
Bay Networks

GAME & Kernel Overview

10/24/96

- GAME Background

GAME = Gate Access Management Entity (acronym probably came first).

Original Wellfleet ACE system was a VME architecture with VRTX based software.

This had a few shortcomings:

• Performance - everything wound up in a single process so we weren't really using the OS.

• Hotswap - HW could do it. SW couldn't.

• Dynamic reconfiguration wasn't possible.

• Hard to support - no source code for the OS.

GAME developed to address deficiencies with the ACE systems.

GAME was developed in conjunction with new HW - FRE.

GAME & Kernel Overview
Slide 2 of 28

10124196

Bay Networks

_ How do you build a router?

Before discussing GAME proper its best to look at some of the design considerations
which need to be addressed in order to build a good multi-protocol router.

A router is much different than a 'normal' PC or Unix workstation design.

SOJPe of the design issues include:
i

• Encapsulation/decapsulation.

• Performance.

• Packet access.

• Multi-slot issues.

• High availability.

• Dynamic reconfiguration.

• Internal code structure.

~
Bay Networks

GAME & Kernel Overview
Slide 3 of 28

10124196

- Encapsulation

Encapsulation/decapsulation must be efficient.

This is one of the main jobs of a router -- removing one type of header and adding
another.

Copying data is bad -- very inefficient.

Note: you may need to add more data than is removed.

Solution: Provide extra pad space before packet data so data can be appended without
copying. .

GAME & Kernel Overview
Slide 4of28

10124196

Bay Networks

Performance

One way to higher performance is to effectively utilize the caches:

Instruction cache:

• Traditional locality of execution.

• But, too much code leads to a point of diminishing return as I-cache footprint gets overwritten
(initially this was 1991 technology).

Data cache:

• Two hot areas: stack and routing table.

1. Routing table very important.

Solution: Keep amount of code being executed to a reasonable size.

Operate on more than one packet in a row so to utilize I-cache and routing
table in D-cache.

Bay Networks

GAME & KernelOvelView
Slide 5 of 28

10124196

- Packet Access

Packet access is different from normal data access because other hardware (link mod
ule, PPX) share the memory.

Hard to make this cacheable especially if processor doesn't have the hooks (MESI).

Could perform cache ftusheslinvalidates before giving packet to other HW, but •••

Observation: CPU doesn't care about most of the packet. Only really cares about the
headers, not the data. Also, the headers aren't accessed multiple times.

Implies caching wouldn't be such a big win.

Solution: Keep packet memory non-cached.

Provide special hardware to accelerate accesses to hot spots (packet headers).

GAME & Kernel Overview
Slide 6 of2S

10124196

Bay Networks

- Multi-slot

Packets may come in linterface on one slot but go out an interface on another slot.

Should the forwarding path really care about this?

Ideally no. It'd be nice to perform one lookup and just mark where the packet goes
next without regard for whether or not it a remote slot.

This would also isolate local vs. remote decision to one piece of SW.

Solution: Provide an addressing mechanism where local and remote are treated
equally.

GAME & Kernel Overview
Slide 7 of 28

10124196

Bay Networks

High Availability

High availability = no single point of failure in the box.

This implies that tightly coupled slots (shared memory) are bad or one slot could bring
down another.

But, still need to know the state of other slots so as to know if remote interfaces are still
working.

How about SW? Want to prevent an error in one protocol from affecting other proto
cols.

Solution: Communicate slot to slot with messages that don't use shared memory.

Bay Networks

Provide a mechanism to monitor remote slots.

Track SW resources so when a protocol crashes its resources can be
reclaimed and the protocol restarted.

GAME & Kernel Overview
Slide 8 of 28

10124196

-

.J

bynamic Reconfig.

Much like high availability.

Need to be able to remove a protocol without affecting other protocols.

Solution: Track resources (same as high availability).

GAME & Kernel Overview
Slide 9 of 28

BayNetworks

10124196

- Internal Code Structure

Could have one big fu~ction for forwarding. But,

• Not very maintainable.

• Hard to change processing steps (which may be configuration dependent).

• Too big and you ruin your I-cache footprint.

How about error recovery/reconfiguration?

• Need a way to know what code is related so all pieces are removed.

• Resource tracking must be enforced.

Solution: Arrange code into manageable sized 'processes'.

Arrange in parent/child fashion to make it easy to group related gates.

GAME & Kernel Overview
Slide 10 of 28

Bay Networks

10124196

r-- Design Summary
"

Design consideration

Encapsulation

Performance

Packet access

Multi-slot

High Availability

Dynamic reconfig.

Internal structure

,

~
Bay Networks -

GAME Solution

Buffer format where data is 'suspended' below a header.

Gate design where code for a single routing 'step' is done.
Operate on lists of packets.
Include the destination for the buffer within the buffer.

HW acceleration for packet headers.

Gatehandles which represent local/remote in same format.
OS interprets if destination is local or remote.

Mappings to track existence of gates (local or remote).
OS tracks all resources owned by gates.
Gates arranged in parent/child.

Same as High Availability.

Gates are lightweight.
Buffers contain their own next destination.
Dynamic loader.

GAME & Kernel Overview
Slide 11 of 28

10124196

Gates

~l

A G'ate is the fundamental unit if scheduling.

Analogous to a process, task or thread of other 08s.

Every gate has an ID, referred to as a GID.

There are 5 types of gates:

1. Well-known -- Can exist on multiple slots. GID is defined at compile time.

2. Dynamic -- Exists only on a single slot. GID is allocated at run time.

3. Alias -- A GID which groups gates. Any message sent to an alias has a copy made for all the
gates in the alias list.

4. Ensign -- A GID with no gate block. Can only be mapped.

5. Davidian -- A GID with no gate block. Can only be mapped on same slot.

Gates are related to one another in a parent-child relationship.

A gate can be a "soloist". A well-know gate which only exists on one slot but which will
move if that slot dies •

.•...

Bay Networks

GAME & Kernel Overview
Slide 12 of 28

10124196

· Gates continued ...

T~~ existence ofa gate is tracked with a gatehandle. This is a GID along with a slot
md$k which tells which slots that GID exists on:

Slotmask
== 16 1 ••• 1

4

GID

Each gate has a activation function which can be changed while executing.

Each gate can malloc its own environment or have its parent provide one.

Children are allowed to access their parents memory. The reverse, parents accessing a
child's memory, or accessing memory of a ditTerent family tree is highly discouraged
because of high availability considerations.

Gate activation is just calling its activation function passing the gate's environment and
a butTer list or signal as arguments.

Many gates (lOOOs) can be supported.

The first gate created is the loader gate. This is done by the kernel. All other gates are
then children of the loader.

GAME & Kernel Overview
Slide 13 of2S

10124196

Mappings

Mappings are (probably) unique to GAME.

Allow any gate to track the existence of any other gate in the entire system.

Tracking is done via gatehandles.

Uses:

• Find out where protocols are loaded -- map IP's well-known gate.

• When forwarding traffic, make sure the interface is up -- map the circuit gate.

• Keeping an eye on children -- map them.

• Cleanup in case of error -- map yourself.

• Notification of MIB changes -- map a davidian created by the Mm for you.
J

Mapping run as a temporary child of the gate which created it.

A mapping activation gets the old gatehandle and the current gatehandle and compares
the two to see what has changed.

A mapping activation is called for each gatehandle change.

Scheduler

Basic scheduling is a FIFO -- first in I first out.

Gates run to completion or until they make a pending system call.

Al\gates share the same stack unless they pend at which point the current stack is saved
anD a new stack allocated.

T~ scheduler has 2 queues:
..,;':

, • Active queue --list of gates ready to run.

• Idle queue -- list of gates ready to run .u!k!: scheduler goes idle.

A gate is activated for only one reason at a time. H a gate pends it will not be activated
for such things as delivery of new butlers until after it returns from its first activation.

If scheduled with a list of butlers, the gate is expected to do something with those butl
ers (send them somewhere else, free them, add to private pool).

Long running gates are expected to give up the CPU to allow others to run.

Bay Networks

GAME & Kernel Overview
Slide 15 of 28

10124196

Interrupts

Interrupts fall into 3 different classes:

1. Always enabled -- such things as the watchdog, error detection and tty breaks.

2. Enabled between gates -- timer, backbone.

3. Enabled when scheduler idle -- module.

Each class also includes the interrupts from the class above it.

Inferrupts such as timer and backbone are only taken between gates for performance
reasons. This allows forwarding gates, which are processing many buffers, to execute
u~contested.

Module interrupts are take only when idle in order to allow the hardware time to build
upa list of buffers for processing. This is important as lists are much more efficient to
process then individual buffers.

Bay Networks

GAME & Kernel Overview
Slide 16 of 28

10124196

Signals

There are a few different types of signaling mechanisms:

SIG INI:
• The creator of a gate can arrange for that gate to get an initialization signal.

g siglg_isr:
• A gate registers to handle a signal via g_isr. Some other entity ''throws'' the signal via g_sig.

• The thrower doesn't know who the signal catcher is (or even if one exists).

• This is how GAME lets drivers know when a HW interrupt occurred.

• Multiple g_sig's which occur before the gate is activated for that signal do not nest.

g_sig_ data:

• Allows a gate to sen«llinultiple signals to another gate.

• Can optionally send memory along with the signal.

• Designed to get around a early GAME limitation of only allowing one user defined signal per
gate.

• Multiple g_sig_data signals can be sent to a gate and none will be lost.

Timers

GAME provides a simple timer facility.

Each gate is allowed to have one timer.

Gates can arrange to receive a periodic timeout signal which will result in a SIG _ TMO
scheduling.

Timers automatically reset until canceled.

There is a delay mechanism whereby a gate can pend in place for a specified amount of
time.

A word of warning: accurate timers were never a design goal of GAME and thus they
aren't very accurate.

A few reasons why:

.. Timer interrrupts are only handled between gates thus if a gate runs through multiple timer
ticks GAME will miss them.

• Gates get scheduled at the end of the activation queue and need to wait for others in front of
them to complete.

Bay Networks

GAME & Kernel Overview
Slide 18 of 28

10124196

- Memory Model

GAME operates with a flat memory map (logical = physical).

There are 3 basic memory types:

Malloc memory:

• "Normal" memory used for mallocs, stacks and loadable applications.

• Cacheable.

ButTer memory:

• Special memory used exclusively for butTers.

• Buffers are carved at initialization time and there is a fixed number of them.

• Shared between processor, backbone and link so W!t cacheable.

• Often has special hardware to improve its· performance.

HW registers:

~

• All accesses to HW is via memory mapped registers.

• Not cached.

GAME & Kernel Overview
Slide 190f2S

Bay Networks

10/24196

Buffers

Buffers are carved at initialization time.

A buffer is always on exactly one list.

There are numerous lists throughout the system:

• Free buffer list.

• Each gate can be delivered a list and can hold onto a list in its "private pool".

• The PPX transmitter and receiver can own lists.

The data in a buffer is in the middle of the buffer to allow for easy encapsulation.

A buffer also contains a destination gatehandle used by the message delivery system.

head ---I~ next
dest h

start

Bay Networks

next
dest h

start

GAME & Kernel Overview
Slide 20 of 28

10124196

Messaging

GAME provides two types of messaging; unreliable and reliable.

Unreliable messaging:

• This is the normal type of message used in the forwarding path.

• These messages may be lost in the system, usually because the receiving slot has no more
receive buffers.

• Gates can send lists of messages this way (lists are much preferred).

• Sending unreliable messages does not pend the gate.

Reliable messages:

• Primarily used by the control path.

• GAME uses an acknowledgment protocol to ensure delivery to remote slots.

• Reliable messaging will pend the gate until the message has been delivered (or an error
occurs).

• There is an RPC mechanism where a gate can send a message and pend until the replies have
been collected.

Bay Networks

GAME & Kernel Overview
Slide 21 of 28

10124196

- Semaphores

GAME provides a semaphore mechanism.

Semaphores can be well-know (compile time) or dynamic (run time).

Gates must register for semaphore usage before obtaining a semaphore token. This
allows GAME to remove a semaphore should all its users cease to exist.

The number of tokens in a se~aphore can be varied.

There is a way to check for token availability before trying to get the token.

GAME & Kernel Overview
Slide 22 of 28

10124196

Bay Networks

SMP

p

Some new hardware platforms support symmetric multiprocessing.

GAME's implementation of SMP makes use of the family tree and gate classification to
determine which gates may run in paraDel.

Gates are classified depending upon what other gates they share memory with.

This SMP model was developed to be backward compatible with existing code where
the gate knows it owns the CPU until it gives it up and thus can modify memory at will.

The goal is to have forwarding path "clean" so it can run in paraDel with any other
gate.

Bay Networks

GAME & Kernel Overview
Slide 23 of 28

10124196

- High Availability

In order to obtain high availability GAME track all resources owned by a gate:

• ButTers

• Memory

• Children

• Presence in activation queue.

• Ownership of semaphore tokens.

If a gate dies due to an error, it and all its children are removed and all their resources
are freed.

Mappings are then triggered to notify other gates of the change.

Re-configuration uses this same mechanism to remove an actively running protocol.

GAME also tracks resource usage by a gate and may log an error or kill the gate if it:

• Uses lots of memory.

• Pends while owning many butTers.

• Hogs the CPU for a long amount of time.

GAME & Kernel Overview
Slide 24 of 28

10124196

BayN~

- Other GAME Services

, ,-

GAME provides an event log:

; • This is a special region of memory which will survive a crash intact. About the only time its
; lost is when the board is power cycled.

• Gates can log information here; warnings, faults, debug info, etc.

• Can be viewed from the TI, Optivity, saved to ftash or tftp off the router.

• Provides postmortem crash analysis capabilities.

Tbere are system calls to read and set tbe wallclock time.

Tbere is a way to cbeck tbe platform type to make runtime decisions (tbough tbese are
rare).

~ ... GAME & Kernel Overview
Slide 2S of 28

10124196

BayNetwoQ<s

Other Parts of the Kernel

GAME usually refers to the OS while 'kernel' often includes other subsystems which
are build on top of GAME.

The kernel is the statically linked piece, it doesn't include applications which are
dynanncallyloaded.

Subsystems in the kernel include:

• Dynamic loader -- Loads applications (i.e. IP).

• MID -- The main database though which the router is configured and statistics retrieved.

• FUesystem -- Provides access to flash cards.

• DP (datapatb) -- Provides decapsulation and encapsulation of MAC layer.

• TBL -- Provides utilities for fast table lookups.

• TI (technician interface) -- Provides rudimentary console interface.

Bay Networks

GAME & Kernel Overview
Slide 26 of 28

10124196

Loadable Applications

Dynamically loadable applications use special compiler flags so that the code generated
can run at any address without the help of a MMU.

The loader will attempt to obtain applications directly from another slot's memory
before resorting to loading otT the flash.

This leads to a few restrictions:

• Apps shouldn't have global data. Everything should be kept in the environment.

• Pointers within the .data section can be problematic as they are not automatically relocated.
The app needs to relocate these itself.

• Apps need to realize that other apps can come and go, taking their services with them. An app
should map the root gate of any other app it makes use of.

Bay Networks

GAME & Kernel Overview
Slide 27 of 28

10/24/96

Simple Packet Flow

Bay Networks

I

~----------~~~

GAME & Kernel Overview
Slide 28 of 28

10124196

