
GAME 

GAME Reference Manual 

Internal Use Only 

The information in this document is proprietary to Bay 
Networks, Inc. This information is made available for the 
exclusive use of Bay Networks employees and may not be 
disclosed to others except as specified in a license agree
ment. 

Confidential and Proprietary Information of Bay Networks, Inc. 
September, 1997 

ft Bay Networks 





• • • • • • • • • • • • • • • • • • • • • • 
Contents 

About This Manual 

Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 
Supplementary Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 

Chapter 1 
Introduction to GAME 

Overview ................................................................................. 1-1 
Properties of GAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Comparisons to UNIX ....................................................................... 1-2 
Design Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 

Encapsulation/Decapsulation ............................................................. 1-3 
Performance via Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Packet Accesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Multi-Slot Forwarding Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
High Availability ........................................................................ 1-6 
Dynamic Reconfiguration ................................................................ 1-7 
Internal Code Structure .................................................................. 1-7 

Limitations ................................................................................ 1-7 
Zero-Packet Loss ...................................................................... 1-7 
Application Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
"Cheap" Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 

Chapter2 
Gates 

Definition ................................................................................. 2-1 
Attributes ................................................................................. 2-1 

Ancestry ............................................................................. 2-1 
Identification .......................................................................... 2-1 
Structure ............................................................................. 2-2 
Activation Routine ...................................................................... 2-2 
Environment Pointer .................................................................... 2-2 
State ................................................................................ 2-3 
Resources ............................................................................ 2-3 

Identification: Gate IDs and Handles ........................................................... 2-4 
Gate IDs ............................................................................. 2-4 
Gate Handle .......................................................................... 2-5 

Gate Instance Management .................................................................. 2-7 
Normal Activation ......................................................................... 2-10 
Classes of Gates . . . . . . . . . . . . ............................................................. 2-12 

Well-Known Gates .................................................................... 2-12 
Dynamic Gates ....................................................................... 2-12 
Ensign Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 
Davidian Gates ....................................................................... 2-14 
Alias Gates .......................................................................... 2-14 

Soloists ................................................................................. 2-15 
Aliases ................................................................................. 2-17 

• 
• 

GAME Reference Manual iii • 



• • • • • • • • • • • • • • • • • • • • • • 
• 
• 

Contents 

Chapter 3 
Mappings 

What's a mapping? ......................................................................... 3-1 
Why? ................................................................................... 3-1 
Function Call ............................................................................. 3-1 
Mapping to Retrieve the Current GH ........................................................... 3-2 
Mapping With No Activation Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

Caveats .............................................................................. 3-3 
Example ............................................................................. 3-4 

Mapping With An Activation Routine ........................................................... 3-4 
Some Mapping and Unmapping Gotchas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 
Mapping An Alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 
Some Frequently Asked Questions ........................................................... 3-12 
Activation Routines for Well-Known Gates ...................................................... 3-14 

Data Signal Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 
Perform All Processing in the Thread Approach .............................................. 3-17 

Activation Routines for Dynamic Gates ......................................................... 3-19 
Activation Routines for Ensign/Davidian Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24 
Changing a Mapping Activation Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 
Soloist Mapping By the Parent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 
A General Warning About Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 

Chapter4 
Buffers 

What Are Buffers Used For? ................................................................. 4-1 
Fast Facts About Buffers .................................................................... 4-1 

Global Facts .......................................................................... 4-2 
Facts That Apply Only to the FRE1/2, ASN, AN ............................................... 4-2 
Facts That Apply Only to the ARE, FRE3 .................................................... 4-2 

Buffer Format ............................................................................. 4-3 
Buffer Pools I Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 

The Free Buffer Pool ................................................................... 4-6 
The Transient Buffer Pool ................................................................ 4-6 
Private Buffer Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 

Buffer Allocation .......................................................................... 4-13 
g_balloc() Function Call ................................................................ 4-13 
g_breplen Function Call ................................................................ 4-14 
g_copy() Function Call ................................................................. 4-15 

Buffer Manipulation ....................................................................... 4-16 
Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 

Primitives .......................................................................... 4-17 
Freeing Buffers ........................................................................... 4-17 

Using g_bfree() ....................................................................... 4-17 
Gate Handle Contains Zero ............................................................. 4-18 
Dying Gate .......................................................................... 4-18 

Moving Buffers Around (g_bmove) ............................................................ 4-19 
Removing/Adding Buffers From GAME ........................................................ 4-19 

Removing Buffers From GAME .......................................................... 4-20 
Adding Buffers To GAME ............................................................... 4-20 

• iv GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Contents 

Performance Tips ......................................................................... 4-20 
Debug Tips .............................................................................. 4-22 

debug kml Command .................................................................. 4-22 
Dumping Buffer Contents ............................................................... 4-23 
Debugging Orphaned Buffers ............................................................ 4-23 

Chapters 
Inter-Gate Communication 

Types of Inter-Gate Communication ............................................................ 5-1 
Buffer Delivery ............................................................................ 5-1 

Unreliable Buffer Delivery ................................................................ 5-2 
Reliable Buffer Delivery .................................................................... 5-10 
Debug Tips .............................................................................. 5-21 
Signals ................................................................................. 5-22 

Uses of Signalling ..................................................................... 5-23 
Signal Handling Urgency ................................................................ 5-23 
Using Signals ........................................................................ 5-24 

Mappings ............................................................................... 5-33 

Chapters 
Memory Management 

Overview ................................................................................. 6-1 
Tags .................................................................................... 6-4 
Ownership and Memory Sharing Implications .................................................... 6-5 
Syscalls .................................................................................. 6-6 

g_malloc()/g_mfree() .................................................................... 6-6 
g_mlen() ............................................................................. 6-7 
g_malloc_gid()/g_mfree_gid() ............................................................. 6-8 
g_mrealloc() ......................................................................... 6-10 
g_madd() ............................................................................ 6-10 
g_ sig_ data()/g_get_ sig_ data() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 6-11 

Debugging Strategies ...................................................................... 6-11 
Zero Out Those Stale Pointers!. .......................................................... 6-11 
debug krnl Command .................................................................. 6-11 

Private Memory Management. ............................................................... 6-13 
free_pool ................................................................................ 6-16 
What Size memory Segments to Allocate ...................................................... 6-17 
(Shared) Free Pools ....................................................................... 6-18 

Chapter 7 
Scheduler 

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 -1 
Scheduler Queues ......................................................................... 7-1 
Activation Reasons ......................................................................... 7-2 

Message Delivery ...................................................................... 7-3 
SIG_INI .............................................................................. 7-3 
SIG_TMO ............................................................................ 7-3 
User Defined Signal .................................................................... 7-4 
Additional Reasons ..................................................................... 7-4 

• 
• 

GAME Reference Manual v • 



• • • • • • • • • • • • • • • • • • • • • • 
• 
• 

Contents 

Pending ................................................................................. 7-5 
Forwarding Path Notes ...................................................................... 7-8 
Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
Interrupts ............................................................................... 7-12 
ARE/FRE-3 Interrupts ..................................................................... 7-15 . 
CPU Hogging ............................................................................ 7-16 

g_idle Call ........................................................................... 7-17 
g_fwd(), g_rpc(), g_reply{) Calls .......................................................... 7-18 
g_delay{) Call ........................................................................ 7-19 
g_sema_get{), g_balloc{) Calls ........................................................... 7-19 

Chapter 8 
Watchdog 

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
Question and Answer ....................................................................... 8-1 
How the Watchdog Works On A FRE .......................................................... 8-2 
Platform Differences ........................................................................ 8-3 

Chapters 
Semaphores 

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
Well-known vs. Dynamic Semaphores .......................................................... 9-2 

Well-known Semaphores ................................................................ 9-2 
Dynamic Semaphores .................................................................. 9-2 

Semaphore Creation and Registration .......................................................... 9-2 
Getting a Token ........................................................................... 9-4 
Returning A Token ......................................................................... 9-4 
Checking A Semaphore's State ............................................................... 9-5 
Gate Death and Cleanup .................................................................... 9-6 
Semaphores and Mappings .................................................................. 9-6 
Are Semaphores Really Needed? ............................................................. 9-6 

Chapter 10 
Timer and Time of Day Services 

General Overview ......................................................................... 10-1 
Timer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 

g_tmo{) Kernel System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 
g_delay() Kernel System Call ............................................................ 10-9 
Using g_idle() and g_timer_get() For Very Short I Accurate Delays .............................. 10-11 
Grain Tables and tmo_exp() ............................................................ 10-12 

Time Overvie\v.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14 
Getting System Time ................................................................. 10-16 
Setting System Time .................................................................. 10-18 
Retrieve Time Since Slot Restart ........................................................ 10-20 

Summary of How Timers and Time Are Implemented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 
Periodic Timer ....................................................................... 10-21 
Time - g_timer_get() .................................................................. 10-22 
Time - Calendar Chip ................................................................. 10-23 
Time - g_tget( ....................................................................... 10-23 

• vi GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Contents 

Internal Wallclock Service .............................................................. 10-24 
Other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24 

Chapter 11 
Miscellaneous Function Calls 

Overview ................................................................................ 11-1 
g_appbase()- Returns Base Load Address ..................................................... 11-1 
g_bcfg() - Environment Configuration .......................................................... 11-2 
g_buf2mem(), g_mem2buf()- Copy a Buffer's Contents to Memory I Back To a Buffer ................... 11-3 

Copy a Buffer's Contents to Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 
Copy Contents of Memory to a Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4 

g_env(), g_env_gid - Returns Environment of a Gate ............................................. 11-4 
g_env()Call .......................................................................... 11-4 
g_env_gid Call ....................................................................... 11-5 

g_i_die(), g_u_die() - Commit Suicide I Kill Another Gate .......................................... 11-5 
g_i_die Call .......................................................................... 11-5 
g_u-die Call .......................................................................... 11-6 

g_load_archive() - Archive Loading ........................................................... 11-6 
g_memop() - Special Memory Operation ....................................................... 11-8 
g_myid() - Returns Caller Gate ID ............................................................ 11-9 
g_platform() - Gets Platform Type ............................................................ 11-9 
g_reset()- Restarts Slot(s) ................................................................. 11-10 
g_slot() - Returns Caller Slot Number ......................................................... 11-11 
g_src() - Retrieves Source of Reliable Message ................................................ 11-11 
g_stk() - Saves Current Stack in System Log ................................................... 11-12 
get_unqid()-Geta Unique ID ............................................................... 11-13 

Chapter 12 
Fault Management 

Types of Faults and System Reactions ........................................................ 12-1 
Hardware Reset ...................................................................... 12-1 
GAME Reboot ........................................................................ 12-1 
Gate Termination or GAME Reboot ....................................................... 12-2 

"Problem" Gates .......................................................................... 12-2 

Chapter 13 
System Event Log 

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 
Log Entry Format ......................................................................... 13-2 
Quick Example of EDL ..................................................................... 13-3 
g_log() System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
System Event Logger Gate .................................................................. 13-9 
How the Log Becomes Useless at Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-10 
Log Crash Points ........................................................................ 13-12 
Choosing The Appropriate Event Severity ..................................................... 13-14 

FAULT Messages .................................................................... 13-14 
WARNING Messages ............................................. : ................... 13-15 
INFO Messages ..................................................................... 13-15 
DEBUG Messages ................................................................... 13-16 

• 
• 

GAME Reference Manual vii • 



• • • • • • • • • • • • • • • • • • • • • • 
• 
• 

Contents 

Logging Tips & Miscellaneous Info .......................................... · ................. 13-17 

Chapter14 
System Loader 

Background ............................................................................. 14-1 
Linking/Loading Options ................................................................ 14-1 

Loader Operation ......................................................................... 14-2 
Kernel Loader ........................................................................ 14-3 
Dynamic Loader ...................................................................... 14-3 

Process Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10 
Builds ............................................................................. 14-10 
Debugging ......................................................................... 14-17 
Software Release .................................................................... 14-18 

Adding a New Subsystem ................................................................. 14-19 
Kernel Subsystems ................................................................... 14-19 
Application Subsystems (Dynamically Loadable) ............................................ 14-19 

Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20 

Chapter 15 
Symmetric Multi-Processing 

Symmetric Multi-Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 
Gate Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 
SMP Scheduler ........................................................................ 15-3 
The Kernel Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5 
Interrupts ............................................................................ 15-5 
Gate Creation, Death, and Mappings ...................................................... 15-7 
Atomic Locks ........................................................................ 15-7 
SMP Operations On Non-SMP Systems ................................................... 15-9 

Appendix A 
Performance and Scalability 

Performance. . . . . . . . . . .................................................................... A-1 
Avoid Transient Resource Allocation ........................................................... A4 
Use RTBUUTBL, not TBL, for Non-Forwarding/Filtering Tables ...................................... A-5 
Image Size ............................................................................... A-5 
Accessing Memory, Hitting/Missing Cache Etc .................................................... A-6 

• viii GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Figures 

Figure 2-1. Gate Handle .................................................................... 2-5 
Figure 4-1. Buffer Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 
Figure 4-2. Transient Pool. ................................................................. 4-8 
Figure 5-1. Buffer Transmission ............................................................ 5-12 
Figure 5-2. Remote Procedure Call .......................................................... 5-15 

• 
• 

GAME Reference Manual ix • 



• • • • • • • • • • • • • • • • • • • • • • 
• 
• 

• x 

Figures 

GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Tables 

Table 2-1 Gate States.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 
Table 2-2 Gate ID Bit 16-13 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 
Table 2-3 Macros For Processing Gate Handles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Table 2-4 Macro For Setting Gate Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 
Table 3-1 Mapping Macros.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 
Table 5-1 Buffer Delivery Debug Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 

• 
• 

GAME Reference Manual xi • 



• • • • • • • • • • • • • • • • • • • • • • 
• 
• 

• xii 

Tables 

GAME Reference Manual 



Conventions 

• • • • • • • • • • • • • • • • • • • • • • 
About This Manual 

GAME (Gate Access Management Entity) is the master control software 
that manages the internal functions and resources of Bay Networks 
Routers. 

If you want to Goto 

Learn about the general properties and design Chapter 1 
characteristics of GAME 

Learn about gates Chapter2 

Learn about mappings Chapter 3 

Learn about buffers Chapter4 

Learn about inter-gate communication Chapter 5 

Learn about memory management Chapter 6 

Learn about the scheduler Chapter 7 

Learn about the watchdog Chapter 8 

Learn about semaphores Chapter 9 

Learn about the timer and time-of-day services Chapter 10 

Learn about miscellaneous function calls Chapter 11 

Learn about fault management Chapter 12 

Learn about the system event log Chapter 13 

Learn about the system loader Chapter 14 

Learn about Symmetric Multi-Processing Chapter 15 

Learn about performance and scalability Appendix A 

screen text Used for examples. 
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• • • • • • • • • • • • • • • • • • • • • • 
• About This Manual 

• 

Supplementary Documentation 

The following additional documentation is available to GAME users: 

Location Description 

/rte I /harpoon/ doc/ game/html/ General GAME documentation. 
game.html The information in game.html is not 

as comprehensive as the 
information in this document. 

/rte I/harpoon/doc/game/html/ Information on debug features. 
game_ debug.html 

/rte I /harpoon/ doc/ game/game_ hints GAME hints and tips. 

/rte I /harpoon/ doc/sysman/ Dynamic Loader User's guide 
dyn_load_usr 

/rte I /harpoon/ doc/hardware/frel.txt Information on the FRE 

/rte I /harpoon/ doc/bf Information on the ARE. The 
debug_tips.txt file explains 
differences between the ARE and 
the FRE. 

/rte I /harpoon/ doc/ debug/ Debug specification. 
debug_spec.fm.ps 

-josswald/ct/ doc/users __guide.ps Information on ALVIN, the crash 
dump analyzer. 
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Overview 

• • • • • • • • • • • • • • • • • • • • • • 
Chapter 1 

Introduction to GAME 

GAME (Gate Access Management Entity) is the master control software 
that manages the internal functions and resources of Bay Networks 
Routers. GAME can be compared to an operating system. 

The processing entity within GAME is called a gate. A gate is similar to 
a process or thread in other operating systems, but has considerable less 
state. 

• 
• 

Properties of GAME 

Some properties of GAME are listed below: 

• Game can perform multiprocessing, handling thousands of 
gates. 

• GAME performs inter-slot communications via messages. 

• Multiple CPUs are contained on the same slot (SMP). 

• Gates run to completion or until they give up the CPU. 

• GAME incorporates FIFO scheduling. There are no priorities 
(except for mappings and some signal deliveries). 

• There is hardware and software fault management support and 
isolation support for dynamic reconfiguration. 

GAME is an embedded system. 
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Comparisons to UNIX 

GAME is similar to UNIX in that processes have an ancestral hierarchy. 

GAME is different from UNIX in the following ways: 

• There is no user mode in GAME. All code runs in supervisory 
mode with no protection from other processes. 

• UNIX kemal code does not give up the CPU except for 
interrupts. In GAME, there is no context switching unless a gate 
gives up the CPU (except for CPU and hardware exceptions, 
obviously). 

• GAME can handle a large number of threads/processes more 
efficiently. 

• UNIX has process priorities; GAME schedules first-come, 
first-served. 

• UNIX can time slice; GAME does not time slice. 

• UNIX handles device interrupts asynchronously; GAME only 
enables device interrupts at specific times. 

Design Characteristics 

GAME was implemented to meet the aggressive design goals of the 
Harpoon project. 

The new Harpoon hardware (BCN/BLN) incorporated faster, more 
redundant architecture. 

To support the hardware, Bay required an operating system especially 
geared to the needs of a packet forwarder. The software used previously 
(VRTX kernel) did not adequately support packet forwarding. 

Listed below are the key points (Design Considerations) considered by 
the design team and the results (Design Results) after implementation. 
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Encapsu lation/Decapsu lation 

Encapsulation and decapsulation of data needs to be efficient. These are 
tasks performed on every packet in layer 3 forwarding. The incoming 
layer-2 header is stripped and a new one is added for the outgoing 
interface. 

The buffer format allows the data to be "suspended" anywhere in the 
buffer (caveat: on the FRE hardware, the start of the data must be within 
the first 255 bytes of the buffer). When receiving or sending a packet, 
there is always sufficient "headroom" left at the start of the buffer to add 
a larger encapsulating header. It is easy to change the start or end offset 
and no data copying is necessary. 

It important to note that you may need to add more header info than is 
removed (e.g. remove an FDDI SNAP MAC but then encapsulate for 
ENET transmission.) 

Performance via Caches 

The router needs to be high performance. One way to achieve this is to 
make good use of the processor's instruction and data caches. 

On the instruction side, locality ofreference is key. If you keep executing 
the same code, it's likely that the next instruction will already be in the 
instruction cache (i-cache). However, the code that you execute 
repeatedly has to fit in the i-cache footprint. (Remember, the time is 1991 
you've been writing code for a 68020 with a 256 byte i-cache. Luckily, 
the new target architecture has a 4K cache.) 

• 
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For the data cache ( d-cache ), there are two "hot" areas: the stack and 
whatever data the running functions are using. For a router, the hot data 
is often the routing table. Once we figure out where one packet is going, 
it is in our best interest to do the lookup for the next packet, because we're 
likely to have a good portion of the routing table already in the d-cache. 
There is also a good chance that consecutive packets are going to similar 
locations (e.g., traffic burstiness; or local workstations all going to the 
same server). Note that this trades off individual packet forwarding 
latency for overall throughput. 

Each gate performs a single "step" in packet processing, and that step fits 
in the cache footprint (on the 040, that is). A gate gets a list of packets 
because this allows us to stay in the i-cache. 

A buffer's destination (within the router) is written into buffer so that the 
forwarding code does not have to waste time clipping packets out of the 
list to send to different destinations. 

Packet Accesses 

Caching accesses to actual data packets is problematic. The packet 
memory is shared between the CPU, link module and PPX. (PPX refers 
to the four data and control channels that comprise the backplane.) If the 
CPU caches the packet memory, any accesses by these other entities needs 
to be done "cache coherently". 

The CPU could flush packets from its cache, but the CPU usually (for 
forwarded packets) doesn't care much about the packet contents other 
than the header. However, packets addressed to the router (such as Telnet 
packets or routing updates) will be examined more thoroughly. This 
means the CPU would be forced to go through the motions of flushing 
all data from a packet to handle every possible case. Flushing isn't free, 
so this would impact performance. 
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Another aspect about packet accesses is that the header fields are usually 
read just once. That is, you look at the MAC header, then the IP header, 
etc. You don't look at the MAC header multiple times. Therefore, caching 
the headers isn't very useful. 

Yet another consideration is with data corruption. If you get the flush 
wrong or miss something you'll wind up with bugs that are really hard to 
track down. 

Bottom line: Cache coherency without HW support is a scary proposition. 

For these reasons, caching the packets wasn't a requirement. However, 
there are those areas of packets which are accessed a lot during forwarding 
(packet headers). Ifwe could improve the non-cached access 
performance to just those areas, we would get some bang for our buck. 

The FRE-1 and -2 provide HW assist to make packet headers faster to 
access. This is done by mapping SRAM onto portions of the buffer space 
(where the headers live) and onto the buffer headers. 

Multi-Slot Forwarding Issues 

We were building a multi-slot box where packets may come in on one 
slot but need to go out another. Should every piece of code which routes 
a packet need to figure out if a buffer is being delivered to the local slot 
or off-slot? Obviously, it would be advantageous if each one didn't. If 
this decision was isolated in one place, it would make most of the code 
simpler. 

This would also improve code performance because instead of having to 
check and branch in all the forwarding code, the code could just say "this 
packet goes here" where "here" may be either local or remote (or both) 
and is not something the forwarding code cares about. 

• 
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The destination stored in a packet is a 32-bit "gate handle" (see Figure 
2-1) that describes both the destination slot(s) and process. The protocol 
can do a lookup and get a 32-bit result which it doesn't have to interpret. 
GAME does the interpretation about what this means. 

High Availability 

"No single point of failure" was a design goal. So, having tightly-coupled 
slots where one slot could corrupt the memory of another slot, was 
considered a bad idea. The slots should be as independent as possible. 

However, communication between processes across slots was still 
important. A method was necessary to know about other slots and the 
processes on them - when they appear and when they go away. 

Software failures (e.g., bus errors) should only affect the portion of the 
code where the failure occurred. Taking a whole slot or box down for 
anything but a catastrophic software failure is not an option. 

Gate handles and mappings are used to track the existance of other 
processes in the router. 

GAME provides resource tracking in order to clean up resources when a 
process dies. 

GAME maintains parent/child relationships between gates. Only the 
offending gate and its offspring are terminated upon software failures. 
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Dynamic Reconfiguration 

Dynamic reconfiguration is somewhat like isolating software failures to 
particular pieces of code. The idea is that we can add, remove, or 
reconfigure a protocol/interface/slot/etc. and limit the effects of that 
reconfiguration. 

If gates restart, only that portion of the gate hierarchy is affected. 
(Basically the same as High Availability.) 

Internal Code Structure 

We wanted to get away from one big function call tree (dev_idle) for 
forwarding. This is bad for maintenance and future development. This 
also defeats the goal of isolating the software failures to the threads that 
caused the problem. Ditto for reconfiguration. 

Gates are lightweight and context switching is fast. This, along with the 
ancestral hierarchy and resource tracking, allows software isolation. 

The following limitations must be considered. 

Zero-Packet Loss 

High throughput numbers are useless if you drop a lot of packets along 
the way. The effects of the control path on the forwarding path (both use 
the same CPU) had to be taken into account. We now do a lot of 
painstaking work to reduce the run times of the control path. In some 
cases (ISP Mode for ANS), we locate the control processes on separate, 
non-forwarding slots. 

• 
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Application Portability 

GAME is not an easy platform to port to. Several packages have been 
ported to GAME with varying levels of success. 

"Cheap" Gates 

Gates are not as "cheap" as once thought. With the advent ofhigh density 
link modules, such as the MCTI, protocols that used lots of processes per 
interface broke. 
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Gates 

A gate is a processing entity within GAME similar to a process or thread 
in other operating systems, but having significantly less state. 

Ancestry 

A spawned gate becomes a "child" of the creator. 

A spawning gate is the "parent." The parent gate lives at the top of the 
hierarchy. Upon termination of the parent gate, all offspring also 
terminate. The parent of a dying gate is not notified unless it has mapped 
the child gate (see the Mapping chapter). 

Identification 

A gate ID "names" a gate. There can be multiple instances of a gate (one 
per slot). 

A gate handle addresses one or more specific instances of a gate (more 
on this later). 

A gate ID is like saying "Dunkin Donuts." A gate handle tells 
which Dunkin Donuts you are talking about (e.g., on Great Road in 
Bedford or the comer of W obum Street and Lowell Street in 
Lexington, etc.). 

GAME maintains a gate ID table (GID Table). There are 4 bytes per gate. 

• 
• 
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Structure 

The gate structure is 128 bytes. 

The most accessed parts of the structure are in the first cache 

line (16 bytes on 040): 

BUF *head; /* outstanding gate message queue */ 

BUF *tail; /* outstanding gate message queue */ 

void (*act) () ; /* gate's action routine ptr */ 

u int32env; /* gate's state data area ptr */ 

Parent, sibling, child links are also included. 

Not allocated for ensigns or davidians (same for everything that follows). 

Activation Routine 

An activation routine is a function that executes in the context of the gate 
instance when buffers or signals are delivered. 

Environment Pointer 

As far as GAME is concerned, an environment pointer is just a 32-bit 
number to pass to the activation routine. In practice, it's usually a pointer 
to a slab of memory allocated by the gate or an ancestor. This slab is 
referred to as the gate's environment. One of the reasons a gate 
environment is needed is because GAME does not allow global data/ 
variables. 

~ A gate does not necessarily own its own environment. If it doesn't, 
V the env doesn't go away when the gate dies. 
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State 

Note that you will not find a "state" variable in the GA TE structure. A 
gate's state is determined by a number of things, like if it is has buffers/ 
signals to be delivered, if it is using the CPU, etc. A gate can be in one 
of the following states: dormant, awake, active, pended, or zombie. 

Table 2-1 Gate States 

State Description 

Donnant The gate is not executing and is not scheduled to run. 

Awake The gate has been scheduled for execution due to an 
event but has not yet run. 

Active The gate is executing. Since the scheduler is 
non-preemptive, there is at most one such gate at any 
given time per CPU. 

Pended The gate has voluntarily given up ownership and is 
waiting for an un-pending event. 

Zombie The gate had been deactivated but not yet removed 
from the system. 

Resources 

A gate can allocate and free: 

• 

• 

memory 

buffers 

semaphores 

One may think of child gates as resources, but they are not really "owned" 
in the same manner as the above resources. 

"Mappings" may similarly be thought of as resources, as the gate does 
own them. 

• 
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A gate can also act as a well-known signal handler; while not really a 
resource, it is a state associated with the gate 

These resources are reclaimed by GAME when a gate instance terminates. 

Each gate also has one periodic timer. 

Identification: Gate IDs and Handles 

• 2-4 

Gate IDs 

A gate ID provides a "name" for a gate that can exist anywhere on the box. 

A gate ID is 17-bits long. Bits 12-0 identifythe gate number. Bits 16-13 
identify the class of the gate. (See "Classes of Gates" later in this chapter 
for a description of gate classes.) (Bits 16-13 are commonly called the 
"keeper" bits due to their use in identifying the keeper slot for dynamic 
gates.) 

Table 2-2 Gate ID Bit 16-13 Values 

Value Meaning 

0 Used to identify a well-known gate ID. 

1-14 Used to identify dynamically allocated gate IDs. The 
value is the slot number where the gate ID was 
allocated (i.e., the keeper slot). This prevents 
multiple slots from allocating the same GIDs. 

15 Used to identify gate aliases and davidians. For 
aliases, bits 12-9 contain the slot number of the 
allocating slot (i.e., the keeper bits shifted right 4 
bits). For davidians, bits 12-9 are also set to 15. 
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Gate Handle 

A gate handle contains both a gate ID (name) and its instantiation 
information. 

A gate handle is 32-bits long. Bits 16-0 specify the gate ID. Bits 30-17 
specify the slot MAP. A gate handle is illustrated in Figure 2-1. 

Figure 2-1. Gate Handle 

F SLOT MAP OATEID 
L 
A KEEPER'• 
G 1 2 3 4 5 6 7 8 II 10 11 12 13 14 SLOTI OA1EI 

Slot Map 

The slot map is a bit mask of slots where this gate is instantiated, as 
defined below: 

bit 30: slot 1 
bit 29: slot 2 

bit 17: slot 14 
bit 31: FLAG bit 

In mappings, the Flag bit indicates that the GID is allocated. In buffers, 
this indicates a reliable transport primitive. (See Figure 4-1.) 

The format of a davidian gate handle is slightly different (later). 

• 
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Note the difference between the keeper ID in a gate ID and slot bit 
in the slot map. The keeper ID tells you from which slot's space the 
GID came from. The bit in the slot map tells you which slots have 
an instantiation of the gate. In practice, multiple slot instances only 
occur for well-known gates, which have a keeper ID of zero, and 
aliases, which have a keeper ID of 15. For dynamic gates, the only 
map bit you will see set is the one corresponding to the keeper ID. 

Processing Macros 

Some important macros for processing gate handles are defined in: 

(include/kernel.h and include/game.h) · 

The macros for examining gate handles are described in Table 2-3. 

Table 2-3 Macros For Processing Gate Handles 

Macro Function 

GH_IS_LOCAL (gh) Is the gate instantiated on my slot? 

GH_IS_PRESENT (gh) Is the gate instantiated on any slot? 

GH_IS_REMOTE (gh) Is the gate instantiated on any 
non-local slot? 

GH_IS_USED (gh) Is the GID allocated (in the GID 
table)? 

GH_GET_SLOT_MAP (gh) Isolate the slot bits (30-17). 

GH_GET_GID (gh) Isolate the GID bits (16-0). 

GH_IS_ALIAS (gh) Is this an alias GID? 

GH_IS_DAVIDIAN (gh) Is this a davidian GH? 

G_MY_SLOT_MASK The local slot bit. 
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A macro for setting gate handles is described in Table 2-4. 

Table 2-4 Macro For Setting Gate Handles 

Macro Function 

GH_SET_LOCAL (gid) Form a GH with the local slot bit 
and the gid. 

Gate Instance Management 

The gJeq() system call implements almost all aspects of gate instance 
management. 

Call: 

GID g_req (GID gid, void (*action) (void*, BUF *, SIG), 

void *environment, u int32 flags) 

Values: 

"gid" is the gate ID that the call applies to. The value of gid can be: 

• G _ REQ_ NEW_ GID (allocates a new gate ID from the slot's 
space) 

G_SELF _ID (the calling gate) 

• any valid gate id (instantiated dynamic gate ID or well 
known). 

"action" is the routine that is called when the gate instance is activated. 
The value of action can be: 

• G_NOACT(ifgid = G_REQ_NEW_GID, create an ensign 
gate) 

• G_DAVIDIAN (ifgid = G_REQ_NEW_GID, create a 
davidian gate) 

• G_REQ_KILL (terminate the local instance of this gate) 

• 
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• any valid function address identifying the new action routine 
for the gate instance. 

"environment" is a 32-bit value. This is passed to the gate instance upon 
activation. In practice, this is a pointer to a slab of memory (the 
environment) associated with the gate. 

"flags" are optional gate management functions. The value of flags can be: 

• G_SIG_INI (send an initialization signal (SIG_INI) to a 
newly instantiated gate instance) 

• G_REQ_INI (send an initialization signal (SIG_INI) to an 
existing gate instance - not a good idea to use this) 

G _ REQ_ SOLO (perform the soloist election procedure prior 
to creating the gate instance - more on soloists later) 

• G_NO_SIG_INI (another name for "zero") 

There are some additional flags associated with SMP which will be 
discussed in the section on the Scheduler.) 

Return Values: 

For all successful calls, the gate ID of the created/modified/terminated 
gate instance is returned. 

If you tried to kill a gate that is already dead, a zero is returned. For severe 
errors, the calling gate is terminated. 
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Examples: 

Example 1 shows how the IP routing table manager (R TM) creates a 
network interface (NWIF) gate: 

gid = g_req (G_REQ_NEW_GID, ip_nwif_init_act, nwif_env, 
G_SIG_INI); 

"-" Note that the RTM has already allocated the NWIF's environment. 
T The NWIF gate never changes its action routine or environment 

(unfortunate name used for this routine ... ). 

Example 2 shows how the RTM starts BGP in both ISP (soloist) and 
non-ISP modes. 

if ( rtm_env->bgp_soloist ) 

{ 
if GH_IS_REMOTE(rtm_env->bgp_gh) 

/* We are in soloist mode, and a soloist is already 
running on another * slot, don't start the soloist on the 
local slot 

*/ 
return; 

/* start the soloist BGP */ 
g_req (GID_BGP, bgp_init, rtm_env, G SIG INI 

G_REQ_SOLO); 

} 
else 

/* start the replicant BGP */ 

g_req (GID_BGP, bgp_init, rtm_env, G_SIG_INI); 

• 
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When the BGP init strip runs, it changes both its action routine and 
environment: 

g_req (G_SELF_ID, bgp_active, bgp_env, G_NO_SIG_INI); 

The environment is always overwritten. So, if you're changing the 
activation, you'll need to pass in the old value of the environment if you 
don't want it to change. 

RTM will kill the BGP gate if it learns that the BGP code base is being 
unloaded: 

g_req (GID_BGP, G_REQ_KILL, 0, O); 

Normal Activation 

• 2-10 

A gate can be activated via its action routine for two reasons: 

buffer delivery (multiple buffers can be delivered in a list) 

signal delivery (a single signal can be delivered in one 
activation) 

Both cannot happen at the same time. Two separate gate activations will 
occur if this is the case. 

A gate action routine must be of the following form: 

Call: 

void gate_act (void *environment, BUF *buffers, SIG signal) 

Values: 

"environment" is a pointer to a slab of memory, as set by the most recent 
g_req() call. 

"buffers" is a pointer to a list of buffers that were sent to the gate, or NIL. 
If "buffers" is NIL, "signal" is the value of the signal delivered to this 
gate. If "buffers" is valid, "signal" is undefined. 
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Considerations: 

The type of activation is determined by the value of the "buffers" 
parameter, which MUST be checked first. If buffers is NIL, a signal is 
being delivered via the "signal" parameter: 

if (buffers) 

/* process list of buffers */ 

else 

/* process signal */ 

Once activated, the gate holds the CPU until it does one of the following 
things: 

1. It exits the activation routine. This completes the current 
activation of the gate. It will not be activated again until buffers 
or a signal is sent to it. If buffers or a signal were sent during 
the current activation, the gate is immediately rescheduled, at 
the end of the scheduler queue. A gate will not see any new 
buffers or signal until it exits its activation routine. 

2. It relinquishes the CPU either explicitly or implicitly through a 
system call. The gate will go into "pended" state until 
re-awakened by GAME. 

3. It terminates itself either via g_req() or a system FAULT. In 
this case, GAME cleans up all resources owned by the gate and 
the instance no longer exists. 

• 
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Some important things that will be covered more throughly later: 

• A gate must "do something" with each buffer delivered in an 
activation. 

A gate must not hold the CPU for more than 4seconds (although 
this value is really performance dependent). 

Classes of Gates 

• 2-12 

There are several classes of gates in GAME: 

• well-known 

• dynamic 

• ensigns 

• davidians 

aliases 

Well-Known Gates 

Well-Known gates are usually at or nearthe top of a subsystem hierarchy 
of gates. The ID has to be fixed so that communication can occur between 
slots (example: IP Routing Table Manager). Circuit gates are also 
well-known (circuit number+ 1024). There are SK IDs available, not 
including circuit numbers (about 360 used) The gate ID always has the 
"keeper" bits set to zero. 

Dynamic Gates 

Dynamic gates comprise the bulk of running gate instances in a system. 
There are 8191 gate IDs per slot. 

The gate ID always has the "keeper" bits set to the slot number. 
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Ensign Gates 

Originally created for the MIB service to represent states in the MIB (e.g., 
the current values of the read/write objects in a row of a table). 

~ The name "ensign gate" is derived from the usage - it's a flag to 
T indicate the presence of something. 

An Ensign gate allocates a gate ID but does not create an instance. 

An Ensign gate can be used to represent state (e.g. MIB service). 

An Ensign gate is visible across slots via mappings. 

An Ensign gate is not hierarchically attached to creator gate (no GATE 
structure). Therefore, GAME cannot reclaim ensigns if the creator dies 
(not a problem with MIB service - whole slot resets anyway). 

An Ensign gate uses the same GID pool as dynamic gates (well-known 
IDs can't be ensigns). 

The Ensign gate ID always has the "keeper" bits set to the slot number. 

Use the following call to create an Ensign gate: 

ensign_gid = g_req (G_REQ_NEW_GID, G_NOACT, 0, O); 

Use the following call to kill an Ensign gate: 

g_req {ensign_gid, G_REQ_KILL, 0, 0); 

• 
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Davidian Gates 

Davidian gates are a lot like ensigns except: 

• a whole lot more are available (about 8 Million per slot) 

Not visible across slots via mappings 

Invented to replace ensigns for the MIB service: 

Davidians allow representation of many more "states". 

Davidians don't use/waste the slot's limited dynamic gate ID space. 

In the Gate Handle the slot map space is used for extention of the Gate ID. 

In the Gate ID the keeper bits are set to 15; bits 12-9 of gate number are 
also 15. 

Use the following call to create a Davidian gate: 

davidian_gid = g_req (G_REQ_NEW_GID, G_DAVIDIAN, 0, O); 

Use the following call to kill a Davidian gate: 

g_req (davidian_gid, G_REQ_KILL, 0, 0); 

Alias Gates 

Alias gates are used to group instantiated gates. When a message gets 
sent to an alias, a copy of that message is made for each member of the 
alias. This works only for unreliable messaging. Reliable messaging to 
aliases isn't supported. (covered throughly later). 

In practice, only well-known gates and aliases will appear with instances 
on multiple slots. 
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Some well-known GAME gates require that only one instance runs in the 
box at a time. 

Examples: 

• 

• 

• 

• 

circuit gates (multi-line scenario) 

Technician Interface (Tl) 

OSPF 

BGP in ISP-mode 

The Soloist mechanism is explained in detail below, although 
the mechanism really isn't that important to a user of GAME. 

When a gate wishes to create a soloist, it must first ensure that the gate 
does not exist currently on any other slot. This is done via a mapping 
(covered exhaustively in the Mapping chapter). If the gate does not exist 
on another slot, the g_req call is made with the G_REQ_SOLO flag to 
start the soloist election. (See the BGP example above.) 

GAME formats a message that contains the proposed gate handle of the 
soloist and the gate handle of the prospective parent of that soloist (the 
one that called g_req). This is sent to the Keeper Gate on every live slot 
(including the local slot). 

When each Keeper gate receives this message, it first checks to see ifthe 
GID is locally instantiated. If so, it replies to the message with the gate 
handle for that gate PLUS the FLAG bit (bit 31 - this is key later!). 
Otherwise, it checks to see if there is a soloist election active forthat GID. 
If so, it replies with the gate handle of the FIRST parent gate that it heard 
from. If there is no current election, a structure is created to represent 
the soloist election for that GID. The Keeper replies with the parent gate 
handle it received in the message. 

• 
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The calling slot examines the replies, ORing-ing together the slot bits of 
the gate handles. If the local slot is the only bit set or the lowest numbered 
(leftmost) slot bit set, the soloist gate is created. After the election is lost 
or the soloist gate is created, another message is sent to all Keeper gates 
to clean up the soloist election state. 

If one of the Keeper gates indicated that it had a local instantiation of the 
GID, the setting of bit 31 prevents any other slot from winning the 
election. This is because bit 31 looks like slot "0", which is a lower slot 
number than a real slot. 

The gate handle slot bits are set as follows:: 

bit 31: FLAG bit (acts like "slot 0") 

bit 30: slot 1 

bit 29: slot 2 

etc. 

There is a chance, especially on a busy router, that the soloist election 
mechanism will fail and allow multiple soloists to be created. This was 
first discovered when multiple TI processes would arise and try to control 
the console, a situation known as "dueling Tis". 

To guard againstthis, a gate that creates a soloist must maintain a mapping 
of the soloist GID and kill its local soloist if another soloist appears that 
has a lower slot number (details when we get into mappings). (Actually, 
you always need a mapping for a soloist because the g_req (solo) is a 
one-time event. If the current soloist dies, a new election needs to be held 
but the kernel doesn't do this automatically. 

Soloist elections are independent per Gate ID. 

In a booting router with one flash card, all soloists appear on the 
slot with the flash card (unless that slot is not "eligible" to run a 
particular soloist - controlled by configuration infonnation). This 
is merely because that slot gets the code running first. 
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GAME can associate a single gate ID with multiple gate instances on the 
same slot and across slots. This allows unreliable buffer delivery to 
multiple gates using a single delivery primitive. A gate can become a 
member of an alias using the call g_ alias(). The same call is used to 
remove a gate as a member. Members can be added or removed only on 
the slot where the "real" gate instance lives. Note that the member gate 
itself does not have to be the one to call g_ alias(). 

In the Gate ID of an alias the keeper bits are set to 15. Bits 12-9 contain 
the slot number of the allocating slot (i.e., the keeper bits shifted right 4 
bits). 

When the first member of an alias is added on a slot, GAME will "turn 
on" that slot bit for any mappings of the alias gate id ( GID _GAME is a 
legitimate first member). When all members are removed from the alias 
on a slot, GAME "turns o:tr' the slot bit. 

WARNING: When all members are removed from the slot on 
which the alias was created, GAME frees the alias gate ID. If you 
don't want the alias to be freed, add GID _GAME as a member. 
This will keep the alias allocated. 

The following call illustrates the aliases of aliases method: 

Call: 

With the advent of g_ xmt_im(), aliases of aliases really 
shouldn't be needed any more. g_xmt_im() solves the same 
problem but in amore eficient manner. See Chapter 5 for a 
description of g_ xmt_im(). 

GID g_alias (GID alias, GID gid, u_int32 mode) 

• 
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Values: 

The value for "alias" can be: 

• G_ALIAS_NEW (allocate a new alias GID) 

• G _ALIAS_ ALL (requests removal from all aliases, in which 
case "mode" must be G_ALIAS_DEL) 

• an existing alias ID. 

The value of "gid" can be: 

• the GID of "real" member gate instantiation on local slot 

• GID _GAME. GID _GAME can be used as the first member 
when creating an alias in order to create a "permanent" alias 
that stays around even when all of the "real" members have 
gone away. 

The value of "mode" can be: 

• G_ALIAS_ADD: add member to alias set 

• G_ALIAS_KILL: destroy entire alias set on the local slot 

• G_ALIAS_DEL: delete member from a given alias set or 
all sets 

• G_ALIAS_COUNT: count and return number of members 
of an alias 

• G_ALIAS_NUM: returns the number of free aliases 
remaining on the local slot 

G_ALIAS_ALIAS: add an alias to an alias. The idea of 
adding an alias to an alias was created for the bridge code to 
simplify multi-slot alias maintenance. There are a couple of 
caveats about an alias that contains aliases as members: 

• It can only have one alias as a member on a given slot. 

• It cannot have any "real" gates as members on that slot. 
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Here's how the bridge uses an alias to alias: 

All of the bridge encaps gates on a slot are added to a local alias. Suppose 
we have slots 2, 3, and 4, and they create the aliases A2, A3, and A4, 
respectively. All of slot 2's encaps gates are members of A2. Ditto for 
slot 3 I A3 and slot 4 I A4. 

The alias IDs are broadcasted to the bridge gates on each slot, and each 
slot then adds its local alias to the other slots' aliases: 

slot 2: adds A2 to aliases A3 and A4 

slot 3: adds A3 to aliases A2 and A4 

slot 4: adds A4 to aliases A2 and A3 

When slot 2 wants to flood a packet, it sends it to alias A2. Since all of 
the local encaps gates belong to A2, they each get a copy of the packet. 
Since A3 and A4 belong to A2, a copy of the packet is sent to slots 3 and 
4. When the packet arrives on the remote slot, it is replicated and sent to 
all of the members of the local alias. 

The example below creates a local bridge flood alias. Note the use of 
GID _GAME as the first member. This ensures that the alias will not go 
away. Since GID _GAME is 0, no packets actually get delivered to this 
"member". 

dp_env->enet_flood_gh = g_alias (G_ALIAS_NEW, GID_GAME, 
G_ALIAS_ADD); 

This example adds an "encaps gate" to an existing flood alias: 

g_alias (GH_GET_GID (dp_env->enet_flood_gh) , 

GH_GET_GID (ccb->lb_encaps[enet_index] .isap_handle), 

G_ALIAS_ADD); 

Members are never explicitly removed from this alias. GAME removes 
the en caps gates if they die. 

• 
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Here's how the local alias is added to the flood alias of another slot: 

switch (flood_info->domain_id) 
{ 
case ENET_FLOOD_DOMAIN: 

our_flood_gh = 
dp_env->enet_flood_gh; break; 

if (GH_IS_LOCAL(our_flood_gh)) 

g_alias(GH_GET_GID(flood_entry->flood_gh), 
GH_GET_GID(our_flood_gh), 
G_ALIAS_ALIAS) ; 

} 

There is a special version of the unreliable buffer delivery primitive 
(g_xmt_im) that sends buffers to all members of an alias except one (the 
exception is usually associated with the sender). This is covered in the 
Inter-Gate Communication chapter. 
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What's a mapping? 

Why? 

Function Call 

A mapping is a way that a gate can keep track of the state of any and all 
instances of a particular gate ID. Simply put, a mapping lets a gate know 
when an instance of some gate is created or terminated. 

Mappings are the primary way to deal with software and hardware 
reconfigurations and failures. 

Examples of mappings are as follows: 

• MIB service uses davidians to represent current database state. 

• Instances of well-known gates map each other to learn "slot-up/ 
down" events. 

Per-interface gates map the underlying circuit to learn about 
"circuit up/down" events. 

• Parent gates map their children to learn of their demise and 
possibly do clean-up and restart. 

A mapping exists independently in the gate of its creator (sometimes 
known as the "owner" of the mapping). It is created via the g_ map() call: 

Call: 

void g_map (GID gid, GH *gh, void (*map_activation) (GH *, 
GH) ) 

Values: 

"gid" is the gate ID to map. 

"gh" is a pointer to the local copy of a gate handle. 
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"map_ activation" is the mapping activation routine to call when a change 
occurs. The value ofmap_activation can be: 

• G_NOACT: no activation routine. (Uses the system default 
routine which just updates the *gh.) 

• G _ UNMAP: terminate an existing mapping 

• G _CURRENT_ GH: just return the current gate handle 
without creating a mapping 

A valid function address for the activation routine for the 
mapping 

Mapping to Retrie.ve the Current GH 

• 3-2 

Sometimes a gate just needs to know where the current instances of a gate 
exist. This is normally used if you want to send a message to a gate whose . 
state you don't track continuously. 

g_map (some_gid, &(env->some_gh), G_CURRENT_GH); 

GAME writes the gate handle for some _gid at the time of the call into 
env->some _gh. 

GAME maintains no further state. 

The next example is from the RSVP Interface (RIF) gate, where buffers 
have to be delivered to a control gate (GID _RSVP_ CONTROL) on one 
slot(the soloist) only. A second gate (GID _RSVP _SOLO)exists to mark 
this slot. 

/* find out where is the SOLOIST */ g_map(GID_RSVP_SOLO, 
&solo_control_gh, G_CURRENT_GH); 

/* send these buffers to the CONTROL gate on the soloist 
slot */ solo_control_gh = (solo_control_gh & 
-GID_RSVP_SOLO) I GID_RSVP_CONTROL; rif_env->fwdlist_id = 
g_fwd_list (solo_control_gh, fwd_blist, fwd_blist_tail, O); 
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Mapping With No Activation Routine 

A gate can instruct GAME to maintain a gate handle for a particular gate 
id, updating that gate handle whenever there is a state change. This is 
normally used when a gate sends messages to instances of a well-known 
gate but does not need to do any processing based on the up/down state 
transitions of those gate instances. 

g_map (some_gid, &(env->some_gh), G_NOACT); 

GAME creates state regarding the mapping, including: 

the gate handle pointer (*) 

GID of the mapped gate (*) 

GID of the owner gate 

the mapping activation routine (G_NOACT, in this case) 

The asterisked items are the items that index the mapping state. Therefore 
you cannot have multiple owner gates mapping the same target gate using 
the same physical gate handle. 

Upon initial mapping, GAME fills in gate handle: 

Gate ID equals the gate ID requested. 

Each bit in the slot map is set if the corresponding slot contains an instance 
of the gate. 

FLAG bit is set if any slot has allocated the GID. 

Caveats 

Ensign gate slot bits appear for remote instances even though 
there really is no "instance" of the gate on that slot. This was the 
only way to get multi-slot mappings of ensign gates to work. 

• A davidian gate slot map field is not applicable (part of gate ID). 

• 
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• Grune updates the FLAG and slot bits whenever there is a state 
change. 

• If an instance tenninates the slot bit is cleared; if an instance is 
created, the slot bit is set. 

• If all instances tenninate/GID not allocated, the FLAG bit is 
reset. 

• 

The memory used to hold the gate handle MUST be in a 
block where the allocation is via g_mallocO. The only case 
where you can use stack space for a mapped gate handle is for a 
G _CURRENT_ GH call. 

When the mapping owner no longer cares about the gate handle 
of the mapped gate, it MUST call g_map() to remove the 
mapping. 
g_map (some_gid, &(env->some_gh), G_UNMAP) 

Otherwise, GAME will continue to update the memory where 
the gate handle was located. This is particularly dangerous if 
that memory was freed and then allocated by another gate! 

• GAME will clean up after mappings if the owner dies. 

Example 

This example is from the IP Policy gate, which doesn't really care ifBGP 
or OSPF are up, other than to be able to send messages about changes in 
routing policies: 

g_map (GID_IP_OSPF, &(ip_policy_enV->OSpf_gh), G_NOACT); 

g_map (GID_BGP, &(ip_policy_env->bgp_gh), G_NOACT); 

Mapping With An Activation Routine 

• 3-4 

Usually, a mapping is done because a gate wants to perfonn specific 
actions when another gate instance goes up or down. This can be done 
by specifying an action routine to execute upon a state change. 
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g_map (some_gid, &(env->some_gh), mapping_activation); 

GAME again creates mapping state, including the action routine. 

During the initial g_ map() call, GAME suspends the current gate context, 
creates a temporary gate to run the initial mapping activation, and 
executes that gate IMMEDIATELY. This means that 
"mapping_ activation" runs BEFORE the g_map() call returns! 

Form: 

A mapping activation routine must be of the following form: 

mapping_activation (GH *gh, GH new_gh) 

Values: 

"gh" is a pointer to the gate handle, as passed in the second parameter 
to the g_ map() call. 

"new_gh" is the new value of the gh. 

Considerations: 

Unlike a mapping without an activation routine, GAME does NOT set 
*gh to the new gate handle value. It is up to the activation routine to do 
this after comparing the new value to the previous value (to see what 
changed). GAME does set *gh equal to the GID (no slot bits set) before 
calling the activation routine forthe first time. new _gh is set to the current 
state of the GID. This will include the FLAG bit (31) if the GID is 
allocated on any slot. 

Suppose a gate maps GID_DP _INI (16), and that gate currently exists on 
slot 2, 3, and 4. The initial activation parameters would be: 

*gh OxOOOOOOlO 

new_gh OxbBOOOOlO 

(GID only; no slot bits set) 

(FLAG bit, slots 2-3-4, GID) 

• 
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Suppose an ensign gate with gate id 16400 (Ox4010) is mapped on slot 
2, and that ensign gate is currently allocated (but, obviously, not 
instantiated) on slot 2. The initial activation parameters would be: 

*gh Ox00004010 (GID only) 

new_gh Ox80004010 (FLAG bit turned on) 

If the mapping is done on another slot: 

*gh Ox00004010 (GID only) 

new_gh Oxa0004010 (FLAG bit turned on + slot 2) 

The presence of the slot bit is an unfortunate side-effect of being able to 
map ensigns across slots. The mapping routine should only check for the 
presence of the flag bit (see the GH_IS_USED macro later) and ignore 
the slot bits. 

From this point on, GAME will call the activation routine every time an 
instance of that gate is created or destroyed. For ensigns/davidian, the 
routine is called when the GID is allocated or deallocated. Mapping 
activation routines get scheduled ahead of any other gates scheduled for 
buffers or signals (more on this in the Scheduler section). 

A single mapping activation for a well-known gate or an alias can contain 
MULTIPLE slot bit transitions. For example, a later activation of the 
mapping for GID _DP _INI might receive the parameters: 

*gh = OxbBOOOOlO (FLAG bit, slots 2-3-4, GID) 

new_gh = Oxb2000010 (slot 4 instance went away, 
slot 6 instance came alive) 

The memory used to hold the gate handle MUST be in a 
block allocated via g_malloc(). The only case where you can 
use stack space for a mapped gate handle is for a 
G CURRENT GH call. 
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When the mapping owner no longer cares about the state of the 
mapped gate, it MUST call g_map() to remove the mapping: 

g_map (some_gid, &(env->some_gh), G_UNMAP); 

Otherwise, GAME will continue to call the mapping 
activation routine. If the unmap is done within the mapping 
routine itself (not uncommon), the activation terminates 
before the return from g_ map(). That's right, you don't 
return. 

It's also important to unmap when the mapping fails because a 
dynamic gate has died. This is because that gate ID will be 
reused eventually for a different purpose and your mapping of it 
is no longer appropriate. 

Always unmap before freeing a GH. 

Within a mapping activation routine, there are a collection of macros that 
are used to examine and compare the old *gh and the new _gh: 

Table 3-1 Mapping Macros 

Macro Purpose 

GH_IS_USED (new_gh) Is this ensign/davidian 
allocated? 

GH_BECAME_LOCAL (*gh, new_gh) Was an instance created on this 
slot? 

GH_BECAME_REMOTE (*gh, new_gh) Was an instance created on 
another slot? 

GH_BECAME_PRESENT (*gh, Was an instance created on any 
new_gh) slot? 

GH_CEASED_LOCAL (*gh, new_gh) Did an instance die on this 
slot? 

GH_CEASED_REMOTE (*gh, new_gh) Did an instance die on another 
slot? 

GH_CEASED_PRESENT (*gh, new_gh) Did an instance die on any 
slot? 

• 
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The return values of these macros are the slot bits of the applicable gate 
instances. 

When a mapping activation routine runs, it is a separate "thread" from 
the base context of the gate. This is done by creating a new, temporary 
gate. This gate is setup to be a child of the mapping creator who called 
g_ map). This gate only exists while the mapping is active. In some cases, 
resources allocated by the mapping activation belong to the owner gate. 
In other cases, the temporary mapping gate owns them. Resources are 
treated as follows: 

• Memory: All allocated memory becomes property of the owner 
gate. 

Buffers: Transient buffers are part of the mapping gate. 
However, any use of the private pools (e.g., g_bsave) are in the 
context of the owner gate. A mapping gate cannot exit with 
buffers on its transient pool. The owner gate will be terminated 
if this happens. (Note that this is a more drastic punishment than 
if a normal gate activation orphans buffers. In that case, only a 
message is logged.). 

Semaphores: A created semaphore is the owner's property. A 
token acquired by a mapping gate belongs to that gate. 

g_req() calls: Any gates created in a mapping routine are 
children of the owner gate. 

g_map() calls: Any mappings created in a mapping routine are 
owned by the owner gate. 

• g_isr() calls: Any signal handling requested in a mapping 
routine is registered in the context of the owner gate. 

Additional Considerations: 

If you call g_myid(), you get the owner's gate ID. 

If you call g_env(), you get a pointer to the owner's environment. A 
mapping gate cannot have its own environment. 
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A single gate can have its base context and several mapping contexts in 
the active/pending states at once. Watch out for races if accessing data 
structures shared between these contexts! Semaphores or other locking 
mechanisms are necessary in these case (and the know-how to use them!). 

Finally, before a mapping activation routine exits, it must update the 
allocated gate handle: 

*gh = new_gh; 

Some Mapping and Unmapping Gotchas 

One problem is when a routine that did a mapping with G_NOACT, but 
[]did not do a G_UNMAP. Is an "unmapping" (i.e. g_map (gid, gh, 
G_UNMAP)) necessary in this case? 

Yes, an unmap is necessary in all g_ map cases before you free a gate 
handle. Here's the scenario: Gate 1 allocates memory location Oxabcdef 
for a *GH. It then maps to the gate and passes g_ map G _NOACT for no 
action routine (usually done to check for a gates existence). GAME saves 
that Gate 1 maps some gate at location Oxabcdef. Gate 1 frees memory 
location Oxabcdef with out doing an unmap. Gate 2 allocates memory for 
a *GH and happens to get the same location Oxabcdef. Gate 2 then places 
a GH into that location. Game thinks that another gate (gate 2) is mapping 
the same gate that gate 1 mapped. It triggers a mapping change for both 
Gate 1 and Gate 2' s mapping action routines (Gate l's action routine was 
G _NOACT so nothing happened. If it wasn't, bad things could have 
happened here.) Game allows for gates to modify GH' s through mapping 
routines even though they are not the owner of the mapping. It does, 
however, log a message that says, in so many words, that this is 
happening. 

• 
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Gate 2 thinks that it owns the mapping of the GH atlocation Oxabcdef. 
Game thinks Gate 1 owns it because gate 1 never unmapped that location. 
When Gate 2 does the unmap, Game panics in map _rem because gate 2 
is not the owner of the mapping at that location. When Game unmaps, it 
compares the info it saved on the mapping creation with the info from 
the gate calling unmap. Remember, the info saved is the GH of the gate 
that created the mapping and the memory location containing the GH of 
the mapping. In this case, Game first checks to see if location Oxabcdef 
has a mapping associated with it. It then compares the GH of the creator 
of the mapping with the GH of the caller of unmap. If they don't match 
then GAME panics. The situation is potentially even more dangerous if 
Gate 2 has used the memory for something other than storage for a mapped 
gate handle. It would be possible for Gate l's mapping to then corrupt 
Gate 2's memory, resulting in unpredictable system behavior, 

Remember, the info saved is the GH of the gate that created the mapping 
and the memory location containing the GH of the mapping. In this case 
Game first checks to see if location Oxabcdef has a mapping associated 
with it. It then compares the GH of the creator of the mapping with the 
GH of the caller of unmap. If they don't match then game panics. 

Just to be a bit more precise with the terminology (the difference between 
a gate handle and gate ID can be very important). For a given mapping, 
GAME keeps track of: 

the gate ID of the creator of the mapping (it knows that it is on 
the local slot, so the slot bits are not necessary) 

the location of the gate handle in memory the gate ID of the 
mapped gate. 

A gate has a chain of mapping blocks. When an unmap is done, GAME 
searches this list for a match of the GH memory location and the GID of 
the mapped gate (the mapping owner GID is implied, since you are 
looking in the gate's list). If a matching entry is not found, you get the 
"don't own such mapping" log message. 
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To make a long story short - always unmap BEFORE you free a GH that 
is mapped, no matter what the action routine is. 

There are some cases where you cannot do this. If you do the G _ UNMAP 
in the actual mapping routine for the gate, you do not return. If you had 
allocated the GH memory dynamically, you need to free it before the 
unmapping. This should be done immediately before the unmapping in 
order to reduce the possibility that someone will introduce a window later. 
The GA TE ID (gid) argument passed to the g_ map() function should not 
be extracted/derived from the memory that was being used to hold the 
value of the current gate handle after it has been freed. Any such access 
to already freed memory is risky and should be eliminated. The gid value 
should be extracted from the memory and stored in a local variable before 
the memory is freed. Alternatively in a mapping routine itself, the gid can 
always safely be extracted from the 'new _gh" argument passed in by 
GAME when it triggered the mapping, provided it has not been modified. 

When doing an unmap within a mapping routine, the g_mfree must be 
done first because mapping routines do not return from an unmap call. 
This can be done because g_ mfree does not pend. Be careful as to the 
owner of the g_malloc()'d memory in this case. 

Mapping An Alias 

Since alias gate instances don't really exist, GAME handles the mapping 
of alias gate IDs somewhat different from "real" gates. However, to the 
application using the gate handle supplied by a mapping, it doesn't make 
any difference. 

• 
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When the first gate on a slot joins an alias, GAME considers this an "up" 
event for the alias instance on that slot and turns on the slot bit in the gate 
handles for any mappings of the alias gid. Further member additions on 
that slot do not cause any state change. When the last member removes 
itself from the alias on a slot, game considers this a "down" event and it 
removes the slot bit from the gate handles for any mappings of the alias 
gid. 

Suppose, on slot 2, g_ alias() is called to add gate A to alias OxOOO 1e401, 
the first member on the slot and on the box. Any gate mapping gid 
Ox0001e401 would see the following state change: 

*gh = Ox0001e401, new_gh = Ox2001e401 

Gates B, C, and D also join on slot 2. No state change occurs. 

Now suppose gate E on slot 5 was added: 

*gh = Ox2001e401, new_gh = Ox240le401 

Finally, gate E on slot 5 is removed: 

*gh = Ox2401e401, new_gh = Ox2001e401 

Some Frequently Asked Questions 

• 3-12 

*** Can I map "myself"? 

Yes. Self-mappings are not only allowed but are even subject of a special 
treatment. They execute ahead of all the other mappings that may be 
triggering at the same time and ahead of gate termination clean-up. Due 
to the fact that a it is owned by a gate that has been marked "dead" and 
will soon be removed from the system, a self-mapping is restricted in 
what it can do. For instance, it may not pend, which it would do if it tried 
to create a gate or a mapping, attempt to allocate a buffer with a pending 
option, call g_ delay() org_idle(), or send a reliable message. It may send 
an unreliable message, however. Usually, all a self-mapping does is log 
a message and/or update some MIB statistics. 
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*** Can I map across slots? 

Yes. Mappings were invented specifically to track gate state changes 
occurring on all slots and to update gate handles. 

*** Can I map "ensign" and "davidian" gates? 

Yes. Ensign and davidian gates were invented specifically to be mapped. 
There is little else they can do for you. 

*** If I have two mappings, which one runs first? 

The order of mapping triggering and execution is inherently 
unpredictable. GAME does not specify which mappings run first except 
for the self-mapping's special treatment descri.bed above. 

*** Will a mapping trigger while the owner gate pends? 

Yes. Mappings with activation routines execute as temporary gates which 
are children of the mapping owner gate. After the initial activation, the 
rest of triggered mapping life is just a life of a gate. This may also lead 
to certain race conditions when the triggered mapping affects an 
environment shared with its owner gate (or other gates, for that matter). 

*** Can my mapping activation combine several state changes? 

Yes. In larger configurations it is possible, even likely, that one trigger 
activation will cover almost-simultaneous gate instantiation on several 
slots. Note that one given mapping activation may 
SIMULTANEOUSLY cover gate instance creation and disappearance 
on different slots (both GH BECAME PRESENT and - -
GH_CEASED_PRESENT may be non-zero!). 

*** Will my mapping run twice with the same "new_gh"? 

No. This used to be possible, but it has been fixed. However, your 
mapping routines should work correctly if this should happen (i.e., 
bulletproofing is a good thing). 

• 
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*** Can I miss a trigger? 

No. The events for a map trigger are queued up and the mapping is 
guaranteed to see every transition. However, iftriggerings are queued 
up, the state given in new _gh is not necesarily the current state. 

*** What happens if I do a suicide in a mapping routine? 

This terminates the current mapping, the owner gate, and all other 
mappings. Effectively, all context related to the owner gate is terminated. 
This is true for any gate termination encountered by a mapping gate (other 
than a normal, clean exit). 

Activation Routines for Well-Known Gates 

• 3-14 

A mapping of a well-known gate is usually one that hangs around for the 
life of the owner. The typical use is within a subsystem. It allows the 
local subsystem component to learn when the subsystem comes up or 
goes down on other slots. The "up" processing usually involves 
synchronizing the data between slots. "Down" processing cleans up 
information learned from that slot. 

A side-effect of the mapping is that it provides a gate handle to use when 
the subsystem wants to send something to all other slots. The local slot 
bit is first removed via an AND with -G MY SLOT MASK. 

There are two approaches that are used for well-known gate mappings 
(actually, this applies to all mappings) to deal with synchronization issues 
with the base gate context and other mapping contexts. Each of these has 
its pros and cons: 

Data Signal Approach 

One approach is that the mapping does nothing other than send a data 
signal to the owner gate (most common approach). 
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The advantages are: 

• You don't have to worry about multiple gate threads accessing 
and modifying the same data. 

• The gate handle maintenance is separated from the up/down 
processing, resulting in timely updates of the gate handle 
(although, in some cases, having the GH out of sync with the 
up/down processing can cause problems). 

• This fits in well with how GAME expects mappings to act (short 
lived, no pending). 

The disadvantages are: 

A temporary resource (memory) has to be allocated. 

• The event does not get processed until the base gate context is 
scheduled for the signal. If the gate is currently active or has 
another activation on the scheduler queue, it may not get the 
signal in a timely fashion. 

• The base gate context becomes a bottleneck, having to do all of 
the normal buffer and signal processing along with the mapping 
events. 

The magnitude of these downsides all depends on the workload of the 
gate. It may not matter if there is little work to do. In any case, if the 
developer has no experience in developing multi-threaded code (the test: 
do you know what a "critical section" is?), they must use this approach. 

The well known gate GID _IP_ RTM uses this approach. It maps a second 
well-known gate called GID _IP_ RTM _UP to determine connectivity to 
its peers on other slots. The mapping routine: 

• 
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void 

ip_rtm_up_self_map(gh, new_gh) 

GH *gh; 
GH new_gh; 

char cbuf [80); 
RTM_ENV *rtm_env = (RTM_ENV *) g_env(); 
if ( GH_CEASED_LOCAL(*gh, new_gh) ) 

{ 

/* If local GID_IP_RTM_UP panic'ed, local RTM must go down. 

* 
* 

* In the future this may change in the cases, when problems * 
* in RECEIVING new information were detected on the local slot,* 
* s.t. by bouncing local IP_RTM_UP gate (requesting info from * 
* remote slots) can cure the problem. */ 
g_req(GID_IP_RTM, G_REQ_KILL, 0, O); 

else 

/* correct for rtm_env->gh */ 
new_gh &= GH_GET_SLOT_MAP(rtm_env->gh) I GH_GID_MASK; 

sprint£ (cbuf, "RTM up self map old tlx, new %lx", *gh, new_gh); 
g_log (IP_DBG_INFO_MSG, cbuf); 

/* Process remote slots going down, as if in ip_rtm_self_map () *I 
/* Process any slot that comes up: local or remote 

if ( GH_CEASED_REMOTE(*gh, new_gh) I I 
GH_BECAME_PRESENT(*gh, new_gh) ) 

ip_send_map_local_msg (rtm_env, gh, 

RTM_SELF_MAP_MSG); 
} 

} 

*gh, new_gh, 

rtm_env->up_gh GH_GET_SLOT_MAP(new_gh) I GID_IP_RTM; 

*/ 
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'*gh = new_gh; 

BAD CODING PRACTICE ALERT!!! The log message 
should be defined in an EDL file and not dynamically 
produced within the code. This wastes CPU and log space, 
and the string is not a candidate for compression in the image 
file. 

Perform All Processing in the Thread Approach 

A second approach is to perform all necessary processing in the mapping 
thread. 

The advantages are: 

• Allows concurrent processing of the base gate context and up/ 
down processing, avoiding a bottleneck in the base gate. 

• Does not require any messaging to the main gate context. 

• Up/down processing occurs in a timely manner. 

The disadvantages are: 

• If the mapping pends, this mapping's execution can overlap with 
activations of the base gate and other mappings of the gate. 

• This usually requires access/modification of data structures by 
multiple threads. This can be dangerous if not done by 
experience hands and/or if the code is not documented well. 

Long lived up/down processing that has to give up the CPU 
delays the reception of further mapping activations. The gate 
handle can get stale. 

• 
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BGP uses this approach. The (somewhat abbreviated) activation routine: 

void 

bgp_map_bgp_quick(gh, new_ghl 

GH*gh; 

GHnew_gh; 

BGP_ENV*bgp_env; /* BGP gate's environment */ 

BGP_CONN_GATE_MAP *bgp_conn_gate_map; 

BGP_CONN_ENV *conn_env; 

bgp_env = (BGP_ENV *) g_env (); 

/* see if we're dying */ 

if (GH_CEASED_LOCAL (*gh, new_gh) 

/* set our mib state to not-present and log our goodbye */ 

bgp_env->wfBgp_inst->wfBgpState = BGP_NOTPRESENT; 

if (BGP_LEVEL_LOG(bgp_env, INFO_MSG)) 

g_log (BGP_TERM_MSG); 

/*some counter zeroing edited-out here ... */ 
} /* end if dying locally */ 

else 

/*some soloist stuff edited out here ... */ 

/* check for remote instances dying - we have to clean up its routes *I 
if (GH_CEASED_REMOTE(*gh, new_gh) && BGP_LEVEL_LOG(bgp_env, 
WARNING_ MSG) ) 

bgp_slot_down (GH_CEASED_REMOTE(*gh, new_gh)); 

} /* end if died remotely */ 

/* check for new instances - we have to send them update messages */ 

if (GH_BECAME_REMOTE(*gh, new_gh)) 

{ 

bgp_slots_up (bgp_env, GH_BECAME_REMOTE(*gh, new_gh) ) ; 

} /* end if remote instance came alive */ 

} /* end else didn't die locally */ 

/* save the gate handle */ 

*gh = new_gh; 

} /* end bgp_map_bgp_quick */ 
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BAD CODING PRACTICE ALERT: The values for 
GH_CEASED_REMOTE and GH_BECAME_REMOTE 
should be cached in stack variables. (For various reasons, 
mostly due to access of hardware registers, the compiler 
doesn't optimize this). 

Activation Routines for Dynamic Gates. 

Mappings of dynamic gates are different from well-known gates in two 
important respects: 

The mapped gate is only instantiated on one slot. In most cases, 
this is the local slot. 

When the mapped gate dies, the mapping owner un-maps the 
gate. THIS IS CRITICAL, as the GID will be recycled. 

Always unmap a ceased dynamic gate in the mapping routine itself, even 
if a signal or a message is sent to the owner gate. The reasons are: 

• Not unmapping causes an annoying "mapping survived" 
message to appear in the log. This wastes precious log space. 

Not unmapping means that the base gate context must do the 
unmap. This is not as intuitive as doing it in the mapping 
routine, and experience has shown that people often forget about 
the unmapping or some conditional code gets added later that 
skips the unmapping. A lingering mapped dynamic gate is not a 
fun thing to debug. 

• 
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When unmapping a ceased dynamic gate in the mapping routine, always 
use the "new_gh" argument to derive the gate id and the "gh" argument 
for the memory pointer: 

g_map(GH_GET_GID(new_gh), gh, G_UNMAP); 

and not the a gid or gh derived from the gate's environment or a casted 
"*gh" pointer. The reason is that GAME guarantees that "new_gh" and 
"gh" are valid. "*gh" and the environment could have been changed by 
another gate or thread or could even be referencing memory not owned. 

Often, the only reason for mapping a dynamic gate is to restart that gate 
if it dies. This is the case when an IP NWIF gate maps its forwarding 
cache gate, as shown here. Note that there will be no return from the 
G UNMAP call! 

void 

ip_nwif_cache_map(gh, new_gh) 

GH *gh; 

GH new_gh; 

GID gid; 

GID old_gid; 

NWIF_ENV *nwif_env; 

if (GH_BECAME_LOCAL (*gh, new_gh) ) 

*gh = new_gh; 

} 

else if (GH_CEASED_LOCAL (*gh, new_gh) ) 

*gh = new_gh; 

nwif_env = (NWIF_ENV *) g_env (); 

nwif_env->fft = NIL (TBL); /* No more FFT */ 
nwif_env->cfg_rec->wfipinterfaceCacheNetworks = O; 

old_gid = GH_GET_GID (new_gh); 

gid = g_req (G_REQ_NEW_GID, ip_nwif_rt_cache_init, nwif_env, 
G_SIG_INI) ; 

g_map (gid, &nwif_env->cache_gh, ip_nwif_cache_map); 
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/* un-map the mapping that got us here ! */ 
g_map (old_gid, &nwif_env->cache_gh, G_UNMAP); 

} /* end ip_nwif_cache_map */ 

A non-obvious characteristic of this mapping routine: When the g_ map() 
call is made to map the new gid, the current mapping gate context pends 
and another is immediately scheduled to process the first activation for 
the new gid. 

BAD CODING PRACTICE ALERT: As mentioned 
previously, the G_UNMAP call should use the "gh" 
parameter instead of the address of the gate handle in the 
environment. Using "gh" would run faster, too! 

~ BAD CODING PRACTICE ALERT: This one isn't so bad! 
'I There's no need for the GH_BECAME_LOCAL check. *gh 

can be set unconditionally at the end of the routine. 

Other dynamic gate mappings are more complicated, and the developer 
often has to make the choice of sending a data signal to the base context 
or deal with the multi-thread situation. The following snippet is BGP's 
mapping of one of its peer gates (highly edited again). Note the use of a 
non-so-ensign ensign gate (i.e., it has a real, but unused, activation 
routine) to indicate that cleanup is happening for this peer. This prevents 
the base context from re-starting this peer until the cleanup is finished. 

void 

bgp_map_peer(gh, new_gh) 

GH *gh; 

GH new_gh; 

BGP_ENV*bgp_env; /* BGP gate's environment */ 

BGPN_PEER*bgpn_peer; /* BGP peer structure */ 

BGP_CLEANUP*bgp_cleanup;/* cleanup block */ 

BGP_CLEANUP*prev_cleanup;/* previous cleanup block */ 

BGP_CONN_WAIT*bgp_conn_wait;/* connection wait structure */ 

• 
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GID conn_gid; /* gate id of connection gate */ 

BGP_NET_INFO*net_info; 

char message [128]; 

/* see if the connection gate died */ 

if (GH_CEASED_PRESENT (*gh, new_gh) 

{ 

bgp_env= (BGP_ENV *) g_env (); 

if(! (GH_IS_LOCAL(bgp_env->self_gh) )) 

{ 
/* bgp main gate has just died, unmap this mapping */ 

g_map (GH_GET_GID (new_gh), gh, G_UNMAP); /*does not return*/ 

} 

bgpn_peer= RECV_GH_2_BGPN_PEER(gh); 

/* 
* create an "ensign" gate and structure that indicates 

* we're busy cleaning this up. attach it to the bgp env 

*/ 
bgp_cleanup = g_malloc (sizeof (BGP_CLEANUP) ); 

bgp_cleanup->peer_key = *BGP_PEER_KEY(bgpn_peer); 

bgp_cleanup->ensign_gid = g_req (G_REQ_NEW_GID, bgp_dummy_act, 

0, G_NO_SIG_INI); 

bgp_cleanup->next = bgp_env->bgpn_cleanup; 

gp_env->bgpn_cleanup = bgp_cleanup; 

bgpn_peer->flags I= PEER_IS_DOWN; 

if (bgpn_peer->flags & IBGP_PEER) 

{ 
--bgp_env->ibgp_peers; 

else 

--bgp_env->ebgp_peers; 

if (BGP_DBG_EVENT_LOG(bgp_env, BGP_REMOVE_PEER_MAP)) 

g_log(BGP_REMOVE_PEER_MAP, "Down", 

IP_PRINT_ADDRESS (BGP_PEER_LOCAL_IP(bgpn_peer)), 

P_PRINT~ADDRESS (BGP_PEER_REMOTE_IP(bgpn_peer)),*gh ); 

/* prevent RIB processing by other mappings */ 

BGP_GET_SEMA (bgp_env->bgp_semaphore); 

/* LOTS of cleanup code edited out here */ 
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conn_gid = GH_GET_GID (bgpn_peer->peer_recv_gh); 

/* clean up our "cleanup" block and kill the assocated gate */ 

for (prev_cleanup = (BGP_CLEANUP *) (&bgp_env->bgpn_cleanup); 

prev_cleanup->next != bgp_cleanup; 

prev_cleanup = prev_cleanup->next) 

; /* do nothing */ 

prev_cleanup->next = bgp_cleanup->next; 

g_req (bgp_cleanup->ensign_gid, G_REQ_KILL, O,G_NO_SIG_INI); 

g_mfree (bgp_cleanup); 

if((bgpn_peer->flags & PEER_IS_DOWN) && 

queue_isempty(&bgpn_peer->path_queue)) 

{ 
/* no use for it - remove from the table */ 

if (u_delete (bgp_env->bgp_peers, (OCTET *)BGP_PEER_KEY(bgpn_peer), 

(OCTET *)BGP_PEER_KEY(bgpn_peer)) ) 

{ 

g_log (BGP_DEBUG_MSG, "u_delete failed"); 

CRASH_BGP; 

/* free the semaphore (after the KILL for CR16894) */ 

BGP_FREE_SEMA (bgp_env->bgp_semaphore); 

/* unmap this mapping */ 

g_map (conn_gid, gh, G_UNMAP);/* does not return*/ 

} /* end if not present */ 

/* save the gate handle */ 

*gh = new_gh; 

/* end bgp_map_peer */ 

BAD CODING PRACTICE ALERT: The gate id for the 
G _UN MAP should be derived from "new _gh" 

BAD CODING PRACTICE ALERT: It's a good idea to zero 
out pointers after their referenced memory had been freed. It 
catches the bugs a lot faster. In this case, bgp _cleanup 
should be set zero after the g_mfree(). 
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Also: there is really no reason for the "self _gh" check. GAME will not 
schedule the owner gate of a mapping if that owner gate has been killed. 

Activation Routines for Ensign/Davidian Gates 
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An ensignidavidian mapping is somewhat like a dynamic gate mapping 
for the two reasons listed in the previous section. It differs in that the 
mapping activation routine can only examine the FLAG bit (31) of the 
gate handle to determine if the gate is "up" (allocated) or not. You usually 
see this type of mapping in association with a MIB resource. 

This example is the BGP gate's mapping of the davidian gate representing 
the wfBgpPeerEntry object (when this mapping triggers down, it means 
a new row of this table exists). When this code was written, the MIB still 
used ensigns (davidians hadn't been invented yet), so the comments are 
wrong. 

Note that when the existing davidian dies, the MIB is queried for a the 
davidian representing the new state. The new mapping is set up before 
this one exits (via G_UNMAP). Again, you don't want to confuse the 
old and new GIDs! 

void 

bgp_map_wfBgpPeerEntry_obj{gh, new_gh) 

GH *gh; 

GH new_gh; 

BGP_ENV*bgp_env; /* ptr to BGP's environment */ 

OBJ_IDwfBgpPeerEntry_obj_id;/* object id of wfBgpPeerEntry */ 

INST_IDwfBgpPeerEntry_inst_id;/* instance id of wfBgpPeerEntry */ 

/* see if the ensign gate died */ 

if ( ! {GH_IS_USED {new_gh) ) ) 

bgp_env = {BGP_ENV *) g_env {); 

if{! {GH_IS_LOCAL{bgp_env->self_gh))) 
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/* bgp main gate has just died, unmap this mapping */ 
g_map (GH_GET_GID (new_gh), gh, G_UNMAP); /*does not return*/ 

} 

/* re-bind to the object and re-map */ 

mib_ascii2obj (BGP_PEER_ENTRY_ASCII_ID,wfBgpPeerEntry_obj_id); 

bgp_env->wfBgpPeerEntry_obj_gh = 

mib_bind_obj (wfBgpPeerEntry_obj_id, PRIMARY); 

g_map (bgp_env->wfBgpPeerEntry_obj_gh, 

&(bgp_env->wfBgpPeerEntry_obj_gh), bgp_map_wfBgpPeerEntry_obj); 

/* process all of the existing instances */ 

while (mib get new inst (wfBgpPeerEntry obj id, 
wfBgpPeerEntry=inst_idl ) - -

bgp_new_wfBgpPeerEntry_inst (bgp_env, NIL(BGP_CONN_GATE_MAP), 

wfBgpPeerEntry_obj_id, 

wfBgpPeerEntry_inst_id); 

/* un-map this mapping */ 

g_map (GH_GET_GID (new_gh), gh, G_UNMAP); 

} /* end if ensign gate died */ 

else 

*gh = new_gh; 

/* end else ensign gate didn't die */ 

} /* end bgp_map_wfBgpPeerEntry_obj */ 

Changing a Mapping Activation Routine. 

It's not very common, but you can change the activation routine of an 
existing mapping. This is done by calling g_map() with the new routine: 

g_map (some_gid, &(env->some_gh), new_map_act); 

BGP connection gates do this. They first map the well known TCP gate 
with no action routine. If the configuration information is valid, the gate 
changes the mapping to use an activation routine (whether the connection 
is going active or not). 
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g_map (GID_TCP, &(bgp_conn_env->tcp_gh), G_NOACT); 

if (bgp_wfBgpPeerEntry_validate (bgp_conn_env) FALSE) 

/*remain disabled .... */ 

} /* end if validation failed */ 

/* if the entry is disabled or TCP is not active, we just hang out */ 

else if ( (bgp_conn_env->wfBgpPeerEntry_inst->wfBgpPeerDisable 

BGP_PEER_DISABLED) 11 
( ! (GH_IS_LOCAL(bgp_conn_env->tcp_gh)) && 

!bgp_conn_env->bgp_env->bgp_soloist) I I 
(bgp_conn_env->bgp_env->bgp_soloist && 
!(GH_IS_PRESENT(bgp_conn_env->tcp_gh))) 
{ 

/* use a real mapping routine for the TCP gate */ 
g_map (GID_TCP, &(bgp_conn_env->tcp_ghl, bgp_conn_map_tcp); 

else 

/* use a real mapping routine for the TCP gate */ 
g_map (GID_TCP, &(bgp_conn_env->tcp_gh), bgp_conn_map_tcp); 

Soloist Mapping By the Parent 
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The gate that creates a soloist gate must map the soloist and perform 
specific tasks if the soloist appears on multiple slots or if all instances of 
the gate die. 
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Specifically, before making the g_req() call to create a soloist, the 
mapping should be done to see if the soloist exists on another slot. If so, 
no attempt should be made to create the soloist. (Actually, even if you do 
make an attempt, the gate won't get created because it already exists.) 

If the mapping routine ever detects more than one slot bit set in the 
soloist's gate handle, and if one of those bits is the local slot, the soloist 
should be terminated if the local slot bit is not the lowest slot bit (leftmost) 
in the gate handle. 

If a mapping activation occurs where the new gate handle has no slot bits 
set, it is time to start a new soloist election. The mapping routine needs 
to make the g_req() call to start the new soloist. All mappings may be 
doing this at the same time. The soloist election procedure will pick only 
one slot to create the gate. 

Here's an example (again from BGP) of how to do a soloist mapping from 
the parent gate. Note that the "real" mapping activation routine sends a 
message to the base RTM context. This is the routine that runs in the 
base context. Also note that BGP can run in both soloist and replicant 
mode (as indicated by rtm_env->bgp_soloist). 

void 

ip_rtm_map_chg_bgp ( gh, old_gh, new_gh l 

GH *gh; 

GH old_gh; 

GH new_gh; 

RTM_ENV*rtm_env; 

GH 

/* RTM's environment */ 

temp; 

char d_str[l60]; 

rtm env = (RTM_ENV *) g_env Cl; 
if ( ( GH_IS_LOCAL ( new_gh ) l && ( rtm_env->bgp_soloist ) ) 

{ 

/* BGP soloist gate exists on local slot */ 

temp= new_gh & -(G_MY_SLOT_MASK);/* Strip off my slot bits*/ 

if ( G_MY_SLOT_MASK < ( temp & GH_SLOT_MAP_MASK ) ) 

• 
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/* soloist exists on another slot with a lower slot number, 

* kill local soloist 

*/ 
sprintf ( d_str, "killing local BGP soloist Oxt08", new_gh ); 
g_log ( IP_DBG_INFO_MSG, d_str ); 

g_req ( GID_BGP, G_REQ_KILL' 0' 0 ); 
return; 

if ( GH_CEASED_LOCAL ( old_gh, new_gh ) ) 

/* BGP gate died locally, remove the locally authored routes */ 

ip_rtm_remove_bgp_routes(rtm_env); 

} 

if ( !( GH_IS_LOCAL ( new_gh) ) ) 

/* BGP gate is not present on this slot */ 

if ( GH_IS_LOCAL rtm_env->bgp_load_gh 

ip_rtm_start_bgp rtm_env ) ; 

else if GH_IS_LOCAL ( rtm_env->bgprs_load_gh 

/* BGP route server code is loaded on local slot */ 

g_req (GID_BGP, bgprs_init, rtm_env, G_SIG_INI); 

} 
} 

} /* end ip_rtm_map_chg_bgp */ 

Just one comment here: the "temp" variable isn't really necessary. There 
is no reason to remove the local slot bit to do the comparison. 

In case you are curious: The routine ip_rtm_start_bgp() checks to see if 
BGP is running in soloist mode. If so, and if it's running on another slot, 
it is not started. 
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A General Warning About Mappings 

Change the base gate's env before calling g_map(), if you use g_env() in 
the mapping. Otherwise, a mapping that fires before the g_req() that 
changes the environment will get the wrong environment pointer. 

• 
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What Are Buffers Used For? 

Chapter4 
Buffers 

Buffers can be used for communication between gates on the same slot 
or different slots. For cross-slot communication, this is the only choice 
(besides the limited information that a mapping conveys). 

Fast Facts About Buffers 

Memory on a slot is divided between what is called "local memory" and 
"global memory". Local memory is used for code, stacks, allocated 
memory, etc. Global memory is used exclusively for buffers. 

On most platforms (including FREI, FRE2, ASN), local and global 
memory is carved out from a common DRAM pool. The amounts to use 
are based on configuration parameters. Once carved, however, only the 
CPU can access local memory. The memory decoding scheme employed 
by the backbone and link module interfaces only allows access to global 
memory. 

Excluding ANs and ASNs without SRAM installed, portions of each 
buffer (one cache line for the buffer header and four cache lines where 
the link and network headers would usually reside) are mapped to fast 
SRAM memory. Access to this memory is faster than a 
non-(processor-)cached DRAM access, but slower than a 
(processor-)cached DRAM access. This accounts for a major portion of 
the box's forwarding performance.To avoid cache coherency problems, 
none of the buffer memory is cachable by the processor. 

• 
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On an ARE and FRE3, local and global memory are physically separate. 

The DRAM is used exclusively for local memory. Global memory is 

managed by a Virtual Buffer Memory (VBM) system. With VBM, 

physical memory is not statically assigned to buffers as on the FRE. VBM 
uses a separate physical memory (between 1 and 7 MB) which is mapped 
as needed to manage up to 32MB of virtual buffer space. The physical 
memory is organized into 256 byte pages and is assigned upon a "write" 

operation into a buffer. 

Global Facts 

• Each buffer on a slot has the same maximum size (5K on a FRE, 
up to IOK on an ARE). 

• Buffer memory is separate from the memory free pool. 

• GAME maintains a single free buffer pool. 

• Service is FCFS. 

• A single gate can "own" an unlimited amount of buffers, to the 
point where it can exhaust the buffer pool. 

Facts That Apply Only to the FRE1/2, ASN, AN 

Each slot has a fixed number of buffers. 

Each buffer on a slot is exactly the same size (usually SK). 

The last cache line of a buffer is set to "no access" if tags are 
supported. 

Facts That Apply Only to the ARE, FRE3 

The free buffer pool is maintained by hardware, but the GAME 
buffer primitives still work. 

There are a finite number of virtual buffers. However, 
availability may also be constrained by lack of physical pages. 
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• Reading unmapped VBM virtual space causes a fatal error. 
Note that this isn't a problem on the FRE, since the physical 
memory is always there. It's usually still a bug, though, since 
uninitialized data is being read. 

• The difference between access times of a cached DRAM access 
and a buffer access on an ARE is much greater than on a FRE 1/2 

Buffer format is illustrated in Figure 4-1. 
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Figure 4-1. Buffer Format 
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Format: 

typedef struct BUF 

struct BUF *next; /* next buffer on the list 

struct BUF *next_l; /* next list's head buffer 

u_int32 dest_gh; /* destination gate handle 

u intl6 

u intl6 

} BUF; 

Values: 

start; /* start offset 

end; /* end offset 

*/ 
*/ 
*/ 
*/ 
*/ 

"next" is a pointer to the next buffer on the list. NIL pointer indicates the 
end of list. 

"next_l" is a pointer to the head of the next list in a transient buffer pool 
(later). 

"dest_gh" is the gate handle of the destination gate. The FLAG bit (31) 
is set if the buffer transmission is reliable and cleared otherwise. 

"start" is the byte offset, relative to the start of the buffer header, to the 
beginning of the floating message body. Buffers sent over the backplane 
must have a start offset less than 256. If reliable transmission is used, a 
4-byte source gate handle and a 4-byte sequence stamp precede the 
message body while the buffer is in transit. Even though the start offset 
is adjusted before the buffer is delivered to the gate, the source gate handle 
can still be retrieved via the g_src() call. 

"end" is the byte offset of the first byte after the message body, relative 
to the start of the buffer header. Another way to think about it is "end" 
is start plus length. 
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Considerations: 

There are macros that are used to access these fields in a buffer (include/ 
buffer.h): 

#define G_BUF_NEXT( buf ) (((BUF *) (buf))->next) 

#define G_BUF_NEXT_L( buf (((BUF *) (buf))->next_l) 

#define G_BUF_DEST_GH( buf (((BUF *) (buf))->dest_gh) 

#define G_BUF_START( buf ( ( (BUF *) (buf))->start) 

#define G_BUF_END( buf ) ( ( (BUF *) (buf)) ->end) 

Normally, the message body should begin after nominal headroom space 
(G_BUF_START_PKTorG_BUF_START_MSG)inordertomaximize 
use of special hardware accelerators that may be available on some 
versions of hardware. Specifically, on the FRE, this allows the link and 
network layer headers to reside in SRAM. 

Buffer Pools I Lists 

Buffers change ownership very often and it is paramount to minimize the 
system overhead required to track them. The scheme is based on three 
buffer pools: 

• A free buffer pool. 

• A transient buffer pool containing buffers owned by a gate only 
temporarily. 

• A set of private buffer pools containing buffers owned by a gate 
for a greater length of time (over multiple activations). 

• 
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The Free Buffer Pool 

Buffers that are not owned by any gate are maintained in the free buffer 
pool. On non-VBM systems, this is a simple linked list of buffers, 
connected by the "next" pointers. On VBM systems, the free buffer pool 
is maintained by VBM hardware. The same GAME calls, such a 
g_ balloc() and g_ breplen(), work on both systems. 

The Transient Buffer Pool 

A transient buffer pool only existsfor gates that are in the active or pended 
states. That is, a gate only has a transient pool if it has been activated for 
buffer delivery, signal delivery, or a mapping (each mapping context has 
its own transient pool). When a gate exits an activation, it must have an 
empty transient pool. Otherwise, it is said to "orphan" buffers. The 
punishment in this case is mild (a message is logged and the buffers freed), 
but this is an indication of an error in the application - the buffer was 
meant to go "somewhere". As discussed in the Mapping section, the 
punishment for leaving buffers on the transient queue after exiting a 
mapping activation is more severe (the gate is terminated). 

Buffers can be placed into the transient buffer pool for three reasons: 

• Buffers can be sent to a gate using unreliable (g_xmt, 
g_xmt_im, g_fedex, g_fedex_clean) or reliable (g_fwd, 
g_fwd_list, g_rpc) GAME buffer transport functions. GAME 
puts these buffers onto a gate's "delivery" list (managed by 
"head" and "tail" in the GATE structure). This is a linked list, 
using the "next" field in the buffer header. When a gate is 
activated for buffer delivery, the delivery list is transferred to the 
transient pool. This simple linked list comprises the entire 
transient pool and its head is passed in the "buffers" parameter 
of the gate's activation routine. 
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• Any GAME buffer allocation primitive (g_ balloc, g_ breplen, 
g_copy) will create a separate list of buffers in the transient 
pool. Note that a single buffer can constitute an entire list ifthe 
primitive only returns one buffer (g_ balloc ). The relationship 
between this list and the activation list is covered just ahead. 

• The g_ rpc() call can also return a list of buffers which are placed 
in the transient pool. 

Buffers can be removed from the transient pool via any of the following 

methods: 

• A bounded list of buffers can be explicitly freed via g_bfree(). 

• An entire list of buffers can be delivered to other gates via 
g_xmt() or g_xmt_im(). If all of the buffers are going to the 
same gate, g_fedex() or g_fedex_clean() can be used. 

• A single buffer can be reliably delivered to one or more 
instances of a gate via g_ fwd(). If a reply is needed, g_ rpc() can 
be used. 

• g_fwd_list() reliably delivers a list of buffers to the same 
destination. 

• GAME will return all of the transient pool buffers to the free 
pool should a gate die in the active or pended states. 

• 
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Figure 4-2. Transient Pool 
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The transient pool is managed as a linked list of linked lists. The "next" 
pointer is used to form the independent linked lists. In the head buffer of 
each list, the "next_l" pointer is used to link the lists together. 

The order of the list oflists is "most recently acquired". For example, 
suppose a gate is activated with I 0 buffers on its activation list. The 
transient pool pointer points to the head buffer on that list. That buffer's 
"next_l" is NIL and "next" points to the 2nd buffer in the list. The gate 
then does a g_ balloc(). Now, the transient pool pointer points to the newly 
allocated buffer. That buffer's "next" pointer is NIL, and its "next_l" 
points to the head of the activation list. 
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GAME functions that remove buffers from the transient pool maintain 
the integrity of the transient pool. To continue the above example, 
suppose the gate now frees the first buffer on the activation list. Here's 
what happens: The "next" pointer of the buffer being freed is used to find 
the next (2nd) buffer in that list, which becomes the new head of the list. 
The "next_l" pointer from the freed buffer is written into the new head's 
"next_l" pointer (which, in this case, is NIL). Finally, the other list head 
buffer (the one acquired via g_balloc) is modified so that its "next_l" 
pointer points to the the new head of the initial list. 

IMPORTANT: A gate must never directly modify the "next" 
or "next_l" pointers in a buffer. Only GAME functions can 
do this. Otherwise, the transient pool may become corrupted. 
g_ bmove() can be used to re-arrange the order of buffers 
within the transient pool. 

During an activation of a gate, lists in the transient pool are usually 
traversed via one of the following methods: 

Each buffer is processed and modified but remains linked in its 
place in the transient pool. This is a normal case for the data 
path forwarding code and results in the best performance, 
assuming that the gate does not pend. The list of buffers, either 
delivered or allocated, is batch-processed first and then 
wholesale-shipped to other gates using g_xmt(), g_xmt_im(), or 
g_ fedexL clean](). 

Each buffer is reliably transmitted elsewhere (an involved 
process during which the ownership of the buffer may change 
several times) via g_ fwd() or g_ rpc(). This process begins with 
the buffer's removal from the transient pool. At this point, the 
gate CANNOT reference that buffer any more (this is true for all 
of the buffer transport functions). A gate must obtain the next 
buffer pointer (G_BUF _NEXT) before submitting the prior 
buffer for transmission. 

• 

GAME Reference Manual 4-9 • 



• • • • • • • • • • • • • • • • • • • • • • 
• Chapter 4 Buffers 

• 

• 4-10 

g_repeatO removes the current head buffer from the the list, puts 
it in its own list, and spoon-feeds it into an application-supplied 
routine. IBIS METIIOD IS HIGHLY DISCOURAGED!! It is 
much more effiencient for a gate to walk the buffer list itself 
(method2). 

Finally, the transient buffer pool structure is internal to GAME and must 
not be manipulated by an application. It is explained in some detail here 
so that application writers understand the underlying structure and also 
as an aid to debugging. 

Application writers must ignore the "next_l" chaining aspects of the 
transient pool in their code and simply deal with the independent buffer 
lists. The GAME system calls will maintain the appropriate chaining on 
behalf on an application. This implies that applications should only walk 
buffers lists via the "next" pointer. The following are the GOLDEN 
RULES of buffer usage: 

Never write a "next" pointer. 

• Never read or write a "next_l" pointer. 

Private Buffer Pools 

As mentioned previously, a gate cannot have any buffers in its transient 
pool when it exits an activation. However, there are some cases where a 
gate must take ownership of buffers over multiple activations. For 
example, a device driver must hold on to buffers that are assigned to the 
driver rings (either waiting for transmission or available for receiving 
incoming frames). For this reason, GAME provides private buffer pools 
to each gate. 
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Each gate has, by default, two private pools (designed for the driver 
gates). Additional private pools can be allocated. Buffers can be 
transferred from the transient pool to either private pool and vice versa. 
No other buffer manipulation can occur when a buffer is on a private pool! 
For example, you cannot g_bfree() a buffer unless you first move it onto 
the transient pool. You cannot move buffers directly between private 
pools. 

Single Linked Private Pool 

The private pools are usually organized as simple linked lists. (Private 
pool #1 can be organized into a doubly-linked list. See "Doubly-Linked 
Private Pool later in this chapter.) Buffers moved from the transient pool 
to a private pool are put at the end of the list. Buffers can be retrieved 
back into the transient pool from anywhere in the private pool list (the 
head and tail of the desired private pool buffers are specified). Each 
retrieval creates a new list in the transient pool. 

The functions that manipulate the default private pools are: 

g_bsave (head, tail)save a list of buffers from the transient pool 
to the end of private pool 1 

g_bsave2 (head, tail)save a list of buffers from the transient pool 
to the end of private pool 2 

g_ brestore (head, tail) restore a list of buffers from private pool 
1 to the transient pool 

g_brestore2 (head, tail)restore a list of buffers from private pool 
2 to the transient pool 

• g_ bhead () returns the head of private pool 1 

g_ btail () returns the tail of private pool 1 

g_ bhead2 ()returns the head of private pool 2 

g_ btail2 ()returns the tail of private pool 2 

The g_ bheadX() functions do not remove the head buffer from the private 
pool. Ditto for g_ btai!X(). They just return the address of the application 
buffer. 

• 
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The following functions allocate and manipulate additional private pools. 
Up to 32 pools (an arbitrary maximum) can be allocated. 

• g_npools (num)- allocate "nurn" private pools. "nurn" indicates 
the _total_ number of private pools needed, not the increment 
beyond the first two. "num" must be greater than 2. 

• g_bsaven (n, head, tail)- save a list of buffers from the transient 
pool to the end of private pool "n" 

• g_brestoren (n, head, tail) - restore a list of buffers from private 
pool "n" to the transient pool 

• g_bheadn (n)- returns the head of private pool "n" 

• g_btailn (n) - returns the tail of private pool "n" 

A gate can only call g_ npools() once, so it must determine the maximum 
number of pools it needs for its entire life before making the call. A gate 
can call g_npools() even after it has saved buffers on pools 1and2 (this 
was a error condition once upon a time), but this is not recommended. 

After calling g_npools(), the pools numbered 1and2 are the first two 
private pools, usually accessed by g_bsave() and g_bsave2(). The 
following function calls are equivalent (but only after calling g_npools!): 

g bsave ( ... ) g_bsaven (1, ... ) 

g bsave2 ( ... ) g bsaven (2, ... ) 
g_brestore ( ... ) g brestoren (1, ... ) 
g_brestore2( ... ) g brestoren (2, ... ) 
g bhead() g bheadn (1) 

g bhead2 () g_bheadn (2) 

g btail() g btailn (1) 

g btail2 () g btailn (2) 
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Doubly Linked Private Pool 

Private pool # 1 can be organized into a list that is doubly-linked instead 
ofa single-linked list. This was done to support the Tsunami A TM driver. 
This driver uses private pool 1 to save buffers on the driver receive ring. 
Unlike other drivers, data reception can complete out-of-order in respect 
to the buffer list. Because of this, a method was needed to remove buffers 
from the free pool without requiring a walk of the list (performance!). 
So, the following two calls were invented: 

• g_bsave_dbl (head, tail) - save a list of buffers from the 
transient pool to the end of private pool 1, doubly-linked 

• g_brestore_dbl (head, tail) - restore a list of doubly-linked 
buffers from private pool 1 to the transient pool 

The back-link of buffers on the pool is done using the "next_l" pointer. 
This is hidden within the function call code, however. The caller MUST 
NOT reference the "next_l" pointer of the buffers for any reason. 

NOTE: Manipulations of private pool 1 must be exclusively 
single-linked or double-linked. If g_ bsave _dbl() is used, 
g_ brestore _dbl() is the only other call that can be used to 
manipulate private pool I (g_ bsave, g_ brestore, g_ bsaven, and 
g_ brestoren CANNOT be used) 

The Tsunami driver is the only user of this feature. 

Buffer Allocation 

A gate can allocate buffers via the g_balloc(), g_breplen(), and g_copy() 
function calls. 

g_balloc() Function Call 

Call: 

BUF *g_balloc {u_int32 tmo} 

• 
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Values: 

"tmo" is the amount of time to wait for a buffer, if none are available. The 
units are roughly milliseconds (1/1024). The actual time used for timer 
expiration is not necessarily what was entered and usually is longer. The 
FREI, FRE2, ASN, ACE25, ACE32, AFN, and ARE round this time up 
to multiples of 16 ms. The AN and the ARN round this time up to 
multiples of 64ms. These macros are available for use in setting "tmo": 

G_TMO_SECONDS (sec) yields a value representing "sec" 
seconds 

G_TMO_DEFAULT yields 1/2 second 

G _NO_ WAIT yields a zero 

If "tmo" is setto G _NO_ WAIT, g_ balloc() will not wait for a buffer when 
none are available. 

Return Value: 

The return value is a pointer to a single buffer on its own list in the transient 
pool. NIL(BUF) is returned if no buffer could be allocated. YOU MUST 
CHECK FOR THIS CONDITION AFTER ALL CALLS TO g_ balloc()! 

The caller cannot assume anything about the contents of the returned 
buff er or its start and end offsets. 

g_breplen Function Call 

Call: 

u int32 g_breplen (u_int32 num, BUF **head, BUF **tail) 

Values: 

"num" is the number of buffers desired. 

"head" is a a pointer to a location where the head pointer of the returned 
buffer list can be written. 
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"tail" is a pointer to a location where the tail pointer of the returned buffer 
list can be written. 

Return Value: 

The return value is the number of buffers actually allocated. Unlike 
g_ balloc(), there is no way to wait for additional buffers ifless than "num" 
are available. If the return value is not zero, the list of buffers resides on 
it's own list in the transient pool. 

g_copy() Function Call 

Call: 

BUF *g_copy (BUF *buf) 

Values: 

"buf' is a pointer to a buffer to be copied. This buffer must reside in the 
caller's transient pool or in a private pool. 

Return Values: 

The return value is a pointer to a single buffer on its own list in the transient 
pool. The start and end offsets match those in "buf', and the contents of 
the message body (between the offsets) matches "buf'. Nothing else from 
the buffer is copied (specifically, "next", "next_l", and the gate handle 
are NOT copied). 

NIL(BUF) is returned if no buffer could be allocated. YOU MUST 
CHCK FOR THIS CONDITION AFTER ALL CALLS TO g_copy()! 

g_copy() provides no provision for waiting for a buffer. 

Always check for a NIL return value from g_balloc() and 
g_copy()! This is a common mistake. Code that does not 
check for NIL has been released - and it crashes due to an 
invalid memory reference when the buffer supply is low! 

• 
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Besides those discussed previously for the buffer headers, there are some 
other useful macros and functions for buffer manipulation (include/ 
buffer.h). 

Macros 

(type *) G BUF IN! 

{type *) G BUF PDU 

(BUF *buf, type) 

(BUF *buf, type) 

(char *) G_BUF_PDU_START (BUF *buf) 

(char *) G_BUF_PDU_END (BUF *buf) 

(int) G_BUF_PDU_SIZE (BUF *buf) 

"buf'' is the pointer to the buffer. 

"type" is the C data type that will be held in the buffer. 

G_BUF _INI is used by a gate that creates a message in a buffer. The 
macro sets the start offset of "buf'' to G _ BUF _ST ART_ MSG, sets the end 
according to the structure size, and returns a casted pointer to the structure 
within the buffer. 

G _ BUF _PDU is used by a gate that is reading a buffer that contains a 
message. The macro can only act on a previously initialized buffer. It 
returns a casted pointer to the structure within the buffer. 

G_BUF _PDU_START also acts on a previously initialized buffer. It 
returns a simple char pointer to the data within the buffer. This is used 
when the buffer contains a data stream rather than a structure. 

G _ BUF _PDU _END returns a simple char pointer to the space following 
the data within the buffer. 

G_BUF _PDU_SIZE returns the number of bytes of data in the buffer, as 
indicated by the start and end offsets. 
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Primitives 

The G _ BUF _MAX_ END and g_ blen() primitives can be used to 
determine the amount of data that can be written into a buffer. 

G BUF _MAX_ END returns the maximum G _ BUF _END value that can 
be used for buffers that is guaranteed to work for delivery to any other 
slot in the machine. Currently this is 2000, except for the AN and ARN 
(1776). 

g_ blen() returns the maximum G _ BUF _END value that can be used on 
the local slot. Note that if a buffer is filled to this size, sent to another 
slot, and that slot has a smaller buffer size, the buffer will not be delivered. 
g_blen() returns slightly less than SK on a FRE. 

g_ blen() returns SK as the buffer size on an ARE. This is a hack which 
alows AREs to talk with FREs. ARE buffers are created at 1 OK ecause 
of ATM, but most applications can ignore that possibility. 

Freeing Buffers 

Buffers can be freed in three different ways: 

A bounded list of buffers in the transient pool can be explicitly 
freed via g_ bfree(). 

Buffers given to a reliable or unreliable transmission function 
will be freed if the buffer's gate handle contains zero. 

GAME will return all of a gate's buffers to the free pool should a 
gate die in the active or pended states. 

Using g_bfree() 

Call: 

void g_bfree (BUF *head, BUF *tail) 

• 
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Values: 

"head" is a pointer to the first buffer a the list in the transient pool to be 
freed. 

"tail" is a pointer to the last buffer in the list to be freed. This must be 
on the same list in the transient pool as "head" and must follow "head"in 
that list . 

..,,, Note that head can equal tail, freeing exactly one buffer. 

Any pointers referencing the free buffers should be modified. If no more 
buffers exist on the original list, the pointer(s) should be set to zero. If 
buffers exist after tail, the pointer to the buffer after tail must be saved 
before g_ bfree() is called. 

Gate Handle Contains Zero 

Call: 

G_BUF_DEST_GH {buf) O; 

Considerations: 

The only case where this makes sense is when a gate processes an entire 
list of buffers without pending. In this case, the gate sets the gate handles 
to real values or zero and uses g_ xmt() or g_ xmt_im() to deliver the list. 

Dying Gate 

GAME will return all of a gate's buffers to the free pool should a gate die in 
the active or pended states. Killing a gate is the most drastic way to free its 
buffers. 
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Moving Buffers Around (g_bmove) 

To move one or more buffers into a specific location within a transient 
pool list, use g_bmove(). 

Call: 

void g_bmove (BUF *ins, BUF *head, BUF *tail) 

Values: 

"ins" is a pointer to a buffer in a transient pool list that serves as the 
insertion point. The buffers are inserted after this buffer. 

"head" is a pointer to the first of a list of buffers to be moved. 

"tail" is a pointer to the last of a list of buffers to be moved. 

"head" and "tail" obviously must belong to the same list within the 
transient pool. "ins" cannot be "head", "tail" or any buffer in between. 

Considerations: 

GAME will take the list of buffers, remove it from its current place in the 
transient pool, and splice it into the list that "ins" belongs to, directly after 
"ins". If "ins" is NIL, head and tail form a new list in the transient pool. 

Removing/Adding Buffers From GAME 

This feature is quite dangerous and not something that you will commonly 
use, unless you do platform development. 

It is possible to remove buffers from a gate's transient pool, effectively 
disconnecting them from GAME completely. Similarly, you can pull into 
the transient pool buffers that do not belong to GAME. This feature exists 
because some hardware, such as the ARE A TMizer, needs to take 
complete control over the buffers it is using. 

• 
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Removing Buffers From GAME 

Call: 

void g_export_bufs (BUF *buf_list) 

Values: 

"buf_list" is a pointer to a list of buffers on the transient pool. 

Considerations: 

GAME will remove the indicated list from the transient pool and leave 
the buffers in an "unowned" condition. The caller usually delivers the 
buffers to another piece of hardware. 

Adding Buffers To GAME 

Call: 

void g_import_bufs (BUF *buf_list) 

Values: 

"buf _list" is a pointer to an unowned list of buffers. 

Considerations: 

GAME will put the owned buffers into the transient pool, creating its own 
list. The caller usually gets these buffers from another piece of hardware. 

Performance Tips 
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Across all platforms, accesses to buffer memory is more expensive than 
accesses to DRAM locations that are cached by the local processor. 
Therefore, one should always follow the rule "read once, write once" 
when it comes to data in a buffer. 
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This includes the buffer header structure BUF, and the macros that 
reference it. A common bad practice is to continually reference the start 
and end offsets via the G_BUF PDU SIZE macro. Instead, the value 
should be cached in a stack variable. 

A code strip may need to add data to a buffer a little bit at a time. An 
example would be a protocol like RSVP, which builds a message out of 
multiple "objects". A bad way to code this would be to set the end offset 
after adding each object and then reading it again when adding the next 
object: 

/* add object 1 */ 

objectl = (OBJECTl *) G_BUF PDU_END (buf); 

G_BUF_END (buf) = G_BUF_END (buf) + sizeof (OBJECTl); 

/* add object 2 */ 

object2 = (OBJECT2 *) G BUF PDU END (buf); 

G BUF_END (buf) 

/* etc ... */ 

(u_int32) object2) + sizeof (OBJECT2); 

The problem here is that we are constantly reading and writing into 
memory that is slower than cached DRAM. A better way to code this 
would be: 

char *local_buf_end; 

local buf end (char *) /* end of header */ 

/* add object 1 */ 
objectl = (OBJECTl *) local_buf_end; 

local buf end ( (char *) objectl) + sizeof (OBJECTl); 

/* add object 2 */ 

• 
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object2 (OBJECT2 *) local_buf_end; 

local_buf_end = ( (char*) object2) + sizeof (OBJECT2); 

/*etc ... after all objects are added: */ 

G_BUF_END (buf) = local_buf_end - ( (char*) buf); 

This way, we meet the "read once, write once" criteria. 

debug krnl Command 

The 'debug krnl' command provides a few settings ofuse for debug buffer 
problems (note that the "debug" module must be loaded). The use of 
"debug krnl" is discussed in file:/rtel/harpoon/doc/game/html/ 
game_ debug.html. 

buf_chk 

buf_chk verifies buffers are valid, on the same list and owned by the 
caller. Applicable to g_bfree(), g_bmove(), g_bsave(), g_bsave2(), 
g_bsaven(). 

buf_pool 

buf_pool verifies private pool is valid and the head and tail arguments to 
the restore syscalls are for buffers actually in the private pool. Applicable 
to g_ brestore(), g_ brestore2(), g_ brestoren(). 

all_buf 

all_buf is the combination ofbuf_chk(), buf_pool(), buf_size(), 
buf_xmt(). The latter two settings are discussed in the Inter-Gate 
Communication section. 
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Dumping Buffer Contents 

The contents of a buffer can be dumped to the event log via the 
buf_dump() call: 

Call: 

void buf_dump (BUF *buf) 

Values: 

"but" is a pointer to the buffer to be dumped to the event log. 

Considerations: 

The buffer headers and the first 64 bytes of data (beginning at the start 
offset) are dumped, in hex, to the log. A checksum of the buffer is also 
done and displayed. 

This call is useful for debugging cases where a gate receives a buffer that 
it doesn't expect. 

Debugging Orphaned Buffers 

An orphaned buffer occurs because a GA TE completes execution and 
there are still buffers on its Transient Buffer List. Now that I have given 
you the pure technical reason, let me explain what it means. When a GA TE 
is scheduled to run because something has sent a buffer list to it, the GA TE 
must do one or more of the following before it completes execution. 

Free the buffer(s) 

Put the buffer(s) on one or more of its private buffer lists 

Send the buffer to some other gate 

If it doesn't do one of the above to EVERY buffer it has received before 
it completes execution, then an orphan buffer error occurs. 

• 
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Now WHY would this happen? There are several possible reasons. 

• The gate received buffers and it was not designed to process 
them 

The gate received a buffer that it did not recognize 

• The gate received a buffer that it recognized, but there is a bug 
in the code so it lost it. 

The first two reasons indicate that there is a bug in the sending gate. The 
third reason indicates that there is a bug in the receiving gate. 

How do you determine which gate is the problem? This involves 
experience with the operation of the router and knowledge of the code 
involved. I'll use your buffer as an example. 

The first thing to do is look at the buffer header. This is always the first 
piece ofinformation displayed in the log. The format of the buffer header 
is as follows 

u int32 *next - Pointer to next buffer on list 

u int32 *next 1 - Pointer to next buffer list 

u_int32 dest_gh - Gate handle that buffer is destined for 

u intl6 start Byte off set from beginning of packet 
where data starts 

u_intl6 end - Byte offset from beginning of packet 
where new data would go 

The buffer dump in the log begins with the address of the buffer and then 
dumps the buffer header. 

buf=Ox8022e800 - OxOOOOOOOO OxOOOOOOOO Ox000982af Ox009000cc 
Ox60000052 

In this example, the buffer is located at address Ox8022e800. The buffer 
header values are: 
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next oxoooooooo 
next 1 OxOOOOOOOO 
dest_gh Ox000982af 
start Ox0090 
end OxOOcc 

The destination gate id (not handle) is Ox 182af. The leading bit that makes 
the one a 9 is actually part of the "slot mask" field and indicates that the 
destination slot is 12. Thats good because that is the slot that is reporting 
the error. The log messages also indicate that the gate that last had the 
buff er was Ox 182af. This is also good because that is what the dest_gh 
field told us. 

What we have right now is a buffer that was orphaned by the gate that it 
was purposely sent to. The question is "who is at fault?". Tho determine 
that, we need to look at what this gate is supposed to do with the buffers. 
In order to find that out, we need to look up the address of the code that 
the gate executes when it comes to life. 

Where do we find the address of the code? It is in the log. The log message 

Scheduler exited due to orphaned buffer 
Last gate gid = Oxl82af @ Ox316a59ae buf=Ox8022e800 

tells us that the buffer at address Ox8022e800 was orphaned by gate 
Ox 182af while running the code at location Ox316a59ae. 

So where do we find out what code this is connected with? You have to 
look at the loadmap or sometimes the code logs a message if it receives 
a buffer it does not like. This message is 

ip_ft_proxy_act received an unexpected buffer 

Knowing this, we can look at the function ip _ft _proxy_ act and see how 
it handles buffers. The code for this function looks like the following: 

• 
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void 
ip_ft_proxy_act(env, buf, signal) 

void *env; 
BUF *buf; 
SIG signal; 

if (buf) { 
g_log(IP_UNEXPECTED_BUFFER_MSG,"ip_ft_proxy_act"); 
buf_dump (buf); 

} 
else { /* Unexpected signal */ 

g_log(IP_UNEXPECTED_SIGNAL_MSG,"ip_ft_proxy_act"); 
CRASH(IP_CRASH); 

/* .... End of function ip_ft_proxy_act .... */ 

As you can see, this code was never designed to receive buffers at all so 
it falls under reason I. This means that the sender of the buffer was at 
fault. The likely problem is that the sender has a stale gate handle saved 
away. The gate handle used to be something that the sender sent buffers 
to but that gate died. The sender however did not update the info about 
where to send buffers. Eventually, the dead gate handle was reused for 
something else. That new gate started receiving buffers and orphaned 
them. 

So how do you find out who the sender was? That's the tough part. There 
are two kinds of buffer movements in the router "Reliable" and 
"Unreliable". If a buffer is tranmitted as reliable, there will be a header 
just before the data in the buffer that indicates who sent the buffer. The 
left most bit of the dest_gh will also be a "I". In this case, the left most 
bit of dest_gh is a "O" so it is not reliable. At this point, the only thing 
you can do is draw on experience and see if the data in the buffer means 
anything to you. To find where the data starts, you take the address of the 
buffer and add the start field to it in this example, the result is 

Ox8022e890 

If you go back to the log, you will see that the buffer dump contains this 
data: 
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Ox8022e880 - Ox02608c2d Ox3b90ab00 Ox8c2d4166 Ox08004500 
Ox8022e890 - Ox4500003c Oxf4db0000 Oxfb013a4d Ox8b33bf1d 
Ox8022e8a0 - Ox8b33bb13 Ox0800ebe4 Oxb433011b Ox2f5f0ac7 
Ox8022e8b0 - Ox0006lca0 OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO 
Ox8022e8c0 - OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO Oxd4f71500 
Ox8022e8d0 - Ox76be7f00 Ox7a3db4ld Oxb8la0260 Ox8c2d6f Od 
Ox8022e8e0 - Oxf9516f0d Oxf9516f0d Oxf9516f0d Oxf9516f0d 
Ox8022e8f0 - OxOOOOOOOO Ox00000017 Ox00020000 Ox0003000a 
Ox8022e900 - Ox0001400b Ox2f536alf OxOOOOOOOa Ox00000002 
Ox8022e910 - Ox00000001 Ox00000001 Ox90000000 Ox10000000 
Ox8022e920 - Oxl000495d Oxa85c0310 Ox0000e2c1 Ox61ca0376 
Ox8022e930 - Ox804fa8b0 Ox0004e00b OxOOOOOOOO OxOOOOOOOO 
Ox8022e940 - OxOOOOOOOO Ox804fa8c0 OxOOOOOOOO OxOOOOOOOO 
Ox8022e950 - OxOOOOOOOO Oxc5efc68e Ox804fa8d0 Oxc391449f 
Ox8022e960 - Oxa2a55b1b Ox9d5c823e Oxcl6f10c8 Ox804fa8e0 
Ox8022e970 - OxOeSOOOOO Ox012c0000 OxOOOlOOOO Ox012cOOOO 

The reason the buffer dump starts 16 bytes in front of the data is so that 
you can see the reliable message header ifthere is one. If you look at this 
data, it looks like it could be an IP header since it starts with Ox4500. If 
you go on that premise and try to decode the rest of the data, you see that 
it looks like the following. 

Version - 4 
IHL - 5 
Type of Service - 00 
Total Length - 3c 
Id - f 4db 
Flag/Fragment - 0000 
Time to live - fb 
Protocol - 01 (ICMP) 
Header Checksum - 3ad4 
Source Address - 8b33bf1d (139.51.191.29) 
Destination Address - 8b33bbl3 (139.51.187.19) 

So far it looks like it is IP. Since it indicates it is an ICMP message, we 
can decode the rest of the data based on the ICMP header and see what 
happens. 

Type - 08 (ICMP Echo Request) 
Code - 00 
Checksum - ebe4 
Identifier - b433 
Sequence Number - Ollb 
Data - The rest of the data until you reach the end offset 

• 
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So this looks like a ping request going from 139.51.191.29 to 
139.51.187.19. Since the packet is being sent to the wrong place, there is 
stale gate handle information on the slot handling the source address 
(139 .51.191.29). If you bounce the interface handling the destination 
address (139.51.187.19), this may cause IP to invalidate the info on this 
station on the other slots. IfIP does this (and it should), then an ARP 
should be sent out to the destination and then connectivity will be restored 
and the orphan errors should stop. 

If you take this info back to the router that is having the problem, you can 
easily verify whether the decode of the packet is correct by seeing if the 
IP addresses are valid. 

Basically, decoding orphan buffers can be difficult. Getting this error 
ALWAYS means there is a bug. Finding the bug is the problem. It always 
helps if a reproducible case is available. 

One final note: In the recent past, IP has had several changes made to fix 
stale gate handle problems. You should check with Sustaining 
Management about the availability of those fixes. 
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Types of Inter-Gate Communication 

Buffer Delivery 

There are three types of inter-gate communication in GAME: 

1. Buffer delivery: Works locally and across slots. 

2. Signals: Works locally only. Can be accompanied by memory 
transfer (G_SIG_DATA). 

3. Mappings: Works locally and across slots. A gate can be killed 
to indicate an event. 

GAME provides seven functions that deliver buffers to other gates. Four 
of these are unreliable and three provide reliability through 
acknowledgment and retry mechanisms. 

A few common rules regarding all buffer delivery mechanisms: 

The buffer must have a valid gate handle set via 
G_BUF _DEST_GH(). This can be a zero ifthe buffer is to be 
freed. 

The start and end offsets must be set properly to point to the first 
byte of data and the byte following the last byte of data, 
respectively. 

On VBM systems, data must have been written to all memory 
indicated by the start and end offsets. 

After calling the GAME function, the calling gate no longer 
owns the buffer and it must not reference it. It's a good idea to 
zero out buffer pointers once a buffer is delivered in order to 
surface such bugs early in the testing process. 
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Unreliable Buffer Delivery 

Unreliable buffer delivery is analogous to a network datagram service. 
The data will be delivered in a best-effort manner. It will most likely get 
to where it has to go, but there is no guarantee. This provides a very 
efficient, low overhead transfer of data. Not surprisingly, it is used to 
provide datagram forwarding. 

In the current BN implementation, unreliable delivery to a gate on the 
same slot is actually I 00% reliable, assuming the destination gate exists. 
However, there are two reasons to not rely on this: 

1. There has long been discussion of implementing a "buffer 
clipping" mechanism that would remove unreliable buffers 
from gates' delivery lists when the free buffer pool empties. 
However, the chance of clipping ever getting implemented is 
almost nil. 

2. On a VBM system, there is the possibility of dropping a 
unreliable buffer between gates on the same slot. If the sending 
gate allocates and writes to a buffer, there is a possibility of 
running out of physical buffer space and acquiring a 
wastebasket page (more on this later- see g_fedex_clean). 
When this happens, the buffer is dropped when delivered. 

The format of a message in a buffer must be agreed upon by the sender 
and the receiver (i.e., located in a * .h file). GAME knows nothing about 
the data contents, other than its size. 

g_xmt() - Unreliable Delivery of a List of Buffers 

Call: 

void g_xmt {BUF *buf_list) 

Values: 

"buf _list" is the pointer to the head ofa list in the transient pool (i.e.,linked 
by the "next" pointers). 
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Considerations: 

Every buffer in the list will be processed by GAME (i.e., until it gets to 
a NIL "next" pointer). GAME will deliver each buffer according to the 
gate handle in the buffer. An individual gate handle can indicate zero, 
one, or multiple gates. If the GH is zero, GAME merely frees the buffer. 
If one slot bit is set, the buffer goes to exactly one gate instance. If multiple 
slot bits are set, the buffer goes to the instances on the indicated slots. 
GAME will silently disregard any request to send a buffer to a gate 
instance that does not exist. 

g_ xmt() is intended to be used when the sending gate is transmitting 
buffers to many different destinations (e.g., L2 or L3 forwarding code). 
If all of the buffers on the list will always have the same gate handle, 
g_ xmt() can be used, but g_ fedex() is much more efficient. 

Here is a very edited version of the ip _ xmit() function. This gate receives 
packets from IP applications on the router and transmits them out the 
appropriate interface. Shown here is the loop and the various places that 
the gate handle can be set in the packet. Finally, the entire list is delivered 
viag_xmt() 

FOR_EACH_BUF (rx_pkt, buflist) 

rx_pkt->dest_gh O; 

rx_pkt->dest_gh ((GH_SLOT MAP MASK & 

dest_nwif->nwif_map.gh) GID_IP_XMIT); 

rx_pkt->dest_gh O; 

rx_pkt->dest_gh rtm_env->mp_gh; 

rx_pkt->dest_gh rtm_env->cache_gh; 

ip_xmit_final_considerations(dest_nwif, fwd_entry, dest_gh, 
rx_pkt, 

• 

GAME Reference Manual 5-3 • 



• • • • • • • • • • • • • • • • • • • • • • 
e Chapter 5 Inter-Gate Communication 

• 

• 5-4 

rtm_env); 

/* end for each buf in buflist */ 

/* Send it on it's way */ 

g xmt (buflist); 

...,-..,. The macro G_BUF_DEST_GH (rx_pkt) should be used instead of 
~ referencing rx_pkt->dest_gh directly. 

g_fedex() - Efficient Unreliable Delivery to One Destination 

Call: 

void g fedex (GH dest_gh, BUF *head, BUF *tail) 

Values: 

"dest_gh" is the destination gate handle for all buffers in the list 
represented by "head" and "tail". 

"head" is the head of a list of buffers in the transient pool. 

. "tail" is the tail of a list of buffers in the transient pool. 

Considerations: 

Fedex should be used when all of the buffers in a list are going to the 
same destination gate. The dest_gh parameter must exactly match the 
G H in every buffer in the list (caveat below). This allows GAME to avoid 
a list walk and deliver the buffers in the most efficient manner. 

Don't call g_fedex() with the FLAG bit set in the GH. It will call g_xmt() 
to remove the FLAG bit in the buffers, which requires a buffer walk. 

Don't call g_fedex() with multiple slot bits set in the GH. Fedex can't 
deliver local and remote copies, so it punts the multicast scenario entirely. 
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Don't call g_ fedex() with a zero gate handle. It's much more efficient to 
just call g_ bfree(). 

This example is from the sync (mk50) driver's receive interrupt 
processing. Buffers have been assigned to the driver receive ring, and 
now some of them contain received packets. Most of these will be 
delivered to the DP decaps gate forthe circuit (some get processed locally 
- details left out for brevity). 

for (pkt=head,tail=NIL(BUF); pkt;) 

/* if current desc is owned by the MKSO, stop! */ 
if ((data= rd->addr) & MK5025 OWN) { 

/* AND this is the 1st packet, spurious int, bag 
out! *I 

if (!tail) { 
head= NIL(BUF); 

break; 

G_BUF_DEST_GH(pkt) = env->decaps_gh & - GH_MSG_FLAG; 

/* make tail previous pkt, get next pkt */ 
tail=pkt; 
pkt=G_BUF_NEXT(pkt); 

/* end of for RINT loop */ 

/* if we have a valid list to forward */ 
if (head) { 

/* restore buffers to transient pool for delivery */ 
g brestore(head, tail); 

g_fedex(env->decaps_gh & - GH_MSG_FLAG, head, tail); 

• 
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A g_ fedexO trick: 

If you have a list of buffers with various gate handles, none of which 
contain the local slot bit, you can trick g_ fedex() into delivering them for 
you. If the "dest_gh" parameter is set with a single slot bit for another 
slot, GAME simply tacks the list onto the backbone transmit queue 
(g_ xmt() would do a list walk). The receiving slots parcel out the buffers 
to the proper gates, and have no clue whether the original sender used 
g_xmt() or g_fedex() (nor do they care). This can be a big win for 
forwarding code in a multi-slot box where a slot contains a single interface 
or a small percentage of the interfaces on the entire router. 

An example of this is contained in the IP forwarding code. The 
destinations GHs of all packets are 'or'ed together. If all of the packets 
are going to a remote slot, g_fedex() (actually, g_fedex_clean(); see next 
section) is used. 

dest_gh = fedex_remote = O; 

for (next_buf 

next_buf; 

buf start 

start buf, buf_start = start_buf->start; 

next_start, fedex_remote I= dest_gh) 

(dest_gh gets set to current buffer's gh) 

/*end for ... * I 

/* 
* If all buffers in the list are destined for a remote 

slot or 

* are being freed g_fedex can be called for performance 
gain 

*/ 

if (GH_IS_LOCAL (fedex remote)) 

g xmt (buflist); 

else 
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dest_gh = GH_SET_LOCAL(O); 

dest_gh <<= l; 

if ( (int) dest_gh < 0) 

dest_gh >>= 2; 

g_fedex_clean (dest_gh, buflist, cur_buf); 

g_fedex_clean() - Special g_fedex() for VBM Systems 

This function is a special version of g_ fedex() that provides faster delivery 
on systems with Virtual Buffer Memory (VBM), such as the ARE. The 
parameters are exactly the same as g_fedex(). On non-VBM systems, 
g_fedex() and g_fedex_clean() are equivalent. 

Since VBM allocates physical pages in 256-byte clumps, it is possible 
for the owner of a buffer to write over a page boundary, requiring a new 
physical page. The VBM hardware handles this, and you normally get 
another page. However, if the free page pool is depleted, a "wastebasket" 
(WB) page is assigned to the buffer. The owner can continue writing to 
the buffer, but the writes go to the equivalent of /dev/null. Reading a WB 
page is a fatal error. If you send a buffer with a WB page to another gate, 
it will be dropped. 

1/0 devices and the backbone check for WB pages in received buffers so 
that only "good" buffers actually get delivered to gates. If a packet is 
simply forwarded through the system without adding any data (adding 
new link level headers is OK, as that page is real), that buffer can never 
acquire a WB page. 

When using g_ fedex() on a VBM system, GAME has to check each buffer 
to ensure that no WB pages are present. g_ fedex _clean() skips this check 
and avoids walking the buffer list. 

g_fedex _clean() cannot be used if any buffers in the list have been 
acquired via g_ balloc(). 

• 
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g_xmt_im() - g_xmt() With Alias Member Ignore 

Call: 

void g_xmt_im (BUF *buf_list, GID im) 

Values: 

"buf _list" is the pointer to the head of a list in the transient pool (i.e., 
linked by the "next" pointers). 

"im" is the gate id of a local member of one or more aliases. 

Considerations: 

This function was created to efficiently handle the case where multiple 
interfaces on the box belong to the same "broadcast domain". All of the 
DP encaps gates used in this domain can join a single alias. When one 
interface receives a packet, and it has to broadcast it out all of the other 
interfaces, it uses g_xmt_im(), setting "im" to its own encaps gate. This 
way, the packet goes out all interfaces except the one it came it. 

This behavior only applies to buffers in "buf _list" that contain alias gate 
handles, and only if "im" is a local member of a particular alias. 

Setting "im" to zero is equivalent to calling g_ xmt(). In fact, that's what 
g_ xmt() does. 

Here's another forwarding loop. This one is from the DP decapsulation 
routine dp _ decaps _ lan _act(). Since some of the packets may be bridged, 
and bridged packets can be flooded, g_ xmt_ im() is used so that the encaps 
gate for the local circuit is not included in the flooding. 
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/* loop for each packet */ 

for (rx_pkt = start; rx_pkt; rx_pkt G BUF NEXT (rx_pkt) ) 

/* DP table lookup */ 

t_find (&tbl_lookup_result,lookup_tbl, tbl_ref); 

G_BUF_DEST_GH (rx_pkt) = isap_temp_ptr->isap_handle; 

G_BUF_DEST_GH(rx_pkt) 

cc_env->sr_env->sr_fwd_isap.isap_handle; 

G_BUF_DEST_GH(rx_pkt) = O; 

G_BUF_DEST_GH(rx_pkt) = 

cc env->sr env->sr fwd_isap.isap_handle; 

G BUF DEST GH (rx_pkt) O; 

G BUF DEST GH (rx_pkt) O; /* SBARBOO */ 

G BUF DEST GH (rx_pkt) = O; 

G_BUF_DEST_GH (rx_pkt) 

isap_info[lb_index] .isap_handle; 

G_BUF_DEST_GH (rx_pkt) = *cc_env->flood_gh; 

/* end for all packets */ 

/* Call the g_xmt ignore member function in case we're 
flooding. 

10/13/94 lp */ 

g_xmt_im (head, GH_GET_GID(*cc env->im_gh) ) ; /* send list 
to isaps 

*/ 
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~ The operation of reliable buffer delivery is quite different on 
~ the new Strangelove platfonn. While the function calls 

described here operate the same, the underlying details are 
different. Color everything here with the phrase "on the BN". 

GAME's reliable buffer delivery really means "acknowledged delivery 
with retry and timeout". That is, after sending a reliable buffer 
"unreliably", if no acknowledgment is received within a certain time 
period, GAME will retry the transmission. After so many 
retransmissions, GAME gives up and returns a failure indication to the 
caller. 

g_fwd() - Reliably Transmit a Buffer 

Call: 

GH g_fwd (GH dest_gh, BUF *buf) 

Values: 

"dest_gh" is the is the destination gate handle for the buffer. 

"buf' is the buffer requiring reliable delivery. 

Consderations: 

This function reliably delivers a single buffer to one or more instances of 
a gate (depending on how many bits are set in the gate handle). The gate 
is put into the pended state while waiting for acknowledgments. Note that 
the function pends even if delivery is to a local gate. This is so that the 
callers can be ensured that they give up the CPU when they call g_fwd() 
(some applications rely on this). 

The function returns when a copy of the buffer has been placed on the 
delivery list of every requested destination gate instance or upon failure 
to reliably deliver the buffer to all instances. 
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The return value is zero if all intended recipients received the buffer. 
Otherwise, it contains the slot bits of the gate instances that did not 
acknowledge receipt of the buffer. 

For local delivery, GAME puts the buffer on the destination gate's 
delivery list, calls g_idle (G_IDLE_TAIL), and returns (successfully). 

For remote delivery, after sending the buffer, GAME waits roughly 1116 
of a second for an acknowledgment from a destination slot. If an ACK 
is received, it then repeatedly waits to collect up any other outstanding 
ACKs, if the dest_gh indicated delivery to multiple slots. It then waits 
about 16 seconds(!) forthe backbone to return the original buffer. If the 
buffer does not come back, a PANIC occurs (this indicates a GAME bug). 
In practice, this takes much less time. In fact, on the BN, the original 
buffer is usually returned before the ACKs. 

• 
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If all ACKs and the original buffer were received, a zero is returned to 
the caller. If some ACKs were not received, the buffer is transmitted 
again (only to the applicable slots) and the whole deal is repeated. After 
128 failures, the error will be returned to the caller. 
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The return value of g_ fwd() MUST be examined!! Failure means that 
the one or more indended receipients did not get the message. The return 
value should be checked against the current mapped GH forthe receipient 
gate to detect a slot-down event. 

Some other details: 

If game knows a slot is down or that an instance of a gate does not exist 
on that slot, or if it discovers one of these situations after some amount 
of retrying, it will immediately mark that slot as failed and will not do 
any further transmissions/retries. 

In a situation where a remote gate instance goes down at the same time 
a g_ fwd() is being attempted, there is a race condition between the 
following events: 

The return of the g_fwd() indicating a failure. 

The local gate's mapping activation for that gate. 

In other words, if the calling gate maintains a mapping for the gate it is 
sending to (which it should_), it may receive a g_fwd() failure before it 
learns of the destination gate's untimely death. 

This example is from the IP code that sends routing information changes 
to remote slots. Having this information synchronized across slots is very 
important. If the operation fails, IP terminates itself. Notice that it takes 
the current RTM_UPDATE gate handle (up_gh) into account. 

• 
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failed_slots = g_fwd ( dest_slots 

rtm_env->rtm_buf ); 

GID_IP_RTM_UPDATE, 

/* If somebody didn't get the message, CRASH! */ 
if (failed_slots & dest_slots & rtm_env->up_gh) 

g_log (IP_RTM_G_FWD_FAILURE, (dest_slots & 
rtm_env->up_gh), 

failed_slots); 

CRASH (IP_CRASH); 

The "and" with dest_slots in the "if' isn't really necessary, as no 
bits can show up in "failed_slots" that were not set in "dest_slots". 

g_rpc() - Remote Procedure Call 

Call: 

BUF *g_rpc (GH dest_gh, BUF *buf) 

Values: 

"dest_gh" is the destination gate handle for the buffer. 

"buf' is the buffer requiring reliable delivery with replies. 

Considerations: 

As the name suggests, this call is used for implementing remote procedure 
calls. For purposes of discussion here, we'll assume a client-server 
relationship between gates. 

When the client gate calls g_ rpc(), "buf' is reliably delivered to each 
instance of the server gate (dest_gh), exactly like g_fwd(). After a server 
gate processes the buffer (possibly modifying it), it must return the buffer 
to the client gate via the g_reply() call: 
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void g_reply (BUF *buf) 

........... Do not modify the start offset of the buffer before the start offset. 
}J/f' This is where GAME keeps the information which maps the 

g_reply() buffer to a given g_ rpc(). 

The reply buffer is also delivered exactly like a g_fwd(). 

GAME will wait until all replies are received or a time-out occurs. The 
return value from g_ rpc() is a pointer to the head of the list of returned 
buffers. A successful call results in a returned buffer from each requested 
instance of the server gate. The client gate can identify which server sent 
a particular reply by using the g_src() call (the application can include 
this information in the message within the buffer, making the g_src() 
unnecessary). If a buffer is not received from a particular slot, no reply 
buffer will be included on the list. If no replies are received, the return 
value is NIL(BUF). 

The client will wait up to 16 seconds for a single reply. 

g_ rpc() is implemented using the same mechanisms as g_fwd(). In this 
case, there are two or more reliable buffer transfers: one for the request 
buffer, and one or more for the replies. 

Figure 5-2. Remote Procedure Call 
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Whereas a g_ fwd() can only fail due to the inability to deliver a message 
to a destination gate, a g_ rpc() can time out even if the receiving gate is 
up and healthy. If the receiving gate has a large backlog of messages to 
process and that processing is very CPU intensive, it may not process the 
sender's buffer in time to avoid the 16 second timeout (Really, we've seen 
it). Worse, the receiver will eventually process the buffer and send a 
reply. GAME will then throw away the reply because the transaction has 
timed out. 

A gate that can get backlogged in this manner must not be used as a server 
gate for a g_rpc(). The API calls for the MIB service use g_rpc(). This 
is the mib_bind_obj() call: 

u int32 

mib_bind_obj(obj_id, type) 

OBJ_ID obj_id; 

u int32 type; 

BUF *buf;/* message buffer pointer */ 

MIB ENT MSG *msg;/* pointer to message contents */ 

u_int32 ensign_gate;/* returned */ 

/* first get a message buffer */ 

if ((buf = g_balloc(BALLOC_TMO)) == NIL(BUF)) 

g_log(MIB_BALLOC_ERR, g_myid()); 

CRASH(MIB_CRASH); 

/* get pointer to message contents */ 

msg = G_BUF_INI(buf, MIB_ENT_MSG); 

/* fill message with arguments */ 

msg->op_code = MIB_ENT_BIND_OBJ; 

msg->source_gid = g_myid(); 

msg->bind_type = type; 

mib_copy_id(obj_id, msg->obj_id); 
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/* if PRIMARY binding, get the binding entity's gate 
id --> mapping */ 

if (type == PRIMARY) 

msg->bind_gate = g_myid(); 

/* for SECONDARY and OMNI bindings, set bind_gate to 
zero --> no mapping */ 

else { 

msg->bind_gate O; 

/* send message to MIB manager */ 
if (! (buf = g_rpc(GH_SET_LOCAL(GID_MIB), buf))) { 

g_log(MIB_RPC_ERR, g_myid()); 

CRASH(MIB_CRASH); 

/* get pointer to reply message contents */ 
msg = G_BUF_PDU(buf, MIB_ENT_MSG); 

/* successful? */ 
if (msg->ret_code != MIB_OK) { 

/* error - kill calling entity's gate */ 
g_log(MIB_BIND_OBJ, g_myid(), msg->ret_code); 

CRASH(MIB_CRASH); 

/* get ensign gate */ 
ensign_gate = msg->ensign_gate; 

/* free message buffer */ 
g bfree(buf, buf); 

/* done - return ensign gate */ 
return(ensign_gate); 

• 
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This is the code in the MIB gate that serves the mib _bind_ obj() request 
in ent_ dispatch(): 

/* get pointer to message contents */ 

mib_msg = G_BUF_PDU(buf, MIB_MSG); 

/* dispatch on op_code */ 

switch (mib_msg->op_code) 

case MIB_ENT_BIND_OBJ: 
ent_process_msg(mib_env, &buf); 
break; 

/* send reply message g_rpc initiator */ 

if (buf) { 
g_reply(buf); 

g_fwd_list() - Forward a List of Buffers Reliably 

Call: 

u int32 g~fwd_list {GH dest_gh, BUF *head, BUF 
*tail, u int32 pipe_id) 

Values: 

"dest_gh" is the destination gate handle for the buffers. ONLY I slot bit 
can be set. 

"head" is the head of a list of buffers in the transient pool. 

"tail" is the tail of a list of buffers in the transient pool. 

"pipe _id" is the return value from a previous g_fwd _list() call to the same 
gate, or zero. 
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Considerations: 

This function provides a mechanism to reliably deliver multiple buffers 
to a single instance of a gate without putting the sending gate into the 
pended state. This is done by creating a new gate that forwards the buffers 
using g_fwd(). Since this can facilitate asynchronous delivery oflists of 
buffers, a "piping" feature allows the caller to assure that buffers from 
different g_fwd_list() calls to the same gate are delivered in order. 

When called with a zero "pipe_id", or if the operation corresponding to 
a non-zero "pipe _id" is finished, GAME creates a child gate forthe calling 
gate and puts the buffers into its first private pool. The gate is then 
scheduled with a SIG_ INI signal. When that gate runs, it pulls the buffers 
off the private pool and does a g_fwd() for each one. After finishing, or 
if one of the g_fwd() calls fails, a data signal (data signals are explained 
in detail later) is sent to the calling gate to report the status. The format 
of the data delivered is found in include/kernel.h: 

typedef struct FWD_LIST_STATUS 

{ 
u_int32 id; /* the Id from the g_fwd_list () call 

*/ 
u_int32 status; /* O=successful, 

non-zero=failure */ 
GH dest_gh; 

u int32 cnt; 
sent - */ 

FWD_LIST_STATUS; 

/* the destination gatehandle 

/* how many msgs were successfully 

*/ 

• 
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The gate then terminates itself, unless another g_ fwd_ list() was done for 
the same pipe (see next few paragraphs). 

The return value from g_ fwd _list() is a pipe identifier that can be used to 
synchronize deliveries to the same gate via separate g_fwd_list() calls. 
By using the returned pipe ID from the previous call, the caller is assured 
that the next list of buffers will not be delivered before the previous list. 
This is accomplished by using the same child gate for delivery, if it still 
exists (if it doesn't exist, the previous buffers have obviously been 
delivered). 

When the function is called with a non-zero "pipe_id" and the gate 
performing that pipe's g_ fwd() calls still exists, GAME adds a structure 
to that gate's environment for the additional buffers and puts the buffers 
at the end of the first private pool. When the gate finishes the previous 
list of buffers, it checks for more lists before terminating. If found, it 
repeats the process of sending the buffers and delivering a signal to the 
calling gate. 

Once there are no more buffers to deliver, the gate terminates itself . 

..,,,. Note that a separate status signal is sent for each g_fwd_list() call. 

This highly edited example is from the DLS transmit code: 

for (buf buf_head; buf; buf = buf_next) 

/* we have to keep the next buffer in case we delete or 
send */ 

buf next= G_BUF_NEXT(buf); 

/* set the destination GH */ 

G_BUF_DEST_GH(buf) = rem_gh; 
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buf_end = buf; /*DF CR20602*/ 

/* for each buffer */ 

/* send the list onward */ 
if (buf_head) 

/* do the reliable forward */ 

sock->loc_pipe_id = g_fwd_list(rem_gh, buf_head, 
buf_end, 

sock->loc_pipe_id); 

/* we don't need to set the timer here because we will get a *I 
/* signal back from g_fwd_list which will wake us up */ 

The "debug kml" command provides a few settings of use for buffer 
delivery debug (note that the "debug" module must be loaded). (The use 
of debug_ kml is discussed in file /rte I/harpoon/doc/game/html/ 
game_ debug.html.) 

Table 5-1 describes the buffer delivery debug settings. 

Table 5-1 Buffer Delivery Debug Settings 

Setting Function 

msg_xmt Logs messages ifxmt buffers are being sent 
to gates which we don't think exist on 
remote slots. Applicable to g_xmt(). 

msg_ deliver Logs message and dumps buffer if message 
is received for a gate which is not present 
on the receiving slot. 

• 
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Setting Function 

buf chk Verifies buffers are valid, on the same list 
and owned by the caller. Applicable to 
g_fwd(), g_reply(), g_rpc(), g_fwd_list(). 

buf size Verifies the buffer end is less than the max 
buffer size and that start is less than end. 
Applicable to g_fwd(), g_reply(), g_rpc(), 
g_fwd_Iist(). 

buf xmt Verifies xmt buffers are valid and the start 
and end offsets are correct. Applicable to 
g_xmt(). 

all_msg ls the combination ofmsg_xmt and 
msg_ deliver. 

all buf Is the combination ofbuf_chk(), buf_pool(), 
buf_size(), buf_xmt(). The former two 
settings were discussed in the Buffers 
section. 

Buffer delivery, as described in the previous section, is a general purpose 
mechanism that has one down side: it requires dedicated resources 
(buffers) to function. 

Buffer delivery is the only option when data has to be sent across slots. 
When communicating between gates on the same slot, there are cases 
where buffers are overkill for several reasons: 

1. Only a small amount of information needs to be conveyed. 

2. The communication has to happen frequently. 

3. There is a short latency requirement. 

4. Buffers are a more precious resource than memory. 
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Uses of Signalling 

Signalling is used primarily for four purposes: interrupts, timer 
expirations, software signals, and memory passing. 

Interrupts 

Hardware interrupt delivery is strictly controlled by GAME (see the 
Scheduler section). Interrupts are intercepted by the kernel and translated 
to software signals, allowing GAME to schedule interrupt handlers just 
like all the other gates. 

Timer Expirations 

Timer expirations (see the Timer section) are conveyed via delivery of 
the SIG_TMO signal (see include/vectors.h). 

Software Signals 

A limited number of simple software signals are supported (see include/ 
vector.h). The receiving gate gets activated with the signal number and 
no additional information. 

Memory Passing 

The SIG_ DA TA signal is used to pass a memory segment (obtained via 
g_ malloc) from one gate to another. This allows arbitrary amounts of 
data to be transferred without using buffers. 

Signal Handling Urgency 

From the GAME scheduler point of view, there are two classes of signal 
handling gates: 

• 
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1. Normal, "base level" handlers that are scheduled for signal 
delivery in a FIFO fashion among all other base level gates. 

2. Low latency, "interrupt level" handlers that are scheduled to run 
at the nearest opportunity (when the currently active gate 
completes or pends). 

There is a strict prioritization between signal handing gates. Interrupt 
level handlers are scheduled ahead of base level handlers and all other 
gates. However, once activated, the gate handling a signal is never 
interrupted or preempted (unless it voluntarily gives up the CPU). 

Using Signals 

A single gate instance can register to receive one signal (as defined in 
include/vectors.h) and a single signal can, in most cases, be handled by 
only one gate. In some cases, the gate does not need to explicitly register 
for the signal, but it can still receive only one. The caveat is that a gate 
can always receive two additional special signals, which are always 
delivered in a "base level" fashion: 

1. SIG_ !NI. This signal is delivered upon the creation of a gate 
instance ifthe creator set the G_SIG_INI flag in the g_req() 
call. 

2. SIG_TMO. This signal is delivered every time the gate's 
periodic timer expires. 

A gate that is activated due to a signal delivery, whether at the base or 
interrupt level, is passed a signal vector number instead of a buffer pointer 
(the "buffer list" parameter is NIL). Besides this difference in passed 
arguments, the two gate activation modes are identical (run to completion 
uninterrupted, full access to system resources, etc ... ). 
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A single gate instance cannot have both a buffer and a signal activation 
(active/pended) at the same time. As discussed later in the Scheduling 
section, if a signal activation is scheduled while the gate is pended during 
a buffer activation (or vice versa), GAME remembers this and schedules 
the gate for the new activation when the old one exits. 

Registering for a Signal 

Call: 

void g_isr (GID gid, SIG sig, u int32 flag) 

Values: 

"gid" is the gate id of the signal handler gate. 

"sig" is the signal number to be handled (from include/vector.h). 

"flag" is the signal handling option flag; choose one of the following: 

G_ISR_SIG - interrupt (high priority) signal handler 

• G_BASE_SIG - base level (low priority) signal handler 

G _CANCEL - cancel signal handling 

Considerations: 

This function call tells GAME which gate is handling the particular signal 
on the local slot. The calling gate will be terminated for any of the 
following offenses: 

1. The gate "gid" is not instantiated on the local slot. 

2. The gate "gid" is registered to handle a different signal. 

3. Some other gate is registered to handle "sig". 

4. "flag" was set to G _CANCEL and the gate is not handling "sig". 

• 
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Otherwise, whenever a gate calls g_ sig("sig"), the signal will be delivered 
to "gid". The scheduling of the signal delivery depends upon the "flag" 
parameter. 

If "flag" is set to G _CANCEL, the gate will no longer be scheduled for 
"sig". 

A gate never registers for SIG_INI, SIG_TMO, or SIG_DATA signals. 
It also does not register for signals sent via g_sig_gid() (later ... ). 

Sending Signals 

There are three functions calls in GAME that result in a signal delivery: 

g_sig 

g_sig_gid 

g_sig_ data() 

Gates cannot send SIG_INI or SIG_TMO signals; only GAME can do 
this (SIG_ INI delivery is initiated by some gate's g_req() call, however). 

g_sig Call: 

void g_sig (SIG sig) 

Values: 

"sig" is the signal to be delivered. 

Considerations: 

This function is only used for signals where the receiver does an explicit 
g_isr() call. The registered gate is scheduled to receive the signal, based 
upon the "flag" parameter used in the g_isr() call. 

If no gate is registered for the signal, or if the signal has been previously 
delivered with the g_ sig_gid() call, no signal is delivered. 
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The driver for the ILA CC chip, which is used on the quad ethernet boards, 
registers for an interrupt associated with the connector the driver services: 

env->line_sig = (SIG) (SIG_CSMACD + env->line); 

/* Register for interrupts. */ 

g_isr(env->gid, env->line_sig, G_BASE_SIG); 

The QENET hardware interrupt handler (real interrupts) sends a signal 
when an interrupt is received from the chip: 

/* dispatch off MISR signaling Line Drivers */ 

misr = *(u_intB *) (hwrec->wfModMisr); 

if (! (misr & ILACCl)) 

g_sig(SIG_CSMACD + CSMACD_CONN_ONE); 

if (! (misr & ILACC2)) 

g_sig(SIG_CSMACD + CSMACD_CONN_TWO); 

if (! (misr & ILACC3)) 

g_sig(SIG_CSMACD + CSMACD_CONN_THREE); 

if (! (misr & ILACC4)) 

g_sig(SIG_CSMACD + CSMACD_CONN_FOUR); 

The ILACC driver gate is eventually scheduled for the signal: 

void 

ilacc_up_state(env, buf, signal) 

REG ILACC_ENV *env;/* ptr to parents environment */ 

REG BUF *buf; /* buffer pointer list, packets to xmt */ 

REG SIG signal; /* ILACC int signals or watchdog SIG_TMO's */ 

{ 
/* if there are buffers to be transmitted */ 

if (buf != NIL(BUF)) { 

ilacc_xmt(env, buf); 

• 
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/* OR, if this is an interrupt signal from device */ 
else if (signal == env->line_sig) 

ilacc_intr(env); 

g_ sig_gid Call: 

Given that the number space for signals is small (256), it is desirable to 
be able to use the same signal for multiple gates that are running 
essentially the same code. As shown in the previous section's example, 
multiple copies of a device driver may run on the same slot due to the 
number of physical interfaces on the link module, potentially using a 
signal per interface. Therefore, g_sig_gid() was born. 

u int32 g_sig_gid (GID target_gid, SIG sig, u int32 option) 

Values: 

"target_gid" is the gate id of the destination gate on the local slot. 

"sig" is the signal to be delivered. 

"option" is G_BASE_SIG (base level delivery)orG_ISR_SIG (interrupt) 

Considerations: 

The return value is non-zero if "target_gid" doesn't exist and zero 
otherwise. 

.......... The receiving gate must NOT register for the "sig" or any other 
1ff' signal. It also cannot receive data via g_sig_data(). 

The calling gate will be terminated for any of the following offenses: 

1. The receiving gate has registered for any signal. 

2. The receiving gate has received data via g_sig_data(). 
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The munich driver, used for the multi-channel Tl and EI boards, uses 
g_ sig_gid() in order to save on signals. Otherwise, with 96 logical lines 
possible per slot, that many signal numbers would be necessary. 

There are many calls in the driver similar to this: 

g_sig_gid (env->ldg_gid[i], SIG_LOG_LINE, G_BASE_SIG); 

"ldg_gid" is an array of the gate ids for the "line driver gates". 

g_sig_data Call: 

The g_ sig_ data() call really serves two purposes. Its a way to send 
multiple signals to a single gate as well as a way to move memory 
segments between gates. 

The first step is for the sending gate to call g_sig_data() and pass in the 
address of a memory segment. This must be the same address as was 
returned by a g_malloc(). It's not possible to send partial segments. If 
the g_ sig_ data() call is successful, the sender no longer owns the memory. 
Any pointers to that memory should be nulled out. 

u int32 g_sig_data (GID dest_gid, u int32 type, void *data) 

Values: 

"dest_gid" is the gate id of the destination gate on the local slot. 

"type" is the data signal type, as defined in include/data_sig.h 

"data" is the pointer to the memory segment to transfer. IfNIL, "type" 
is the only information delivered to "dest_gid". This is how g_sig_data() 
is used to deliver multiple signals. 
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Considerations: 

The return value is zero if the memory was delivered and non-zero 
otherwise. The only reason for the non-zero return is if the destination 
gate does not exist locally. The calling gate still owns the memory 
segment in this case. 

The calling gate will be terminated for any of the following offenses: 

I. "dest_gid" is zero. 

2. "dest_gid" is scheduled to receive a different signal (other than 
SIG_INI, SIG_TMO). 

3. "dest_gid" is registered to handle a signal (DEBUG only). 

4. The calling gate does not own the memory segment (DEBUG 
only). 

GAME gives the memory segment to the receiving gate and schedules it 
for a SIG_DATA signal (unless already scheduled). 

When the receiving gate is invoked with the SIG_ DAT A signal, it must 
g_get_sig_data() to retrieve the memory. It is possible to have multiple 
data deliveries before the reciever gets scheduled. The receiver will only 
see one SIG_DATA activation. Therefore, it needs to do 
g_get_ sig_ data() in a loop until told there is no more data available (zero 
return). The order of signal delivery is preserved. 

u_int32 g_get_sig_data (GID *send_gid, u_int32 *type, u_int32 
**data, 

u_int32 *size) 

"send_gid" is a pointer to a (GID) where the gid of the gate that sent the 
signal can be written. 

"type" is a pointer to a (u_int32) where the data signal type, as defined 
in include/data_sig.h, can be written. 
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"data" is a pointer to a (u_int32 *)where the data pointer can be written. 

"size" is a pointer to a (u_int32) where the data size (in bytes) can 
bewritten. The size returned is the total size of the memory segment. This 
is rounded up to a cache line size and may not be the size of the actual 
data contained within the segment. This is to aid in the reuse of memory 
segments for different purposes. 

The return value is non-zero if data was delivered and zero if not. 

As with buffer delivery, the fonnat of the messages delivered must be 
agreed upon by the sender and the receiver (i.e., located in a *.h file). 

If g_ sig_ data() is being used for message delivery (as opposed to transfer 
of "permanent" memory ownership), the receiving gate must free the 
memory segment when it is finished examining it. 

DP implements a generic service that will allocate a "resource" and 
deliver it to destination gates, using memory if the destination is local 
and a buffer otherwise. 

This is the routine that allocates either a memory chunk or a buffer: 

u_int32 get_sigbuf (GH gh, u_int32 struct_size, u_int32 **ptr) 

{ 

if (GH_IS_REMOTE(gh)) 

/* Allocate a buffer, adjust to point to data and 
return */ 

BUF *buf; 

if ( ! (buf = g_balloc(G_TMO_DEFAULT)) 

g_log(DP_NO_BUF); 

CRASH(DP_CRASH); 

/* if ! buf = g_balloc */ 

G_BUF_START(buf) G_BUF START_MSG; 

G_BUF _END (buf) = G_BUF_START_MSG + struct_size; 

• 

GAME Reference Manual 5-31 • 



• • • • • • • • • • • • • • • • • • • • • • 
• Chapter 5 Inter-Gate Communication 

• 

• 5-32 

*ptr = (void*) ((char *)buf + G_BUF_START_MSG); 

return(IS_BUFFER); 

else 

/* Allocate a piece of memory and return it */ 
/* This will eventually be optimized to use free 

pools */ 
*ptr = g_malloc(struct_size); 
zero((u_intB *) (*ptr), struct_size); 
return(IS_SIGNAL); 

/* get_sigbuf */ 

This is the routine that sends the memory or buffer: 

GH send_sigbuf (GH gh, u_int32 m_type, u int32 m_size, u_int32 
**ptr) 

char log_buf[l20]; 
GH g_fwd_rtn_mask = O; 

if (m_type == IS_BUFFER) 

else 

into a 

/* Is remote */ 
/* Get back to your buf pointer */ 
*ptr = (u_int32 *)((char *)*ptr - G_BUF_START_MSG); 
g_fwd_rtn~mask = g_fwd(gh, (BUF *) (*ptr)); 

if ((GH_IS_REMOTE(gh)) && (m_type IS_SIGNAL)) 

u_int32 *b_ptr; 

/* GH became remote on us .. Aaaaaagh! Copy it 

buffer fast ... */ 
m_type = get_sigbuf(gh,m_size,&b_ptr); 
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else 

bcopy((u_intB *) (*ptr), (u_intB *)b_ptr,m_size); 
g_mfree (*ptr); 
g_fwd_rtn_mask = 

send_sigbuf(gh,m_type,m_size,&b_ptr); 

if (m_type == IS_SIGNAL) 

if (g_sig_data(GH_GET_GID(gh), 
(u_int32) (**ptr), (void *) *ptr)) 

/* Set our local slot bit to indicate that 
signalling failed to our slot */ 

GH_SET_LOCAL(g_fwd_rtn_mask); 

/* Remember , your ptr will not be valid anymore */ 

return(g_fwd_rtn_mask); 

/*send_sigbuf */ 

~ The return value from g_sig_data() should be examined. If 
'# non-zero, g_fwd_rtn_mask should be set to the local slot bit. 

Also, copy() should be used rather than bcopy(). This function attempts 
to optimize the data copy if the data alignment allows. 

Mappings can be used as a messaging mechanism to indicate events to 
gates on the same or on remote slots. 

• 
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The basic idea is that a gate is created to indicate a particular state. Gates 
interested in that state map the "state" gate. When the state is no longer 
valid, the "state" gate is killed, causing the mappings to trigger. 

Note that the creating and killing of gates involves a non-trivial amount 
of CPU. This procedure should be avoided for frequent events. 

The prime example of this is the MIB service. It uses davidian gates 
(which limits the "messaging" to local slots) to represent: 

1. 

2. 

The contents of a row instance of a table. Whenever a "restart" 
variable in the row is changed, the davidian gate is killed. 

The creation of a table row instance. Whenever a new row is 
added to a table, the davidian is killed. It is not killed when a 
row is removed (the application has to do the removal, so there's 
no need to tell it). 

The use of ensigns or davidians for this purpose is problematic, 
since GAME does not clean up these gates when the creator dies 
(there's no GA TE structure, and hence, no ancestry information). 
The MIB can get away with this because if the MIB dies, the whole 
slot goes down. Therefore, use real gates with dummy activation 
routines instead until told otherwise. 
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Memory Management 

GAME has a single pool from which all memory is allocated, except for 
buffers. In addition to the typical malloc/free memory, this also includes 
the memory used for stacks and the memory in which an application 
executes. 

The memory pool is composed of slabs and segments. A "slab" is a single 
large chunk of memory which gets divided up into smaller pieces called 
"segments". Normally, there is only one slab of memory in the system. 
It runs from the end of the kernel image to the end of normal memory, or 
to the beginning of buffer memory on systems, such as the AN, where 
buffer memory isn't implemented in separate hardware. 

Each memory segment contains a header, called a MSEG, at its beginning. 
This contains previous and next pointers to link the MSEG onto a doubly 
linked list. It also indicates the size of the MSEG. The MSEG occupies 
the first cache line of a segment. All MSEGs are cache line aligned. (A 
cache line is 16 bytes for the 68k, 32 bytes for the PPC.) This alignment 
is required by tags (see below). This alignment also results in the rounding 
up of the size of a MSEG to whole cache line increments. 

The MSEG is shown below. The flag bit is a way for the kernel to mark 
certain MSEGs as special so that they can be found on a gate's memory 
list. For example, if a gate owns a semaphore token, that token is actually 
represented by an MSEG linked into the gate's memory list. That MSEG 
will have flag set and the first word of the MSEG body will tell the kernel 
that it's a semaphore token. This was implemented in this manner to avoid 
having to double the size of the gate control block (64 bytes at the time). 
That has since become unavoidable, so we now have room to track these 
on their own list, if we so desired. 

The PowerPC has a larger cache line size than the 68k does. That explains 
the extra padding when PPC is set. 

• 
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typedef struct MSEG 
{ 

struct MSEG *next; 
linked list */ 

struct MSEG *prev; 
linked list */ 

unsigned flag:l 
unsigned size:31; 
struct MSEG *resv; 

#ifdef PPC 

/* next seg on singly/doubly 

/* previous seg on doubly 

/* See note below */ 
/* segment length */ 
/* reserved *I 

u int32 
#endif !* PPC */ 

pad[4]; /* Pad to 32 byte cache line 

} MSEG; 

An MSEG can be linked in one of two places: the free memory pool or 
onto a gate's memory list. 

The free memory pool is a list of all the MSEGs which are available for 
allocation. This list is always arranged in order of increasing memory 
address. When a gate asks to allocate some memory, the free memory 
pool is linearly searched until a big enough MSEG is found (first fit). If 
this MSEG is larger than what was asked for, it is split into two pieces. 
One piece goes to the gate and the other remains in the free pool. 

When memory is freed, it is inserted back into its place in the free memory 
pool. This insertion is aided by a binary tree whose pointers occupy the 
2nd cache line of MSEGs in the free memory pool. Once the appropriate 
place in the free memory pool is found, a check is made to see if the range 
of memory covered by the MSEG being freed abuts the memory of its 
neighbors in the free memory pool. If this is the case, then the MSEG is 
merged in with its neighbor(s), resulting in a single, larger, MSEG in the 
memory pool. 

This memory allocation scheme results in the beginning of the pool 
containing many smaller memory segments while the end of the pool 
contains the larger segments. This happens because we always start 
searching from the same end and will take the first segment which fullfills 
the allocation requirements. 
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When a gate allocates memory, it is placed on a list of memory owned 
by that gate which is anchored in the gate control block. 

typedef struct GATE 

{ 

MSEG *mem; /* gate's reserved memory */ 

GATE; 

This list is used to reclaim the memory a gate has allocated should that 
gate die or be killed. There is no particular ordering to elements on the 
list. For simplicity, new segments are put at the head of the list. 

The first element's "prev" pointer points to the "mem" field of the GATE 
structure. 

An allocated memory segment is actually larger than the size requested. 
As stated above, an MSEG precedes the block. The entire block is always 
padded out to the end of the current cache line. Therefore, the size of an 
allocated block is: 

size + (size mod cache-line-size) + cache-line-size 

This is the size stored in the "size" field of the MSEG header. 

All this memory segment management is typically ignored by a gate. 
When a gate allocates memory, it recieves a pointer to the first useable 
location (after the MSEG). GAME wants this same pointer back when 
memory is freed. It is the application's responsibility to limit both read 
and write accesses to the allocated memory segment. 

An application must NEVER access the MSEG header preceeding a 
memory segment. There are at least two good reasons not to do this: 

• 
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1. The format may change under the application. 

2. On hardware that supports tags, you'll get a tag violation (see 
the next topic). 

Since all addresses in GAME are logical=physical and no MMU is used, 
some type of memory protection was needed to help with the debugging 
of bad pointers. The memory protection is called 'tags'. 

Tags are implemented in specialized hardware on the FRE, ASN, and 
ARE platforms: 

Tags allow the kernel to mark each cache line with an attribute describing 
its readabilty or writeability. Cache lines can be marked read/write, 
read-only, or no-access. If an illegal access is made (e.g. writing a 
read-only cache line) an exception occurs. 

The MSEG header is marked read-only. The intention of marking the 
L .... _: __ :_ ...... ..... C .... _..,....._,..._p ,..,...,,...._...,.... .... +_ ..... ..,A ,...,...,1,,. ~ro +- ,....,+,....h .o_..,,,..,,+ l"'"nrl.o ,,,h;roh 

walks past the end of the memory its allocated. This can also happen if 
a stack grows too large, since a stack is simply a memory segment. 

Tags will not prevent a truly errant pointer from causing problems. It is 
possible for that pointer to miss a read-only cache line and successfully 
modify data. To help combat this, it is possible to have all freed memory 
(except the headers) marked no-access. This helps if the bad pointer 
happens to hit freed memory. However, this debug feature results in a 
performance hit as the whole memory segment needs to be walked 
whenever memory is allocated or freed. Obviously, this is turned off by 
default. See Debugging Strategies for more details. This does not help 
if the bad pointer points to memory owned by another gate. 

One of the things to keep in mind about tags is that they are implemented 
by HW extraneous to the processor. Therefore, a tag violation won't occur 
until the data is flushed out of the data cache. 
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Usually (on a FRE2) this happens well after the fact and it is not possible 
to say where the bad access happened. To combat this, it is possible to 
run the processor in write-thru mode where all writes will immediately 
go to the memory system. When running in write-thru mode, the tag 
violation will occur before the program counter advances too far beyond 
the instruction that caused the violation. Write-thru mode is not the 
default and needs to be enabled. See Debugging Strategies below to see 
how to do this. 

~ Note that the ASN is the only platform that reports (via the log) the '*' memory address used to cause the tag violation. 

Ownership and Memory Sharing Implications 

As mentioned above, when a gate allocates memory, that memory is 
added to a list of all the memory allocated by the gate. Upon gate death, 
all this memory is freed. This has implications with memory sharing 
between gates. 

The preferred way to share memory is downward, where a parent owns 
the memory shared with its children. This works nicely because if a parent 
dies, all its children will also die. Sharing memory upward, where the 
children own memory manipulated by its ancestors, as well as memory 
sharing between unrelated gates, is dangerous because that memory may 
be freed without warning. This can leave a gate with a memory pointer 
to what is now free memory. Or worse, the memory may have been 
re-assigned to some other gate. 

The chance of this can be somewhat minimized if the gate which is sharing 
memory maps the memory owner gate. But even a mapping isn't fool 
proof because you need to remember that the memory could be freed 
while you're pended in the middle of a function. That function may have 
pointers to the now freed memory cached in local variables. Using these 
variables becomes dangerous. 

• 
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There are some ways around this. If a few children of a gate need to share 
memory, it is possible for them to use g_ malloc _gid() to allocate memory 
on behalf of the parent. When doing this, the parent will become the 
owner of the memory segment, so all children can access it freely. The 
tbl, rtbl, and utbl utilities all use g_ malloc _gid(). All memory is allocated 
in the context of the gate that creates the table. 

Another method is to use g_ sig_ data() to move memory ownership from 
gate to gate. 

g_malloc()/g_mfree() 

The g_ malloc() and g_ mfree() system calls are the normal way to allocate 
and free memory. A gate must own the memory to be able to free it. 
Otherwise, g_ mfree _gid() needs to be used. 

~-···-··--,, --·-

The g_ malloc() call allocates memory segments. 

call: 

void *g_malloc (u_int32 size) 

Values: 

"size" is the requested segment size in bytes. 

Considerations: 

The returned value points to the first usable byte in the segment. 
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If adequate memory is not available, the slot will be restarted due to an 
out-of-memory condition. Because of this, there is NO NEED to check 
the return value of g_ malloc(). Doing so is just a waste of instruction 
space and CPU. 

g_mfree() Call 

The g_ mgree()call frees memory segments. 

Call: 

(void) g mfree (void *mem) 

Values: 

"mem" is a pointer to a memory being freed. This must be the same value 
as returned by a previous g_malloc(). 

g_mlen() 

Call: 

u int32 g mlen () 

Considerations: 

The g_ m len() call returns the size, in bytes, of the largest memory segment 
available. This is the largest g_ malloc() request which can be satisified. 
If a g_ malloc() call is made and not enough memory is available to satisify 
that request, the slot will restart due to an out of memory condition. To 
avoid that, this type of code can be used: 

• 
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if(g_mlen() > amount_I_need) 

{ 

pointer= g_malloc(amount_I_need); 

else 

/*Couldn't get the memory I wanted .. now what?*/ 

The only time where this is helpful is when the memory allocation is not 
crucial to the continuance of the application. Otherwise, the g_ mlen() call 
isn't much help. 

There is a small window on SMP systems where a processor can 
allocate memory between g_ mlen() and g_ malloc() calls executed 
by another processor. Therefore, a positive result from g_mlen() 
does not guarantee that the g_ malloc() will succeed. 

g_malloc_gid()/g_mfree_gid() 

~- - --11-- _!..I/"\ --..I - _.c_ __ -!..II''\ ------11- --·--1 .. ! .... - ... 1!1 .. - •L-

g_ malloc() and g_ mfree() calls except that the gate ID of the owner gate 
can be specified. Care should be used when using these calls since its 
possible to abuse them. For example, a child can g_ malloc _gid() memory 
and have its parent own the memory. If that child dies, the parent may 
need to clean up the memory which was allocated, The kernel isn't going 
to do it because the parent owns it. Failure to handle such scenarios 
correctly this could result in a memory leak. 

g_malloc_gid() Call 

The g_malloc_gid() call allocates memory for another gate. 

Call: 

void *g_malloc_gid (u_int32 size, GID gid) 
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Values: 

"size" is the size of memory segment to allocate. 

"gid" is the gate id of the gate to own the memory. 

Considerations: 

The returned value points to the first usable byte in the segment. 

Calling g_ malloc __gid() with an invalid gid will terminate the calling gate. 

The calling gate does not own the memory segment unless gid is its own 
gate id. The calling gate must realize this and use care when using this 
memory (freeing, etc.). 

g_mfree(} Call 

The g_mfree_gid() call frees memory owned by another gate. 

Call: 

void g_mfree_gid(void *mem, GID gid) 

Values: 

"mem" is a pointer to the memory segment to be freed. This must be the 
same value as returned by a previous g_ malloc _gid(). 

"gid" is the gate id of the gate owning the memory. 

Considerations: 

Calling g_ mfree _gid() with an invalid gid will terminate the calling gate. 

• 
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g_mrealloc() 

The g_ mrealloc() call reallocates a memory segment. It copies the 
contents of one memory segment to a new one, frees the old one, and 
returns the new one. 

Call: 

void *g_mrealloc(void *old_mem, u_int32 new_size) 

Values: 

"old_mem" is a pointer to currently allocated segment. The calling gate 
must own the segment. 

"size" is the byte length of new segement to allocate. 

Considerations: 

The return value is the pointer to the newly allocated segment. The 
contents up to MIN (size, sizeof(old_mem)) from old_mem will have 
been copied to new_ mem. 

If adequate memory is not available, the slot will restart due to an 
out-of-memory condition. 

g_madd() 

The g_madd() call is used to add a new slab to the free memory pool. 
This is rarely used. The only example to date is with netboot where the 
config file is stored in memory while the mission code starts. Once the 
config file has been read, its memory can then be used as a normal part 
of the memory pool. 

Call: 

void g_madd (u_int32 new, u_int32 size) 
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Values: 

"new" is a pointer to the memory slab. 

"size" is the byte length of the new memory slab. 

g_sig_data()/g_get_sig_data() 

The g_ sig_ data() call really serves two purposes. It is a way to send 
multiple signals to a single gate as well as a way to move memory 
segments between gates. 

When the receiving gate is invoked with the SIG_DATA signal, it must 
g_get_sig_data ()to retrieve the memory. 

These function calls are discussed fully in the Inter-Gate 
Communications chapter. 

Debugging Strategies 

There are a few strategies which are useful for debugging memory 
problems. 

Zero Out Those Stale Pointers! 

When you free memory (or send it via g_sig_data()), set that memory 
pointer to 0. This way, if you subsequently try to use that pointer you'll 
get a bus error from the NULL pointer instead of corrupting memory. A 
bus error is much easier to debug than memory corruption. 

debug krnl Command 

The "debug kml" command provides a few settings useful for memory 
debug (note that the "debug" module must be loaded). 

• 
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mem_free_check 

mem _free_ chk will check that memory you free is indeed memory you 
own. GAME normally doesn't check this. If you free memory you don't 
own, it is possible for parts of the gate control block to become write 
protected (because GAME thinks they're another MSEG header when 
they're not). This can lead to tag violations in strange places. This is 
applicable to calls to g_mfree(). 

mem_full_tags 

mem_full_tags will mark freed memory as no-access. It makes the box 
run really slow. It can be useful for catching stale pointers assuming, of 
course, that you're lucky enough to have the pointerpointto freed memory 
and not some other gate's allocated memory. (If you set your freed 
pointers to 0 you wouldn't have this problem.) You need to restart the slot 
after setting this for it to take effect. 

wrt_thru 

wrt_thru will cause the processor to run in write-thru mode and is the 
first thing you should do when debugging a tag violation. You need to 
restart the slot after setting this for it to take effect. 

serial 

serial is only for PowerPC machines. It forces the processor to run in 
serial mode, which will give more accurate stacks when a tag violation 
occurs. You need to restart the slot after setting this for it to take effect. 
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mem_all 

mem_all is the he combination ofmem_free_chk, mem_full_tags, and 
wrt thru. 

Sometimes its desirable to have the processor default to write-thru. This 
is especially true if the tag violation happens before the TI is up and 
running. This is easy to do. 

ForTIB: 

I. cd tib 

2. In Makefile, uncomment the CACHE_MODE symbol. 

3. rm _tib/set_cfg_regs.o. 

4. build tib set_ cfg_regs.o 

5. cd buildtib 

6. build tib link archive -nr 

For BF: 

I. cd bf 

2. In Makefile, uncomment the CACHE _MODE symbol. 

3. build bf cache.o 

4. cd buildbf 

5. build bf link archive -nr 

Private Memory Management 

One aspect of the GAME memory system which is not so good is that is 
isn't very efficient dealing with many small memory pieces. First of all, 
the size of each piece is always rounded up to a cache line. Then an MSEG 
header and guard line are included. So, for a small request (say, 4 bytes), 
48 bytes of memory are actually required. 

• 
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Then, there is the additional processing of allocating and freeing the 
memory. If many allocs and frees are done, this processing starts to be 
non-trivial and can really affect performance. 

To help overcome these shortcomings, a series of Private Memory 
Managers (PMM) have been created. These are composed of a family of 
macros which work above GAME's MSEG allocation and allow a gate 
to allocate one larger segment from GAME and partition it up into little 
pieces. 

Allocating a single segment satisifies GAMEs requirement of re-claiming 
all a gate's memory. Alloc and frees are then much more efficient since 
there is no need for cache line sized allocates or MSEG headers, since all 
the allocs and frees take place from within the single MSEG. 

There are a few different flavors of PMMs available. Details for these 
can be found in include/pmm.h. 

Here is a quick list of the available PMMs and where they can be used: 

Simple Private Memory Manager 

Suggested When: 

1. Allocations are of a fixed size (ex. table entries) 

2. Space is not a concern, since slabs are not freed 
(slabs are freed only when PMM_S_END is called) 

3. Memory utilization tends not to decrease in time 

4. Freeing of segments is infrequent 
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Space-Recovering Private Memory Manager 

Suggested When: 

1. Allocations are of a fixed size (ex. table entries) 

2. Allocating and freeing segments occurs regularly 

3. Memory space is to be freed back to GAME regularly 

Space-Compacting Private Memory Manager 

Suggested When: 

1. Allocations are of a fixed size (ex. table entries) 

2. Allocating and freeing segments varies greatly 

3. Most efficient use of memory resources is needed, but has these 
drawbacks: 

Performance suffers due to relocating/copying segments 
into as few slabs as possible. 

Segment pointers should not be cached since what is 
returned by PMM_C_GET() is simply a handle to the 
segment. 

Client variables pointing to PMM_C segments must be 
declared as: <data type> **<var>; since the segment 
handle returned is a pointer to a pointer. 

Requires use of PMM_C_REF(). Note, always use 
PMM _ x _REF() if switching between PMM _ C and other 
PMM managers. 

• 

GAME Reference Manual 6-15 • 



• • • • • • • • • • • •• •• • • • • • • • • • 
• Chapter 6 Memory Management 

• 

free_pool 

• 6-16 

Pool-Of-Private-Pools Memory Manager 

Suggested When: 

1. Allocations are of a variable size 

2. Allocating and freeing segments occurs regularly 

3. Memory space is to be freed back to GAME regularly 

4. The demand is a small number of popular segment sizes 

Variable Size Segment Private Memory Manager 

Suggested When: 

1. 

2. 

3. 

4. 

Allocations are of a variable size 

Allocating and freeing segments occurs regularly 

Memory space is to be freed back to GAME regularly 

Requested segment sizes are randomly spread 

This scheme could be slower due to its splitting, merging and 
chaining. It can also suffer from fragmentation, 
unpredictably, based on its use. The tradeoff is an increase in 
buckets makes for a larger hash table thus increasing 
PMM_ V overhead space. But, this increase also reduces 
fragmentation and speeds up the search process when 
fetching for free segments. 

Another effort overlapped the development of PMM. The files include/ 
free _pool.h and rtl/free _pool.c implement a private memory manager 
similar to the "Simple Private Memory Manager" above. 
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What Size memory Segments to Allocate 

You only get a 'win' when reducing the size of a particular structure 
which is g_malloc()'d when the size is reduced below a new 16-byte 
boundary. For example, if a structure is 128 bytes long, and two 4-byte 
fields are removed, this doesn't buy anything. If 16 bytes are removed, 
this will (in most cases) reduce the size GAME allocates by 16 bytes. 

What is the win ifl allocate memory for "n" structures in one big block, 
as opposed to doing "n" separate g_ malloc() calls? That is, how much 
game header overhead am I avoiding? 

The overhead is 16 bytes for every separately malloc'd block. This is the 
memory we use to keep track of what memory has been malloc'd by a 
gate so that we can free it ifthe gate dies. In your example above, you'd 
save (n - 1) * 16 bytes by doing 1 big malloc instead of n smaller ones. 

A friendly word of warning ... don't malloc it if you really don't need it. 
We're liable to run out of memory just like we run out of buffers. Also, 
once the memory space gets fragmented, a malloc of a big chunk is more 
likely to fail than a malloc of a small chunk. You can use g_ mien() to see 
what the biggest contiguous chunk currently is. 

For each GAME memory segment (MSEG) allocated, GAME allocates 
some additional overhead ( 16 bytes) to manage the memory. If an 
application needs lots of a certain data structure, and g_malloc()'s 
memory for each instance, the penalty forth is overhead can be significant. 
In the extreme, the overhead can exceed the actual data structure size 
itself. 

• 
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The free pool code (rtl/free_pool.c, include/free_pool.h) provide an 
efficient management pool of fixed sized data structures. The 
improvement over using GAME' s native memory manager comes from 
amortizing the GAME MSEG overhead over a large number of the 
applications data structures. The free pool code will allocate larger chunks 
of memory from GAME (the size is programmable) and chop that into 
the size appropriate for the application which can be allocated from and 
freed to the application specific pool, rather than the GAME memory 
manager. 

Currently these pools are not shrinkable; they only expand when the pool 
is depleted. The designer should be aware that a pool can suddenly grow 
dramatically in size, perhaps due to some transient burst of activity in the 
system. After the spike has passed, the over-grown pool is not 
subsequently shrunk, even though that memory may never again be 
required (i.e. ifthe spike happens only once in the life of the application 
during init, it will continue to own/consume large amounts of memory 
that it may never use again) 

Recently, the free pool code was enhanced to allow multiple gates to 
access the same pool. The intent is for a parent gate to own a pool, but 
allow children (and or grandchildren etc.) gates to use/access/expand the 
pool and the parent's environment in general. This sharing of 
environments has proven be an effective way to improve performance. 
In some applications, however, it makes the gates or sub-system in 
question inherently "dirty" in SMP term. The benefits of the shared 
environment must be carefully considered, especially going forward as 
it appears that SMP systems may begin to dominate the scene. 
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The GAME gate scheduler is a simple, non-premptive, first in/first out 
(FIFO) scheduler. This means that a gate executes until it gives up the 
CPU by either pending or returning from its activation routine. It also 
means that gates will execute in the order in which they are placed onto 
the scheduler queue (with a few exceptions). 

• 
• 

Scheduler Queues 

There are two scheduler queues in GAME. These are the Activation 
queue and the Idle queue. Each queue element contains a pointer to the 
gate control block of the gate to activate as well as the reason for 
theactivation. 

The Activation queue is a list of gates which are ready to be run. The 
scheduler will walk though this list activating each gate in turn. When a 
running gate either pends or returns from its activation routine, the next 
gate in the list is activated. 

Once the activation queue is empty, the system is said to go "idle". At 
this point in time module interrupts are handled. If there are indeed 
module interrupts pending this will result in some gates (such as a link 
driver) being added to the activation queue. Once all gates needed for 
interrupt processing are added to the activation queue, the contents of the 
Idle queue are copied to the activation queue. Then the scheduler starts 
executing the gates on the activation queue. 
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The Idle queue serves as a place for application gates to go when they 
want to be "fair" (or put another way, when they don't wish to kill the 
slot's forwarding performance). Since the scheduler is non-preemptive, 
it is possible for a single gate to usurp all of the processing resources of 
the system for a long time. This is undesirable in a system which is also 
trying to pass data traffic. The idle queue allows a gate to timeslice itself 
via the g_ idle() syscall. By calling g_ idle() a gate will allow more network 
traffic to be processed after which it will continue execution. 

There is a CPU watchdog which will prevent a gate from running forever. 
After some large amount of time (3-4 seconds on most systems), if the 
same gate is still running, this gate will be killed and a "cpu hog" event 
will be placed in the error log. But, the CPU watchdog is really only there 
to prevent runaway gates from hanging the system. Packets will be 
dropped well before the CPU watchdog goes off, so it is up to the gate to 
idle itself well before the CPU watchdog limit. See "CPU Hogging" 
ahead. Watchdogs are discussed more in the Watchdog section. 

Activation Reasons 

A gate can only be activated for seven reasons, as follows: 

1. Message Delivery 

2. SIG INI 

3. SIG TMO 

4. User-Defined Signal 

5. SIG IDLE 

6. SIG MAP 

7. SIG MSG 
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These 7 reasons are the only reasons a gate will be scheduled. There is 
an additional restriction that scheduling reasons do not nest. This means 
that a gate can appear at most one time in either the idle queue or the 
activation queue for each reason. 

For example, the first time a gate recieves buffers, the buffers are placed 
on its delivery list and the gate is scheduled for message delivery. If more 
buffers arrive before the gate is activated (because there are many other 
gates ahead of it), those additional buffers do not result in another 
scheduling. Rather, they are tacked onto the end the existing delivery list. 

With signals, the result of no nesting is somewhat different. The first time 
a gate's timer expires, the gate is scheduled for a SIG_TMO. If the gate 
doesn't get activated for that SIG_ TMO before the timer expires again, 
the next timeout does not_result in a SIG_TMO. The gate will see only 
one SIG_TMO although 2 timeout periods have actually occurred. 

Message Delivery 

This is the delivery of a new list of buffers for the gate to process. 

SIG_INI 

SIG_ INI is an initialization signal, usually the result of creating a gate 
with the G _SIG_ INI option of g_req(). This signal can also be sent to an 
existing gate by using the G _ REQ_ INI option of g_req() (only 
recommended if the semantics of sending the signal is "initialize"). 

SIG TMO 

A timeout signal sent to a gate when a timer set via g_ tmo() has expired. 
Each gate can only have one timer. 

• 
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User Defined Signal 

Each gate is allowed a single user defined signal. This is either the signal 
registered for via g_ isr(), the signal being sent by g_ sig_gid(), or a 
SIG_DATA ifthe gate is the target of a g_sig_data(). This was covered 
in detail in the Inter-Gate Communication chapter. 

Additional Reasons 

There are some additional activation reasons which only apply to pended 
gates. When a gate pends, it does so within the context of GAME. Thus, 
these signals will never be seen directly by a gate as they are consumed 
by GAME. They are listed here only for completeness. 

SIG_IDLE 

Originally, this signal was used to unpend a gate after it idled itself on 
the idle queue. More recently it has been used as a generic unpend signal 
used for such things as unpending a gate which was waiting for a 
semaphore token. What exactly a SIG _IDLE implies is dependent upon 
where within GAME a gate pends (since that is where it will resume 
execution when it unpends). 

SIG_MAP 

Used when creating and firing mapping routines. 

SIG_MSG 

Used when new buffers are delivered to a pended gate. This is utilized 
by the messaging system so it can collect acknowledgements or RPC 
replies within the context of a gate. 
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When a gate pends within GAME, it waits for some event to occur. For 
example, when a gate does a g_idle(), it is waiting to get a SIG_IDLE in 
order to continue. But, what happens if that gate receives a message? 

In order to be efficient, the message delivery code doesn't look at the state 
of each gate which is receiving a message to see if it is currently pended. 
It just schedules a gate for message delivery whenever it starts a new 
delivery list for a gate. This means that the g_idle() may actually get 
unpended for reasons other than a SIG_ IDLE, and it needs to handle those 
reasons correctly. 

Say we have 3 gates, A, Band C which are being scheduled (we won't 
worry about why Band Care on the queues). The chart below shows the 
state of the activation queue and the idle queue at a particular point in 
time. The gate at the top of the activation queue is the one which is 
currently running. 

Activation queue Idle queue 

Gate Reason Gate Reason 

Running gate --> A SIG INI 

B ? 

c ? 

So gate A is running its SIG _INI. For whatever reason this takes a long 
time, so A needs to timeslice itself by calling g_idle(). The g_idle() call 
results in gate A being placed on the Idle queue for delivery of a 
SIG_ ID LE after the system goes idle. Once this is done, the gate pends 
allowing the next gate to run: 

• 
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Activation queue Idle queue 

Gate Reason Gate Reason 

-------- --------

Running gate --> B ? A SIG IDLE 

c ? 

Now B runs. It sends a message to A. This causes A to be scheduled for 
a message delivery. Once B completes, C will run and the queues look 
like this: 

Activation queue Idle queue 

Gate Reason Gate Reason 

Running gate --> C ? A SIG IDLE 

A message 

Notice that the activation for A's message is on the activation queue. This 
means that as gates send buffers to other gates on the same slot, the 
activation queue never goes empty (Note that reliable messaging to the 
same slot will idle the sender. This is covered later). This is intentional 
since this is exactly what happens when we're forwarding traffic - and we 
want that to go fast. 

Once C completes the queue looks like this: 

Activation queue Idle queue 

Gate Reason Gate Reason 

Running gate --> A message A SIG IDLE 

A now executes. Since it was pended, it unpends at that same point in 
the code. In this case, that is in the g_idle() syscall. The g_idle() unpends 
with a message. This isn't what it wants so it remembers that the gate 
received messages and pends again. The system goes idle since there are 
no more gates on the activation queue. 
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Module interrupts are now enabled. Lets assume there are interrupts 
pending and gate D is a driver which will handle one of those interrupts. 
The interrupt handler will send a g_sig(SIG_MODO) causing gate D to 
be scheduled. Next the idle queue is copied to the activation queue and 
scheduling begins with gate D running. 

Activation queue Idle queue 

Gate Reason Gate Reason 

Running gate --> D SIG MODO 

A SIG IDLE 

Gate D runs to completion and then Gate A gets scheulded. Gate A 
unpends in the g_idle() syscall. It sees a SIG_IDLE, which is what it was 
waiting for so it can continue on. But, before returning to the application 
code, it needs to reschedule any activations it saw but didn't want, such 
as the message. When control returns to the g_idle() caller, the queues 
look like this: 

Activation queue Idle queue 

Gate Reason Gate Reason 

Running gate --> A SIG IDLE 

A message 

A is running after the g_idle(). Assuming it then returns from its 
activation routine it will immediately execute again, but this time for the 
messages it received while idle. 

This may seem confusing, but applications normally don't worry about 
it. From an application point-of-view, it recieved a SIG_INI, idled and 
then recieved buffers. What applications, especially in the control path, 
do need to be aware of is the importance of allowing the system to go 
idle so that new data traffic can be processed (more on this later). 

• 
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Forwarding Path Notes 

Mappings 

• 7-8 

The scheduler may seem somewhat convoluted, but it is important to keep 
in mind that GAME was designed for the efficient forwarding of data. In 
the forwarding path, gates do not pend. Forwarding gates typically 
receive a continuous stream of buffers. Pending would cause buffers to 
pile up on the gate's delivery list, possibly depleting the buffer free pool 
on the slot. 

The burden of handling pending was moved from scheduling time to 
unpending time, since we schedule much more than we unpend. 

The scheduling of mapping activation routines is somewhat special. Here 
is the sequence of events: 

1. A "target" gate is created or killed, requiring mappings to 
trigger. This occurs in the context of some gate (e.g., a gate 
calling g_req(), or GAME's MAPPER gate, which receives 
updates from other slots). We'll refer to this as the "triggering" 
gate. 

Activation queue 

Gate Reason 

Running gate -->trigger ? 

A ? 

2. The triggering gate reschedules itself at the head of the 
activation queue with a SIG_MAP. This is effectively a "push" 
onto the queue to continue the triggering gate's execution once 
the mappings have all run. 
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Activation queue 

Gate Reason 

Running gate -->trigger ? 

trigger SIG MAP 

A ? 

3. The triggering gate creates a gate (which, through some 
trickery, becomes a child of the MAPPER gate) which runs the 
map_ map() routine and schedules it at the head of the activation 
queue. Note that many map_map gates can exist at any time. 
map_ map gates are also responsible for the cleanup of dying 
gates. 

Activation queue 

Gate Reason 

Running gate -->trigger ? 

map_map SIG MAP 

trigger SIG MAP 

A ? 

4. The triggering gate pends, allowing the map_map gate to run. 

Activation queue 

Gate Reason 

Running gate -->map_map SIG MAP 

trigger SIG MAP 

A ? 

• 
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5. The map _map gate also reschedules itself at the current head of 
the activation queue with a SIG_MAP. 

Activation queue 

Gate Reason 

Running gate -->map_map SIG MAP 

map_map SIG_MAP 

trigger SIG_MAP 

A ? 

6. The map_ map gate creates the gates that run the actual mapping 
activation routines. Their activation routine is map_gate_act(), 
a kernel routine, which will call the user's mapping routine. 
These mapping gates are scheduled at the head of the queue, 
before the map_map gate's SIG_MAP position in the queue (see 
step 5). The scheduling reasons for these gates are also 
SIG MAP. 

Activation queue 

Gate Reason 

Running gate -->map_map SIG MAP 

map_actl SIG MAP 

map_act2 SIG MAP 

map_actN SIG MAP 

map_map SIG MAP 

trigger SIG MAP 

A ? 
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7. The map_ map gate pends, allowing the mapping gates to run. 

Activation queue 

Gate Reason 

Running gate -->map_actl SIG MAP 

map_act2 SIG MAP 

map_actN SIG MAP 

map_map SIG MAP 

trigger SIG MAP 

A ? 

8. The scheduler runs the mapping gates. Note that if a mapping 
causes other gates to die, additional mapping activations get 
scheduled ahead of those already scheduled. If the mapping 
gate pends, it is possible for the state of the "target" gate to 
change. GAME does not initiate the mapping for the new state 
immediately. It instead stores the new state in the mapping 
gate's environment. This may happen multiple times during the 
life of a mapping. When the current mapping activation 
completes, the map_gate_act() routine checks for this changed 
state. If any exists, it re-runs the mapping with the first changed 
state (and repeats this for each stored state). This way, a gate 
will never miss a state change. 

9. Once all the mapping gates have been run, the next thing on the 
activation queue will be the SIG_ MAP activation for the 
map_map gate. This resumes the map_map gate's execution. If 
the mapping was for a dying gate, it then cleans up the gate's 
memory. Finally, the map_map gate kills itself. 

• 
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Interrupts 

Activation queue 

Gate Reason 

Running gate -->map_map SIG MAP 

trigger SIG MAP 

A ? 

10. The next thing on the activation queue will now be the 
SIG_ MAP activation for the triggering gate. This resumes the 
triggering gate's execution. It finishes the mapping processing 
(which isn't much) and returns to the application code. 

Activation queue 

Gate Reason 

Running gate -->trigger SIG_MAP 

A ? 

Note that if a mapping activation routine pends, it's continued execution 
can be intertwined with the activations of the base gate and other 
mappings in the context of the base gate. However, these other mappings 
can never be mappings for the SAME target gate of the still-running 
mapping. 

The details of low-level interrupt handling are specific to a given 
hardware platform. GAME isolates these hardware dependencies from 
the device driver gates and delivers interrupt events via signals. 
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GAME runs on various hardware platforms such as the ACE, ACE32, 
AFN, FRE (I, 2, 3), ASN, ARN, AN, and ARE. These hardware 
platforms are the name given the the processing engine that populates a 
slot. Each processing engine contains a main microprocessor that 
executes most of GAME's code and other support hardware such as timer 
chips, UARTS, TAGS, memory parity logic, and hardware that is used 
for interslot communication. Each slot also contains hardware devices 
such as ethernet, fddi, token ring, and synchronous chip sets that 
interoperate with the microprocessor on that slot. 

Most of hardware platforms that GAME runs on are based on the 
Motorola MC680x0 microprocessor family. For the rest of this section 
we will talk about how the 68040 microprocessor on a FRE 112 works. 

The 68040 has three main states: 

• Halted. - A waiting a reset signal. 

• Running - Executing code normally such as thru a scheduler. 

Exception - Processing an exception such as errors and external 
interrupts. 

Exceptions can be caused by executing an instruction or by external 
hardware events, such as interrupts, and hardware errors. Exceptions 
caused by executing an instruction will be detected by the microprocessor. 
Some exceptions are predefined and some can be user defined. 
Predefined exeptions include unimplemented instruction, illegal 
instruction, address error, bus error and divide by zero. Motorola also 
defines seven prioritized levels for processing interrupt requests. 

• 
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When the processor is initialized, code populates an exception vector 
table with addresses of routines that will run when a particular exception 
occurs. When an exception occurs that is not due to an interrupt request, 
the current running code will be preempted after it finishes its current 
instruction and the routine for that particular exception will execute. All 
of the interrupt levels, other than level 7, can be disabled. Disabling a 
level also disables all levels below. If an interrupt request occurs for a 
level that is enabled, the current running code will be preempted once the 
current instruction has finished. The interrupt service routine (ISR) for 
this interrupt level will run. If an interrupt request occurs for a level that 
is disabled, the exception does not occur until the level is enabled. 

The FRE hardware was designed so that only two of the seven interrupt 
levels are used (levels 3 and 4). The initialization code populates the 
interrupt vector table in the following manner: 

• The entry for the level 4 interrupt will contain the address of 
g_isr_ 4(). 

The entry for the level 3 interrupt will contain the address of 
g_isr_3(). 

The address of exception vector #2 will will contain the address 
of Bus Error(). 

All other entries contain the address of except_ entry() (there are 
a couple of minor exceptions). 

Interrupt level 4 is always enabled. Because of this, g_isr _ 4() can preempt 
any current running code. The watchdog timer, TAGS, memory parity 
errors and the NMI button result in a level 4 interrupt request. Interrupt 
level 3 is enabled when the scheduler is idle and in between gates, but 
disabled while a gate is executing. This means that g_isr_3() does not 
always service interrupts immediately and it does not preempt gates. The 
RTC used by the periodic timer, the backbone, UAR Ts forthe TI console, 
and the link modules, which contain devices such as the ethemet chip, 
all assert level 3 interrupts. 
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When a level 3 interrupt occurs, g_isr_3() examines the pending 
interrupts register and masks out interrupts that are not to be handled at 
the current time. This is currently used to postpone the processing of 
link-module interrupts when the scheduler is not idle (i.e., between gate 
schedulings ). For each pending interrupt remaining, a g_ isr() call is made 
to schedule the appropriate signal. As discussed in the Inter-Gate 
Communications section, the gate that handles the signal indicates 
whether it should be scheduled at the head of the activation queue 
(G_ISR_SIG) or the end (G_BASE_SIG). 

ARE/FRE-3 Interrupts 

The PowerPC used by on the ARE and FRE-3 has a much different 
interrupt setup than the 68k does. The Power PC only has a single interrupt 
feeding into it. There are no levels explicitely supported by the PowerPC 
itself. 

In order to make the PPC function more like the 68k, external interrupt 
support HW was added. This support consists of 3 registers; IPEND, 
IPOL and !ENABLE. All of these registers are 32 bits wide. Each 
interrupt source occupies one of these 32 bit positions and that position 
is used consistently in all registers. For example, bit 0 of all of these 
registers deals with the timer interrupt. 

These 3 registers get combined in the following manner to generate the 
single interrupt which feeds into the PowerPC. 

1. The interrupt pending register (IPEND) contains the interrupt 
state of all hardware sources. 

2. The IPEND is exclusive-or'd with the interrupt polarity 
(IPOL)register to flip any active low interrupts to active high 
ones. 

3. The result of this xor is anded with the interrupt enable 
(!ENABLE) register. 

• 
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CPU Hogging 

4. If any bits are then set, an interrupt is sent to the processor. 

Both the IPOL and !ENABLE registers are software programmable. As 
a practical matter, the IPOL is written to once and then ignored (after all, 
the interrupt sources are either active high or low but not both). 

The various levels found on the 68k platforms are implemented by 
changing the value contained in the !ENABLE register. The kernel 
maintains a set of 3 values which are written to the !ENABLE at the 
appropriate times. 

The lowest is the watchdog level. This contains all the interrupt sources 
which should always be enabled. This includes such things as the 
watchdog interrupt as well as error interrupts like for tags. Above this 
are the interrupts which are enabled between gates such as timers and 
uarts. Finally, the highest level are those interrupts which are enabled 
only when we go idle such as the module interrupts. Each level contains 
the level below it thus the watchdog level interrups are indeed always 
enabled. 

When an interrupt occurs, the contents of the IP END are anded with the 
current !ENABLE and only those interrupt are the ones which get 
processed. 

Since GAME uses a non-preemptive scheduler, it is very easy for a single 
gate to disrupt an entire slot, or even an entire box, by tying up the CPU 
for more than a few milliseconds at a time. When a gate or collection of 
gates "hog" the CPU, the scheduler may not go idle soon enough to handle 
the link-module interrupts. In this case, packets are dropped, and, for 
some reason, this makes customers unhappy. 
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Unfortunately, the onus is put on the application programmer to make 
sure their gates are well-behaved. Therefore, an analysis of each gate's 
execution time has to be done to ensure that the CPU is surrendered often 
enough. 

g_idle Call 

g_idle() is the most common vehicle used to ensure a gate is not a CPU 
hog. Normally, g_idle(G_IDLE_POLL) is placed in an iteration loop. 
One example is RIP receive processing. g_idle() is used so that the CPU 
intensive operation of adding I deleting I updating networks does not 
result in drivers dropping frames. 

void g_idle (u_int32 flag) 

"flag" can be one of the following: 

G_IDLE_POLL - place current gate on idle queue. The gate 
gets rescheduled after the next time the scheduler goes idle. 

G IDLE CHECK - check to see if the backbone or drivers need - -
servicing or if the watchdog count is nearing expiration. If 
TRUE then g_idle() acts as ifG_IDLE_POLL was used as a 
flag. Otherwise, g_idle() returns allowing the gate to continue 
executing. 

flag can also take the value G _IDLE_ TAIL. In older versions of 
GAME, this would schedule the gate at the end of the activation 
queue. This feature was removed because it allowed a gate to 
hold out module interrupts for too long. G _IDLE_ TAIL now 
equals G_IDLE_POLL. 

• 
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Example: 

FOR EACH NETWORK UPDATE 

/* 
* Process update. 

*/ 

g_idle(G_IDLE_POLL); 

} 
} 

Note that if other gate activations can access and/or modify data used by 
this gate (e.g., mappings or other gates in the hierarchy), the gate should 
ensure that the data is in a state that allows access/modification when 
idling (or it has to protect the data via semaphores). 

Other function calls also give up the CPU. However, it is possible for 
the gate to regain the CPU before the slot has gone idle. 

g_fwd(), g_rpc(), g_reply() Calls 

These calls all use an internal GAME function called msg_fwd(). For 
delivery of a message to the local slot, an explicit g_idle() call is made 
to allow module interrupts to run. For remote delivery, however, the gate 
is only pended until an ACK buffer is received from the remote slot. If 
the local slot is busy enough and the remote slot quickly sends the ACK, 
there is a chance of receiving the ACK before the local activation queue 
goes empty. This chance is much lower with g_rpc(), which requires a 
g_reply() buffer from a gate on the remote slot before the local gate 
unpends. 

For purposes of application writing, assume that these calls will allow 
module interrupt service. If the frequency of the "exceptional cases" 
becomes a problem, the functions can be changed to do explicit g_idle() 
calls. 
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g_delay() Call 

For any parameter values greater than 16 ticks, it is fairly certain that the 
slot will go idle before the unpend timer expires. For a delay of 16 or 
smaller, there is a very slight chance of servicing the timer interrupt 
(between gate activations) that will unpend the gate. For purposes of 
application writing, assume that this call will allow module interrupt 
service. 

g_sema_get(), g_balloc() Calls 

These calls give up the CPU only if the requested resource is not available. 
An application should not rely on these to perform time-slicing. 

In addition, most MIB interface calls use g_rpc() to a local gate. 
Therefore, these MIB calls result in module interrupt service. 

• 
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GAME implements a simple non-preemptive, FIFO scheduler where a 
gate runs to completion unless it voluntarily gives up execution by calling 
a kernel system call that pends the gate. The kernel system calls that pend 
are: g_fwd(), g_rpc(), g_reply(), g_delay(), g_sema_get() (sometimes), 
g_balloc() (sometimes), and g_idle(). (See the Scheduler section for a 
discussion of CPU Hogging). 

~ The mib interface uses many of these pending functions and many 
1:f"' engineers have not taken this into account in their original designs. 

Within the forwarding path, the currently executing gate runs its action 
routine to completion quickly. Non-forwarding path gates do one of the 
following: 

1. run the current action routine to completion quickly. 

2. pend themselves one or more times before completing the 
current action routine. 

3. call g_idle() one or more times before completing the current 
action routine. This is a crude form of time slicing. 

• 
• 

Question and Answer 

1. "What happens if the current executing gate is stuck in an 
infinite loop or appears to be in an infinite loop (it will 
eventually finish)"? 

The slot would hang, unless GAME's fault management system 
could detect this condition. 

2. "Can GAME's fault management recovery system detect and 
correct this condition"? 

This condition can be detected by another piece of hardware other 
than the microprocessor. 
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3. "How can the fault management code execute if the scheduler is 
currently running"? 

Microprocessors can execute code as exceptions (interrupts). with 
the exceptions preempting the normal running scheduled code. 
So the basis for GAME's watchdog mechanism is to have a piece of 
hardware, other than the microprocessor, watch over the 
microprocessor for the purpose of detecting and correcting a 
hang-like condition. 

How the Watchdog Works On A FRE 

• 8-2 

If you are not familiar with how interrupts work on a FRE, review the 
"Interrupts" portion of the Scheduler chapter. 

There is a timer chip on the FRE that expires once every second. When 
this timer expires, a level 4 interrupt is asserted and g_isr _ 4() will execute. 
When g_ isr _ 4() executes, it looks at certain hardware registers located 
on the FRE to determine which hardware device requested the interrupt. 
If it is determined that the watchdog timer was the reason for asserting 
the interrupt, then a bit within a register on the FRE is cleared telling the 
FRE that we are servicing the watchdog timer. If this bit is not cleared 
within one watchdog timer period, then the FRE does a hardware reset 
(this is a "hardware watchdog"). 

When the scheduler idles, the watchdog detection code is disabled. When 
the scheduler goes from idle to non idle (g_isr_3() schedules a gate), the 
watchdog detection code is enabled. If g_isr _ 4() sees that the watchdog 
is disabled, then g_isr_ 4() just exits. Otherwise, g_isr_ 4() executes 
tmo_wdog(). 
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tmo _ wdog() checks to see if the current running gate is the same gate and 
same invocation of the gate as the last time that tmo _ wdog() was run one 
second ago. If the gates differ, a limit count is set to 3, information that 
distinguishes this gate invocation is saved, and tmo _ wdog() returns. If 
the gates are the same then the counter is decremented. If the counter 
reaches zero the slot is restarted (this is a "software watchdog"). 
Otherwise, tmo _ wdog() returns. This means that a gate can run between 
3 and 4 seconds before the slot is reset due to a watchdog. 

"'1.r If a gate runs more than a couple of milliseconds then something is 
'(F drastically wrong. g_idle() calls should be placed into the code at 

determined points to allow servicing of link module interrupts. 

Platform Differences 

The idea for having a watchdog timer was introduced with the FRE. The 
FRE, FRE2, and ASN basically work in the same manner, due to the 
common architecture. 

The ACE25, ACE32, and AFN predate the FRE. No watchdog timer was 
added to the processor. Because of this, no watchdog support exists on 
the ACE25 or AFN. The ACE32 does implement watchdog support, but 
in a way very different than any other platform. The ACE32 contains 
two microprocessors: one for GAME processing and one for interslot 
communication (DMAP) (this is also true for the ACE25). The ACE 
exception vector table also contains routines for servicing level 7, level 
6, and level 5 interrupts, with level 6 handling cascade interrupts. The 
DMAP processor runs code separate from GAME. When it enters its 
timer_isr() function, it determines whether or not the main 
microprocessor is hung. If the DMAP determines that the main 
microprocessor is hung, it creates a Late Bus Error that will result in the 
main microprocessor's level 6 ISR executing. Even though the ACE32 
and ACE25 have some common architecture, the ACE25 could not 
reliably use the SYSF AIL signal to achieve like results. 

• 

GAME Reference Manual 8-3 • 



. . . . . . . . . . . . . . ~ . . . . . . . 
• Chapter 8 Watchdog 

• 

The AN and the ARN both have MC68360 (QUICC) chips that internally 
contain a lot of programable hardware support, including timers (note 
that the ARN also contains a 68040 for processing). The exception vector 
tables on the AN and ARN are similar to each other, but differ from the 
FRE and ACE platforms. This exeception vector table contains a number 
of hardware vectored interrupts that contain their own entries in the table 
and are not part of the 7 prioritized interrupt levels. TIMER l's vector 
entry has the address of rtc _isr _ 4() and is programmed for interrupt level 
4. rtc_isr_ 4() will run every second and, unlike g_isr_ 4(), this routine 
exists only for watchdog support and executes tmo _ wdog(). The 
MC68360's internal watchdog is not used. 

The ARE uses two power pc processors, both of which run (SMP) GAME. 
interrupt_ handler() is the main interrupt handler. When the watchdog 
timer expires, call_ihandler() is executed to determine which of the two 
processors will run the tmo _exp() routine. 
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Semaphores 

Game implements a fairly straightforward semaphore capability with 
some additional requirements due to GAME's high-availability nature. 

A semaphore is used to control access to a critical resource. This may 
be a shared data structure or a piece of hardware. Another use is to limit 
the number of instances of a certain task being performed. 

Each semaphore has a number of "tokens" associated with it. Each token 
allows one gate to enter the critical section guarded by a semaphore. A 
"binary semaphore" is simply a semaphore with I token. 

The number of tokens which a semaphore has is specified when that 
semaphore is created. It's possible to add or remove tokens from a 
semaphore while executing. 

There are two types of semaphores: well-known and dynamic. These 
work much like gate IDs. The well-known semaphores are defined at 
compile time in a header file (include/known_sema.h). The dynamic 
semaphores are allocated at run time. 

When a gate tries to get a token it will pend if one is not available. As 
tokens are freed, the pending gates will acquire the token and unpend. 
This is done in a FIFO order. 

GAME tracks the ownership and creation of semaphores and tokens like 
any other resource and will automatically free tokens or remove un-used 
semaphores when gates die. In order to know which gates are using which 
semaphores, GAME requires a gate to register for a semaphore before 
using it. 

Semaphores are local to a single slot and cannot be used across slots. 

• 
• 
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Well-known vs. Dynamic Semaphores 

GAME semaphores come in two flavors; well-known and dynamic. Each 
of these has the following characteristics: 

Well-known Semaphores 

• The ID is defined in include/known sema.h. 

• It may be used by a gate without the burden of passing around a 
semaphore ID. 

Multiple gates can "create" the well-known semaphore. (If the 
number of tokens remains the same, the second and subsequent 
creations just become registrations. 

Dynamic Semaphores 

Created at run time by a gate. 

The semaphore ID is assigned by GAME and must be passed to 
any other gates which want to use that semaphore. 

Semaphore Creation and Registration 

The g_ sema() system call is used to create and/or register to use a 
semaphore. 

Call: 

SEMA g_sema (SEMA sema, u int32 n) 
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Values: 

"sema" can be: 

G _ SEMA _CREA TE - create a semaphore 

• The handle of a well-known existing semaphore that is to be a 
multiple creation 

"n" can be: 

The number of tokens for a new semphore 

The new number of tokens to be associated with an existing 
semaphore 

G_SEMA_REGISTER-to register to use a semaphore 

Return Value: 

The return value is is the semaphore handle to use in subsequent 
g_sema_XXX() calls. It will be a newly allocated ID if "sema" is 
G SEMA CREATE. Otherwise, it is the same value as the "sema" 
parameter. 

Considerations: 

Creation of a semaphore automatically registers the creating gate to use 
that semphore. 

If the semaphore already exists and G_SEMA_REGISTER is not 
specified, g_ sema() will change the number of tokens associated with the 
semaphore ton. Adding tokens will not pend. Decreasing the number of 
tokens ("n" is less than in the original creation call) may pend because a 
token first needs to be acquired before the max count can be decremented. 

• 
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As mentioned above, its possible to do multiple creations of a well-known 
semaphore. The second and subsequent g_sema() calls simply look like 
calls to change the number of tokens. If all creators initialize the number 
to the same value, then no change happens. The net result is that the 
creator is only registered for the semaphore. 

Getting a Token 

The g_ sema _get() call is used to obtain a semaphore token. If a token is 
available in the free token pool of the semaphore, one is removed from 
the pool and assigned to be owned by the calling gate. If there are no free 
tokens at the time, the calling gate PENDS until one is freed by some 
other gate. Note that if the caller owns all tokens, a deadlock is certain! 

When there are no free tokens, multiple pending gates are served on 
first-come first-serve basis. This rule includes callers of g_sema() that 
are trying to reduce number of tokens. 

Death of an owner of the token will cause the token to be returned to the 
semaphore it came from so that applications need not be concerned with 
the clean-up. 

void g_sema_get {sema) 

"sema" is the semaphore from which a token is desired. 

Returning A Token 

The g_sema_put() call frees one semaphore token back to its free pool 
without any pending. If there are other gates waiting for a token (due to 
g_ sema or g_ sema _get calls), the first one is scheduled to run at the end 
of the current activation queue (just as a message delivery would). 
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A caller that has no token belonging to that semaphore is terminated. 

void g_sema_put (SEMA sema) 

"sema" is the semaphore to which the token is returned. 

Checking A Semaphore's State 

It is often helpful to know ifthere are any tokens available before calling 
g_sema__get(). This way, a gate can avoid pending if none are available. 
The g_ sema _state() call provides this information. 

int g_sema_state (SEMA sema) 

"sema" is the semaphore whose status is desired. 

The returned status may be a positive number, zero, or a negative number. 

A positive number indicates the number of free tokens available. 

Zero and negative indicate lack of tokens and number of already pending 
waiters (in a sense a negative token count). That is, 0 means there are 
no tokens left, -2 means there are no tokens and 2 gates are already waiting 
for a token. 

The following is guaranteed not to pend on uni-processor systems. 

if(g_sema_state(s) > 0) 

g_sema_get(s); 

For SMP, the issue is a bit tricker. Depending upon what gates are 
using the semaphore and their SMP type, the above may not work. 
This is the case if all users of the semaphore can't be scheduled to 
run in parallel. To fix this for SMP would probably require the 
addition of a new syscall. At the moment its felt that there's not any 
demand for this functionality. 

• 
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Gate Death and Cleanup 

Whenever gates die, any tokens it has acquired are returned to the 
semaphore. This will allow a waiting gates to acquire a token. 

When the last user of a semaphore dies, the control block for that 
semaphore is also freed. This means that the semaphore will have to be 
re-created before it can be used again. 

Semaphores and Mappings 

Mappings don't inherit a creator's registration for a semaphore. If a 
mapping needs access to a semaphore (even one created by its owner) it 
must first register to use that semaphore. The reason for this is so that if 
that mapping completes while still holding onto a token, that token will 
be returned to the semaphore. 

Are Semaphores Really Needed? 

Due to GAME run to completion scheduling and SMP implementation 
the need for semphores is actually pretty small. 

Typically a semaphore would be used to lock a data structure. On a single 
processor system, as long as a gate doesn't pend during its critical section 
while modifying the data structure) no other gate will run. So in this 
situation a semaphore isn't necessary. The important part is that the critical 
section is non-pending. 

On SMP systems, the SMP type of the gates which access the data 
structure will control if those gates can run in parallel. If gates are 
configured such that they won't run in parallel, then semaphores aren't 
needed. Essentially, in this situation, the SMP system looks like a single 
processor system as far as a gate's ancestory is concerned. 
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SMP also provides a spin-lock capability. This may be more efficient at 
protecting a data structure then semaphores as described here. Especially 
if its unlikely that multiple concurrent accesses to the data structure will 
happen. However, spin-locks can only be asserted for short periods of 
time, and a gate cannot pend while it has one. 

The primary use of semaphores in GAME applications is to protect data 
accesses between a gate and its mappings. This is only necessary if a 
gate's mapping routines perform "real work", as opposed to just sending 
a signal to the gate's base context. This was discussed in the Mappings 
section. 

• 
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Timer and Time of Day Services 

General Overview 

This chapter describes two GAME services: 

Timer Overview 

The GAME Timer Service (AKA timers) provides functionality 
to allow gates to be periodically scheduled and to sleep. 

• The GAME Time of Day Service (AKA time) provides 
functionality that allows gates to set and get system time. 

Note that this is the Timer overview. There will be a Time 
overview later in this chapter. 

Some applications (like those that implement the RIP, SAP, HELLO, 
LMI, LQR, or BOFL protocols) need to be able to execute the same code 
on a periodic basis. 

Each gate can have one periodic timer. When the timer expires, the gate 
will be scheduled for a SIG_ TMO signal as long as the gate is not already 
scheduled by a SIG_TMO signal from a previous timer expiration. 

The g_ tmo() kernel system call is used to start, adjust, and cancel a gate's 
periodic timer. Once the timer has been started, it will expire every 
time-out period until the timer is cancelled. 

Some applications execute part of their code and then wish to sleep for a 
period of time before continuing on with the rest of their code. The 
g_delay() kernel system call or a combination of the g_idle() and 
g_timer_get() kernel system calls can be used to achieve these results. 

• 
• 
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g_tmo() Kernel System Call 

Applications start, adjust, and cancel a gate's periodic timer by calling 
the g_tmo() kernel system call. 

Call: 

u int32 g_tmo (GID gid, u int32 time} 

Values: 

gid" is the gate id whose timer is being manipulated. 

"time" is the timeout period [1/1024 seconds]. ThevalueG_CANCEL or 
0 cancels the timer. 

Return Value: 

The return value is the timer's previous "time" value. 

Considerations: 

g_tmo() is easy to use but because you can specify any gid, you must be 
careful or you might start or cancel the wrong gate's timer. 

The actual time used for timer expiration is not necessarily what was 
entered and usually is longer. The FRE, FRE-11, ASN, ACE25, ACE32, 
AFN, and ARE round this time up to multiples of 16 ms. The AN and 
the ARN round this time up to multiples of 64ms. 

Because timer interrupts are serviced in between gates, some drifting can 
occur when gates run longer than the platform's Real Time Clock (RTC) 
interrupt granularity. 
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GAME's code refers to RTC in two different ways: 

1. calendar or wallclock time. 

2. A timer that increments in fractions of seconds that asserts an 
interrupt that GAME can use to internally manage the periodic 
software timers. 

"RTC" within this section refers to #2 as described in the FRE spec 
(described in the FRE address space document /usr9/harpoon/doc/ 
hardware/frel. txt ). 

Reliable messages and g_delay() save, steal, and restart a gate's timer (if 
it exists) which results in a timer expiration delay. 

ThemacrosG TMO SECONDSandG TMO DEFAULTcanbeused. - - - -
They are defined in include/kemel.h. 

Example 1 

Start a timer for the current gate. 

/* 
* some existing application 

*/ 

g_tmo(G_SELF_ID, G_TMO_SECONDS(30)); 

• 
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Example2: 

Cancel a timer for the current gate. 

/* 
* some existing application 

*/ 

g_tmo(G_SELF_ID, G_CANCEL); 

Example 3: 

Start and Cancel a timer for another gate. 

/* 
* some existing application 

*/ 

/* 

* Start up a test gate. 

*/ 
gid = g_req(G_NEW_ID, TestA, 0, G_SIG_INI); 

/* 

* Mapping should go here. 

*/ 

/* 
* Start 1 second timer for gid. 

*/ 
g_tmo(gid, G_TMO_SECONDS(l)); 
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/* 
* Cancel gid's timer. 

*/ 
g_tmo(gid, G_CANCEL); 

Example 4: 

What TestA might look like. 

TestA (env, BufList, sig) 

u int32 *env; 

BUF *BufList; 

SIG sig; 

if (BufList) 

BUF *CurrentBuf; 

BUF *NextBuf; 

NextBuf = CurrentBuf 

while ( NextBuf ) 

BufList; 

NextBuf = G BUF_NEXT(CurrentBuf); 

/* 
* Process CurrentBuf. 

*/ 

else it (sig SIG_TMO) 

/* 

* Do Periodic processing. 

*/ 
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else if (sig SIG_INI) 

/* 
* Initialize. 

*/ 

else 

/* 
* Other signal processing. 

*/ 

NOTE 1. GAME will ensure that the gate will only be activated 
with either a buffer list OR a signal. 

NOTE 2. When code is written to receive both buffers and signals, 
buffers must be checked for first. SIG TMO has a value of 0. 

Example 5: 

TestB will, upon initialization, start a timer with a time value of 1 (1/ 
1024) of a second. OldTime will return a value ofO since no timer is 
started. The timer will fire 16ms or 64ms later and signal TestB with a 
SIG_ TMO. When TestB handles the signal it will restart the timer with 
a time value of 2 and OldTime will return a value of 16 or 64. Using a 
FRE as an example, a time value of 1-16 will mean 16, 17-32 will mean 
32, etc. Upon reaching 2048, the timer is cancelled. 

/* some existing application */ 

/* 

* Start up a test gate. 

*/ 
gid = g_req(G_NEW_ID, TestB, 0, G_SIG_INI); 
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/* 
* Mapping should go here. 

*/ 

TestB (env, BufList, sig) 

u int32 *env; 

BUF *BufList; 

SIG sig; 

u int32 time; 

u int32 OldTime; 

if (BufList) 

BUF *head; 

BUF *tail; 

BUF *NextBuf; 

/* 
* Find head and tail. Then free them buffers. 

*/ 
NextBuf = head = BufList; 

tail = NIL(BUF); 

while ( NextBuf ) 

tail 

NextBuf 

NextBuf; 

G_BUF_NEXT(tail); 

g_bfree(head, tail); 

else if (sig == SIG_TMO) 

if (*env == 2048) 

/* 
* Cancel timer. Technically the g_req() would 

cancel the timer. 

*/ 

• 

GAME Reference Manual 10-7 • 



• • • • • • • • • • • • • • • • • • • • • • 
• Chapter 10 Timer and Time of Day Services 

• 

• 10-8 

OldTime = g_tmo(G_SELF_ID, G_CANCEL); 

g_req(G_SELF_ID, G_REQ_KILL, 0, 0); 

else 

/* 
* Adjust timer. 

*/ 
time = *env++; 

OldTime = g_tmo(G_SELF_ID, time); 

else if (sig == SIG_INI) 

u int32 *NewEnv; 

NewEnv = (u_int32 *)g_malloc(sizeof(u_int32)); 

*NewEnv = O; 

g_req(G_SELF_ID, TestB, NewEnv, O); 

/* 
* Start the timer. 

*/ 
time = 1; 

OldTime g tmo(G SELF ID, time); - - -

else 

/* 

* Other Signals would be received here. 

*/ 
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g_delay() Kernel System Call 

Applications can execute some code and then sleep before executing 
some more code by calling the g_delay() kernel system call. 

Call: 

void g_delay (u_int32time) 

Values: 

"time" is the timeout period [1/1024 seconds]. 

Considerations: 

The actual time used for timer expiration is not necessarily what was 
entered and usually is longer. The FRE, FRE-11, ASN, ACE25, ACE32, 
AFN, and ARE round this time up to multiples of 16 ms. The AN and 
the ARN round this time up to multiples of 64ms. 

Because timer interrupts are serviced in between gates, some drifting can 
occur when gates run longer than the platform's RTC interrupt granularity. 

The macros G TMO SECONDS and G TMO DEF AULT can be used. - - -
They are defined in include/kemel.h. 

Example 1: 

Using g_delay() to sleep for 1 second. 

/* 
* some existing application 

*/ 

g_delay(G_TMO_SECONDS(l)); 

• 
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Example2: 

Using g_delay() to wait for a resource and implement a form oflocking. 

/* 
* some existing application 

*/ 
while(env->DataBaseFlag) 

g_delay(l6); 

/* 
* Lock data base. 

*/ 
env->DataBaseFlag = TRUE; 

/* 

* Modify data base. 

*/ 

/* 
* Unlock data base. 

*/ 
env->DataBaseFlag = FALSE; 

A dual processor like an ARE could have problems with the above 
if both processors can run the same code. 
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Using g_idle() and g_timer_get() For Very Short I 
Accurate Delays 

Sometimes applications need to sleep for time periods much shorter than 
GAME timer granularities, or need a timer much more accurate than 
GAME can provide. A combination of g_timer_get() and g_idle() can 
accomplish this. (The g_timer_get call is described in detail later in this 
chapter.) 

An example of this is in the IPX protocol where the inter-packet delay of 
RIP and SAP packets should be set to 55 ms. g_delay()would return 6ms. 

void ipx_delay (u_int32 delay) /* time to delay in ms *I 
{ 

TBLOCK timel,time2,time3; 

if (delay < 2000 && delay >= 1) 

{ 
g_timer_get (&timel); 

while (1) 

g_idle (G_IDLE_POLL) ; 

g_timer_get (&time2); 

dsub (&time2, &timel, &time3); 

if ( (((time3.sec & OxOOOOOOff) * 1000) + 
(time3.frac I 4294968)) 

} 
} 

>= delay) 

break; 

• 
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Grain Tables and tmo_exp() 

GAME manages each gate's periodic timer by storing the gate's control 
block pointer in a time grain table. There are one or more time grain 
tables (always a power of two- 1,2,4,8,16, ... )with each time grain table 
containing a maximum of "TMO _GRAIN_ SIZE - I" (currently 15) 
entries. 

Whenever a gate calls g_tmo() to start a tinier: 

I. The timeout value is rounded up to to be a multiple of the 
hardware periodic timer's expiration time (16ms or 64ms (AN 
and ARN)). 

2. a repetition count is calculated based upon the timeout value 
and the number of time grain tables. 

3. an entry is added to one of the time grain tables containing the 
gate's control block pointer. Fields within the gate's control 
block pointer are filled in to depict the timeout value and the 
repetition count. 

Entries within a grain table are added one after the other with no holes. 
If an entry is deleted then the grain table is reordered. If a grain table fills 
then the next grain table is used. If all grain tables are filled then the 
number of grain tables is doubled and the entries are sorted into the tables 
based upon the modulus of the number of tables and repetition count of 
the entry. 

Every RTC (Real Time Clock) interrupt (16ms or 64ms) the function 
tmo _exp() is executed and one time grain is fully inspected. The repetion 
count for each entry is decremented by the number of time grain tables. 
If the repetion count is less than or equal to zero then the gate is scheduled 
for a SIG_TMO signal, unless it has not as of yet serviced a previous 
SIG_TMO signal. tmo_exp() restarts the timer for expired entries by 
re-adding an entry to a time grain table. 
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GAME is architected so that many timers can be handled quickly. The 
accuracy of the timers is not that precise when small values are used. 
Since most timers are in increments of seconds, a timer expiring a fraction 
of a second later usually does not make much of a difference. 

NOTE 1. The actual time used for timer expiration is not 
necessarily what was entered and usually is longer. The FRE, 
FRE-11, ASN, ACE25, ACE32, AFN, and ARE round this time up 
to multiples of 16 The AN and the ARN round this time up to 
multiples of 64ms. 

NOTE 2. Because timer interrupts are serviced in between gates, 
some drifting can occur when gates run longer than the platform's 
RTC interrupt granularity. A change has been made to tmo _exp() 
to detect this by using g_timer_get() and to catch up by servicing 
more than one timer grain table. 

NOTE 3. Reliable messages g_rpc() and g_delay() save, steal, and 
restart a gate's timer (if it exists) which results in a timer expiration 
delay. 

NOTE 4. When the calculated grain table is full and the next free 
grain table is used, the timer expiration is delayed by one RTC 
interrupt time for each grain table it must skip over. 

NOTE 5. Usually the first expiration ofa timer will occur at 
timeout plus the remainder of the current RTC interrupt. 

NOTE 6. The timer code is flawed in that it is possible for a timer 
to be delayed (by RTC interrupt timer times the number of grain 
tables) for its first expiration, with all later expirations occuring 
when expected. 

NOTE 7. The timer code is flawed in that it is possible for a timer 
to expire too soon (not greater than R TC interrupt timer times the 
number of grain tables) for its first expiration, with all later 
expirations occuring when expected. This happens mostly when 
timer grains are full. 

• 
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Time Overview 

Applications sometimes need to be able to retrieve the system's notion of 
time, such as calendar and wall clock time. The kernel system call 
g_ tget() is used to get system time. A library function time2wclk() is 
used to convert the returned system time into wall clock time. 

A few chosen applications will need to be able to set the system time. 
The kernel system call g_tset() is used to set system time. A library 
function wclkl2time() is used to convert from wall clock time to system 
time. 

A problem can occur if an application uses g_tget() to try to implement 
periodic processing. If the user sets the system time backwards, the more 
recent time returned by g_ tget() may be less than a previous time. A kernel 
system call g_ timer _get() can be used to ensure than time does not go 
backwards. g_timer_get() only keeps track of time starting from slot 
restart and does not include calendar time. 

The include file include/wclock.h contains definitions of the structures 
used by the time functions. 

• 10-14 GAME Reference Manual 



• • • • • • • • • • • • 
Chapter 10 

• • • • • • • • • 
Timer and Time of Day Services 

/****************************************************/ 

/ * WALL CLOCK/ CALENDAR BLOCK 

I 
*/ 

*********************************************************/ 
typedef struct WCLOCK 

u int8 year; 

u intB month; -
u intB date; 

u - intB wday; 

u int8 hour; 

u intB minute; 

u int8 second; -
u intB pad; 

u intl6 msec; 

u intl6 usec; 

u int32 t zone; -

WCLOCK; 

I 

/* all are binary numbers 

/* 0 - 99 

/* 1 - 12 

/* 1 - 31 

/* 1 - 7 (1 is Sunday) 

/* 0 - 23 

/* 0 - 59 

/* 0 - 59 

/* 0 - 59 

/* 0 - 999 

/* 0 - 999 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* 0 - 86400 local time zone *I 
/* in seconds from date change line *I 
/* (ex. GMT= 43200, EST= 61200) */ 

*********************************************************/ 

/* ABSOLUTE TIME BLOCK 

I 
*/ 

*********************************************************/ 

typedef struct TBLOCK 

u int32 sec; 

u_int32 frac; 
bit 31 is 1/2 sec */ 

} TBLOCK; 

I 

/* g_tget () - seconds since 

* midnight Jan 1, 1900 

* g_timer_get () - seconds since 

* restart 

*/ 
/* fraction of sec: 
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*********************************************************/ 
/* LOCAL TIME BLOCK 

I 
*/ 

*********************************************************/ 

typedef struct LOC_TIME 

{ 
TBLOCK time; /* absolute time *I 

u int32 zone; /* time zone offset 
[seconds] */ 

u_int32 flags; /* flags */ 
} LOC_TIME; 

Getting System Time 

Applications get system time by calling the g_tget() kernel system call. 
Applications can convert system time to wall clock time by calling the 
time2wclk() library function: 

g_tget() Kernel System Call 

Call: 

void g_tget (LOC_TIME *tb) 

Values: 

"th" is a pointer to the location where GAME can write the current system 
time. 
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Example: 

Using g_tget(). 

LOC_TIME TimeStamp; 

g_tget(&Timestamp); 

/* 
* Timestamp.time.sec 

Jan 1, 1900. 

* Timestamp.time.frac 

*/ 

time2wclk Library Function 

Call: 

seconds since midnight 

fraction of seconds. 

WCLOCK *time2wclk (LOC_TIME *tb, WCLOCK *wb) 

Values: 

"tb" is apointer to system time to convert. 

"wb" is a pointer to the location where GAME can write the wall clock 
time. 

Return Value: 

The return value equals the "wb" parameter passed in. 

• 
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Example: 

Using g_tget() and time2wclk(). 

{ 
LOC_TIME TimeStamp; 

WCLOCK WallClockTime; 

g_tget(&TimeStamp); 

time2wclk(&TimeStamp, &WallClockTime); 

/* 
* WallClockTime.year 

* WallClockTime.month 

* etc. 

*/ 

Setting System Time 

Applications set system time by calling the g_tget() kernel system call. 
Applications can convert wall clock time to system time by calling the 
wclk2time() library function: 

g_tset() Kernel System Call. 

Call: 

void g_tset (LOC_TIME *tb) 

Values: 

"th" is a pointer to the structure containing the desired system time. 

....... Only special applications, like the TI date command, should 
'# use this function to set system time. All slots calendar times 

and calendar chips are updated when using this function. 
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Example: 

Using g_tset(). 

LOC_TIME TimeStamp; 

g_tset(&Timestamp); 

wclk2time Function Call 

Call:. 

LOC TIME *wclk2time (LOC_TIME *tb, WCLOCK *wb) 

Values: 

"tb" is a pointer to the location where GAME can write the current system 
time. 

"wb" is a pointer to the wall clock time to convert. 

Example: 

Using g_tset() and wclk2time() 

LOC_TIME TimeStamp; 

WCLOCK WallClockTime; 

wclk2time(&TimeStamp, &WallClockTime); 

g_tset(&TimeStamp); 

• 
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Retrieve Time Since Slot Restart 

Applications can retrieve time since slot restart by calling the 
g_timer_get() kernel system call. 

Call: 

void g_timer_get (TBLOCK *tb) 

Values: 

"tb" is a pointer to the location where GAME can write the time. 

Example: 

TBLOCK TimeBlock; 

g_timer_get(&TimeBlock); 

/* 
* TimeBlock.sec - seconds since slot restart. 

* TimeBlock.frac - fractions of seconds 

*/ 

Summary of How Timers and Time Are Implemented 

• 10-20 

GAME runs on various hardware platforms such as the ACE, ACE32, 
AFN, FRE, FRE-11, ASN, ARN, AN, and ARE. These hardware 
platforms are the name given the the processing engine that populates a 
slot. Each processing engine contains a main microprocessor that 
executes most of GAME's code and other support hardware such as timer 
chips. The granularity, accuracy, and reliability of the timer services 
provided by GAME wi 11 all be dependent on the hardware that GAME is 
running on. 
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The FRE, FRE-11, and ASN are similar and will be referred to as the FRE. 

The ACE, ACE32, and AFN are similar and will be referred to as the ACE. 

The ARN is similar to the AN and will be covered under the AN. 

The ARE is similar to the FRE (somewhat). 

The Watchdog Timers are covered in a separate section. 

Periodic Timer 

The FRE contains a fixed real time clock (RTC) timer that increments 
256 times per second and updates the single byte STAMP register (see 
tib/tib_pri.h). Every 16 ms (64 times per second), a level 3 interrupt will 
be asserted, iflevel 3 interrupts are enabled, or as soon as level 3 interrupts 
are enabled. The scheduler enables level 3 interrupts by calling g_poll() 
in between gates and by calling g_ wait() when the scheduler is idle. When 
this RTC level 3 interrupt is asserted, g_isr_3() will execute. When 
g_isr _3() executes, it looks at certain hardware registers located on the 
FRE to determine which hardware device requested the interrupt. If it 
determines that the RTC was the reason for asserting the interrupt, a bit 
is cleared telling the FRE that we have handled the RTC. The function 
tmo _exp() is executed. 

The ACE contains six programmable timers. One is set to expire after 
16 ms ( 64 times per second). When this interval timer expires, the 
TMRB I pending bit is set in the ACE Status Register (ASR; see ace/ 
ace _pri.h). The expiration of TMRB I will be checked by the scheduler 
in between gates by executing g_poll() and when the scheduler is idle by 
executing g_ wait(). If TRMB I is set, clock_ isr() is executed. Within 
clock _isr(), the timer chip is reprogrammed to expire after 16 ms and the 
function tmo _exp() is executed. 

• 
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The MC68360 (QUI CC) chip used on an AN contains four programmable 
timers. Timer number 2 is programmed to expire every 64 ms ( 16 times 
per second). When timer number 2 expires, a bit is set in the CPM 
Interrupt Pending Register (CIPR). The CIPR is checked by the scheduler 
in between gates by executing g_poll() and when the scheduler is idle by 
executing g_ wait(). If timer 2 did expire, the function tmo _exp() is 
executed. 

Time - g_timer_get() 

An application calls the function g_ timer _get() to retrieve the amount of 
time since the slot restarted. g_ timer _get() uses information stored in 
GAME's environment by g_poll(), g_ wait(), and ISRs, to derive seconds. 
g_timer_get() calls g_timer_read() to read a hardware timer to retrieve 
fractions of seconds. 

On the FRE, seconds are incremented in g_isr _ 4() when servicing the 
watchdog interrupt. To derive fractions of seconds, the RTC timer is read. 
The granularity of the RTC timer is 4ms. 

On the ACE, seconds are incremented by either g_poll() or g_:_ wait() 
calling clock_isr(). clock_isr() checks the ASR for the TMRA2 expiring. 
TMRA2 is set each second by the free running clock. To derive fractions 
of seconds, the free running clock is read to determine how much time 
has ,elapsed since the last second. The granularity of the free running 
clock is 1/64000 of a second. 

On the AN, seconds are incremented in rtc_isr_ 4() when servicing the 
watchdog interrupt. Timer number 1 increments 65104 times per second 
and asserts a level 4 interrupt each second. Fractions of seconds are 
derived by reading timer 1. 
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Time - Calendar Chip 

All platforms, with the exceptions of some older ANs, contain a battery 
backed up calendar chip that also contains 2 KB of non-volatile storage. 
The AFN, AN, ASN, and ARN contain this chip on the mother board. 
The ACE and ACE32 that run within the VME chassis contain this chip 
on the SYSCON board. Each FRE and ARE contain one of these chips. 

At some point of time, the TI date command will be used to reset calendar 
time. When this happens, the calendar chip will be updated. Year, month, 
date, week day, hour, minute, and second can be set and retrieved from 
this chip. The chip then independently keeps track of time even if AC 
power is not applied to the system. 

NOTE 1. This chip does not keep fractions of seconds or timezone 
infonnation. 

NOTE 2. The passwords for Tl's Manager and User are stored in 
this chip's non-volatile memory. 

NOTE 3. The reason the original AN's did not contain a calendar 
chip was due to cost cutting procedures. However, this backfired in 
many ways because it caused heartaches for customers and 
software engineers. 

Time - g_tget(. 

Reading the calendar chip is not cheap. Because of this, the calendar chip 
is usually only read when a slot restarts and the retrieved calendar time 
is stored. Whenever g_ tget() is called, it calls g_ timer _get() and adds the 
output from g_timer_get() to the stored calendar time. 

• 
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Internal Wallclock Service 

Keeping accurate wallclock/calendar time on the various platforms 
running GAME is not trivial. One problem that occurs is that the FRE 
and ARE platforms contain one calendar chip per slot and time must be 
synchronized between slots. A second problem occurs in that the 
calculated calendar time kept by a slot can drift. 

To work around the first problem, the LOADER gate creates a master 
timekeeper soloist gate (GID _MASTERTIMEKEEPER; see include/ 
known_id.h). This gate sends its time to the other slots when they start, 
and the receiving slots sets their time to the time that was sent by the 
master slot. The soloist also sends the time to the other slots every 12 
hours. 

To work around for the second problem, the LOADER gate creates a 
timekeeper gate per slot (GID _TIMEKEEPER). This gate receives 
messages from the GID _ MASTERTIMERKEEPER gate (FRE and ARE 
only) and, through a varying periodic timer, it will adjust the wallclock 
time on its slot if needed. The periodic timer initializes to 1 minute, and 
then is set to one hour. If, at timer expiration, no adjustment is needed, 
then the timeout doubles to maximum of24 hours. If time adjustment is 
needed, the timeout halfs to a minimum of 1 hour. 

Backbone BOFL's are highly tied into tmo_exp(). They are not covered 
here. 
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Miscellaneous Function Calls 

This chapter covers function calls that were not covered throughly in 
other sections. 

• 
• 

g_appbase() - Returns Base Load Address 

The linker that builds dynamically loadable images (files labelled .exe) 
does not preserve relocation information. When an image is loaded into 
memory at run-time by the Dynamic Loader, any pointer or memory 
reference contained within the image is not adjusted to reflect the actual 
base address of that image. The result is that after load-time, all pointers 
that are not relative to the PC location will be relative to location 0, just 
as they appear in the image before load-time. 

An example of this is an array of compile-time initialized literals: 

char *strings [3] = { "one", "two", "three" } ; 

In this case, the array elements will be pointers to the literals which are 
stored in the literal section of the image, and each pointer will be relative 
to 0. Another typical example of this can be seen with a Finite State 
Machine implemented using arrays of function pointers to represent 
action routines. 

To compensate for this, the pointers must be adjusted by the application 
at run-time. g_ appbase() returns the location in memory where the image 
is loaded (its base address). The returned address must be added to each 
pointer before it is used. 

Call: 

u int32 *g_appbase (intB *app_name) 
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Values: 

"app_name" is a pointer to a string with the application name(as defined 
in loader/ld _exec_ names.c) or NIL to signify the current application. 

Considerations: 

This function is used to find the base address for a code segment(* .exe ). 
The return value is this address. 

This function call is not very efficient. It needs to walk a list of all loaded 
applications, performing a string compare at each entry. For that reason, 
the caller should perform this call once at initialization and store the 
results in their local environment. 

Example: 

This example uses the load address to offset an entry in an FSM table. 

/* fetch the base address of where we're loaded */ 
u int32 *appbase = g_appbase("isdn.exe"); 

/* adjust the pointer table by our load address */ 
( (pfi) ( (int) (table->EventFunc) + (int) appbase) ) (); 

g_bcfg() - Environment Configuration 

• 11-2 

Call: 

#include "kernel.h" 

void g_bcfg (G_BCFG_BLK *bcfg) 

Values: 

"bcf g" is a structure defined in include/kernel.h. It contains a collection 
of system information maintained by the GAME kernel. 
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Considerations: 

Although originally billed as a call to allow applications to influence this 
information, this call only allows examination of the parameters. The 
most common use is by device drivers, which check to see if the local 
buffer size is big enough (if not, they crash or log a message and exit). 

g_buf2mem(), g_mem2buf() - Copy a Buffer's Contents to 
Memory I Back To a Buffer 

These functions are only used in the application-level version of Priority 
Queueing. They help to implement congestion control for DLS, 
providing a place to temporarily hold data other than in a buffer. Their 
use is discouraged unless needed for a similar purpose (i.e., don't use this 
casually). 

Copy a Buffer's Contents to Memory 

Call: 

#include "kernel.h" 

u int32 g_buf2mem (BUF *buf, u int32 *mem, u_int32 mem_len) 

Values: 

"buf' is the pointer to buffer to copy to memory. 

"mem" is the pointer to memory where buffer is to be copied. "mem" 
must be word aligned. 

"mem_Ien" is the number of bytes available after "mem" to save the 
buffer. The minimum this may be is: 

G_BUF _END(but)- G_BUF _START(but) + G_BUF2MEM_PAD 

• 
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Return Value: 

The return value is the number of bytes actually used to save the buffer. 

Considerations: 

Applications must not modify the saved buffer image. The saved image 
includes the BUF header and all of the data between the start and end 
offsets. 

Copy Contents of Memory to a Buffer 

Call: 

#include "kernel.h" 

void g_mem2buf (BUF *buf, u int32 *mem) 

Values: 

"buf'' is a pointer to the buffer that will receive the data. 

"mem" is a pointer to memory set up by a previous g_buf2mem() call. 

Considerations: 

This call restores the saved buffer image to a buffer. The calling gate will 
be terminated if the save buffer has been corrupted. 

g_env(), g_env _gid - Returns Environment of a Gate 

g_env() Call 

Call: 

u int32 g_env () 

• 11-4 GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Chapter 11 Miscellaneous Function Calls • 

Considerations: 

This function returns the current environment for the running gate. The 
return value needs to be cast to whatever the environment represents. 

g_env _gid Call 

Call: 

u int32 g_env_gid {GID gid) 

Values: 

"gid" is th Gate ID of the gate whose environment is desired. 

Considerations: 

This utility returns the current value of the environment of a gate on the 
local slot, given a GID. Using another gate's environment is generally a 
dangerous thing to do and extra care must be taken. See the Memory 
section for a discussion of memory sharing between gates. 

g_i_die(), g_u_die() - Commit Suicide I Kill Another Gate 

These functions are morbidly referred to as the suicide and murder 
functions. g_ u _die() was created during a debugging session when 
someone wanted to set a breakpoint when any gate was killed. g_i_ die() 
was created as a shorthand. All that each routine does is call g_req() with 
the proper parameters. 

g_i_die Call 

Call: 

void g_i_die () 

• 
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Considerations: 

This terminates the calling gate. 

g_u-die Call 

Call: 

void g_u_die (GID gid, void {*act) {void*, BUF * u_int32), 

void *env, SIG sig) 

Considerations: 

The parameters match exactly what is passed to g_req(). However, the 
only parameter actually needed (or used) is "gid". 

g_load_archive() - Archive Loading 

• 11-6 

Call: 

u int32 *g_load_archive {char *archive_name) 

Values: 

"archive_name" is the name of the archive in the boot image (e.g., 
"atmc.exe", "dict.str") 

Return Value: 

The return value is the address where archive has been loaded. This is 
an memory segment which is owned by the calling gate. Zero is returned 
if there were any errors. 
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Considerations: 

This call allows an application to load an archive segment from the boot 
image. The archive segment is placed into memory which is owned by 
the calling gate and thus may be freed when the application is finished 
with it (g_ mfree ). The call handles retrieval of local or remote archives 
and will also take care of image decompression. 

Only the body of the archive is returned by g_load_archive(). This 
implies that if the caller needs to know additional information about the 
data (i.e. its size) there needs to be an application specific header within 
the body. 

Since the memory is owned by the caller and may be freed at any time, 
it is up to the caller to perform any caching which may be required for 
performance reasons. Every call to g_load _archive() will result in the 
boot media being read. 

It is recommended that a new extension be created for different archive 
types. This will serve to keep it clear to us and to customers what type of 
data is contained in each segment. Perhaps ".MIC" for microcode? 

The archive which is loaded by g_load_archive() should be created by 
the ldgen_compress utility. This utility has the following command line 
arguments: 

%ldgen_compress input-file output-file 

This utility takes the input-file, compresses it and generates an archive 
header for it. No special format is required of the input-file. The filename 
stamped in the archive header is the same as output-file. After a call to 
g_load_archive(), the caller will have an exact duplicate of input-file. 

• 
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g_memop() - Special Memory Operation 

• 11-8 

The g_ memop() system call is used to perform a memory operation that 
may fail (e.g., bus error). The role of this syscall is to ensure that if the 
operation does fail, it does so in a silent manner so that the caller doesn't 
get killed due to a bus error. One use of is to probe a memory location 
to find out whether or not a piece of hardware was installed. 

Currently, this silent failure is only implemented on the FRE and ARE. 
The call can still be made on other platforms, but no protection is 
provided. 

Call: 

#include "kernel.h" 

u_int32 g_memop (u_int32 type, u_int32 size, void *addr, void 
*data) 

Values: 

"type" is the type of operation. Select one of the following: 

G _ MEMOP _RD: perform a read 

• G_MEMOP_WR: perform a write 

"size" size of the data to read/write. Select one of the following: 

G MEMOP 8: 8 bits - -
G MEMOP 16: 16 bits - -
G MEMOP 32: 32 bits - -

"addr" is the address to read or write. 

Return Value: 

The return value is TRUE if the operation failed and FALSE if it 
succeeded. 
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Considerations: 

The size of the data parameter must match the size of the operation. 
Failure to do so could result in some unexpected return values (i.e., if 
data is a u_int32 and the op is a byte, that byte will get loaded into the 
_top_ of the u_int32). 

g_myid() - Returns Caller Gate ID 

Call: 

GID g_myid () 

Considerations: 

This function returns the gate ID of the running gate. If this is called in 
a mapping context, the GID of the base gate is returned, not the GID of 
the temporary mapping gate. 

g_platform() - Gets Platform Type 

Call: 

#include "platform.h" 

u_int32 g_platform(l 

• 
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Return Values: 

This routine returns the platform type onwhich GAME is running. The 
values are defined in include/platform.h. The values as of this writing are: 

PLATFORM UNKNOWN No clue ... 

PLATFORM SIM Simulator 

PLATFORM FRE FRE-I 

PLATFORM FRE2 FRE-II 

PLATFORM ACE ACE (VME hardware) 

PLATFORM ACE32 68030 ACE 

PLATFORM FNS AFN (68030 ACE, single-board) 

PLATFORM IN AFN special (single-board plugs into many 
vendor ' s hubs) 

PLATFORM PIR 

PLATFORM CUDA 

PLATFORM BF 

PLATFORM BF 5000 

PLATFORM NEPT 

AN (Piranha, QUICC-based) 

ASN (Barracuda) 

ARE (Bluefish) 

5000 (Blackfish) 

ARN (Neptune) [next-gen AN, 040-based) 

g_reset() - Restarts Slot(s) 

• 11-10 

Call: 

void g_reset (GH gh) 

Values: 

"gh" is a bit-map of slots to reset, in gate-handle format. 
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Considerations: 

This function call will cause each of the indicated slots to reset (i.e., restart 
GAME). The only application that has a legitimate reason to call this is 
a management application (e.g., TI, BCC). 

g_slot{) - Returns Caller Slot Number 

Call: 

u int32 g slot (} 

Considerations: 

This function returns the local slot number. 

g_src{) - Retrieves Source of Reliable Message 

Call: 

GH g_src (BUF *buf} 

Values: 

"buf' is a pointer to the buffer to examine. 

Return Values: 

When "buf' points to a buffer that was received via a reliable transport 
primitive, this function returns the gate handle of the sending gate 
instance. 

If "buf' points to a buffer that has not yet been delivered or was received 
via a non-reliable transport primitive, FINGER (0) is returned. 

• 
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g_stk() - Saves Current Stack in System Log 
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Call: 

#include "kernel.h" 

void g_stk (u_int32 level, u int32 opt, TBLOCK *time) 

Values: 

"level" is the maximum number of stack frames logged, but fewer may 
be saved if stack is not deep enough. 

"opt" is the dumping option, as follows: 

• G_STK_DBG: Print saved events on the debug port. 

• G _ STK _GAME_ STK: dumps GAME stack that is always 
linked below gate stack (by default, only gate stack is dumped) 

"time" is optional. If not NIL, the TBLOCK referenced by time will be 
used to time-stamp all stack dump entries (by default, current time is 
used). 

Considerations: 

This utility generates several entries in the system log based on the current 
stack. All stack un-roll events are "TRACE" level and carry the same 
time stamp for easy spotting. The same stack dump utility is also used 
by the CRASH macro and other fatal exception handlers. 
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get_unqid() - Get a Unique ID 

Call: 

u int32 get_unqid (u_int32 bits) 

Values: 

"bits" is the size in bits ofunique ID to return. Must be between 21 and 24. 

Return Value: 

This call returns an ID which is unique across all Bay systems. The 
number is usually related to a serial number. If a unique number cannot 
be obtained, zero is returned. 

• 
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Fault Management 

Types of Faults and System Reactions 

Hardware Reset 

The following faults cause a slot to do a hardware reset: 

Hardware watchdog 

NMI button (pressed for greater than one second) 

Hardware reset implies that the slot goes through the cold start process 
( diags, boot, GAME). The diagnostics run a full set of tests upon cold 
start, one of which is a DRAM memory test. This test wipes out the 
system log, so when you come back from this type of crash, there is 
nothing left in the log, making it particularly tough to debug. 

Debug Hint: 

If you hit the NMI button for less than one second during diagnostics, it 
interrupts the current test and gets you to the diagnostics prompt (you 
obviously have to have something plugged into the diag port to see this). 
If you hit it_before_ the DRAM memory test is run and then type "boot", 
the log will remain intact. It can then be viewed when GAME comes up. 

~ Note that a short (less than 1 second) push of the NMI button 
T while GAME is running will not cause a hardware reset. As 

indicated above, this gets you to the diagnostics prompt 

GAME Reboot 

The following faults cause GAME to "restart" or "reboot": 

software watchdog 

memory parity error 

tag violation 

• 
• 
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Here, "restart" or "reboot" means that the bootstrap is executed, which 
re-loads GAME (because it may have been code space that was 
corrupted). Diagnostics are not run, so the log is preserved in this case. 

Gate Termination or GAME Reboot 

The action taken for the following errors depends on whether a gate is 
executing or GAME is running (e.g., in the scheduler). In the former 
case, only the offending gate is terminated. Otherwise, GAME restarts. 

processor error (illegal instruction, divide by 0 ... ) 

• illegal memory reference 

GAME detected error (e.g., bad parameters to a function call) 

• VBM error (PPC only) 

Page fault (PPC only) 

"Problem" Gates 

• 12-2 

If an application has a persistent bug that causes its gate or gates to 
repeatedly crash, GAME detects this and takes actions to protect the other 
applications on the slot. 

GAME keeps track of gate crashes in three timescales. If a gate dies too 
many times within a time period, GAME will not restart the gate. It 
instead terminates the parent (If you can't control your children, GAME 
comes after you.) The timescales and the allowable number of crashes 
are: 

short term 
medium term 
long term 
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time 

1 sec 
1 min 
30 min 

crashes allowed 

1 

5 
10 
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GAME also keeps track of crashes on a subsystem basis. Each time the 

parent gate of a subsystem dies (the gate started by the loader), or when 
game has to kill a gate's parent for violating one of the crash limits 

discussed above, GAME records a subsystem failure. GAME compares 
the number of these failures against limits for three timescales. Whenever 

the number of failures exceed the limit, the subsystem is terminated and 
not restarted. The timescales and the allowable number of failures are: 

short term 
medium term 
long term 

time 

2 sec 
4 min 
1 hour 

There are a couple of special cases: 

failures allowed 

2 
5 
10 

• If the MIB subsystem dies, the entire box immediately restarts. 
The life of all other subsystems depend on a live and healthy 
MIB. 

If the DP service exceeds the number of failures allowed for a 
timescale, the entire box restarts. No packets can be forwarded 
without DP, so there is no value in keeping everything else alive. 

The hope here is that if a gate constantly crashes, killing its parent may 
remove the reason (e.g., corrupt data in the parent's environment) that is 

causing the crash. If that doesn't work, the subsystem is eventually shut 
down. 

Obviously, information is put into the log when any of this happens. 

• 
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System Event Log 

Event logging can be used for debugging and network management. Each 
slot that contains a processor (ACE, FRE, etc.) maintains its own fixed 
size event log that is located at a fixed location within volatile memory 
(DRAM). Applications only write to the physical log located on the slot 
the application is executing on. This log will survive system reboots, 
software restarts, and crashes unless the hardware is (re)initialized. The 
hardware is initialized during power up, hot swaps, diagnostics, hardware 
reset, and certain hardware specific failures (on a FRE, the ISR handing 
the Watchdog timer must clear the Watchdog pending bit before the next 
Watchdog timer interval or else the FRE hardware will reset). 

Events that are written into the log vary in size. Most events that contain 
strings have a defined code that is stored in the log entry instead of the 
string. This practice allows for more events to be written into the fixed 
size log. When the log is viewed, the code is replaced by a string from 
other entities such as string services or Site Manager. Strings still can be 
written directly into the log, but this practice limits the number of events 
that can be stored in the log. When the log is full and a new event needs 
to be added, the oldest entry or entries are removed and replaced with the 
most recent entry. 

It is NOT a good practice to log a message by using a sprintf 
to format a string and use a "generic" EDL event code. 
Unless you are adding a message that will be removed when 
a defined problem is fixed, modify the EDL file to add a new 
EDL event code. "generic" EDL event codes waste too much 
log space. 

• 
• 
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Log Entry Format 

+-------+--------+--------+--------+ 
I Size I Type I Entity I Event 4 bytes 

+----------------------------------+ 
8 bytes 

Time Stamp 

+----------------------------------+ 
Sequence Number I Slot I 4 bytes 

+----------------------------------+ 

x Data x O - 251 long words 

Size- Size of log entry in long words (4 - 255). 

Type - Log entry type. Will be one of the following values: 

• 13-2 

1 - DEBUG message 

• 2 - INFO message 

4 - WARNING message 

8 - FAULT message 

• 16 (OxlO) - TRACE message 

Entity- Who logged the event (see include/edl_types.h). 

• 0 -TI EDL 

• 1 - LB EDL 

2- IP EDL 

• 3- SNMP EDL 

• 
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• 12-0SPF_EDL 

• 
• 30- IPX EDL 

• 

Event- Log message number within entity (see edl/* .edl; Tl.edl, LB.edl, 
IP .edl, etc ). 

Time Stamp - Time that event was logged. 

First 4 bytes - number of seconds since January 1, 1900. 

• Second 4 bytes - fraction of seconds. (The number of bits used 
is hardware specific and left justified.) See Timer chapter. 

Sequence Number - Sequence number of event on Slot. 

Slot - Slot number event occured on. 

Quick Example of EDL 

Each numeric event code is defined using the "Event Definition 
Language" and a preprocessor tool. Entity specific log messages are 
created by adding the entity to "include/edl_ types.h" and a corresponding 
"<entity>.edl" file to the "edl" directory. For example, when NetBios 
over IP was added to the system 

#define NBIP_EDL 77 

was added to the file "include/edl_types.h" and the file "edl/NBIP.edl" 
was created. The contents of "NBIP.edl" is: 

• 
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/* @(#)WSCCS c/edl-NBIP.edl 1.1 6/27/94 */ 

• 13-4 

RECORD NBIP EDL 

NBIP CRASH FAULT MSG 
attempting restart." 

NBIP_BAD_PKT 
packet received" 

WARNING MSG 

NBIP BAD NAME WARNING MSG 
name" 

NBIP INIT 
initializing." 
NBIP IF UP 
%d. %d. %d. %d Up. II 

NBIP IF DOWN 
%d.%d.%d.%d down." 
NBIP TERM 
terminating." 

INFO MSG 

INFO MSG 

INFO MSG 

INFO MSG 

NBIP UNK PKT DEBUG MSG 
protocol received" 
NBIP CACHE INIT DEBUG MSG 
NetBIOS name cache" 
NBIP CACHE DOWN DEBUG MSG 
NetBIOS name cache" 
NBIP CACHE FULL 
cache is full" 

DEBUG MSG 

NBIP AGE NAME DEBUG MSG 
NetBIOS name cache" 
NBIP GENERIC DBG DEBUG MSG 

END REC NBIP EDL 
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"System error, service 

"invalid NetBIOS over IP 

"invalid NetBIOS over IP 

"Service 

"Interface 

"Interface 

"Service 

"unknown 

"initializing 

"killing 

"NetBIOS name 

"aging from 

"%s" 
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From ''NBIP.edl" and "edl_types.h", the preprocessor tool will create the 
file NBIP edl.h. The contents of "NBIP edl.h" is 

ifndef NBIP EDL H 

#define NBIP EDL H 

#include "edl_types.h" 

#define NBIP CRASH (u_int32) (FAULT_MSG I (NBIP_EDL << 
0) I ll -

#define NBIP BAD PKT (u_int32) (WARNING_MSG (NBIP_EDL « 
0i I 2) - -

#define NBIP BAD NAME (u_int32) (WARNING_MSG (NBIP_EDL « 
0) I 3l - -

#define NBIP !NIT 
I 4) -

#define NBIP IF UP 
I s) - -

#define NBIP IF DOWN 
I 6) - -

#define NBIP TERM 
I 7) -

#define NBIP UNK PKT 
0) I 0) 

#define NBIP CACHE !NIT 
8) I 9) 

(u_int32) (INFO_MSG (NBIP_EDL « 8) 

(u_int32) (INFO_MSG (NBIP_EDL << 8) 

(u_int32) (INFO_MSG (NBIP_EDL « 8) 

(u_int32) (INFO_MSG I (NBIP_EDL << 8) 

(u_int32) (DEBUG_MSG (NBIP_EDL « 

(u_int32) (DEBUG_MSG (NBIP_EDL << 

#define NBIP_CACHE_DOWN (u_int32) (DEBUG_MSG (NBIP_EDL << 
8) I 10) 

#define NBIP_CACHE_FULL (u_int32) (DEBUG_MSG (NBIP_EDL << 
8) I 11) 

#define NBIP AGE NAME (u_int32) (DEBUG_MSG (NBIP_EDL << -
8) I 12) 

• 
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#define NBIP GENERIC DBG 
« a> I 13> - -

(u_int32) (DEBUG_MSG I (NBIP_EDL 

#endif /* NBIP_EDL_H */ 

NOTE 1. The preprocessor tool only allows 255 TOTAL messages 
per entity, not 255 DEBUG messages, 255 WARNING messages 
etc. 

NOTE 2. All new messages MUST be added to the END of the 
".edl" file. So if you add a FAULT_ MSG: 

NBIP OHNO FAULT MSG "Oh NO" - -
you would add this after NBIP _GENERIC_ DBG, not 
NBIP CRASH. The reason for this is that newer versions of tools 
that format the log (like Site Manager) would get mixed up when 
reading a log from an older version ofrouter software. 

g_log() System Call 

Applications add entries to the log by calling g_log system call: 

Call: 

void g_log (u_int32 code, u_int32[] args) 

Values: 

"code" is the numeric event code. 

"args" is the variable length array of event arguments. 
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Example 1: 

In order to log the message "invalid NetBIOS over IP packet received", 
the following lines can be added to the appropriate function: 

#include "NBIP_edl.h" 

g_log(NBIP_BAD_PKT}; 

Phyically, 16 bytes would be consumed by this log entry. 

Ox04 04 4d 02 16 bytes (4 long words} WARNING 
NBIP code 2 

Oxb6 58 88 d4 12/09/96 13:11:48 

OxBO 00 00 00 .5 sec 

OxOO 00 12 34 Sequence Number 291 Slot 4 

Example 2: 

In order to log the message "this is boring", the following lines can be 
added to the appropriate function: 

#include "NBIP_edl.h" 

char my_msg[BO]; 

sprintf (my_msg, "this is boring"}; 

g_log(NBIP_GENERIC_DBG, my_msg}; 

• 
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Physically, 32 bytes would be consumed by this log entry. 

Ox08 01 4d Oc 32 bytes (8 long words) DEBUG NBIP code 12 

Oxb6 58 88 de 

OxOl 00 00 00 

OxOO 00 12 44 

Ox74 68 69 73 

Ox20 69 73 20 

Ox62 6f 72 69 

Ox6e 67 00 00 

12/09/96 13:11:56 

4 ms 

Sequence Number 292 Slot 4 

t h i s 

<Sp> i S <Sp> 

b o r i 

n g <null> <null> 

If a new EDL event code was added to display this message, only 4 
long words of log space would be consumed instead of 8. Even if 
the text string length was much larger, only 4 long words would be 
used instead of a much larger length. 

Example3: 

In order to log the message "Interface 1.0.0.1 down.", the following lines 
can be added to the appropriate function: 

#include "NBIP edl.h" 

u int32 ip_address; 

ip_address = OxOlOOOOOl; 

g_log(NBIP_IF_DOWN, 
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Physically 32 bytes would be consumed by this log entry. 

Ox08 02 4d 06 32 bytes (8 long words) INFO NBIP code 6 

Oxb6 58 88 e4 12/09/96 13:12:04 

Ox02 00 00 00 8 ms 

OxOO 00 12 54 Sequence Number 293 Slot 4 

OxOO 00 00 01 1 

OxOO 00 00 00 0 

OxOO 00 00 00 0 

OxOO 00 00 01 1 

System Event Logger Gate 

Applications directly add entries to the log through the kernel system call 
g_log(). The System Event Logger Gate is a well-known gate that runs 
on each slot. The primary purpose of this gate is to handle requests for 
retrieving events from the log so that the log can be viewed or stored. 

TI, TI_RUI, TFTP, FTP, and SNMP all communicate with the System 
Event Logger Gate on one or more slots by using g_rpc(). The gate 
requesting the log entries will receive replies from one or more slots and 
sort the log entries received via the timestamp field of each log entry. 
These gates may also perform filtering so that entries physically contained 
in the log do not have to be viewed or stored. Filtering can be done by 
date, time, entity, severity (event type), and code (event code). Slot 
filtering can also be done, but in this case the g_rpc()just sends the request 
to one slot. 

• 
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The complete log cannot usually fit in one g_reply(). Because of this, 
numerous g_ rpc()s will be sent from the requesting application to the 
System Event Logger Gate. The data portion of the g_rpc() contains a 
field that is a requested sequence number. The Event Logger Gate returns 
entries greater than the requested sequence number and not greater than 
the log's current sequence number. When the requesting gate sends the 
first g_ rpc(), the sequence number is usually set to zero so that every entry 
starting at the logs lowest sequence number will be returned. The 
g_reply() will contain a number oflog entries and the sequence number 
that the next g_ rpc() should use. The log can also be polled for only new 
log events by not always using zero as the initial sequence number. This 
procedure is used by SNMP for traps and optionally can be used by Tl's 
log command. 

How the Log Becomes Useless at Times 

• 13-10 

The 5 series OS had a small log that was resident only on slot 2. Each 
entry had a fixed size of about 80 bytes. The system had no fault 
management and debug Jog messages did not really exist. The log did 
not survive reboots, but it could be periodically saved to floppy. 

When GAME applications are designed, a number of DEBUG messages 
are typically added. These DEBUG messages are not documented and, 
by default, the TI log command filters out DEBUG messages so that they 
are not seen. Two problems arise from using this procedure. First, 
customers, and even engineers, can have a hard time figuring out what 
these debug messages mean (they are often very cryptic). Second, the 
DEBUG messages still take up log space, so they limit what can be 
physically placed in the Jog. 

Some applications are much too chatty (they Jog too much). When it 
became necessary for routers to scale to a large number of interfaces per 
slot (precipitated by the release of the MCTl link module) the log started 
to wrap frequently during certain critical periods (like boot time) and the 
useful information in the log was lost. 
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IPX and some other protocols allow the user to set a filter via the MIB to 
control which log messages are written into the log, but most applications 
do not have this functionality. 

Another form of log filtering was added to the system for debugging 
purposes. This log filtering filters out the g_log() kernel system call so 
that the message is not written physically into the log. This was 
accomplished by increasing the log header that manages the log to add a 
bitmask that allows each severity type for each entity to be filtered. 

• Some important GAME messages cannot be filtered. 

Example 1: 

Exclude 

$ log -x 

$ log -x -s2 

/* Exclude all log messages all slots 

/* Exclude all log messages on slot 2 

*/ 

*/ 

$ log -x -s2 -eLAPB /* Exclude all LAPB log message on slot 
2 *I 

$ log -x -s2 -eIP -fd 
slot 2 *I 

/* Exclude all IP DEBUG messages on 

• 
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Example 2: 

Include 

$ log -i 

$ log -i -s2 

/* Include all log messages all slots 

/* Include all log messages on slot 2 

*/ 

*/ 

$ log -i -s2 -eIPX /* Include all IPX log messages on slot 
2 *I 

$ log -i -s2 -eIP -ffw /* Include all IP FAULT and WARNING 
messages */ 

/* on slot 2 */ 

NOTE 1. When the log is saved, a template is printed to show how 
the filters are set. 

NOTE 2. The filters are active until they are modified or until the 
hardware is reset. 

NOTE 3. From the TI, "log -z" is used to display the current filter 
settings. 

Log Crash Points 

• 13-12 

Sometimes, debugging problems that occur on-site infrequently becomes 
a long and tedious affair. A crash dump tool was developed for saving a 
slots complete memory image at the time that an application panics or 
experiences a system fault. 

The Log Crash Points feature was added to the system so that the 
application would indirectly PANIC upon calling g_log() if the g_log 
event code matched a predefined filter. Previously, to get the same effect, 
you'd have to recompile the code with the PANIC added. 

GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Chapter 13 System Event Log • 

Example 1: 

Set Log Crash Points 

$ debug slcp 2 NBIP 8 /* Set a log crash point on slot 2 */ 

/* for NBIP code 8 *I 

/* NBIP UNK PKT * / 

Example2: 

Clear Log Crash Points 

$ debug clcp 2 NBIP 8 

/* for NBIP code 8 

/* NBIP UNK PKT 

Example3: 

List Log Crash Points 

$ debug llcp 2 

Ox00004d08 NBIP 

/* Clear a log crash point on slot 2 *I 

*/ 

*/ 

/* List log crash points on slot 2 */ 

Event : 8 

NOTE l. The debug system does not have to be loaded to use log 
crash points. 

NOTE 2. Log crash points are one-shots. They are cleared upon 
taking the PANIC. 

NOTE 3. 8 log crash points can be set per slot. 

NOTE 4. The interface requires you to have the EDL files handy. 

• 
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Choosing The Appropriate Event Severity 

• 13-14 

The following are the definitions of the severity levels that you can assign 
to a log event: 

• FAULT- Something is about to crash 

• WARNING - Recoverable error that should be flagged for the 
user, i.e. something potentially dangerous occurred, but the box 
stayed up e.g. link module not verified with diagnostic) 

• INFO - Normal operations that user should know about (e.g. 
Spanning Tree is up) 

• TRACE - Events that happened as a result of network activity 
(e.g. DECnet adjacency up) 

• DEBUG - Events that aid in debugging problems. 

FAULT Messages 

Every entity must have an event of the following type defined in its edl 
file: 

xx CRASH 
restart." 

FAULT MSG "System error, service attempting 

where "xx" is the entity string. 

When you decide to PANIC for any reason in your code, you must use 
the macro CRASH( xx CRASH). This causes the above FAULT event 
to go into the log immediately before the crash, making it evidently clear 
which application lost its cookies. 

You may choose to log other events before crashing, to aid in debugging. 
These must be DEBUG events. The only FAULT events in the log should 
be xx_ CRASH events, along with PANICs, bus errors, tag violations, etc. 
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WARNING Messages 

This is a judgment call. If you detect something bad that doesn't cause a 
FAULT, but that you feel is important enough to call the user's attention 
to it, log a WARNING event. Examples from the current revision include 
duplicate IP address detection, file system corruption, diagnostic failures, 
unreadable config file, ethemet carrier loss. 

INFO Messages 

INFO events should be kept consistent across all applications, meaning 
that DECnet coming up should look very similar to IPX coming up, 
CSMACD lines register the same events as FDDI lines, etc. This goes 
all the way down to exact wording of universal events. Obviously, not 
every entity in the box fits the mold exactly, but please make an effort to 
adhere the existing styles. 

Another goal is to keep the number of INFO events down to a manageable 
level. 

Guidelines for logging application INFO events: 

1. At the beginning of your init strip for your entity, log one of the 
following events: 

event name INFO "Protocol initializing." 

event name INFO "Service initializing." 

2. When your entity terminates for any reason (even if it is 
bouncing right back up again), log one of the following events: 

event name INFO "Protocol terminating." 

event name INFO "Service terminating." 

• 
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3. When your entity comes up on a given circuit, log the following 
event: 

name INFO "Interface<??> up on circuit <n>." 

where: ?? is your identifier for the interface on that circuit, (e.g. 
192.32.1.56 for IP, NIL (empty string) for LB) and "n" is a %d for circuit 
number. 

4. When your entity goes down on a given circuit, log the 
following event: 

name INFO "Interface<??> down on circuit <n>." 

where: ?? is your identifier for the interface on that circuit, (e.g. 
192.32.1.56 for IP, NIL (empty string) for LB) and n is a %d for circuit 
number. 

These should be the only INFO events you log. Again, not every 
application fits the mold exactly, but this is the model. 

DEBUG Messages 

There are no guidelines for DEBUG messages. Your DEBUG events are 
your own, but remember that the memory reserved for logging events is 
a limited resource. Don't go wild filling up the log with DEBUG events 
and cause it to wrap, thereby losing potentially important information. 

Also, remember that although DEBUG events are not documented, 
customers can see them. Maintain a professional tone and and provide 
enough coherent information so that a customer can use the information 
when talking with customer support (i.e., don't just dump a bunch of hex 
numbers!). 
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Logging Tips & Miscellaneous Info 

Physical log sizes: 

• FRE, FRE2, ASN are 64k 

ACE25, ACE32, AFN are 64k (Some older revs 32k) 

• ARE is 64k 

• ARN is 32k 

• AN > 2MB DRAM is 32k 

• AN 2MB DRAM is 16k 

At many sites the log wraps quickly during certain failures. Much of this 
wrapping is due to applications being too chatty. 

Some customers who have free memory have requested that the log size 
be increased to a size as large as 4 MB. 

A common mistake made is to save the log too quickly after a failure. 
Unless the System Event Logger gate is up, the log cannot be retrieved 
from that slot. 

The wallclock time kept between slots is not totally in sync. When 
following an event that crosses slots it is possible that for the log too show 
them out of order absolute time wise. 

• 
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System Loader 

Prior exposure to the Bay development environment, build 
process, and GAME concepts (gates, mappings, etc.) is 
helpful. 

GAME and its applications were originally linked as a single slab of code 
(like the simulator). This became unweildy as more and more software 
was developed for the router. Therefore, a mechanism was needed to 
separate applications from the kernel and each other. 

The following goals were established: 

• mechanism for conditionally (via configuration) loading/ 
spawning applications 

• provide fault isolation/recovery in conjunction with the kernel 

• extensible to easily support new kernel elements and 
applications 

• minimize DRAM memory consumption on all slots 

allow for tailored S/W image to reduce file system memory 
consumption, and only ship the specific software modules which 
customer ordered 

• hooks for releasing software modules independently, if we ever 
decide to do so 

Linking/Loading Options 

A couple of options were considered to meet the above goals: 

• 
• 
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Memory Reclamation (5-Series Method) 

Image is still linked as a slab, but unconfigured applications would have 
their code space reclaimed and placed in the dynamic allocation pool at 
run-time. This option was not chosen. 

Dynamic Loading 

Dynamic loading was chosen for the following reasons: 

• GAME's dynamic config capability disqualified memory 
reclaimation because an entity could be loaded at any time. 

• targeted a separate-linking approach where the kernel is linked 
statically (as a slab) and applications (drivers, routers, etc.) are 
linked as their own executables. 

• wanted code to be relocatable so it could run anywhere in 
memory. 

Oasys compiler supported position-independent code (PIC) 
where all offsets are calculated relative to the PC. 

• access to kernel system calls via jump tables. 

• linking loader option was considered, but deemed overkill for an 
embedded environment due to concerns about increased image 
size (because of reloc info), performance (depending on 
implementation), and boot time (re-linking); also, the modified 
image is not easily servable to neighbors because it's not virgin. 

• archive file format holds all the executables in a single file 
(bn.exe, ace.exe, etc.). 

Loader Operation 

The System Loader consists of a Kernel Loader and a Dynamic Loader. 
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Kernel Loader 

After the bootstrap acquires the kernel image, GAME initializes the 
hardware and itself, and then starts the Kernel Loader. 

The Kernel Loader is really just a gate spawner that works in two phases: 

Phase 1 - "core" kernel services are brought up first (GAME, file 
system, MIB/Emanate, loader gates, timekeeper). MIB must 
obtain config and initialize first before any other subsystems can 
start. 

Phase 2 - system services are then brought up ( DP, event logger, 
kernel MIBs, etc) and finally the dynamic loader is launched. 

One of the gates spawned in phase 2 is an image server gate, which serves 
the kernel and application images to remote boot clients 

Dynamic Loader 

The Dynamic loader is a mechanism for conditionally (via configuration) 
loading/spawning applications. 

The dynamic loader retrieves its configuration records (wfLinkModules 
wfDrivers, wfProtocols) from the MIB. 

Applications are loaded on a per-slot basis, as dictated by the 
configuration records 

The Dynamic loader monitors dynamic changes to the MIB records so it 
can load or unload applications on demand. 

Acquiring Application Executables 

For each application that's configured, the loader spawns a downloader 
gate which attempts to acquire the application image. 

• 
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The downloader gate first tries to load the image from a neighbor slot 
(straight from DRAM) by sending broadcast messages to the image server 
gate. 

To expedite the boot process, each image server can serve multiple 
down loader clients simultaneously. 

If no neighbor slot has the desired image, then loader attempts to get it 
from the active boot image on the file system (flash on BN). 

A file system control gate serializes access to FS to minimize disk 
thrashing. 

Executable files which come from the FS are compressed, so the loader 
must decompress them. Images obtained from a neighbor slot are already 
decompressed. 

Each image has a compressed & uncompressed checksum that the loader 
validates. 

The dynamic loader supports image revision checking to ensure that the 
kernel and application images are from the same release. It enforces this 
check on all 'rel', 'int', 'fix', etc. images; however, it allows anything with 
a 'dev' stamp to run with anything else so developers can make 
workspaces and debug in the lab. 

On platforms that support TAG protection, the loader sets the code section 
to read-only to prevent inadvertant corruption. The data section can't be 
protected because that would require it to be 'uncachable'. This would 
have a detrimental effect on performance. 

Jump Tables 

Kernel system calls and inter-module API calls go through a central 
kernel dispatch table (the GAME dispatch table). The magic structure 
'game_ hdr' is the place-holder for the dispatch table. 
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In the kernel, the 'game_hdr' structure is declared in the game subsystem 
and linked into the kernel image. Each application which links 
independently has its own copy of'game_hdr', which is declared in the 
subsystem's '<subsys> _hdr.c' file. 

The loader plugs the address ofGAME's dispatch table pointer into each 
application's 'game_hdr' structure at load-time. 

Each GAME system call is defined as a macro in the include/game.h. 

header file: 

#define g_req (GID) (OsP (G_REQ)) /* GIO gid, void 
(*act) (), 

u_int32 env, u_int32 ini */ 

where DsP is defined as: 

#define OsP( call_num) (* (game_hdr.dispatch [call_num] )) 

The "call_ num" is simply a constant from 1 to G _END_ SCALL, which 
represents each system call's location in the dispatch table. 

The following example compilation of a call to g_req shows four args 
being pushed, the jump table pointer being loaded, and eventually a JSR 
through the function pointer: 

ld_app.c: 168 

ld_app.c: 169 

/* Log message and start gate *I 

init_act, init_env, signal); 

787 9:00000120 2F04 

788 * 
789 9: 00000122 2F2E0014 

790 * 
791 9: 00000126 2F2E0010 

792 * 

793 9: 0000012A 2F02 

794 * 

gid = g_req(gid, 

MOVE.L 04,-(SP) 

STACK OFFSET 4 

MOVE.L 20 (A6) I - (SP) 

STACK OFFSET 8 

MOVE.L 16(A6),-(SP) 

STACK OFFSET 12 

MOVE.L 02, - (SP) 

STACK OFFSET 16 

• 
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795 9: 0000012C 2053 

796 9: 0000012E 20680010 

797 9:00000132 4E90 

MOVE.L (A3) ,AO 

MOVE.L 16 (AO) ,AO 

JSR (AO) 

The system services (mib, tbl, etc.) and dynamically loaded applications 
(ip, tcp, etc.) use a second level of indirection through the jump table to 
accomplish function calls; by convention, sys service calls are defined in 
<subsys>.h (mib.h, tbl.h, etc.) and app service calls are defined in 
<subsys> _dsp.h (ip_dsp.h, tcp_dsp.h, etc.). Notice the extra level of 
indirection required to load the function pointer. 

(3 MOVE.L instead of 2): 

#define mib_get_new_inst ( u_int32 ) (AppDsP (MIB_INDEX, 
MIB_GET_NEW_INST)} 

#define AppDsP(index, call_num) (* (((int 
( (**) ())) (game_hdr.dispatch [index))) + call_num)) 

ld get cfg. c: 79 
inst_idl;) { 

575 9:00000076 

576 

577 9:00000078 

578 

579 9:0000007C 

580 9:0000007E 

581 9:00000082 

582 9:00000086 

2FOC 

* 
486EFFBC 

* 
2053 

20680200 

20680014 

4E90 

and for a dynamically loadable 

#define ip_register 
IP _REGISTER)) 

if (mib_get_new_inst(obj_id, 

MOVE.L A4,- (SP) 

STACK OFFSET 4 

PEA -68 (A6) 

STACK OFFSET 8 

MOVE.L (A3) ,AO 

MOVE.L 512 (AO) ,AO 

MOVE. L 20 (AO) ,AO 

JSR (AO) 

application: 

(u_int32) (DynDsP(IP_INDEX, 

#define DynDsP(index, call_num) (* (((int 
((**) {))) (game_hdr.dispatch [index+G_END_SCALL))) + 
call_num)) 
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tcp_mgr.c: 756 
&twait_env->local_ip, 

ret = ip_register 
(u_int32)NULL, .. , . 

2483 9:000004E4 48780001 PEA $00000001 

2484 ... STACK OFFSET 4 0 

2485 9:000004E8 2F2A0028 MOVE.L 40(A2),-(SP) 

2486 ... STACK OFFSET 44 

2487 9:000004EC 42A7 CLR.L -(SP) 

2488 ... STACK OFFSET 4 8 

2489 9:000004EE 486A0020 PEA 32(A2) 

2490 ... STACK OFFSET 52 

2491 9:000004F2 207B017000000002 MOVE.L 
(game_hdr,PC) ,AO 

2492 9:000004FA 2068027C MOVE.L 636 (AO) ,AO 

2493 9:000004FE 20680020 MOVE.L 32 (AO) ,AO 

2494 9:00000502 4E90 JSR (AO) 

API Calls Between Loadable Modules 

An application may publish a public jump table (example, TCP). 

The loader plugs the app jump table pointer into the appropriate location 
in the second level dispatch table and "relocates" the pointer address. 

Clients which make calls through a dynamically loaded app'sjump table 
must synchronize with that application. Note that the code for the API 
function may be unloaded at any time by modifying the configuration. 

Synchronization is accomplished by mapping the parent gate of the 
service-providing application. 

Ensuring that the mapping routine DOES NOT PEND will leave your 
code free of race conditions. Note that if your gate is pended inside an 
API call, and the API owner and its code are unloaded, and your mapping 
routine pends, your gate may resume execution inside the API code space 
that has already been unloaded. 

A fairly simple, correct mapping routine: 

• 
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void tnc_tcp_mapper(gh, new_gh) 

GH *gh; 

GH new_gh; 

TNC_ENV *tnc_env; 

if ( GH_CEASED_LOCAL(*gh, new_gh) ) { 

tnc_env = (TNC_ENV *)g_env(); 

tnc_env->state = TNC_EXIT; 

g_log(TNC_TCP_DOWN); 

g i die(); 

*gh = new_gh; 

Application Requirements 

Application requirements are as follows: 

no global, writable data (.BSS) 

globals are not very "clean" 

5-series code was riddled with bugs that resulted from 
mis-managed global variables. Globals don't work across 
slots in a true distributed system. Globals don't work in the 
current implementation of the multislot GAME simulator. 

• BSS location/size info not carried in the image header 

all code and data "PIC-able" 

do use jump tables to publish APls 

Application Interfaces 

Applications may load an executable module from the boot image archive 
via the g_load_archive() system call. This is typically used by drivers 
which must download a coprocessor (cop) image. Note that the caller 
owns the memory, which it may free at its own discretion. 
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Applications may also load an 'overlay' version of an executable module. 
This enables multiple calling gates to share a single copy of loadable 
code, rather than each gate loading its own version. 

Fault Management 

Loader maintains a mapping on each gate it spawns so it can restart any 
gate that PANICs or crashes. 

Two system gates are special because they provide shared memory 
pointers to their clients: the MIB and DP. If they ever crash, the entire 
slot restarts because apps are not coded to deal with the loss of these 
services (stale pointers). 

Game/loader maintain a history of each subsystem's crashes, and ifthe 
subsystem appears to be 'broken' it will not be restarted. This keeps 
mis-configured or broken gates from hogging the CPU. 

Historical data is maintained for: 

• children of subsystem - if a child or multiple children are 
'broken', then the subsystem will be restarted. 

• subsystem itself - if subsystem is 'broken', then it will not be 
restarted. 'Broken' is defined by the number of crashes which 
occur in a given time period (see the Fault Management section) 

Shortcomings 

The Loader is restrictive (no .BSS, all code "PIC-able", etc.). At the time, 
most of our code was built in-house, and the requirements seemed 
reasonable. Unfortunately, we now port a lot more code 3rd party code, 
so the requirements have become an impediment. 

The simulator was not addressed. Image is tailored via stubs.c file 

• 
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BCCWork 

The above requirements were deemed too restrictive for an application 
which is data-driven and is largely composed of 3rd party code. 

, Added hooks to allow .BSS section. 

Relocated non-PICable data structures directly in .DATA section and 
marked the image as "not servable" to other slots. 

Ultimately, they want a more standard-OS approach (i.e. linking loader 
support). They're working on a true run-time linking loader. 

Process Issues 

• 14-10 

Builds 

~ These issues may go away or be modified, due to the conversion to 
T clearcase. 

The kernel must be re-linked in the global build directories (buildtib, 
buildace, etc.) whenever one of its modules has been re-compiled; a new 
archive file is automatically created when the kernel is linked. 

When a module within a dynamically loadable application is modified, 
the application must be re-linked in its own subsystem directory. 

After re-linking an application, a new archive file (bn.exe, asn.exe, 
ace.out, etc.) must be generated in the global build directory; this must 
be done manually when an application has been re-linked. 

For a list of kernel subsystems, see buildtib/Makefile, and look at the 
PROGLIBS list; applications can be found in the PROGEXES list. 
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*********************************************** 

** EXAMPLE 1 - rebuilding a kernel subsystem ** 
*********************************************** 
** Compile kernel module ** 
intruder->cd loader 

intruder->touch ld boot.c 

intruder->build tib -nr 

Mon Dec 30 11:15:18 EST 1996 

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib 

loader: Mon Dec 30 11:15:23 EST 1996 

• • • • • 
System Loader 

gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine 
-useDS -align4 -X89 -X325 -X380 -Z551 -Onounroll -I .. / 
include -I .. /edl/ tib -I .. /cdl/ tib -I .. /mdl inc 
-DTIMEKEEPER -DTIB_ONLY -o _tib/ld_boot.o ld_boot.c 

C-68000 1.8.7 Copyright (C) 
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199 
4 Green Hills Software, Inc. All rights reserved. 

lib68 -crvy _tib/libloader.a _tib/ld_boot.o 

Deleted file: ld boot.o 

Added file: tib/ld_boot.o 

Mon Dec 30 11:15:43 EST 1996 

** Re-link TIB kernel ** 

intruder->cd .. /buildtib 

intruder->build tib -nr 

Mon Dec 30 11:17:02 EST 1996 

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib 
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game: Mon Dec 30 11:17:05 EST 1996 

wsp='echo ${WSPACE} I sed •s/A\(.*\)router[0-9)*\///' I sed 
•sr\(.*\)harpoon\/// 1 ' ; echo "char Image_directory[J 
\"${wsp}\";" > _tib/stamp.c 

echo 'char Image_date[) ="''date'"';' >> _tib/stamp.c 

gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine 
-useDS -align4 -X89 -X325 -X380 -ZSSl -Onounroll -I .. / 
include -I. ./edl/ tib -I. ./cdl/ tib -I. ./mdl inc -DTIB ONLY 
-o _tib/stamp.o ..}ib/stamp.c - - -

C-68000 1.8.7 Copyright (C) 
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199 
4 Green Hills Software, Inc. All rights reserved. 

168 tib/ 
game-:-cfe-z-g-y-yl:l4:16-y3-t:\"start\"-sl:9:x-sl:l3:d-sl:l 
4:b-U:l4,_tib/kernel.map,_tib/game.crf=_tib/start.o _tib/ 
game boot.o tib/stamp.o tib/libgame.a /rtell/harpoon/dev/ 
tpearson/11/loader/ tib/libloader.a /rtell/harpoon/dev/ 
tpearson/11/game/ tib/libgame.a /rtell/harpoon/dev/ 
tpearson/11/hwf/_tib/libhwf .a 

_tib/liblast.a ./gamelink.dir 

***WARNING*** -Sl IGNORED, CONFLICTS WITH SECTION CONTENTS: 
14 

mapconv.pl _tib/kernel.map > _tib/kernel.nm 

cd _tib; \ 

cofftoexe -K -rll.00 -i game.cfe -o game_bn.exe -k 
TIBFRES ; \ 

ldexe_compress game_bn.exe krnl bn.arc 

Parsing Input File: game.cfe 

Program execution address space: 

Load Address: Ox30020000 Rom Address: Ox30020000 Size: 
Ox0017C644 Bytes Entry point: Ox30024000 

Input file information: 

Input file: 

File type: 

Tool name: 

game.cfe 

Kernel file. 

Oasys Linker 
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Output file information: 

Image Name: 

Output file: 

dev/tpearson/11 

game bn.exe 

Platform Key: (OlOlOOOB} BB M68000 MotherBoard (FRE FRE2 
FRE2_60) 

Revision: 11.00 

Date Created: Monday December 30 11:18:00 1996 

Compressing ldapp.nohdr to ldapp.cmp 

Using LZSS Encoder 

...................... Input bytes: 

Output bytes: 806321 

Compression ratio: 49% 

cd tib ; \ 

tib_cat bbdcmp.exe krnl_bn.arc krnl_bn.exe 

1558084 

cd exes; archive -av bn.exe krnl_bn.exe snmp.exe pcap.exe 
fsi .exe tms380 .exe drs. exe osi .exe vines .exe lapb.exe x25 .exe 
xns.exe ipx.exe ip.exe fr.exe atm_dxi.e ... 

Creating new archive: bn.exe 

Platform: BB 

- - Adding krnl _ bn. exe 

-- Adding snmp.exe 
ASN FRE2 60 ISP 60 - -

Adding hdwanlm.exe 

Adding delOO.exe 

Adding hdwancop.exe 

Adding mctlcop.exe 

** End EXAMPLE 1 ** 

FRE FRE2 FRE2 60 

FRE FRE2 

FRE FRE2 FRE2 60 

FRE2 FRE2 60 

HDWANLM 

MCTl COP 
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******************************************* 
** EXAMPLE 2 - rebuilding an application ** 

******************************************* 

** Compile and re-link application ** 
intruder->cd ilacc 

intruder->touch ilacc ctrl.c 
intruder->build tib -nr 

Mon Dec 30 11:07:19 EST 1996 

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib 

ilacc: Mon Dec 30 11:07:22 EST 1996 
gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine 
-useDS -align4 -X89 -X325 -X380 -ZSSl -Onounroll -pic32 
-pid32 -I. .iinclude -I. ./edl/ tib-I. ./cdl/ tib -I. ./mdl inc 
-DTIB_ONLY -o _tib/ilacc_ctrl.o ilacc_ctrl.c -
C-68000 1.8.7 Copyright (C) 
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199 
4 Green Hills Software, Inc. All rights reserved. 
lib68 -crvy _tib/libilacc.a _tib/ilacc_ctrl.o 
Deleted file: ilacc_ctrl.o 
Added file: _tib/ilacc_ctrl.o 

168 _tib/ 
ilacc.cfe-z-g-y-y3-t:\"ilacc entry\"-s1:9:x-sl:l3:d-s1:14: 
b-U:14, tib/ilacc.map, tib/ilacc.crf= tib/ilacc hdr.o tib/ 
libilacc.a/rtell/harpoon/dev/tpearson/11/hwf/ tib/libhwf .a 
/rtell/harpoon/dev/tpearson/11/snmp/ tib/libs~mp.a /rtell/ 
harpoon/dev/tpearson/11/tib/ tib/libtib.a /rtell/harpoon/ 
dev/tpearson/11/pcap/_tib/libpcap.a /rtell/harpoon/dev/ 
tpearson/11/prioq/_tib/libprioq.a /rtell/harpoon/dev/ 
tpearson/11/rtl/_tib/librtl.a ./ilacclink.dir 
mapconv.pl _tib/ilacc.map > _tib/ilacc.nm 

Parsing Input File: ilacc.cfe 
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Program execution address space: 

Load Address: OxOOOOOOOO Rom Address: OxOOOOOOOO Size: 
Ox0000825C Bytes Entry point: Ox00002140 

Input file information: 

Input file: 

File type: 

Tool name: 

ilacc.cfe 

Loadable Application file. 

Oasys Linker 

Output file information: 

Image Name: 

Output file: 

dev/tpearson/11 

ilacc_ucmp.exe 

Platform Key: (OlOlOOOB) BB M68000 MotherBoard (FRE FRE2 
FRE2_60) 

Revision: 11. 00 

Date Created: Monday December 30 11:07:46 1996 

Compressing ldapp.nohdr to ldapp.cmp 

Using LZSS Encoder 

Input bytes: 33372 

Output bytes: 18823 

Compression ratio: 44% 

Mon Dec 30 11:07:50 EST 1996 

** Regenerate the archive file ** 
intruder->cd .. /buildtib 

intruder->build tib -nr archive 

Mon Dec 30 11:09:41 EST 1996 

make archive -r TOOL=ghs TARG=tib PLAT=m6Bk GROUP=tib 
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cd exes; archive -av bn.exe krnl_bn.exe snmp.exe pcap.exe 
fsi.exe tms380 .exe drs .exe osi.exe vines .exe lapb.exe x25 .exe 
xns.exe ipx.exe ip.exe fr.exe atm_dxi.exe wan.exe llc.exe 
at.exe bgp.exe egp.exe ospf2.exe rarp.exe tcp.exe dls.exe 
appn_cp.exe appn_ls.exe sdlc.exe nbase.exe tftp.exe lnm.exe 
tn.exe ppp.exe debug.exe tnc.exe nbip.exe wcp.exe ntp.exe 
isdn.exe lm.exe ping.exe atm.exe atmsig.exe atm_le.exe 
igmp.exe dvmrp.exe ftp.exe quicsync.exe arp.exe xm.exe 
sysl.exe crm.exe bgprs.exe st2.exe nsc_lOOm.exe ipex.exe 
rredund.exe npt.exe run.exe ip6.exe sh_csmac.exe sh_sync.exe 
sh_tcp.exe sh_tftp.exe sh_snmp.exe sh_fr.exe sh_ip.exe 
munich.exe fmpb.exe pim.exe hwcomp.exe bot.exe hwf .exe 
fddi.exe dsde2.exe dst.exe dtok.exe enet2.exe qenet.exe 
qsync.exe hdlc.exe hssi.exe ilacc.exe lance.exe ds2180.exe 
ds21Bl.exe el.exe tl.exe hfsi.exe mctlel.exe atmalc.exe 
atmalcop.exe hdwanlm.exe delOO.exe hdwancop.exe mctlcop.exe 

Creating new archive: bn.exe 

Platform: BB 

- - Adding krnl _ bn. exe 
-- Adding snmp.exe 

ASN FRE2 60 ISP 60 - -
-- Adding pcap.exe 

ASN FRE2 60 ISP 60 - -
-- Adding fsi.exe 

ASN FRE2 60 ISP 60 - -

Adding hssi.exe 
Adding ilacc.exe 
Adding lance. exe 
Adding ds2180.exe 
Adding ds2181.exe 
Adding el. exe 
Adding t 1 . exe 
Adding hfsi.exe 

-- Adding mctlel.exe 
-- Adding atmalc.exe 
-- Adding atmalcop.exe 
-- Adding hdwanlm.exe 

FRE FRE2 FRE2_60 
FRE FRE2 

FRE FRE2 

FRE FRE2 

FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 
FRE FRE2 FRE2 60 

FRE FRE2 FRE2 6 0 
FRE2 FRE2 60 

ATMALC 
FRE FRE2 FRE2 60 
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-- Adding delOO.exe 

Adding hdwancop.exe 

-- Adding mctlcop.exe 

** End EXAMPLE 2 ** 

Debugging 

FRE2 FRE2 60 

HDWANLM 

MCTl COP 

There are some special considerations for debugging dynamically 
loadable applications because their load address is not known until they 
are actually loaded. 

The application load address must be read from the TI console via the 
'loadmap' command (after the loader has loaded it), and then fed into the 
debugger when you load the application symbol table: 

[2:TN]$ loadmap 2 

Loadmap from SLOT 2: 

--> arp.exe Ox304ecdd0 0008944 
--> tcp.exe Ox30508df0 0057776 
--> tftp.exe Ox304ef0d0 0020488 
--> snmp.exe Ox304ff730 0030360 
--> tn.exe Ox304f40f0 0038424 
--> ip.exe Ox304c0f70 0179780 
--> hdlc.exe Ox30491560 0058368 
--> lance.exe Ox30522f00 0008840 
--> dsde2.exe Ox30525la0 0005232 

The GDB-PPC Debugger used with the FRE had been modified to query 
the target for the load address. However, the image still needs to be loaded 
first. 

Alternatively, this step can be avoided by linking the application into the 
kernel slab for debugging purposes. 

• 
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Loadmaps are available on-demand from the TI; they are also dumped 
into the system log so that dynamic addresses found in stack dumps can 
be resolved post-mortem. 

The 'stkscan' and 'logscan' tools assist in the post-processing of log 
information: 

Cut/paste the loadmap info into a temporary file (/tmp/stk) 

• Move to the directory that containing the linker map files $ cd 
buildtib/maps 

stkscan the faulting address$ stkscan /tmp/stk Ox327cl la8 

The output looks something like: 

intruder->stkscan /tmp/stk Ox327clla8 

Ox327clla8 [fsi @ Ox5888 ] == f si_xmt_oper_act+OxO 

Software Release 

We have the potential to release each executable module independently, 
and then have a compatibility matrix in the loader to enforce compatibility 
rules. 

While the benefit of this software release model is great, it presents 
nightmare-ish test and processing matrices for the SQA and 
Manufacturing departments. 

• 14-18 GAME Reference Manual 



• • • • • • • • • • • • • • • • • • • • • • 
Chapter 14 System Loader • 

Adding a New Subsystem 

Kernel Subsystems 

Add code to spawn the kernel application in Id _phase2.c. 

/* Create the Data Path gate */ 

ld_svc(GID_DP_INI, LDF_NONE, dp_init_act, O); 

This reference to the subsystem's entry point causes the subsystem to be 
linked into the kernel. 

Add subystem to PROGLIBS line in the global build directories (buildtib, 
buildace, buildpir, ... ). 

Application Subsystems (Dynamically Loadable) 

Make sure application conforms to requirements listed above. 

Modify the Makefile in your subsystem to specify PIC and any 
PROGLIBS required for linking. 

Add your subsystem to the PROGEXES line in the global build 
directories (buildtib, buildace, buildpir, ... ). 

<subsys> _hdr.c file must be updated (see doc list below) 

"Register" application with dynamic loader by grabbing an index in the 
loader's global include file, and then adding the subsystem name to the 
loader's. 

Add attribute to loader MIB record and add code to loader files to load/ 
unload new application. 

See 'dyn_load_user.ps' document below for all the details. Also, see 
http://www.enghost/clearcase/router/add _ exe.html. 

• 
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Related Documentation 

• 14-20 

/rtel/harpoon/doc/sysman/dyn_load.ps 

/rtel/harpoon/doc/sysman/dyn_load_user.ps 

/rtel/harpoon/doc/sysman/Email-archive/ 
dynamic_loadr_rel.txt (somewhat outdated) 
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Symmetric Multi-Processing 

Symmetric Multi-Processing 

Symmetric Multi-Processing (SMP) was added as part of the Bluefish 
(ARE) project. In order to meet the agressive forwarding rates needed 
for Bluefish, it was determined that a single processor wouldn't work. 
Therefore, Bluefish was designed as a dual processor system. To date, 
only Bluefish and its derivatives (Blackfish, FRE-3) support SMP. 

The challenge in adding SMP to GAME was figuring out how to do it 
without having a huge impact on the 2 million or so lines of code already 
in existence. 

The major problem when applying SMP to an existing code base is how 
to protect data that may be modified by both processors at the same time. 
This means you either need to add locks to all data stuctures or you can't 
concurrently schedule gates which modify the same data structure. 

Obviously, adding locks to all data structures would have a huge impact 
on the existing code, not to mention all the new deadlock bugs it would 
introduce. 

Since GAME already organizes gates into family trees, this seemed to be 
a logical way to make an educated guess about who shares data structures. 
For example, it is not likely that IP and Appletalk share memory. This 
is the approach that was used. 

There is also one critical observation which can be made: In order to meet 
the Bluefish performance goals. Is isn't necessary to have all gates running 
in parallel. Only the forwarding path really needs to be SMP. If the 
control path isn't that optimal, it is still ok. 

• 
• 
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Gate Classification 

Out of the above came the notion of classifying gates into one of 5 types 
based upon how they share memory. This, in conjunction with a gate's 
ancestry, allows the SMP scheduler to avoid scheduling two gates which 
may modify shared memory concurrently. A gate's ancestry starts with 
the first gate in a family tree created by the loader. 

A gate's classification is set by an option to the g_req() syscall. This may 
be set when the gate is created or by the gate itself. A gate can change 
its classification by another call to g_req(). This change takes effect the 
next time a gate gets scheduled. 

Here is the list of the different gate classifications, the associated g_req() 
option, and a description. 

Global/G_REQ_GLOBAL 

The most excusive category. A Global gate will be the only gate executing 
in the system. The 2nd processor will be held in a tight idle loop. This is 
used for gates such as the MIB (which shares memory with practically 
every application on the box). Applications are strongly discouraged from 
declaring their gates as Global. 

Ancestor exclusive/G_REQ_ANCESTOR 

This is the default gate type. An Ancestor exclusive gate will not run with 
any other ancestor exclusive gate. This is the default type because we 
can't be sure which gates do or don't share memory outside of their 
ancestory. These gates are assumed to share memory outside their 
ancestory. The first step to SMPize a subsystem is to determine if it ever 
goes outside its ancestory. If it doesn't, its type can be changed to Clean 
Ancestor. 
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Clean Ancestor/G_REQ_CLEAN_ANCESTOR 

Clean Ancestor gates do not share memory outside of their own ancestory. 
Therefore, it is ok to run them with other Clean Ancestor or Ancestor 
Exclusive gates, provided those gates come from a different ancestory. 
Ideally, most of the control path would be of this type. 

Clean Reader/G _REQ_ CLEAN_READER 

The Clean Reader type was created to aid in making the forwarding path 
efficient. The Clean Reader should be used when the gate only reads data 
structures owned by the rest of its ancestory (i.e. the forwarding table). 
A Clean Reader will run concurrently with another Clean Reader from 
the same ancestory. This is ok as both are only reading data. A clean 
reader will not execute if a non-Clean Reader from the same ancestory 
is running. This is because the other gate may be modifying the shared 
data structure. 

Clean/G_REQ_CLEAN 

This is the ideal gate for the forwarding path. A Clean gate is free to run 
with any other gate (except for Global). It doesn't share any data or the 
data it does share is read only and never modified. Clean gates can achieve 
their 'cleanliness' by using the atomic operations described below. But 
since Clean usually implies the datapath, you usually need to ensure that 
a clean gate doesn't get blocked for any substantial period of time. 

SMP Scheduler 

The SMP scheduler makes use of a single activation queue and idle queue 
as the standard scheduler does. Each processor decides what gate it wants 
to run next by looking at all the gates available in the activation queue as 
well as what gate the other processor( s) is (are) currently running (if any). 
When it finds a gate which satisifies the scheduling requirements, it 
executes that gate. 

• 
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This means that, unlike single-processor GAME, gates may not execute 
in the strict order they appear in the activation queue. However, all gates 
in the activation queue still need to be executed before the slot goes idle 
(allowing module interrupts). 

If a processor can't find a gate to execute, possibly because it would 
conflict with the gate already running on the other processor, it idles itself 
waiting for the other processor to complete. Once the other processor 
completes, one of the processors (which one depends upon which acquires 
the lock first) will start running the next gate on the activation queue (the 
next gate will always be eligible as both of the processors will have been 
idle). 

The scheduling rules for two-processor SMP are summarized in the 
following chart. 

The SMP types are: 

G Global 

A Ancestor exclusive 

CA Clean Ancestor 

CR Clean Reader 

C Clean 

Across the top of this chart is the type of gate currently running on the 
other processor. Down the side is the type of gate the current CPU would 
like to run. A 'Y' indicates that, yes, the gate being scheduled will execute 
in parallel with the currently running gate. A'-' means the gate will not 
run. A'*' indicates the other scheduler will be idle, so this state will never 
happen. 

In places where it matters, it is indicated whether the gate being scheduled 
is in the same or different ancestry. If "same" or "diff' isn't indicated, 
then it doesn't matter. 
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Gate Being Scheduled Running Gate 

G A CA CR c 
G * - - - -

A same * - - - y 

A diff * - y y y 

CA same * - - - y 

CA diff * y y y y 

CR same * - - y y 

CR diff * y y y y 

c * y y y y 

The Kernel Lock 

The kernel is one place where memory sharing across processors is very 
likely. This could happen if the gates running concurrently happen to 
make overlapping system calls. 

To prevent problems here, the kernel is protected by one lock. Only one 
processor may be in the kernel code at any point in time. This includes 
the scheduler, implying that only one processor will be picking a gate to 
run at any time. 

Interrupts 

With multiple processors, interrupt handling becomes more interesting. 
GAME solves the issue by requiring the kernel lock before entering the 
interrupt processing code. Therefore, only one CPU can handle interrupts 
at a time. 

• 
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Interrupts are only enabled when the CPU is in the scheduler. In order 
to be in the scheduler, the processor must first have acquired the kernel 
lock. Each processor will enable interrupts between each gate it executes. 

On the interrupt handler side, the kernel lock must be acquired before 
interrupt processing makes its way into the kernel. This is necessary 

because some error interrupts will be seen by both processors and we 
need to serialize their handling. 

This all can work because the kernel lock is special - it can nest. The 

owner of the lock is monitored, so when a CPU goes to request the lock, 
the lock code knows if that CPU already owns the lock. This information 

returned from the locking call informs the caller as to whether or not a 
nested lock has occurred. This lets the caller knows whether or not it 

should free the lock when it is done. If the CPU already had the lock, it 
doesn't free it. 

The only time the interrupt code executes under a non-nested lock on a 
FRE is for level 4 interrupts. Level 3 interrupts are always serviced with 

a nested lock because the CPU has to enable the interrupts. 

The sequence of events is as follows for "between-gate" interrupts: 

1. Get the kernel lock. 

2. Enter scheduler. 

3. Call g_poll() to enable between gate interrupts. 

4. Interrupt occurs. 

5. Enter interrupt_ handler. 

6. Get the kernel lock, finding out that it is currently owned by this 
CPU. 

7. Call the interrupt service routine. 

8. Return from interrupt processing (note the lock was not freed). 

9. Pick the next gate to run. 
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10. Free the kernel lock. 

11. Run the selected gate. 

Gate Creation, Death, and Mappings 

Since the kernel lock has to be obtained to enter kernel code, it is 
impossible for multiple processors to create or kill a gate at the same time. 
However, it is possible for a gate on one processor to kill the gate that is 
currently active on the other processor. This race is handled by making 
the map_map() gate a Global gate. 

As explained earlier, when a gate is killed, the head of the scheduler's 
activation queue is modified such that the first entry is the map_ map gate. 
When the map-triggering gate pends, the scheduler runs and sees that the 
first entry on the queue is a Global gate. Ittherefore idles the CPU, waiting 
for the other CPU (which may be running the newly killed process) to 
finish. Once the other CPU finishes, one of the CPUs runs the map_map 
gate (while the other idles), which cleans up the dead gate's resources and 
schedules the mapping activations. 

Atomic Locks 

There are two RTL routines which implement atomic operations. These 
are atom_incr_int32() and atom_update_int32(). These can be used to 
make gates clean even if they share memory. 

The atom_incr_int32() is used to update MIB stats. It would be a shame 
to not be able to mark a gate Clean only because it needs to count stats. 
The atom_incr_int32() provides an atomic increment so that multiple 
Clean gates can update the same stat. 

The atom_update_int32() can be used to perform an atomic update of a 
value. This can be used to implement a busy-wait loop to serialize access 
to a data strucure. 

• 
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Under the PowerPC architecture, atomic operations are not performed by 
doing an atomic read-modify-write operation on the bus as you may 
expect. Rather, the PPC has what it calls a 'reservation'. To do an atomic 
operation, you first perform a load with reservation. This causes the PPC 
to remember which cache line your load came from. Once a new value 
is ready to write, be it an increment or setting of a lock, the processor 
does a store w/ reservation. Unlike other stores, this store will only 
complete if some other processor hasn't modified the reserved cache line. 
If the store fails, another load/store cycle needs to be done. All this work 
is what the atom_incr_int32() and atom_update_int32() are doing. 

Notice how the reservation happens on a cache line boundary. This means 
that in order to get the highest likelyhood for the store to complete, that 
cache line shouldn't be in high use. 

To help with atomic locks, a number of macros have been defined in 
include/atom.h. A brief summary of these is: 

SMP_LOCK_ALLOC(lock_ptr) 

Allocates a block of memory and returns the lock _ptr which will be 
properly aligned within it for atomic operations. 

SMP_LOCK_UNALLOC(lock_ptr) 

Frees the memory acquired by SMP _LOCK_ALLOC. 

SMP_LOCK_ACQUIRE(lock_ptr) 

Uses atom_ update _int32() to facilitate a busy-wait binary lock. This will 
return only after the lock has been acquired. But, it is a busy-wait, NOT 
a pending call. Therefore, while you own the lock, "Thou shalt not pend!" 

SMP_LOCK_RELEASE(lock_ptr) 

Releases the lock acquired by SMP _LOCK_ACQUIRE(). 
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SMP Operations On Non-SMP Systems 

Applications are free to use the SMP g_req() options, atomic routines, 
etc, on non-SMP systems. These are all appropriately stubbed out. For 
example, atom_incr_int32() will still perfonn an increment, but not 
atomically (since there is only one processor). 

• 
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Performance and Scalability 

Every gate affects the forwarding/zero-drop numbers/system 
performance. 

Since the same CPU is used for forwarding and other processing*, the 
attitude of"My gate is not in the forwarding path, so I don't need to 
optimize it very well" is dangerous. Any single gate can kill the 
performance of the box. 

Under GAME, once a gate is running, it can hold the CPU indefinitely. 
On FRE hardware, a four-second watchdog timer will terminate the 
execution of a runaway gate. However, four seconds goes far beyond the 
time necessary to invalidate most service guarantees. It is even much too 
long to provide a decent level of ASAP FIFO service, since the link 
drivers, the backbone drivers, and the pieces of forwarding code are not 
allowed to run. 

The author has observed (and been involved in) re-design efforts of 
software that used too many buffers or too much memory. Since the 
penalties for misuse of these resources ("buffer hog" log messages, "out 
of memory" faults) are much more apparent than the misuse of CPU, the 
trend has been to use more CPU and less buffers and memory. This results 
in gates that need to run long periods of time, but do not chew up buffers 
or transient memory. Most developers are under the impression that if 
their gates do not cause watchdog timers on the FRE hardware, they are 
not causing any harm. This is definitely not true. 

*Traditionally this has been true of Wellfleet routers. Frame/Cell switch
ing and future router systems will do more forwarding in hardware, remov
ing the CPU from the forwarding path. 

• 
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Since GAME does not provide the equivalent of"CPU hog" messages or 
enforce any time-slicing, it is totally the responsibility of the application 
developer to ensure that their gates act in a manner to realize a 
"well-behaved system". A well-behaved system is one that does not 
dramatically reduce the forwarding performance while performing CPU 
intensive non-forwarding operations (i.e., allows those gates involved in 
forwarding to run at regular intervals). 

Whether this tuning gets done or not usually depends on how much 
scaling or zero-drop testing is performed. Unfortunately, even for the 
conscientious developer, it is impossible to realize this goal. This is 
largely due to two reasons: 

• A gate cannot get access to enough information to make an 
intelligent decision of whether or not to give up the CPU at any 
given time. 

Even if it had access to this information, the CPU is not given to 
the device drivers until ALL gates on the slot have idled. So, 
even if one gate is being a good citizen, it does not make for a 
well-behaved system. It is the aggregate action of ALL of the 
gates on the scheduler queue that determines when interrupts are 
processed. 

As a case study, lets look at one small piece of the BGP routing 
protocol implementation: the connection transmit gates. Each 
connection transmit gate is responsible for sending routing 
updates to the router at the other end of the connection. Many 
(tens) of connection gates can exist on a single slot. 
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When a router learns 10,000 new routes, a connection transmit 
gate has to examine the new routing entries, process each against 
the announce policy configured for their particular connection, 
possibly include the route in an UPDATE message and update its 
"advertised routes" table, and send the UPDATEs. This obviously 
takes a lot of time for 10,000 routes and without any explicit sur
rendering of the CPU, the gate will watchdog on a FRE. 

The problem was made workable (i.e., it doesn't watchdog, but 
it's not really a well-behaved system) by inserting g_idle calls into 
the code. The G _IDLE_ CHECK flavor was used, which will pend 
the calling gate whenever there is driver or backbone activity to be 
processed. This approach does not work well for a few reasons: 

• The g_idle calls are not free. 

• Knowing when and where to insert g_idle calls is a black art, 
since there is no way to determine how long a gate has been 
hogging the CPU. 

• Since all transmit connection gates tend to act on the same 
routes at the same time, the number of connections on a slot 
affects how well-behaved that slot is. g_idle placement that 
works when only one connection gate is active can cause 
massive problems if five gates are active, because all of the 
gates are going to be on the scheduler queue and each will grab 
about the same size slice of CPU time. This therefore requires 
over-g_idle-ing the code, which leads to the next problem. 

• Just because a driver or backbone interrupt is pending doesn't 
necessarily mean that the CPU has to be surrendered. DAS 
traces of the BGP code show that some g_idle calls pend the 
calling gate to service only one received buffer from the 
backbone. Previous research has shown that running such a code 
strip for a single buffer is very inefficient, as it causes 
unnecessary thrashing of the instruction cache. 

• 
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The indeterministic allocation of the CPU resources appears to be the 
largest problem in regard to providing service guarantees. Ifwe cannot 
guarantee that the gates involved in forwarding (drivers, decaps, encaps, 
protocol forwarders) will run at a regular frequency, we cannot guarantee 
anything. A method of making this more deterministic could have 
benefits for the normal ASAP FIFO traffic (better zero-loss numbers) as 
well as real-time traffic. 

Avoid Transient Resource Allocation 

• A-4 

Most routing protocol applications are designed so that the gates that 
transmit and receive routing information packets are separated from the 
gate or gates that maintain the routing tables*. Therefore, some method 
of relaying this information is necessary. 

Scaling becomes a huge problem if resources have to be allocated 
temporarily (i.e. 'transient' resources) to accomplish the inter-gate 
communication, whether the resource is buffers or memory. Huge updates 
will kill the box because of the (potentially large spikes in) transient 
resource usage. 

The most successful approach to this problem has been to have the routing 
table gate be a parent of the transmit/receive gates and allow the child 
gates to modify the parent's memory. The tbl and rtbl subsystems have 
been modified to make sure that any additional memory allocated is 
always owned by the parent gate. 

This approach obviously requires additional care by the programmer. The 
shared resource (routing table structures) usually need to be modified in 
a mutually exclusive fashion. 

*Similar requirements are often found in designs for other (non-routing 
types of) applications which must maintain some kind of shared common 
central database that gets modified in response to network activity. 
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Use RTBUUTBL, not TBL, for Non-Forwarding/Filtering 
Tables 

Image Size 

TBL works best for forwarding tables. These forwarding tables usually 
do filtering simultaneously. This is what TBL was designed for. Also, 
these forwarding tables should contain the least number of entries 
necessary (i.e., it should be a cache). Once you get beyond several 
hundred entries, the modification times for the table grow to problematic 
lengths. 

For everything else, RTBL and UTBL should be used. These services 
were designed for faster modification. The lookup time is pretty good too. 

Generally speaking, keeping the image size small is a goal. Excessive 
image size can lead to excessive memory consumption, which can have 
negative impact on scalability of a hardware platform/product. 

Of particular concern are embedded strings for use in logged (g_log()) 
messages. All these log strings should be defined in your .edl file, and 
the only arguments to the g_log() function should be the message 
identifier and any necessary numeric values that the log message in 
question calls for. If you pass a string as an argument to g_log, you not 
only have increased image size and memory consumption to store the 
string, you have also consumed CPU time/power to format the string in 
question (especially if you do this via sprintf()). 

Furthermore, strings take up a lot of space in the log. Excessively long 
log messages with embedded strings causes the log to fill up and wrap 
faster/more often. This can lead to a loss of important log data. In the 
extreme, the log wraps so fast you never catch the event that you really 
need to see that will clue you into the real problem in a system. 
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Accessing Memory, Hitting/Missing Cache Etc. 

• A-6 

Accessing (i.e. reading./writing) memory is generally to be minimized in 
designs. Today's processor speeds have reached levels that make memory 
bandwidth (or access time) the bottleneck for system performance. 
Accessing memory means the CPU has to go "off-chip" across a bus to 
access registers in some other memory chip. 

Imagine an algorithm that is going to add a constant offset to each element 
in an array. Furthermore assume the constant offset is part of a data 
structure X: 

typedef struct X { 

} X; 

/* other cells in data structure X */ 
u int32 offset; 
I* other cells in data structure X */ 

One possible encoding of the algorithm might be: 

void 
add offset ( x, array, size) 
X *X; 

u_int32 array[]; 
u int32 size; c 

/* pointer to struct X with offset */ 
/*array of 32 bit unsigned integers*/ 
/* number of entries in array */ 

for ( i = O; i++ ; i < size 
{ 
array[i] += x->offset; 

} 

In the above instance, the CPU will execute the expensive fetch from 
memory for the offset (i.e. the contents of x->offset) for each iteration of 
the for loop. 
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Now consider this alternative: 

void 
add off set 
x 
u int32 
u int32 c 

( x, array, size) 
*x; /* pointer to struct X with offset */ 
array[];/* array of 32 bit unsigned integers */ 

size; /* number of entries in array */ 

register u_int32 offset; 
offset = x->offset; 
for ( i = O; i++ ; i < size 
{ 

array[i] += offset; 

The algorithm has the same order of complexity as the first (both are O(N) 
time-complex), but this second alternative will execute significantly 
faster in real time. The reason is that the fetch from memory for the 
constant offset is only done once in the second alternative, rather than 
once per loop. So while both algorithms execute the loop the same number 
of times, the first algorithm does an extra memory fetch/read per loop. 

While some of the 'smarter' compilers may invalidate the above analysis, 
optimizing correctly to eliminate the cited waste, such optimization has 
been turned off in at least some of the compilers currently being used for 
GAME development at the time of this writing. The recommendation 
here is to not rely on the compilers for this kind of optimization and to 
write the code itself in such an optimal fashion so as to get good 
performance regardless of what compiler (options) are being used. 

An even worse situation would arise from use of some of the macros 
defined to access the contents of the GAME buffer (BUF) header. Some 
of these macros make references to multiple fields of the BUF structure, 
multiplying the penalty. Buffer memory does not get cached, making the 
problem even uglier. The bottom line is that any references to buffer 
headers/contents should be done once and stored in a (hopefully register) 
variable for future reference (using registers like this is also basically a 
good idea for any memory references that can be similarly managed). 

• 
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Memory reads are generally more expensive than writes. The speed of 
the memory access also depends on which memory is being accessed. 
Platforms have different kinds of memory, and different sized caches. 
Hitting the cached memory is always faster than having to go out on the 
bus to fetch form non-cached memory. 

Memory access speeds, from slower to faster, on traditional Wellfleet 
platforms is as follows: 

• un-cached DRAM 

• dual-port (protocol headers in buffers) 

cached DRAM 

• And, of course, a register is fastest. 

These differences are especially important on the PowerPC based 
platforms, where a slow memory fetch costs lots and lots of unused CPU 
cycles. 

Buffer memory is never cached. 

A couple of things to do to make your code run faster: 

Organize your data structures so that the fields you access 
within a particular routine are all located in one or two 16-byte 
cache lines. Putting comments in the * .h file explaining that you 
did this will help keep someone from screwing it up later. 

• If you are going to access something repeatedly within a buffer, 
put it into a stack variable instead. This way you will do a 
cached access. 
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