
GAME

GAME Reference Manual

Internal Use Only

The information in this document is proprietary to Bay
Networks, Inc. This information is made available for the
exclusive use of Bay Networks employees and may not be
disclosed to others except as specified in a license agree
ment.

Confidential and Proprietary Information of Bay Networks, Inc.
September, 1997

ft Bay Networks

•
Contents

About This Manual

Conventions . xiii
Supplementary Documentation . xiv

Chapter 1
Introduction to GAME

Overview ... 1-1
Properties of GAME . 1-1
Comparisons to UNIX ... 1-2
Design Characteristics . 1-2

Encapsulation/Decapsulation ... 1-3
Performance via Caches. 1-3
Packet Accesses. 1-4
Multi-Slot Forwarding Issues. 1-5
High Availability .. 1-6
Dynamic Reconfiguration .. 1-7
Internal Code Structure .. 1-7

Limitations .. 1-7
Zero-Packet Loss .. 1-7
Application Portability . 1-8
"Cheap" Gates . 1-8

Chapter2
Gates

Definition ... 2-1
Attributes ... 2-1

Ancestry ... 2-1
Identification .. 2-1
Structure ... 2-2
Activation Routine .. 2-2
Environment Pointer .. 2-2
State .. 2-3
Resources .. 2-3

Identification: Gate IDs and Handles ... 2-4
Gate IDs ... 2-4
Gate Handle .. 2-5

Gate Instance Management .. 2-7
Normal Activation ... 2-10
Classes of Gates 2-12

Well-Known Gates .. 2-12
Dynamic Gates ... 2-12
Ensign Gates. 2-13
Davidian Gates ... 2-14
Alias Gates .. 2-14

Soloists ... 2-15
Aliases ... 2-17

•
•

GAME Reference Manual iii •

•
•
•

Contents

Chapter 3
Mappings

What's a mapping? ... 3-1
Why? ... 3-1
Function Call ... 3-1
Mapping to Retrieve the Current GH ... 3-2
Mapping With No Activation Routine . 3-3

Caveats .. 3-3
Example ... 3-4

Mapping With An Activation Routine ... 3-4
Some Mapping and Unmapping Gotchas . 3-9
Mapping An Alias . 3-11
Some Frequently Asked Questions ... 3-12
Activation Routines for Well-Known Gates .. 3-14

Data Signal Approach. 3-14
Perform All Processing in the Thread Approach .. 3-17

Activation Routines for Dynamic Gates ... 3-19
Activation Routines for Ensign/Davidian Gates . 3-24
Changing a Mapping Activation Routine. 3-25
Soloist Mapping By the Parent. 3-26
A General Warning About Mappings . 3-29

Chapter4
Buffers

What Are Buffers Used For? ... 4-1
Fast Facts About Buffers .. 4-1

Global Facts .. 4-2
Facts That Apply Only to the FRE1/2, ASN, AN ... 4-2
Facts That Apply Only to the ARE, FRE3 .. 4-2

Buffer Format ... 4-3
Buffer Pools I Lists . 4-5

The Free Buffer Pool ... 4-6
The Transient Buffer Pool .. 4-6
Private Buffer Pools . 4-10

Buffer Allocation .. 4-13
g_balloc() Function Call .. 4-13
g_breplen Function Call .. 4-14
g_copy() Function Call ... 4-15

Buffer Manipulation ... 4-16
Macros . 4-16

Primitives .. 4-17
Freeing Buffers ... 4-17

Using g_bfree() ... 4-17
Gate Handle Contains Zero ... 4-18
Dying Gate .. 4-18

Moving Buffers Around (g_bmove) .. 4-19
Removing/Adding Buffers From GAME .. 4-19

Removing Buffers From GAME .. 4-20
Adding Buffers To GAME ... 4-20

• iv GAME Reference Manual

•
Contents

Performance Tips ... 4-20
Debug Tips .. 4-22

debug kml Command .. 4-22
Dumping Buffer Contents ... 4-23
Debugging Orphaned Buffers .. 4-23

Chapters
Inter-Gate Communication

Types of Inter-Gate Communication .. 5-1
Buffer Delivery .. 5-1

Unreliable Buffer Delivery .. 5-2
Reliable Buffer Delivery .. 5-10
Debug Tips .. 5-21
Signals ... 5-22

Uses of Signalling ... 5-23
Signal Handling Urgency .. 5-23
Using Signals .. 5-24

Mappings ... 5-33

Chapters
Memory Management

Overview ... 6-1
Tags .. 6-4
Ownership and Memory Sharing Implications .. 6-5
Syscalls .. 6-6

g_malloc()/g_mfree() .. 6-6
g_mlen() ... 6-7
g_malloc_gid()/g_mfree_gid() ... 6-8
g_mrealloc() ... 6-10
g_madd() .. 6-10
g_ sig_ data()/g_get_ sig_ data() 6-11

Debugging Strategies .. 6-11
Zero Out Those Stale Pointers!. .. 6-11
debug krnl Command .. 6-11

Private Memory Management. ... 6-13
free_pool .. 6-16
What Size memory Segments to Allocate .. 6-17
(Shared) Free Pools ... 6-18

Chapter 7
Scheduler

Overview. 7 -1
Scheduler Queues ... 7-1
Activation Reasons ... 7-2

Message Delivery .. 7-3
SIG_INI .. 7-3
SIG_TMO .. 7-3
User Defined Signal .. 7-4
Additional Reasons ... 7-4

•
•

GAME Reference Manual v •

•
•
•

Contents

Pending ... 7-5
Forwarding Path Notes .. 7-8
Mappings . 7-8
Interrupts ... 7-12
ARE/FRE-3 Interrupts ... 7-15 .
CPU Hogging .. 7-16

g_idle Call ... 7-17
g_fwd(), g_rpc(), g_reply{) Calls .. 7-18
g_delay{) Call .. 7-19
g_sema_get{), g_balloc{) Calls ... 7-19

Chapter 8
Watchdog

Overview . 8-1
Question and Answer ... 8-1
How the Watchdog Works On A FRE .. 8-2
Platform Differences .. 8-3

Chapters
Semaphores

Overview . 9-1
Well-known vs. Dynamic Semaphores .. 9-2

Well-known Semaphores .. 9-2
Dynamic Semaphores .. 9-2

Semaphore Creation and Registration .. 9-2
Getting a Token ... 9-4
Returning A Token ... 9-4
Checking A Semaphore's State ... 9-5
Gate Death and Cleanup .. 9-6
Semaphores and Mappings .. 9-6
Are Semaphores Really Needed? ... 9-6

Chapter 10
Timer and Time of Day Services

General Overview ... 10-1
Timer Overview . 10-1

g_tmo{) Kernel System Call . 10-2
g_delay() Kernel System Call .. 10-9
Using g_idle() and g_timer_get() For Very Short I Accurate Delays 10-11
Grain Tables and tmo_exp() .. 10-12

Time Overvie\v.. 10-14
Getting System Time ... 10-16
Setting System Time .. 10-18
Retrieve Time Since Slot Restart .. 10-20

Summary of How Timers and Time Are Implemented . 10-20
Periodic Timer ... 10-21
Time - g_timer_get() .. 10-22
Time - Calendar Chip ... 10-23
Time - g_tget(... 10-23

• vi GAME Reference Manual

•
Contents

Internal Wallclock Service .. 10-24
Other. 10-24

Chapter 11
Miscellaneous Function Calls

Overview .. 11-1
g_appbase()- Returns Base Load Address ... 11-1
g_bcfg() - Environment Configuration .. 11-2
g_buf2mem(), g_mem2buf()- Copy a Buffer's Contents to Memory I Back To a Buffer 11-3

Copy a Buffer's Contents to Memory . 11-3
Copy Contents of Memory to a Buffer. 11-4

g_env(), g_env_gid - Returns Environment of a Gate ... 11-4
g_env()Call .. 11-4
g_env_gid Call ... 11-5

g_i_die(), g_u_die() - Commit Suicide I Kill Another Gate .. 11-5
g_i_die Call .. 11-5
g_u-die Call .. 11-6

g_load_archive() - Archive Loading ... 11-6
g_memop() - Special Memory Operation ... 11-8
g_myid() - Returns Caller Gate ID .. 11-9
g_platform() - Gets Platform Type .. 11-9
g_reset()- Restarts Slot(s) ... 11-10
g_slot() - Returns Caller Slot Number ... 11-11
g_src() - Retrieves Source of Reliable Message .. 11-11
g_stk() - Saves Current Stack in System Log ... 11-12
get_unqid()-Geta Unique ID ... 11-13

Chapter 12
Fault Management

Types of Faults and System Reactions .. 12-1
Hardware Reset .. 12-1
GAME Reboot .. 12-1
Gate Termination or GAME Reboot ... 12-2

"Problem" Gates .. 12-2

Chapter 13
System Event Log

Overview. 13-1
Log Entry Format ... 13-2
Quick Example of EDL ... 13-3
g_log() System Call . 13-6
System Event Logger Gate .. 13-9
How the Log Becomes Useless at Times . 13-10
Log Crash Points .. 13-12
Choosing The Appropriate Event Severity ... 13-14

FAULT Messages .. 13-14
WARNING Messages ... : 13-15
INFO Messages ... 13-15
DEBUG Messages ... 13-16

•
•

GAME Reference Manual vii •

•
•
•

Contents

Logging Tips & Miscellaneous Info .. · 13-17

Chapter14
System Loader

Background ... 14-1
Linking/Loading Options .. 14-1

Loader Operation ... 14-2
Kernel Loader .. 14-3
Dynamic Loader .. 14-3

Process Issues . 14-10
Builds ... 14-10
Debugging ... 14-17
Software Release .. 14-18

Adding a New Subsystem ... 14-19
Kernel Subsystems ... 14-19
Application Subsystems (Dynamically Loadable) .. 14-19

Related Documentation . 14-20

Chapter 15
Symmetric Multi-Processing

Symmetric Multi-Processing. 15-1
Gate Classification . 15-2
SMP Scheduler .. 15-3
The Kernel Lock . 15-5
Interrupts .. 15-5
Gate Creation, Death, and Mappings .. 15-7
Atomic Locks .. 15-7
SMP Operations On Non-SMP Systems ... 15-9

Appendix A
Performance and Scalability

Performance. A-1
Avoid Transient Resource Allocation ... A4
Use RTBUUTBL, not TBL, for Non-Forwarding/Filtering Tables A-5
Image Size ... A-5
Accessing Memory, Hitting/Missing Cache Etc .. A-6

• viii GAME Reference Manual

•
Figures

Figure 2-1. Gate Handle .. 2-5
Figure 4-1. Buffer Format. 4-3
Figure 4-2. Transient Pool. ... 4-8
Figure 5-1. Buffer Transmission .. 5-12
Figure 5-2. Remote Procedure Call .. 5-15

•
•

GAME Reference Manual ix •

•
•
•

• x

Figures

GAME Reference Manual

•
Tables

Table 2-1 Gate States.......... 2-3
Table 2-2 Gate ID Bit 16-13 Values . 2-4
Table 2-3 Macros For Processing Gate Handles. 2-6
Table 2-4 Macro For Setting Gate Handles . 2-7
Table 3-1 Mapping Macros.......... 3-7
Table 5-1 Buffer Delivery Debug Settings. 5-21

•
•

GAME Reference Manual xi •

•
•
•

• xii

Tables

GAME Reference Manual

Conventions

•
About This Manual

GAME (Gate Access Management Entity) is the master control software
that manages the internal functions and resources of Bay Networks
Routers.

If you want to Goto

Learn about the general properties and design Chapter 1
characteristics of GAME

Learn about gates Chapter2

Learn about mappings Chapter 3

Learn about buffers Chapter4

Learn about inter-gate communication Chapter 5

Learn about memory management Chapter 6

Learn about the scheduler Chapter 7

Learn about the watchdog Chapter 8

Learn about semaphores Chapter 9

Learn about the timer and time-of-day services Chapter 10

Learn about miscellaneous function calls Chapter 11

Learn about fault management Chapter 12

Learn about the system event log Chapter 13

Learn about the system loader Chapter 14

Learn about Symmetric Multi-Processing Chapter 15

Learn about performance and scalability Appendix A

screen text Used for examples.

•
•

GAME Reference Manual xiii •

•
• About This Manual

•

Supplementary Documentation

The following additional documentation is available to GAME users:

Location Description

/rte I /harpoon/ doc/ game/html/ General GAME documentation.
game.html The information in game.html is not

as comprehensive as the
information in this document.

/rte I/harpoon/doc/game/html/ Information on debug features.
game_ debug.html

/rte I /harpoon/ doc/ game/game_ hints GAME hints and tips.

/rte I /harpoon/ doc/sysman/ Dynamic Loader User's guide
dyn_load_usr

/rte I /harpoon/ doc/hardware/frel.txt Information on the FRE

/rte I /harpoon/ doc/bf Information on the ARE. The
debug_tips.txt file explains
differences between the ARE and
the FRE.

/rte I /harpoon/ doc/ debug/ Debug specification.
debug_spec.fm.ps

-josswald/ct/ doc/users __guide.ps Information on ALVIN, the crash
dump analyzer.

• xiv GAME Reference Manual

Overview

•
Chapter 1

Introduction to GAME

GAME (Gate Access Management Entity) is the master control software
that manages the internal functions and resources of Bay Networks
Routers. GAME can be compared to an operating system.

The processing entity within GAME is called a gate. A gate is similar to
a process or thread in other operating systems, but has considerable less
state.

•
•

Properties of GAME

Some properties of GAME are listed below:

• Game can perform multiprocessing, handling thousands of
gates.

• GAME performs inter-slot communications via messages.

• Multiple CPUs are contained on the same slot (SMP).

• Gates run to completion or until they give up the CPU.

• GAME incorporates FIFO scheduling. There are no priorities
(except for mappings and some signal deliveries).

• There is hardware and software fault management support and
isolation support for dynamic reconfiguration.

GAME is an embedded system.

GAME Reference Manual 1-1 •

•
• Chapter 1 Introduction to GAME

•

Comparisons to UNIX

GAME is similar to UNIX in that processes have an ancestral hierarchy.

GAME is different from UNIX in the following ways:

• There is no user mode in GAME. All code runs in supervisory
mode with no protection from other processes.

• UNIX kemal code does not give up the CPU except for
interrupts. In GAME, there is no context switching unless a gate
gives up the CPU (except for CPU and hardware exceptions,
obviously).

• GAME can handle a large number of threads/processes more
efficiently.

• UNIX has process priorities; GAME schedules first-come,
first-served.

• UNIX can time slice; GAME does not time slice.

• UNIX handles device interrupts asynchronously; GAME only
enables device interrupts at specific times.

Design Characteristics

GAME was implemented to meet the aggressive design goals of the
Harpoon project.

The new Harpoon hardware (BCN/BLN) incorporated faster, more
redundant architecture.

To support the hardware, Bay required an operating system especially
geared to the needs of a packet forwarder. The software used previously
(VRTX kernel) did not adequately support packet forwarding.

Listed below are the key points (Design Considerations) considered by
the design team and the results (Design Results) after implementation.

• 1-2 GAME Reference Manual

Design
Considerations

Design Results

Design
Considerations

•
Chapter 1 Introduction to GAME •

Encapsu lation/Decapsu lation

Encapsulation and decapsulation of data needs to be efficient. These are
tasks performed on every packet in layer 3 forwarding. The incoming
layer-2 header is stripped and a new one is added for the outgoing
interface.

The buffer format allows the data to be "suspended" anywhere in the
buffer (caveat: on the FRE hardware, the start of the data must be within
the first 255 bytes of the buffer). When receiving or sending a packet,
there is always sufficient "headroom" left at the start of the buffer to add
a larger encapsulating header. It is easy to change the start or end offset
and no data copying is necessary.

It important to note that you may need to add more header info than is
removed (e.g. remove an FDDI SNAP MAC but then encapsulate for
ENET transmission.)

Performance via Caches

The router needs to be high performance. One way to achieve this is to
make good use of the processor's instruction and data caches.

On the instruction side, locality ofreference is key. If you keep executing
the same code, it's likely that the next instruction will already be in the
instruction cache (i-cache). However, the code that you execute
repeatedly has to fit in the i-cache footprint. (Remember, the time is 1991
you've been writing code for a 68020 with a 256 byte i-cache. Luckily,
the new target architecture has a 4K cache.)

•

GAME Reference Manual 1-3 •

•
• Chapter 1 Introduction to GAME

•

Design Results

Design
Considerations

• 1-4

For the data cache (d-cache), there are two "hot" areas: the stack and
whatever data the running functions are using. For a router, the hot data
is often the routing table. Once we figure out where one packet is going,
it is in our best interest to do the lookup for the next packet, because we're
likely to have a good portion of the routing table already in the d-cache.
There is also a good chance that consecutive packets are going to similar
locations (e.g., traffic burstiness; or local workstations all going to the
same server). Note that this trades off individual packet forwarding
latency for overall throughput.

Each gate performs a single "step" in packet processing, and that step fits
in the cache footprint (on the 040, that is). A gate gets a list of packets
because this allows us to stay in the i-cache.

A buffer's destination (within the router) is written into buffer so that the
forwarding code does not have to waste time clipping packets out of the
list to send to different destinations.

Packet Accesses

Caching accesses to actual data packets is problematic. The packet
memory is shared between the CPU, link module and PPX. (PPX refers
to the four data and control channels that comprise the backplane.) If the
CPU caches the packet memory, any accesses by these other entities needs
to be done "cache coherently".

The CPU could flush packets from its cache, but the CPU usually (for
forwarded packets) doesn't care much about the packet contents other
than the header. However, packets addressed to the router (such as Telnet
packets or routing updates) will be examined more thoroughly. This
means the CPU would be forced to go through the motions of flushing
all data from a packet to handle every possible case. Flushing isn't free,
so this would impact performance.

GAME Reference Manual

Design Results

Design
Considerations

•
Chapter 1 Introduction to GAME •

Another aspect about packet accesses is that the header fields are usually
read just once. That is, you look at the MAC header, then the IP header,
etc. You don't look at the MAC header multiple times. Therefore, caching
the headers isn't very useful.

Yet another consideration is with data corruption. If you get the flush
wrong or miss something you'll wind up with bugs that are really hard to
track down.

Bottom line: Cache coherency without HW support is a scary proposition.

For these reasons, caching the packets wasn't a requirement. However,
there are those areas of packets which are accessed a lot during forwarding
(packet headers). Ifwe could improve the non-cached access
performance to just those areas, we would get some bang for our buck.

The FRE-1 and -2 provide HW assist to make packet headers faster to
access. This is done by mapping SRAM onto portions of the buffer space
(where the headers live) and onto the buffer headers.

Multi-Slot Forwarding Issues

We were building a multi-slot box where packets may come in on one
slot but need to go out another. Should every piece of code which routes
a packet need to figure out if a buffer is being delivered to the local slot
or off-slot? Obviously, it would be advantageous if each one didn't. If
this decision was isolated in one place, it would make most of the code
simpler.

This would also improve code performance because instead of having to
check and branch in all the forwarding code, the code could just say "this
packet goes here" where "here" may be either local or remote (or both)
and is not something the forwarding code cares about.

•

GAME Reference Manual 1-5 •

•
• Chapter 1 Introduction to GAME

•

Design Results

Design
Considerations

Design Results

• 1-6

The destination stored in a packet is a 32-bit "gate handle" (see Figure
2-1) that describes both the destination slot(s) and process. The protocol
can do a lookup and get a 32-bit result which it doesn't have to interpret.
GAME does the interpretation about what this means.

High Availability

"No single point of failure" was a design goal. So, having tightly-coupled
slots where one slot could corrupt the memory of another slot, was
considered a bad idea. The slots should be as independent as possible.

However, communication between processes across slots was still
important. A method was necessary to know about other slots and the
processes on them - when they appear and when they go away.

Software failures (e.g., bus errors) should only affect the portion of the
code where the failure occurred. Taking a whole slot or box down for
anything but a catastrophic software failure is not an option.

Gate handles and mappings are used to track the existance of other
processes in the router.

GAME provides resource tracking in order to clean up resources when a
process dies.

GAME maintains parent/child relationships between gates. Only the
offending gate and its offspring are terminated upon software failures.

GAME Reference Manual

Design
Considerations

Design Results

Design
Considerations

Design Results

Limitations

•
Chapter 1 Introduction to GAME •

Dynamic Reconfiguration

Dynamic reconfiguration is somewhat like isolating software failures to
particular pieces of code. The idea is that we can add, remove, or
reconfigure a protocol/interface/slot/etc. and limit the effects of that
reconfiguration.

If gates restart, only that portion of the gate hierarchy is affected.
(Basically the same as High Availability.)

Internal Code Structure

We wanted to get away from one big function call tree (dev_idle) for
forwarding. This is bad for maintenance and future development. This
also defeats the goal of isolating the software failures to the threads that
caused the problem. Ditto for reconfiguration.

Gates are lightweight and context switching is fast. This, along with the
ancestral hierarchy and resource tracking, allows software isolation.

The following limitations must be considered.

Zero-Packet Loss

High throughput numbers are useless if you drop a lot of packets along
the way. The effects of the control path on the forwarding path (both use
the same CPU) had to be taken into account. We now do a lot of
painstaking work to reduce the run times of the control path. In some
cases (ISP Mode for ANS), we locate the control processes on separate,
non-forwarding slots.

•

GAME Reference Manual 1-7 •

•
• Chapter 1 Introduction to GAME

•

• 1-8

Application Portability

GAME is not an easy platform to port to. Several packages have been
ported to GAME with varying levels of success.

"Cheap" Gates

Gates are not as "cheap" as once thought. With the advent ofhigh density
link modules, such as the MCTI, protocols that used lots of processes per
interface broke.

GAME Reference.Manual

Definition

Attributes

•
Chapter2

Gates

A gate is a processing entity within GAME similar to a process or thread
in other operating systems, but having significantly less state.

Ancestry

A spawned gate becomes a "child" of the creator.

A spawning gate is the "parent." The parent gate lives at the top of the
hierarchy. Upon termination of the parent gate, all offspring also
terminate. The parent of a dying gate is not notified unless it has mapped
the child gate (see the Mapping chapter).

Identification

A gate ID "names" a gate. There can be multiple instances of a gate (one
per slot).

A gate handle addresses one or more specific instances of a gate (more
on this later).

A gate ID is like saying "Dunkin Donuts." A gate handle tells
which Dunkin Donuts you are talking about (e.g., on Great Road in
Bedford or the comer of W obum Street and Lowell Street in
Lexington, etc.).

GAME maintains a gate ID table (GID Table). There are 4 bytes per gate.

•
•

GAME Reference Manual 2-1 •

•
• Chapter 2 Gates

•

• 2-2

Structure

The gate structure is 128 bytes.

The most accessed parts of the structure are in the first cache

line (16 bytes on 040):

BUF *head; /* outstanding gate message queue */

BUF *tail; /* outstanding gate message queue */

void (*act) () ; /* gate's action routine ptr */

u int32env; /* gate's state data area ptr */

Parent, sibling, child links are also included.

Not allocated for ensigns or davidians (same for everything that follows).

Activation Routine

An activation routine is a function that executes in the context of the gate
instance when buffers or signals are delivered.

Environment Pointer

As far as GAME is concerned, an environment pointer is just a 32-bit
number to pass to the activation routine. In practice, it's usually a pointer
to a slab of memory allocated by the gate or an ancestor. This slab is
referred to as the gate's environment. One of the reasons a gate
environment is needed is because GAME does not allow global data/
variables.

~ A gate does not necessarily own its own environment. If it doesn't,
V the env doesn't go away when the gate dies.

GAME Reference Manual

•
Chapter 2 Gates •

State

Note that you will not find a "state" variable in the GA TE structure. A
gate's state is determined by a number of things, like if it is has buffers/
signals to be delivered, if it is using the CPU, etc. A gate can be in one
of the following states: dormant, awake, active, pended, or zombie.

Table 2-1 Gate States

State Description

Donnant The gate is not executing and is not scheduled to run.

Awake The gate has been scheduled for execution due to an
event but has not yet run.

Active The gate is executing. Since the scheduler is
non-preemptive, there is at most one such gate at any
given time per CPU.

Pended The gate has voluntarily given up ownership and is
waiting for an un-pending event.

Zombie The gate had been deactivated but not yet removed
from the system.

Resources

A gate can allocate and free:

•

•

memory

buffers

semaphores

One may think of child gates as resources, but they are not really "owned"
in the same manner as the above resources.

"Mappings" may similarly be thought of as resources, as the gate does
own them.

•

GAME Reference Manual 2-3 •

•
• Chapter 2 Gates

•

A gate can also act as a well-known signal handler; while not really a
resource, it is a state associated with the gate

These resources are reclaimed by GAME when a gate instance terminates.

Each gate also has one periodic timer.

Identification: Gate IDs and Handles

• 2-4

Gate IDs

A gate ID provides a "name" for a gate that can exist anywhere on the box.

A gate ID is 17-bits long. Bits 12-0 identifythe gate number. Bits 16-13
identify the class of the gate. (See "Classes of Gates" later in this chapter
for a description of gate classes.) (Bits 16-13 are commonly called the
"keeper" bits due to their use in identifying the keeper slot for dynamic
gates.)

Table 2-2 Gate ID Bit 16-13 Values

Value Meaning

0 Used to identify a well-known gate ID.

1-14 Used to identify dynamically allocated gate IDs. The
value is the slot number where the gate ID was
allocated (i.e., the keeper slot). This prevents
multiple slots from allocating the same GIDs.

15 Used to identify gate aliases and davidians. For
aliases, bits 12-9 contain the slot number of the
allocating slot (i.e., the keeper bits shifted right 4
bits). For davidians, bits 12-9 are also set to 15.

GAME Reference Manual

•
Chapter 2 Gates •

Gate Handle

A gate handle contains both a gate ID (name) and its instantiation
information.

A gate handle is 32-bits long. Bits 16-0 specify the gate ID. Bits 30-17
specify the slot MAP. A gate handle is illustrated in Figure 2-1.

Figure 2-1. Gate Handle

F SLOT MAP OATEID
L
A KEEPER'•
G 1 2 3 4 5 6 7 8 II 10 11 12 13 14 SLOTI OA1EI

Slot Map

The slot map is a bit mask of slots where this gate is instantiated, as
defined below:

bit 30: slot 1
bit 29: slot 2

bit 17: slot 14
bit 31: FLAG bit

In mappings, the Flag bit indicates that the GID is allocated. In buffers,
this indicates a reliable transport primitive. (See Figure 4-1.)

The format of a davidian gate handle is slightly different (later).

•

GAME Reference Manual 2-5 •

•
• Chapter 2 Gates ·

•

• 2-6

Note the difference between the keeper ID in a gate ID and slot bit
in the slot map. The keeper ID tells you from which slot's space the
GID came from. The bit in the slot map tells you which slots have
an instantiation of the gate. In practice, multiple slot instances only
occur for well-known gates, which have a keeper ID of zero, and
aliases, which have a keeper ID of 15. For dynamic gates, the only
map bit you will see set is the one corresponding to the keeper ID.

Processing Macros

Some important macros for processing gate handles are defined in:

(include/kernel.h and include/game.h) ·

The macros for examining gate handles are described in Table 2-3.

Table 2-3 Macros For Processing Gate Handles

Macro Function

GH_IS_LOCAL (gh) Is the gate instantiated on my slot?

GH_IS_PRESENT (gh) Is the gate instantiated on any slot?

GH_IS_REMOTE (gh) Is the gate instantiated on any
non-local slot?

GH_IS_USED (gh) Is the GID allocated (in the GID
table)?

GH_GET_SLOT_MAP (gh) Isolate the slot bits (30-17).

GH_GET_GID (gh) Isolate the GID bits (16-0).

GH_IS_ALIAS (gh) Is this an alias GID?

GH_IS_DAVIDIAN (gh) Is this a davidian GH?

G_MY_SLOT_MASK The local slot bit.

GAME Reference Manual

•
Chapter 2 Gates •

A macro for setting gate handles is described in Table 2-4.

Table 2-4 Macro For Setting Gate Handles

Macro Function

GH_SET_LOCAL (gid) Form a GH with the local slot bit
and the gid.

Gate Instance Management

The gJeq() system call implements almost all aspects of gate instance
management.

Call:

GID g_req (GID gid, void (*action) (void*, BUF *, SIG),

void *environment, u int32 flags)

Values:

"gid" is the gate ID that the call applies to. The value of gid can be:

• G _ REQ_ NEW_ GID (allocates a new gate ID from the slot's
space)

G_SELF _ID (the calling gate)

• any valid gate id (instantiated dynamic gate ID or well
known).

"action" is the routine that is called when the gate instance is activated.
The value of action can be:

• G_NOACT(ifgid = G_REQ_NEW_GID, create an ensign
gate)

• G_DAVIDIAN (ifgid = G_REQ_NEW_GID, create a
davidian gate)

• G_REQ_KILL (terminate the local instance of this gate)

•

GAME Reference Manual 2-7 •

•
• Chapter 2 Gates

•

• 2-8

• any valid function address identifying the new action routine
for the gate instance.

"environment" is a 32-bit value. This is passed to the gate instance upon
activation. In practice, this is a pointer to a slab of memory (the
environment) associated with the gate.

"flags" are optional gate management functions. The value of flags can be:

• G_SIG_INI (send an initialization signal (SIG_INI) to a
newly instantiated gate instance)

• G_REQ_INI (send an initialization signal (SIG_INI) to an
existing gate instance - not a good idea to use this)

G _ REQ_ SOLO (perform the soloist election procedure prior
to creating the gate instance - more on soloists later)

• G_NO_SIG_INI (another name for "zero")

There are some additional flags associated with SMP which will be
discussed in the section on the Scheduler.)

Return Values:

For all successful calls, the gate ID of the created/modified/terminated
gate instance is returned.

If you tried to kill a gate that is already dead, a zero is returned. For severe
errors, the calling gate is terminated.

GAME Reference Manual

•
Chapter 2 Gates •

Examples:

Example 1 shows how the IP routing table manager (R TM) creates a
network interface (NWIF) gate:

gid = g_req (G_REQ_NEW_GID, ip_nwif_init_act, nwif_env,
G_SIG_INI);

"-" Note that the RTM has already allocated the NWIF's environment.
T The NWIF gate never changes its action routine or environment

(unfortunate name used for this routine ...).

Example 2 shows how the RTM starts BGP in both ISP (soloist) and
non-ISP modes.

if (rtm_env->bgp_soloist)

{
if GH_IS_REMOTE(rtm_env->bgp_gh)

/* We are in soloist mode, and a soloist is already
running on another * slot, don't start the soloist on the
local slot

*/
return;

/* start the soloist BGP */
g_req (GID_BGP, bgp_init, rtm_env, G SIG INI

G_REQ_SOLO);

}
else

/* start the replicant BGP */

g_req (GID_BGP, bgp_init, rtm_env, G_SIG_INI);

•

GAME Reference Manual 2-9 •

•
• Chapter 2 Gates

•

When the BGP init strip runs, it changes both its action routine and
environment:

g_req (G_SELF_ID, bgp_active, bgp_env, G_NO_SIG_INI);

The environment is always overwritten. So, if you're changing the
activation, you'll need to pass in the old value of the environment if you
don't want it to change.

RTM will kill the BGP gate if it learns that the BGP code base is being
unloaded:

g_req (GID_BGP, G_REQ_KILL, 0, O);

Normal Activation

• 2-10

A gate can be activated via its action routine for two reasons:

buffer delivery (multiple buffers can be delivered in a list)

signal delivery (a single signal can be delivered in one
activation)

Both cannot happen at the same time. Two separate gate activations will
occur if this is the case.

A gate action routine must be of the following form:

Call:

void gate_act (void *environment, BUF *buffers, SIG signal)

Values:

"environment" is a pointer to a slab of memory, as set by the most recent
g_req() call.

"buffers" is a pointer to a list of buffers that were sent to the gate, or NIL.
If "buffers" is NIL, "signal" is the value of the signal delivered to this
gate. If "buffers" is valid, "signal" is undefined.

GAME Reference Manual

•
Chapter 2 Gates •

Considerations:

The type of activation is determined by the value of the "buffers"
parameter, which MUST be checked first. If buffers is NIL, a signal is
being delivered via the "signal" parameter:

if (buffers)

/* process list of buffers */

else

/* process signal */

Once activated, the gate holds the CPU until it does one of the following
things:

1. It exits the activation routine. This completes the current
activation of the gate. It will not be activated again until buffers
or a signal is sent to it. If buffers or a signal were sent during
the current activation, the gate is immediately rescheduled, at
the end of the scheduler queue. A gate will not see any new
buffers or signal until it exits its activation routine.

2. It relinquishes the CPU either explicitly or implicitly through a
system call. The gate will go into "pended" state until
re-awakened by GAME.

3. It terminates itself either via g_req() or a system FAULT. In
this case, GAME cleans up all resources owned by the gate and
the instance no longer exists.

•

GAME Reference Manual 2-11 •

•
• Chapter 2 Gates

•

Some important things that will be covered more throughly later:

• A gate must "do something" with each buffer delivered in an
activation.

A gate must not hold the CPU for more than 4seconds (although
this value is really performance dependent).

Classes of Gates

• 2-12

There are several classes of gates in GAME:

• well-known

• dynamic

• ensigns

• davidians

aliases

Well-Known Gates

Well-Known gates are usually at or nearthe top of a subsystem hierarchy
of gates. The ID has to be fixed so that communication can occur between
slots (example: IP Routing Table Manager). Circuit gates are also
well-known (circuit number+ 1024). There are SK IDs available, not
including circuit numbers (about 360 used) The gate ID always has the
"keeper" bits set to zero.

Dynamic Gates

Dynamic gates comprise the bulk of running gate instances in a system.
There are 8191 gate IDs per slot.

The gate ID always has the "keeper" bits set to the slot number.

GAME Reference Manual

•
Chapter 2 Gates •

Ensign Gates

Originally created for the MIB service to represent states in the MIB (e.g.,
the current values of the read/write objects in a row of a table).

~ The name "ensign gate" is derived from the usage - it's a flag to
T indicate the presence of something.

An Ensign gate allocates a gate ID but does not create an instance.

An Ensign gate can be used to represent state (e.g. MIB service).

An Ensign gate is visible across slots via mappings.

An Ensign gate is not hierarchically attached to creator gate (no GATE
structure). Therefore, GAME cannot reclaim ensigns if the creator dies
(not a problem with MIB service - whole slot resets anyway).

An Ensign gate uses the same GID pool as dynamic gates (well-known
IDs can't be ensigns).

The Ensign gate ID always has the "keeper" bits set to the slot number.

Use the following call to create an Ensign gate:

ensign_gid = g_req (G_REQ_NEW_GID, G_NOACT, 0, O);

Use the following call to kill an Ensign gate:

g_req {ensign_gid, G_REQ_KILL, 0, 0);

•

GAME Reference Manual 2-13 •

•
• Chapter 2 Gates

•

• 2-14

Davidian Gates

Davidian gates are a lot like ensigns except:

• a whole lot more are available (about 8 Million per slot)

Not visible across slots via mappings

Invented to replace ensigns for the MIB service:

Davidians allow representation of many more "states".

Davidians don't use/waste the slot's limited dynamic gate ID space.

In the Gate Handle the slot map space is used for extention of the Gate ID.

In the Gate ID the keeper bits are set to 15; bits 12-9 of gate number are
also 15.

Use the following call to create a Davidian gate:

davidian_gid = g_req (G_REQ_NEW_GID, G_DAVIDIAN, 0, O);

Use the following call to kill a Davidian gate:

g_req (davidian_gid, G_REQ_KILL, 0, 0);

Alias Gates

Alias gates are used to group instantiated gates. When a message gets
sent to an alias, a copy of that message is made for each member of the
alias. This works only for unreliable messaging. Reliable messaging to
aliases isn't supported. (covered throughly later).

In practice, only well-known gates and aliases will appear with instances
on multiple slots.

GAME Reference Manual

Soloists

•
Chapter 2 Gates •

Some well-known GAME gates require that only one instance runs in the
box at a time.

Examples:

•

•

•

•

circuit gates (multi-line scenario)

Technician Interface (Tl)

OSPF

BGP in ISP-mode

The Soloist mechanism is explained in detail below, although
the mechanism really isn't that important to a user of GAME.

When a gate wishes to create a soloist, it must first ensure that the gate
does not exist currently on any other slot. This is done via a mapping
(covered exhaustively in the Mapping chapter). If the gate does not exist
on another slot, the g_req call is made with the G_REQ_SOLO flag to
start the soloist election. (See the BGP example above.)

GAME formats a message that contains the proposed gate handle of the
soloist and the gate handle of the prospective parent of that soloist (the
one that called g_req). This is sent to the Keeper Gate on every live slot
(including the local slot).

When each Keeper gate receives this message, it first checks to see ifthe
GID is locally instantiated. If so, it replies to the message with the gate
handle for that gate PLUS the FLAG bit (bit 31 - this is key later!).
Otherwise, it checks to see if there is a soloist election active forthat GID.
If so, it replies with the gate handle of the FIRST parent gate that it heard
from. If there is no current election, a structure is created to represent
the soloist election for that GID. The Keeper replies with the parent gate
handle it received in the message.

•

GAME Reference Manual 2-15 •

•
• Chapter 2 Gates

•

Dueling Soloists

• 2-16

The calling slot examines the replies, ORing-ing together the slot bits of
the gate handles. If the local slot is the only bit set or the lowest numbered
(leftmost) slot bit set, the soloist gate is created. After the election is lost
or the soloist gate is created, another message is sent to all Keeper gates
to clean up the soloist election state.

If one of the Keeper gates indicated that it had a local instantiation of the
GID, the setting of bit 31 prevents any other slot from winning the
election. This is because bit 31 looks like slot "0", which is a lower slot
number than a real slot.

The gate handle slot bits are set as follows::

bit 31: FLAG bit (acts like "slot 0")

bit 30: slot 1

bit 29: slot 2

etc.

There is a chance, especially on a busy router, that the soloist election
mechanism will fail and allow multiple soloists to be created. This was
first discovered when multiple TI processes would arise and try to control
the console, a situation known as "dueling Tis".

To guard againstthis, a gate that creates a soloist must maintain a mapping
of the soloist GID and kill its local soloist if another soloist appears that
has a lower slot number (details when we get into mappings). (Actually,
you always need a mapping for a soloist because the g_req (solo) is a
one-time event. If the current soloist dies, a new election needs to be held
but the kernel doesn't do this automatically.

Soloist elections are independent per Gate ID.

In a booting router with one flash card, all soloists appear on the
slot with the flash card (unless that slot is not "eligible" to run a
particular soloist - controlled by configuration infonnation). This
is merely because that slot gets the code running first.

GAME Reference Manual

Aliases

Aliases of Aliases
Method

•
Chapter 2 Gates •

GAME can associate a single gate ID with multiple gate instances on the
same slot and across slots. This allows unreliable buffer delivery to
multiple gates using a single delivery primitive. A gate can become a
member of an alias using the call g_ alias(). The same call is used to
remove a gate as a member. Members can be added or removed only on
the slot where the "real" gate instance lives. Note that the member gate
itself does not have to be the one to call g_ alias().

In the Gate ID of an alias the keeper bits are set to 15. Bits 12-9 contain
the slot number of the allocating slot (i.e., the keeper bits shifted right 4
bits).

When the first member of an alias is added on a slot, GAME will "turn
on" that slot bit for any mappings of the alias gate id (GID _GAME is a
legitimate first member). When all members are removed from the alias
on a slot, GAME "turns o:tr' the slot bit.

WARNING: When all members are removed from the slot on
which the alias was created, GAME frees the alias gate ID. If you
don't want the alias to be freed, add GID _GAME as a member.
This will keep the alias allocated.

The following call illustrates the aliases of aliases method:

Call:

With the advent of g_ xmt_im(), aliases of aliases really
shouldn't be needed any more. g_xmt_im() solves the same
problem but in amore eficient manner. See Chapter 5 for a
description of g_ xmt_im().

GID g_alias (GID alias, GID gid, u_int32 mode)

•

GAME Reference Manual 2-17 •

•
• Chapter 2 Gates

•

• 2-18

Values:

The value for "alias" can be:

• G_ALIAS_NEW (allocate a new alias GID)

• G _ALIAS_ ALL (requests removal from all aliases, in which
case "mode" must be G_ALIAS_DEL)

• an existing alias ID.

The value of "gid" can be:

• the GID of "real" member gate instantiation on local slot

• GID _GAME. GID _GAME can be used as the first member
when creating an alias in order to create a "permanent" alias
that stays around even when all of the "real" members have
gone away.

The value of "mode" can be:

• G_ALIAS_ADD: add member to alias set

• G_ALIAS_KILL: destroy entire alias set on the local slot

• G_ALIAS_DEL: delete member from a given alias set or
all sets

• G_ALIAS_COUNT: count and return number of members
of an alias

• G_ALIAS_NUM: returns the number of free aliases
remaining on the local slot

G_ALIAS_ALIAS: add an alias to an alias. The idea of
adding an alias to an alias was created for the bridge code to
simplify multi-slot alias maintenance. There are a couple of
caveats about an alias that contains aliases as members:

• It can only have one alias as a member on a given slot.

• It cannot have any "real" gates as members on that slot.

GAME Reference Manual

Bridge Use of Alias to
Alias

•
Chapter 2 Gates •

Here's how the bridge uses an alias to alias:

All of the bridge encaps gates on a slot are added to a local alias. Suppose
we have slots 2, 3, and 4, and they create the aliases A2, A3, and A4,
respectively. All of slot 2's encaps gates are members of A2. Ditto for
slot 3 I A3 and slot 4 I A4.

The alias IDs are broadcasted to the bridge gates on each slot, and each
slot then adds its local alias to the other slots' aliases:

slot 2: adds A2 to aliases A3 and A4

slot 3: adds A3 to aliases A2 and A4

slot 4: adds A4 to aliases A2 and A3

When slot 2 wants to flood a packet, it sends it to alias A2. Since all of
the local encaps gates belong to A2, they each get a copy of the packet.
Since A3 and A4 belong to A2, a copy of the packet is sent to slots 3 and
4. When the packet arrives on the remote slot, it is replicated and sent to
all of the members of the local alias.

The example below creates a local bridge flood alias. Note the use of
GID _GAME as the first member. This ensures that the alias will not go
away. Since GID _GAME is 0, no packets actually get delivered to this
"member".

dp_env->enet_flood_gh = g_alias (G_ALIAS_NEW, GID_GAME,
G_ALIAS_ADD);

This example adds an "encaps gate" to an existing flood alias:

g_alias (GH_GET_GID (dp_env->enet_flood_gh) ,

GH_GET_GID (ccb->lb_encaps[enet_index] .isap_handle),

G_ALIAS_ADD);

Members are never explicitly removed from this alias. GAME removes
the en caps gates if they die.

•

GAME Reference Manual 2-19 •

•
• Chapter 2 Gates

•

• 2-20

Here's how the local alias is added to the flood alias of another slot:

switch (flood_info->domain_id)
{
case ENET_FLOOD_DOMAIN:

our_flood_gh =
dp_env->enet_flood_gh; break;

if (GH_IS_LOCAL(our_flood_gh))

g_alias(GH_GET_GID(flood_entry->flood_gh),
GH_GET_GID(our_flood_gh),
G_ALIAS_ALIAS) ;

}

There is a special version of the unreliable buffer delivery primitive
(g_xmt_im) that sends buffers to all members of an alias except one (the
exception is usually associated with the sender). This is covered in the
Inter-Gate Communication chapter.

GAME Reference Manual

•
Chapter3
Mappings

•
•

What's a mapping?

Why?

Function Call

A mapping is a way that a gate can keep track of the state of any and all
instances of a particular gate ID. Simply put, a mapping lets a gate know
when an instance of some gate is created or terminated.

Mappings are the primary way to deal with software and hardware
reconfigurations and failures.

Examples of mappings are as follows:

• MIB service uses davidians to represent current database state.

• Instances of well-known gates map each other to learn "slot-up/
down" events.

Per-interface gates map the underlying circuit to learn about
"circuit up/down" events.

• Parent gates map their children to learn of their demise and
possibly do clean-up and restart.

A mapping exists independently in the gate of its creator (sometimes
known as the "owner" of the mapping). It is created via the g_ map() call:

Call:

void g_map (GID gid, GH *gh, void (*map_activation) (GH *,
GH))

Values:

"gid" is the gate ID to map.

"gh" is a pointer to the local copy of a gate handle.

GAME Reference Manual 3-1 •

•
• Chapter 3 Mappings

•

"map_ activation" is the mapping activation routine to call when a change
occurs. The value ofmap_activation can be:

• G_NOACT: no activation routine. (Uses the system default
routine which just updates the *gh.)

• G _ UNMAP: terminate an existing mapping

• G _CURRENT_ GH: just return the current gate handle
without creating a mapping

A valid function address for the activation routine for the
mapping

Mapping to Retrie.ve the Current GH

• 3-2

Sometimes a gate just needs to know where the current instances of a gate
exist. This is normally used if you want to send a message to a gate whose .
state you don't track continuously.

g_map (some_gid, &(env->some_gh), G_CURRENT_GH);

GAME writes the gate handle for some _gid at the time of the call into
env->some _gh.

GAME maintains no further state.

The next example is from the RSVP Interface (RIF) gate, where buffers
have to be delivered to a control gate (GID _RSVP_ CONTROL) on one
slot(the soloist) only. A second gate (GID _RSVP _SOLO)exists to mark
this slot.

/* find out where is the SOLOIST */ g_map(GID_RSVP_SOLO,
&solo_control_gh, G_CURRENT_GH);

/* send these buffers to the CONTROL gate on the soloist
slot */ solo_control_gh = (solo_control_gh &
-GID_RSVP_SOLO) I GID_RSVP_CONTROL; rif_env->fwdlist_id =
g_fwd_list (solo_control_gh, fwd_blist, fwd_blist_tail, O);

GAME Reference Manual

•
Chapter 3 Mappings •

Mapping With No Activation Routine

A gate can instruct GAME to maintain a gate handle for a particular gate
id, updating that gate handle whenever there is a state change. This is
normally used when a gate sends messages to instances of a well-known
gate but does not need to do any processing based on the up/down state
transitions of those gate instances.

g_map (some_gid, &(env->some_gh), G_NOACT);

GAME creates state regarding the mapping, including:

the gate handle pointer (*)

GID of the mapped gate (*)

GID of the owner gate

the mapping activation routine (G_NOACT, in this case)

The asterisked items are the items that index the mapping state. Therefore
you cannot have multiple owner gates mapping the same target gate using
the same physical gate handle.

Upon initial mapping, GAME fills in gate handle:

Gate ID equals the gate ID requested.

Each bit in the slot map is set if the corresponding slot contains an instance
of the gate.

FLAG bit is set if any slot has allocated the GID.

Caveats

Ensign gate slot bits appear for remote instances even though
there really is no "instance" of the gate on that slot. This was the
only way to get multi-slot mappings of ensign gates to work.

• A davidian gate slot map field is not applicable (part of gate ID).

•

GAME Reference Manual 3-3 •

•
• Chapter 3 Mappings

•

• Grune updates the FLAG and slot bits whenever there is a state
change.

• If an instance tenninates the slot bit is cleared; if an instance is
created, the slot bit is set.

• If all instances tenninate/GID not allocated, the FLAG bit is
reset.

•

The memory used to hold the gate handle MUST be in a
block where the allocation is via g_mallocO. The only case
where you can use stack space for a mapped gate handle is for a
G _CURRENT_ GH call.

When the mapping owner no longer cares about the gate handle
of the mapped gate, it MUST call g_map() to remove the
mapping.
g_map (some_gid, &(env->some_gh), G_UNMAP)

Otherwise, GAME will continue to update the memory where
the gate handle was located. This is particularly dangerous if
that memory was freed and then allocated by another gate!

• GAME will clean up after mappings if the owner dies.

Example

This example is from the IP Policy gate, which doesn't really care ifBGP
or OSPF are up, other than to be able to send messages about changes in
routing policies:

g_map (GID_IP_OSPF, &(ip_policy_enV->OSpf_gh), G_NOACT);

g_map (GID_BGP, &(ip_policy_env->bgp_gh), G_NOACT);

Mapping With An Activation Routine

• 3-4

Usually, a mapping is done because a gate wants to perfonn specific
actions when another gate instance goes up or down. This can be done
by specifying an action routine to execute upon a state change.

GAME Reference Manual

•
Chapter 3 Mappings •

g_map (some_gid, &(env->some_gh), mapping_activation);

GAME again creates mapping state, including the action routine.

During the initial g_ map() call, GAME suspends the current gate context,
creates a temporary gate to run the initial mapping activation, and
executes that gate IMMEDIATELY. This means that
"mapping_ activation" runs BEFORE the g_map() call returns!

Form:

A mapping activation routine must be of the following form:

mapping_activation (GH *gh, GH new_gh)

Values:

"gh" is a pointer to the gate handle, as passed in the second parameter
to the g_ map() call.

"new_gh" is the new value of the gh.

Considerations:

Unlike a mapping without an activation routine, GAME does NOT set
*gh to the new gate handle value. It is up to the activation routine to do
this after comparing the new value to the previous value (to see what
changed). GAME does set *gh equal to the GID (no slot bits set) before
calling the activation routine forthe first time. new _gh is set to the current
state of the GID. This will include the FLAG bit (31) if the GID is
allocated on any slot.

Suppose a gate maps GID_DP _INI (16), and that gate currently exists on
slot 2, 3, and 4. The initial activation parameters would be:

*gh OxOOOOOOlO

new_gh OxbBOOOOlO

(GID only; no slot bits set)

(FLAG bit, slots 2-3-4, GID)

•

GAME Reference Manual 3-5 •

•
• Chapter 3 Mappings

•

Suppose an ensign gate with gate id 16400 (Ox4010) is mapped on slot
2, and that ensign gate is currently allocated (but, obviously, not
instantiated) on slot 2. The initial activation parameters would be:

*gh Ox00004010 (GID only)

new_gh Ox80004010 (FLAG bit turned on)

If the mapping is done on another slot:

*gh Ox00004010 (GID only)

new_gh Oxa0004010 (FLAG bit turned on + slot 2)

The presence of the slot bit is an unfortunate side-effect of being able to
map ensigns across slots. The mapping routine should only check for the
presence of the flag bit (see the GH_IS_USED macro later) and ignore
the slot bits.

From this point on, GAME will call the activation routine every time an
instance of that gate is created or destroyed. For ensigns/davidian, the
routine is called when the GID is allocated or deallocated. Mapping
activation routines get scheduled ahead of any other gates scheduled for
buffers or signals (more on this in the Scheduler section).

A single mapping activation for a well-known gate or an alias can contain
MULTIPLE slot bit transitions. For example, a later activation of the
mapping for GID _DP _INI might receive the parameters:

*gh = OxbBOOOOlO (FLAG bit, slots 2-3-4, GID)

new_gh = Oxb2000010 (slot 4 instance went away,
slot 6 instance came alive)

The memory used to hold the gate handle MUST be in a
block allocated via g_malloc(). The only case where you can
use stack space for a mapped gate handle is for a
G CURRENT GH call.

• 3-6 GAME Reference Manual

•
Chapter 3 Mappings •

When the mapping owner no longer cares about the state of the
mapped gate, it MUST call g_map() to remove the mapping:

g_map (some_gid, &(env->some_gh), G_UNMAP);

Otherwise, GAME will continue to call the mapping
activation routine. If the unmap is done within the mapping
routine itself (not uncommon), the activation terminates
before the return from g_ map(). That's right, you don't
return.

It's also important to unmap when the mapping fails because a
dynamic gate has died. This is because that gate ID will be
reused eventually for a different purpose and your mapping of it
is no longer appropriate.

Always unmap before freeing a GH.

Within a mapping activation routine, there are a collection of macros that
are used to examine and compare the old *gh and the new _gh:

Table 3-1 Mapping Macros

Macro Purpose

GH_IS_USED (new_gh) Is this ensign/davidian
allocated?

GH_BECAME_LOCAL (*gh, new_gh) Was an instance created on this
slot?

GH_BECAME_REMOTE (*gh, new_gh) Was an instance created on
another slot?

GH_BECAME_PRESENT (*gh, Was an instance created on any
new_gh) slot?

GH_CEASED_LOCAL (*gh, new_gh) Did an instance die on this
slot?

GH_CEASED_REMOTE (*gh, new_gh) Did an instance die on another
slot?

GH_CEASED_PRESENT (*gh, new_gh) Did an instance die on any
slot?

•

GAME Reference Manual 3-7 •

•
• Chapter 3 Mappings

•

The return values of these macros are the slot bits of the applicable gate
instances.

When a mapping activation routine runs, it is a separate "thread" from
the base context of the gate. This is done by creating a new, temporary
gate. This gate is setup to be a child of the mapping creator who called
g_ map). This gate only exists while the mapping is active. In some cases,
resources allocated by the mapping activation belong to the owner gate.
In other cases, the temporary mapping gate owns them. Resources are
treated as follows:

• Memory: All allocated memory becomes property of the owner
gate.

Buffers: Transient buffers are part of the mapping gate.
However, any use of the private pools (e.g., g_bsave) are in the
context of the owner gate. A mapping gate cannot exit with
buffers on its transient pool. The owner gate will be terminated
if this happens. (Note that this is a more drastic punishment than
if a normal gate activation orphans buffers. In that case, only a
message is logged.).

Semaphores: A created semaphore is the owner's property. A
token acquired by a mapping gate belongs to that gate.

g_req() calls: Any gates created in a mapping routine are
children of the owner gate.

g_map() calls: Any mappings created in a mapping routine are
owned by the owner gate.

• g_isr() calls: Any signal handling requested in a mapping
routine is registered in the context of the owner gate.

Additional Considerations:

If you call g_myid(), you get the owner's gate ID.

If you call g_env(), you get a pointer to the owner's environment. A
mapping gate cannot have its own environment.

• 3-8 GAME Reference Manual

•
Chapter 3 Mappings •

A single gate can have its base context and several mapping contexts in
the active/pending states at once. Watch out for races if accessing data
structures shared between these contexts! Semaphores or other locking
mechanisms are necessary in these case (and the know-how to use them!).

Finally, before a mapping activation routine exits, it must update the
allocated gate handle:

*gh = new_gh;

Some Mapping and Unmapping Gotchas

One problem is when a routine that did a mapping with G_NOACT, but
[]did not do a G_UNMAP. Is an "unmapping" (i.e. g_map (gid, gh,
G_UNMAP)) necessary in this case?

Yes, an unmap is necessary in all g_ map cases before you free a gate
handle. Here's the scenario: Gate 1 allocates memory location Oxabcdef
for a *GH. It then maps to the gate and passes g_ map G _NOACT for no
action routine (usually done to check for a gates existence). GAME saves
that Gate 1 maps some gate at location Oxabcdef. Gate 1 frees memory
location Oxabcdef with out doing an unmap. Gate 2 allocates memory for
a *GH and happens to get the same location Oxabcdef. Gate 2 then places
a GH into that location. Game thinks that another gate (gate 2) is mapping
the same gate that gate 1 mapped. It triggers a mapping change for both
Gate 1 and Gate 2' s mapping action routines (Gate l's action routine was
G _NOACT so nothing happened. If it wasn't, bad things could have
happened here.) Game allows for gates to modify GH' s through mapping
routines even though they are not the owner of the mapping. It does,
however, log a message that says, in so many words, that this is
happening.

•

GAME Reference Manual 3-9 •

•
• Chapter 3 Mappings

•

Gate 2 thinks that it owns the mapping of the GH atlocation Oxabcdef.
Game thinks Gate 1 owns it because gate 1 never unmapped that location.
When Gate 2 does the unmap, Game panics in map _rem because gate 2
is not the owner of the mapping at that location. When Game unmaps, it
compares the info it saved on the mapping creation with the info from
the gate calling unmap. Remember, the info saved is the GH of the gate
that created the mapping and the memory location containing the GH of
the mapping. In this case, Game first checks to see if location Oxabcdef
has a mapping associated with it. It then compares the GH of the creator
of the mapping with the GH of the caller of unmap. If they don't match
then GAME panics. The situation is potentially even more dangerous if
Gate 2 has used the memory for something other than storage for a mapped
gate handle. It would be possible for Gate l's mapping to then corrupt
Gate 2's memory, resulting in unpredictable system behavior,

Remember, the info saved is the GH of the gate that created the mapping
and the memory location containing the GH of the mapping. In this case
Game first checks to see if location Oxabcdef has a mapping associated
with it. It then compares the GH of the creator of the mapping with the
GH of the caller of unmap. If they don't match then game panics.

Just to be a bit more precise with the terminology (the difference between
a gate handle and gate ID can be very important). For a given mapping,
GAME keeps track of:

the gate ID of the creator of the mapping (it knows that it is on
the local slot, so the slot bits are not necessary)

the location of the gate handle in memory the gate ID of the
mapped gate.

A gate has a chain of mapping blocks. When an unmap is done, GAME
searches this list for a match of the GH memory location and the GID of
the mapped gate (the mapping owner GID is implied, since you are
looking in the gate's list). If a matching entry is not found, you get the
"don't own such mapping" log message.

• 3-10 GAME Reference Manual

•
Chapter 3 Mappings •

To make a long story short - always unmap BEFORE you free a GH that
is mapped, no matter what the action routine is.

There are some cases where you cannot do this. If you do the G _ UNMAP
in the actual mapping routine for the gate, you do not return. If you had
allocated the GH memory dynamically, you need to free it before the
unmapping. This should be done immediately before the unmapping in
order to reduce the possibility that someone will introduce a window later.
The GA TE ID (gid) argument passed to the g_ map() function should not
be extracted/derived from the memory that was being used to hold the
value of the current gate handle after it has been freed. Any such access
to already freed memory is risky and should be eliminated. The gid value
should be extracted from the memory and stored in a local variable before
the memory is freed. Alternatively in a mapping routine itself, the gid can
always safely be extracted from the 'new _gh" argument passed in by
GAME when it triggered the mapping, provided it has not been modified.

When doing an unmap within a mapping routine, the g_mfree must be
done first because mapping routines do not return from an unmap call.
This can be done because g_ mfree does not pend. Be careful as to the
owner of the g_malloc()'d memory in this case.

Mapping An Alias

Since alias gate instances don't really exist, GAME handles the mapping
of alias gate IDs somewhat different from "real" gates. However, to the
application using the gate handle supplied by a mapping, it doesn't make
any difference.

•

GAME Reference Manual 3-11 •

•
• Chapter 3 Mappings

•

When the first gate on a slot joins an alias, GAME considers this an "up"
event for the alias instance on that slot and turns on the slot bit in the gate
handles for any mappings of the alias gid. Further member additions on
that slot do not cause any state change. When the last member removes
itself from the alias on a slot, game considers this a "down" event and it
removes the slot bit from the gate handles for any mappings of the alias
gid.

Suppose, on slot 2, g_ alias() is called to add gate A to alias OxOOO 1e401,
the first member on the slot and on the box. Any gate mapping gid
Ox0001e401 would see the following state change:

*gh = Ox0001e401, new_gh = Ox2001e401

Gates B, C, and D also join on slot 2. No state change occurs.

Now suppose gate E on slot 5 was added:

*gh = Ox2001e401, new_gh = Ox240le401

Finally, gate E on slot 5 is removed:

*gh = Ox2401e401, new_gh = Ox2001e401

Some Frequently Asked Questions

• 3-12

*** Can I map "myself"?

Yes. Self-mappings are not only allowed but are even subject of a special
treatment. They execute ahead of all the other mappings that may be
triggering at the same time and ahead of gate termination clean-up. Due
to the fact that a it is owned by a gate that has been marked "dead" and
will soon be removed from the system, a self-mapping is restricted in
what it can do. For instance, it may not pend, which it would do if it tried
to create a gate or a mapping, attempt to allocate a buffer with a pending
option, call g_ delay() org_idle(), or send a reliable message. It may send
an unreliable message, however. Usually, all a self-mapping does is log
a message and/or update some MIB statistics.

GAME Reference Manual

•
Chapter 3 Mappings •

*** Can I map across slots?

Yes. Mappings were invented specifically to track gate state changes
occurring on all slots and to update gate handles.

*** Can I map "ensign" and "davidian" gates?

Yes. Ensign and davidian gates were invented specifically to be mapped.
There is little else they can do for you.

*** If I have two mappings, which one runs first?

The order of mapping triggering and execution is inherently
unpredictable. GAME does not specify which mappings run first except
for the self-mapping's special treatment descri.bed above.

*** Will a mapping trigger while the owner gate pends?

Yes. Mappings with activation routines execute as temporary gates which
are children of the mapping owner gate. After the initial activation, the
rest of triggered mapping life is just a life of a gate. This may also lead
to certain race conditions when the triggered mapping affects an
environment shared with its owner gate (or other gates, for that matter).

*** Can my mapping activation combine several state changes?

Yes. In larger configurations it is possible, even likely, that one trigger
activation will cover almost-simultaneous gate instantiation on several
slots. Note that one given mapping activation may
SIMULTANEOUSLY cover gate instance creation and disappearance
on different slots (both GH BECAME PRESENT and - -
GH_CEASED_PRESENT may be non-zero!).

*** Will my mapping run twice with the same "new_gh"?

No. This used to be possible, but it has been fixed. However, your
mapping routines should work correctly if this should happen (i.e.,
bulletproofing is a good thing).

•

GAME Reference Manual 3-13 •

•
• Chapter 3 Mappings

•

*** Can I miss a trigger?

No. The events for a map trigger are queued up and the mapping is
guaranteed to see every transition. However, iftriggerings are queued
up, the state given in new _gh is not necesarily the current state.

*** What happens if I do a suicide in a mapping routine?

This terminates the current mapping, the owner gate, and all other
mappings. Effectively, all context related to the owner gate is terminated.
This is true for any gate termination encountered by a mapping gate (other
than a normal, clean exit).

Activation Routines for Well-Known Gates

• 3-14

A mapping of a well-known gate is usually one that hangs around for the
life of the owner. The typical use is within a subsystem. It allows the
local subsystem component to learn when the subsystem comes up or
goes down on other slots. The "up" processing usually involves
synchronizing the data between slots. "Down" processing cleans up
information learned from that slot.

A side-effect of the mapping is that it provides a gate handle to use when
the subsystem wants to send something to all other slots. The local slot
bit is first removed via an AND with -G MY SLOT MASK.

There are two approaches that are used for well-known gate mappings
(actually, this applies to all mappings) to deal with synchronization issues
with the base gate context and other mapping contexts. Each of these has
its pros and cons:

Data Signal Approach

One approach is that the mapping does nothing other than send a data
signal to the owner gate (most common approach).

GAME Reference Manual

•
Chapter 3 Mappings •

The advantages are:

• You don't have to worry about multiple gate threads accessing
and modifying the same data.

• The gate handle maintenance is separated from the up/down
processing, resulting in timely updates of the gate handle
(although, in some cases, having the GH out of sync with the
up/down processing can cause problems).

• This fits in well with how GAME expects mappings to act (short
lived, no pending).

The disadvantages are:

A temporary resource (memory) has to be allocated.

• The event does not get processed until the base gate context is
scheduled for the signal. If the gate is currently active or has
another activation on the scheduler queue, it may not get the
signal in a timely fashion.

• The base gate context becomes a bottleneck, having to do all of
the normal buffer and signal processing along with the mapping
events.

The magnitude of these downsides all depends on the workload of the
gate. It may not matter if there is little work to do. In any case, if the
developer has no experience in developing multi-threaded code (the test:
do you know what a "critical section" is?), they must use this approach.

The well known gate GID _IP_ RTM uses this approach. It maps a second
well-known gate called GID _IP_ RTM _UP to determine connectivity to
its peers on other slots. The mapping routine:

•

GAME Reference Manual 3-15 •

•
• Chapter 3 Mappings

•

void

ip_rtm_up_self_map(gh, new_gh)

GH *gh;
GH new_gh;

char cbuf [80);
RTM_ENV *rtm_env = (RTM_ENV *) g_env();
if (GH_CEASED_LOCAL(*gh, new_gh))

{

/* If local GID_IP_RTM_UP panic'ed, local RTM must go down.

*
*

* In the future this may change in the cases, when problems *
* in RECEIVING new information were detected on the local slot,*
* s.t. by bouncing local IP_RTM_UP gate (requesting info from *
* remote slots) can cure the problem. */
g_req(GID_IP_RTM, G_REQ_KILL, 0, O);

else

/* correct for rtm_env->gh */
new_gh &= GH_GET_SLOT_MAP(rtm_env->gh) I GH_GID_MASK;

sprint£ (cbuf, "RTM up self map old tlx, new %lx", *gh, new_gh);
g_log (IP_DBG_INFO_MSG, cbuf);

/* Process remote slots going down, as if in ip_rtm_self_map () *I
/* Process any slot that comes up: local or remote

if (GH_CEASED_REMOTE(*gh, new_gh) I I
GH_BECAME_PRESENT(*gh, new_gh))

ip_send_map_local_msg (rtm_env, gh,

RTM_SELF_MAP_MSG);
}

}

*gh, new_gh,

rtm_env->up_gh GH_GET_SLOT_MAP(new_gh) I GID_IP_RTM;

*/

• 3-16 GAME Reference Manual

•
Chapter 3 Mappings •

'*gh = new_gh;

BAD CODING PRACTICE ALERT!!! The log message
should be defined in an EDL file and not dynamically
produced within the code. This wastes CPU and log space,
and the string is not a candidate for compression in the image
file.

Perform All Processing in the Thread Approach

A second approach is to perform all necessary processing in the mapping
thread.

The advantages are:

• Allows concurrent processing of the base gate context and up/
down processing, avoiding a bottleneck in the base gate.

• Does not require any messaging to the main gate context.

• Up/down processing occurs in a timely manner.

The disadvantages are:

• If the mapping pends, this mapping's execution can overlap with
activations of the base gate and other mappings of the gate.

• This usually requires access/modification of data structures by
multiple threads. This can be dangerous if not done by
experience hands and/or if the code is not documented well.

Long lived up/down processing that has to give up the CPU
delays the reception of further mapping activations. The gate
handle can get stale.

•

GAME Reference Manual 3-17 •

•
•
•

• • •
Chapter3

3-18

• • • •
Mappings

• • • • • • • • • • • • • •

BGP uses this approach. The (somewhat abbreviated) activation routine:

void

bgp_map_bgp_quick(gh, new_ghl

GH*gh;

GHnew_gh;

BGP_ENV*bgp_env; /* BGP gate's environment */

BGP_CONN_GATE_MAP *bgp_conn_gate_map;

BGP_CONN_ENV *conn_env;

bgp_env = (BGP_ENV *) g_env ();

/* see if we're dying */

if (GH_CEASED_LOCAL (*gh, new_gh)

/* set our mib state to not-present and log our goodbye */

bgp_env->wfBgp_inst->wfBgpState = BGP_NOTPRESENT;

if (BGP_LEVEL_LOG(bgp_env, INFO_MSG))

g_log (BGP_TERM_MSG);

/*some counter zeroing edited-out here ... */
} /* end if dying locally */

else

/*some soloist stuff edited out here ... */

/* check for remote instances dying - we have to clean up its routes *I
if (GH_CEASED_REMOTE(*gh, new_gh) && BGP_LEVEL_LOG(bgp_env,
WARNING_ MSG))

bgp_slot_down (GH_CEASED_REMOTE(*gh, new_gh));

} /* end if died remotely */

/* check for new instances - we have to send them update messages */

if (GH_BECAME_REMOTE(*gh, new_gh))

{

bgp_slots_up (bgp_env, GH_BECAME_REMOTE(*gh, new_gh)) ;

} /* end if remote instance came alive */

} /* end else didn't die locally */

/* save the gate handle */

*gh = new_gh;

} /* end bgp_map_bgp_quick */

GAME Reference Manual

•
Chapter 3 Mappings •

BAD CODING PRACTICE ALERT: The values for
GH_CEASED_REMOTE and GH_BECAME_REMOTE
should be cached in stack variables. (For various reasons,
mostly due to access of hardware registers, the compiler
doesn't optimize this).

Activation Routines for Dynamic Gates.

Mappings of dynamic gates are different from well-known gates in two
important respects:

The mapped gate is only instantiated on one slot. In most cases,
this is the local slot.

When the mapped gate dies, the mapping owner un-maps the
gate. THIS IS CRITICAL, as the GID will be recycled.

Always unmap a ceased dynamic gate in the mapping routine itself, even
if a signal or a message is sent to the owner gate. The reasons are:

• Not unmapping causes an annoying "mapping survived"
message to appear in the log. This wastes precious log space.

Not unmapping means that the base gate context must do the
unmap. This is not as intuitive as doing it in the mapping
routine, and experience has shown that people often forget about
the unmapping or some conditional code gets added later that
skips the unmapping. A lingering mapped dynamic gate is not a
fun thing to debug.

•

GAME Reference Manual 3-19 •

•
• Chapter 3 Mappings

•

When unmapping a ceased dynamic gate in the mapping routine, always
use the "new_gh" argument to derive the gate id and the "gh" argument
for the memory pointer:

g_map(GH_GET_GID(new_gh), gh, G_UNMAP);

and not the a gid or gh derived from the gate's environment or a casted
"*gh" pointer. The reason is that GAME guarantees that "new_gh" and
"gh" are valid. "*gh" and the environment could have been changed by
another gate or thread or could even be referencing memory not owned.

Often, the only reason for mapping a dynamic gate is to restart that gate
if it dies. This is the case when an IP NWIF gate maps its forwarding
cache gate, as shown here. Note that there will be no return from the
G UNMAP call!

void

ip_nwif_cache_map(gh, new_gh)

GH *gh;

GH new_gh;

GID gid;

GID old_gid;

NWIF_ENV *nwif_env;

if (GH_BECAME_LOCAL (*gh, new_gh))

*gh = new_gh;

}

else if (GH_CEASED_LOCAL (*gh, new_gh))

*gh = new_gh;

nwif_env = (NWIF_ENV *) g_env ();

nwif_env->fft = NIL (TBL); /* No more FFT */
nwif_env->cfg_rec->wfipinterfaceCacheNetworks = O;

old_gid = GH_GET_GID (new_gh);

gid = g_req (G_REQ_NEW_GID, ip_nwif_rt_cache_init, nwif_env,
G_SIG_INI) ;

g_map (gid, &nwif_env->cache_gh, ip_nwif_cache_map);

• 3-20 GAME Reference Manual

•
Chapter 3 Mappings •

/* un-map the mapping that got us here ! */
g_map (old_gid, &nwif_env->cache_gh, G_UNMAP);

} /* end ip_nwif_cache_map */

A non-obvious characteristic of this mapping routine: When the g_ map()
call is made to map the new gid, the current mapping gate context pends
and another is immediately scheduled to process the first activation for
the new gid.

BAD CODING PRACTICE ALERT: As mentioned
previously, the G_UNMAP call should use the "gh"
parameter instead of the address of the gate handle in the
environment. Using "gh" would run faster, too!

~ BAD CODING PRACTICE ALERT: This one isn't so bad!
'I There's no need for the GH_BECAME_LOCAL check. *gh

can be set unconditionally at the end of the routine.

Other dynamic gate mappings are more complicated, and the developer
often has to make the choice of sending a data signal to the base context
or deal with the multi-thread situation. The following snippet is BGP's
mapping of one of its peer gates (highly edited again). Note the use of a
non-so-ensign ensign gate (i.e., it has a real, but unused, activation
routine) to indicate that cleanup is happening for this peer. This prevents
the base context from re-starting this peer until the cleanup is finished.

void

bgp_map_peer(gh, new_gh)

GH *gh;

GH new_gh;

BGP_ENV*bgp_env; /* BGP gate's environment */

BGPN_PEER*bgpn_peer; /* BGP peer structure */

BGP_CLEANUP*bgp_cleanup;/* cleanup block */

BGP_CLEANUP*prev_cleanup;/* previous cleanup block */

BGP_CONN_WAIT*bgp_conn_wait;/* connection wait structure */

•

GAME Reference Manual 3-21 •

•
• Chapter 3 Mappings

•

GID conn_gid; /* gate id of connection gate */

BGP_NET_INFO*net_info;

char message [128];

/* see if the connection gate died */

if (GH_CEASED_PRESENT (*gh, new_gh)

{

bgp_env= (BGP_ENV *) g_env ();

if(! (GH_IS_LOCAL(bgp_env->self_gh)))

{
/* bgp main gate has just died, unmap this mapping */

g_map (GH_GET_GID (new_gh), gh, G_UNMAP); /*does not return*/

}

bgpn_peer= RECV_GH_2_BGPN_PEER(gh);

/*
* create an "ensign" gate and structure that indicates

* we're busy cleaning this up. attach it to the bgp env

*/
bgp_cleanup = g_malloc (sizeof (BGP_CLEANUP));

bgp_cleanup->peer_key = *BGP_PEER_KEY(bgpn_peer);

bgp_cleanup->ensign_gid = g_req (G_REQ_NEW_GID, bgp_dummy_act,

0, G_NO_SIG_INI);

bgp_cleanup->next = bgp_env->bgpn_cleanup;

gp_env->bgpn_cleanup = bgp_cleanup;

bgpn_peer->flags I= PEER_IS_DOWN;

if (bgpn_peer->flags & IBGP_PEER)

{
--bgp_env->ibgp_peers;

else

--bgp_env->ebgp_peers;

if (BGP_DBG_EVENT_LOG(bgp_env, BGP_REMOVE_PEER_MAP))

g_log(BGP_REMOVE_PEER_MAP, "Down",

IP_PRINT_ADDRESS (BGP_PEER_LOCAL_IP(bgpn_peer)),

P_PRINT~ADDRESS (BGP_PEER_REMOTE_IP(bgpn_peer)),*gh);

/* prevent RIB processing by other mappings */

BGP_GET_SEMA (bgp_env->bgp_semaphore);

/* LOTS of cleanup code edited out here */

• 3-22 GAME Reference Manual

•
Chapter 3 Mappings •

conn_gid = GH_GET_GID (bgpn_peer->peer_recv_gh);

/* clean up our "cleanup" block and kill the assocated gate */

for (prev_cleanup = (BGP_CLEANUP *) (&bgp_env->bgpn_cleanup);

prev_cleanup->next != bgp_cleanup;

prev_cleanup = prev_cleanup->next)

; /* do nothing */

prev_cleanup->next = bgp_cleanup->next;

g_req (bgp_cleanup->ensign_gid, G_REQ_KILL, O,G_NO_SIG_INI);

g_mfree (bgp_cleanup);

if((bgpn_peer->flags & PEER_IS_DOWN) &&

queue_isempty(&bgpn_peer->path_queue))

{
/* no use for it - remove from the table */

if (u_delete (bgp_env->bgp_peers, (OCTET *)BGP_PEER_KEY(bgpn_peer),

(OCTET *)BGP_PEER_KEY(bgpn_peer)))

{

g_log (BGP_DEBUG_MSG, "u_delete failed");

CRASH_BGP;

/* free the semaphore (after the KILL for CR16894) */

BGP_FREE_SEMA (bgp_env->bgp_semaphore);

/* unmap this mapping */

g_map (conn_gid, gh, G_UNMAP);/* does not return*/

} /* end if not present */

/* save the gate handle */

*gh = new_gh;

/* end bgp_map_peer */

BAD CODING PRACTICE ALERT: The gate id for the
G _UN MAP should be derived from "new _gh"

BAD CODING PRACTICE ALERT: It's a good idea to zero
out pointers after their referenced memory had been freed. It
catches the bugs a lot faster. In this case, bgp _cleanup
should be set zero after the g_mfree().

GAME Reference Manual 3-23

•

•

•
• Chapter 3 Mappings

•

Also: there is really no reason for the "self _gh" check. GAME will not
schedule the owner gate of a mapping if that owner gate has been killed.

Activation Routines for Ensign/Davidian Gates

• 3-24

An ensignidavidian mapping is somewhat like a dynamic gate mapping
for the two reasons listed in the previous section. It differs in that the
mapping activation routine can only examine the FLAG bit (31) of the
gate handle to determine if the gate is "up" (allocated) or not. You usually
see this type of mapping in association with a MIB resource.

This example is the BGP gate's mapping of the davidian gate representing
the wfBgpPeerEntry object (when this mapping triggers down, it means
a new row of this table exists). When this code was written, the MIB still
used ensigns (davidians hadn't been invented yet), so the comments are
wrong.

Note that when the existing davidian dies, the MIB is queried for a the
davidian representing the new state. The new mapping is set up before
this one exits (via G_UNMAP). Again, you don't want to confuse the
old and new GIDs!

void

bgp_map_wfBgpPeerEntry_obj{gh, new_gh)

GH *gh;

GH new_gh;

BGP_ENV*bgp_env; /* ptr to BGP's environment */

OBJ_IDwfBgpPeerEntry_obj_id;/* object id of wfBgpPeerEntry */

INST_IDwfBgpPeerEntry_inst_id;/* instance id of wfBgpPeerEntry */

/* see if the ensign gate died */

if (! {GH_IS_USED {new_gh)))

bgp_env = {BGP_ENV *) g_env {);

if{! {GH_IS_LOCAL{bgp_env->self_gh)))

GAME Reference Manual

•
Chapter 3 Mappings •

/* bgp main gate has just died, unmap this mapping */
g_map (GH_GET_GID (new_gh), gh, G_UNMAP); /*does not return*/

}

/* re-bind to the object and re-map */

mib_ascii2obj (BGP_PEER_ENTRY_ASCII_ID,wfBgpPeerEntry_obj_id);

bgp_env->wfBgpPeerEntry_obj_gh =

mib_bind_obj (wfBgpPeerEntry_obj_id, PRIMARY);

g_map (bgp_env->wfBgpPeerEntry_obj_gh,

&(bgp_env->wfBgpPeerEntry_obj_gh), bgp_map_wfBgpPeerEntry_obj);

/* process all of the existing instances */

while (mib get new inst (wfBgpPeerEntry obj id,
wfBgpPeerEntry=inst_idl) - -

bgp_new_wfBgpPeerEntry_inst (bgp_env, NIL(BGP_CONN_GATE_MAP),

wfBgpPeerEntry_obj_id,

wfBgpPeerEntry_inst_id);

/* un-map this mapping */

g_map (GH_GET_GID (new_gh), gh, G_UNMAP);

} /* end if ensign gate died */

else

*gh = new_gh;

/* end else ensign gate didn't die */

} /* end bgp_map_wfBgpPeerEntry_obj */

Changing a Mapping Activation Routine.

It's not very common, but you can change the activation routine of an
existing mapping. This is done by calling g_map() with the new routine:

g_map (some_gid, &(env->some_gh), new_map_act);

BGP connection gates do this. They first map the well known TCP gate
with no action routine. If the configuration information is valid, the gate
changes the mapping to use an activation routine (whether the connection
is going active or not).

GAME Reference Manual 3-25

•

•

•••••••••••••••••••••••
• Chapter 3 Mappings

•

g_map (GID_TCP, &(bgp_conn_env->tcp_gh), G_NOACT);

if (bgp_wfBgpPeerEntry_validate (bgp_conn_env) FALSE)

/*remain disabled */

} /* end if validation failed */

/* if the entry is disabled or TCP is not active, we just hang out */

else if ((bgp_conn_env->wfBgpPeerEntry_inst->wfBgpPeerDisable

BGP_PEER_DISABLED) 11
(! (GH_IS_LOCAL(bgp_conn_env->tcp_gh)) &&

!bgp_conn_env->bgp_env->bgp_soloist) I I
(bgp_conn_env->bgp_env->bgp_soloist &&
!(GH_IS_PRESENT(bgp_conn_env->tcp_gh)))
{

/* use a real mapping routine for the TCP gate */
g_map (GID_TCP, &(bgp_conn_env->tcp_ghl, bgp_conn_map_tcp);

else

/* use a real mapping routine for the TCP gate */
g_map (GID_TCP, &(bgp_conn_env->tcp_gh), bgp_conn_map_tcp);

Soloist Mapping By the Parent

• 3-26

The gate that creates a soloist gate must map the soloist and perform
specific tasks if the soloist appears on multiple slots or if all instances of
the gate die.

GAME Reference Manual

•
Chapter 3 Mappings •

Specifically, before making the g_req() call to create a soloist, the
mapping should be done to see if the soloist exists on another slot. If so,
no attempt should be made to create the soloist. (Actually, even if you do
make an attempt, the gate won't get created because it already exists.)

If the mapping routine ever detects more than one slot bit set in the
soloist's gate handle, and if one of those bits is the local slot, the soloist
should be terminated if the local slot bit is not the lowest slot bit (leftmost)
in the gate handle.

If a mapping activation occurs where the new gate handle has no slot bits
set, it is time to start a new soloist election. The mapping routine needs
to make the g_req() call to start the new soloist. All mappings may be
doing this at the same time. The soloist election procedure will pick only
one slot to create the gate.

Here's an example (again from BGP) of how to do a soloist mapping from
the parent gate. Note that the "real" mapping activation routine sends a
message to the base RTM context. This is the routine that runs in the
base context. Also note that BGP can run in both soloist and replicant
mode (as indicated by rtm_env->bgp_soloist).

void

ip_rtm_map_chg_bgp (gh, old_gh, new_gh l

GH *gh;

GH old_gh;

GH new_gh;

RTM_ENV*rtm_env;

GH

/* RTM's environment */

temp;

char d_str[l60];

rtm env = (RTM_ENV *) g_env Cl;
if ((GH_IS_LOCAL (new_gh) l && (rtm_env->bgp_soloist))

{

/* BGP soloist gate exists on local slot */

temp= new_gh & -(G_MY_SLOT_MASK);/* Strip off my slot bits*/

if (G_MY_SLOT_MASK < (temp & GH_SLOT_MAP_MASK))

•

GAME Reference Manual 3-27 •

•
• Chapter 3 Mappings

•

/* soloist exists on another slot with a lower slot number,

* kill local soloist

*/
sprintf (d_str, "killing local BGP soloist Oxt08", new_gh);
g_log (IP_DBG_INFO_MSG, d_str);

g_req (GID_BGP, G_REQ_KILL' 0' 0);
return;

if (GH_CEASED_LOCAL (old_gh, new_gh))

/* BGP gate died locally, remove the locally authored routes */

ip_rtm_remove_bgp_routes(rtm_env);

}

if (!(GH_IS_LOCAL (new_gh)))

/* BGP gate is not present on this slot */

if (GH_IS_LOCAL rtm_env->bgp_load_gh

ip_rtm_start_bgp rtm_env) ;

else if GH_IS_LOCAL (rtm_env->bgprs_load_gh

/* BGP route server code is loaded on local slot */

g_req (GID_BGP, bgprs_init, rtm_env, G_SIG_INI);

}
}

} /* end ip_rtm_map_chg_bgp */

Just one comment here: the "temp" variable isn't really necessary. There
is no reason to remove the local slot bit to do the comparison.

In case you are curious: The routine ip_rtm_start_bgp() checks to see if
BGP is running in soloist mode. If so, and if it's running on another slot,
it is not started.

• 3-28 GAME Reference Manual

•
Chapter 3 Mappings •

A General Warning About Mappings

Change the base gate's env before calling g_map(), if you use g_env() in
the mapping. Otherwise, a mapping that fires before the g_req() that
changes the environment will get the wrong environment pointer.

•

GAME Reference Manual 3-29 •

•
• Chapter 3 Mappings

•

• 3-30 GAME Reference Manual

•

What Are Buffers Used For?

Chapter4
Buffers

Buffers can be used for communication between gates on the same slot
or different slots. For cross-slot communication, this is the only choice
(besides the limited information that a mapping conveys).

Fast Facts About Buffers

Memory on a slot is divided between what is called "local memory" and
"global memory". Local memory is used for code, stacks, allocated
memory, etc. Global memory is used exclusively for buffers.

On most platforms (including FREI, FRE2, ASN), local and global
memory is carved out from a common DRAM pool. The amounts to use
are based on configuration parameters. Once carved, however, only the
CPU can access local memory. The memory decoding scheme employed
by the backbone and link module interfaces only allows access to global
memory.

Excluding ANs and ASNs without SRAM installed, portions of each
buffer (one cache line for the buffer header and four cache lines where
the link and network headers would usually reside) are mapped to fast
SRAM memory. Access to this memory is faster than a
non-(processor-)cached DRAM access, but slower than a
(processor-)cached DRAM access. This accounts for a major portion of
the box's forwarding performance.To avoid cache coherency problems,
none of the buffer memory is cachable by the processor.

•
•

GAME Reference Manual 4-1 •

•
• Chapter 4 Buffers

•

.. 4-2

On an ARE and FRE3, local and global memory are physically separate.

The DRAM is used exclusively for local memory. Global memory is

managed by a Virtual Buffer Memory (VBM) system. With VBM,

physical memory is not statically assigned to buffers as on the FRE. VBM
uses a separate physical memory (between 1 and 7 MB) which is mapped
as needed to manage up to 32MB of virtual buffer space. The physical
memory is organized into 256 byte pages and is assigned upon a "write"

operation into a buffer.

Global Facts

• Each buffer on a slot has the same maximum size (5K on a FRE,
up to IOK on an ARE).

• Buffer memory is separate from the memory free pool.

• GAME maintains a single free buffer pool.

• Service is FCFS.

• A single gate can "own" an unlimited amount of buffers, to the
point where it can exhaust the buffer pool.

Facts That Apply Only to the FRE1/2, ASN, AN

Each slot has a fixed number of buffers.

Each buffer on a slot is exactly the same size (usually SK).

The last cache line of a buffer is set to "no access" if tags are
supported.

Facts That Apply Only to the ARE, FRE3

The free buffer pool is maintained by hardware, but the GAME
buffer primitives still work.

There are a finite number of virtual buffers. However,
availability may also be constrained by lack of physical pages.

GAME Reference Manual

Buffer Format

•
Chapter 4 Buffers •

• Reading unmapped VBM virtual space causes a fatal error.
Note that this isn't a problem on the FRE, since the physical
memory is always there. It's usually still a bug, though, since
uninitialized data is being read.

• The difference between access times of a cached DRAM access
and a buffer access on an ARE is much greater than on a FRE 1/2

Buffer format is illustrated in Figure 4-1.

[!
.--+-

'-1

Figure 4-1. Buffer Format

UNRELIABLE

next
next_l

destinarim _pt2lu11dle
aart T end -+--

MESSAGE

BODY

i===

RELIABLE

next_l

[destination gat2.handle
.--+- litart T end -+-

i._ SOUlt:P. gateh1111d&

sequmce stmqi

MJ:SSA.GE

BODY

•

GAME Reference Manual 4-3 •

•
• Chapter 4 Buffers

•

• 4-4

Format:

typedef struct BUF

struct BUF *next; /* next buffer on the list

struct BUF *next_l; /* next list's head buffer

u_int32 dest_gh; /* destination gate handle

u intl6

u intl6

} BUF;

Values:

start; /* start offset

end; /* end offset

*/
*/
*/
*/
*/

"next" is a pointer to the next buffer on the list. NIL pointer indicates the
end of list.

"next_l" is a pointer to the head of the next list in a transient buffer pool
(later).

"dest_gh" is the gate handle of the destination gate. The FLAG bit (31)
is set if the buffer transmission is reliable and cleared otherwise.

"start" is the byte offset, relative to the start of the buffer header, to the
beginning of the floating message body. Buffers sent over the backplane
must have a start offset less than 256. If reliable transmission is used, a
4-byte source gate handle and a 4-byte sequence stamp precede the
message body while the buffer is in transit. Even though the start offset
is adjusted before the buffer is delivered to the gate, the source gate handle
can still be retrieved via the g_src() call.

"end" is the byte offset of the first byte after the message body, relative
to the start of the buffer header. Another way to think about it is "end"
is start plus length.

GAME Reference Manual

•
Chapter 4 Buffers •

Considerations:

There are macros that are used to access these fields in a buffer (include/
buffer.h):

#define G_BUF_NEXT(buf) (((BUF *) (buf))->next)

#define G_BUF_NEXT_L(buf (((BUF *) (buf))->next_l)

#define G_BUF_DEST_GH(buf (((BUF *) (buf))->dest_gh)

#define G_BUF_START(buf (((BUF *) (buf))->start)

#define G_BUF_END(buf) (((BUF *) (buf)) ->end)

Normally, the message body should begin after nominal headroom space
(G_BUF_START_PKTorG_BUF_START_MSG)inordertomaximize
use of special hardware accelerators that may be available on some
versions of hardware. Specifically, on the FRE, this allows the link and
network layer headers to reside in SRAM.

Buffer Pools I Lists

Buffers change ownership very often and it is paramount to minimize the
system overhead required to track them. The scheme is based on three
buffer pools:

• A free buffer pool.

• A transient buffer pool containing buffers owned by a gate only
temporarily.

• A set of private buffer pools containing buffers owned by a gate
for a greater length of time (over multiple activations).

•

GAME Reference Manual 4-5 •

•
• Chapter 4 Buffers

•

• 4-6

The Free Buffer Pool

Buffers that are not owned by any gate are maintained in the free buffer
pool. On non-VBM systems, this is a simple linked list of buffers,
connected by the "next" pointers. On VBM systems, the free buffer pool
is maintained by VBM hardware. The same GAME calls, such a
g_ balloc() and g_ breplen(), work on both systems.

The Transient Buffer Pool

A transient buffer pool only existsfor gates that are in the active or pended
states. That is, a gate only has a transient pool if it has been activated for
buffer delivery, signal delivery, or a mapping (each mapping context has
its own transient pool). When a gate exits an activation, it must have an
empty transient pool. Otherwise, it is said to "orphan" buffers. The
punishment in this case is mild (a message is logged and the buffers freed),
but this is an indication of an error in the application - the buffer was
meant to go "somewhere". As discussed in the Mapping section, the
punishment for leaving buffers on the transient queue after exiting a
mapping activation is more severe (the gate is terminated).

Buffers can be placed into the transient buffer pool for three reasons:

• Buffers can be sent to a gate using unreliable (g_xmt,
g_xmt_im, g_fedex, g_fedex_clean) or reliable (g_fwd,
g_fwd_list, g_rpc) GAME buffer transport functions. GAME
puts these buffers onto a gate's "delivery" list (managed by
"head" and "tail" in the GATE structure). This is a linked list,
using the "next" field in the buffer header. When a gate is
activated for buffer delivery, the delivery list is transferred to the
transient pool. This simple linked list comprises the entire
transient pool and its head is passed in the "buffers" parameter
of the gate's activation routine.

GAME Reference Manual

•
Chapter 4 Buffers •

• Any GAME buffer allocation primitive (g_ balloc, g_ breplen,
g_copy) will create a separate list of buffers in the transient
pool. Note that a single buffer can constitute an entire list ifthe
primitive only returns one buffer (g_ balloc). The relationship
between this list and the activation list is covered just ahead.

• The g_ rpc() call can also return a list of buffers which are placed
in the transient pool.

Buffers can be removed from the transient pool via any of the following

methods:

• A bounded list of buffers can be explicitly freed via g_bfree().

• An entire list of buffers can be delivered to other gates via
g_xmt() or g_xmt_im(). If all of the buffers are going to the
same gate, g_fedex() or g_fedex_clean() can be used.

• A single buffer can be reliably delivered to one or more
instances of a gate via g_ fwd(). If a reply is needed, g_ rpc() can
be used.

• g_fwd_list() reliably delivers a list of buffers to the same
destination.

• GAME will return all of the transient pool buffers to the free
pool should a gate die in the active or pended states.

•

GAME Reference Manual 4-7 •

•
• Chapter 4 Buffers

•

• 4-8

Transient
ListPtr

Figure 4-2. Transient Pool

X }Old
Delivmy
List

Transient
List

The transient pool is managed as a linked list of linked lists. The "next"
pointer is used to form the independent linked lists. In the head buffer of
each list, the "next_l" pointer is used to link the lists together.

The order of the list oflists is "most recently acquired". For example,
suppose a gate is activated with I 0 buffers on its activation list. The
transient pool pointer points to the head buffer on that list. That buffer's
"next_l" is NIL and "next" points to the 2nd buffer in the list. The gate
then does a g_ balloc(). Now, the transient pool pointer points to the newly
allocated buffer. That buffer's "next" pointer is NIL, and its "next_l"
points to the head of the activation list.

GAME Reference Manual

•
Chapter 4 Buffers •

GAME functions that remove buffers from the transient pool maintain
the integrity of the transient pool. To continue the above example,
suppose the gate now frees the first buffer on the activation list. Here's
what happens: The "next" pointer of the buffer being freed is used to find
the next (2nd) buffer in that list, which becomes the new head of the list.
The "next_l" pointer from the freed buffer is written into the new head's
"next_l" pointer (which, in this case, is NIL). Finally, the other list head
buffer (the one acquired via g_balloc) is modified so that its "next_l"
pointer points to the the new head of the initial list.

IMPORTANT: A gate must never directly modify the "next"
or "next_l" pointers in a buffer. Only GAME functions can
do this. Otherwise, the transient pool may become corrupted.
g_ bmove() can be used to re-arrange the order of buffers
within the transient pool.

During an activation of a gate, lists in the transient pool are usually
traversed via one of the following methods:

Each buffer is processed and modified but remains linked in its
place in the transient pool. This is a normal case for the data
path forwarding code and results in the best performance,
assuming that the gate does not pend. The list of buffers, either
delivered or allocated, is batch-processed first and then
wholesale-shipped to other gates using g_xmt(), g_xmt_im(), or
g_ fedexL clean]().

Each buffer is reliably transmitted elsewhere (an involved
process during which the ownership of the buffer may change
several times) via g_ fwd() or g_ rpc(). This process begins with
the buffer's removal from the transient pool. At this point, the
gate CANNOT reference that buffer any more (this is true for all
of the buffer transport functions). A gate must obtain the next
buffer pointer (G_BUF _NEXT) before submitting the prior
buffer for transmission.

•

GAME Reference Manual 4-9 •

•
• Chapter 4 Buffers

•

• 4-10

g_repeatO removes the current head buffer from the the list, puts
it in its own list, and spoon-feeds it into an application-supplied
routine. IBIS METIIOD IS HIGHLY DISCOURAGED!! It is
much more effiencient for a gate to walk the buffer list itself
(method2).

Finally, the transient buffer pool structure is internal to GAME and must
not be manipulated by an application. It is explained in some detail here
so that application writers understand the underlying structure and also
as an aid to debugging.

Application writers must ignore the "next_l" chaining aspects of the
transient pool in their code and simply deal with the independent buffer
lists. The GAME system calls will maintain the appropriate chaining on
behalf on an application. This implies that applications should only walk
buffers lists via the "next" pointer. The following are the GOLDEN
RULES of buffer usage:

Never write a "next" pointer.

• Never read or write a "next_l" pointer.

Private Buffer Pools

As mentioned previously, a gate cannot have any buffers in its transient
pool when it exits an activation. However, there are some cases where a
gate must take ownership of buffers over multiple activations. For
example, a device driver must hold on to buffers that are assigned to the
driver rings (either waiting for transmission or available for receiving
incoming frames). For this reason, GAME provides private buffer pools
to each gate.

GAME Reference Manual

•
Chapter 4 Buffers •

Each gate has, by default, two private pools (designed for the driver
gates). Additional private pools can be allocated. Buffers can be
transferred from the transient pool to either private pool and vice versa.
No other buffer manipulation can occur when a buffer is on a private pool!
For example, you cannot g_bfree() a buffer unless you first move it onto
the transient pool. You cannot move buffers directly between private
pools.

Single Linked Private Pool

The private pools are usually organized as simple linked lists. (Private
pool #1 can be organized into a doubly-linked list. See "Doubly-Linked
Private Pool later in this chapter.) Buffers moved from the transient pool
to a private pool are put at the end of the list. Buffers can be retrieved
back into the transient pool from anywhere in the private pool list (the
head and tail of the desired private pool buffers are specified). Each
retrieval creates a new list in the transient pool.

The functions that manipulate the default private pools are:

g_bsave (head, tail)save a list of buffers from the transient pool
to the end of private pool 1

g_bsave2 (head, tail)save a list of buffers from the transient pool
to the end of private pool 2

g_ brestore (head, tail) restore a list of buffers from private pool
1 to the transient pool

g_brestore2 (head, tail)restore a list of buffers from private pool
2 to the transient pool

• g_ bhead () returns the head of private pool 1

g_ btail () returns the tail of private pool 1

g_ bhead2 ()returns the head of private pool 2

g_ btail2 ()returns the tail of private pool 2

The g_ bheadX() functions do not remove the head buffer from the private
pool. Ditto for g_ btai!X(). They just return the address of the application
buffer.

•

GAME Reference Manual 4-11 •

•
• Chapter 4 Buffers

•

• 4-12

The following functions allocate and manipulate additional private pools.
Up to 32 pools (an arbitrary maximum) can be allocated.

• g_npools (num)- allocate "nurn" private pools. "nurn" indicates
the _total_ number of private pools needed, not the increment
beyond the first two. "num" must be greater than 2.

• g_bsaven (n, head, tail)- save a list of buffers from the transient
pool to the end of private pool "n"

• g_brestoren (n, head, tail) - restore a list of buffers from private
pool "n" to the transient pool

• g_bheadn (n)- returns the head of private pool "n"

• g_btailn (n) - returns the tail of private pool "n"

A gate can only call g_ npools() once, so it must determine the maximum
number of pools it needs for its entire life before making the call. A gate
can call g_npools() even after it has saved buffers on pools 1and2 (this
was a error condition once upon a time), but this is not recommended.

After calling g_npools(), the pools numbered 1and2 are the first two
private pools, usually accessed by g_bsave() and g_bsave2(). The
following function calls are equivalent (but only after calling g_npools!):

g bsave (...) g_bsaven (1, ...)

g bsave2 (...) g bsaven (2, ...)
g_brestore (...) g brestoren (1, ...)
g_brestore2(...) g brestoren (2, ...)
g bhead() g bheadn (1)

g bhead2 () g_bheadn (2)

g btail() g btailn (1)

g btail2 () g btailn (2)

GAME Reference Manual

•
Chapter 4 Buffers •

Doubly Linked Private Pool

Private pool # 1 can be organized into a list that is doubly-linked instead
ofa single-linked list. This was done to support the Tsunami A TM driver.
This driver uses private pool 1 to save buffers on the driver receive ring.
Unlike other drivers, data reception can complete out-of-order in respect
to the buffer list. Because of this, a method was needed to remove buffers
from the free pool without requiring a walk of the list (performance!).
So, the following two calls were invented:

• g_bsave_dbl (head, tail) - save a list of buffers from the
transient pool to the end of private pool 1, doubly-linked

• g_brestore_dbl (head, tail) - restore a list of doubly-linked
buffers from private pool 1 to the transient pool

The back-link of buffers on the pool is done using the "next_l" pointer.
This is hidden within the function call code, however. The caller MUST
NOT reference the "next_l" pointer of the buffers for any reason.

NOTE: Manipulations of private pool 1 must be exclusively
single-linked or double-linked. If g_ bsave _dbl() is used,
g_ brestore _dbl() is the only other call that can be used to
manipulate private pool I (g_ bsave, g_ brestore, g_ bsaven, and
g_ brestoren CANNOT be used)

The Tsunami driver is the only user of this feature.

Buffer Allocation

A gate can allocate buffers via the g_balloc(), g_breplen(), and g_copy()
function calls.

g_balloc() Function Call

Call:

BUF *g_balloc {u_int32 tmo}

•

GAME Reference Manual 4-13 •

•
e Chapter 4 Buffers

•

• 4-14

Values:

"tmo" is the amount of time to wait for a buffer, if none are available. The
units are roughly milliseconds (1/1024). The actual time used for timer
expiration is not necessarily what was entered and usually is longer. The
FREI, FRE2, ASN, ACE25, ACE32, AFN, and ARE round this time up
to multiples of 16 ms. The AN and the ARN round this time up to
multiples of 64ms. These macros are available for use in setting "tmo":

G_TMO_SECONDS (sec) yields a value representing "sec"
seconds

G_TMO_DEFAULT yields 1/2 second

G _NO_ WAIT yields a zero

If "tmo" is setto G _NO_ WAIT, g_ balloc() will not wait for a buffer when
none are available.

Return Value:

The return value is a pointer to a single buffer on its own list in the transient
pool. NIL(BUF) is returned if no buffer could be allocated. YOU MUST
CHECK FOR THIS CONDITION AFTER ALL CALLS TO g_ balloc()!

The caller cannot assume anything about the contents of the returned
buff er or its start and end offsets.

g_breplen Function Call

Call:

u int32 g_breplen (u_int32 num, BUF **head, BUF **tail)

Values:

"num" is the number of buffers desired.

"head" is a a pointer to a location where the head pointer of the returned
buffer list can be written.

GAME Reference Manual

•
Chapter 4 Buffers •

"tail" is a pointer to a location where the tail pointer of the returned buffer
list can be written.

Return Value:

The return value is the number of buffers actually allocated. Unlike
g_ balloc(), there is no way to wait for additional buffers ifless than "num"
are available. If the return value is not zero, the list of buffers resides on
it's own list in the transient pool.

g_copy() Function Call

Call:

BUF *g_copy (BUF *buf)

Values:

"buf' is a pointer to a buffer to be copied. This buffer must reside in the
caller's transient pool or in a private pool.

Return Values:

The return value is a pointer to a single buffer on its own list in the transient
pool. The start and end offsets match those in "buf', and the contents of
the message body (between the offsets) matches "buf'. Nothing else from
the buffer is copied (specifically, "next", "next_l", and the gate handle
are NOT copied).

NIL(BUF) is returned if no buffer could be allocated. YOU MUST
CHCK FOR THIS CONDITION AFTER ALL CALLS TO g_copy()!

g_copy() provides no provision for waiting for a buffer.

Always check for a NIL return value from g_balloc() and
g_copy()! This is a common mistake. Code that does not
check for NIL has been released - and it crashes due to an
invalid memory reference when the buffer supply is low!

•

GAME Reference Manual 4-15 •

•
• Chapter 4 Buffers

•

Buffer Manipulation

• 4-16

Besides those discussed previously for the buffer headers, there are some
other useful macros and functions for buffer manipulation (include/
buffer.h).

Macros

(type *) G BUF IN!

{type *) G BUF PDU

(BUF *buf, type)

(BUF *buf, type)

(char *) G_BUF_PDU_START (BUF *buf)

(char *) G_BUF_PDU_END (BUF *buf)

(int) G_BUF_PDU_SIZE (BUF *buf)

"buf'' is the pointer to the buffer.

"type" is the C data type that will be held in the buffer.

G_BUF _INI is used by a gate that creates a message in a buffer. The
macro sets the start offset of "buf'' to G _ BUF _ST ART_ MSG, sets the end
according to the structure size, and returns a casted pointer to the structure
within the buffer.

G _ BUF _PDU is used by a gate that is reading a buffer that contains a
message. The macro can only act on a previously initialized buffer. It
returns a casted pointer to the structure within the buffer.

G_BUF _PDU_START also acts on a previously initialized buffer. It
returns a simple char pointer to the data within the buffer. This is used
when the buffer contains a data stream rather than a structure.

G _ BUF _PDU _END returns a simple char pointer to the space following
the data within the buffer.

G_BUF _PDU_SIZE returns the number of bytes of data in the buffer, as
indicated by the start and end offsets.

GAME Reference Manual

•

•
Chapter 4 Buffers •

Primitives

The G _ BUF _MAX_ END and g_ blen() primitives can be used to
determine the amount of data that can be written into a buffer.

G BUF _MAX_ END returns the maximum G _ BUF _END value that can
be used for buffers that is guaranteed to work for delivery to any other
slot in the machine. Currently this is 2000, except for the AN and ARN
(1776).

g_ blen() returns the maximum G _ BUF _END value that can be used on
the local slot. Note that if a buffer is filled to this size, sent to another
slot, and that slot has a smaller buffer size, the buffer will not be delivered.
g_blen() returns slightly less than SK on a FRE.

g_ blen() returns SK as the buffer size on an ARE. This is a hack which
alows AREs to talk with FREs. ARE buffers are created at 1 OK ecause
of ATM, but most applications can ignore that possibility.

Freeing Buffers

Buffers can be freed in three different ways:

A bounded list of buffers in the transient pool can be explicitly
freed via g_ bfree().

Buffers given to a reliable or unreliable transmission function
will be freed if the buffer's gate handle contains zero.

GAME will return all of a gate's buffers to the free pool should a
gate die in the active or pended states.

Using g_bfree()

Call:

void g_bfree (BUF *head, BUF *tail)

•

GAME Reference Manual 4-17 •

•
• Chapter 4 Buffers

•

• 4-18

Values:

"head" is a pointer to the first buffer a the list in the transient pool to be
freed.

"tail" is a pointer to the last buffer in the list to be freed. This must be
on the same list in the transient pool as "head" and must follow "head"in
that list .

..,,, Note that head can equal tail, freeing exactly one buffer.

Any pointers referencing the free buffers should be modified. If no more
buffers exist on the original list, the pointer(s) should be set to zero. If
buffers exist after tail, the pointer to the buffer after tail must be saved
before g_ bfree() is called.

Gate Handle Contains Zero

Call:

G_BUF_DEST_GH {buf) O;

Considerations:

The only case where this makes sense is when a gate processes an entire
list of buffers without pending. In this case, the gate sets the gate handles
to real values or zero and uses g_ xmt() or g_ xmt_im() to deliver the list.

Dying Gate

GAME will return all of a gate's buffers to the free pool should a gate die in
the active or pended states. Killing a gate is the most drastic way to free its
buffers.

GAME Reference Manual

•
Chapter 4 Buffers •

Moving Buffers Around (g_bmove)

To move one or more buffers into a specific location within a transient
pool list, use g_bmove().

Call:

void g_bmove (BUF *ins, BUF *head, BUF *tail)

Values:

"ins" is a pointer to a buffer in a transient pool list that serves as the
insertion point. The buffers are inserted after this buffer.

"head" is a pointer to the first of a list of buffers to be moved.

"tail" is a pointer to the last of a list of buffers to be moved.

"head" and "tail" obviously must belong to the same list within the
transient pool. "ins" cannot be "head", "tail" or any buffer in between.

Considerations:

GAME will take the list of buffers, remove it from its current place in the
transient pool, and splice it into the list that "ins" belongs to, directly after
"ins". If "ins" is NIL, head and tail form a new list in the transient pool.

Removing/Adding Buffers From GAME

This feature is quite dangerous and not something that you will commonly
use, unless you do platform development.

It is possible to remove buffers from a gate's transient pool, effectively
disconnecting them from GAME completely. Similarly, you can pull into
the transient pool buffers that do not belong to GAME. This feature exists
because some hardware, such as the ARE A TMizer, needs to take
complete control over the buffers it is using.

•

GAME Reference Manual 4-19 •

•
• Chapter 4 Buffers

•

Removing Buffers From GAME

Call:

void g_export_bufs (BUF *buf_list)

Values:

"buf_list" is a pointer to a list of buffers on the transient pool.

Considerations:

GAME will remove the indicated list from the transient pool and leave
the buffers in an "unowned" condition. The caller usually delivers the
buffers to another piece of hardware.

Adding Buffers To GAME

Call:

void g_import_bufs (BUF *buf_list)

Values:

"buf _list" is a pointer to an unowned list of buffers.

Considerations:

GAME will put the owned buffers into the transient pool, creating its own
list. The caller usually gets these buffers from another piece of hardware.

Performance Tips

• 4-20

Across all platforms, accesses to buffer memory is more expensive than
accesses to DRAM locations that are cached by the local processor.
Therefore, one should always follow the rule "read once, write once"
when it comes to data in a buffer.

GAME Reference Manual

•
Chapter 4 Buffers •

This includes the buffer header structure BUF, and the macros that
reference it. A common bad practice is to continually reference the start
and end offsets via the G_BUF PDU SIZE macro. Instead, the value
should be cached in a stack variable.

A code strip may need to add data to a buffer a little bit at a time. An
example would be a protocol like RSVP, which builds a message out of
multiple "objects". A bad way to code this would be to set the end offset
after adding each object and then reading it again when adding the next
object:

/* add object 1 */

objectl = (OBJECTl *) G_BUF PDU_END (buf);

G_BUF_END (buf) = G_BUF_END (buf) + sizeof (OBJECTl);

/* add object 2 */

object2 = (OBJECT2 *) G BUF PDU END (buf);

G BUF_END (buf)

/* etc ... */

(u_int32) object2) + sizeof (OBJECT2);

The problem here is that we are constantly reading and writing into
memory that is slower than cached DRAM. A better way to code this
would be:

char *local_buf_end;

local buf end (char *) /* end of header */

/* add object 1 */
objectl = (OBJECTl *) local_buf_end;

local buf end ((char *) objectl) + sizeof (OBJECTl);

/* add object 2 */

•

GAME Reference Manual 4-21 •

•
• Chapter 4 Buffers

•

Debug Tips

object2 (OBJECT2 *) local_buf_end;

local_buf_end = ((char*) object2) + sizeof (OBJECT2);

/*etc ... after all objects are added: */

G_BUF_END (buf) = local_buf_end - ((char*) buf);

This way, we meet the "read once, write once" criteria.

debug krnl Command

The 'debug krnl' command provides a few settings ofuse for debug buffer
problems (note that the "debug" module must be loaded). The use of
"debug krnl" is discussed in file:/rtel/harpoon/doc/game/html/
game_ debug.html.

buf_chk

buf_chk verifies buffers are valid, on the same list and owned by the
caller. Applicable to g_bfree(), g_bmove(), g_bsave(), g_bsave2(),
g_bsaven().

buf_pool

buf_pool verifies private pool is valid and the head and tail arguments to
the restore syscalls are for buffers actually in the private pool. Applicable
to g_ brestore(), g_ brestore2(), g_ brestoren().

all_buf

all_buf is the combination ofbuf_chk(), buf_pool(), buf_size(),
buf_xmt(). The latter two settings are discussed in the Inter-Gate
Communication section.

• 4-22 GAME Reference Manual

•
Chapter 4 Buffers •

Dumping Buffer Contents

The contents of a buffer can be dumped to the event log via the
buf_dump() call:

Call:

void buf_dump (BUF *buf)

Values:

"but" is a pointer to the buffer to be dumped to the event log.

Considerations:

The buffer headers and the first 64 bytes of data (beginning at the start
offset) are dumped, in hex, to the log. A checksum of the buffer is also
done and displayed.

This call is useful for debugging cases where a gate receives a buffer that
it doesn't expect.

Debugging Orphaned Buffers

An orphaned buffer occurs because a GA TE completes execution and
there are still buffers on its Transient Buffer List. Now that I have given
you the pure technical reason, let me explain what it means. When a GA TE
is scheduled to run because something has sent a buffer list to it, the GA TE
must do one or more of the following before it completes execution.

Free the buffer(s)

Put the buffer(s) on one or more of its private buffer lists

Send the buffer to some other gate

If it doesn't do one of the above to EVERY buffer it has received before
it completes execution, then an orphan buffer error occurs.

•

GAME Reference Manual 4-23 •

•
• Chapter 4 Buffers

•

• 4-24

Now WHY would this happen? There are several possible reasons.

• The gate received buffers and it was not designed to process
them

The gate received a buffer that it did not recognize

• The gate received a buffer that it recognized, but there is a bug
in the code so it lost it.

The first two reasons indicate that there is a bug in the sending gate. The
third reason indicates that there is a bug in the receiving gate.

How do you determine which gate is the problem? This involves
experience with the operation of the router and knowledge of the code
involved. I'll use your buffer as an example.

The first thing to do is look at the buffer header. This is always the first
piece ofinformation displayed in the log. The format of the buffer header
is as follows

u int32 *next - Pointer to next buffer on list

u int32 *next 1 - Pointer to next buffer list

u_int32 dest_gh - Gate handle that buffer is destined for

u intl6 start Byte off set from beginning of packet
where data starts

u_intl6 end - Byte offset from beginning of packet
where new data would go

The buffer dump in the log begins with the address of the buffer and then
dumps the buffer header.

buf=Ox8022e800 - OxOOOOOOOO OxOOOOOOOO Ox000982af Ox009000cc
Ox60000052

In this example, the buffer is located at address Ox8022e800. The buffer
header values are:

GAME Reference Manual

•
Chapter 4 Buffers •

next oxoooooooo
next 1 OxOOOOOOOO
dest_gh Ox000982af
start Ox0090
end OxOOcc

The destination gate id (not handle) is Ox 182af. The leading bit that makes
the one a 9 is actually part of the "slot mask" field and indicates that the
destination slot is 12. Thats good because that is the slot that is reporting
the error. The log messages also indicate that the gate that last had the
buff er was Ox 182af. This is also good because that is what the dest_gh
field told us.

What we have right now is a buffer that was orphaned by the gate that it
was purposely sent to. The question is "who is at fault?". Tho determine
that, we need to look at what this gate is supposed to do with the buffers.
In order to find that out, we need to look up the address of the code that
the gate executes when it comes to life.

Where do we find the address of the code? It is in the log. The log message

Scheduler exited due to orphaned buffer
Last gate gid = Oxl82af @ Ox316a59ae buf=Ox8022e800

tells us that the buffer at address Ox8022e800 was orphaned by gate
Ox 182af while running the code at location Ox316a59ae.

So where do we find out what code this is connected with? You have to
look at the loadmap or sometimes the code logs a message if it receives
a buffer it does not like. This message is

ip_ft_proxy_act received an unexpected buffer

Knowing this, we can look at the function ip _ft _proxy_ act and see how
it handles buffers. The code for this function looks like the following:

•

GAME Reference Manual 4-25 •

•
• Chapter 4 Buffers

•

• 4-26

void
ip_ft_proxy_act(env, buf, signal)

void *env;
BUF *buf;
SIG signal;

if (buf) {
g_log(IP_UNEXPECTED_BUFFER_MSG,"ip_ft_proxy_act");
buf_dump (buf);

}
else { /* Unexpected signal */

g_log(IP_UNEXPECTED_SIGNAL_MSG,"ip_ft_proxy_act");
CRASH(IP_CRASH);

/* End of function ip_ft_proxy_act */

As you can see, this code was never designed to receive buffers at all so
it falls under reason I. This means that the sender of the buffer was at
fault. The likely problem is that the sender has a stale gate handle saved
away. The gate handle used to be something that the sender sent buffers
to but that gate died. The sender however did not update the info about
where to send buffers. Eventually, the dead gate handle was reused for
something else. That new gate started receiving buffers and orphaned
them.

So how do you find out who the sender was? That's the tough part. There
are two kinds of buffer movements in the router "Reliable" and
"Unreliable". If a buffer is tranmitted as reliable, there will be a header
just before the data in the buffer that indicates who sent the buffer. The
left most bit of the dest_gh will also be a "I". In this case, the left most
bit of dest_gh is a "O" so it is not reliable. At this point, the only thing
you can do is draw on experience and see if the data in the buffer means
anything to you. To find where the data starts, you take the address of the
buffer and add the start field to it in this example, the result is

Ox8022e890

If you go back to the log, you will see that the buffer dump contains this
data:

GAME Reference Manual

•
Chapter 4 Buffers •

Ox8022e880 - Ox02608c2d Ox3b90ab00 Ox8c2d4166 Ox08004500
Ox8022e890 - Ox4500003c Oxf4db0000 Oxfb013a4d Ox8b33bf1d
Ox8022e8a0 - Ox8b33bb13 Ox0800ebe4 Oxb433011b Ox2f5f0ac7
Ox8022e8b0 - Ox0006lca0 OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO
Ox8022e8c0 - OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO Oxd4f71500
Ox8022e8d0 - Ox76be7f00 Ox7a3db4ld Oxb8la0260 Ox8c2d6f Od
Ox8022e8e0 - Oxf9516f0d Oxf9516f0d Oxf9516f0d Oxf9516f0d
Ox8022e8f0 - OxOOOOOOOO Ox00000017 Ox00020000 Ox0003000a
Ox8022e900 - Ox0001400b Ox2f536alf OxOOOOOOOa Ox00000002
Ox8022e910 - Ox00000001 Ox00000001 Ox90000000 Ox10000000
Ox8022e920 - Oxl000495d Oxa85c0310 Ox0000e2c1 Ox61ca0376
Ox8022e930 - Ox804fa8b0 Ox0004e00b OxOOOOOOOO OxOOOOOOOO
Ox8022e940 - OxOOOOOOOO Ox804fa8c0 OxOOOOOOOO OxOOOOOOOO
Ox8022e950 - OxOOOOOOOO Oxc5efc68e Ox804fa8d0 Oxc391449f
Ox8022e960 - Oxa2a55b1b Ox9d5c823e Oxcl6f10c8 Ox804fa8e0
Ox8022e970 - OxOeSOOOOO Ox012c0000 OxOOOlOOOO Ox012cOOOO

The reason the buffer dump starts 16 bytes in front of the data is so that
you can see the reliable message header ifthere is one. If you look at this
data, it looks like it could be an IP header since it starts with Ox4500. If
you go on that premise and try to decode the rest of the data, you see that
it looks like the following.

Version - 4
IHL - 5
Type of Service - 00
Total Length - 3c
Id - f 4db
Flag/Fragment - 0000
Time to live - fb
Protocol - 01 (ICMP)
Header Checksum - 3ad4
Source Address - 8b33bf1d (139.51.191.29)
Destination Address - 8b33bbl3 (139.51.187.19)

So far it looks like it is IP. Since it indicates it is an ICMP message, we
can decode the rest of the data based on the ICMP header and see what
happens.

Type - 08 (ICMP Echo Request)
Code - 00
Checksum - ebe4
Identifier - b433
Sequence Number - Ollb
Data - The rest of the data until you reach the end offset

•

GAME Reference Manual 4-27 •

•

• Chapter 4 Buffers

•

• 4-28

So this looks like a ping request going from 139.51.191.29 to
139.51.187.19. Since the packet is being sent to the wrong place, there is
stale gate handle information on the slot handling the source address
(139 .51.191.29). If you bounce the interface handling the destination
address (139.51.187.19), this may cause IP to invalidate the info on this
station on the other slots. IfIP does this (and it should), then an ARP
should be sent out to the destination and then connectivity will be restored
and the orphan errors should stop.

If you take this info back to the router that is having the problem, you can
easily verify whether the decode of the packet is correct by seeing if the
IP addresses are valid.

Basically, decoding orphan buffers can be difficult. Getting this error
ALWAYS means there is a bug. Finding the bug is the problem. It always
helps if a reproducible case is available.

One final note: In the recent past, IP has had several changes made to fix
stale gate handle problems. You should check with Sustaining
Management about the availability of those fixes.

GAME Reference Manual

•
Chapters

Inter-Gate Communication

•
•

Types of Inter-Gate Communication

Buffer Delivery

There are three types of inter-gate communication in GAME:

1. Buffer delivery: Works locally and across slots.

2. Signals: Works locally only. Can be accompanied by memory
transfer (G_SIG_DATA).

3. Mappings: Works locally and across slots. A gate can be killed
to indicate an event.

GAME provides seven functions that deliver buffers to other gates. Four
of these are unreliable and three provide reliability through
acknowledgment and retry mechanisms.

A few common rules regarding all buffer delivery mechanisms:

The buffer must have a valid gate handle set via
G_BUF _DEST_GH(). This can be a zero ifthe buffer is to be
freed.

The start and end offsets must be set properly to point to the first
byte of data and the byte following the last byte of data,
respectively.

On VBM systems, data must have been written to all memory
indicated by the start and end offsets.

After calling the GAME function, the calling gate no longer
owns the buffer and it must not reference it. It's a good idea to
zero out buffer pointers once a buffer is delivered in order to
surface such bugs early in the testing process.

GAME Reference Manual 5-1 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-2

Unreliable Buffer Delivery

Unreliable buffer delivery is analogous to a network datagram service.
The data will be delivered in a best-effort manner. It will most likely get
to where it has to go, but there is no guarantee. This provides a very
efficient, low overhead transfer of data. Not surprisingly, it is used to
provide datagram forwarding.

In the current BN implementation, unreliable delivery to a gate on the
same slot is actually I 00% reliable, assuming the destination gate exists.
However, there are two reasons to not rely on this:

1. There has long been discussion of implementing a "buffer
clipping" mechanism that would remove unreliable buffers
from gates' delivery lists when the free buffer pool empties.
However, the chance of clipping ever getting implemented is
almost nil.

2. On a VBM system, there is the possibility of dropping a
unreliable buffer between gates on the same slot. If the sending
gate allocates and writes to a buffer, there is a possibility of
running out of physical buffer space and acquiring a
wastebasket page (more on this later- see g_fedex_clean).
When this happens, the buffer is dropped when delivered.

The format of a message in a buffer must be agreed upon by the sender
and the receiver (i.e., located in a * .h file). GAME knows nothing about
the data contents, other than its size.

g_xmt() - Unreliable Delivery of a List of Buffers

Call:

void g_xmt {BUF *buf_list)

Values:

"buf _list" is the pointer to the head ofa list in the transient pool (i.e.,linked
by the "next" pointers).

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

Considerations:

Every buffer in the list will be processed by GAME (i.e., until it gets to
a NIL "next" pointer). GAME will deliver each buffer according to the
gate handle in the buffer. An individual gate handle can indicate zero,
one, or multiple gates. If the GH is zero, GAME merely frees the buffer.
If one slot bit is set, the buffer goes to exactly one gate instance. If multiple
slot bits are set, the buffer goes to the instances on the indicated slots.
GAME will silently disregard any request to send a buffer to a gate
instance that does not exist.

g_ xmt() is intended to be used when the sending gate is transmitting
buffers to many different destinations (e.g., L2 or L3 forwarding code).
If all of the buffers on the list will always have the same gate handle,
g_ xmt() can be used, but g_ fedex() is much more efficient.

Here is a very edited version of the ip _ xmit() function. This gate receives
packets from IP applications on the router and transmits them out the
appropriate interface. Shown here is the loop and the various places that
the gate handle can be set in the packet. Finally, the entire list is delivered
viag_xmt()

FOR_EACH_BUF (rx_pkt, buflist)

rx_pkt->dest_gh O;

rx_pkt->dest_gh ((GH_SLOT MAP MASK &

dest_nwif->nwif_map.gh) GID_IP_XMIT);

rx_pkt->dest_gh O;

rx_pkt->dest_gh rtm_env->mp_gh;

rx_pkt->dest_gh rtm_env->cache_gh;

ip_xmit_final_considerations(dest_nwif, fwd_entry, dest_gh,
rx_pkt,

•

GAME Reference Manual 5-3 •

•
e Chapter 5 Inter-Gate Communication

•

• 5-4

rtm_env);

/* end for each buf in buflist */

/* Send it on it's way */

g xmt (buflist);

...,-..,. The macro G_BUF_DEST_GH (rx_pkt) should be used instead of
~ referencing rx_pkt->dest_gh directly.

g_fedex() - Efficient Unreliable Delivery to One Destination

Call:

void g fedex (GH dest_gh, BUF *head, BUF *tail)

Values:

"dest_gh" is the destination gate handle for all buffers in the list
represented by "head" and "tail".

"head" is the head of a list of buffers in the transient pool.

. "tail" is the tail of a list of buffers in the transient pool.

Considerations:

Fedex should be used when all of the buffers in a list are going to the
same destination gate. The dest_gh parameter must exactly match the
G H in every buffer in the list (caveat below). This allows GAME to avoid
a list walk and deliver the buffers in the most efficient manner.

Don't call g_fedex() with the FLAG bit set in the GH. It will call g_xmt()
to remove the FLAG bit in the buffers, which requires a buffer walk.

Don't call g_fedex() with multiple slot bits set in the GH. Fedex can't
deliver local and remote copies, so it punts the multicast scenario entirely.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

Don't call g_ fedex() with a zero gate handle. It's much more efficient to
just call g_ bfree().

This example is from the sync (mk50) driver's receive interrupt
processing. Buffers have been assigned to the driver receive ring, and
now some of them contain received packets. Most of these will be
delivered to the DP decaps gate forthe circuit (some get processed locally
- details left out for brevity).

for (pkt=head,tail=NIL(BUF); pkt;)

/* if current desc is owned by the MKSO, stop! */
if ((data= rd->addr) & MK5025 OWN) {

/* AND this is the 1st packet, spurious int, bag
out! *I

if (!tail) {
head= NIL(BUF);

break;

G_BUF_DEST_GH(pkt) = env->decaps_gh & - GH_MSG_FLAG;

/* make tail previous pkt, get next pkt */
tail=pkt;
pkt=G_BUF_NEXT(pkt);

/* end of for RINT loop */

/* if we have a valid list to forward */
if (head) {

/* restore buffers to transient pool for delivery */
g brestore(head, tail);

g_fedex(env->decaps_gh & - GH_MSG_FLAG, head, tail);

•

GAME Reference Manual 5-5 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-6

A g_ fedexO trick:

If you have a list of buffers with various gate handles, none of which
contain the local slot bit, you can trick g_ fedex() into delivering them for
you. If the "dest_gh" parameter is set with a single slot bit for another
slot, GAME simply tacks the list onto the backbone transmit queue
(g_ xmt() would do a list walk). The receiving slots parcel out the buffers
to the proper gates, and have no clue whether the original sender used
g_xmt() or g_fedex() (nor do they care). This can be a big win for
forwarding code in a multi-slot box where a slot contains a single interface
or a small percentage of the interfaces on the entire router.

An example of this is contained in the IP forwarding code. The
destinations GHs of all packets are 'or'ed together. If all of the packets
are going to a remote slot, g_fedex() (actually, g_fedex_clean(); see next
section) is used.

dest_gh = fedex_remote = O;

for (next_buf

next_buf;

buf start

start buf, buf_start = start_buf->start;

next_start, fedex_remote I= dest_gh)

(dest_gh gets set to current buffer's gh)

/*end for ... * I

/*
* If all buffers in the list are destined for a remote

slot or

* are being freed g_fedex can be called for performance
gain

*/

if (GH_IS_LOCAL (fedex remote))

g xmt (buflist);

else

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

dest_gh = GH_SET_LOCAL(O);

dest_gh <<= l;

if ((int) dest_gh < 0)

dest_gh >>= 2;

g_fedex_clean (dest_gh, buflist, cur_buf);

g_fedex_clean() - Special g_fedex() for VBM Systems

This function is a special version of g_ fedex() that provides faster delivery
on systems with Virtual Buffer Memory (VBM), such as the ARE. The
parameters are exactly the same as g_fedex(). On non-VBM systems,
g_fedex() and g_fedex_clean() are equivalent.

Since VBM allocates physical pages in 256-byte clumps, it is possible
for the owner of a buffer to write over a page boundary, requiring a new
physical page. The VBM hardware handles this, and you normally get
another page. However, if the free page pool is depleted, a "wastebasket"
(WB) page is assigned to the buffer. The owner can continue writing to
the buffer, but the writes go to the equivalent of /dev/null. Reading a WB
page is a fatal error. If you send a buffer with a WB page to another gate,
it will be dropped.

1/0 devices and the backbone check for WB pages in received buffers so
that only "good" buffers actually get delivered to gates. If a packet is
simply forwarded through the system without adding any data (adding
new link level headers is OK, as that page is real), that buffer can never
acquire a WB page.

When using g_ fedex() on a VBM system, GAME has to check each buffer
to ensure that no WB pages are present. g_ fedex _clean() skips this check
and avoids walking the buffer list.

g_fedex _clean() cannot be used if any buffers in the list have been
acquired via g_ balloc().

•

GAME Reference Manual 5-7 •

•
• Chapter 5 lnier-Gate Communication

•

• 5-8

g_xmt_im() - g_xmt() With Alias Member Ignore

Call:

void g_xmt_im (BUF *buf_list, GID im)

Values:

"buf _list" is the pointer to the head of a list in the transient pool (i.e.,
linked by the "next" pointers).

"im" is the gate id of a local member of one or more aliases.

Considerations:

This function was created to efficiently handle the case where multiple
interfaces on the box belong to the same "broadcast domain". All of the
DP encaps gates used in this domain can join a single alias. When one
interface receives a packet, and it has to broadcast it out all of the other
interfaces, it uses g_xmt_im(), setting "im" to its own encaps gate. This
way, the packet goes out all interfaces except the one it came it.

This behavior only applies to buffers in "buf _list" that contain alias gate
handles, and only if "im" is a local member of a particular alias.

Setting "im" to zero is equivalent to calling g_ xmt(). In fact, that's what
g_ xmt() does.

Here's another forwarding loop. This one is from the DP decapsulation
routine dp _ decaps _ lan _act(). Since some of the packets may be bridged,
and bridged packets can be flooded, g_ xmt_ im() is used so that the encaps
gate for the local circuit is not included in the flooding.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

/* loop for each packet */

for (rx_pkt = start; rx_pkt; rx_pkt G BUF NEXT (rx_pkt))

/* DP table lookup */

t_find (&tbl_lookup_result,lookup_tbl, tbl_ref);

G_BUF_DEST_GH (rx_pkt) = isap_temp_ptr->isap_handle;

G_BUF_DEST_GH(rx_pkt)

cc_env->sr_env->sr_fwd_isap.isap_handle;

G_BUF_DEST_GH(rx_pkt) = O;

G_BUF_DEST_GH(rx_pkt) =

cc env->sr env->sr fwd_isap.isap_handle;

G BUF DEST GH (rx_pkt) O;

G BUF DEST GH (rx_pkt) O; /* SBARBOO */

G BUF DEST GH (rx_pkt) = O;

G_BUF_DEST_GH (rx_pkt)

isap_info[lb_index] .isap_handle;

G_BUF_DEST_GH (rx_pkt) = *cc_env->flood_gh;

/* end for all packets */

/* Call the g_xmt ignore member function in case we're
flooding.

10/13/94 lp */

g_xmt_im (head, GH_GET_GID(*cc env->im_gh)) ; /* send list
to isaps

*/

GAME Reference Manual 5-9

•

•

•
• Chapter 5 Inter-Gate Communication

•

Reliable Buffer Delivery

• 5-10

~ The operation of reliable buffer delivery is quite different on
~ the new Strangelove platfonn. While the function calls

described here operate the same, the underlying details are
different. Color everything here with the phrase "on the BN".

GAME's reliable buffer delivery really means "acknowledged delivery
with retry and timeout". That is, after sending a reliable buffer
"unreliably", if no acknowledgment is received within a certain time
period, GAME will retry the transmission. After so many
retransmissions, GAME gives up and returns a failure indication to the
caller.

g_fwd() - Reliably Transmit a Buffer

Call:

GH g_fwd (GH dest_gh, BUF *buf)

Values:

"dest_gh" is the is the destination gate handle for the buffer.

"buf' is the buffer requiring reliable delivery.

Consderations:

This function reliably delivers a single buffer to one or more instances of
a gate (depending on how many bits are set in the gate handle). The gate
is put into the pended state while waiting for acknowledgments. Note that
the function pends even if delivery is to a local gate. This is so that the
callers can be ensured that they give up the CPU when they call g_fwd()
(some applications rely on this).

The function returns when a copy of the buffer has been placed on the
delivery list of every requested destination gate instance or upon failure
to reliably deliver the buffer to all instances.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

The return value is zero if all intended recipients received the buffer.
Otherwise, it contains the slot bits of the gate instances that did not
acknowledge receipt of the buffer.

For local delivery, GAME puts the buffer on the destination gate's
delivery list, calls g_idle (G_IDLE_TAIL), and returns (successfully).

For remote delivery, after sending the buffer, GAME waits roughly 1116
of a second for an acknowledgment from a destination slot. If an ACK
is received, it then repeatedly waits to collect up any other outstanding
ACKs, if the dest_gh indicated delivery to multiple slots. It then waits
about 16 seconds(!) forthe backbone to return the original buffer. If the
buffer does not come back, a PANIC occurs (this indicates a GAME bug).
In practice, this takes much less time. In fact, on the BN, the original
buffer is usually returned before the ACKs.

•

GAME Reference Manual 5-11 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-12

If all ACKs and the original buffer were received, a zero is returned to
the caller. If some ACKs were not received, the buffer is transmitted
again (only to the applicable slots) and the whole deal is repeated. After
128 failures, the error will be returned to the caller.

GAME Reference Manual

Figure 5-1. Buffer Transmission

short
ttno

short
ttno

NORMAL

fwd
ack

MSO orACKLOSS

fwd

fwd
ack

fwd

ack

EXCE>SIVE RETRANSMIT - ACK too LA1E

short
ttno

short
ttno

short
ttno

SRC SRC
GATE DRY

fwd

fwd

fwd
ack

excess
delay

CST OST
DRY GATE

•
Chapter 5 Inter-Gate Communication •

The return value of g_ fwd() MUST be examined!! Failure means that
the one or more indended receipients did not get the message. The return
value should be checked against the current mapped GH forthe receipient
gate to detect a slot-down event.

Some other details:

If game knows a slot is down or that an instance of a gate does not exist
on that slot, or if it discovers one of these situations after some amount
of retrying, it will immediately mark that slot as failed and will not do
any further transmissions/retries.

In a situation where a remote gate instance goes down at the same time
a g_ fwd() is being attempted, there is a race condition between the
following events:

The return of the g_fwd() indicating a failure.

The local gate's mapping activation for that gate.

In other words, if the calling gate maintains a mapping for the gate it is
sending to (which it should_), it may receive a g_fwd() failure before it
learns of the destination gate's untimely death.

This example is from the IP code that sends routing information changes
to remote slots. Having this information synchronized across slots is very
important. If the operation fails, IP terminates itself. Notice that it takes
the current RTM_UPDATE gate handle (up_gh) into account.

•

GAME Reference Manual 5-13 •

•
• Chapter S Inter-Gate Communication

•

• 5-14

failed_slots = g_fwd (dest_slots

rtm_env->rtm_buf);

GID_IP_RTM_UPDATE,

/* If somebody didn't get the message, CRASH! */
if (failed_slots & dest_slots & rtm_env->up_gh)

g_log (IP_RTM_G_FWD_FAILURE, (dest_slots &
rtm_env->up_gh),

failed_slots);

CRASH (IP_CRASH);

The "and" with dest_slots in the "if' isn't really necessary, as no
bits can show up in "failed_slots" that were not set in "dest_slots".

g_rpc() - Remote Procedure Call

Call:

BUF *g_rpc (GH dest_gh, BUF *buf)

Values:

"dest_gh" is the destination gate handle for the buffer.

"buf' is the buffer requiring reliable delivery with replies.

Considerations:

As the name suggests, this call is used for implementing remote procedure
calls. For purposes of discussion here, we'll assume a client-server
relationship between gates.

When the client gate calls g_ rpc(), "buf' is reliably delivered to each
instance of the server gate (dest_gh), exactly like g_fwd(). After a server
gate processes the buffer (possibly modifying it), it must return the buffer
to the client gate via the g_reply() call:

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

void g_reply (BUF *buf)

........... Do not modify the start offset of the buffer before the start offset.
}J/f' This is where GAME keeps the information which maps the

g_reply() buffer to a given g_ rpc().

The reply buffer is also delivered exactly like a g_fwd().

GAME will wait until all replies are received or a time-out occurs. The
return value from g_ rpc() is a pointer to the head of the list of returned
buffers. A successful call results in a returned buffer from each requested
instance of the server gate. The client gate can identify which server sent
a particular reply by using the g_src() call (the application can include
this information in the message within the buffer, making the g_src()
unnecessary). If a buffer is not received from a particular slot, no reply
buffer will be included on the list. If no replies are received, the return
value is NIL(BUF).

The client will wait up to 16 seconds for a single reply.

g_ rpc() is implemented using the same mechanisms as g_fwd(). In this
case, there are two or more reliable buffer transfers: one for the request
buffer, and one or more for the replies.

Figure 5-2. Remote Procedure Call

short
txno

long
txno

SRC SRC
GATE DRY

RPC

rpcreq
ack

reply

replyack
short
tmo

DST DST
DRY GATE

•

GAME Reference Manual 5-15 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-16

Whereas a g_ fwd() can only fail due to the inability to deliver a message
to a destination gate, a g_ rpc() can time out even if the receiving gate is
up and healthy. If the receiving gate has a large backlog of messages to
process and that processing is very CPU intensive, it may not process the
sender's buffer in time to avoid the 16 second timeout (Really, we've seen
it). Worse, the receiver will eventually process the buffer and send a
reply. GAME will then throw away the reply because the transaction has
timed out.

A gate that can get backlogged in this manner must not be used as a server
gate for a g_rpc(). The API calls for the MIB service use g_rpc(). This
is the mib_bind_obj() call:

u int32

mib_bind_obj(obj_id, type)

OBJ_ID obj_id;

u int32 type;

BUF *buf;/* message buffer pointer */

MIB ENT MSG *msg;/* pointer to message contents */

u_int32 ensign_gate;/* returned */

/* first get a message buffer */

if ((buf = g_balloc(BALLOC_TMO)) == NIL(BUF))

g_log(MIB_BALLOC_ERR, g_myid());

CRASH(MIB_CRASH);

/* get pointer to message contents */

msg = G_BUF_INI(buf, MIB_ENT_MSG);

/* fill message with arguments */

msg->op_code = MIB_ENT_BIND_OBJ;

msg->source_gid = g_myid();

msg->bind_type = type;

mib_copy_id(obj_id, msg->obj_id);

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

/* if PRIMARY binding, get the binding entity's gate
id --> mapping */

if (type == PRIMARY)

msg->bind_gate = g_myid();

/* for SECONDARY and OMNI bindings, set bind_gate to
zero --> no mapping */

else {

msg->bind_gate O;

/* send message to MIB manager */
if (! (buf = g_rpc(GH_SET_LOCAL(GID_MIB), buf))) {

g_log(MIB_RPC_ERR, g_myid());

CRASH(MIB_CRASH);

/* get pointer to reply message contents */
msg = G_BUF_PDU(buf, MIB_ENT_MSG);

/* successful? */
if (msg->ret_code != MIB_OK) {

/* error - kill calling entity's gate */
g_log(MIB_BIND_OBJ, g_myid(), msg->ret_code);

CRASH(MIB_CRASH);

/* get ensign gate */
ensign_gate = msg->ensign_gate;

/* free message buffer */
g bfree(buf, buf);

/* done - return ensign gate */
return(ensign_gate);

•

GAME Reference Manual 5-17 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-18

This is the code in the MIB gate that serves the mib _bind_ obj() request
in ent_ dispatch():

/* get pointer to message contents */

mib_msg = G_BUF_PDU(buf, MIB_MSG);

/* dispatch on op_code */

switch (mib_msg->op_code)

case MIB_ENT_BIND_OBJ:
ent_process_msg(mib_env, &buf);
break;

/* send reply message g_rpc initiator */

if (buf) {
g_reply(buf);

g_fwd_list() - Forward a List of Buffers Reliably

Call:

u int32 g~fwd_list {GH dest_gh, BUF *head, BUF
*tail, u int32 pipe_id)

Values:

"dest_gh" is the destination gate handle for the buffers. ONLY I slot bit
can be set.

"head" is the head of a list of buffers in the transient pool.

"tail" is the tail of a list of buffers in the transient pool.

"pipe _id" is the return value from a previous g_fwd _list() call to the same
gate, or zero.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

Considerations:

This function provides a mechanism to reliably deliver multiple buffers
to a single instance of a gate without putting the sending gate into the
pended state. This is done by creating a new gate that forwards the buffers
using g_fwd(). Since this can facilitate asynchronous delivery oflists of
buffers, a "piping" feature allows the caller to assure that buffers from
different g_fwd_list() calls to the same gate are delivered in order.

When called with a zero "pipe_id", or if the operation corresponding to
a non-zero "pipe _id" is finished, GAME creates a child gate forthe calling
gate and puts the buffers into its first private pool. The gate is then
scheduled with a SIG_ INI signal. When that gate runs, it pulls the buffers
off the private pool and does a g_fwd() for each one. After finishing, or
if one of the g_fwd() calls fails, a data signal (data signals are explained
in detail later) is sent to the calling gate to report the status. The format
of the data delivered is found in include/kernel.h:

typedef struct FWD_LIST_STATUS

{
u_int32 id; /* the Id from the g_fwd_list () call

*/
u_int32 status; /* O=successful,

non-zero=failure */
GH dest_gh;

u int32 cnt;
sent - */

FWD_LIST_STATUS;

/* the destination gatehandle

/* how many msgs were successfully

*/

•

GAME Reference Manual 5-19 •

•
• Chapter 5 Inter-Gate Communication

•

Example

• 5-20

The gate then terminates itself, unless another g_ fwd_ list() was done for
the same pipe (see next few paragraphs).

The return value from g_ fwd _list() is a pipe identifier that can be used to
synchronize deliveries to the same gate via separate g_fwd_list() calls.
By using the returned pipe ID from the previous call, the caller is assured
that the next list of buffers will not be delivered before the previous list.
This is accomplished by using the same child gate for delivery, if it still
exists (if it doesn't exist, the previous buffers have obviously been
delivered).

When the function is called with a non-zero "pipe_id" and the gate
performing that pipe's g_ fwd() calls still exists, GAME adds a structure
to that gate's environment for the additional buffers and puts the buffers
at the end of the first private pool. When the gate finishes the previous
list of buffers, it checks for more lists before terminating. If found, it
repeats the process of sending the buffers and delivering a signal to the
calling gate.

Once there are no more buffers to deliver, the gate terminates itself .

..,,,. Note that a separate status signal is sent for each g_fwd_list() call.

This highly edited example is from the DLS transmit code:

for (buf buf_head; buf; buf = buf_next)

/* we have to keep the next buffer in case we delete or
send */

buf next= G_BUF_NEXT(buf);

/* set the destination GH */

G_BUF_DEST_GH(buf) = rem_gh;

GAME Reference Manual

Debug Tips

•
Chapter 5 Inter-Gate Communication •

buf_end = buf; /*DF CR20602*/

/* for each buffer */

/* send the list onward */
if (buf_head)

/* do the reliable forward */

sock->loc_pipe_id = g_fwd_list(rem_gh, buf_head,
buf_end,

sock->loc_pipe_id);

/* we don't need to set the timer here because we will get a *I
/* signal back from g_fwd_list which will wake us up */

The "debug kml" command provides a few settings of use for buffer
delivery debug (note that the "debug" module must be loaded). (The use
of debug_ kml is discussed in file /rte I/harpoon/doc/game/html/
game_ debug.html.)

Table 5-1 describes the buffer delivery debug settings.

Table 5-1 Buffer Delivery Debug Settings

Setting Function

msg_xmt Logs messages ifxmt buffers are being sent
to gates which we don't think exist on
remote slots. Applicable to g_xmt().

msg_ deliver Logs message and dumps buffer if message
is received for a gate which is not present
on the receiving slot.

•

GAME Reference Manual 5-21 •

•
• Chapter 5 Inter-Gate Communication

•

Signals

• 5-22

Setting Function

buf chk Verifies buffers are valid, on the same list
and owned by the caller. Applicable to
g_fwd(), g_reply(), g_rpc(), g_fwd_list().

buf size Verifies the buffer end is less than the max
buffer size and that start is less than end.
Applicable to g_fwd(), g_reply(), g_rpc(),
g_fwd_Iist().

buf xmt Verifies xmt buffers are valid and the start
and end offsets are correct. Applicable to
g_xmt().

all_msg ls the combination ofmsg_xmt and
msg_ deliver.

all buf Is the combination ofbuf_chk(), buf_pool(),
buf_size(), buf_xmt(). The former two
settings were discussed in the Buffers
section.

Buffer delivery, as described in the previous section, is a general purpose
mechanism that has one down side: it requires dedicated resources
(buffers) to function.

Buffer delivery is the only option when data has to be sent across slots.
When communicating between gates on the same slot, there are cases
where buffers are overkill for several reasons:

1. Only a small amount of information needs to be conveyed.

2. The communication has to happen frequently.

3. There is a short latency requirement.

4. Buffers are a more precious resource than memory.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

Uses of Signalling

Signalling is used primarily for four purposes: interrupts, timer
expirations, software signals, and memory passing.

Interrupts

Hardware interrupt delivery is strictly controlled by GAME (see the
Scheduler section). Interrupts are intercepted by the kernel and translated
to software signals, allowing GAME to schedule interrupt handlers just
like all the other gates.

Timer Expirations

Timer expirations (see the Timer section) are conveyed via delivery of
the SIG_TMO signal (see include/vectors.h).

Software Signals

A limited number of simple software signals are supported (see include/
vector.h). The receiving gate gets activated with the signal number and
no additional information.

Memory Passing

The SIG_ DA TA signal is used to pass a memory segment (obtained via
g_ malloc) from one gate to another. This allows arbitrary amounts of
data to be transferred without using buffers.

Signal Handling Urgency

From the GAME scheduler point of view, there are two classes of signal
handling gates:

•

GAME Reference Manual 5-23 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-24

1. Normal, "base level" handlers that are scheduled for signal
delivery in a FIFO fashion among all other base level gates.

2. Low latency, "interrupt level" handlers that are scheduled to run
at the nearest opportunity (when the currently active gate
completes or pends).

There is a strict prioritization between signal handing gates. Interrupt
level handlers are scheduled ahead of base level handlers and all other
gates. However, once activated, the gate handling a signal is never
interrupted or preempted (unless it voluntarily gives up the CPU).

Using Signals

A single gate instance can register to receive one signal (as defined in
include/vectors.h) and a single signal can, in most cases, be handled by
only one gate. In some cases, the gate does not need to explicitly register
for the signal, but it can still receive only one. The caveat is that a gate
can always receive two additional special signals, which are always
delivered in a "base level" fashion:

1. SIG_ !NI. This signal is delivered upon the creation of a gate
instance ifthe creator set the G_SIG_INI flag in the g_req()
call.

2. SIG_TMO. This signal is delivered every time the gate's
periodic timer expires.

A gate that is activated due to a signal delivery, whether at the base or
interrupt level, is passed a signal vector number instead of a buffer pointer
(the "buffer list" parameter is NIL). Besides this difference in passed
arguments, the two gate activation modes are identical (run to completion
uninterrupted, full access to system resources, etc ...).

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

A single gate instance cannot have both a buffer and a signal activation
(active/pended) at the same time. As discussed later in the Scheduling
section, if a signal activation is scheduled while the gate is pended during
a buffer activation (or vice versa), GAME remembers this and schedules
the gate for the new activation when the old one exits.

Registering for a Signal

Call:

void g_isr (GID gid, SIG sig, u int32 flag)

Values:

"gid" is the gate id of the signal handler gate.

"sig" is the signal number to be handled (from include/vector.h).

"flag" is the signal handling option flag; choose one of the following:

G_ISR_SIG - interrupt (high priority) signal handler

• G_BASE_SIG - base level (low priority) signal handler

G _CANCEL - cancel signal handling

Considerations:

This function call tells GAME which gate is handling the particular signal
on the local slot. The calling gate will be terminated for any of the
following offenses:

1. The gate "gid" is not instantiated on the local slot.

2. The gate "gid" is registered to handle a different signal.

3. Some other gate is registered to handle "sig".

4. "flag" was set to G _CANCEL and the gate is not handling "sig".

•

GAME Reference Manual 5-25 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-26

Otherwise, whenever a gate calls g_ sig("sig"), the signal will be delivered
to "gid". The scheduling of the signal delivery depends upon the "flag"
parameter.

If "flag" is set to G _CANCEL, the gate will no longer be scheduled for
"sig".

A gate never registers for SIG_INI, SIG_TMO, or SIG_DATA signals.
It also does not register for signals sent via g_sig_gid() (later ...).

Sending Signals

There are three functions calls in GAME that result in a signal delivery:

g_sig

g_sig_gid

g_sig_ data()

Gates cannot send SIG_INI or SIG_TMO signals; only GAME can do
this (SIG_ INI delivery is initiated by some gate's g_req() call, however).

g_sig Call:

void g_sig (SIG sig)

Values:

"sig" is the signal to be delivered.

Considerations:

This function is only used for signals where the receiver does an explicit
g_isr() call. The registered gate is scheduled to receive the signal, based
upon the "flag" parameter used in the g_isr() call.

If no gate is registered for the signal, or if the signal has been previously
delivered with the g_ sig_gid() call, no signal is delivered.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

The driver for the ILA CC chip, which is used on the quad ethernet boards,
registers for an interrupt associated with the connector the driver services:

env->line_sig = (SIG) (SIG_CSMACD + env->line);

/* Register for interrupts. */

g_isr(env->gid, env->line_sig, G_BASE_SIG);

The QENET hardware interrupt handler (real interrupts) sends a signal
when an interrupt is received from the chip:

/* dispatch off MISR signaling Line Drivers */

misr = *(u_intB *) (hwrec->wfModMisr);

if (! (misr & ILACCl))

g_sig(SIG_CSMACD + CSMACD_CONN_ONE);

if (! (misr & ILACC2))

g_sig(SIG_CSMACD + CSMACD_CONN_TWO);

if (! (misr & ILACC3))

g_sig(SIG_CSMACD + CSMACD_CONN_THREE);

if (! (misr & ILACC4))

g_sig(SIG_CSMACD + CSMACD_CONN_FOUR);

The ILACC driver gate is eventually scheduled for the signal:

void

ilacc_up_state(env, buf, signal)

REG ILACC_ENV *env;/* ptr to parents environment */

REG BUF *buf; /* buffer pointer list, packets to xmt */

REG SIG signal; /* ILACC int signals or watchdog SIG_TMO's */

{
/* if there are buffers to be transmitted */

if (buf != NIL(BUF)) {

ilacc_xmt(env, buf);

•

GAME Reference Manual 5-27 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-28

/* OR, if this is an interrupt signal from device */
else if (signal == env->line_sig)

ilacc_intr(env);

g_ sig_gid Call:

Given that the number space for signals is small (256), it is desirable to
be able to use the same signal for multiple gates that are running
essentially the same code. As shown in the previous section's example,
multiple copies of a device driver may run on the same slot due to the
number of physical interfaces on the link module, potentially using a
signal per interface. Therefore, g_sig_gid() was born.

u int32 g_sig_gid (GID target_gid, SIG sig, u int32 option)

Values:

"target_gid" is the gate id of the destination gate on the local slot.

"sig" is the signal to be delivered.

"option" is G_BASE_SIG (base level delivery)orG_ISR_SIG (interrupt)

Considerations:

The return value is non-zero if "target_gid" doesn't exist and zero
otherwise.

.......... The receiving gate must NOT register for the "sig" or any other
1ff' signal. It also cannot receive data via g_sig_data().

The calling gate will be terminated for any of the following offenses:

1. The receiving gate has registered for any signal.

2. The receiving gate has received data via g_sig_data().

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

The munich driver, used for the multi-channel Tl and EI boards, uses
g_ sig_gid() in order to save on signals. Otherwise, with 96 logical lines
possible per slot, that many signal numbers would be necessary.

There are many calls in the driver similar to this:

g_sig_gid (env->ldg_gid[i], SIG_LOG_LINE, G_BASE_SIG);

"ldg_gid" is an array of the gate ids for the "line driver gates".

g_sig_data Call:

The g_ sig_ data() call really serves two purposes. Its a way to send
multiple signals to a single gate as well as a way to move memory
segments between gates.

The first step is for the sending gate to call g_sig_data() and pass in the
address of a memory segment. This must be the same address as was
returned by a g_malloc(). It's not possible to send partial segments. If
the g_ sig_ data() call is successful, the sender no longer owns the memory.
Any pointers to that memory should be nulled out.

u int32 g_sig_data (GID dest_gid, u int32 type, void *data)

Values:

"dest_gid" is the gate id of the destination gate on the local slot.

"type" is the data signal type, as defined in include/data_sig.h

"data" is the pointer to the memory segment to transfer. IfNIL, "type"
is the only information delivered to "dest_gid". This is how g_sig_data()
is used to deliver multiple signals.

•

GAME Reference Manual 5-29 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-30

Considerations:

The return value is zero if the memory was delivered and non-zero
otherwise. The only reason for the non-zero return is if the destination
gate does not exist locally. The calling gate still owns the memory
segment in this case.

The calling gate will be terminated for any of the following offenses:

I. "dest_gid" is zero.

2. "dest_gid" is scheduled to receive a different signal (other than
SIG_INI, SIG_TMO).

3. "dest_gid" is registered to handle a signal (DEBUG only).

4. The calling gate does not own the memory segment (DEBUG
only).

GAME gives the memory segment to the receiving gate and schedules it
for a SIG_DATA signal (unless already scheduled).

When the receiving gate is invoked with the SIG_ DAT A signal, it must
g_get_sig_data() to retrieve the memory. It is possible to have multiple
data deliveries before the reciever gets scheduled. The receiver will only
see one SIG_DATA activation. Therefore, it needs to do
g_get_ sig_ data() in a loop until told there is no more data available (zero
return). The order of signal delivery is preserved.

u_int32 g_get_sig_data (GID *send_gid, u_int32 *type, u_int32
**data,

u_int32 *size)

"send_gid" is a pointer to a (GID) where the gid of the gate that sent the
signal can be written.

"type" is a pointer to a (u_int32) where the data signal type, as defined
in include/data_sig.h, can be written.

GAME Reference Manual

•
Chapter 5 Inter-Gate Communication •

"data" is a pointer to a (u_int32 *)where the data pointer can be written.

"size" is a pointer to a (u_int32) where the data size (in bytes) can
bewritten. The size returned is the total size of the memory segment. This
is rounded up to a cache line size and may not be the size of the actual
data contained within the segment. This is to aid in the reuse of memory
segments for different purposes.

The return value is non-zero if data was delivered and zero if not.

As with buffer delivery, the fonnat of the messages delivered must be
agreed upon by the sender and the receiver (i.e., located in a *.h file).

If g_ sig_ data() is being used for message delivery (as opposed to transfer
of "permanent" memory ownership), the receiving gate must free the
memory segment when it is finished examining it.

DP implements a generic service that will allocate a "resource" and
deliver it to destination gates, using memory if the destination is local
and a buffer otherwise.

This is the routine that allocates either a memory chunk or a buffer:

u_int32 get_sigbuf (GH gh, u_int32 struct_size, u_int32 **ptr)

{

if (GH_IS_REMOTE(gh))

/* Allocate a buffer, adjust to point to data and
return */

BUF *buf;

if (! (buf = g_balloc(G_TMO_DEFAULT))

g_log(DP_NO_BUF);

CRASH(DP_CRASH);

/* if ! buf = g_balloc */

G_BUF_START(buf) G_BUF START_MSG;

G_BUF _END (buf) = G_BUF_START_MSG + struct_size;

•

GAME Reference Manual 5-31 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-32

ptr = (void) ((char *)buf + G_BUF_START_MSG);

return(IS_BUFFER);

else

/* Allocate a piece of memory and return it */
/* This will eventually be optimized to use free

pools */
*ptr = g_malloc(struct_size);
zero((u_intB *) (*ptr), struct_size);
return(IS_SIGNAL);

/* get_sigbuf */

This is the routine that sends the memory or buffer:

GH send_sigbuf (GH gh, u_int32 m_type, u int32 m_size, u_int32
**ptr)

char log_buf[l20];
GH g_fwd_rtn_mask = O;

if (m_type == IS_BUFFER)

else

into a

/* Is remote */
/* Get back to your buf pointer */
*ptr = (u_int32 *)((char *)*ptr - G_BUF_START_MSG);
g_fwd_rtn~mask = g_fwd(gh, (BUF *) (*ptr));

if ((GH_IS_REMOTE(gh)) && (m_type IS_SIGNAL))

u_int32 *b_ptr;

/* GH became remote on us .. Aaaaaagh! Copy it

buffer fast ... */
m_type = get_sigbuf(gh,m_size,&b_ptr);

GAME Reference Manual

Mappings

•
Chapter 5 Inter-Gate Communication •

else

bcopy((u_intB *) (*ptr), (u_intB *)b_ptr,m_size);
g_mfree (*ptr);
g_fwd_rtn_mask =

send_sigbuf(gh,m_type,m_size,&b_ptr);

if (m_type == IS_SIGNAL)

if (g_sig_data(GH_GET_GID(gh),
(u_int32) (**ptr), (void *) *ptr))

/* Set our local slot bit to indicate that
signalling failed to our slot */

GH_SET_LOCAL(g_fwd_rtn_mask);

/* Remember , your ptr will not be valid anymore */

return(g_fwd_rtn_mask);

/*send_sigbuf */

~ The return value from g_sig_data() should be examined. If
'# non-zero, g_fwd_rtn_mask should be set to the local slot bit.

Also, copy() should be used rather than bcopy(). This function attempts
to optimize the data copy if the data alignment allows.

Mappings can be used as a messaging mechanism to indicate events to
gates on the same or on remote slots.

•

GAME Reference Manual 5-33 •

•
• Chapter 5 Inter-Gate Communication

•

• 5-34

The basic idea is that a gate is created to indicate a particular state. Gates
interested in that state map the "state" gate. When the state is no longer
valid, the "state" gate is killed, causing the mappings to trigger.

Note that the creating and killing of gates involves a non-trivial amount
of CPU. This procedure should be avoided for frequent events.

The prime example of this is the MIB service. It uses davidian gates
(which limits the "messaging" to local slots) to represent:

1.

2.

The contents of a row instance of a table. Whenever a "restart"
variable in the row is changed, the davidian gate is killed.

The creation of a table row instance. Whenever a new row is
added to a table, the davidian is killed. It is not killed when a
row is removed (the application has to do the removal, so there's
no need to tell it).

The use of ensigns or davidians for this purpose is problematic,
since GAME does not clean up these gates when the creator dies
(there's no GA TE structure, and hence, no ancestry information).
The MIB can get away with this because if the MIB dies, the whole
slot goes down. Therefore, use real gates with dummy activation
routines instead until told otherwise.

GAME Reference Manual

Overview

•
Chapter6

Memory Management

GAME has a single pool from which all memory is allocated, except for
buffers. In addition to the typical malloc/free memory, this also includes
the memory used for stacks and the memory in which an application
executes.

The memory pool is composed of slabs and segments. A "slab" is a single
large chunk of memory which gets divided up into smaller pieces called
"segments". Normally, there is only one slab of memory in the system.
It runs from the end of the kernel image to the end of normal memory, or
to the beginning of buffer memory on systems, such as the AN, where
buffer memory isn't implemented in separate hardware.

Each memory segment contains a header, called a MSEG, at its beginning.
This contains previous and next pointers to link the MSEG onto a doubly
linked list. It also indicates the size of the MSEG. The MSEG occupies
the first cache line of a segment. All MSEGs are cache line aligned. (A
cache line is 16 bytes for the 68k, 32 bytes for the PPC.) This alignment
is required by tags (see below). This alignment also results in the rounding
up of the size of a MSEG to whole cache line increments.

The MSEG is shown below. The flag bit is a way for the kernel to mark
certain MSEGs as special so that they can be found on a gate's memory
list. For example, if a gate owns a semaphore token, that token is actually
represented by an MSEG linked into the gate's memory list. That MSEG
will have flag set and the first word of the MSEG body will tell the kernel
that it's a semaphore token. This was implemented in this manner to avoid
having to double the size of the gate control block (64 bytes at the time).
That has since become unavoidable, so we now have room to track these
on their own list, if we so desired.

The PowerPC has a larger cache line size than the 68k does. That explains
the extra padding when PPC is set.

•
•

GAME Reference Manual 6-1 •

•
• Chapter 6 Memory Management

•

• 6-2

typedef struct MSEG
{

struct MSEG *next;
linked list */

struct MSEG *prev;
linked list */

unsigned flag:l
unsigned size:31;
struct MSEG *resv;

#ifdef PPC

/* next seg on singly/doubly

/* previous seg on doubly

/* See note below */
/* segment length */
/* reserved *I

u int32
#endif !* PPC */

pad[4]; /* Pad to 32 byte cache line

} MSEG;

An MSEG can be linked in one of two places: the free memory pool or
onto a gate's memory list.

The free memory pool is a list of all the MSEGs which are available for
allocation. This list is always arranged in order of increasing memory
address. When a gate asks to allocate some memory, the free memory
pool is linearly searched until a big enough MSEG is found (first fit). If
this MSEG is larger than what was asked for, it is split into two pieces.
One piece goes to the gate and the other remains in the free pool.

When memory is freed, it is inserted back into its place in the free memory
pool. This insertion is aided by a binary tree whose pointers occupy the
2nd cache line of MSEGs in the free memory pool. Once the appropriate
place in the free memory pool is found, a check is made to see if the range
of memory covered by the MSEG being freed abuts the memory of its
neighbors in the free memory pool. If this is the case, then the MSEG is
merged in with its neighbor(s), resulting in a single, larger, MSEG in the
memory pool.

This memory allocation scheme results in the beginning of the pool
containing many smaller memory segments while the end of the pool
contains the larger segments. This happens because we always start
searching from the same end and will take the first segment which fullfills
the allocation requirements.

GAME Reference Manual

*1

*/

•
Chapter 6 Memory Management •

When a gate allocates memory, it is placed on a list of memory owned
by that gate which is anchored in the gate control block.

typedef struct GATE

{

MSEG *mem; /* gate's reserved memory */

GATE;

This list is used to reclaim the memory a gate has allocated should that
gate die or be killed. There is no particular ordering to elements on the
list. For simplicity, new segments are put at the head of the list.

The first element's "prev" pointer points to the "mem" field of the GATE
structure.

An allocated memory segment is actually larger than the size requested.
As stated above, an MSEG precedes the block. The entire block is always
padded out to the end of the current cache line. Therefore, the size of an
allocated block is:

size + (size mod cache-line-size) + cache-line-size

This is the size stored in the "size" field of the MSEG header.

All this memory segment management is typically ignored by a gate.
When a gate allocates memory, it recieves a pointer to the first useable
location (after the MSEG). GAME wants this same pointer back when
memory is freed. It is the application's responsibility to limit both read
and write accesses to the allocated memory segment.

An application must NEVER access the MSEG header preceeding a
memory segment. There are at least two good reasons not to do this:

•

GAME Reference Manual 6-3 •

•
• Chapter 6 Memory Management

•

Tags

• 6-4

1. The format may change under the application.

2. On hardware that supports tags, you'll get a tag violation (see
the next topic).

Since all addresses in GAME are logical=physical and no MMU is used,
some type of memory protection was needed to help with the debugging
of bad pointers. The memory protection is called 'tags'.

Tags are implemented in specialized hardware on the FRE, ASN, and
ARE platforms:

Tags allow the kernel to mark each cache line with an attribute describing
its readabilty or writeability. Cache lines can be marked read/write,
read-only, or no-access. If an illegal access is made (e.g. writing a
read-only cache line) an exception occurs.

The MSEG header is marked read-only. The intention of marking the
L _: __ :_ C _..,....._,..._p ,..,...,,...._...,.... +_,A ,...,...,1,,. ~ro +- ,....,+,....h .o_..,,,..,,+ l"'"nrl.o ,,,h;roh

walks past the end of the memory its allocated. This can also happen if
a stack grows too large, since a stack is simply a memory segment.

Tags will not prevent a truly errant pointer from causing problems. It is
possible for that pointer to miss a read-only cache line and successfully
modify data. To help combat this, it is possible to have all freed memory
(except the headers) marked no-access. This helps if the bad pointer
happens to hit freed memory. However, this debug feature results in a
performance hit as the whole memory segment needs to be walked
whenever memory is allocated or freed. Obviously, this is turned off by
default. See Debugging Strategies for more details. This does not help
if the bad pointer points to memory owned by another gate.

One of the things to keep in mind about tags is that they are implemented
by HW extraneous to the processor. Therefore, a tag violation won't occur
until the data is flushed out of the data cache.

GAME Reference Manual

•
Chapter 6 Memory Management •

Usually (on a FRE2) this happens well after the fact and it is not possible
to say where the bad access happened. To combat this, it is possible to
run the processor in write-thru mode where all writes will immediately
go to the memory system. When running in write-thru mode, the tag
violation will occur before the program counter advances too far beyond
the instruction that caused the violation. Write-thru mode is not the
default and needs to be enabled. See Debugging Strategies below to see
how to do this.

~ Note that the ASN is the only platform that reports (via the log) the '*' memory address used to cause the tag violation.

Ownership and Memory Sharing Implications

As mentioned above, when a gate allocates memory, that memory is
added to a list of all the memory allocated by the gate. Upon gate death,
all this memory is freed. This has implications with memory sharing
between gates.

The preferred way to share memory is downward, where a parent owns
the memory shared with its children. This works nicely because if a parent
dies, all its children will also die. Sharing memory upward, where the
children own memory manipulated by its ancestors, as well as memory
sharing between unrelated gates, is dangerous because that memory may
be freed without warning. This can leave a gate with a memory pointer
to what is now free memory. Or worse, the memory may have been
re-assigned to some other gate.

The chance of this can be somewhat minimized if the gate which is sharing
memory maps the memory owner gate. But even a mapping isn't fool
proof because you need to remember that the memory could be freed
while you're pended in the middle of a function. That function may have
pointers to the now freed memory cached in local variables. Using these
variables becomes dangerous.

•

GAME Reference Manual 6-5 •

•
• Chapter 6 Memory Management

•

Syscalls

• 6-6

There are some ways around this. If a few children of a gate need to share
memory, it is possible for them to use g_ malloc _gid() to allocate memory
on behalf of the parent. When doing this, the parent will become the
owner of the memory segment, so all children can access it freely. The
tbl, rtbl, and utbl utilities all use g_ malloc _gid(). All memory is allocated
in the context of the gate that creates the table.

Another method is to use g_ sig_ data() to move memory ownership from
gate to gate.

g_malloc()/g_mfree()

The g_ malloc() and g_ mfree() system calls are the normal way to allocate
and free memory. A gate must own the memory to be able to free it.
Otherwise, g_ mfree _gid() needs to be used.

~-···-··--,, --·-

The g_ malloc() call allocates memory segments.

call:

void *g_malloc (u_int32 size)

Values:

"size" is the requested segment size in bytes.

Considerations:

The returned value points to the first usable byte in the segment.

GAME Reference Manual

•
Chapter 6 Memory Management •

If adequate memory is not available, the slot will be restarted due to an
out-of-memory condition. Because of this, there is NO NEED to check
the return value of g_ malloc(). Doing so is just a waste of instruction
space and CPU.

g_mfree() Call

The g_ mgree()call frees memory segments.

Call:

(void) g mfree (void *mem)

Values:

"mem" is a pointer to a memory being freed. This must be the same value
as returned by a previous g_malloc().

g_mlen()

Call:

u int32 g mlen ()

Considerations:

The g_ m len() call returns the size, in bytes, of the largest memory segment
available. This is the largest g_ malloc() request which can be satisified.
If a g_ malloc() call is made and not enough memory is available to satisify
that request, the slot will restart due to an out of memory condition. To
avoid that, this type of code can be used:

•

GAME Reference Manual 6-7 •

•
• Chapter 6 Memory Management

•

• 6-8

if(g_mlen() > amount_I_need)

{

pointer= g_malloc(amount_I_need);

else

/*Couldn't get the memory I wanted .. now what?*/

The only time where this is helpful is when the memory allocation is not
crucial to the continuance of the application. Otherwise, the g_ mlen() call
isn't much help.

There is a small window on SMP systems where a processor can
allocate memory between g_ mlen() and g_ malloc() calls executed
by another processor. Therefore, a positive result from g_mlen()
does not guarantee that the g_ malloc() will succeed.

g_malloc_gid()/g_mfree_gid()

~- - --11-- _!..I/"\ --..I - _.c_ __ -!..II''\ ------11- --·--1 .. ! - ... 1!1 .. - •L-

g_ malloc() and g_ mfree() calls except that the gate ID of the owner gate
can be specified. Care should be used when using these calls since its
possible to abuse them. For example, a child can g_ malloc _gid() memory
and have its parent own the memory. If that child dies, the parent may
need to clean up the memory which was allocated, The kernel isn't going
to do it because the parent owns it. Failure to handle such scenarios
correctly this could result in a memory leak.

g_malloc_gid() Call

The g_malloc_gid() call allocates memory for another gate.

Call:

void *g_malloc_gid (u_int32 size, GID gid)

GAME Reference Manual

•
Chapter 6 Memory Management •

Values:

"size" is the size of memory segment to allocate.

"gid" is the gate id of the gate to own the memory.

Considerations:

The returned value points to the first usable byte in the segment.

Calling g_ malloc __gid() with an invalid gid will terminate the calling gate.

The calling gate does not own the memory segment unless gid is its own
gate id. The calling gate must realize this and use care when using this
memory (freeing, etc.).

g_mfree(} Call

The g_mfree_gid() call frees memory owned by another gate.

Call:

void g_mfree_gid(void *mem, GID gid)

Values:

"mem" is a pointer to the memory segment to be freed. This must be the
same value as returned by a previous g_ malloc _gid().

"gid" is the gate id of the gate owning the memory.

Considerations:

Calling g_ mfree _gid() with an invalid gid will terminate the calling gate.

•

GAME Reference Manual 6-9 •

•
• Chapter 6 Memory Management

•

• 6-10

g_mrealloc()

The g_ mrealloc() call reallocates a memory segment. It copies the
contents of one memory segment to a new one, frees the old one, and
returns the new one.

Call:

void *g_mrealloc(void *old_mem, u_int32 new_size)

Values:

"old_mem" is a pointer to currently allocated segment. The calling gate
must own the segment.

"size" is the byte length of new segement to allocate.

Considerations:

The return value is the pointer to the newly allocated segment. The
contents up to MIN (size, sizeof(old_mem)) from old_mem will have
been copied to new_ mem.

If adequate memory is not available, the slot will restart due to an
out-of-memory condition.

g_madd()

The g_madd() call is used to add a new slab to the free memory pool.
This is rarely used. The only example to date is with netboot where the
config file is stored in memory while the mission code starts. Once the
config file has been read, its memory can then be used as a normal part
of the memory pool.

Call:

void g_madd (u_int32 new, u_int32 size)

GAME Reference Manual

•
Chapter 6 Memory Management •

Values:

"new" is a pointer to the memory slab.

"size" is the byte length of the new memory slab.

g_sig_data()/g_get_sig_data()

The g_ sig_ data() call really serves two purposes. It is a way to send
multiple signals to a single gate as well as a way to move memory
segments between gates.

When the receiving gate is invoked with the SIG_DATA signal, it must
g_get_sig_data ()to retrieve the memory.

These function calls are discussed fully in the Inter-Gate
Communications chapter.

Debugging Strategies

There are a few strategies which are useful for debugging memory
problems.

Zero Out Those Stale Pointers!

When you free memory (or send it via g_sig_data()), set that memory
pointer to 0. This way, if you subsequently try to use that pointer you'll
get a bus error from the NULL pointer instead of corrupting memory. A
bus error is much easier to debug than memory corruption.

debug krnl Command

The "debug kml" command provides a few settings useful for memory
debug (note that the "debug" module must be loaded).

•

GAME Reference Manual 6-11 •

•
• Chapter 6 Memory Management

•

• 6-12

mem_free_check

mem _free_ chk will check that memory you free is indeed memory you
own. GAME normally doesn't check this. If you free memory you don't
own, it is possible for parts of the gate control block to become write
protected (because GAME thinks they're another MSEG header when
they're not). This can lead to tag violations in strange places. This is
applicable to calls to g_mfree().

mem_full_tags

mem_full_tags will mark freed memory as no-access. It makes the box
run really slow. It can be useful for catching stale pointers assuming, of
course, that you're lucky enough to have the pointerpointto freed memory
and not some other gate's allocated memory. (If you set your freed
pointers to 0 you wouldn't have this problem.) You need to restart the slot
after setting this for it to take effect.

wrt_thru

wrt_thru will cause the processor to run in write-thru mode and is the
first thing you should do when debugging a tag violation. You need to
restart the slot after setting this for it to take effect.

serial

serial is only for PowerPC machines. It forces the processor to run in
serial mode, which will give more accurate stacks when a tag violation
occurs. You need to restart the slot after setting this for it to take effect.

GAME Reference Manual

•
Chapter 6 Memory Management •

mem_all

mem_all is the he combination ofmem_free_chk, mem_full_tags, and
wrt thru.

Sometimes its desirable to have the processor default to write-thru. This
is especially true if the tag violation happens before the TI is up and
running. This is easy to do.

ForTIB:

I. cd tib

2. In Makefile, uncomment the CACHE_MODE symbol.

3. rm _tib/set_cfg_regs.o.

4. build tib set_ cfg_regs.o

5. cd buildtib

6. build tib link archive -nr

For BF:

I. cd bf

2. In Makefile, uncomment the CACHE _MODE symbol.

3. build bf cache.o

4. cd buildbf

5. build bf link archive -nr

Private Memory Management

One aspect of the GAME memory system which is not so good is that is
isn't very efficient dealing with many small memory pieces. First of all,
the size of each piece is always rounded up to a cache line. Then an MSEG
header and guard line are included. So, for a small request (say, 4 bytes),
48 bytes of memory are actually required.

•

GAME Reference Manual 6-13 •

•
• Chapter 6 Memory Management

•

• 6-14

Then, there is the additional processing of allocating and freeing the
memory. If many allocs and frees are done, this processing starts to be
non-trivial and can really affect performance.

To help overcome these shortcomings, a series of Private Memory
Managers (PMM) have been created. These are composed of a family of
macros which work above GAME's MSEG allocation and allow a gate
to allocate one larger segment from GAME and partition it up into little
pieces.

Allocating a single segment satisifies GAMEs requirement of re-claiming
all a gate's memory. Alloc and frees are then much more efficient since
there is no need for cache line sized allocates or MSEG headers, since all
the allocs and frees take place from within the single MSEG.

There are a few different flavors of PMMs available. Details for these
can be found in include/pmm.h.

Here is a quick list of the available PMMs and where they can be used:

Simple Private Memory Manager

Suggested When:

1. Allocations are of a fixed size (ex. table entries)

2. Space is not a concern, since slabs are not freed
(slabs are freed only when PMM_S_END is called)

3. Memory utilization tends not to decrease in time

4. Freeing of segments is infrequent

GAME Reference Manual

•
Chapter 6 Memory Management •

Space-Recovering Private Memory Manager

Suggested When:

1. Allocations are of a fixed size (ex. table entries)

2. Allocating and freeing segments occurs regularly

3. Memory space is to be freed back to GAME regularly

Space-Compacting Private Memory Manager

Suggested When:

1. Allocations are of a fixed size (ex. table entries)

2. Allocating and freeing segments varies greatly

3. Most efficient use of memory resources is needed, but has these
drawbacks:

Performance suffers due to relocating/copying segments
into as few slabs as possible.

Segment pointers should not be cached since what is
returned by PMM_C_GET() is simply a handle to the
segment.

Client variables pointing to PMM_C segments must be
declared as: <data type> **<var>; since the segment
handle returned is a pointer to a pointer.

Requires use of PMM_C_REF(). Note, always use
PMM _ x _REF() if switching between PMM _ C and other
PMM managers.

•

GAME Reference Manual 6-15 •

• • • • • • • • • • • •• •• • • • • • • • • •
• Chapter 6 Memory Management

•

free_pool

• 6-16

Pool-Of-Private-Pools Memory Manager

Suggested When:

1. Allocations are of a variable size

2. Allocating and freeing segments occurs regularly

3. Memory space is to be freed back to GAME regularly

4. The demand is a small number of popular segment sizes

Variable Size Segment Private Memory Manager

Suggested When:

1.

2.

3.

4.

Allocations are of a variable size

Allocating and freeing segments occurs regularly

Memory space is to be freed back to GAME regularly

Requested segment sizes are randomly spread

This scheme could be slower due to its splitting, merging and
chaining. It can also suffer from fragmentation,
unpredictably, based on its use. The tradeoff is an increase in
buckets makes for a larger hash table thus increasing
PMM_ V overhead space. But, this increase also reduces
fragmentation and speeds up the search process when
fetching for free segments.

Another effort overlapped the development of PMM. The files include/
free _pool.h and rtl/free _pool.c implement a private memory manager
similar to the "Simple Private Memory Manager" above.

GAME Reference Manual

•
Chapter 6 Memory Management •

What Size memory Segments to Allocate

You only get a 'win' when reducing the size of a particular structure
which is g_malloc()'d when the size is reduced below a new 16-byte
boundary. For example, if a structure is 128 bytes long, and two 4-byte
fields are removed, this doesn't buy anything. If 16 bytes are removed,
this will (in most cases) reduce the size GAME allocates by 16 bytes.

What is the win ifl allocate memory for "n" structures in one big block,
as opposed to doing "n" separate g_ malloc() calls? That is, how much
game header overhead am I avoiding?

The overhead is 16 bytes for every separately malloc'd block. This is the
memory we use to keep track of what memory has been malloc'd by a
gate so that we can free it ifthe gate dies. In your example above, you'd
save (n - 1) * 16 bytes by doing 1 big malloc instead of n smaller ones.

A friendly word of warning ... don't malloc it if you really don't need it.
We're liable to run out of memory just like we run out of buffers. Also,
once the memory space gets fragmented, a malloc of a big chunk is more
likely to fail than a malloc of a small chunk. You can use g_ mien() to see
what the biggest contiguous chunk currently is.

For each GAME memory segment (MSEG) allocated, GAME allocates
some additional overhead (16 bytes) to manage the memory. If an
application needs lots of a certain data structure, and g_malloc()'s
memory for each instance, the penalty forth is overhead can be significant.
In the extreme, the overhead can exceed the actual data structure size
itself.

•

GAME Reference Manual 6-17 •

•
• Chapter 6 Memory Management·

•

(Shared) Free Pools

• 6-18

The free pool code (rtl/free_pool.c, include/free_pool.h) provide an
efficient management pool of fixed sized data structures. The
improvement over using GAME' s native memory manager comes from
amortizing the GAME MSEG overhead over a large number of the
applications data structures. The free pool code will allocate larger chunks
of memory from GAME (the size is programmable) and chop that into
the size appropriate for the application which can be allocated from and
freed to the application specific pool, rather than the GAME memory
manager.

Currently these pools are not shrinkable; they only expand when the pool
is depleted. The designer should be aware that a pool can suddenly grow
dramatically in size, perhaps due to some transient burst of activity in the
system. After the spike has passed, the over-grown pool is not
subsequently shrunk, even though that memory may never again be
required (i.e. ifthe spike happens only once in the life of the application
during init, it will continue to own/consume large amounts of memory
that it may never use again)

Recently, the free pool code was enhanced to allow multiple gates to
access the same pool. The intent is for a parent gate to own a pool, but
allow children (and or grandchildren etc.) gates to use/access/expand the
pool and the parent's environment in general. This sharing of
environments has proven be an effective way to improve performance.
In some applications, however, it makes the gates or sub-system in
question inherently "dirty" in SMP term. The benefits of the shared
environment must be carefully considered, especially going forward as
it appears that SMP systems may begin to dominate the scene.

GAME Reference Manual

Overview

•
Chapter 7
Scheduler

The GAME gate scheduler is a simple, non-premptive, first in/first out
(FIFO) scheduler. This means that a gate executes until it gives up the
CPU by either pending or returning from its activation routine. It also
means that gates will execute in the order in which they are placed onto
the scheduler queue (with a few exceptions).

•
•

Scheduler Queues

There are two scheduler queues in GAME. These are the Activation
queue and the Idle queue. Each queue element contains a pointer to the
gate control block of the gate to activate as well as the reason for
theactivation.

The Activation queue is a list of gates which are ready to be run. The
scheduler will walk though this list activating each gate in turn. When a
running gate either pends or returns from its activation routine, the next
gate in the list is activated.

Once the activation queue is empty, the system is said to go "idle". At
this point in time module interrupts are handled. If there are indeed
module interrupts pending this will result in some gates (such as a link
driver) being added to the activation queue. Once all gates needed for
interrupt processing are added to the activation queue, the contents of the
Idle queue are copied to the activation queue. Then the scheduler starts
executing the gates on the activation queue.

GAME Reference Manual 7-1 •

•
• Chapter 7 Scheduler

•

The Idle queue serves as a place for application gates to go when they
want to be "fair" (or put another way, when they don't wish to kill the
slot's forwarding performance). Since the scheduler is non-preemptive,
it is possible for a single gate to usurp all of the processing resources of
the system for a long time. This is undesirable in a system which is also
trying to pass data traffic. The idle queue allows a gate to timeslice itself
via the g_ idle() syscall. By calling g_ idle() a gate will allow more network
traffic to be processed after which it will continue execution.

There is a CPU watchdog which will prevent a gate from running forever.
After some large amount of time (3-4 seconds on most systems), if the
same gate is still running, this gate will be killed and a "cpu hog" event
will be placed in the error log. But, the CPU watchdog is really only there
to prevent runaway gates from hanging the system. Packets will be
dropped well before the CPU watchdog goes off, so it is up to the gate to
idle itself well before the CPU watchdog limit. See "CPU Hogging"
ahead. Watchdogs are discussed more in the Watchdog section.

Activation Reasons

A gate can only be activated for seven reasons, as follows:

1. Message Delivery

2. SIG INI

3. SIG TMO

4. User-Defined Signal

5. SIG IDLE

6. SIG MAP

7. SIG MSG

• 7-2 GAME Reference Manual

•
Chapter 7 Scheduler •

These 7 reasons are the only reasons a gate will be scheduled. There is
an additional restriction that scheduling reasons do not nest. This means
that a gate can appear at most one time in either the idle queue or the
activation queue for each reason.

For example, the first time a gate recieves buffers, the buffers are placed
on its delivery list and the gate is scheduled for message delivery. If more
buffers arrive before the gate is activated (because there are many other
gates ahead of it), those additional buffers do not result in another
scheduling. Rather, they are tacked onto the end the existing delivery list.

With signals, the result of no nesting is somewhat different. The first time
a gate's timer expires, the gate is scheduled for a SIG_TMO. If the gate
doesn't get activated for that SIG_ TMO before the timer expires again,
the next timeout does not_result in a SIG_TMO. The gate will see only
one SIG_TMO although 2 timeout periods have actually occurred.

Message Delivery

This is the delivery of a new list of buffers for the gate to process.

SIG_INI

SIG_ INI is an initialization signal, usually the result of creating a gate
with the G _SIG_ INI option of g_req(). This signal can also be sent to an
existing gate by using the G _ REQ_ INI option of g_req() (only
recommended if the semantics of sending the signal is "initialize").

SIG TMO

A timeout signal sent to a gate when a timer set via g_ tmo() has expired.
Each gate can only have one timer.

•

GAME Reference Manual 7-3 •

•
• Chapter 7 Scheduler

•

User Defined Signal

Each gate is allowed a single user defined signal. This is either the signal
registered for via g_ isr(), the signal being sent by g_ sig_gid(), or a
SIG_DATA ifthe gate is the target of a g_sig_data(). This was covered
in detail in the Inter-Gate Communication chapter.

Additional Reasons

There are some additional activation reasons which only apply to pended
gates. When a gate pends, it does so within the context of GAME. Thus,
these signals will never be seen directly by a gate as they are consumed
by GAME. They are listed here only for completeness.

SIG_IDLE

Originally, this signal was used to unpend a gate after it idled itself on
the idle queue. More recently it has been used as a generic unpend signal
used for such things as unpending a gate which was waiting for a
semaphore token. What exactly a SIG _IDLE implies is dependent upon
where within GAME a gate pends (since that is where it will resume
execution when it unpends).

SIG_MAP

Used when creating and firing mapping routines.

SIG_MSG

Used when new buffers are delivered to a pended gate. This is utilized
by the messaging system so it can collect acknowledgements or RPC
replies within the context of a gate.

• 7-4 GAME Reference Manual

Pending

•
Chapter 7 Scheduler •

When a gate pends within GAME, it waits for some event to occur. For
example, when a gate does a g_idle(), it is waiting to get a SIG_IDLE in
order to continue. But, what happens if that gate receives a message?

In order to be efficient, the message delivery code doesn't look at the state
of each gate which is receiving a message to see if it is currently pended.
It just schedules a gate for message delivery whenever it starts a new
delivery list for a gate. This means that the g_idle() may actually get
unpended for reasons other than a SIG_ IDLE, and it needs to handle those
reasons correctly.

Say we have 3 gates, A, Band C which are being scheduled (we won't
worry about why Band Care on the queues). The chart below shows the
state of the activation queue and the idle queue at a particular point in
time. The gate at the top of the activation queue is the one which is
currently running.

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> A SIG INI

B ?

c ?

So gate A is running its SIG _INI. For whatever reason this takes a long
time, so A needs to timeslice itself by calling g_idle(). The g_idle() call
results in gate A being placed on the Idle queue for delivery of a
SIG_ ID LE after the system goes idle. Once this is done, the gate pends
allowing the next gate to run:

•

GAME Reference Manual 7-5 •

•
• Chapter 7 Scheduler

•

Activation queue Idle queue

Gate Reason Gate Reason

-------- --------

Running gate --> B ? A SIG IDLE

c ?

Now B runs. It sends a message to A. This causes A to be scheduled for
a message delivery. Once B completes, C will run and the queues look
like this:

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> C ? A SIG IDLE

A message

Notice that the activation for A's message is on the activation queue. This
means that as gates send buffers to other gates on the same slot, the
activation queue never goes empty (Note that reliable messaging to the
same slot will idle the sender. This is covered later). This is intentional
since this is exactly what happens when we're forwarding traffic - and we
want that to go fast.

Once C completes the queue looks like this:

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> A message A SIG IDLE

A now executes. Since it was pended, it unpends at that same point in
the code. In this case, that is in the g_idle() syscall. The g_idle() unpends
with a message. This isn't what it wants so it remembers that the gate
received messages and pends again. The system goes idle since there are
no more gates on the activation queue.

• 7-6 GAME Reference Manual

•
Chapter 7 Scheduler •

Module interrupts are now enabled. Lets assume there are interrupts
pending and gate D is a driver which will handle one of those interrupts.
The interrupt handler will send a g_sig(SIG_MODO) causing gate D to
be scheduled. Next the idle queue is copied to the activation queue and
scheduling begins with gate D running.

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> D SIG MODO

A SIG IDLE

Gate D runs to completion and then Gate A gets scheulded. Gate A
unpends in the g_idle() syscall. It sees a SIG_IDLE, which is what it was
waiting for so it can continue on. But, before returning to the application
code, it needs to reschedule any activations it saw but didn't want, such
as the message. When control returns to the g_idle() caller, the queues
look like this:

Activation queue Idle queue

Gate Reason Gate Reason

Running gate --> A SIG IDLE

A message

A is running after the g_idle(). Assuming it then returns from its
activation routine it will immediately execute again, but this time for the
messages it received while idle.

This may seem confusing, but applications normally don't worry about
it. From an application point-of-view, it recieved a SIG_INI, idled and
then recieved buffers. What applications, especially in the control path,
do need to be aware of is the importance of allowing the system to go
idle so that new data traffic can be processed (more on this later).

•

GAME Reference Manual 7-7 •

• ••
• Chapter 7 Scheduler

•

Forwarding Path Notes

Mappings

• 7-8

The scheduler may seem somewhat convoluted, but it is important to keep
in mind that GAME was designed for the efficient forwarding of data. In
the forwarding path, gates do not pend. Forwarding gates typically
receive a continuous stream of buffers. Pending would cause buffers to
pile up on the gate's delivery list, possibly depleting the buffer free pool
on the slot.

The burden of handling pending was moved from scheduling time to
unpending time, since we schedule much more than we unpend.

The scheduling of mapping activation routines is somewhat special. Here
is the sequence of events:

1. A "target" gate is created or killed, requiring mappings to
trigger. This occurs in the context of some gate (e.g., a gate
calling g_req(), or GAME's MAPPER gate, which receives
updates from other slots). We'll refer to this as the "triggering"
gate.

Activation queue

Gate Reason

Running gate -->trigger ?

A ?

2. The triggering gate reschedules itself at the head of the
activation queue with a SIG_MAP. This is effectively a "push"
onto the queue to continue the triggering gate's execution once
the mappings have all run.

GAME Reference Manual

•
Chapter 7 Scheduler •

Activation queue

Gate Reason

Running gate -->trigger ?

trigger SIG MAP

A ?

3. The triggering gate creates a gate (which, through some
trickery, becomes a child of the MAPPER gate) which runs the
map_ map() routine and schedules it at the head of the activation
queue. Note that many map_map gates can exist at any time.
map_ map gates are also responsible for the cleanup of dying
gates.

Activation queue

Gate Reason

Running gate -->trigger ?

map_map SIG MAP

trigger SIG MAP

A ?

4. The triggering gate pends, allowing the map_map gate to run.

Activation queue

Gate Reason

Running gate -->map_map SIG MAP

trigger SIG MAP

A ?

•

GAME Reference Manual 7-9 •

•
• Chapter 7 Scheduler

•

5. The map _map gate also reschedules itself at the current head of
the activation queue with a SIG_MAP.

Activation queue

Gate Reason

Running gate -->map_map SIG MAP

map_map SIG_MAP

trigger SIG_MAP

A ?

6. The map_ map gate creates the gates that run the actual mapping
activation routines. Their activation routine is map_gate_act(),
a kernel routine, which will call the user's mapping routine.
These mapping gates are scheduled at the head of the queue,
before the map_map gate's SIG_MAP position in the queue (see
step 5). The scheduling reasons for these gates are also
SIG MAP.

Activation queue

Gate Reason

Running gate -->map_map SIG MAP

map_actl SIG MAP

map_act2 SIG MAP

map_actN SIG MAP

map_map SIG MAP

trigger SIG MAP

A ?

• 7-10 GAME Reference Manual

•
Chapter 7 Scheduler •

7. The map_ map gate pends, allowing the mapping gates to run.

Activation queue

Gate Reason

Running gate -->map_actl SIG MAP

map_act2 SIG MAP

map_actN SIG MAP

map_map SIG MAP

trigger SIG MAP

A ?

8. The scheduler runs the mapping gates. Note that if a mapping
causes other gates to die, additional mapping activations get
scheduled ahead of those already scheduled. If the mapping
gate pends, it is possible for the state of the "target" gate to
change. GAME does not initiate the mapping for the new state
immediately. It instead stores the new state in the mapping
gate's environment. This may happen multiple times during the
life of a mapping. When the current mapping activation
completes, the map_gate_act() routine checks for this changed
state. If any exists, it re-runs the mapping with the first changed
state (and repeats this for each stored state). This way, a gate
will never miss a state change.

9. Once all the mapping gates have been run, the next thing on the
activation queue will be the SIG_ MAP activation for the
map_map gate. This resumes the map_map gate's execution. If
the mapping was for a dying gate, it then cleans up the gate's
memory. Finally, the map_map gate kills itself.

•

GAME Reference Manual 7-11 •

•
• Chapter 7 Scheduler

•

Interrupts

Activation queue

Gate Reason

Running gate -->map_map SIG MAP

trigger SIG MAP

A ?

10. The next thing on the activation queue will now be the
SIG_ MAP activation for the triggering gate. This resumes the
triggering gate's execution. It finishes the mapping processing
(which isn't much) and returns to the application code.

Activation queue

Gate Reason

Running gate -->trigger SIG_MAP

A ?

Note that if a mapping activation routine pends, it's continued execution
can be intertwined with the activations of the base gate and other
mappings in the context of the base gate. However, these other mappings
can never be mappings for the SAME target gate of the still-running
mapping.

The details of low-level interrupt handling are specific to a given
hardware platform. GAME isolates these hardware dependencies from
the device driver gates and delivers interrupt events via signals.

• 7-12 GAME Reference Manual

•
Chapter 7 Scheduler •

GAME runs on various hardware platforms such as the ACE, ACE32,
AFN, FRE (I, 2, 3), ASN, ARN, AN, and ARE. These hardware
platforms are the name given the the processing engine that populates a
slot. Each processing engine contains a main microprocessor that
executes most of GAME's code and other support hardware such as timer
chips, UARTS, TAGS, memory parity logic, and hardware that is used
for interslot communication. Each slot also contains hardware devices
such as ethernet, fddi, token ring, and synchronous chip sets that
interoperate with the microprocessor on that slot.

Most of hardware platforms that GAME runs on are based on the
Motorola MC680x0 microprocessor family. For the rest of this section
we will talk about how the 68040 microprocessor on a FRE 112 works.

The 68040 has three main states:

• Halted. - A waiting a reset signal.

• Running - Executing code normally such as thru a scheduler.

Exception - Processing an exception such as errors and external
interrupts.

Exceptions can be caused by executing an instruction or by external
hardware events, such as interrupts, and hardware errors. Exceptions
caused by executing an instruction will be detected by the microprocessor.
Some exceptions are predefined and some can be user defined.
Predefined exeptions include unimplemented instruction, illegal
instruction, address error, bus error and divide by zero. Motorola also
defines seven prioritized levels for processing interrupt requests.

•

GAME Reference Manual 7-13 •

•
• Chapter 7 Scheduler

•

When the processor is initialized, code populates an exception vector
table with addresses of routines that will run when a particular exception
occurs. When an exception occurs that is not due to an interrupt request,
the current running code will be preempted after it finishes its current
instruction and the routine for that particular exception will execute. All
of the interrupt levels, other than level 7, can be disabled. Disabling a
level also disables all levels below. If an interrupt request occurs for a
level that is enabled, the current running code will be preempted once the
current instruction has finished. The interrupt service routine (ISR) for
this interrupt level will run. If an interrupt request occurs for a level that
is disabled, the exception does not occur until the level is enabled.

The FRE hardware was designed so that only two of the seven interrupt
levels are used (levels 3 and 4). The initialization code populates the
interrupt vector table in the following manner:

• The entry for the level 4 interrupt will contain the address of
g_isr_ 4().

The entry for the level 3 interrupt will contain the address of
g_isr_3().

The address of exception vector #2 will will contain the address
of Bus Error().

All other entries contain the address of except_ entry() (there are
a couple of minor exceptions).

Interrupt level 4 is always enabled. Because of this, g_isr _ 4() can preempt
any current running code. The watchdog timer, TAGS, memory parity
errors and the NMI button result in a level 4 interrupt request. Interrupt
level 3 is enabled when the scheduler is idle and in between gates, but
disabled while a gate is executing. This means that g_isr_3() does not
always service interrupts immediately and it does not preempt gates. The
RTC used by the periodic timer, the backbone, UAR Ts forthe TI console,
and the link modules, which contain devices such as the ethemet chip,
all assert level 3 interrupts.

• 7-14 GAME Reference Manual

•
Chapter 7 Scheduler •

When a level 3 interrupt occurs, g_isr_3() examines the pending
interrupts register and masks out interrupts that are not to be handled at
the current time. This is currently used to postpone the processing of
link-module interrupts when the scheduler is not idle (i.e., between gate
schedulings). For each pending interrupt remaining, a g_ isr() call is made
to schedule the appropriate signal. As discussed in the Inter-Gate
Communications section, the gate that handles the signal indicates
whether it should be scheduled at the head of the activation queue
(G_ISR_SIG) or the end (G_BASE_SIG).

ARE/FRE-3 Interrupts

The PowerPC used by on the ARE and FRE-3 has a much different
interrupt setup than the 68k does. The Power PC only has a single interrupt
feeding into it. There are no levels explicitely supported by the PowerPC
itself.

In order to make the PPC function more like the 68k, external interrupt
support HW was added. This support consists of 3 registers; IPEND,
IPOL and !ENABLE. All of these registers are 32 bits wide. Each
interrupt source occupies one of these 32 bit positions and that position
is used consistently in all registers. For example, bit 0 of all of these
registers deals with the timer interrupt.

These 3 registers get combined in the following manner to generate the
single interrupt which feeds into the PowerPC.

1. The interrupt pending register (IPEND) contains the interrupt
state of all hardware sources.

2. The IPEND is exclusive-or'd with the interrupt polarity
(IPOL)register to flip any active low interrupts to active high
ones.

3. The result of this xor is anded with the interrupt enable
(!ENABLE) register.

•

GAME Reference Manual 7-15 •

•
• Chapter 7 Scheduler

•

CPU Hogging

4. If any bits are then set, an interrupt is sent to the processor.

Both the IPOL and !ENABLE registers are software programmable. As
a practical matter, the IPOL is written to once and then ignored (after all,
the interrupt sources are either active high or low but not both).

The various levels found on the 68k platforms are implemented by
changing the value contained in the !ENABLE register. The kernel
maintains a set of 3 values which are written to the !ENABLE at the
appropriate times.

The lowest is the watchdog level. This contains all the interrupt sources
which should always be enabled. This includes such things as the
watchdog interrupt as well as error interrupts like for tags. Above this
are the interrupts which are enabled between gates such as timers and
uarts. Finally, the highest level are those interrupts which are enabled
only when we go idle such as the module interrupts. Each level contains
the level below it thus the watchdog level interrups are indeed always
enabled.

When an interrupt occurs, the contents of the IP END are anded with the
current !ENABLE and only those interrupt are the ones which get
processed.

Since GAME uses a non-preemptive scheduler, it is very easy for a single
gate to disrupt an entire slot, or even an entire box, by tying up the CPU
for more than a few milliseconds at a time. When a gate or collection of
gates "hog" the CPU, the scheduler may not go idle soon enough to handle
the link-module interrupts. In this case, packets are dropped, and, for
some reason, this makes customers unhappy.

• 7-16 GAME Reference Manual

•
Chapter 7 Scheduler •

Unfortunately, the onus is put on the application programmer to make
sure their gates are well-behaved. Therefore, an analysis of each gate's
execution time has to be done to ensure that the CPU is surrendered often
enough.

g_idle Call

g_idle() is the most common vehicle used to ensure a gate is not a CPU
hog. Normally, g_idle(G_IDLE_POLL) is placed in an iteration loop.
One example is RIP receive processing. g_idle() is used so that the CPU
intensive operation of adding I deleting I updating networks does not
result in drivers dropping frames.

void g_idle (u_int32 flag)

"flag" can be one of the following:

G_IDLE_POLL - place current gate on idle queue. The gate
gets rescheduled after the next time the scheduler goes idle.

G IDLE CHECK - check to see if the backbone or drivers need - -
servicing or if the watchdog count is nearing expiration. If
TRUE then g_idle() acts as ifG_IDLE_POLL was used as a
flag. Otherwise, g_idle() returns allowing the gate to continue
executing.

flag can also take the value G _IDLE_ TAIL. In older versions of
GAME, this would schedule the gate at the end of the activation
queue. This feature was removed because it allowed a gate to
hold out module interrupts for too long. G _IDLE_ TAIL now
equals G_IDLE_POLL.

•

GAME Reference Manual 7-17 •

•
• Chapter 7 Scheduler

•

Example:

FOR EACH NETWORK UPDATE

/*
* Process update.

*/

g_idle(G_IDLE_POLL);

}
}

Note that if other gate activations can access and/or modify data used by
this gate (e.g., mappings or other gates in the hierarchy), the gate should
ensure that the data is in a state that allows access/modification when
idling (or it has to protect the data via semaphores).

Other function calls also give up the CPU. However, it is possible for
the gate to regain the CPU before the slot has gone idle.

g_fwd(), g_rpc(), g_reply() Calls

These calls all use an internal GAME function called msg_fwd(). For
delivery of a message to the local slot, an explicit g_idle() call is made
to allow module interrupts to run. For remote delivery, however, the gate
is only pended until an ACK buffer is received from the remote slot. If
the local slot is busy enough and the remote slot quickly sends the ACK,
there is a chance of receiving the ACK before the local activation queue
goes empty. This chance is much lower with g_rpc(), which requires a
g_reply() buffer from a gate on the remote slot before the local gate
unpends.

For purposes of application writing, assume that these calls will allow
module interrupt service. If the frequency of the "exceptional cases"
becomes a problem, the functions can be changed to do explicit g_idle()
calls.

• 7-18 GAME Reference Manual

•
Chapter 7 Scheduler •

g_delay() Call

For any parameter values greater than 16 ticks, it is fairly certain that the
slot will go idle before the unpend timer expires. For a delay of 16 or
smaller, there is a very slight chance of servicing the timer interrupt
(between gate activations) that will unpend the gate. For purposes of
application writing, assume that this call will allow module interrupt
service.

g_sema_get(), g_balloc() Calls

These calls give up the CPU only if the requested resource is not available.
An application should not rely on these to perform time-slicing.

In addition, most MIB interface calls use g_rpc() to a local gate.
Therefore, these MIB calls result in module interrupt service.

•

GAME Reference Manual 7-19 •

•
• Chapter 7 Scheduler

•

• 7-20 GAME Reference Manual

Overview

•
Chapters
Watchdog

GAME implements a simple non-preemptive, FIFO scheduler where a
gate runs to completion unless it voluntarily gives up execution by calling
a kernel system call that pends the gate. The kernel system calls that pend
are: g_fwd(), g_rpc(), g_reply(), g_delay(), g_sema_get() (sometimes),
g_balloc() (sometimes), and g_idle(). (See the Scheduler section for a
discussion of CPU Hogging).

~ The mib interface uses many of these pending functions and many
1:f"' engineers have not taken this into account in their original designs.

Within the forwarding path, the currently executing gate runs its action
routine to completion quickly. Non-forwarding path gates do one of the
following:

1. run the current action routine to completion quickly.

2. pend themselves one or more times before completing the
current action routine.

3. call g_idle() one or more times before completing the current
action routine. This is a crude form of time slicing.

•
•

Question and Answer

1. "What happens if the current executing gate is stuck in an
infinite loop or appears to be in an infinite loop (it will
eventually finish)"?

The slot would hang, unless GAME's fault management system
could detect this condition.

2. "Can GAME's fault management recovery system detect and
correct this condition"?

This condition can be detected by another piece of hardware other
than the microprocessor.

GAME Reference Manual 8-1 •

•
• Chapter 8 Watchdog

•

3. "How can the fault management code execute if the scheduler is
currently running"?

Microprocessors can execute code as exceptions (interrupts). with
the exceptions preempting the normal running scheduled code.
So the basis for GAME's watchdog mechanism is to have a piece of
hardware, other than the microprocessor, watch over the
microprocessor for the purpose of detecting and correcting a
hang-like condition.

How the Watchdog Works On A FRE

• 8-2

If you are not familiar with how interrupts work on a FRE, review the
"Interrupts" portion of the Scheduler chapter.

There is a timer chip on the FRE that expires once every second. When
this timer expires, a level 4 interrupt is asserted and g_isr _ 4() will execute.
When g_ isr _ 4() executes, it looks at certain hardware registers located
on the FRE to determine which hardware device requested the interrupt.
If it is determined that the watchdog timer was the reason for asserting
the interrupt, then a bit within a register on the FRE is cleared telling the
FRE that we are servicing the watchdog timer. If this bit is not cleared
within one watchdog timer period, then the FRE does a hardware reset
(this is a "hardware watchdog").

When the scheduler idles, the watchdog detection code is disabled. When
the scheduler goes from idle to non idle (g_isr_3() schedules a gate), the
watchdog detection code is enabled. If g_isr _ 4() sees that the watchdog
is disabled, then g_isr_ 4() just exits. Otherwise, g_isr_ 4() executes
tmo_wdog().

GAME Reference Manual

•
Chapter 8 Watchdog •

tmo _ wdog() checks to see if the current running gate is the same gate and
same invocation of the gate as the last time that tmo _ wdog() was run one
second ago. If the gates differ, a limit count is set to 3, information that
distinguishes this gate invocation is saved, and tmo _ wdog() returns. If
the gates are the same then the counter is decremented. If the counter
reaches zero the slot is restarted (this is a "software watchdog").
Otherwise, tmo _ wdog() returns. This means that a gate can run between
3 and 4 seconds before the slot is reset due to a watchdog.

"'1.r If a gate runs more than a couple of milliseconds then something is
'(F drastically wrong. g_idle() calls should be placed into the code at

determined points to allow servicing of link module interrupts.

Platform Differences

The idea for having a watchdog timer was introduced with the FRE. The
FRE, FRE2, and ASN basically work in the same manner, due to the
common architecture.

The ACE25, ACE32, and AFN predate the FRE. No watchdog timer was
added to the processor. Because of this, no watchdog support exists on
the ACE25 or AFN. The ACE32 does implement watchdog support, but
in a way very different than any other platform. The ACE32 contains
two microprocessors: one for GAME processing and one for interslot
communication (DMAP) (this is also true for the ACE25). The ACE
exception vector table also contains routines for servicing level 7, level
6, and level 5 interrupts, with level 6 handling cascade interrupts. The
DMAP processor runs code separate from GAME. When it enters its
timer_isr() function, it determines whether or not the main
microprocessor is hung. If the DMAP determines that the main
microprocessor is hung, it creates a Late Bus Error that will result in the
main microprocessor's level 6 ISR executing. Even though the ACE32
and ACE25 have some common architecture, the ACE25 could not
reliably use the SYSF AIL signal to achieve like results.

•

GAME Reference Manual 8-3 •

. ~
• Chapter 8 Watchdog

•

The AN and the ARN both have MC68360 (QUICC) chips that internally
contain a lot of programable hardware support, including timers (note
that the ARN also contains a 68040 for processing). The exception vector
tables on the AN and ARN are similar to each other, but differ from the
FRE and ACE platforms. This exeception vector table contains a number
of hardware vectored interrupts that contain their own entries in the table
and are not part of the 7 prioritized interrupt levels. TIMER l's vector
entry has the address of rtc _isr _ 4() and is programmed for interrupt level
4. rtc_isr_ 4() will run every second and, unlike g_isr_ 4(), this routine
exists only for watchdog support and executes tmo _ wdog(). The
MC68360's internal watchdog is not used.

The ARE uses two power pc processors, both of which run (SMP) GAME.
interrupt_ handler() is the main interrupt handler. When the watchdog
timer expires, call_ihandler() is executed to determine which of the two
processors will run the tmo _exp() routine.

• 8-4 GAME Reference Manual

Overview

•
Chapter9

Semaphores

Game implements a fairly straightforward semaphore capability with
some additional requirements due to GAME's high-availability nature.

A semaphore is used to control access to a critical resource. This may
be a shared data structure or a piece of hardware. Another use is to limit
the number of instances of a certain task being performed.

Each semaphore has a number of "tokens" associated with it. Each token
allows one gate to enter the critical section guarded by a semaphore. A
"binary semaphore" is simply a semaphore with I token.

The number of tokens which a semaphore has is specified when that
semaphore is created. It's possible to add or remove tokens from a
semaphore while executing.

There are two types of semaphores: well-known and dynamic. These
work much like gate IDs. The well-known semaphores are defined at
compile time in a header file (include/known_sema.h). The dynamic
semaphores are allocated at run time.

When a gate tries to get a token it will pend if one is not available. As
tokens are freed, the pending gates will acquire the token and unpend.
This is done in a FIFO order.

GAME tracks the ownership and creation of semaphores and tokens like
any other resource and will automatically free tokens or remove un-used
semaphores when gates die. In order to know which gates are using which
semaphores, GAME requires a gate to register for a semaphore before
using it.

Semaphores are local to a single slot and cannot be used across slots.

•
•

GAME Reference Manual 9-1 •

•
• Chapter 9 Semaphores

•

Well-known vs. Dynamic Semaphores

GAME semaphores come in two flavors; well-known and dynamic. Each
of these has the following characteristics:

Well-known Semaphores

• The ID is defined in include/known sema.h.

• It may be used by a gate without the burden of passing around a
semaphore ID.

Multiple gates can "create" the well-known semaphore. (If the
number of tokens remains the same, the second and subsequent
creations just become registrations.

Dynamic Semaphores

Created at run time by a gate.

The semaphore ID is assigned by GAME and must be passed to
any other gates which want to use that semaphore.

Semaphore Creation and Registration

The g_ sema() system call is used to create and/or register to use a
semaphore.

Call:

SEMA g_sema (SEMA sema, u int32 n)

• 9-2 GAME Reference Manual

•
Chapter 9 Semaphores •

Values:

"sema" can be:

G _ SEMA _CREA TE - create a semaphore

• The handle of a well-known existing semaphore that is to be a
multiple creation

"n" can be:

The number of tokens for a new semphore

The new number of tokens to be associated with an existing
semaphore

G_SEMA_REGISTER-to register to use a semaphore

Return Value:

The return value is is the semaphore handle to use in subsequent
g_sema_XXX() calls. It will be a newly allocated ID if "sema" is
G SEMA CREATE. Otherwise, it is the same value as the "sema"
parameter.

Considerations:

Creation of a semaphore automatically registers the creating gate to use
that semphore.

If the semaphore already exists and G_SEMA_REGISTER is not
specified, g_ sema() will change the number of tokens associated with the
semaphore ton. Adding tokens will not pend. Decreasing the number of
tokens ("n" is less than in the original creation call) may pend because a
token first needs to be acquired before the max count can be decremented.

•

GAME Reference Manual 9-3 •

•
• Chapter 9 Semaphores

•

As mentioned above, its possible to do multiple creations of a well-known
semaphore. The second and subsequent g_sema() calls simply look like
calls to change the number of tokens. If all creators initialize the number
to the same value, then no change happens. The net result is that the
creator is only registered for the semaphore.

Getting a Token

The g_ sema _get() call is used to obtain a semaphore token. If a token is
available in the free token pool of the semaphore, one is removed from
the pool and assigned to be owned by the calling gate. If there are no free
tokens at the time, the calling gate PENDS until one is freed by some
other gate. Note that if the caller owns all tokens, a deadlock is certain!

When there are no free tokens, multiple pending gates are served on
first-come first-serve basis. This rule includes callers of g_sema() that
are trying to reduce number of tokens.

Death of an owner of the token will cause the token to be returned to the
semaphore it came from so that applications need not be concerned with
the clean-up.

void g_sema_get {sema)

"sema" is the semaphore from which a token is desired.

Returning A Token

The g_sema_put() call frees one semaphore token back to its free pool
without any pending. If there are other gates waiting for a token (due to
g_ sema or g_ sema _get calls), the first one is scheduled to run at the end
of the current activation queue (just as a message delivery would).

• 9-4 GAME Reference Manual

•
Chapter 9 Semaphores •

A caller that has no token belonging to that semaphore is terminated.

void g_sema_put (SEMA sema)

"sema" is the semaphore to which the token is returned.

Checking A Semaphore's State

It is often helpful to know ifthere are any tokens available before calling
g_sema__get(). This way, a gate can avoid pending if none are available.
The g_ sema _state() call provides this information.

int g_sema_state (SEMA sema)

"sema" is the semaphore whose status is desired.

The returned status may be a positive number, zero, or a negative number.

A positive number indicates the number of free tokens available.

Zero and negative indicate lack of tokens and number of already pending
waiters (in a sense a negative token count). That is, 0 means there are
no tokens left, -2 means there are no tokens and 2 gates are already waiting
for a token.

The following is guaranteed not to pend on uni-processor systems.

if(g_sema_state(s) > 0)

g_sema_get(s);

For SMP, the issue is a bit tricker. Depending upon what gates are
using the semaphore and their SMP type, the above may not work.
This is the case if all users of the semaphore can't be scheduled to
run in parallel. To fix this for SMP would probably require the
addition of a new syscall. At the moment its felt that there's not any
demand for this functionality.

•

GAME Reference Manual 9-5 •

•
• Chapter 9 Semaphores

•

Gate Death and Cleanup

Whenever gates die, any tokens it has acquired are returned to the
semaphore. This will allow a waiting gates to acquire a token.

When the last user of a semaphore dies, the control block for that
semaphore is also freed. This means that the semaphore will have to be
re-created before it can be used again.

Semaphores and Mappings

Mappings don't inherit a creator's registration for a semaphore. If a
mapping needs access to a semaphore (even one created by its owner) it
must first register to use that semaphore. The reason for this is so that if
that mapping completes while still holding onto a token, that token will
be returned to the semaphore.

Are Semaphores Really Needed?

Due to GAME run to completion scheduling and SMP implementation
the need for semphores is actually pretty small.

Typically a semaphore would be used to lock a data structure. On a single
processor system, as long as a gate doesn't pend during its critical section
while modifying the data structure) no other gate will run. So in this
situation a semaphore isn't necessary. The important part is that the critical
section is non-pending.

On SMP systems, the SMP type of the gates which access the data
structure will control if those gates can run in parallel. If gates are
configured such that they won't run in parallel, then semaphores aren't
needed. Essentially, in this situation, the SMP system looks like a single
processor system as far as a gate's ancestory is concerned.

• 9-6 GAME Reference Manual

•
Chapter 9 Semaphores •

SMP also provides a spin-lock capability. This may be more efficient at
protecting a data structure then semaphores as described here. Especially
if its unlikely that multiple concurrent accesses to the data structure will
happen. However, spin-locks can only be asserted for short periods of
time, and a gate cannot pend while it has one.

The primary use of semaphores in GAME applications is to protect data
accesses between a gate and its mappings. This is only necessary if a
gate's mapping routines perform "real work", as opposed to just sending
a signal to the gate's base context. This was discussed in the Mappings
section.

•

GAME Reference Manual 9-7 •

•
• Chapter 9 Semaphores

•

• 9-8 GAME Reference Manual

•
Chapter 10

Timer and Time of Day Services

General Overview

This chapter describes two GAME services:

Timer Overview

The GAME Timer Service (AKA timers) provides functionality
to allow gates to be periodically scheduled and to sleep.

• The GAME Time of Day Service (AKA time) provides
functionality that allows gates to set and get system time.

Note that this is the Timer overview. There will be a Time
overview later in this chapter.

Some applications (like those that implement the RIP, SAP, HELLO,
LMI, LQR, or BOFL protocols) need to be able to execute the same code
on a periodic basis.

Each gate can have one periodic timer. When the timer expires, the gate
will be scheduled for a SIG_ TMO signal as long as the gate is not already
scheduled by a SIG_TMO signal from a previous timer expiration.

The g_ tmo() kernel system call is used to start, adjust, and cancel a gate's
periodic timer. Once the timer has been started, it will expire every
time-out period until the timer is cancelled.

Some applications execute part of their code and then wish to sleep for a
period of time before continuing on with the rest of their code. The
g_delay() kernel system call or a combination of the g_idle() and
g_timer_get() kernel system calls can be used to achieve these results.

•
•

GAME Reference Manual 10-1 •

•
• Chapter 10 Timer and Time of Day Services ·

•

• 10-2

g_tmo() Kernel System Call

Applications start, adjust, and cancel a gate's periodic timer by calling
the g_tmo() kernel system call.

Call:

u int32 g_tmo (GID gid, u int32 time}

Values:

gid" is the gate id whose timer is being manipulated.

"time" is the timeout period [1/1024 seconds]. ThevalueG_CANCEL or
0 cancels the timer.

Return Value:

The return value is the timer's previous "time" value.

Considerations:

g_tmo() is easy to use but because you can specify any gid, you must be
careful or you might start or cancel the wrong gate's timer.

The actual time used for timer expiration is not necessarily what was
entered and usually is longer. The FRE, FRE-11, ASN, ACE25, ACE32,
AFN, and ARE round this time up to multiples of 16 ms. The AN and
the ARN round this time up to multiples of 64ms.

Because timer interrupts are serviced in between gates, some drifting can
occur when gates run longer than the platform's Real Time Clock (RTC)
interrupt granularity.

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

GAME's code refers to RTC in two different ways:

1. calendar or wallclock time.

2. A timer that increments in fractions of seconds that asserts an
interrupt that GAME can use to internally manage the periodic
software timers.

"RTC" within this section refers to #2 as described in the FRE spec
(described in the FRE address space document /usr9/harpoon/doc/
hardware/frel. txt).

Reliable messages and g_delay() save, steal, and restart a gate's timer (if
it exists) which results in a timer expiration delay.

ThemacrosG TMO SECONDSandG TMO DEFAULTcanbeused. - - - -
They are defined in include/kemel.h.

Example 1

Start a timer for the current gate.

/*
* some existing application

*/

g_tmo(G_SELF_ID, G_TMO_SECONDS(30));

•

GAME Reference Manual 10-3 •

•
• Chapter 10 Timer and Time of Day Services

•

• 10-4

Example2:

Cancel a timer for the current gate.

/*
* some existing application

*/

g_tmo(G_SELF_ID, G_CANCEL);

Example 3:

Start and Cancel a timer for another gate.

/*
* some existing application

*/

/*

* Start up a test gate.

*/
gid = g_req(G_NEW_ID, TestA, 0, G_SIG_INI);

/*

* Mapping should go here.

*/

/*
* Start 1 second timer for gid.

*/
g_tmo(gid, G_TMO_SECONDS(l));

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

/*
* Cancel gid's timer.

*/
g_tmo(gid, G_CANCEL);

Example 4:

What TestA might look like.

TestA (env, BufList, sig)

u int32 *env;

BUF *BufList;

SIG sig;

if (BufList)

BUF *CurrentBuf;

BUF *NextBuf;

NextBuf = CurrentBuf

while (NextBuf)

BufList;

NextBuf = G BUF_NEXT(CurrentBuf);

/*
* Process CurrentBuf.

*/

else it (sig SIG_TMO)

/*

* Do Periodic processing.

*/

GAME Reference Manual

•

10-5 •

•
• Chapter 10 Timer and Time of Day Services

•

• 10-6

else if (sig SIG_INI)

/*
* Initialize.

*/

else

/*
* Other signal processing.

*/

NOTE 1. GAME will ensure that the gate will only be activated
with either a buffer list OR a signal.

NOTE 2. When code is written to receive both buffers and signals,
buffers must be checked for first. SIG TMO has a value of 0.

Example 5:

TestB will, upon initialization, start a timer with a time value of 1 (1/
1024) of a second. OldTime will return a value ofO since no timer is
started. The timer will fire 16ms or 64ms later and signal TestB with a
SIG_ TMO. When TestB handles the signal it will restart the timer with
a time value of 2 and OldTime will return a value of 16 or 64. Using a
FRE as an example, a time value of 1-16 will mean 16, 17-32 will mean
32, etc. Upon reaching 2048, the timer is cancelled.

/* some existing application */

/*

* Start up a test gate.

*/
gid = g_req(G_NEW_ID, TestB, 0, G_SIG_INI);

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

/*
* Mapping should go here.

*/

TestB (env, BufList, sig)

u int32 *env;

BUF *BufList;

SIG sig;

u int32 time;

u int32 OldTime;

if (BufList)

BUF *head;

BUF *tail;

BUF *NextBuf;

/*
* Find head and tail. Then free them buffers.

*/
NextBuf = head = BufList;

tail = NIL(BUF);

while (NextBuf)

tail

NextBuf

NextBuf;

G_BUF_NEXT(tail);

g_bfree(head, tail);

else if (sig == SIG_TMO)

if (*env == 2048)

/*
* Cancel timer. Technically the g_req() would

cancel the timer.

*/

•

GAME Reference Manual 10-7 •

•
• Chapter 10 Timer and Time of Day Services

•

• 10-8

OldTime = g_tmo(G_SELF_ID, G_CANCEL);

g_req(G_SELF_ID, G_REQ_KILL, 0, 0);

else

/*
* Adjust timer.

*/
time = *env++;

OldTime = g_tmo(G_SELF_ID, time);

else if (sig == SIG_INI)

u int32 *NewEnv;

NewEnv = (u_int32 *)g_malloc(sizeof(u_int32));

*NewEnv = O;

g_req(G_SELF_ID, TestB, NewEnv, O);

/*
* Start the timer.

*/
time = 1;

OldTime g tmo(G SELF ID, time); - - -

else

/*

* Other Signals would be received here.

*/

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

g_delay() Kernel System Call

Applications can execute some code and then sleep before executing
some more code by calling the g_delay() kernel system call.

Call:

void g_delay (u_int32time)

Values:

"time" is the timeout period [1/1024 seconds].

Considerations:

The actual time used for timer expiration is not necessarily what was
entered and usually is longer. The FRE, FRE-11, ASN, ACE25, ACE32,
AFN, and ARE round this time up to multiples of 16 ms. The AN and
the ARN round this time up to multiples of 64ms.

Because timer interrupts are serviced in between gates, some drifting can
occur when gates run longer than the platform's RTC interrupt granularity.

The macros G TMO SECONDS and G TMO DEF AULT can be used. - - -
They are defined in include/kemel.h.

Example 1:

Using g_delay() to sleep for 1 second.

/*
* some existing application

*/

g_delay(G_TMO_SECONDS(l));

•

GAME Reference Manual 10-9 •

•
• Chapter 1 O Timar and Time of Day Services

•

• 10-10

Example2:

Using g_delay() to wait for a resource and implement a form oflocking.

/*
* some existing application

*/
while(env->DataBaseFlag)

g_delay(l6);

/*
* Lock data base.

*/
env->DataBaseFlag = TRUE;

/*

* Modify data base.

*/

/*
* Unlock data base.

*/
env->DataBaseFlag = FALSE;

A dual processor like an ARE could have problems with the above
if both processors can run the same code.

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

Using g_idle() and g_timer_get() For Very Short I
Accurate Delays

Sometimes applications need to sleep for time periods much shorter than
GAME timer granularities, or need a timer much more accurate than
GAME can provide. A combination of g_timer_get() and g_idle() can
accomplish this. (The g_timer_get call is described in detail later in this
chapter.)

An example of this is in the IPX protocol where the inter-packet delay of
RIP and SAP packets should be set to 55 ms. g_delay()would return 6ms.

void ipx_delay (u_int32 delay) /* time to delay in ms *I
{

TBLOCK timel,time2,time3;

if (delay < 2000 && delay >= 1)

{
g_timer_get (&timel);

while (1)

g_idle (G_IDLE_POLL) ;

g_timer_get (&time2);

dsub (&time2, &timel, &time3);

if ((((time3.sec & OxOOOOOOff) * 1000) +
(time3.frac I 4294968))

}
}

>= delay)

break;

•

GAME Reference Manual 10-11 •

•
• Chapter 10 Timer and Time of Day Services

•

• 10-12

Grain Tables and tmo_exp()

GAME manages each gate's periodic timer by storing the gate's control
block pointer in a time grain table. There are one or more time grain
tables (always a power of two- 1,2,4,8,16, ...)with each time grain table
containing a maximum of "TMO _GRAIN_ SIZE - I" (currently 15)
entries.

Whenever a gate calls g_tmo() to start a tinier:

I. The timeout value is rounded up to to be a multiple of the
hardware periodic timer's expiration time (16ms or 64ms (AN
and ARN)).

2. a repetition count is calculated based upon the timeout value
and the number of time grain tables.

3. an entry is added to one of the time grain tables containing the
gate's control block pointer. Fields within the gate's control
block pointer are filled in to depict the timeout value and the
repetition count.

Entries within a grain table are added one after the other with no holes.
If an entry is deleted then the grain table is reordered. If a grain table fills
then the next grain table is used. If all grain tables are filled then the
number of grain tables is doubled and the entries are sorted into the tables
based upon the modulus of the number of tables and repetition count of
the entry.

Every RTC (Real Time Clock) interrupt (16ms or 64ms) the function
tmo _exp() is executed and one time grain is fully inspected. The repetion
count for each entry is decremented by the number of time grain tables.
If the repetion count is less than or equal to zero then the gate is scheduled
for a SIG_TMO signal, unless it has not as of yet serviced a previous
SIG_TMO signal. tmo_exp() restarts the timer for expired entries by
re-adding an entry to a time grain table.

GAME Reference Manual

•
Chapter 1 O Timer and Time of Day Services •

GAME is architected so that many timers can be handled quickly. The
accuracy of the timers is not that precise when small values are used.
Since most timers are in increments of seconds, a timer expiring a fraction
of a second later usually does not make much of a difference.

NOTE 1. The actual time used for timer expiration is not
necessarily what was entered and usually is longer. The FRE,
FRE-11, ASN, ACE25, ACE32, AFN, and ARE round this time up
to multiples of 16 The AN and the ARN round this time up to
multiples of 64ms.

NOTE 2. Because timer interrupts are serviced in between gates,
some drifting can occur when gates run longer than the platform's
RTC interrupt granularity. A change has been made to tmo _exp()
to detect this by using g_timer_get() and to catch up by servicing
more than one timer grain table.

NOTE 3. Reliable messages g_rpc() and g_delay() save, steal, and
restart a gate's timer (if it exists) which results in a timer expiration
delay.

NOTE 4. When the calculated grain table is full and the next free
grain table is used, the timer expiration is delayed by one RTC
interrupt time for each grain table it must skip over.

NOTE 5. Usually the first expiration ofa timer will occur at
timeout plus the remainder of the current RTC interrupt.

NOTE 6. The timer code is flawed in that it is possible for a timer
to be delayed (by RTC interrupt timer times the number of grain
tables) for its first expiration, with all later expirations occuring
when expected.

NOTE 7. The timer code is flawed in that it is possible for a timer
to expire too soon (not greater than R TC interrupt timer times the
number of grain tables) for its first expiration, with all later
expirations occuring when expected. This happens mostly when
timer grains are full.

•

GAME Reference Manual 10-13 •

•
• Chapter 10 Timer and Time of Day Services.·

•

Time Overview

Applications sometimes need to be able to retrieve the system's notion of
time, such as calendar and wall clock time. The kernel system call
g_ tget() is used to get system time. A library function time2wclk() is
used to convert the returned system time into wall clock time.

A few chosen applications will need to be able to set the system time.
The kernel system call g_tset() is used to set system time. A library
function wclkl2time() is used to convert from wall clock time to system
time.

A problem can occur if an application uses g_tget() to try to implement
periodic processing. If the user sets the system time backwards, the more
recent time returned by g_ tget() may be less than a previous time. A kernel
system call g_ timer _get() can be used to ensure than time does not go
backwards. g_timer_get() only keeps track of time starting from slot
restart and does not include calendar time.

The include file include/wclock.h contains definitions of the structures
used by the time functions.

• 10-14 GAME Reference Manual

• • • • • • • • • • • •
Chapter 10

• • • • • • • • •
Timer and Time of Day Services

/**/

/ * WALL CLOCK/ CALENDAR BLOCK

I
*/

***/
typedef struct WCLOCK

u int8 year;

u intB month; -
u intB date;

u - intB wday;

u int8 hour;

u intB minute;

u int8 second; -
u intB pad;

u intl6 msec;

u intl6 usec;

u int32 t zone; -

WCLOCK;

I

/* all are binary numbers

/* 0 - 99

/* 1 - 12

/* 1 - 31

/* 1 - 7 (1 is Sunday)

/* 0 - 23

/* 0 - 59

/* 0 - 59

/* 0 - 59

/* 0 - 999

/* 0 - 999

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

/* 0 - 86400 local time zone *I
/* in seconds from date change line *I
/* (ex. GMT= 43200, EST= 61200) */

***/

/* ABSOLUTE TIME BLOCK

I
*/

***/

typedef struct TBLOCK

u int32 sec;

u_int32 frac;
bit 31 is 1/2 sec */

} TBLOCK;

I

/* g_tget () - seconds since

* midnight Jan 1, 1900

* g_timer_get () - seconds since

* restart

*/
/* fraction of sec:

GAME Reference Manual 10-15

•
•
•

•

•
• Chapter 10 Timer and Time of Day Services

•

• 10-16

***/
/* LOCAL TIME BLOCK

I
*/

***/

typedef struct LOC_TIME

{
TBLOCK time; /* absolute time *I

u int32 zone; /* time zone offset
[seconds] */

u_int32 flags; /* flags */
} LOC_TIME;

Getting System Time

Applications get system time by calling the g_tget() kernel system call.
Applications can convert system time to wall clock time by calling the
time2wclk() library function:

g_tget() Kernel System Call

Call:

void g_tget (LOC_TIME *tb)

Values:

"th" is a pointer to the location where GAME can write the current system
time.

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

Example:

Using g_tget().

LOC_TIME TimeStamp;

g_tget(&Timestamp);

/*
* Timestamp.time.sec

Jan 1, 1900.

* Timestamp.time.frac

*/

time2wclk Library Function

Call:

seconds since midnight

fraction of seconds.

WCLOCK *time2wclk (LOC_TIME *tb, WCLOCK *wb)

Values:

"tb" is apointer to system time to convert.

"wb" is a pointer to the location where GAME can write the wall clock
time.

Return Value:

The return value equals the "wb" parameter passed in.

•

GAME Reference Manual 10-17 •

•
• Chapter 10 Timer and Time of Day Services

•

• 10-18

Example:

Using g_tget() and time2wclk().

{
LOC_TIME TimeStamp;

WCLOCK WallClockTime;

g_tget(&TimeStamp);

time2wclk(&TimeStamp, &WallClockTime);

/*
* WallClockTime.year

* WallClockTime.month

* etc.

*/

Setting System Time

Applications set system time by calling the g_tget() kernel system call.
Applications can convert wall clock time to system time by calling the
wclk2time() library function:

g_tset() Kernel System Call.

Call:

void g_tset (LOC_TIME *tb)

Values:

"th" is a pointer to the structure containing the desired system time.

....... Only special applications, like the TI date command, should
'# use this function to set system time. All slots calendar times

and calendar chips are updated when using this function.

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

Example:

Using g_tset().

LOC_TIME TimeStamp;

g_tset(&Timestamp);

wclk2time Function Call

Call:.

LOC TIME *wclk2time (LOC_TIME *tb, WCLOCK *wb)

Values:

"tb" is a pointer to the location where GAME can write the current system
time.

"wb" is a pointer to the wall clock time to convert.

Example:

Using g_tset() and wclk2time()

LOC_TIME TimeStamp;

WCLOCK WallClockTime;

wclk2time(&TimeStamp, &WallClockTime);

g_tset(&TimeStamp);

•

GAME Reference Manual 10-19 •

•
• Chapter 10 Timer and Time of Day Services ·

•

Retrieve Time Since Slot Restart

Applications can retrieve time since slot restart by calling the
g_timer_get() kernel system call.

Call:

void g_timer_get (TBLOCK *tb)

Values:

"tb" is a pointer to the location where GAME can write the time.

Example:

TBLOCK TimeBlock;

g_timer_get(&TimeBlock);

/*
* TimeBlock.sec - seconds since slot restart.

* TimeBlock.frac - fractions of seconds

*/

Summary of How Timers and Time Are Implemented

• 10-20

GAME runs on various hardware platforms such as the ACE, ACE32,
AFN, FRE, FRE-11, ASN, ARN, AN, and ARE. These hardware
platforms are the name given the the processing engine that populates a
slot. Each processing engine contains a main microprocessor that
executes most of GAME's code and other support hardware such as timer
chips. The granularity, accuracy, and reliability of the timer services
provided by GAME wi 11 all be dependent on the hardware that GAME is
running on.

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

The FRE, FRE-11, and ASN are similar and will be referred to as the FRE.

The ACE, ACE32, and AFN are similar and will be referred to as the ACE.

The ARN is similar to the AN and will be covered under the AN.

The ARE is similar to the FRE (somewhat).

The Watchdog Timers are covered in a separate section.

Periodic Timer

The FRE contains a fixed real time clock (RTC) timer that increments
256 times per second and updates the single byte STAMP register (see
tib/tib_pri.h). Every 16 ms (64 times per second), a level 3 interrupt will
be asserted, iflevel 3 interrupts are enabled, or as soon as level 3 interrupts
are enabled. The scheduler enables level 3 interrupts by calling g_poll()
in between gates and by calling g_ wait() when the scheduler is idle. When
this RTC level 3 interrupt is asserted, g_isr_3() will execute. When
g_isr _3() executes, it looks at certain hardware registers located on the
FRE to determine which hardware device requested the interrupt. If it
determines that the RTC was the reason for asserting the interrupt, a bit
is cleared telling the FRE that we have handled the RTC. The function
tmo _exp() is executed.

The ACE contains six programmable timers. One is set to expire after
16 ms (64 times per second). When this interval timer expires, the
TMRB I pending bit is set in the ACE Status Register (ASR; see ace/
ace _pri.h). The expiration of TMRB I will be checked by the scheduler
in between gates by executing g_poll() and when the scheduler is idle by
executing g_ wait(). If TRMB I is set, clock_ isr() is executed. Within
clock _isr(), the timer chip is reprogrammed to expire after 16 ms and the
function tmo _exp() is executed.

•

GAME Reference Manual 10-21 •

•
• Chapter 10 Timer and Time of Day Services

•

• 10-22

The MC68360 (QUI CC) chip used on an AN contains four programmable
timers. Timer number 2 is programmed to expire every 64 ms (16 times
per second). When timer number 2 expires, a bit is set in the CPM
Interrupt Pending Register (CIPR). The CIPR is checked by the scheduler
in between gates by executing g_poll() and when the scheduler is idle by
executing g_ wait(). If timer 2 did expire, the function tmo _exp() is
executed.

Time - g_timer_get()

An application calls the function g_ timer _get() to retrieve the amount of
time since the slot restarted. g_ timer _get() uses information stored in
GAME's environment by g_poll(), g_ wait(), and ISRs, to derive seconds.
g_timer_get() calls g_timer_read() to read a hardware timer to retrieve
fractions of seconds.

On the FRE, seconds are incremented in g_isr _ 4() when servicing the
watchdog interrupt. To derive fractions of seconds, the RTC timer is read.
The granularity of the RTC timer is 4ms.

On the ACE, seconds are incremented by either g_poll() or g_:_ wait()
calling clock_isr(). clock_isr() checks the ASR for the TMRA2 expiring.
TMRA2 is set each second by the free running clock. To derive fractions
of seconds, the free running clock is read to determine how much time
has ,elapsed since the last second. The granularity of the free running
clock is 1/64000 of a second.

On the AN, seconds are incremented in rtc_isr_ 4() when servicing the
watchdog interrupt. Timer number 1 increments 65104 times per second
and asserts a level 4 interrupt each second. Fractions of seconds are
derived by reading timer 1.

GAME Reference Manual

•
Chapter 10 Timer and Time of Day Services •

Time - Calendar Chip

All platforms, with the exceptions of some older ANs, contain a battery
backed up calendar chip that also contains 2 KB of non-volatile storage.
The AFN, AN, ASN, and ARN contain this chip on the mother board.
The ACE and ACE32 that run within the VME chassis contain this chip
on the SYSCON board. Each FRE and ARE contain one of these chips.

At some point of time, the TI date command will be used to reset calendar
time. When this happens, the calendar chip will be updated. Year, month,
date, week day, hour, minute, and second can be set and retrieved from
this chip. The chip then independently keeps track of time even if AC
power is not applied to the system.

NOTE 1. This chip does not keep fractions of seconds or timezone
infonnation.

NOTE 2. The passwords for Tl's Manager and User are stored in
this chip's non-volatile memory.

NOTE 3. The reason the original AN's did not contain a calendar
chip was due to cost cutting procedures. However, this backfired in
many ways because it caused heartaches for customers and
software engineers.

Time - g_tget(.

Reading the calendar chip is not cheap. Because of this, the calendar chip
is usually only read when a slot restarts and the retrieved calendar time
is stored. Whenever g_ tget() is called, it calls g_ timer _get() and adds the
output from g_timer_get() to the stored calendar time.

•

GAME Reference Manual 10-23 •

•
• Chapter 10 Timer and Time of Day Services

•

Other

• 10-24

Internal Wallclock Service

Keeping accurate wallclock/calendar time on the various platforms
running GAME is not trivial. One problem that occurs is that the FRE
and ARE platforms contain one calendar chip per slot and time must be
synchronized between slots. A second problem occurs in that the
calculated calendar time kept by a slot can drift.

To work around the first problem, the LOADER gate creates a master
timekeeper soloist gate (GID _MASTERTIMEKEEPER; see include/
known_id.h). This gate sends its time to the other slots when they start,
and the receiving slots sets their time to the time that was sent by the
master slot. The soloist also sends the time to the other slots every 12
hours.

To work around for the second problem, the LOADER gate creates a
timekeeper gate per slot (GID _TIMEKEEPER). This gate receives
messages from the GID _ MASTERTIMERKEEPER gate (FRE and ARE
only) and, through a varying periodic timer, it will adjust the wallclock
time on its slot if needed. The periodic timer initializes to 1 minute, and
then is set to one hour. If, at timer expiration, no adjustment is needed,
then the timeout doubles to maximum of24 hours. If time adjustment is
needed, the timeout halfs to a minimum of 1 hour.

Backbone BOFL's are highly tied into tmo_exp(). They are not covered
here.

GAME Reference Manual

Overview

•
Chapter 11

Miscellaneous Function Calls

This chapter covers function calls that were not covered throughly in
other sections.

•
•

g_appbase() - Returns Base Load Address

The linker that builds dynamically loadable images (files labelled .exe)
does not preserve relocation information. When an image is loaded into
memory at run-time by the Dynamic Loader, any pointer or memory
reference contained within the image is not adjusted to reflect the actual
base address of that image. The result is that after load-time, all pointers
that are not relative to the PC location will be relative to location 0, just
as they appear in the image before load-time.

An example of this is an array of compile-time initialized literals:

char *strings [3] = { "one", "two", "three" } ;

In this case, the array elements will be pointers to the literals which are
stored in the literal section of the image, and each pointer will be relative
to 0. Another typical example of this can be seen with a Finite State
Machine implemented using arrays of function pointers to represent
action routines.

To compensate for this, the pointers must be adjusted by the application
at run-time. g_ appbase() returns the location in memory where the image
is loaded (its base address). The returned address must be added to each
pointer before it is used.

Call:

u int32 *g_appbase (intB *app_name)

GAME Reference Manual 11-1 •

•
• Chapter 11 Miscellaneous Function Calls

•

Values:

"app_name" is a pointer to a string with the application name(as defined
in loader/ld _exec_ names.c) or NIL to signify the current application.

Considerations:

This function is used to find the base address for a code segment(* .exe).
The return value is this address.

This function call is not very efficient. It needs to walk a list of all loaded
applications, performing a string compare at each entry. For that reason,
the caller should perform this call once at initialization and store the
results in their local environment.

Example:

This example uses the load address to offset an entry in an FSM table.

/* fetch the base address of where we're loaded */
u int32 *appbase = g_appbase("isdn.exe");

/* adjust the pointer table by our load address */
((pfi) ((int) (table->EventFunc) + (int) appbase)) ();

g_bcfg() - Environment Configuration

• 11-2

Call:

#include "kernel.h"

void g_bcfg (G_BCFG_BLK *bcfg)

Values:

"bcf g" is a structure defined in include/kernel.h. It contains a collection
of system information maintained by the GAME kernel.

GAME Reference Manual

•
Chapter 11 Miscellaneous Function Calls •

Considerations:

Although originally billed as a call to allow applications to influence this
information, this call only allows examination of the parameters. The
most common use is by device drivers, which check to see if the local
buffer size is big enough (if not, they crash or log a message and exit).

g_buf2mem(), g_mem2buf() - Copy a Buffer's Contents to
Memory I Back To a Buffer

These functions are only used in the application-level version of Priority
Queueing. They help to implement congestion control for DLS,
providing a place to temporarily hold data other than in a buffer. Their
use is discouraged unless needed for a similar purpose (i.e., don't use this
casually).

Copy a Buffer's Contents to Memory

Call:

#include "kernel.h"

u int32 g_buf2mem (BUF *buf, u int32 *mem, u_int32 mem_len)

Values:

"buf' is the pointer to buffer to copy to memory.

"mem" is the pointer to memory where buffer is to be copied. "mem"
must be word aligned.

"mem_Ien" is the number of bytes available after "mem" to save the
buffer. The minimum this may be is:

G_BUF _END(but)- G_BUF _START(but) + G_BUF2MEM_PAD

•

GAME Reference Manual 11-3 •

•
• Chapter 11 Miscellaneous Function Calls

•

Return Value:

The return value is the number of bytes actually used to save the buffer.

Considerations:

Applications must not modify the saved buffer image. The saved image
includes the BUF header and all of the data between the start and end
offsets.

Copy Contents of Memory to a Buffer

Call:

#include "kernel.h"

void g_mem2buf (BUF *buf, u int32 *mem)

Values:

"buf'' is a pointer to the buffer that will receive the data.

"mem" is a pointer to memory set up by a previous g_buf2mem() call.

Considerations:

This call restores the saved buffer image to a buffer. The calling gate will
be terminated if the save buffer has been corrupted.

g_env(), g_env _gid - Returns Environment of a Gate

g_env() Call

Call:

u int32 g_env ()

• 11-4 GAME Reference Manual

•
Chapter 11 Miscellaneous Function Calls •

Considerations:

This function returns the current environment for the running gate. The
return value needs to be cast to whatever the environment represents.

g_env _gid Call

Call:

u int32 g_env_gid {GID gid)

Values:

"gid" is th Gate ID of the gate whose environment is desired.

Considerations:

This utility returns the current value of the environment of a gate on the
local slot, given a GID. Using another gate's environment is generally a
dangerous thing to do and extra care must be taken. See the Memory
section for a discussion of memory sharing between gates.

g_i_die(), g_u_die() - Commit Suicide I Kill Another Gate

These functions are morbidly referred to as the suicide and murder
functions. g_ u _die() was created during a debugging session when
someone wanted to set a breakpoint when any gate was killed. g_i_ die()
was created as a shorthand. All that each routine does is call g_req() with
the proper parameters.

g_i_die Call

Call:

void g_i_die ()

•

GAME Reference Manual 11-5 •

•
• Chapter 11 Miscellaneous Function Calls

•

Considerations:

This terminates the calling gate.

g_u-die Call

Call:

void g_u_die (GID gid, void {*act) {void*, BUF * u_int32),

void *env, SIG sig)

Considerations:

The parameters match exactly what is passed to g_req(). However, the
only parameter actually needed (or used) is "gid".

g_load_archive() - Archive Loading

• 11-6

Call:

u int32 *g_load_archive {char *archive_name)

Values:

"archive_name" is the name of the archive in the boot image (e.g.,
"atmc.exe", "dict.str")

Return Value:

The return value is the address where archive has been loaded. This is
an memory segment which is owned by the calling gate. Zero is returned
if there were any errors.

GAME Reference Manual

•
Chapter 11 Miscellaneous Function Calls •

Considerations:

This call allows an application to load an archive segment from the boot
image. The archive segment is placed into memory which is owned by
the calling gate and thus may be freed when the application is finished
with it (g_ mfree). The call handles retrieval of local or remote archives
and will also take care of image decompression.

Only the body of the archive is returned by g_load_archive(). This
implies that if the caller needs to know additional information about the
data (i.e. its size) there needs to be an application specific header within
the body.

Since the memory is owned by the caller and may be freed at any time,
it is up to the caller to perform any caching which may be required for
performance reasons. Every call to g_load _archive() will result in the
boot media being read.

It is recommended that a new extension be created for different archive
types. This will serve to keep it clear to us and to customers what type of
data is contained in each segment. Perhaps ".MIC" for microcode?

The archive which is loaded by g_load_archive() should be created by
the ldgen_compress utility. This utility has the following command line
arguments:

%ldgen_compress input-file output-file

This utility takes the input-file, compresses it and generates an archive
header for it. No special format is required of the input-file. The filename
stamped in the archive header is the same as output-file. After a call to
g_load_archive(), the caller will have an exact duplicate of input-file.

•

GAME Reference Manual 11-7 •

•
• Chapter 11 Miscellaneous Function Calls

•

g_memop() - Special Memory Operation

• 11-8

The g_ memop() system call is used to perform a memory operation that
may fail (e.g., bus error). The role of this syscall is to ensure that if the
operation does fail, it does so in a silent manner so that the caller doesn't
get killed due to a bus error. One use of is to probe a memory location
to find out whether or not a piece of hardware was installed.

Currently, this silent failure is only implemented on the FRE and ARE.
The call can still be made on other platforms, but no protection is
provided.

Call:

#include "kernel.h"

u_int32 g_memop (u_int32 type, u_int32 size, void *addr, void
*data)

Values:

"type" is the type of operation. Select one of the following:

G _ MEMOP _RD: perform a read

• G_MEMOP_WR: perform a write

"size" size of the data to read/write. Select one of the following:

G MEMOP 8: 8 bits - -
G MEMOP 16: 16 bits - -
G MEMOP 32: 32 bits - -

"addr" is the address to read or write.

Return Value:

The return value is TRUE if the operation failed and FALSE if it
succeeded.

GAME Reference Manual

•
Chapter 11 Miscellaneous Function Calls •

Considerations:

The size of the data parameter must match the size of the operation.
Failure to do so could result in some unexpected return values (i.e., if
data is a u_int32 and the op is a byte, that byte will get loaded into the
top of the u_int32).

g_myid() - Returns Caller Gate ID

Call:

GID g_myid ()

Considerations:

This function returns the gate ID of the running gate. If this is called in
a mapping context, the GID of the base gate is returned, not the GID of
the temporary mapping gate.

g_platform() - Gets Platform Type

Call:

#include "platform.h"

u_int32 g_platform(l

•

GAME Reference Manual 11-9 •

............. ,
• Chapter 11 Miscellaneous Function Calls

•

Return Values:

This routine returns the platform type onwhich GAME is running. The
values are defined in include/platform.h. The values as of this writing are:

PLATFORM UNKNOWN No clue ...

PLATFORM SIM Simulator

PLATFORM FRE FRE-I

PLATFORM FRE2 FRE-II

PLATFORM ACE ACE (VME hardware)

PLATFORM ACE32 68030 ACE

PLATFORM FNS AFN (68030 ACE, single-board)

PLATFORM IN AFN special (single-board plugs into many
vendor ' s hubs)

PLATFORM PIR

PLATFORM CUDA

PLATFORM BF

PLATFORM BF 5000

PLATFORM NEPT

AN (Piranha, QUICC-based)

ASN (Barracuda)

ARE (Bluefish)

5000 (Blackfish)

ARN (Neptune) [next-gen AN, 040-based)

g_reset() - Restarts Slot(s)

• 11-10

Call:

void g_reset (GH gh)

Values:

"gh" is a bit-map of slots to reset, in gate-handle format.

GAME Reference Manual

•
Chapter 11 Miscellaneous Function Calls •

Considerations:

This function call will cause each of the indicated slots to reset (i.e., restart
GAME). The only application that has a legitimate reason to call this is
a management application (e.g., TI, BCC).

g_slot{) - Returns Caller Slot Number

Call:

u int32 g slot (}

Considerations:

This function returns the local slot number.

g_src{) - Retrieves Source of Reliable Message

Call:

GH g_src (BUF *buf}

Values:

"buf' is a pointer to the buffer to examine.

Return Values:

When "buf' points to a buffer that was received via a reliable transport
primitive, this function returns the gate handle of the sending gate
instance.

If "buf' points to a buffer that has not yet been delivered or was received
via a non-reliable transport primitive, FINGER (0) is returned.

•

GAME Reference Manual 11-11 •

•
• Chapter 11 Miscellaneous Function Calls

•

g_stk() - Saves Current Stack in System Log

• 11-12

Call:

#include "kernel.h"

void g_stk (u_int32 level, u int32 opt, TBLOCK *time)

Values:

"level" is the maximum number of stack frames logged, but fewer may
be saved if stack is not deep enough.

"opt" is the dumping option, as follows:

• G_STK_DBG: Print saved events on the debug port.

• G _ STK _GAME_ STK: dumps GAME stack that is always
linked below gate stack (by default, only gate stack is dumped)

"time" is optional. If not NIL, the TBLOCK referenced by time will be
used to time-stamp all stack dump entries (by default, current time is
used).

Considerations:

This utility generates several entries in the system log based on the current
stack. All stack un-roll events are "TRACE" level and carry the same
time stamp for easy spotting. The same stack dump utility is also used
by the CRASH macro and other fatal exception handlers.

GAME Reference Manual

•
Chapter 11 Miscellaneous Function Calls •

get_unqid() - Get a Unique ID

Call:

u int32 get_unqid (u_int32 bits)

Values:

"bits" is the size in bits ofunique ID to return. Must be between 21 and 24.

Return Value:

This call returns an ID which is unique across all Bay systems. The
number is usually related to a serial number. If a unique number cannot
be obtained, zero is returned.

•

GAME Reference Manual 11-13 •

•
• Chapter 11 Miscellaneous Function Calls

•

• 11-14 GAME Reference Manual

•
Chapter 12

Fault Management

Types of Faults and System Reactions

Hardware Reset

The following faults cause a slot to do a hardware reset:

Hardware watchdog

NMI button (pressed for greater than one second)

Hardware reset implies that the slot goes through the cold start process
(diags, boot, GAME). The diagnostics run a full set of tests upon cold
start, one of which is a DRAM memory test. This test wipes out the
system log, so when you come back from this type of crash, there is
nothing left in the log, making it particularly tough to debug.

Debug Hint:

If you hit the NMI button for less than one second during diagnostics, it
interrupts the current test and gets you to the diagnostics prompt (you
obviously have to have something plugged into the diag port to see this).
If you hit it_before_ the DRAM memory test is run and then type "boot",
the log will remain intact. It can then be viewed when GAME comes up.

~ Note that a short (less than 1 second) push of the NMI button
T while GAME is running will not cause a hardware reset. As

indicated above, this gets you to the diagnostics prompt

GAME Reboot

The following faults cause GAME to "restart" or "reboot":

software watchdog

memory parity error

tag violation

•
•

GAME Reference Manual 12-1 •

•
• Chapter 12 Fault Management

•

Here, "restart" or "reboot" means that the bootstrap is executed, which
re-loads GAME (because it may have been code space that was
corrupted). Diagnostics are not run, so the log is preserved in this case.

Gate Termination or GAME Reboot

The action taken for the following errors depends on whether a gate is
executing or GAME is running (e.g., in the scheduler). In the former
case, only the offending gate is terminated. Otherwise, GAME restarts.

processor error (illegal instruction, divide by 0 ...)

• illegal memory reference

GAME detected error (e.g., bad parameters to a function call)

• VBM error (PPC only)

Page fault (PPC only)

"Problem" Gates

• 12-2

If an application has a persistent bug that causes its gate or gates to
repeatedly crash, GAME detects this and takes actions to protect the other
applications on the slot.

GAME keeps track of gate crashes in three timescales. If a gate dies too
many times within a time period, GAME will not restart the gate. It
instead terminates the parent (If you can't control your children, GAME
comes after you.) The timescales and the allowable number of crashes
are:

short term
medium term
long term

GAME Reference Manual

time

1 sec
1 min
30 min

crashes allowed

1

5
10

•
Chapter 12 Fault Management •

GAME also keeps track of crashes on a subsystem basis. Each time the

parent gate of a subsystem dies (the gate started by the loader), or when
game has to kill a gate's parent for violating one of the crash limits

discussed above, GAME records a subsystem failure. GAME compares
the number of these failures against limits for three timescales. Whenever

the number of failures exceed the limit, the subsystem is terminated and
not restarted. The timescales and the allowable number of failures are:

short term
medium term
long term

time

2 sec
4 min
1 hour

There are a couple of special cases:

failures allowed

2
5
10

• If the MIB subsystem dies, the entire box immediately restarts.
The life of all other subsystems depend on a live and healthy
MIB.

If the DP service exceeds the number of failures allowed for a
timescale, the entire box restarts. No packets can be forwarded
without DP, so there is no value in keeping everything else alive.

The hope here is that if a gate constantly crashes, killing its parent may
remove the reason (e.g., corrupt data in the parent's environment) that is

causing the crash. If that doesn't work, the subsystem is eventually shut
down.

Obviously, information is put into the log when any of this happens.

•

GAME Reference Manual 12-3 •

•
• Chapter 12 Fault Management

•

• 12-4 GAME Reference Manual

Overview

•
Chapter 13

System Event Log

Event logging can be used for debugging and network management. Each
slot that contains a processor (ACE, FRE, etc.) maintains its own fixed
size event log that is located at a fixed location within volatile memory
(DRAM). Applications only write to the physical log located on the slot
the application is executing on. This log will survive system reboots,
software restarts, and crashes unless the hardware is (re)initialized. The
hardware is initialized during power up, hot swaps, diagnostics, hardware
reset, and certain hardware specific failures (on a FRE, the ISR handing
the Watchdog timer must clear the Watchdog pending bit before the next
Watchdog timer interval or else the FRE hardware will reset).

Events that are written into the log vary in size. Most events that contain
strings have a defined code that is stored in the log entry instead of the
string. This practice allows for more events to be written into the fixed
size log. When the log is viewed, the code is replaced by a string from
other entities such as string services or Site Manager. Strings still can be
written directly into the log, but this practice limits the number of events
that can be stored in the log. When the log is full and a new event needs
to be added, the oldest entry or entries are removed and replaced with the
most recent entry.

It is NOT a good practice to log a message by using a sprintf
to format a string and use a "generic" EDL event code.
Unless you are adding a message that will be removed when
a defined problem is fixed, modify the EDL file to add a new
EDL event code. "generic" EDL event codes waste too much
log space.

•
•

GAME Reference Manual 13-1 •

•
• Chapter 13 System Event Log

•

Log Entry Format

+-------+--------+--------+--------+
I Size I Type I Entity I Event 4 bytes

+----------------------------------+
8 bytes

Time Stamp

+----------------------------------+
Sequence Number I Slot I 4 bytes

+----------------------------------+

x Data x O - 251 long words

Size- Size of log entry in long words (4 - 255).

Type - Log entry type. Will be one of the following values:

• 13-2

1 - DEBUG message

• 2 - INFO message

4 - WARNING message

8 - FAULT message

• 16 (OxlO) - TRACE message

Entity- Who logged the event (see include/edl_types.h).

• 0 -TI EDL

• 1 - LB EDL

2- IP EDL

• 3- SNMP EDL

•

GAME Reference Manual

•
Chapter 13 System Event Log •

• 12-0SPF_EDL

•
• 30- IPX EDL

•

Event- Log message number within entity (see edl/* .edl; Tl.edl, LB.edl,
IP .edl, etc).

Time Stamp - Time that event was logged.

First 4 bytes - number of seconds since January 1, 1900.

• Second 4 bytes - fraction of seconds. (The number of bits used
is hardware specific and left justified.) See Timer chapter.

Sequence Number - Sequence number of event on Slot.

Slot - Slot number event occured on.

Quick Example of EDL

Each numeric event code is defined using the "Event Definition
Language" and a preprocessor tool. Entity specific log messages are
created by adding the entity to "include/edl_ types.h" and a corresponding
"<entity>.edl" file to the "edl" directory. For example, when NetBios
over IP was added to the system

#define NBIP_EDL 77

was added to the file "include/edl_types.h" and the file "edl/NBIP.edl"
was created. The contents of "NBIP.edl" is:

•

GAME Reference Manual 13-3 •

•
• Chapter 13 System Event Log

•

/* @(#)WSCCS c/edl-NBIP.edl 1.1 6/27/94 */

• 13-4

RECORD NBIP EDL

NBIP CRASH FAULT MSG
attempting restart."

NBIP_BAD_PKT
packet received"

WARNING MSG

NBIP BAD NAME WARNING MSG
name"

NBIP INIT
initializing."
NBIP IF UP
%d. %d. %d. %d Up. II

NBIP IF DOWN
%d.%d.%d.%d down."
NBIP TERM
terminating."

INFO MSG

INFO MSG

INFO MSG

INFO MSG

NBIP UNK PKT DEBUG MSG
protocol received"
NBIP CACHE INIT DEBUG MSG
NetBIOS name cache"
NBIP CACHE DOWN DEBUG MSG
NetBIOS name cache"
NBIP CACHE FULL
cache is full"

DEBUG MSG

NBIP AGE NAME DEBUG MSG
NetBIOS name cache"
NBIP GENERIC DBG DEBUG MSG

END REC NBIP EDL

GAME Reference Manual

"System error, service

"invalid NetBIOS over IP

"invalid NetBIOS over IP

"Service

"Interface

"Interface

"Service

"unknown

"initializing

"killing

"NetBIOS name

"aging from

"%s"

•
Chapter 13 System Evant Log •

From ''NBIP.edl" and "edl_types.h", the preprocessor tool will create the
file NBIP edl.h. The contents of "NBIP edl.h" is

ifndef NBIP EDL H

#define NBIP EDL H

#include "edl_types.h"

#define NBIP CRASH (u_int32) (FAULT_MSG I (NBIP_EDL <<
0) I ll -

#define NBIP BAD PKT (u_int32) (WARNING_MSG (NBIP_EDL «
0i I 2) - -

#define NBIP BAD NAME (u_int32) (WARNING_MSG (NBIP_EDL «
0) I 3l - -

#define NBIP !NIT
I 4) -

#define NBIP IF UP
I s) - -

#define NBIP IF DOWN
I 6) - -

#define NBIP TERM
I 7) -

#define NBIP UNK PKT
0) I 0)

#define NBIP CACHE !NIT
8) I 9)

(u_int32) (INFO_MSG (NBIP_EDL « 8)

(u_int32) (INFO_MSG (NBIP_EDL << 8)

(u_int32) (INFO_MSG (NBIP_EDL « 8)

(u_int32) (INFO_MSG I (NBIP_EDL << 8)

(u_int32) (DEBUG_MSG (NBIP_EDL «

(u_int32) (DEBUG_MSG (NBIP_EDL <<

#define NBIP_CACHE_DOWN (u_int32) (DEBUG_MSG (NBIP_EDL <<
8) I 10)

#define NBIP_CACHE_FULL (u_int32) (DEBUG_MSG (NBIP_EDL <<
8) I 11)

#define NBIP AGE NAME (u_int32) (DEBUG_MSG (NBIP_EDL << -
8) I 12)

•

GAME Reference Manual 13-5 •

•
• Chapter 13 System Event Log

•

#define NBIP GENERIC DBG
« a> I 13> - -

(u_int32) (DEBUG_MSG I (NBIP_EDL

#endif /* NBIP_EDL_H */

NOTE 1. The preprocessor tool only allows 255 TOTAL messages
per entity, not 255 DEBUG messages, 255 WARNING messages
etc.

NOTE 2. All new messages MUST be added to the END of the
".edl" file. So if you add a FAULT_ MSG:

NBIP OHNO FAULT MSG "Oh NO" - -
you would add this after NBIP _GENERIC_ DBG, not
NBIP CRASH. The reason for this is that newer versions of tools
that format the log (like Site Manager) would get mixed up when
reading a log from an older version ofrouter software.

g_log() System Call

Applications add entries to the log by calling g_log system call:

Call:

void g_log (u_int32 code, u_int32[] args)

Values:

"code" is the numeric event code.

"args" is the variable length array of event arguments.

• 13-6 GAME Reference Manual

•
Chapter 13 System Event Log •

Example 1:

In order to log the message "invalid NetBIOS over IP packet received",
the following lines can be added to the appropriate function:

#include "NBIP_edl.h"

g_log(NBIP_BAD_PKT};

Phyically, 16 bytes would be consumed by this log entry.

Ox04 04 4d 02 16 bytes (4 long words} WARNING
NBIP code 2

Oxb6 58 88 d4 12/09/96 13:11:48

OxBO 00 00 00 .5 sec

OxOO 00 12 34 Sequence Number 291 Slot 4

Example 2:

In order to log the message "this is boring", the following lines can be
added to the appropriate function:

#include "NBIP_edl.h"

char my_msg[BO];

sprintf (my_msg, "this is boring"};

g_log(NBIP_GENERIC_DBG, my_msg};

•

GAME Reference Manual 13-7 •

•
• Chapter 13 System Event Log

•

• 13-8

Physically, 32 bytes would be consumed by this log entry.

Ox08 01 4d Oc 32 bytes (8 long words) DEBUG NBIP code 12

Oxb6 58 88 de

OxOl 00 00 00

OxOO 00 12 44

Ox74 68 69 73

Ox20 69 73 20

Ox62 6f 72 69

Ox6e 67 00 00

12/09/96 13:11:56

4 ms

Sequence Number 292 Slot 4

t h i s

<Sp> i S <Sp>

b o r i

n g <null> <null>

If a new EDL event code was added to display this message, only 4
long words of log space would be consumed instead of 8. Even if
the text string length was much larger, only 4 long words would be
used instead of a much larger length.

Example3:

In order to log the message "Interface 1.0.0.1 down.", the following lines
can be added to the appropriate function:

#include "NBIP edl.h"

u int32 ip_address;

ip_address = OxOlOOOOOl;

g_log(NBIP_IF_DOWN,

GAME Reference Manual

(ip_address >> 24) & Oxff),

(ip_address >> 16) & Oxff),

(ip_address >> 8) & Oxff},

ip_address & Oxff} } ;

•
Chapter 13 System Event Log •

Physically 32 bytes would be consumed by this log entry.

Ox08 02 4d 06 32 bytes (8 long words) INFO NBIP code 6

Oxb6 58 88 e4 12/09/96 13:12:04

Ox02 00 00 00 8 ms

OxOO 00 12 54 Sequence Number 293 Slot 4

OxOO 00 00 01 1

OxOO 00 00 00 0

OxOO 00 00 00 0

OxOO 00 00 01 1

System Event Logger Gate

Applications directly add entries to the log through the kernel system call
g_log(). The System Event Logger Gate is a well-known gate that runs
on each slot. The primary purpose of this gate is to handle requests for
retrieving events from the log so that the log can be viewed or stored.

TI, TI_RUI, TFTP, FTP, and SNMP all communicate with the System
Event Logger Gate on one or more slots by using g_rpc(). The gate
requesting the log entries will receive replies from one or more slots and
sort the log entries received via the timestamp field of each log entry.
These gates may also perform filtering so that entries physically contained
in the log do not have to be viewed or stored. Filtering can be done by
date, time, entity, severity (event type), and code (event code). Slot
filtering can also be done, but in this case the g_rpc()just sends the request
to one slot.

•

GAME Reference Manual 13-9 •

•
• Chapter 13 System Event Log

•

The complete log cannot usually fit in one g_reply(). Because of this,
numerous g_ rpc()s will be sent from the requesting application to the
System Event Logger Gate. The data portion of the g_rpc() contains a
field that is a requested sequence number. The Event Logger Gate returns
entries greater than the requested sequence number and not greater than
the log's current sequence number. When the requesting gate sends the
first g_ rpc(), the sequence number is usually set to zero so that every entry
starting at the logs lowest sequence number will be returned. The
g_reply() will contain a number oflog entries and the sequence number
that the next g_ rpc() should use. The log can also be polled for only new
log events by not always using zero as the initial sequence number. This
procedure is used by SNMP for traps and optionally can be used by Tl's
log command.

How the Log Becomes Useless at Times

• 13-10

The 5 series OS had a small log that was resident only on slot 2. Each
entry had a fixed size of about 80 bytes. The system had no fault
management and debug Jog messages did not really exist. The log did
not survive reboots, but it could be periodically saved to floppy.

When GAME applications are designed, a number of DEBUG messages
are typically added. These DEBUG messages are not documented and,
by default, the TI log command filters out DEBUG messages so that they
are not seen. Two problems arise from using this procedure. First,
customers, and even engineers, can have a hard time figuring out what
these debug messages mean (they are often very cryptic). Second, the
DEBUG messages still take up log space, so they limit what can be
physically placed in the Jog.

Some applications are much too chatty (they Jog too much). When it
became necessary for routers to scale to a large number of interfaces per
slot (precipitated by the release of the MCTl link module) the log started
to wrap frequently during certain critical periods (like boot time) and the
useful information in the log was lost.

GAME Reference Manual

•
Chapter 13 System Event Log •

IPX and some other protocols allow the user to set a filter via the MIB to
control which log messages are written into the log, but most applications
do not have this functionality.

Another form of log filtering was added to the system for debugging
purposes. This log filtering filters out the g_log() kernel system call so
that the message is not written physically into the log. This was
accomplished by increasing the log header that manages the log to add a
bitmask that allows each severity type for each entity to be filtered.

• Some important GAME messages cannot be filtered.

Example 1:

Exclude

$ log -x

$ log -x -s2

/* Exclude all log messages all slots

/* Exclude all log messages on slot 2

*/

*/

$ log -x -s2 -eLAPB /* Exclude all LAPB log message on slot
2 *I

$ log -x -s2 -eIP -fd
slot 2 *I

/* Exclude all IP DEBUG messages on

•

GAME Reference Manual 13-11 •

•
• Chapter 13 System Event Log

•

Example 2:

Include

$ log -i

$ log -i -s2

/* Include all log messages all slots

/* Include all log messages on slot 2

*/

*/

$ log -i -s2 -eIPX /* Include all IPX log messages on slot
2 *I

$ log -i -s2 -eIP -ffw /* Include all IP FAULT and WARNING
messages */

/* on slot 2 */

NOTE 1. When the log is saved, a template is printed to show how
the filters are set.

NOTE 2. The filters are active until they are modified or until the
hardware is reset.

NOTE 3. From the TI, "log -z" is used to display the current filter
settings.

Log Crash Points

• 13-12

Sometimes, debugging problems that occur on-site infrequently becomes
a long and tedious affair. A crash dump tool was developed for saving a
slots complete memory image at the time that an application panics or
experiences a system fault.

The Log Crash Points feature was added to the system so that the
application would indirectly PANIC upon calling g_log() if the g_log
event code matched a predefined filter. Previously, to get the same effect,
you'd have to recompile the code with the PANIC added.

GAME Reference Manual

•
Chapter 13 System Event Log •

Example 1:

Set Log Crash Points

$ debug slcp 2 NBIP 8 /* Set a log crash point on slot 2 */

/* for NBIP code 8 *I

/* NBIP UNK PKT * /

Example2:

Clear Log Crash Points

$ debug clcp 2 NBIP 8

/* for NBIP code 8

/* NBIP UNK PKT

Example3:

List Log Crash Points

$ debug llcp 2

Ox00004d08 NBIP

/* Clear a log crash point on slot 2 *I

*/

*/

/* List log crash points on slot 2 */

Event : 8

NOTE l. The debug system does not have to be loaded to use log
crash points.

NOTE 2. Log crash points are one-shots. They are cleared upon
taking the PANIC.

NOTE 3. 8 log crash points can be set per slot.

NOTE 4. The interface requires you to have the EDL files handy.

•

GAME Reference Manual 13-13 •

•
• Chapter 13 System Event Log

•

Choosing The Appropriate Event Severity

• 13-14

The following are the definitions of the severity levels that you can assign
to a log event:

• FAULT- Something is about to crash

• WARNING - Recoverable error that should be flagged for the
user, i.e. something potentially dangerous occurred, but the box
stayed up e.g. link module not verified with diagnostic)

• INFO - Normal operations that user should know about (e.g.
Spanning Tree is up)

• TRACE - Events that happened as a result of network activity
(e.g. DECnet adjacency up)

• DEBUG - Events that aid in debugging problems.

FAULT Messages

Every entity must have an event of the following type defined in its edl
file:

xx CRASH
restart."

FAULT MSG "System error, service attempting

where "xx" is the entity string.

When you decide to PANIC for any reason in your code, you must use
the macro CRASH(xx CRASH). This causes the above FAULT event
to go into the log immediately before the crash, making it evidently clear
which application lost its cookies.

You may choose to log other events before crashing, to aid in debugging.
These must be DEBUG events. The only FAULT events in the log should
be xx_ CRASH events, along with PANICs, bus errors, tag violations, etc.

GAME Reference Manual

•
Chapter 13 System Event Log •

WARNING Messages

This is a judgment call. If you detect something bad that doesn't cause a
FAULT, but that you feel is important enough to call the user's attention
to it, log a WARNING event. Examples from the current revision include
duplicate IP address detection, file system corruption, diagnostic failures,
unreadable config file, ethemet carrier loss.

INFO Messages

INFO events should be kept consistent across all applications, meaning
that DECnet coming up should look very similar to IPX coming up,
CSMACD lines register the same events as FDDI lines, etc. This goes
all the way down to exact wording of universal events. Obviously, not
every entity in the box fits the mold exactly, but please make an effort to
adhere the existing styles.

Another goal is to keep the number of INFO events down to a manageable
level.

Guidelines for logging application INFO events:

1. At the beginning of your init strip for your entity, log one of the
following events:

event name INFO "Protocol initializing."

event name INFO "Service initializing."

2. When your entity terminates for any reason (even if it is
bouncing right back up again), log one of the following events:

event name INFO "Protocol terminating."

event name INFO "Service terminating."

•

GAME Reference Manual 13-15 •

•
• Chapter 13 System Event Log

•

• 13-16

3. When your entity comes up on a given circuit, log the following
event:

name INFO "Interface<??> up on circuit <n>."

where: ?? is your identifier for the interface on that circuit, (e.g.
192.32.1.56 for IP, NIL (empty string) for LB) and "n" is a %d for circuit
number.

4. When your entity goes down on a given circuit, log the
following event:

name INFO "Interface<??> down on circuit <n>."

where: ?? is your identifier for the interface on that circuit, (e.g.
192.32.1.56 for IP, NIL (empty string) for LB) and n is a %d for circuit
number.

These should be the only INFO events you log. Again, not every
application fits the mold exactly, but this is the model.

DEBUG Messages

There are no guidelines for DEBUG messages. Your DEBUG events are
your own, but remember that the memory reserved for logging events is
a limited resource. Don't go wild filling up the log with DEBUG events
and cause it to wrap, thereby losing potentially important information.

Also, remember that although DEBUG events are not documented,
customers can see them. Maintain a professional tone and and provide
enough coherent information so that a customer can use the information
when talking with customer support (i.e., don't just dump a bunch of hex
numbers!).

GAME Reference Manual

•
Chapter 13 System Event Log •

Logging Tips & Miscellaneous Info

Physical log sizes:

• FRE, FRE2, ASN are 64k

ACE25, ACE32, AFN are 64k (Some older revs 32k)

• ARE is 64k

• ARN is 32k

• AN > 2MB DRAM is 32k

• AN 2MB DRAM is 16k

At many sites the log wraps quickly during certain failures. Much of this
wrapping is due to applications being too chatty.

Some customers who have free memory have requested that the log size
be increased to a size as large as 4 MB.

A common mistake made is to save the log too quickly after a failure.
Unless the System Event Logger gate is up, the log cannot be retrieved
from that slot.

The wallclock time kept between slots is not totally in sync. When
following an event that crosses slots it is possible that for the log too show
them out of order absolute time wise.

•

GAME Reference Manual 13-17 •

•
• Chapter 13 System Event Log

•

• 13-18 GAME Reference Manual

Background

•
Chapter 14

System Loader

Prior exposure to the Bay development environment, build
process, and GAME concepts (gates, mappings, etc.) is
helpful.

GAME and its applications were originally linked as a single slab of code
(like the simulator). This became unweildy as more and more software
was developed for the router. Therefore, a mechanism was needed to
separate applications from the kernel and each other.

The following goals were established:

• mechanism for conditionally (via configuration) loading/
spawning applications

• provide fault isolation/recovery in conjunction with the kernel

• extensible to easily support new kernel elements and
applications

• minimize DRAM memory consumption on all slots

allow for tailored S/W image to reduce file system memory
consumption, and only ship the specific software modules which
customer ordered

• hooks for releasing software modules independently, if we ever
decide to do so

Linking/Loading Options

A couple of options were considered to meet the above goals:

•
•

GAME Reference Manual 14-1 •

•
• Chapter 14 System Loader

•

Memory Reclamation (5-Series Method)

Image is still linked as a slab, but unconfigured applications would have
their code space reclaimed and placed in the dynamic allocation pool at
run-time. This option was not chosen.

Dynamic Loading

Dynamic loading was chosen for the following reasons:

• GAME's dynamic config capability disqualified memory
reclaimation because an entity could be loaded at any time.

• targeted a separate-linking approach where the kernel is linked
statically (as a slab) and applications (drivers, routers, etc.) are
linked as their own executables.

• wanted code to be relocatable so it could run anywhere in
memory.

Oasys compiler supported position-independent code (PIC)
where all offsets are calculated relative to the PC.

• access to kernel system calls via jump tables.

• linking loader option was considered, but deemed overkill for an
embedded environment due to concerns about increased image
size (because of reloc info), performance (depending on
implementation), and boot time (re-linking); also, the modified
image is not easily servable to neighbors because it's not virgin.

• archive file format holds all the executables in a single file
(bn.exe, ace.exe, etc.).

Loader Operation

The System Loader consists of a Kernel Loader and a Dynamic Loader.

• 14-2 GAME Reference Manual

•
Chapter 14 System Loader •

Kernel Loader

After the bootstrap acquires the kernel image, GAME initializes the
hardware and itself, and then starts the Kernel Loader.

The Kernel Loader is really just a gate spawner that works in two phases:

Phase 1 - "core" kernel services are brought up first (GAME, file
system, MIB/Emanate, loader gates, timekeeper). MIB must
obtain config and initialize first before any other subsystems can
start.

Phase 2 - system services are then brought up (DP, event logger,
kernel MIBs, etc) and finally the dynamic loader is launched.

One of the gates spawned in phase 2 is an image server gate, which serves
the kernel and application images to remote boot clients

Dynamic Loader

The Dynamic loader is a mechanism for conditionally (via configuration)
loading/spawning applications.

The dynamic loader retrieves its configuration records (wfLinkModules
wfDrivers, wfProtocols) from the MIB.

Applications are loaded on a per-slot basis, as dictated by the
configuration records

The Dynamic loader monitors dynamic changes to the MIB records so it
can load or unload applications on demand.

Acquiring Application Executables

For each application that's configured, the loader spawns a downloader
gate which attempts to acquire the application image.

•

GAME Reference Manual 14-3 •

•
• Chapter 14 System Loader

•

The downloader gate first tries to load the image from a neighbor slot
(straight from DRAM) by sending broadcast messages to the image server
gate.

To expedite the boot process, each image server can serve multiple
down loader clients simultaneously.

If no neighbor slot has the desired image, then loader attempts to get it
from the active boot image on the file system (flash on BN).

A file system control gate serializes access to FS to minimize disk
thrashing.

Executable files which come from the FS are compressed, so the loader
must decompress them. Images obtained from a neighbor slot are already
decompressed.

Each image has a compressed & uncompressed checksum that the loader
validates.

The dynamic loader supports image revision checking to ensure that the
kernel and application images are from the same release. It enforces this
check on all 'rel', 'int', 'fix', etc. images; however, it allows anything with
a 'dev' stamp to run with anything else so developers can make
workspaces and debug in the lab.

On platforms that support TAG protection, the loader sets the code section
to read-only to prevent inadvertant corruption. The data section can't be
protected because that would require it to be 'uncachable'. This would
have a detrimental effect on performance.

Jump Tables

Kernel system calls and inter-module API calls go through a central
kernel dispatch table (the GAME dispatch table). The magic structure
'game_ hdr' is the place-holder for the dispatch table.

• 14-4 GAME Reference Manual

•
Chapter 14 System Loader •

In the kernel, the 'game_hdr' structure is declared in the game subsystem
and linked into the kernel image. Each application which links
independently has its own copy of'game_hdr', which is declared in the
subsystem's '<subsys> _hdr.c' file.

The loader plugs the address ofGAME's dispatch table pointer into each
application's 'game_hdr' structure at load-time.

Each GAME system call is defined as a macro in the include/game.h.

header file:

#define g_req (GID) (OsP (G_REQ)) /* GIO gid, void
(*act) (),

u_int32 env, u_int32 ini */

where DsP is defined as:

#define OsP(call_num) (* (game_hdr.dispatch [call_num]))

The "call_ num" is simply a constant from 1 to G _END_ SCALL, which
represents each system call's location in the dispatch table.

The following example compilation of a call to g_req shows four args
being pushed, the jump table pointer being loaded, and eventually a JSR
through the function pointer:

ld_app.c: 168

ld_app.c: 169

/* Log message and start gate *I

init_act, init_env, signal);

787 9:00000120 2F04

788 *
789 9: 00000122 2F2E0014

790 *
791 9: 00000126 2F2E0010

792 *

793 9: 0000012A 2F02

794 *

gid = g_req(gid,

MOVE.L 04,-(SP)

STACK OFFSET 4

MOVE.L 20 (A6) I - (SP)

STACK OFFSET 8

MOVE.L 16(A6),-(SP)

STACK OFFSET 12

MOVE.L 02, - (SP)

STACK OFFSET 16

•

GAME Reference Manual 14-5 •

•
• Chapter 14 System Loader

•

795 9: 0000012C 2053

796 9: 0000012E 20680010

797 9:00000132 4E90

MOVE.L (A3) ,AO

MOVE.L 16 (AO) ,AO

JSR (AO)

The system services (mib, tbl, etc.) and dynamically loaded applications
(ip, tcp, etc.) use a second level of indirection through the jump table to
accomplish function calls; by convention, sys service calls are defined in
<subsys>.h (mib.h, tbl.h, etc.) and app service calls are defined in
<subsys> _dsp.h (ip_dsp.h, tcp_dsp.h, etc.). Notice the extra level of
indirection required to load the function pointer.

(3 MOVE.L instead of 2):

#define mib_get_new_inst (u_int32) (AppDsP (MIB_INDEX,
MIB_GET_NEW_INST)}

#define AppDsP(index, call_num) (* (((int
((**) ())) (game_hdr.dispatch [index))) + call_num))

ld get cfg. c: 79
inst_idl;) {

575 9:00000076

576

577 9:00000078

578

579 9:0000007C

580 9:0000007E

581 9:00000082

582 9:00000086

2FOC

*
486EFFBC

*
2053

20680200

20680014

4E90

and for a dynamically loadable

#define ip_register
IP _REGISTER))

if (mib_get_new_inst(obj_id,

MOVE.L A4,- (SP)

STACK OFFSET 4

PEA -68 (A6)

STACK OFFSET 8

MOVE.L (A3) ,AO

MOVE.L 512 (AO) ,AO

MOVE. L 20 (AO) ,AO

JSR (AO)

application:

(u_int32) (DynDsP(IP_INDEX,

#define DynDsP(index, call_num) (* (((int
((**) {))) (game_hdr.dispatch [index+G_END_SCALL))) +
call_num))

• 14-6 GAME Reference Manual

•
Chapter 14 System Loader •

tcp_mgr.c: 756
&twait_env->local_ip,

ret = ip_register
(u_int32)NULL, .. , .

2483 9:000004E4 48780001 PEA $00000001

2484 ... STACK OFFSET 4 0

2485 9:000004E8 2F2A0028 MOVE.L 40(A2),-(SP)

2486 ... STACK OFFSET 44

2487 9:000004EC 42A7 CLR.L -(SP)

2488 ... STACK OFFSET 4 8

2489 9:000004EE 486A0020 PEA 32(A2)

2490 ... STACK OFFSET 52

2491 9:000004F2 207B017000000002 MOVE.L
(game_hdr,PC) ,AO

2492 9:000004FA 2068027C MOVE.L 636 (AO) ,AO

2493 9:000004FE 20680020 MOVE.L 32 (AO) ,AO

2494 9:00000502 4E90 JSR (AO)

API Calls Between Loadable Modules

An application may publish a public jump table (example, TCP).

The loader plugs the app jump table pointer into the appropriate location
in the second level dispatch table and "relocates" the pointer address.

Clients which make calls through a dynamically loaded app'sjump table
must synchronize with that application. Note that the code for the API
function may be unloaded at any time by modifying the configuration.

Synchronization is accomplished by mapping the parent gate of the
service-providing application.

Ensuring that the mapping routine DOES NOT PEND will leave your
code free of race conditions. Note that if your gate is pended inside an
API call, and the API owner and its code are unloaded, and your mapping
routine pends, your gate may resume execution inside the API code space
that has already been unloaded.

A fairly simple, correct mapping routine:

•

GAME Reference Manual 14-7 •

•
• Chapter 14 System Loader

•

void tnc_tcp_mapper(gh, new_gh)

GH *gh;

GH new_gh;

TNC_ENV *tnc_env;

if (GH_CEASED_LOCAL(*gh, new_gh)) {

tnc_env = (TNC_ENV *)g_env();

tnc_env->state = TNC_EXIT;

g_log(TNC_TCP_DOWN);

g i die();

*gh = new_gh;

Application Requirements

Application requirements are as follows:

no global, writable data (.BSS)

globals are not very "clean"

5-series code was riddled with bugs that resulted from
mis-managed global variables. Globals don't work across
slots in a true distributed system. Globals don't work in the
current implementation of the multislot GAME simulator.

• BSS location/size info not carried in the image header

all code and data "PIC-able"

do use jump tables to publish APls

Application Interfaces

Applications may load an executable module from the boot image archive
via the g_load_archive() system call. This is typically used by drivers
which must download a coprocessor (cop) image. Note that the caller
owns the memory, which it may free at its own discretion.

• 14-8 GAME Reference Manual

•
Chapter 14 System Loader •

Applications may also load an 'overlay' version of an executable module.
This enables multiple calling gates to share a single copy of loadable
code, rather than each gate loading its own version.

Fault Management

Loader maintains a mapping on each gate it spawns so it can restart any
gate that PANICs or crashes.

Two system gates are special because they provide shared memory
pointers to their clients: the MIB and DP. If they ever crash, the entire
slot restarts because apps are not coded to deal with the loss of these
services (stale pointers).

Game/loader maintain a history of each subsystem's crashes, and ifthe
subsystem appears to be 'broken' it will not be restarted. This keeps
mis-configured or broken gates from hogging the CPU.

Historical data is maintained for:

• children of subsystem - if a child or multiple children are
'broken', then the subsystem will be restarted.

• subsystem itself - if subsystem is 'broken', then it will not be
restarted. 'Broken' is defined by the number of crashes which
occur in a given time period (see the Fault Management section)

Shortcomings

The Loader is restrictive (no .BSS, all code "PIC-able", etc.). At the time,
most of our code was built in-house, and the requirements seemed
reasonable. Unfortunately, we now port a lot more code 3rd party code,
so the requirements have become an impediment.

The simulator was not addressed. Image is tailored via stubs.c file

•

GAME Reference Manual 14-9 •

•
• Chapter 14 System Loader

•

BCCWork

The above requirements were deemed too restrictive for an application
which is data-driven and is largely composed of 3rd party code.

, Added hooks to allow .BSS section.

Relocated non-PICable data structures directly in .DATA section and
marked the image as "not servable" to other slots.

Ultimately, they want a more standard-OS approach (i.e. linking loader
support). They're working on a true run-time linking loader.

Process Issues

• 14-10

Builds

~ These issues may go away or be modified, due to the conversion to
T clearcase.

The kernel must be re-linked in the global build directories (buildtib,
buildace, etc.) whenever one of its modules has been re-compiled; a new
archive file is automatically created when the kernel is linked.

When a module within a dynamically loadable application is modified,
the application must be re-linked in its own subsystem directory.

After re-linking an application, a new archive file (bn.exe, asn.exe,
ace.out, etc.) must be generated in the global build directory; this must
be done manually when an application has been re-linked.

For a list of kernel subsystems, see buildtib/Makefile, and look at the
PROGLIBS list; applications can be found in the PROGEXES list.

GAME Reference Manual

• • • • • • • • • • • • • • • •
Chapter 14

** EXAMPLE 1 - rebuilding a kernel subsystem **

** Compile kernel module **
intruder->cd loader

intruder->touch ld boot.c

intruder->build tib -nr

Mon Dec 30 11:15:18 EST 1996

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib

loader: Mon Dec 30 11:15:23 EST 1996

• • • • •
System Loader

gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine
-useDS -align4 -X89 -X325 -X380 -Z551 -Onounroll -I .. /
include -I .. /edl/ tib -I .. /cdl/ tib -I .. /mdl inc
-DTIMEKEEPER -DTIB_ONLY -o _tib/ld_boot.o ld_boot.c

C-68000 1.8.7 Copyright (C)
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199
4 Green Hills Software, Inc. All rights reserved.

lib68 -crvy _tib/libloader.a _tib/ld_boot.o

Deleted file: ld boot.o

Added file: tib/ld_boot.o

Mon Dec 30 11:15:43 EST 1996

** Re-link TIB kernel **

intruder->cd .. /buildtib

intruder->build tib -nr

Mon Dec 30 11:17:02 EST 1996

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib

GAME Reference Manual 14-11

•
•
•

•

•
• Chapter 14 System Loader

•

game: Mon Dec 30 11:17:05 EST 1996

wsp='echo ${WSPACE} I sed •s/A\(.*\)router[0-9)*\///' I sed
•sr\(.*\)harpoon\/// 1 ' ; echo "char Image_directory[J
\"${wsp}\";" > _tib/stamp.c

echo 'char Image_date[) ="''date'"';' >> _tib/stamp.c

gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine
-useDS -align4 -X89 -X325 -X380 -ZSSl -Onounroll -I .. /
include -I. ./edl/ tib -I. ./cdl/ tib -I. ./mdl inc -DTIB ONLY
-o _tib/stamp.o ..}ib/stamp.c - - -

C-68000 1.8.7 Copyright (C)
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199
4 Green Hills Software, Inc. All rights reserved.

168 tib/
game-:-cfe-z-g-y-yl:l4:16-y3-t:\"start\"-sl:9:x-sl:l3:d-sl:l
4:b-U:l4,_tib/kernel.map,_tib/game.crf=_tib/start.o _tib/
game boot.o tib/stamp.o tib/libgame.a /rtell/harpoon/dev/
tpearson/11/loader/ tib/libloader.a /rtell/harpoon/dev/
tpearson/11/game/ tib/libgame.a /rtell/harpoon/dev/
tpearson/11/hwf/_tib/libhwf .a

_tib/liblast.a ./gamelink.dir

WARNING -Sl IGNORED, CONFLICTS WITH SECTION CONTENTS:
14

mapconv.pl _tib/kernel.map > _tib/kernel.nm

cd _tib; \

cofftoexe -K -rll.00 -i game.cfe -o game_bn.exe -k
TIBFRES ; \

ldexe_compress game_bn.exe krnl bn.arc

Parsing Input File: game.cfe

Program execution address space:

Load Address: Ox30020000 Rom Address: Ox30020000 Size:
Ox0017C644 Bytes Entry point: Ox30024000

Input file information:

Input file:

File type:

Tool name:

game.cfe

Kernel file.

Oasys Linker

• 14-12 GAME Reference Manual

•
Chapter 14 System Loader •

Output file information:

Image Name:

Output file:

dev/tpearson/11

game bn.exe

Platform Key: (OlOlOOOB} BB M68000 MotherBoard (FRE FRE2
FRE2_60)

Revision: 11.00

Date Created: Monday December 30 11:18:00 1996

Compressing ldapp.nohdr to ldapp.cmp

Using LZSS Encoder

...................... Input bytes:

Output bytes: 806321

Compression ratio: 49%

cd tib ; \

tib_cat bbdcmp.exe krnl_bn.arc krnl_bn.exe

1558084

cd exes; archive -av bn.exe krnl_bn.exe snmp.exe pcap.exe
fsi .exe tms380 .exe drs. exe osi .exe vines .exe lapb.exe x25 .exe
xns.exe ipx.exe ip.exe fr.exe atm_dxi.e ...

Creating new archive: bn.exe

Platform: BB

- - Adding krnl _ bn. exe

-- Adding snmp.exe
ASN FRE2 60 ISP 60 - -

Adding hdwanlm.exe

Adding delOO.exe

Adding hdwancop.exe

Adding mctlcop.exe

** End EXAMPLE 1 **

FRE FRE2 FRE2 60

FRE FRE2

FRE FRE2 FRE2 60

FRE2 FRE2 60

HDWANLM

MCTl COP

GAME Reference Manual 14-13

•

•

•
• Chapter 14 System Loader

•

** EXAMPLE 2 - rebuilding an application **

** Compile and re-link application **
intruder->cd ilacc

intruder->touch ilacc ctrl.c
intruder->build tib -nr

Mon Dec 30 11:07:19 EST 1996

make -r TOOL=ghs TARG=tib PLAT=m68k GROUP=tib

ilacc: Mon Dec 30 11:07:22 EST 1996
gcc68 -OLA -Z54 -c -ANSI -68040 -ga -unsignedptr -Xredefine
-useDS -align4 -X89 -X325 -X380 -ZSSl -Onounroll -pic32
-pid32 -I. .iinclude -I. ./edl/ tib-I. ./cdl/ tib -I. ./mdl inc
-DTIB_ONLY -o _tib/ilacc_ctrl.o ilacc_ctrl.c -
C-68000 1.8.7 Copyright (C)
1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,199
4 Green Hills Software, Inc. All rights reserved.
lib68 -crvy _tib/libilacc.a _tib/ilacc_ctrl.o
Deleted file: ilacc_ctrl.o
Added file: _tib/ilacc_ctrl.o

168 _tib/
ilacc.cfe-z-g-y-y3-t:\"ilacc entry\"-s1:9:x-sl:l3:d-s1:14:
b-U:14, tib/ilacc.map, tib/ilacc.crf= tib/ilacc hdr.o tib/
libilacc.a/rtell/harpoon/dev/tpearson/11/hwf/ tib/libhwf .a
/rtell/harpoon/dev/tpearson/11/snmp/ tib/libs~mp.a /rtell/
harpoon/dev/tpearson/11/tib/ tib/libtib.a /rtell/harpoon/
dev/tpearson/11/pcap/_tib/libpcap.a /rtell/harpoon/dev/
tpearson/11/prioq/_tib/libprioq.a /rtell/harpoon/dev/
tpearson/11/rtl/_tib/librtl.a ./ilacclink.dir
mapconv.pl _tib/ilacc.map > _tib/ilacc.nm

Parsing Input File: ilacc.cfe

• 14-14 GAME Reference Manual

•
Chapter 14 System Loader •

Program execution address space:

Load Address: OxOOOOOOOO Rom Address: OxOOOOOOOO Size:
Ox0000825C Bytes Entry point: Ox00002140

Input file information:

Input file:

File type:

Tool name:

ilacc.cfe

Loadable Application file.

Oasys Linker

Output file information:

Image Name:

Output file:

dev/tpearson/11

ilacc_ucmp.exe

Platform Key: (OlOlOOOB) BB M68000 MotherBoard (FRE FRE2
FRE2_60)

Revision: 11. 00

Date Created: Monday December 30 11:07:46 1996

Compressing ldapp.nohdr to ldapp.cmp

Using LZSS Encoder

Input bytes: 33372

Output bytes: 18823

Compression ratio: 44%

Mon Dec 30 11:07:50 EST 1996

** Regenerate the archive file **
intruder->cd .. /buildtib

intruder->build tib -nr archive

Mon Dec 30 11:09:41 EST 1996

make archive -r TOOL=ghs TARG=tib PLAT=m6Bk GROUP=tib

GAME Reference Manual 14-15

•

•
• Chapter 14 System Loader

•

cd exes; archive -av bn.exe krnl_bn.exe snmp.exe pcap.exe
fsi.exe tms380 .exe drs .exe osi.exe vines .exe lapb.exe x25 .exe
xns.exe ipx.exe ip.exe fr.exe atm_dxi.exe wan.exe llc.exe
at.exe bgp.exe egp.exe ospf2.exe rarp.exe tcp.exe dls.exe
appn_cp.exe appn_ls.exe sdlc.exe nbase.exe tftp.exe lnm.exe
tn.exe ppp.exe debug.exe tnc.exe nbip.exe wcp.exe ntp.exe
isdn.exe lm.exe ping.exe atm.exe atmsig.exe atm_le.exe
igmp.exe dvmrp.exe ftp.exe quicsync.exe arp.exe xm.exe
sysl.exe crm.exe bgprs.exe st2.exe nsc_lOOm.exe ipex.exe
rredund.exe npt.exe run.exe ip6.exe sh_csmac.exe sh_sync.exe
sh_tcp.exe sh_tftp.exe sh_snmp.exe sh_fr.exe sh_ip.exe
munich.exe fmpb.exe pim.exe hwcomp.exe bot.exe hwf .exe
fddi.exe dsde2.exe dst.exe dtok.exe enet2.exe qenet.exe
qsync.exe hdlc.exe hssi.exe ilacc.exe lance.exe ds2180.exe
ds21Bl.exe el.exe tl.exe hfsi.exe mctlel.exe atmalc.exe
atmalcop.exe hdwanlm.exe delOO.exe hdwancop.exe mctlcop.exe

Creating new archive: bn.exe

Platform: BB

- - Adding krnl _ bn. exe
-- Adding snmp.exe

ASN FRE2 60 ISP 60 - -
-- Adding pcap.exe

ASN FRE2 60 ISP 60 - -
-- Adding fsi.exe

ASN FRE2 60 ISP 60 - -

Adding hssi.exe
Adding ilacc.exe
Adding lance. exe
Adding ds2180.exe
Adding ds2181.exe
Adding el. exe
Adding t 1 . exe
Adding hfsi.exe

-- Adding mctlel.exe
-- Adding atmalc.exe
-- Adding atmalcop.exe
-- Adding hdwanlm.exe

FRE FRE2 FRE2_60
FRE FRE2

FRE FRE2

FRE FRE2

FRE FRE2 FRE2 60
FRE FRE2 FRE2 60
FRE FRE2 FRE2 60
FRE FRE2 FRE2 60
FRE FRE2 FRE2 60
FRE FRE2 FRE2 60
FRE FRE2 FRE2 60
FRE FRE2 FRE2 60

FRE FRE2 FRE2 6 0
FRE2 FRE2 60

ATMALC
FRE FRE2 FRE2 60

• 14-16 GAME Reference Manual

•
Chapter 14 System Loader •

-- Adding delOO.exe

Adding hdwancop.exe

-- Adding mctlcop.exe

** End EXAMPLE 2 **

Debugging

FRE2 FRE2 60

HDWANLM

MCTl COP

There are some special considerations for debugging dynamically
loadable applications because their load address is not known until they
are actually loaded.

The application load address must be read from the TI console via the
'loadmap' command (after the loader has loaded it), and then fed into the
debugger when you load the application symbol table:

[2:TN]$ loadmap 2

Loadmap from SLOT 2:

--> arp.exe Ox304ecdd0 0008944
--> tcp.exe Ox30508df0 0057776
--> tftp.exe Ox304ef0d0 0020488
--> snmp.exe Ox304ff730 0030360
--> tn.exe Ox304f40f0 0038424
--> ip.exe Ox304c0f70 0179780
--> hdlc.exe Ox30491560 0058368
--> lance.exe Ox30522f00 0008840
--> dsde2.exe Ox30525la0 0005232

The GDB-PPC Debugger used with the FRE had been modified to query
the target for the load address. However, the image still needs to be loaded
first.

Alternatively, this step can be avoided by linking the application into the
kernel slab for debugging purposes.

•

GAME Reference Manual 14-17 •

•
• Chapter 14 System Loader

•

Loadmaps are available on-demand from the TI; they are also dumped
into the system log so that dynamic addresses found in stack dumps can
be resolved post-mortem.

The 'stkscan' and 'logscan' tools assist in the post-processing of log
information:

Cut/paste the loadmap info into a temporary file (/tmp/stk)

• Move to the directory that containing the linker map files $ cd
buildtib/maps

stkscan the faulting address$ stkscan /tmp/stk Ox327cl la8

The output looks something like:

intruder->stkscan /tmp/stk Ox327clla8

Ox327clla8 [fsi @ Ox5888] == f si_xmt_oper_act+OxO

Software Release

We have the potential to release each executable module independently,
and then have a compatibility matrix in the loader to enforce compatibility
rules.

While the benefit of this software release model is great, it presents
nightmare-ish test and processing matrices for the SQA and
Manufacturing departments.

• 14-18 GAME Reference Manual

•
Chapter 14 System Loader •

Adding a New Subsystem

Kernel Subsystems

Add code to spawn the kernel application in Id _phase2.c.

/* Create the Data Path gate */

ld_svc(GID_DP_INI, LDF_NONE, dp_init_act, O);

This reference to the subsystem's entry point causes the subsystem to be
linked into the kernel.

Add subystem to PROGLIBS line in the global build directories (buildtib,
buildace, buildpir, ...).

Application Subsystems (Dynamically Loadable)

Make sure application conforms to requirements listed above.

Modify the Makefile in your subsystem to specify PIC and any
PROGLIBS required for linking.

Add your subsystem to the PROGEXES line in the global build
directories (buildtib, buildace, buildpir, ...).

<subsys> _hdr.c file must be updated (see doc list below)

"Register" application with dynamic loader by grabbing an index in the
loader's global include file, and then adding the subsystem name to the
loader's.

Add attribute to loader MIB record and add code to loader files to load/
unload new application.

See 'dyn_load_user.ps' document below for all the details. Also, see
http://www.enghost/clearcase/router/add _ exe.html.

•

GAME Reference Manual 14-19 •

•
• Chapter 14 System Loader

•

Related Documentation

• 14-20

/rtel/harpoon/doc/sysman/dyn_load.ps

/rtel/harpoon/doc/sysman/dyn_load_user.ps

/rtel/harpoon/doc/sysman/Email-archive/
dynamic_loadr_rel.txt (somewhat outdated)

GAME Reference Manual

•
Chapter 15

Symmetric Multi-Processing

Symmetric Multi-Processing

Symmetric Multi-Processing (SMP) was added as part of the Bluefish
(ARE) project. In order to meet the agressive forwarding rates needed
for Bluefish, it was determined that a single processor wouldn't work.
Therefore, Bluefish was designed as a dual processor system. To date,
only Bluefish and its derivatives (Blackfish, FRE-3) support SMP.

The challenge in adding SMP to GAME was figuring out how to do it
without having a huge impact on the 2 million or so lines of code already
in existence.

The major problem when applying SMP to an existing code base is how
to protect data that may be modified by both processors at the same time.
This means you either need to add locks to all data stuctures or you can't
concurrently schedule gates which modify the same data structure.

Obviously, adding locks to all data structures would have a huge impact
on the existing code, not to mention all the new deadlock bugs it would
introduce.

Since GAME already organizes gates into family trees, this seemed to be
a logical way to make an educated guess about who shares data structures.
For example, it is not likely that IP and Appletalk share memory. This
is the approach that was used.

There is also one critical observation which can be made: In order to meet
the Bluefish performance goals. Is isn't necessary to have all gates running
in parallel. Only the forwarding path really needs to be SMP. If the
control path isn't that optimal, it is still ok.

•
•

GAME Reference Manual 15-1 •

•
• Chapter 15 Symmetric Multi-Processing

•

• 15-2

Gate Classification

Out of the above came the notion of classifying gates into one of 5 types
based upon how they share memory. This, in conjunction with a gate's
ancestry, allows the SMP scheduler to avoid scheduling two gates which
may modify shared memory concurrently. A gate's ancestry starts with
the first gate in a family tree created by the loader.

A gate's classification is set by an option to the g_req() syscall. This may
be set when the gate is created or by the gate itself. A gate can change
its classification by another call to g_req(). This change takes effect the
next time a gate gets scheduled.

Here is the list of the different gate classifications, the associated g_req()
option, and a description.

Global/G_REQ_GLOBAL

The most excusive category. A Global gate will be the only gate executing
in the system. The 2nd processor will be held in a tight idle loop. This is
used for gates such as the MIB (which shares memory with practically
every application on the box). Applications are strongly discouraged from
declaring their gates as Global.

Ancestor exclusive/G_REQ_ANCESTOR

This is the default gate type. An Ancestor exclusive gate will not run with
any other ancestor exclusive gate. This is the default type because we
can't be sure which gates do or don't share memory outside of their
ancestory. These gates are assumed to share memory outside their
ancestory. The first step to SMPize a subsystem is to determine if it ever
goes outside its ancestory. If it doesn't, its type can be changed to Clean
Ancestor.

GAME Reference Manual

•
Chapter 15 Symmetric Multi-Processing •

Clean Ancestor/G_REQ_CLEAN_ANCESTOR

Clean Ancestor gates do not share memory outside of their own ancestory.
Therefore, it is ok to run them with other Clean Ancestor or Ancestor
Exclusive gates, provided those gates come from a different ancestory.
Ideally, most of the control path would be of this type.

Clean Reader/G _REQ_ CLEAN_READER

The Clean Reader type was created to aid in making the forwarding path
efficient. The Clean Reader should be used when the gate only reads data
structures owned by the rest of its ancestory (i.e. the forwarding table).
A Clean Reader will run concurrently with another Clean Reader from
the same ancestory. This is ok as both are only reading data. A clean
reader will not execute if a non-Clean Reader from the same ancestory
is running. This is because the other gate may be modifying the shared
data structure.

Clean/G_REQ_CLEAN

This is the ideal gate for the forwarding path. A Clean gate is free to run
with any other gate (except for Global). It doesn't share any data or the
data it does share is read only and never modified. Clean gates can achieve
their 'cleanliness' by using the atomic operations described below. But
since Clean usually implies the datapath, you usually need to ensure that
a clean gate doesn't get blocked for any substantial period of time.

SMP Scheduler

The SMP scheduler makes use of a single activation queue and idle queue
as the standard scheduler does. Each processor decides what gate it wants
to run next by looking at all the gates available in the activation queue as
well as what gate the other processor(s) is (are) currently running (if any).
When it finds a gate which satisifies the scheduling requirements, it
executes that gate.

•

GAME Reference Manual 15-3 •

•
• Chapter 15 Symmetric Multi-Processing

•

• 15-4

This means that, unlike single-processor GAME, gates may not execute
in the strict order they appear in the activation queue. However, all gates
in the activation queue still need to be executed before the slot goes idle
(allowing module interrupts).

If a processor can't find a gate to execute, possibly because it would
conflict with the gate already running on the other processor, it idles itself
waiting for the other processor to complete. Once the other processor
completes, one of the processors (which one depends upon which acquires
the lock first) will start running the next gate on the activation queue (the
next gate will always be eligible as both of the processors will have been
idle).

The scheduling rules for two-processor SMP are summarized in the
following chart.

The SMP types are:

G Global

A Ancestor exclusive

CA Clean Ancestor

CR Clean Reader

C Clean

Across the top of this chart is the type of gate currently running on the
other processor. Down the side is the type of gate the current CPU would
like to run. A 'Y' indicates that, yes, the gate being scheduled will execute
in parallel with the currently running gate. A'-' means the gate will not
run. A'*' indicates the other scheduler will be idle, so this state will never
happen.

In places where it matters, it is indicated whether the gate being scheduled
is in the same or different ancestry. If "same" or "diff' isn't indicated,
then it doesn't matter.

GAME Reference Manual

•
Chapter 15 Symmetric Multi-Processing •

Gate Being Scheduled Running Gate

G A CA CR c
G * - - - -

A same * - - - y

A diff * - y y y

CA same * - - - y

CA diff * y y y y

CR same * - - y y

CR diff * y y y y

c * y y y y

The Kernel Lock

The kernel is one place where memory sharing across processors is very
likely. This could happen if the gates running concurrently happen to
make overlapping system calls.

To prevent problems here, the kernel is protected by one lock. Only one
processor may be in the kernel code at any point in time. This includes
the scheduler, implying that only one processor will be picking a gate to
run at any time.

Interrupts

With multiple processors, interrupt handling becomes more interesting.
GAME solves the issue by requiring the kernel lock before entering the
interrupt processing code. Therefore, only one CPU can handle interrupts
at a time.

•

GAME Reference Manual 15-5 •

•
• Chapter 15 Symmetric Multi-Processing

•

• 15-6

Interrupts are only enabled when the CPU is in the scheduler. In order
to be in the scheduler, the processor must first have acquired the kernel
lock. Each processor will enable interrupts between each gate it executes.

On the interrupt handler side, the kernel lock must be acquired before
interrupt processing makes its way into the kernel. This is necessary

because some error interrupts will be seen by both processors and we
need to serialize their handling.

This all can work because the kernel lock is special - it can nest. The

owner of the lock is monitored, so when a CPU goes to request the lock,
the lock code knows if that CPU already owns the lock. This information

returned from the locking call informs the caller as to whether or not a
nested lock has occurred. This lets the caller knows whether or not it

should free the lock when it is done. If the CPU already had the lock, it
doesn't free it.

The only time the interrupt code executes under a non-nested lock on a
FRE is for level 4 interrupts. Level 3 interrupts are always serviced with

a nested lock because the CPU has to enable the interrupts.

The sequence of events is as follows for "between-gate" interrupts:

1. Get the kernel lock.

2. Enter scheduler.

3. Call g_poll() to enable between gate interrupts.

4. Interrupt occurs.

5. Enter interrupt_ handler.

6. Get the kernel lock, finding out that it is currently owned by this
CPU.

7. Call the interrupt service routine.

8. Return from interrupt processing (note the lock was not freed).

9. Pick the next gate to run.

GAME Reference Manual

•
Chapter 15 Symmetric Multi-Processing •

10. Free the kernel lock.

11. Run the selected gate.

Gate Creation, Death, and Mappings

Since the kernel lock has to be obtained to enter kernel code, it is
impossible for multiple processors to create or kill a gate at the same time.
However, it is possible for a gate on one processor to kill the gate that is
currently active on the other processor. This race is handled by making
the map_map() gate a Global gate.

As explained earlier, when a gate is killed, the head of the scheduler's
activation queue is modified such that the first entry is the map_ map gate.
When the map-triggering gate pends, the scheduler runs and sees that the
first entry on the queue is a Global gate. Ittherefore idles the CPU, waiting
for the other CPU (which may be running the newly killed process) to
finish. Once the other CPU finishes, one of the CPUs runs the map_map
gate (while the other idles), which cleans up the dead gate's resources and
schedules the mapping activations.

Atomic Locks

There are two RTL routines which implement atomic operations. These
are atom_incr_int32() and atom_update_int32(). These can be used to
make gates clean even if they share memory.

The atom_incr_int32() is used to update MIB stats. It would be a shame
to not be able to mark a gate Clean only because it needs to count stats.
The atom_incr_int32() provides an atomic increment so that multiple
Clean gates can update the same stat.

The atom_update_int32() can be used to perform an atomic update of a
value. This can be used to implement a busy-wait loop to serialize access
to a data strucure.

•

GAME Reference Manual 15-7 •

•
• Chapter 15 Symmetric Multi-Processing

•

• 15-8

Under the PowerPC architecture, atomic operations are not performed by
doing an atomic read-modify-write operation on the bus as you may
expect. Rather, the PPC has what it calls a 'reservation'. To do an atomic
operation, you first perform a load with reservation. This causes the PPC
to remember which cache line your load came from. Once a new value
is ready to write, be it an increment or setting of a lock, the processor
does a store w/ reservation. Unlike other stores, this store will only
complete if some other processor hasn't modified the reserved cache line.
If the store fails, another load/store cycle needs to be done. All this work
is what the atom_incr_int32() and atom_update_int32() are doing.

Notice how the reservation happens on a cache line boundary. This means
that in order to get the highest likelyhood for the store to complete, that
cache line shouldn't be in high use.

To help with atomic locks, a number of macros have been defined in
include/atom.h. A brief summary of these is:

SMP_LOCK_ALLOC(lock_ptr)

Allocates a block of memory and returns the lock _ptr which will be
properly aligned within it for atomic operations.

SMP_LOCK_UNALLOC(lock_ptr)

Frees the memory acquired by SMP _LOCK_ALLOC.

SMP_LOCK_ACQUIRE(lock_ptr)

Uses atom_ update _int32() to facilitate a busy-wait binary lock. This will
return only after the lock has been acquired. But, it is a busy-wait, NOT
a pending call. Therefore, while you own the lock, "Thou shalt not pend!"

SMP_LOCK_RELEASE(lock_ptr)

Releases the lock acquired by SMP _LOCK_ACQUIRE().

GAME Reference Manual

•
Chapter 15 Symmetric Multi-Processing •

SMP Operations On Non-SMP Systems

Applications are free to use the SMP g_req() options, atomic routines,
etc, on non-SMP systems. These are all appropriately stubbed out. For
example, atom_incr_int32() will still perfonn an increment, but not
atomically (since there is only one processor).

•

GAME Reference Manual 15-9 •

•
• Chapter 15 Symmetric Multi-Processing

•

• 15-10 GAME Reference Manual

Performance

•
Appendix A

Performance and Scalability

Every gate affects the forwarding/zero-drop numbers/system
performance.

Since the same CPU is used for forwarding and other processing*, the
attitude of"My gate is not in the forwarding path, so I don't need to
optimize it very well" is dangerous. Any single gate can kill the
performance of the box.

Under GAME, once a gate is running, it can hold the CPU indefinitely.
On FRE hardware, a four-second watchdog timer will terminate the
execution of a runaway gate. However, four seconds goes far beyond the
time necessary to invalidate most service guarantees. It is even much too
long to provide a decent level of ASAP FIFO service, since the link
drivers, the backbone drivers, and the pieces of forwarding code are not
allowed to run.

The author has observed (and been involved in) re-design efforts of
software that used too many buffers or too much memory. Since the
penalties for misuse of these resources ("buffer hog" log messages, "out
of memory" faults) are much more apparent than the misuse of CPU, the
trend has been to use more CPU and less buffers and memory. This results
in gates that need to run long periods of time, but do not chew up buffers
or transient memory. Most developers are under the impression that if
their gates do not cause watchdog timers on the FRE hardware, they are
not causing any harm. This is definitely not true.

*Traditionally this has been true of Wellfleet routers. Frame/Cell switch
ing and future router systems will do more forwarding in hardware, remov
ing the CPU from the forwarding path.

•
•

GAME Reference Manual A-1 •

•
• Appendix A Performance and Scalability

•

• A-2

Since GAME does not provide the equivalent of"CPU hog" messages or
enforce any time-slicing, it is totally the responsibility of the application
developer to ensure that their gates act in a manner to realize a
"well-behaved system". A well-behaved system is one that does not
dramatically reduce the forwarding performance while performing CPU
intensive non-forwarding operations (i.e., allows those gates involved in
forwarding to run at regular intervals).

Whether this tuning gets done or not usually depends on how much
scaling or zero-drop testing is performed. Unfortunately, even for the
conscientious developer, it is impossible to realize this goal. This is
largely due to two reasons:

• A gate cannot get access to enough information to make an
intelligent decision of whether or not to give up the CPU at any
given time.

Even if it had access to this information, the CPU is not given to
the device drivers until ALL gates on the slot have idled. So,
even if one gate is being a good citizen, it does not make for a
well-behaved system. It is the aggregate action of ALL of the
gates on the scheduler queue that determines when interrupts are
processed.

As a case study, lets look at one small piece of the BGP routing
protocol implementation: the connection transmit gates. Each
connection transmit gate is responsible for sending routing
updates to the router at the other end of the connection. Many
(tens) of connection gates can exist on a single slot.

GAME Reference Manual

•
Appendix A Performance and Scalability •

When a router learns 10,000 new routes, a connection transmit
gate has to examine the new routing entries, process each against
the announce policy configured for their particular connection,
possibly include the route in an UPDATE message and update its
"advertised routes" table, and send the UPDATEs. This obviously
takes a lot of time for 10,000 routes and without any explicit sur
rendering of the CPU, the gate will watchdog on a FRE.

The problem was made workable (i.e., it doesn't watchdog, but
it's not really a well-behaved system) by inserting g_idle calls into
the code. The G _IDLE_ CHECK flavor was used, which will pend
the calling gate whenever there is driver or backbone activity to be
processed. This approach does not work well for a few reasons:

• The g_idle calls are not free.

• Knowing when and where to insert g_idle calls is a black art,
since there is no way to determine how long a gate has been
hogging the CPU.

• Since all transmit connection gates tend to act on the same
routes at the same time, the number of connections on a slot
affects how well-behaved that slot is. g_idle placement that
works when only one connection gate is active can cause
massive problems if five gates are active, because all of the
gates are going to be on the scheduler queue and each will grab
about the same size slice of CPU time. This therefore requires
over-g_idle-ing the code, which leads to the next problem.

• Just because a driver or backbone interrupt is pending doesn't
necessarily mean that the CPU has to be surrendered. DAS
traces of the BGP code show that some g_idle calls pend the
calling gate to service only one received buffer from the
backbone. Previous research has shown that running such a code
strip for a single buffer is very inefficient, as it causes
unnecessary thrashing of the instruction cache.

•

GAME Reference Manual A-3 •

•
• Apperidix A Performance and Scalability

•

The indeterministic allocation of the CPU resources appears to be the
largest problem in regard to providing service guarantees. Ifwe cannot
guarantee that the gates involved in forwarding (drivers, decaps, encaps,
protocol forwarders) will run at a regular frequency, we cannot guarantee
anything. A method of making this more deterministic could have
benefits for the normal ASAP FIFO traffic (better zero-loss numbers) as
well as real-time traffic.

Avoid Transient Resource Allocation

• A-4

Most routing protocol applications are designed so that the gates that
transmit and receive routing information packets are separated from the
gate or gates that maintain the routing tables*. Therefore, some method
of relaying this information is necessary.

Scaling becomes a huge problem if resources have to be allocated
temporarily (i.e. 'transient' resources) to accomplish the inter-gate
communication, whether the resource is buffers or memory. Huge updates
will kill the box because of the (potentially large spikes in) transient
resource usage.

The most successful approach to this problem has been to have the routing
table gate be a parent of the transmit/receive gates and allow the child
gates to modify the parent's memory. The tbl and rtbl subsystems have
been modified to make sure that any additional memory allocated is
always owned by the parent gate.

This approach obviously requires additional care by the programmer. The
shared resource (routing table structures) usually need to be modified in
a mutually exclusive fashion.

*Similar requirements are often found in designs for other (non-routing
types of) applications which must maintain some kind of shared common
central database that gets modified in response to network activity.

GAME Reference Manual

•
Appendix A Performance and Scalability •

•

Use RTBUUTBL, not TBL, for Non-Forwarding/Filtering
Tables

Image Size

TBL works best for forwarding tables. These forwarding tables usually
do filtering simultaneously. This is what TBL was designed for. Also,
these forwarding tables should contain the least number of entries
necessary (i.e., it should be a cache). Once you get beyond several
hundred entries, the modification times for the table grow to problematic
lengths.

For everything else, RTBL and UTBL should be used. These services
were designed for faster modification. The lookup time is pretty good too.

Generally speaking, keeping the image size small is a goal. Excessive
image size can lead to excessive memory consumption, which can have
negative impact on scalability of a hardware platform/product.

Of particular concern are embedded strings for use in logged (g_log())
messages. All these log strings should be defined in your .edl file, and
the only arguments to the g_log() function should be the message
identifier and any necessary numeric values that the log message in
question calls for. If you pass a string as an argument to g_log, you not
only have increased image size and memory consumption to store the
string, you have also consumed CPU time/power to format the string in
question (especially if you do this via sprintf()).

Furthermore, strings take up a lot of space in the log. Excessively long
log messages with embedded strings causes the log to fill up and wrap
faster/more often. This can lead to a loss of important log data. In the
extreme, the log wraps so fast you never catch the event that you really
need to see that will clue you into the real problem in a system.

GAME Reference Manual A-5 •

•
• Appendix A Performance and Scalability

•

Accessing Memory, Hitting/Missing Cache Etc.

• A-6

Accessing (i.e. reading./writing) memory is generally to be minimized in
designs. Today's processor speeds have reached levels that make memory
bandwidth (or access time) the bottleneck for system performance.
Accessing memory means the CPU has to go "off-chip" across a bus to
access registers in some other memory chip.

Imagine an algorithm that is going to add a constant offset to each element
in an array. Furthermore assume the constant offset is part of a data
structure X:

typedef struct X {

} X;

/* other cells in data structure X */
u int32 offset;
I* other cells in data structure X */

One possible encoding of the algorithm might be:

void
add offset (x, array, size)
X *X;

u_int32 array[];
u int32 size; c

/* pointer to struct X with offset */
/*array of 32 bit unsigned integers*/
/* number of entries in array */

for (i = O; i++ ; i < size
{
array[i] += x->offset;

}

In the above instance, the CPU will execute the expensive fetch from
memory for the offset (i.e. the contents of x->offset) for each iteration of
the for loop.

GAME Reference Manual

•
Appendix A Performance and Scalability •

Now consider this alternative:

void
add off set
x
u int32
u int32 c

(x, array, size)
x; / pointer to struct X with offset */
array[];/* array of 32 bit unsigned integers */

size; /* number of entries in array */

register u_int32 offset;
offset = x->offset;
for (i = O; i++ ; i < size
{

array[i] += offset;

The algorithm has the same order of complexity as the first (both are O(N)
time-complex), but this second alternative will execute significantly
faster in real time. The reason is that the fetch from memory for the
constant offset is only done once in the second alternative, rather than
once per loop. So while both algorithms execute the loop the same number
of times, the first algorithm does an extra memory fetch/read per loop.

While some of the 'smarter' compilers may invalidate the above analysis,
optimizing correctly to eliminate the cited waste, such optimization has
been turned off in at least some of the compilers currently being used for
GAME development at the time of this writing. The recommendation
here is to not rely on the compilers for this kind of optimization and to
write the code itself in such an optimal fashion so as to get good
performance regardless of what compiler (options) are being used.

An even worse situation would arise from use of some of the macros
defined to access the contents of the GAME buffer (BUF) header. Some
of these macros make references to multiple fields of the BUF structure,
multiplying the penalty. Buffer memory does not get cached, making the
problem even uglier. The bottom line is that any references to buffer
headers/contents should be done once and stored in a (hopefully register)
variable for future reference (using registers like this is also basically a
good idea for any memory references that can be similarly managed).

•

GAME Reference Manual A-7 •

•
• Appendix A Performance and Scalability

•

• A-8

Memory reads are generally more expensive than writes. The speed of
the memory access also depends on which memory is being accessed.
Platforms have different kinds of memory, and different sized caches.
Hitting the cached memory is always faster than having to go out on the
bus to fetch form non-cached memory.

Memory access speeds, from slower to faster, on traditional Wellfleet
platforms is as follows:

• un-cached DRAM

• dual-port (protocol headers in buffers)

cached DRAM

• And, of course, a register is fastest.

These differences are especially important on the PowerPC based
platforms, where a slow memory fetch costs lots and lots of unused CPU
cycles.

Buffer memory is never cached.

A couple of things to do to make your code run faster:

Organize your data structures so that the fields you access
within a particular routine are all located in one or two 16-byte
cache lines. Putting comments in the * .h file explaining that you
did this will help keep someone from screwing it up later.

• If you are going to access something repeatedly within a buffer,
put it into a stack variable instead. This way you will do a
cached access.

GAME Reference Manual

• • • •

A
Accessing Memory A-6
Acquiring Application Executables 14-3
Activating Gates 2-10, 7-2
Activating Mapping Routines 7-8
Activation Queue 7-1
Adding a New Subsystem 14-19
Adding Buffers 4-19
Alias Gates 2-14
Aliases 2-17
Allocation of Buffers 4-13
Ancestor Exclusive Gate 15-2
Ancestor Gate 2-1
API Calls Between Loadable Modules 14-7
Application Interfaces 14-8
Application Requirements 14-8
Archive Loading 11-6
Atomic Locks 15-7
Availability 1-6

B
Base Level Handlers 5-24
BCC Work 14-10
Binary Semaphore 9-1
Bridge use of Alias 2-19
buf dump Call 4-23
Buffer Allocation 4-13
Buffer Delivery Debug Tips 5-21
Buffer Delivery Mechanism 5-1
Buffer Format 4-3
Buffer Manipulation 4-16
Buffer Pools 4-5
Buffer Usage Rules 4-10
Buffers 4-1

Adding 4-19
Debug Tips 4-22
Dumping 4-23
Forward a List Reliably 5-18
Moving Around 4-19
Performance Tips 4-20

• • • • • • • • • • • • •

Removing 4-19

c
Cache 1-3
Calendar Chip 10-23
Changing Existing Mapping 3-25
Cheap Gates 1-8
Checking a Semaphore's State 9-5
Clean Ancestor Gate 15-3
Clean Gate 15-3
Clean Reader Gate 15-3
Cleanup After Gate Death 9-6
Code Structure 1-7
Commit Suicide 11-5
Communication

Intergate 5-1
Comparisons to UNIX 1-2

• • • • •
Index •

•

Copy a Buffer's Contents to Memory 11-3
CPU Hogging 7-16
Crash Points 13-12
Creating Semaphores 9-2

D
Data Signal Aproach to Mapping 3-14
Davidian Gate Mapping 3-24
Davidian Gates 2-14
Death of Gates 9-6
Debug Messages 13-16
Debug Tips

Buffer Delivery 5-21
Debug Tips for Buffers 4-22
Debugging Memory Problems 6-11
Debugging Orphaned Buffers 4-23
Decapsulation 1-3
Delivery

Reliable Buffer Delivery 5-10
Design Characteristics 1-2
Doubly Linked Private Pool 4-13
downloader gate 14-4
Dueling Soloists 2-16
Dumping Buffer Contents 4-23

GAME Reference Manual lndex-1 •

•
• Index

•
Dynamic Gate Mapping 3-19
Dynamic Gates 2-12
Dynamic Loader 14-3
Dynamic Loading 14-2
Dynamic Reconfiguration 1-7
Dynamic Semaphores 9-2

E
EDL 13-3
Efficient Unreliable Delivery 5-4
Encapsulation 1-3
Ensign Gate Mapping 3-24
Ensign Gates 2-13
Environment Configuration 11-2
Environment Pointer 2-2
Event Definition Language 13-3
Event Logger Gate 13-9
Event Logging 13-1

F
Fault Management 12-1, 14-9
Fault Messages 13-14
Filtering Tables A-5
flags 2-8
Format of Log Entry 13-2
Forward a List of Buffers Reliably 5-18
Forwarding 1-5, A-1
forwarding A-1
Forwarding Path 7-8
Free Buffer Pool 4-6
Free Memory Pool 6-2
free _poo I 6- 16
Freeing Buffers 4-17

G

g_ appbase() Call 1 1-1
g_balloc() Call 4-13, 7-19
g_bcfg() Call 11-2
g_ bfree() Call 4-17
g_bmove Call 4-19
g_ breplen Call 4-14

• lndex-2 GAME Reference Manual

g_buf2memO Call 11-3
g_ copy0 Function Call 4-15
g_delayO Call 7-19
g_ delayO Kernel System Call 10-9
g_ envO Call 11-4
g_ env _gid Call 11-4
g_fedexO Call 5-4
g_fedex_cleanO Call 5-7
g_fwdO Call 5-10, 7-18
g_fwd_listO Call 5-18
g_get_sig_data Call 6-11
g_i_dieO Call 11-5
g_idleO 7-17
g_idle() and g_timer_getO Calls 10-11
g_isr Call 5-25
g_load _ archiveO Call 11-6
g_logO Call 13-6
g_ rnadd Call 6-10
g malloc Call 6-6
g_ malloc _gid Call 6-8
g_rnap Call 3-1
g rnem2bufCall 11-3
g_mfree Call 6-6
g_ mfree _gid Call 6-8
g_ mien Call 6-7
g_mrealloc Call 6-10
g_myidO Call 11-9
g_platf ormO Call 11-9
g_reply() Call 7-18
g_req() 2-7
g_reset() Call 11-10
g_rpc() Call 5-14, 7-18
g_sema Call 9-2
g_ sema _get() Call 7-19
g_sema_state Call 9-5
g_sig Call 5-26
g_sig_data Call 5-29, 6-11
g_sig_gid Call 5-28
g_slot() Call 11-11
g_src() Call 11-11
g_stkO Call 11-12

g_tget Call 10-16
g_tget() Call 10-23
g_timer_get Call 10-20
g_timer_get() Call 10-22
g_tmo() Kernel System Call 10-2
g_ tset() Call 10-18
g_u_die() Call 11-5
g_xmt() Call 5-2, 5-8
g_ xmt_im() Call 5-8
Gate 2-4
Gate Activation 7-2
Gate Classification 15-2
Gate Creation 15-7
Gate Death 15-7
Gate Death and Cleanup 9-6
Gate Handle 2-5
Gate ID Table 2-1
Gate IDs 2-4
Gate Mappings 15-7
Gate Pending 7-5
Gate Resources 2-3
Gate States 2-3
Gate Structure 2-2
Gate Tennination 12-2
Gates

Intergate Communication 5-1
Get a Unique ID 11-13
get_unqid() Call 11-13
Gets Platfonn Type 11-9
Getting System Time 10-16
Global Gate 15-2
Global Memory 4-1
Grain Tables 10-12

H

Handle
Gate Handle 2-5

Hardware Reset 12-1
Hitting Cache A-6
Hogging the CPU 7-16

•

Idle Queue 7-1
Image Size A-5
infinite loop 8-1
Info Messages 13-15
Instance Management 2-7
Inter-Gate Communication 5-1
Internal Code Structure 1-7
Internal Wallclock Service 10-24
Interrupt Handling 7-12
Interrupts 5-23, 15-5
Introduction to GAME 1-1

J
Jump tables 14-4

K
Keeper Bits 2-4
Kernel Loader 14-3
Kernel Lock 15-5
Kill Another Gate 11-5

L
Limitations 1-7
Linker 14-1
Loader 14-1

Debugging 14-17
Processlssues 14-10

Local Memory 4-1
Locks

Atomic 15-7
Log Crash Points 13-12
Log Event Severity Levels 13-14
Log Filtering 13-11
Log Fonnat 13-2
Logger Gate 13-9
Logging 13-1

Index •

•

How the Log Becomes Useless at Times
13-10

Logging Tips 13-17

GAME Reference Manual lndex-3 •

•
• Index

•
Low Latency Handlers 5-24

M
Macros

Gate Handles 2-6
Manipulation of Buffers 4-16
Mapping

Changing 3-25
Soloist 3-26
Warnings 3-29

Mapping a Well-Known Gate 3-12, 3-14
Mapping Activation Routines 7-8
Mapping An Alias 3-11
Mapping Dynamic Gates 3-19
Mapping Ensign and Davidian Gates 3-24
Mapping Order 3-13
Mapping Q&A 3-12
Mapping Resources 3-8
Mappings 3-1
mem _aii 6- i3
mem_free_check 6-12
mem _full_ tags 6-12
memory Management 6-1
Memory Passing 5-23
Memory Reclamation (5-Series Method) 14-2
Memory Sharing 6-5
Message Delivery 7-3
Messages 13-14
Missing Cache A-6
Moving Buffers Around 4-19
Multi-Processing 15-1

N
Need for Semaphores 9-6
Non-Forwarding Tables A-5

0
Orphaned Buffers 4-23

• lndex-4 GAME Reference Manual

p

Packet Access 1-4
PANIC 13-12
Parent Gate 2-1
Pending 7-5
Performance 1-3, A-1
Performance tips for Buffers 4-20
Periodic Timer 10-21
Platform Differences in Watchdog 8-3
Points

Log Crash Points 13-12
Pool-Of-Private-Pools Memory Manager 6-16
Pools

Buffer 4-5
Portability 1-8
Primitives 4-17
Private Buffer Pools 4-10
Private Memory Management 6-13
Private Memory Managers 6-14
Problem Gates 12-2
Properties of GAME 1-1

Q
Queues in Scheduler 7-1

R
Reboot 12-1
Reconfiguration 1-7
Registering for a Signal 5-25
Registering Semaphores 9-2
Reliable Buffer Delivery 5-1 O
Removing Buffers 4-19
Restarts Slot(s) 11-10
Retrieve Time Since Slot Restart 10-20
Retrieves Source of Reliable Message 11-11
Returns Base Load Address 11-1
Returns Caller Gate ID 11-9
Returns Caller Slot Number 11-11
Returns Environment of a Gate 11-4
RTBL/UTBL A-5

•

Rules of Buffer Usage 4-10

s
Saves Current Stack in System Log 11-12
Scalability A-1
Scheduler 7-1, 15-3
Segments 6-1
Self-mappings 3-12
Semaphore State 9-5
Semaphores 9-1
Sending Signals 5-26
serial 6-12
Setting System Time 10-18
Severity Levels 13-14
Sharing Memory 6-5
Short Delays 10-11
Shortcomings of Loader 14-9
SIG IDLE 7-4
SIG_INI 5-24, 7-3
SIG MAP 7-4
SIG MSG 7-4
SIG TMO 7-3
SIG TMO. 5-24
Signals 5-22
Simple Private Memory Manager 6-14
Single Linked Private Pool 4- I I
Slab 6-1
Slot Map 2-5
Slot Restart and Retrieve Time 10-20
Small Memory Pieces 6- I 3
SMP Scheduler I 5-3
Software Signals 5-23
Soloist Mapping 3-26
Soloists 2- I 5
Space-Compacting Private Memory Manager

6-15
Space-Recovering Private Memory Manager

6-15
Spawned Gate 2-1
Special Memory Operation I I -8
Stale Pointers 6- I I

Subsystem Adds 14-I 9
Summary of Timers and Time 10-20
Symmetric Multi-Processing 15-1
System Event Logger Gate 13-9
System Event Logging 13-1
System Loader 14-2

T
Tags 6-4
Thread Mapping Aproach 3- I 7
Time Overview 10-14
time2wclk Library Function 10-17
Timer Expirations 5-23
Timer Overview 10-1
Timers and Time Summary 10-20
Tips on Logging 13-17
tmo_exp Call 10-12
Tokens 9-4
Transient Buffer Pool 4-6
Transient Resource Allocation A-4

u
Unique ID 11-13
Unreliable Buffer Delivery 5-2
Urgency of Signal Handling 5-23
User Defined Signal 7-4
Using g_bfree() 4-17

v
Variable Size Segment Private Memory

Manager 6-16
Virtual Buffer Memory 5-7

w
Wallclock Service 10-24
Warning About Mappings 3-29
Warning Messages 13-15
Wastebasket Page 5-7
Watchdog 8-1
wclk2time Function Call 10-19

GAME Reference Manual

Index •

•

lndex-5 •

•
• Index

•
Well-Known Gates 2-12
Well-known Semaphores 9-2
wrt thru 6-12

z
Zero-Packet Loss 1-7

• lndex-6 GAME Reference Manual

