
Updating Software And Configuration Data In A Distributed Communications Network

Carl W. Symborski

Hughes Network Systems, Inc.
11717 Exploration Lane

Germantown, MD. 20874

Abstract

Distributed communications networks often consist of
numerous independent or loosely coupled network
components. These components are typically
sophisticated computing devices that collectively
support the performance of network functions.
Frequently, an individualized set of software and
configuration data may be required for each
component. Control of this data should include
mechanisms for update and distribution to all network
components. These mechanisms should provide for
the initial load of information to network components as
well as support the application of updates without
network disruption. This paper presents a method for
the organization and controlled distribution of software
and configuration data throughout a communications
network. This methodology is illustrated by its
implementation in an advanced, commercially available
packet switching network.

Introduction

One of the numerous tasks that fall within the realm of
network management involves the management and
control of internai network data. As opposed to data
carried by the network on behalf of its users, internal
network data includes data associated with all network
components, external devices, and users attached to
the network. Software, for example, is required by
computer based network components in order to
support their function. Specific software releases may
be required by these components to support a specific
mix of services provided to network subscribers.
Feature packages may be offered to subscribers in
regionalized areas of a network. This can potentially
prompt regionalized distribution of software releases.
In order for network components to function effectively
as a part of a network, additional information such as
topology and routing data must also be supplied.
Additionally, devices and users attached to the network
often have certain adjustable parameters associated
with them. These parameters can be collected into
distinct profiles and need to be supplied to applicable
network components so that service may be provided.

The tasks of network management in these areas can
be summarized as 1:

CH2547-8/88/0000/0331$01.00 © 1988 IEEE
331

1. Accumulating and managing data required
by network components in order to
support useful operation.

2. Facilitating the distribution of topological
configuration, routing information, user
profiles and other necessary information by
translating and binding this data into
formatted tables.

3. Providing a mechanism for the distribution
and update of software and required data
tables to network com ponents in a
network.

The main thrust of this paper is an investigation of the
last task, specifically, the controlled distribution of
network software and data tables throughout a
network. Central to this discussion is the definition of
two terms: download, and data reconciliation.
Download can be thought of as a mechanism by which
network software and data are obtained and installed in
a network component. Data reconciliation can be
thought of as the process by which the consistency of
all downloaded information within a network
component is assured. A network component can use
data reconciliation to determine what data is needed
for operation and when that data has changed. thus
requiring update. The download process can then be
used to obtain the needed data.

Design Considerations

Some goals have been identified concerning the
implementation of download and data reconciliation
functions within a network. These are:

1. The ability to update software and data
tables associated with a network
component with minimal service impact.

2. The maintenance of consistent network
data within and between network
components.

One method of downloading a network component is
to place the component out of service while it is being

loaded. This method can cause several problems.
Removing a component from service may terminate
ongoing data transfers processed by that component.
Service may be suspended for minutes depending on
the amount.of software and data tables that need to be
downloaded. Additionally. some updates may only
involve a modification to tables that define parameters
of users and equipment attached to a component. To
cause the reload of all software and tables to
accomplish this change has a high cost in terms of
service availability. It would be desirable to support the
update of data tables independent from software.
Ideally the network would support the download of
individual tables that can be intercepted by a network
component while it is still in service 1. From a
customer's point of view, minimizing the service impact
of a component update can be seen as an advantage.
If a network component supports the update of tables
or fragments thereof, only users associated with the
updates are affected. This reduces the down time from
the viewpoint of the customer.

Software and data tables, once downloaded into a
component, must be maintained so as to be consistent
with the component's definition within the network.
This is necessary in order for the component to
support its role in the overall network configuration, if
modified by the network managers. A component
must determine, or be informed, that its definition has
changed and that updated information should be
downloaded. To reduce the problem of coordinated
update of data between components, cross
component redundant data should be minimized.
Information should be held only where and when it
makes sense to do so. If duplicate data exists across
component boundaries, one copy should be
designated as the master 2

In addition to the above goals, the rate of change that
network data may experience over time can influence
the type of distribution mechanism used. In networks
where change is rare, network data may be created as
an offline operation, possibly at a centralized network
control facility. This data, along with software, can then
be delivered to the different network component
locations and installed on local storage devices. In this
scenario, a component can download software and
data tables using its local storage requiring little or no
network dependence 1.

In more volatile networks, network data is changed
often. Users and devices are typically added, changed,
or deleted on a regular basis. To support the timely
distribution of this dynamic information. the network
can be used to download software and data tables
from a central location to the network components 1.

This is the method utilized in the Integrated Packet
Switching Network product line developed by Hughes
Network Systems, Inc. In this implementation, a

332

centralized network management system is used to
create or modify the definition of network components
and their related users and devices. These changes
are then provided to affected components using a
hierarchical distribution mechar;lism over the network.

The following sections focus on techniques that utilize
the network for the controlled distribution of software
and data. A download and data reconciliation
methodology is presented, which can maintain the
conSistency of all network components with their
current definitions as well as accommodate online
component update with minimal service impact.

Organization Of Download Data

When designing a system which supports the
download of online components, many problems can
arise. For example, a component will need a
procedure to determine if it needs data or that some
data has changed. The specific data items required by
each component must also be determined. To some
extent, the organization of the downloaded data is the
first step towards simplifying these and numerous other
problems. As previously discussed in relation to
volatile networks, data that is downloaded to network
components is often stored at a central location. At
this location, typically a network control center, the data
is initially entered and maintained using available
network management functions. It is suggested here
that the data that is distributed to network components
be divided into a number of blocks, called descriptors.
Data should be partitioned into descriptors for a
number of reasons:

1. A given data update applied at the network
control center may only affect a part of the
total amount of data downloaded to a
component. By dividing this data into
blocks of related information, only modified
data have to be obtained.

2. Data can be grouped according to how
they are generated, allowing easier
management.

3. Data can be grouped according to how
they are used, allowing easier use by
components.

4. Data which are used by many components
can be stored as a single descriptor, rather
than as one per component.

Categories Of Data

Using descriptors, the download of network data to a
component can be viewed as the transfer of a set of

descriptors to the component. The types of
descriptors that need be created depend on the
composition of the original data. Generally, data can
be organized into three categories for distribution and
reconciliation purposes. These categories are:

1. Component specific data

2. Shared data

3. Summary data.

Component specific data includes data specific to
individual network components. Data identifying
protocol parameters and hardware configuration of
ports associated with a component are examples of
this category of data. Each network component will
have its own unique set of component specific data for
its exclusive use. For download purposes, component
specific data can be grouped into a single descriptor.
Each component would therefore have a descriptor
created specifically for it. A component could
download its specific descriptor and thus obtain all of
its component specific data.

The second category, shared data, includes all data
that might be shared by multiple components. Any
data needed by more than one component falls into
this category. Global network parameters are an
example. Software images used by components and
software patches to these images also fall in the shared
data category. Shared data should be grouped into
multiple descriptors according to usage.

Summary data is a category of data that exists only to
support the implementation of a data descriptor
organization. For identification and data reconciliation
purposes, each descriptor should contain a unique
timestamp. The timestamp indicates when a descriptor
was created or last updated. Summary data for a
component consists of all the timestamps of the
descriptors associated with the component. These
timestamps can be gathered into a single summary
descriptor and downloaded to the component. Using
the timestamps in its summary descriptor, a
component can apply data reconciliation procedures to
identify the latest versions of specific and shared
descriptors if required.

The usefulness of a descriptor organization will
become more apparent as the overall concept of
download service is presented.

Download Service

Given that downloaded data can be partitioned into
descriptors, a download service mechanism must then
be provided to support the distribution of these

333

descriptors throughout the network. Specifically, a
download service should:

1. Provide a general mechanism for the
distribution of descriptors to network
components.

2. Ensure the timely distribution of descriptor
changes to online components with
minimal service disruption.

3. Ensure that network components hold
descriotors that are up-tO-date and
consistent with those held by all other
components in the network.

It can be seen that this download service creates an
implicit service hierarchy in the network. At one end of
the hierarchy are those components that distribute
descriptors. As discussed previously, descriptors
should be generated and maintained at a single
location. This centralized data management point is at
the top of the service hierarchy. A master set of all
descriptors is stored at this top level. All descriptors
that are distributed to one or more components
originate from this master set. Since descriptors are
created and emanate from a single point, network-wide
descriptor consistency can be achieved. At the other
end of the hierarchy are those components that need
and use descriptors. These components can maintain
local consistency of the descriptors they hold by
validating their descriptors with those in the master set.
Through this process, called data reconCiliation, a
component can determine which descriptors are
needed and request their transfer from the master set.
The download service hierarchy therefore provides for
centralized descriptor management at the top level as
well as distributed download control driven bottom up
from the lowest level.

Network components can be identified within this
hierarchy in terms of the roles that they assume:
consumer or master server. A consumer's functions
include:

1. Periodic reconciliation of the descriptors it
holds with the master set.

2. Generation of requests for descriptors from
the server as needed.

3. Utilization of (consuming) the data in the
descriptors.

4. Initiation of a transfer of all required
descriptors when a full download is
required.

The master server's functions include:

1. Maintenance of a master set of descriptors.

2. Providing descriptors to consumers upon
request.

3. Expediting the distribution of descriptor
updates by informing all components of
online updates, thus speeding up a
component's periodic reconciliation cycle.

Exploiting its role in the service hierarchy, a master
server can better support network management
functions associated with the accumulation and
management of the data contained in the descriptors.
This may include operator interfaces, network
configuration databases, report generation, and other
network management features as required. Freed of
these tasks, consumers are specialized in actual use of
the data in the descriptors. Being data users,
consumers have implicit knowledge about the different
descriptors they need to operate. By making requests
to the master server, consumers can detect online
configuration changes for the specific descriptors that
they depend on. Initiating the transfer of changed
descriptors in this bottom-up fashion ensures the
distribution of changes only to affected consumers,
minimizing service disruption and overhead on network
resources.

Intermediary Servers

Large networks will often consist of numerous
consumer components. This number may generate a
demand for service that is greater than the capacity
which the master server can handle. In these networks,
intermediaries can be inserted in the hierarchy between
the master server and consumers. Intermediaries can
reduce the load on the master server by providing
some server functions to consumers. Specifically, the
functions of an intermediary include:

1. Maintaining a local descriptor cache that
contains copies of descriptors from the
master set.

2. Accepting descriptor requests from
consumers, attempting to satisfy these
requests using its cache.

3. Obtaining requested descriptors from the
master server as required, if not present in
the cache.

Intermediaries therefore behave both as a server and a
consumer. Intermediaries act like a server to
consumers since they can satisfy descriptor requests.
However, intermediaries are really consumers
themselves since they are not involved in the creation
of descriptors but rather obtain them as consumers
from the master server.

334

As a member of the service hierarchy, a major utility of
the intermediary is to provide a level of server
redundancy by increasing server availability to
consumers. The complete service hierarchy is
illustrated in Figure A.

Figure A. Download Service Hierarchy

Sample Consumer Processing

Given the definition of descriptors, servers,
intermediaries, and consumers, a sample data
reconciliation procedure can be outlined. This
procedure, executed by all consumer components
consists of the following steps.

1. Wait until a reconciliation timer expires, or
receipt of notice that some descriptor may
have changed.

2. Request current summary descriptor
applicable to this component from a server
(either master server or intermediary).

3. Accept summary descriptor from server
and compare with local summary
descriptor describing the components
current descriptor profile.

4. If no change is detected, no work need be
done. Return to step 1.

5. If change is detected, then request each
changed descriptor from the server.

6. Install each new descriptor in the
component, replacing the old descriptor.

7. Save the new summary descriptor for the
next reconciliation cycle.

8. Return to step 1.

Using this procedure a consumer component will
maintain a local set of descriptors that are consistent
with the master descriptor set. This procedure
provides the consumer with the ability to determine on
its own which descriptors it is holding are out-of-date.
The consumer can then initiate the download of new
descriptors. Freed of this burden, the master server
can be ded icated to the maintenance of a consistent
master set of descriptors.

The Integrated Packet Network

The download and data reconciliation methodology
presented in this paper has been implemented in the
Integrated Packet Switching Network (IPN) product line
developed by Hughes Network Systems, Inc. Before
illustrating this implementation, it will be appropriate to
give a brief synopsis of the architectural aspects of the
IPN 3.

Within the lPN, network components are divided into
two generic categories: packet switching node
components and network control system components.
Packet switching node components provide the packet
protocol and switching function. The network control
system components provide both centralized and
distributed management and control functions for the
entire network.

The network's packet switching node components are
implemented using one or more CP9000 Series II line
clusters. The CP9000 Series II line cluster allows for
flexible configurations based on modular
multiprocessor design. When configured for the
purposes of switching data, the CP9000 Series II line
cluster is referred to as a Packet Switching Cluster
(PSC). All network 'lodes consist of one or more PSCs
which provide the functions of routing and physical,
link, and packet level management. PSCs are
interconnected to form the network backbone
topology. A backbone protocol is used for the transfer
of data between PSCs.

The network is monitored and controlled by the
Network Control System (NCS). The NCS performs
administrative functions and provides the network with
various services. The NCS components are the
Network Control Processor (NCP), the Network
Operator Console (NOC), and the Auxiliary Service
Processor (ASP).

The NCP is capable of providing all network
administration functions and all network service
functions of the NCS. The NCP also performs all
functions that may be required by the network
operators. As the prime handler of administrative
information, the NCP is the highest authority within the
network from an administrative pOint of view.

335

Network operators control and administer the network
using a Network Operator Console (NOC). NOCs
provide access to the network administration facilities
performed by the NCP.

Auxiliary Service Processors (ASP) are used to provide
a subset of NCP network services to PSCs.
Performance of these network services by ASPs
offloads the NCP from providing these services in large
networks. ASPs are implemented using CP9000 Series
II equipment configured with a disk for local storage of
PSC software and configuration data.

All of the network components are required to
communicate with each other to support network
services and administration. In order to facilitate this
communication, an interconnection between NCP,
ASPs, NOCs, and PSCs is provided. This
interconnection is called the Supervisory Network. The
Supervisory Network is implemented using the network
itself and is used to perform all network services and
some network administration functions. Supervisory
circuits are established between the components of the
supervisory network. These circuits are set up uSing
the same facilities provided by the network to its users.
Although used for more than just component
download, the supervisory network relates well to the
download service hierarchy previously described. A
typical structure of the supervisory network is illustrated
in Figure B.

Figure B. Supervisory Network Structure

In this figure, the NCP corresponds to the master
server in the download service hierarChy. PSCs are the
consumers. ASPs are consumers themselves, but also
act as intermediaries by providing download services
to PSCs.

The downloaded network data, generated at the NCP,
has been divided into numerous download descriptors.
These descriptors, loaded into PSC and ASP clusters,
are organized in the following manner:

1. Component Specific Descriptors:

• A cluster configuration data
descriptor (CCD) contains all
. configuration data that applies to an
entire cluster.

• A module configuration descriptor
(MCD) contains data that applies to a
single CP9000 Series II module of a
cluster.

2. Shared Data Descriptors:

• Universal shared system parameters
(USSP) is a descriptor that contains
configuration data that applies to all
clusters.

• Shared software descriptors contain
the software images to be used by
clusters.

• Software patch descriptors contain
patches that apply to corresponding
software descriptors.

3. Summary Descriptors:

• A cluster specific descriptor (CSD)
contains the timestamps of all
configuration data particular to a
cluster, and the names of all shared
data used by a cluster.

• A first reconciliation descriptor (FRO)
contains the timestamps of all shared
data used by a cluster, and the
timestamp of the CSD for a cluster.

FRD

Descriptor
Timestamps

CSD

Descriptor
Timestamps
and Names

Figure C. Download Descriptor Organization

336

Summary descriptors contain information identifying
the latest shared data and component specific
descriptors for a cluster. The master descriptor set,
stored at the NCP, includes unique FRO and CSD
summary descriptors for each cluster in the network .
The division of the summary descriptors into the FRO
and CSD allows a cluster to verify using a single packet
transfer, that all data it holds is up-to-date. Figure C
illustrates the relationship of the summary descriptors
with all other descriptors.

Descriptors are requested from the servers and
transferred to the clusters using an internal download
protocol. This protocol operates over the supervisory
network between download and server applications
executing on the clusters and servers. A descriptor is
identified in a download request depending on
descriptor type. Component specific descriptors are
requested by supplying a cluster identifier uniquely
identifying a cluster, and a timestamp from the CSD.
Shared data descriptors are identified in a request by
supplying the name of the descriptor from the CSD and
a timestamp from the FRO. Summary descriptors are
identified by supplying a cluster identifier and a
timestamp. An exception is the First Reconciliation
Descriptor (FRO) which has no timestamp. Being the
first descriptor always requested, an FRO can be
obtained using cluster identifier only.

Full Download Procedure

Upon startup, clusters utilize the download service to
obtain the descriptors they require to become
operational. Each cluster is provided with a minimum
amount of identification information in order to obtain a
download. This information, provided by hardware and
nonvolatile memory, includes the name and
identification codes of the cluster as well as the
addresses of two devices through which it might
contact a server. Using this information a call is placed
to a download server. Once access to a server is
established, a cluster performs the following steps to
obtain its required descriptors:

1. The cluster obtains its First Reconciliation
Descriptor (FRO) from the server.

2. The Cluster Specific Descriptor (CSD) is
then obtained, requested from the server
using the timestamp identified in the FRO.

3. All shared descriptors are obtained. The
specific shared descriptors to request are
named in the CSD and requested using
these names and the timestamps identified
in the FRO.

4. The cluster obtains component specific
descriptors identified by the CSD,

requested using the timestamps identified
in the CSD.

5. If all required data is obtained successfully,
the cluster begins operating with the
received data.

The above steps simply follow the descriptor
relationships illustrated in Figure C. A cluster uses its
summary descriptor information to request all required
descriptors.

Online Reconciliation Procedure

Download descriptors which have been distributed to
system components may be modified at the NCP using
configuration management functions. Network
components perform data reconciliation to detect such
changes, and obtain up-to-date information. This
reconciliation processing may be triggered periodically,
or upon receipt of change notices. The NCP generates
a change notice whenever download descriptor
information is modified. Change notices are
propagated through ASPs and are received by ASPs
and PSCs. Clusters initiate reconciliation of descriptors
they use whenever they receive any change notice.
Additionally, clusters initiate reconciliation periodically
to determine if any change notices have been missed.
The following summarizes the procedure by which a
cluster reconciles its download descriptors:

1. The cluster obtains its First Reconciliation
Descriptor (FRO) from the server.

2. A comparison is made between this new
FRO and the cluster's local copy of the
FRO.

3. If no difference is detected, the cluster is
considered reconciled and this procedure
terminates.

4. If a difference is detected, then some of the
descriptors currently held by the cluster are
out-of-date. In this case, the cluster is
considered unreconciled and the
procedure continues.

5. The FRO identifies the latest version of the
Cluster Specific Descriptor (CSD). If the
cluster does not hold the latest version, it is
obtained from the server.

6. The cluster evaluates the shared descriptor
timestamps in the FRO, comparing each
with the timestamps in the corresponding
descriptors it currently holds. Where
necessary, up-to-date shared descriptors
are obtained from the server.

337

7. Lastly the cluster evaluates the component
specific data timestamps in the CSD,
comparing each with the timestamp in the
corresponding data it currently holds.
Where necessary, up-to-date component
specific descriptors are obtained from the
server.

In the above steps, a cluster obtains only those
descriptors that have changed since the last time the
cluster reconciled.

Descriptor reconciliation can take place at any time
while a cluster is operational. This process can be
performed without causing the interruption of any other
cluster function. The only possibility for disturbance
occurs when an updated descriptor is installed in a
cluster. Most descriptor updates can happen with no
service interruption. Any disruptions that do occur are
localized as much as possible to minimize any global
cluster effects. For example, a descriptor change
representing an update to the parameters associated
with a specific port will be installed without affecting
any other port. Utilizing reconciliation in this way,
online updates can be accommodated with minimal
service disruption.

Conclusions

This paper has defined the roles and goals of
download and data reconciliation functions in a
distributed communications network. A basic
methodology that can be used to download and
control a large communications network has been
presented. The concepts of descriptor organization,
download service hierarchy, and data reconciliation are
described as the basis of a distributed download
philosophy. These concepts have been used in the
implementation of Hughes Network Systems Integrated
Packet Network product line. Field proven, this
methodology has shown to be workable and effective.
The capability of updating the online components of
the IPN without disrupting or degrading performance of
the system is one of the features that ensures reliability
and maintainability of the system.

Acknowledgments

The IPN download descriptor and data reconciliation
philosophy was developed through the cooperation
and technical contributions of many members of the
technical staff at Hughes Network Systems, Inc. The
efforts of all involved are hereby acknowledged.

[1] Howard A. Seid, "The Ins and Outs of
Managing a Packet Network, " Data
Communications, October 1983, pp. 149-161.

[2] M. J. Golaszewski, P. E. Janssen, and
A. S. Modi, "Decou pled Software Recovery
Concepts in a Distributed Processing
Environment," IEEE Global
Telemcommunications Conference
(GLOBECOM '83), San Diego, California,
November, 1983, Conference Record vol. 2,
pp. 622-625.

[3] Thomas H. Scholl, "Electronic
Communication Handbook on Packet
Switching," McGraw Hill Electronics
Communications Handbook edited by
Andrew F. Inglis, in publication 1987.

338

