The transmission begins with activation of SEND, which
puts the start bit at TXD. One bit time later, DATA is
activated, which enables the output bit of the transmit
shift register to TXD. The first shift pulse occurs one bit
time after that. The first shift clocks a 1 (the stop bit) into
the 9th bit position of the shift register. Thereafter, only
zeroes are clocked in. Thus, as data bits shift out to the

2-19

CHAPTER 2
8051 Family Architecture

TIMER 1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW
L
WRITE
TO
SBUF
START SHIFT paTa
TX CONTROL
16 TXCLOCK SEND
SERIAL
wgr e PORT
INTERRUPT
ROLK — = ——
+16
SAMPLE
1-T0-0 RXCLOCK RI LOAD}—>
TRANSITION START SBUF
DETECTOR RXCONTROL SHIFT
1FFH
BIT
> DETECTOR |
INPUT SHIFT REG.
(9 BITS)

READ
SBUF

8051 INTERNAL BUS

™
_eLocK, Il 1 1 i 1 0 | 1 | i 1
| WRITE TO SBUF
——_SEND [
DATA ‘si1P1 I
SHIFT | | | i | | | 1 1
[D0 D1 X" D2 (D3 D4 X" D05 X D6 X D7 Y
TI STARTBIT STORBIT
+16 RESET
[1RX cLOCK] it | i\ | | | I 1 1L 1
RXD BYART®IT B0 Y 1 X B2 Y ©3 X ba_X D5 X D6 X D7) STOPBIT
RECEIVE (B!TDETECTOR SAMPLE TIMES 1\ M i m m m m BN 1 S |
SHIFT il 1 1 Il L i R i A
RI —

Figure 2-20. Serial Port Mode 1
(TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.)

TXD

TRANSMIT

2-20

CHAPTER 2
8051 Family Architecture

8051 INTERNAL BUS

WRITE
TO —
SBUF
TXD
PHASE 2 CLOCK ZERO DETECTOR
(2 fosc)
P BI
START STgENé T SHIFT ATA
TXCONTROL ——
16 TXCLOCK T SEND
SERIAL
PORT
INTERRUPT
(SMOD IS PCON.7) <16
SAMPLE
1-TO-0 RX RI LOAD
TRANSITION| START CLOCK SBUF
DETECTOR RX CONTROL SHIFT
1FFH
[BIT]
] DETECTOR | 3
INPUT SHIFT REG.
(9 BITS)
RXD
LOAD
SBUF
READ
SBUF
8051 INTERNAL BUS
TX
JCLOCK; [A | i I | Il i i | I
' WRITE TO SBUF
——1_SEND —
DATA “s1P1]
SHIFT) i 1 1 1 L L0 1 TRANSMIT
TTxp \SARTET Do T)02 {063 X_Dd Ds) D7 STOPBIT
Tl E—
STOP BXITGEN 1 I eam—
116 RESET
ACLOCK ALt n 1 I 1 I i 1 1L |
RXD G DETECTORLSTART®IT/~ B0 X B1 b2 Y B3 X B8 (b6 X D6 X D7 X RS Tsyop
RECEIVE SAMPLE TIMES i I . I WL i N AL e BIT
SHIFT i 0 i 1 L 1 i i 1 1
RI —

Figure 2-21a. Serial Port Mode 2

2-21

CHAPTER 2
8051 Family Architecture

TIMER 1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW

WRITE
TO
SBUF
XD
[zERO GETECTOR]
1
oy
» START SHIFT pataA
TX CONTROL
———r:;—I-—'TXCLOCK T SEND
SERIAL
o e PORT
INTERRUPT
RCLK —— ——
+16
SAMPLE
1-TO-0 RX CLOCK RI LOAD
ITRANSITION START SBUF
DETECTOR RXCONTROL SHIFT
1FFH
[&r | t
> DETECTOR | 592
INPUT SHIFT REG.
(9BITS)
RXD SHIFT
READ
SBUF ~
TX
JCLOCK, I Il 1 i i i | I 0 1 i
[LWRITE TO SBUF
— | _SEND o=
DATA “sipP1
SHIFT 1 1 il 1 1 1 1 1 1 ~) TRANSMIT
Txo ST DO 11 D2 X D3 X D4 07 STOP BIT
Tl
STOPBIT GEN L , —
16 RESET
ACLOCK g i 1 " 2 I i 1 L 1 1 Il
RXD 5 DETECTORLS™ART®IT/ B0 X b1 X b7 X B3 X B4 _J_D5__X B6 X D7 J_REE Jgrop
RECEIVE SAMPLETIMES g Ml W WL A MMM i aw BIT
SHIFT y 0 1 1 1 ") | ﬂ 5
RI

Figure 2-21b. Serial Port Mode 3
(TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.)

2-22

CHAPTER 2
8051 Family Architecture

right, zeroes are clocked in from the left. When TB8 is
at the output position of the shift register, then the stop
bit is just to the left of TB8, and all positions to the left
of that contain zeroes. This condition flags the TX Control
unit to do one last shift and then deactivate SEND and
set TI. This occurs at the 11th divide-by-16 rollover after
“‘write to SBUF.”

Reception is initiated by a detected 1-to-O transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and 1FFH is written to the input shift register.

At the 7th, 8th, and 9th counter states of each bit time, the bit
detector samples the value of RXD. The value accepted is the
value that was seen in at least two of the three samples. If the
value accepted during the first bit time is not 0, the receive
circuits are reset and the unit goes back to looking for another
1-to-0 transition. If the start bit proves valid, it is shifted into
the input shift register, and reception of the rest of the frame
will proceed.

As data bits come in from the right, 1s shift out to the
left. When the start bit arrives at the leftmost position in
the shift register (which in modes 2 and 3 is a 9-bit reg-
ister), it flags the RX Control block to do one last shift,
load SBUF and RB8, and set RI. The signal to load SBUF
and RB8, and to set RI, will be generated if, and only if,
the following conditions are met at the time the final shift
pulse is generated:

1) RI = 0, and

2) Either SM2 = 0 or the received 9th data bit = 1

If either of these conditions i$ not met, the received frame
is irretrievably lost, and RI is not set. IF both conditions
are met, the received 9th data bit goes into RBS8, and the
first 8 data bits go into SBUF. One bit time later, whether
the above conditions were met or not, the unit goes back
to looking for a 1-to-0 transition at the RXD input.

Note that the value of the received stop bit is irrelevant
to SBUF, RBS, or RI.

INTERRUPTS

The 8051 provides five interrupt sources. The 8052 provides
six. These are shown in Figure 2-22.

The External Interrupts INTO and INT1 can each be either
level-activated or transition-activated, depending on bits
ITO and IT1 in Register TCON. The flags that actually
generate these interrupts are bits IEO and IE1 in TCON.
When an external interrupt is generated, the flag that gen-

erated it is cleared by the hardware when the service rou-
tine is vectored to only if the interrupt was transition-
activated. If the interrupt was level-activated, then the
external requesting source is what controls the request
flag, rather than the on-chip hardware.

INTO

— INTERRUPT
INTY > SOURCES

TF1 >

EXF2 (8052 ONLY)

S

Figure 2-22. 8051 Family Interrupt Sources

(MsB) (LSB)
|ea] x]er2]es [eT1 [ex1]|eT0|EX0]

Symbol Position Function

EA IE.7 disables all interrupts. if EA = 0, no interrupt
will be acknowledged. If EA = 1, each inter-
rupt source is individually enabled or dis-
abled by setting or clearing its enable bit.

- IE.6 reserved

ET2 IE.5 enables or disables the Timer 2 overtlow
or capture interrupt. If ET2 = 0, the Timer 2
interrupt is disabied.

ES IE.4 enables or disables the Serial Port inter-
rupt. If ES = 0, the Serial Port interrupt is
disabled.

ET1 IE.3 enables or disables the Timer 1 Overtiow
interrupt. If ET1 = 0, the Timer 1 interrupt
is disabled.

EX1 IE.2 enables or disables External Interrupt 1.

It EX1 = 0, External Interrupt 1 is disabled.

ETO 1E1 enables or disables the Timer 0 Overflow
interrupt. If ETO = 0, the Timer 0 Interrupt
is disabled.

EX0 IE.0 enables or disables External Interrupto0. If

EXO = 0, External Interrupt 0 is disabled.

Figure 2-23. IE: Interrupt Enable Register

2-23

CHAPTER 2
8051 Family Architecture

The timer 0 and Timer 1 Interrupts are generated by TFO and
TF1, which are set by a rollover in their respective timer/
counter registers (except see page 2-12 for Timer 0 in mode
3). Whena timerinterrupt is generated, the flag that generated
itis cleared by the on-chip hardware when the service routine
is vectored to.

The Serial Port Interrupt is generated by the logical OR
of RI and TI. Neither of these flags is cleared by hardware
when the service routine is vectored to. In fact, the service
routine will normally have to determine whether it was
RI or TI that generated the interrupt, and the bit will have
to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the
logical OR of TF2 and EXF2. Neither of these flags is
cleared by hardware when the service routine is vectored
to. In fact, the service routine may have to determine
whether it was TF2 or EXF2 that generated the interrupt,
and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared
by software, with the same result as though it had been
set or cleared by hardware. That is, interrupts can be
generated or pending interrupts can be canceled in
software.

Each of these interrupt sources can be individually enabled
or disabled by setting or clearing a bit in Special Function
Register IE (Figure 2-23). Note that IE contains also a
global disable bit, EA, which disables all interrupts at
once.

Priority Level Structure

Each interrupt source can also be individually programmed
to one of two priority levels by setting or clearing a bit
in Special Function Register IP (Figure 2-24). A low-
priority interrupt can itself be interrupted by a high-priority
interrupt, but not by another low-priority interrupt. A
high-priority interrupt can’t be interrupted by any other
interrupt source.

(MSB) (LSB,

I'x] x [pr2]ps]eri|exi|pro]prxo
Symbol Position Function
- P.7 reserved
- 1P.6 reserved

PT2 IP.5 defines the Timer 2 interrupt priority
level. PT2 = 1 programs it to the higher
priority level.

PS iP.4 defines the Serial Port interrupt priority
level. PS = 1 programs it to the higher
priority level.

PT1 1P.3 defines the Timer 1 interrupt priority
level. PT1 = 1 programs it to the higher
priority level.

PX1 P.2 defines the External Interrupt 1 priority
fevel. PX1 = 1 programs it to the higher
priority level.

PTO 1P.1 defines the Timer 0 interrupt priority
level. PTO = 1 programs it to the higher
priority level.

PXo0 1P.0 defines the External Interrupt 0 priority

level. PX0 = 1 programs it to the higher
priority level.

Figure 2-24. IP: Interrupt Priority Register

If two requests of different priority levels are received
simultaneously, the request of higher priority level is ser-
viced. If requests of the same priority level are received
simultaneously, an internal polling sequence determines
which request is serviced. Thus within each priority level
there is a second priority structure determined by the poll-
ing sequence, as follows:

SOURCE PRIORITY WITHIN LEVEL

1 1E0 (highest)
2 TFO

3 IE1

4, TF1

5. RI+TI

6.

TF2 + EXF2 (lowest)

Note that the “priority within level” structure is only used to
resolve multiple requests of the same priortiy level.

""" C1 N } Cc2 + c3 + Cc4 t Cs
IssP2l s6 |
[2 1 2 1 R L
A\ A\ A\
[\ A A
~ ~ ~
€ INTERRUPTS LONG CALLTO INTERRUPT ROUTIN
ARE POLLED INTERRUPT
INTERRUPT INTERRUPT VECTOR ADDRESS
GOES LATCHED
ACTIVE

This is the fastest possible response when C2 is the final cycle of
an instruction other than RET! or an access to IE or IP.

Figure 2-25. Interrupt Response Timing Diagram

2-24

CHAPTER 2
8051 Family Architecture

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every machine
cycle. The samples are polled during the following ma-
chine cycle. If one of the flags was in a set condition at
S5P2 of the preceding cycle, the polling cycle will find
it and the interrupt system will generate an LCALL to the
appropriate service routine, provided this hardware-gen-
erated LCALL is not blocked by any of the following
conditions:

1. An interrupt of equal or higher priority level is already
in progress.

2. The current (polling) cycle is not the final cycle in the
execution of the instruction in progress.

3. The instruction in progress is RETI or any access to
the IE or IP registers.

Any of these three conditions will block the generation
of the LCALL to the interrupt service routine. Condition
2 ensures that the instruction in progress will be completed
before vectoring to any service routine. Condition 3 en-
sures that if the instruction in progress is RETI or any
access to IE or IP, then at least one more instruction will
be executed before any interrupt is vectored to.

The polling cycle is repeated with each machine cycle,
and the values polled are the values that were present at
S5P2 of the previous machine cycle. Note then that if an
interrupt flag is active but not being responded to for one
of the above conditions, if the flag is not still active when
the blocking condition is removed, the denied interrupt
will not be serviced. In other words, the fact that the
interrupt flag was once active but not serviced is not re-
membered. Every polling cycle is new.

The polling cycle/L CALL sequence is illustrated in Figure
2-25.

Note that if an interrupt of higher priority level goes active
prior to S5P2 of the machine cycle labeled C3 in Figure 2-25,
then in accordance with the above rules it will be vectored to
during C5 and C6, without any instruction of the lower
priority routine having been executed.

Thus the processor acknowledges an interrupt request by
executing a hardware-generated LCALL to the appropriate
servicing routine. In some cases it also clears the flag that
generated the interrupt, and in other cases it doesn’t. It
never clears the Serial Port or Timer 2 flags. This has to
be done in the user’s software. It clears an external in-
terrupt flag (IEO or IE1) only if it was transition-activated.
The hardware-generated LCALL pushes the contents of
the Program Counter onto the stack (but it does not save

the PSW) and reloads the PC with an address that depends
on the source of the interrupt being vectored to, as shown
below.

VECTOR
SOURCE ADDRESS

IEO 0003H
TFO 000BH

IE1 0013H

TF1 001BH
RI+Ti 0023H
TF2+EXF2 002BH

Execution proceeds from that location until the RETI in-
struction is encounteréed. The RETI instruction informs
the processor that this interrupt routine is no longer in
progress, then pops the top two bytes from the stack and
reloads the Program Counter. Execution of the interrupted
program continues from where it left off.

Note that a simple RET instruction would also have re-
turned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt
was still in progress.

External Interrupts

The external sources can be programmed to be level-
activated or transition-activated by setting or clearing bit
IT1 or ITO in Register TCON. If ITx = 0, external in-
terrupt X is triggered by a detected low at the INTx pin.
If ITx = 1, external interrupt x is edge-triggered. In this
mode if successive samples of the INTx pin show a high
in one cycle and a low in the next cycle, interrupt request
flag IEx in TCON is set. Flag bit IEx then requests the
interrupt. '

Since the external interrupt pins are sampled once each
machine cycle, an input high or low should hold for at
least 12 oscillator periods to ensure sampling. If the ex-
ternal interrupt is transition-activated, the external source
has to hold the request pin high for at least one cycle, and
then hold it low for at least one cycle to ensure that the
transition is seen so that interrupt request flag IEx will be
set. IEx will be automatically cleared by the CPU when
the service routine is called.

If the external interrupt is level-activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to deactivate
the request before the interrupt service routine is com-
pleted, or else another interrupt will be generated.

2-25

CHAPTER 2
8051 Family Architecture

Response Time

The INTO and INTT levels are inverted and latched into
[EO and IE1 at S5P2 of every machine cycle. The values
are not actually polled by the circuitry until the next ma-
chine cycle. If a request is active and conditions are right
for it to be acknowledged, a hardware subroutine call to
the requested service routine will be the next instruction
to be executed. The call itself takes two cycles. Thus, a
minimum of three complete machine cycles elapse be-
tween activation of an external interrupt request and the
beginning of execution of the first instruction of the service
routine. Figure 2-25 shows interrupt response timings.

A longer response time would result if the request is
blocked by one of the 3 previously listed conditions. If
an interrupt of equal or higher priority level is already in
progress, the additional wait time obviously depends on
the nature of the other interrupt’s service routine. If the
instruction in progress is not in its final cycle, the addi-
tional wait time cannot be more than 3 cycles, since the
longest instructions (MUL and DIV) are only 4 cycles
long, and if the instruction in progress is RETI or an
access to IE or IP, the additional wait time cannot be more
than 5 cycles (a maximum of one more cycle to complete
the instruction in progress, plus 4 cycles to complete the
next instruction if the instruction is MUL or DIV).

Thus, in a single-interrupt system, the response time is
always more than 3 cycles and less than 9 cycles.

SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execution
with very little software overhead. As previously noted, an
interrupt request will not be responded to while an interrupt
of equal priority level is still in progress, nor will it be
responded to after RET] until atleastone other instruction has
been executed. Thus, once an interrupt routine has been
entered, it cannot be re-entered until at least one instruction of
the interrupted program is executed. One way to use this
feature for single-step operation is to program one of the
external interrupts e.g., INTO to be level-activated. The serv-
ice routine for the interrupt will terminate with the following
code:
JNB P3.2,$;WAIT HERE UNTIL INTO
GOES HIGH
;NOW WAIT HERE UNTIL
IT GOES LOW
RETI ;GO BACK AND
EXECUTE ONE
INSTRUCTION

JB P3.2,$

If the INTO pin, which is also the P3.2 pin, is held normally
low, the CPU will go right into the External Interrupt 0

routine and stay there until INTO is pulsed (from low to high
to low). Then it will execute RETI, go back to the task
program execute one instruction, and immediately re-enter
the External Interrupt O routine to await the next pulsing of
P3.2. One step of the task program is executed each time P3.2
is pulsed.

RESET

The reset input is the RST pin, which is the input to a
Schmitt Trigger.

A reset is accomplished by holding the RST pin high for
at least two machine cycles (24 oscillator periods), while
the oscillator is running. The CPU responds by executing
an internal reset. It also configures the ALE and PSEN
pins as inputs. (They are quasi-bidirectional). The internal
reset is executed during the second cycle in which RST
is high and is repeated every cycle until RST goes low.
It leaves the internal registers as follows:

REGISTER CONTENT
PC 0000H
ACC 00H
B) O00H
PSW 00H
SP O7H
DPTR 0000H
PO—P3 : OFFH
IP (8051) XXX00000B
IP (8052) XX000000B
iE (8051) 0XX00000B
IE (8052) 0X000000B
TMOD O00H
TCON O00H
T2CON (8052 only) 00H
THO 00H
TLO 00H
TH1 00H
TL1 00H
TH2 00H
TL2 O00H
RCAP2H (8052 only) 00H
RCAP2L (8052 only) 00H
SCON 00H
SBUF Indeterminate
PCON (NMOS) OXXXXXXXB
PCON (CMOS) 0XXX0000B

The internal RAM is not affected by reset. When VCC is
turned on, the RAM content is indeterminate unless the part
is returning from a reduced power mode of operation.

Power-On Reset

Anautomatic reset can be obtained when VCC s turned on by
connecting the RST pin to VCC througha 10 uF capacitor and
to VSS through an 8.2 k resistor, providing the VCCrise time
doesnote exceed amillisecond and the oscillator start-up time

2-26

CHAPTER 2
8051 Family Architecture

does not exceed 10 ms. This power-on reset circuit is shown

in Figure 2-26. When power comes on, the current drawn by
RST commences to charge the capacitor. The voltage atRST
is the difference between VCC and the capacitor voltage, and
decreases from VCC as the capacitor charges. The larger the
capacitor, the more slowly VRST decreases. VRST must
remain above the lower threshold of the Schmitt Trigger long
enough to effect a complete reset. The time required is the
oscillator start-up time, plus 2 machine cycles.

POWER-SAVING MODES OF OPERATION

For applications where power consumption is critical, the
NMOS and CMOS versions provide power-reduced modes
of operation.

NMOS Power Reduction Mode

To save power when using the NMOS device, VCC may be
reduced to zero while the on-chip RAM is saved through a
backup supply connected to the RST pin. After saving
relevant data in RAM, the user enables the backup power
supply to the RST pin before VCC falls below its operating
limit. When power returns, the backup supply must stay on
long enough to accomplish areset; it then can beremoved and
normal operation resumed.

vcc

10ut -
vcc

8051

RST
82k §

vss

e
—

Figure 2-26. Power on Reset Circuit

CMOS Power Reduction Modes

CMOS versions have two power-reducing modes, Idle and
Power Down. Backup power is supplied during these opera-
tions through VCC . Figure 2-27 shows the internal circuitry
which implements these features. In the Idle mode (IDL = 1),
the oscillator continues to run and the Interrupt, Serial Port,
and Timer blocks continue to be clocked, but the clock signal
is gated off to the CPU. In Power Down (PD = 1), the
oscillator is frozen. The Idle and Power Down modes are
activated by setting bits in Special Function Register PCON.
The address of this register is 87H. Figure 2-28 details its
contents.

B

XTAL2 = XTAL1

l---osc\—<

INTERRUPT,
SERIAL PORT,
TIMER BLOCKS
cLock
y | GEN.
PD
crPu
ibL

Figure 2-27. Idie and Power Down Hardware

(MsB) (LsB)
[smoo] — T =T = Tert Jero [po | o]
Symbol Position Name and Function

SMOD PCON.7 Double Baud rate bit. When set to a
1 and Timer 1 is used to generate
baud rate, and the Serial Port
is used in modes 1, 2, or 3.

— PCON.6 (Reserved)

- PCON.5 (Reserved)

PCON.4 (Reserved)

GF1 PCON.3 General-purpose flag bit.

GFO PCON.2 General-purpose flag bit.

PD PCON.1 Power Down bit. Setting this bit
activates power down operation.

oL PCON.0 Idle mode bit. Setting this bit ac-

tivates idle mode operation.

If 1s are written to PD and IDL at the same time, PD
takes precedence. The reset value of PCON is
(0XXX0000).

Figure 2-28. PCON: Power Control Register

2-27

CHAPTER 2
8051 Family Architecture

Idle Mode

An instruction that sets PCON.O causes that to be the last
instruction executed before going into the Idle mode. In
the Idle mode, the internal clock signal is gated off to the
CPU, but not to the Interrupt, Timer, and Serial Port
functions. The CPU status is preserved in its entirety: the
Stack Pointer, Program Counter, Program Status Word,
Accumulator, and all other registers maintain their data
during Idle. The port pins hold the logical states they had
at the time Idle was activated. ALE and PSEN hold at
logic high levels.

There are two ways to terminate the Idle. Activation of
any enabled interrupt will cause PCON.0 to be cleared by
hardware, terminating the Idle mode. The interrupt will
be serviced, and following RETI the next instruction to
be executed will be the one following the instruction that
put the device into Idle.

The flag bits GFO and GF1 can be used to give an indi-
cation if an interrupt occurred during normal operation or
during an Idle. For example, an instruction that activates
Idle can also set one or both flag bits. When Idle is ter-
minated by an interrupt, the interrupt service routine can
examine the flag bits.

The other way of terminating the Idle mode is with a
hardware reset. Since the clock oscillator is still running,
the hardware reset needs to be held active for only two
machine cycles (24 oscillator periods) to complete the
reset.

Power Down Mode

An instruction that sets PCON.1 causes that to be the last
instruction executed before going into the Power Down
mode. In the Power Down mode, the on-chip oscillator

is stopped. With the clock frozen, all functions are
stopped, but the on-chip RAM and Special Function Reg-
isters are held. The port pins output the values held by
their respective SFRs. ALE and PSEN output lows.

The only exit from Power Down is a hardware reset. Reset
redefines all the SFRs, but does not change the on-chip
RAM.

In the Power down mode of operation, VCC can be re-
duced to minimize power consumption. Care must be
taken, however, to ensure that VCC is not reduced before
the Power Down mode is invoked, and that VCC is re-
stored to its normal operating level, before the Power
Down mode is terminated. The reset that terminates Power
Down also frees the oscillator. The reset should not be
activated before VCC is restored to its normal operating
level, and must be held active long enough to allow the
oscillator to restart and stabilize (normally less than 10
msec).

8751H

The 8751H is the core EPROM member of the 8051 Family.
This means that the on-chip Program Memory can be electri-
cally programmed, and can be etased by exposure to ultravio-
let light. The 8751H also has provision for denying external
access to the on-chip Program Memory in order to protect its
contents against software piracy.

Programming the EPROM

To be programmed, the 8751H must be running with a 4
to 6 MHz oscillator. (The reason the oscillator needs to
be running is that the internal bus is being used to transfer -
address and program data to appropriate internal registers.)
The address of an EPROM location to be programmed is
applied to Port 1 and pins P2.0-P2.3 of Port 2, while the

+5V

ADDR
- ~A
0000H- Ao-h7 pP1
OFFFH
—A P2.0-
282 N e2s
P2.4
is P2.5
P26
TTL HIGH———— P2.7
 XTAL2
—sMHz 55
XTAL1
Vss

8751H

vVee __J

PO K PGM DATA

ALE |[<——— ALE/PROG

EA fe——EAVPP

RST [VIH1

i |

Figure 2-29. Programming the 8751H

2-28

CHAPTER 2
8051 Family Architecture

data byte is applied to Port 0. Pins P2.4-P2.6 and PSEN
should be held low, and P2.7 and RST high. (These are
all TTL levels except RST, which requires 2.5V for a
logic high.) EA/VPP is held normally high, and is pulsed
to +21V. While EA/VPP is at 21V, the ALE/PROG pin,
which is normally being held high, is pulsed low for 50
msec. Then EA/VPP is returned to high. This setup is
shown in Figure 2-29. Detailed timing specifications are
provided in the 8751H data sheet.

Note: The EA pin must not be allowed to go above the
maximum specified VPP level of 21.5V for any amount
of time. Even a narrow glitch above that voltage level can
cause permanent damage to the device. The VPP source
should be well regulated and free of glitches.

Program Verification

If the program security bit has not been programmed, the
on-chip Program Memory can be read out for verification

purposes, if desired, either during or after the program-
ming operation. The required setup, which is shown in
Figure 2-30, is the same as for programming the EPROM
except that pin P2.7 is held at TTL low (or used as an
active-low read strobe). The address of the Program Mem-
ory location to be read is applied to Port 1 and pins
P2.0-P2.3. The other Port 2 pins and PSEN are held low.
ALE, EA, and RST are held high. The contents of the
addressed location will come out on Port 0. External pull-
ups are required on Port O for this operation.

Program Memory Security

The 8751H contains a security bit, which, once pro-
grammed, denies electrical access by any external means to
the on-chip Program Memory. The setup and procedure for
programming the security bit are the same as for normal
programming, except that pin P2.6 is held at TTL high.
The setup is shown in Figure 2-31. Port 0, Port 1, and pins
P2.0-P2.3 of Port 2 may be in any state.

+5V
ADDR. vVece ——l
—A7 NP1
0000H- Ao - A7
OFFFH PO ﬁ PGM DATA
P2.0-
[YELIT) Lopauues (USE 10K PULLUPS)
P24
-[._ E P25 ALE TTL HIGH
P26 |
ENABLE P27 EA
XA RST |——— VIH1
4-6 MHz ()
XTAL1 PSEN
Vss _l'

Figure 2-30. Program Verification in the 8751H

P1 Vee
X3 1 p20- PO
P2.3
8751H
10
P2.5 ALE

TTL HIGH —I:

P26
P2.7

EA
I XTAL2
4-6 MHz T3 jg_—l
= XTAL1 _RsT
f— Vss PSEN

+5V
X = “DON'T -CARE”

|<¢——— ALE/PROG 50 ms PULSE TO GND

<e————EA/VPP +21V PULSE

VIH1

Figure 2-31. Programming the Security Bit in the 8751H

2-29

CHAPTER 2
8051 Family Architecture

Once the security bit has been programmed, it can be deacti-
vated only by full erasure of the Program Memory. While it
is programmed, the internal Program Memory cannot be read
out, the device cannot be further programmed, and it cannot
execute external program memory. Erasing the EPROM,
thus deactivating the security bit, restores the device's full
functionality. It can then be re-programmed.

Erasure Characteristics

Erasure of the 8751H Program Memory begins to occur when
the chip is exposed to light with wavelengths shorter than
approximately 4,000 Angstroms. Since sunlight and fluores-
cent lighting have wavelengths in this range, exposure to
these light sources over an extended time (about 1 week in
sunlight, or 3 years in room-level fluorescent lighting) could
cause inadvertent erasure. If an application subjects the
8751H to this type of exposure, it is suggested that an opaque
label be placed over the window.

The recommended erasure procedure is exposure to ultra-

violet light (at 2537 Angstroms) to an integrated dose of at

least 15 W/cm?, Exposing the 8751H to an ultraviolet lamp

of 12,000 uW/cm?rating for 20 to 30 minutes, ata distance of
about 1 inch, should be sufficient. Erasure leaves the array in

an all 1s state.

MORE ABOUT THE ON-CHIP
OSCILLATOR

NMOS Versions

The on-chip oscillator circuitry for the NMOS members of
the 8051 Family is a single stage linear inverter (Figure 2-32),
intended for use as a crystal-controlled, positive reactance
oscillator (Figure 2-33). In this application the crystal is
operated in its fundamental response mode as an inductive
reactance in parallel resonance with capacitance external to
the crystal.

I?

Vee
TO INTERNAL
Q

3 TIMING CKTS

XTAL2

XTAL [F—w

SUBST. [—‘ Q1

,904

Vss

Figure 2-32. On-Chip Oscillator Circuitry in the NMOS Versions of the 8051 Family

TIMING CKTS
[x1AL2-———--
K—‘

TO INTERNAL

QUARTZ CRYSTAL
OR CERAMIC RESONATOR

Figure 2-33. Using the NMOS On-Chip Osclllator

2-30

CHAPTER 2
8051 Family Architecture

The crystal specifications and capacitance values (C1 and
C2 in Figure 2-33) are not critical. 30 pF can be used in
these positions at any frequency with good quality crys-
tals. A ceramic resonator can be used in place of the crystal
in cost-sensitive applications. When a ceramic resonator
is used, C1 and C2 are normally selected to be of some-
what higher values, typically, 47 pF. The manufacturer
of the ceramic resonator should be consulted for recom-
mendations on the values of these capacitors.

Vee

EXTERNAL
OSCILLATOR D -
SIGNAL 1
™m
GATE Vss
WITH

TOTEM-POLE
OUTPUT =

XTAL2

XTAL1

Figure 2-34. Driving the NMOS 8051 Family Parts
with an External Clock Source

To drive the NMOS parts with an external clock source,
apply the external clock signal to XTAL2, and ground
XTALL, as shown in Figure 2-34. A pull-up resistor may be
used (to increase noise margin), but is optional if VOH of the
driving gate exceeds the VIH,, specification of XTAL2.

CcMOs

The on-chip oscillator circuitry for the 80C51, shown in
Figure 2-35, consists of a single-stage linear inverter in-
tended for use as crystal-controlled, positive reactance oscil-
lator in the same manner as the NMOS parts. However, there
are some important differences.

One difference is that the 80C51 is able to turn off its
oscillator under software control (by writing a 1 to the PD
bit in PCON). Another difference is that in the 80C51 the
internal clocking circuitry is driven by the signal at
XTALI1, whereas in the NMOS versions it is by the signal
at XTAL2. .

The feedback resistor Rf in Figure 2-35 consists of paralleled
n- and p-channel FETs controlled by the PD bit, such that Rf
is opened when PD = 1. The diodes D1 and D2, which act as
clamps to VCC and VSS, are parasitic to the Rf FETSs.

J,'_'_] XTAL2

v
TO INTERNAL cc
TIMING CKTS T
A
____{ =
D1
400 0
XTAL1 [‘_} —AAA A
D2

Qt

=3

Vss

Figure 2-35. On-Chip Oscillator Circuitry in the CMOS Versions of the 8051 Family

2-31

CHAPTER 2
8051 Family Architecture

vVee
TO INTERNAL 7D
TIMING CKTS ____D')——T
$
Vss
———————— [Jxmau1-———-[] xmaL2-————-
80C51
«——— QUARTZ CRYSTAL
el OR CERAMIC
Ll RESONATOR
IC hY}

LAY

Cq

7t
C2

L

Figure 2-36. Using the CMOS On-Chip Oscillator

The oscillator can be used with the same external components
as the NMOS versions, as shown in Figure 2-36. Typically,
C1=C2=30pF when the feedback elementis a quartz crystal,
and C1 = C2 =47 pF when a ceramic resonator is used.

To drive the CMOS parts with an external clock source, apply
the external clock signal to XTAL1, and leave XTAL2 float-
ing as shown in Figure 2-37.

The reason for this change from the way the NMOS part is
driven can be seen by comparing Figure 2-32 and 2-35. In the
NMOS devices the internal timing circuits are driven by the
signal at XTAL?2. In the CMOS devices the Internal timing
circuits are driven by the signal at XTALI1.

80C51
NC—
EXTERNAL I:
OSCILLATOR
SIGNAL T
CMOS GATE

XTAL2

XTAL1

Vss

|||——|

Figure 2-37. Driving the CMOS 8051 Family Parts with
an External Clock Source

INTERNAL TIMING

Figures 2-38 through 2-41 show when the various strobe
and port signals are clocked internally. The figures do not
show rise and fall times of the signals, nor do they show
propagation delays between the XTAL2 signal and events
at other pins.

Rise and fall times are dependent on the external loading
that each pin must drive. They are often taken to be some-
thing in the neighborhood of 10 nsec, measured between
0.8Vand20V.

Propagation delays are different for different pins. Fora given
pin they vary with pin loading, temperature, VCC, and manu-
facturing lot. If the XTAL2 waveform is taken as the timing
reference, propagation delays may vary from 25 to 125 nsec.

The AC Timings section of the data sheets do not reference
any timing to the XTAL2 waveform. Rather, they relate
the critical edges of control and input signals to each other.
The timings published in the data sheets include the effects
of propagation delays under the specified test conditions.

8051 PIN DESCRIPTIONS

VCC: Supply voltage.

VSS: Circuit ground potential.

Port 0: Port 0 is an 8-bit open drain bidirectional I/O port.
As an open drain output port it can sink 8 LS TTL loads.

Port O pins that have 1s written to them float, and in that
state will function as high-impedance inputs. Port 0 is also

2-32

CHAPTER 2
8051 Family Architecture

the multiplexed low-order address and data bus during ac-
cesses to external memory. In this application it uses strong
internal pull-ups when emitting 1s. Port 0 also emits code
bytes during program verification. In that application, exter-
nal pull-ups are required.

Port 1: Port 1 is and 8-bit bidirectional I/O port with internal
pull-ups. The port 1 output buffers can sink/source four LS
TTL loads. Port 1 pins that have 1s written to them are pulled
high by the internal pull-ups, and in that state can be used as
inputs. As inputs, Port 1 pins that are externally being pulled
low will source current (IIL, on the data sheet) because of the
internal pull-ups.

In the 8052, pins P1.0 and P1.1 also serve the alternate
functions of T2 and T2EX. T2 is the Timer 2 external
input. T2EX is the input through which a Timer 2 "capture”
is triggered.

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal
pull-ups. The Port 2 output buffers can sink/source four LS
TTL loads. Port 2 emits the high-order address byte during
accesses to external memory that use 16-bit addresses. In this
application it uses the strong internal pull-ups when emitting
1s. Port2 also receives the high-order address and control bits
during 8751H programming and verification, and during pro-
gram verification in the 8051AH.

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal
pull-ups. It also serves the functions of various special fea-
tures of the 8051 Family, as listed below:

PORT PIN ALTERNATE FUNCTION
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)

P3.2 INTO (external interrupt 0)
P3.3 INTT (external interrupt 1)
P3.4 TO (Timer O external input)

P3.5 T1 (Timer 1 external input)

P3.6 WR (external data memory
write strobe)
P3.7 RD (external data memory

read strobe)

The Port 3 output buffers can source/sink four LS TTL loads.

RST: Reset input. A high on this pin for two machine
cycles while the oscillator is running resets the device.

ALE/PROG: Address Latch Enable is the output pulse for
latching the low byte of the address during accesses to
external memory. ALE is emitted at a constant rate of 1/6 of
the oscillator frequency, for external timing or clocking
purposes, even when there are no accesses to external mem-
ory. (However, one ALE pulse is skipped during each access
to external Data Memory.) This pin is also the program pulse
input (PROG) during EPROM programming.

PSEN: Program Store Enable is the read strobe to external
Program Memory. When the device is executing out of
external Program Memory, PSEN is activated twice each
machine cycle (except that two PSEN activations are
skipped during accesses to external Data Memory). PSEN
is not activated when the device is executing out of internal
Program Memory.

EA/VPP: When EA is held high the CPU executes out
of internal Program Memory (unless the Program Counter
exceeds OFFFH in the 8051AH, or 1FFFH in the 8052).
Holding EA low forces the CPU to execute out of external
memory regardless of the Program Counter value. In the
8031AH and 8032, EA must be externally wired low. In
the 8751H, this pin also receives the 21 V programming
supply voltage (VPP) during EPROM programming.

XTAL1L: Inputtotheinvertingoscillatoramplifier (NMOS
devices only).

XTAL2: Output from the inverting oscillator amplifier
(NMOS devices only).

2-33

CHAPTER 2
8051 Family Architecture

smre1lsm'sz STATE 3 | STATE 4 | STATE 5 | STATE 6 | STATE 1 | STATE 2
piip2ipip2ipPiir2iPiiP2iPilr2ipPiiP2iPilpP2lP1]p2

= | JUUUU LU UUU U UL

ALE: | S
PSEN; ——— DATA DATA DATA
.,l l«— SAMPLED _,1 le«— SAMPLED ‘>| l¢— SAMPLED
Po: PCL PCL PCL |
: ? out T ouTt ! out
P2: PCH OUT PCH OUT PCH OUT

Figure 2-38. External Program Memory Fetches

STATE 4| STATE 5 | STATE 6 | STATE 1 lsm’sz STATE 3 | STATE 4| STATE 5
piipzipPilpzipiP2ipPiirP2ipPtlr2ipPriP2ipPilp2]pPl]p2

~ SNV

ALE:
RD: PCL OUT IF
: PROGRAM MEMORY
DATA SAMPLED ——I r— IS EXTERNAL
FLOAT FLOAT
PO: —— | DPLORRI N -
our
PCH OR PCH OR
: P2 SFR OUT
P2 P2 SFR DPH OR P2 SF P2 SFR

Figure 2-39. External Data Memory Read Cycle

2-34

CHAPTER 2
8051 Family Architecture

STATE 4| STATE 5 | STATE 6 | STATE 1 ISTATE 3 l STATE 2 | STATE 4 l STATE 5
piipzlpilp2lpPilp2lpilp2ipilp2lPilp2lPrlp2ipilep2

e JUUUVUUTUUUUTUL

ALE:
WR: PCL OUT IF
PROGRAM MEMORY
N 1S EXTERNAL
. DPL OR Ri PCLIY |
PO: ————— T DATA OUT out
PCH OR PCH OR
P2
P2 SFR DPH OR P2 SFR OUT 02 SFR

Figure 2-40. External Data Memory Write Cycle

ISTATE 4| STATE 5 | STATE 6 | STATE 1 | STATE 2 } STATE 3 | STATE 4 | STATE 5]
piip2ipPilpP2lpPilP2ipPiipP2iPiiP2]PilP2ipPilp2lpPi|P2

PO, P1 PO, P1
INPUTS SAMPLED:
P2, P3, RST P2, P3, RST

MOV PORT, SRC: OLD DATA NEW DATA
SERIAL PORT
SHIFT CLOCK
(MODE 0)

—»| |«— RXD PIN SAMPLED RXD SAMPLED —»| |<«—

Figure 2-41. Port Operation

2-35

CHAPTER 3

Programmer's Guide

Memory Organization
Program Memory
Data Memory
Direct and Indirect Address Area

Special Function Registers
Contents of SFRs After Power-On
SFR Memory Map
Program Status Word (PSW)
Power Control Register (PCON)

Interrupts

Interrupt Enable Register (IE)

Assigning Higher Priority Levels

Interrupt Priority Register (IP)

Timer/Counter Control Register (TCON)
Timer/Counter Mode Control Register (TMOD)

Timer Set-Up
Timer/Counter 0
Timer/Counter 1

Timer/Counter 2 Control Register (T2CON)
Timer/Counter 2 Set-Up

Serial Port Control Register (SCON)
Serial Port Set-Up
Generating Baud Rates

CHAPTER 3 pu |
Programmer's Guide

INTRODUCTION

This chapter presents a programmer’s reference guide to the “core” architecture of the 8051 Family. The description of
the “8051” in this chapter applies to all 8051 Family members. The term “8052” is used to refer to an 8051AH with a
double amount of ROM and RAM, and an extra timer called Timer 2. Itis also included in this “core” discussion because
its features are often found in other enhanced 8051 Family members. (See Members of the Family in Chapter 1).

MEMORY ORGANIZATION

Program Memory

The 8051 has separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64K
bytes long. The lower 4K (8K for the 8052) may reside on-chip. Figure 3-1 shows a map of the 8051 program memory;
Figure 3-2 shows a map of the 8052 program memory.

FFFF FFFF
\
60K
BYTES
EXTERNAL
84K
———— OR ——> BYTES
EXTERNAL
1000
AND
OFFF
4K BYTES J
INTERNAL
0000 0000

Figure 3-1. The 8051 Program Memory

3-1

CHAPTER 3

Programmer's Guide
FFFF FFFF
\
56 K
BYTES
EXTERNAL
84 K
OR] BYTES
EXTERNAL
2000
AND
1FFF
8K BYTES S
INTERNAL
0000 0000
Figure 3-2. The 8052 Program Memory
Data Memory

The 8051 can address up to 64K bytes of external Data Memory. The “MOVX” instruction is used to access the external
data memory. (Refer to the 8051 Family Instruction Set, in Chapter 4.) ‘

The 8051 has 128 bytes of on-chip RAM (256 bytes in the 8052) plus a number of Special Function Registers (SFRs).
The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing
(MOV @ Ri). Figure 3-3 shows the 8051 and the 8052 Data Memory organization.

3-2

CHAPTER 3
Programmer's Guide

OFFF
INTERNAL
i N 84K
SFRs BYTES
DIRECT EXTERNAL
ADDRESSING
ONLY
80
AND
7 >
DIRECT &
INDIRECT
ADDRESSING
00 s 0000
a. The 8051
FFFF
INTERNAL
INDIRECT
ADDRESSING ONLY
80H TO FFH
FF
64K
SFRs BYTES
DIRECT EXTERNAL
ADDRESSING
ONLY > AND
80 3
7F
DIRECT &
INDIRECT
ADDRESSING
00 S 0000

b. The 8052

Figure 3-3. Data Memory

3-3

CHAPTER 3
Programmer’s Guide

Indirect Address Area

Figure 3-3b the SFRs and the indirect address RAM have the same addresses (80H-OFFH). Nevertheless, they are two separate
areas and are accessed in two different ways.

For example, the instruction

MOV 80H,#0AAH

writes OAAH to Port 0, which is one of the SFRs, and the instruction
MOV RO,#80H
MOV @RO,#0BBH

writes OBBH in location 80H of the data RAM. Thus, after execution of both of the above instructions Port 0 will
contain OAAH and location 80 of the RAM will contain OBBH.

Direct and Indirect Address Area

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into three segments as listed below
and shown in Figure 3-4.

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). ASM-51 and the device after reset default to register
bank 0. To use the other register banks the user must select them in the software. Each register bank contains eight 1-byte registers,
0 through 7.

Reset initializes the Stack Pointer to location 07H and it is incremented once to start from location 08H which is the
first register (RO) of the second register bank. Thus, in order to use more than one register bank, the SP should be
intialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this
segment can be directly addressed (0-7FH).

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their
addresses, ie. 0 to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0—7 can also be referred to
as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7 and so on.

Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: Bytes 30H through 7FH are available to the user as data RAM. However, if the stack pointer
has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction.

CHAPTER 3

Programmer's Guide
-— 8 Bytes 2
78 13
70 n
6F
67
SCRATCH
58 5F
PAD
50 57
AREA
48 aF
40 a7
38 3F
30 37
2 ...7TF|2F g
ADDRESSABLE
210... 27 SEGMENT
18 3 1F
10 2 17 REGISTER
08 1 OF BANKS
0 o7

Figure 3-4. 128 Bytes of RAM Direct and Indirect Addressable

3-5

CHAPTER 3

Programmer's Guide

SPECIAL FUNCTION REGISTERS

Table 3-1 contains a list of all the SFRs and their addresses.

Comparing Table 3-1 and figure 3-5 shows th.

Figure 3-5.

at all of the SFRs that are byte-and bit-addressable are located on the first column in

Table 3-1

Symbol Name Address
*ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word 0DOH
SP Stack Pointer 81H

DPTR Data Pointer 2 Bytes
DPL Low Byte 82H
DPH High Byte 83H
*PO Port0 80H
*P1 Port 1 90H
*P2 Port 2 0AOH
*P3 Port 3 0BOH
*IP Interrupt Priority Control 0B8H
*IE Interrupt Enable Control 0A8H
TMOD Timer/Counter Mode Control 89H
*TCON Timer/Counter Control 88H
*+T2CON Timer/Counter 2 Control 0C8H
THO Timer/Counter 0 High Byte 8CH
TLO Timer/Counter 0 Low Byte 8AH
TH1 Timer/Counter 1 High Byte 8DH
TL1 Timer/Counter 1 Low Byte 8BH
+TH2 Timer/Counter 2 High Byte 0CDH
+TL2 Timer/Counter 2 Low Byte 0CCH
+RCAP2H T/C 2 Capture Reg. High Byte 0CBH
+RCAP2L T/C 2 Capture Reg. Low Byte 0CAH
*SCON Serial Control 98H
SBUF Serial Data Buffer 99H
PCON Power Control 87H

* = Bit addressable
+ = 8052 only

CHAPTER 3
Programmer's Guide

What Do the SFRs Contain Just After Power-on or a Reset?

Table 3-2 lists the contents of each SFR after power-on or a hardware reset.

Table 3-2. Contents of the SFRs After Reset

Register Value in Binary
*ACC 00000000
*B 00000000
*PSW 00000000
SP 00000111
DPTR
DPH 00000000
DPL 00000000
*PO 11111111
*P1 11111111
*P2 11111111
*P3 11111111
*IP 8051 XXX00000,
8052 XX000000
*IE 8051 0XX00000,
8052 0X000000
TMOD 00000000
*TCON 00000000
*+T2CON 00000000
THO 00000000
TLO 00000000
THA1 00000000
TL1 00000000
+TH2 00000000
+TL2 00000000
+RCAP2H 00000000
+RCAP2L 00000000
*SCON 00000000
SBUF Indeterminate
PCON NMOS OXXXXXXX
CMOS 0XXX0000
X = Undefined
* = Bit Addressable
+ = 8052 only

3-7

CHAPTER 3
Programmer's Guide

SFR Memory Map
8 Bytes
F8 ,
FO B
E8
EO ACC
D8
DO PSW
C8 | T2CON RCAP2L | RCAP2H | TL2 | TH2
co
B8 IP
BO P3
A8 IE
A0 P2
98 SCON SBUF
80 P1
88 TCON TMOD TLO TLA THO | THA
80 PO SP DPL DPH PCON
1 Flgure 3-5. Memory Map
igdressable

FF
F7
EF
E7
DF
D7
CF
c7
BF
B7
AF
A7
oF
97
8F
87

3-8

CHAPTER 3
Programmer’s Guide

Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit
is provided for quick reference. For more detailed information refer to Architecture, Chapter 2.

PSW: Program Status Word. Bit Addressable.

| ov | ac | Fo | mst rso | ov | — [P |
CY PSW.7 Carry Flag.
AC PSW.6 Auxiliary Carry Flag.
FO PSW.5 Flag O available to the user for general purpose.
RS1 PSW.4 Register Bank selector bit 1 (SEE NOTE 1).
RSO PSW.3 Register Bank selector bit 0 (SEE NOTE 1).
ov PSW.2 Overflow Flag.
— PSW.1 Not implemented, reserved for future use.*
P PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of
‘1’ bits in the accumulator.
NOTE:
1. The value presented by RS0 and RS1 selects the corresponding register bank.
RS1 RSO Register Bank Address

0 0 0 00H-07H

0 1 1 08H-OFH

1 0 2 10H-17H

1 1 3 18H-1FH

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

PCON: Power Control Register. Not Bit Addressable.

smoo | — [— [— [et | afo | pD | L |

SMOD Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD = 1, the baud rate is doubled
when the Serial Port is used in modes 1, 2, or 3.

— Not implemented, reserved for future use.*

—_ Not implemented, reserved for future use.*

— Not implemented, reserved for future use.*

GF1 General purpose flag bit.

GF0 General purpose flag bit.

PD Power Down bit. Setting this bit activates Power Down operation in the 80C51BH. (Available only in
CMOS).

IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the 80C51BH. (Available only in CMOS).
If 1s are written to PD and IDL at the same time, PD takes precedence.

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

CHAPTER 3
Programmer's Guide

Interrupts

In order to use any of the interrupts in the 8051 Family, the following three steps must be taken.

1. Set the EA (enable all) bit in the IE register to 1.

2. Set the corresponding individual interrupt enable bit in the IE register to 1.

3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

Interrupt Vector
Source Address

IEO 0003H

TFO 000BH

1E1 0013H

TF1 001BH

RI&TI 0023H

TF2 & EXF2 002BH

In addition, for external interrupts, pins INTO and INT1 (P3.2 and P3.3) must be set to 1, and depending on whether
the interrupt is to be level or transition activated, bits ITO or IT1 in the TCON register may need to be set to 1.

ITx =0 Ievél activated

ITx = 1 transition activated

IE: Interrupt Enable Register. Bit Addressable.

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

| A | — | em2 | es | Em [ex1 | E0 | Exo |

EA IE.7 Disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt
source is individually enabled or disabled by setting or clearing its enable bit.

— IE.6 Not implemented, reserved for future use.*

ET2 IE.5 Enable or disable the Timer 2 overflow or capture interrupt (8052 only).

ES IE4 Enable or disable the serial port interrupt.

ET1 IE.3 Enable or disable the Timer 1 overflow interrupt.

EX1 IE.2 Enable or disable External Interrupt 1.

ETO 1IE.1 Enable or disable the Timer O overflow interrupt.

EXO IE.0 Enable or disable External Interrupt O.

*User software should not write 1s to reserved bits. These bits niay be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

3-10

CHAPTER 3
Programmer's Guide

Assigning Higher Priority to One or More Interrupts

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1.

Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt.

Priority Within Level
Priority within level is only to resolve simultaneous requests of the same priority level.
From high to low, interrupt sources are listed below:

1IEO

TFO

1IE1

TF1

RI or TI

TF2 or EXF2

IP: Interrupt Priority Register. Bit Addressable

If the bit is 0, the corresponding interrupt has a lower priority; if the bit is 1 the corresponding interrupt has a higher priority.

[—] — T ez [ps [pmr | px1 | pPro [Pxo |

— IP. 7 Not implemented, reserved for future use.*

— IP. 6 Not implemented, reserved for future use.*

PT2 IP. 5 Defines the Timer 2 interrupt priority level (8052 only).
PS IP. 4 Defines the Serial Port interrupt priority level.

PT1 IP. 3 Defines the Timer 1 interrupt priority level.

PX1 IP. 2 Defines External Interrupt 1 priority level.

PTO IP. 1 Defines the Timer O interrupt priority level.

PX0 IP.0 Defines the External Interrupt O priority level.

*User software should not write 1s to reserved bits. These bits may be used in future 8051 Family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

CHAPTER 3
Programmer’s Guide

TCON: Timer/Counter Control Register. Bit Addressable

| 7F1 | tR1 | TF0 | TRO | E1 | M | iEO | 1m0 |

TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hard-
ware as processor vectors to the interrupt service routine.

TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF.

TFO TCON.5 Timer O overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hard-
ware as processor vectors to the service routine.

TRO TCON. 4 Timer O run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.

IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected.
Cleared by hardware when interrupt is processed.

IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

1IEO TCON. 1 External Interrupt O edge flag. Set by hardware when External Interrupt edge detected. Cleared
by hardware when interrupt is processed.

ITO TCON. 0 Interrupt O type control bit. Set/cleared by software to specify falling edge/low level triggered

External Interrupt.

TMOD: Timer/Counter Mode Control Register. Not Bit Addressable

GATE | G/T | M1 | Mo | GATE | C/T | M1 | Mo |
AN J \ /

GATE

C/T

Mi
MO

NOTE 1:

~v v

TIMER 1 TIMER 0

When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERX will run only.while INTXx pin is high
(hardware control). When GATE = 0, TIMER/COUNTERX will run only while TRx = 1 (software

control).

Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Coun-
ter operation (input from Tx input pin).

Mode selector bit. (NOTE 1)

Mode selector bit. (NOTE 1)

~-20o0X

=
o032

-

Operating Mode

0 13-bit Timer (8048 Family compatible)

1 16-bit Timer/Counter

2 8-bit Auto-Reload Timer/Counter

3 (Timer 0) TLO is an 8-bit Timer/Counter controlled by the standard Timer 0
control bits, THO is an 8-bit Timer and is controlied by Timer 1 control bits.

3 (Timer 1) Timer/Counter 1 stopped.

3-12

CHAPTER 3
Programmer's Guide

TIMER SET-UP

Tables 3-3 through 3-6 give some values for TMOD which can be used to set up Timer 0 in different modes.

It is assumed that only one timer is being used at a time. If it is desired to run Timer 0 and 1 simultaneously, in any mode, the value
in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 3-5 and 3-6).

For example, if it is desired to run Timer O in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER,
then the value that must be loaded into TMOD is 69H (09H from Table 3-3 Ored with 60H from Table 3-6).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different
point in the program by setting bit TRx (in TCON) to 1.

Timer/Counter 0
As a Timer:
Table 3-3
TMOD
MODE TIMER 0 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 00H 08H
1 16-bit Timer 01H 09H
2 8-bit Auto-Reload 02H 0AH
3 two 8-bit Timers 03H 0BH
As a Counter:
Table 3-4
TMOD
MODE COUNTER 0 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 04H OCH
1 16-bit Timer 05H ODH
2 8-bit Auto-Reload 06H OEH
3 one 8-bit Counter 07H OFH
NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TRO in the software.

2. The Timer is turned ON/OFF by the 1 to O transition on INTO (P3.2) when TRO = 1
(hardware control).

CHAPTER 3
Programmer's Guide

Timer/Counter 1

As a Timer:
Table 3-5
TMOD
MODE TIMER 1 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 00H 80H
1 16-bit Timer 10H 90H
2 8-bit Auto-Reload 20H AOH
3 does not run 30H BOH
As a Counter:
Table 3-6
TMOD
MODE COUNTER 1 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 40H COH
1 16-bit Timer 50H DOH
2 8-bit Auto-Reload 60H EOH
3 not available —_ —_—
NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.
2. The timer is turned ON/OFF by the 1-to-0 transition on INT1 (P3.3) when TR1 =1

(hardware control).

3-14

CHAPTER 3
Programmer's Guide

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE.

8052 Only

| 7F2 | ExF2 | ROk | Toik | ExeN2 | TR2 | c/T2 | cp/RIE |

TF2 T2CON. 7 Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when
either RCLK = 1 or CLK = 1

EXF2 T2CON. 6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on
T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU
to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.

RCLK T2CON. 5 Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
receive clock in modes 1 & 3. RCLK = 0 causes Timer 1 overflow to be used for the receive
clock.

TLCK T2CON. 4 Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
transmit clock in modes 1 & 3. TCLK = O causes Timer 1 overflows to be used for the
transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of
negative transition on T2EX if Timer 2 is not being used to clock the Serial Port.
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON. 2 Software START/STOP control for Timer 2. A logic 1 starts the Timer.

C/T2 T2CON. 1 Timer or Counter select.

0 = Internal Timer. 1 = External Event Counter (falling edge triggered).

CP/RL2 T2CON.0

Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if
EXEN2 = 1. When cleared, Auto-Reloads will occur either with Timer 2 overflows or
negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1,
this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overflow.

3-15

CHAPTER 3
Programmer's Guide

Timer/Counter 2 Set-up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit.
Therefore, bit TR2 must be set separately to turn the Timer on.

As a Timer:
Table 3-7
T2CON
MODE INTERNAL EXTERNAL
CONTROL CONTROL
(NOTE 1) (NOTE 2)

16-bit Auto-Reload 00H 08H

16-bit Capture 01H 09H

BAUD rate generator receive &

transmit same baud rate 34H 36H

receive only 24H 26H

transmit only 14H 16H
As a Counter:

Table 3-8
TMOD
MODE INTERNAL EXTERNAL
CONTROL CONTROL
(NOTE 1) (NOTE 2)
16-bit Auto-Reload 02H 0AH
16-bit Capture 03H 0BH

NOTES:

1. Capture/Reload occurs only on Timer/Counter overflow.
2. Capture/Reload occurs on Timer/Counter overflow and a 1 to O transition on T2EX
(P1.1) pin except when Timer 2 is used in the baud rate generating mode.

3-16

CHAPTER 3
Programmer's Guide

SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE.

| sMo | smi | sm2 | mren | 188 | mB8 | T | A |
SMO SCON. 7 Serial Port mode specifier. (NOTE 1).

SM1 SCON. 6 Serial Port mode specifier. (NOTE 1).

SM2 SCON. 5 Enables the multiprocessor communication feature in modes 2 & 3. In mode 2 or 3, if SM2 is set
to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 = 1
then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0.
(See Table 9).

REN SCON. 4 Set/Cleared by software to Enable/Disable reception.

TBS8 SCON. 3 The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software.

RBS8 SCON. 2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit
that was received. In mode 0, RB8 is not used.

TI SCON. 1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the
beginning of the stop bit in the other modes. Must be cleared by software.
RI SCON. 0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway
through the stop bit time in the other modes (except see SM2). Must be cleared by software.
NOTE 1:
SMO SM1 Mode Description Baud Rate
0 0 0 SHIFT REGISTER Fosc./12
0 1 1 8-Bit UART Variable
1 0 2 9-Bit UART Fosc./64 OR
Fosc./32
1 1 3 9-Bit UART Variable
Serial Port Set-up
Table 3-9
MODE SCON SM2 VARIATION
(1) ;g: Single Processor
Environment
2 90H SM2 =
3 DOH (SM2 = 0)
? 7'\:)/:' Multiprocessor
Environment
2 BOH SM2 = 1
3 FOH (SM2 = 1)

3-17

CHAPTER 3
Programmer's Guide

GENERATING BAUD RATES

Serial Port in Mode 0

Modq 0 has a fixed baud rate which is 1/12 of the oscillator frequency. To run the serial port in this mode none of
the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Osc Freq

Baud Rate =
12

Serial Port in Mode 1

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (8052 only).

Using Timer/Counter 1 to Generate Baud Rates:
For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

K x Oscillator Freq.
32x12x [256 — (TH1)]

Baud Rate =

If SMOD
If SMOD

0, then K
1, then K

1.
2. (SMOD is the PCON register).

(]

Most of the time the user knows the baud rate and needs to know the reload value for THI1.
Therefore, the equation to calculate TH1 can be written as:

_ K x Osc Freq.
THT = 256 ~ 254 xbaud rate

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In
this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register. (ie, ORL
PCON, # 80H). The address of PCON is 87H.

Using Timer/Counter 2 to Generate Baud Rates:

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this
chapter. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

Timer 2 Overflow Rate

Baud Rate = 6

And if it is being clocked internally the baud rate is:

Osc Freq
32 x [65536 — (RCAP2H, RCAP2L)]

Baud Rate =

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

Osc Freq

RCAP2H, RCAP2L = 65536 — > e oo

3-18

CHAPTER 3
Programmer's Guide

Serial Port in Mode 2

The baud rate is fixed in this mode and is ¥, or Y, of the oscillator frequency depending on the value of the SMOD
bit in the PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.
SMOD = 1, Baud Rate = Y, Osc Freq.
SMOD = 0, Baud Rate = /5, Osc Freq.

To set the SMOD bit: ORL PCON, #80H. The address of PCON is 87H.

Serial Port in Mode 3

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

3-19

CHAPTER 4

Instruction Set

Program Status Word
Addressing Modes
Arithmetic Instructions
Logical Instructions

Data Transfers

Boolean Instructions
Jump Instructions
Instruction Set Summary
Instruction Definitions

CHAPTER 4

¢\

Instruction Set

INTRODUCTION

All members of the 8051 Family execute the same instruc-
tion set, optimized for 8-bit control applications. The
instruction set provides a variety of fast addressing modes
for accessing the internal RAM to facilitate byte opera-
tions on small data structures. It provides extensive sup-
port for one-bit variables as a separate data type, allowing
direct bit manipulation in control and logic systems that
requrie Boolean processing. An overview of the instruc-
tion set is presented below, with a brief description of how
certain instructions might be used.

PROGRAM STATUS WORD

The Program Status Word (PSW) contains several
status bits that reflect the current state of the CPU. The
PSW, shown in Figure 4-1, resides in SFR space. It con-
tains the Carry bit, the Auxiliary Carry (for BCD oper-
ations), the two register bank select bits, the Overflow
flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a
Carry bit in arithmetic operations, also serves as the
“Accumulator” for a number of Boolean operations.

The bits RSO and RS1 are used to select one of the four
register banks shown in Figure 1-7 . A number of instruc-
tions refer to these RAM locations as RO through R7.
The selection of which of the four banks is being re-
ferred to is made on the basis of the bits RSO and RS1
at execution time.

The Parity bit reflects the number of 1s in the Accumu-
lator: P = 1 if the Accumulator contains an odd num-
ber of 1s, and P = 0 if the Accumulator contains an
even number of 1s. Thus the number of 1s in the Accu-
mulator plus P is always even.

Two bits in the PSW are uncommitted and may be used
as general purpose status flags.

ADDRESSING MODES

The addressing modes in the 8051 Family instruction set are as
follows:

Direct Addressing

In direct addressing the operand is specified by an 8-bit
address field in the instruction. Only internal Data
RAM and SFRs can be directly addressed.

Indirect Addressing

In indirect addressing the instruction specifies a register
which contains the address of the operand. Both inter-
nal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be RO or
R1 of the selected register bank, or the Stack Pointer.
The address register for 16-bit addresses can only be the
16-bit “data pointer” register, DPTR.

J o] ac] ro]rsi]rso] ov |

1r]

PSW 7
CARRY FLAG RECEIVES CARRY OUT
FROM BIT 1 OF ALU OPERANDS

PSW 6

AUXILIARY CARRY FLAG RECEIVES
CARRY OUT FROM BIT 1 OF
ADDITION OPERANDS

PSW 5
GENERAL PURPOSE STATUS FLAG

PSW 4

PSW O

PARITY OF ACCUMULATOR SET

BY HARDWARE TO 1 IF IT CONTAINS
AN ODD NUMBER OF 1S, OTHERWISE
IT IS RESET TO 0

——— PSW 1

USER DEFINABLE FLAG

PSW 2
OVERFLOW FLAG SET BY
ARITHMETIC OPERATIONS

REGISTER BANK SELECT BIT 1

PSW 3
REGISTER BANK SELECT BIT O

Figure 4-1. PSW (Program Status Word) Register in 8051 Family Devices

4-1

CHAPTER 4
Instruction Set

Register Instructions

The register banks, containing registers RO through R7,
can be accessed by certain instructions which carry a
3-bit register specification within the opcode of the in-
struction. Instructions that access the registers this way
are code efficient, since this mode eliminates an address
byte. When the instruction is executed, one of the eight
registers in the selected bank is accessed. One of four
banks is selected at execution time by the two bank
select bits in the PSW.

Register-Specific Instructions

Some instructions are specific to a certain register. For
example, some instructions always operate on the Ac-
cumulator, or Data Pointer, etc., so no address byte is
needed to point to it. The opcode itself does that. In-
structions that refer to the Accumlator as A assemble
as accumulator-specific opcodes.

Immediate Constants

The value of a constant can follow the opcode in Pro-
gram Memory. For example,

MOV A, #100

loads the Accumulator with the decimal number 100.
The same number could be specified in hex digits as
64H.

Indexed Addressing

Only Program Memory can be accessed with indexed
addressing, and it can only be read. This addressing
mode is intended for reading look-up tables in Program
Memory. A 16-bit base register (either DPTR or the
Program Counter) points to the base of the table, and
the Accumulator is set up with the table entry number.
The address of the table entry in Program Memory is
formed by adding the Accumulator data to the base
pointer.

Another type of indexed addressing is used in the “case
jump” instruction. In this case the destination address
of a jump instruction is computed as the sum of the
base pointer and the Accumulator data.

ARITHMETIC INSTRUCTIONS

The menu of arithmetic instructions is listed in Table 4-1.
The table indicates the addressing modes that can be
used with each instruction to access the <byte> oper-
and. For example, the ADD A, <byte> instruction can
be written as:

ADD A,7FH (direct addressing)
ADD A,@RO (indirect addressing)
ADD AR7 (register addressing)
ADD A,#127 (immediate constant)

Table 4-1. A List of the 8051 Family Arithmetic Instructions

Mnemonic Operation Addressing Modes _Er)'(ecutlon

Dir Ind Reg imm me (u.8)
ADD A, <byte> A = A + <byte> X X X X 1
ADDC A, <byte> A=A+ <byte> +C X X X X 1
SUBB A, <byte> A=A—- <byte>-C X X X X 1
INC A A=A+1 Accumulator only 1
INC <byte> <byte> = <byte> + 1 x | o x | x | 1
INC DPTR DPTR = DPTR + 1 Data Pointer only 2
DEC A A=A-1 Accumulator only 1
DEC <byte> <byte> = <byte> -1 | X | x | x | 1
MUL AB B:A =BxA ACC and B only 4
DIV AB 2 'GLLA@]B] ACC and B only 4
DA A Decimal Adjust Accumulator only 1

42

CHAPTER 4
Instruction Set

The execution times listed in Table 4-1 assume a 12MHz
clock frequency. All of the arithmetic instructions exe-
cute in 1 us except the INC DPTR instruction, which
takes 2 us, and the Multiply and Divide instructions,
which take 4 us.

Note that any byte in the internal Data Memory space
can be incremented or decremented without going
through the Accumulator.

One of the INC instructions operates on the 16-bit
Data Pointer. The Data Pointer is used to generate
16-bit addresses for external memory, so being able to
increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator
by the data in the B register and puts the 16-bit product
into the concatenated B and Accumulator registers.

The DIV AB instruction divides the Accumulator by
the data in the B register and leaves the 8-bit quotient
in the Accumulator, and the 8-bit remainder in the B
register.

Oddly enough, DIV AB finds less use in arithmetic
‘“divide” routines than in radix conversions and pro-
grammable shift operations. An example of the use of
DIV AB in a radix conversion will be given later. In

shift operations, dividing a number by 20 shifts its n
bits to the right. Using DIV AB to perform the division
completes the shift in 4 us and leaves the B register
holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic opera-
tions. In BCD arithmetic, ADD and ADDC instruc-
tions should always be followed by a DA A operation,
to ensure that the result is also in BCD. Note that DA
A will not convert a binary number to BCD. The DA
A operation produces a meaningful result only as the
second step in the addition of two BCD bytes.

LOGICAL INSTRUCTIONS

Table 4-2 shows the list of 8051 Family logical instructions.
The instructions that perform Boolean operations
(AND, OR, Exclusive OR, NOT) on bytes perform the
operation on a bit-by-bit basis. That is, if the Accumu-
lator contains 00110101B and <byte> contains
01010011B, then

ANL A, <byte>

will leave the Accumulator holding 00010001B.

Table 4-2. A List of the 8051 Family Logical Instructions

Mnemonic Operation Addressing Modes Execution

Dir | ind | Reg | Imm | Time(us)
ANL A, <byte> A = A .AND. <byte> X X X X 1
ANL <byte> A <byte> = <byte> .AND. A X 1
ANL <byte>,#data <byte> = <byte> .AND. #data X 2
ORL A, <byte> A = A.OR. <byte> X X X X 1
ORL <byte>,A <byte> = <byte> .OR. A X 1
ORL <byte>,#data <byte> = <byte> .OR. #data X 2
XRL A, <byte> A = A XOR. <byte> X X X X 1
XRL <byte>,A <byte> = <byte> .XOR. A X 1
XRL <byte>,#data <byte> = <byte> .XOR. #data X 2
CRL A A = 00H Accumulator only 1
CPL A A = NOT.A Accumulator only 1
RL A Rotate ACC Left 1 bit Accumulator only 1
RLC A Rotate Left through Carry Accumulator only 1
RR A Rotate ACC Right 1 bit Accumulator only 1
RRC A Rotate Right through Carry Accumulator only 1
SWAP A Swap Nibbles in A Accumulator only 1

43

CHAPTER 4
Instruction Set

The addressing modes that can be used to access the
<byte> operand are listed in Table 3. Thus, the ANL
A,<byte> instruction may take any of the forms

ANL A,7FH (direct addressing)
ANL A,@R1 (indirect addressing)
ANL ARé6 (register addressing)

ANL A,#53H (immediate constant)

All of the logical instructions that are Accumulator-
specific execute in 1us (using a 12 MHz clock). The
others take 2 ps.

Note that Boolean operations can be performed on any
byte in the internal Data Memory space without going
through the Accumulator. The XRL <byte>, #data
instruction, for example, offers a quick and easy way to
invert port bits, as in

XRL Pl1,#0FFH

If the operation is in response to an interrupt, not using
the Accumulator saves the time and effort to stack it in
the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the
Accumulator 1 bit to the left or right. For a left rota-
tion, the MSB rolls into the LSB position. For a right
rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and
low nibbles within the Accumulator. This is a useful
operation in BCD manipulations. For example, if the
Accumulator contains a binary number which is known
to be less than 100, it can be quickly converted to BCD
by the following code:

MOV B,#10
DIV AB
SWAP A
ADD AB

Dividing the number by 10 leaves the tens digit in the
low nibble of the Accumulator, and the ones digit in the
B register. The SWAP and ADD instructions move the
tens digit to the high nibble of the Accumulator, and
the ones digit to the low nibble.

DATA TRANSFERS

Internal RAM

Table 4-3 shows the menu of instructions that are avail-
able for moving data around within the internal memo-
ry spaces, and the addressing modes that can be used
with each one. With a 12 MHz clock, all of these in-
structions execute in either 1 or 2 ps.

The MOV <dest>, <src> instruction allows data to
be transferred between any two internal RAM or SFR
locations without going through the Accumulator. Re-
member the Upper 128 byes of data RAM can be ac-
cessed only by indirect addressing, and SFR space only
by direct addressing.

Note that in all 8051 Family devices, the stack resides in
on-chip RAM, and grows upwards. The PUSH instruc-
tion first increments the Stack Pointer (SP), then copies
the byte into the stack. PUSH and POP use only direct
addressing to identify the byte being saved or restored,
but the stack itself is accessed by indirect addressing
using the SP register. This means the stack can go into
the Upper 128, if they are implemented, but not into
SFR space.

Table 4-3. 8051 Family Data Transfer Instructions that Access Internal Data Memory Space

Mnemonic Operation Addressing Modes Execution

Dir | ind | Reg | Imm | Time (ne)
MOV A, <src> A = <src> X X X X 1
MOV <dest>,A <dest> = A X X X 1
MOV <dest>, <src> | <dest> = <src> X X X X 2
MOV DPTR,#data16 DPTR = 16-bitimmediate constant. X 2
PUSH <src> INC SP : MOV “@SP”,<src> X 2
POP <dest> MOV <dest>, “@SP” : DEC SP X 2
XCH A, <byte> ACC and <byte> exchange data X X X 1
XCHD A,@Ri ACC and @Ri exchange low nibbles X 1

4-4

CHAPTER 4

| 2a| 28] 2c]| 20| 2 | Acc

MOV A2EH 00 (12 |34 |56 (78| 78
MOV 2EH2DH | 00 | 12 | 34 | 56 | 56 | 78
MOV 2DH2CH | 00 | 12 | 34 | 34 | 56 | 78
MOV 2CH,2BH | 00 | 12 [12 [34 | 56 | 78
MOV 2BH,#0 00 1001121341561 78

(a) Using direct MOVs: 14 bytes, 9 us
| 2a | 28 | 2c | 20 | 26 | Acc

CLR A 00 | 12 | 34 | 56 | 78 00
XCH A2BH | 00 | 00 | 34 | 56 | 78 12
XCH A2CH | 00 { 00 | 12 | 56 | 78 34
XCH A2DH | 00 | 00 | 12 | 34 | 78 56
XCH A2EH | 00 | 00 | 12 | 34 | 56 78

(b) Using XCHs: 9 bytes, 5 us

Figure 4-2. Shifting a BCD Number
Two Digits to the Right

The Upper 128 are not implemented in 8051 Family de-
vices with 128 bytes of RAM. With these devices, if the
SP points to the Upper 128, PUSHed bytes are lost, and
POPed bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV
that can be used to initialize the Data Pointer (DPTR)
for look-up tables in Program Memory, or for 16-bit
external Data Memory accesses.

The XCH A, <byte> instruction causes the Accumu-
lator and addressed byte to exchange data. The XCHD
A,@Ri instruction is similar, but only the low nibbles
are involved in the exchange.

To see how XCH and XCHD can be used to facilitate
data manipulations, consider first the problem of shift-
ing an 8-digit BCD number two digits to the right. Fig-
ure 4-2 shows how this can be done using direct
MOYVs, and for comparison how it can be done using
XCH instructions. To aid in understanding how the
code works, the contents of the registers that are hold-
ing the BCD number and the content of the Accumula-
tor are shown alongside each instruction to indicate
their status after the instruction has been executed.

After the routine has been executed, the Accumulator
contains the two digits that were shifted out on the
right. Doing the routine with direct MOVs uses 14 code
bytes and 9 ps of execution time (assuming a 12 MHz
clock). The same operation with XCHs uses less code
and executes almost twice as fast.

Instruction Set
2A|28|2c| 20| 2| ACC
MOV R1,#2EH o0[12[34[56] 78] xx
MOV RO, #2DH 00l12134156] 781 xx
loop for R1 = 2EH:

LOOP: MOV A,@R1 00|12|34|56|78]| 78
XCHD A,@R0 00[12{34|58|78| 76
SWAP A 00[12{34|58|78| 67
MOV @RiA 00|12|34|58|67| 67
DEC Ri1 00(12|34)58|67| 67
DEC RO 00l12134]58167] 67
CJNE R1,#2AH,LOOP v

loop for R1 = 2DH: 00| 12|38 45|67 45
loop for R1 = 2CH: 00{18|23|45|67| 23
loop for R1 = 2BH: o8lo1i23l45167] 01
CLR A oa|o1,23 45‘67' 00
XCH A2AH oolo1i23l45167] 08

Figure 4-3. Shifting a BCD Number
One Digit to the Right

To right-shift by an odd number of digits, a one-digit
shift must be executed. Figure 4-3 shows a sample of
code that will right-shift a BCD number one digit, us-
ing the XCHD instruction. Again, the contents of the
registers holding the number and of the Accumulator
are shown alongside each instruction.

First, pointers R1 and RO are set up to point to the two
bytes containing the last four BCD digits. Then a loop
is executed which leaves the last byte, location 2EH,
holding the last two digits of the shifted number. The
pointers are decremented, and the loop is repeated for
location 2DH. The CINE instruction (Compare and
Jump if Not Equal) is a loop control that will be de-
scribed later.

The loop is executed from LOOP to CINE for R1 =
2EH, 2DH, 2CH and 2BH. At that point the digit that
was originally shifted out on the right has propagated
to location 2AH. Since that location should be left with
Os, the lost digit is moved to the Accumulator.

External RAM

Table 4-4 shows a list of the Data Transfer instructions
that access external Data Memory. Only indirect ad-
dressing can be used. The choice is whether to use a
one-byte address, @Ri, where Ri can be either RO or

45

CHAPTER 4
Instruction Set

R1 of the selected register bank, or a two-byte address,
@DPTR. The disadvantage to using 16-bit addresses if
only a few K bytes of external RAM are involved is
that 16-bit addresses use all 8 bits of Port 2 as address
bus. On the other hand, 8-bit addresses allow one to
address a few K bytes of RAM, as shown in Figure 1-5,
without having to sacrifice all of Port 2.

All of these instructions execute in 2 us, with a
12 MHz clock.
Table 4-4. 8051 Family Data Transfer
Instructions that Access
External Data Memory Space

A\?V?L:h” Mnemonic Operation ET)I(:\:u(t:;')‘
8bits |MOVXA@Ri | feadextomal)
8bits | MOVX@RiA | Ao extomal 2

16bits | MOVX A.@DPTR | Read extorral 2
16bits | MOVX @DPTR,A e ool 2

Note that in all external Data RAM accesses, the Ac-
cumulator is always either the destination or source of
the data.

The read and write strobes to external RAM are acti-
vated only during the execution of a MOVX instruc-
tion. Normally these signals are inactive, and in fact if
they’re not going to be used at all, their pins are avail-
able as extra I/0 lines. More about that later.

Lookup Tables

Table 4-5 shows the two instructions that are available
for reading lookup tables in Program Memory. Since
these instructions access only Program Memory, the
lookup tables can only be read, not updated. The mne-
monic is MOVC for “move constant”.

If the table access is to external Program Memory, then
the read strobe is PSEN.

Table 4-5. The 8051 Family
Lookup Table Read Instructions

Mnemonic Operation .Erf;iu("ﬁ';
MOVC A,@A+DPTR | Read Pgm Memory 2
at (A+DPTR)
MOVC A,@A+PC Read Pgm Memory 2
at (A+PC)

The first MOVC instruction in Table 4-5 can accommo-
date a table of up to 256 entries, numbered O through
255. The number of the desired entry is loaded into the
Accumulator, and the Data Pointer is set up to point to
beginning of the table. Then

MOVC A,@A+DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, ex-
cept the Program Counter (PC) is used as the table
base, and the table is accessed through a subroutine.
First the number of the desired entry is loaded into the
Accumulator, and the subroutine is called:

MOV A,ENTRY_NUMBER
CALL TABLE

The subroutine “TABLE” would look like this:

TABLE: MOVC A,@A+PC
RET

The table itself immediately follows the RET (return)
instruction in Program Memory. This type of table can
have up to 255 entries, numbered 1 through 255. Num-
ber 0 can not be used, because at the time the MOVC
instruction is executed, the PC contains the address of
the RET instruction. An entry numbered 0 would be
the RET opcode itself.

BOOLEAN INSTRUCTIONS

8051 Family devices contain a complete Boolean (single-bit)
processor. The internal RAM contains 128 addressable
bits, and the SFR space can support up to 128 other
addressable bits. All of the port lines are bit-address-
able, and each one can be treated as a separate single-
bit port. The instructions that access these bits are not
just conditional branches, but a complete menu of
move, set, clear, complement, OR, and AND instruc-
tions. These kinds of bit operations are not easily ob-
tained in other architectures with any amount of byte-
oriented software.

46

CHAPTER 4
Instruction Set

Table 4-6. A List of the 8051 Family
Boolean Instructions

Mnemonic Operation ﬁ."‘;:"(t:;')‘
ANL C,bit |{C = C.AND. bit 2
ANL C,/bit {C = C.AND. .NOT. bit 2
ORL C,bit [C = C.OR.bit 2
ORL C,/bit |C = C.OR..NOT. bit 2
MOV C,bit |C = bit 1
MOV bit,C |bit=C 2
CLR C C=0 1
CLR bit bit = 0 1
SETB C C=1 1
SETB bit bit = 1 1
CPL C C = .NOT.C 1
CPL bit bit = .NOT. bit 1
JC rel JumpifC = 1 2
JNC rel JumpifC=0 2
JB bit,rel |{Jump if bit = 1 2
JNB bitrel |Jumpifbit =10 2
JBC bit,rel |Jumpifbit = 1; CLR bit 2

The instruction set for the Boolean processor is shown
in Table 4-6. All bit accesses are by direct addressing. Bit
addresses OOH through 7FH are in the Lower 128, and
bit addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port
pin:

MOV
MOV

CFLAG
P1.0,C

In this example, FLAG is the name of any addressable
bit in the Lower 128 or SFR space. An 1/0 line (the
LSB of Port 1, in this case) is set or cleared depending
on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accu-
mulator of the Boolean processor. Bit instructions that
refer to the Carry bit as C assemble as Carry-specific
instructions (CLR C, etc). The Carry bit also has a
direct address, since it resides in the PSW register,
which is bit-addressable.

Note that the Boolean instruction set includes ANL
and ORL operations, but not the XRL (Exclusive OR)
operation. An XRL operation is simple to implement in
software. Suppose, for example, it is required to form
the Exclusive OR of two bits:

C = bitl .XRL. bit2

The software to do that could be as follows:

MOV C,bitl
JNB bit2, 0OVER
CPL C.

OVER: (continue)

First, bitl is moved to the Carry. If bit2 = 0, then C
now contains the correct result. That is, bit] .XRL. bit2
= bitl if bit2 = 0. On the other hand, if bit2 = 1 C
now contains the complement of the correct result. It
need only be inverted (CPL C) to complete the opera-
tion.

This code uses the INB instruction, one of a series of
bit-test instructions which execute a jump if the ad-
dressed bit is set (JC, JB, JBC) or if the addressed bit is
not set (JNC, JNB). In the above case, bit2 is being
tested, and if bit2 = 0 the CPL C instruction is jumped
over.

JBC executes the jump if the addressed bit is set, and
also clears the bit. Thus a flag can be tested and cleared
in one operation.

All the PSW bits are directly addressable, so the Parity
bit, or the general purpose flags, for example, are also
available to the bit-test instructions.

Relative Offset

The destination address for these jumps is specified to
the assembler by a label or by an actual address in
Program Memory. However, the destination address
assembles to a relative offset byte. This is a signed
(two’s complement) offset byte which is added to the
PC in two’s complement arithmetic if the jump is exe-
cuted.

The range of the jump is therefore — 128 to + 127 Pro-
gram Memory bytes relative to the first byte following
the instruction.

4.7

CHAPTER 4
Instruction Set

JUMP INSTRUCTIONS

Table 4-7 shows the list of unconditional jumps.

Table 4-7. Unconditional Jumps
in 8051 Family Devices

Mnemonic Operation ET’I(:‘?(";';
JMP addr Jump to addr 2
JMP @A+DPTR | Jumpto A+DPTR 2
CALL addr Call subroutine at addr 2
RET Return from subroutine 2
RETI Return from interrupt 2
NOP No operation 1

The Table lists a single “JMP addr” instruction, but in
fact there are three—SJMP, LIMP and AJMP—which
differ in the format of the destination address. JMP is a
generic mnemonic which can be used if the program-
mer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address
as a relative offset, as described above. The instruction
is 2 bytes long, consisting of the opcode and the relative
offset byte. The jump distance is limited to a range of
—128 to + 127 bytes relative to the instruction follow-
ing the STMP.

The LIMP instruction encodes the destination address
as a 16-bit constant. The instruction is 3 bytes long,
consisting of the opcode and two address bytes. The
destination address can be anywhere in the 64K Pro-
gram Memory space.

The AJMP instruction encodes the destination address
as an 11-bit constant. The instruction is 2 bytes long,
consisting of the opcode, which itself contains 3 of the
11 address bits, followed by another byte containing the
low 8 bits of the destination address. When the instruc-
tion is executed, these 11 bits are simply substituted for
the low 11 bits in the PC. The high 5 bits stay the same.
Hence the destination has to be within the same 2K
block as the instruction following the AJMP.

In all cases the programmer specifies the destination
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the destina-
tion address into the correct format for the given in-
struction. If the format required by the instruction will
not support the distance to the specified destination ad-
dress, a “Destination out of range” message is written
into the List file.

The JMP @A +DPTR instruction supports case
jumps. The destination address is computed at execu-
tion time as the sum of the 16-bit DPTR register and
the Accumulator. Typically, DPTR is set up with the
address of a jump table, and the Accumulator is given
an index to the table. In a 5-way branch, for example,
an integer O through 4 is loaded into the Accumulator.
The code to be executed might be as follows:

MOV DPTR,#JUMP__TABLE
MOV A, INDEX__NUMBER
RL A

JMP @A +DPTR

The RL A instruction converts the index number ©
through 4) to an even number on the range 0 through 8,
because each entry in the jump table is 2 bytes long:

JUMP__TABLE:
AJMP CASE_0
AJMP CASE__1
AJMP CASE_2
AJMP CASE_3
AJMP CASE__4

Table 4-7 shows a single “CALL addr” instruction, but
there are two of them—LCALL and ACALL—which
differ in the format in which the subroutine address is
given to the CPU. CALL is a generic mnemonic which
can be used if the programmer does not care which way
the address is encoded.

The LCALL instruction uses the 16-bit address format,
and the subroutine can be anywhere in the 64K Pro-
gram Memory space. The ACALL instruction uses the
11-bit format, and the subroutine must be in the same
2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the address
into the correct format for the given instructions.

Subroutines should end with a RET instruction, which
returns execution to the instruction following the
CALL.

RETI is used to return from an interrupt service rou-
tine. The only difference between RET and RETI is
that RETI tells the interrupt control system that the
interrupt in progress is done. If there is no interrupt in
progress at the time RETI is executed, then the RETI
is functionally identical to RET.

4-8

CHAPTER 4
Instruction Set

Table 4-8. Conditional Jumps In 8051 Family Devices

Addressing Modes Execution

Mnemonic Operation Bir | ind | Reg T iom Time (us)
JZ rel Jumpif A =0 Accumulator only 2
INZ rel Jump if A # 0 Accumulatoronly 2
DJNZ <byte> rel Decrement and jump if not zero X X 2
CJNE A, <byte>rel Jump if A # <byte> X X 2
CJNE <byte>,#datarel | Jumpif <byte> # #data X X 2

Table 4-8 shows the list of conditional jumps available to the
8051 Family user. All of these jumps specify the desti-
nation address by the relative offset method, and so are
limited to a jump distance of — 128 to + 127 bytes from
the instruction following the conditional jump instruc-
tion. Important to note, however, the user specifies to
the assembler the actual destination address the same
way as the other jumps: as a label or a 16-bit constant.

There is no Zero bit in the PSW. The JZ and JNZ
instructions test the Accumulator data for that condi-
tion.

The DINZ instruction (Decrement and Jump if Not
Zero) is for loop control. To execute a loop N times,
load a counter byte with N and terminate the loop with
a DINZ to the beginning of the loop, as shown below
for N = 10:

MOV COUNTER, #10
LOOP: (begin loop)
*

*
*

(end loop)
DINZ COUNTER,LOOP
(continue)

The CINE instruction (Compare and Jump if Not
Equal) can also be used for loop control as in Figure 4-3.
Two bytes are specified in the operand field of the in-
struction. The jump is executed only if the two bytes
are not equal. In the example of Figure 4-3, the two
bytes were the data in R1 and the constant 2AH. The
initial data in R1 was 2EH. Every time the loop was
executed, R1 was decremented, and the looping was to
continue until the R1 data reached 2AH.

Another application of this instruction is in “greater
than, less than” comparisons. The two bytes in the op-
erand field are taken as unsigned integers. If the first is
less than the second, then the Carry bit is set (1). If the
first is greater than or equal to the second, then the
Carry bit is cleared.

49

CHAPTER 4
Instruction Set

Tabie 4-9. 8051 Instruction Set Summary

Interrupt Response Time: Refer to Chapter 2, page 2-24

Instructions that Affect Flag Settings(1)

Instruction Flag Instruction Flag
C OV AC C OV AC

ADD X X X CLRC (o]
ADDC X X X CPLC X
SUBB X X X ANLC,bit X

MUL o X ANLC,/bit X

DIV o X ORLCbit X

DA X ORLCbit X

RRC X MOV Cpbit X

RLC X CJNE X
SETBC 1

(Note that operations on SFR byte address 208 or
bit addresses 209-215 (i.e., the PSW or bits in the
PSW) will also affect flag settings.

Note on instruction set and addressing modes:

Rn — Register R7-RO of the currently se-
lected Register Bank.

— 8-bit internal data location’s address.
This could be an Internal Data RAM
location (0-127) or a SFR [i.e., I/0
port, control register, status register,
etc. (128-255)].

— 8-bit internal data RAM location (0-
255) addressed indirectly through reg-
ister R1 or RO.

#data — 8-bit constant included in instruction.

#data 16 — 16-bit constant included in instruction.

direct

@Ri

addr 16 — 16-bit destination address. Used by
LCALL & LJMP. A branch can be
anywhere within the 64K-byte Pro-
gram Memory address space.

addr 11 — 11-bit destination address. Used by

ACALL & AJMP. The branch will be
within the same 2K-byte page of pro-
gram memory as the first byte of the
following instruction.
rel — Signed (two’s complement) 8-bit offset
byte. Used by STMP and all condition-
al jumps. Range is —128 to +127
bytes relative to first byte of the fol-
lowing instruction.
bit — Direct Addressed bit in Internal Data
RAM or Special Function Register.
— New operation not provided by
8048AH/8049AH.

Mnemonic

Description

Byte

Oscillator
Period

ARITHMETIC OPERATIONS

ADD

ADD

ADD

ADD

ADDC

ADDC

ADDC

ADDC

SuBB

SuUBB

SuBB

SuBB

INC

INC
INC

INC

DEC

DEC

DEC

DEC

A,Rn
A,direct
A,@Ri

A, #data

A,Rn

A,direct

A,@Ri

A, #data

ARn

A,direct

A,@Ri

A, #data

A

Rn
direct

@Ri
A

Rn
direct

@Ri

Add register to
Accumulator

Add direct byte to
Accumulator
Add indirect RAM
to Accumulator
Add immediate
data to
Accumulator
Add register to
Accumulator

with Carry

Add direct byte to
Accumulator
with Carry

Add indirect
RAM to
Accumulator
with Carry

Add immediate
data to Acc

with Carry
Subtract Register
from Acc with
borrow

Subtract direct
byte from Acc
with borrow
Subtract indirect
RAM from ACC
with borrow
Subtract
immediate data
from Acc with
borrow
Increment
Accumulator
Increment register
Increment direct
byte

Increment direct
RAM

Decrement
Accumulator
Decrement
Register
Decrement direct
byte

Decrement
indirect RAM

12

12

12

12

12

12

12

12

12

12

12

12

12

12
12

12

12

12

12

12

4-10

CHAPTER 4
Instruction Set

Table 4-9. 8051 Instruction Set Summary (Continued)

Mnemonic

Description

Oscillator

Byte Period

Osclllator
Mnemonic Description Byte Perlod

ARITHMETIC OPERATIONS (Continued)

INC DPTR Increment Data 24
Pointer

MUL AB Multiply A & B 48

DIV AB Divide A by B 48

DA A Decimal Adjust 12
Accumulator

LOGICAL OPERATIONS

ANL ARn AND Register to 12
Accumulator

ANL Adirect AND direct byte 12
to Accumulator

ANL A,@Ri AND indirect 12
RAM to
Accumulator

ANL A, #data AND immediate 12
data to
Accumulator

ANL direct,A AND Accumulator 12
to direct byte

ANL direct,#data AND immediate 24
data to direct byte

ORL ARn OR register to 12
Accumulator

ORL Adirect OR direct byte to 12
Accumulator

ORL A,@Ri OR indirect RAM 12
to Accumulator

ORL A, #data OR immediate 12
data to
Accumulator

ORL direct,A OR Accumulator 12
to direct byte

ORL direct,#data OR immediate 24
data to direct byte

XRL ARn Exclusive-OR 12
register to
Accumulator

XRL A,direct Exclusive-OR 12
direct byte to
Accumulator

XRL A@Ri Exclusive-OR 12
indirect RAM to
Accumulator

XRL A, #data Exclusive-OR 12
immediate data to
Accumulator

XRL direct, A Exclusive-OR 12
Accumulator to
direct byte

LOGICAL OPERATIONS (Continued)
XRL direct,#data Exclusive-OR

CLR A

CPL A

RL A

RLC A

RR A

RRC A

SWAP A

DATA TRANSFER
MOV ARn

MOV Adirect
MOV A,@Ri

MOV A, #data

MOV RnA

MOV Rn,direct
MOV Rn,#data

MOV direct,A

immediate data
to direct byte
Clear
Accumulator
Complement

Accumulator
Rotate

Accumulator Left
Rotate
Accumulator Left
through the Carry
Rotate
Accumulator
Right

Rotate
Accumulator
Right through
the Carry

Swap nibbles
within the
Accumulator

Move
register to
Accumulator
Move direct
byte to
Accumulator
Move indirect
RAM to
Accumulator
Move
immediate
data to
Accumulator
Move
Accumulator
to register
Move direct
byte to
register
Move
immediate data
to register
Move
Accumulator
to direct byte

3 24

1 12

2 12

CHAPTER 4

Instruction Set
Table 4-9. 8051 Instruction Set Summary (Continued)

Mnemonic Description Byte O;zl:il::’or Mnemonic Description Byte o::!:::’or
DATA TRANSFER (Continued) XCH ARn Exchange 1 12
MOV direct,Rn Move register 24 register with

to direct byte Accumulator
MOV direct,direct Move direct 24 XCH Adirect Exchange 2 12
byte to direct direct byte
MOV direct,@Ri Move indirect 24 with
RAM to Accumulator
direct byte XCH A@Ri Exchange 1 12
MOV direct, #data Move 24 indirect RAM
immediate data with
to direct byte Accumulator
MOV @RiA Move 12 XCHD A,@Ri Exchange low- 1 12
Accumulator to order Digit
indirect RAM indirect RAM
MOV @Ridirect Move direct 24 with Acc
byte to BOOLEAN VARIABLE MANIPULATION
indirect RAM CLR (o] Clear Carry 1 12
MOV @Ri#data Move 12 CLR bit Clear direct bit 2 12
immediate SETB C Set Carry 1 12
data to SETB bit Set direct bit 2 12
indirect RAM CPL o] Complement 1 12
MOV DPTR,#data16 Load Data 24 Carry
Pointer with a CPL bit Complement 2 12
16-bit constant direct bit
MOVC A,@A+DPTR Move Code 24 ANL Cbit AND direct bit 2 24
byte relative to to CARRY
DPTR to Acc ANL C/bit ANDcomplement 2 24
MOVC A,@A+PC Move Code 24 of direct bit
byte relative to to Carry
PC to Acc ORL Cbit ORdirect bit 2 24
MOVX A,@Ri Move 24 to Carry
External ORL C/bit OR complement 2 24
RAM (8-bit of direct bit
addr) to Acc to Carry
MOVX A,@DPTR Move 24 MOV Chit Move diret bit 2 12
External to Carry
RAM (16-bit MOV bit,C Move Carry to 2 24
addr) to Acc direct bit
MOVX @Ri,A Move Acc to 24 Jc rel Jump if Carry 2 24
External RAM is set
(8-bit addr) JNC rel Jump if Carry 2 24
MOVX @DPTR,A Move Acc to 24 not set
External RAM JB bitrel Jump if direct 3 24
(16-bit addr) Bit is set
PUSH direct Push direct 24 JNB bitrel Jumpif direct 3 24
byte onto Bit is Not set
stack JBC bitrel Jump if direct 3 24
POP direct Pop direct 24 Bitis set &
byte from clear bit
stack

4-12

CHAPTER 4

Instruction Set

Table 4-9. 8051 Instruction Set Summary (Continued)

Mnemonic Description Byte o;:?:::” Mnemonic Description Byte 0::!:::;&
PROGRAM BRANCHING PROGRAM BRANCHING !Continued)
ACALL addr11 Absolute 2 24 CJNE Rn,#data,rel Compare 3 24
Subroutine immediate to
Call register and
LCALL addri6 Long 3 24 Jump if Not
Subroutine Equal
Call CINE @Ri,#data,rel Compare 3 24
RET Return from 1 24 immediate to
Subroutine indirect and
RET! Return from 1 24 Jump if Not
interrupt Equal
AJMP addr11 Absolute 2 24 DJINZ Rn,rel Decrement 2 24
Jump register and
LIMP addr16 Long Jump 3 24 Jump if Not
SIMP rel Short Jump 2 24 Zero
(relative addr) DJINZ direct,rel Decrement 3 24
JMP @A+DPTR Jump indirect 1 24 direct byte
relative to the and Jump if
DPTR Not Zero
Jz rel Jump if 2 24 NOP No Operation 1 12
Accumulator
is Zero
JNZ el Jump if 2 24
Accumulator
is Not Zero
CJNE Adirectrel Compare 3 24
direct byte to
Acc and Jump
if Not Equal
CJINE A, #datarel Compare 3 24
immediate to
Acc and Jump
if Not Equal

CHAPTER 4
Instruction Set

ACALL addrii1

INSTRUCTION DEFINITIONS

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address. The instruction
increments the PC twice to obtain the address of the following instruction, then pushes the
16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The
destination address is obtained by successively concatenating the five high-order bits of the
incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called
must therefore start within the same 2K block of the program memory as the first byte of the
instruction following ACALL. No flags are affected.

Initially SP equals O7H. The label “SUBRTN?” is at program memory location 0345 H. After
executing the instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain
25H and O1H, respectively, and the PC will contain 0345H.

2
2

|at0aga81 | 0001 | | a7abas5as| ada2atao

ACALL

(PC) « (PC) + 2

(SP) «— (SP) + 1

((SP)) «— (PC7.0)

(SP) «— (SP) + 1

((SP)) «— (PCys.3)
(PCj0.0) < page address

4-14

CHAPTER 4
Instruction Set

ADD A, <src-byte>

Function:
Description:

Example:

ADD A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ADD Adirect
Bytes:
Cycles:
Encoding:

Operation:

Add

ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumula-
tor. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or
bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an
overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6;
otherwise OV is cleared. When adding signed integers, OV indicates a negative number pro-
duced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme-
diate.

The Accumulator holds OC3H (11000011B) and register O holds OAAH (10101010B). The
instruction,

ADD ARO

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

1
1

o010 1rrr]

ADD
A) < (A) + Rn)

0010|0101 | | diectaddress

ADD
(A) < (A) + (direct)

4-15

CHAPTER 4

Instruction Set

ADD A,@Ri
‘ Bytes:
Cycles:
Encoding:

Operation:

ADD A, #data
Bytes:
Cycles:
Encoding:

Operation:

0010[011i]

ADD
A) < @A) + (Ry)

2
1

loo10]0100] | immediatedata |

ADD
(A) < (A) + #data

ADDC A,<src-byte>

Function:
Description:

Example:

Add with Carry

ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator
contents, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set,
respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding
unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of
bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme-
diate.

The Accumulator holds 0C3H (11000011B) and register 0 holds OAAH (10101010B) with the
carry flag set. The instruction,

ADDC A,RO

will leave 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and
OV set to 1.)

4-16

CHAPTER 4
Instruction Set

ADDC A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ADDC Adirect
Bytes:

Cycles:
Encoding:

Operation:

ADDC A,@RI

Bytes:
Cycles:
Encoding:

Operation:

ADDC A,+#data
Bytes:
Cycles:
Encoding:

Operation:

1
1

lOO11l1rrrl

ADDC
A= (@A) + (© +Ry

—

[0o011]0101] | directaddress

ADDC
(A) <= (A) + (C) + (direct)

1
1

loo11]o011i]|

ADDC
A) <= A) + (O + (R

2
1

| 001 1] 0100 I rimmediatedata

ADDC
(A) < (A) + (C) + #data

4-17

CHAPTER 4
Instruction Set

AJMP addr11

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Jump

AJMP transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode bits
7-5, and the second byte of the instruction. The destination must therefore be within the same
2K block of program memory as the first byte of the instruction following AJTMP.

The label “JMPADR” is at program memory location 0123H. The instruction,
AJMP JMPADR

is at location 0345H and will load the PC with 0123H.
2
2

| a1029a80 | 0001 | [a7a6a5a4 | a3 a2 at a0 |

AIJMP
(PC) « (PC) + 2
(PC10.0) < page address

ANL <dest-byte>,<src-byte>

Function:

Description:

Example:

Logical-AND for byte variables

ANL performs the bitwise logical- AND operation between the variables indicated and stores
the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, nor the input pins.

If the Accumulator holds 0C3H (11000011B) and register O holds 55H (01010101B) then the
instruction,

ANL ARO

will leave 41H.(01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of
bits in any RAM location or hardware register. The mask byte determining the pattern of bits
to be cleared would either be a constant contained in the instruction or a value computed in
the Accumulator at run-time. The instruction,

ANL P1,#01110011B

will clear bits 7, 3, and 2 of output port 1.

4-18

CHAPTER 4
Instruction Set

ANL A,Rn

Bytes:
Cycles:

Encoding:

Operation:

ANL Adirect

Bytes:
Cycles:

Encoding:

Operation:

ANL A,@Ri

Bytes:
Cycles:

Encoding:

Operation:

ANL A,#data

Bytes:
Cycles:

Encoding:

Operation:

0101|1rrr|

ANL
(A) < (A) A (Rn)

2
1

[o101]0101 |

rdirect address

ANL

(A) <= (A) A (direct)

1
1

[o101]011i]

ANL

A) <= A) N (RD)

2
1

[o101]o0100]

l immediate data j

ANL
(A) €« (A) A\ #data

CHAPTER 4
Instruction Set

ANL direct,A
Bytes: 2
Cycles: 1
Encoding: 0101|0010 | directaddress

Operation: ANL
(direct) €<— (direct) A (A)

ANL direct,#data

Bytes: 3
Cycles: 2
Encoding: | 0101 l 0011]] direct address] fimmediate data]

Operation: ANL
(direct) €<— (direct) A #data

ANL C,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical O then clear the carry flag; otherwise leave the
carry flag in its current state. A slash (/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but the
source bit itself is not affected. No other flags are affected.

Only direct addressing is allowed for the source operand.
Example: Set the carry flag if, and only if, P10 = 1, ACC.7 = 1, and OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7

ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG

ANL C,bit
Bytes: 2
Cycles: 2

Encoding: l 1000 ro 01 0] [bitaddressJ

Operation: ANL
(©) « (C) A (bit)

4-20

CHAPTER 4
Instruction Set

ANL C,/bit
Bytes:
Cycles:
Encoding:

Operation:

2
2

10110000 | bitaddress |

ANL
© «(©) A1y

CJNE <dest-byte>,<src-byte>,rel

Function:
Description:

Example:

Compare and Jump if Not Equal.

CINE compares the magnitudes of the first two operands, and branches if their values are not
equal. The branch destination is computed by adding the signed relative-displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction.
The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned
integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM location
or working register can be compared with an immediate constant.

The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the se-
quence,

; S . R7 = 60H.
NOT_EQ: JC REQ_LOW ; IFR7 < 60H.
; e e ; R7 > 60H.

sets the carry flag and branches to the instruction at label NOT__EQ. By testing the carry flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,
WAIT: CINE A,PLLWAIT
clears the carry flag and continues with the next instruction in sequence, since the Accumula-

tor does equal the data read from P1. (If some other value was being input on P1, the program
will loop at this point until the P1 data changes to 34H.)

4-21

CHAPTER 4
Instruction Set

CJNE Adirect,rel
Bytes: 3
Cycles: 2

Encoding: 1011 l 010 17 [direct address ! [rel. address J

Operation: (PC) «— (PC) + 3
IF (A) <> (direct)
THEN
(PC) «— (PC) + relative offset

IF (A) < (direct)

THEN
©) «1
ELSE
(©)«—0
CJNE A,#data,rel
Bytes: 3
Cycles: 2
Encoding: l 1011 I 010 01 I immediate data | ! rel. address

Operation: (PC) « (PC) + 3
IF (A) <> data
THEN
(PC) «— (PC) + relative offset

IF (A) < data
THEN

C)«1
ELSE

©«0

CJUNE Rn,#data,rel

Bytes: 3
Cycles: 2
Encoding: l 1011 ! trrr I I immediate data I I rel. address j

Operation: (PC) «— (PC) + 3
IF (Rn) <> data
THEN
(PC) «— (PC) + relative offset

IF (Rn) < data
THEN

© «1
ELSE

© <0

4-22

CHAPTER 4
Instruction Set

CJUNE @Ri,#data,rel

Bytes: 3
Cycles: 2
Encoding: 1011 l 011 | [immediate data l L rel. address]
Operation: (PC) « (PC) + 3
IF ((Ri)) <> data
THEN
(PC) «— (PC) + relative offset
IF ((Ri)) < data
THEN
(C) « 1
ELSE
(C)«0
CLR A ’
Function: Clear Accumulator
Description: The Accumulator is cleared (all bits set on zero). No flags are affected.
Example: The Accumulator contains 5SCH (01011100B). The instruction,
CLR A
will leave the Accumulator set to 00H (00000000B).
‘Bytes: 1
Cycles: 1
Encoding: | 11110100 |
Operation: CLR
(A)«0
CLR bit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the
- carry flag or any directly addressable bit.
Example: Port 1 has previously been written with SDH (01011101B). The instruction,

CLR P12

will leave the port set to 59H (01011001B).

4-23

CHAPTER 4
Instruction Set

CLR C

Bytes: 1
Cycles: 1
Encoding: | 1100|0011 |
Operation: CLR
©)«0
CLR bit
Bytes: 2
Cycles: 1
Encoding: [1100 I 0010 | I bit address
Operation: CLR
(bit) €« 0
CPL A
Function: Complement Accumulator
Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which previ-
ously contained a one are changed to a zero and vice-versa. No flags are affected.
Example: The Accumulator contains SCH (01011100B). The instruction,
CPL A
will leave the Accumulator set to 0A3H (10100011B).
Bytes: 1
Cycles: 1
Encoding: | 1111]0100 |
Operation: CPL
A) <1

4-24

CHAPTER 4

Instruction Set
CPL bit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and
vice-versa. No other flags are affected. CLR can operate on the carry or any directly address-
able bit.
Note: When this instruction is used to modify an output pin, the value used as the original data
will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with SBH (01011101B). The instruction sequence,
CPL P11
CPL P12
will leave the port set to SBH (01011011B).
CPL C
Bytes: 1
Cycles: |
Encoding: | 1011]0011|
Operation: CPL
(©)«<7(©
CPL bit
Bytes: 2
Cycles: 1
Encoding: | 1011|0010/ | bitaddress
Operation: CPL
(bit) <= 77 (bit)

4-25

CHAPTER 4
Instruction Set

DA A

Function:

Description:

Example:

Bytes:
Cycles:

Decimal-adjust Accumulator for Addition

DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two
variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one,

six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This

internal addition would set the carry flag if a carry-out of the low-order four-bit field propagat-
ed through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-111xxxx),
these high-order bits are incremented by six, producing the proper BCD digit in the high-order
nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but
wouldn’t clear the carry. The carry flag thus indicates if the sum of the original two BCD
variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on
initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD nota-
tion, nor does DA A apply to decimal subtraction.

The Accumulator holds the value 56H (01010110B) representing the packed BCD digits of the
decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed
BCD digits of the decimal number 67. The carry flag is set. The instruction sequence.

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the value OBEH
(10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two
digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the Decimal
Adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is
124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator
initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A,#99H
DA A

will leave the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order
byte of the sum can be interpreted to mean 30 — 1 = 29.

1
1

4-26

CHAPTER 4
Instruction Set

Encoding: | 1101]0100 |
Operation: DA
-contents of Accumulator are BCD
IF [l(As.0) > 91 V [(AC) = 1]]
THEN(A3.0) <~ (A30) + 6
AND
IF [[(A7.9) > 91 V [(©) = 1]]
THEN (A7.4) <= (A7.4) + 6
DEC byte
Function: Decrement
Description: The variable indicated is decremented by 1. An original value of 00H will underflow to OFFH.
No flags are affected. Four operand addressing modes are allowed: accumulator, register,
direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H
and 40H, respectively. The instruction sequence,
DEC @RO
DEC RO
DEC @RO
will leave register O set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and
3FH.
DEC A
Bytes: 1
Cycles: 1
Encoding: | 0001|0100 |
Operation: DEC
A)e=@A) -1
DEC Rn
Bytes: 1
Cycles: 1
Encoding: |0001 I 1rrr|
Operation: DEC
(Rn) = (Rn) — 1

4-27

CHAPTER 4
Instruction Set

DEC direct
Bytes: 2
Cycles: 1
Encoding: l 0001 I 0101 I I direct address
Operation: DEC
(direct) <— (direct) — 1
DEC @RI
Bytes: 1
Cycles: 1
Encoding: | 0001 011i|
Operation: DEC
((RD) < (Ri)) — 1
DIV AB
Function: Divide
Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit
integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags will be cleared.
Exception: if B had originally contained O0H, the values returned in the Accumulator and B-
register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case. ,
-’
Example: The Accumulator contains 251 (OFBH or 11111011B) and B contains 18 (12H or 00010010B).
The instruction,
DIV AB
will leave 13 in the Accumulator (ODH or 00001101B) and the value 17 (11H or 00010001B)
in B, since 251 = (13 X 18) + 17. Carry and OV will both be cleared.
Bytes: 1
Cycles: 4
Encoding: | 1000|0100 |
Operation: DIV
(A)15.3

B0 < W/®

4-28

CHAPTER 4
Instruction Set

DJNZ <byte>,<rel-addr>

Function:
Description:

Example:

DJNZ Rnjrel
Bytes:
Cycles:
Encoding:

Operation:

Decrement and Jump if Not Zero

DJNZ decrements the location indicated by 1, and branches to the address indicated by the
second operand if the resulting value is not zero. An original value of O0OH will underflow to
OFFH. No flags are affected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after incrementing the PC to
the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Internal RAM locations 40H, SOH, and 60H contain the values 01H, 70H, and 15H, respec-
tively. The instruction sequence,

DINZ 40H,LABEL__1
DINZ S50H,LABEL_2
DINZ 60H,LABEL__3

will cause a jump to the instruction at label LABEL__2 with the values 00H, 6FH, and 15H in
the three RAM locations. The first jump was not taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.
The instruction sequence,

MOV R2,#8
TOGGLE: CPL P17
DINZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1.
Each pulse will last three machine cycles; two for DINZ and one to alter the pin.

2
2

‘1101I1rrr| {rel.address

DINZ
(PC) « (PC) + 2
(Rn) <= (Rn) — 1
IF (Rn) > 0or (Rn) <0
THEN
(PC) « (PC) + rel

4-29

CHAPTER 4
Instruction Set

DJNZ direct,rel

Bytes: 3
Cycles: 2
Encoding: r1 101] 0101 l | direct address 1 l rel. address
Operation: DINZ
(PC) « (PC) + 2
(direct) ¢— (direct) — 1
IF (direct) > 0 or (direct) < 0
THEN
(PC) « (PC) + rel
INC <byte>
Function: Increment
Description: INC increments the indicated variable by 1. An original value of OFFH will overflow to 00H.
No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register O contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain OFFH
and 40H, respectively. The instruction sequence,
INC @RO
INC RO
INC @RO
will leave register O set to 7FH and internal RAM locations 7EH and 7FH holding (respective-
ly) OOH and 41H.
INC A
Bytes: 1
Cycles: 1
Encoding: 0000|0100
Operation: INC
A)e—=(@A) +1

4-30

CHAPTER 4
Instruction Set

INC Rn
Bytes:
Cycles:

Encoding:

Operation:

INC direct

Bytes:
Cycles:

Encoding:

Operation:

INC @RI

Bytes:
Cycles:

Encoding:

Operation:

1
1

loooo | 1rrr]|

INC
(Rn) <= (Rn) + 1

2
1

[oooo0]o0101]

l direct address

INC

(direct) «— (direct) + 1

1
1

loooo|o11i]

INC

(Ri)) <= (RD) + 1

4-31

CHAPTER 4

Instruction Set
INC DPTR
Function: Increment Data Pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; an
overflow of the low-order byte of the data pointer (DPL) from OFFH to O0H will increment
the high-order byte (DPH). No flags are affected.
This is the only 16-bit register which can be incremented.
Example: Registers DPH and DPL contain 12H and OFEH, respectively. The instruction sequence,
INC DPTR
INC DPTR
INC DPTR
will change DPH and DPL to 13H and O1H.
Bytes: 1
Cycles: 2
Encoding: | 1010]0011 |
Operation: INC
(DPTR) «— (DPTR) + 1
JB Dbit,rel
Function: Jump if Bit set
Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The
instruction sequence,
JB P12,LABEL!
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: | 0010|0000 | | bitaddress | | rel.address
Operation: JB
(PC) « (PC) + 3
IF (bit) = 1

THEN
(PC) « (PC) + rel

4-32

CHAPTER 4
Instruction Set

JBC bitrel
Function: Jump if Bit is set and Clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next
instruction. The bit will not be cleared if it is already a zero. The branch destination is comput-
ed by adding the signed relative-displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data
will be read from the output data latch, not the input pin.

Example: The Accumulator holds 56H (01010110B). The instruction sequence,
JBC ACC.3,LABEL!
JBC ACC.2,LABEL2
will cause program execution to continue at the instruction identified by the label LABEL?2,
with the Accumulator modified to 52H (01010010B).
Bytes: 3
Cycles: 2
Encoding: | 0001|0000 | | bitaddress | | rel. address
Operation: JBC
(PC)« (PC) + 3
IF (bit) = 1
THEN
(bit) <0

(PC) « (PC) + rel

4-33

CHAPTER 4
Instruction Set

JC rel
Function: Jump if Carry is set
Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
JC LABELI
CPL C
JC LABEL2
will set the carry and cause program execution to continue at the instruction identified by the
label LABEL2.
Bytes: 2
Cycles: 2
Encoding: 0100] 0000] l rel. address
Operation: IC
PO « (PC) + 2
IF (C)=1

THEN
(PC) «— (PC) + rel

4-34

CHAPTER 4
Instruction Set

JMP @A+DPTR

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Jump indirect

Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and
load the resulting sum to the program counter. This will be the address for subsequent instruc-
tion fetches. Sixteen-bit addition is performed (modulo 216): a carry-out from the low-order
eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data
Pointer is altered. No flags are affected.

An even number from O to 6 is in the Accumulator. The following sequence of instructions will
branch to one of four AJMP instructions in a jump table starting at JMP__TBL:

MOV DPTR, #JMP__TBL

JMP @A +DPTR
JMP__TBL: AJMP LABELO

AJMP LABEL1

AJMP LABEL2

AJMP LABEL3

If the Accumulator equals 04H when starting this sequence, execution will jump to label
LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at
every other address.

1
2

lo111]0011|

IMP
(PC) < (A) + (DPTR)

4-35

CHAPTER 4

Instruction Set
JNB Dbit,rel
Function: Jump if Bit Not set
Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The
instruction sequence,
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
will cause program execution to continue at the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: | 0011 | 0000 I l bit address] [rel. address
Operation: JNB
®C) «— (PC) + 3
IF (bit) =0
THEN (PC) «— (PC) + rel.
JNC rel
Function: Jump if Carry not set
Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified.
Example: The carry flag is set. The instruction sequence,
JNC LABELI1
CPL C
JNC LABEL2
will clear the carry and cause program execution to continue at the instruction identified by
the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: [0101 | 0000 l | rel. address J
Operation: JNC
(PC) «— (PC) + 2
IF (C)=0

THEN (PC) <« (PC) + rel

4-36

CHAPTER 4
Instruction Set

JNZ rel
Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis-
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally holds 00H. The instruction sequence,
JNZ LABELl
INC A
JNZ LABEL2
will set the Accumulator to 01H and continue at label LABEL2.
Bytes: 2
Cycles: 2
Encoding: [0111] 0000 1 rrel. address]
Operation: INZ
(PO) <« (PC) + 2
IF (A)#0
THEN (PC) <= (PC) + rel
JZ rel
Function: Jump if Accumulator Zero
Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis-
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally contains 01H. The instruction sequence,
JZ LABELLl
DEC A
JZ LABEL2
will change the Accumulator to O0H and cause program execution to continue at the instruc-
tion identified by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0110|0000] | reladdress |
Operation: JZ
(PC) «— (PC) + 2
IF A)=0

THEN (PC) «— (PC) + rel

4-37

CHAPTER 4
Instruction Set

LCALL addr16

Function:
Descﬂptlon:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Long call

LCALL calls a subroutine located at the indicated address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of
the LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte program memory address space.
No flags are affected.

Initially the Stack Pointer equals 07H. The label “SUBRTN” is assigned to program memory
location 1234H. After executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H
will contain 26H and 01H, and the PC will contain 1235H.

3
2

|0001[0010]| | addri5add8 | | addr7-addr0

LCALL

(PC)«— (PC) + 3
(SP) « (SP) + 1

((SP)) «— (PCy.0)

(SP) «~ (SP) + 1

((SP)) <= (PCy5.5)
(PC) € addrys.9

4-38

CHAPTER 4
Instruction Set

LJMP addri6
Function: Long Jump
Description: LIMP causes an unconditional branch to the indicated address, by loading the high-order and
low-order bytes of the PC (respectively) with the second and third instruction bytes. The
destination may therefore be anywhere in the full 64K program memory address space. No
flags are affected.
Example: The label “JMPADR?” is assigned to the instruction at program memory location 1234H. The
instruction,
LIMP JMPADR
at location 0123H will load the program counter with 1234H.
Bytes: 3
Cycles: 2
Encoding: | 0000 | 0010 | | addrt5-addr8 | | addr7-addro
Operation: LIMP

(PC) €« addrysg

MOV <dest-byte>,<src-byte>

Function:
Description:

Example:

Move byte variable

The byte variable indicated by the second operand is copied into the location specified by the
first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data
present at input port 1 is 11001010B (OCAH).

MOV RO,#30H ;RO <= 30H
MOV A,@R0 A <= 40H

MOV RILA R1 <= 40H

MOV R,@Rl ;B <= 10H

MOV @RI1,PI ;RAM (40H) <= OCAH
MOV P2,P1 :P2 #0CAH

leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register
B, and 0CAH (11001010B) both in RAM location 40H and output on port 2.

4-39

CHAPTER 4

Instruction Set
MOV A,Rn
Bytes: 1
Cycles: 1
Encoding: f1110|1rrr]
Operation: MOV
(A) <= (Rn)
MOV Adirect
Bytes: 2
Cycles: 1
Encoding: r1 110 1 0101 l fdirect address
Operation: MOV

(A) < (direct)

MOV A,ACC is not a valid instruction.

MOV A,@RI

Bytes:
Cycles:

Encoding:

Operation:

MOV A, #data

Bytes:
Cycles:

Encoding:

Operation:

1
1

[1110]011i]

MOV
(A) « (RD))

0111/0100 |

I immediate data J

MOV
(A) « #data

4-40

CHAPTER 4
Instruction Set

MOV Rn,A
Bytes:
Cycles:
Encoding:

Operation:

MOV Rn,direct
Bytes:

Cycles:
Encoding:

Operation:

MOV Rn,#data
Bytes:
Cycles:
Encoding:

Operation:

MOV direct,A
Bytes:
Cycles:
Encoding:

Operation:

MOV direct,Rn
Bytes:

Cycles:
Encoding:

Operation:

1
1

[1111l1rrr}

MOV
(Rn) <= (A)

2
2

‘1010|1rrr‘ [directaddr‘j

MOV
(Rn) <« (direct)

2
1

|0111]1rrr| |immediatedata]

MOV
(Rn) «— #data

2
1

] 1111 [0101] 1directaddress

MOV
(direct) «<— (A)

2
2

1000 | 1rrr]

MOV
(direct) <~ (Rn)

[direct addressJ

4-41

CHAPTER 4
Instruction Set

MOV direct,direct
Bytes: 3
Cycles: 2

Encoding: | 1000|0101] [diraddr.(src) | [dir.addr. (dest |

Operation: MOV
(direct) <— (direct)

MOV direct,@Ri

Bytes: 2
Cycles: 2
Encoding: [1000] 011i]| | directaddr.

Operation: MOV
(direct) «— ((Ri))

MOV direct,#data

Bytes: 3
Cycles: 2
Encading: ! 0111 ! 0101]I I[diract 1=._d.ressJI | immediate data

Operation: MOV
(direct) «— #data

MOV @RIi,A
Bytes: 1
Cycles: 1

Encoding: 1111|011i|

Operation: MOV

(RD)) < (A)
MOV @Ri,direct
Bytes: 2
Cycles: 2
Encoding: | 1010 011i| | diectaddr. |

Operation: MOV
((Ri)) < (direct)

4-42

CHAPTER 4
Instruction Set

MOV @RI, #data
Bytes:
Cycles:
Encoding:

Operation:

2
1

[o111]011i] [immediatedata |

MOV
((RI)) « #data

MOV <dest-bit>,<src-bit>

Function:

Description:

Example:

MOV C,bit
Bytes:
Cycles:
Encoding:

Operation:

MOV bit,C
Bytes:
Cycles:
Encoding:

Operation:

Move bit data

The Boolean variable indicated by the second operand is copied into the location specified by
the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.

The carry flag is originally set. The data present at input Port 3 is 11000101B. The data
previously written to output Port 1 is 35H (00110101B).

MOV P13,C
MOV C,P3.3
MOV P1.2,C

will leave the carry cleared and change Port 1 to 39H (00111001B).

2
1

[1010]0010] | bitaddress

MOV
(C) « (bit)

2
2

[1001]0010] | bitaddress

MOV
(bit) < (O

443

CHAPTER 4
Instruction Set

MOV DPTR,#data16

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Load Data Pointer with a 16-bit constant

The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded
into the second and third bytes of the instruction. The second byte (DPH) is the high-order
byte, while the third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,

MOV DPTR,#1234H

will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

3
2

1001[0000]| | immed.datat58 | | immed.data7-0

MOV
(DPTR) «— #data;sg
DPH O DPL «— #data;s.g O #datayg

4-44

CHAPTER 4
Instruction Set

MOVC A,@A+ <base-reg>

Function: Move Code byte

Description: The MOVC instructions load the Accumulator with a code byte, or constant from program
meimory. The address of the byte fetched is the sum of the original unsigned eight-bit Accumu-
lator contents and the contents of a sixteen-bit base register, which may be either the Data
Pointer or the PC. In the latter case, the PC is incremented to the address of the following
instruction before being added with the Accumulator; otherwise the base register is not al-
tered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may
propagate through higher-order bits. No flags are affected.

Example: A value between O and 3 is in the Accumulator. The following instructions will translate the
value in the Accumulator to one of four values defined by the DB (define byte) directive.

REL__PC: INC A
MOVC A,@A+PC

RET

DB 66H
DB 7TH
DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to 01H, it will return with 77H in the
Accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR
Bytes: 1
Cycles: 2

Encoding: | 1001|0011

Operation: MOVC
(A) < ((A) + (DPTR))

4-45

CHAPTER 4

Inst

ruction Set

MOVC A,@A + PC

Bytes:
Cycles:

Encoding:

Operation:

1
2

[1ooo|oo11|

MOVC
(PC) «— (PC) + 1
(A) < ((A) + (PC)

MOVX <dest-byte>,<src-byte>

Function:
Description:

Example:

Move External

The MOVX instructions transfer data between the Accumulator and a byte of external data
memory, hence the “X” appended to MOV. There are two types of instructions, differing in
whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of RO or R1 in the current register bank provide an eight-bit
address multiplexed with data on PO. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For somewhat larger arrays, any output port
pins can be used to output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2
outputs the high-order eight address bits (the contents of DPH) while PO multiplexes the low-
order eight bits (DPL) with data. The P2 Speciai Function Register retains its previous con-
tents while the P2 output buffers are emitting the contents of DPH. This form is faster and
more efficient when accessing very large data arrays (up to 64K bytes), since no additional
instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to
output high-order address bits to P2 followed by a MOVX instruction using RO or R1.

An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/
I/0/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external
RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H.
Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@Rl

MOVX @RO,A

copies the value S6H into both the Accumulator and external RAM location 12H.

4-46

CHAPTER 4
Instruction Set

MOVX A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

MOVX A,eDPTR

Bytes:
Cycles:
Encoding:

Operation:

MOVX @Ri,A
Bytes:
Cycles:
Encoding:

Operation:

MOVX @DPTR,A

Bytes:
Cycles:

Encoding: | 1111]0000]

Operation:

1110]001i|

MOVX
(A) < ((Ri)

1
2

[1110]0000]

MOVX
(A) <~ ((DPTR))

1
2

[1111]001i]|

MOVX
(Ri)) < (A)

1
2

MOVX
(DPTR) <= (A)

%

4-47

CHAPTER 4
Instruction Set

NOP

Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no registers or flags are
affected. :

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A
simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must
be inserted. This may be done (assuming no interrupts are enabled) with the instruction
sequence,

CLR P2.7
NOP
NOP
NOP
NOP
SETB P27
Bytes: 1
Cycles: 1
Encoding: | 0000|0000 |
Operation: NOP
(PC)«— (PC) + 1
MUL AB
Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The
low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in
B. If the product is greater than 255 (OFFH) the overflow flag is set; otehrwise it is cleared.
The carry flag is always cleared.
Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (OAOH).
The instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumula-
tor is cleared. The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: | 10100100
Operation: MUL
(Ao (A) X (B)
B)15.8

4-48

CHAPTER 4
Instruction Set

ORL <dest-byte> <src-byte>

Function:
Description:

Example:

ORL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

Logical-OR for byte variables

ORL performs the bitwise logical-OR operation between the indicated variables, storing the
results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

If the Accumulator holds OC3H (11000011B) and RO holds 55H (01010101B) then the in-
struction,

ORL A,RO

will leave the Accumulator holding the value OD7H (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of bits
in any RAM location or hardware register. The pattern of bits to be set is determined by a
mask byte, which may be either a constant data value in the instruction or a variable computed
in the Accumulator at run-time. The instruction,

ORL P1,#00110010B

will set bits 5, 4, and 1 of output Port 1.

1
1

lo100|1rrr]|

ORL
(A) <= (A) V (Rn)

4-49

CHAPTER 4
Instruction Set

ORL A,direct

Bytes:
Cycles:

Encoding:

Operation:

ORL A,@Ri

Bytes:
Cycles:

Encoding:

Operation:

ORL A,#data

Bytes:
Cycles:

Encoding:

Operation:

ORL direct,A

Bytes:
Cycles:
Encoding:

Operation:

ORL direct,#data
Bytes:
Cycles:
Encoding:

Operation:

2
1

[0100 I 0101 l l directaddressJ

ORL
(A) «— (A) V (direct)

1
1

o100 011i]

ORL
A<= @A)V (R))

-2

1

o100 0100]

! immediate data !

ORL
(A) « (A) V #data

2
1

[0100[0010] [directaddress

ORL

(direct) €<— (direct) V (A)

3

2

I 0100 J 0011] [direct addr. I I immediatedataJ

ORL
(direct) «— (direct) V #data

4-50

CHAPTER 4
Instruction Set

ORL C,<src-bit>

Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state
otherwise . A slash (““/”) preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself is
not affected. No other flags are affected.

Example: Set the carry flag if and only if P10 = 1, ACC.7 = 1,0r OV = 0:
MOV C/P1.0 ;;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV.

ORL Cbit
Bytes: 2
Cycles: 2
Encoding: | 0111 [0010| | bitaddress
Operation: ORL
© «©) V (it)
ORL C,/bit
Bytes: 2
Cycles: 2
Encoding: | 1010|0000 | | bitaddress |
Operation: ORL

(©) «(C) Vv (bit)

4-51

CHAPTER 4
Instruction Set

POP direct
Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the
Stack Pointer is decremented by one. The value read is then transferred to the directly ad-
dressed byte indicated. No flags are affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H
through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,
POP DPH
POP DPL
will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this
point the instruction,
POP SP
will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was
decremented to 2FH before being loaded with the value popped (20H).
Bytes: 2
Cycles: 2
Encoding: | 1101] 000 01 [direct address
Operation: POP
(direct) «— ((SP))

(SP) «~ (SP) — 1

4-52

CHAPTER 4

Instruction Set
PUSH direct
Function: Push onto stack
Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied
into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affect-
ed.
Example: On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the
value 0123H. The instruction sequence,
PUSH DPL
PUSH DPH
will leave the Stack Pointer set to OBH and store 23H and O1H in internal RAM locations
OAH and OBH, respectively.
Bytes: 2
Cycles: 2
Encoding: | 1100|0000 | | directaddress
Operation: PUSH
(SP) «~ (SP) + 1
((SP)) «— (direct)
RET
Function: Return from subroutine
Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing
the Stack Pointer by two. Program execution continues at the resulting address, generally the
instruction immediately following an ACALL or LCALL. No flags are affected.
Example: The Stack Pointer originally contains the value OBH. Internal RAM locations 0OAH and OBH
contain the values 23H and O1H, respectively. The instruction,
RET
will leave the Stack Pointer equal to the value 09H. Program execution will continue at
location 0123H.
Bytes: 1
Cycles: 2
Encoding: | 0010|0010 |
Operation: RET
(PCy5.3) <= ((SP))
(SP) «(SP) — 1
(PCr.0) < ((SP)

(SP)«—(SP) — 1

4-53

CHAPTER 4

Instruction Set
RETI
- Function: Return from interrupt
Description: = RETI pops the high- and low-order bytes of the PC successively from the stack, and restores
the interrupt logic to accept additional interrupts at the same priority level as the one just
processed. The Stack Pointer is left decremented by two. No other registers are affected; the
PSW is not automatically restored to its pre-interrupt status. Program execution continues at
the resulting address, which is generally the instruction immediately after the point at which
the interrupt request was detected. If a lower- or same-level interrupt had been pending when
the RETI instruction is executed, that one instruction will be executed before the pending
interrupt is processed.

Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the
instruction ending at location 0122H. Internal RAM locations OAH and OBH contain the
values 23H and 01H, respectively. The instruction,

RETI
will leave the Stack Pointer equal to 09H and return program execution to location 0123H.
Bytes: 1
Cycles: 2
Encoding: | 0011 [0010 |
Operation: RETI
(PCy5.8) <= ((SP))
(SP) «— (SP) — 1
(PC7.0) <= ((SP))
(SP) «—(SP) — 1
RL A
Function: Rotate Accumulator Left
Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0
position. No flags are affected.
Example: The Accumulator holds the value 0CSH (11000101B). The instruction,
RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: (0010|0011 |
Operation: RL
(A +)€ (An) n=0-6
(A0) « (A7)

454

CHAPTER 4
Instruction Set

RLC A
Function: Rotate Accumulator Left through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit
7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No
other flags are affected.
Example: The Accumulator holds the value 0OC5H (11000101B), and the carry is zero. The instruction,
RLC A
leaves the Accumulator holding the value 8BH (10001010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: (0011 [0011|]
Operation: RLC
(An + 1)«—(An) n=0-6
(A0) « (O)
©) « (A7)
RR A
Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7
position. No flags are affected.
Example: The Accumulator holds the value 0OCSH (11000101B). The instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: | 0000 | 0011]
Operation: RR
(An)«— (A, +1) n=0-6
(A7) <« (A0)

4-55

CHAPTER 4

Instruction Set
RRC A
Function: Rotate Accumulator Right through Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right.
Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7
position. No other flags are affected.
Example: The Accumulator holds the value 0OCSH (11000101B), the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: [0001001 1]
Operation: RRC
(An)«—(An+1) n=0-6
(A7)« (O
(C) « (AD)
SETB <bit>
Function: Set Bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly
addressable bit. No other flags are affected.
Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The
instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: | 1101 /0011 |
Operation: SETB
C) «1

4-56

CHAPTER 4
Instruction Set

SETB bit
Bytes: 2
Cycles: 1
Encoding: | 1101 |0010]| | bitaddress
Operation: SETB
(bit) «— 1
SJMP rel
Function: Short Jump
Description: Program control branches unconditionally to the address indicated. The branch destination is
computed by adding the signed displacement in the second instruction byte to the PC, after
incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes
preceding this instruction to 127 bytes following it.
Example: The label “RELADR” is assigned to an instruction at program memory location 0123H. The
instruction,
SIMP RELADR
will assemble into location 0100H. After the instruction is executed, the PC will contain the
value 0123H.
(Note: Under the above conditions the instruction following STMP will be at 102H. Therefore,
the displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put
another way, an SIMP with a displacement of OFEH would be a one-instruction infinite loop.)
Bytes: 2
Cycles: 2
Encoding: I 1000 l 0000 l | rel. address
Operation: ~ SIMP

(PC) «— (PC) + 2
(PC) «— (PC) + rel

4-57

CHAPTER 4
Instruction Set

SUBB A,<src-byte>

Function:

Description:

Example:

SUBB A,Rn

Bytes:
Cycles:

Encoding:

Operation:

SUBB A,direct

Bytes:
Cycles:

Encoding:

Operation:

Subtract with borrow

SUBB subtracts the indicated variable and the carry flag together from the Accumulator,
leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed
for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction, so
the carry is subtracted from the Accumulator along with the source operand.) AC is set if a
borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but
not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value, or a positive result when a positive number is
subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or imme-
diate.

The Accumulator holds 0OC9H (11001001B), register 2 holds 54H (01010100B), and the carry
flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared
but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the carry (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should not be explicitly cleared by
a CLR C instruction.

1001 [1rrr|

SUBB
A< (A) - (©) — Rn)

2
1

[1 001 I 0101] | direct address

SUBB
(A) <= (A) — (O) — (direct)

4-58

CHAPTER 4
Instruction Set

SUBB A,@RI
Bytes: 1
Cycles: 1
Encoding: | 1001]011i|
Operation: SUBB
(A) < (A) — (O) — (Ri)
SUBB A,#data
Bytes: 2
Cycles: 1
Encoding: | 1001] 0100 | | immediatedata
Operation: SUBB
(A) €<= (A) — (C) — #data
SWAP A
|
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator
(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No
flags are affected.
Example: The Accumulator holds the value 0CSH (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value 5CH (01011100B).
Bytes: 1
Cycles: 1
Encoding: | 11000100 |
Operation: SWAP

(A3.0) 2 (A74)

4-59

CHAPTER 4
Instruction Set

XCH A,<byte>

Function:
Description:

Example:

XCH A,Rn
Bytes:
Cycles:
Encoding:

Operation:

XCH A,direct
Bytes:
Cycles:
Encoding:

Operation:

XCH A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

Exchange Accumulator with byte variable

XCH loads the Accumulator with the contents of the indicated variable, at the same time
writing the original Accumulator contents to the indicated variable. The source/destination
operand can use register, direct, or register-indirect addressing.

RO contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,

XCH A,@RO

will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in

the accumulator.

1
1

1100 1rrr|

XCH
a) Z Rn)

2
1

11000101 |

l direct address

XCH
(A) 2 (direct)

1
1

[1100[011i]

XCH
(A Z (R)

4-60

CHAPTER 4
Instruction Set

XCHD A,@Ri
Function: Exchange Digit
Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the
specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags
are affected.
Example: RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,
XCHD A,@RO
will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the
Accumulator.
Bytes: 1
Cycles: 1
Encoding: 1101[011il
Operation: XCHD

(Az.0) < ((Riz.0)

XRL <dest-byte>,<src-byte>

Function:
Description:

Example:

Logical Exclusive-OR for byte variables

XRL performs the bitwise logical Exclusive-OR operation between the indicated variables,
storing the results in the destination. No flags are affected.

The two operands altow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.)

If the Accumulator holds OC3H (11000011B) and register 0 holds OAAH (10101010B) then
the instruction,

XRL A,RO

will leave the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be complement-
ed is then determined by a mask byte, either a constant contained in the instruction or a
variable computed in the Accumulator at run-time. The instruction,

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output Port 1.

4-61

CHAPTER 4
Instruction Set

XRL ARn

Bytes: 1
Cycles: 1

Encoding: l0110] 1rrrl

Operation: XRL
(A) < (A) ¥ (Rn)
XRL A,direct
Bytes: 2
Cycles: 1

Encoding: |0110] 0101 | | diectaddress

Operation: XRL
(A) < (A) ¥ (direct)

XRL A,@Ri
Bytes: 1
Cycles: 1

Encoding: (0110|011 |

Operation: XRL
(A) < (A) ¥ (RD)
XRL A,#data
Bytes: 2
Cycles: 1

Encoding: ro 110 [0100 l [immediate data

Operation: XRL
(A) < (A) ¥ #data

XRL direct,A

Bytes: 2
Cycles: 1
Encoding: I 0110 J 0010 I l direct address J

Operation: XRL
(direct) <— (direct) ¥ (A)

4-62

CHAPTER 4
Instruction Set

XRL direct,#data

Bytes: 3
Cycles: 2
Encoding: l 0110 I 0011 J l direct address I [immediate data

Operation: XRL
(direct) «— (direct) ¥ #data

4-63

CHAPTER 5

Software Routines 5-1

8051 Programming Techniques 5-1
Radix Conversion Routines 5-1
Multiple Precision Arithmetic 5-2
Table Look-Up Sequences 5-2
Saving CPU Status During Interrupts 5-4
Passing Parameters on the Stack 5-4
N-Way Branching 5-6
Computing Branch Destinations at Rurr Time 5-7
In-Line-Code Parameter-Passing 5-8

Peripheral Interfacing Techniques 5-9
1/0 Port Reconfiguration (First Approach) 5-9
/O Port Reconfiguration (Second Approach) 5-10
Simulating a Third Priority Level in Software 5-11
Software Delay Timing 5-11
Serial Port and Timer Mode Configuration 5-12
Simple Serial I/O Drivers 5-12
Transmitting Serial Port Character Strings 5-13
Recognizing and Processing Special Cases 5-13
Buffering Serial Port Output Characters 5-14
Synchronizing Timer Overflows 5-15

Reading a Timer/Counter “On-the-Fly” 5-16

CHAPTER 5

¢\

Software Routines

Chapter 5 contains two sections:
* 8051 Programming Techniques
* Peripheral Interfacing Techniques.

The first section has 8051 software examples for some
common routines in controller applications. Some rou-
tines included are multiple-precision arithmetic and table
look-up techniques.

Peripheral Interfacing Techniques include routines for
handling the 8051's I/0 ports, serial channel and timer/
counters. Discussed in this section is I/0 port reconfigu-
ration, software delay timing, and transmitting serial port
character strings along with other routines.

8051 PROGRAMMING TECHNIQUES

Radix Conversion Routines

The divide instruction can be used to convert a number
from one radix to another. BINBCD is a short subroutine
to convert an 8-bit unsigned binary integerin the accumu-
lator (between 0 & 255) to a 3-digit (2 byte) BCD repre-
sentation. The hundred’s digit is returned in one variable
(HUND) and the ten’s and one’s digits returned as
packed BCD in another (TENONE).

7

; BINBCD CONVERT 8-BIT BINARY VARIABLE IN ACCUMULATOR
H TO 3-DIGIT PACKED BCD FORMAT.
; HUNDREDS’ PLACE LEFT IN VARIABLE ‘HUND’,
TENS’ AND ONES’ PLACES IN ‘TENONE’.
HUND DATA 21H
TENONE DATA 22H
BINBCD: MOV B, #100 ;DIVIDED BY 100 TO
DIV AB ;DETERMINE NUMBER OF HUNDREDS
MoV HUND, A
MoV A, #10 ;DIVIDE REMAINDER BY TEN TO
XCH A,B ;DETERMINE NUMBER OF TENS LEFT
DIV AB ;TEN’S DIGIT IN ACC, REMAINDER IS
;ONE’S DIGIT
SWAP A
ADD A,B ;PACK BCD DIGITS IN ACC
MoV TENONE, A
RET

The divide instruction can also separate data in the
accumulator into sub-fields. For example, dividing
packed BCD data by 16 will separate the two nibbles,
leaving the high-order digit in the accumulator and the
low-order digit (remainder) in B. Eachis right-justified, so

the digits can be processed individually. This example
receives two packed BCD digits in the accumulator,
separates the digits, computes their product, and returns
the product in packed BCD format in the accumulator.

; MULBCD UNPACK TWO BCD DIGITS RECEIVED IN ACCUMULATOR
; FIND THEIR PRODUCT, AND RETURN PRODUCT
; IN PACKED BCD FORMAT IN ACCUMULATOR
;MULBCD: MOV B, #10H ;DIVIDE INPUT BY 16
DIV AB ;A & B HOLD SEPARATED DIGITS
; (EACH RIGHT JUSTIFIED IN REGISTER).
MUL AB ;A HOLDS PRODUCT IN BINARY FORMAT
; (0 TO 99 (DECIMAL) = 0 TO 63H)
MoV B, #10 ;DIVIDE PRODUCT BY 10
DIV AB ;A HOLDS NUMBER OF TENS, B HOLDS

; REMAINDER

CHAPTER 5
Software Routines

SWAP A
ORL A,B
RET

;PACK DIGITS

Multiple Precision Arithmetic

The ADDC and SUBB instructions incorporate the previ-
ous state of the carry (borrow) flag to allow muiltiple-
precision calculations by repeating the operation with
successively higher-order operand bytes. |f the input
data for a multiple-precision operation is an unsigned

string of integers, the carry flag will be set upon comple-
tion if an overflow (for ADDC) or underflow (for SUBB)
occurs. With two’s complement signed data, the most
significant bit of the original input data’s most significant
byte indicates the sign of the string, so the overflow flag
(OV) will indicate if overflow or underflow occurred.

;

; SUBSTR SUBTRACT STRING INDICATED BY Rl

; FROM STRING INDICATED BY RO TO

; PRECISION INDICATED BY R2.

; CHECK FOR SIGNED UNDERFLOW WHEN DONE.

SUBSTR: CLR (o] ;BORROW = 0.

SUBS1: MoV A, QRO ; LOAD MINUEND BYTE
SUBB A,@R1 ; SUBTRACT SUBTRAHEND BYTE
Mov @RO,A ; STORE DIFFERENCE BYTE
INC RO ;BUMP POINTERS TO NEXT PLACE
INC R1
DJNZ R2, SUBS1 ;LOOP UNTIL DONE

WHEN DONE, TEST IF OVERFLOW
ON LAST ITERATION OF LOOP.

Ne N e e

OCCURRED

JNB oV, 0vV_OK
; (OVERFLOW RECOVERY ROUTINE)
OV-OK: RET ; RETURN

Table Look-Up Sequences dimensional look-up tables of dot matrix patterns, non-

The two versions of the MOVC instructions are used as
part of a 3-step sequence to access look-up tables in
ROM. To use the DPTR version, load the Data Pointer
with the starting address of a look-up table; load the
accumulator with (or compute) the index of the entry
desired; and execute MOVC A, @A + DPTR. The data
pointer may be loaded with a constant for short tables, or
to allow more complicated data structures, and tables
with more than 256 entries, the values for DPH and DPL
may be computed or modified with the standard arithme-
tic instruction set.

The PC-based version is used with smaller, “local”
tables, and has the advantage of not affecting the data
pointer. This makes it useful in interrupt routines or other
situations where the DPTR contents might be significant.
Again, a look-up sequence takes three steps: load the
accumulator with the index; compensate for the offset
from the look-up instruction’s address to the start of the
table by adding that offset to the accumulator; then
execute the MOVC A,@A + PC instruction.

As anon-trivial situation where this instruction would
be used, consider applications wh ich store large multi-

linear calibration parameters, and so on in the linear
(one-dimensional) program memory. To retrieve data
from the tables, variables representing matrix indices
must be converted to the desired entry’s memory ad-
dress. For a matrix of dimensions (MDIMEN x NDIMEN)
starting at address BASE and respective indices INDEXI
and INDEXJ, the address of element (INDEXI, INDEXJ)
is determined by the formula,

Entry Address = [BASE + (NDIMEN x INDEXI) + INDEXJ]

The subroutine MATRX1 can access an entry in any
array with less than 255 elements, e.g., an 11x21 array
with 231 elements. The table entries are defined using
the Data Byte (“DB”) directive, and will be contained in
the assembly object code as part of the accessing
subroutine itself.

To handle the more general case, subroutine MATRX2
allows tables to be unlimited in size, by combining the
MUL instruction, double-precision addition, and the data
pointer-based version of MOVC. The only restriction is
that each index be between 0 and 255.

5-2

CHAPTER 5
Software Routines

2
2

Se Se Ne Se Ne Se o Se N Ne e N

INDEXI
INDEXJ

MATRX1:

Se e Ne se

BASE1l:

~

~e e

MATRX2:

N Ne

LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP

TABLE IN PROGRAM MEMORY INTO ACCUMULATOR

USING LOCAL TABLE LOOK-UP INSTRUCTION, ‘MOVC A,@A + PC’.
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO

BE SMALL, I.E. LESS THAN ABOUT 255 ENTRIES.

TABLE USED IN THIS EXAMPLE IS 11 x 21.

DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA,

[(BASE ADDRESS) + (21 X INDEXI) + (INDEXJ)]

EQU R6 ;FIRST COORDINATE OF ENTRY (0-10).
DATA 23H ;SECOND COORDINATE OF ENTRY (0-20).
MoV A, INDEXI

MOV B, #21 .

MUL AB Y. ;(21 X INDEXI)

ADD A, INDEXJ ;ADD IN OFFSET WITHIN ROW

ALLOW FOR INSTRUCTION BYTE BETWEEN “MOVC” AND
ENTRY (0,0).

INC A

MOvC A,QA + PC

RET

DB 1 ; (entry 0,0)

DB 2 ; (entry 0,1)

DB 21 ; (entxry 0,20)

DB 22 ; (entry 1,0)

DB 42 ; (entry 1,20)

DB 231 ; (entry 10,20)

MOV A, INDEXI ;LOAD FIRST COORDINATE

MoV B, #NDIMEN

MUL AB ; INDEXI X NDIMEN

"ADD A, #LOW (BASE2) ;ADD IN 16-BIT BASE ADDRESS
MoV DPL,A

MOV A,B

ADDC A, #HIGH (BASE2)

MOV DPH,A ;DPTR=(BASE ADDR) + (INDEXI + NDIMEN)
MoV A, INDEXJ

MoOvC A,QA + DPTR ;ADD INDEXJ AND FETCH BYTE
RET

DB 0 ; (entxy O,

DB 0 ; (entry 0,1)

DB 0 ; (entxry 0, NDIMEN-1)

DB 0 ; (entry 1,0)

DB 0 ; (entry 1, NDIMEN-1)

DB 0 ; (entry MDIMEN-1, NDIMEN-1)

CHAPTER 5
Software Routines

Saving CPU Status During Interrupts

When the 8051 hardware recognizes an interrupt re-
quest, program control branches automatically to the
corresponding service routine, by forcing the CPU to
process along CALL (LCALL) instruction to the
appropriate address. The re turn address is stored on
the top of the stack:. After completing the service
routine, an RETI instruction returns the processor to
the background program at the point from which it was
interrupted.

Interrupt service routines must not change any variable
or hardware registers modified by the main program, or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error. An
example of this will be given later in this section, in the
second method of I/O port reconfiguration.) Resources
used or altered by the service routine (Accumulator,
PSW, etc.) must be saved and restored to their previous
value before returning from the service routine. PUSH
and POP provide an efficient and convenient way to save
such registers on the stack.

;

;LOC_TMP EQU $;REMEMBER LOCATION COUNTER
ORG 0003H ;STARTING ADDRESS FOR INTERRUPT ROUTINE
LJIMP SERVER ;JUMP TO ACTUAL SERVICE ROUTINE LOCATE
;ELSEWHERE
ORG LOC_TMP JRESTORE LOCATION COUNTER
SERVER: PUSH PSW
PUSH acc ;SAVE ACCUMULATOR (NOTE DIRECT ADDRESS
7 NOTATION)
PUSH B ;SAVE B REGISTER
PUSH DPL ;SAVE DATA POINTER
PUSH DPH ;
MoV PSW, #00001000B ;SELECT REGISTER BANK 1
; e e
H - .
POP DPH ;RESTORE REGISTERS IN REVERSE ORDER
POP DPL
POP B
POP Acc
POP PSW ;RESTORE PSW AND RE-SELECT ORIGINAL
JREGISTER BANK
RETI JRETURN TO MAIN PROGRAM AND RESTORE
; INTERRUPT LOGIC
Agg’; If the SP register held 1FH when the interrupt was
detected, then while the service routine was in progress
7FH the stack would hold the registers shown in Figure 5-1;
SP would contain 26H. This is the most general case; if
26H DPH [4— (SP) the service routine doesn't alter the B-register and data
25H DPL pointer, for example, the instruction saving and restoring
24H B those registers could be omitted.
23H AcC Passing Parameters on the Stack
22H PSW
21H PC (HIGH) The stack may also pass parameters to and from subrou-
20H PC (LOW) tines. The subroutine can indirectly address the parame-
1FH ters derived from the contents of the stack ponntgr, or
simply pop the stack into registers before processing.
00H 09757A-002A

Figure 5-1. Stack Contents During Interrupt

CHAPTER 5
Software Routines

HEXASC: MOV RO, SP
DEC RO
DEC RO
XCH A, QRO
ANL A, #0FH
ADD A, #2
MoOvC A,@A + PC
XCH A, QRO
RET

ASCTBL: DB ‘0
DB ‘1
DB 22
DB '3
DB ‘4
DB \5’
DB ‘6’
DB N7
DB g’
DB vor
DB ‘A’
DB ‘B’
DB e
DB D’
DB ‘E*
DB ‘B

;ACCESS LOCATION PARAMETER PUSHED ONTO
; STACK

;READ INPUT PARAMETER AND SAVE

; ACCUMULATOR

;MASK ALL BUT LOW-ORDER 4 BITS
;ALLOW FOR OFFSET FROM MOVC TO TABLE
;READ LOOK-UP TABLE ENTRY

;PASS BACK TRANSLATED VALUE AND RESTORE
; ACCUMULATOR

;RETURN TO BACKGROUND PROGRAM

;ASCII CODE FOR OOH

;ASCII CODE FOR O1H

;ASCII CODE FOR 02H

;ASCII CODE FOR O03H

;ASCII CODE FOR 04H

;ASCII CODE FOR O5H

;ASCII CODE FOR O6H

;ASCII CODE FOR O7H

;ASCII CODE FOR O08H

;ASCII CODE FOR O9H

;ASCII CODE FOR OAH

;ASCII CODE FOR OBH

;ASCII CODE FOR OCH

;ASCII CODE FOR ODH

;ASCII CODE FOR OEH

;ASCII CODE FOR OFH

One advantage here is simplicity. Variables need notbe
allocated for specific parameters, a potentially large
number of parameters may be passed, and different
calling programs may use different techniques for deter-
mining or handling the variables.

For example, the subroutine HEXASC converts a hexa-
decimal value to ASCII code for its low-order digit. It first
reads a parameter stored on the stack by the calling
program, then uses the low-order bits to access a local
16-entry look-up table holding ASCII codes, stores the
appropriate code back in the stack and then returns.
The accumulator contents are left unchanged.

The background program may reach this subroutine with
several different calling sequences, all of which PUSH a
value before calling the routine and POP the result to any
destination register or port later. There is even the option
of leaving a value on the stack if it won't be needed until
later. The example below converts the three-digit BCD
value computed in the Radix Conversion example above
to athree-character string, calling a subroutine SP_OUT
to output an 8-bit code in the accumulator.

~

PUSH HUND

CALL HEXASC
pOP acc
CALL SP_OUT

PUSH TENONE
CALL HEXASC

MoV A, TENONE
SWAP A

PUSH ACC
CALL HEXASC

pop acc
CALL SP_OUT
POP acc

CALL SP_OUT

~e
H

; CONVERT HUNDREDS DIGIT
; TRANSMIT HUNDREDS CHARACTER

; CONVERT ONE’S PLACE DIGIT
;BUT LEAVE ON STACK!

;RIGHT-JUSTIFY TEN’S PLACE
;CONVERT TEN’S PLACE DIGIT
; TRANSMIT TEN'S PLACE CHARACTER

; TRANSMIT ONE’S PLACE CHARACTER

5-5

CHAPTER 5
Software Routines

N-Way Branching

There are several different means for branching to
sections of code determined or selected at run time.
(The single destination addresses incorporated into
conditional and unconditional jumps are, of course, fixed
at assembly time.) Each has advantages for different
applications.

Inatypical N-way branch situation, the potential destina-
tions are generally known at assembly time. One of a
number of small routines is selected according to the
value of an index variable determined while the program
is running. The most efficient way to solve this problem
is with the MOVC and an indirect jump instruction, using
a short table of offset values in ROM to indicate the
relative starting addresses of the several routines.

JMP @A + DPTR is an instruction which performs an
indirect jump to an address determined during program

execution. The instruction adds the 8-bit unsigned ac-
cumulator contents with the contents of the 16-bit data
pointer, just like MOV A,@A + DPTR. The resulting sum
is loaded into the program counter and is used as the
address for subsequent instruction fetches. Again, a 16-
bit addition is performed: a carry-out from the low-order
eight bits may propagate throughthe higher-orderbits. In
this case, neither the accumulator contents nor the data
pointer is altered.

The example subroutine below reads a byte of RAM into
the accumulator from one of four alternate address
spaces, as selected by the contents of the variable
MEMSEL. The address of the byte to be read is deter-
mined by the contents of RO (and optionally R1). it might
find use in a printing terminal application, where four
different model printers all use the same ROM code but
use different types (and sizes) of buffer memory for
different speeds and options.

’

s MEMSEL EQU R3
JUMP_4: MOV A,MEMSEL
MOV DPTR, #JMPTBL
Move A,@A + DPTR
JMP @A + DPTR
JMPTBL: DB MEMSP 0~ JMPTBL
DB MEMSP1-JMPTBL
DB MEMSP 2-JMPTBL
DB MEMSP3-JMPTBL
MEMSPO: MOV A, QRO
RET
MEMSP1: MOVX a,GQRO
RET
MEMSP2: MOV DPL, RO
MoV DPH, R1
MOVX A, @DPTR
RET
MEMSP3: MoV A,R1
ANL A, #07H
ANL P1,#11111000B
ORL P1,A
MOVX A, QRO
RET

;READ FROM INTERNAL RAM
;READ FROM 256 BYTE EXTERNAL RAM

;READ 64K BYTE EXTERNAL RAM

;READ 4K BYTE EXTERNAL RAM

To use this approach, the size of the jump table plus the
length of the alternate routines must be less than 256
bytes. The jump table and routines may be located
anywhere in program memory and are independent of
256-byte program memory pages.

For applications where up to 128 destinations must be
selected, all residing in the same 2K page of program
memory, the following technique may be used. In the

printing terminal example, this sequence could process
128 different codes for ASCII characters arriving via the
8051 serial port.

The destinations in the jump table (PROC00-PROC7F)
are not all necessarily unique routines. A large number
of special control codes could each be processed with
their own unique routine, with the remaining printing
characters all causing a branch to a common routine for
entering the character into the output queue.

5-6

CHAPTER 5
Software Routines

OPTION EQU R3
JMP128: MOV A, OPTION
RL A
MOV DPTR, # INSTBL
JMp @A + DPTR
INSTBL: ATMP PROCOO
ATMP PROCO1
ATMP PROCO2
ATMP PROCTE
ATMP PROCTF

JMULTIPLY BY 2 FOR 2-BYTE JUMP TABLE
;FIRST ENTRY IN JUMP TABLE
;JUMP INTO JUMP TABLE

;128 CONSECUTIVE
;AJMP INSTRUCTIONS

Computing Branch Destinations
at Run Time

In some rare situations, 128 options are insufficient, the
destination routines may cross a 2K page boundary, ora
branch destination is not known at assembly time (for
whatever reason), and therefore cannot be easily in-
cluded in the assembled code. These situations can all
be handled by computing the destination address at run-
time with standard arithmetic or table look-up instruc-
tions, then performing anindirect branch to that address.

There are two simple ways to execute this last step,
assuming the 16-bit destination address has already
been computed. The first is to load the address into the
DPH and DPL registers, clear the accumulator and
branch using the JMP @A + DPTR instruction; the
second is to push the destination address onto the stack,
low-order byte first (so as to mimic a call instruction) then
pop that address into the PC by performing a return
instruction. This also adjusts the stack pointer to its
previous value. The code segment below illustrates the
latter possibility.

’

RTEMP EQU R7
JMP256: MOV DPTR, #ADRTBL
MOV A, OPTION
CLR (o]
RLC A
JNC LOW128
INC DPH
LOW128: MOV RTEMP, A
INC A

MOvC A,@A + DPTR
PUSH ACC

MOV A, RTEMP
MOovC A,@A + DPTR
PUSH ACC

;FIRST ADDRESS TABLE ENTRY
;LOAD INDEX INTO TABLE

;MULTIPLY BY 2 FOR 2-BYTE JUMP TABLE

;FIX BASE IF INDEX >127.

;SAVE ADJUSTED ACC FOR SECOND READ
;READ LOW-ORDER BYTE FIRST

;GET LOW-ORDER BYTE FROM TABLE

;RELOAD ADJUSTED ACC
;GET HIGH-ORDERED BYTE FROM TABLE

; THE TWO ACC PUSHES HAVE PRODUCED

; A “RETURN ADDRESS” ON THE STACK WHICH CORRESPONDS

; TO THE DESIRED STARTING ADDRESS.

; IT MAY BE REACHED BY POPPING THE STACK

; INTO THE PC.
RET

ADRTBL: DW PROCO0 ;UP TO 256 CONSECUTIVE DATA
DW PROCO1 ;WORDS INDICATING STARTING ADDRESSES
DW PROCFF

CHAPTER 5
Software Routines

In-Line-Code Parameter-Passing

Parameters can be passed by loading appropriate regis-
ters with values before calling the subroutine. This
technique is inefficient if a lot of the parameters are
constants, since each would require a separate register
to carry it, and a separate instruction to load the register
each time the routine is called.

If the routine is called frequently, a more code-efficient
way to transfer constants is “in-line-code” parameter-
passing. The constants are actually part of the program
code, immediately following the call instruction. The
subroutine determines where to find them fromthe return
address on the stack, and then reads the parameters it
needs from program memory.

For example, assume a utility named ADD-BCD adds a
16-bit packed-BCD constant with a 2-byte BCD variable

in internal RAM and stores the sum in a different 2-byte
buffer. The utility must be given the constant and both
buffer addresses. Rather than using four working regis-
ters to carry this information, all 4 bytes could be inserted
into program memory each time the utility is called.
Specifically, the calling sequence below invokes the
utility to add 1234 (decimal) with the string at internal
RAM address 56H, and store the sum in a buffer at
location 78H.

The ADDBCD subroutine determines at what point the
call was made by popping the return address from the
stack into the data pointer high- and low-order bytes. A
MOVC instruction then reads the parameters from pro-
gram memory as they are needed. ‘When done,
ADDBCD resumes execution by jumping to the instruc-
tion following the last parameter.

CALL

ADDBCD
DW 1234H
DB 56H
DB 78H
ADDBCD: POP DPH
POP DPL
MOV A, #2
MOvC A,@A + DPTR
MOV RO,A
MoV A, #3
MovC A,@A + DPTR
MOV R1,A
MoV A, #1
MovC A,@A + DPTR
ADD A, QRO
DA A
MOV @R1,A
INC RO
INC R1
CLR A
Move A,@A + DPTR
ADDC A, QRO
DA A
MOV @R1,A
MOV A, #4
JMP @A + DPTR

;BCD CONSTANT

; SOURCE STRING ADDRESS
;DESTINATION STRING ADDRESS
; CONTINUATION OF PROGRAM

;POP RETURN ADDRESS INTO DPTR

; INDEX FOR SOURCE STRING PARAMETER
;GET SOURCE STRING LOCATION

; INDEX FOR DESTINATION STRING PARAMETER
;GET DESTINATION ADDRESS

; INDEX FOR 16-BIT CONSTANT LOW BYTE
;GET LOW-ORDER VALUE

; COMPUTE LOW-ORDER BYTE OF SUM
;DECIMAL ADJUST FOR ADDITION

;SAVE IN BUFFER

; INDEX FOR HIGH-BYTE = 0
;GET HIGH-ORDER CONSTANT

;DECIMAL ADJUST FOR ADDITION

;SAVE IN BUFFER

; INDEX FOR CONTINUATION OF PROGRAM
; JUMP BACK INTO MAIN PROGRAM

5-8

CHAPTER 5
Software Routines

This example illustrates several points:

1. The “subroutine” does not end with a normal return
statement; instead, an indirect jump relative to the
data pointer returns execution to the first instruction
following the parameter list. The two initial POP
instructions correct the stack-pointer contents.

2. Either an ACALL or LCALL works with the subrou-
tine, since each pushes the address of the next
instruction or data byte onto the stack. The call may
be made from anywhere in the full 8051 address
space, since the MOVC instruction accesses all 64K
bytes.

3. The parameters passed to the utility can be listed in
whatever order is most convenient, which may not be
that inwhich they're used. The utility has essentially
“random access” to the parameter list, by loading the
appropriate constant into the accumulator before
each MOVC instruction.

4. Other than the data pointer, the whole calling and
processing sequence only affects the accumulator,
PSW and pointer registers. The utility could have
pushed these registers onto the stack (after popping
the parameter list starting address), and popped
before returning.

Passing parameters through in-line-code can be used in
conjunction with other variable passing techniques.

The utility can also get input variables from working
registers or from the stack, and réturn output variables to
registers or to the stack.

PERIPHERAL INTERFACING TECHNIQUES
1/0 Port Reconfiguration (First Approach)

1/0 ports must often transmit or receive parallel data in
formats other than as 8-bit bytes. For example, if an
application requires three 5-bit latched output ports
(called X, Y, and Z), these “virtual” ports could be mapped
onto the pins of “physical” ports 1 and 2 (see example at
bottom of page).

This pin assignment leaves P2.7 free foruse as atest pin,
input data pin, or control output through software.

Notice that the bits of port Z are reversed. The highest-
order port Z pin corresponds to pin P2.2, and the lowest-
order pin of port Z is P2.6, due to PC board layout
considerations. When connecting an 8051 to an imme-
diately adjacent keyboard column decoder or another
device with weighted inputs, the corresponding pins may
not be aligned. The interconnections must be
“scrambled” to compensate either with interwoven circuit
board traces or through software (as shown below and
on the following page).

PORT ‘2"

PORT “Y”

PORT “X”

- PZ0 PZ1 PZ2 PZ3 PZ4

PY4 PY3 PY2 PY1 PY0O

PX4 PX3 PX2 PX1 PX0

P2.7 | P2.6 P25 P24 P23 P2.2|P2.1 P2.0 P1.7 P1.6 P1.5|P1.4 P13 P1.2 P1.1P1.0

PX_MAP DATA 20H

PY_MAP DATA 21H

PZ_MAP DATA 22H

OUT_PX: ANL A, #00011111B ;CLEAR BITS ACC.7 - ACC.5
MoV PX_MAP,A ;SAVE DATA IN MAP BYTE
ACALL OUT P1 ;UPDATE PORT 1 OUTPUT LATCH
RET

OUT_PY: MoV PY MAP,A ;SAVE IN MAP BYTE
ACALL OUT_P1 ;UPDATE PORT 1
ACALL OUT P2 ;AND PORT 2 OUTPUT LATCHES
RET

OUT_PZ: MoV PZ_MAP,A ;SAVE DATA IN MAP BYTE
ACALL OUT_P2 ;UPDATE PORT 2.
RET

5-9

CHAPTER 5
Software Routines

oUT_P1: MoV A,PY MAP
SWAP A
RL A
ANL A,#11100000B
ORL A,PX_MAP
MOV P1,A
RET

OUT_P2: MOV C,PZ_MAP.O
RLC A
MOV C,PZ_MAP.1
RLC A
MoV C,PZ_MAP.2
RLC A
MOV C,PZ_MAP.3
RLC A
MoV C,PZ_MAP.4
RLC A
MOV C,PZ_MAP.4
RLC A
MOV C,PZ_MAP.3
RLC A
SETB Acc.7
MOV P2.2
RET

;OUTPUT ALL P1 BITS

;SHIFT PY_MAP LEFT 5 BITS

;MASK OUT GARBAGE
; INCLUDE PX MAP BITS

;LOAD CY WITH P2.6 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.5 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.4 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.3 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.2 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.1 BIT
;AND SHIFT INTO ACC.
;LOAD CY WITH P2.0 BIT
;AND SHIFT INTO ACC.

; (ASSUMING INPUT ON P2.7)

Writing to the virtual ports must not affect any other pins.
Since the virtual output algorithms are non-trivial, a
subroutine is needed for each port: OUT_PX, OUT_PY
and OUT_PZ. Each is called with data to output right-
justified in the accumulator, and any data in bits ACC.7-
ACC.5is insignificant. Each subroutine savesthe datain
a “map” variable for the virtual port, then calls other
subroutines which use the data in the various map bytes
to compute and output the 8-bit pattern needed for each
physical port affected. The two level structure of the
above subroutines can be modified somewhat if code
efficiency and execution speed are critical: incorporate
the code shown as subroutines OUT_P1 and OUT_P2
directly into the code for OUT_PX and OUT_PZ, in place
of the corresponding CALL instructions. OUT_PY would
not be changed, but now the destinations for its ACALL
instructions would be alternate entry points in OUT_PX
and OUT_PZ, instead of isolated subroutines.

I/O Port Reconfiguration
(Second Approach)

A trickier situation arises if two sections of code which
write to the same port or register, or call virtual output
routines like those above, need to be executed at differ-
ent interrupt levels. For example, suppose the back-
ground program wants to rewrite Port X (using the port
associations in the previous example), and has com-
puted the bit pattern needed for P1. An interrupt is

detected just before the MOV P1,A instruction, and the
service routine tries to write Port Y. The service routine
would correctly update P1 and P2, but upon returning
to the background program P1 is immediately re-
written with the data computed before the interrupt! Now
pins P2.1 and P2.0 indicate (correctly) data written to port
Y in the interrupt routine, but the earlier data written to
P.7-P1.5 is no longer valid. The same sort of confusion
could arise if a high-level interrupt disrupted such an
output sequence.

One solution is to disable interrupts around any section
of code which must not be interrupted (called a “critical
section”), but this would adversely affect interrupt la-
tency. Another is to have interrupt routines set or clear a
flag (“semaphore”) when a common resource is altered
— a rather complex and elaborate system.

An easier way to ensure that any instruction which writes
the port X field of P1 does not change the port Y field pins
from their state at the beginning of that instruction, is
shown next. A number of 8051 operations read, modify,
and write the output port latches all in one instruction.
These are the arithmetic and logical instructions (INC,
DEC, ANL, ORL, etc.), where an addressed byte is both
the destination variable and one of the source operands.
Using these instructions, instead of data moves, elimi-
nates the critical section problem entirely.

5-10

CHAPTER 5
Software Routines

OUT_PX: ANL P1,#11100000B
ORL P1,A
RET
OUT_PY: MoV B, #20H
MUL AB
ANL P1,#00011111B
ORL P1,A
MOV A,B
ANL P2,#1111100B
ORL P2,A
RET
OUT_PZ: RRC A
MoV P2.6,C
RRC A
MOV P2.5,C
RRC a
MoV pP2.4,C
RRC A
MOV P2.3,C
RRC A
MoV pP2.2,C
RET

;CLEAR BITS P1.4-P1.0
;SET P1 PIN FOR EACH ACC BIT SET

JSHIFT B A IEFT 5 BITS
;CLEAR PY FIEID OF PORT 1
;SET PY BITS ON PORT 1
;'LOAD 2 BITS SHIFTED INTO B
;AND UPDATE P2

JMOVE ORIGINAL ACC.0 INTO CY
JAND STORE TO PIN P2.6.
JMOVE ORIGINAL ACC.1 INTO CY
JAND STORE TO PIN P2.5.
;MOVE ORIGINAL ACC.2 INTO CY
JAND STORE TO PIN P2.4.
;MOVE ORIGINAL ACC.3 INTO CY
;AND STORE TO PIN P2.3.
JMOVE ORIGINAL ACC.4 INTO CY
;AND STORE TO PIN P2.2.

Simulating a Third Priority Level

in Software

Some applications require more than the two priority
levels that are provided by on-chip hardware in 8051
devices. Inthese cases, relatively simple software can
be written to produce the same effect as a third priority
level.

First, interrupts that are to have higher priority than 1 are
assigned to priority 1 inthe IP (Interrupt Priority) register.
The service routines for priority 1 interrupts that are
supposed to be interruptible by “priority 2" interrupts are
written to include the following code:

PUSH 1E
Mov IE, #MASK
CALL LABEL
; (execute service routine)
POP IE
RET
LABEL: RETI

As soon as any priority 1 interrupt is acknowledged, the
|E (Interrupt Enable) registeris re-defined as as to disable
all but “priority 2” interrupts. Then, a CALL to LABEL
executes the RETI instruction, which clears the priority 1

interrupt-in-progress flip-flop. At this point any priority 1
interruptthatis enabled can be serviced, but only “priority
2" interrupts are enabled.

POPping IE restores the original enable byte. Then a
normal RET (rather than another RETI) is used to termi-
nate the service routine. The additional software adds 10
us (at 12 MHz) to priority 1 interrupts.

Software Delay Timing

Many 8051 applications invoke exact control over output
timing, A software-generated output strobe, forinstance,
might have to be exactly 50 us wide. The DJNZ
operation caninsert a one instruction software delay into
a piece of code, adding a moderate time delay of two
instruction cycles periteration. Forexample, two instruc-
tions can add a 49-psec. software delay loop to code to
generate a pulse on the WR pin.

CLR WR

MOV R2,#24
DJINZ R2,$
SETB WR

The dollar sign in this example is a special character
meaning “the address of this instruction”. It canbe used
to eliminate instruction labels on nearby source lines.

CHAPTER 5
Software Routines

Serial Port and Timer Mode Configuration

Configuring the 8051's Serial Port for a given data rate
and protocol requires essentially three short sections of
software. On power-up or hardware reset the serial port
and timer control words must be initialized to the appro-
priate values. Additional software is also needed in the
transmit routine to load the serial port data register and in
the receive routine to unload the data as it arrives.

To choose one arbitrary example, assume the 8051
should communicate with a standard CRT operating at
2400 baud (bits per second). Each character is transmit-
ted as seven data bits, odd parity, and one stop bit. The
resulting character rate is 2400 baud/9 bits, approxi-
mately 265 characters per second.

For the sake of clarity, the transmit and receive subrou-
tines here are driven by simple-minded software status

polling code rather than interrupts. The serial port must
be initialized to 8-bit UART mode (SM0, SM1 = 01),
enabled to receive all messages (SM2=0, REN=1). The
flag indicating that the transmit register is free for more
data will be artificially set in order to let the output
software know the output register is available. Alithiscan
be set up with the instruction at label SPINIT.

Timer 1 will be used in auto-reload mode as a baud rate
generator. To achieve a datarate of 2400 baud, the timer
must divide the 1 MHz internal clock by

1x 108
(32) (2400)

which equals 13 (actually, 13.02) instruction cycles. The
timer must reload the value 13, or OF3H, as shown by the
code at label TIINIT. (ASM51 will accept both the signed
decimal or hexadecimal representations.)

INITIALIZE SERIAL PORT

7
; FOR 8-BIT UART MODE
; & SET TRANSMIT READY FLAG.
SPINIT: MOV SCON, #01010010B
; INITIALIZE TIMER 1 FOR
; AUTO-RELOAD AT 32 X 2400 HZ
; (TO USED AS GATED 16-BIT COUNTER.)
TIINIT: MoV TCON, #11010010B
MOV TH1, #13
SETB TR1

’ . oo

7

Simple Serial I/O Drivers

SP_OUT is a simple subroutine to transmit the character
passed to it in the accumulator. First it must compute
the parity bit, insert it into the data byte, wait until the
transmitter is available, output the character, and then
return.

SP_IN is an equally simple routine which waits until a
characteris received, setsthe carry flag if there is an odd-
parity error, and returns the masked seven-bit code in the
accumulator.

’

;SP_OUT ADD ODD PARITY TO ACC AND

H TRANSMIT WHEN SERIAL PORT READY

SP_OUT: MOV Cc,P ;MOVE PARITY BIT TO CARRY BIT
CPL [}
MoV AcCC.7,C ; INSERT INTO DATA BYTE
JNB TI,$;WAIT FOR TRANSMITTER AVAILABLE
CLR TI
MoV SBUF, A ;OUTPUT THE CHARACTER
RET

5-12

CHAPTER 5
Software Routines

SP_IN: JNB RI, $
CLR RI
MoV A, SBUF
MoV c,p
CPL c
ANL A, #7FH
RET

;WAIT FOR A CHARACTER TO BE RECEIVED
;MOVE CHARACTER TO THE ACCUMULATOR

;SET CARRY BIT TO ONE IF ODD-PARITY ERROR
;MASK OUT PARITY BIT FROM CHARACTER

Transmitting Serial Port Character Strings

Any application which transmits characters through a
serial port to an ASCII output device will on occasion
need to output “canned” messages, including error

messages, diagnostics, or operator instructions. These
character strings are most easily defined within-line data
bytes defined with the DB directive.

CR EQU ODH
LF EQU OAH
ESC EQU 1BH
CALL XSTRING
DB CR,LF
DB ‘AMD QUALITY’
DB ESC

(CONTINUATION OF PROGRAM)

e S

XSTRING: POP DPH

poP DPL
XSTR_1: CLR A

MovC A,@A + DPTR
XSTR_2: JNB TI,$

CLR TI

MoV SBUF, A

INC DPTR

CLR a
Movc A, @A + DPTR

CJINE A, #ESC, XSTR_2

MoV A, 41

Jup @A + DPTR

;ASCII CARRIAGE RET
;ASCII LINE-FEED
;ASCII ESCAPE CODE

;NEW LINES
;MESSAGE
;ESCAPE CHARACTER

;LOAD DPTR WITH FIRST CHARACTER

; (ZERO OFFSET)

;FETCH FIRST CHARACTER OF STRING
;WAIT UNTIL TRANSMITTER READY
;MARK AS NOT READY

;OUTPUT NEXT CHARACTER

;BUMP POINTER

;GET NEXT OUTPUT CHARACTER
;LOOP UNTIL ESCAPE READ

;RETURN TO CODE AFTER ESCAPE

Recognizing and Processing Special Cases

Before operating on the data it receives, a subroutine
might give “special handling” to certain input values.
Consider a word processing device which receives
ASCII characters through the 8051 serial port and drives
a thermal hard-copy printer. A standard routine trans-
lates most printing characters to bit patterns, but certain

control characters (, <CR>, <LF>, <BEL>,
<ESC>, or <SP>) must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the <NUL> value,
00H, and processed with the printing characters. The
CJNE operation provides essentially a one-instruction
CASE statement.

éHAR EQU R7
iNTERP: CJINE CHAR, #7FH, INTP_1
; RET [
INTP_1: CJINE CHAR, #07H, INTP_2
; ;ET o

;CHARACTER CODE VARIABLE

;SKIP UNLESS RUBOUT
(SPECIAL ROUTINE FOR RUBOUT CODE)

;SKIP UNLESS BELL
(SPECIAL ROUTINE FOR BELL CODE)

5-13

CHAPTER 5
Software Routines

INTP 2: CJINE CHAR, #0AH, INTP_3
RET

INTP_3: CJINE CHAR, #0DH, INTP_4
RET

INTP_4: CJINE CHAR, #1BH, INTP_5
RET

INTP_5: CJINE CHAR, #20H, INTP_6
RET

INTP_6: Jc PRINTC
MOV CHAR, #0

PRINTC:
RET

;SKIP UNLESS LFEED
(SPECIAL ROUTINE FOR LFEED CODE)

;SKIP UNLESS RETURN
(SPECIAL ROUTINE FOR RETURN CODE

;SKIP UNLESS ESCAPE
(SPECIAL ROUTINE FOR ESCAPE CODE)

;SKIP UNLESS SPACE
(SPECIAL ROUTINE FOR SPACE CODE)

;JUMP IF CODE 20H

;REPLACE CONTROL CHARACTER WITH
;NULL CODE

;PROCESS STANDARD PRINTING

; CHARACTER

Buffering Serial Port Output Characters

Itis not always efficientto transmit characters through the
serial port one-at-a-time. Most applications generate a
short burst of characters all at once (English words or
multi-digit numbers, for instance), with the bursts them-
selves occurring at longer intervals. Instead of waiting
while the UART outputs each character, it would be more
efficient if the background program could enter all the
characters into a first-in first-out (FIFO) data structure,

and continue about its business, letting an interrupt
routine transmit each character as the serial port be-
comes available.

Assume there is a 16-byte output data buffer starting at
70H. QHEAD and QTAIL keep track of the head and
tail portion of the buffer being used. The subroutine
ENTERQ waits until there is space in the queue, then
copies a character code from the accumulator to
the queue.

QHEAD DATA 6EH ;LAST BYTE ENTERED INTO QUEUE
QTAIL DATA 6FH ;LAST BYTE READ FROM QUEUE
BOTLIM EQU 70H
TOPLIM EQU 7FH
; QUEUE IS EMPTY WHEN QHEAD = QTAIL AND
H FULL WHEN Q HEAD + 1 (WITHIN RANGE) = QTAIL.
MoV QHEAD, #TOPLIM
MoV QTAIL, #TOPLIM
ENTERQ: Mov RO,A ;SAVE ACC DATA
MoV A, QHEAD ;LOAD HEAD POINTER
INC A ; PRE-INCREMENT POINTER
CJINE A, #TOPLIM+1,ENTQ 1
MOV A, #BOTLIM ;RELOAD ON OVERFLOW
ENTQ 1: CJINE A,QTAIL,ENTQ 2 ;TEST IF QUEUE FULL
SIMP ENTQ 1 ;LOOP UNTIL SPACE AVAILABLE
ENTQ 2: XCH A,RO ;STORE POINTER AND RELOAD ACC
MoV GRO,A ;ENTER INTO QUEUE
MoV QHEAD, RO ;UPDATE HEAD POINTER
SETB ES ;ENABLE SERIAL PORT INTERRUPTS
RET

5-14

CHAPTER 5
Software Routines

The interrupt routine DQUEUE is invoked when the
transmitter is ready for another character. Firstit deter-
mines if any characters are available for transmission,
indicated by QHEAD and QTAIL being not equal. If more
datais available, itis written to the transmit buffer (SBUF)

and the pointers are updated. If not, DQUEUE disables
serial port interrupts and returns to the background
program. ENTERQ will re-enable such interrupts as
more data is available. (This example does not consider
interrupt-driven serial input.)

ORG 0023H
PUSH ACC
PUSH PSW

MOV PSW, #30Q
DQUEUE : MOV A,QTAIL

CINE A, QHEAD, DQ_1

CLR ES

samp TI_RET
DQ_1: CLR TI

INC a

CJINE A, #TOPLIM+1,DQ_2

MOV A, #BOTLIM
DQ_2: MoV RO,A

MOV SBUF, @RO

MOV QTAIL,A
TI_RET: POP PSW

poP acc

RETI

;SAVE CPU STATUS
;SELECT BANK 3

;TEST IF QUEUE EMPTY
;IF SO, CLEAR ENABLE BIT AND RETURN

;ELSE ACKNOWLEDGE REQUEST
;COMPUTE NEXT BYTE'S ADDRESS

JREVISE ACC IF POINTER OVERFLOWED
;LOAD INDEX REGISTER

JRELOAD TRANSMITTER

;SAVE LAST POINTER USED.

;RESTORE STATUS AND RETURN

Synchronizing Timer Overflows

8051 timer overflows automatically generate an internal
interrupt request, which will vector program execution to
the appropriate interrupt service routine if interrupts are
enabled and no other service routines are in progress at
the time. However, it is not predictable exactly how long
it will take to reach the service routine. The service
routine call takes two instruction cycles, but 1, 2, or 4
additional cycles may be needed to complete the instruc-
tion in progress. If the background program ever dis-
ables interrupts, the response latency could further in-
crease by a few instruction cycles. (Critical sections
generally involve simple instruction sequences — rarely
multiplies or divides.) Interrupt response delay is gener-
ally negligible, but certain time-critical applications must
take the exact delay into account. For example, gener-
ating interrupts with timer 1 every millisecond (1000 in-

struction cycles) or so would normally call for reloading it
with the value, -1000 (OFC18H). But if the interrupt
interval (average over time) mustbe accurate to 1 instruc-
tion cycle, the 16-bit value reload into the timer must be
computed, taking into account when the timer actually
overflowed.

This simply requires reading the appropriate timer, which
has been incremented each cycle since the overflow
occurred. A sequence like the one below can stop the
timer, computer how much time should elapse before the
next interrupt, and reload and restart the timer. The
double-precision calculation shown here compensates
for any amount of timer overrun within the maximum
interval. Note thatit also takes into account that the timer
is stopped for seveninstruction cycles in the process. All
interrupts are disabled, so a higher priority request will not
be able to disrupt the time-critical code section.

; e e

CLR EA

CLR TR1

MOV A, ¥LOW(—1000+7)
ADD A,TL1

MoV TL1,A

MOV A, #HIGH (~1000+7)
ADDC A,TH1

MOV TH1,A

SETB TH1

;DISABLE ALL INTERRUPTS
;STOP TIMER 1

;LOAD LOW-ORDER DESIRED COUNT
;CORRECT FOR TIMER OVERRUN
;RELOAD LOW-ORDER BYTE
;REPEAT FOR HIGH-ORDER BYTE

sRESTART TIMER

CHAPTER 5
Software Routines

Reading a Timer/Counter “On-the-Fly”

The preceding example simply stopped the timer before
changing its contents. This is normally done when
reloading a timer so that the time at which the timer is
started (i.e. the “run”flagis set) canbe exactly controlled.
There are situations, though, when it is desired to read
the current count without disrupting the timing process.
The 8051 timer/counter registers can all be read or
written while they are running, but a few precautions
must be taken.

Suppose the subroutine RDTIME should return in <R1>
<RO0> a 16-bit value indicating the count in timer 0. The
instant at which the counter was sampled s not as critical
as the fact that the value returned must have been valid
at some point while the routine was in progress. There is
apotential problem that between reading the two halves,
a low-order register overflow might increment the high-
order register, and the two data bytes returned would be
“outof phase”. The solution is to read the high-order byte
first, then the low-order byte, and then confirm that the
high-order byte has not changed. If it has, repeat the
whole process.

RDTIME: MoV A, THO
MoV RO, TLO
CINE A, THO,RDTIME
MoV R1,A
RET

;SAMPLE TIMERO
;SAMPLE TIMERO
;REPEAT IF NECESSARY
;STORE VALID READ

(HIGH)
(LOW)

5-16

CHAPTER 6

8051 Family Boolean Processing Capabllities

Boolean Processor Operation
Boolean Processor Applications
Bit Permutation
Software Serial I/0
Combinatorial Logic Equations
Automotive Dashboard Functions

6-1

6-1

6-11
6-12
6-15
6-18
6-21

CHAPTER 6

¢

8051 Family Boolean Processing Capabilities

The 8051 incorporates a number of special features that
support the direct manipulation and testing of individual
bits and allow the use of single-bit variables in performing
logical operations. Taken together, these features are
referred to as the 8051 Family Boolean Processor. While
the bit-processing capabilities alone would be adequate
to solve many control applications, their true power
comes when they are used in conjunction with the
microcomputer’s byte-processing and numerical capa-
bilities. The purpose of this discussionis to explainthese
concepts and show how they are used.

BOOLEAN PROCESSOR OPERATION

The Boolean Processing capabilities of the 8051 are
based on concepts that have been around for sometime.
Digital computer systems of widely varying designs all
have four functional elements in common (Figure 6-1):

* a central processor (CPU) with the control,
timing, and logic circuits needed to execute

stored instructions,

¢ a memory to store the sequence of instructions
making up a program or algorithm,

* data memory to store variables used by the
program, and

¢ some means of communicating with the outside

The CPU usually includes one or more accumulators or
special registers for computing or storing values during
program execution. The instruction set of such a proces-
sor generally includes, at the minimum, operation
classes to perform arithmetic or logical functions on
program variables, to move variables from one place to
another, to cause program execution to jump or condi-
tionally branch based on register or variable states, and
to call and return from subroutines. The program and
data memory functions sometimes share a single mem-
ory space, but this is not always the case. When the
address spaces are separated, program and data
memory need not even have the same basic word width.

Adigital computer’s flexibility comes in part fromits ability
to combine simple, fast operations to produce more
complex (albeit slower) ones, which in turn link together
to eventually solve the problem at hand. A 4-bit CPU
executing multiple precision subroutines can, for ex-
ample, perform 64-bit addition and subtraction. The
subroutines could in turn be building blocks for floating-
point multiplication and division routines. Eventually, the
4-bit CPU can simulate a far more complex “virtual”
machine.

Infact, any digital computer with the above four functional
elements can (given time) complete any algorithm
(though the proverbial room full of chimpanzees at word

world.
TIMING &
CONTROL
PROGRAM
MEMORY _——
ACCUMULATOR »
& REGISTERS -
e
INPUT/ REAL
OuTPUT WORLD
PORTS fol—
et ——
el
CENTRAL
DATA
PROCESSING
MEMORY UNIT

Figure 6-1. Block Diagram for Abstract Digital Computer

CHAPTER 6
8051 Family Boolean Processing Capabilities

processors might first re-create Shakespeare’s classics
and this chapter)! This fact offers little consolation to
product designers who want programs to run as quickly
as possible. By definition, a real-time control algorithm
must proceed quickly enough to meet the preordained
speed constraints of other equipment.

One of the factors determining how long it will take a
microcomputer to complete a given task s the number of
instructions it must execute. What makes a given com-
puter architecture particularly well- or poorly-suited for a
class of problems is how well its instruction set matches
the tasks to be performed. The better the “primitive”
operations correspond to the steps taken by the control
algorithm, the lower the number of instructions needed,
and the quicker the programwill run. All else being equal,
a CPU supporting 64-bit arithmetic directly could clearly
perform floating-point math faster than a machine
bogged down by multiple-precision subroutines. In the
same way, direct support for bit manipulation naturally
leads to more efficient programs handling the binary
input and output conditions inherent in digital-control
problems.

Processing Elements

The following shows how the four basic elements of a
digital computer — a CPU with associated registers,
program memory, addressable data RAM, and I/O capa-
bilities — relate to Boolean variables.

CPU. The 8051 CPU incorporates special logic devoted
to executing several bit-wide operations. All told, there
are 17 such instructions, all listedin Table 6-1. Not shown
are 94 other (mostly byte-oriented) 8051 instructions.

Program Memory. Bit-processing instructions are
fetched from the same program memory as other arith-
metic and logical operations. In addition to the instruc-
tions of Table 6-1, several sophisticated program control
features, like multiple addressing modes, subroutine
nesting, and a two-level interrupt structure, are useful in
structuring Boolean Processor-based programs.

Boolean instructions are one, two, or three bytes long,
depending on what function they perform. Those involv-
ing only the carry flag have either a single-byte opcode or
an opcode followed by a conditional-branch destination
byte (Figure 6-2). The more general instructions add a
“direct address” byte after the opcode to specify the bit
affected, yielding two or three byte encodings (Figure
6-2). Though this format allows potentially 256 directly
addressable bit locations, not all of them are imple-
mented in the 8051 Family.

Table 6-1. 8051 Family Boolean Processing Instruction

Subset
Mnemonic Description Byte Cyc
SETB C Set Carry flag 1 1
SETB bit Set direct bit 2 1
CLR C Clear Carry flag 1 1
CLR bit Clear direct bit 2 1
CPL C Complement Carry flag 1 1
CPL bit Complement direct bit 2 1
MOV Cpbit Move direct bitto Carry flag 2 1
MOV bit,C Move Carry flag to direct bit 2 2
ANL Cbit AND direct bit to Carry flag 2 2
ANL C,bit AND complement of direct 2 2
bit to Carry flag
ORL Cbit ORdirect bit to Carry flag 2 2
ORL Cbit ORcomplement of direct 2 2
bit to Carry flag
JC rel Jump if Carry flag is set 2 2
JINC rel Jump if No Carry flag 2 2
JB bit,rel Jump if direct bit set 3 2
JNB bit,rel Jump if direct bit not set 3 2
JBC bit,rel Jump if direct bit is set & 3 2
Clear bit
Address mode abbreviations
C — Carry flag.
bit — 128 software flags, any I/O pin, control or status bit.
rel — All conditional jumps include an 8-bit offset byte.

Range is +127 —128 bytes relative to first byte of
the following instruction.

Data Memory. The instructions in Figure 6-2 can oper-
ate directly upon 144 general-purpose bits forming the
Boolean processor “RAM.” These bits can be used as
software flags or to store program variables. Two oper-
and instructions use the CPU’s carry flag (“C") as a
special one-bit register; in a sense, the carry is a
“Boolean accumulator” for logical operations and data
transfers.

Input/Output. All 32 1/0O pins can be addressed as
individual inputs, outputs, or both, in any combination.
Any pincanbe a control strobe output, status (Test) input,
or serial I/O link implemented via software. An additional
33individually addressabile bits reconfigure, control, and
monitor the status of the CPU, and all on-chip peripheral
functions (timer counters, serial port modes, interrupt
logic, and so forth).

6-2

CHAPTER 6
8051 Family Boolean Processing Capabilities

SETBC
CLRC
CpPLC

l opcode J | displacement

JC rel
JNC rel

a. Carry Control and Test Instructions

I opcode } t bit address

SETB bit
CLR bit
CPL bit
ANL C, bit
ANL C,/ bit
ORLC, bit
ORLC,/ bit
MOV C, bit
MOV bit,C
r opcode l | bit address ! | displacement
JB bit, rel
JNB bit, rel
JBC bit, rel

b. Bit Manipulation and Test Instructions

Figure 6-2. Bit Addressing Instruction Formats

Direct Bit Addressing

The most significant bit of the direct-address byte selects
one of two groups of bits. Values between 0 and 127
(00H and 7FH) define bits in a block of 16 bytes of on-
chip RAM, between RAM addresses 20H and 2FH
(Figure 6-3a). They are numbered consecutively from
the lowest-order byte’s lowest-order bit through the
highest-order byte’s highest-order bit.

Bit addresses between 128 and 255 (80H and OFFH)
correspond to bits in a number of special registers,
mostly used for I/O or peripheral control. These positions
are numbered with a different scheme than RAM; the five
high-order address bits match those of the register’'s own

address, while the three low-order bits identify the bit
position within that register (Figure 6-3b).

Notice the column labeled “Symbol” in Figure 6-4. Bits
with special meanings in the PSW and other registers
have corresponding symbolic names. General-purpose
(as opposed to carry-specific) instructions may access
the carry like any other bit by using the mnemonic CY in
place of C. PO, P1, P2, and P3 are the 8051’s four /O
ports; secondary functions assigned to each of the eight
pins of P3 are shown in Figure 6-5.

Figure 6-6 shows the last four bit-addressable registers.
TCON (Timer Control) and SCON (Serial-Port Control)
control and monitor the corresponding peripherals, while
IE (Interrupt Enable) and IP (Interrupt Priority) enable
and prioritize the five hardware interrupt sources. Like
the reserved hardware register addresses, the five bits
not implemented in IE and IP should not be accessed;
they cannot be used as software flags.

Addressable Register Set. There are 20 special-func-
tion registers in the 8051, but the advantages of bit
addressing only relate to the 11 described below. Five
potentially bit-addressable register addresses (0COH,
0C8H, 0D8H, OE8H, & 0F8H) are reserved for expansion
in microcomputers based on the 8051 Family architec-
ture. Reading orwriting non-existentregistersinthe 8051
seriesis pointless, and may cause unpredictable results.
Byte-wide logic operations can be used to manipulate
bits in all non-bit-addressable registers and RAM.

The accumulator and B registers (A and B) are normally
involved in byte-wide arithmetic, but their individual bits
can also be used as 16 general software flags. Added
with the 128 flagsin RAM, this gives 144 general purpose
variables for bit-intensive programs. The program status
word (PSW) in Figure 6-4 is a collection of flags and
machine status bits including the carry flag itself. Byte
operations acting on the PSW can, therefore, affect the
carry.

Instruction Set

Having looked at the bit variables available to the
Boolean Processor, we will now look at the four classes
of instructions that manipulate these bits. It may be
helpful to refer back to Table 6-1 while reading this
section.

State Control. Addressable bits or flags may be set,
cleared, or logically complemented in one instruction
cycle with the two-byte instructions SETB, CLR, and
CPL. The “B” affixed to SETB distinguishes it from the
assembler “SET” directive used for symbol definition.
SETB and CLR are analogous to loading a bit with a
constant, 1 or 0. Single byte versions perform the same
three operations on the carry.

6-3

CHAPTER 6
8051 Family Boolean Processing Capabilities

Direct Bit Addresses Hardware
RAM Byte Register
Byte (MSB) (LsB) Address (MSB) (LSB) Symbol

~ OFFH

TFH T\ =

OFOH FT | F6 | F5 | FA | F3 | F2 | F1 | FO B
2FH 7F | 7€ | 7D [7C | 7B [7A |79 |78
2EH |76 |75 (74 |73 |72 |71 |70 0EOH E? | E6 | E5 | E4 | E3 | E2 | E1 | EO ACC
20H 6F | 6E | 6D |6C | 6B |6A | 69 |68
2CH 67 | 66 |65 {64 |63 |62 |61 |60 | 0DOH D7 | D6 | DS {'D4 | D3 | D2 | D1 | DO PSW
2BH SF | 5 [S5D |[SC [SB |S5A | 59 |58
2AH 57 | 56 |55 |54 |53 |52 |51 |50 0B8H — | -] ~1|Bc|8B|BA|BS |BS P
29H 4F | 4E [4D |4C [4B |4A |49 |48
28H 47 | 46 |45 |44 |43 |42 |41 |40 0BOH B7 | B6 | B5 | B4 | B3 | B2 | B1 | BO P3
27H 3F | 38 (3D |3C {38 |3A |39 |38
26H 37 | 36 [35 |34 |33 |32 [31 |30 0ABH AF | — | — |AC | AB | AA | A9 | A8 IE
25H 2F | 26 |2D |2C [2B [2A |29 |28
24H 27 | 26 |25 |24 |23 |22 |21 |20 0AOH A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 P2
23H 1F | 1E |1D [1C [1B [1A |19 |18
22H 17 | 16 |15 |14 |13 |12 |11 |10 98H 9F | 9E | 9D | 9C | 9B | 9A | 99 | 98 SCON
21H OF | 0E [OD [OC |0B |0A |09 |08
20H 07 | 06 |05 [o0a |03 |o2 |01 |oo 90H 97 | 96 | 95 | 94 | 93 | 92 | 91 |90 P1
1FH '
18H Bank 3
7" 88H 8F | 8 | 8D A
10m Bank 2 8C | 8B | 8 89 |88 TCON
OFH
08H Bank 1
7H
0 80H 87 1 8 |85 | 84 | 83 | 82 | 81 |80 PO
00 Bank 0

a. Ram Bit Addresses b. Special Function Register Bit Addresses

Figure 6-3. Bit Address Maps

6-4

CHAPTER 6
8051 Family Boolean Processing Capabilities

(MSB) (LsB) ov
lev]ac|Fo|Rmsi|mrso|ov]—]p]

PSW.2 Overfiow flag.
Set/cleared by hardware dur-
ing arithmetic instructions to
Symbol Position Name and Significance indicate overflow conditions.
cY PSW.7 Carry flag. — PSW.1 (reserved)
Set/cleared by hardware or p PSW.0 Parity flag.
software during certain arith- Set/cleared by hardware each

PSW.6

metic and logical instructions.
Auxiliary Carry flag.
Set/cleared by hardware dur-
ing addition or subtraction in-

instruction cycle to indicate an
odd/even number of ‘‘one”
bits in the accumulator, i.e.,
even parity.

structions to in_dicale carry or Note- the contents of (RS1, RS0)
borrow out of bit 3. enable the working register
FO PSW.5 FlagO. banks as follows:

Set/cleared/tested by soft- (0,0) - Bank 0 (00H-07H)
ware as a user-defined status (0,1) - Bank 1 (08H-0FH)
flag. (1,0) - Bank 2 (10H-17H)

RS1 PSW.4 Register bank Select control (1.1) - Bank 3 (18H-1FH)
bits.

RSO PSW.3 1 &.0. Set/cleared by software
to determine working register
bank (see Note).

Figure 6-4. PSW — Program Status Word Organization

(MSB) (LSB) INTH P3.3 Interrupt 1 input pin.
(RO [wR | T1] 10| INT1]INTO | TXD | RXD | Low—(ljeve' or falling-edge trig-
gered.
Symbol Position Name and Significance INTO P3.2 Interrupt 0 input pin.
RD P3.7 Read data contro! output. Low-level or falling-edge trig-
Active low pulse generated by gered.
hardware_ when external data TXD P3.1 Transmit Data pin for serial
memory is read. portin UART mode. Clock out-
WR PSG Write data COntrOI Output. put in sh|ﬁ register mode’
Active low pulse generated by RXD P3.0 Receive Data pin for serial
hardware when external data port in UART mode. Data 1/0
memory is written. pin in shift register mode.
T P3.5 Timer/counter 1 external input .
or test pin.
TO P3.4 Timer/counter 0 external input
or test pin.

Figure 6-5. P3 — Alternate I/O Functions of Port 3

CHAPTER 6
8051 Family Boolean Processing Capabilities

(MSB) (LSB)
| TF1 | TR1 | TFO | TRO | 1E1 [171 | 1EO | ITO |

Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag.

Set by hardware on timer/
counter overflow. Cleared
when interrupt processed.

TR1 TCON.6 Timer 1 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

TFO TCON.5 Timer 0 overflow Flag.

Set by hardware on timer/
counter overflow. Cleared
when interrupt processed.

TRO TCON.4 Timer 0 Run control bit.
Set/cleared by software to turn
timer/counter on/off.

IE1

IT1

IEO

ITO

TCON.3

TCON.2

TCON.1

TCON.0

Interrupt 1 Edge flag.

Set by hardware when exter-
nal interrupt edge detected.
Cleared when interrupt pro-
cessed.

Interrupt 1 Type control bit.
Set/cleared by software to
specify falling edge/low level
triggered external interrupts.
Interrupt O Edge flag.

Set by hardware when exter-
nal interrupt edge detected.
Cleared when interrupt pro-
cessed.

Interrupt O Type control bit.
Set/cleared by software to
specify falling edge/low level
triggered external interrupts.

a. TCON—Timer/Counter Control/Status Register

(MSB) (LSB)
| sMo | sm1 | sm2 | Ren | TB8 | RB8 | TI | RI |

Symbol Position Name and Significance

SMO SCON.7 Serial port Mode control bit 0.
Set/cleared by software (see
note).

SM1 SCON.6 Serial port Mode control bit 1.
Set/cleared by software (see
note).

SM2 SCON.5 Serial port Mode control bit 2.
Set by software to disable re-
ception of frames for which bit
8 is zero.

REN SCON.4 Receiver Enable control bit.
Set/cleared by software to en-
able/disable serial data recep-
tion.

TB8 SCON.3 Transmit Bit 8.

Set/cleared by hardware to de-
termine state of ninth data bit
transmitted in 9-bit UART
mode.

b. SCON—Saerial Port Control/Status Register

Figure 6-6. Peripheral Configuration Registers

RB8

Tl

RI

SCON.2

SCON.1

SCON.0

Note-

Receive Bit 8.

Set/cleared by hardware to in-
dicate state of ninth data bit
received.

Transmit Interrupt flag.

Set by hardware when byte
transmitted. Cleared by soft-
ware after servicing.

Receive Interrupt flag.

Set by hardware when byte re-
ceived. Cleared by software
after servicing.

the state of (SM0, SM1)

selects:

(0,0)—Shift register 1/0
expansion.

(0,1)—8-bit UART, variable
data rate.

(1,0)—9-bit UART, fixed data
rate.

(1,1)—9-bit UART, variable
data rate.

6-6

CHAPTER 6

8051 Family Boolean Processing Capabilities

(MSB) (LSB)
|EA|—|—|€Es|ET1|Ex1|ET1|EX0]
Symbol Position Name and Significance EX1 IE.2
EA IE.7 Enable All control bit.
Cleared by software to disable
all interrupts, independent of
the state of IE.4-IE.O. ETO IE.A
—_ IE.6 (reserved)
— IE.5
ES IE.4 Enable Serial port control bit.
Set/cleared by software to en- EX0 IE.O
able/disable interrupts from Tl
or Rl flags.
ET1 IE.3 Enable Timer 1 control bit.
Set/cleared by software to en-
able/disable interrupts from
timer/counter 1.
c. IE—Interrupt Enable Register
(MSB) (LSB)
|—|—=|—=]Ps]|pr1|px1]pr0] Pxo|
Symbol Position Name and Significance PX1 IP.2
— IP.7 (reserved)
— IP.6 (reserved)
— IP.5 (reserved)
PS IP.4 Serial port Priority control bit. PTO P
Set/cleared by software to
specify high/low priority inter-
rupts for Serial port.
PT1 IP.3 Timer 1 Priority control bit. PXO0 IP.0

Set/cleared by software to
specify high/low priority inter-
rupts for timer/counter 1.

Enable External interrupt 1
control bit. Set/cleared by
software to enable/disable in-
terrupts from INT1.

Enable Timer 0 control bit.
Set/cleared by software to en-
able/disable interrupts from
timer/counter 0.

Enable External interrupt 0
control bit. Set/cleared by
software to enable/disable in-
terrupts from INTO.

External interrupt 1 Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INT1.
Timer 0 Priority control bit.
Set/cleared by software to
specify high/low priority inter-
rupts for timer/counter 0.
External interrupt O Priority
control bit. Set/cleared by
software to specify high/low
priority interrupts for INTO.

d. IP—Interrupt Priority Contol Register

Figure 6-6. Peripheral Configuration Reglsters (continued)

6-7

CHAPTER 6
8051 Family Boolean Processing Capabilities

ASM51 specifies a bit address in any of three ways:

¢ by the number or expression corresponding to
the direct bit address (0-255);

¢ by the name or address of the register containing
the bit, the dot operator symbol (a period: “."),
and the bit’s position in the register (7-0);

* in the case of control and status register, by the

predefined assembler symbols listed in the first
columns of Figures 6-4 through 6-6.

Bits may also be given user-defined names with the
assembler “BIT” directive and any of the above tech-
niques. For example, bit 5 of the PSW may be cleared by

any of the four instructions.
USR_FLGBIT PSW.5 ; User Symbol Definition

) ces e

CLR 0D5H ; Absolute Addressing

CLR PSW.5 ; Use of Dot Operator

CLR FO ; Pre-Defined Assembler Symbol
CLR USR_FLG ;User-Defined Symbol

Data Transfers. The two-byte MOV instructions can
transport any addressable bit to the carry in one cycle, or
copy the carry to the bit in two cycles. A bit can be moved
between two arbitrary locations via a carry by combining
the two instructions. (If necessary, one may push and
pop the PSW to preserve the previous contents of the
carry.) These instructions can replace the multi-instruc-
tion sequence of Figure 6-7, which shows a program
structure appearing in controller applications whenever
flags or outputs are conditionally switched on or off.

Logical Operations. Four instructions perform the
logical-AND and logical-OR operations between the
carry and another bit, and leave the results in the carry.
The instruction mnemonics are ANL and ORL; the ab-
sence or presence of a slash mark (/") before the source
operand indicates whether to use the positive-logic value
or the logical complement of the addressed bit. (The
source operand itself is never affected.)

Bit-test Instructions. The conditional jump instructions
“JC rel” (Jump on Carry) and “JNC rel” (Jump on Not
Carry) test the state of the carry flag, branchingiif itis a
one or zero, respectively. The letters “rel” denote relative
code addressing. The 3-byte instructions “JB bit, rel” and
“JNB bit, rel” (Jump on Bit and Jump on Not Bit) test the
state of any addressable bit in a similar manner. A fifth
instruction combines the Jump on Bit and Clear opera-
tions. "JBC bit, rel” conditionally branches to the indi-
cated address, then clears the bit in the same 2-cycle
instruction. This operationis the same as the 8048-family
“JTF” instructions.

All 8051 conditional jump instructions use program
counter-relative addressing, and all execute in two
cycles. The last instruction byte encodes a signed dis-
placement ranging from-128 to +127. During execution,
the CPU adds this value to the incremented program
counter to produce the jump destination. Put another
way, a conditional jump to the immediately following
instruction would encode 00H in the offset byte.

A section of program or subroutine written using only
relative jumps to nearby addresses will have the same
machine code independent of the code’s location. An
assembled routine may be repositioned anywhere in
memory, even crossing memory page boundaries, with-
out having to modify the program or recompute destina-
tion addresses. To facilitate this flexibility, there is an
unconditional “Short Jump” (SJMP) which uses relative
addressing as well. Since a programmer would have
quite achore trying to compute relative offset values from
one instruction to another, ASM51 automatically com-
putes the displacement needed, giving only the destina-
tion address or label. An error message will alert the
programmer if the destination is “out of range.”

The so-called “Bit Test” instructions implemented on
many other microprocessors simply perform the logic-
AND operation between a byte variable and a constant
mask, and setor clearazero flagdepending onthe result.

ISOLATE
SOURCE
BIT
YES NO
SET CLEAR
DESTINATION DESTINATION
BIT BIT

Figure 6-7. Bit Transfer Instruction Operation

6-8

CHAPTER 6
8051 Family Boolean Processing Capabilities

This is essentially equivalent to the 8051 “MOV C,bit”
instruction. A secondinstructionis then needed to condi-
tionally branch based on the state of the zero flag. This
does not constitute abstract bit-addressing in the 8051
Family sense. Aflag exists only as a field within a register;
to reference a bit the programmer must know and specify
both the encompassing register and the bit's position
therein. This constraint severely limits the flexibility of
symbolic bit addressing and reduces the machine’s
code-efficiency and speed.

Interaction with Other Instructions. The carry flag is
also affected by the instructions listed in Table 6-2. It can
be rotated through the accumulator, and altered as aside
effect of arithmetic instructions. Refer to the User's
Manual for details on how these instructions operate.

Simple Instruction Combinations

By combining general purpose bit operations with certain
addressable bits, one can “custom build” several
hundred usefulinstructions. All eight bits of the PSW can
be tested directly with conditional jump instructions to
monitor (among other things) parity and overflow status.
Programmers can take advantage of 128 software flags
to keep track of operating modes, resource usage, and
so forth.

The Boolean instructions are also the most efficient way
to control or reconfigure peripheral and I/O registers. All
32 1/0 lines become ‘“test pins,” for example, tested by
conditional jump instructions. Any output pin can be
toggled (complemented) in a single instruction cycle.
Setting or clearing the Timer Run flags (TR0 and TR1)
turn the timer-counters on or off; polling the same flags
elsewhere lets the program determine if a timer is run-
ning. The respective overflow flag (TF0 and TF1) can be
tested to determine when the desired period or count
has elapsed, then cleared in preparation for the next
repetition. These bits are all part of the TCON register,
Figure 6-6a. Thanks to symbolic bit addressing, the pro-
grammer only needs to remember the mnemonic asso-
ciated with each function, and does not need to memo-
rize control word layouts.

Inthe 8048-family, instructions corresponding to some of
the above functions require specific opcodes. Ten differ-
entopcodes serve to clear and complement the software
flags FO and F1, enable and disable each interrupt, and
start/stop the timer. Inthe 8051 instruction set, just three
opcodes (SETB, CLR, CPL) with a direct bit address
appended perform the same functions. Two test instruc-
tions (JB and JNB) can be combined with bit addresses
to test the 8048 software flags, the I/O pins, T0, T1, and
INT, and the eight accumulator bits, replacing 15 more
different instructions.

Table 6-2. Other Instructions Affecting the Carry Flag

Mnemonic

Description

Byte Cyc

ADD ARn

ADD A.direct
ADD A,@Ri
ADD A #data

ADDC A,Rn

ADDC A,direct

ADDC A,@Ri

ADDC A, #data

SUBB ARn

SUBB A,direct

SUBB A,@Ri

SUBB A, #data

MUL AB
DIV AB
DA A

RLC A

RRC A

CINE A, direct,rel

CINE A, #data,rel
CJNE Rn,#data,rel

CINE @Ri,#data,rel

Add register to
Accumulator

Add direct byte to
Accumulator

Add indirect RAM to
Accumulator

Add immediate data
to Accumulator

Add register to
Accumulator with
Carry flag

Add direct byte to
Accumulator with
Carry flag

Add indirect RAM to
Accumulator with
Carry flag

Add immediate data
to Acc with Carry flag
Subtract register from
Accumulator with
borrow

Subtract direct byte
from Acc with borrow
Subtract indirect RAM
from Acc with borrow
Subtract immediate
data from Acc with
borrow

Multiply A & B

Divide A by B
Decimal Adjust
Accumulator

Rotate Accumulator
Left through the Carry
flag

Rotate Accumulator
Right through Carry
flag

Compare direct byte
to Acc & Jump if Not
Equal

Compare immediate
to Acc & Jump if Not
Equal

Compare immed to
register & Jump if Not
Equal

Compare immed to
indirect & Jump if Not
Equal

1

2

1

1

1

1

6-9

CHAPTER 6
8051 Family Boolean Processing Capabllities

Table 6-3a shows how 8051 programs implement soft- Family solution requires the same number of machine
ware flag and machine control functions associated with cycles, and executes 2.5 times faster.
special opcodes in the 8048. In every case the 8051

Table 6-3a. Contrasting 8048 and 8051 Bit Control and Testing Instructions

8048 8051
Instruction Bytes Cycles us Instruction Bytes Cycles & s

Flag Control

CLR Cc 1 1 25 CLR C 1 1

CPL FO 1 1 2.5 CPL FO 2 1
Flag Testing

JNC offset 2 2 5.0 JNC rel 2 2

JFO offset 2 2 5.0 JB FO,rel 3 2

JB7 offset 2 2 5.0 JB ACC.7 rel 3 2
Peripheral Polling

JT0 offset 2 2 5.0 JB TO,rel 3 2

JN1 offset 2 2 5.0 JNB INTO,rel 3 2

JTF offset 2 2 5.0 JBC TFO,rel 3 2
Machine and Peripheral Control

STRT T 1 1 25 SETB TRO 2 1

EN 1 1 1 25 SETB EXO 2 1

DIS TCNT1 1 1 2.5 CLR ETO 2 1

Table 6-3b. Replacing 8048 Instruction Sequences with Single 8051 Instructions

8048 8051

Instruction Bytes Cycles us Instruction Bytes Cycles & us
Flag Control
Set carry
CLR o]
CPL C = 2 2 50 | SETB C 1 1
Set Software Flag
CLR FO
CPL__FO = 2 2 5.0 | SETB FO 2 !
Turn Off Output Pin
ANL P1, #OFBH = 2 2 50 | CLR P1.2 2 1
Complement Output Pin
IN A,P1
XRL A, #04H
OUTL P1,A = 4 6 15.0 | CPL P1.2 2 1
Clear Flag in RAM
MOV RO,#FLGADR
MOV A@R0O
ANL A, #FLGMASK
MOV @RO,A = 6 6 15.0 | CLR USER__FLG 2 1

6-10

CHAPTER 6
8051 Family Boolean Processing Capabilities

Table 6-3b. Replacing 8048 Instruction Sequences with Single 8051 Instructions (continued)

8048

Instruction Bytes

Cycles us

8051

Instruction Bytes

Cycles & ps

Flag Testing:
Jump if Software Flag is 0
JFO $+4
JMP offset = 4 4

Jump if Accumulator bit is O
CPL A
JB7 offset
CPL A = 4 4

10.0

10.0

JNB FO,rel 3 2

JNB ACC.7,rel 3 2

Peripheral Polling
Test if Input Pin is Grounded
IN A.P1
CPL A
JB3 offset = 4 5

Test if Interrupt Pin is High
JN1 $+4
JMP offset = 4 4

12,5

10.0

JNB P1.3,rel 3 2

JB INTO,rel 3 2

BOOLEAN PROCESSOR APPLICATIONS

So what does all this buy you?

Qualitatively, nothing. All the same capabilities could be
(and often have been) implemented on other machines
using awkward sequences of other basic operations. As
mentioned earlier, any CPU can solve any problemgiven
enough time.

Quantitatively, the differences between a solution pro-
vided by the 8051 and those required by previous archi-
tectures are numerous. The 8051 Family solution is a
faster, cleaner, lower-cost solution to microcontroller
applications.

The opcode space freed by condensing many specific
8048 instructions in a few general operations has been
used to add new functionality to the 8051 family architec-
ture — both for byte and bit operations. 144 software
flags replace the 8048’s two. These flags (and the carry)
may be directly set, not just cleared and complemented,
and all can be tested for either state, not just one.
Operating mode bits previously inaccessible may be
read, tested, or saved. Situations where the 8051 instruc-
tion set provides new capabilities are contrasted with
8048 instruction sequences in Table 6-3b. Here the 8051
speed advantage ranges from 5x to 15x!

Combining Boolean and byte-wide instructions can pro-
duce great synergy. An 8051 Family based application
will prove to be:

¢ simpler to write since the architecture correlates
more closely with the problems being solved;

* easier to debug because more individual instruc-
tions have no unexpected or undesirable side-

effects;

¢ more byte efficient due to direct bit addressing
and program counter relative branching;

e faster running because fewer bytes of instructions
need to be fetched and fewer conditional jumps

are processed;

* lower cost because of the high level of system-
integration within one component.

These rather unabashed claims of excellence shall not
go unsubstantiated. The rest of this chapter examines
less trivial tasks simplified by the Boolean processor. The
first three compare the 8051 with other microprocessors;
the last two go into 8051-based system designs in much
greater depth.

6-11

CHAPTER 6
8051 Family Boolean Processing Capabilities

Design Example #1 — Bit Permutation

First, we'll use the bit-transfer instructions to permute a
lengthy pattern of bits.

A steadily increasing number of data communication
products use encoding methods to protect the security of
sensitive information. By law, interstate financialtransac-
tions involving federal banking system must be transmit-
ted using the Federal Information Processing Data En-
cryption Standard (DES).

Basically, the DES combines eight bytes of “plaintext”
data (in binary ASCII, or any other format) with a 56-bit
“key”, producing a 64-bit encrypted value for transmis-
sion. At the receiving end the same algorithm is applied
tothe incoming data using the same key, reproducingthe
original eight byte message. The algorithm used for
these permutations is fixed; different user-defined keys
ensure data privacy.

It is not the purpose here to describe the DES in any
detail. Suffice it to say that encryption/decryption is a
long, iterative process consisting of rotations, exclusive-
OR operations, function table look-ups, and an extensive
sequence of bit permutation, packing, and unpacking
steps. The bit manipulation steps are included, it is
rumored, to impede a general purpose digital supercom-
puter trying to “break” the code. Any algorithm imple-
menting the DES with previous generation microproces-
sors would spend virtually all of its time diddling bits.

The bit manipulation performed is typified by the Key
Schedule Calculation represented in Figure 6-8. This
step is repeated 16 times for each key used in the
course of a transmission. In essence, a 7-byte, 56-bit
“Shift Key Buffer” is transformed into an 8-byte, “Permu-
tation Buffer” without altering the shifted key. The arrows
in Figure 6-8 indicate a few of the translation steps. Only
six bits of each byte of the Permutation Buffer are used;

the two high-order bits of each byte are cleared. This
means only 48 of the 56 Shifted Key Buffer bits are used
in any one iteration.

Different microprocessor architectures would bestimple-
ment this type of permutation in different ways. Most
approaches would share the steps of Figure 6-9a:

* Initialize the Permutation Buffer to default state
(ones or zeroes);

¢ |solate the state of a bit of a byte from the Key
Buffer. Depending on the CPU, this might be
accomplished by rotating a word of the Key
Buffer through a carry flag or testing a bit in
memory or an accumulator against a mask byte;

* Perform a conditional jump based on the carry or
zero flag if the Permutation Buffer default state is

correct;

* Otherwise reverse the corresponding bit in the
permutation buffer with logical operations and
mask bytes.

Each step above may require several instructions. The
last three steps must be repeated for all 48 bits. Most
microprocessors would spend 300 to 3,000 us on each of
the 16 iterations.

Notice, though, that this flow chart looks a lot like Figure
6-7. The Boolean Processor can permute bits by simply
moving them from the source to the carry to the
destination — a total of two instructions taking 4 bytes
and 3 ps per bit. Assume the Shifted Key Buffer and Per-
mutation Buffer both reside in bit-addressable RAM, with
the bits of the former assigned symbolic names SKB_1,
SKB_2 ... SKB_56. Then working from Figure 6-8, the
software for the permutation algorithm would be that
of Example 6-1a. The total routine length would be
192 bytes, requiring 144 ps.

Permuted and Shifted 56-Bit Key Buffer

S

e e ——— .

D;

L ———— " miii—

[23 4567 8]00n 141518 [17 2t 24] 25 28 2[3334 3 s Jeraz e s asfeo 50 5152 53 54 55 s
N\ //
~—
-
S ﬂ)
[xxoavr v 209) [xx3assearto | [xx 4] [2] [ss] |] [xxaaeoaeseaasa] [xxas 42923
PERMUTATION BYTE 1 PERM BYTE 2 PERMBYTE3 PERMBYTE4 BYTES BYTESE PERMBYTE7 PERM BYTE S

48-Bit Key K

Figure 6-8. DES Key Schedule Transformation

6-12

CHAPTER 6
8051 Family Boolean Processing Capabilities

CLEAR ALL BITS
OF PERMUTATION
BUFFER

f

{

ISOLATE
SKB 8IT ()

\

REPEAT

FOR EACH

BIT OF

v SHIFTED
KEY

SET PERMUTATION
BUFFER 8IT
pc2

{LEAVE PERMUTATION

BUFFER
(48 TIMES)

BUFFER BIT
CLEARED)

/
/
/

Figure 6-9a. Flowchart for Key Permutation Attempted with a Byte Processor

The algorithm of Figure 6-9b is just slightly more efficient
in this time-critical application and illustrates the syn-
ergy of an integrated byte and bit processor. The bits
needed for each byte of the Permutation Buffer are
assimilated by loading each bit into the carry (1 ps.) and
shifting it into the accumulator (1 us.). Each byte is stored
in RAM when completed. Forty-eight bits thus need a
total of 112 instructions, some of which are listed in

Example 6-1b. Worst-case execution time would be 112
us, since each instruction takes a single cycle. Routine
length should also decrease, to 168 bytes. Actually,inthe
context of the complete encryption algorithm, each per-
muted byte would be processed as soon as it is assimi-
lated — saving memory and cutting execution time by
another 8 us.

CHAPTER 6
8051 Family Boolean Processing Capabilities

!

CLEAR ACCUMULATOR

LOAD BIT MAPPED ONTO BIT § OF
PERMUTATION BYTE INTO CARRY

1

ROTATE LEFT INTO ACC.

|

LOAD BIT MAPPED ONTO BIT 4
OF PERMUTATION BYTE INTO CARRY

Y

ROTATE LEFT INTO ACC.

f

LOAD BIT MAPPED ONTO BIT 0
OF PERMUTATION BYTE INTO CARRY

!

ROTATE LEFT INTO ACC.

STORE ACC. INTO PERMUTATION
BUFFER

REPEAT

FOR EACH
BYTE OF
PERMUTATION
BUFFER

(8 TIMES)

Figure 6-9b. DES Key Permutation with Boolean Processor

6-14

CHAPTER 6
8051 Family Boolean Processing Capabilities

Example 6-1. DES Key Permutation Software

a. “Brute Force” technique

MOV C.SKB_1

MOV PB_1.1,C

MOV C,SKB_2

MOV PB_4.0,C

MOV C,SKB_3

MOV PB 25,0

MOV C,SKB_4

MOV PB_1.0,C

MOV C,SKB_55

MOV PB_5.0,C

MOV C.SKB_56

MoV PB_7.2,C
b. Uslng Accumulator to Collect Bits

CLR A

MOV C,SKB_14

RLC A

MOV C,SKB_17

RLC A

MOV C,SKB_11

RLC A

MOV C.SKB_24

RLC A

MOV C,SKB_1

RLC A

MOV C.SKB_5

RLC A

MoV PB_1,A

MOV C.SKB_29

RLC A

MOV C,SKB_32

RLC A

MOV PB 8,A

To date, most banking terminals and other systems using
the DES have needed special boards or peripheral
controller chips just for the encryption decryption proc-
ess, and still more hardware to form a serial bit stream
for transmission (Figure 6-10a). An 8051 solution
could pack most of the entire system onto the one chip
(Figure 6-10b). The whole DES algorithm would require
lessthan one-fourth of the on-chip program memory, with
the remaining bytes free for operating the banking termi-
nal (or whatever) itself.

Moreover, since transmission and reception of data is
performed through the on-board UART, the unencrypted
data (plaintext) never even exists outside the microcom-
puter! Naturally, this would afford a high degree of
security from data interception.

Design Example #2 — Software Serial I/O

An example often imposed on beginning microcomputer
students is to write a program simulating a UART.
Though doing this with the 8051 Family may appearto be
a moot point (given that the hardware for a full UART is
on-chip), it is still instructive to see how it would be done,
and maintains a product-line tradition.

As it turns out, the 8051 microcomputers can receive or
transmit serial data via software very efficiently using the
Booleaninstruction set. Since any I/O pin may be a serial
input or output, several serial links could be maintained
at once.

Figure 6-11a and 11b, show algorithms for receiving or
transmitting a byte of data. (Another section of program
would invoke this algorithm eight times, synchronizing it
with a start bit, clock signal, software delay, or timer
interrupt.) Data is received by testing aninput pin, setting
the carry to the same state, shifting the carry into a data
buffer, and saving the partial frame in internal RAM. Data
is transmitted by shifting an output buffer through the
carry, and generating each bit on an output pin.

A side-by-side comparison of the software for this com-
mon application with three different microprocessor
architecturesis shown in Table 6-4a and 6-4b. The 8051
solution is more efficient than the others on every count!

6-15

CHAPTER 6
8051 Family Boolean Processing Capabilities

| — - T T T/
CONTROL AND ADDRESS BUSSES

Binininininig

DISPLAY ‘ ’
DATA I
1o ENCRY l T0
:> ports| | cpu RAM ROM ZL'I?N UART MODEM
KEYBOARD : , |
I SYSTEM DATA BUS _]

a. Using Multi-Chip Processor Technology

TxD P8

DISPLAY (P2
T0

i 8051 MODEM
/1 RxD |~——————

—

KEYBOARD

b. Using One Single-Chip Microcomputer

Figure 6-10. Secure Banking Terminal Block Diagram

6-16

CHAPTER 6
8051 Family Boolean Processing Capabilities

C INPUT)

SET CARRY CLEAR CARRY

T J

|}

LOAD BUFFER

l

ROTATE THRU C

!

STORE BUFFER

a. Reception

(— OUT;’UT)

LOAD BUFFER

l

ROTATE THRU C

l

STORE BUFFER

CARRY =0 CARRY = 1

CLEAR OUTPUT SET QUTPUT

l |

b. Transmission

Figure 6-11. Serial 1/O Algorithms

6-17

CHAPTER 6
8051 Family Boolean Processing Capabilities

Table 6-4. Serial I/O Programs for Various Microprocessors

a.) Input Routine

8085 8048 8051
IN SERPORT Mov C, SERPIN
ANI MASK CIR [o]
JZ Lo JNTO IO
CcMC CPL o]
1O: IXI HL, SERBUF MoV RO, #SERBUF
MoV AM MoV A, QRO MoV A, SERBUF
RR RRC A RRC A
MoV M,A MOV @RO,A MOV SERBUF', A
RESULTS:
8 Instructions 7 Instructions 4 Instructions
14 Bytes 9 Bytes 7 Bytes
56 States 9 Cycles 4 Cycles
19 us 22.5 us 4 pus
b.) Ouput Routine
8085 8048 8051
ILXT HL, SERBUF MoV RO, #SERBUF
Mov AM MoV A, @RO MoV A, SERBUF
RR RRC A RRC A
MOV M,A MoV @RO,A MoV SERBUF, A
IN SERPORT
Jc HI Jc HI
LO: ANI NOT MASK ANL SERPRT, #NOT MASK Mov SERPIN,C
JMP CNT JMP CNT
HI: ORI MASK HI: ORL SERPRT, #MASK
CNT: ouT SERPORT CNT:
RESULTS:
10 Instructions 8 Instructions 4 Instructions
20 Bytes 13 Bytes 7 Bytes
72 States 11 Cycles 5 Cycles
24 us 27.5 ps 5 us

Design Example #3 — Combinatorial Logic
Equations

Some simple uses for bit-test instructions and logical
operations follow.

Virtually all hardware designers have solved complex
functions using combinatorial logic. While the hardware
involved may vary fromrelay logic, vacuumtubes, or TTL
orto more esoteric technologies like fluidics, in each case
the goal is the same: to solve a problem represented by
a logical function of several Boolean variables.

Figure 6-12 shows TTL and relay logic diagrams for a
function of the six variables U through Z. Each is a
solution of the equation

Q=U-(V+W)+(X-V)+Z

Equations of this sort might be reduced using Karnaugh
Maps or algebraic techniques, but thatis not the purpose
of this example. As the logic complexity increases, so
does the difficulty of the reduction process. Even a minor
change to the function equations as the design evolves
would require tedious re-reduction from scratch.

For the sake of comparison, this function is implemented
three ways, restricting the software to three proper
subsets of the 8051 Family instruction set. It is also
assumed that U and V are input pins from different input
ports, W and X are status bits for two peripheral control-
lers, and Y and Z are software flags set up earlier in the
program. The end result must be written to an output pin
on some third port. The first two implementations follow
the flow-chart shownin Figure 6-13. Program flow would
embark on a routine down a test-and-branch tree and
leaves either the “True” or “Not True” exit as soon as the
proper result has been determined. These exits then
rewrite the output port with the result bit respectively one
or zero.

Otherdigital computers must solve equations of this type
with standard word-wide logical instructions and condi-
tional jumps. So for the firstimplementation, no general-
ized bit-addressing instructions are used. As we shall
soon see, being constrained to such an instruction sub-
set produces somewhat sloppy software solutions. 8051
Family mnemonics are used in Example 6-2a; other
machines might further cloud the situation by requiring
operation-specific mnemonics like INPUT, QUTPUT,
LOAD, STORE, etc., instead of the MOV mnemonic used
for all variable transfers in the 8051 instruction set.

6-18

CHAPTER 6

8051 Family Boolean Processing Capabilities

" -

1\ — N
y ——d__)” —
2z
Q=(Ue(V+W)+ (XeV)+2Z
a. Using TTL
v
[
I v
D |
T N
X %

CR1

b. Using Relay Logic

Figure 6-12. Hardware Implementations of Boolean Functions

6-19

CHAPTER 6
8051 Family Boolean Processing Capabilities

FUNCTION FUNCTION
IS FALSE IS TRUE
CLEAR Q SETQ

Figure 6-13. Flow Chart for Tree-Branching Algorithm

The code that results is cumbersome and error prone. It
would be difficult to prove whether the software worked
for all input combinations in programs of this sort. Fur-
thermore, execution time varies widely with input data.

Thanks to the direct bit-test operations, a single instruc-
tion can replace each move mask conditional jump
sequence in Example 6-2a, but the algorithm would be
equally convoluted (see Example 6-2b). To lessen the
confusion, “a bit" each input variable is assigned a
symbolic name.

A more elegant and efficient implementation (Example
6-2¢) strings together the Boolean ANL and ORL func-
tions to generate the output function with straight-line
code. When finished, the carry flag contains the result,
which is simply copied out to the destination pin. No
flow chart is needed — code can be written directly
from the logic diagrams in Figure 6-12. The result is
simplicity itself; fast, flexible, reliable, easy to design, and
easy to debug.

An 8051 program can simulate an N-input AND or OR
gate with at most N + 1 lines of source program — one for

each input and one line to store the results. To simulate.

NAND or NOR gates, complement the carry after com-
puting the function. When some inputs to the gate have
‘inversion bubbles,” perform the ANL or ORL operation
on inverted operands. When the first input is inverted,
either load the operand into the carry and then comple-
mentit, or use DeMorgan’s Theorem to convert the gate
to a different form.

Example 6-2. Software Solutions to Logic Function
of Figure 6-12.

a. Using only byte-wide logical instructions.

;BUFNCI SOLVE RANDOM LOGIC FUNCTION
; OF 6 VARIABLES BY LOADING AND
; MASKING THE APPROPRIATE BITS
; IN THE ACCUMULATOR, THEN
; EXECUTING CONDITIONAL JUMPS
; BASED ON ZERO CONDITION.
(APPROACH USED BY BYTE-
i ORIENTED ARCHITECTURES.)
; BYTE AND MASK VALUES
H CORRESPOND TO RESPECTIVE BYTE
H ADDRESS AND BIT POSITIONS.
OUTBUF DATA 22H ;OUTPUT PIN STATE MAP
TESTV: MOV AP2
ANL A#00000100B

JINZ TESTU

MOV ATCON

ANL A,#001000008
Jz TESTX

TESTU: MOV AP1
ANL A,#000000108
JINZ SETQ

6-20

CHAPTER 6
8051 Family Boolean Processing Capabilities

TESTX:

TESTZ:

CLRQ:

SETQ:

ouTQ:

b. Using only bit-test instructions.

;BFUNC2 SOLVE RANDOM LOGIC FUNCTION
OF 6 VARIABLES BY DIRECTLY

’

TON<X=E < Cc -

TEST_V:

TEST_U:
TEST_X:

TEST_Z:

MoV
ANL
JZ
MoV
ANL
JZ
MOV
ANL
Jz
MoV
ANL
JMP
MOV
ORL
MoV
MOV

A,TCON
A#00001000B
TESTZ

A20H

A #00000001B
SETQ

A21H

A #00000010B
SETQ
A,OUTBUF
A#11110111B
ouTQ

A, OUTBUF

A #00001000B
OUTBUF,A
P3.A

POLLING EACH BIT.

(APPROACH USING 8051-FAMILY UNIQUE
BIT-TEST INSTRUCTION CAPABILITY.)
SYMBOLS USED IN LOGIC DIAGRAM
ASSIGNED TO CORRESPONDING 8x51

BIT ADDRESSES.

BIT P1.1

BIT P2.2

BIT TFO

BIT 1E1

BIT 20H.0

BIT 21H1

BIT P3.3

JB V,TEST_U
JNB W,TEST_X
JB USET_Q
JNB X, TEST Z
JNB Y,SET_Q
JNB ZSET_Q

CLRQ: CLR Q

JMP NXTTST
SET_Q: SETB Q
NXTTST: ;CONTINUATION OF PROGRAM

c. Using logical operations on Boolean variables.
;FUNC3 SOLVE A RANDOM LOGIC FUNCTION

; OF 6 VARIABLES USING

; STRAIGHT_LINE LOGICAL

; INSTRUCTIONS ON 8051 BOOLEAN

; VARIABLES.

MoV CcVv

ORL (A ; OUTPUT OF OR GATE

ANL Cu ; OUTPUT OF TOP AND GATE
MOV Fo.C ; SAVE INTERMEDIATE STATE
MOV CX

ANL cyY ; OUTPUT OF BOTTOM AND GATE
ORL C,Fo ; INCLUDE VALUE SAVED ABOVE
ORL CcZ ; INCLUDE LAST INPUT VARIABLE
MoV QC ; OUTPUT COMPUTED RESULT

An upper limit can be placed on the complexity of soft-
ware to simulate a large number of gates by summing the
total number of inputs and outputs. The actual total
should be somewhat shorter, since calculations can be
“chained,” as shown above, The output of one gate is
often the first input to another, bypassing the intermedi-
ate variable to eliminate two lines of source.

Design Example #4 — Automotive Dash-
board Functions

Now let's apply these techniques to designing the soft-
ware for a complete controller system. This applicationis
patterned after a familiar real-world application which
isn't nearly as trivial as it might first appear: automobile
turn signals.

Imagine the 3-position turn lever on the steering column
as a single-pole, triple-throw toggle switch. In its central
position all contacts are open. Inthe up or down position,
contacts close causing corresponding lights inthe rear of
the car to blink. So far very simple.

6-21

CHAPTER 6
8051 Family Boolean Processing Capabilities

Two more turn signals blink inthe front of the car, and two
others in the dashboard. All six bulbs flash when an
emergency switch is closed. A thermo-mechanical relay
(accessible under the dashboard in case it wears out)
causes the blinking.

Applying the brake pedal turns the tail light filaments on
constantly — unless a turnis in progress, in which case
the blinking tail light is not affected. (Of course, the front
turn signals and dashboard indicators are not affected by
the brake pedal.) Table 6-5 summarizes these operating
modes.

But we're not done yet. Each of the exterior turn signal
(but not the dashboard) bulbs has a second, somewhat
dimmer filament for the parking lights. Figure 6-14 shows
TTL circuitry which could control all six bulbs. The signals
labeled “High Freq.” and “Low Freq.” represent two
square-wave inputs. Basically, when one of the turn
switches is closed or the emergency switch is activated,
the low frequency signal (about 1 Hz) is gated through to
the appropriate dashboard indicator(s) and turn
signal(s). The rear signals are also activated when the
brake pedal is depressed provided a turn is not being
made in the same direction. When the parking light
switch is closed the higher frequency oscillator is gated
to each front and rear turn signal, sustaining a low-
intensity background level. (This is to eliminate the need
for additional parking light filaments.)

In most cars, the switching logic to generate these
functions requires a number of multiple-throw contacts.
As many as 18 conductors thread the steering column of
some automobiles solely for turn-signal and emergency
blinker functions.

A multiple-conductor wiring harness runs to each corner
of the car, behind the dash, up the steering column, and
down to the blinker relay below. Connectors at each
termination for each filament lead to extra cost and labor
during construction, lower reliability and safety, and more
costly repairs. And considering the system’s present
complexity, increasing its reliability or detecting failures
would be quite difficult.

There are two reasons for going into such painful detail
describing this example. First, it shows that the hardest
part of many system designs is determining what the
controller should do. Writing the software to solve these
functions is comparatively easy. Secondly, it shows the
many potential failure points in the system. Later we’ll
see how the peripheral functions and intelligence built
into @ microcomputer (with a little creativity) can greatly
reduce external interconnections and mechanical parts
count.

Table 6-5. Truth Table for Turn-Signal Operation

Input Signals Output Signals
Brake Emerg. Left Right Left Right Left Right
Switch Switch Turn Tum Front Front Rear Rear
Switch Switch & Dash & Dash

0 0 0 0 Off Off Off Off
0 0 0 1 Off Blink Off Blink
0 0 1 0 Blink Off Blink Off
0 1 0 0 Blink Blink Blink Blink
0 1 0 1 Blink Blink Blink Blink
0 1 1 0 Blink Blink Blink Blink
1 0 0 0 Off Off On On
1 0 0 1 Off Blink On Blink
1 0 1 0 Blink Off Blink On
1 1 0 0 Blink Blink On On
1 1 0 1 Blink Blink On Blink
1 1 1 0 Blink Blink Blink On

6-22

CHAPTER 6

8051 Family Boolean Processing Capabilities

L. TURN J
EMERG

BRAKE

L. DASH

'j>__ L. FRNT

)] N\,

"—'1_/ L. REAR

R. DASH

R. FRNT
H O

PARK

=),
R. TURN D ‘
L

LO.

FREQ.

OSCILLATOR

Hi.
FREQ.

OSCILLATOR

4) R. REAR

Figure 6-14. TTL Logic Implementation of Automotive Turn Signals

The Single-Chip Solution

The circuit shown in Figure 6-15 indicates five input pins
to the five input variables — left-turn select, right-turn
select, brake pedal down, emergency switch on, and
parking lights on. Six output pins turn on the front, rear,
and dashboard indicators for each side. The microcom-
puter implements all logical functions through software,
which periodically updates the output signals as time
elapses and input conditions change.

Design Example #3 demonstrated that symbolic ad-
dressing with user-defined bit names makes code and
documentation easier to write and maintain. Accordingly,
we'll assign these I/O pins names for use throughout the
program. (The format of this example will differ some-
what from the others. Segments of the overall program
will be presented in sequence as each is described.)

; INPUT PIN DECLARATIONS:
; (ALL INPUTS ARE POSITIVE-TRUE LOGIC)

BRAKE BIT P10 ;BRAKEPEDAL DEPRESSED

EMERG

PARK
L_TURN
R_TURN

|,._FRNT
R_FRNT
L_DASH
R_DASH
L_REAR

R_REAR

BIT P11 ;EMERGENCY BLINKER
ACTIVATED

BIT P1.2 ;PARKING LIGHTS ON

BIT P13 ;TURNLEVERDOWN

BIT P14 ;TURNLEVERUP

OUTPUT PIN DECLARATIONS

BIT P15 ;FRONTLEFT-TURN
INDICATOR

BIT P1.6 ;FRONTRIGHT-TURN
INDICATOR

BIT P1.7 ;DASHBOARD LEFT-TURN
INDICATOR

BIT P2.0 ;DASHBOARD RIGHT-TURN
INDICATOR

BIT P2.1 ;REARLEFT-TURN
INDICATOR

BIT P22 ;REARRIGHT-TURN
INDICATOR

6-23

CHAPTER 6
8051 Family Boolean Processing Capabilities

+12v
—— +12v
—_
EE 3 3 EE 3 8051 LEFT
(! FRONT
BRAKE - P15
e " o #‘Do— P10 cant
EMERGENCY | o— 6. {>o—- PIA P18 FRONT
SWITCH
= LEFT
PARKING - ‘
LIGHTS L "o jJ So— P12 o1y P DASHBOARD
LEFY -
>~ J] >o—— P1.3 RIGHT
TURN k P DASHBOARD
SWITCH | P20
_ RIGHT P14
o ’ = | LEFY
P2.1 REAR
e
-
= RIGHT
P2.2 REAR
=
MODE SIGNAL CONTROLLER OUTPUT SIGNAL
SENSORS CONDITIONING BUFFERS BULBS
Figure 6-15. Microcomputer Turn-Signal Connections
Another key advantage of symbolic addressing appears e
further on in ?he desngq pygle. jl'he‘ locations of cable - INTERRUPT RATE SUBDIVIDER
connectors, signal conditioning circuitry, voltage regula-
tors, and heat sinks, etc., all affect PC board layout. Itis ~ SUB_DIV DATA 20H
quite likely that the somewnhat arbitrary pin assignment : HIGH-FREQUENCY OSCILLATOR BIT
defined early in the software design cycle will prove to be
less than optimum; rearranging the 1/O pin assignment HLFREQ ~ BIT SUB_DIV.0
could well allow a more compact module, or eliminate ;s LOW-FREQUENCY OSCILLATOR BIT
costly jumpers on a single-sided board. (These consid- LO_FREQ BIT SUB-DIV.7
erations apply especially to automotive and other cost- | !
sensitive applications needing single-chip controllers.) ’
Since other architectures use mask bytes or “clever” ORG 0000H
algorithms to isolate bits by rotating them into the carry, JMP INIT
re-routing an input signal (from P1.1, for example, to
P3.4) could require extensive modifications throughout o e
the software. ORG 100H
; Tl
The Boolean Processor’s direct bit addressing makes ; PUTTIMER O IN MODE f
such changes trivial. The number of the port containing ~ INIT: MOV TMOD #00000001B
the pin is irrelevant, and masks and complex program ;INITIALIZE TIMER REGISTERS
structures are not needed. Only the initial Boolean vari- MOV TLO.#0
able declarations need to be changed; ASM51 automati- ’
cally adjusts all addresses and symbolicreferences tothe Mov THO,#-16
reassigned variables. The user is assured that no addi- ; SUBDIVIDE INTERRUPT RATE BY 244
tional debugging or software verification will be required. MOV SUB_DIV#244
; ENABLE TIMER INTERRUPTS
SETB ETO

6-24

CHAPTER 6
8051 Family Boolean Processing Capabilities

; GLOBALLY ENABLE ALL INTERRUPTS

SETB EA
; START TIMER
SETB TRO

; (CONTINUE WITH BACKGROUND PROGRAM)

)

; PUT TIMER 0 IN MODE 1
; INITIALIZE TIMER REGISTERS

; SUBDIVIDE INTERRUPT RATE BY 244
; ENABLE TIMER INTERRUPTS

; GLOBALLY ENABLE ALL INTERRUPTS
; START TIMER

Timer 0 (one of the two on-chip timer/counters) replaces
the thermo-mechanical blinker relay in the dashboard
controller. During systeminitialization, it is configured as
atimerin mode 1 by setting the least significant bit of the
timer mode register (TMOD). In this configuration the
low-order byte (TLO) is incremented every machine
cycle, overflowing and incrementing the high-order byte
(THO) every 256 pus. Timer-interrupt 0 is enabled so that
a hardware interrupt will occur each time THO overflows.

An 8-bit variable in the bit-addressable RAM array is
needed to further subdivide the interrupts via software.
The lowest-order bit of this counter toggles very fast to
modulate the parking lights; bit 7 is “turned” to approxi-
mately 1 Hz for the turn- and emergency-indicator blink-
ing rate.

Loading THO with -16 will cause an interrupt after
4,096 ms. The interrupt service routine reloads the high-
order byte of timer 0 for the next interval, saves the CPU
registers likely to be affected on the stack, and then
decrements SUB_DIV. Loading SUB_DIV with 244 ini-
tially and each time it decrements to zero, will produce a
0.999 second period for the highest-order bit.

ORG 000BH ; TIMER 0 SERVICE VECTOR
MoV THO,#-16

PUSH PSW

PUSH ACC

PUSH B

DJINZ SUB_DIV,TOSERV

Mov SUB_DIV #244

The code to sample inputs, performs calculations, and
update outputs — the real essence of the signal-control-
ler algorithm — may be performed either as part of the

interrupt-service routine or as part of a background-
program loop. The only concern is that it must be exe-
cuted at least several dozen times per second to prevent
parking light flickering. We will assume the former case,
and insert the code into the timer 0 service routine.

First, notice from the logic diagram (Figure 6-14) that the
subterm (PARK - H_FREQ), asserted when the parking
lights are to be ondimly, figures into four of the six output
functions. Accordingly, we will first compute thattermand
save it in a temporary location named “DIM”. The PSW
contains two general purpose flags: FO, which corre-
sponds to the 8048 flag of the same name, and PSW.1.
Since the PSW has been saved and will be restored to its
previous state after servicing the interrupt, we can use
either bit for temporary storage.

DIM BIT PSW.1 ; DECLARE TEMP STORAGE
FLAG

MOV C,PARK ; GATE PARKING LIGHT
SWITCH

ANL HILFREQ ; WITH HIGH FREQUENCY
SIGNAL

MOV DIM,C ; AND SAVE IN TEMP
VARIABLE.

This simple 3-line selection of code illustrates a remark-
able point. The software indicates in very abstract terms
exactly what functionis being performed, independent of
the hardware configuration. The fact that these three bits
include an input pin, a bit within a program variable, and
a software flag in the PSW is totally invisible to the
programmer.

Now generate and output the dashboard left turn signal.

’

MOV C,L_TURN ; SET CARRY IF TURN

ORL C,EMERG ; OR EMERGENCY SELECTED.
ANL CLO_FREQ ;GATEIN1HZSIGNAL

MOV L_DASH,C ; AND OUTPUT TO DASHBOARD.

To generate the left-front turn signal, we only need to add
the parking light function in FO. But notice that the
function in the carry will also be needed for the rear
signal. We can save effort later by savingits current state
in FO.

MOV FO.C ; SAVE FUNCTION SO FAR.
ORL CDM ; ADD IN PARKING LIGHT FUNCTION
MOV L_FRNT,C ; AND OUTPUT TO TURN SIGNAL.

6-25

CHAPTER 6
8051 Family Boolean Processing Capabillities

Finally, the rear left-turn signal should also be on when
the brake pedal is depressed, provided a left turn is not
in progress.

MOV C,BRAKE ; GATE BRAKE PEDAL SWITCH

ANL C,L_TURN ; WITH TURN LEVER.

ORL CF0 ; INCLUDE TEMP. VARIABLE
FROM DASH

ORL CDIM ; AND PARKING LIGHT FUNCTION

MOV L_REARC ; AND OUTPUT TO TURN SIGNAL

Now we have to go through a similar sequence for the
right-hand equivalents to all the left-turn lights. This also
gives us a chance to see how the code segments above
look when combined.

The perceptive reader may notice that simply rearrang-
ing the steps could eliminate one instruction from each
sequence.

Now that all six bulbs are in the proper states, we can
return from the interrupt routine, and the program is
finished. This code essentially needs to reverse the
status saving steps at the beginning of the interrupt.

POP B ; RESTORE CPU REGISTERS.
POP ACC

POP PSW

RETI

Program Refinements. The luminescence of an incan-
descent light bulb filament is generally non-linear; the

MOV CR_TURN ;SETCARRY IFTURN 50% duty cycle of HI_FREQ may not produce the desired
ORL C,EMERG - OR EMERGENCY SELECTED. intensity. If the application requires, duty cycles of 25%,
i 75%, etc., are easily achieved by ANDing and ORing in

ANL CLO_FREQ ;IF SO, GATE IN 1 HZ SIGNAL additional low-order bits of SUB_DIV. For example,

MOV R_DASH,C ; AND OUTPUT TO DASHBOARD. 30 Hz signals of seven different duty cycles could be

MOV FO,C < SAVE FUNCTION SO FAR. produced by considering bits 2-0 as shown in Table 6-6.

. The only software change required would be to the code
ORL CDIM ‘:33 é’;‘_lgﬁRKlNG LIGHT which sets-up variable DIM:
MOV C,SUB_DIV.1 ;START WITH 50 PERCENT
, ; TTOT . -
VoV OEAG GNCBWGREW s AW CSUDNO wAskoomTO
' ' ORL C,SUB_DIV.2 ;AND BUILD BACK TO 62
ANL C[R_TURN ; WITH TURN LEVER. PERCENT
ORL C/F0 ; INCLUDE TEMP.VARIABLE FROM MOV DIMC : DUTY CYCLE FOR PARKING
DASH LIGHTS.
ORL C,DIM ; AND PARKING LIGHT FUNCTION
MOV R _REAR,C ; AND OUTPUT TO TURN SIGNAL.
Table 6-6. Non-trivial Duty Cycles
Sub__Div Bits Duty Cycles

7 6 5 4 3 2 1 0| 125% 250% 37.5% 50.0% 62.5% 75.0% 87.5%
X X X X X 0 0 o0 Off Off Off Off Off Off Off
X X X X X 0 0 1 Off Off Off Off Off Off On
X X X X X 0 1 0 Off Off Off Off Off On On
X X X X X 0 1 1 Off Off Off Off On On On
X X X X X 1 0 0 Off Off Off On On On On
X X X X X 1 0 1 Off Off On On On On On
X X X X X 1 1 0 Off On On On On On On
X X X X X 1 1 1 On On On On On On On

6-26

CHAPTER 6
8051 Family Boolean Processing Capabilities

Interconnections increase cost and decrease reliability.
The simple buffered pin-per-function circuit in Figure
6-15 is insufficient when many outputs require higher-
than-TTL drive levels. A lower-cost solution uses the
8051 serial portin the shift-register mode to augment I/O.
In mode 0, writing a byte to the serial port data buffer
(SBUF) causes the data to be output sequentially
through the “RXD” pin while a burst of eight clock pulses
is generated on the “TXD” pin. A shift register connected
to these pins (Figure 6-16) will load the data byte asitis
shifted out. A number of special peripheral driver circuits
combining shift-register inputs with high drive level out-
puts are available.

Cascading multiple shift registers end-to-end will expand
the number of outputs even further. The data rate in the
1/0 expansion modeis 1 Mb/s, or 8 us per byte. This is the
mode which the serial port defaults to following a reset,
so no initialization is required.

The software for this technique uses the B register as a
“map” corresponding to the different output functions.
The program manipulates these bits instead of the
output pins. After all functions have been calculated, the
B register is shifted by the serial port to the shift-register
drive. The outputs may glitch as data is shifted through
them; at 1 Mb/s, however, the results (blinking lights) will
not be noticed. Many shift registers provide an “enable”
bit to hold the output states while new data is being
shifted in.

Thisiswhere the earlier decisionto address bits symboli-
cally throughout the program pays off. This major I/O
restructuring is nearly as simple to implement as rear-
ranging the input pins. Again, only the bit declarations
need to be changed.

L_FRNT BIT BO ;FRONTLEFT-TURN
INDICATOR

R_FRNT BIT B.1 ;FRONTRIGHT-TURN
INDICATOR -

L_DASH BIT B.2 ;DASHBOARD LEFT-TURN
INDICATOR

R_DASH BIT B.3 ;DASHBOARD RIGHT-TURN
INDICATOR

L_REAR BIT B4 ;REARLEFT-TURN INDICATOR

R_REAR BIT BS5 ;REARRIGHT-TURN
INDICATOR

The original program to compute the functions need not
change. After computing the output variables, the control
map is transmitted to the buffered shift register through
the serial port:

MOV SBUF.B ;LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of
advantages over older methods. Fewer switches are
required. Each is simpler, requiring fewer poles and
lower current contacts. The flasher relay is eliminated
entirely. Only six filaments are driven, rather than ten.
Thewiring harnessis, therefore, simpler and less expen-
sive — one conductor for each of the six lamps and each
of the five sensor switches. The fewer conductors use far
fewer connectors. The whole system is more reliable.

And since the systemis much simplerit would be feasible
to implement redundancy and or fault detection on the
four main turn indicators. Each could still be a standard
double filament bulb, but with the filaments driven in
parallel to tolerate single-element failures.

+12v

-
8051
P30] 0aTA 97 6
P31 et CLK

Og 04 03 dz 04 Og

8-8IT SHIFT REGISTER

Figure 6-16. Output Expansion Using Serial Port

6-27

CHAPTER 6
8051 Family Boolean Processing Capabilities

Even with redundancy, the lights will eventually fail. To
handle this inescapable fact, current or voltage sensing
circuits on each main drive wire can verify that each bulb
and its high-current driver is functioning properly. Figure
6-17 shows one such circuit.

Assume all of the lights are turned on except one, i.e., all
but one of the collectors are grounded. For the bulb that
is turned off, if there is continuity from + 12 V through the
bulb base and filament, the control wire, all connectors,
and the PC boards traces; and if the transistor is indeed
not shorted to ground, then the collector will be pulled to
+ 12 V. This turns on the base of Q7 through the

' corresponding resistor, and grounds the input pin, verify-

ing that the bulb circuit is operational. The continuity of
each circuit can be checked by software in this way.

Now turn allthe bulbs on, grounding all the collectors. Q7
should be turned off, and the Test pin (T0) should be high.
However, a control wire shorted to + 12 V or an open-
circuited drive transistor would leave one of the collectors
at the higher voltage even now. This too would turn on
Q7, indicating a different type of failure. Software could
perform these checks once per second by executing the
routine every time the software counter SUB_DIV is
reloaded by the interrupt routine.

WIRING +12v

HARNESS -
/

N\

P15

P1.6

P2.0

P

P21

P2.2

—&
e _@
—
—Q
—

AA

Wy
AA

V-

Vv

AA,
Wy
Vv

AAA

%ﬁ(
T0

Q7

Figure 6-17. Fault Detection

6-28

CHAPTER 6
8051 Family Boolean Processing Capabilities

DINZ SUB_DIV,TOSERV

MOV SUB DIV#244 ;RELOAD COUNTER

ORL P2#11100000B ;SET CONTROL OUTPUTS
HIGH

ORL P2,#00000111B

CLR LFANT ; FLOAT DRIVE COLLECTOR

JB T0,FAULT ; TO SHOULD BE PULLED
LOW

SETB L_FRNT : PULL COLLECTOR BACK
DOWN

CLR L_DASH

JB T0,FAULT

SETB L_DASH

CLR L REAR

JB T0,FAULT

SETB L REAR

CLR R_FANT

JB T0,FAULT

SETB R_FRANT

CLR R_DASH

JB T0,FAULT

SETB R_DASH

CLR RREAR

JB TO,FAULT

SETB R_REAR

; WITH ALL COLLECTORS GROUNDED, T0 SHOULD BE HIGH
; IF SO, CONTINUE WITH INTERRUPT ROUTINE.
JB TO,TOSERV

FAULT: ; ELECTRICAL FAILURE
; PROCESSING ROUTINE
TOSERV: ; CONTINUE WITH
INTERRUPT PROCESSING

The resulting code consists of 67 program statements,
not counting declarations and comments, which as-
semble into 150 bytes of object code. Each pass through
the service routine requires (coincidentally) 67 ps, plus
32 us once per second for the electrical test. If executed
every 4 ms as suggested, this software would typically
reduce the throughput of the background program by
less than 2%.

Once a microcomputer has been designed into a
system, new features suddenly become virtually free.
Software could make the emergency blinkers flash
alternately or at a rate faster than the turn signals. Turn
signals could override the emergency blinkers. Adding
more bulbs would allow multiple tail light sequencing
and syncopation.

Design Example #5 — Complex Control
Functions

Finally, we’llmix byte and bit operations to extend the use
of the 8051 into extremely complex applications.

Programmers can arbitrarily assign IO pins to input and
output functions only if the total does not exceed 32,
which is insufficient for applications with a very large
number of input variables. One way to expand the num-
ber of inputs is with a technique similar to multiplexed-
keyboard scanning.

Figure 6-18 shows a block diagram for a moderately
complex programmable industrial controller with the fol-
lowing characteristics:

* 64 input variable sensors;
* 12 output signals;
¢ Combinational and sequential logic computations;

* Remote operation with communications to a host
processor via a high-speed full-duplex serial link;

¢ Two prioritized external interrupts;
¢ Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to
provide these capabilities with assorted peripheral sup-
port chips, an 8051 microcomputer needs no other inte-
grated circuits!

The 64 input sensors are logically arranged as an 8 x 8
matrix, The pins of Port 1 sequentially enable each
column of the sensor matrix; as each is enabled Port 0
reads inthe state of each sensorinthat column. An eight-
byte block in bit-addressable RAM remembers the data
as it is read in so that after each complete scan cycle
there is aninternal map of the current state of all sensors.
Logic functions can then directly address the elements of
the bit map.

The computer’s serial port is configured as a nine-bit
UART, transferring data at 17,000 bytes-per-second.
The ninth bit may distinguish between address and
data bytes.

6-29

CHAPTER 6

8051 Family Boolean Processing Capabilities

+5v

1.0uF

T

12MN2 —
SERIAL §
T p—
RETURN
LINES
\
0] 8]16]24]32]4a0]48]s6 a
57
2 58
3 8x8 59
SENSOR
4 MATRIX 50
5 61
6 62
7 {15 23| 31] 39|47 55|63
U
))
/
SCAN
LINES

| XTAL1 VCC RST

| XTAL2
RXD INTO
TXD INTY
8051
P34
PO.0
P3.
PO.1 35
P36
P0.2
P3.7
P0.3
P0.4
P20
PO.5
P21
P0O.6
p2.2
P0.7
p2.3
P24
P10 P25
P11 P2.6
P1.2 P27
P13
P14
P15 ALE
P16 PSEN |
vss EA

= N.C

p———a— N.C.

v

Figure 6-18. Block Diagram of 64-Input Machine Controller

[———————— | ASYNCHRONANS
e — ‘ INTERRUPTS

MACHINE
ACTUATORS

6-30

CHAPTER 6
8051 Family Boolean Processing Capabilities

The 8051 serial port can be configured to detect bytes
with the address bit set, automatically ignoring all others.
Pins INTO and INT1 are interrupts configured respec-
tively as high-priority, falling-edge triggered and low-
priority, low-level triggered. The remaining 12 1/O pins
output TTL-level control signals to 12 actuators.

There are several ways to implement the sensor matrix
circuitry, all logically similar. Figure 6-19a shows one
possibility. Each of the 64 sensors consists of a pair of
simple switch contacts in series with a diode to permit
multiple contact closures throughout the matrix.

The scan lines from Port 1 provide eight un-encoded
active-high scan signals for enabling columns of the
matrix. The returnlines on rows where a contactis closed
are pulled high and read as logic ones. Open return lines
are pulled to ground by one of the 40 kQ resistors and are
read as zeros. The resistor values must be chosen to
ensure all return lines are pulled above the 2.0 V logic
threshold, eveninthe worstcase, where allcontactsinan
enabled column are closed. Since PO is provided open-
collector outputs and high-impedance MOS inputs, its
input loading may be considered negligible.

The circuits in Figures 6-19b and d are variations on this
theme. When input signals must be electrically isolated
fromthe computer circuitry as in noisy industrial environ-
ments, phototransistors can replace the switch diode
pairs and provide optical isolation as in Figure 6-19b.
Additional opto-isolators could also be used on the con-
trol output and special signal lines.

The other circuits assume that input signals are already
at TTL levels. Figure 6-19¢c uses octal 3-state buffers
enabled by active-low scan signals to gate eight signals
onto Port 0. Port 0 is available for memory expansion or
peripheral chip interfacing between sensor matrix
scans. The 8-to-1 multiplexers in Figure 6-19d select
one of eight inputs for each return line as determined
by encoded address bits output on three pins of Port 1.
Five more output pins are thus freed for more control
functions. Each output can drive at least one standard
TTL or up to 10 low-power TTL loads without additional
buffering.

Going back to the original matrix circuit, Figure 6-20
shows the method used to scan the sensor matrix. Two
complete bit maps are maintained in the bit-addressable

region of the RAM; one for the current state and one for
the previous state read for each sensor. If the need
arises, the program could then sense input transitions
and or debounce contact closures by comparing each bit
with its earlier value.

The code in Example 6-3 implements the scanning
algorithm for the circuits in Figure 6-19. Each column is
enabled by setting a single bitin a field of zeroes. The bit
maps are positive logic; ones represent contacts that are
closed or isolators turned on.

Example 6-3.
INPUT—SCAN: ; SUBROUTINE TO READ
CURRENT STATE OF 64
SENSORS AND SAVE IN
RAM 20H-27H.
MOV RO,#20H ; INITIALIZE POINTERS
MOV Ri,#28H ; FOR BIT MAP BASES.
MOV A#80H ; SET FIRST BIT IN ACC.
SCAN: MOV P1,A ; OUTPUT TO SCAN LINES.
RR A ; SHIFT TO ENABLE NEXT
COLUMN NEXT.
MOV R2A ; REMEMBER CURRENT
SCAN POSITION.
"MOV APO ; READ RETURN LINES.
XCH A@RO ; SWITCH WITH PREVIOUS
MAP BITS.
MOV @R1,A ; SAVE PREVIOUS STATE
AS WELL.
INC RO ; BUMP POINTERS.
INC R1
MOV AR2 ; RELOAD SCAN LINE MASK
JNB ACC.7,SCAN ;LOOP UNTIL ALLEIGHT
COLUMNS READ.

RET

What happens after the sensors have been scanned
depends on the individual application. Rather than
inventing some artificial design problem, software
corresponding to commonplace logic elements will be
discussed.

6-31

CHAPTER 6
8051 Family Boolean Processing Capabilities

tSV
i .
>
? booiiis P o3 o
8051
0" ~g" 56" RETURN
- - P . LINES
e & o 3 o % N/
& — e | P0.0
1 -9 "s7
1
Fhe e =%
< - - é i P0.1
{ l—{ L ; = P0.2
—_ | P0.3
[1 | ! -
| F4 oy
Lo PO.5
'_.L _+ | ! P0.6
7 18" 63
— — —_
—o & o @ [o r%
S . 1r— - -@- L P07

AAA
v
AA.
v
A
A\ A4

‘Pi >
8x40K <3322

P1.0
P11
P1.2
P1.3
P14
P15
P16
P17

SCAN
LINES

a. Using Switch Contact/Diode Matrix

Figure 6-19. Sensor Matrix Implementation Methods

6-32

CHAPTER 6

8051 Family Boolean Processing Capabilities

AAA.

ad A 4

AAA
A A4
AAA.
-~V

&

818

I
I

—4

.y —

i

3
3

AAA.
V¥

AAA-

—— Y

b3
< +8x4K

56"

RETURN
LINES

wgp

—

—

Vv

AAA.
v
A

AAA
AAA
vy

Figure 6-19. Sensor Matrix Implementation Methods (continued)

SCAN
LINES

b. Using Optically-Coupled Isolators

[8051

P0.0

P0.2
P0.3
P0.4
P0.5
P0.6

PO.7

P1.0
P1.1
P1.2
P1.3
P1.4
P15
P16
P17

6-33

[8051

8051 Famlly Boolean Processing Capabillities

CHAPTER 6

.£9..
.29..
.49

..65..

LS.

Gl
ple
JEh
2.
Wb
R T

-

PO O
PO 1
P02
P03
P04
P05
P06
PO.7
P1.0
P11
P12
P13
P14
P15

WZ PAZ
EVZ gaAZ

[A 2R ¥4

W23 1Az

oo~
YYLA pay
-

lEvi™ €Al

o

vi™ Al

wiS 1AL

L

c. Using TTL Three-State Buffers

vz PAZ
EVZ €AZ —_—
VT ZAZ - |
<
Wz A2
(77}
VLG VAL
~
V1, EAL
o~
vl TAL
w8
|
(474N 2.¥4
EVZ E€EAC
vz ZAZ
-4
—<~& LAZ!
YWiLF VAL
€AL
S:m
ZviL ZAL
—<-n1u. LAL

Figure 6-19. Sensor Matrix Implementation Methods (continued)

6-34

CHAPTER 6

8051 Family Boolean Processing Capabilities

S : FI i [: I [: : PBE;
pefaB3IE terRBIEH heR5B5R3
IJO 01, o{ Dlg ol‘ c}s o{ ol7 Do o‘, o[0‘3 ol. ols ols 017 olo J, o‘; 013 o‘. ols E}G 017
74151 74151 74151
C B A Y s Y s C B A Y s
| = = =
P0.0
0.1
L} PO.2
L P03
PO.4
PO.S
PO.6
PO.7

q——- P10

d. Using TTL Data Selectors

Figure 6-19. Sensor Matrix Implementation Methods (continued)

P12

6-35

CHAPTER 6
8051 Family Boolean Processing Capabilities

INPUT
SCAN

INITIALIZE MAP
BUFFER POINTERS
AND SCAN MASK

QOUTPUT SCAN
MASK TO SCAN
LINES;
STORE SHIFTED
MASK

I

READ RETURN
LINES AND UPDATE
BIT MAPS

[

INCREMENT
BUFFER POINTS

HAVE
ALL COLUMNS
BEEN SCANNED”?

RETURN

Figure 6-20. Flowchart for Reading in Sensor Matrix

Combinatorial Output Variables. An output variable
which is a simple (or not so simple) combinational func-
tion of several input variables is computed in the spirit of
Design Example #3. All 64 inputs are represented in the
bit maps; in fact, the sensor numbers in Figure 6-19
correspond to the absolute bit addresses in RAM! The
code in Example 6-4 activates an actuator connected to
P2.2 when sensors 12, 23, and 34 are closed and
sensors 45 and 56 are open.

Example 6-4. Simple Combinatorial Output Vari-
ables.

; SET P2.2 = (12) (23) (34) (45) (56)

MoV C.12
ANL C.23
ANL C,34
ANL C, 45
ANL C,56
MOV P2.2,C

Intermediate Variables. The examination of a typical
relay-logic ladder diagram will show that many of the
rungs control are not outputs, but rather relays whose
contacts figure into the computation of other functions. In
effect, these relays indicate the state of intermediate
variables of a computation.

The 8051 Family solution can use any directly address-
able bit for the storage of such intermediate variables.
Evenwhen all 128 bits of the RAM array are dedicated (to
input bit maps in this example), the accumulator, PSW,
and Bregister provide 18 additionalflags forintermediate
variables.

For example, suppose switches 0 through 3 control a
safety interlock system. Closing any of them should
deactivate certain outputs. Figure 6-21 is a ladder dia-
gram for this situation. The interlock function could be
recomputed for every output affected, or it may be
computed once and saved (as implied by the diagram).
As the program proceeds this bit can qualify each output.

6-36

CHAPTER 6
8051 Family Boolean Processing Capabilities

-
i
| |
] |

|

— ()
fjlt WS

T

Figure 6-21. Ladder Diagram for Output Override

Circuitry

Example 6-5. Incorporating Override signal into
actuator outputs.

CALL INPUT_SCAN

MoV co

ORL C1

ORL c2

ORL C3

MoV Fo,C

COMPUTE FUNCTION 0

ANL CF0

MOV P1.0,C

COMPUTE FUNCTION 1

ANL C,Fo

MOV P1.1,C

; COMPUTE FUNCTION 2
ANL C,F0
MoV P1.2,C

Latching Relays. A latching relay can be forced into
either the ON or OFF state by two corresponding input
signals, where it will remain until forced onto the opposite
state —analogous to a TTL Set-Resetflip-flop. The relay
isused as anintermediate variable for other calculations.
In the previous example, the emergency condition could
be remembered and remain active until an “emergency
cleared” button is pressed.

Any flag or addressable bitmay represent a latching relay
with a few lines of code (see Example 6-6).

Example 6-6. Simulating a latching relay.

;L_SET SETFLAGOIFC=1
L_SET: ORL CFo0

MOV FO,C
;L_LRESET RESETFLAGOIFC=1
LRESET CPS C

ANL CFO

MOV F0,C

Time Delay Relays. A time delay relay does not respond
to an input signal until it has been present (or absent) for
some predefined time. For example, a ballast or load
resistor may be switched in series with a dc motor when
itis first turned on, and shunted from the circuit after one
second. This sort of time delay may be simulated by an
interrupt routine driven by one of the two 8051 timer/
counters. The procedure followed by the routine de-
pends heavily onthe details of the exact function needed;
time-outs ortime delays with resettable or non-resettable
inputs are possible. If the interrupt routine is executed
every 10 ms the code in Example 6-7 will clear an
intermediate variable set by the background program
after it has been active for2s.

Example 6-7. Code to clear USRFLG after a fixed
time delay.

JNB USR_FLG,NXTTST

DINZ DLAY_COUNT,NXTTST

CLR USR_FLG

MOV DLAY_COUNT,#200
NXTTST:

6-37

CHAPTER 6
8051 Family Boolean Processing Capabilities

Serial interface to Remote Processor. When it detects
emergency conditions represented by certain input
combinations (such as the earlier Emergency Override),
the controller could shut down the machine immedi-
ately and/or alert the host processor via the serial port.
Code bytes indicating the nature of the problem could
be transmitted to a central computer. In fact, at
17,000 bytes-per-second, the entire contents of both bit
maps could be sent to the host processor for further
analysisinlessthan amillisecond! If the host decides that
conditions warrant, it could alert other remote processors
in the system that a problem exists and specify which
shut-down sequence each should initiate.

Response Timing. One difference between relay and
programmed industrial controliers (when each is consid-
ered as a “black box”) is their respective reaction times to
input changes. As reflected by a ladder diagram, relay
systems contain a large number of “rungs” operating in
parallel. Achange ininput conditions will begin propagat-
ing through the system immediately, possibly affecting
the output state within milliseconds.

Software, on the other hand, operates sequentially. A
change in input states will not be detected until the next
time an input scan is performed, and will not affect the
outputs until that section of the program is reached. For
that reason the raw speed of computing the logical
functions is of extreme importance.

Here the Boolean processor pays off. Every instruc-
tion mentioned in this chapter completes in 1 or 2 us at
12 MHz — the minimum instruction execution time for
many other microcontrollers! A ladder diagram contain-
ing a hundred rungs, with an average of four contacts per
rung canbe replaced by approximately five hundredlines
of software. A complete pass through the entire matrix
scanning routine and all computation would require
about a miillisecond; less than the time it takes for most
relays to change state.

A programmed controller which simulates each Boolean
function with a subroutine would be less efficient by at
least an order of magnitude. Extra software is needed for
the simulation routines, and each step takes longer to
execute for three reasons: several byte-wide logical
instructions are executed per user program step (rather
than one Boolean operation); most of those instructions
take longer to execute with microprocessors performing
multiple off-chip accesses; and calling and returning from
the various subroutines requires overhead for stack
operations.

In fact, the speed of the Boolean Processor solution is
likely to be much faster than the system requires. The
CPU might use the time left over to compute feedback
parameters, collect and analyze execution statistics, or
perform system diagnostics.

Additional functions and uses

With the building-block basics mentioned above many
more operations may be synthesized by short instruction
sequences.

Exclusive-OR. There are no common mechanical de-
vices or relays analogous to the Exclusive-OR operation,
so this instruction was omitted from the Boolean Proces-
sor. However, the Exclusive-OR or Exclusive-NOR
operation may be performed in two instructions by con-
ditionally complementing the carry or a Boolean variable
based on the state of any other testable bit.

; EXCLUSIVE-OR FUNCTION IMPOSED ON CARRY

; USING FO AS INPUT VARIABLE.

XOR_F0: JNB FO,XORCNT
crL C

; (“UB” FOR X-NOR)

XORCNT:

XCH. The contents of the carry and some other bit may
be exchanged (switched) by using the accumulator as
temporary storage. Bits can be moved into and out of the
accumulator simultaneously using the rotate-through-
carry instructions, though this would alter the accumula-
tor data.

; EXCHANGE CARRY WITH USRFLG
XCHBIT: RLC A

MOV C\USR_FLG
RRC A
MOV USR_FLG,C
RIC A

Extended Bit Addressing. The 8051 can directly ad-
dress 144 general-purpose bits for all instructions in
Figure 6-2b. Similar operations may be extended to any
bit anywhere on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR are
performed on byte variables using six different address-
ing modes, one of which lets the source be animmediate
mask, and the destination any directly addressable byte.
Any bit may thus be set, cleared, or complemented with
athree-byte, two-cycle instruction if the mask has all bits
but one set or cleared.

Byte variables, registers, and indirectly addressed RAM
may be moved to a bit addressable register (usually the
accumulator) in one instruction. Once transferred, the
bits may be tested with a conditional jump, allowing any
bit to be polled in 3 us — still much faster than most
architectures — or used for logical calculations. This
technique can also simulate additional bit addressing
modes with byte operations.

6-38

CHAPTER 6
8051 Family Boolean Processing Capabllities

Parity of bytes or bits. The parity of the current accumu-
lators contents is always available in the PSW, from
whence it may be moved to the carry and further proc-
essed. Error-correcting Hamming codes and similar
applications require computing parity on groups of iso-
lated bits. This can be done by conditionally complement-
ing the carry flag based on those bits or by gathering the
bits into the accumulator (as shown in the DES example)
and then testing the parallel parity flag.

Muitiple byte shift and CRC codes. Though the 8051
serial port can accommodate 8- or 9-bit data transmis-
sions, some protocols involve much longer bit streams.
The algorithms presented in Design Example 6-2 can be
extended quite readily to 16 or more bits by using multi-
byte input and output buffers.

Many mass data storage peripherals and serial commu-
nications protocols include Cyclic Redundancy (CRC)
codes to verify data integrity. The function is generally
computed serially by hardware using shift registers and
Exclusive-OR gates, but it can be done with software. As
each bit is received into the carry, appropriate bits in the
multi-byte date buffers are conditionally complemented
based on the incoming data bit. When finished, the CRC
register contents may be checked for zero by ORing the
two bytes in the accumulator.

SUMMARY

A unique facet of the 8051 Family microcomputer family
design is the collection of features optimized for the one-
bit operations so often desired in real-world, real-time
control applications. Included are 17 special instructions,
a Boolean accumulator, implicit and direct-addressing
modes, program and mass-data storage, and many I/O
options. These are the world’s first single-chip microcom-
puters able to efficiently manipulate, operate on, and
transfer either bytes or individual bits as data.

This chapter has detailed the information needed by a
microcomputer systemdesignerto make fulluse of these
capabilities. Five design examples were used to contrast
the solutions allowed by the 8051 and those required by
previous architectures. Depending on the individual
application, the 8051 solution will be easier to design;
more reliable to implement, debug, and verify; use less
program memory; and run up to an order-of-magnitude
faster than the same function implemented on previous
digital-computer architectures.

Combining byte- and bit-handling capabilities in a single
microcomputer has a strong synergistic effect; the power
of the result exceeds the power of byte- and bit-proces-
sors laboring individually. Virtually all user applications
will benefitin some ways from this duality. Data-intensive
applications will use bit addressing for test pin monitoring
orprogram control flags; control applications willuse byte
manipulation for parallel I/0O expansion or arithmetic
calculations.

6-39

SECTION Il b |
8051 Family Device Description

Section |l contains the data sheets, device-specific functionality. EPROM data sheets follow the ROM data
application information, software routines, third-party ~ sheets with which they are associated.

development support, an ines. e . . .)
P PPo d package outlines Application information and software routines immedi-

The data sheets are divided into two groups: NMOS and ately follow the data sheets for which they are most
CMOS. Each has abasic and enhanced device chapter. closely intended, although they will also be of use with
In general, devices are listed in order of increasing data sheets of more enhanced devices.

EPROM
oee) axom @ @ woow (0
Dual-Port RAM
FIFOs
Extra Ports
Bus Arbitration
%' A/D Converter 21 soc321 8K ROM
c Timer 2 E]
2 Extra Ports EPROM S
g \[A)Iatcrdg% Timer g Dual Data P
[y ouble RAM find ual Data Pointers Dual Data Pointers
Double EPROM Watchdog Timer Watchdog Timer
)
0 4K 8K (4] 4K 8K 16K
Program Memory Program Memory

09757A-003A

NMOS Family Tree CMOS Family Tree

CHAPTER 7

Basic NMOS Devices

8031AH/8051AH/8053AH(data sheet)

8751H/8753H (data sheet)

Single Chip Microcontroller with 8K Bytes of EPROM
Offers Important Design Advantages

71

7-1
7-21

7-37

8031AH/8051AH/8053AH

Single-Chip 8-Bit Microcontroller

DISTINCTIVE CHARACTERISTICS

4K x8 ROM (8051 only)

8K x8 ROM (8053 only)

128 x8 RAM

Four 8-bit ports, 32 1/0 lines
Two 16-bit timer/event counters
64K addressable Program Memory

® All versions are pin-compatible

Boolean processor

Programmable Serial Port

Five interrupt sources/two priority levels
On-chip Oscillator/Clock Circuit

64K addressable Data Memory

GENERAL DESCRIPTION

The 8051 Family is optimized for control applications. Byte
processing and numerical operations on small data struc-
tures are facilitated by a variety of fast addressing modes
for accessing the internal RAM. The instruction set pro-
vides a convenient menu of 8-bit arithmetic instructions,
including multiply and divide instructions. Extensive on-chip
support is provided for 1-bit variables as a separate data

type. This allows direct bit manipulation and testing in
control and logic systems that require Boolean processing.
Efficient use of program memory results from an instruction
set consisting of 44% 1-byte, 41% 2-byte, and 15% 3-byte
instructions. With a 12 MHz crystal, 58% of the instructions
execute in 1 us, 40% in 2 ws, and multiply and divide
require only 4 us.

BLOCK DIAGRAM

FREQUENCY
REFERENCE COUNTERS
. | osciLaTor ROM A TWO 16-BIT
: 3 4K BYTES - 8051 128 BYTES TIMER/EVENT .
. TIMING 8K BYTES - 8053 COUNTERS :
. v L A .
8051 :
: cPU < :
o
PROGRAMMABLE |
. 64K BYTE BUS SERIAL PORT '
. EXPANSION X PROGRAMMABLE 11O + FULL DUPLEX .
: CONTROL UART :
. + SYNCHRONOUS | |
: SHIFTER :
: INTERRUPTS ! [] {] .
INTERRUPTS CONTROL PARALLEL PORTS SERIAL SERIAL
ADDRESS DATA BUS IN ouT
AND 1/0 PINS
BD007260

Publication # Rev. Amendment
07839 B /0
Issue Date: June 1987

pu

CONNECTION DIAGRAMS

Top View
DIPS PLCC
P10 11 ~ 40 [Vec
P12 39 [poo AD, sa9%3,885
P2 []s 3817 o1 AD, R EE R AR EERE
P3[4 a7{] P02 AD,
Pa[]s 36 1 Pos AD; s 7064:21444:424‘40“ ros
Pis [l 35 [Po.s AD, o ros
Pe 17 34] P05 ADg
pr []e 33 [] Pos ADg
RST (] o 327 po7 AD;
RXD P30 [] 10 n{ &
TXD P3.1 " 30 : ALE
mo P2 : 12 29 [] PSEN
Wy pas [28 [] P27 Ag
To P34 []14 27 [P26 Ay
Ty Pas [15 26 [T p2s Agy
Wh pas [] 16 25 [] P24 Ay 21 22 23 24 25 26 27 28
RD P37 [] 17 24 [P23 Ay
XTAL, []18 23[) P22 Ag gRsIseigyed
XTAL, [] 19 22 [T P21 Ay % &
ves [%0 211720 A C€D009440
CD005551

LOGIC SYMBOL

<1

Vssl |Vcc tﬁs

XTALy
1 — [’/
c1=30 pF"‘E | 2
< O sl lenell |
e —— a
T i g
C2 = 30 pF XTAL, . g
< — | — &
[— —
A —]
—
PSEN ~—oJ _
e E
ALE —] f— o
—
e
e
RXD —— e -—
TXD e ——]
m—— |] — | =z
Ny —— | ©] - o
To = Ea——— - E
Ty —— -~ E
WA — S— .
W\ AD —— —-—] -—
LS001322

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: a. Temperature Range

b. Package Type

c. Device Number

d. Speed Option

e. Optional Processing

D 053AH

I—-—— e. OPTIONAL PROCESSING
Blank = Standard processing
B = Burn-in

d. SPEED OPTION
Blank = 12 MHz
-15=15 MHz*
-18 =18 MHz*

c. DEVICE NUMBER/DESCRIPTION
8031AH/8051AH/8053AH
Single-Chip 8-Bit Microcontroller

b. PACKAGE TYPE
P = 40-Pin Plastic DIP (PD 040)
D = 40-Pin Ceramic DIP (CD 040)
N = 44-Pin Plastic Leaded Chip Carrier (PL 044)

a. TEMPERATURE RANGE**
Blank = Commercial (0 to +70°C)
| = Industrial (-40 to +85°C)*

Valid Combinations

Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local Valid Combinations
AMD sales office to confirm availability of specific valid 8031AH-18
combinations, to check on newly released valid
combinations, and to obtain additional data on AMD's 8031AH-15
standard military grade products. P, D, N 8031AH

*Available only for the 8031AH at time of printing. 8051AH

. . 8053AH

**This device is also available in Military temperature

range. See MOS Microprocessors and Peripherals 1D 8031AHB

Military Handbook (Order # 09275A/0) for electrical
performance characteristics.

PIN DESCRIPTION

Port 0 (Bidirectional, Open Drain) ;

Port 0 is an open-drain 1/0 port. As an Output Port, each pin
can sink eight LS TTL inputs. Port 0 pins that have "1"s
written to them float, and in that state can be used as high-
impedance inputs.

Port 0 is also the multiplexed LOW-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting ""1"'s. Port 0 also outputs the code bytes during
program verification in the 8051AH and 8053AH. External
pullups are required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have "1''s written to them are pulled
HIGH by the internal pullups and — while in this state —
can be used as inputs. As inputs, Port 1 pins that are
externally being pulled LOW will source current (Ij_ on the
data sheet) because of the internal pullups.

Port 1 also receives the LOW-order address bytes during
program verification.

Port 2 (Bidirectional)

Port 2 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having '"1''s written to them are pulled
HIGH by the internal pullups and — while in this state —
can be used as inputs. As inputs, Port 2 pins externally
being pulled LOW will source current (Ij|) because of the
internal pullups.

Port 2 emits the HIGH-order address byte during fetches
from external Porgram Memory and during accesses to
external Data Memory that use 16-bit addresses (MOVX
@DPTR). In this application it uses strong internal pullups
when emitting "'1"'s. During accesses to external Data
Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits
the contents of the P2 Special Function register.

Port 2 also receives the HIGH-order address bits during
ROM verification.

Port 3 (Bidirectional)

Port 3 is an 8-bit bidirectional I/0 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins having '"1''s written to them are pulled
HIGH by the internal pullups and — while in this state —
can be used as inputs. As inputs, Port 3 pins externally
being pulled LOW will source current (l) because of
pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function

P3o RxD (Serial Input Port)

P31 TxD (Serial Output Port)

P32 INTp (External Interrupt 0)

P33 INTy (External Interrupt 1)

P34 To (Timer O External Input)

P3s T4 (Timer 1 External Input)

P3g WR (External Data Memory Write Strobe)
P37 RD (External Data Memory Read Strobe)

RST Reset (Input; Active HIGH)
A HIGH on this pin — for two machine cycles while the
oscillator is running — resets the device.

ALE Address Latch Enable (Output; Active HIGH)
Address Latch Enable output pulse for latching the LOW
byte of the address during accesses to external memory.
ALE can drive eight LS TTL inputs.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory.

PSEN Program Store Enable (Output; Active LOW)
PSEN is the read strobe to external Program Memory. PSEN
can drive eight LS TTL inputs. When the device is executing
code from an external program memory, PSEN is activated
twice each machine cycle — except that two PSEN
activations are skipped during each access to external Data
Memory. PSEN is not activated during fetches from internal
Program Memory.

EA External Access Enable (Input; Active LOW)
EA must be externally held LOW to enable the device to
fetch code from external Program Memory locations 0000H
to OFFFH (0000H to 1FFFH in the 8053AH). If EA is held
HIGH, the 8051AH executes from internal Program Memory
unless the program counter contains an address greater
than OFFFH (1FFFH in the 8053AH).

XTAL{ Crystal (Input)
Input to the oscillator's high-gain amplifier. Required when a
crystal is used. Connect to Vgg when external source is
used on XTALy.
XTAL2 Crystal (Output)
Output from the oscillator's amplifier. Input to the internal
timing circuitry. A crystal or external source can be used.
Vcc Power Supply

Vgs Circuit Ground

FUNCTIONAL DESCRIPTION

The term ''8051" shall be used to refer collectively to the
8051AH, 8031AH, and 8053AH.

8051 CPU Architecture

The 8051 CPU manipulates operands in three memory
spaces. These are the 64K-byte Program Memory, 64K-byte
External Data Memory and 256-byte Internal Data Memory. Of
the 64K bytes of Program Memory space, the lower 4K bytes
on the 8051AH (addr. 0000H to OFFFH) and the lower 8K
bytes of the 8053AH (addr. 0000H to 1FFFH) may reside on-
chip. The Internal Data Memory address space is further
divided into the 128-byte Internal Data RAM and 128-byte
Special Function Register (SFR) address spaces shown in
Figure 1.

Four Register Banks (each with eight registers), 128 address-
able bits and the stack reside in the Internal Data RAM. The
stack depth is limited only by the available Internal Data RAM
and its location is determined by the 8-bit stack pointer. All
registers except the four 8-Register Banks reside in the
Special Function Register address space. These memory
mapped registers include arithmetic registers, pointers, 1/0
ports, interrupt system registers, timers, and a serial port.
Ninety-two bit locations in the SFR address space are
addressable as bits. The 8051 contains 128 bytes of Internal
Data RAM and 20 SFRs.

The 8051 provides a non-paged Program Memory address
space to accommodate relocatable code. Conditional branch-
es are performed relative to the Program Counter. The base-
register-plus-index register-indirect jump permits branching

relative to a 16-bit base register with an offset provided by an
8-bit index register. Sixteen-bit jumps and calls permit branch-
ing to any location in the contiguous 64K Program Memory
address space.

The 8051 has five methods for addressing source operands:
Register, Direct, Register-Indirect, Immediate, and Base-Re-
gister-plus-Index-Register-indirect Addressing. The first three
methods can be used for addressing destination operands.
Most instructions have a 'destination, source" field that
specifies the data type, addressing methods, and operands
involved. For operations other than moves, the destination
operand is also a source operand.

Registers in the four 8-Register Banks can be accessed
through Register, Direct, or Register-indirect Addressing; the
128 bytes of Internal Data RAM through Direct or Register-
Indirect Addressing; and the Special Function Registers
through Direct Addressing. External Data Memory is accessed
through Register-Indirect Addressing. Look-Up-Tables resi-
dent in Program Memory can be accessed through Base-
Register-plus-Index-Register-indirect Addressing.

The 8051 is classified as an 8-bit machine since the internal
ROM, RAM, Special Function Registers, Arithmetic Logic Unit,
and external data bus are each 8-bits wide. The 8051
performs operations on bit, nibble, byte, and double-byte data
types.

The 8051 has extensive facilities for byte transfer, logic, and
integer arithmetic operations. It excels at bit handling since
data transfer, logic, and conditional branch operations can be
performed directly on Boolean variables.

FFFF
FFFF
EXTERNAL
2000
— { —)
OFFF OFFF
F [speciaL
INTERNAL EXTERNAL
e =) A=) FUNCTION
s | REGISTERS
7F | INTERNAL
0000 0000 oo | DATARAM 0000
N —— p——
PROGRAM MEMORY INTERNAL DATA MEMORY EXTERNAL
DATA
MEMORY
BD006071

Figure 1. 8051 Memory Organization

7-5

Special Function Register Map

Addr Default
(Hex) Symbol Name Power-On Reset
80 * PO Port 0 11111111
81 SP Stack Pointer 00000111
82 DPL Data’ Pointer Low 00000000
83 DPH Data Pointer High 00000000
87 PCON Power Control 0XXX0000
88 * TCON Timer/Counter Control 00000000
89 TMOD Timer/Counter Mode Control 00000000
8A TLO Timer/Counter 0 Low Byte 00000000
8B TL1 Timer/Counter 1 Low Byte 00000000
8C THO Timer/Counter 0 High Byte 00000000
8D TH1 Timer/Counter 1 High Byte 00000000
90 * P1 Port 1 11111111
98 SCON Serial Control 00000000
99 SBUF Serial Data Buffer Indeterminate
A0 * P2 Port 2 11111111
A8 * IE Interrupt Enable Control 0XX00000
Bo * P3 Port 3 11111111
B8 * IP Interrupt Priority Control XXX00000
po * PSW Program Status Word 00000000
EO * ACC Accumulator 00000000
FoO * B B Register 00000000

*

Bit Addressable
8051 Instruction Set

The 8051AH, 8031AH, and 8053AH share the same instruc-
tion set. It allows expansion of on-chip CPU peripherals and
optimizes byte efficiency and execution speed. Efficient use of
program memory results from an instruction set consisting of
49 single-byte, 45 two-byte,and 17 three-byte instructions.
When using a 12-MHz oscillator, 64 instructions execute in 1
us and 45 instructions execute in 2 us. The remaining
instructions (multiply and divide) execute in only 4 us. The
number of bytes in each instruction and the number of cycles
required for execution are listed in Table 1.

On-Chip Peripheral Functions

In addition to the CPU and memories, an interrupt system,
extensive 1/0 facilities, and several peripheral functions are
integrated on-chip to relieve the CPU of repetitious, complicat-
ed, or time-critical tasks and to permit stringent real-time
control of external system interfaces. The extensive 1/0
facilities include the 1/0 pins, parallel 1/0 ports, bidirectional
address/data bus, and the serial port for 1/0 expansion. The
CPU peripheral functions intergrated on-chip are the two 16-bit
counters and the serial port. All of these work together to
boost system performance.

Interrupt System

External events and the real-time-driven on-chip peripherals
require service by the CPU asynchronous to the execution of
any particular section of code. To tie the asynchronous
activities of these functions to normal program execution, a
sophisticated multiple-source, two-priority-level, nested inter-
rupt system is provided. Interrupt response latency ranges
from 3 us to 7 us when using a 12 MHz crystal.

The 8051 acknowledges interrupt request from five sources:
Two from external sources via the INTg and INT pins, one
from each of the two internal counters and one from the serial

1/0 port. Each interrupt vectors to a separate location in
Program Memory for its service program. Each of the five
sources can be assigned to either of two priority levels and
can be independently enabled and disabled. Additionally all
enabled sources can be globally disabled or enabled. Each
external interrupt is programmable as either level- or transi-
tion-activated and is active-LOW to allow the "'wire or-ing" of
several interrupt sources to the input pin. The interrupt system
is shown diagrammatically in Figure 2.

1/0 Facilities

The 8051 has instructions that treat its 32 1/0 lines as 32
individually addressable bits and as four parallel 8-bit ports
addressable as Ports 0, 1, 2 and 3. Ports 0, 2, and 3 can also
assume other functions. Port O provides the multiplexed low-
order address and data bus used for expanding the 8051 with
standard memories and peripherals. Port 2 provides the high-
order address bus when expanding the 8051 with External
Program Memory or External Data Memory. The pins of Port 3
can be configured individually to provide external interrupt
request inputs, counter inputs, the serial port's receiver input
and transmitter output, and to generate the control signals
used for reading and writing External Data Memory. The
generation or use of an alternate function on a Port 3 pin is
done automatically by the 8051 as long as the pin is
configured as an input. The configuration of the ports is shown
on the 8051 Logic Symbol.

Open-Drain 1/0 Pins

Each pin of Port 0 can be configured as an open drain output
or as a high-impedance input. Resetting the microcomputer
programs each pin as an input by writing a one (1) to the pin. If
a zero (0) is later written to the pin it becomes configured as
an output and will continuously sink current. Rewriting a one
(1) to the pin will place its output driver in a high-impedance
state and configure the pin as an input. Each |70 pin of Port 0
can sink/source eight LS TTL loads.

7-6

POLLING

HARDWARE
INTERRUPT
ENABLE HIGH
INPUT LEVEL AND REGISTER: —— WicARuPT
INTERRUPT REQUEST SOURCE GLOBAL PRIORITY REGUEST
FLAG REGISTERS: ENABLE ENABLE REGISTER:
_ EXTERNAL o—]
INT, —=] —0—"0-
REQUEST 0 r“ -
INTERNAL o sotl;CE :—_l-] > VECTOR
TIMERO 00 O\c
_ EXTERNAL
INT, —=f T o0 O\c
REQUEST 1
o—
INTERNAL
TIMER 1 o0~ o\a
INTERNAL | T o
SERIAL | >—}—0—0- o~ | -
PORT R
INTERRUPT
REQUEST
Five interrupt sources
Each interrupt can be indivi ——
Each interrupt can be assigned to either of two priority fevels solu:ce VECTOR
Each interrupt vectors 1o a separate location in program memory -
Interrupt nesting to two levels
External interrupt requests can be programmed to be level-
or transition-activated
LD000090

Figure 2. 8051 Interrupt System

Quasi-Bidirectional 1/0 Pins

Ports 1, 2 and 3 are quasi-bidirectional buffers. Resetting the
microcomputer programs each pin as an input by writing a one
(1) to the pin. If a zero (0) is later written to the pin it becomes
configured as an output and will continuously sink current. Any
pin that is configured as an output will be reconfigured as an
input when a one (1) is written to the pin. Simultaneous to this
reconfiguration, the output driver of the quasi-bidirectional port
will source current for two oscillator periods. Since current is
sourced only when a bit previously written to a zero (0) is
updated to a one (1), a pin programmed as an input will not
source current into the TTL gate that is driving it if the pin is
later written with another one (1). Since the quasi-bidirectional
output driver sources current for only two oscillator periods, an
internal pull-up resistor of approximately 20 to 40 kS is
provided to hold the external driver's loading at a TTL HIGH
level. Ports 1, 2, and 3 can sink/source four LS TTL loads.

Microprocessor Bus

When accessing external memory the HIGH-order address is
emitted on Port 2 and the LOW-order address on Port 0. The
ALE signal is provided for strobing the address into an external
latch. The program store enable (PSEN) signal is provided for
enabling an external memory device to Port 0 during a read
from the Program Memory address space. When the MOVX
instruction is executed, Port 3 automatically generates the
read (RD) signal for enabling an External Data Memory device
to Port O or generates the write (WR) signal for strobing the
external memory device with the data emitted by Port 0. Port 0
emits the address and data to the external memory through a
push/pull driver that can sink/source eight LS TTL loads. At
the end of the read/write bus cycle, Port 0 is automatically
reprogrammed to its high-impedance state and Port 2 is
returned to the state it had prior to the bus cycle. The 8053AH
generates the address, data, and control signals needed by
memory and 1/O devices in a manner that minimizes the
requirements placed on external program and data memories.

Timer Event Counters

The 8051 contains two 16-bit counters for measuring time
intervals and pulse widths, for counting events, as well as for
generating precise, periodic interrupt requests. Each can be
programmed independently to one of the following three
modes:

Mode 0 - similar to an 8048 8-bit timer or counter with divide
by 32 prescaler.

Mode 1 - 16-bit time-interval or event counter.

Mode 2 - 8-bit time-interval or event counter with automatic
reload upon overflow.

Additionally, counter 0 can be programmed to a mode that
divides it into one 8-bit time-interval or event counter and one
8-bit time-interval counter (Mode 3). When counter 0 is in
Mode 3, counter 1 can be programmed to any of the three
aforementioned modes, although it cannot set an interrupt
request flag or generate an interrupt. This mode is useful
because counter 1's overflow can be used to pulse the serial
port's transmission-rate generator. Along with their multiple
operating modes and 16-bit precision, the counters can also
handle very high input frequencies. These range from 0.1 MHz
to 1.0 MHz (from 1.2 MHz to 12 MHz crystal) when pro-
grammed to increment once every machine cycle and from 0
Hz to an upper limit of 50 kHz to 0.5 MHz (for 1.2 MHz to 12
MHz crystal) when programmed for external inputs. Both
internal and external inputs can be gated to the counter by a
second external source for directly measuring pulse widths.

The counters are started and stopped under software control.
Each counter sets its interrupt request flag when it overflows
from all ones to all zeroes (or auto-reload value). The
operating modes and input sources are summarized in Figures
3 and 4. The effects of the configuration flags and the status
flags are shown in Figures 5 and 6.

7-7

CRYSTAL +12 @ i E
OSCILLATOR
TIMER 0
8 8
EXTERNAL
SOURCE — Ho T OVERFLOW
T
FLAGO
Mode 0: 8-bit timer/counter with prescaier
Mode 1: 16-bittimer/counter
Mode 2: 8-bit auto-reload timer/counter
CRYSTAL
OSCILLATOR ‘F TIMER 1
8 8
EXTERNAL OVERFLOW
SOURCE — 1 ™ ™ (INTERRUPT
FLAG1)
Mode 0: 8-bit timer/counter with prescaler
Mode 1: 16-bit timer/counter || i
Mode 2: 8-bit auto-reload timer/counter PORT
LD000110
Figure 3. Timer/Event Counter Modes 0, 1 and 2

CRVSTAL
OSCILLATOR
EXTERNAL r:, " OvERRLOW
—] THo (INTERRUPT
FLAG1
Mode 3: 8-bit timer/counter Mode 3: 8-bit timer OVERFLOW
(INTERRUPT
REQUEST)
FLAGO
CRYSTAL
OSCILLAT TIMER 1
8)
exrennar V| ™, I
Mode 0: 8-bit timer/counter with prescaler PULSE TO
Mode 1: 16-bit timer/counter SERIAL
Mode 2: 8-bit auto-reload timer/counter PORT
LD000130

Figure 4. Timer/Event Counter 0 in Mode 3

GATE COUNTER/TIMER RUN
", = —
LR e ——
XTAL +12

INTERRUPT REQUEST

COUNTERO l

Mode 0: 8-bit timer with 5-bit prescaler/
8-bit counter with 5-bit prescaler

Mode 1: 16-bit timer/counter

Mode 2: 8-bit auto-reload timer/counter

Mode 3: 8-bit timer/counter (TLg)

LD000070

Figure 5. Timer/Counter 0 Control and Status Filag Circuitry

Serial Communications

The 8051's serial I/O port is useful for serially linking
peripheral devices as well as muitiple 8051s through standard
asynchronous protocols with full-duplex operation. The serial
port also has a synchronous mode for expansion of I/0 lines
using CMOS and TTL shift registers. This hardware serial
communications interface saves ROM code and permits a
much higher tranmission rate than could be achieved through
software. In response to a serial port interrupt request, the
CPU has only to read/write the serial port's buffer to service
the serial link. A block diagram of the serial port is shown in
Figures 7 and 8. Methods for linking UART (universal asyn-
chronous receiver/transmitter) devices are shown in Figure 9
and a method for I/0O expansion is shown in Figure 10.

The full-duplex serial I/0 port provides asynchronous modes
to faciliate communications with standard UART devices, such
as printers and CRT terminals, or communications with other
8051s in multi-processor systems. The receiver is double
buffered to eliminate the overrun that would occur if the CPU
failed to respond to the receiver's interrupt before the begin-
ning of the next frame. The 8051 can generally maintain the
serial link at its maximum rate so double buffering of the

transmitter is not needed. A minor degradation in transmission
rate can occur in rare events such as when the servicing of the
transmitter has to wait for a lengthy interrupt service program
to complete. In asynchronous modes, false start-bit rejection
is provided on received frames. For noise rejection a best two-
out-of-three vote is taken on three samples near the center of
each received bit.

When interfacing with standard UART devices, the serial
channel can be programmed to Mode 1 which transmits/
receives a ten-bit frame or programmed to Mode 2 or 3 which
transmits/receives an eleven-bit frame as shown in Figure 11.
The frame consists of a start bit, eight or nine data bits, and
one stop bit. In modes 1 and 3, the transmission-rate timing
circuitry receives a pulse from counter 1 each time the counter
overflows. The input to counter 1 can be an external source or
a division by 12 of the oscillator frequency. The auto-reload
mode of the counter provides communication rates of 0.05 to
62,500 bits per second (including start and stop bits) for a 12-
MHz crystal. In Mode 2 the communication rate is a division by
64 or 32 of the oscillator frequency yielding a transmission rate
of 187,500 bits per second or 375,000 bits per second
(including start and stop bits) for a 12-MHz crystal.

7-8

GATE COUNTER/TIMER RUN INTERRUPT REQUEST

TIMER/ | COUNTER 0 IN MODE 3 E '
PULSETO
COUNTER 1 L SERIAL PORT

: 8-bit timer with prescaler/
8-bit counter with prescaler

: 16-bit timer/counter

: 8-bit auto-reload T/C

: Prevents incrementing of T/C 1

T,

T

XTAL,

LD000080

l | (XMIT) |
l ’_; TRANSMIT DATA/
l RECEIVE DATA
l (SERIALCONTROL) c INTERNAL 8053 8US {
I
B — * |
I TIMING CIRCUITRY I
| |
e ShrsTaL : ul"’l INPUT SHIFT REGISTER i
{_ [, |
__________________ I
BD006050
Figure 7. Serial Port — Synchronous Mode 0
~ 10ortibitframe [T T T e e e e e e —— — . 9
" Bovciimororimert "m[WTERRUBT l
- Address frame recognition I—_T_‘
| = —
, 1 [Dg‘;" S__S xum T oA
| F
I (szauﬁ%%':cmou <:;:>!7 INTERNAL 8053 BUS 48 {
I CONTROL AND 9TH ‘
| TIMING CIRCUITRY o, ::;‘ SBUF (RCVR) l
CRYSTAL _J_E '—'l {} I
OSCILLATOR 16 I
oyenieen 1 " __I L S——()Twur SHIFT REGISTER l
[l] RECEWVER |
INTERRUPT | mecene
I_— ——————————————————— _] DATA
LD000100

Figure 8. Serial Port — UART Modes 1, 2 and 3

79

TXD RXD TXD RXD TXD RXD RXD TXD

8051 8051 8051 8051

TXD RAXD TXO - RXD TXD RXD
RXD ™0
PORT PIN (53

8051 8051 8051 8251A

A. MULTI-8051 INTERCONNECT - HALF DUPLEX

B. MULTI-8051 INTERCONNECT -FULL DUPLEX

C. 8051-8251A INTERFACE

LD000062

Figure 9. UART Interfacing Schemes

RERRRRR
INy-INg

cLock CLK P/5
PORT PIN ——l T

8051
SEEEEREE
Qy-Qy
DATA SIN o
cLock CLK ST8 =
PORT PIN I
_.l T
B. I/O OUTPUT EXPANSION
LDoo0121

Figure 10. 1/0 Expansion Technique

START 7-BITOATA [T —
) 25T0P
TYPICAL 1
CRT
START 7-BIT DATA MARK STOP
L] | [|-
START 8-BIT DATA PARITY STOP
LI | [Jow
MULTI-PROCESSOR | START 8-BIT DATA " ADDR STOP
COMMUNICATIONS DATA
[| | 4] 2403
START 9-BIT DATA STOP
wms‘ga o ¢

——— CLK
BD006060
Figure 11. Typical Frame Formats

Distributed processing offers a faster, more powerful system
than a single CPU can provide. This results from hierarchy of
interconnected processsors, each with its own memories and
1/0. In a multiprocessing environment, a single host 8051
controls other slave 8051s configured to operate simulta-
neously on separate portions of a program. The intercon-
nected 8051s reduce the load on the host processor and
result in a lower-cost system of data transmission. This form of
distributed processing is especially effective in a complex
process where controls are required at physically separated
locations.

In Modes 2 and 3 interprocessor communication is facilitated
by the automatic wake-up of slave processors through inter-
rupt driven address-frame recognition. The protocol for inter-
processor communications is shown in Table 1. In synchro-
nous mode (Mode 0) the high speed serial port provides an
efficient, low-cost method of expanding I/0 lines using stan-
dard TTL and CMOS shift registers. The serial channel
provides a clock output for synchronizing the shifting of bits
to/from an external register. The data rate is a division by 12
of the oscillator frequency and hence is 1M bits per second at
12 MHz.

TABLE 1. PROTOCOL FOR MULTI-PROCESSOR
COMMUNICATIONS

Slaves | Configure serial port to interrupt CPU if the
received ninth data bit is a one (1).

Master | Transmit frame containing address in first 8 data
bits and set ninth data bit (i.e., ninth data bit
designates address frame).

Slaves | Serial port interrupts CPU when address frame is
received. Interrupt service program compares
received address to its address. The slave which
has been addressed reconfigures its serial port to
interrupt the CPU on all subsequent transmissions.

Master | Transmit control frames and data frames (these
will be accepted only by the previously addressed
slave).

7-10

Oscillator Characteristics

XTAL+1 and XTAL are the input and output, respectively, of an
inverting amplifier which can be configured for use as an on-
chip oscillator, as shown in Figure 12. Either a quartz crystal or
ceramic resonator may be used.

To drive the device from an external clock source, XTAL
should be grounded, while XTAL3 is driven, as shown in Figure
13. There are no requirements on the duty cycle of the
external clock signal, since the input to the internal clocking
circuitry is through a divide-by-two flip-flop, but minimum and
maximum HIGH and LOW times specified on the data sheet
must be observed.

C2
11
)} XTAL»

[|
AY |
) . XTAL4
Vss
L
B TC004360

Cy, C2 =30 pF £ 10 pF for Crystals
=40 pF + 10 pF for Ceramic Resonators

Figure 12. Oscillator Connections

EXTERNAL
OSCILLATOR
SIGNAL

XTAL2

XTALj

Figure 13. External Drive Configuration

Vss

TC004370

7-11

ABSOLUTE MAXIMUM RATINGS

Storage Temperaturecceeeenenian. -65 to +150°C
Voltage on Any Pin

with Respect to Ground
Power Dissipation

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

-05t +70V

OPERATING RANGES

Commercial (C) Devices
Temperature (TA)....ccovevveriiiiiniioiiiniianens
Supply Voltage (Vco) ..
Ground (Vss)

Industrial (I) Devices (8031AH only)
Temperature (Ta)
Supply Voltage (Vco)
GrOUNd (VS) - +vuvnvnerenanaieiinitanineneneiannrraanaaene

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

Parameters Description Test Conditions Min. Max. Units
ViL Input LOW Voltage -05 0.8 A
ViH Input HIGH Voltage (Except RST/Vpp and XTALp) 2.0 Vce +0.5 \
VIH1 Input HIGH Voltage to RST/Vpp, XTAL2 XTALy = Vsgs 25 Vce +0.5 \
Ve Power-Down Voitage to RST/Vpp Vec=0V 45 55 \
VoL Output LOW Voltage, Ports 1, 2, 3 (Note 1) loL=1.6 mA 0.45 \%
VoLt Output LOW Voltage, Port 0, ALE, PSEN (Note 1) loL=3.2 mA 0.45 "
VoH Output HIGH Voltage, Ports 1, 2, 3 loH =-80 pA 24 \%
VoH1 Output HIGH Voltage, Port 0, ALE, PSEN IOH =-400 pA 24 v
liL Logical O Input Current, Ports 1, 2, 3 VIL=045V ~500 MA
e Logical 0 Input Current for XTALp cLA'jojgs\? -3.2 mA
WIH1 Input HIGH Current to RST/Vpp for Reset VIN<(Vcc -15 V) 500 MA
[N} Input Leakage Current to Port 0, EA 0.45 <V|N < Veo +10 MA
8051AH/8031AH/ EA=Vce 125
loc Power-Supply Current 8053AH All Outputs Disconnected 160 mA
lpp Power-Down Current Vec=0V; Vpo=5.0 V 10 mA
Cio Capacitance of 1/0 Buffer fc=1 MHz 10 pF

Notes: 1. Capacitive load on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vors of ALE and
Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when
these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise
pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger,
or use an address latch with a Schmitt Trigger STROBE input.

7-12

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Load Capacitance for
Port 0, ALE, and PSEN = 100 pF; Load Capacitance for all other

outputs = 80 pF)
12 MHz 18 MHz
Clock Clock (Note 1) Variable Clock
Parameter Parameter
Symbol Description Min. Max. Min. Max. Min. Max. Units
TCY 1/TCLCL | Oscillator Frequency 1.2 18 MHz
TLHLL ALE Pulse Width 127 71 2TCLCL-40 ns
TAVLL Address Setup to ALE 43 15 TCLCL-40 ns
TLLAX Address Hold After ALE 48 20 TCLCL-35 ns
TLLIV ALE to Valid Instruction In 233 122 4TCLCL-100 ns
TLLPL ALE to PSEN 58 30 TCLCL-25 ns
TPLPH PSEN Pulse Width 215 131 3TCLCL-35 ns
TPLIV PSEN to Valid Instruction In 125 41 3TCLCL-125 | ns
TPXIX Input Instruction Hold After PSEN 0 0 0 ns
TPXIZ Input Instruction Float After PSEN 63 35 TCLCL-20 ns
TPXAV Address Valid After PSEN 75 47 TCLCL-8 ns
TAVIV Address to Valid Instruction In 302 162 5TCLCL-115 ns
TPLAZ Address Float After PSEN 20 20 20 ns
TRLRH RD Pulse Width 400 233 6TCLCL-100 ns
TWLWH WR Pulse Width 400 233 6TCLCL-100 ns
TRLDV RD to Valid Data In 250 112 5TCLCL-165| ns
TRHDX Data Hold After RD 0 0 0 ns
TRHDZ Data Float After RD 97 41 2TCLCL-70 ns
TLLDV ALE to Valid Data In 517 294 8TCLCL-150 | ns
TAVDV Address to Valid Data In 585 334 9TCLCL-165 ns
TLLWL ALE to WR or RD 200 300 116 216 3TCLCL-50 | 3TCLCL+ 50 ns
TAVWL Address to WR or RD 203 92 4TCLCL-130 ns
TQVWX Data Valid to WR Transition 23 0 TCLCL-60 ns
TQVWH Data Setup Before WR 433 238 7TCLCL-150 ns
TWHQX Data Hold After WR 33 5 TCLCL~-50 ns
TRLAZ Address Float After RD 20 20 20 ns
TWHLH WR or RD High to ALE High 43 123 16 96 TCLCL-40 | TCLCL+40 ns

Notes: 1. 18 MHz clock pertains only to 8031AH in the Commercial operating range.

SWITCHING WAVEFORMS
KEY TO SWITCHING WAVEFORMS

WAVEFORM

TESE]

INPUTS.

MUST BE
STEADY

MAY CHANGE
FROMHTOL

MAY CHANGE
FROML TOH

DON'T CARE;
ANY CHANGE
PERMITTED

DOES NOT
APPLY

OQUTPUTS

WILL BE
STEADY

WILL BE
CHANGING
FROMHTO L

WILL BE
CHANGING
FROML TOH

CHANGING;
STATE
UNKNOWN

CENTER
LINE IS HIGH
IMPEDANCE
“OFF" STATE

KS000010

7-13

SWITCHING WAVEFORMS (Cont'd.)

TLHLL ~—=

ALE ’ \

— {=a——— TLLPL

TAVLL TPLPH
| ~—— TLLIV ——=
TPLIV
PSEN \ Z
7
TPXAV
TPLAZ ~of [t — I..__ TPXIZ

TLLAX ’—- — TPXIX

4 p 4 p A
PORT 0 Ag-Az H 1N§N1‘ R Ag-A7
"

TAVIV

s
PORT 2 x Ag-As X Ag—Ags
.

External Program Memory Read Cycle

WF008743

TLHLL — TWHLH

TLLDV
TLLWL TRLRH
D) X]
TRLDV —_— |—— TRHDZ
TAVLL—e] le—— TLLAX — TRLAZ

-o——l — TRHDX
i F WY / STR
PORTO)—Zr Ao-A7 DATA IN A\ Ao—A7H e

t
fe———— TAVWL ————erl

TAVDV
PORT 2 X Ag-Aus X At

External Data Memory Read Cycle

WF008733

7-14

SWITCHING WAVEFORMS (Cont'd.)

TLHLL TWHLH ———e-i e

ALE

~——TLLWL. TWLWH
p 4
[T N }
N
TDVWX TWHQX
TAVLL TLLAX={ TQVWH
p!
PORT 0 >—§ Ag=Ay i DATA OUT F ;;{:H INSTR
TAVWL
-
PORT 2 ‘X Ag-As Ag-Ats
|
WF008754
External Data Memory Write Cycle
wstAUCTION | 0 | 1 | 2 | 3 I . | s | € J | 0 |
S I T U O R B
I——YXLX[——{

- N e I e T e T T e T o e O
e
XXX XX XX

_J

WRITE TO SBUF TXHOV ‘—-———I ‘-l }-— TXHDX

oo oo XK e XK XKoo X Koo X Koo X Koo K Kome)
T

SETIN

ser T

CLEAR IN

WF008722

Shift Register Timing Waveforms

7-15

EXTERNAL ‘CLOCK DRIVE

Parameter Parameter
Symbol Description Min. Max. Units
1/TCLCL Oscillator Frequency 1.2 12 MHz
TCHCX HIGH Time 20 ns
TCLCX LOW Time 20 ns
TCLCH Rise Time 20 ns
TCHCL Fall Time 20 ns
Voe-08 = eT Vor '\
048V 02Vee-0.1 < TCHCX
TCLCX—], TCLCH
TCHCL TCLCL 1
WF020910
External Clock Drive Waveform
SERIAL PORT TIMING — SHIFT REGISTER MODE
(Load Capacitance = 80 pF)
12 MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Units
TXLXL Serial Port Clock Cycle Time 1.0 12TCLCL us
TQVXH Output Data Setup to Clock Rising Edge 700 10TCLCL - 133 ns
TXHQX Output Data Hold After Clock Rising Edge 50 2TCLCL - 117 ns
TXHDX Input Data Hold After Clock Rising Edge 0 0 ns
TXHDV Clock Rising Edge to Input Data Valid 700 10TCLCL - 133 ns
AC Testing
Vee-0.8
cc 02Voc+0.9 VOH-0.1V
04sV 0.2Vce-0.1 VoL+0.1 Vv
WF020900 WF020940

AC INPUTS DURING TESTING ARE DRIVEN AT Vcc~-0.5 FOR A LOGIC
"1"AND 0.45 V FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE
AT Vij4 MIN. FOR A LOGIC "1" AND V). MAX. FOR A LOGIC "0."

Input/Output Waveform

FOR TIMING PURPOSES A PORT PIN IS NO LONGER FLOATING WHEN A
100 mV CHANGE FROM LOAD VOLTAGE OCCURS, AND BEGINS TO
FLOAT WHEN A 100 mV CHANGE FROM THE LOADED Vou/VoLLEVEL
OCCURS. loi/IoH =20 mA.

Float Waveform

7-16

CLOCK WAVEFORMS

INTERNAL STATE 4 STATES STATE6 STATE 1 STATE2 STATE3 STATE 4 STATES
cLock

o "ul"z g} I’z "nl’z "tl"z °|IPz P1l’2 P-l’z "||"z
XTAL,

THESE SIGNALS ARE NOT ACTIVATED
DURING THE EXECUTION OF
EXTERNAL PROGRAM MEMORY FETCH A MOVX INSTRUCTION

e N\
" —J D‘Vu peLout l] DATA] l petour l l DATA l l peour L_.

SAMPLED | SAMPLED | | SAMPLED |
FLOAT I FLOAT 1 I FLOAT 1
P2 (EXT) I INDICATES ADDRESS TRANSITIONS 1 l

READ CYCLE

R L J

PCL OUT (IF PROGRAM
MEMORY IS EXTERNAL)

00H IS EMITTED
N — DURING THIS PERIOD l———]
o i
i our 7 SA‘:AAPTLAED
= t FLOAT -
Le) | INDICATES DPH OR P, SFR TO PCH TRANSITIONS |
WRITE CYCLE
WR l [PCL OUT (EVEN IF PROGRAM
MEMORY IS INTERNAL)
Po I DPL ORRi l
out
I- 1
k DATA OUT I 1 pcL ouT (F PROGRAM
MEMORY IS EXTERNAL
P2 | INDICATES DPH OR P, SFR TG PCH TRANSITIONS B !
PORT OPERATION
MOV PORT, SRC OLD DATA | NEW DATA
| Py PINS SAMPLED
wov oest e [owanl
\ Pg PINS SAMPLED
MOV DEST, PORT (P, P,. Py)
(INCLUDES INTy, INT,, To, Ty) F;q__
Py, Py, P3 PINS SAMPLED Py.Py.Py
SERIAL PORT SHIFT CLOCK PINS SAMPLED
o | l"*’j_
(MODE 0) 1 2\ I LY
\ RXD SAMPLED RXD SAMPLED

WF007070

All internal timing is referenced to the internal time state shown on the top of the page. This waveform represents the signal on the
Xz input of the oscillator. This diagram represents when these signals are actually clocked within the chip. However, the time it
takes a signal to propagate to the pins is in the range of 25 to 125 ns. Prop delays are dependent on many variables, such as
temperature, pin loading. Propagation also varies from output to output and component to component. Typically though, /RD and
/WR have prop delays of approximately 50 ns and the other timing signals approximately 85 ns, at room temperature, fully loaded.
These differences in prop delays between signals have been integrated into the timing specs.

7-17

TABLE 3. 8051 FAMILY INSTRUCTION SET
Instructions That Affect Flag Setting*

Interrupt Response Time: To finish execution of current

Instruction Flag Instruction Flag instruction, respond to the interrupt request and push the PC;
¢ ov as C oV AC e e e
ADD X X X CLR C o ’
ADDC X X X CPL C X
SuBB X X X ANLGC, bit X
MUL (o] X ANL C,/bit X
Div (0] X ORL C, bit X
DA X ORL C’/b'-t X *Note that operations on SFR byte address 208 or bit
RRC X MOV C, bit X ; .]
RLC X CJNE X addresses 209 - 215 (i.e., the PSW or bits in the PSW) will
SETB C 1 also affect flag settings.
DATA TRANSFER LOGIC (Cont'd.)
Mnemonic Description Byte| Cyc | Mnemonic Description Byte| Cyc
MOV ARn Move register to Accumulator 1 1 ANL direct, #data | AND immediate data to direct byte 3 2
MOV Adirect Move direct byte to Accumulator 2 1 ORL ARn OR register to Accumulator. 1 1
MOV A@Ri Move indirect RAM to Accumulator 1 1 ORL A,direct OR direct byte to Accumulator 2 1
MOV A #data Move immediate data to Accumulator 2 1 ORL A,@Ri OR indirect RAM to Accumulator 1 1
MOV RnA Move Accumulator to register 1 1 ORL A, #data OR immediate data to Accumulator 2 1
MOV Rn,direct Move direct byte to register 2 2 ORL direct,A OR Accumulator to direct byte 2 1
MOV Rn,#data Move immediate data to register 2 1 ORL direct, #data | OR immediate data to direct byte 3 2
MOV direct,A Move Accumulator to direct byte 2 1 XRL ARn Exclusive-OR register to Accumulator 1 1
MOV direct,Rn Move register to direct byte 2 2 XRL A direct Exclusive-OR direct byte to Accumulator | 2 1
MOV direct,direct Move direct byte to direct byte 3 2 XRL A @Ri Exclusive-OR indirect RAM to 1 1
MOV direct,@Ri Move indirect RAM to direct byte 2 2 Accumulator
MOV direct,#data | Move immediate data to direct byte 3 2 XRL A, #data Exclusive-OR immediate data to 2 1
MOV @RiA Move Accumulator to indirect RAM 1 1 Accumulator
MOV @Ridirect Mode direct byte to indirect RAM 2 2 XRL direct,A Exclusive-OR Accumulator to direct byte | 2 1
MOV @Ri #data Move immediate data to indirect RAM 2 1 XRL direct, #data | Exclusive-OR immediate data to direct 3 2
MOV DPTR,#data16 | Move 16-bit constant to Data Pointer 3 2 CLR A Clear Accumulator 1 1
MOVC A@A +DPTR Move Code byte relative to DPTR to 1 2 CPL A Complement Accumulator 1 1
Accumulator RL A Rotate Accumulator Left 1 1
MOVC A,@A+PC Move Code byte relative to PC to 1 2 RLC A Rotate Accumulator Left through Carry 1 1
Accumulator Flag
MOVX A@Ri Move External RAM (8-bit address) to 1 2 RR A Rotate Accumulator Right 1 1
Accumulator RRC A Rotate Accumulator Right through Carry 1 1
MOVX A@DPTR Move External RAM (16-bit address) to 1 2 Flag
Accumulator SWAP A Exchange nibbles within the 1 1
MOVX @Ri,A Move Accumulator to External RAM (8- 1 2 Accumulator
bit address)
MOVX @DPTR,A Move Accumulator to External RAM (16-| 1 2 ARITHMETIC
bit address)
PUSH direct Push direct byte onto stack 2 2 | Mnemonic Description Byte| Cyc
POP direct Pop direct byte off of stack 2 2
XCH ARn Exchange register with Accumulator 1 1 ADD ARn Add register to Accumulator 1 1
XCH Adirect Exchange direct byte with Accumulator 2 1 ADD Adirect Add direct byte to Accumulator 2 1
XCH A@Ri Exchange indirect RAM with 1 1 ADD A@Ri Add indirect RAM to Accumulator 1 1
, Accumulator ! ADD A #data Add immediate data to Ac " 2 1
XCHD A@Ri Exchange indirect RAM's least sig 1 1 | ADDC ARn Add register to Accumulator with carry 1 1
nibble with A's LSN ADDC Adirect Add direct byte to Accumulator with 2 1
Carry Flag
BOOLEAN VARIABLE MANIPULATION ADDC A@Ri Add indirect RAM and Carry Flag to 1 1
- - — Accumulator
Mnemonic Description Byte| Cyc | ADDC A #data Add immediate data and Carry Flag to 2 1
Accumulator
CLR C Clear Carry Flag 1 1 SUBB ARn Subtract register from Accumulator with 1 1
CLR bit Clear direct bit 2 1 Borrow
SETB C Set Carry Flag 1 1 SUBB Adirect Subtract direct byte from Accumulator 2 1
SETB bit Set direct bit 2 1 with Borrow
CPL o} Complement Carry Flag 1 1 SUBB A @Ri Subtract indirect RAM from Accumulator 1 1
CPL bit Complement direct bit 2 1 with Borrow
ANL Cbit AND direct bit to Carry Flag 2 2 SUBB A, #data Subtract immediate data from 2 1
ANL C,/bit AND complement of direct bit to Carry 2 2 Accumulator with Borrow
ORL Cbit OR direct bit to Carry Flag 2 2 INC A Increment Accumulator 1 1
ORL C,/bit OR.complement of direct bit to Carry 2 2 INC Rn increment register 1 1
MOV C,bit Move direct bit to Carry Flag 2 1 INC direct Increment direct byte 2 1
MOV bit,C Move Carry flag to direct bit 2 2 INC @Ri Increment indirect RAM 1 1
DEC A Decrement Accumulator 1 1
LOGIC (Cont'd.) DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 1
inti DEC @Ri Decrement indirect RAM 1 1
Mnemonic Description Byte) Cyc INC DPTR Increment Data Pointer 1 2
ANL ARn AND register to Accumulator 1 1 hD"Ik\JlL Qg mgﬂ'y,\écf,‘:.mfﬁﬂ,"":s B 1 :
ANL Adirect AND direct byte to Accumulator 2 " |pa A Dooreal Adust Accurulat 1)
ANL A@Ri AND indirect RAM to Accumulator 1 1 ecimal Adjust Accumulator
ANL A #data AND immediate data to Accumulator 2 1 OTHER
ANL direct,A AND Accumulator to direct byte 2 1
Mnemonic Description Byte| Cyc
NOP No Operation 1 1

7-18

CONTROL TRANSFER (BRANCH)

Notes on Data Addressing Modes:

Mnemonic Description Byte| Cyc Rn -Working register RO - R7 of the currently selected
AJMP addrit Absolute Jump 2 2 Register bank.
LIMP addr16 Long Jump) 312 direct -128 internal RAM locations, any 1/0 port, control,
SIMP rel Short Jump (relative addr) 2 2 .
JMP @A+DPTR | Jump indirect relative to the DPTR 1 2 or status register.)
Jz rel Jump if Accumulator is zero 2 2 @Ri —Indirect internal RAM location addressed by
JNZ rel Jump if Accumulator is not zero 2 2 register RO or R1.
JC rel Jump if Carry Flag is set 2 2 . R P .
INC rel Jump if carry is not set 2 2 #data -8-bit constant included in instruction.
JB bit,rel Jump relative if direct bit is set 3 2 #data16 -16-bit constant included as bytes 2 and 3 of
JNB bit,rel Jump relative if direct bit is not set 3 2 instruction.
JBC bit,rel Jump relative if direct bit is set, then 3 2 . "
clear bit bit -128 software flags, any 1/0 pin, control, or status
CJNE Adirect,rel Compare direct byte to Accumulator and| 3 2 bit.
Jump if not Equal -
CJNE A, #data,rel Compare immediate to Accumulator and 3 2 Notes on Program Addressing Modes:
Jump if not Equal
CJNE Rn,#data,rel Compare immediate to reg and Jump if 3 2 . .
not E:ual ale foreg a i addr16 —Destination address for LCALL and LUMP may be
CJNE @Ri,#data,rel Compare immediate to indirect RAM 3 2 anywhere within the 64-Kilobyte program memory
bNZ Finrel End Jump if nottEquald S) . . address space
J n,rel ecrement register and Jump if not .
zero 9 P addr11 -Destination address for ACALL and AJMP will be
DJNZ direct,rel Decrement direct byte and Jump if not 3 2 within the same 2-Kilobyte page of program
zero memory as the first byte of the following
CONTROL TRANSFER (SUBROUTINE) instruction. o))
rel -SJMP and all conditional jumps include as 8-bit
Mnemonic Description Byte| Cyc offset by Range is + 127, —128 bytes relative to
first byte of the following instruction.
ACALL addr11 Absolute Subroutine Call 2 2
LCALL addr16 Long Subroutine Call 3 2
RET Return from Subroutine Call 1 2
RETI Return from Interrupt Call 1 2
TABLE 4. INSTRUCTION OPCODES IN HEXADECIMAL ORDER (Cont'd.)
Hex Code Bytes Mnemonic Operands Hex Code Bytes Mnemonic Operands
00 1 NOP 2E 1 ADD AR6
01 2 AJMP Code addr 2F 1 ADD AR7
02 3 LJMP Code addr 30 3 JNB Bit addr,code addr
03 1 RR A 31 2 ACALL Code addr
04 1 INC A 32 1 RETI
05 2 INC Data addr 33 1 RLC A
06 1 INC @RO 34 2 ADDC A, #data
07 1 INC @R1 35 2 ADDC A,data addr
08 1 INC RO 36 1 ADDC A,@R0
09 1 INC R1 37 1 ADDC A@R1
0A 1 INC R2 38 1 ADDC ARO
0B 1 INC R3 39 1 ADDC AR1
oC 1 INC R4 3A 1 ADDC AR2
oD 1 INC R5 3B 1 ADDC AR3
OE 1 INC R6 3C 1 ADDC AR4
OF 1 INC R7 3D 1 ADDC AR5
10 3 JBC Bit addr,code addr 3E 1 ADDC AR6
11 2 ACALL Code addr 3F 1 ADDC AR7
12 3 LCALL Code addr 40 2 JC Code addr
13 1 RRC A 41 2 AJMP Code addr
14 1 DEC A 42 2 ORL Data addr,A
15 2 DEC Data addr 43 3 ORL Data addr, #data
16 1 DEC @RO 44 2 ORL A, #data
17 1 DEC @R1 45 2 ORL A,data addr
18 1 DEC RO 46 1 ORL A,@RO
19 1 DEC R1 47 1 ORL A,@R1
1A 1 DEC R2 48 1 ORL A,RO
1B 1 DEC R3 49 1 ORL AR1
1C 1 DEC R4 4A 1 ORL AR2
1D 1 DEC R5 4B 1 ORL AR3
1E 1 DEC R6 4C 1 ORL AR4
1F 1 DEC R7 4D 1 ORL AR5
20 3 JB Bit addr,code addr 4E 1 ORL ARS8
21 2 AJMP Code addr 4F 1 ORL AR7
22 1 RET 50 2 JNC Code addr
23 1 RL A 51 2 ACALL Code addr
24 2 ADD A, #data 52 2 ANL Data addr,A
25 2 ADD A,data addr 53 3 ANL Data addr, # data
26 1 ADD A,@RO 54 2 ANL A, #data
27 1 ADD A,@R1 55 2 ANL A,data addr
28 1 ADD ARO 56 1 ANL A,@RO
29 1 ADD ARt 57 1 ANL A@GR1
2A 1 ADD AR2 58 1 ANL A,RO
2B 1 ADD AR3 59 1 ANL AR1
2C 1 ADD AR4 5A 1 ANL AR2
2D 1 ADD AR5 58 1 ANL AR3

7-19

Hex Code Bytes Mnemonic Operands Hex Code Bytes Mnemonic Operands
5C 1 ANL AR4 AF 2 MOV R7,data addr
5D 1 ANL AR5 BO 2 ANL C,/bit addr
5E 1 ANL AR6 B1 2 ACALL Code addr
5F 1 ANL AR7 B2 2 CPL Bit addr
60 2 JZ Code addr B3 1 CPL C
61 2 AJMP Code addr B4 3 CINE A, #data,code addr
62 2 XRL Data addr,A B5 3 CJNE A,data addr,code addr
63 3 XRL Data addr, # data B6 3 CINE @RO0, #data,code
64 2 XRL A, #data addr
65 2 XRL A,data addr B7 3 CINE @R1,#data,code
66 1 XRL s addr
67 1 XRL AGR1 B8 3 CJINE RO, #data,code addr
68 1 XRL ARO B9 3 CUNE R1,#data,code addr
69 1 XRL AR1 BA 3 CJUNE R2, #data,code addr
6A 1 XRL AR2 BB 3 CINE R3, #data,code addr
6B 1 XRL AR3 BC 3 CJNE R4, #data,code addr
6C 1 XRL AR4 BD 3 CJINE R5, #data,code addr
6D 1 XRL AR5 BE 3 CJINE R6, #data,code addr
6E 1 XRL A,R6 BF 3 CJNE R7,#data,code addr
6F 1 XRL AR7 Cco 2 PUSH Data addr
70 2 JINZ Code addr C1 2 AJMP Code addr
71 2 ACALL Code addr Cc2 2 CLR Bit addr
72 2 ORL C,bit addr C3 1 CLR C
73 1 JMP @A +DPTR C4 1 SWAP A
74 2 MoV A, #data C5 2 XCH A,data addr
75 3 MOV Data addr, #data Ccé 1 XCH ,@RO
76 2 MOV @RO, #data Cc7 1 XCH A,@R1
77 2 MOV @R1,#data cs 1 XCH ARO
78 2 MOV RO, #data Cc9 1 XCH ARt
79 2 MOV R1,#data CA 1 XCH AR2
7A 2 MOV R2, #data CB 1 XCH A,R3
7B 2 MOV R3,#data CcC 1 XCH A,R4
7C 2 MOV R4, #data CcD 1 XCH AR5
7D 2 MOV RS, #data CE 1 XCH A,R6
7E 2 MOV R6, #data CF 1 XCH AR7
7F 2 MoV R7,#data DO 2 POP Data addr
80 2 SJMP Code addr D1 2 ACALL Code addr
81 2 AJMP Code addr D2 2 SETB Bit addr
82 2 ANL C,bit addr D3 1 SETB C
83 1 MOVC A,@A +PC D4 1 DA A
84 1 DIV AB D5 3 DJINZ Data addr,code addr
85 3 MOV Data addr,data addr D6 1 XCHD A,@R
86 2 MOV Data addr,@ RO D7 1 XCHD A,@R1
87 2 MOV Data addr,@R1 D8 2 DJINZ RO,code addr
88 2 MOV Data addr,RO D9 2 DJNZ R1,code addr
89 2 MOV Data addr,R1 DA 2 DJNZ R2,code addr
8A 2 MOV Data addr,R2 DB 2 DJNZ R3,code addr
8B 2 MOV Data addr,R3 DC 2 DJINZ R4,code addr
8C 2 MOV Data addr,R4 DD 2 DJNZ R5,code addr
8D 2 MOV Data addr,R5 DE 2 DJNZ R6,code addr
8E 2 MOV Data addr,R6 DF 2 DJNZ R7,code addr
8F 2 MOV Data addr,R7 EO 1 MOVX A,@DPTR
90 3 MOV DPTR, #data E1 2 AJMP Code addr
91 2 ACALL Code addr E2 1 MOVX A,@RO
92 2 MOV Bit addr,C E3 1 MOVX A,@R1
93 1 MOVC A,@A +DPTR E4 1 CLR A
94 2 SUBB A, #data E5 2 MOV A,data addr
95 2 SUBB A,data addr E6 1 MoV A,@R0
96 1 suBB A,@RO E7 1 MOV A,@R1
97 1 suBB A,@R1 E8 1 MOV ARO
98 1 SuBB ARO E9 1 MOV AR1
99 1 SuUBB AR1 EA 1 MOV AR2
9A 1 SuUBB AR2 EB 1 MOV AR3
9B 1 SuBB AR3 EC 1 MoV A,R4
9C 1 SuBB AR4 ED 1 MOV AR5
9D 1 suBB AR5 EE 1 MOV AR6
9E 1 SuUBB AR6 EF 1 MOV AR7
oF 1 SuBB AR7 FO 1 MOVX @DPTR,A
A0 2 ORL C,/bit addr F1 2 ACALL Code addr
At 2 AJMP Code addr F2 1 MOVX @ROA
A2 2 MOV C,bit addr F3 1 MOVX @R1,A
A3 1 INC DPTR F4 1 CPL A
A4 1 MUL AB F5 2 MOV Data addr,A
A5 Reserved Fé 1 MOV @RO0,A
A6 2 MOV @RO0,data addr F7 1 MOV @R1,A
A7 2 MOV @R1,data addr F8 1 MOV RO,A
A8 2 MOV RO,data addr F9 1 MOV R1,A
A9 2 MOV R1,data addr FA 1 MOV R2,A
AA 2 MOV R2,data addr FB 1 MOV R3,A
AB 2 MOV R3,data addr FC 1 MOV R4,A
AC 2 MOV R4,data addr FD 1 MOV R5,A
AD 2 MOV R5,data addr FE 1 MOV R6,A
AE 2 MOV R6,data addr FF 1 MOV R7,A

7-20

8751H/8753H

Single-Chip 8-Bit Microcontroller with
4K/8K Bytes of EPROM

DISTINCTIVE CHARACTERISTICS

4K x 8 EPROM (8751H); 8Kx8 EPROM (8753H)

128 x 8 RAM

Four 8-bit ports, 32 I/0 lines; programmable serial port
Two 16-bit Timer/Event counters

64K addressable Program and Data Memory
Boolean processor

o000 000

® Five interrupt sources/two priority levels

4-cycle multiply and divide

Program memory security feature

Fast EPROM programming: 12 sec for 4K bytes
Supports silicon signature verification

Pin compatible with 8051

GENERAL DESCRIPTION

The 8751H and 8753H are members of a family of
advanced single-chip microcontrollers. Both the 8751H,
which has 4K bytes of EPROM, and the 8753H, which has
8K bytes of EPROM, are pin-compatible EPROM versions
of the 8051AH and 8053AH, respectively. Thus, the
8751H/8753H are full-speed prototyping tools which pro-
vide effective single-chip solutions for controller applica-
tions that require code modification flexibility. Refer to the
block diagram of the 8051 family.

The 8751H/8753H devices feature: thirty-two 1/0 lines; two
16-bit timer/event counters; a Boolean processor; a 5-
source, bi-level interrupt structure; a full-duplex serial chan-
nel; and on-chip oscillator and clock circuitry.

Program and Data Memory are located in independent
addresses. The AMD family of microcontrollers can access
up to 64K bytes of external Program Memory and up to 64K

bytes of external Data Memory. The 8751H and the 8753H
contain the lower 4K and 8K bytes of Program Memory,
respectively, on-chip. Both parts have 128 bytes of on-chip
read/write data memory.

The AMD 8051 Microcontroller Family is specifically suited
for control applications. A variety of fast addressing modes,
which access the internal RAM, facilitates byte processing
and numerical operations on small data structures. Includ-
ed in the instruction set is a menu of 8-bit arithmetic
instructions, including 4-cycle multiply and divide instruc-
tions.

Extensive on-chip support enables direct bit manipulation
and testing of 1-bit variables as separate data types. Thus,
the device is also suited for control and logic systems that
require Boolean processing.

BLOCK DIAGRAM

FREQUENCY

REFERENCE COUNTERS

OSCILLATOR EPROM RAM TWO 16-BIT
. 4K BYTES - 8751 128 BYTES TIMER/EVENT
1 TIMING 8K BYTES - 8753 COUNTERS
: 8051 i
. cPU <
. \/ \/
' PROGRAMMABLE
: 64K BYTE BUS SERIAL PORT
. EXPANSION PROGRAMMABLE 110 * FULL DUPLEX
¢ CONTROL UART
! + SYNCHRONOUS

SHIFTER :
INTERRUPTS : |
INTERRUPTS CONTROL PARALLEL PORTS SERIAL SERIAL
ADDRESS DATA BUS IN ouTt
AND J/O PINS
BD007250
Publication # Rev. Amendment
03896 D /0
Issue Date: July 1987
7.24 te: July -

CONNECTION DIAGRAMS

Top View
DIP
Pro []1 e 4[] Ve
Pa]2 39 [po.o AD,
pm2 13 3s{] po.1 ADy Pos
P13 []e 377 Po2 AD, P15 .
P4 15 36 [] P03 ADy P16 PO.S
Ps[Je 35 [] Po.4 AD, P17 PO.6
Pe[]7 34] Pos ADg P07
Pz [33 [] pos ADg RST -
RsT [] 9 32 [] P07 AD, P3.0 TA
RXD P20 [] 10 W& NG NC
TX0 P31 [} 11 %] ae
¥y P32 (] 12 20 [FEEN P31 ALE
Wy P33 [] 13 28] P27 Ag P32 PSEN
To P4] 27 [P26 Ay P33 p2.7
T Pas [] 15 26 7] P2s Aqg
P26
Wh p3s [] 18 25 [] P24 Ay P34
RO P37 [] 17 24] P23 Ay P35 P25
XTAL, [18 23 [] P22 Agp
XTALy [] 19 22 [p21 ag
Ves [] 20 21 P20 Ag
CD005551 CD010870

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

V33| Ivcc lRST
XTALy
-—
L T |
< O DEDER Bt ¥
£ 3
e B —
T | — §l — |
XTAL, | ——
< e | —
ﬁ-—-‘ ottt
. .
PSEN etmmnd] .
-
e " §
——
e
——
RXD = —d — ——
TXD e D — e —
WMy —e | - e | — |3
ﬁ’-'-. n‘—- ‘—.“ ——
To e 5 4—.5 —
Ty — —] e —-—
WA | —— e | —
W -— | =] -—

LS001325

7-22

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: a. Temperature Range

b. Package Type

c. Device Number

d. Speed Option

e. Optional Processing

|
10

8751H

‘—— e. OPTIONAL PROCESSING

Blank = Standard Processing
B = Burn-in

d. SPEED OPTION
Blank =12 MHz

DEVICE NUMBER/DESCRIPTION

8751H = Single-Chip 8-Bit Microcontroller with
4K Bytes of EPROM Program Memory

8753H = Single-Chip 8-Bit Microcontroller with
8K Bytes of EPROM Program Memory

4

b. PACKAGE TYPE
D = 40-Pin Ceramic DIP (CDV040)
R = 44-Pin Ceramic Leadless Chip Carrier (CLV044) (Preliminary)

a. TEMPERATURE RANGE*
Blank = Commercial (0 to + 70°C)
| = Industrial (-40 to +85°C) (Preliminary)

Valid Combinations

. Valid Combinations list configurations planned to be
Valid Combinations supported in volume for this device. Consult the local AMD
D,R 8751H sales office to confirm availability of specific valid
8753H combinations, to check on newly released valid combinations,
8751H and to obtain additional data on AMD's standard military
ID 8751HB grade products.

8753H *This device is also available in Military temperature range.

8753HB See MOS Microprocessors and Peripherals Military Handbook
(Order #09275A/0) for electrical performance char-
acteristics.

7-23

PIN DESCRIPTION

Port 0 (Bidirectional; Open Drain)

Port 0 is an open-drain 1/0 port. Port 0 pins that have ''1''s
written to them float, and in that state can be used as high-
impedance inputs.

Port 0 is also the multiplexed LOW-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting ""1""s. Port 0 also outputs the code bytes during
program verification in the 8751H and 8753H. External
pullups are required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have ''1''s written to them are pulled
HIGH by the internal pullups and — while in this state —
can be used as inputs. As inputs, Port 1 pins that are
externally being pulled LOW will source current (I on the
data sheet) because of the internal pullups.

Port 1 also recieves the LOW-order address bytes during
program verification.

Port 2 (Bidirectional)

Port 2 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having '"1"'s written to them are pulled
HIGH by the internal pullups and — while in this state —
can be used as inputs. As inputs, Port 2 pins externally
being pulled LOW will source current (Ij) because of
internal pullups.

Port 2 emits the HIGH-order address byte during fetches
from external Program Memory and during accesses to
external Data Memory that use 16-bit addresses (MOVX
@DPTRY). In this application it uses strong internal pullups
when emitting ""1"'s. During accesses to external Data
Memory that use 8-bit addresses (MOVX @Ri), Port 2 emits
the contents of the P2 Special Function register.

Port 2 also recieves the HIGH-order address bits during the
programming of the EPROM and during program verification
of the EPROM.

Port 3 (Bidirectional)

Port 3 is an 8-bit bidirectional I/0O port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins having ''1'"'s written to them are pulled
HIGH by the internal pullups and — while in this state —
can be used as inputs. As inputs, Port 3 pins externally
being pulled LOW will source current (I;) because of the
pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function
P30 RxD (Serial Input Port)
P3.1 TxD (Serial Output Port)
P32 INTo (External Interrupt 0)
P33 TNT; (External Interrupt 1)
P34 To (Timer O External Input)
P35 T4 (Timer 1 External Input)
Pas WR (External Data Memory Write Strobe)
P37 RD (External Data Memory Read Strobe)

RST/Vpp Reset (Input; Active HIGH)
This pin is used to reset the device when held HIGH for two
machine cycles while the oscillator is running. If RST/Vpp is
held within the Vpp spec, it will supply standby power to the
RAM in the event that Vgg drops below its spec. When
RST/Vpp is LOW, the RAM's bias is drawn from Vce.

ALE/PROG Address Latch Enable/Program Pulse
(Input/Output)
Address Latch Enable output pulse for latching the LOW
byte of the address during accesses to external memory.
ALE can drive eight LS TTL inputs.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory. This
pin also accepts the program pulse input (PROG) when
programming the EPROM.

PSEN Program Store Enable (Output; Active LOW)
PSEN is the read strobe to external Program Memory. PSEN
can drive eight LS TTL inputs. When the device is executing
code from an external program memory, PSEN is activated
twice each machine cycle — except that two PSEN
activations are skipped during each access to external Data
Memory. PSEN is not activated during fetches from internal
Program Memory.

EA/Vpp External Access Enable (Input; Active LOW)
EA must be externally held LOW to enable the device to
fetch code from external Program Memory locations 0000H
to OFFFH (0000H to 1FFFH in the 8753H). If EA is held
HIGH, the 8751H executes from internal Program Memory
unless the program counter contains an address greater
than OFFFH (1FFFH in the 8753H).

XTAL4 Crystal (Input)

Input to the inverting oscillator amplifier. When an external
oscillator is used, XTAL4 should be grounded.

XTAL2 Crystal (Output)
Output of the inverting oscillator amplifier. XTAL is also the
input for the oscillator signal when using an external
oscillator.

Vcc Power Supply

Vgs Circuit Ground

7-24

PROGRAMMING
Programming the EPROM

To program the EPROM, either the internal or external
oscillator must be running at 4 to 6. MHz because the internal
bus is used to transfer address and program data to the
appropriate internal registers.

The 8751H and 8753H devices support an adaptive EPROM
programming algorithm in addition to the conventional
EPROM programming algorithm. Adaptive device program-
ming (sometimes called interactive or intelligent program-
ming) adapts to the actual charge storage efficiency of each
byte, so that no wasted programming time occurs and
minimum device programming time is realized.

The typical resulting device programming time is a mere 7% of
what is required for a conventional programming algorithm.
For example, to program a 4K byte EPROM using the
conventional programming algorithm will require 4K x50 ms
= 200 sec. If adaptive programming is used, the theoretical
programming time required will be 4Kx3 ms =12 sec. The
actual speed advantage of the adaptive programming is still
very significant even allowing for the additional software
overhead to implement the adaptive algorithm (2 to 8 sec
depending on the brand of EPROM programmer).

To program the 8751H, pins P2 4 - P2 6 and PSEN should be
held LOW, and P57 and RST held HIGH as shown in Table 2.
The address of the location to be programmed is applied to
Port 1 and P2 g - P23 while the code byte to be programmed
is applied to Port 0 (see Figure 1).

Vpp should be at 21 V during device programming and the
ALE/PROG pin should be pulsed LOW for 1 ms to program
the code byte into the addressed EPROM location. The
programmed byte is verified immediately after programming.

Figure 3 illustrates the flow of the adaptive programming
algorithm. At each address, up to 15 program/verify loops are
attempted to verify the programmability of the byte using 1 ms
PROG pulses. After the programmability of a byte is deter-
mined, an overprogramming pulse of 2 ms is applied to PROG
to guarantee data retention. (This conforms with the AMD
standard of 2 ms/byte overprogramming for all N-channel
EPROMs.)

The programming of 8753H is similar to the above procedures
except that pin Pog4 is the additional address pin
(A12) for accessing the upper 4K bytes of the EPROM (see
Figure 2).

The 8751H and 8753H can also be programmed using the
less efficient conventional EPROM programming algorithm. In
this method, Vpp is held at 21 V and PROG is pulsed low for
50 ms to program each code byte into the addressed EPROM
location. After the memory is programmed, all addresses
would be sequenced and verified.

A Note of Caution When Programming

The maximum voltage applied to the EA/Vpp pin must not
exceed 21.5 V at any time as specified for Vpp. Even a slight
spike can cause permanent damage to the device. The Vpp
source should thus be well-regulated and glitch-free.

When programming, a 0.1x 10-6F capacitor is required
across Vpp and ground to suppress spurious transients which
may damage the device.

+5V

ADDR Ag-A7) Py

7

0000H~OFFFH
Ag-A11 A P2o-P23
Vi
LeY
P2s
P2s

ViH =——e] Py 7

4-6 MHz %
]

XTALp

AL
I

XTALy

Vss

.|}-—T_—

Vee _j
Po K PGM DATA

ALE |——

8751H

g

EA |—— Vpp =21V

RST f=—— Vinq

PSEN j_

LS001453

Figure 1. 8751H Programming Configuration

7-25

ADDR

0000H - OFFFH

+5V

A=Ay

Ag-Arn

Vi

L

Vin

3
r

Vee

Py
Po
P2o=P2s
8753H

Pas ALE
P2e
P27
XTAL, EA
XTALy RST
Vgs PSEN

]
/L—TGM DATA
\‘.—

e Vep =21V

le—— Vi1

1

LS001444

Figure 2. 8753H Programming Configuration

TABLE 1. EPROM PROGRAMMING MODES FOR THE 8751H

Mode RST PSEN ALE EA P27 P26 P2s P24
Program ViH1 L L Vpp H L L L
Inhibit ViH1 L H X H L L L
Verify ViH1 L H Vppx L L L L
Security Set ViH1 L Lt Vpp H H L X
Note: See notes below Table 2.
TABLE 2. EPROM PROGRAMMING MODES FOR THE 8753H

Mode RST PSEN ALE EA P27 P2s P25
Program ViH1 L L* Vpp H L L
Inhibit ViH1 L H X H L L
Verify ViH1 L H VPPX L L L
Security Set VIH1 L Lt Vpp H H L

Note: H = Logic HIGH for that pin
L = Logic LOW for that pin
X =Don't Care
Vpp=+21V +05 V
20 V<Vppx<215V

*ALE is pulsed LOW for 1 msec in the programming loop of the adaptive programming algorithm and is pulsed LOW for 50 msec if conventional

EPROM programming algorithm is used.
1ALE is pulsed LOW for 50 msec.

ADDR = FIRST LOCATION

Vee =5VE10%
Vpp =21V

[PROGRAM ONE 1 msec PULSE]

INCREMENT X

INCREMENT
ADDRESS
Vee = Vpp =5V z10%)

DEVICE FAILED

DEVICE PASSED

PF002510

Figure 3. Adaptive Programming Algorithm for 8751H and 8753H

7-27

Program Verification

The Program Memory may be read out for verification pur-
poses when the security bit has not been programmed.
Reading the Program Memory may occur during or after
programming of the EPROM. When the oscillator is running at
4 - 6 MHz, the 8751H Program Memory address location to be
read is applied to Port 1 and pins P2 o~ P23 of Port 2. Pins
Po 4-P2og and PSEN are held at TTL LOW (see Figure 4).
The 8753H utilizes Port 1 and pins Pp g — P2 4 to address the
EPROM, while Po5-Pog and PSEN are held LOW (see
Figure 5).

The ALE/PROG and RST pins of both devices are held HIGH
(RST requires only 2,5 V for HIGH) and the EA/Vpp pin
voltage can have any value from 2.0 V to 21.5 V as shown in
Tables 1 and 2.

Port 0 will then output the contents of the address location.
External pull-ups are needed on Port 0 when verifying the
8751H and 8753H EPROM.

Note: Since Vpp can be held at 21 V during program
verification, the Vpp pin can be connected to a static 21 V
power supply for device programming and verification in the
adaptive device programming technique (see Figures 4 and 5).

+5V

ADDR Ag-A; Y P

Ag~A11 N Pro-P23

Le Y
Pas
P2e

ENABLE = V) ——={ P27

XTAL,

XTAL,

o
READ

P DATA

o (USE 10K
PULL-UPS)

ALE |[-— v,

EA - Vppy
2.0 V<< Vppy< 215V

RST fo—— Vin¢

il gy

0

LS001382

Figure 4. 8751H Program Verification

+5V

ADDR Ag-A; NP1
0000H - 1FFFH

Ag-Arz N P2g-Pag

P2s

§

Pag
ENABLE = V) ——=| P27

l XTAL,

4-6 mHz []

AL

AY 1

XTALy
Vss

8753H

Vec ——T
READ
e DATA
° (USE 10K
PULL-UPS)

ALE |—— vy,

EA e Vppy
20 V< Vppy < 215V

RST fwm——— Viys.

DT

]

LS001394

Figure 5. 8753H Program Verification

7-28

Security of the EPROM

The 8751H and 8753H incorporates a security bit, which when
activated, prohibits ail external readout of the on-chip EPROM
contents. Figure 6 illustrates the security bit programming
configuration for both the 8751H and 8753H. To activate the
security bit, the same setup is used as when programming the
EPROM except that P2 g is held HIGH. Port 0, Port 1 and pins
P2.0 — P23 may assume any state. Vpp should be at 21 V and
the ALE/PROG pin should be pulsed LOW for 50 msec. The
logic states of the other pins are detailed in Tables 1 and 2.

With the EPROM security bit programmed, retrieval of internal
Program Memory cannot be achieved.

A secured Program Memory looks like a blank array of all
ones, and this property can be used to verify that the EPROM
is secured. The programmed security bit also prohibits further
device programming and the execution of external Program
Memory.

Full functionality and programmability may be restored by
erasing the EPROM and thus clearing the security bit.

+5V

Py

Po

i
/L_x
\T—'—'

50 ms PULSE TO GND

f———— Vpp = 21 V#

RST

f———— Vint

P20-P23
8751H/
P24 8753H
ViL =1 Pzs
| Po6
| P2y
XTAL,
l =
4-6 MHz []
= |
XTAL,
j‘! Vss

—]

LS001373

*When programming, a 0.1 x 10~F capacitor is required across Vpp and ground to suppress spurious tran-

sients which may damage the device.

Figure 6. Programming the Security Bit

Silicon Signature Verification

AMD will support silicon signature verification for the 8751H/
8753H. To ensure that the device can be programmed
according to the adaptive EPROM programming algorithm, the
manufacturer code and part code can be read from the device
before any programming is done.

To read the silicon signature, set up the conditions as
specified in Figure 7. Note that P2 5 is now required to be a
TTL high level. Read the first byte of the silicon signature by
applying address 0000H to the device; the byte should be a
01H, indicating AMD as the manufacturer. Then read the
second byte of the silicon signature by applying address
0001H to the device; the byte should be ODH, indicating the
AMD 8751H/8753H product family.

Erasure Characteristics

Light and other forms of electromagnetic radiation can lead to
erasure of the EPROM when exposed for extended periods of
time.

Wavelengths of light shorter than 4000 angstroms, such as
sunlight or indoor fluorescent lighting, can ultimately cause
inadvertent erasure and should, therefore, not be allowed to
expose the EPROM for lengthy durations (approximately one
week in sunlight or three years in room-level fluorescent
lighting). It is suggested that the window be covered with an
opaque label if an application is likely to subject the device to
this type of radiation.

It is recommended that ultraviolet light (of 2537 angstroms) be
used to a dose of at least 15 W-sec/cm? when erasing the
EPROM. An ultraviolet lamp rated at 12,000 uW/cm? held one
inch away for 20 - 30 minutes should be sufficient.

EPROM erasure leaves the Program Memory in an "all ones"
state.

+5V

ADDR Ag-A; Pt

0000H - 0001H

Ag-A1y N Pyo-Ppg
ViL] P2y
Viy == P25
Vi ———=1 P2

ENABLE = V, ——{ P27

XTAL,

~

L I
’\
XTAL,

Vss

4-6 MHz

—0H

AVl

8751H/
8753H

Vee }._T
READ DATA
o (USE 10 k
PULL-UPS)

ALE o,

EA | Vppx

RST fo—— Vjyy

(Address 0000H) = Manufacture Code
PSEN =01H
(Address 0001H) = Part Code

|

= =O0DH

LS001404

Figure 7. 8751H/8753H Silicon Signature Verification Configuration

ABSOLUTE MAXIMUM RATINGS
-85 to +150°C

Storage Temperature ..
Voltage on EA/Vpp Pin to Vss ... ~0.5to +21.5 V
Voltage on Any Other Pin to Vgg.............. ~05t0 +7 V
Power Dissipationcocvviviiiniiiiniiiineeieans 15 W

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

OPERATING RANGES

Commercial (C) Devices

Temperature (TA).....ccvvvuveiriniiniiiiniinnans 0 to +70°C

Supply Voltage (VCG) -vvvvvveevirnininnnns +45 to +55 V

Ground (VSS) «euvuvmiiniiiieniiiiiiiiininininceenenianens oV
Industrial (I) Devices (Preliminary)

Temperature (TA)......cvovevrvnieinininiinienns -40 to +85°C

Supply Voltage (Vo)
Ground (Vss)

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Parameter
Symbol Parameter Description Test Conditions Min. Max. Units
viL Input LOW Voltage (Except EA) -0.5 0.8 v
ViLs Input LOW Voltage to EA 0 0.7 \
VIH Input HIGH Voltage (Except XTALp, RST) 20 Vecc +0.5 \2
VIH1 Input HIGH Voltage to XTALp, RST XTAL1 =Vgs 25 Ve + 0.5 \
VoL Output LOW Voltage (Ports 1, 2, 3) (Note 1) loL=1.6 mA 0.45 v
VoL Output LOW Voltage (Port 0, ALE, PSEN) :gt s3ama e v
VOH Output HIGH Voltage (Ports 1, 2, 3) loH =-80 pA 24 \
VoH1 (PR ' Extormal Bus Mode, ALE, PSEN) loH =-400 pA 24 v
i Logical 0 Input Current (Ports 1, 2, 3) ViN=045 V -500 HA
TR} Logical O Input Current (EA) -15 mA
L2 Logical O Input Current (XTALp) ViN=0.45 V -3.2 mA
Ipy Input Leakage Current (Port 0) 0.45 < VIN< Vco +100 HA
m Logical 1 Input Current (EA) 500 uA
liH4 Input Current to RST to Activate Reset VIN<(Vec=-15 V) 500 MA
Icc Power Supply Current e%gl\';gg's Disconnected; 250 mA
Cio Pin Capacitance Test Freq=1 MHz 10 pF
Ipp Power Down Current Voc=0V, Vpp=5V 10 mA

Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vg|s of ALE and Ports 1 and 3. The noise
is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations.
In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to
qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

See Section 6 for Thermal Characteristics Information.

7-31

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

(Load Capacitance for Port 0, ALE, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF)

12 MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Units

1/TCLCL Oscillator Frequency 1.2 12 MHz
TLHLL ALE Pulse Width 127 2TCLCL-40 ns
TAVLL Address Setup to ALE 43 TCLCL-40 ns
TLLAX Address Hold After ALE 48 TCLCL~-35 ns
TLLIV ALE to Valid Instr In 183 4TCLCL-150 ns
TLLPL ALE to PSEN 58 TCLCL-25 ns
TPLPH PSEN Pulse Width 190 3TCLCL-60 ns
TPLIV PSEN to Valid Instr In 100 3TCLCL-150 ns
TPXIX Input Instr Hold After PSEN 0 0 ns
TPXIZ Input Instr Float After PSEN 63 TCLCL-20 ns
TPXAV Address Valid After PSEN 75 TCLCL-8 ns
TAVIV Address to Valid Instr In 267 5TCLCL-150 ns
TPLAZ Addr Float After PSEN 20 20 ns
TRLRH RD Pulse Width 400 6TCLCL-100 ns
TWLWH WR Pulse Width 400 6TCLCL-100 ns
TRLDV RD to Valid Data In 252 5TCLCL-165 ns
TRHDX Data Hold After RD 0 0 ns
TRHDZ Data Float After RD 97 2TCLCL-70 ns
TLLDV ALE to Valid Data In 517 8TCLCL-150 ns
TAVDV Address to Valid Data In 585 9TCLCL-165 ns
TLLWL ALE to RD or WR 200 300 3TCLCL-50 3TCLCL+50 ns
TAVWL Address to RD or WR 203 4TCLCL-130 ns
TQVWX Data Valid to WR Transition 13 TCLCL-70 ns
TQVWH Data Setup Before WR 433 7TCLCL-150 ns
TWHQX Data Hold After WR 33 TCLCL-50 ns
TRLAZ Address Float After RD 20 20 ns
TWHLH RD or WR HIGH to ALE HIGH 33 133 TCLCL~-50 TCLCL+50 ns

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM

tESB

INPUTS

MUST BE
STEADY

MAY CHANGE
FROMHTOL

MAY CHANGE
FROML TOH

DON'T CARE;
ANY CHANGE
PERMITTED

DOES NOT
APPLY

OUTPUTS

WILL BE
STEADY

WILL BE
CHANGING
FROMHTOL

WILL BE
CHANGING

FROML TOH

CHANGING;

STATE
UNKNOWN

CENTER
LINE IS HIGH
IMPEDANCE
“OFF” STATE

KS000010

7-32

SWITCHING WAVEFORMS

TLHLL—
ALE / \
—_— [e—rTLLpL
TAVLL TPLPH
———TLLIV—
TPLIV
PSEN / \ \
TPXAV
TPLAZ—=] | — |t—tPxiz
TLLAX — TPXIX
4 4 X\
PORT 0 >_§ Ag-A7 'Nﬁ‘"‘ XF Ag-Az
X
TAVIV

PORT 2 X Ag-As X Ag-As

External Program Memory Read Cycle

WF008744

!

TLLDV
TLLWL. TRLRH

8l
1~

/

TRLDV |e—TRHDZ
TAVLL—] le— TLLAX —] TRLAZ
TRHDX
F \" i
PORT 0 -A DATAIN -A INSTR
s BESA y/; g

TAVDV:

PORT 2 Ag-As x Ag=Ars

External Data Memory Read Cycle

WF008733

SWITCHING WAVEFORMS (Cont'd)

TLHLL TWHLH ———e~i e

~——TLLWL. TWLWH

— TOVWX TWHGX
TAVLL '.'LLAX-‘ TQVWH
PORT 0 H U DATA OUT m‘&;:’ct mgﬂ
[
TAVWL.

r—
PORT 2) Ag-Ays X Ag-As

WF008757
External Data Memory Write Cycle
nemmicnon | o ! ' | : 1 s 1 . | s 1 . | ’ | . |
f—rsn—o| '
oce J (I S I B N B
o] x|
oummuroats N+ X X - X s X - X s X X/
o N [
WAITE TO S8UF TXwov, I——-{ *-—— TxHOx
WF008723

Shift Register Timing Waveforms

7-34

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Description Min. Max. Units
1/TCLCL Oscillator Frequency 1.2 12 MHz
TCHCX HIGH Time 20 ns
TCLCX LOW Time 20 ns
TCLCH Rise Time 20 ns
TCHCL Fall Time 20 ns
TCHCX ——= TCLCH —= |=—— TCHCL
25 Es 25 \
0.8 0.8 -
f——rcLex
TCLCL
WF008762
External Clock Drive Waveforms
SERIAL PORT TIMING — SHIFT REGISTER MODE
(Load Capacitance = 80 pF)
12 MHz
Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. | Max. Min. Max. Units
TXLXL Serial Port Clock Cycle Time 1.0 12TCLCL us
TQVXH Output Data Setup to Clock Rising Edge 700 10TCLCL-133 ns
TXHQX Output Data Hold After Clock Rising Edge 50 2TCLCL-117 ns
TXHDX Input Data Hold After Clock Rising Edge 0 0 ns
TXHDV Clock Rising Edge to Input Data Valid 700 10TCLCL-133 ns
AC Testing
Voo -
‘cc-05 02Voo+09 VoH=-01V
045V 02Vec-01 VoL+0.1 Vv
WF020900 WF020940

AC INPUTS DURING TESTING ARE DRIVEN AT Vgoc-0.5 FOR A LOGIC
"1"AND 0.45 V FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE
AT V|4 MIN. FOR A LOGIC "1" AND Vi MAX. FOR A LOGIC "0."

Input/Output Waveform

FOR TIMING PURPOSES A PORT PIN IS NO LONGER FLOATING WHEN A
100 mV CHANGE FROM LOAD VOLTAGE OCCURS, AND BEGINS TO
FLOAT WHEN A 100 mV CHANGE FROM THE LOADED Vop/VoLLEVEL
OCCURS. loL/loH =20 mA.

Float Waveform

7-35

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA=+21 to +27°C, Vgg = +5 V +10%, Vgg =0 V)

Parameter Parameter
in. ax. Unil
Symbol Description M M ts
Vpp Programming Supply Voltage 20.5 215 \
Ipp Programming Supply Current 30 mA
1/TCLCL Oscillator Frequency 4 6 MHz
TAVGL Address Setup to PROG 48TCLCL
TGHAX Address Hold After PROG 48TCLCL
TDVGL Data Setup to PROG 48TCLCL
TGHDX Data Hold After PROG 48TCLCL
TEHSH P27 (ENABLE) HIGH to Vpp 48TCLCL
TSHGL Vpp Setup to PROG 10 usec
TGHSL Vpp Hold after PROG 10 usec
TGLGH PROG Width 45 55 msec
TAVQV Address to Data Valid 48TCLCL
TELQV ENABLE to Data Valid 48TCLCL
TEHQZ Data Float After ENABLE 0 48TCLCL
EPROM PROGRAMMING AND VERIFICATION WAVEFORMS
PROGRAMMING VERIFICATION
8751
Pro—Pi7 ADDRESS ADDRESS)—
P2o-P23 4
Pnsan
1.0-P17
P20-P2s TAVQV
PORT 0 < DATA IN N < DATA OUT }———
TOvVaL TAHDX
TAvVGL TAHAX
ALE/PROG \ /
TSHGL TQHSL
TALGH
21V=5V

EA/Vpp

ey

TTL HIGH ’

| TEHSH

X

Ui

]

)

TELQV |

TEHQZ

For Programming conditions, see Figures 1, 2, and 3.
For Verification conditions, see Figures 4 and 5.
For Security Bit Programming, see Figure 6.

——

WF008713

7-36

CHAPTER 7
Basic NMOS Devices

Single-Chip Microcontrolier With 8K Bytes of EPROM
Offers Important Design Advantages
by Gordon Burk, Product Marketing Engineer and Rajesh Tanna, Applications Engineer

The Am8753 is a member of the very popular 8051
Family of single-chip microcomputers. Advanced Micro
Devices brought its superior EPROM technology to the
single chip area to answer a very real need for more on-
board EPROM, which gives designers the flexibility they
are looking for.

Because it is a pin-compatible EPROM version of the
8053, any 8051 Family customer will find the Am8753
easy to adapt to all of the traditional 8051, 8053, and 8751
applications. The instruction set is identical, and the
designer’s previous experience with the 8051 Family is
directly applicable.

The 8K bytes of EPROM, and the flexibility that gives the
designer, is an obvious advantage. The scenario is
familiar — move the contents of off-board memory to on-
board, reduce the chip count by one EPROM, and save
valuable board space. Familiar, but nonetheless valu-
able to customers. Many designers will be afforded the
luxury of adding that feature which was previously sacri-
ficed for economy.

As is often the case, an R&D advancement precedes a
better, faster, or in this case, denser, product. AMD’s
advanced NS19 process technology has given birth to a
superior EPROM, and now it is incorporated into proprie-
tary microcomputers. The introduction of this technology
to microcontrollers made the Am8753 feasible.

Beyond the familiar advantages of reduced chip count
and board space, there is also animprovement in a tradi-
tionaltradeoff. Aswith most microcontrollers there exists
an I/0 versus memory tradeoff in using the 8051 Family.
When only on-board memory is used, the designer has
four I/O ports at his disposal. However, when off-board
memory is accessed, the designer sacrifices two of the
four I/O ports to fetch external code. There exist many
applications that require both the additional memory and
the available /O lines.

In the case of the 8751, there are 4K bytes of on-board
EPROM, and once the designer expands the program
off-board, he is restricted to 16 I/O lines. The Am8753
expands the range by 4K bytes for which a designer can
have both memory and I/O. Sufficient memory and 110
in a single chip means a reduced parts count. An
EPROM, address latch and external I/0 can be elimi-
nated. The following application serves as an example:

Numerical machine control is an area in which many
I/O ports are very useful. A typical numerical ma-
chine takes a piece of metal and cuts it into its final
shape. A machine must perform different opera-

tions, including cutting, planing and drilling. To be
able to do this accurately, precise motion control is
required in the X, Y and Z planes. The cutting,
planing and drilling are accomplished by attaching
different ‘bits’ to a chuck that can spin at different
speeds in eitherdirection. Typically movementinthe
XandY lanes is achieved by moving the surface on
which the work piece is mounted. Movement in the
Z plane is accomplished by either moving the same
surface up/down or by moving the chuck up/down.

Figure 7-1 shows a simple block diagram illustrating
how the ports of the Am8753 can be used to control
such a numerical machine. To achieve precise
motion inthe X, Y and Z directions, three of the ports
(0, 1 and 2) are used to control three D/A converters,
which in turn control three servo motors. Port 3 is
then used to control other functions. Three port-3
bits control rotation speed of the chuck, two bits are
used to select the correct ‘bit’ or cutting tool, to be
fitted into the chuck, and one bit guides the direction
of rotation of the chuck. The INTo pin on port 3 is
used as astartinput. Whenthe user hits abutton, the
Am8753 is interrupted and initiates the cutting of the
workpiece. An eighth port-3 bit can be used to
indicate when the job is finished. If the applicationis
of a slightly different kind, where the final product is
a result of several numerical machines performing
specific parts of the job, it may be necessary to use
the port-3 serial port to interface with the user.

p| 8 %&
o D/A |—» X DIR SERVO

Py 4 D/A |—+ Y DIR SERVO

Am8753

Pal 2 D/A |— Z DIR SERVO

—— CHUCK DIR

3
<% CHUCK SPEED
2
P34 }o4—BIT seLECT

——» DONE
j¢e—— iNT

09757A-004A

Figure 7-1. The Am8753 in a Machine Control
Application

Reprinted with permission from il Progettista, ltaly, and from Elektronik Industrial, Federal Republic of Germany 7-37

CHAPTER 7
Basic NMOS Devices

As this example illustrates, having all the ports avail-
able for I/0 simplifies matters agreat deal. If external
program memory is needed, ports 0 and 2 would be
multiplexed to enable instruction fetching, making
the design much more complicated.

The 8K bytes of EPROM is the primary advantage, and
certainly the motivation for producing the part, but the
Am8753 has some other nice features too. Inanindustry
that is becoming increasingly security conscious, the on-
board security feature of the Am8753 is a real plus.

Keeping algorithms and programs out of the wrong
hands is no small concern to many customers. Whether
it means keeping your printer algorithm from your com-
petitors or protecting the integrity of smart credit cards,
security can be a paramount concern.

The security feature on both the Am8753 and the 8751 is
activated with a single bit, and prohibits all external read-
out of the on-chip EPROM contents. After programming
the Am8753, the security bit is activated by using the
same programming setup, except that P, ¢ is held High.

With the EPROM security bit programmed, retrieval of
internal program memory is not possible. A secured
program memory looks like a blank array of all ones, and
this property can be used to verify that the EPROM is
secured. The programmed security bit also prohibits
further device programming and the execution of exter-
nal program memory. Fullfunctionality and programma-
bility may be restored by erasing the EPROM, thus
clearing the security bit.

With 8K bytes of EPROM on the Am8753, many design-
ers overcome the program size versus security dilemma
that they previously faced. There is a high correlation
between concern for security and shrinking board space.
As more and more features are loaded onto single chips,
many applications are differentiated by little more than
the EPROM code on-board. The closer customers are to
a one-chip system, the more likely they are to take
copyright protection into their own hands and opt for a
single chip with security.

AMD’s state-of-the-art EPROM technology also offers an
advantage when it comes to programming time. The
Am8753 uses a fast adaptive programming algorithm
rather than a conventional “dumb” programming tech-
nique, where every byte is programmed with a 50 ms,
21 V pulse. To program 8K bytes with a conventional
algorithm takes 6.82 minutes (50 ms/byte X 8K bytes).

Conventional programming can be used forthe Am8753,
but AMD found the lengthy programming time unaccept-
able for its manufacturing test flow, and knows that
volume 8751 users have already come to the same
conclusion in their applications. AMD’s adaptive pro-
gramming algorithm pulses each byte with the same
21V, but only a 3 ms pulse is required.

Because of AMD’s developments in EPROM technol-
ogy, the typical EPROM cell will program to threshold
inless than 1 ms plus 2 ms of “overprogramming” to
insure data retention. Thus with adaptive program-
ming, AMD’s typical programmingtime willbe 3 ms/byte
x 8K byte/Am8753 = 24 s. This represents a 15-to-1
speed advantage.

This time savings, 24 seconds forthe Am8753 compared
to conventional programming of 6.82 minutes, and 12
seconds for the AMD’s 8751 compared to 3.41 minutes
isatremendous advantage. To pass thistime savingson
to the customer, AMD has arranged with Data 1/O to
support the adaptive algorithm. Data I/O has Am8753-
compatible software available today.

If the designer needs more memory, without sacrificing
I/0 or security, the Am8753 is a worthy candidate. For
those familiar with the 8051 Family, previous experience
is directly applicable. Designers can take advantage of
the familiar chip-count reduction and board-space sav-
ings possible with increased on-board memory. They will
also find the programming support, with its inherent time
savings, a valuable addition.

7-38

CHAPTER 8

Enhanced NMOS Devices 8-1

80515/80535 (data sheet) 8-1
Heating and Air Conditioning Control in Cars with the
80515 Microcontroller 8-35

80515/80535

8-Bit Single-Chip Microcontroller

DISTINCTIVE CHARACTERISTICS

8K x8 ROM (80515 only)

256 x 8 RAM

Six 8-bit ports; 48 /0 lines

Three 16-bit Timer/Event Counters

Reload, capture, compare capabilities on Timer 2
Full-Duplex Serial Port

Twelve Interrupt Sources; four priority levels
8-bit A/D Converter

® Upward-compatible with 8051

16-bit Watchdog Timer

VPD provides standby current for 40 bytes of RAM
Boolean processor

256 bit-addressable locations

Most instructions execute in 1 us

64K bytes Program Memory space

64K bytes Data Memory space

® 0 00000

GENERAL DESCRIPTION

The 80515/80535 is a stand-alone, high-performance,
single-chip microcontroller based on the 8051 architecture.
While maintaining all the 8051 operating characteristics, the
80515/80535 incorporates several enhancements which
significantly increase design flexibility and overall system

performance. With on-board A/D Converter and Watchdog
Timer, the 80515 is ideal for motor control applications
ranging from automotive engines to vending machines. The
80535 is identical to the 80515 except that it lacks the on-
chip ROM.

BLOCK DIAGRAM

XTAL; XTAL, Vep ALE EA RESET PSEN
S SO S S LR S .
1
|
I 40x8
ROM
! ose RAM 8Kx8
: 216x8
'

o K

TIMER O

TIMER 2

ANO AN 7 Mux H n
oA <———
REF. VOLTAGES

Vo8 O+ —>
VaREF A}
I

VAGND O—T———-—D

<——>
>
pmm—

K) L PORT3

||

BD007660

Publication # Rev. Amendment
09137 B /0
Issue Date: December 1987

CONNECTION DIAGRAM

Top View
Ly Effiflicee
Pssfigeiiiiiiiiag
CHARnoRanonoonoonn.
P23 [l 44 26 7] PasT1
P24] 45 25 P340
P25 [] 46 24 [7] P3NT;
p2s []47 23[7] Ps2NTg
P27 [] 48 22[] PR.TAD
Fs_s'ﬁl: 49 21 j P3.0/RxD
ALE [T] 50 20[7] ANg
B[] st 19] ANy
poo [} 52 18] AN
Po.1] 53 17[] ANg
Po2 [T 54 16[] ANy
P03 [] ss 15[] ANs
Po4 [] s6 1417] Mg
pos [57 13[7] ANy
Pos [58 12[7] VaaND
Po.7 [] 50 1] Varer
ps7 [] 60 o 10 jR_E§E_T
(67 62 63 64 65 66 67 68 1 2 3 4 & 6 7 8 9
U0 oooooOaog
£ £ ¢ 8dEf 83T LEFIIEEE -
Note: Pin 1 is marked for orientation.
LOGIC SYMBOL
oo Vlss
I
PoRTo

PORT 1
8BIT
XTAL; — o ORT2
XTALp +— | <:> 8 BT
VPD —————* PORT 3
Vgg =t 8BIT
PORT 4
O m— > &
VAREF —— & PORT 5
8BIT

VAGND ————— |

A —————» p——————— ALE
RESET |——————» FSEN
LS003120

8-2

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is formed
by a combination of: a. Temperature Range

b. Package Type

c. Device Number

|z

80515
L

c. DEVICE NUMBER/DESCRIPTION
80515 (ROM Version)
80535 (ROM-less Version)
8-Bit Single-Chip Microcontroilers

b. PACKAGE TYPE
N = 68-Pin Plastic Leaded Chip Carrier (PL 068)

a. TEMPERATURE RANGE
Blank = Commercial (0 to +70°C)

Valid Combinations
N80515 Valid Combinations

N80535 Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid
combinations, to check on newly released valid combinations,
and to obtain additional data on AMD's standard military
grade products.

PIN DESCRIPTION

Port 0 Port 0 (Input/Output; Open Drain)
Port 0 is an open-drain bidirectional 170 port. Port O pins that
have "'1'"'s written to them float, and in that state can be
used as high-impedance inputs.

Port 0 is also the multiplexed LOW-order address and data
bus during accesses to external Program and Data Memory.
In this application it uses strong internal pullups when
emitting ''1''s. Port O can sink/source eight LS TTL inputs.
Port 0 also outputs the code bytes during program
verification in the 80515. External pullups are required
during program verification.

Port 1 Port 1 (Input/Output)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
Port 1 output buffers can sink/source four LS TTL inputs.
Port 1 pins that have ''1"'s written to them are pulled HIGH
by the internal pullups and — when in this state — can be
used as inputs. As inputs, Port 1 pins that are externally
being pulled LOW will source current (lj_ on the data sheet)
because of the internal pullups. Port 1 also receives the
LOW-order address bytes during program verification.

Port 1 also serves the functions of various special features
as listed below:

Port Symbol Alternate Function

P1.0 |INT3/CCO |External interrupt 3 input,
compare O output, capture 0
input

P1.1 |INT4/CC1 External interrupt 4 input,
compare 1 output, capture 1
input

P1.2 |INT5/CC2 |External interrupt 5 input,
compare 2 output, capture 2
input

P1.3 |INT6/CC3 |External interrupt 6 input,
compare 3 output, capture 3
input

P1.4 |INT2 External interrupt 2 input

P1.5 |T2EX Timer 2 external reload trigger
input

P1.6 |CLKOUT System clock output

P1.7 |T2 Timer 2 external counter input

Port 2 Port 2 (Input/Output)

Port 2 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having ""1"'s written to them are pulled
HIGH by the internal pullups and — while in this state — can
be used as inputs. As inputs, Port 2 pins externally being
pulled LOW will source current (lj) because of the internal
pullups.

Port 2 emits the HIGH-order address byte during fetches
from External Program Memory and during accesses to
External Data Memory that use 16-bit addresses (MOVX @
DPTR). In this application it uses strong internal pullups
when emitting '"1"s. During accesses to External Data
Memory that use 8-bit addresses (MOVX @ Ri), Port 2 emits
the contents of the P2 Special Function register.

Port 2 also receives the HIGH-order address bits during
ROM verification.

Port 3 Port 3 (Input/Output)
Port 3 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins that have ''1''s written to them are pulled

HIGH by the internal pullups and — while in this state — can
be used as inputs. As inputs, Port 3 pins externally being
pulled LOW will source current (I).) because of the pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Symbol Alternate Function

P3.0 |RXD Serial input port

P3.1 {TXD Serial output port

P3.2 |INTO External interrupt O input,
timer 0 gate control

P3.3 |INTT External interrupt 1 input,
timer 1 gate control

P3.4 |TO Timer 0 externai counter input

P3.5 |T1 Timer 1 external counter input

P3.6 |WR External Data Memory write
strobe

P3.7 |RD External Data Memory read
strobe

Port 4 Port 4 (Input/Output)

Port 4 is an 8-bit quasi-bidirectional 1/0O port. Port 4 can
sink/source four LS-TTL loads.

Port 5 Port 5 (Input/Output)
Port 5 is an 8-bit quasi-bidirectional 1/O port. Port 5 can
sink/source four LS-TTL loads.

RST Reset (Input; Active LOW)
A LOW level on this pin for the duration of two machine
cycles while the oscillator is running resets the 80515. A
small internal pullup resistor permits power-on reset using
only a capacitor connected to Vss.

ALE Address Latch Enable (Output; Active HIGH)
Address Latch Enable output pulse for latching the LOW
byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory.

PSEN Program Store Enable (Input; Active LOW)
PSEN is the read strobe to External Program Memory.
When the 80515 is executing code from External Program
Memory, PSEN is activated twice each machine cycle —
except that two PSEN activations are skipped during each
access to External Data Memory. PSEN is not activated
during fetches from Internal Program Memory.

EA External Access Enable (Input; Active LOW)
EA must be externally held LOW to enable the device to
fetch code from external Program Memory locations 0000H
to 1FFFH. If EA is held HIGH, the device executes from
Internal Program Memory unless the program counter
contains an address greater than 1FFFH. For the 80535, EA
must be LOW.

XTALq Crystal (Input)
Input to the inverting oscillator amplifier. When an external
oscillator is used, XTAL¢ should be grounded.

XTAL2 Crystal (Output)
Output of the inverting oscillator amplifier. XTAL is also the
input for the oscillator signal when using an external
oscillator.

Vcc Power Supply
Supply voltage during normal operations.

Vgs Circuit Ground

Vpp Power-Down Supply
If Vpp is held within its specs while Vcc drops below specs,
Vpp will provide standby power to 40 bytes of the internal
RAM. When Vpp is LOW, the RAM's current is drawn from
Vee.

VarRer Reference Voltage for the A/D Converter

VagND Reference Ground for the A/D Converter

ANg— AN7 Mulitiplexed Analog Inputs

Ve Substrate Pin
Must be connected to Vgg through a capacitor (100 to
1000 nF) for proper operation of the A/D converter.

FUNCTIONAL DESCRIPTION

The architecture of the 80515 is based on the 8051 Microcon-
troller. The following 8051 features are retained in the 80515:
® Instruction set

External memory expansion interface (Port 0 and Port 2)
Full-duplex serial port

Timer/counters 0 and 1

Alternate functions on Port 3

The lower 128 bytes of internal RAM and the lower 4
Kbytes of internal ROM.

The 80515 contains an additional 128 byte of internal RAM
and 4 Kbyte of internal ROM; thus a total of 256 byte RAM and
8 Kbyte ROM on-chip. The 80515 has a third 16-bit timer/
controller with a 2:1 prescaler, reload mode, compare and
capture capability. It also contains a 16-bit watchdog timer, an
8-bit A/D converter with 8 analog inputs and programmable
reference voltages, two additional quasi-bidirectional 8-bit
ports, a programmable clock output (fosc/12), a RAM power-
down supply, which supplies 40 byte with a typical current of
1 mA, and a powerful interrupt structure with 12 sources and 4
priority levels.

Figure 2 shows a detailed block diagram of the 80515.
CPU

The 80515 is efficient both as a controller and as an arithmetic
processor. It has extensive facilities for binary and BCD
arithmetic and excels in bit-handling capabilities. Efficient use
of Program Memory results from an instruction set consisting
of 44% one-byte, 41% two-byte, and 15% three-byte instruc-
tions. With a 12-MHz crystal, 58% of the instructions execute
in 1.0 us.

Memory Organization

The 80515 manipulates operands in the four memory address
spaces described below:

Program Memory

The 80515 has 8 Kbyte of on-chip ROM, while the 80535 has
no internal ROM. The Program Memory can be externally
expanded up to 64 Kbyte. If the EA pin is held HIGH, the
80515 executes out of internal ROM unless the address
exceeds 1FFFH. Locations 2000H through FFFFH are then
fetched from the External Program Memory. If the EA pin is
held LOW, the 80515 fetches all instructions from the External
Program Memory. Since the 80535 has no internal ROM, pin
EA must be tied LOW when using this device.

Data Memory

The Data Memory address space consists of an internal and
an external memory space. The Internal Data Memory is
divided into three physically separate and distinct blocks: the
lower 128 byte of RAM; the upper 128 byte of RAM; and the
128-byte special function register (SFR) area. While the upper
128 byte of Data Memory and the SFR area share the same
address locations, they are accessed only through different
addressing modes. The lower 128 byte of Data Memory can
be accessed through direct or register-indirect addressing; the
upper 128 byte of RAM can be accessed through register-
indirect addressing; and the special function registers are
accessible only through direct addressing.

Four 8-register banks occupy locations 0 through 1FH in the
lower RAM area. The next 16 bytes, locations 20H through
2FH, contain 128 directly accessible bit locations. The stack
can be located anywhere in the Internal Data Memory address
space, and the stack depths can be expanded up to 256 byte.

The External Data Memory can be expanded up to 64 Kbyte
and can be accessed by instructions that use a 16-bit or 8-bit
address.

All registers, except the program counter and the four 8-
register banks, reside in the special function register area. The
41 special function registers (SFRs) include arithmetic regis-
ters, pointers, and registers that provide an interface between
the CPU and the on-chip peripheral functions. There are also
128 directly addressable bits within the SFR area. The special
function registers are listed in Table 1.

'SHARED ADDRESS LOCATION

FFFF

EXTERNAL

P FFFF

SPECIAL —
Foncrion |
[REGiSTERS

MEMOR)

TFFF] TFFF

B &

0000

DATAMEMORY

DIRECT BYTE
ADDRESSING

TB001150

Figure 1. Memory Address Spaces

8-5

@

PORT 0
LATCH PORTO <i>

P TMERD \
- 1”0 4 o e} [weo] —

w1 !

IRCON :

|

53
&d

o

"“L'j—] o . [Creon]
osc il
Xihtz FrimeRz” =~~~ R <:

COMPARE
e g WATCHDOG
RESET — o " Timgr

|
e
T &

N CRCL CACH
PEN +————— TIMING
CONTROLLE oot CCHt
TR S——— coL2 ccre PORT 3 L]
PORT 3
Ves =) ccrs TR <i>
Vg8 ~——————»

[CONVERTER e

o o et <:>E<ri>
<KD

BD007650

8
Moay TN

Figure 2. Detailed Block Diagram

TABLE 1. SPECIAL FUNCTION REGISTERS

Addr Default After
(HEX) Symbol Name Power-On Reset

* 80 PO Port 0 11111111
81 SP Stack Pointer 00000111
82 DPL Data Pointer, LOW Byte 00000000
83 DPH Data Pointer, HIGH Byte 00000000
87 PCON Power Control Register OXXXXXXX
* 88 TCON Timer Control Register 00000000
89 TMOD Timer Mode Register 00000000
8A TLO Timer 0, LOW Byte 00000000
8B TU1 Timer 1, LOW Byte 00000000
8C THO Timer 0, HIGH Byte 00000000
8D TH1 Timer 1, HIGH Byte 00000000
* 90 P1 Port 1 11111111
* 98 SCON Serial Port Control Register 00000000

99 SBUF Serial Port Buffer Register Indeterminate
* 0A0 P2 Port 2 11111111
* 0A9 IENO Interrupt Enable Register 0 00000000
0A9 IPO Interrupt Priority Register 0O 00000000
* 0BO P3 Port 3 11111111
* 0B9 IEN1 Interrupt Enable Register 1 00000000
0B9 IP1 Interrupt Priority Register 1 00000000
* 0Co IRCON Interrupt Request Control Register 00000000
0C1 CCEN Compare/Capture Enable Register 00000000
0c2 CCL1 Compare/Capture Register 1, LOW Byte 00000000
0C3 CCH1 Compare/Capture Register 1, HIGH Byte 00000000
0C4 CCL2 Compare/Capture Register 2, LOW Byte 00000000
0C5 CCH2 Compare/Capture Register 2, HIGH Byte 00000000
0cée CCL3 Compare/Capture Register 3, LOW Byte 00000000
0Cc7 CCH3 Compare/Capture Register 3, HIGH Byte 00000000
* 0C8 T2CON Timer 2 Control Register 00000000
0CA CRCL Compare/Reload/Capture Register, LOW Byte 00000000
0CB CRCH Compare/Reload/Capture Register, HIGH Byte 00000000
0cC TL2 Timer 2, LOW Byte 00000000
0CD TH2 Timer 2, HIGH Byte 00000000
* 0DO PSW Program Status Word Register 00000000
* 0D8 ADCON A/D-Converter Control Register 00000000
0oD9 ADDAT A/D-Converter Data Register 00000000
ODA DAPR D/A-Converter Program Register 00000000
* OEO ACC Accumulator 00000000
* OE8 P4 Port 4 11111111
* OF0 B B Register 00000000
* OF8 P5 Port 5 11111111

The SFRs marked with an asterisk (*) are both bit and byte-addressable.
Figure 1 illustrates the memory address spaces of the 80515.

1/0 Ports

The 80515 has six 8-bit ports. Port 0 is an open-drain
bidirectional 17O port, while Ports 1 through 5 are quasi-
bidirectional 1/0 ports with internal pullups. That means, when
configured as inputs, Ports 1 through 5 will pull HIGH and will
source current when externally pulled LOW. Port 0 will float
when configured as input.

Port 0 and Port 2 can be used to expand the Program and
Data Memory externally. During an access to external memo-
ry, Port 0 emits the LOW-order address byte and reads/writes
the data byte, while Port 2 emits the HIGH-order address byte.
In this function, Port 0 is an open-drain port, but uses a strong
internal pullup FET.

Timer/Counters

The 80515 contains three 16-bit timer/counters which are
useful in many applications for timing and counting. The input

clock for each timer/counter is 1/12 of the oscillator frequen-
cy in the timer operation or can be taken from an external
clock source for the counter operation (maximum count rate is
1/24 of the oscillator frequency).

Timer/Counters 0 and 1

These timer/counters can operate in four modes:
Mode 0:
Mode 1:
Mode 2:
Mode 3:

8-bit timer/counter with 32:1 prescaler
16-bit timer/counter
8-bit timer/counter with 8-bit auto-reload

Timer/counter 0 is configured as one 8-bit timer/
counter and one 8-bit timer; timer/counter 1 in this
mode holds its count.

External inputs INTg and INT¢ can be programmed to function
as a gate for timer/counters 0 and 1 to facilitate pulse width
measurements.

Timer 2

The term '"timer 2" refers to a complex circuit consisting of the

following registers:

T2CON
TL2
TH2
CRCL
CRCH
CcL1
CCH1
CCL2
CCH2
CCL3
CCH3
CCEN

For brevity, the double-byte compare/reload/capture register
is called the CRC register, the three double-byte compare/

Timer 2 control register

Timer 2 register, |

ow-byte

Timer 2 register, high-byte

Compare/reload/capture register, low-byte
Compare/reload/capture register, high-byte

Compare/capture
Compare/capture
Compare/capture
Compare/capture
Compare/capture
Compare/capture
Compare/capture

register 1, low-byte
register 1, high-byte
register 2, low-byte
register 2, high-byte
register 3, low-byte
register 3, high-byte
enable register

capture registers are called CC registers 1 to 3.

Six bits of Port 1 are used by the timer 2 circuit for special

functions:

P1.0/INT3/CCq Compare output/capture input for the
CRC register

P1.1/INT4/CC4 Compare output/capture input for CC

register 1

P1.2/INT5/CCo Compare output/capture input for CC
register 2

P1.3/INTg/CC3 Compare output/capture input for CC
register 3

P1.5/T2EX External reload trigger input

P1.7/T2 External count or gate input to timer 2

To use the special functions on pins P1.5/T2EX and P1.7/T2
a one (1) must first be written into the appropriate bit latches.
For pins P1.0 to P1.3, it depends on the special function
whether the bit latches must contain a one (1) or not. Should
those pins be used as interrupt or capture inputs, the
corresponding bit latches must contain a one (1). If those pins
are used as compare outputs, the value written to the bit
latches depends on the compare modes established.

In addition to the operational modes '"'timer" or "counter,"
timer 2 provides the features of:

— 16-bit reload

— 16-bit compare

— 16-bit capture

Figure 3 shows a block diagram of the timer 2 circuit.

PLS/TEX O—

P1.7/m2 O—

FOSCN2 @

21 INTERRUPT
REQUEST

RELOAD)

16-8IT
‘COMPARATOR

16-BIT.
COMPARATOR

éi}L

| +——— PLOINT, /CCo
INPUT/
ouTPUT

¢ P1.1/INT, /CCy
CONTROL.

|¢———— P1.2/INT5 /CCo
+——— PLUINT /CCq

CCLY/CCH3

cCL2/CCcH2

CCL1/CCH1

CRCUCRCH

BD007640

Figure 3. Block Diagram of Timer/Counter 2

The timer 2 can operate either as timer, event counter, or
gated timer. In timer function, the count rate is derived from
the oscillator frequency. A 2:1 prescaler offers the possibility
to select a count rate of 1/12 or 1/24 of the oscillator
frequency. Thus, the 16-bit timer 2 register (consisting of TL2
and TH2) is incremented every machine cycle or every second
machine cycle. The prescaler is selected by bit T2PS in
special function register T2CON (see Figure 4). If T2PS is

cleared, the input frequency is 1/12 of the oscillator frequen-
cy; if T2PS is set, the 2:1 prescaler gates 1/24 of the oscillator
frequency to the timer.

In gated timer function, the external input pin T2 (P1.7)
functions as a gate to the input of timer 2. If T2 is high, the
counted input is gated to the timer. T2 = 0 stops the counting
procedure. This will facilitate pulse width measurements.

T2PS I3FR 12FR T2RI T2RO | T2CM T21 T210 BIT
OCFH OCEH O0CDH O0CCH O0CBH OCAH O0C9H OC8H ADDRESS
SYMBOL POSITION FUNCTION

T210 T2CON.0) .

Ton T2CON 1 Timer 2 Input Selection. See Table 2.

T2CM T2CON.2 Compare Mode Bit. When set, compare mode 1 is selected.
T2CM = 0 selects compare mode 0.

T2R0 T2CON.3 . .

ToR1 ToCON.4 Timer 2 Reload Mode Selection. See Table 3.

12FR T2CON.5 External Interrupt 2 Falling/Rising Edge Flag.

When set, the interrupt 2 request flag IEX2 will be set on a
positive transition at pin P1.4/INTo. I2FR = 0 specifies external
interrupt 2 to be negative-transition active.

I3FR T2CON.6 External Interrupt 3 Falling/Rising Edge Flag.

When set, the interrupt 3 request flag IEX3 will be set on a
positive transition at pin P1.0/INT3/CCp. I3FR = 0 specifies
external interrupt 3 to be negative-transition active.

T2PS T2CON.7 Prescaler Select Bit. When set, timer 2 is clocked in the
"timer" or "gated timer'" function with 1/24 of the oscillator
frequency. T2PS =0 gates fosc/12 to timer 2. T2PS must be
0 for the counter operation of timer 2.

Figure 4. Timer 2 Control Register T2CON (0C8H)

In counter function, the timer 2 register is incremented in
response to a 1-to-0 transition at its corresponding external
input pin T2 (P1.7). In this function, the external input is
sampled during S5P2 of every machine cycle. When the
samples show a HIGH in one cycle and a LOW in the next
cycle, the count is incremented. The new count value appears
in the register during S1P1 of the cycle following the one in
which the transition was detected. Since it takes two machine
cycles (24 oscillator periods) to recognize a 1-to-0 transition,
the maximum count rate is 1/24 of the oscillator frequency.
There are no restrictions on the duty cycle of the external input
signal, but to ensure that a given level is sampled at least once
before it changes, it should be held for at least one full
machine cycle.

Note: The prescaler must be off for proper counter operation
of timer 2, that means T2PS must be 0.

In either case, no matter whether timer 2 is configured as
timer, event counter, or gated timer, a rolling over of the count
from all 1s to all Os sets the timer 2 overflow flag TF2 (bit 6 in
SFR IRCON, Interrupt Request Control) which can generate
an interrupt.

The input clock to timer 2 is selected by bits T210, T2I1, and
T2PS as listed in Table 2.

TABLE 2. TIMER 2 INPUT SELECTION

T211|T210|Function

0 0 |No Input Selected, Timer 2 Stops

0 1 |Timer Function, Input
Frequency = fosc/12 (T2PS = 0)
or fosc/24 (T2PS = 1)

1 0 |Counter Function, External Input
Signal at Pin T2/P1.7

1 1 |Gated Timer Function. Input
Controlled by Pin T2/P1.7

Reload

The reload mode for timer 2 is selected by bits T2RO and
T2R1 in SFR T2CON as illustrated in Table 3. In mode 0, when
timer 2 rolls over from all 1s to all Os, it not only sets TF2 but
also causes the timer 2 registers to be loaded with the 16-bit
value in the CRC register which is preset by software. The
reload will happen in the same machine cycle in which TF2 is
set, thus overwriting the count value 0000H. In mode 1, a
16-bit reload from the CRC register is caused by a negative
transition at the corresponding input pin T2EX/P1.5. In addi-
tion, this transition will set flag EXF2 if bit EXEN2 in SFRIEN1
is set. If the timer 2 interrupt is enabled, setting EXF2 will
generate an interrupt. The external input pin T2EX is sampled

8-9

during S5P2 of every machine cycle. When the sampling
shows a HIGH in one cycle and a LOW in the next cycle, a
transition will be recognized. The reload of the timer 2
registers will then take place during S2P1 of the cycle
following the one in which the transition was detected.

Figure 5 shows a functional diagram of the timer 2 reload
modes.

TABLE 3. TIMER 2 RELOAD MODE SELECTION

T2R1|T2R0|Mode
0 X |Reload Disabled
1 0 [Mode 0: Auto-Reload upon
Timer 2 Overflow (TF2)
1 1 |Mode 1: Reload upon Falling
Edge at Pin T2EX/P1.5

T2R1 = 0 disables the reload modes 0 and 1. If the reload
modes are disabled, and if EXEN2 is set, a negative transition
at pin T2EX/P1.5 can be used as additional external interrupt
input.

INPUT __,|

CLOCK TL2

TH2

T2EX
P15 ° -_
2 | |
MODE 1 ‘
'RELOAD
MODE 0
CRCL CRCH —* TF2
31| TIMER2
INTERRUPT
REQUEST
/I(EXF2
EXEN2
TB001180

Figure 5. Timer 2 in Reload Mode

Compare

In compare mode, the 16-bit values stored in the dedicated
compare registers are compared with the contents of the timer
2 registers (TL2 and TH2). If the count value in the timer 2
registers matches the stored one, an appropriate output signal
is generated at the corresponding Port 1 pin, and interrupt is
requested.

The compare modes are enabled by setting the appropriate
bits in SFR CCEN (compare/capture enable register, see
Figure 11). There are two different compare modes which are
selected by bit T2CM in T2CON.

In mode 0, upon a match, the output signal changes from LOW
to HIGH. It goes back to a LOW level on timer 2 overflow. As
long as compare mode O is enabled, the appropriate output
pin is controlled by the timer 2 circuit, and not by the user.
Writing to the port will operate as a ''dummy" instruction.
Figure 6 shows a functional diagram of the Port 1 latches P1.0
to P1.3 in compare mode 0. The port latch is directly controlled
by the two signals TF2 and compare. The input line from the
internal bus and the '"write-to-latch” line are disconnected
when compare mode O is enabled.

8-10

READ LATCH

Vee
: %
COMPARE MODE 0 PIN | P1OANT; /cCq
ENABLED PLUINT4 /CC4
courAns P1.2INTg /CC,
P1.3/INTg /CC
) 6/CC3
INTERNAL o o ° a
BUS 10—
I
i
WRITE TO =
LATCH " D g @ —’
‘ 1
TF2
READ PIN
TB001190

Figure 6. Functional Diagram of Port Latches P1.0 to P1.3 in Compare Mode 0

In mode 1, the software determines the transition of the output
signal. If mode 1 is enabled, and the software writes to the
appropriate output pin at Port 1, the new value will not appear
at the output pin until the next compare event occurs. Thus,
the user can select whether the output signal makes a 1-to-0
or a 0-to-1 transition at the time the timer 2 count matches the
stored compare value. Figure 7 shows a functional diagram of
the Port 1 latches P1.0 to P1.3 in compare mode 1. In this
function, the "'port latch’ consists of two separate latches.
The "left" latch can be written to under software control, but

this value will only be transferred to the "right'" latch (and to
the port pin) in response to a compare event. Note that the
"right'" latch is transparent as long as the internal compare
signal is active. While the compare signal is active, a write
operation to the port will change both latches. A "'read-modify-
write" instruction will read the user-controlled "'left'" latch, and
write the modified value back to this "left" latch.

In both compare modes, the new value arrives at the Port 1 pin
within the same machine cycle in which the internal compare
signal is activated.

READ LATCH

<

L

o
P1.1/INT4 /CC 4

P1.2/INT5 /CC

INTERNAL
BUS

WRITE TO
LATCH D>

P1.3/INTg /CC 3

T

COMPARE ¢
MODE 1

READ PIN

TB001200

Figure 7. Functional Diagram of Port Latches P1.0 to P1.3 in Compare Mode 1

8-11

Figure 8 shows a functional diagram of timer 2 in the compare
mode using the CRC register. Figure 9 shows the compare
modes with reference to the CC register 1. Except for the
symbolic names, this diagram applies also to the CC registers
2 and 3.

Note that the compare signal is active as long as the timer 2
contents are equal to the one of the appropriate compare
register, and that it has a rising and a falling edge. Thus, when
using the CRC register, it can be selected whether an interrupt
should be caused when the compare signal goes active or
inactive, depending on the status of bit I3FR in T2CON. For

the CC registers 1 to 3 an interrupt is always requested when
the compare signal goes active.

If the compare function is enabled, the corresponding Port 1

- pin is dedicated to act as output. The level at the port pin can

be read under software control, but the input line from the port
pin to the interrupt system is disconnected. Thus, a change of
the pin's level will not cause a setting of the corresponding
interrupt flag. In the compare modes, the external interrupt
request flags can only be set by the internally generated
compare signal.

INPUT

CLOCK

1

16-BIT COMPARATOR

COMPARE J— L

TIMER 2
»{ TF2 INTERRUPT
REQUEST

PORT
LATCH
CIRCUIT*

— P1.0ANT; /GGy

CRCL CRCH

*See Figures 6 and 7.

e

T2CON.6

S

INTERRUPT 3
IEX3 REQUEST

ro

TB001210

Figure 8. Functional Diagram of Timer 2 in Compare Mode Using CRC Register

INPUT TF2 INTERRUPT
— TL2 TH2 ! Ul
CLOCK REQUEST
J L J L P b pramm,rcc,
oM — CIRCUIT*
16-BIT COMPARATOR PARE
INTERRUPT 4
ccu CCH2 _/_ ‘ 1EX4 REQUEST

*See Figures 6 and 7.

TB001220

Figure 9. Functional Diagram of Timer 2 in Compare Mode Using CC Register 1

8-12

Capture

Each of the three compare/capture registers and the CRC
register can be used to latch the current 16-bit value in the
timer 2 registers TL2 and TH2. Two different modes are
provided for this function. In mode 0, an external event causes
a latching of the timer 2 contents to a dedicated capture
register. In mode 1, a capture will occur upon writing to the
low-order byte of the dedicated 16-bit capture register. This
mode is provided to allow the software to read the timer 2
contents "'on the fly."

In mode 0, the external event causing a capture is:

— for CC registers 1 to 3: a positive transition at pins CC1 to
CC3 of CC registers 1 to 3;

— for the CRC register: a positive or negative transition,
depending on the status of bit I3FR in SFR T2CON, at pin
CCO. If bit I3FR is cleared, a capture occurs in response to
a negative transition, if bit I3FR is set in response to a
positive transition at pin P1.0/INT3/CCo.

In this mode, the appropriate Port 1 pin is used as input, and
the port latch must be programmed to contain a one (1). The
external input is sampled during S5P2 in every machine cycle.
When the sampling shows a LOW (HIGH for input CCQ0, if it is
programmed to be negative-transition-active) in one cycle and
a HIGH (LOW) in the next cycle, a transition is recognized. The
timer 2 contents are latched to the appropriate capture
register during S3P1 in the cycle following the one in which the
transition was identified.

In mode 0, a transition on the external capture inputs CCO to
CC3 will also cause setting of the corresponding external

interrupt request flags IEX3 to IEX6. If the interrupts are
enabled, an external capture signal will cause the CPU to
vector to the appropriate interrupt service routine.

In mode 1, a capture occurs in response to a MOV instruction
to the low-order byte of a capture register. The 'write-to-
register'' signal (e.g., ''write to CRCL"") is used to initiate a
capture. The value written to the dedicated capture register is
irrelevant for this function. The timer 2 contents will be latched
into the appropriate capture register in the cycle following the
MOV instruction. In this mode no interrupt request will be
generated.

In both capture modes the value latched in the machine cycle
in w hich the capture occurs will be the actual contents of
timer 2 in that machine cycle.

Figures 10-1 and 10-2 show functional diagrams of the
capture function of timer 2. Figure 10-1 illustrates the opera-
tion for the CRC register, while Figure 10-2 shows the
operation applying to the compare/capture register 1. This
operation is the same for CC register 1 as well as for the CC
registers 2 and 3. Substitute the symbols for the correspond-
ing signals and names of CC registers 2 and 3 in Figure 10-2.

The two capture modes can be established individually for
each capture register by bits in SFR CCEN (compare/capture
enable register), with 2 bits for each capture register. That
means, other than for the compare modes, it is possible to
select mode O for one capture register and mode 1 for another
register simultaneously. The bit positions and functions of
CCEN are listed in Figure 11.

INPUT " TIMER 2
cLock ™ T2 THe i REGUEST |
'WRITE TO
CRCL'
v v
MODE 1
AW MODE 0 CAPTURE
T2CON 6
P1.0/NT; /CCy L
f CRCL CRCH
EXTERNAL
IEX3 INTERRUPT 3
REQUEST
TB001230

Figure 10-1. Functional Diagram of Timer 2 in Capture Mode Using CRC Register

8-13

‘WRITE 7O
ccLr

INPUT __,
Clook TL2 TH2
v v
MODE 1
MODE 0 CAPTURE
ceL CCHI

PLUINT,/CC, —»f A~

TIMER 2
TF2 INTERRUPT
REQUEST

EXTERNAL
IEX4 INTERRUPT 4
REQUEST

TB001240

Figure 10-2. Functional Diagram of Timer 2 in Capture Mode Using CC Register 1

7 6 5 4 3 2 1 0 BIT
BIT FUNCTION
1 0 CRC Register
0 0 Compare/Capture Disabled
0 1 Capture on Falling/Rising Edge at Pin P1.0/INT3/CCq
1 0 Compare Enabled
1 1 Capture on Write Operation into Register CRCL
3 2 CC Register 1
0 0 Compare/Capture Disabled
0 1 Capture on Falling/Rising Edge at Pin P1.1/INT4/CCq
1 0 Compare Enabled
1 1 Capture on Write Operation into Register CCL1
5 4 CC Register 2
0 0 Compare/Capture Disabled
0 1 Capture on Falling/Rising Edge at Pin P1.2/INT5/CCo
1 0 Compare Enabled
1 1 Capture on Write Operation into Register CCL2
7 6 CC Register 3
0 0 Compare/Capture Disabled
0 1 Capture on Falling/Rising Edge at Pin P1.3/INTg/CC3
1 0 Compare Enabled
1 1 Capture on Write Operation into Register CCL3

Figure 11. Compare/Capture Enable Register CCEN (0C1H)

8-14

Watchdog Timer

As a means of safe recovery from software or hardware upset,
a watchdog timer is provided in the 80515. If the software fails
to clear the watchdog timer at least every 65,532 us, an
internal hardware reset will be initiated. The software can be
designed such that the watchdog times out if the program
does not progress properly. The watchdog will also time out if
the software error was due to hardware-related problems. This
prevents the controller from malfunctioning for longer than 65
ms if a 12 MHz oscillator is used.

The watchdog timer is a 16-bit counter which is incremented
once every machine cycle. After an external reset, the
watchdog timer is disabled and cleared to 0000H. The counter
is started by setting bit SWDT (bit 6 in SFR IEN1). After having
been started, the watchdog timer 0000H by cannot be stopped
by software. It can only be cleared to 0000H by first setting bit
WDT (IEN0.6) and with the next instruction setting SWDT. Bit
WDT will automatically be cleared during the third machine
cycle after having been set. This double instruction clearing of
the watchdog timer was implemented to minimize the chance
of unintentionally clearing the watchdog. To prevent the
watchdog from overflowing, it must be cleared periodically.

If the software fails to clear the watchdog in time, an internally
generated watchdog reset is entered at the counter state
FFFCH, which lasts four machine cycles. This internal reset
differs from an external reset only to the extent that the
watchdog timer is not disabled and bit WDTS (watchdog timer
status, bit 6 in SFR IP0) is set. Bit WDTS allows the software
to examine from which source the reset was initiated. If it is
set, the reset was caused by a watchdog timer overflow.

Serial Port

The serial port of the 80515 permits the full-duplex communi-
cation between microcontrollers or between microcontrollers
and peripheral devices. The serial port can operate in four
modes:

Mode 0: Shift register mode. Serial data enters and exits
through RxD. TxD outputs the shift clock. Eight bits
are transmitted/received — eight data bits (LSB)
first. The baud rate is fixed at 1/12 of the oscillator
frequency.

Mode 1: Ten bits are transmitted (through RxD) or received
(through TxD) — a start bit (0), eight data bits (LSB
first), and a stop bit (1). The baud rate is variable.

Mode 2: Eleven bits are transmitted (through RxD) or re-
ceived (through TxD) — a start bit (0), eight data
bits (LSB first), a programmable 9th data bit, and a
stop bit (1). The baud rate is programmable to
either 1/32 or 1/64 of the oscillator frequency.

Mode 3: Eleven bits are transmitted (through TxD) or re-
ceived (through RxD) — a start bit (0), eight data
bits (LSB first), a programmable 9th data bit, and a
stop bit (1). Mode 3 is the same as mode 2 in all
respects except the baud rate; the baud rate in
mode 3 is variable.

The variable baud rates can be generated by timer 1 or an
internal baud rate generator.

A/D Converter

The 80515 provides an 8-bit A/D converter with eight multi-
plexed analog input channels on-chip. In addition, the A/D
converter has a sample and hold circuit and offers the feature
of software-programmabile reference voltages. For the conver-
sion, the method of successive approximation with a capacitor
network is used.

Figure 12 shows a block diagram of the A/D converter. There
are three user-accessible special function registers: ADCON
(A/D converter control register), ADDAT (A/D converter data
register), and DAPR (D/A converter program register) for the
programmable reference voltages.

ADDAT (DSH)

e | [oenl]
ANO-AN7:> MUX l saH AD >
VAREF IVAGND
VAREF O—s]
VAGND O——]
{9}
E
Veg O— 2
Z
DAPR (DAH)]
i
z
7 6 5 4 3 2 1 0
PROGRAMMING PROGRAMMING
IVAREF VAGND
ADCON (D8H)
BD CLK BSY ADM MX2 MX1 MX0
7 6 5 4 3 2 1 0
BAUD SYSTEM BUSY CONVERSION AN INPUT
RATE CLOCK FLAG MODE SELECT
ENABLE ENABLE
~J
BD007670

Figure 12. A/D Converter Block Diagram

Special function register ADCON, which is illustrated in Figure
13, is used to select one of the eight analog input channels to
be converted, to specify a single or continuous conversion,

and to check the status bit BSY, which signals whether a
conversion is in progress or not.

BD CLK - BSY ADM MX2 MX1 MX0 BIT
ODFH ODEH ODDH ODCH ODBH ODAH ODSH OD8H ADDRESS

SYMBOL POSITION FUNCTION

MX0 ADCON.0

MX1 ADCON.1 Analog Input Channel Selection (see Table 4).

MX2 ADCON.2

ADM ADCON.3 A/D Conversion Mode. When set, a continuous is selected. If
ADM = 0, the converter stops after one conversion.

BSY ADCON.4 Busy Flag. This flag indicates whether a conversion is in prog-
ress (BSY = 1) or not (BSY = 1).

- ADCON.5 Reserved (must be 0).

CLK ADCON.6 System Clock Enable. When set, a clock signal with 1/12 the
oscillator frequency is gated to pin P1.6/CLKOUT. CLK =0 disa-
bles the clock output.

BD ADCON.7 Baud Rate Enable. When set, the baud rate in mode 1 and 3 of
the serial port is taken from the internal baud rate generator.

Figure 13. A/D Converter Control Register ADCON (0D8H)

TABLE 4. SELECTION OF THE ANALOG INPUT
CHANNELS

MX2 | MX1 | MXO0 |Selected Channel | Pin

Analog Input 0 ANO
Analog Input 1 AN1
Analog Input 2 AN2
Analog Input 3 AN3
Analog Input 4 AN4
Analog Input 5 AN5
Analog Input 6 AN6
Analog Input 7 AN7

4 a4aas0000
~0—a0—a0=0

The special function register ADDAT holds the converted
digital 8-bit data result. The data remains in ADDAT until it is
overwritten by the next converted data. The new converted
value will appear in ADDAT in the 15th machine cycle after a
conversion has been started. ADDAT can be read and written
to under software control. If the A/D converter of the 80515 is
not used, register ADDAT can be used as an additional
general-purpose register.

The SFR DAPR is provided for programming the internal
reference voltages IVAREF and IVAGND. For this purpose the
internal reference voltages can be programmed in steps of
1/16 with respect to the external reference voltages
(VAREF — VAGND) by 4 bits each in register DAPR. Bits 0 to 3

specify IVAGND, while bits 4 to 7 specify IVAREF. A minimum
of 1 V difference is required between the internal reference
voltages for proper operation of the A/D converter. That
means the internal reference voltage IVARgrF must always be
programmed four steps higher than IVAGND (in respect to the
external reference voltage VARgr which is specified as
+5V £5%). The values of IVAGND and IVAREF are given by
the formula:

DAPR(0 —3)

16

with DAPR(0 —3) ¥ 0 and DAPR(0—3) < 13;
DAPR(4 —7)

16

IVAGND = VAGND + (VAREF — VAGND)

IVAREF = VAGND + (VAREF — VAGND)

with DAPR(4 —7) > 3;
where DAPR(0 - 3) is the contents of the low-order nibble, and

DAPR(4 - 7) the contents of the high-order nibble of DAPR,
taken as an unsigned decimal integer.

If DAPR(0-3) or DAPR(4-7) =0, the internal reference
voltages correspond to the external reference voltages
VAGND and VAREgF, respectively.

If VainPuT > IVAREF, the conversion result is OFFH; if
VAINPUT < IVAGND, the conversion result is 00H (VAINPUT i
the analog input voltage).

Figure 14. shows special function register DAPR.

8-16

2 1 0 BIT

DIGITAL VALUE FOR
IVAREF

DIGITAL VALUE FOR
IVAGND

If the external reference voltages VagnD =0 and VARgr=+5 V
are applied, then the internal reference voltages IVagnD and IVAREF
(shown in Table 5) can be adjusted via the special function register DAPR.

Figure 14. D/A Converter Program Register DAPR (ODAH)

TABLE 5. ADJUSTABLE INTERNAL REFERENCE

VOLTAGES

Step DAPR(0-3) | IVAGND IVAREF

DAPR(4-7) | (V))
0 0000 0.0 5.0
1 0001 0.3125 —
2 0010 0.625 —
3 0011 0.9375 —
4 0100 1.25 1.25
5 0101 1.5625 1.5625
6 0110 1.875 1.875
7 0111 2.1875 2.1875
8 1000 25 25
9 1001 2.8125 2.8125
10 1010 3.125 3.125
11 1011 3.4375 3.4375
12 1100 3.75 3.75
13 1101 — 4.0625
14 1110 — 4.375
15 1111 — 4.6875

Items marked with " —"" are not allowed according to the
rules listed above (IVARgfr at least four steps higher than
IVAGND)-

A/D Converter Timing and Conversion Time

A conversion is started by writing into special function register
DAPR. A "write-to-DAPR"" will start a new conversion even if a
conversion is currently in progress. The conversion begins
with the next machine cycle. The busy flag will be set in the
same machine cycle that the "write-to-DAPR'' operation
occurs. If the value written to DAPR is 00H, meaning that no

adjustment of the internal reference voltages is desired, the
conversion needs 15 machine cycles to be completed. Thus,
the conversion time is 15 us for 12-MHz oscillator frequency.
For each adjustment of the internal reference voltages the
conversion takes an additional time of 7 us. Thus, if only one
reference voltage needs to be programmed, the total conver-
sion time takes 22 machine cycles; if both reference voltages
are to be programmed the conversion time lasts 29 machine
cycles.

After a conversion has been started by writing into SFR DAPR,
the analog voltage at the selected input channel is sampled
for five machine cycles (5 us at 12-MHz oscillator frequency),
which will then be held at the sampled level for the rest of the
conversion time. The external analog source must be strong
enough to source the current in order to load the sample and
hold capacitance, being 25 pF, within those five machine
cycles.

Conversion of the sampled analog voltage takes place be-
tween the 6th and 15th machine cycle after sampling has
been completed. In the 15th machine cycle the converted
result is moved to ADDAT, the busy flag (BSY) is cleared, and
the A/D converter interrupt request flag IADC (bit 0 in SFR
interrupt control register IRCON) is set. If a continuous
conversion is established, the next conversion is automatically
started in the following machine cycle.

The special feature of programmable internal reference volt-
ages allows adjusting the internal voltage range to the range
of the external analog input voltage; or it may be used to
increase the resolution of the converted analog input voltage
by starting a second conversion with a compressed internal
reference voltage range close to the previously measured
analog value.

Figures 15-1 and 15-2 illustrate these applications.

AN, AN, AN...
500V °
VAREF
—— 4375V
3125V
W,
1 ey sy AREF
VaGgND
—L 125V
0.625V
oV
VAGND
TB001160

Figure 15-1. Adjusting the Internal Reference Voltages to the Range of the
External Analog Voltages

FIRST CONVERSION SECOND CONVERSION
so0ov 20 mVACCURACY 5 mV ACCURACY
VAREF
3125V
IVAREF
/| 1875V
IVAGND
ov
VaGND
SAMPLE TIME SAMPLE TIME
TB001170

Figure 15-2. Increasing the Resolution of the A/D Result by Doi ng a Second
Conversion

Interrupt Structure

The interrupt structure of the 80515 provides 12 interrupt
sources and 4 priority levels. The 12 interrupt sources are
organized as 6 pairs. Table 6 lists the interrupt sources and
pairs of the 80515.

TABLE 6. INTERRUPT SOURCES

External Interrupt 0 — A/D Converter Interrupt

Timer O Interrupt — External Interrupt 2

External Interrupt 1 — External Interrupt 3

Timer 1 Interrupt — External Interrupt 4

Serial Port Interrupt — External Interrupt 5

Timer 2 Interrupt

— External Interrupt 6

Some of these interrupt sources are activated by one, others
are activated by two internal or external events. Each interrupt
source has its own vector location in the program memory
address space OOH to 6BH. In the following section the
interrupt sources are discussed separately.

The external interrupts 0 and 1 (INTg and INT4) can each be
either level-activated or negative transition-activated, depend-
ing on bits ITO and IT1 in register TCON. The flags that
actually generate these interrupts are bits IEO and IE1 in
TCON. When an external interrupt is generated, the flag that
generated this interrupt is cleared by the hardware when the
service routine is vectored to only if the interrupt was
transition-activated. If the interrupt was level-activated, then
the external requesting source directly controls the request
flag, rather than the on-chip hardware.

The timer 0 and timer 1 interrupts are generated by TFO and
TF1, which are set by a rollover in their respective timer/
counter registers. When a timer interrupt is generated, the flag
that generated it is cleared by the on-chip hardware when the
service routine is vectored to.

The serial port interrupt is generated by the logical OR of RI
and TI. Neither of these flags is cleared by hardware when the
service routine is vectored to. In fact, the service routine will
normally have to determine whether it was Rl or Ti that
generated the interrupt, and the bit will have to be cleared in
software.

8-18

The timer 2 interrupt is generated by the logical OR of bits TF2
and EXF2 in register IRCON. Neither of these flags is cleared
by hardware when the service routine is vectored to. In fact,
the service routine may have to determine whether it was TF2
or EXF2 that generated the interrupt, and the bit will have to
be cleared in software.

The A/D converter interrupt is generated by bit IADC in
register IRCON. It is set in the 15th, 22nd or 29th machine
cycle, after a conversion has been started by a '"write-to-
DAPR,"" or, if continuous conversions are established, after
the last conversion has been completed, depending on
whether the internal reference voltages IVagnD and IVAREF
have to be adjusted or not. When an A/D converter interrupt is
generated, flag IADC will have to be cleared in software.

The external interrupt 2 (INT2) can be either positive or
negative transition-activated, depending on bit I2FR in register
T2CON. The flag that actually generates this interrupt is bit
IEX2 in register IRCON. If an external interrupt 2 is generated,
flag IEX2 is cleared by hardware when the service routine is
vectored to.

Like the external interrupt 2, the external interrupt 3 can be
either positive or negative transition-activated, depending on
bit I13FR in register T2CON. The flag that actually generates
this interrupt is bit IEX3 in register IRCON. In addition, this flag
will be set if a compare event occurs at pin P1.0/INT3/CCq
(timer 2 registers contents matches the contents of the CRC
register), regardiess of the compare mode established, the
transition occuring at the pin, and of the external interrupt 3
being positive or negative transition-activated. Flag IEX3 is
cleared by the on-chip hardware when the service routine is
vectored to.

The external interrupts 4 (INT4), 5 (INTs), and 6 (INTg) are
positive transition-activated. The flags that actually generate
these interrupts are bits IEX4, IEX5, and |EX6 in register
IRCON. In addition, these flags will be set if a compare event
occurs at the corresponding output pin P1.1/INT4/CCy,
P1.2/INT5/CCp, and P1.3/INTg/CCg, regardless of the com-
pare mode established and the transition at the respective pin.
When an interrupt is ‘generated, the flag that generated it is
cleared by the on-chip hardware when the service routine is
vectored to.

All of these bits that generate interrupts can be set or cleared
by software, with the same result as though they had been set
or cleared by hardware. That is, interrupts can be generated or
pending interrupts can be canceled in software. The only
exceptions are request flags IEO and IE1. If the external
interrupts 0 and 1 are programmed to be level-activated, |IEO
and |E1 are controlled by the external source via pin INTg and
INT4, respectively. Thus, writing a one to these bits will not set
the request flags IEO and/or IE1. In this mode, external
interrupts 0 and 1 can only be generated in software by writing
a 0 to the corresponding pins INTg (P3.2) and INTy (P3.3),
provided this will not affect any peripheral circuit connected to
the pins. Figure 16 shows the special function register IRCON.

Each of these interrupt sources can be individually enabled or
disabled by setting or clearing a bit in the special function
registers IENO and IEN1 (Figures 17-1 and 17-2). Note that
IENO also contains a global disable bit, EAL, which disables all
interrupts at once. Also note that in the 8051 the interrupt
priority register IP is located at address 0B8H; in the 80515
this location is occupied by register [EN1.

‘ EXF2 [TF2 | IEX6 l IEX5] IEX4 | IEX3 I IEX2 | IADC \BIT

OC7H 0CeH 0C5H 0C4H 0C3H

0C2H 0C1H 0COH

ADDRESS

SYMBOL POSITION FUNCTION

IADC IRCON.O

IEX2 IRCON.1

IEX3 IRCON.2

IEX4 IRCON.3

IEX5 IRGON.4

IEX6 IRCON.5

TF2 IRCON.6

EXF2 IRCON.7

A/D Converter Interrupt Request Flag. Set by hardware at the end
of a conversion. Must be cleared by software.

External Interrupt 2 Edge Flag. Set by hardware when external in-
terrupt edge was detected. Cleared when interrupt processed.

External Interrupt 3 Edge Flag. Set by hardware when external in-
terrupt edge was detected or when a compare event occured at
pin P1.0/INT3/CCgp. Cleared when interrupt processed.

External Interrupt 4 Edge Flag. Set by hardware when external in-
terrupt edge was detected or when a compare event occured at
pin P1.1/INT4/CC4. Cleared when interrupt processed.

External Interrupt 5 Edge Flag. Set by hardware when external in-
terrupt edge was detected or when a compare event occured at
pin P1.2/INT5/CCp. Cleared when interrupt processed.

External Interrupt 6 Edge Flag. Set by hardware when external in-
terrupt edge was detected or when a compare event occured at
pin P1.3/INTg/CC3. Cleared when interrupt processed.

Timer 2 Overflow Flag. Set by a timer 2 overflow and must be
cleared by software. If the timer 2 interrupt is enabled, TF2 =1 will
cause an interrupt.

Timer 2 External Reload Flag. Set when a reload is caused by a
negative transition on pin T2EX and EXEN2 = 1. When the timer 2
interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the
timer 2 interrupt routine. Can be used as an additional external
interrupt when the reload function is not used. EXF2 must be
cleared by software.

Figure 16. Interrupt Request Control Register IRCON (0COH)

EAL

WDT ET2 ES ET1 EX1 ETO EX0 BIT

OAFH O0AEH O0ADH OACH 0ABH O0AAH 0A9H O0A8H ADDRESS

SYMBOL POSITION FUNCTION

EXO0 IENO.O Enables or Disables External Interrupt 0. If EX0 = 0, external
interrupt 0 is disabled.

ETO IENO.1 Enables or Disables the Timer 0 Overflow Interrupt. If ETO=0, the
timer O interrupt is disabled.

EX1 IENO.2 Enables or Disables External Interrupt 1. If EX1 =0, external
interrupt 1 is disabled.

ET1 IENO0.3 Enables or Disables the Timer 1 Overflow Interrupt. If ET1=0, the
timer 1 interrupt is disabled.

ES IEN0.4 Enables or Disables the Serial Port Interrupt. If ES = 0, the serial
port interrupt is disabled.

ET2 IENO.5 Enables or Disables Timer 2 Overflow or External Reload Inter-
rupt. If ET2 =0, the timer 2 interrupt is disabled.

WDT IENO.6 Watchdog Timer Reset Flag. Set to initiate a reset of the watch-
dog timer.

EAL IENO.7 Enables and Disables All Interrupts. If EAL =0, no interrupt will be

acknowledged. If EAL =1, each interrupt is indidivually enabled or
disabled by setting or clearing its enable bit.

Figure 17-1. Interrupt Enable Register IENO (0A8H)

EXEN2 | SWDT | EX& EX5 EX4 EX3 EX2 EADC BIT

OBFH OBEH O0BDH O0BCH 0BBH OBAH 0BSH 0B8H ADDRESS

SYMBOL POSITION FUNCTION

EADC IEN1.0 Enables or Disables the A/D Converter Interrupt 0. If EADC =0,
the A/D converter is disabled.

EX2 IEN1.1 Enables or Disables External Interrupt 2. If EX2 =0, external
interrupt 2 is disabled.

EX3 IEN1.2 Enables or Disables External Interrupt 3/Capture/Compare
Interrupt 0. If EX3 =0, external interrupt 3 is disabled.

EX4 IEN1.3 Enables or Disables External Interrupt 4/Capture/Compare
Interrupt 1. If EX4 =0, external interrupt 4 is disabled.

EX5 IEN1.4 Enables or Disables External interrupt 5/Capture/Compare
Interrupt 2. If EX5 =0, external 5 is disabled.

EX6 IEN1.5 Enables or Disables External Interrupt 6/Capture/Compare
Interrupt 3. If EX6 =0, external 6 is disabled.

SWDT IEN1.6 Watchdog Timer Start/Reset Bit. Set to start/reset the watchdog
timer.

EXEN2 IEN1.7 Enables or Disables the Timer 2 External Reload Interrupt.

EXEN2 = 0 disables the timer 2 external reload interrupt. The
external reload function is not affected by EXEN2.

Figure 17-2. Interrupt Enable Register IEN1 (0B8H)

8-20

Priority Level Structure

Each pair of interrupt sources can be programmed individually
to one of four priority levels by setting or clearing one bit in the
special function register IPO and one in IP1 (Figure 18). A low-
priority interrupt can itself be interrupted by a high-priority
interrupt, but not by another interrupt of the same or a lower
priority. An interrupt of the highest priority level cannot be
interrupted by another interrupt source.

If two or more requests of different priority levels are received
simultaneously, the request of the highest priority is serviced
first. If requests of the same priority level are received
simultaneously, an internal polling sequence determines which
request is serviced first. If requests from two interrupt sources
of one interrupt pair are received simultaneously, the "left'
interrupt source of each pair is serviced first. Thus within each
priority level there is a second priority structure determined by
the polling sequence, as follows:

High -—> Low Priority
Interrupt Source Pair

IEO IADC High
TFO 1EX2

IE1 IEX3

TF1 IEX4

RI+TI IEX5

TF2 + EXF2 IEX6 Low

Note that the "priority within level'" structure is only used to
resolve simultaneous requests within the same priority level.

Figure 19 shows a block diagram of the priority level structure
and Figure 20 illustrates the questing sources of the 80515's
interrupt structure.

- WDTS | IP0.5 1P0.4 1P0.3

1P0.2 1PO.1 1P0.0

- - iP1.5 IP1.4 IP1.3

IP1.2 1P1.1 IP1.0

The priority level of each pair of interrupt sources is determined by corresponding

bits in IPO and IP1 as follows:

BITS CORRESPONDING INTERRUPT PAIR
IP1.0 1P0.0 IEO/IADC
0 0 Priority Level 0 (Lowest)
0 1 Priority Level 1
1 0 Priority Level 2
1 1 Priority Level 3 (Highest)
P11 1PO.1 TFO/IEX2
P1.2 1P0.2 IE1/IEX3
IP1.3 1P0.3 TF1/IEX4
1P1.4 1P0.4 Ri+ TI/IEX5
IP1.5 1P0.5 TF2+ EXF2/IEX6

IP0.6 is the watchdog timer status bit WDTS. 1P0.7, IP1.6, and |P1.7 are reserved.

Figure 18. Interrupt Priority Registers IPO (0A9H) and IP1 (0B9H)

8-21

iP1.0

1PO.

(=

IENO.7 1ENO.O X
IE0 O L L
! | |
I I"—dj
I i |
1 | |l
| 1 1
I | |
! | |
1 | |
1 { |
! !
. IEN1O ‘ \
JADC O d'l(L i
I
' L/
1
! L
1
1
| IENO.1
TFO © ,'—C/L P11 1PO.1
1
L ENL
IEX2 O— o”(e
L IEN02
IE1 O L P1.2 P02
1 IEN12
X3 oo} Lt
! ENO.3
TF1 © | L IP1.3 1P0.3
1
. IEN13
IEX4 O o’r L
[IENO4
Rl O >1
d [— R IPO.4
710 !
I IEN1.4
IEXS o————o),/ ‘—o/'-————
o I IENOS
TF2
F ot L s P05
EXF2 O |

IEX6 O

|

INTERRUPT REQUEST/PRIORITY-CONTROL

—>

Figure 19. Priority Level Structure

——— LEVEL3

f-———— LEVEL2

—————— LEVEL 1

—————— LEVELO

VECTOR
LOCATIONS

BD007620

8-22

TIMER 0
OVERFLOW

P3.3/INT4 E1

SR

TIMER 1 -
OVERFLOW TH
RECEIVER > Rl
=1
SERIAL PORT . l
TRANSMITTER |
TIMER 2
OVERFLOW TF2 -::EI—
-
Q
P1.5/T2EX — '_ Lc/c» EXF2 £
EXEN2 z
[&]
A/D-CONVERTER IADC et
1 e E
PLANT e L
COMPARE 0 s
P1.0/INT/
0/NT3/CCo —zobs L IEX3
COMPARE 1
P11/INT,/CC4 A] EX4
COMPARE 2
P1.2/INT5/CC, A
COMPARE 3
P13/INTg/CCy =2 { Ex6
BD007630

Figure 20. Inteirupt Request Sources

8-23

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 in every machine
cycle. The samples are polled during the following machine
cycle. If one of the flags was in a set condition at S5P2 of the
preceding cycle, the polling cycle will find it and the interrupt
system will generate an LCALL to the appropriate service
routine, provided this hardware-generated LCALL is not
blocked by any of the following conditions:

1) An interrupt of equal or higher priority is already in progress.

2) The current (polling) cycle is not the final cycle in the
execution of the instruction in progress.

3) The instruction in progress is RETI or any access to
registers IENO, IEN1, IPO, or IP1.

Any of these three conditions will block the generation of the
LCALL to the interrupt service routine. Condition 2 ensures

that the instruction in progress will be completed before
vectoring to any service routine. Condition 3 ensures that if the
instruction in progress is RET! or any access to registers IENO,
IEN1, IPO, or IP1, then at least one more instruction will be
executed before any interrupt is vectored to.

The polling cycle is repeated with every machine cycle, and
the values polled are the values that were present at S5P2 of
the previous machine cycle. Note then that if any interrupt flag
is active but not being responded to for one of the above
conditions, or if the flag is not still active when the blocking
condition is removed, the denied interrupt will not be serviced.
In other words, the fact that the interrupt flag was once active
but not serviced is not remembered. Every polling cycle is
new.

The polling cycle/LCALL sequence is illustrated in Figure 21.

....... C1 + Co. ;{4 Vok) + C4 -{4 C5-
|ss P2| 6 |
. . L L
INTERRUPTS LONG CALLTO INTERRUPT ROUTINE
ARE POLLED INTERRUPT
VECTOR ADDRESS
f—
INTERRUPT INTERRUPT
GOES 1S
ACTIVE LATCHED

WF025340

Figure 21. Interrupt Response Timing Diagram

Note that if an interrupt of higher priority level goes active prior
to S5P2 in the machine cycle labled C3 in Figure 21, then in
accordance with the above rules it will be vectored to during
C5 and C6, without any instruction of the lower priority routine
being executed.

Thus the processor acknowledges an interrupt request by
executing a hardware-generated LCALL to the appropriate
servicing routine. In some cases it also clears the flag that
generated the interrupt, and in other cases it doesn't. It never
clears the serial port (RI, Ti), timer 2 (TFO, EXF2), or A/D
converter flags. This has to be done in the user's software. It
clears an external interrupt flag (IEO or IE1) only if it was
transition-activated. External interrupt flags IEX2 to IEX6 are
always cleared. The hardware-generated LCALL pushes the
contents of the program counter onto the stack (but it does
not save the PSW) and reloads the PC with an address that
depends on the source of the interrupt being vectored to, as
shown below.

Source Vector Address
IEO 0003H
TFO 000BH
IE1 0013H
TF1 001BH
RI+TI 0023H
TF2 + EXF2 | 002BH
IADC 0043H
IEX2 004BH
IEX3 0053H
IEX4 005BH
IEX5 0063H
IEX6 006BH

Execution proceeds from that location until the RETI instruc-
tion is encountered. The RETI instruction informs the proces-
sor that this interrupt routine is no longer in progress, then
pops the top 2 bytes from the stack and reloads the program
counter. Execution of the interrupted program continues from
where it was left off.

Note that a simple RET instruction would also have returned
execution to the interrupted program, but it would have left the
interrupt control system thinking an interrupt was still in
progress.

8-24

External Interrupts

The external interrupts 0 and 1 can be programmed to be
level-activated or negative transition-activated by setting or
clearing bit ITO or IT1, respectively, in register TCON. If ITx = 0
(x = 0 or 1), external interrupt x is triggered by a detected LOW
at the INTy pin. If ITx = 1, external interrupt x is negative edge-
triggered. In this mode, if successive samples of the TNTx pin
show a HIGH in one cycle and a LOW in the next cycle,
interrupt request flag IEx in TCON is set. Flag bit IEx then
requests the interrupt.

If the external interrupt 0 or 1 is level-activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to de-activate the
request before the interrupt service routine is completed, or
else another interrupt will be generated.

The external interrupts 2 and 3 can be programmed to be
negative or positive transition-activated by setting or clearing
bit I2FR or I3FR in register T2CON. If IXFR =0 (x =2 or 3),
external interrupt x is negative transition-activated. If IXFR = 1,
external interrupt x is triggered by a positive transition.

The external interrupts 4, 5, and 6 are activated by a positive
transition. The external timer 2 reload trigger interrupt request
flag EXF2 will be activated by a negative transition at pin
P1.5/T2EX, but only if bit EXEN2 is set.

Since the external interrupt pins (INT2 to INTg) are sampled
once each machine cycle, an input HIGH or LOW should hold
fo r at least 12 oscillator periods to ensure sampling. If the
external interrupt is transition-activated, the external source
has to hold the request pin LOW (HIGH for INT, and INTg, if
they are programmed to be negative transition-active) for at
least one cycle, and then hold it HIGH (LOW) for at least one
cycle to ensure that the transition is recognized so that the
corresponding interrupt request flag will be set. The external
interrupt request flags will automatically be cleared by the CPU
when the service routine is called.

Response Time

If an external interrupt is recognized, its corresponding request
flag is set at S5P2 in every machine cycle. The value is not
actually polled by the circuitry until the next machine cycle. If
the request is active and conditions are right for it to be
acknowledged, a hardware subroutine call to the requested
service routine will be the next instruction to be executed. The
call itself takes two cycles. Thus, a minimum of three complete
machine cycles will elapse between activation of an external
interrupt request and the beginning of executing the first
instruction of the service routine. Figure 21 shows interrupt
response timings.

A longer response time would result if the request is blocked
by one of the three previously listed conditions. If an interrupt

of equal or higher priority level is already in progress, the
additional wait time obviously depends on the nature of the
other interrupt's service routine. If the instruction in progress is
not in its final cycle, the additional wait time cannot be more
than three cycles, since the longest instructions (MUL and
DIV) are only four cycles long; and, if the instruction in
progress is RET! or an access to registers IENO, IEN1, IPO, or
IP1, the additional wait time cannot be more than five cycles (a
maximum of one more cycle to complete the instruction in
progress, plus four cycles to complete the next instruction if
the instruction is MUL or DIV).

Thus, in a single interrupt system, the response time is always
more than three cycles and less than nine cycles.

RAM Backup Power Supply

The power-down mode in the 80515 allows reduction of Vo
to zero while saving 40 bytes of the on-chip RAM through a
backup supply connected to the Vpp pin. In the following, the
terms Voe and Vpp are used to specify the voltages on pin
Vce and pin Vpp, respectively.

If Vcc > Vpp, the 40 bytes are supplied from Vce. Vpp may
then be LOW. If Voo < Vpp, the current for the 40 bytes is
drawn from Vpp. The addresses of these backup-powered
RAM locations range from 88 to 127 (58H to 7FH). The current
drawn from the backup power supply is typically 1 mA, Max.
3 mA.

To utilize this feature, the user's system — upon detecting that
a power failure is imminent — would interrupt the processor in
some manner to transfer relevant data to the 40 bytes in on-
chip RAM and enable the backup power supply to the Vpp pin.
Then a reset should be accomplished before Vg falls below
its operating limit. When power returns, a power-on reset
should be accomplished, and the backup supply needs to stay
on long enough to resume normal operation. Figure 22
illustrates the timing on a power failure.

System Clock Output

For peripheral devices requiring a system clock, the 80515
provides a clock output signal derived from the oscillator
frequency as an alternate output function on pin P1.6/CLKOUT. If
bit CLK is set (bit 6 of special function register ADCON), a
clock signal with 1/12 the oscillator frequency is gated to pin
P1.6/CLKOUT. To use this function the Port 1 pin must first be
programmed to a one (1).

Figure 23 shows the timing of this system ciock signal with
respect to signal ALE and the internal states. The system
clock is HIGH during S3P1 and S3P2 of every machine cycle
and LOW during all other states. Thus, the duty cycle of the
clock signal is 1:6. Also shown is the timing with respect to an
external data memory access. The system clock coincides
with the last state (S3) in which an RD or WR signal is active.

8-25

Vee T \

POWER FAILURE DETECTED

RESET \

1y

Ve K /

INTERRUPT

I | |
I I |

TRANSFER ENABLE BACKUP
RELEVANT DATA POWER SUPPLY
TO THE BACKUP AND APPLY RESET
POWER-SUPPLIED

RAM

it .
.
.
.

POWER-DOWN MODE

WF025380

Figure 22. Reset and RAM Backup Power Timing

CLKOUT I l

[[

WF025350

Figure 23. System Clock Timing Overview

More About the On-Chip Oscillator

The on-chip oscillator of the 80515, like the 8051, is a single-
stage inverter (Figure 24), intended for use as a crystal-
controlled, positive-reactance oscillator (Figure 25). In this
application the crystal is operated in its fundamental response
mode as an inductive reactance in parallel resonance with a
capacitance external to the crystal. The crystal specifications
and capacitance values (C4 and Cp in Figure 25) are not
critical. 30 pF can be used in these positions at any frequency
with good quality crystals. A ceramic resonator can be used in
place of the crystal in cost-critical applications. When a
ceramic resonator is used, C1 and C are normally selected to
be of somewhat higher values, typically 47 pF. The manufac-

turer of the ceramic resonator should be consulted for
recommendations on the values of these capacitors.

To drive the 80515 with an external clock source, apply the
external clock signal to XTALp and ground XTAL4, as shown in
Figure 26. A pullup resistor is suggested because the logic
levels at XTALp are not TTL.

Sometimes an external clock with the frequency of the
oscillator is needed. For this application the circuit shown in
Figure 27 is recommended. The CMOS driver (or inverter)
should be placed as close as possible to the oscillator circuit.
Be sure to take into account the impedances of the circuit and
the CMOS driver input.

8-26

Vee

U: Qs TO INTERNAL
TIMNG CIRCUITRY
——E;l = | XTAL2

XTAL1| I 1 H:Q4

.
Vss
1C001020
Figure 24. On-Chip Oscillator Circuitry
Q2
a1 B> ——» TO INTERNAL
TIMING CIRCUITRY
Q3, Q4
Vss
80515
---------- [:}XTAL,--------—---« [:]»XTALQ—--————
QUARTZ CRYSTAL OR
~ CERAMIC RESONATOR
JUI
18]
Cq C2
11 . 1L
7 -I_ 17
1C001010

Figure 25. Using the On-Chip Oscillator

8-27

Vee
80515
>
EXTERNAL
OSCILLATOR D XTALp
SIGNAL
XTAL4
TTL
GATE Vss
1C001000

Figure 26. Driving with an External Clock Source

30 pF
P XTAL4
12MHz TJ 80515
} XTAL
30 pF 2
%]
o
gl-
[}
pa
1C000990

Figure 27. Generating a System Clock from the Oscillator Circuit

Register PCON

The special function register PCON is located at address 87H.
In this register only bit 7, which is SMOD, is implemented. The
other bit positions (PCON.0 to PCON.6) are reserved and
should not be used. SMOD is used to double the baud rate for

the serial port. If SMOD is set to one, the baud rate is doubled
when the serial port is operating in either mode 1, 2, or 3. The
reset value of SMOD is 0. Note that PCON is not bit-
addressable, therefore byte instructions must be used to alter
SMOD.

8-28

ABSOLUTE MAXIMUM RATINGS

Storage Temperaturecoccvuvenenens -65 to +150°C
Voltage on Any Pin

with Respect to Ground(Vss)
Power Dissipation

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

-05t0 +7.0 V

OPERATING RANGES

Commercial (C) Devices

Temperature (TA).......cooiviiviiiiiiiiins 0 to +70°C
Supply Voltage (Vce) . .50V £ 10%
Ground (VSS) . .evvvnieiiiiiiiiiiiiiine e oV

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

Parameter Parameter Test

Symbol Description Conditions . Min. Max. Unit
Vi Input LOW Voltage -0.5 0.8 v
ViH }E‘iﬂiﬂ'%%‘igni XTALp) 20 Vec +05 v
VIH1 Input HIGH Voltage to XTALp) XTAL4 to Vss 2.5 Vee +0.5 \
ViH2 Input HIGH Voltage to RESET 3.0 \
Vpp Power-Down Voltage Vee = OV 3 5.5 \"
VoL Output LOW Voltage, Ports 1, 2, 3, 4, 5 loL=1.6 mA 0.45 \"
VoL1 Output LOW Voltage, Port 0, ALE, PSEN loL=3.2 mA 0.45 v
VOH Output HIGH Voltage, Ports 1, 2, 3, 4, 5 loq =-80 uA 2.4 \"
VOH1 Output HIGH Voltage, Port 0, ALE, PSEN IoH =—-400 pA 2.4 \%
hiL Logic O Input Current, Ports 1, 2, 3, 4, 5 V)L=045 V -800 MA
L2 Logic 0 Input Current, XTALo CI_A:BjSV SVS -25 mA
liLa Input LOW Current to RESET for Reset V)L =045V -500 WA
1L Input Leakage Current to Port 0, EA OV < V)N < Veo +10 A
loc e oss/bos Disconnected 210 mA
IpD Power-Down Current Vec=0V 3 mA
Cio Capacitance of I/0O Buffer fc=1 MHz 10 pF

8-29

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (Ci for Port 0, ALE,

and PSEN outputs = 100 pF; Ci for all other outputs = 80 pF)

Parameter Parameter 12 MHz Clock Variable Clock

Symbol Description Min. Max. Min. Max. Unit
1/TCLCL | Cycle Time 1.2 12 MHz
TLHLL ALE Pulse Width 127 2TCLCL-40 ns
TAVLL Address Setup to ALE 53 TCLCL-30 ns
TLLAX1 Address Hold After ALE 48 TCLCL-35 ns
TLLIV ALE to Valid Instruction In 233 4TCLCL-100 ns
TLLPL ALE to PSEN 58 TCLCL-25 ns
TPLPH PSEN Pulse Width 215 3TCLCL-35 ns
TPLIV PSEN to Valid Instruction In 150 3TCLCL-100 ns
TPXIX Input Instruction Hold After PSEN 0 0 ns
TPXIZ* Input Instruction Float After PSEN 63 TCLCL-20 ns
TPXAV* Address Valid After PSEN 75 TCLCL-8 ns
TAVIV Address to Valid Instruction In 302 5TCLCL-115 ns
TPLAZ Address Float to PSEN 20 20 ns
TRLRH RD Pulse Width 400 6TCLCL-100 ns
TWLWH WR Pulse Width 400 6TCLCL-100 ns
TLLAX2 Address Hold After ALE 132 2TCLCL-35 ns
TRLDV RD to Valid Data In 252 5TCLCL-165 ns
TRHDX Data Hold After RD 0 0 ns
TRHDZ Data Float After RD 97 2TCLCL-70 ns
TLLDV ALE to Valid Data In 517 8TCLCL-150 ns
TAVDV Address to Valid Data In 585 9TCLCL-165 ns
TLLWL ALE to WR or RD 200 300 3TCLCL-50 3TCLCL + 50 ns
TAVWL Address to WR or RD 203 4TCLCL-130 ns
TWHLH WR or RD HIGH to ALE HIGH 43 123 TCLCL-40 TCLCL + 40 ns
TQVWX Data Valid to WR Transition 33 TCLCL-50 ns
TQVWH Data Setup Before WR 433 7TCLCL-150 ns
TWHQX Data Hold After WR 33 TCLCL-50 ns
TRLAZ Address Float After RD 20 20 ns

* Interfacing the 80515 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any
damage to Port O drivers.

8-30

SWITCHING WAVEFORMS

I TCY »
TLHLL Ty
ALE TLLPL \
le————TPLPH
PSEN / U
TLLAX fe——b TPXAV
le—TPLIV —»{
TAVLL o le-TPLAZ TPXIZte—)
TPXIX—{ e
PORTO INSTRIN A7ho INSTRIN ;—)— As-Ag INSTRIN
TAVIV
ADDRESS -
PORT2 Omarmpe ADDRESS A (5-A g ADDRESS Ayg-A g

)

Program Memory Read Cycle

WF025420

TLLDW-

TWHLH

TLLWL, TRLRH
R_D /
TAVWL
[—— TLLAX2 j¢——TRLDV——— [¢—TRHDZ,
TAVDV TRHDX [+—]
PORT 0 Az-Ag DATAIN
[+ TRLAZ
ADDRESS
PORT2 ORSFR-P2 ADDRESS A y5-A g OR SFR-P2)
WF025360

Data Memory Read Cycle

8-31

SWITCHING WAVEFORMS (Cont'd.)

TWHLH
ALE / \
PSEN /
TLLWL. TWLWH
WR / :
TAVWL—=
TOVWX |«

le-TLLAX2-#] TQVWH TWHQ

PORT 0 Az-Ao DATA OUT
ADDRE:
PORT 2 OS 2,; R_Sp52 ADDRESS A ;5-A g OR SFR-P2)
WF025370
Data Memory Write Cycle
c
40 40
{} XTAL4 +5V - XTAL,
I ™ PETR
1
39 39
1l y XTAL, o— XTAL,
c
7404
740504
C =30pF +10 pF
Crystal Oscillator Mode Driving from External Source
1C000980

Recommended Oscillator Circuits

8-32

EXTERNAL CLOCK DRIVE

3 s ¥
Parameter Parameter
Symbol Description Min. Max. Unit
1/TCLCL Oscillator Frequency 1.2 12 MHz
TCHCX HIGH Time 20 ns
TCLCX LOW Time 20 ns
TCLCH Rise Time 20 ns
TCHCL Fall Time 20 ns
Vog 0.5 ~-=--m--am 57 oo
oasy / 02 Vg0t 4_..7<:ch1 \
TCHCL/’ TeLex R Toen
TCLCL
WF025390
External Clock Drive Waveform
SERIAL PORT TIMING — SHIFT REGISTER MODE
(Load Capacitance = 80 pF)
12 MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Unit
TXLXL Serial Port Clock Cycle Time 1.0 12TCLCL us
TQVXH Output Data Setup to Clock Rising Edge 700 10TCLCL - 133 ns
TXHQX Output Data Hold After Clock Rising Edge 50 2TCLCL - 117 ns
TXHDX Input Data Hold After Clock Rising Edge 0 0 ns
TXHDV Clock Rising Edge to Input Data Valid 700 10TCLCL - 133 ns
AC Testing
Vee 05 G2 Vg +08 VLOAD +0.1 V. Vop 01V
Vioap TIMING REFERENCE C
vy 02 Vg -0 VoD 01 v PONTS VoL +01V

WF025400

AC INPUTS DURING TESTING ARE DRIVEN AT Vcc-0.5 FOR A LOGIC
"1"AND 0.45 V FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE
AT Vi4 MIN. FOR A LOGIC "1" AND V). MAX. FOR A LOGIC "0."

Input/Output Waveform

WF025410

FOR TIMING PURPOSES, A PORT PIN IS NO LONGER FLOATING WHEN
A 100 mV CHANGE FROM LOAD OCCURS. IT BEGINS TO FLOAT WHEN
A 100 mV CHANGE FROM THE LOADED Von/VoLLEVEL OCCURS. lo/
I0H =>£20 mA.

Float Waveform

8-33

SYSTEM CLOCK TIMING

Variable Clock
12 MHz clock 1/TCLCL = 1.2 MHz to 12 MHz

Parameter Parameter

Symbol Description Min. Max. Min. Max. Unit
TLLSH ALE to CLKOUT 543 7TCLCL-40 ns
TSHSL CLKOUT HIGH Time 127 2TCLCL-40 ns
TSLSH CLKOUT LOW Time 793 10TCLCL-40 ns
TSLLH CLKOUT LOW to ALE HIGH 43 128 TCLCL-40 TCLCL + 40 ns

TSLLH —

ALE _/——\L—/—\ /‘
e————TLLSH re— TSHSL L—TLLSH i

CLKOUT
71—'\-

TSLSH

=/ N/ S

D, WR —

Program Memory Access Data Memory Access

WF025430
System Clock Timing

A/D Converter Characteristics (Voc=5 V+10%; Vss =0 V; VARer = Voo 5%; VAGND = Vss 0.2 V;
Ta=0 to +70°C)

Parameter Parameter Test
Symbol Description Conditions Min. Max. Unit
VAINPUT Analog Input Voltage VaGND-0.2 VAREF+0.2 v
C Analog Input Capacitance (See Note 3) pF
Ts Sample Time (See Note 4) 5 TCY us
Tc Conversion Time for IVAREF = VAREF 15 TCY s
(Including Sample Time) and IVAGND = VAGND “

for IVAREF # VAREF
and IVAGND = VAGND
or 22 TCY MS
for IVAREF = VAREF
and IVAGND # VAGND

for IVAREF # VAREF

29 TCY
and IVAGND # VAGND ks
Differential Non-Linearity IVAREF = +1 LSB
VAREF = Vce
Integral Non-Linearity IVAGND = +1 LSB
VAGND = Vss
Offset Error R; of Analog 1 LSB
Input Source
Gain Error <10 k2 +1 LSB
IREF VAREF Supply Current 5 mA

Notes: 1. The internal resistance of the analog source must be less than 10 kQ to assure full loading of the sample
capacitance during sample time.

2 The internal resistance of the analog reference voltage source must be less than 1 k.
3. Typical values are 25 pF.

4. TCY=1psat12MHz =12 TCLCL.

8-34

CHAPTER 8
Enhanced NMOS Devices

Heating and Air Conditioning Control in Cars With the 80515 Microcontoller

The heating and air-conditioning unit in a car should
provide the driver with conditions of comfortable tem-
perature, fresh air flow, defogged and defrosted win-
dows, low energy consumption and easy operation.

Its performance-oriented processor and flexible on-chip
periphery, e.g., analog-to-digital converter, timer func-
tion, large number of inputs/outputs make the 80515 es-
pecially suitable for this type of application. The majority
of the peripheral components are fully utilized in this
application.

The temperature inthe car reaches its nominal value and
is kept constant by means of a two-stage mixing valve
control. Arise in the outside temperature automatically
activates the compressor of the air conditioningunit. The
air entering the car is distributed upward and downward
by an electrically controlled valve, depending on the
temperature of the air. The optimal speed is also deter-

mined by the microcontroller as a function of the various
input values. The electronics also control actuators such
as air circulation and the water valve.

The device is operated by means of several keys. An
LED display indicates the nominal or outside tempera-
ture. Individual LEDs indicate special conditions which
can be selected by the user independent of the
automatic functions.

CONTROL ELEMENTS AND SENSORS

The temperature inside the car is controlled in accor-
dance with a selectable nominal value. The mostimpor-
tant actuators for this purpose are the mixing valve and
the compressor of the air conditioning unit. The mixing
valve determines which part of the air entering the
passenger area must pass through the heat exchanger
of the heating unit. The valve can be fine-tuned by the
microcomputer.

Terminal
erminal 30 | 112V
. —e=—+5 V Normal 2
Terminal 15 (75) Power supply Mixing
Reset logic = +5V Standby gerr o valve
Ground Voltage in o= Poten-
ple] Driver tiometer
Console" 447 Lo
O i1 120%>go I~<{ Driver =0
l l l | I °© °© Deod A Matching
_I I'—l l—l 6 K Distribution
O _ ——8D8DOD eys D valve
D . Poten-
o] Driver tiometer
Photo- Brightness N)
transistor 80515 :
I NTC Inside temperature A A Matching
sensor Blower
| Injection t t ° Blower Driver —@
l g‘;gor } jection lemperature Matching |—e1a O logic
Compressor
NTC Outside temperature D=] Rel
sensor 1A ol Driver elay
from speedometen Velocity pulses 0
Dt—e=—
Driver
°C/°F o] - Water
[—*/"" } 0 —;— valve
Df—e—
Special functions river
e o— D Dl D ! Air circulation
valve
D - Digital signal

A — Analog signal
") See fig. 2 for detail

09757A 8-1

Figure 8-1. Block Diagram

Reprinted with permission from Siemens AG, Federal Republic of Germany

8-35

CHAPTER 8
Enhanced NMOS Devices

If there is no heating requirement , the water flow,to-the
heat exchanger is stopped by a digitally controlled valve.
As a result, the temperature is further reduced in the
summer time.

Depending on the output of the system, the air condition-
ing unit ensures that the nominal value of the tempera-
ture inside the car is obtained despite higher outside
temperatures. The compressor of the air conditioning
unit is enabled/disabled by the microcontroller.

In addition, the electronics influences the distribution of
the temperature layers inside the carby a nearly stepless
adjustable distribution valve. The valve determines
whether the air is to be moved towards the roof or the
floorof the car. Through this type of control, the air close
to the roof of the car should be at a temperature lower
than that close to the floor.

The fresh air flow is also electronically controlled. De-
pending on the different temperatures and the road
speed of the car, the microcontroller computes the opti-
mal speed for the blower, which can be changed almost
continuously.

On the basis of the temperature conditions, the proces-
sor determines the requirement for fresh air flow or
circulation of the air inside the car. The corresponding
valve is digitally controlled.

In order to achieve the described functions, the system
uses three sensors to measure the temperature inside
the car, the temperature of the air entering the car as well
as the outside temperature. A speed sensorinforms the
processor about the car's current road speed.

OPERATING AND DISPLAYING UNIT

A display optionally indicates the nominal or outside
temperature. Functions which deviate from standard
operations are indicated by LEDs located next to the
keys. The brightness level of the display and the LEDs
is controlled by the processor in accordance with the
ambient light measured by a phototransistor.

With the aid of eight keys the following functions can be
performed (Figure 8-2):

S1,82: Changes in nominal temperature (“+” and “~"
key) Through instantaneous pressure or sus-
tained pressure on the key, the nominal value
can be changed in 1°C/1°F steps, that is from
16...30°C/60...86°F. In addition, the extreme
values “LO” and “HI” canbe set, and the mixing
valve will continue to remain in the minimal
(cold) or maximal (hot) position.

-. By depressing the keys, the following functions allow the

user to switch over from normal (automatic) setting to
one, two or three fixed values. After a fixed value has
been selected, the corresponding LED or a combination
of two LEDs lights up.

S3: Distribution key for switching the air distribu-
tion to automatic, only upward, in the center
(upward and downward, both LEDs light up) or
only downward.

S4: Blower key for switching the blower to auto-
matic, full speed, half speed (both LEDs light
up) and “OFF".

S5: Air supply key for switching the air supply to
automatic, air circulation, or fresh air.

S6: Compressor key for switching compressor to
automatic “ON” and “OFF”.

S7: Outside temperature key for switching the
display to nominal temperature (standard
function) or outside temperature. The outside
temperature is displayed in 1°C/°F steps at a
range between —40°C/—~40°F and +60°C/
+140°F.

S8: Defrost key for switching the device from its
previous function (standard) to the defrost
function.

The windows of the car thus can be rapidly defrosted and
defogged.

The setting elements take the following positions during
the defrost function which has priority over all other
settings:

Mixing valve: max. heating
Distributor valve: only upward

Blower: max. number of speed
Air supply: fresh air

Compressor: ON

Water valve: ON

As long as the defrost function is in operation, the
remaining functions (with the exception of display switch-
over for the temperature) cannot be operated. The
corresponding LEDs are not driven. After the defrost
status is finished, the previous functions apply again.

The nominal temperature as well as set fixed values are
saved after the car ignition has been turned off. During
initial start-up or after reconnecting the battery, a mean
nominal temperature (22°C/71°F) is set and the auto-
matic functions apply.

8-36

CHAPTER 8

Enhanced NMOS Devices
Distribution Air inlet Qutside
Upwards Circulation O temperature
st - T | Center [ss [Oss O [Os?
| l I I Downwards\o Fresh air O
I l i I I Fu“B/k:»ower Corr(wsressor Defrost
Els2 Half [1s4 [se O [Ose
OFF OFF QO
[= Key
O =LED
09757A 8-2 Figure 8-2. Console
12v

/ZBD 136-16

i N 4001
lermmal 30 2

BC 328-40

+5V Standby

B LM2931A +5V Normal
==470pF/L0V ==220puF/6,3V
2,2kQ
- . []220 Q
+5V Standby
BC 237 To blower driver
100 nF 100 kR
Terminal 15 (75)34 V 100kQ 100 kR
o2t
=3 - _I_ i — RES
§1 kR I‘IOnF W IN 6148
IN 4148
4 To
80515

= 1/6 TLHC 16
with Standby supply

—P>—

ono K

Terminal 15 (75)

P07

-
Pr—
A

ES

12V

—
—

+SV Normal

09757A 8-3

—

Figure 8-3. Voltage Supply, Reset Logic

8-37

CHAPTER 8
Enhanced NMOS Devices

MAJOR HARDWARE AND SOFTWARE
FUNCTIONS

Voltage Supply, Reset Logic

Since various conditions — e.g. nominal temperature —
are to be stored after the ignition has been turned off, a
continuous 5 V supply is required which is supplied
directly by the battery (terminal 30). A diode/capacitor
combination protects against reversed polarity and ex-
treme voltage peaks. The voltage regulator, which is
used, is characterized by a lower power dissipation and
continues to operate during low input voltages. The
80515 stores the data; 40 bytes of its internal RAM are
saved during standby operation with a typical supply
current of 1 mA. See Figure 8-3.

When the car ignition is turned on, the normal 5 V
operating voltage as well as a filtered 12 V voltage are
available for supplying the drivers. The criterion for the
connection of these voltages is the status of terminal 15.
Preferably terminal 75 should be used if included in the
device, since it will remain disabled while the car is
started.

When the ignition is turned off, the processor receives a
signal via PO7 prior to the drop in voltage of the standard
5V supply. Subsequently, the processor will wait for the
reset signal which immediately precedes the voltage
switch off. After the ignition has been turned on again,
RES continues to be held active for a short time. This
time period, required for reset, is ensured by an RC
network in combination with diodes and Schmitt triggers.

Clock Supply

The 80515 oscillator resonates at a frequency of 6 MHz
by means of a ceramic resonator. The result is an
instruction cycle time of 2 us.

Acquisition and Preprocessing of Input
Value Parameters

— Temperature and brightness

Theinside air, fresh air, and outside airtemperatures are
measured with an NTC sensor S 861 orS 867 (encap-
sulated). The most suitable locations for installations of
the sensors in particular car types must be determined
experimentally. The values of the pull-up resistors be-
tween the signal line and the analog reference voltage
have been selectedto ensure optimal accuracy withinthe
required temperature range. Short-term interference
pulses are filtered out by an RC network. The phototran-
sistor BP 103 B on the face of the device generates a
voltage across a resistor in accordance with the ambient
light. See Figure 8-4

6,7kQ/1%

o

Inside temperature

{1 ANO
10kQ
S861/5kQY ==100nF
6, 7kQ/ 1%
— Injection temperature AN
10kQ
5861/5kQ ==100nF
12 kQ/1%
~—— __Outside temperature|
T 11 AN2
10kQ
5561/5kn|§ ==100nF
encap- 8P 1038 80515
sulated
Brightnes:
griness AN3
Lli]1kﬂ ==100nF
+SV Normal Vie
Vi rer Varer
==100nF
Viono Vaono
Ground } 7%
09757A 8-4
Figure 8-4. Temperature and Brightness
—
Tro—> P20
p—o-=T-o—— P21
T Outside temperature P22
T Defrost P23
To- Distribution Pk
) T Airinlet P25
T Blower P2
r
T Compresso s
+5V
80515
Lx10kQ
—o LF P35
ial input O
'Spec» p b 00
cial input 1
Special inpu .
cial input 2
—0 jpe : P P02
ial input 3
Special inpuf 003
“Veloci LHO 1
Velocity kg THC e
pulses .1 3L

R: Value according to velocity pulses
C: Value according to max. frequency of the
velocity pulses

Figure 8-5. Inputs for Keys, Switches and Speed

09757A 8-5

8-38

CHAPTER 8
Enhanced NMOS Devices

The 80515 reads these analog units at regular intervals
via the multiplexer and the analog-to -digital converter
located on the chip. Since the sensors are connected to
the analog references, the result is not affected by the
absolute value of these voltages. After the conversion
low-frequency fluctuations are suppressed via software
averaging. On the basis of tables and linear interpola-
tion, the 80515 computes the values required, i.e. the
temperature and the value for control of the display
brightness.

— Speed

The speed is derived from the transducer for electronic
speedometers included in most cars. An RC network
(perhaps with voltage division) and a Schmitt trigger filter
out interference in the sensor pulses and adjust the
voltage amplitude. Using timer 1, the processor counts
the pulses received within a defined time period. See
Figure 8-5.

— Keys/Switch

Since these components are located inside the device,
they can be protected against bouncing using software.

Because of its many 1/O ports, the 80515 can read in
information directly. A matrix with decoupling diodes is
not required. Also, pull-up resistors are not required at
the inputs of the 80515 — with the exception of P0. With
the hidden °F switch, the unit for displaying the nominal
and outside temperatures can be selected. The special
inputs are used for activating special test functions (see
section on “Testing and Optimization Support”). See
Figure 8-5.

— Display

The display comprises a 3-digit 7-segment LED display
(configured from HG 1107 elements). The foremost digit
utilizes only four segments. There are also 10 single
LEDs LG 3160 for indicating special conditions. The
processor drives the display in a four-step multiplex
method. Forselecting the digit, the outputs P54...P57 go
to HIGH in successive order. During this time the
information for the segments is present at outputs
P40...P46. Four Darlington transistors BC 517 are used
as actuator drivers, and seven transistors BC 237 as
segment drivers. The voltage source is the 12 V supply.
See Figure 8-6.

+SV

12V

LG 3160

3xHG 1107

Compressor On Air upwards

PLO 1 X a

— Compressor Off
P41 1 b

— Blower Off
P2 1 4

— Blower max. ‘
P43 1

i Qutside

— Fresh air
PLL 1 temperature .

— Circulation Defrost
PLS 1 O— f

80515 — Air downwards

P46 1]
Ps7 7]
PS6 2

-
PSS 2
PS4 2

vanable
PS4 _m I l
3 Pss [I l
10kQ I PS6 I l
— BCS1 Ps] I l
09757A 86 PLO..PLS D()(X X X X

Figure 8-6. Display

8-39

CHAPTER 8

Enhanced NMOS Devices
1 Interference l
Ti nom Regulator for Tinrom Regulator for . Control Tnact | Control Tiaa
Ilgﬁgzeor;ure mixing valve [~ Mixing valve === corinn 4 section 2
09757A 8-7

Figure 8-7. Block Diagram of Temperature Regulation

The multiplexed display and the brightness are con-
trolled by time r 2 of the 80515. This is used as.a timer*
in the auto -reload mode with the oscillator frequency
divided by 12. During each overflow the timer is auto-
matically loaded with the content of the CRC register —
in this case FF00. This leads to a time interval of 256 x
2 = 512 us between two overflows. -

The interval determines the length of the multiplex clock.
The interrupt triggered by each overflow results in the
output of the new segment information at port 4. The
allocated multiplex location is released through port 5.

The display brightness levelis determined by the proces-
sor on the basis of the ambient light measured by the
phototransistor, and a table stored in the ROM. The
compare function of timer 2 sets the brightness level: as
soon as the timer reaches the value of the compare
register, an additional interrupt is triggered. Inthe asso-
ciated routine, the processor sets the actuator outputs
P54 ... P57 to “L". This creates an off-period until the
timer overflows, the duration of which depends on the
content of the compare register. This register can be
loaded at any time with the value determined from the
ambient light.

- Regulating the Inside temperature with the mixing
valve

The temperature inside the car depends largely on the
position of the mixing valve, which the 80515 computes
by means of so-called cascade control. See Figure 8-7.

The deviation of the temperature inside the car T, from
the set nominalvalue T determinesin an outer control
circuit the nominal value for the injection temperature
T rome Through the inner, faster control circuit the mixing
valve is adjusted so that the injection temperature actu-
ally reachesthe value 7, . . When compared with a less
complex control of the mixing valve by means of the
difference between the nominal and actual value of the
temperature inside the car, this two stage system results
in improved stability. In addition, interference which
influences the injection temperature can be quickly
rectified (e.g. changes in motor or outside temperature,
activation/deactivation of compressor, switchover from/
to fresh air/air circulation). Also, the min. and max.

ratings for the injection temperature can easily be estab-
lished providing the necessary comfort for the passen-
gers. With properly set parameters the time charac-
teristics as compared to a simple control are equally
satisfactory.

The nominal values for the injection temperature and the
mixing valve position are computed according to a digital
PID (proportional, integral, and differential) algorithm.
Although the variety of parameters which can be set for
both controls permit a wide range of adjustments, the
expenditure is considerable. Therefore, to facilitate the
test and optimization phase, all parameters can be dis-
played and changed during travel by depressing the
respective key (see “Testing and Optimization Support”).
For example, by setting the differential portion to zero, a
Pl characteristic can be obtained.

When “HI” or “LO" is displayed in place of the nominal
temperature, the control algorithmis switched off and the
mixing valve is positioned at maximum or minimum
heating output.

The control algorithm s also inactive inthe defrost status
which calls for max. heat output. When switching over to
normal operation, the valve returns to its former position.

Upward

Air distribution

Downward

Tn=Ti —=

09757A 8-8

Figure 8-8. Position of Distribution Valve Versus
Injection and Inside Temperature

8-40

CHAPTER 8
Enhanced NMOS Devices

Establishing the Nominal Value for the
Distribution Valve

As can be seen in Figure 8-8, the position of the distribu-
tion valve normally depends on the differences between
the injection temperature and the temperature inside the
car. Cooler airis usually directed upwards while heating
air is injected downwards towards the floor of the car.
The effective nominal value is set by the 80515 with
reference to the actual end positions of the valve. (See
“Setting the Mixing and Distribution Valve”).

During the special functions “upward air distribution” and
“defrost”, the air is blown only upward or during “down-
ward air distribution” only downward at floor level. When
“center air distribution” has been selected, half of the air
volume is blown upward and half downward.

Setting the Mixing and Distribution Valve

Both valves are setinthe same manner, that is by motors
and gears which run or stop in both directions. The
components TLE 4201 drive the motor, while the uC
controls them via ports P50 and P51 (mixing valve)
aswell as P52 and P53 (distribution valve). The analog-

to-digital converter of the processor is informed of the
valve position by means of the voltage on a potentiome-
ter which is connected to the valve and supplied by the
analog reference voltages. An RC network filters out the
interference. When the difference between the nominal
and the actual value of a valve exceeds a certain toler-
ance margin, the motor is driven in the respective direc-
tion. See Figure 8-9.

The valves should reach their end positions (mechanical
stops) but the motor, for mechanical reasons, should not
be driven continuously in these positions. Since it is
difficult to solve this problem by an accurate adjustment
of the potentiometer, the system recognizes a mechani-
cal stop when the difference between the actual and the
nominal value remains the same although the motor is
running. In response, the motor is switched off and the
actual value is stored. Thereafter, the system will stop
when this value has been reached. Only after a certain
period of time (approx. 10 minutes) or each time the
ignition has been turned on, the user can change the stop
by depressing the respective key for selection of a max.
position. As a prerequisite for this type of stop recogni-
tion, the electrical region of the potentiometer should not
be fully utilized by the valve angle.

+5V

|
|
v |
100k t i
[
3 | Mixing valve Varer
:
PS50 3
z n
2| TLE w201 ==100nF | ——
|
Ps1 8 i
\{ VAGND
1 |
80515 |
“12V {
| Distribution
3 | valve Vi aer
P52 TL
: |
7| TLEw201 | ==i00nF | @-_-
|
Ps3 d wL, i
| VAGND
1 |
100kQ I
|
10 KQ Jl
o i ¥
ANS _l_ — 4
I‘IOOnF :
0KQ IL
AN 6 —]— ¢ |
I‘lOOnF }
|

09757A 8-9

Figure 8-9. Control of Mixing and Distribution Vaive

8-41

CHAPTER 8
Enhanced NMOS Devices

The slight, relatively rapid fluctuations in the valve nomi-
nal value in the regulation or control mode are sup-
pressed to prevent mechanical wear and tear. The
suppression is of no consequence to the passengers.

Switching Over the Air Supply

During the automatic function, fresh air will be supplied
when the following conditions for air circulation are not
met:

— outside temperature > nominal temperature + 10°C
— outside temperature > inside temperature.

To prevent the valve from switching continuously, a
hysteresis of 2°C in each direction is used.

During “defrost” or “fresh air supply” the system takes in
fresh air; during “ambient air supply”, the air in the car is
recirculated.

The magnetic valve for the air circulation valve is
switched on via P15 by the 80515 with a Darlington
transistor BC 879. A resistor on the output of the
transistor protects against short-term interference (see
Figure 8-10). A short-circuit in the electrical supply can
be detected via P05. Inthis case the processor immedi-
ately stops the control of the valve, but periodically
attempts to reactivate it every few seconds. The mag-
netic valve controls a vacuum motor for activating the air
circulation valve.

Water Valve Activation

When there is no heating requirement, the electronics
inhibit the water flow to the heat exchanger by means of
avalve. As aresult, the temperature inside the car can
be reduced by several degrees in the summer when
compared to operation with a closed mixing valve. The
criterion for inhibiting the water flow is the mixing valve’s

P06 St

Magnetic vaive for
water cut-off

P16 @

Lk
N 4148 %m 148
POS 1< .

Terminal
15(75)

10kQ

Magnetic valve for

10kQ 00 circulation valve
80515 .
P1s N B8 Terminal
15(75)
10kQ
PO4
LTkQ
IN 4168
A
10kQ
+1zve —3 Relay for
00 compressor
I -
BC 880 _L
Pk BC 2378

Figure 8-10.

Control of Water Valve, Circulation Valve and Compressor

09757A 8-10

8-42

CHAPTER 8

position atthe lower stop. Only after the mixing valve has
changed its position by a defined distance from the stop,
will the processor enable the valve again.

The magnetic valve for inhibiting the water flow is con-
trolled in a manner similar to that used for the air circula-
tion valve (see Figure 8-10). P16 and P06 are used as
outputs orfeedback pins. Ascanbe seenin Figure 8-10,
the magnetic valve pneumatically activates the inhibit
valve.

Enabling/Disabling the Compressor

Duringthe automatic functionthe compressoris disabled
only if the outside temperature drops by more than 10°C
below the nominal temperature. Again a hysteresis of
2°C is applied for the switching procedure.

During “defrost” or “compressor ON”, the air conditioning
unit operates continuously, but stops completely during
“compressor OFF”.

The compressor relay is driven (see Figure 8-10) by P14
of the 80515 as well as two transistors BC 237 and BC
880 for increasing the current and converting the levels.
A drive signal short-circuited to ground — after level
conversion by transistor BC 307 — can be detected via
P04 and the system is then switched off for several
seconds. The external compressor relay activates the
magnetic coupling for driving the compressor, however,
only if the (electronically independent) defroster for the
carburetor does not respond.

To Drive the Blower

Initially the speed of the blower is a function of two
variables as can be seenin Figure 8-11. Anincrease in
speed as a function of the nominal-actual temperature
difference leads to rapid temperature adjustment. Dur-
ing extreme outside temperatures, the heating or air
conditioning effect has to be supported continuously by
the blower. The curve minimum is therefore displaced
since the average thermal effect of sun rays has been
taken into account. The two functions are actively
combined.

When both the inside temperature and the injection
temperature lie below or above the nominal value for the
inside temperature, the blower speed is reduced. Other-
wise the already uncomfortably cold car would get colder
or, if already too hot, hotter.

Two points were included when considering the depend-
ence on the road speed: during higher speeds the dy-
namic air pressure increasingly replaces the blower
output. In response the blower speed is reduced in
proportion to the speed or set to zero, if required. How-

Enhanced NMOS Devices
~100%

hel

Q

Q

&

5

3

o

Ti = Trom ——

100%

hel

%

[

7

5

2z

Qo

@

To- Trom ——=

09757A 8-11
Figure 8-11. Examples for Blower Speed Characteristics

ever, during lower speeds or when the car is parked, the
noise generated by the bloweris irritating and polluted air
is brought in, e.g., during heavy traffic. The speed of the
blower is therefore reduced.

These automatic functions can be overridden with the
blowerordefrostkey. The blowerreachesits max. speed
during “fullspeed blower capacity” or “defrost”, operates
at a medium speed at “half blower capacity,” or not at all
in “blower off”.

The blower is driven (Figure 8-12) by the pulse-width
modulated signal generated by the microcontroller at
P12 with the aid of timer 2. The timer has been pro-
grammed for an overflow every 512 us. The compare/
capture register 2 operates in the compare mode (mode
0), port 12 is inactive during timer overflow, or active
when the content of the timer and compare registeris the
same. Therefore, by changing the content of the com-
pare register, the pulse duty factor at P12 can be varied.
An HCMOS inverter and an RC combination convert the
microcontroller output signalinto an analog voltage rang-
ing between 0 and 5 V. This voltage drives the blower
driver located outside the electronics.

8-43

CHAPTER 8
Enhanced NMOS Devices

From power supply

+5V

10kQ AVALTSIX:
IN 4148

P12 Bt i

1/6 74 HC 14

[]100 kQ

80515

Figure 8-12. Blower Control

33kR 3300

BC 3078 I

To blower driver

F/L0V

09757A 8-12

During the standby status, a signal from the voltage
supply prevents a voltage from being applied to the
blower.

When the blower is operating at full capacity, there
should be no voltage drop across the power transistor of
the blower driver. Therefore the transistor is by-passed
with a relay. For this part of the driver, the 80515
connects a 12 V signal to the blower output using two
transistors (BC 237 and BC 307). The relay is switched
off — to prevent wear and tear — when the speed of the
blower is reduced.

Testing and Optimization Support

By encoding at ports P00—P02, the following quantities
can be displayed in place of the nominal or outside
temperature:

1) Inside temperature T ,in °C

2) Injection temperature T in°C

3) Mixing valve setting in %

4) Distribution valve setting in %

5) Blower drive in %

6) Status of compressor, air circulation as well as
water valve

Memory address of internal RAM, which canbe set
Memory content associated with this address,
which can be varied

The controlling and regulating procedures of the system
can be monitored with displays 1 through 6.

During operation, the system can be accessed and all
memory contents indicated with display 7. The settings
are performed in the same manner as the changes in
nominal temperature, namely with keys “+” and “~". The
outside temperature key is used to switch between the
memory address and content. There are functions
suitable for manual control, and there are those which
should be left in the automatic mode.

The possibility of user access has been provided for
adjusting the parameters of the two-stage PID control to
the respective vehicle. The parameters are not estab-
lished by the program. Instead they are stored in the
RAM in the memory area saved during standby opera-
tion. Only after the voltage has been switched off, the
parameters canbe loaded withfixed values during initiali-
zation. The test engineer can therefore change the
parameters according to the test results, although the
device has already been installed.

In order to provide defined start conditions for a test, all
controlling and regulating functions can be switched off
during the setting procedures with P03.

After the test has been completed, the established opti-
mal parameter values can be permanently programmed
in the EPROM or in the masked ROM.

8-44

CHAPTER 8
Enhanced NMOS Devices

Use of the on-chip periphery of the 80515

Table 8-1 includes the functions of the integrated periph-
eryofthe80515. Ascanbe seen, almost all elements are
utilized.

Table 8-1 Use of the 80515 On-Chip Periphery

Periphery Application
Analog-to-digital for measuring
converter —temperatures
— brightness level
and for setting
mixing and distribution valve
Timer 0 for generating a standard time
clock
Timer 1 for measuring road speed
Timer 2 for controlling the time for LED
multiplex display
(with brightness control)
for controlling the pulse/pause
ratio for the blower
Watchdog timer for system monitoring

Serial interface for diagnostic purposes

Ports for interrogating and driving
digital and time analog inputs/

outputs

ALTERNATIVES AND UPGRADES

Changes in the functions of the described sample —
provided the sensors and actuators remain the same —
can be easily realized by merely modifying the program
or the stored tables. However, when different or addi-
tional sensors or actuators are used, the hardware must
be changed as well.

For example the mixing valve can be replaced by a
clocked valve which alternately releases and interrupts
the water flow between the cooler and heat exchanger.
According to the pulse/pause ratio of the drive signal the
heat exchanger temperature changes and thus the air
injected into the car. The previously described hot water
valve is in this case omitted.

Also, in addition to the distribution valve, other elements
for changing the air distribution canbe controlled, e.g. the
vent flaps at the dashboard.

If the serialinterface of the 80515 is not used, the system
could be diagnosed during practical application and
inspections.

8-45

CHAPTER 9

Basic CMOS Devices

80C51BH/80C31BH (data sheet)
87C51 (data sheet)
Designing with the 80C51BH

9-1
9-1
9-12
9-27

80C51BH/80C31BH

CMOS Single-Chip Microcontroller

DISTINCTIVE CHARACTERISTICS

CMOS versions of 8051 and 8031
80C51 = 80C31 + 4K bytes ROM
128 bytes of RAM

32 programmable 1/0 lines
CMOS and TTL compatible

Two 16-bit timer/counters

® Low-power consumption:
- Normal operation: 16 mA @ 5 V, 12 MHz
- Idle mode: 3.7 mA @ 5V, 12 MHz
— Power-Down mode: 50 uA @ 2 V to 6 V
® 64K bytes Program Memory space
64 K bytes Data Memory space
® Boolean processor

GENERAL DESCRIPTION

The AMD 80C51 and 80C31 are CMOS versions of the
8051 and 8031 8-bit microcontrollers. They combine the
power savings of CMOS with the powerful 8051/31 micro-
controller.

These CMOS versions retain all the features of their NMOS
counterparts: 4K bytes on-chip ROM (80C51 only); 128
bytes RAM; 32 1/0 lines; two 16-bit timers; a five-source,

two level interrupt structure; a full-duplex serial port; and
on-chip oscillator and clock circuits.

In addition, the 80C51/31 has two software-selectable
modes of reduced activity for further power conservation —
Idle and Power-Down. In the Idle mode, the CPU is frozen
while the RAM, timers, serial port, and the interrupt system
continue to function. In the Power-Down mode, the RAM is
saved and all other functions are inoperative.

BLOCK DIAGRAM

FREQUENCY
REFERENCE COUNTERS
OSCILLATOR ROM RAM TWO 16-BIT

& 4K BYTES 128 BYTES TIMEREVENT

TIMING (80C51 ONLY) COUNTERS
‘ AN VAN
80C51
cPU <
L X
PROGRAMMABLE
64K BYTE BUS SERIAL PORT
EXPANSION PROGRAMMABLE /O » FULL DUPLEX
CONTROL UART
+ SYNCHRONOUS
SHIFTER
INTERRUPTS [] [] []
INTERRUPTS CONTROL PARALLEL PORTS SERIAL SERIAL
ADDRESS DATA BUS IN out
AND VO PINS
BD007230
Publication # Rev. Amendment
04815 Cc /0

-1 Issue_Date: June 1987

CONNECTION DIAGRAMS

Top View
DIPs
pro 1 7 w0 vee
Pa[]2 39 [] Po.0 AD,
P23 38] Po1 ADy
P3[4 a7] Po2 AD;
Pa]s 36] P0.3 ADy
Ps[]s 35 [] Po.4 AD4
e]7 34] Pos ADg
Pz []s 33 [] Pos ADg
RSt []9 32 po7 ADy
RXD P3.0 [] 10 &
TXD P31 [1 30 [] ALE
iNTy P32 [] 12 20 [PEEN
Ty pas [13 28 (7] P27 Ay
To P34 [14 27] P28 Ay
T P3s [] 15 26 [P25 Ay
Wh Pas 16 25 [] P24 Agp
RO P37 E 17 24] P23 Ay
XTAL, 18 23 [] P22 Ay
XTALy 5 19 22 [] P21 A
Vgs [] 20 211 P20 Ag
CD005551

Note: Pin 1 is marked for orientation.

s
[

2
a

o
Y

PLCC

idefiidd

6 6 4 3 2 1 444 2 W

18 19 20 21 22 23 24 26 26 27 28

o

3seRB8LEES Ly
RN N EREE NN

TEfiifeiedin
CD009440

LOGIC SYMBOL

Vul chc

‘R’T

PORT3

HUBIn

T

PORT1

PORT 2

—

—

— | g

—

—

——

—

-—
LS001323

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: a. Temperature Range

. Package Type

. Device Number

. Speed Option

. Optional Processing

[I -N -

D 80C51BH

I— e. OPTIONAL PROCESSING
Blank = Standard processing

d. SPEED OPTION
Blank = 3.5 to 12 MHz
-1=35 to 16 MHz

c. DEVICE NUMBER/DESCRIPTION
80C51BH/80C31BH
CMOS Single-Chip Microcontroller

‘——— b. PACKAGE TYPE

P = 40-Pin Plastic DIP (PD 040)

D = 40-Pin Ceramic DIP (CD 040)

N = 44-Pin Plastic Leaded Chip Carrier (PL 044)

a. TEMPERATURE RANGE*
Blank = Commercial (0 to +70°C)
| = Industrial (-40 to +85°C) (Preliminary)

Valid Combinations

Valid Combinations Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local
80C51BH AMD sales office to confirm availability of specific valid
80C51BH-1 combinations, to check on newly released valid combi-
P, D, N nations, and to obtain additional data on AMD's stan-
80C31BH dard military grade products.
80C31BH-1

*This device will also be available in Military temperature
range. See MOS Microprocessors and Peripherals Military
Handbook (Order #09275A/0) for preliminary electrical
performance characteristics.

9-3

PIN DESCRIPTION

Port 0 (Bidirectional, Open Drain)
Port 0 is an open-drain bidirectional 1/0 port. Port 0 pins that
have "'1"'s wriiten to them float, and in that state can allow
them to be used as high-impedance inputs.

Port 0 is also the muitiplexed LOW-order address and data

bus during accesses to external Program and Data Memory.’

In this application it uses strong internal pullups when
emitting '"1"'s. Port 0 also outputs the code bytes during
program verification in the 80C51BH. External pullups are
required during program verification.

Port 1 (Bidirectional)

Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have ''1''s written to them are puiled
HIGH by the internal pullups and — while in this state — can
be used as inputs. As inputs, Port 1 pins that are externally
being pulled LOW will source current (I on the data shest)
because of the internal pullups.

Port 1 also receives the LOW-order address bytes during
program verification.

Port 2 (Bidirectional)

Port 2 is an 8-bit bidirectional 170 port with internal pullups.
The Port 2 output buffers can sink/source four LS TTL
inputs. Port 2 pins having ''1''s written to them are pulled
HIGH by the internal pullups and — while in this state — can
be used as inputs. As inputs, Port 2 pins externally being
pulled LOW will source current (lj) because of the internal
pullups.

Port 2 emits the HIGH-order address byte during fetches
from external Program Memory and during accesses to
external Data Memory that use 16-bit addresses (MOVX
@DPTR). In this application it uses strong internal pullups
when emitting ''1"s. During accesses to external data
memory that use 8-bit addresses (MOVX @Ri), Port 2 emits
the contents of the P2 Special Function register.

Port 2 also receives the HIGH-order address bits during
ROM verification.

Port 3 (Bidirectional)
Port 3 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins that have ''1''s written to them are pulled
HIGH by the internal pullups and — while in this state — can
be used as inputs. As inputs, Port 3 pins externally being
pulled LOW will source current (i) because of the pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function

Pso RxD (serial input port)

P31 TxD (serial output port)

P32 INTo (External interrupt 0)

P33 INT; (external interrupt 1)

P34 To (Timer O external input)

P35 T4 (Timer 1 external input)

P3e WR (external Data Memory write strobe)
P37 RD (external Data Memory read strobe)

RST Reset (Input, Active HIGH)
A HIGH on this pin— for two machine cycles while the
oscillator is running —resets the device. An internal
diffused resistor to Vsg permits power-on reset, using only
an external capacitor to Vgg.

ALE Address Latch Enable (Output, Active HIGH)
Address Latch Enable output pulse for latching the LOW
byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory.

PSEN Program Store Enable (Output, Active LOW)
PSEN is the read strobe to external Program Memory. When
the 80C51BH is executing code from external program
memory, PSEN is activated twice each machine cycle —
except that two PSEN activations are skipped during each
access to external Data Memory. PSEN is not activated
during fetches from internal Program Memory.

EA External Access Enable (Input, Active LOW)

EA must be externally held LOW to enable the device to
fetch code from external Program Memory locations 0000H
to OFFFH. If EA is held HIGH, the device executes from
internal Program Memory unless the program counter
contains an address greater than OFFFH.

XTAL; Crystal (Input)

Input to the inverting-oscillator amplifier, and input to the
internal clock-generator circuits.

XTAL2 Crystal (Output)

Output from the inverting-oscillator amplifier.

Vcc Power Supply
Supply voltage during normal, idle, and power-down
operations.

Vss Circuit Ground

-4

FUNCTIONAL DESCRIPTION
Oscillator Characteristics

XTAL4 and XTALp are the input and output, respectively, of an
inverting amplifier which is configured for use as an on-chip
oscillator (see Figure 1). Either a quartz crystal or ceramic
resonator may be used.

To drive the device from an external clock source, XTAL
should be driven while XTAL3 is left unconnected (see Figure
2). There are no requirements on the duty cycle of the
external-clock signal since the input to the internal clocking
circuitry is through a divide-by-two flip-flop, but minimum and
maximum HIGH and LOW times specified on the data sheet
must be observed.

LT

— O

XTAL 3

XTAL 4

Vss

TC003411
Figure 1. Crystal Oscillator
N XTAL
EXTERNAL
OSCILLATOR XTAL 4
SIGNAL
{——‘ Vss
=
TC003391

Figure 2. External Drive Configuration

Note: Different from NMOS configuration.

Idle and Power-Down Operation

Figure 3 shows the internal Idle and Power-Down clock
configuration. As illustrated, Power-Down operation freezes
the oscillator. Idle mode operation shows the interrupt, serial
port, and timer blocks to continue to function while the clock to
the CPU is halted.

These special modes are activated by software via the Special
Function Register, PCON (Table 1). Its hardware address is
87H; PCON is not bit-addressable.

If '"1"'s are written to PD and IDL at the same time, PD takes
precedence. The reset value of PCON is ""0XXX0000".

INTERRUPTY,
[D SERIAL PORT,
TIMER BLOCKS

TC003381
Figure 3. idle and Power-Down Hardware

TABLE 1. PCON (Power Control Register)

(MSB) (LSB)
SMOD| - - - | GF1 | GFo | PD | IDL
Symbol | Position Name and Description
SMOD | PCON.7 Double-baud-rate bit. When set to a
1, the baud rate is doubled when
the serial port is being used in
either modes 1, 2, or 3.
- PCON.6 (Reserved)
- PCON.5 (Reserved)
- PCON.4 (Reserved)
GF1 PCON.3 General-purpose flag bit
GFO PCON.2 General-purpose flag bit
PD PCON.1 Power-Down bit. Setting this bit
activates power-down operation.
IDL PCON.0 Idle-mode bit. Setting this bit
activates idle-mode operation.
Idle Mode

The instruction that sets PCON.O is the last instruction
executed in the normal operating mode before Idle mode is
activated. Once in the Idle mode, the CPU status is preserved
in its entirety: the Stack Pointer, Program Counter, Program
Status Word, Accumulator, RAM, and all other registers
maintain their data during Idle. Table 2 describes the status of
the external pins during Idle mode.

There are two ways to terminate the Idle mode. Activation of
any enabled interrupt will cause PCON.O to be cleared by
hardware, terminating ldle mode. The interrupt is serviced, and
following RETI, the next instruction to be executed will be the
one following the instruction that wrote a 1 to PCON.O.

The flag bits GFO and GF1 may be used to determine whether
the interrupt was received during normal execution or during
the Idle mode. For example, the instruction that writes to
PCON.0 can also set or clear one or both flag bits. When Idle
mode is terminated by an enabled interrupt, the service routine
can examine the status of the flag bits.

The second way of terminating the Idle mode is with a
hardware reset. Since the oscillator is still running, the

9-5

hardware reset needs to be active for only 2 machine cycles
(24 oscillator periods) to complete the reset operation.

Power-Down Mode

The instruction that sets PCON.1 is the last executed prior to
going into Power-Down. Once in Power-Down, the oscillator is
stopped. Only the contents of the on-chip RAM are preserved.
The Special Function Registers are not saved. A hardware
reset is the only way of exiting the Power-Down mode.

In the Power-Down mode, Vcc may be lowered to minimize
circuit power consumption. Care must be taken to ensure the
voltage is not reduced until the Power-Down mode is entered,
and that the voltage is restored before the hardware reset is
applied, which frees the oscillator. Reset should not be
released until the oscillator has restarted and stabilized.

Table 2 describes the status of the external pins while in the
Power-Down mode. It should be noted that if the Power-Down
mode is activated while in external program memory, the port
data that is held in the Special Function Register Py is
restored to Port 2. If the data is a 1, the port pin is held HIGH
during the Power-Down mode by the strong pullup, P1, shown
in Figure 4.

80C51BH 1/0 Ports

The 1/0 port drive of the 80C51BH is similar to the 8051. The
1/0 buffers for Ports 1, 2, and 3 are implemented as shown in
Figure 4.

When the port latch contains a 0, all pFETS in Figure 4 are off
while the nFET is turned on. When the port latch makes a 0-to-
1 transition, the nFET turns off. The strong pullup pFET, P4,
turns on for two oscillator periods, pulling the output HIGH
very rapidly. As the output line is drawn HIGH, pFET Pg3 turns
on through the inverter to supply the Ioy source current. This
inverter and P3 form a latch which holds the 1 and is
supported by Pa.

When Port 2 is used as an address port, for access to external
program of data memory, any address bit that contains a 1 will
have its strong pullup turned on for the entire duration of the
external memory access.

When an 170 pin on Ports 1, 2, or 3 is used as an input, the
user should be aware that the external circuit must sink
current during the logical 1-to-0 transition. The maximum sink
current is specified as It under the D.C. Specifications. When
the input goes below approximately 2 V, P3 turns off to save
Icc current. Note, when returning to a logical 1, P2 is the only
internal pullup that is on. This will result in a slow rise time if
the user's circuit does not force the input line HIGH.

DESIGN CONSIDERATIONS

® At power on, the voltage on V¢ and RST must come up at
the same time for a proper start-up.

® Before entering the Power Down mode, the contents of the
Carry Bit and B.7 must be equal.

TABLE 2. STATUS OF THE EXTERNAL PINS DURING IDLE AND POWER-DOWN MODES

Mode Program Memory | ALE | PSEN PORTO PORT1 PORT2 PORT3
Idle Internal 1 1 Port Data Port Data _ Port Data Port Data
Idle External 1 1 Floating Port Data Address Port Data

Power-Down Internal 0 0 Port Data Port Data Port Data Port Data
Power-Down External 0 0 Floating Port Data Port Data Port Data
7 Vee Vee
—_
2 0$C. PERIODS
EIH [‘ P2 L—'i P3
PORT
Ao [-
a O— | il
PORT IEl
LATCH
INPUT
DATA
READ
PORT PIN
TC003401

Figure 4. I1/0 Buffers in the 80C51BH (Ports 1, 2, 3)

ABSOLUTE MAXIMUM RATINGS
-65°C to +150°C

Storage Temperature
Voltage on Any

Pin to Vgs
Voltage on Vce to Vss ..
Power Dissipation

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

-05 V to Vgg +0.5 V
-05Vto 65V

OPERATING RANGES

Commercial (C) Devices

Temperature (TA)......cocevvvvininiiniiniiininnss 0 to +70°C
Supply Voltage (VCE) «+vververrernrerurennnns +4 Vito+6V
Ground (VSS) . .cvvvruniiuviniiiiiieiieiiieiieieiieenneans oV

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

Pgr:::c:'er ;:;::?;tl:; Test Conditions Min. Max. Units
ViL Input LOW Voltage (Except EA) -05 2 Vgg-1 v
ViLt Input LOW Voltage (EA) -0.5 2 Voo-.3 v
ViH Input HIGH Voltage (Except XTAL4, RST) 2Vec+.9 | Vogc+05 v
ViH1 Input HIGH Voltage (XTALy RST) .7 Voo Vec +0.5 v
VoL Output LOW Voitage (Ports 1, 2, 3) loL= 1.6 mA (Note 1) 0.45 \
Vou1 Output LOW Voltage (Port 0, ALE, PSEN) loL = 3.2 mA (Note 1) 0.45 v

loH =-~60 pA, Voo =5 V+10% 24 v
VoH Output HIGH Voltage (Ports 1, 2, 3) IoH = ~25 wA .75 Voe v
IoH =-10 pA .9 Voo v
) loH = ~ 800 pA, Voc =5 V+10% 24 v
Vot agtg:,t ;i‘l(érp_\gélﬂta)ge (Port O in External Bus lor = —300 wA 75 Voo v
loH = -80 WA (Note 2) 9 Voo v
e Logical 0 Input Current (Ports 1, 2, 3) ViN=045 V -50 MA
I Logical 1 to 0 Transition Current (Ports 1, 2, 3) ViN=2 V -650 MA
1] Input Leakage Current (Port 0, EA) 0.45 < VN < Voo +10 MA
RRST Reset Pulldown Resistor 50 150 kQ
CIiO Pin Capacitance Test Freq. =1 MHz, Tp =25°C 10 pF
Ipp Power Down Current Vcc=2 to 6 V (Note 3) 50 MA
MAXIMUM Icc (mA)
Operating (Note 4) Idle (Note 5)

Freq. Vcc 4V 5V 6V 4V 5V 6V

3.5 MHz 4.3 5.7 75 1.1 1.6 22

8.0 MHz 8.3 1 14 18 2.7 3.7

12 MHz 12 16 20 25 3.7 5
16 MHz 16 20.5 25 3.5 5 6.5
Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the Vo g of ALE and Ports

1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make
1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE
line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch

with a Schmitt-Trigger STROBE input.

specification when the address bits are stabilizing.

. Capacitive loading on Ports 0 and 2 may cause the Vol on ALE and PSEN to momentarily fall before the .9 Voo

. Power-Down Icc is measured with all outputs pins disconnected: EA = Port 0 = Vcc; XTAL2 N.C.; RST = Vgs.
. lcc is measured with all output pins disconnected; XTALy driven with TCLCH, TCHCL =5 ns, V| =Vgg+.5 V,

ViH =Vcc-.5 V; XTALp N.C; EA=RST = Port 0 =Vcc.
Icc would be slightly higher if a crystal oscillator is used.

. ldle Icc is measured with all output pins disconnected; XTAL driven with TCLCH, TCHCL = 5 ns, V| =Vgg+ .5 V,

ViH = Vcg-.5 V; XTAL2 N.C.; Port 0 =Vgg; EA=RST = Vgs.

9-7

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

(Cp for Port 0, ALE and PSEN Outputs = 100 pF; C| for All Other Outputs = 80 pF)

16 MHz Osc. | 12 MHz Osc. Variable Oscillator

Parameter Parameter

Symbol Description Min. | Max. | Min. | Max. Min. Max. Units
External Program and Data Memory Characteristics

1/TCLCL Oscillator Frequency 3.5 16 MHz
TLHLL ALE Pulse Width 85 127 2TCLCL - 40 ns
TAVLL Address Valid to ALE LOW 7 28 TCLCL - 55 ns
TLLAX Address Hold After ALE LOW 27 48 TCLCL - 35 ns
TLLIV ALE LOW to Valid Instr. In 150 234 4TCLCL-100 | ns
TLLPL ALE LOW to PSEN LOW 22 43 TCLCL - 40 ns
TPLPH PSEN Pulse Width 142 205 3TCLCL-45 ns
TPLIV PSEN LOW to Valid Instr. In 83 145 3TCLCL-105| ns
TPXIX Input Instr. Hold After PSEN 0 0 0 ns
TPXIZ Input Instr. Float After PSEN 38 59 TCLCL-25 ns
TAVIV Address to Valid Instr. In 208 312 5TCLCL-105| ns
TPLAZ PSEN LOW to Address Float 10 10 10 ns
TRLRH RD Pulse Width 275 400 6TCLCL - 100 ns
TWLWH WR Pulse Width 275 400 6TCLCL - 100 ns
TRLDV RD LOW to Valid Data In 148 252 5TCLCL-165| ns
TRHDX Data Hold After RD 0 0 0 ns
TRHDZ Data Float After RD 55 97 2TCLCL - 70 ns
TLLDV ALE LOW to Valid Data In 350 517 8TCLCL-150| ns
TAVDV Address to Valid Data In 398 585 9TCLCL-165| ns
TLLWL ALE LOW to RD or WR LOW 137 238 200 300 | 3TCLCL-50 | 3TCLCL + 50 ns
TAVWL Address Valid to Read or Write LOW 120 203 4TCLCL-130 ns
TQVWX Data Valid to WR Transiiton 2 23 TCLCL -60 ns
TQVWH Data Valid to Write HIGH 287 433 7TCLCL-150 ns
TWHQX Data Hold After WR 12 33 TCLCL - 50 ns
TRLAZ RD LOW to Address Float 0 0 0 ns
TWHLH RD or WR HIGH to ALE HIGH 22 103 43 123 TCLCL-40 | TCLCL +40 ns

= TAVLL:

SWITCHING WAVEFORMS

/N

LUV
“Tav
—_—

TPLPH—————=|

X2 ||
TLLAX
o] f—TPLAZ | TRXIX—| |~
(4
PORT O ADg-AD, “"m"' ADg-AD7
\N N
——————— TAVIV —————
4
PORT 2 Ag-Ags Ag-Ats
N

WF021961

External Program Memory Read Cycle

VU

—— TUAWL — TRLAN:

® \ A

-~ VROV ——— TRHOZ
™
-nux-l | | TRLAZ TRHOX —| l‘-
[A04-a0, V4 ADy-AD. _/ nstR
poRTo H‘mm\toﬁm (| oanamn n:noc’i.]
TAVWL——— | 40540,
TAVOV
PORT 2 P2.0-P2.7 OR Ag-Aqg FROM DPH x Ag-Aqs FROM PCH
WF020961

External Data Memory Read Cycle

SWITCHING WAVEFORMS (Cont'd.)

w S\ T\
wa

TAVLL - TLLAX TAVWH————————e ‘L

ADo-ADy ADg-AD.
PORT 0 D—< FROM Ri OR OPL OAvA OUT X Fnom pcL e

PORT 2 P2.0- P27 OR Ay~ Ayg FROM OPH X Ag- Ay FROM PCH

WF020931

External Data Memory Write Cycle

[P—
e 1 rer
o] oo |

N X X_* X
i wL—nollm- -

sour oum €O @ CD @ OO @ CO @ CD aE O e e D

WF020950

Shift Register Timing Waveforms

9-10

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Description Min. Max. Units

1/TCLCL Oscillator Frequency 3.5 16 MHz

TCHCX HIGH Time 20 ns

TCLCX LOW Time 20 ns

TCLCH Rise Time 20 ns

TCHCL Fall Time 20 ns

048V 02vge-0.1 | Y [~ ToWCX
} TCLOX — |eed , TCLCH
TCHCL TCLCL 1
WF020910
External Clock Drive Waveform
SERIAL PORT TIMING — SHIFT REGISTER MODE
Test Conditions: Tp =0°C to 70°C; Vgc=5 V +20%; Vgs =0 V; Load Capacitance = 80 pF
16 MHz Osc. Variable Oscillator
Parameter Parameter
Symbol Description Min. Max. Min. Max. Units
TXLXL Serial Port Clock Cycle Time 750 12TCLCL ns
TQVXH Output Data Setup to Clock Rising Edge 492 10TCLCL-133 ns
TXHQX Output Data Hold After Clock Rising Edge 8 2TCLCL - 117 ns
TXHDX Input Data Hold After Clock Rising Edge 0 0 ns
TXHDV Clock Rising Edge to Input Data Valid 492 10TCLCL - 133 ns
Vec-05 02 Voo +09 VLOAD+0.1