
0814 SYSTEM SOFTWARE MANUAL

Revision: 3

CODEX CORPORATION
July, 1981

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS

Section/Title

1. INTRODUCTIONS
1.1 Purpose/Scope •••••••
1.2 Software System Structure
1.3 Document Organization ••••

. . . .
. . .

. . 1

• • • • • 1
• I• • • • 1

2

2. HARDWARE ENVIRONMENT •••••• . . . • • 1

2.1 6000 Mainframe Environment • • • • 1

2.1.1 Component Parts ••
2.1.2 Special Features •
2.1.3 Memory Map •••••

. • . . . •
. 1 3 . . 3

2.2 Intelligent Port Environment • 6

2.2.1 IP PROM •••••••••••
2.2.2 0814 IP Memory Map ••••••• . . . 7

7

3. SOFTWARE SUBSYSTEMS STRUCTURE • 1

4 3.1

3.2

Software Subsystems. • •
3.1.1 Mainframe PROM Subsystem (MFPROMSS} • • 4
3.1.2 IP PROM Subsystem (IPPROMSS} • • • • • 4
3.1.3 Mainframe Software Subsystem (MFSS} • • • • • 4
3.1.4 I/CTP Software Subsystem (ICTPSS) • • • • • • 4
3.1.5 I/NP Software Subsystem (INPSS) • • • • • • • • • • 5
3.1.6 I/SSTP-BSC Software Subsystem (ISSTPSS-BSC) • • • • 5
3.1.7 l/SSTP-HASP Software Subsystem (ISSTPSS-HASP) 6
3.1.8 I/BOP Software Subsystem (IBOPSS) • • • • • • • • • 6
3.1.9 l/MATP Software Subsystem {IMATPSS) • 6
3.1.10 l/MXP Software Subsystem (IMXPSS) • • • • • • • • • • • 7
3.1.11 I/FOP Software Subsystem (IFDPSS} • • • • • • • • • 7
3.1.12 l/DGP Software Subsystem (IDGPSS) • • • • • • • • • 7

Subsystem Interfaces • • • • • • • 8

3.2.1 Program Load Interface • • • • • • • • • • • • • • • • 8
3.2.2 Addressed Packet Interface • • • • • • • 8
3.2.3 High-Speed Data Interface (HSDI) • • • • • • • • • 9

3.3 Bus Interface Chip (BIC} Operation •••• • • 22

3.3.1 BIC Operations from the Controller (Mainframe) Side •• 22
3.3.2 BIC Operations from the Port Side ••••••••••• 23

0814 Software Manual

CODEX CORPORATION

TABLE OF CONTENTS (Cont'd.)

Section/Title

4. FIRMWARE
4.1 0814 Port IPL ROM • • • • • • • • • • • .,. •
4.2 0814 I/FOP IPL PROM • • • • . . .
4.3 Mainframe IPL Module ••••••••••••

Introduction •••
Functional Overview •

COMPANY CONFIDENTIAL

. • • 1

. . . 1 . . . • • . 3 4

. • . . 4
• • • • 5

4.3.0
4.3.1
4.3.2
4.3.3

Operational Overview ••• • • • • • • 7
External Interfaces •••• . . . • 15

4.4 Mainframe ROM Resident Diagnostics • 24

4.4.1
4.4.2
4.4.3
4.4.4

Introduction •• °' •
Diagnostic Routines •••••••
Front Panel Display •••••••
Interface to MIL • • • • • • • • • •

. . . • • . • . • 24 24 . . • 25 . . . • . . • • • 26

5. MAINFRAME MODULES •••••••• 1

1 5.1 0814 Mainframe Operating System
5.1.1
5.1.2
5.1.3
5.1.4

Mainframe Task Control ••
Buffer Management Submodule
Mainframe Utilities ••••
Mainframe Programming •••

• • • • • • • • • • • • 1
Group (MBM} • • • • 9
• • • • • • • • • • • • • • 18

. • • • • 25

5.2 Mainframe Addressed Packet Control Module (MAP) •• 1

1 5.2.1 Overview of MAP Addressed Packet Handling
5.2.2 MAP External Interfaces ••••••••• • • • • • • • 3

5.3 Mainframe Statistics and Monitoring, and Reporting, Module • • 1

5.3.1 Function Description
5.3.2 Message Interface
5.3.3 Collection of Raw Stati sties . .
5.3.4 Configuration Parameters . . . •

5.4 Mainframe Panel Control (MPC) Module

5.4.1
5.4.2
5.4.3
5.4.4

Introduction •••••••••
Panel Modes and Commands ••••
Functional Submodule Description
External Interfaces • • • • • • •

0814 Software Manual

• . • • . • . . . • . • • . • . .
• . . . • • •
.

.

1
2
3
4

1
~

1
1
3
5

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title

5.5 Mainframe System Boot (MSB) Module •••

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

Introduction • • • • • • • • • •
Boot Requests • • • • • • • • • • • •
Boot Synchronization and Arbitration

.

.
Node Restart • • • • • • • • • • • • • •
Examples of Boot Process ••••••

. . .
5.6 Mainframe Path Management, Routing, and Congestion Control

1

1
1
5
7
7

Module (MPMRCCM) • • • • • • • • • • • • • • 1

. 5.6.1 Overview •••••
5.6.2 External Interfaces •

5.7 Mainframe Configuration Manager Module (MCM) •

5.7.1 Hardware and Firmware
5.7.2 General Functional Description . .
5.7.3 Addressed Packet Format
5.7.4 Offline Memory Format . • . .
5.7.5 CMEM Definition
5.7.6 CMEM Map Table
5.7.7 Options RO~ Port Option Table
5.7.8 Summary of Commands • •

5.8 Mainframe Network Link Control Module (MNL)

5.8.1 Functional Specification

5.9 Mainframe Downline Load Module ••

5.9.1 The MDL Algorithm Main Features ••

. .
.

. • . • • •

.

.

.

1
2

1

1
2
3
5

13
15
16
16

1

1

1

1
5.9.2 External Interfaces • • • • •••
5.9.3 MDL Structure •••••••••••

• • • • • • • • • 6
. 8

5.10 Mainframe Initialization Module

5.10.1 MSI Entry Conditions • • • • ••••••
5.10.2 MSI RAM Initialization ••••••••••••
5.10.3 MSI Dynamic Routing System Initialization

1

1
1
2
2 5.10.4 Node Configuration Parameter Initialization

5.10.5 MSI System Boot Module Interface ••••••
5.10.6 Mainframe Panel Control Module Initialization
5.10.7 MSI Scheduled and Batch Task Initialization

• • • 2

5.10.8 MSI Port Initialization • • • • • • •••
5 10.9 MSI Machine Cycle Timing ••••••••••
5.10.10 Boot Complete System Report ••••••
5.10.11 MSI Subroutines • • • • • ••

D814 Software Manual

.

2
2
3
3
3
4

~

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title Page

1 5.11 Multi-Threaded Port Control Module ••••
5.11.1 MMT Port Control Block Interface •
5.11.2 MMT BIC Interface • • • • • • ••
5.11.3 Operational Overview of MMT •••

. 1
2

• • • • • • • • 5

5.12 Mainframe Diagnostics Monitoring and Physical Port
Control Module • • • • • • • • • • •••••• . . . l

5.12.1 Introduction • • • • • • • • • • • • • • • • • 1
5.12.2 Detailed Specification of the Addressed Packet

User Interface • • • • • • • • • • • • • • • • • • 3
5.12.3 MOM Interface with Mainframe Downline Load Module

(MDL) • 8
5.12.4 MOM Reports and System Reports • • • • • • • • 8
5.12.5 MOM Interfaces Used in Providing Software Over

a Link to an Unlocked I/NP • • • • • • • • • • • 9
5.12.6 MOM Local Port Interface ••••••••••••••• 11
5.12.7 Failure Monitoring • • • • • • • • • • • • • • • 13
5.12.8 System Errors • • • • • • • • • • • ••••••• 14

5.13 Mainframe Subsystem Data Structures • 1

5.13.1 Port Directory •••••
5.13.2 Port Control Blocks •••

. 1 . . . 1

6. INTELLIGENT PORT MODULE DEFINITIONS • . • . • 1

6.1 Intelligent Port Operating System 1

6.1.1 Task Scheduler Submodule • • •••
6.1.2 Real-Time Clock Submodule • • • ••
6.1.3 Batch Processing Submodule ••••••
6.1.4 Buffer Management Submodule ••••••
6.1.5 Queue Utility Submodule •••••

• • • • . • • • 2
• • • • • 13

• • • • • • • • 16
• • • • • • • • 17

• . • . . 30
6.1.6 Addressed Packet Handler ••••••••• • 32
6.1.7 Utility Submodule • • • • • • • •• • • • • 36
6.1.8 IPOS Initialization •••••••••••
6.1.9 Light Manipulation Submodule •••••

. • • • . • • 40

6.1.10 Processor Loading Calculation Submodule ••••
6.1.11 IPOS Memory Modification •••
6.1.12 IPOS Software Uploader ••

• • • 40
• 41
• 41
• 43

6.1.13 Background Checker ••• • • • • • • • • • • • • 44

6.2 Configuration Control . . . 1

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title

6.3 Call Manager
6.3.1 Initialize Call Manager Data Structure . .
6.3.2 Call Manager Main Addressed Packet Handler
6.3.3 Call Manager Addressed Packet Handler .
6.3.4 Protocol AP Interface •
6.3.5 Remote Call Manager AP Interface
6.3.6 Path Manager AP Interface • •

6.4 Single-Threaded Data Movement •••••••• . .
6.4.1 BIC FIFO Handler {Module IP$FIF0$) ••
6.4.2 Flow Control and ARQ {Module IP$FLOW) •
6.4.3 Adaptive Data Compression Scheme •••••

6.5 Multi-Threaded Data Movement ••

1

. . . 1
1 2 4 5 . . . 6

1

. . . • 1
• • • • 3

• 19

1

6.5.1 BIC FIFO Handler ••••
6.5.2 Flow Module (IP$MFLOW) 1

1

6.6 Intelligent Control Terminal Port (I/CTP) 1

6.6.1 Output 1
6.6.2 Operator Command Processor 2
6.6.3 Report Control 3
6.6.4 Statistics . . . 4
6.6.5 System Services 5
6.6.6 Protocol . • 7
6.6.7 Device Control 7
6.6.8 Report Formats 8

6.7 Intelligent Floppy Disk Port (I/FOP) 1

6.7.1 I/FOP Data Structures 1
6.7.2 I/FOP File Structures 7
6.7.3 Initialization 40
6.7.4 Protocol Management 41
6.7.5 File Management • . 42
6.7.6 Device Control . . . • . • • 44
6.7.7 Line Control . . • 45

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS {Cont'd.)

Section/Title

6.8 Intelligent Network Port (I/NP) •• • • • • • • • • • • • • • • 1

6.8.1 I/NP Data Structures . • • • • .. . • •
6.8.2 Initialization • • . . • • • . • • • .
6.8.3 Protocol Management . • • . • • • • • •
6.8.4 Device Management Function • • • • • •
6.8.5 Mainframe Interface Function (MIF) • .
6.8.6 Statistics • • . . . • • •
6.8.7 Exceptions Monitoring Function . . • •
6.8.8 I/NP Initialization Sequences • • . • •

6.9 Intelligent Group Band Network Port (I/GBNP) •

6.9.1 Design Considerations •••••••••
6.9.2 I/GBNP Data Structures ••••••••
6.9.3 I/GBNP Main Modules ••••••••••

• . • • . • • .
• • . • . •
• • • •
• • • .
• • • • . . . •
• • . •
• • • •
• • • .

6.10 Intelligent Datagram Port (I/DGP)
6.10.1 Overview • • • • • • • ••••••
6.10.2 Message Manager ••••••••••••
6.10.3 Error Messages ••••••••••••
6.10.4 Statistic Collection •••••••••
6.10.5 Mainframe Interface • • • • ••••

.
•

.
•

•
•

•
•

• . •
• •
• .
• .

• . . • 1 . . . • 3
• • • • 4
• . . • 5
• • • • 7
• . 8
• • • • 9 . • 11

• • • • 1

• • 1
• • • • 2
• • • • 7

• • 1

. . • 1
• • • • 1 . . . • 4

• . 4
• . . • 5

6.11 Intelligent Asynchronous Terminal Port Protocol Software • 1

6.12 Intelligent Synchronous Terminal Port Protocol Software • • • 1

6.13 Intelligent Spoofed Synchronous Terminal Port Protocol
Software (BSC Version) • 1

6.13.1 System Initialization (Submodule ISBSC$INIT) ••••• 2
6.13.2 Communications Interrupt Handling

(Submodule ISBSC$COMM) ••••••••••••••
6.13.3 Network Spoofing Control (Submodule ISBSC$SPOC) ••••
6.13.4 Inbound Protocol Handling (Submodule ISBSC$IBP) ••••

3
6
7
7 6.13.5 Outbound Protocol Handling (ISBSC$0BP) •••••

6.13.6 Call Manager Interface (ISBSC$CMI) ••••••••
6.13.7 Statistics and Monitoring (Submodule ISBSC$STAT)

• • 8
• 10

D814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

TABLE OF CONTENTS (Cont'd.)

Section/Title

6.14 Intelligent Spoofed Synchronous Terminal Port Protocol
Software {HASP Version) ••••••••••••••• • • 1

6.14.1 System Initialization (Submodule ISHSP$INIT) • • • • • 1
6.14.2 Conmunications Interrupt Handling

(Submodule ISHSP$COMM) • • • • • • • • • • • • • • 2
6.14.3 Network Spoofing Control (Submodule ISHSP$SPOC) • • • • 4
6.14.4 Call Manager Interface {ISHSP$CMI) • • • • • • 7
6.14.5 Statistics and Monitoring {ISHSP$STAT) • • • • • • 10

6.15 Intelligent Bit-Oriented-Protocol Terminal Port (I/BOP)
Protocol Module • 1

6.15.1 Introduction • 1
6.15.2 Functional Submodule Description • • • • • • • • • 1
6.15.3 Data Flow and Program Control Flow • • • • • • 8

6.16 Module ITP •••••••••• • • • • • • • 1

• • • • 1
1

6.16.1 Overview and Definition of Terms
6.16.2 Data Structures •••••••••
6.16.3 ITP$ Entry Points •••••••• 2

6.17 Intelligent Multiple Asynchronous Terminal Port
Protocol Software ••••••••••••••• • • • • • 1

6.17.1 System Initialization (Submodule IMATP$INIT) • • • • • 1
6.17.2 Communications Interrupt Handling

(Submodule IMATP$COMM) • • • • • • • • • • • • • • 3
6.17.3 Protocol Handling (Submodules IMATP$IBP & IMATP$0BP) • 5
6.17.4 Call Manager Interface {IMATP$CMI) • • • • 7
6.17.5 Statistics and Monitoring {IMATP$STAT) •••••••• 12

6.18 Intelligent Multiple Synchronous Terminal Port
Protocol Software • • • • • • • • • • • • • • . . . • • 1

6.18.1 System Initialization (Submodule IMSTP$INIT) • • • • • 1
6.18.2 Communications Interrupt Handling

(Submodule IMSTP$COMM) • • • • • • • • • • • • • • • • 3
6.18.3 Protocol Handling (Submodules IMSTP$IBP & IMSTP$0BP). • 5
6.18.4 Call Manager Interface {IMSTP$CMI) • • • • • • • • • • 7
6.18.5 Statistics and Monitoring (IMSTP$STAT) •••••••• 11

6.19 Intelligent Multiplex Port (I/MXP) Protocol Module. • • • • • 1

6.19.1 Introduction ••••••••••••••••••
6.19.2 Functional Submodule Description ••••
6.19.3 Overview of Data Flow and Program Control Flow

D814 Software Manual

• • • 1
• • 2

• 13

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

1. INTRODUCTION

1.1 Purpose/Scope

This document describes the D814 software system. Its purpose is to
identify all the elements of the software system, to describe their func
tion, and to define the interfaces/relationships between the elements.

1.2 Software System Structure

The 0814 software system is structured into several hierarchial levels.
The names and definitions of these levels are given below. The D814 system
software will be described in terms of these structural levels.

D814 System Software: All software which resides in the D814 product.

Subsystem: A unique co 11 ecti on of software which resides in one pl ace.
Subsystems are made up of modules. The Mainframe software and the I/NP
software are examples of subsystems.

Module: A unique collection of software which performs a single func
tion and resides in one pl ace. Madu l es may be used in more than one
subsystem. The configuration control software and IPOS are examples of
modules.

Submodule: A unique collection of software which performs a logical
sub-division of a single system function and resides in one place. The
IPOS queue utility and the BIC FIFO control software are examples of
submodules.

Routine: A collection of instructions to perform a single operation.
Routines have inputs, perform operations, and give outputs. The IPOS
enqueue routine and the addressed packet router are examples of rou
tines.

System Data Structure: A data structure conman throughout the D814 sys
tem software. The addressed· packet format is a data structure at this
l eve 1.

Subsystem Data Structure: A data structure common to several modules in
a subsystem.

Module Data Structure: A data structure common to several routines in a
module.

Rev. 1 D814 System Software Manual
Section 1 - 1

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

1.3 Document Organization

An overview of this document 1 s organization and content is given below:

Section£: 0814 Hardware Summary

This section describes the basic elements of the 0814 hardware. Its
intent is to fami 1 iari ze the reader with the D814 hardware so that he can
better understand the environment the software runs in.

Section 3: Software Subsystem Structure

In this section, the D814 system is broken down into its component sub
systems. System data structures, subsystem functions, and interfaces
between subsystems are defined.

Section 4: Firmware

The PROM 1 s contained in the D814 are defined.

Section 5: Mainframe Module Definitions

Each mainframe software module is defined as to its general algorithms,
data structures, and external interfaces.

Section 6: Intelligent Port Module Definitions

Each IP software module is defined as to its general algorithms, data
structures, and external interfaces.

Rev. 1 0814 System Software Manual
Section 1 - 2

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

2. HARDWARE ENVIRONMENT

2.1 6000 Mainframe Environment

The fundamental hardware elements of a D814 node consist of a modular
interconnection of mainframe, power supply, display and control panel, and
port nest. Up to 96K bytes of memory can be included, in increments of 16K.
A port nest contains the intelligent nest interface card (I/NIC) and some
customer designated mix of intelligent network and terminal ports.

2.1.1 Component Parts

Microprocessor

The D814 is a general purpose data convnuni cations multi -processor com
puter configured around the Motorola M6800 Microprocessor. Since the M6800
has no explicit I/0 instructions, additional logic has been constructed to
augment the basic instruction set, facilitate a multi processor shared memory
environment, and provide bootstrap, control panel primitives, and control
interrupts.

Mainframe Modules

The mainframe system is organized around a common bus system with modular
subsystems attached to it. System configurations differ principally by the
numbers and types of these modules, as we 11 as in the port nest modules and
system software.

Master Controller

This module contains the system master clocks and memory refresh logic;
the necessary bus and interrupt arbitration logic to enable other modules to
use the bus system; and the master I/0 logic for the bus to the port nests,
which are driven by this module. The Master Controller occupies two logic
cards and is organized around an Intel 3000 series microcontroller.

Some primitives implemented b.y the Master Controller are:

Rev. 2

Read Processor Status
Read Panel Keys
Fork a Task
Terminate a Task
Interrupt Enable/Disable
Control Processor
Read Off-Line (Configuration) Memory

D814 System Software Manual
Section 2 - 1

Rev. 2

CODEX CORPORATION

Write Off-Line (Configuration) Memory
Test Port
Create Port Request
Read Option PROM (Node Chip)

Processor Card

COMPANY CONFIDENTIAL

This module contains a Motorola M6800 Microprocessor, associated bus
access and interrupt logic, and a small amount of local ROM.

RAM Memory

This module contains 16K x 8 bits of semi conductor memory for program,
data and buff er stores for the system.

Option Card

This module is used to contain hardware associated with certain options
and various system memories. Two such functions on the options card are:

1. Control panel logic
2. Memory for storing. the network and terminal configuration informa

tion
3. Options PROM (Node Chip)

Customer Configuration/Reconfiguration

The information necessary to specify a customer's initial 0814 system
consists of configuration data, standard software, and software to support
customer purchased options. These three types of information are stored in
non-destructive (battery backup power) memory.

Configuration Memory

The configuration memory contains the data necessary to specify the 0814
as it is configured for the customer. This data includes such information as
number of ports, port types and characteristics, routing parameters, default
parameters for threshold monitoring, etc. Whenever the 0814 is boot-loaded
and brought on-line, its software will use the data in the configuration
memory to configure the system.

Rev. 2 0814 System Software Manual
Section 2 - 2

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Port Nest Modules

The port nest is driven by an 1/0 bus cable from the mainframe. It, in
turn, via the Intelligent Nest Interface Card (I/NIC), redrives the 1/0 bus
to the next port nest, if any. In later versions of the D814, the port nest
may be interfaced to two mainframes by a Dual Mainframe Interface Card (DMIC)
for back-up redundancy use.

Front Panel

The front panel consists of a data entry keyboard, a self-scan display,
an array of processor status indicator lights, and a key switch.

2.1.2 Special Features

Hardware Data Spaces

Each software task in the 6000 is given an area of memory, known as its
data space, which is mapped into locations X'OOOO' through X'OOlF'. These
data spaces are assigned by the master cont roll er, which maintains the base
registers pointing to the data spaces for the various tasks. There are a
maximum of 64 data spaces. The memory mapped into the data space is actual
RAM memory and may be accessed directly if the proper base address is known.

Lock Bytes

The 6000 has an area of memory between X 1 400 1 and X '4FF 1 which is known
as the lock byte area. This area is special memory which clears to zero when
it is read. The purpose of the lock byte area is to synchronize tasks in dif
ferent processors. One processor reads the lock byte. If the contents are
non-zero, it has obtained the resource it is requesting. If the contents are
zero, it must wait. When it is through with the resource, it writes some
non-zero value into the lock byte to release the resource.

2.1.3 Memory Map

The following is a definition of the address space allocation for soft
ware in the D814 mainframe. The mainframe has an address space of 96K bytes.
This includes 32K of high bank memory addressable as locations X1 8000 1 -

X' FFFF' when the high bank has been activated and 32K of low bank memory
addressable as locations X1 8000 1 -X 1 FFFF 1 when the low bank is active. On sys
tem power-up and during downline load the low memory bank is active. After
downline load and during normal system operation the high bank is active and
the low bank is unused. The 6000 mainframe includes a bank switch which will
a 11 ow addresses X' 8000' through X 'FFFF' to refer to either of the two 32K
memory segments.

Rev. 2 D814 System Software Manual
Section 2 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

-a
I

lF
---w-

1
2F
~

7F
-so

I
FE

--rF"

-mo
I

11F
!20

I
lFF
200

3F~
400

I
7FF

800

I
8FF
900

I
3FFF
400IT

I
7FFF

Rev. 2

Start of RAM memory
Data space

I
v

Local Storage - Memory mapped to one of up to eight 16-byte local
storage areas fron X1 0 1 to X1 7F 1 in physical RAM. Each processor
has ·its own dedicated local storage.

I v
'Trigger' addresses for Master Controller commands - Mapped to
locations in Local Storage and used to activate Master Controller
functions

I v
Page 0 (defined in file OF$>PGO)
System parameters and scratch storage for mainframe modules

I v
Level Request Flags - Each bit corresponds to a priority level and,
if set, implies some hardware device needs service or some software
task is pending at that level

Self-scan message area
I
v

System Area
More system parameters and scratch area

I v
Table of Port Control Block (PCB) addresses

i
Lock bytes

I
v

Level Queue Area

I
v

Volatile Memory - Data spaces, dynamic buffers, and memory
allocated at system initialization time

I
v

6000 Program Code - Continues in high bank memory
I v

D814 System Software Manual
Section 2 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Start of HIGH BANK RAM memory
8000 Continuation of system executable code

I J
MISC$CODEND:HERE-l Address of last byte of 6000 program code
MISC$CODEND:HERE

I Volatile Memory - Dynamic buffers and fixed-size data
for system modules

I I
FFF7 V
FFF8 Interrupt vectors

I I
FFFF V

End of high bank memory

structures

1rnW
I

FFF7

Start of LOW BANK ROM memory
IPL code, downline load bootstrap code, and debugger, all in ROM

fF1.'8
I

FFFF

Rev. 2

I v
Interrupt vectors

I v
End of low bank memory

0814 System Software Manual
Section 2 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

2.2 Intelligent Port Environment

The Intelligent Port (IP) is a microprocessor based I/O or peripheral
driver for the 0814 system.

Internally, it consists of a bus interconnecting the following hardware
elements:

1. A microprocessor
2. RAM memory
3. PROM memory
4. A real time clock
5. 2 Bus Interface Chips (BIG)
6. Communications or floppy disk controller chips
7. A map register
8. An auxiliary control signal register, if present
9. A checksum calculation chip, if present

The BIG is the IP's interface to the 0814 mainframe and the communica
tions of fl,oppy disk controller chip is its interface to the I/0 device or
peripheral. The port as a whole will be divided into 2 sections: an engine
(composed of the microprocessor, RAM, PROM, map register, BIC's, and real
time clock), and the card which makes each port the specific type of communi
cations device that it is, which is called the Comm card. The Comm card con
tains the communications chip or device controller, as well as any support
circuitry needed, such as Auxiliary Control Signal register, checksum (BCC)
calculator, etc. BIC #0 is used for IPL and addressed packets; BIC #1 is
used as a data path by TPs and NPs.

Nest
Bus

I
BIC

BIC

1£"ng1ne}

RAM uP

J_
I ROM MAP RTC
I

--rc-omm}

I ACS
I

BCC

COM
or

FOC

Terminal
or
Peripheral

The mainframe is capable of deactivating, activating, and resetting an IP
by sending commands to BIC #0. The reset indicates the type of reset to be
performed, so that the IP can perform a predefined function.

Rev. 2 0814 System Software Manual
Section 2 - 6

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Programs that execute in the IP are loaded from the mainframe via BIC #0.
The loading is initiated by using one of the resets listed below.

2.2.1 IP PROM

There are 4 types of resets on the IP, each type causes one of several
PROM based routines to be executed. These are descnibed in detail in Section
4.

The PROM in the IP will contain the following routines:

1. On Reset O (power-up or nest reset):

a. Run diagnostic routines
b. Go to debugger if present
c. Set port bit and turn off diagnostic LED

2. On Reset 1:

a. Size RAM
b. Output Port-ID, RAM size and Processor-ID to BIC
c. Go to IP Program Load

3. On Reset 2:

a. Enter BIC loopback test

4. On Reset 3:

a. Return failure information.

2.2.2 D814 IP Memory Map

The fo 11 owing is a definition of the standard address space a 11 ocat ion
for IP programs in the D814 system. All addresses are in Hex. XXXX, YYYY,
and ZZZZ are variable depending on the software and hardware requirements for
the particular IP. For a 11 currently planned IPs, ZZZZ wi 11 be 3FFF, 7FFF,
or BFFF.

Rev. 2 D814 System Software Manual
Section 2 - 7

Rev. 2.

CODEX CORPORATION COMPANY CONFIDENTIAL

-ir
I v
F

-m
I v

FF
100

I v
3FF
400
401

402"
403
404
405
406
407

4trn'

v
XXXX-1
xxxx

I v
YYYY-1
WIT

I v
ZZZZ-1
zzzz
~

I
v

CFFF
DOOO

I
v

DFFF
EOOO

I v
EFFF

Rev. 2

Start of RAM memory
Mapped Area

I
v

Page Zero Variables

I v
Volatile Memory

I v
Program Checksum (Range X'402' to XXXX-1)

Program ID

Program Revision Number

Address of the end of program executable code (XXXX-1)

Entry Point of Program
I

Program Code

I v
Program Permanent Storage (IP$CODEND:HERE)

I v
Program Buffers

I v
Last byte of RAM (reserved by system)
4K Empty or External Diagnostics

I v
4K Empty or Peripheral Diagnostics ROM

I v
4K Diagnostic ROM AND M6800 Vectors

I
v

D814 System Software Manual
Section 2 - 8

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

FOOO
I
v

FEFF
f"F'm)

I
v

FFDF
FFEO

I
v

FFEF
F'FFO

I
v

FFFF

Rev. 2

3.75K Empty or Debugger or External Diagnostics ROM
(if Debugger, scratchpad RAM from FE7F to FEFF

~
224 byte Remote I/0

I
v

16 byte Engine I/0

I
v

16 byte ROM Vectors (mapped to EFFO to EFFF)

0814 System Software Manual
Section 2 - 9

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

3. SOFTWARE SUBSYSTEMS STRUCTURE

The D814 functions as a node in data conmunications network. As can be
seen from Section 2, the D814 hardware is architected as a mainframe {cen
tral processing element), controlling a hierarchical I/0 bus, and up to 127
intelligent ports {satellite processors) which interface to the I/0 bus. All
external devices and conmunications lines connect to the D814 via interfaces
on the intelligent ports. The D814 software is structured around this hard
ware architecture.

As mentioned in the introduction, the software system is structured at
its highest level by subsystems, subsystem interfaces, and global system data
structures. The D814 system consists of PROM subsystems, a Mainframe {MF)
software subsystem and a number of intelligent port {IP) software subsystems.
Only one IP subsystem exists per physical intelligent port. The intelligent
port subsystems can be divided into five basic classes:

*

*

*

*

*

Control Port Subsystems

1. Intelligent Control Terminal Port (ICTP)
2. Intelligent Floppy Disk Controller {IFDC)

Network Link Subsystems

1. Intelligent Network Port (INP)
2. Intelligent Group Band Network Port {IGBNP)

Single Threaded Communications Port Subsystems

1. Intelligent Spoofed Synchronous Terminal Port - 2780/3780 BSC
version {ISSTP-BSC)

2. Intelligent Bit Oriented Protocol Port (IBOP)

Multi Threaded Communications Port Subsystems

1. Intelligent Multichannel Synchronous Terminal Port {IMSTP)
2. Intelligent Multichannel Asynchronous Terminal Port {IMATP)
3. Intelligent Mux Protocol Port {IMXP)

Message Conmunications Port Subsystems

1. Intelligent Data Gram Port {IDGP)

Figure 4-1 illustrates the relationship between the mainframe software
subsystem and a 11 i nte 11 i gent port software subsystems. Note that there is
no direct interTa"ce between IP subsystems; all intercommunications between IP
subsystems must be routed through the MF subsystem.

Rev. 2 D814 System Software Manual
Section 3 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The purpose of the PROM subsystems is to 1 oad the appropriate opera
tional software subsystem into RAM for execution in the mainframe and IPs.

Rev. 2

Mainframe
Software
System

I Mainframe
PROM

Subsystem

I

0814 SUBSYSTEM RELATIONSHIPS

IP I Software
Subsxstem I

IP
Software

Subsxstem
: . .
:
: . .
: . .
:
IP

Software
Subsxstem

Figure 3-1

0814 System Software Manual
Section 3 - 2

IP
PROM

Subsxstem

IP
PROM

Subsxstem

IP
PROM

Subsxstem

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The interface between the MF software subsystem and each IP software sub
system physically consists of the 0814 master controller, the hierarchical
I/0 bus, and the !P's BIC(s). Each IP must have a BIC#O, and may have a
BIC#l depending on the type of IP it is.

!P's operate in one of three modes:

1. Diagnostic Mode
2. Program Load Mode
3. Normal Mode

In diagnostic mode, the IP is under control of its internal PROM and per
forms BIC l oopbacks for di agnosabi l ity of IP function from the MF software
subsystem. In program load mode, the IP is also under control of its intern
al PROM. In this mode the IP will load a software subsystem from the MF into
its onboard RAM via BIC#O. On command from the MF, the IP will leave program
load mode and enter normal mode by starting execution of the loaded software
subsystem.

When an IP is running a 0814 software subsystem in normal mode, BIC#O is
used to support an addressed packet interface between the MF software subsys
tem and the IP software subsystem. BIC#l is required only for the foll owing
IP subsystem classes: network link subsystems, single threaded communica
tions port subsystems, and multithreaded conununications port subsystems. For
each of these subsystem cl asses, BIC#l is used to support a high speed data
interface between the IP software subsystem and the MF software subsystem.

Rev. 2 0814 System Software Manual
Section 3 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.1 Software Subsystems

3.1.1 Mainframe PROM Subsystem (MFPROMSS)

The MFPROMSS resides on a PROM card in the D814 mainframe. Its function
is to load the mainframe RAM with the mainframe software subsystem which is
the operational software for the D814 mainframe. The MFPROMSS gets this
software from a local floppy disk or via an I/NP from an adjacent node. This
subsystem is detailed in Section 4.1.

3.1.2 IP PROM Subsystem (IPPROMSS)

The IPPROMSS resides in a PROM chip on all IP's. It is activated when
ever the D814 ·mainframe issues an IP master reset to the IP. Its basic.
function is to load IP software subsystems into IP RAM for execution. For
all IP's except the I/FDC, software is loaded from the mainframe via BIC#O.
For the I/FDC, a bootstrap program is loaded from the mainframe and the I/FDC
loads its software subsystem directly from the disk. This subsystem is
detailed in Section 4.2 and 4.3.

3.1.3 Mainframe Software Subsystem (MFSS)

The MFSS consists of a number of software modules. The mainframe is the
central controller for a D814 node. It performs the following functions:

1. Addressed Packet Control
2. Statistics and Monitoring
3. Configuration Control
4. Node Path, Routing, and Congestion Control
5. IP Program Load Control
6. Network Link Frame Assembly and Disassembly
7. Multithreaded Port Frame Assembly and Disassembly
8. Network Boot Control
9. Down Line Loading of Adjacent Nodes
10. Front Panel Control
11. Node Level System Service Support

3.1.4 I/CTP Software Subsystem (ICTPSS)

The ICTPSS runs on an I/CTP module which consists of a 48K IP engine card
and a Control Terminal Card (CTC). The subsystem is loaded to the I/CTP from
the mainframe using the IPPROMSS resident on the IP engine card.

The I/CTP running the ICTPSS implements the man-machine interface between
the D814 operator and the D814 network. A CRT is the primary human interface
and an optional printer using asynchronous RS232 protocol can be used to log
hardcopy reports. The I/CTP provides the following functions:

Rev. 2

~

0814 System Software Manual
Section 3 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

1. Network Configuration Control
2. Network Report Monitoring
3. Network Statistics Collection
4. System Service Control Point
5. Inter-operator Communications
6. Device Control via RS232 Interface

3.1.5 I/NP Software Subsystem (INPSS)

The INPSS runs on the I/BIT module (card) with 48K of RAM. The software
is loaded to the IP from the mainframe using the IPPROMSS resident on the
I/BIT card.

The I/BIT module running the INPSS implements the low speed (<19.2K bps)
network link functions for the 0814. This function includes:

1. Link Initialization.

2. Receiving internal network link frame from 0814 MF and sending them
over the network link.

3. Receiving external network link frames from the network link and
sending them to the 0814 MF.

4. Managing the network link ARQ protocol.

5. Measuring and reporting statistics about the communications link
performance and loading characteristics.

6. Responding to system service commands.

3.1.6 I/SSTP-BSC Software Subsystem (ISSTPSS-BSC)

The ISSTPSS-BSC runs on the I/BYTE module (card) with 48K of RAM. It is
loaded to the IP from the 0814 mainframe using the IPPROMSS resident on the
I/BYTE card.

The I/BYTE module executing the ISSTPSS-BSC implements the RS232 synchro
nous communications interface function for the Bi nary Synchronous Communi ca
tions protocol for one COMM line on the 0814. This function includes:

1. Receiving/transmitting data via RS232 interface.
2. Monitoring/driving control signal lines.
3. Call management.
4. Flow control.
5. Adaptive data compression.
6. Throughput enhancement via BSC protocol intervention.
7. Configuration management for interface.
8. Measuring and reporting COMM line statistics.
9. Responding to system service commands.

Rev. 2 0814 System Software Manual
Section 3 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.1.7 I/SSTP-HASP Software Subsystem (ISSTPSS-HASP)

The ISSTPSS-HASP runs on the I/BYTE module (card) with at least 48K of
RAM. It is loaded to the IP from the 0814 mainframe using the IPPROMSS
resident on the I/BYTE card.

The I/BYTE module executing the ISSTPSS-HASP implements the RS232 synch
ronous communications interface function for the HASP protocol for one COMM
line on the 0814. This function includes:

1. Receiving/transmitting data via RS232 interface.
2. Monitoring/driving control signal lines.
3. Call management.
4. Flow control.
5. Adaptive data compression.
6. Throughput enhancement via HASP protocol intervention.
7. Configuration management for interface.
8. Measuring and reporting COMM line statistics.
9. Responding to system service commands.

3.1.8 I/BOP Software Subsystem (IBOPSS)

The IBOPSS runs on the I/BIT module (card) with 16K of RAM. It is loaded
to the IP from the 0814 mainframe using the IPPROMSS resident on the I/BIT
card.

The I/BIT module executing the IBOPSS implements the RS232 synchronous
bit oriented communications interface function for one COMM line on the 0814.
This function includes:

1. Receiving/transmitting data via RS232 interface.
2. Monitoring/driving control signal lines.
3. Call management.
4. Flow control.
5. Adaptive data compression.
6. Configuration management for interface.
7. Measuring and reporting COMM line statistics.
8. Responding to system service commands.

3.1.9 I/MATP Software Subsystem (IMATPSS)

The IMATPSS runs on a 48K byte I/ENG card and supports up to 4 QBYTE
cards to interface up to 16 asynchronous RS232 devices to a 0814. It is
loaded to the IP.

The IMATPSS executing on an I/ENG card implements a multi-channel asyn
chronous interface function for the 0814.

Rev. 2 0814 System Software Manual
Section 3 - 6

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.1.10 I/MXP Software Subsystem (IMXPSS)

The IMXPSS runs on a 48K I/BIT card and supports one Codex "Mux Port" in
terface as defined in the Codex Multiplex Protocol Specification; as well as
the Codex Single Line Interface as defined in the Codex SLI Functional Inter
face Specification. Communication is bit synchronous via RS232 interface.

The IMXPSS executing on the I/BIT implements a multi-channel synchronous
interface function for the 0814. This function includes communications with
Codex 6010, 6030, and 6040 products as well as Codex FEP's.

3.1.11 I/FOP Software Subsystem (IFDPSS)

The IFDPSS runs on a 48K I/ENG and a Floppy Disk Controller card (FDC).
The subsystem is 1 oaded to the I/FOP from an attached floppy disk drive on
command from the mainframe via BIC #0. The mainframe accomplishes this by
loading a jump instruction in normal load format (see Section 3.2.1). This
jump instruction transfers control to a ROM on the FDC card which loads the
correct software from a specified drive into the I/FOP RAM memory. For
further details see Section 4.3.

The I /FDP running the I FDCSS implements the 0814 disk fi 1 e system and
file system AP protocol. A single I/FOP may control up to 4 disk drives.
The l/FDP provides the following functions:

1. File management.
2. File system protocol control.
3. Disk control.
4. Statistics and monitoring.
5. Configuration management for disk interface.

3.1.12 I/DGP Software Subsystem (IDGPSS)

The IDGPSS runs on an I/CTP module which consists of a 48K I/ENG card and
a Control Terminal Card (CTC). The subsystem is loaded to the I/DGP from the
mainframe using the IPPROMSS resident on the I/ENG.

The l/DGP running the IDGPSS implements the "datagram" function and the
man-machine interface necessary to implement it. A CRT is the primary human
interface and an optional printer using asynchronous RS232 protocol can be
used to log hardcopy listings of messages. The I/DGP provides the follow
ing functions:

1. Inter-operator communications.
2. Statistics and monitoring.
3. Device control via RS232 interface.

Rev. 2 0814 System Software Manual
Section 3 - 7

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.2 Subsystem Interfaces

0814 software subsystem interfaces fall into three categories:

1. Program Load
2. Address Packets
3. High Speed Data Streams

3.2.1 Program Load Interface

The program load interface is used for two functions. First, it is used
to load IP software from the mainframe into an IP. Secondly, it is used to
load the mainframe when a downline load of the mainframe is done.

BIC #0 is always used for the program load interface. The format of ~he
program load data is as follows:

Load Header:

Data:

Bytes 0 - 1: Start address (0 if not last load block)
Bytes 2 - 3: Load address
Bytes 4 - 5: Byte count of load block including header.

Bytes 6 - n: Object code in binary.

Checksum:

Bytes n+l - n+2: 16 bit end-around carry checksum of load block
including header.

It is up to the sending device to block the data into this format.

3.2.2 Addressed Packet Interface
•

Addressed Packets (APs) are - the primary method of command and control
within the 0814. They provide a flexible method of communicating informa
tion between any two modules in a 0814 network.

BIC #0 is used for the AP interface after the program load function is
complete. The format of an AP is as follows:

Rev. 2 0814 System Software Manual
Section 3 - 8

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Byte

0
1
2
3
4
5
6

7-n

Contents

Total length of packet in bytes
Packet Destination Node Number
Packet Destination Port Number
Packet Destination Module Number
Packet Source Node Number
Packet Source Port Number
Packet Source Module Number
Packet Data

In bytes 2 and 5, port zero is the mainframe at the specified node. In
byte 1, if the high order bit (X 1 80 1) is set, the packet has experienced an
error condition and is being returned to the sender (source and destination
having been interchanged). When an error is flagged, a byte containing an
error code is appended to the end of the packet and the byte count (byte 0)
is incremented by one.

3.2.3 High Speed Data Interface (HSDI)

The high speed data interface is used for transferring "user data"
between IP 1 s and the D814 mainframe for single-threaded, multi-threaded, and
network link communications subsystems. There are three basic data formats
used, one for each class of communications subsystem. BIG #1 is always used
for this interface.

3.2.3.1 Single Threaded High Speed Data Interface (STHSDI)

The STHSDI is stream oriented and passes data in 4-bit "chunks" called
nibbles. Nibbles are segments of encoded user data. Si nee the BIG is byte
oriented transfers across the BIG may be packed. The following coding of the
STHSDI is the system standard.

X1 00 1 Not allowed.
X1 0a 1 Single nibble (a rO)
X1 ab 1 Two nibbles (a through b, arOrb)
X1 b0 1 System In-channel-signal (brO)

Note that a nibble may not take the value O (zero). This is a conse
quence of the in-channel-signal (ICS) scheme used in the D814. ICS's are
used for system control of virtual channe 1 s (paths). They are not coded and
can be interpreted by any entity which processes a data stream. Their de
tailed use will be explained in later sections of this document.

Rev. 2 D814 System Software Manual
Section 3 - 9

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.2.3.2 Multi Threaded High Speed Data Interface {MTHSDI)

The MTHSDI is a multiplexed stream of STHSDI data.
multiple single threaded data streams through one BIC
multi-threaded terminal port. The following format is
data:

It is used to send
to interface with a
used for the MTHSDI

Slot

• • • A IMfEdsl d I d I d I ••• I a I A IMTEdsl a I a I

The data stream is composed of a series of 11 slots 11 each of which contains
address and data for one single-threaded data stream. Each slot begins with
an A (address) field containing the thread number used by the port to identi
fy the single-threaded data stream. Dot data follows the A field and is in
the same format ,as the STHSDI. Each slot is terminated by a special Multi
threaded End-of-Slot (MTEOS) ICS, defined as X1 F0 1 , which is not allowed to
occur in the STHSDI format.

3.2.3.3 Network Link High Speed Data Interface (NLHSDI)

The NLHSDI is a multiplexed stream interface standard for sending multi
ple single threaded data streams, addressed packets, and control messages to
an I/NP for transmission over a network link. Network link transmission uses
a frame {block) based HDLC-like protocol. The NLHSDI is also frame based
with three possible frame types as follows:

1. Data Frame
2. Address Packet Frame
3. Control Message Frame

All NLHSDI frames have a common general format:

. I EOF ~ Frame Data I FTI I EOT I • • • >

Each frame begins with a 11 Frame-Type-Identifier 11 :

FTI

X1 40 1

x•ao•
X'CO'

Frame Type

Data Frame
Addressed Packet Frame
Control Message Frame

The EOF character for all NLHSDI frame types is X1 0l 1 •

Rev •. 2 D814 System Software Manual
Section 3 - 10

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.2.3.3.1 Data Frame Format

The NLHSDI format for data frames is as follows:

1x•o1j1ros1a1 a 1 a IAl···I EOS I a I a
Slot N •••

--EOF
Slot 1

d 1AIX'80i1X'Ol' I ... >

'-> EOF --> FTI = Data
Prev. Frame
Frame

Slot Format:

• • • 1 A 1 Els 1 d 1 d 1 d 1 A 1 ETs >
Data I ---End-of-Slot !CS

--End-of-Slot -------Slot Address (2<A<255)

Each slot is address and data for one single threaded data stream. The
format of the data segment of each s 1 ot is the same as the STHSD I. Three
11 End-of-Sl ot 11 {EOS) ICSs are defined for network 1 ink data streams. They
are:

X'FO' =End slot normal
X'EO' = End slot & kill channel {Failure)
X'DO' = End slot switch channel

It should be noted that the MTEOS used
used in the NLHSD I have the same va 1 ue.
neither the MTEOS nor the normal EOS is
format.

in the MTHSDI and the normal EOS
This causes no confusion since
allowed to occur in the STHSDI

Slot addresses may not have the values 0 and 1. Therefore, the EOF value
of X 1 01' after the 1 ast s 1 ot cannot be confused with the beginning of a new
slot.

3.2.3.3.2 Addressed Packet Frame Format

The NLHSDI format for Addressed Packet Frames is as follows:

n •••

Addressed Packet ••• Addressed Packet

--> EOF

Rev. 2

n 1

0814 System Software Manual
Section 3 - 11

•••• >

-> EOF Previous
Frame

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The addressed packet format is as described in 4.2.2. Note that L = AP
length = 1 is illegal for an AP and thus is a valid EOF character.

3.2.3.3.3 Control Message Frame Format

The NLHSDI format for Control Message Frames is identical to the format
for Addressed Packet Frames. Each control message must be greater than two
so the EOF = X'Ol' is still valid. Control messages are special node-to
node messages that are handled at high priority. Their detailed use and
format will be explained later in the section on the MFSS data structures.

Rev. 2 0814 System Software Manual
Section 3 - 12

Rev. 2

CODEX CORPORATION

Rev. 2

MAINFRAME SUBSYSTEM

MAINFRAME OPERATING SYSTEM

ADDRESSED PACKET CONTROL

STATISTICS, MONITORING AND REPORTING

FRONT PANEL CONTROL

CONFIGURATION MANAGEMENT

SYSTEM BOOT CONTROL

PATH, ROUTING AND CONGESTION MANAGEMENT

NETWORK LINK CONTROL

DOWNLINE LOAD

INITIALIZATION

MULTI-THREADED PORT CONTROL

SYSTEM SERVICE SUPPORT

D814 System Software Manual
Section 3 - 13

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION

Rev. 2

COMPANY CONFIDENTIAL

I/CTP SUBSYSTEM

IPOS

CONFIGURATION CONTROL

REPORT CONTROL I/CTP

STATISTICS CONTROL I/CTP

OPERATOR COMMAND PROCESSOR I/CTP

SYSTEM SERVICE MONITOR I/CTP

DEVICE CONTROL l/CTP

D814 System Software Manual
Section 3 - 14

Rev. 2

CODEX CORPORATION

Rev. 2

COMPANY CONFIDENTIAL

I/NP SUBSYSTEM

IP S

CONFIGURATION CONTROL

MAINFRAME BIC INTERFACE & PROTOCOL I/NP

NETWORK LINK PROTOCOL & DEVICE CONTROL I/NP

0814 System Software Manual
Section 3 - 15

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/MSTP SUBSYSTEM

IPOS

CONFIGURATION CONTROL

CALL MANAGEMENT

DATA MOVEMENT MULTI

PROTOCOL AND DEVICE CONTROL I/MSTP

_______ I·

Rev. 2 D814 System Software Manual
Section 3 - 16

Rev. 2

CODEX CORPORATION

Rev. 2

COMPANY CONFIDENTIAL

I/SSTP-BSC SUBSYSTEM

IP S

CONFIGURATION CONTROL

CALL MANAGEMENT

DATA MOVEMENT SINGLE

PROTOCOL AND DEVICE CONTROL l/SSTP-BSC I I

0814 System Software Manual
Section 3 - 17

Rev. 2

CODEX CORPORATION

Rev. 2

I/BOP SUBSYSTEM

IPos·

CONFIGURATION CONTROL

CALL MANAGEMENT

DATA MOVEMENT

PROTOCOL AND DEVICE CONTROL

0814 System Software Manual
Section 3 - 18

COMPANY CONFIDENTIAL

SINGLE

I/BOP

Rev. 2

CODEX CORPORATION

Rev. 2

l/MATP SUBSYSTEM

CONFIGURATION CONTROL

CALL MANAGEMENT

DATA MOVEMENT

PROTOCOL AND DEVICE CONTROL

\

D814 System Software Manual
Section 3 - 19

COMPANY CONFIDENTIAL

MULTI

l/MATP

Rev, 2

CODEX CORPORATION

Rev. 2

COMPANY CONFIDENTIAL

I/MXP SUBSYSTEM

s

CONFIGURATION CONTROL

CALL MANAGEMENT

DATA MOVEMENT MULTI

PROTOCOL AND DEVICE CONTROL I/MXP

D814 System Software Manual
Section 3 - 20

Rev. 2

CODEX CORPORATION

Rev. 2

COMPANY CONFIDENTIAL

I/FOP SUBSYSTEM

IPOS

CONFIGURATION CONTROL

FILE MANAGEMENT I/FOP

PROTOCOL & ARQ I/FOP

DEVICE CONTROL Disk

0814 System Software Manual
Section 3 - 21

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.3 Bus Interface Chip (BIC) Operation

The Bus Interface Chip (BIC) is used to interface the mainframe nest bus
to the individual I/Ps in the nest(s). A detailed hardware description of
the BIC may be found in the 0814 Hardware System Specification. The design
of the software operating the BICs from the mainframe (controller) side may
be found in Sections 5.2, 5.8, and 5.11 of this document and in Sections
6.1.6, 6.4, and 6.5 from the port side. The specifics of the detailed design
of the BIC operating code may be found in the detailed design specs for the
modules described in the sections noted above.

3.3.1 BIC Operations from the Controller (Mainframe) Side

This subsection provides a broad overview of the mainframe side of the
Bus Interface Chip (BIC). The data formats used for addressed packet and
data transmission over the BIC have already been described.

3.3.1.1 BIC Packet FIFO

All I/Ps have a BIC number O. This BIC is used for both downline loading
of operating and diagnostic software and addressed packet communication
between the port and the mainframe (see subsection on Mainframe Addressed
Packet (MAP) Module).

The data format for down l i ne 1 oad data is described in Section 3. 2 .1.
Interrupts are not used when downline loading, and the load block described
there is loaded directly into the outbound FIFO without using any coding for
zero bytes.

The data format for addressed packets is also described in Section 3.2.2.
The BIC #0 FIFOs (called the packet FIFOs) are used to transmit packets in
segments small enough to fit entirely in the FIFO. The reader's and sender's
flags are used to ensure that a segment is not read until it has been com
pletely loaded. In other words, reading and writing of addressed packet
segments (unlike user data in BIC #1) is strictly synchronous. This is all
described in detail in the subsection on the Mainframe Addressed Packet (MAP)
Module.

After downl ine load the mainframe packet FIFO control registers are set
to generate service segments only when the port 1 s sender 1 s or reader 1 s flag
is set, and the addressed packet logic is interrupt driven (see subsection on
MAP).

Rev. 2
I

0814 System Software Manual Rev. 2
Section 3 - 22

CODEX CORPORATION COMPANY CONFIDENTIAL

3.3.1.2 BIG Data FIFO

BIG #1 at an l/P (if it exists) is used for user data transmission using
the High-Speed Data Interface format discussed in Section 3.2.3. Since this
format does not allow the zero byte to be sent, the BIG may be determined to
be empty whenever a ·zero is read (see BIG Design Specification). This allows
software on both the mainframe and the I/P side to disperse with most BIG
FIFO status checks and therefore run more efficiently.

BIC data FIFOs associated with single-threaded and multi-threaded ter
minal ports are accessed as needed by the Mainframe Network Link {MNL) Module
and the Mainframe Multi-Threaded Port Control {MMT) Module; interrupts are
not used in accessing the l/TP data FIFOs.

BIG data FIFOs associated with I/NPs, on the other hand, are interrupt
driven. To minimize context-switching overhead at the expense of increased
queueing delay, the BIC inbound and outbound FIFO control registers for an
active port are set to cause mainframe service requests (see subsection on
Mainframe Tack Control {MTG) Module) when the inbound (mainframe-bound) FIFO
goes more than half-full and when the outbound FIFO goes less than half-full.
In addition, an I/NP may force a mainframe data FIFO interrupt using the
inbound FIFO sender's flag on the outbound FIFO reader's flag.

3.3.2 BIC Operations from the Port Side

This subsection provides an overview of the BIC presented from the port
side. The presentation is in two parts: BIG #0 (packet BIC) which is manipu
lated by the IPOS operating system, and BIC #1 (data BIG) which is manipu
lated by the IP 1 s to move network user data.

3.3.2.1 IP Packet BIG (BIC #0)

The IP 1 s use BIG-0 to download port software and online diagnostics and
to transmit and receive IPOS addressed packets between the port and main
frame. Address packet formats are described in Section 3.2.2.

Downline load data formats are described in Section 3.2.1. The port down
line load algorithm does not require the BIG-0 interrupt flags. Data is
moved directly from the BIC to port RAM without decoding attempts for zero
value bytes.

Exercising facilities and diagnostic information are provided using
BIC-0. See Section 4.1, IPL ROM.

When used for addressed packets by IPOS, BIC-0 runs under interrupt con
trol using the senders and receivers flags.

Rev. 2 D814 System Software Manual
Sect ibn 3 - 23

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3.3.2.2 IP Data BIC (BIC #1)

All IP's have a data BIC but some, such as the l/CTP, I/FOP and l/DGP,
which do not move network data, do not use this BIC. When uti 1 i zed by the
IP, BIC 1 transfers data blocks {as described in Section 3.2.3) using the
interrupt-on-half-full and senders/receivers flag interrupts.

The former allows both the port and mainframe to interleave processing
while the latter insures that all data blocks are processed as soon as possi
ble. This methodology requires encoding of hexadecimal zeroes to distinguish
real zeroes from those read from an empty FIFO. An exception to the encoding
scheme occurs in the I/NP which uses hexadecimal zero as a transparent 1 ine
pad character.

Rev. 2 0814 System Software Manual
Section 3 - 24

•

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

4. FIRMWARE

The term 11 fi rmware 11 in this document refers to the IPL code in ROM in the
mainframe or IP.

There are four distinct firmware subsystems in 0814:

1. General Port IPL ROM
2. I/FOP IPL ROM
3. Mainframe IPL ROM
4. Mainframe ROM-Resident Diagnostics

Each of these are discussed in the following sections.

4.1 0814 Port IPL ROM

The IPL ROM used in the 0814 ports supports four IPL functions. The
reset bits in the packet BIC designate what type of reset is being performed.
Any reset causes the port diagnostic LED to go on. The functions of the
resets are:

RESET 0: (Master Reset)

This reset occurs during power up and under software request. When a
reset-~ is detected, the engine executes an instruction set test, a ROM
checksum test and two RAM tests, leaving RAM cleared. When these are com
pleted successfully, control goes to the port debugger if one is present.
Otherwise, the port turns off the diagnostic LED, sets the port bit in
the packet BIC, and then waits for another reset.

RESET 1: (Software Load)

Reset 1 is issued by the mainframe software (MSI, MDL, MIL) when software
is to be loaded into a port. Memory is sized, and the convnunication card
ID, high order address byte of the highest page of port RAM, and proces
sor ID (00-6800, 01-6809) are passed to the mainframe using the packet
BIC. The port then awaits software from the mainframe (including a start
of load location, a start of execution address, and a 2 byte checksum).

Multiple individual loads may be performed. Tl:a& port caRtiRues ta_~-
software unt11 it rece1ves cr--tocid b:l ock with a start address other than
~-txecut1on--thenbegins at the'' 'specified-address:- If the port
debugger is attached, the start address is saved and control passed to
the debugger ROM.

Rev. 3 0814 System Software Manual
Section 4 - 1

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

RESET 2: (Limited BIC Test)

Reset 2 is designed to test the BICs. Half of this test resides in the
mainframe ROM. Reader and sender flags, FIFOs, and port interrupts are
tested. Upon successful completion, the port turns off the diagnostic
LED, indicating that the port is minimally capable of loading software
through its BIC.

RESET 3:

Reset 3 is used to retrieve information from a port which has failed.
The first 32 bytes of port memory are loaded into the packet BIC, and the
sender's flag is set.

Rev. 3 0814 System Software Manual
Section 4 - 2

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

4.2 0814 I/FOP IPL PROM

In addition to the standard 0814 IPL ROM, the I/FOP has a 256 byte PROM
on the second card. When a mainframe wishes to boot an I/FOP, it performs a
reset 1 and loads a standard jump instruction as software. The jump, when
executed, will transfer control to the PROM which will bootstrap the port.

The bootstrap PROM will read one byte from the IPL BIC which it uses to
determine on which drive system software should be located. If the drive is
non-existent, a NAK is sent to the mainframe with a cause code indicating
such.

Otherwise, the I PL PROM reads a standard record from the floppy disk and
executes the code read. If, in the process of bootstrapping, an error
occurs, a NAK and appropriate cause code are sent to the mainframe.

If the bootstrap completes without error, the ACK followed by the soft
ware release and level are stored in the BIC FIFO. The I/FOP is prepared to
start execution; however, execution will not begin until the mainframe sends
a startup indication over the IPL BIC. ~

The IPL PROM is customized to load the standard record from a particular
1 ocat ion on the floppy. Each type of I /FOP therefore requires a customized
PROM and a boot record on the floppy. Note that while I/FOP boot software is
expected from a software disk, every 0814 floppy has the IPL software in the
same standard fixed locations.

Rev. 3 0814 System Software Manual
Section 4 - 3

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

4.3 Mainframe IPL Module

4.3.0 Introduction

The mainframe IPL module {MIL) is the ROM resident mainframe system com
ponent which takes control after any 0814 node restart. A firmware restart
causes a nest master reset and causes a 11 mainframe processors to jump to
mainframe ROM through a restart vector. There are four ways to initiate a
firmware restart. These four 'restart types' are:

A. Power-up - Power is restored to the mainframe generating a power-up
sequence.

B. NP Restart {hardware boot) - Interrupt to the master controller gen
erated by hardware. Triggered by a 11 restart sequence 11 received by a
network port.

C. Software Restart - Generated by a master controller instruction
under software control {see Mainframe Module MSB}.

D. Reconfi g Restart - Type of software restart, used to re 1 oad port
software when changing configurations.

When mainframe ROM is entered, Mainframe ROM diagnostics are executed,
after which the MIL entry point MIL$INIT:ENTRY is jumped to.

MIL determines the local source port for mainframe software and super
vises the loading of that software. The source depends on the restart type
and on parameters passed to MIL. The source of software port may be a floppy
disk port local to the IPL'ing node (node running MIL), a floppy disk emula
tor port local to the IPL'ing node, or a local network port. Software loaded
through a network port is passed by MDL (see Mainframe Downline Load) of a
running node over a network link.

The following terminology will be used for this discussion:

Rev. 3

adjacent node

IPL'ing node

(or neighboring node) - Node running mainframe
software which is linked to the IPL'ing node
through a network link.

- Node running MIL.

preferred software - The software level passed to MIL in page fl of
RAM or in CMEM, if specified.

preferred link - The network link which corrmunicated the hard
boot command for an NP restart.

0814 System Software Manual
Section 4 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

chosen software

chosen link

loading port

RNP

- The software level (revision # and release #)
which is actually loaded.

- Network link actually used for loading, when
loading through an NP.

- Port used to 1 oad software (may be I/NP, I/GBNP,
I/FOP, or I/FDPE). Same as source of software
port.

- ROM Network Port. Network Port code running in
NP (network port) local to IPL'ing node. RNP
performs functions of an NP to enable IPL'ing
node to get software from adjacent node. RNP
code resides in mainframe ROM, and is downloaded
to the NP by MDL or MOM.

Note that NP refers to both I/NP's and I/GBNP's unless otherwise stated.

4.3.1 Functional Overview

MIL is invoked in the following situations:

A. Power-up

When power is restored to the mainframe after a power interruption.

B. NP Restart (Hardware Boot)

A command by the ICTP operator directs a node to send a special code
over a network 1 ink from an operator-specified network port. This
causes an NP restart of the remote mainframe. A hardware boot is
done to cause new software to be loaded into a specified node over a
specified link. It attempts the restart of a node regardless of the
node's state at the time of the boot.

C. Software Restart

Rev. 3

A command by the I/CTP operator initiates the restart of a node and
all nodes of the same connected network (nodes running inconsistent
software are not part of the same connected network). This is used
for two purposes:

1) Network Reboot - To change the software of the entire network.

0814 System Software Manual
Section 4 - 5

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

2) To restart a connected network which is joined to the network
with the I /CTP. For example, if the two joined netwurks are
running different software versions, the I/CTP operator can
issue a software boot command and restart a 11 of the nodes in
the adjoining network. They will come up with the proper soft
ware and become part of the ICTP operator's network. The I/CTP
operator communicates the command to the NP in his network
which has a network link to the adjoining network. The command
is communicated over the link by means of a code in the initial
link protocol (see section on MSB).

These two cases are indistinguishable to MIL. The Mainframe System
Boot Module (MSB) communicates to every node in the connected net
work the new software release and revision level and configuration.
Each node then does a software node restart. Software configuration
parameters are passed in page ~ of RAM.

O. Reconfig Restart

A reconfig restart occurs when a node is rebooted to change configur
ations without changing software levels. This may happen automatic
ally or as a result of an I/CTP operator command. This restart
causes all ports to be reset and subsequently reloaded (see MOM sec
tion). Mainframe software is not reloaded unless the mainframe
checksum is invalid. An i nva 1 id checksum is treated like a system
error in which case mainframe ROM diagnostics are restarted.

E. System Error (Special case of a software restart)

Rev. 3

A system error is a fatal mainframe error. If the mainframe debug
ger is present when a system error occurs, the mainframe software
traps to the debugger from MOM without causing a restart (see sec
tions on MOBG and MOM). If the debugger is not present, a SYSERR
code is saved and a software restart is done.

When MIL discovers a SYSERR it delays the number of minutes speci
fied in CMEM (at EQ$MCM:OF_DELAY) while broadcasting SYSERR messages
on the front panel and in HELP messages which are sent over all
RNP's. When the delay is complete, it clears the error code and
resumes the normal load sequence. Note that while in delay, the
operator can cause a jump to the debugger from the front panel key
board (see subsection on front panel interface).

0814 System Software Manual
Section 4 - 6

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Error Handling:

Two types of errors may occur during MIL: fatal errors and non-fatal (or
recoverable) errors. Error messages are communicated by displaying them on
the front panel and sending error codes in HELP messages.

A. Fatal Errors

A fatal error is a serious mainframe error which occurs during MIL.
When a fatal error occurs, the normal load sequence is interrupted,
and a HELP message with an error code is sent across a network link.
The IPL 1 ing node waits for commands from an adjacent node.

B. Non-fatal Errors

A non-fatal error is an error which does not interrupt the normal
loading sequence. A HELP message witn error code is sent. If the
error is a port error, a new loading port is found (see error
handling under loading software).

4.3.2 Operational Overview

After a restart, the node is in the following state:

All ports have been reset and are running ROM-resident engine diag
nostics (these are started up automatically).

- All NIC 1s are in loopback mode.

- All processors are reset, lowbank of memory is selected, all proces-
sors jump to mainframe ROM diagnostic routines (MOAG).

(See section on Mainframe ROM Diagnostics.)

MOAG routines are executed and MIL is jumped to. At entry to MIL, the
following has occurred:

1) Mainframe diagnostics have been successfully completed if run (diag
nostics not run if mainframe does not require reloading).

2) NIC loopback tests are completed and NIC 1s are no longer in loop
back.

3) Processor ~ jumps to MIL$INIT:ENTRY (entry point to MIL). All other
processors are halted until restarted by MIL.

Rev. 3 0814 System Software Manua 1 Rev. 3
Section 4 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

MIL does the following:

1) Compute CMEM checksum, compare to value stored in CMEM, store valid/
invalid parameter.

2) Read port bit (for engine diagnostics completion) from BIC-~ of each
engine and keep table of error codes for all ports.

3) Call BIC loopback routine for each working engine and add failures
to port table.

4) Send Reset 1 to each working engine. Keep loading port table of ID
information for I/FDP's, I/FDPE's, I/GBNP's and I/NP's.

5) Determine Restart type. (Details below) -

6) Determine chosen software, chosen link and loading port. (Details
below)

7) Start up loading port and load mainframe software. Monitors loading
port for errors. If an error occurs goes to step 6 to find another
loading port. (Details below)

Upon successful completion of MIL the IPL' ing node is in the following
state:

- mainframe software is loaded
- all ports have completed engine ROM diagnostics and BIC loopback

tests

Note that no ports ar~ loaded with system software during MIL.

The parameters saved for the mainframe are defined in the section on
interfaces.

At this point the mainframe software is started up by jumping to the load
blocks start execution address.

Steps 5, 6 and 7 are explained in more detail:

Step 5: Determining Restart Type

Rev. 3

There are four different restart types:

1. Power Up
2. NP restart (or hardware boot)
3. Software
4. Reconfig - (This is a software restart which changes the con

figuration without changing software levels.)

D814 System Software Manual
Section 4 - 8

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

MIL uses the following variables to determine restart type:

1. Location EQ$MC:RSRT of Master Controller local memory.
2. The reconfi g parameter OF$MIL:RECONFIG stored in RAM, page fiJ

(by MSB).
3. The attention sequence registers on the NP (passed to MIL by

the RNP).

MIL reads location EQ$MC:RSRT of master controller local memory.
The contents of this location allows MIL to distinguish between a
boot generated by software (either software or reconfi g restart) and
a boot generated by hardware (either power-up or NP restart).

If the boot was generated by software, MIL reads OF$MIL: RECONF IG to
determine if restart type was software (EQ$MIL:SFTWR....RSTA) or recon
fi g (EQ$MIL:CONFIG....RSTA).

For a reconfi g restart, mainframe software is not reloaded. MIL
checksums mainframe code. If the checksum is invalid, MIL stores
the reconfig parameter for software restart and a system error code;
and causes another node restart (in order to run mainframe di agnos
tics).

If the boot was generated by hardware, MIL polls each network port
to determine if a network port received a remote boot sequence (see
RNP section). If no network port received a remote boot .sequence,
then the restart type is power-up (EQ$MIL:POWER....RSTA). Otherwise,
the restart type is hardware boot (EQ$MIL:HRDWR....RSTA).

Step 6: Determining Chosen Software, Chosen Link, Loading Port

Rev. 3

The algorithm used to determine these parameters depends on the
restart type (determined in step 5) and is described below.

In the process of selecting a loading port, loadable port diagnos
tics may be executed. A floppy disk port or floppy disk emulator
port always executes loadable diagnostics.

When a loading port is not specified (not a hardboot) MIL selects a
loading port by referencing the loading port table. This table is
created by MIL and contains the following information for each possi
ble source of software port (I/FOP, I/FDPE, I/GBNP, I/NP):

1) TPORTNUM - the port address
2) TCOMCARD - the communications card ID code
3) TERROR - error information
4) TFDP....DISP - address of 32 character display buffer

(valid for floppies only)
5) TNXT_pQRT - address of next port in table

(EQ_LAST_pQRT if this is last port)

0814 System Software Manual
Section 4 - 9

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FDP's are the first entries in the table, this ensures that MIL
tries to get software from its floppy disks before trying to load
through the network. The very first entry in the table is the
floppy disk port emulator, if there is an emulator local to the
IPL 'ing node. A node may have at most one I/FDPE. MIL determines
that there is a floppy emulator local to the node by reading a CMEM
node parameter (EQ$MCM:OFJEAS) which contains the address of the
floppy emulator. If the floppy emulator address is non-zero and the
port plugged into that address is working and is a valid emulator
port, then MIL assumes this is an I/FDPE. MIL tries to load through
this port before trying to load through any other source of software
port. A val id emulator port is a port whose hardware ID is either
CTC or I/BYTE. MIL passes through the table trying to find a port
to load software from. The error information indicates a fatal or
non-fatal error condition. If a fatal error is associated with a
port, that port is not used to load software.

Load Any Software:

Rev. 3

There are two ways of specifying 'load any software available':

1) If the restart type is power up and CMEM is invalid, then
ferred software is EQ$MIL:ANY....REV, EQ$MIL:ANY....REL.
instructs the node to accept any software available.
request is not propagated to other nodes.

pre
Thi s
This

2) If the operator inputs 1 no preferred software' from the front
panel the node loads any software available. In addition, the
instruction to load any software is propagated through HELP
messages to any adjacent nodes which are IPL'ing. If an
IPL 1 i ng mainframe receives a HELP message which specifies no
preferred software it loads any software available and con
tinues propagating the instruction through HELP messages.

If the restart type is hardware boot then MIL only tries to load
software from the network port which received the remote boot
sequence.

Otherwise, MIL tries each possible source of software port until it
finds a port with an acceptable version of software available. MIL
finds the next possible source of software port by looping through
the loading port table and trying the next port entry which does not
have a fatal error.

0814 System Software Manual
Section 4 - 10

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

MIL determines chosen software and loading port depending on the
restart type, as follows:

1. Restart type is power-up:

a. Chosen Software

If CMEM is val id, the chosen software is the last running
version of software (read from CMEM).

If CMEM is invalid, MIL loads any software available.

b. Loading Port

The loading port is the first port found with the chosen
software available.

2. Restart type is software restart:

a. Chosen Software

Chosen software is the software revision and release
passed to MIL in page ~ of RAM.

b. Loading Port

The loading port is the first port found with the chosen
software available.

3. Restart type is hardware boot:

a. Chosen Software

Chosen software is the software available through the load
ing port.

b. Loading Port

The loading port is the network port which received the
remote boot sequence. (In this case the loading port is
known, so MIL goes to step 7.)

0814 System Software Manual
Section 4 - 11

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

MIL determines which port is the next possible source of software
port. Then MIL. determines if this port has acceptable software as
follows:

A. If the load port is an I/FOPE or an I/FOP then the following is
done:

1) Floppy· diagnostics are run on the port {if this is an
I/FOP the diagnostics are ROM resident. If this is an
I/FDPE, diagnostics and a bootstrap program are loaded
from the host computer and run).

2)

If the diagnostics fail, the error code is stored in the
loading port table and a new loading port is found.

MIL reads the floppy directory information to find what
drives are mounted and what level of software is avail..:
able.

- If no software disks are present, MIL finds a new
loading port.

- If MIL is looking for any software then the highest
software level available is the chosen software.
This floppy is the loading port.

- If the floppy has the chosen software available then
the floppy disk port is the loading port.

- Else the floppy does not have the chosen software.
MIL finds a new loading port.

B. If the 1 oadi ng port is an I/NP or an I/GBNP then MIL does the
fol lowing:

1) Reads the BIC to determine if the network port has ex
changed link inits {LI) with the remote NP {MIL had pre
viously loaded all local network ports with loading port
software, and sent STREAM._LI convnands to them.)

If NP did not receive an LI from the remote node, MIL
finds a new loading port.

0814 System Software Manual
Section 4 - 12

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

2} MIL sends a corrmand to the local network port instructing
it to send a HELP message to the remote network port, and
waits for network port to get an IPL frame from the remote
node. The local network port passes software level to
MIL.

- If the local RNP is talking to another RNP (received
a HELP message) then MIL finds a new loading port.

- If the software 1eve1 is not the pref erred software,
then MIL finds ~ new loading port.

Else the ~oftware level available is acceptable.
This is the loading port.

Step 7 Start Up Loading Port and Load Software

Rev. 3

This step depends on the type of loading port (floppy disk or net
work port). If for any reason it becomes impossible to load because
of a loading port failure, the port is marked as non-working in the
loading port table, and MIL goes back to the beginning of Step 6
(determining chosen software and loading port).

A. Loading Software from a Floppy Disk Port or a Floppy Disk Port
Emulator

If the loading port is an I/FOP or an I/FDPE, the local node
determines the load sequence. (See subsection on Interfaces.)

MIL receives the software level of each drive •. MIL specifies
the drive #followed by one of the following commands:

1 Load Mainframe•
1 Load Floppy•
1 Start Floppy 1

(EQ$MIL: LOAD_MF)
(EQ$MIL:LOAQ_fDP)
(EQ$MIL:START_pQRT)

The normal load sequence when loading through an I/FOP or an
I/FDPE is:

1. Load mainframe software
2. Start mainframe

The loading port is loaded under MDL.

0814 System Software Manual
Section 4 - 13

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

B. Loading Mainframe through a Network Port:

.

If the loading port is a network port (eithe·r I/NP or I/GBNP)
then the loading sequence is determined by the adjacent node in
response to a software request in the fonn .of a HELP message.

MIL sends HELP, requesting mainframe software without specify
ing a file (unless Diagnostics Monitor is requested). In
response the adjacent node can send the following colllTlands
followed by appropriate software to the IPL'ing node:

(See RNP section on HELP messages.)

1. Load NP
2. Load and Start NP
3. Load and Start MF

When loading the mainframe through a network port the normal
sequence involves loading ·and starting mainframe software only.
The loading port is loaded under MDL.

See RNP section for the action taken for each of the three
cormnands •

Error Handling

Rev. 3

A. If an error associated with a loading port occurs while loading
and the restart type is not EQ$MIL:HRDWR....RSTA (hardware boot),
the following is done:

1. If the error is non-fatal,

a) display error message on front panel
b) go to Step 6 to find new loading port and chosen soft

ware.

Note that this port may be tried again as a loading port.

2. If the error is fatal,

a) store error code in loading port table
b) display error message on front panel
c) go to Step 6 to find new loading port and chosen soft

ware.

B. In the case of a hardware restart, there is only one possible
source of software port. If any error occurs while loading,
fatal or non-fatal, the IPL 1 ing node sends a HELP message with
error code across the link and waits for a new co11111and from the
running node.

D814 System Software Manual
Section 4 - 14

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

4.3.3 External Interfaces

A. Parameters:

Rev. 3

Depending on the type of restart, MIL may access the following
information:

1. Mainframe code: On a RECONF IG or SOFTWARE restart, mainframe
code is left intact in RAM. Location OF$MIL:MF_CHCKSUM con
tains a checksum (two-bytes with wrap-around carry) for the
mainframe code.

2. Software_restart parameters. The following parameters are left
for MIL in page ~ of RAM on a SOFTWARE or RECONFIG restart:

OF$MIL:CONF
OF$MIL: SWLV....REV
OF$MIL :SWLV....REL
OF$MIL:RSTA._INPT
OF$MIL:RSTA...INND
OF$MIL:RECONFIG
OF$MIL:SYSERR
OF$MIL:START_ADDR
OF$MIL:CODUND
OF$MIL:MF_CHKSUM

configuration #
software revision #
software release #
initiating port
initiating node
reconfiguration code
system error code
mainframe code start address
mainframe code end address
mainframe checksum

3. Configuration Memory. MIL always checks the validity of the
checksum in CMEM. If CMEM is valid the following parameters
may be accessed:

a) Software level (EQ$MCM:OF....REV, EQ$MCM:OF....REL) - Used on
power-up to determine last running software.

b) Delay (EQ$MCM:OF_DELAY) - Used to determine number of
minutes to delay if a SYSERR has occurred.

c) Flopµ(Emulator Port Address and IPL Speed (EQ$MCM:OF_FEAD
and EQ$MCM: OF _FE IS). - These are used to determine the
port address of a local floppy disk emulator port, and the
line speed for the emulator during IPL.

4. Master Controller. A restart mode is stored in firmware acces
sible Master Controller Memory. This parameter is read using
the Master Controller RLM command (see 6000 Logic Design
Spec.). This parameter indicates (a) NP or powerup restart, or
(b) software or reconfig restart.

5. Remote Boot register on I/NP or VBIT card. Register readable
(and clearable) by port software. The contents of these regis
ters are used to determine the link initiating a hardware boot.
If more than one hardware boot was received, the NP with the
lowest port number is the one used for loading.

D814 System Software Manual
Section 4 - 15

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

6. System Initialization Parameters. The following parameters are
left in page ~ of RAM for mainframe system software, on term
ination of MIL:

OF$MIL:CONF
OF$MIL:SWLV..REV
OF$MIL:SWLV_REL
OF$MIL:RSTA_INPT
OF$MIL:RSTA__INND
OF$MIL:RSTA_TYPE
OF$MIL:LOAD_i>T
OF$MIL:CMEM_CHK
OF$MIL:ERROR
OF$MIL:RECONFIG
OF$MIL:START...ADDRESS

OF$MIL:CODLlND
OF$MIL:SYSERR
OF$MIL:MF_cHKSUM

Configuration Loaded
Software Revision Loaded
Software Release Loaded
Port Initiating Restart
Node Initiating Restart
Type of Restart
Port I used to load mainframe
CMEM checksum status
ERROR code for load
Reconfiguration Parameter
Code start address for reconfig

restart
Code end address for reconfig
System error code
Checksum of load block

7. Port Status Table. One byte of status information for each of
the 126 possible ports in a node is saved in tabular form for
the mainframe system software. This port table starts at
OF$MIL:PORT_TBL. The ,status of port PORTNUM is located at
OF$MIL:PORT_TBL + (PORTNUM/2). The status byte has the follow
ing possible values:

EQ$MIL:GOQO_pQRT
EQ$MIL:NO_pQRT
EQ$MIL:ENG-FAIL
EQ$MIL:BIC~_FAIL
EQ$MIL:BICl_FAIL
EQ$MIL:BIC5-FAIL

No errors in initial diagnostics
No port present at this address
Port bit was not set
BIC-~ failed loopback test
BIC-1 failed loopback test
Both BICs failed loopback test

8. Floppy Port Status Table. Six bytes of status information for
each floppy disk port in a node is saved for up to
EQ$MIL:FLOPPY_MAX floppy disk ports. This floppy table starts
at OF$MIL:FLOP_TBL. The status of each floppy consists of:

OF$MIL:FLQP_pQRTNUM
OF$MIL:FLOP-5TAT
OF$MIL:FLOP_DRIVE ~
OF$MIL:FLOP DRIVE 1
OF$MIL:FLOP-DRIVE 2
OF$MIL:FLOP-DRIVE 3
OF$MIL:FLOP..READ

Status information from diag
nostic termination packet

Error while trying to read
from floppy

0814 System Software Manual
Section 4 - 16

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

B. Load Block Format:

Load Data is sent to MIL in load block format, regardless of the
loading port type {I/NP, I/GBNP, I/FOP or I/FOPE).

Load data is received by MIL encoded.

The load.block format {before encoding) is:
{See Section 3.2.1, Program Load Interface.)

Load Header:

Data:

Bytes 0 - 1:
Bytes 2 - 3:
Bytes 4 - 5:

Start address {O if not last load block)
Load address
Byte count of load block including header.

Bytes 6 - n: Object code in binary.

Checksum:

Bytes n+l - n+2: 16 bit end-around carry checksum of load
block including header.

The data field of the load block is encoded by the sender according
to the scheme:

X'OO' --> X'FFFF', X'FF' --> X'FFFE'

This encodes zero bytes in the data. The reason for this is to
allow zeroes to be used as escape characters across a network link
and to facilitat~ sending data in the BIG.

MIL must decode any load data it receives. {Note that the RNP must
also decode NP load data - see RNP section.)

C. Diagnostics Interface

Rev. 3

1) Mainframe ROM resident diagnostics {MOAG). MIL is entered upon
successful completion of mainframe ROM diagnostics. If the
mainframe fails diagnostics, MIL is ·never entered. No parame
ters are passed. Before jumping to MIL, diagnostics halts all
processors other than processor ~. {See section on Mainframe
ROM Resident Diagnostics.)

2) ROM resident engine port diagnostics. When a restart occurs,
engine diagnostics are run. Upon successful completion, the
Port Bit in BIG ~ is set {other bits may also be set). MIL
reads the port bit for all engines. If the port bit is not
set, MIL does not use this port for loading.

0814 System Software Manual
s'ect i on 4 - 17

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

3) BIC loopback. MIL calls a diagnostic routine which does a BIC
l oopback test on the port passed to it and returns an error
code. (See section on Mainframe ROM Resident Diagnostics.)

4) FOP diagnostics. The floppy disk port used to load software
will be instructed to run ROM resident diagnostics under MIL
(see I/FOP section on IPL ROM). Floppy status information
(results of diagnostic) are displayed on the front panel. If
the floppy diagnostics report a fatal error the I/FOP will not
be used as a source of software port. If the floppy diagnostic
reports a non-fatal error condition MIL may retry this port as
a source of software. Floppy status information is saved for
the mainframe system software (Floppy Port Status Table).

The floppy disk port emulator runs diagnostics under MIL. The
MIL interface with the I/FDPE to run diagnostics is the same as
the interface with the I/FOP. Floppy emulator diagnostics are
not ROM resident but are loaded from the Prime.

5) Diagnostic Monitor. The Diagnostic Monitor can be requested at
the local node during restart (see front panel interface). The
Diagnostic Monitor will be loaded under MIL control.

D. Floppy Disk Port

Rev. 3

MIL may load mainframe software directly from a local I/FOP. MIL
interfaces with the floppy disk port IPL ROM (see section on I/FOP).
MIL sends commands and receives dat~ from the floppy as follows:

1) Run ROM resident diagnostics

a) MIL activates floppy ROM diagnostics by sending a reset 1
to the I/FOP with a software block (see IPL ROM section)
with a starting address equal to OFIPROM:FDP_DIAG.

b) MIL reads from BIC-~ Diagnostic Termination packet (and
displays information on front panel).

2) Run floppy loader

a) MIL activates this by sending a reset 1 to the I/FOP with
a software block with a starting address equal to
OFIPROM:FDP_LOAD.

b) Get directory information. MIL reads a driv'e.# and soft
ware level bytes for each ready drive from BIC ~. When
there are no more ready drives MIL reads a comp 1 et ion code
(EQ$MIL:FD...NODRIVE) from BIC ~.

(Note that at this point MIL may discontinue the load pro
cess from the I/FOP).

0814 System Software Manual
Section 4 - 18

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

c} Load software. MIL puts the drive # (13-3} to load soft-
ware from in BIG ~. MIL fol lows this with a one byte
command code which specifies

i load mainframe (EQ$MIL:LOAD_MF},
ii load I/FOP (EQ$MIL:START...FDP}, or

iii load mainframe with diagnostics monitor
(EQ$MIL:DIAG....MNTR}

iv start floppy (EQIPROM:IPL_START}.

d} i If the command code was EQ$MIL: LOAD-MF, MIL reads
mainframe software in load block format from BIG {3.
Zeroes are encoded. (See load block interface.}

ii If the command code was EQ$MIL:LOADJDP, the main-
frame reads a 1 oad ACK or NAK. (EQ$MIL: LOACL.ACK or
EQ$MIL:LOAD_NAK} from BIC {3.

E. Floppy Disk Port Emulator

MIL may load mainframe software directly from a local I/FDPE. The
interface to the floppy disk emulator is similar to the interface
with a real floppy disk port. The differences are:

1}

2}

3}

Finding the floppy disk emulator port. MIL does this by read
ing CMEM for the floppy emulator address (EQ$MCM:OF_fEAD}. If
the port at this address passes its ROM diagnostics and its
card ID is either I/GTC or I/BYTE then MIL treats this port as
an I/FDPE. There may be no more than one I/FDPE at a node.

The software blocks sent to the emulator must have a load
address of OFIPROM:EMBOOT_SPEED and one byte of data whose
value is that of the CMEM node parameter EQ$MCM:OF_FEIS, in
addition to the start address specified above. (MIL includes
the data byte and load address in the load block for a real
floppy port, even though they are not required.}

The floppy emulator requires some operator intervention to com
municate with the host computer.

F. Network Ports

Rev. 3

MIL may load mainframe software from an adjacent running node over a
network link. This is done by communicating through a local network
port which may be of either type, I/NP or I/GBNP. The local NP runs
ROM network port (RNP} software: software which enables an NP to com
municate with a running NP and load software to the IPL'ing main
frame.

0814 System Software Manual
Section 4 - 19

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

The two types of RNP software (RNP or RGBNP) are resident in main
frame ROM and will be loaded into local NP's by the MIL routine
described below (MDL may also call this routine. See section on
Mainframe Downline Load Module):

MIL$SUBS:LOAD....RNP

Routine in MIL to load RNP software into any network port.

On Entry: Reg A = Port number of NP
Reg B = Comm Card ID
Port has been reset (reset 1} and is ready to load soft
ware.

On Exit:

If successful Reg A = Load ACK
RNP is loaded and started

If unsuccessful Reg A = Load NAK

This routine does the following:

1. Loads RNP software
2. Reads ACK/NAK from BIC
3. If load successful, starts RNP

The entry point to this routine is a vector located at
OF$MROM:MIL$LOAD....RNP.

MIL interfaces with _the running RNP through the BIC' s to load soft
ware. The MIL-RNP interface is explained in the section on RNP's.
The interface between the RNP and the adjacent NP is al so found in
that section.

Note that the data the mainframe receives from the BIC has been
encoded and needs to be decoded as follows:

X'FFFF' --> x·~~·
X'FFFE' --> X'FF'
(See load block format.)

D814 System Software Manual
Section 4 - 20

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

G. Front Panel Interface

Rev. 3

1) Keyboard Entries

a) Entering Commands

MIL recognizes two commands from the front pane 1 of the
local mainframe.

Request Diagnostics Monitor (DIAG) (ENTER)
ii No Preferred Software (LOAD) (ENTER)

Note that these commands may only be entered at the begin
ning of MIL (at the time when the display reads 'MF DIAG
COMPLETE') if a power-up restart was done. The di sp 1 ay
will echo the commands.

b) Changing the Display

Hitting the (ENTER) key on the front panel will cause the
display to change under the following circumstances.

If a fatal mainframe error has occurred the display
will show all asterisks. Hitting the (ENTER) key
will allow the operator to see the error message.

ii When looking for software, the operator may circle
through status messages for each floppy disk port
(each FOP has a 32 character status message) by
repeatedly hitting the (ENTER) key. Each time the
(ENTER) key is hit the display changes to the next
FOP status message or primary front panel display.
Whenever the primary front panel display changes, the
primary message is displayed.

c) Jumping to the Debugger

An NMI can be caused from the front panel (at any time) by
turning the key to 1 pgm 1 , hitting (ENTER), turning the key
to 1 DIAG 1 and hitting (ENTER). This causes a jump to the
mainframe debugger, if present. (Note that this is done
by the master controller.)

0814 System Software Manual
Section 4 - 21

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

2) Display

a) Primary Messages

Load status will be displayed on the front panel during
MIL. The 1 oad status message is the primary message on
the front pane 1 • It is separated into two fie 1 ds, (i)
current status and, (ii) last error (or load block infor
mation while loading).

i) Current status will include message such as:

'MF DIAG COMPLETE'
'DIAGNOSTIC MONTR'

(if diagnostics. monitor was requested)
'NO PREFERED SFTW'

(if no preferred so·ftware was entered)
'CMEM CHECKSUM'
'PORT TESTS##'
'RESTART TYPE RR'

(where RR is the restart type)
'LOOKING SWVV.LL'

(where VV is the revision, LL is the release)
'LOAD FOP FD##'

(where ## is the port #)
'LOAD MF FD##'
'LOAD MF NP##'
'LOAD MF GB##'
'LOAD RNP NP##'
'FLOPPY DIAG FD##'
'MF LOAD COMPLETE'
I BAD KEY!! I

ii) Last error field

Until software is actually being loaded, the second
field will contain a message indicating the last
error condition encountered by MIL including the
following: ·

I INVALID CMEM'
NP## LINKDOWN
GB## NO SOFTWR
NP## LOAD BAD
FD## NO ROY DR
FD## NO SOFTWR
FD## ERROR EE

(where EE is an error code)

0814 System Software Manual
Section 4 - 22

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

When software is actually being loaded, the loading
address of the current frame, and the frame number are
displayed instead of a last error field.

Note that the primary message is displayed unless the oper
ator enters a key. If a secondary message is being dis
played and the primary message changes, the new primary
message is displayed.

b) Secondary Messages

Rev. 3

Secondary messages are messages which give more informa
tion on status, and are di sp 1 ayed only when an operator
enters a key from the keyboard. There are two types of
secondary messages:

i) Error Message

When a fatal mainframe error occurs, the display will
show all asterisks. When the (ENTER) key is depres
sed, the secondary message, a 32 character error mes
sage, will be displayed.

ii) Floppy Disk Port Status

There is a 32 character status message for each
floppy disk port which has run diagnostics. The
floppy disk port status messages are secondary mes
sages. They are displayed one at a time. The opera
tor sees the next message by depressing the (ENTER)
key.

0814 System Software Manual
Section 4 - 23

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

4.4 Mainframe ROM Resident Diagnostics

4.4.1 Introduction

The mainframe diagnostics module (MOAG) is the first ROM resident main-
frame systems component to be executed after any 0814 node restart. (See
section on Mainframe IPL).

First, it examines data in Master Contra ll er 1oca1 memory and determines
whether the restart is a reconfiguration restart. If so, it waits 10 sec
onds, allowing engine ROM diagnostics to run to completion and then jumps to
MIL. If the restart is not a reconfiguration, it executes mainframe diagnos
tics and then jumps to MIL. Upon detecting any mainframe error, MOAG halts
and displays an error message.

4.4.2 Diagnostic Routines

The tests in MOAG are organized into four functional groups.

A. Processor Tests

The processor test group comprises seven tests, which are designed
to test the hardware on a processor card. All processors execute
these tests simultaneously. The group includes a simple instructi-0n
set test, ROM checksum test, local storage test, base register test,
status initialization test, uniqueness test and run-halt test.

B. Memory Tests

The memory tests test all RAM in the mainframe. Page ~ RAM is
tested non-destructively. Both low memory and high bank RAM are
tested. The locking function of the lockbytes is tested and lock
bytes are left cleared. These tests are executed only by processor
~.

C. Master Controller Tests

This group tests the Real Time Clock, various task queueing instruc
tions, and level queue interrupts. The Real Time Clock Tests are
executed only by processor ~' and the other tests are executed
sequentially by each processor.

D. NIC Loopback Test

Rev. 3

When a node restart occurs, all NI Cs go into loopback mode. This
test verifies the data paths to a NIC, takes it out of loopback and
continues to the next INIC, repeating until all INICs are tested.

0814 System Software Manual
Section 4 - 24

\

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

4.4.3 Front Panel Display

The self-scan of the 6050 displays messages while the diagnostics exe
cute, indicating their progress. The following displays may appear:

A. InHially, the screen displays a line of 11 At 11 signs {@) for 2 sec
onds.

B. If it is a reconfiguration restart, the message "RECONFIGURATION
RESTART" appears for 8 seconds.

C. During processor tests, the display reads:

MF DIAGNOSTICS: # # # # # #

Each # represents a counter corresponding to a processor. Each
processor increments its counter upon completion of each processor
test. If di agnostics discover a failure, an asterisk is displayed
to the left of the counter corresponding to the processor which dis
covered the failure. All processors are then halted. The numbers
corresponding to each test are as follows:

O. Simple Instruction Set Test
1. ROM Checksum Test
2. Local Storage Test
3. Base Register Test
4. Processor Status Initialization Test
5. Processor Uniqueness Test
6. Processor Run-Halt Test

D. During memory tests, the display reads:

Rev. 3

MF DIAGNOSTICS: # [RAM FAIL XXXX]

The # is the counter maintained by processor !I, which continues to
increment during the memory tests. A failure causes the message in
brackets to appear, along with the address of the failure. Then all
processors are halted. Random data briefly appears on the screen
during the low RAM test. The numbers corresponding to each memory
test are as follows:

7. Page O Memory Test
8. Low RAM Test
9. High Bank RAM Test
A. Lockbyte Test

D814 System Software Manual
Section 4 - 25

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

E. During master controller tests, the display reads:

MF DIAGNOSTICS: # X X [MC FAILURE]

The # is the counter maintained by processor liJ, which continues to
increment during the master contr.oller tests. The X's represent two
additional counters for the last two tests, which are executed by
each processor. A failure causes the message in brackets to appear,
and then a 11 processors are ha 1 ted. The numbers corresponding to
each memory test are as follows:

B. Real Time Clock Timing Test
C. Real Time Clock Interrupt Test
D. X X Fork, Dispatch and Suspend Test
D. X X-1 Interrupt Level and Enqueue Test

F. During the NIC loopback test, the display reads:

MF DIAGNOSTICS: # [NIC n FAILURE]

The # is again the counter maintained by processor Ii). A failure
causes the message in brackets to appear and then all processors are
halted. The n represents the number of the failed NIC. The number
corresponding to this test is:

E. NIC Loopback Test

4.4.4 Interface to MIL

At successful completion of MOAG, only processor liJ is running. All other
processors are halted such that when started, they will jump to MIL at Entry
Point MIL$LOAD:START_pROC. Processor liJ jumps to MIL at Entry Point
MIL$INIT:ENTRY. If any mainframe failure has been found, MOAG never jumps to
MIL, but remains halted until another node restart occurs.

Rev. 3 0814 System Software Manual
Section 4 - 26

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5. MAINFRAME MODULES

5.1 D814 Mainframe Operating System

The D814 Mainframe Operating system is divided into three submodule
groups, each of which provides a related set of functions.

1. Mainframe Task Control
2. Mainframe Buffer Manager {MBM)
3. Mainframe Utilities (MUT)

Descriptions of these groups are found in Sections 5.1.1 through 5.1.3.

5.1.1 Mainframe Task Control

Task Control provides much of the most basic interface with the 6000 Mas
ter Controller (see 6000 Logic Design Specification). It provides the user
with the ability to start and stop tasks, handle interrupts, etc., without
worrying about the complex hardware control commands involved.

Before continuing we need to define some terms. A task is running when
its code is executing on a processor. A task is suspended when it temporar
ily relinquishes control of the processor. The data space, registers, and
stack of a suspended task are all saved to allow it to pick up where it left
off when it is again allowed to run. A suspended task is said to resume when
it is provided with a processor (not necessarily the one it had been using
before it was suspended) and a 11 owed to run. It should be remembered that,
as long as a task is running with interrupts unmasked, it may be interrupted
at any time and may resume on another processor. This means that a task may
only use local storage when interrupts are masked and that, in general, it is
impossible to make any assumptions about what processor any particular task
is running on. {See 6000 Logic Design Specification for definition of local
storage.)

5.1.1.1 Data Structures for MTC

This section describes the data structures used by MTC to interface with
user code.

5.1.1.1.1 Data Spaces

MTC is responsible for pro vi ding a data space to each task when it is
started up. Data Spaces are 32-byte blocks of memory which reside in a fixed
region of RAM. While a task is running, the 6000 maps address 0 - 1 lF 1 onto
the task's data space. Data spaces are used in the D814 operating system to
hold the information needed by MTC about each task in the system. There are

D814 System Software Manual
Section 5.1 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL·~·

currently 64 data spaces. One data space is dedicated to each of the proces
sors to be attached to tasks handling hardware service requests (called "hard
ware tasks 11). These "hardware data spaces 11 are the data spaces at the top of
the data space area. The rest of the data spaces are initially placed on a
Free Data Space Queue and removed and allocated by MTC as needed for tasks
not started by hardware service requests.

Data spaces have the following fields which are used by MTC:

OF$DS:LNK - One-byte field used to link the data space onto the Free Data
Space Queue using the one-byte data space number (see 6000 Logic Design
Spec.). This data space field may be used as scratch storage by user
code only while interrupts are disabled.

OF$DS:SPH - Two-byte field used to store the saved stack pointer while
the task associated with the data space is suspended. This field may be
used as scratch by user code while interrupts are disabled.

OF$DS:BATCH...SP - Saved stack pointer used in batch task data spaces (see
subsection on MTC$BATCH). Thi$ field must not be modified· by batch
tasks.

OF$DS:BATCl-LTBL - Batch task table entry address used in batch task data
spaces. Al so used for scheduled task table entry address (see subsec
tion on MTC$SCHD). This field must not be modified by batch or scheduled
tasks.

With the exception of the restrictions mentioned above, the user task is
free to use the data space as needed for storage.

5.1.1.1.2 User Stack

MTC al so initializes a stack for the user task. For batch tasks (des
cribed later) the stack register is set to point to a permanent stack alloca
ted to that task. For all other tasks the stack initially points to the top
of data space.

I

5.1.1.1.3 Idle Cycle Counter

. MTC maintains a three-byte idle cycle counter, OF$PGO:TCIDLC, for use by
the Mainframe Statistics and Monitoring Module. This field is incremented by
MTC: once for every 10 M6800 idle micro-cycles executed. The idle cycle
cou:nter is interlocked by means of lockbyte OF$SYSLCK:TCILK to ensure that
all' three bytes are consistent.

0814 System Software Manual
Section 5.1 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.1.1.4 Local Storage

MTC uses the local storage field OF$LS:MTC as a scratch idle cycle
counter. This field may not be modified by user programs after system ini
tialization. All other local storage may be used as needed for scratch as
long as interrupts are disabled.

5.1.1.2 MTC Submodule Descriptions

This subsection describes the services provided to the user by each of
the MTC submodules.

5.1.1.2.1 MTC$MAIN, Basic Hardware Interface Code

MTC$MAIN provides the l owest-1 evel task control interface between D814
software and the 6000 Master Controller. Routines in MTC$MAIN are used by
other MTC components as well as by higher-level MTC submodules such as
MTC$BATCH and MTC$SCHD {described later).

MTC$MAIN performs the following functions:

1. Task startup for forked tasks (tasks not started by hardware service
requests)

2. Task termination

3. Interrupt handling

4. Handling of forked task service requests and hardware service
requests (see 6000 Logic Design Spec.)

Task Startup

The task startup function is provided by the entry points MTC$MAIN:FORK,
MTC$MAIN:FRKO, and MTC$MAIN:FRK1. Each is called slightly differently but
the exit conditions are the same.

Entry Conditions

MTC$MAIN:FORK - A-reg = Contents of A-reg for new task
B-reg = Bit-7: segment, Bit 0-2: priority level of

task to be started
X-reg = Start address> for new task
OF$DS:BFADR = Initial contents of both X-reg and

OF$DS:BFADR for new task

D814 System Software Manual
Section 5.1 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

MTC$MAIN:FRKO - B-reg = Initial contents of B-reg for new task
OF$LS:AR = Bit-7: segment, Bit 0-2: priority level of

task to be started
Interrupts disabled or masked
The rest are the same as MTC$MAIN:FORK

MTC$MAIN:FRK1 - A-reg = Data space number for the new task

Exit Conditions

B-reg = Bit-7: segment, Bit 0-2: priority level of
task to be started

The rest are the same as MTC$MAIN:FORK

If fork successful, CC:Z=O, and A, B, and X-reg destroyed. If fork unsuc
cessful due to no Data Space, CC:Z=l, and entry parameters are all pre
served. OF$LS:AR, OF$LS:DR, OF$LS:8, OF$LS:9, and two bytes on the stack
are used. When the new task is started up, processor interrrupts will be
enabled and unmasked.

Task Termination

The basic task termination function is provided by entry points
MTC$MAIN:TERMH, MTC$MAIN:TERMQ, and MTC$MAIN:GETASK. The first two of these
entries are invoked by the macros MAC$TSKMAC:TERMH and MAC$TSKMAC:TERMQ, res
pectively. This allows the MTC debug flag to control whether they are
entered from a JMP or from a JSR instruction. MTC$MAIN:GETASK is invoked by
a JMP.

Entry Conditions

TERMH entry - Called to terminate a hardware task, meaning a task ini
tiated by an interrupt or system restart and to which a hardware data
space is assigned. The stack pointer must point to the highest address
in data space.

TERMQ entry - Ca 11 ed to terminate a forked (a 1 so ref erred to as 11queued")
task. The stack must be empty.

I

GET ASK entry - Ca 11 ed to terminate a task whose data space is not to be
returned to the Free Data Space Queue. This entry is used when a task
wishes to suspend itself until some other task starts it running again
using MTC$MAIN:FRK1. There are no restrictions on the stack for GETASK.

Exit Condition -
The calling task no longer exists, and there is no return to the caller.

0814 System Software Manual
Section 5.1 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Interrupt Handling

The interrupt handling function is provided by entries MTC$MAIN:SWI and
MTC$MAIN: IRQ.

MTC$MAIN :SWI is the 0814 system software entry point for software inter
rupts. MTG checks if the two bytes following the SWI introduction contain
the address of MTC$DELAY:ENTRY and, if so, vectors to that routine. If not,
control is passed to the debugger software interrupt handler at X'FF80 1 •

MTC$MAIN:IRQ is the 0814 system software entry point for IRQ interrupts.
The 6000 Master Controller may interrupt one of the processors in order to
allow a forked task or hardware service task to pre-empt a lower-priority
task. (This is described in the ,~000 Logic Design Spec.). The MTC$MAIN IRQ
interrupt handler suspends the task currently running and then handles, the
highest priority service request pending.

Service Request Handling

MTC$MAIN service request handling is initiated by MTG whenever an inter
rupt occurs, whenever a task is terminated normally, and whenever MTC$IDLE
detects a pending request. (It should be noted that even hardware service
requests are frequently handled without generating IRQ interrupts in order to
minimize overhead.) MTC$MAIN suspends the task currently running, decides
what the source of the highest priority service request is, and vectors to
the proper module for service.

5.1.1.2.2 MTC$BATCH, Batch Task Module

MTC$BATCH provides a user interface for the startup and termination of
batch tasks. A batch task in a forked task which processes items taken one
by one from a queue, called the "batch queue 11 , associated with that task.
The important difference between a batch task and one that is directly forked
by the user in that there can never be more than one of any given batch task
in existence (either running or suspended), while the same task may be
forked, and wi 11 be started up, regardless of whether or not it is al ready
running. So there can never be more than one data space assigned to one
batch task, while any number of data spaces may be associated with i dent i cal
forked tasks running concurrently.

Another difference between batch tasks and other forked tasks is that
batch tasks are set up with a stack in a fixed area of RAM defined by the
Batch Task Table (see below) rather than in data space.

Batch tasks are defined in the Batch Task Table template which is used by
MSI$ to build the Batch Task Table at system initialization. Entries in the
template have the following fields:

0814 System Software Manual
Section 5.1 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

OF$BATCH:TEMADR - Entry point for batch task
OF$BATCH:TEMLVL - Priority level and memory segment for batch task (seg

ment in high order bit)
OF$BATCH:TEMSTACKSIZE - Batch task stack size

The nth entry in the template is the entry for the batch task with module
number n. (The batch module number is a unique number assigned in file
EQ$BATCH.)

A batch task is started by calling routine MTC$BATCH:ENQ as follows:

Entry Conditions

* X-reg - Points to item to be enqueued to the batch task queue. The
address contained in X must be the address of a four-byte queue
element for use by the queue routines.

* A-reg - Contains module number

Exit Conditions

All registers are destroyed
CC:Z = 0

The desired entry is enqueued on the batch queue. The batch task wi 11 be
forked by MTC$BATCH if necessary to ensure prompt processing of the enqueued
item.

MTC$BATCH provides the following routines for use by batch tasks in
accessing the batch queue:

MTC$BATCH:DEQTERM

Entry Conditions

* Batch task data space fields (described earlier) and stack must be
the same as when started.

Exit Conditions -----
* If there is anything on this task's batch queue, the routine

dequeues the item and returns to the caller with X register pointing
to it. A and B registers are wiped out. Otherwise, the batch task
terminates.

It should be noted MTC$BATCH:DEQTERM is synchronized with MTC$BATCH:ENQ
and any attempt to dequeue items from the batch queue using other means will
make it possible for a queue entry to be missed.

0814 System Software Manual
Section 5.1 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.1.2.3 MTC$SCHD, Scheduled Task Submodule

A schedu 1 ed task is a forked task which is automatically forked peri odi
ca l ly by the operating system. MTC$SCHD provides a user interface for the
startup and termination of scheduled tasks.

Scheduled tasks are defined in the Scheduled Task Table template which is
used by MSI$ to build the Scheduled Task Table at system initialization.
Entries in the template have the following fields:

OF$SCHD:TEMPER - Period (in 20 millisecond units) at which task will run
OF$SCHD:TEMADR - Task entry point
OF$SCHD:TEMLVL - Level (low order bits) and segment (high order bit) at

which module will run

A scheduled task is terminated when the scheduled task calls
MTC$SCHD:TERM as follows:

Entry Conditions

* The scheduled task information in data space must be unmodified and
the stack pointer must be the same as when the scheduled task was
started.

Exit Conditions

Task is terminated.

5.1.1.2.4 MTC$DELAY, Delay Submodule

MTC$DELAY allows the user task to suspend itself for any desired time
period (expressed in milliseconds) and automatically resume when the period
is finished. MTC$DELAY is invoked by a software interrupt where the two
bytes following the SWI instruction contain the address of MTC$DELAY:ENTRY.
The calling sequence is as follows:

Entry Conditions

* Called by SWI as noted above. Caller must not be a hardware task.
X-register contains length of desired delay fnliiilliseconds.

Exit Conditions

* Task is resumed at location three bytes after the invoking SWI
instruction after the desired delay has expired. All registers are
preserved.

0814 System Software Manual
Section 5.1 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL.

5.1.1.2.5 MTC$RTC, Real-T1me Clock Handler

MTC$RTC is the handler vectored to by MTC$MAIN whenever a real-time clock
hardware service request is detected.

MTC$RTC maintains a d~ 1 ay queue (described in the 0814 Deta i1 ed Design
Spec i fi cation) for tasks suspended by MTC$DELAY and, when a task's de 1 ay
timer has expired, it resumes the task.

MTC$RTC has no software interface external to MTC.

5.1.1.2.6 MTC$IDLE, 0814 Idle Code

MTC$IDLE contains the code executed by a processor when MTC$MAIN can find
no work for it to do. MTC$IDLE contains a loop whose instructions are rough-.
1 y rep resent at i ve" in proportion of VMA eye 1 es as we 11 as in proportion of
memory write cycles. This loop is used to maintain the idle cycle counter
(described earlier). At the end of each pass through the loop, MTC$IDLE
checks if there are any service requests pending and, if so, goes to the
MTC$MAIN dispatch logic.

MTC$ IDLE' s on 1 y interface with system components externa 1 to MTC is the
idle cycle counter.

0814 System Software Manual
Section 5.1 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.2 Buffer Management Submodule Group (MBM}

Introduction

The Buffer Management Submodule Group is part of the 0814 Mainframe oper
ating system. The MBM contains utility routines for maintaining the main
frame's free buffer pool. The buffers in this pool are the dynamic memory
units which tasks can obtain and return in real-time to meet such memory
requirements as temporary data storage, input/output character buffering, and
intertask communications message buffers.

General Description

The MBM has two main functions. The first function is to maintain the.
0814 mainframe free buffer pool and to keep the statistical information nec
essary for determining buffer utilization. The second function is to provide
useful buffer utility features for the system in a central software module.
Two buffering utilities are provided. The first is a general byte file
utility and the second is a byte queue buffer utility.

1. Free Buffer Pool Management

The 0814 software system maintains a pool of fixed size free buffers so
that tasks in the system may be able to dynamically· obtain memory
resources. This pool is created at system initialization time by the Sys
tem Initialization Module and is maintained during system execution by
the Free Buffer Management Submodule (FBMS). Tasks can obtain and return
buffers from this pool by calling subroutines in the FBMS. The pool is
kept as a queue so that a historical record of buffer use is available
and so that background memory diagnostics which will test all of the buf
fer pool can be implemented. The buffer manager maintains a count of the
total number of buffers in the free pool and a count of those presently
allocated to software tasks. These numbers are used to calculate buffer
utilization statistics.

The buffer pool has two operating modes - normal and priority. When the
number of free buffers in the pool is less than a specified threshold,
the buffer pool goes into 11 priority11 mode. In this mode, only 11 priority 11

get buffer requests are a 11 owed to be successful. The purpose of the
priority mode is to control buffer pool underrun. In priority mode, sys
tem software modules that need buffers but are low priority suspend opera
tion until the buffer pool builds back up again to an acceptable level
and the pool reenters normal mode. When the pool goes into priority
mode, a flag is set so that a monitoring task can report the condition at
some later time.

0814 System Software Manual
Section 5.1 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

A.

Fields Defined for System Buffers

0 - 3
QUEUE LINKS

4 - 5
LBPTR

6 - D ... E - F
LNKPTR

QUEUE LINKS - 4 bytes for use by queue utility (see subsection on Main
frame Utility Submodule Group)

LBPTR - Pointer to last buffer in list
LNKPTR - Pointer to next buffer in list

The following operations are available on the free buffer pool:

Routine GBUF - Obtains one buffer from the free buffer pool

Entry Point - MBM$FBMS:GBUF_pRI - high priority entry

Entry Point - MBM$FBMS:GBUF - low priority entry

Entry Conditions

* None

Exit Conditions

A-register = destroyed
B-register = unchanged

* If buffer available:

X-reg = address of buffer
CC:Z = 0
CC: I = 0

* If buffer not available:

CC:Z = 1 arid CC:I = 0
A,X-registers = destroyed
B-register = unchanged

0814 System Software Manual
Section 5.1 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

B.

c.

Routine RBUF - Return one buffer to the free buffer pool

Entry Point - MBM$FBMS:RBUF

Entry Conditions

* X-reg = Address of buff er

Exit Conditions

CC:I = 0 *
*
*

A,X registers = destroyed
B-registers = unchanged

Entry Point - MBM$FBMS:RBUF_SP

Entry Conditions

* X-reg = Any address in returned buffer

Exit Conditions

* CC: I = 0

Routine RLIST - Returns list of "n" buffers

Entry Point - MBM$FBMS:RLIST

Entry Conditions

* X-reg =Address of list of buffers to be returned
LBPTR of first buffer = pointer to the last buffer in the list
NBUFS of first buffer = count of "n" buffers in the list

Exit Conditions

* CC: I = 0
* A 11 registers and data space 1 ocat ions OE$DS: BF ADR and OR$DS: BFTBP

are destroyed.

0814 System Software Manual
Section 5.1 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

D.

Routine RCHAIN - Returns list of buffers

Entry Point - MBM$FBMS:RCHAIN

Entry Conditions

* X-reg =Address of returned list of buffers
LNKPTR of the last buffer in the list must be null

Exit Conditions

*
*

CC:I = 0
All registers and data space locations OF$DS:BFADR and OF$DS:BFTMP
are destroyed.

2. Byte File Buffer Utility

MBM$BFILE provides a utility submodule for creating, deleting, and main
taining a byte file buffer system. These byte file buffers are not multipro
cessor interlocked so only one task may be using a byte file buffer at any
one time.

Byte files are used for many crucial operating system functions and there
fore use the priority buffer routine MBM$FBMS:GBUFJRI to obtain buffers as
needed.

The structure of a byte file is that it has a header buffer pointing to a
list of buffers, each linked to the next with the last 2 bytes. The format
of the header buffer is:

.
0 . 1 . 2 . 3 4 . 5 6 7 8 9 A B

BYTES O - 3 - Reserved for linking files to lists
BYTES 4 & 5 - Pointer to last buffer in file

. .
c

BYTE 6 - Total number of buffers making up file
BYTE 7 - Number of bytes allocated in file body
BYTE 8 - Address of highest written byte
BYTE 9 - Address of last byte written
BYTE A - Address of last byte read
BYTES B -> D - Not used
B¥TES E & F - Pointer to first buffer of file body

. .
D E . F . . .

The file body is composed of a linked list of buffers where the first 14
bytes of each buffer are byte fi 1 e data storage, and the 1 ast 2 bytes are a
link pointer to the next buffer in the file body. The last link pointer in
the file is zero.

0814 System Software Manual
Section 5.1 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

A.

B.

c.

The following functions are provided for manipulating byte file buffers:

Routine CREATE - Creates a byte file .

Entry Point - MBM$BFILE:CREATE

Entry Conditions

* None

Exit Conditions

*
*
*

X-reg = File descriptor address
CC:Z = CC:I = 0
If no priority buffer is available, a system error occurs.

Routine DELETE - Deletes a file

Entry Point - MBM$BFILE:DELETE

Entry Conditions

* · X-reg = File descriptor address

Exit Conditions

* CC:I = 0

Routine READ - Reads byte 11 n11 from a given file

Entry Point - MBM$BFILE:READ

Entry Conditions

*
*

B-reg = Byte address 11 n11

X-reg = File header address

Exit Conditions

*
*
*
*

A-reg = Contents of the nth byte
CC:V = 11 0ut of range 11 error
X-reg = unchanged
Data space - OF$DS:BFADR points to byte file header. OF$DS:BFTMP

destroyed.

D814 System Software Manual
Section 5.1 - 13

CODEX CORPORATION COMPANY CONFIDEITIAL

D.

E.

F.

Routine SREAD - Reads sequent i a 11 y 11next 11 byte from a fi 1 e

Entry Point - MBM$BFILE:SREAD

Entry Conditions

* X-reg = File header address

Exit Conditions

*
*
*
*
*

A-reg = Contents of the 11 next 11 byte
B-reg = Address of "next 11 byte in fi 1 e
CC: V = "Out of range" error
X-reg and data space
Same as for READ

Routine WRITE - Writes into the nth byte of file

Entry Point - MBM$BFILE:WRITE

Entry Conditions

*
*
*

A-reg = Data byte to be written to file
B-reg = Byte address 11 n11

X-reg = File header address

Exit Conditions

*
*
*
*
*

CC:V = "Unable to write" message
CC:I may be cleared to O
If no priority buffer is available, a system error occurs
B-reg = Address of 11 next11 byte in f i 1 e
X-reg and data space same as for READ.

Routine SWRITE - Writes sequentially into 11 next 11 byte of file

Entry Point - MBM$BFILE:SWRITE

Entry Conditions

* A-reg = Data byte to be written to file
X-reg = File header address

D814 System Software Manual
Section 5.1 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

*
*
*
*
*

B-reg = Address of 11 next 11 byte
CC:V = "Unable to write" message
If no priority buffer is available, a system error occurs
CC:I may be cleared to 0
X-reg and data space same as for READ.

3. Byte Queue Buffer Utility

MBM$BQUE provides a utility submodule for creating, deleting, and main
taining byte queue data structures. The byte queues are multiprocessor inter-
1 ocked so that one task may be putting bytes into a byte queue whi 1 e another
task may be removing bytes from the queue. Because of interlocking, 0 may
not be stored in the byte queue. Byte queues have no maximum size but, since
they only use 1 ow priority buffers, the total amount of memory dedicated t·o
byte queues is limited by the size of the low priority buffer pool.

The first buffer, known as the queue descriptor, has the following
format:

0 - 3 4 - 5 6 7 - 8 9 - 10 11 - 13 14 - 15 -. I

Last # Head Tail Link
N/A Buffer Buffers Pointer Pointer N/A Pointer

-1

BYTES O - 3 - Are reserved for use by the Queue Utility routines
BYTES 4 & 5 - Point to the last buffer in the list
BYTE 6 - Contains the number of buffers -1 in the list
BYTES 7 & 8 - Point to the next byte to be read
BYTES 9 & 10 - Point to the next byte to be written
BYTES 11 - 13 - Currently unused
BYTES 14 & 15 - Standard buffer link to the first data buffer

The next byte to be written (pointed to by tail pointer) always contains
bi nary zeroes. When a byte is to be written into the byte queue, the next
byte is cl eared to zero and then the new data byte is written. This allows
the "get" routine to check for an empty queue without having to disable inter
rupts and compare head and tail pointers. It simply gets the byte pointed to
be the head pointer; if it is zero, the queue is empty.

0814 System Software Manual
Section 5.1 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

A.

B.

c.

The byte queue routines consist of four user called subroutines:

Routine CREATE - Creates a byte queue

Entry Point - MBM$BQUE:CREATE

Entry Conditions

* None.

Exit Conditions

* If available:

X-reg = Address of queue descriptor
CC:Z = 0
CC:I = 0

* If not available:

/ CC :Z = 1
CC: I = 0

Routine DELETE - Deletes a byte queue

Entry Point - MBM$BQUE:DELETE

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

* CC: I = 0
* All registers and data space lo.cation OF$DS:BFADR destroyed.

Routine PUTBYT - Puts a byte into a queue

Entry Point - MBM$BQUE:PUTBYT

Entry Conditions

*
*

B-reg = A byte of data
X-reg = Queue descriptor address

0814 System Software Manual
Section 5.1 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

D.

Exit Conditions

*
*
*
*

CC:Z = "Unable to enqueue" message
CC:I may be cleared to O
X and B-register = unchanged
A-register and data space locations OF$DS:BFADR and OF$DS:BFTMP are
destroyed.

Routine GETBYT - Gets a byte from a queue

Entry Point - MBM$BQUE:GETBYT

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

*
*
*
*
*

B-reg = Dequeued byte from queue
CC:Z = "Empty queue" condition
CC:I may be cleared to O
X-register = unchanged
A-register and data space location OF$DS:BFADR destroyed.

0814 System Software Manual
Section 5.1 - 17

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.3 Mainframe Utilities

The Mainframe Utilities {MUT) is a group of submodules providing services
used by various mainframe modules. MUT includes these submodules:

MUT$BUF - Buffer submodule
MUT$DELAY - Delay submodule
MUT$MULT - Multiplication submodule
MUT$DIV - Division submodule
MUT$PCB - Port Control Block submodule
MUT$QUE - Queue manipulation submodule
MUT$AP - Addressed packet submodule
MUT$SPD - Data speed encode-decode submodule

The remainder of this subsection describes the individual submodule com
ponents of MUT • .
5.1.3.1 MUT$BUF

MUT$BUF provides routines to wait for a buffer to be available. MUT$BUF
is obsolete and should be deleted as soon as possible. It is presented here
only for the sake of completeness. MUT$BUF has these entry points:

Entry - MUT$BUF:GBW

* Attempts to get a low priority buffer, waiting a specified period
between retries

Entry Conditions

* X-reg = Length of time in milliseconds to wait between retries

Exit Conditions

*
*
*
*

X-reg = Buffer address
A, B register = Destroyed
Data space = OF$DS:BFTMP destroyed
CC: I=O

Entry - MUT$BUF:GBW10
MUT$BUF:GBW25
MUT$BUF:GBW50

These entries are identical to MUT$BUF:GBW except that a fixed delay
period of 10, 25, or 50 milliseconds, respectively, is used.

D814 System Software Manual
Section 5.1 - 18

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.3.2 MUT$DELAY

MUT$DELAY provides a convenient interface with MTC$DELAY, the MTC delay
routine. It has these entry points:

Entry - MUT$DELAY:EXEC

Entry Conditions

* X-reg =Contains delay length in milliseconds

Exit Conditions

*
*
*
Entry

Returns to user after task has been suspended for desired period
A and B registers are preserved
X-reg is destroyed

- MUT$DELAY:DL10
MUT$DELAY:DL25
MUT$DELAY:DL50
MUT$DELAY:DL100
MUT$DELAY:DL1000

Identical to MUT$DELAY:EXEC except that delay is for fixed period of 10,
25, 50, 100, or 1000 milliseconds, respectively.

5.1.3.3 MUT$MULT

MUT$MULT multiplies two 8-bit unsigned numbers and returns a 16-bit
result. The calling sequence is as follows:

Entry - MUT$MULT:ENTRY

Entry Conditions

* A and B registers each contain one multiplicand

Exit Conditions

*
*
*

A, B registers contain the 16-bit result
X-reg = Destroyed
Two bytes of stack are used for scratch

0814 System Software Manual
Section 5.1 - 19

CODEX CORPORATION COMPANY CONFIDENTIAL

5.1.3.4 MUT$DIV

MUT$DIV divides an 8-bit unsigned integer into a 16-bit unsigned integer
to give an 8-bit remainder and a 16-bit result. The calling sequence is as
follows:

Entry - MUT$DIV:ENTRY

Entry Conditions

*
*

A, B = 16-bit dividend
Stack = 8-bit divisor on top of stack (must not be 0)

Exit Conditions

*
*
*
*

A-reg = Destroyed
B-reg = Remainder
X-reg = Quotient
Stack= Destroys.the divisor field but does not pull it off stack.

Uses 5 scratch bytes on stack in addition to divisor field.

5.1.3.5 MUT$PCB

MUT$PCB contains utilities for accessing the D814 Port directory (see sec
tion on Subsystem Data Structures). These routines provide a convenient
interface with the necessary synchronization for adding and deleting Port Con
trol Blocks (PCB's) as well for locating the PCB for a port. The remainder
of this subsection describes the entry points into MUT$PCB.

Entry - MUT$PCB:ADR

Returns PCB address (if any) for a given port ID

Entry Conditions

* B .. reg = Port ID

Exit Conditions

*
*
*
*
*

A-reg = Port type (see Subsystem Data Structures)
B-reg = Port ID if port exists; otherwise, destroyed
X-reg = PCB address if port exists; otherwise, destroyed
CC:Z = Cleared if and only if the port exists
Data space = OF$DS:BFTMP is destroyed

D814 System Software Manual
Section 5.1 - 20

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry - MUT$PCB:ADDPORT

* Adds a PCB to the port di rect_ory, assigning the PCB a port address
(ID)

Entry Conditions

* X-reg = Points to PCB. The PCB and all necessary substructures must
already be set up

Exit Conditions

*
*
*
*

X,A-registers = Destroyed
Data space = OF$DS:BFTMP destroyed
B-reg = Port ID if room in directory; else, O
CC:Z = Clear if and only if there was room in the directory

Entry - MUT$PCB:DELETEPORT

* Removes a port from the port directory

Entry Conditions

* B-reg = Port ID

Exit Conditions

*
*
*

Port is removed from directory
A and X registers are destroyed
B-reg = Unchanged

5.1. 3.6 MUT$QUE

MUT$QUE provides interlocked routines for enqueueing to and dequeueing
from D814 mainframe queues. Each D814 mainframe queue must have a 6-byte
queue descriptor of the following format:

OF$MISC:QTOP - Address of link field of first queue entry (oldest item on
queue); zero if queue empty

OF$MISC:QBOT - Address of link field of last queue entry (newest item on
queue); zero if queue empty

OF$MISC:QLOCK - Address of lock byte for the queue

D814 System Software Manual
Section 5.1 - 21

CODEX CORPORATION COMPANY CONFIDENTIAL

Entries are linked onto the queue by a 2-byte link field. Each 1 ink
field contains the address of the link field of the next entry on the queue
or 0 if it is the end of the queue.

MUT$QUE has these entry points:

Entry - MUT$QUE:ENQ

Entry Conditions

*
*

X-reg = Contains address of queue descriptor
Data space= OF$DS:QUEADR {= OF$DS:BFTMP) contains address of link

field of entry to be enqueued

Exit Conditions -
* A, B, and X registers are destroyed
* _ CC:Z = Set if and only if queue was empty on entry
* Entry is enqueued on the proper queue

Entry - MUT$QUE:DEQ

Entry Conditions

* X-reg = Address of queue descriptor

Exit Conditions

*

*
*

*

X-reg = Address of entry dequeued; unpredictable if queue empty on
entry to routine

A-reg = Destroyed
B-reg = Set to 1 if queue empty after dequeue; set to 2 if queue

not empty
cc:z = Set if and only if queue empty on entry to routine

5.1.3.7 MUT$AP

MUT$AP provides two routines to aid in handling Addressed Packets {see
section on System Data Structures). These are the entry points:

Entry - MUT$AP:SEND

* Sends an Addressed Packet

Entry Conditions

* X-reg = Points to Addressed Packet byte file header. Packet must
be set up with all necessary fields filled in

D814 System Software Manual
· Section 5.1 - 22

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

X-reg = Unchanged
A, B registers = Destroyed

*
*
*
*

Data space = OF$DS:BFADR, OF$DS:BFTMP are destroyed
There are no error conditions

Entry - MUT$AP:SDSWAP

* Swaps source and destination parameters, resetting delivery error
indicator

Entry Conditions

* X-reg = Address of Addressed Packet byte file header

Exit Conditions

*
*
*

A, B, and X registers = Unchanged
Data space = OF$DS:BFTMP destroyed
Addressed Packet= Contents of offsets OF$MAP:SRCND, OF$MAP:SRCPT,

and OF$MAP:SRCMOD are interchanged with offsets
OF$MAP:DSTND, OF$MAP:DSTPT, and OF$MAP:DSTMOD,
respectively. The error indicator (high order
bit of original OF$MAP:DSTND} is reset.

5.1.3.8 MUT$SPD

MUT$SPD provides routines for encoding and decoding 16-bit link and path
speeds into a 1-byte number in a sort of floating point format. The encoded
speed is composed of a four-bit exponent {high order ni,bbl e) and a four-bit
mantissa (low order nibble}.

The actual speed is computed as:

S = (16 1/2 + B)2A - 16 (truncated if not an integer)

where

S = Actual speed
A = Exponent
B = Mantissa

The encoded speed exponent and mantissa are computed as:

A = [log2 {S + 16}] - 4 (truncated if not an integer)

B = S + 16 _ 16 (truncated if not an integer)
2A

D814 System Software Manual
Section 5.1 - 23

CODEX CORPORATION COMPANY CONFIDENTIAL

This encoding scheme results in accuracy better than ±6.3 percent for
speeds greater than 15 and better than ±3.2 percent for greater than 1008.

Encoded speeds are continuous in that, if A and C are encoded speeds and
A < B < C, then B is a val id encoded. speed and the actual speed represented
by B is less than that represented by C and greater than that represented by
A.

MUT$SPD has the following entry points:

Entry - MUT$SPD:ENCODE

Entry Conditions

* A, B registers = Contain 16-bit speed

Exit Conditions

*
*
*

A-reg = Speed in "floating point" format
8-reg = Destroyed
X-reg = Preserved

Entry - MUT$SPD:DECODE

Entry Conditions

* A-reg = Speed in "floating point" format

Exit Conditions

*
*
*

A, B registers = Actual speed {if no overflow)
X-reg = Preserved
CC:C = Set if and only if overflow out of 16th bit occurs in

decoding. If CC:C is set, then A, B contain X'FFFF'

5.1. 3. 9 MUT$BF

A routine which qui ck ly co pi es a byte file. It creates a new byte file
and copies an old byte file into it.

Entry - MUT$BF:COPY

Entry Conditions

OF$DS:BFADR = Pointer to old byte file

0814 System Software Manual
Section 5.1 - 24

CODEX CORPORATION

Exit Conditions

If copy successful:

CC: Z=O .
X-Reg = Pointer to new byte file
A-Reg & B-Reg are destroyed
OF$DS:BFADR is destroyed

If copy unsuccessful:

CC:Z=l
A-Reg, B-Reg and X-Reg are destroyed
OF$DS:BFADR is destroyed

5.1.4 Mainframe Programming

COMPANY CONFIDENTIAL

This subsection is designed to help the new 0814 mainframe programmer
write code for the mainframe running under the operating system. It is
assumed that the reader is familiar with the M6800 instruction set and has a
basic understanding of the hardware and operating system environment.

1. Code and Data Areas in the 0814 System

Code and data areas in the 0814 mainframe (in fact, in the entire system)
are rigidly separated.

Code may not be modified after system downline load. Code areas are
periodically checksummed by the background diagnostic module, MOM, and
any modified code would throw this checksum off.

Data space (and local storage if interrupts are off) may normally be used
for scratch data storage, with certain restrictions (see subsection on
MTC). Page O and System Area (addresses X 1 80 1 to X 1 FE 1 and X 1 120 1 to
X 1 lFF 1)may be used for permanently a 11 ocated storage. Large blocks of
permanently a 11 ocated storage may be reserved in data-only submodules.
Dynamic data storage is provided by system buffers and by byte files (see
subsection on MBM).

2. Intertask Communication and Synchronization

As in any multiprocessing system, communication and synchronization among
asynchronous tasks is a particularly sticky problem. The most basic
facility for task synchronization is the lock byte (see Subsystem Data
Structures). Messages may be sent among tasks executing in the same
mainframe using batch queues (see subsection on MTC$BATCH). Addressed
packets may be used, although they involve more overhead.

0814 System Software Manual
Section 5.1 - 25

CODEX CORPORATION COMPANY CONFIDENTIAL

3. Hardware Data Spaces

Special coding rules apply to tasks running in hardware data spaces (see
6000 Logic Design Spec). Interrupts may not be enabled while executing
in a hardware data space because that wou 1 d a 11 ow the data space to be
assigned to another hardware service task.

4. Stack

MTC is normally responsible for setting up the stack for a task. It is
the user's resonsibility to ensure that stack overflow does not occur.
In particular, the user should remember that if interrupts are not masked
seven bytes of stack must be available for saving the processor state on
interrupt.

5. Hardware Interface

D814 system components exist to handle many hardware interfaces. Where
such components exist they should not be circumvented. For example, all
panel IO should go through module MPC and starting, stopping, changing of
priority levels, etc., for tasks should be done through MTG. Some simple
hardware functions, on the other hand, are done directly by executing
Master Controller instructions. Among these are memory segment switch
ing, manipulation of the 6000 Master Controller interrupt mask, and
read-only operations such as reading processor status.

D814 System Software Manual
Section 5.1 - 26

CODEX CORPORATION COMPANY CONFIDENTIAL

5.2 Mainframe Addressed Packet Control Module (MAP)

The Mainframe Addressed Packet Control Module is responsible for handling
addressed packets (see section on System Data Structures) within the Main
frame. MAP has significant interfaces with these system components:

I/P (through the packet FIFO)

Mainframe Network Link Control Module (MNL)

Mainframe Path Management, Routing, . and Congestion Control Module
(MPMRCCM)

Senders and receivers of addressed packets within the local mainframe

5.2.1 Overview of MAP Addressed Packet Handling

A 11 addressed packets except those sent between modules within the same
l/P must pass through MAP for routing.

Addressed packets are received into MAP from three sources:

Addressed packets from remote nodes are recei ved by MNL from the
I/NP through the BIC data FIFO, along with user data (see subsection
on MNL). MNL separates the addressed packets from data arid sends
them to MAP.

Addressed packets originating in modules within a local I/P are sent
into the mainframe through the BIC packet FIFO. It should be noted
that even modules within the I/NP send addressed packets destined to
modules external to the I/NP through the BIC packet FIFO. MAP is
responsible for all the physical 1/0 involved in handling the BIC
packet FIFO. (See Bus Interface Chip Specification.)

Addressed packets originating within the Mainframe are enqueued
directly to MAP.

Addressed packets leave MAP in these three ways:

Addressed packets having a local mainframe module as destination are
sent directly to the destination module.

Addressed packets having a local I/P as destination are sent there
through the BIC packet FIFO. (This includes packets going to
modules within the local I/NP.)

0814 System Software Manual
Section 5.2 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

ADDRESSED PACKET HANDLING WITHIN A D814 NODE

MAINFRAME

(not I/NP) I (not I/NP) LOCAL I/i :c· LOCAL I/P

MAP I
K ---->--> ---->*

*---->--- FIFO ---->---- I FIFO

=r r-f.~->-1 1
* I VI I * I I

MAINFRAME I MAINFRAME
SOURCE V DEST
MODULE I MODULE

!LOCAL 11_ '\ 1CAL I/NP
->PACKET---->---->- '->-->--->-PACKET-->

FIFO V FIFO

I I II _1
---->----->- ->------DATA--->-->---->- ->- ->-->---DATA---------
Packet from FIFO FIFO

~~:~t~e~~~~k =r MNL 1
link. ----·

*Source or destination of a packet.

D814 System Software Manual
Section 5.2 - 2

--->--->--->
Packet to
remote node
over network
link.

CODEX CORPORATION COMPANY CONFIDENTIAL

Addressed packets having a module within a remote node as destina
tion are passed to MNL for inclusion in the data sent over an I/NP
BIC data FIFO. This data is transmitted by the I/NP over the net
work link. The included figure illustrates the above.

If an error is detected in an addressed packet, the source and desti
nation address fields are interchanged, the delivery error bit is
set, one byte error code is appended to the packet bytefil e (i ncreas
i ng the packet byte count by one), and the packet is sent back to
the source.

It should be noted that packets leave MAP in the order in which they
are received into MAP.

5.2.2 MAP External Interfaces

This section describes all significant external interfaces with MAP.

5.2.2.1 MAP I/P Packet FIFO Interface

As already stated, MAP has complete responsibility for handling the main
frame side of the BIC inbound and outbound packet FIFOs during normal system
operation. (The packet FIFO is also used by MSI during initialization, but
that does not concern us here.)

The inbound and outbound BIC packet FIFOs are used as buffers rather than
as true FIFOs. A packet FIFO may not be read by the reader unti 1 the sender
has finished filling it and once reading has begun the sender may not write
until the reader has emptied it.

This protocol is implemented by means of the sender's and reader's flag
associated with each FIFO. The sender's flag is set by the sender (MAP if
outbound FIFO or I/P software if inbound FIFO) to indicate that it may be
read by the reader (I/P software if outbound FIFO or MAP if inbound FIFO) and
the reader's flag is set by the reader to indicate that the FIFO has been
emptied. The reader's flag must be cleared by the sender before or at the
same time as the sender's flag is set, and the sender's flag is cleared by
the reader before or at the same ti me as the reader 1 s flag is set. When the
sender's flag is set, the FIFO is said to be filled, even though there may be
room for move data in the FIFO.

Packets being sent over a BIC FIFO are broken up into segments whose byte
count is less than or equal to one less than the capacity of the FIFO.

D814 System Software Manual
Section 5.2 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Before writing a segment to a packet FIFO, the sender first writes the
segment byte count. More than one segment may be pl aced in the packet FIFO
when it is filled, although the reader is not required to read every segment
in the FIFO when the FIFO is read. But the reader of a packet FIFO may not
leave a segment partially read when it sets the reader's flag and the sender
may not leave a segment partially written when it sets the sender's flag. It
should be remembered that if the sender places more than one segment in the
FIFO it is the sender's responsibility to check after the FIFO is read to see
if the FIFO is empty and, if not, to set the sender's flag again.

MAP services 1 evel 4 service requests generated when the inbound ·packet
FIFO sender's flag is set and when the outbound packet FIFO reader's flag is
set. These requests are vectored to entry point MAP$PINT:ENTRY by MTC (see
subsection on Mainframe Operating System).

The Packet Structures in I/P PCB• s are used by MAP in transmitting and
receiving packet data over the BIC. Rack substructure has both an outbound
and an inbound addressed packet queue. The outbound addressed packet queue
holds packets waiting to be sent to the I/P, the inbound addressed packet
queue holds received packets waiting to be distributed.

5.2.2.2 MAP MNL Interface

This subsection describes the interface between MAP and the Mainframe Net
work Link Control Module (MNL).

As may be seen from the diagram in the Overview subsection any addressed
packet going to or from a remote node via the local node passes through MNL
between MAP and the I/NP. This interface is implemented through two queues.

When MNL gets an addressed packet in the data stream from the I/NP it
recognizes it as such and enqueues it on the MAP batch queue using utility
MUT$AP:SEND (see subsection on Mainframe Utility Module). This activates MAP
at entry MAP$ROUTE:ENTRY. The packet is then routed as described later in
this subsection.

When MAP gets an addressed packet whose destination node is not the local
node it enqueues it to the Remote Addressed Packet Queue associated with the
proper link (see subsection on MPMRCCM interface). It uses MNL utility entry
MNL$UTIL:Q2RAPQ to do this. MNL then either includes it in the link data
stream through the BIC data FIFO (see subsection on MNL) or, if the link goes
down before it can be transmitted, re-routes it through MAP.

5.2.2.3 MAP MPMRCCM Interface

MAP calls MPMRCCM entry point MRM$ROUTE:PACKET to determine the link over
which to route a packet destined for a remote node. MRM$ROUTE:PACKET is des
cribed in the subsection on MPMRCCM.

0814 System Software Manual
Section 5.2 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.2.2.4 MAP User Interface

This subsection describes the MAP interface with senders and receivers of
addressed packets within the local mainframe.

A mainframe module wishing to send an addressed packet enqueues the
packet to the MAP batch queue using subroutine MUT$AP:SEND.

Addressed packets may be de 1 i vered to a mainframe module in two ways,
depending on the kind of module:

1} If the module is a batch task, the packet is enqueued to the
module's batch queue, causing the task to start up, if necessary, at
its entry point and process the packet (see MTC subsection for des
cription of batch tasks). The entry point and the batch queue
address are found by consulting the Module Dispatch Table (see sub".'
system Data Structures).

2) If the module is not a batch task, the module is forked at the entry
point contained in the Module Dispatch Table with the X register con
taining the address of the bytefile.

Whether or not the module is a batch task is determined by consulting the
Module Dispatch Table.

0814 System Software Manual
Section 5.2 - 5

CODEX CORPORATION

0814 Software Manual

~

COMPANY CONFIDENTIAL

CODEX CORPORATION COMPANY CONFIDENTIAL

5.3 Mainframe Statistics and Monitoring, and Reporting, Module

The Mainframe Statistics and Monitoring Module is responsible for main
taining statistical information for the node as a whole (but not for the
individual ports), providing that information on request to other local or
remote modules, and routing system reports of various danger conditions to
the designated system report node and port.

5.3.1 Functional Description

The MSM is responsible for maintaining the following statistics:

1. Processor loading, the percentage of non-idle processor time.

2. Buffer utilization, the average percentage of buffer storage in use.

3. Apparent throughput, the maximum physically constrained channel
capacity of all the terminal ports plus the transfer ports.
(Apparent throughput changes as terminals establish and disconnect
active paths.)

4. Statistical throughput, the average combined rate for characters
coming into the mainframe from terminal ports and leaving the main
frame for remote nodes.

The MSM performs the following functions:

1. The MSM runs periodically as a scheduled task every Pm seconds (Pm
defined by equate EQ$MSM:PM) to update statistical accumulations for
the above statistics. Averages of the Pm-second samplings are kept
for a configuration-defined time period called an "averaging
period". Pm is currently set at 6 and must evenly divide 360 to
guarantee that there will be an even number of sampling periods in
an averaging period. The scheduled task entry point is
MSM$MONITR:ENTRY.

2. The MSM monitors some of the above statistical accumulations- on its
scheduled run. If certain configuration determined thresholds are
exceeded, it sends a system report(s) (see below). There are thresh
olds associated with processor loading and buffer utilization.

3. The MSM maintains weighted time-averages for each of the statistics
it maintains.

The weighted time-average (WTA) of a quantity at the end of an aver
aging period N is defined as WTA(N) = (1/2) (WTA (N-1) +S) where WTA
(N-1) is the weighted time-average for the previous averaging period
and S is the average value of the quantity as sampled at Pm-second
intervals during the last averaging period. W(O) is taken to be O.

0814 System Software Manual
Section 5.3 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

These weighted time-averages are updated periodically at the expira
tion of each averaging period.

4. The MSM also handles addressed packets requesting statistical data.
It responds to such requests by sending the request or an addressed
packet containing all its weighted time-averages extrapolated to
reflect as closely as possible the current system state.

5. The MSM routes system reports recei ved from external modules, as
well as from within MSM, to the designated system report node and
port.

5.3.2 Message Interface

MSM interfaces with the modules to which it supplies information by means.
of addressed packets. The addressed packets and their contents are described
here.

5.3.2.1 Statistics Request Addressed Packet

The Statistics Request Addressed packet is sent to MSM (module number
EQ$MDT:MSM STATIS) by a module desiring mainframe statistics. The entry
point for -the MSM addressed packet batch task is MSM$AP: ENTRY. The MSM
reverses the source and destination fields and sends the packet back to the
sender with these fields filled in:

OF$MSM:AP_L.OADING - Processor loading percentge (1 byte)

OF$MSM:AP_BUFFUTIL - Buffer utilization percentage (1 byte)

OF$MSM:AP..APTHRU - Apparent throughput characters per second {2 bytes)

OF$MSM:AP-5TATTHRU - Statistical throughput characters per second (2
bytes)

OF$MSM:AP_MFCAP - Mainframe combined processor capacity in K MPU cycles
per millisecond. This number is computed at initialization and does not
change.

A 11 but the last of these fields is computed from the WTA at the end of
the last averaging period and extrapolated to the present as:

{1/2KMAX) {WTA*{2KMAX-K)+S*K) where

WTA is the weighted time-average for the previous averaging periods.

S is the average as sampled so far during the current averaging period.

0814 System Software Manual
Section 5.3 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

K is the number of Pm-second samplings which have occurred so far during
the current averaging period.

KMAX is the number of samples in an averaging period.

It can be seen that statistical information provided soon after or soon
before the expiration of an averaging period (assuming the averaging period
is much longer than Pm) will be close to the weighted time-average computed
at the end of the averaging period.

5.3.2.2 System Report Addressed Packet

As already stated, MSM is responsible for routing system reports. MSM
a 1 so originates system reports when any of its thresholds are exceeded. ~
system report is an addressed packet with these fields:

OF$SYSRPT: CODE - Code for the event being reported. MSM sends reports
for processor loading threshold exceeded (code = EQ$SYSRPT:XPROCLOAD) and
for buffer utilization threshold exceeded (code = EQ$SYSRPT:XBUFFUTIL).

OF$SYSRPT: Pl - First report parameter (some system components may use
more than one parameter). When sending a processor 1 oadi ng or buff er
utilization report, MSM places the offending percentage here.

The system report addressed packet is sent to module number
,EQ$MDT:MStLSYSRPT where it is handled by the system report router at entry
point MSM$SYSRPT:ENTRY. MSM then routes the packet to module
EQIPMDT:REPORT....SPLQ at the designated system report node and port (see
subsection on Configuration Parameters).

S.3.3 Collection of Raw Statistics

The raw data usi:td in computing MSM's statistics is collected, as already
stated, every Pm seconds. This subsection describes the module interfaces
involved in the collection of raw statistics.

Processor Loading Statistic

MTC maintains a count of tens of processor idle cycles executed
(OF$PGO:TCIDLC) which is read and reset by MSM at each scheduled run (see
MTC). MSI, the system initialization module, computes the number of micro
cycles per millisecond available from each processor, storing it in
OF$SYS :MSl'LCPS and the number of processors, storing it in OF$PGO: SY_NOPS.
MSM in its first scheduled run multiplies these numbers and stores the total
microcycles per millisecond back in OF$SYS:MSM_CPS. From OF$PGO:TCIDLC and
OF$SYS:MSM_CRS MSM computes the processor loading statistic, the percentage
of non-idle processor cycles compared to total processor cycles available.

0814 System Software Manual
Section 5.3 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Buffer Utilization Statistic

This is computed from field OF$PGO:BFMAX, the total number of system buf
fers (computed by MSI), and field OF$PGO:BFCNT, the count of currently avail
able buffers (maintained by MBM). OF$PGO:BFCNT is interlocked through lock
byte OF$SYSLCK:BFPOOL.

Apparent Throughput Statistic

Raw data for the apparent throughput calculation comes from the MNL-main
tained field OF$PCB:XMT_APTHRUPUT in the transmit data substructure of each
I/NP PCB. This field is interlocked through the STATIS lockbyte associated
with the PCB (see Subsystem Data Structures).

Statistical Throughput Statistic

MNL maintains accumulated receive and transmit character counts for each
1 ink in fields OF$PCB:Rcv_cHRCNT and OF$PCB:XMT_CHRCNT in the receive and
transmit data substructures, respectively, of each I/NP PCB. These fields
are read and reset by MSM at each scheduled run and are used to update the
statistical throughput accumulation. They are also interlocked through the
STATIS lockbyte.

5.3.4 Configuration Parameters

MSM uses various configuration node parameters defined by the user
through the ICTP and read into mainframe memory by MSI at system initiali
zation. These paramters are:

OF$PGO:SY_BUTH - Buffer utilization threshold. When buffer utilization
percentage (averaged over one Pm-second period) exceeds this number, a
system report is sent.

OF$PGO:sv_pLTH - Processor loading threshold. When processor loading
percentage (again averaged over one Pm-second period) exceeds this num
ber, a system report is sent.

OF$PGO:SY_AVTC - Averaging Time Constant. This one-byte field controls
the length of the averaging period. If AVTC is 0, then the averaging
period is Pm seconds. Otherwise, the averaging period is five minutes
times the contents of AVTC.

OF$PGO:SY_RPTN - System report node. System report addressed packets are
sent to this node by the MSM system report router, MSM$SYSRPT.

OF$PGO:SY....RPTP - System report port. System report addressed packets are
sent to this port at the above node.

0814 System Software Manual
Section 5.3 - 4

CODEX CORPORATION COM>ANY CONFIDEmAL

5.4 Mainframe Panel Control (MPC) Module

5.4.1 Introduction

The Mainframe Panel Control Module interfaces the operator at the front
panel of the mainframe with the local node (Mainframe, BICs and IPs).

Unlike an I/CTP, the Mainframe Panel has a very limited user interface in
hardware which is hardly enough to provide any extensive man-machine di a 1 og
without being much too cumbersome. Therefore, the Mainframe Panel is dele
gated to perform just simple functions under normal operating conditions.

The Mainframe Panel Control module controls the 32-character Self-Scan,
mode indicator LEDs, and the 18-key keyboard through which Panel commands may
be entered. It also triggers each processor's status to be displayed in turn
by 12 processor LED's. The Panel mode is dictated first by the position of
the keylock switch, and then the most recent mode-selecting Panel command.

5.4.2 Panel Modes and Commands

There are three Panel modes which can be set from the keylock switch:
monitor (MON) mode, program (PGM) mode, and diagnostics (DIAG) mode.

There is also an internal mode called control (CTRL) mode which can be
entered from the PGM mode by the use of a Panel command. Only in this CTRL
mode is it allowed to perform a potentially risky operation. Therefore,
entry into the CTRL mode is protected by a password.

The MON mode is a subset of the PGM mode while the PGM mode itself is a
subset of the CTRL mode.

DIAG mode is the same as monitor mode provided no keystrokes are hit
prior to turning to OIAG mode, otherwise an NMI is generated on the next key
stroke, which is not serviced by the Mainframe Panel Control Module.

Panel commands are presented in detail in Section 5.1 of the 0814 Prod
uct Functional Specification.

They can be classified into the following three categories.

1. Initialization - Load Commands

1. BOOT command is used to opt i ona 11 y reboot the entire network to a
new configuration.

2. RSET - resets a port that is currently active by clearing paths and
calls used by the port and resetting it causing ROM start-up diagnos
tics to run.

Rev. 2 0814 System Software Manual
Section 5.4 - 1

Rev. 2

COOEX CORPORATION COMPMY COIFIDEMTIAL

3. DIAG - causes a diagnostic program to be loaded and started in a
port. Diagnostic runs to completion or until a RSET command is
executed for the port.

4. LOAD - load and starts system software in a port previously reset.

All Initialization-Load commands are valid in PGM and CTRL modes.

2. Examination-Modification Commands

These commands are used to interrogate the status of the Mainframe or
IP 1 s at the local node.

The following four commands belong to this category:

1. DUMP - Dumps a memory block (Mainframe or IP)
2. EXAM - Reads an IP 1 s BIC status registers
3. MEM - Reads a memory location allowing for the modification of its

content (Mainframe or IP)
4. STEP - Steps through messages.

The DUMP, STEP and EXAM commands are valid in all modes, but the MEM com
mand is allowed only in the CTRL mode since it will be used in unusual circum
stances such as a partial system failure as a preliminary step to a.full
diagnostics procedure.

3. Auxiliary Commands

The purpose of these commands is to help an operator use the above com
mands easily, and also to permit him to get into a different Panel mode under
which a different set of Panel commands are allowed.

The following four commands belong to this category:

1. HELP - Displays the local node number and available commands in the
current mode

2. MON - Enters the MON mode
3. PGM - Enters the PGM mode
4. CTRL - Enters the CTRL mode

The first three commands, HELP, MON, and PGM commands, are valid in all
modes, while the CTRL command is allowed only in the PGM mode. Furthermore,
in order to activate the PGM or CTRL mode, the keylock switch must be set at
the PGM position.

The mode command selecting the same mode which is currently in effect is
allowed, but it does nothing.

Rev. 2 D814 System Software Manual
Section 5.4 - 2

Rev. 2

CODEX CORPORATION COM>ANY CONFIDENTIAL

5.4.3 Functional Submodule Description

There are five functional submodules in the MPC module as described
below:

1. Initialization

Called whenever there is a restarting of the local node; it initializes
the data structures for the Mainframe Panel Control module.

It also displays an initial system message

"NODE xx CONF n : CODEX 6050 INP"

on the Self-Scan, puts the Panel in the initial MON mode, and unlocks the
keyboard.

Entry Point - MPC$INIT:START

Entry Conditions

* None

Exit Conditions

*
*
*

A-reg = Destroyed
B-reg = Destroyed
X-reg = Destroyed

2. Scanning of LED Lights for Processor States

Running as a scheduled task every two seconds (Entry Point
MPC$SCAN:START), this submodule selects the next processor number so that the
processor state is displayed in the 12 LED indicators at the left side of the
Self-Scan display area by the Mainframe's Master Controller.

3. Interrupt Handler

A key stroke on the keyboard is entered into the Mainframe Master Con
troller as a Level 1 hardware interrupt which in turn invokes this interrupt
handling hardware task.

When started, the task first locks the keyboard, and then examines the
key value entered. If it is an "ENTER" or "STEP" signaling the completion of
a command line, the task forks the Command Interpreter task and terminates it
self. If it is a "CLEAR", the command line entered up to that point is
flushed and the Panel is reinitialized. Otherwise, the key value is saved as
part of the command line being assembled, the keyboard is unlocked, and then
the task is terminated.

Rev. 2 0814 System Software Manual
Section 5.4 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDEmAL

While building a command line, it also echoes a correct function key or
character for each key pushed by referring to a colTllland table.

When a syntax error is colTllli tted for a colTllland by entering a key, a "BAD
COMMAND" error message is displayed on the Self-Scan and the Panel is
reinitialized.

Entry Point - MPC$INTR:HANDLER

Entry Conditions

* CC: I = 1
* SR = lLLVVVVV

where LL = Keylock switch position
VVVVV = Key value

(Done by the Master Controller.)

Exit Conditions

* CC: I = 0
The task is terminated.

4. ColTllland Interpreter

As the main processing body for Panel commands, this queued task is
forked by the MPC Interrupt Handler when a colTllland line is completed by an
11 ENTER 11 key.

It checks the legality of the colTllland, and if it is legal, dispatches to
the colTllland-processing routines for either:

1. HELP message ~eneration
2. Reading of IP s BIC Status Registers
3. Memory Dump/Read/Write
4. Mode Management
5. Boot Interface
6. MOM AP Interface
7. Message Display

If a command is found illegal, an appropriate error message is displayed
on the Self-Scan and the Panel is reinitialized.

At the end of the colTllland processing, the keyboard is unlocked to allow
next co1T111and to be entered, and the task is terminated.

Rev. 2 0814 System Software Manual
Section 5.4 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5. Panel Message Handling

When a message is received from the MAP router at entry point
MPC$MES:ENTRY, it is added to the queue of waiting messages. Duplicate mes
sages are tallied and flushed. The Panel is notified that a message is
queued. Messages (including the number of duplicates) are removed from the
queue and displayed at the Destination by a STEP command.

5.4.4 External Interfaces

The auxiliary commands and the EXAM command have no external interfaces.
The interfaces for the other commands are referenced below.

RSET, LOAD AND DIAG

The acti ans for these routines are carried out by MOM. Therefore, MPC$
sends an addressed packet to MOM passing the port number and default para
meters. See section on MOM for addressed packet format.

BOOT

The actual processing of the BOOT command is done by the Mainframe System
Boot (MSB) module. Therefore, the MPC module only needs to pass a configura
tion number to the MSB$MPC:BOOT subroutine (refer to Section 5.5.2.1).

MEM and DUMP

MEM and DUMP commands send a 'nondestructive dump request' addressed
packet to the specified IP or mainframe. The MEM command al so sends a
1 patch 1 addressed packet when the operator elects to modify an IP or main
frame memory location. The nondestructive dump and patch addressed pack et
format is described in IPOS software IP Upload and Memory Modification
Utility (Section 6.1.11). The entry point used for response addressed
packets is MPC$CMES:ENTRY.

MPC uses the same addressed packet interface for both mainframe and IP
memory reference commands. Routing is handled by MAP. MPC merely copies the
port number, memory address and appropriate comnand code into an addressed
packet in all cases.

Rev. 2 0814 System Software Manual
Section 5 .4 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.5 Mainframe System Boot {MSB) Module

5.5.1 Introduction

A system boot is the procedure of synchronizing the network and subse
quently reloading software and/or reconfiguring it in an orderly fashion.

The boot facility is needed when an operator wants to load new sofware
and/or change the configuration in a network, and also when an incompati
bility in configuration is found in the network. In the latter case, the
incompatibility should be resolved without requiring any operator interven
tion in order to support the dynamic nature of the 0814 network.

The power-up and NP restart are not processed by the MSB module.
Instead, they are handled by the Master Controller which causes the Mainframe
System Initialization {MSI) module to start up the local node with a special
configuration such that the node is disconnected from the network.

The MSB module must handle the following three functions:

1. Boot Request Recognition
2. Boot Synchronization and Arbitration
3. Node Restart

The network may assume any topology including the one consi sti..ng of
several disconnected subnetworks which is caused by failures in the network
or by operator commands.

For a connected network, all nodes, in it must be running under the same
software and the same con fi gu rat ion indicated by the active software level
and active configuration number respectively.

5.5.2 Boot Requests

In order to
the MSB module.
Mainframe Panel,
goes down.

start a boot, a boot request must be made and entered into
A boot request may come from an operator through an I/CTP or
or it may be generated automatically when a link comes up or

5.5.2.1 Operator Boot Co11111ands

The boot commands from an I/CTP and a Mainframe Panel are described in
Sections 5.2.2 and 5.1, respectively, of the 0814 Product Functional Speci
fication. Their program interfaces are presented below in detail.

0814 System Software Manual
Section 5.5 - 1

CODEX CORPORATION " COMPANY CONFIDENTIAL

1. Boot Command from a Local I/CTP

When a boot command is entered at a 1 oca l I /CTP, the I /CTP modu 1 e must
send an Addressed Packet of the following format to the local node's
MSB$MAIN:START batch task whose module number EQ$BATCH:MSB is to be written
in the packet header as the destination module.

Addressed Packet Format

Following the standard Addressed Packet header, the Command Code of
EQ$MSB:CC...OP is written in the first byte of the text block. Then the boot
request parameters follow.

The second byte contains the boot source code which, in this case, indi
cates an operator-initiated boot.

The third byte contains the configuration number for the current boot
request at bits 3 - 0, and forced/optional flag bit for reconfiguration (Fe)
at bit 7 (set if forced). The configuration number must be verified to be
legal, i.e., to be within the range of 1 - 6, by the I/CTP.

The fourth byte has the Software Revision number for the current boot
request at bits 6 - 0, and forced/optional flag bit for software reloading
(Fs) at bit 7 (set if forced). The Software Release Level number is in the
fifth byte.

The sixth and seventh bytes contain the node number and port number, res
pectively, of an I/FOP for the source of new software if a software reloading
is needed.

0814 System Software Manual
Section 5. 5 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The text block of the Addressed Packet is depicted below:

EQ$MSB:CC_OP
I

EQ$MSB:SOURCE_OP

Fe I I I I Conf. Number

Fs I Software Rev. Number

Software Release Number

Software Source Node Number

System Disk Port Number

The boot request from the local I/CTP is accepted if it is not of lower
priority than any other boot request currently being processed by the MSB
module at the local node. Otherwise, the Addressed Packet (with the local
node number appended) is returned to the I/CTP to indicate the rejection of
the convnand.

The priority rule used to arbitrate multiple boot requests in a network
is specified later in Section 5.5.3.2.

2. Boot Convnand from the Local Mainframe Panel

The Mainframe Panel Control (MPC) module must call the fol lowing entry
point if a legal boot command is entered through the Mainframe Panel.

Entry Point - MSB$MPC:BOOT

Entry Conditions

* A-reg = Configuration number

Exit Conditions

*
*
*

A-reg = Destroyed
B-reg = Destroyed
X-reg = Destroyed

D814 System Software Manual
Section 5.5 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The boot request is accepted if it is not of 1 ower priority than any
other boot request currently being processed at the local node. In this
case, the control is returned to the caller after a short time which is
needed only to generate a boot request Addressed Packet. Otherwise, this
routine displays a "BOOT n REJECTED 11 message on the Self-Scan.

For the priority rule, see Section 5.5.3.2.

5.5.2.2 Automatic Boot Request from the Local Node

There are two entry points provided in the MSB module to be called from
the Mainframe Network Link {MNL) module. The first is called when a local
1 ink comes up, and the second is ca 11 ed when a 1oca1 1 ink goes down. These
are listed below: ·

Entry Point - MSB$MNL:LINKUP

Entry Conditions

*
*

A-reg = Remote configuration number
B-reg = I/NP port number

Exit Conditions

*
*
*

A-reg = Destroyed
B-reg = Destroyed
X-reg = Destroyed

The function of this routine depends whether any boot process is al ready
being served by the local MSB module.

When a boot process is not in progress:

If the remote conf i gu ration is the same as the 1oca1 conf i gu ration,
the routine just marks the link to be up and returns.

If the configurations are different, the routine updates the link
status, generates an automatic boot request A.P. (for internal use
in MSB module), and then returns.

When a boot process is already in progress:

The routine updates the current boot process to include the link and
returns.

Entry Point - MSB$MNL:LINKDOWN

Entry Conditions

* B-reg = I/NP port number

D814 System Software Manual
Section 5.5 - 4

CODEX CORPORATION

Exit Conditions

*
*
*

A-reg = Destroyed
B-reg = Destroyed
X-reg = Destroyed

COMPANY CONFIDENTIAL

When a boot process is not in progress, the routine just marks the link
to be down and returns. Otherwise, it updates the current boot process to
exclude the link and then returns.

5.5.2.3 Boot Request from a Remote Node

Any of the boot requests described so far may have been initiated by the
MSB module at a remote node and propagated to the local node's MSB module as
a part of the synchronization process as described in the following section.

5.5.3 Boot Synchronization and Arbitration

Once a boot procedure is started, it has to be propagated over the entire
network to make the MSB modules at all the nodes synchronized before any one
can initiate a node restart.

When multiple boot requests must be handled by an MSB module, they have
to be arbitrated so that the MSB modules at all nodes in the network agree on
the final boot request when the synchronization is complete.

These are described below in more detail.

5.5.3.1 Boot Synchronization

The synchronization procedure used by the MSB module is a variation of
the Resynch Procedure developed at Codex (see "Resynch Procedures and a
Fail-Safe Network Protocol", Steve Finn, ICC Proceedings, 1979). The
detailed MSB algorithm is presented in Appendix G of the D814 Product Func
tional Specification.

The synchronization is started when the MSB module at a node accepts a
boot request and broadcasts resynch messages to the MSB modules at all neigh
boring nodes.

When the MSB module at a node receives such a resynch message, it up
dates the local information regarding the boot synchronization and further
propagates it to the MSB modules at neighboring nodes in the form of resynch
messages.

D814 System Software Manual
Section 5.5 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

If the boot information kept at the local node indicates that the MSB
modules at all of the nodes have been resynched, the synchronization is
comp 1 ete as far as the local node's MSB module is concerned. The resynch
procedure quarantees in this case that the MSB modules at the neighboring
nodes will also be synchronized immediately after receiving the last resynch
message from the local node's MSB module if they are not already synchro
nized.

When the synchronization is complete over the network, the MSB modules at
all the nodes in the connected network will have the same final boot request,
i.e., the boot request with the same software level and the same confi gura
tion number.

If the synchronization was started by an operator, the final boot request
is the winning operator-initiated boot request. If it was automatically
started, the final boot request is the optional reconfiguration with the
majority configuration of the network. See the next section for the defini
tion of "optional" boot request.

5.5.3.2 Arbitration of Multiple Boot Requests

When multiple boot requests are entered into a network within a short
time span, content ions wi 11 arise for the MSB modules at some nodes between
the boot request updated ~o far at the local node and a newly arrived boot
request. In such cases the following priority rule is applied to resolve the
contention.

1. A "forced" boot wins over an "optional boot."

"Forced" boot means that a node restart wi 11 be schedu 1 ed at a node
even if the node al ready has the same software level and the same
configuration number active as the boot request demands. With an
"optional" boot, such a case will not result in a node restart.

~· An operator-initiated boot wins over an automatic boot.

3. For an operator-initiated boot:

a) The higher level software along with the associated source
node/port wins. If they have the same software level, the
lower-numbered source node/port wins.

b} The lower-numbered configuration wins.

0814 System Software Manual
Section 5.5 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

5.5.4 Node Restart

When the MSB module at a node completes the synchronization (and pos
sibly arbitration) step, it schedules a node restart under the following
conditions:

1. with the software 1eve1 f ram the source node/port as indicated by
the final boot request,

a) if the software reloading is forced,

b) or if it is different from the active software level;

2. and with the configuration number of the final boot request,

a) if the reconfiguration is forced,

b} or if it is different from the active configuration number

When a node restart is indeed to be done, the scheduling process is
started which depends on what kind of boot originated the network synchro
nization.

If it was due to an automatic boot request, the MSB module sends a mes
sage to all local I/CTP's and schedules a node restart to be triggered in one
minute. The message to the I/CTP's will inform operators that node restarts
wi 11 be triggered in one minute over the entire connected network for the
selected majority configuration number. It will also provide the operators
with the information about the source of the boot.

The delay period is facilitated to provide any operator the opportunity
of overriding the pending network restart with an operator-initiated boot
request. At the end of the de 1 ay period, the node restart is cance 11 ed if
another boot has gone into effect in the meantime. ·

If the completed network synchronization was due to an operator-initi
ated boot request, a node restart is triggered after a 11 owing a one-second
settling period.

5.5.5 Examples of Boot Process

Since the distributed MSB algorithm is rather complex, the following two
examples, one for an operator-initiated boot and the other for an automatic
boot, are provided to help readers understand the boot process. In order to
depict the process easily, a very simple network was chosen where there are
only 3 nodes and 2 links. There are also assumptions made regarding timing.
However, they do not interfere with following the essence of the algorithm.

For the exact algorithm, Appendix G of the 0814 Product Functional Speci
fication should be consulted.

0814 System Software Manual
Section 5.5 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

The following is the list of state variables and messages used in the MSB
algorithm.

M =
R =
B =
L =
N =
CONF =

RMI =
RM2 =

Node Mode
Resynch Count
Boot Request Table
Link Table (Link #1 [, Link #2])
Node Table (Node #1, Node #2, Node #3)
Configuration Counter Vector (conf Cl, conf C2)
This is actually a 4-element vector; but for simplicity, only 2
elements are used in the automatic boot process description.
Resynch Message of Type 1 (R, boot source)
Resynch Message of Type 2 (origin node, origin B, (list of not
yet resynched, but connected neighboring nodes))

0814 System Software Manual
Section 5.5 - 8

CODEX CORPORATION

0814 System Software Manual
Section 5.5 - 9

COMPANY CONFIDENTIAL

•

CODEX CORPORATION COMPANY CONFIDENTIAL

1. An Operator-Initiated Boot Process

Ll2 L23
Nl ----------+---------- N2 ----------+---------- N3

I
I

M = 0 M = 0 M = 0
R = 0 R = 0 R = 0
B B B
L = (2)

I
L = (2, 2)

I
L = (2)

B 1 input I (B' > B)

M <- 1
R <-1
B <- B'
N <- (1, 0, O)

RMl (1, OP)
*-------------------+--->

I

M <- 1
R <- 1
L <- (2, 1)
N <- (0, 1, 0)

RMl (1, OP)
<-------------------+---*
L <- (2)
N <- (2, 1, 0)

---*

RMl (1, OP)
*--------------------+--->

M <- 1
R <- 1
L <- (2·)
N <- (0, 0, 1)

RMl (1, OP)
<--------------------+---*
L <- (2, 2) N <- { 0, 1 , 2)
N <- (1, 2, 1)

RM2 (N2, B, (Nl, N3))

I v

<----------------+---*
N <- (2, 2, 1) I

---*
I v

0814 System Software Manual
Section 5.5 - 10

I

CODEX CORPORATION COMPANY CONFIDENTIAL

I
RM2 (N3, B, (N2))

<----------------+---*
I I N <- (1, 2, 2)

RM2 (N2, B, (Nl, N3))

---------------------+---> I N <- (1, 2, 2)

I
RM2 (N3, B, ())

<---------------+---*
N <- (2, 2, 2) I

I RM2 (N 1, BI ~ (N2))

--------------------+--->
B <- B'
N <- (2, 2, 2)

R <- 0
RM2 (N 1, BI ' ())

*--------------------+--->
M <- 2 B <- BI
R <- 0 N <- (2, 2, 2)

M <- 2
R <- 0

Synchronization is complete.
Delay 1 second before triggering node restart.

0814 System Software Manual
Section 5.5 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

2. An Automatic Boot Process

L12 L23
Nl ----------+---------- N2 ----------+---------- N3 (conf Cl) (conf C2) (conf C2)

M = 0
R = 0
B = Bl = (AUTO, Cl)
L = (0)

L12 comes up.

M <- 1
R <- 1
L <- (1)
CONF <- {O, 0)
N <- (1, 0, O)

---*

M = 0
R = 0
B = 82 = (AUTO, C2)
L = (0, 2)

L12 comes up.

M <- 1
R <- 1
L <- (1, 1)
CONF <- (0, 0)
N <- (1, 0, 0)

M = 0
R = 0
B = 83 = (AUTO, C2)
L = (2)

RMl (1, AUTO)
<----------------+---*
L <- (2)

RMl (1, AUTO) CONF <- (1, 0)
N <- (2, 1, 0) *--------------------+--->

RMl (1, AUTO)
--------------------+---> L <- {2, 1)

M <- 1
R <- 1
L <- (2)
CONF <- (0, 0)
N <- (0, 0, 1)

---*

v

RMl (1, AUTO)
<--------------------+---* L <- (2, 2) CONF <- (O, 1)
CONF <- (0, 1) N <- (0, 1 , 2)
N <- (1, 2, 1)

RM2 (N2, B2, (Nl, N3))
<----------------+---*

I
CONF <- (1, 1)
N <- (2, 2, 1) ---*

RM2 (N3, B3, (N2))
<-----------------+---* v

0814 System Software Manual
Section 5.5 - 12

CODEX CORPORATION

CONF <- (0, 2)
N <- (1, 2, 2)

COMPANY CONFIDENTIAL

RM2 (N2, B2, (Nl, N3))
---------------------+---> CONF <- (0, 2)

RM2 (N3, B3, ()) N <- (1, 2, 2)
<----------------+---* CONF <- (1, 2)
N <- (2, 2, 2)

I
RM2 (Nl, Bl, (N2))

--------------------+---> CONF <- (1, 2)'
N <- (2, 2, 2)

M <- 2
R <- 0 RM2 (Nl, Bl, ())

*--------------------+---> B <- (AUTO, C2) M <- 2 CONF <- (1, 2)
R <- 0 B <- (2, 2, 2)

B <- (AUTO, C2)

Synchronization is complete.
Send a message to local I/CTP's.
Delay 1 minute.

~

Trigger
node restart
with conf C2.

No
node restart.

0814 System Software Manual
Section 5.5 - 13

M <- 2
R <- 0 '

B <- (AUTO, C2)

No
node restart.

CODEX CORPORATION COMPANY CONFIDENTIAL

•

\

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6 Mainframe Path Mana ement Routin , and Con estion Control Module
MPMRCCM

5.6.1 Overview

The MPMRCCM has complete responsibility for control of data paths used by
customer data and by addressed packets. The MPMRCCM creates, deletes,
routes, and reroutes paths for customer data. It also provides the Mainframe
Addressed Packet Module with the route to be used by each addressed packet.
The MPMRCCM has significant interfaces with the I/P Call Management Module
(I/P CMM), the I/P Protocol Module, the Mainframe Network Link Module (MNL),
the Mainframe Addressed Packet Module (MAP), and the Intelligent Network Port
(I/NP).

are:
The MPMRCCM is divided into three functional submodule groups. These

Mainframe Path Manager (MPM) - The MPM handles establishment and deletion
of paths for user data. Paths are established in response to messages
from the I/P CMM (initial path establishment) and messages from the Main
frame Congestion Controller submodule group (rerouting of existing
paths). "The first sort of path is referred to as a 11pri mary path 11 whi 1 e
the second sort of path is referred to as a "secondary path". Paths are
deleted in response to link failure messages from the Network Link Con
trol Module as well as in response to messages from the I/P CMM. A path
may also be deleted after successful rerouting. But it should be noted
that a primary path being rerouted is never deleted until a secondary
path has been created to replace it.

Mainframe Routing Manager {MRM) - The MRM is responsible for computing
and providing to other system components routing information which is
mutually consistent throughout the connected network. The system com
ponents using this routing information are the Mainframe Addressed Packet
Module and the MPM. Raw data for routing table computation is gathered
in a network-wide resynch inc 1 udi ng a 11 MRM 1 s in the connected network
(see Appendix to the 0814 Product Functional Specification). Resynchs
are done as requested by MCC (see below) and MNL. '

Mainframe Congestion Controller (MCC) - The MCC is responsible for con
trolling user data traffic congestion by selecting paths as candidates
for rerouting. MPM does the actual rerouting when so instructed by MCC.
The information used in the path selection algorithm is gathered from the
MNL and from the MRM.

0814 System Software Manual
Section 5.6 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2 External Interfaces

This section describes all interfaces between MPMRCCM components and
other modules.

5.6.2.1 Interface with MNL

MNL must convnunicate with the MPMRCCM whenever a path is created or
deleted. In addition MNL gathers link information which is used by all three
components of MPMRCCM. MNL convnunicates with MPMRCCM by the following means:

~ Control Block (PCB) - Each Network Port, each Terminal Port, and
each path through an intermediate node has a PCB. (See Mainframe Subsys
tem Data Structures.) All three MPMJtCCM groups read data maintained by
MNL in the PCB's. MPM writes data in the PCB Path Substructures of TP
(Terminal Port), VP {Virtual Terminal Port), and XP {Transfer Port -
associated with a path at an intermediate node) PCB's. The Path Substruc
ture of these PCB's is set up by MPM in the initial stages of path crea
tion. When a path enters the Active path state {see path state machine
diagram), the PCB is passed to MNL. In general MPM may not modify a PCB
whose path state is Active and MNL may not modify a PCB in any other path
state.

Messages - In addition, various messages flow between the MNL and the
MPMRCCM. These messages are:

LINKFAIL - Informs MPM that a fink has fail ed. The message is sent
by calling routine MPM$UTIL:LINKFAIL with the ID of the NP in B
register.

MPMLINKFAILACK - Acknowledges the above. It is sent by calling
routine MNL$RECVRY:MPMFAILACK.

LUP - Informs MRM that a link has been brought up. The message is
sent by calling routine MRM$UPDATE:LINKUP with the NP ID in the A
register.

LDOWN - Informs MRM that a link has gone down. This message is sent
by calling routine MRM$UPDATE:LINKDOWN with the ID of the failed NP
in A register.

MRMLINKFAILACK - Acknowledges the above. It is sent by calling
routine MNL$RECVRY:MRMFAILACK.

ADDSLOT - Sent by MPM to tell MNL that a path has become active and
that data for it should be handled by MNL. The message is sent by
calling routine MNL$UTIL:ADDSLOT.

0814 System Software Manual
Section 5.6 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

KI LLSLOT - Sent by MPM to tell MNL to end active data t raff i c so
that the path may be deleted. The message is sent by calling
routine MNL$UTIL:KILLSLOTSWITCH or MNL$UTIL:KILLSLOTFAIL.

SLOTKILLED - Sent by MNL to MPM to signal the termination of active
data transmission over a path. It is sent by placing a message byte
file directly on the MPM batch queue. (See MNL for message format.)

5.6.2.2 Interface with I/P CMM

The I/P CMM communicates with the MPMRCCM on the following occasions:

Initial establishment of each primary or secondary path between a
source and destination

Termination of any path when no secondary path has been created to
replace it

Initiation of a call

Termination of a call

Among the subgroups of MPMRCCM, only the MPM communicates with the I/P
CMM. All such communication is by means of addressed packets. The message
parameters are described in detail in the Appendix to the 0814 Product Func
tional Specification. The messages are summarized here:

ACTCALL - Sent by I/P CMM to tell MPM to activate a call.

ACTCALLACK - Sent by MPM to tell I /P CMM that the call has been acti -
vated, meaning the ITP 1 s PCB has been initialized for the call.

CALLCLRD - Sent by MPM to tell I/P CMM that a call has been ended or that
the call specified in an ACTCALL could not be activated.

ESTXMTPATH - Sent by I/P CMM to te 11 MPM to est ab 1 i sh a path for an
active ca 11. Es tab 1 i shment of each path of a ca 11 is started by an
ESTXMTPATH received by the source MPM.

XMTPATHACT - Sent by MPM to I/P CMM at the source of a path to tel 1 I/P
CMM that the path has been activated.

RCVPATHACT - Sent by MPM to I/P CMM at the destination of a path to tell
I/P CMM that the path has been activated.

XMTPATHERR - Sent by MPM to I/P CMM at the source of a path to tell I/P
CMM that the path has failed or could not be established.

CLRCALL - Sent by I/P CMM to MPM to start terminating a call.

0814 System Software Manual
Section 5.6 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2.3 Interface with I/P Protocol Module

MPMRCCM at the destination node of an active path informs the I/P Proto
col Module if and when the path is deleted. It does this by inserting an
ICSKILLFAIL ICS sequence into the data stream through the outbound BIC data
FIFO. It should be noted that MPMRCCM (actually the MPM subgroup) only does
this after MNL has informed MPMRCCM that the path is no longer active. This
way it is impossible for both MNL and MPMRCCM to be using the same FIFO con
currently.

5.6.2.4 Interface with MAP

MAP consults MPMRCCM whenever it must route an addressed packet for a
remote node. The MRM subroutine MRM$ROUTE: PACKET is ca 11 ed with the remote
node ID as argument. The subroutine consults MRM's routing table and returns
the proper network port to use or an error indication if none exists. The
calling sequence for MRM$ROUTE is as follows:

On Entry:

* A-reg = Remote node to route to

On Exit:

* X-reg
* A-reg
* B-reg
* CC:Z
* CC:C

* Data

= Destroyed
= Adjacent node packet is to be sent to
= I/NP to be used
= Set if and only if node is unreachable
= Set if and only if route cannot be returned due to routing

table update in progress
Space = Routing buffer (OF$MRM:Ds.....ROUTEBUF) is wiped out

5.6.2.5 Interface with I/NP

The I/NP sends MPMRCCM a STATISTICS addressed packet every 30 seconds.
This packet provides MCC with all the information it needs to compute the
capacity of the link. (See section on the I/NP for the packet format.)

5.6.2.6 Operational Overview of Submodule Groups

This section presents an operational overview of each of the submodule
groups making up the MPMRCCM. Where the detailed algorithm is included in
the Appendix to the 0814 Product Funct i ona 1 Spec ifi cation, reference· wi 11 be
made to it.

D814 System Software Manual
Section 5.6 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2.7 MPM Operational Overview

As noted above, the MPM handles creation and deletion of paths for user
data. MPM is a batch task with entry point MPM$MAIN:ENTRY. Messages placed
on MPM' s batch queue may be control frames or addressed packets, or they may
be placed directly on the queue by a MPM utility provided for that purpose.
The various messages which fl ow between MPM and other MPMRCCM components as
well as external modules are described in the MPM Design Specification.

The operation of MPM may best be understood by considering the major
states associated with a path. These states are the Call State and the Path
State.

5.6.2.7.1 Call State

MPM maintains a call state at each terminal port and virtual terminal
port. There are three allowed call states:

IDLE - This port is not involved in a call and is
ti<Jl'l of a call. The call state is initially IDLE.
to IDLE from some other state, MPM notifies I/P
CALLCLRD message.

available for initia
Whenever it is reset

CMM by means of the

ACTIVE - This port is involved in a call. If paths both ways are not
currently in existence, they may be established. The call state becomes
active when an ACTCALL is received from l/P CMM and positively acknowl
edged by MPM with an ACTCALLACK.

DISCONNECTING (DISC) - A call involving this port is in the process of
disconnect1on.Wfien both paths are deleted, it will inform l/P CMM and
enter the IDLE state. The call state becomes DISCONNECTING whenever a
CLRCALL is received from l/P CMM.

The next subsection includes two diagrams showing the process of estab-
1 ishment and deletion of a typical call.

5.6.2.7.2 Path State

As a transmit path is built or deleted, it passes through a succession of
path states at each node along the path. The following is a rough descrip
tion of the path states.

NOPATH - No path currently exists.

EST (Established) - All resources needed for the path have been allocated
F this node and an attempt has been made to continue the path to the
next downstream node.

D814 System Software Manual
Section 5.6 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

INACT (Inactive) - This node has been notified that the path has been
establfshed all the way to the destination. node. An attempt has been
made to so inform the next upstream node (if one exists).

fil (Active) - Data flowing on this path is included by MNL in the link
traffic. The path state may become ACT only after the path state at each
node in the path has gone successively from NOPATH to EST and from EST to
INACT. .

KILLED - Creation of this path cannot proceed beyond the Established
State. A path becomes KILLED when a path error occurs when the state is
Established. MPM must then wait for a MARK message before it can reset
the path state to NOPATH and free up its resources. This ensures that no
path can be·created and deleted without at least one MPM message travers
ing the entire path, from start to finish, in each direction. (Note
11 finish 11 here is taken to mean the last connected link in the path tQ
cover the case of a path with a link failure.)

Every path has a path state at each node along the path except the desti
nation node. At the destination there is no path state, although the path
may be considered to have the state "path 11 if it exists and 11 nopath 11 if there
is no path to the node.

Path states are stored in the PCB Path Substructure (see section on Sub
system Data Structures). Each XP PCB contains the path state for the path
(if any) with which it is associated. Each ITP or VP PCB contains the path
state for the primary path (if any) and the secondary path (if any) originat
ing at the associated port.

It is helpful to consider MPM as a path state machine. The following fig
ure describes the states a path may have at any node and the causes of transi
tions between states. These causes are either messages received from neigh
boring MPM's or external modules or conditions which hold at the local node.
For example, if the path state in a path substructure of a PCB in INACT, it
wi 11 become ACT if an ACTPATH message is received. It wi 11 a 1 so become ACT
automatically, with no external cause, if the local node is determined to be
the destination node and if the path is a primary path.

0814 System Software Manual
Section 5.6 - 6 ·

CODEX CORPORATION COMPANY CONFIDENTIAL

PATH STATE MACHINE FOR MPM

CAUSE OF STATE TRANSITION OLD STATE
NO PATH EST I INACT

I
ACT KILLED

ESTXMTPATH msg from CMM
(if at source node of path) EST

ESTPATH msg from neighboring
MPM (if not at source) EST EST**

Request Reroute from MCC or
REROUTE from neighboring
MPM (if source of sec path) EST

LINKFAIL (incoming link) * KILLED NOP A TH NOP A TH
CLRCALL from CMM KILLED NO PATH NO PATH
LINKFAIL (outgoing link) * NOPATH NO PATH NOP A TH
MARK (no error) received from

MPM INACT NO PATH
MARK (error) received from MPM NO PATH NO PATH
Local node found to be dest.

of path INACT
ACTPATH from downstream MPM ACT
This node found to be dest.

of primary path ACT
USKILL received from MPM or

LINKFAIL from MNL NOPATH
DSKILL received from MPM * NO PATH NO PATH
SLOTKILLED from MNL NO PATH

The entry in the table for any given state and cause of state transition
is the resultant path state.

* Transition from ACT to NOPATH state occurs after KILLSLOT is sent to MNL
and SLOTKILLED response has been received.

** Fixed path only.

D814 System Software Manual
Section 5.6 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

The following figures show the process of path and call creation, path
and call deletion, and path failure in some typical common situations. It
should be remembered that in real life things may not be this simple. For
example, a link may fail when a reroute is in progress or a call may be dis
connected before it is active. To understand what happens in such cases, the
Appendix to the 0814 Product Functional Specification should be consulted.

0814 System Software Manual
Section 5.6 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

CREATION OF PRIMARY PATHS FOR A CALL THROUGH ONE INTERMEDIATE NODE

Path states are in parentheses.
Call states are in brackets.

*

Source Source
CMM MPM

I
ACTCALL +--->[ACT]

<------+ ACTCALLACK
I

I
ESTXMTP~TH--->{EST)

I ESTPATH

I

Int Node
MP_M_

I
I

Dest
MPM

- CALL IS NOW ACTIVE - - -

I
---+--->{EST)

ESTPATH
I

---+--->(EST)
I {INACT) *

(INACT) <---+--- MARK I
(INACT) <---+--- MARK I (ACT) *

I RCVPATHACT ---+--->
{ACT) <---+--- ACTPATH

{ACT) <---+--- ACTPATH
<------i--- XMTPATHACT I

- - - XMT PATH FROM CALLER IS NOW ACTIVE - - -

Dest
CMM

I I (EST) <---l ___ ESTXMTPATH
I (EST) <---+--- ESTPATH I

{EST} <---+--- ESTPATH I
{INACT) * I I

I MARK ---+--->(INACT) I
(ACT) * I MARK ---+---> (INACT)

<------+--- RCVPATHACT II
ACTPATH ---+--->(ACT)

I ACTPATH ---+--->(ACT)
I I XMTPATHACT ---i--->

- - - BOTH PATHS NOW OPERATIONAL - - -
I I

Path state for destination port PCB goes from EST to INACT and to ACT
automatically, without waiting for any further messages.

D814 System Software Manual
Section 5.6 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

DELETION OF PRIMARY PATHS FOR A CALL THROUGH ONE INTERMEDIATE NODE

Both path states are initially Active.
Transmit path states for source-destination path are in parentheses.
Transmit path states for destination-source path are in brackets ([]).
Call states are in number signs (#).

Source
CMM

Source
MPM

CLRCALL ---+---> #DISC#
(NOPATH)

ICSKILLFAIL * ---> (NOPATH)

Dest
MPM

Dest
CMM/Protocol

ICSKILLFAIL * ---+---> (NOPATH)
I ICSKILLFAIL +--->

*

USKILL ---+--->

I
[NOPATH] <---+--

<---+--- ICSKILLFAIL
I #IDLE#

<---+--- CALLCLRD
I

I
USKILL ---+---> [NOPATH]
[NOPATH] <---+ ICSKILLFAIL *

ICSKILLFAIL * I #DISC#
CALLCLRD

#IDLE#

- CALL IS NOW TERMINATED - - -

---+--->

This ICSKILLFAIL is actually sent by MNL after receiving a KILLSLOT from
the local MPM. It is received by the neighboring MNL which then informs
MPM in that node by sending it a SLOTKILLED message. These details have
been eliminated in the interest of simplicity.

D814 System Software Manual
Section 5.6 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

FAILURE OF A PRIMARY PATH FROM SOURCE TO DESTINATION

WITH NO INTERMEDIATE NODE

Path states are initially Active.
Path states are in parentheses.
Only one path of the call is shown.

Source Destination

I/P MPM MNL MNL MPM

(NOPATH) <---+--- LINKFAIL LINKFAIL ---+---> (NOPATH)

I p

<---+ XMTPATHFAIL
I I I I ICSKILLFAIL 1--->

- - - PATH IS DELETED - - -
- - - CMM MAY NOW TRY TO RE-ESTABLISH - - -

D814 System Software Manual
Section 5.6 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

LINK FAILURE ON A PRIMARY PATH

THROUGH TWO INTERMEDIATE NODES

Path state is initially Active.
Path states are in parentheses.

It is assumed that the failed link is between the intermediate nodes.

The first diagram shows what happens between the failed link and the path
destination:

Intermediate Node
MPM MN'[""'"

<---+--- LINKFAIL
KILLSLOT ---+--->

Destination Node
MNL MP_M_

(NOPATH) <---+--- SLOTKILLED I
I ICSKILLFAIL ---+--->

I SLOTKILLED ---+---> (NOPATH)

I/P

I I I ICSKILLFAIL ---+--->

The next diagram shows what happens between the failed link and the
source.

l/P
Source Node

MPM MNL

I I
<---+----------------+---

K ILLSLOTF AIL +---> I

Intermediate Node
MPM ~L

<---+--- LINKFAIL
USKILL I

I (NOPATH) <---+--- SLOTKILLED I I
<---+--- XMTPATHERR ICSKILLFAIL ---+--------------+---> I I (NOPATH) <---i--- SLOTKILLED

- PATH IS NOW DELETED - - -

D814 System Software Manual
Section 5.6 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

5.6.2.7.3 MRM Operational Overview

The algorithm used by the MRM is completely explained in Appendix A to
the Product Functional Specification and need not be described further here.

5.6.2.7.4 MCC Operational Overview

The MCC, as noted earlier, is responsible for rerouting of already-estab-
1 i shed paths for any reason other than a link failure in the path. The MCC
monitors the state of congestion of each outgoing link and, as long as there
exist congested links, triggers a congestion resynch by MRM every small time
interval (of the order of 10 seconds). If there are no congested links at
the node, it still triggers congestion resynchs, but at a much longer time
interval (of the order of 2 minutes). The reason for triggering resynchs
when there are no congested links is that a better path with sufficient avail
able bandwidth for an already-established call can open up due to a change in
network traffic patterns. For example, suppose a link between node A and
node B becomes congested, causing a call from A to B to be rerouted through a
longer path. Once the reroute is done, the previously congested link is no
longer congested. Assume that later on traffic between A and B decreases so
that there is now sufficient bandwidth to accommodate the call without
re-introducing link congestion. At this point there may be no congested
links in the network, but the call can still be profitably rerouted.

At the completion of any resynch, whether initiated by MCC or not, MCC at
each node begins a series of reroute attempts. It examines all paths through
the node and classifies each path according to its potential for succcessful
rerouting. It then goes through a subset of the potentially reroutable paths
and, for each path, tells MPM to attempt a reroute and waits for a completion
message from MPM. If no completion message is received, the wait terminates
when the next resynch completes.

Perhaps the most important consideration in the design of the MCC is sys
tem stability. The algorithm tries to inhibit oscillations and system over
loading due to repeated unsuccessful reroutes of the same path.

The MCC is a batch task with entry point MCC$EXEC:ENTRY. Messages are
placed on MCC's batch queue in two ways:

1. System components which reside in the local mainframe call subrou
tines supplied by MCC to pl ace messages in addressed packet format
directly on MCC's batch queue.

2. The I/NP sends addressed packet messages to MCC which are routed to
the MCC batch queue.

It should be noted that MCC receives no messages from non-local modules.

0814 System Software Manual
Section 5.6 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

This section wi 11 describe the interface between the MCC and the other
two MPMRCCM submodule groups in some detail, since this interface is fairly
complex and is not described elsewhere. Next the basic algorithm used by MCC
in choosing paths as candidates for rerouting will be described.

5.6.2.7.4.1 MCC Port Control Block Interface

Port control blocks (described in detail in Section XYZ) provide a data
interface among MCC, MNL, MRM, and MPM. This interface is complicated by the
fact that a PCB may be dynamically allocated (currently only transfer port
(XP) PCB's are allowed to be dynamic). Dynamic PCB creation and deletion is
done by MPM via operating system utility subroutines MUT$PCB:ADDPORT and
MUT$PCB:DELETE-..DYNXP.

MCC uses PCB's to gather two sorts of information:

1. Network link throughput data from which link excess capacity may be
computed. This information is taken from the PCB associated with
the links I/NP.

2. Path throughput data for use in rerouter decision-making. This
information is taken from the PCB associated with the path being
considered. This PCB may be an Intelligent Terminal Port {I/TP),
Virtual Port (VP), or Transfer Port {XP) PCB.

The following PCB fields in I/NP PCB's are used by MCC for Link statis-
tics:

Link Sf?ed {XMT_LNKSPD) - This is the capacity of the link in bytes/sec,
101tia ized by MNL at link startup to a configuration-set parameter and
updated by MCC from information received in the STATISTICS message. It
is not a long-term average, but merely the Link speed as computed direct
ly from the TOTALBYTES field in the previous STATISTICS message. It is
a two-byte field interlocked through the PCB's STATIS lockbyte.

Link Traffic {XMT_TRAFFIC) - This is a long-term average of the outgoing
user data rate through an I/NP in bytes/sec. It is also a two-byte field
interlocked through the STATIS lockbyte.

Overhead {XMT_OHEAD) - This is a long-term average of the overhead bytes
per second transmitted by the I/NP. It is updated by MCC from the
STATISTICS message. It is read by both both MRM and MCC to compute ex
cess capacity. It too is a two-byte field interlocked through the STATIS
lockbyte.

Link Inactive Traffic {XMT_INACT_TRAFFIC) - This is the total throughput
in bytes/sec of all paths established but not activated through the link.
It is a two-byte fie 1 d interlocked through the STA TIS l ockbyte and up
dated by the Mainframe Path Manager (MPM) module using the MCC utilities
(MCC$UTIL). It is reset by MNL whenever a link comes up.

0814 System Software Manual
Section 5.6 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

The following PCB fields in I/TP, UP, and XP PCB's are used by MCC to
gather information from MNL and MPM about an active path.

Path State {PATILSTATE and PATILPSTATE) - PCB field PATH PSTATE in I/TP
and VP PCB's and PCB field PATILSTATE in XP PCB's are read by MCC to
decide if the PCB is associated with an active primary path.

Destination node {PATl-LDSTND) - Destination node of path with which this
PCB is associated.

Estimated Statistical Spehd {SLOT_ESSPD) This is the estimated
1 ong-term speed of the pat • It is read by MCC from the PCB slot data
substructure to decide if a path can be rerouted without introducing new
network congestion.

Path Length (PATllJIOPS and PATILPHOPS) - Field PATILPHOPS in I/TP and VP
PCBT"s and field PATllJIOPS in XP PCB's express the length of the path from
the local node to its destination. It is used by MCC to determine if a
secondary path is shorter than the primary path.

Transmit Network Port (PATK_PXNP and PATK_XNP) - Field PATK_PXNP in I/TP
and VP PCB 1 s and--rlel d PATUNP in XP PCB 1 s are used to determine the
I/NP in the local node used for the outgoing path. It is used by MCC to
determine if the link used for the primary path is congested.

The above fields, unlike those in the I/NP PCB, may be located in a dynam
ically allocated PCB. To ensure that the PCB is not deleted while the above
fields are being read, the Path Data Substructure lockbyte OF$SYSLCK:PATH
must be locked while accessing them.

5.6.2.7.4.2 MCC Routing Table Interface

MCC calls MRM$ROUTE....SEC to get routing information used in determining if
an attempt should be made to reroute a path.

5.6.2.7.4.3 MCC Message Interfaces

The following Addressed Packet messages are received by MCC:

Resynch Comp 1 eted - Sent by MPM at the comp 1 et ion of a resynch. This
message means that network congestion and/or topological information has
just been updated. It causes MCC to initiate the checking of all PCB 1 s
for possible rerouting.

Reroute Attempted - Sent by MPM to indicate that the attempt to reroute a
path is complete.

Statistics - Sent every 30 seconds by the I/NP to provide MCC with the
raw information needed to compute capacity of that link.

D814 System Software Manual
Section 5.6 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

The following message is sent by MCC:

Reguest Reroute - Sent to MPM. Implies that the primary path associated
with the PCB ID contained in the message is a candidate for rerouting and
requests MPM to being rerouting. MCC conmits itself to send no other
such messages and to make no change in the PCB 1 s reroute state until a
Reroute Complete message is received from MPM.

Start Congestion Resynch - Sent to MRM to cause MRM to initiate a conges
tion re synch.

5.6.2.7.4.4 MCC Algorithm

Initiation of Resynch

As was seen in the Operational Overview Section, MCC must decide when to
initiate a congestion resynch and must, at the end of a resynch (whether or
not it was a congestion resynch) , initiate a series of reroute attempts.
This section describes how these two functions are performed.

Initiation of Resynchs

At the start of each series of reroute attempts, MCC sets a ti mer which
at expiration will cause MCC to initiate a new congestion resynch. This
timer is set to thirty seconds if there are any congested outgoing links at
the local node and two minutes if not. This means that resynchs will occur
roughly every thirty seconds as long as there are congested 1 inks in the net
work and that a resynch will almost always occur within approximately thirty
seconds of the time any congested link becomes uncongested.

Doing a Series of Reroutes

After notification of completion of a resynch, whether initiated by MCC
or not, MCC does a series of reroute attempts. Before starting any reroute
attempts, MCC cl ass if i es all active paths. Paths are cl ass if i ed into one of
four priority classes:

Priority 3 - A shorter path with sufficient excess capacity exists from
this node to the path's destination.

Priority 2 - The outgoing link used by the path is congested, but there
is a route longer than the current path with sufficient excess capacity
from here to the destination of the path.

Priority 1 - The outgoing link of the path is congested, but the path is
not priority 2 or 3.

Priority 0 - None of the above. Path is not a candidate for reroute.

D814 System Software Manual
Section 5.6 - 16

CODEX CORPORATION COMPANY CONFIDENTIAL

At this point, MCC checks if a reroute is currently in progress from the
prior series of reroute attempts If so, MCC waits for the reroute completed
message from MPM before continuing with the current series of reroutes.

MCC then tries to reroute these paths, in priority order. Before an
attempt is made, the path is checked to verify that its priority has not
changed to a lower priority since the initial classification. If so, it is
reclassified. Otherwise, MPM is sent a Reroute Request for the path and it
is reclassified as priority O. In order to avoid oscillation the paths are
rerouted one at a time: MCC always waits for notification of completion of
one attempt before requesting another.

5.6.2.7.4.5 Interface with MDL

The MPMRCCM maintains minimum depth spanning trees for use in broadcast ...
ing messages throughout the network. A minimum depth spanning tree rooted at
node A is a set of links between adjacent nodes in the network such that:

1. Any node in the connected network may be reached by one and only one
path using links from the spanning tree.

2. There is no path in the network from A to any other node in the
network using fewer links that the one using the spanning tree.

Figure la shows a typical network and Figure lb shows the same network
with only those network links on a minimum depth spanning tree rooted at node
1.

6---------7---------10

2---------3

I
4

1---------5---------8----------9

Figure la

0814 System Software Manual
Section 5.6 - 17

CODEX CORPORATION COMPANY CONFIDENTIAL

6 7----------10

I
I

2---------3

I
4

I I I
1---------5------------8-----------9

Figure lb

In order to broadcast a message to a 11 nodes in the network, the broad
casting node first sends it out over a 11 links on the spanning tree which go
outwards from itself. In other words, the broadcasting node first sends the
message to each node adjacent to it. Then each node receiving the message
from some adjacent node relays it to all other adjacent nodes on the spanning
tree. In this way, barring any change in network topology, each node in the
connected network receives one and only one copy of the message. If the net
work topology changes so that different spanning trees are used at different
nodes, it is possible for many nodes either not to receive the message or to
receive duplicates.

Spanning tree information for such a broadcast is obtained as follows:

Subroutine MRM$BROADCAST:ENTRY

On Entry:

A-reg = Node from which messages are to be broadcast

On Exit:

CC:Z = Set if and only if the spanning trees are unuseable because
the network topology is in transition.

X-reg = If CC:Z not set, points to a byte file containing a list of
all adjacent nodes to which the message should be sent in
order to reach the entire connected network.

Messages are broadcast on spanning trees by the Mainframe Downline Load
Module (MDL).

0814 System Software Manual
Section 5.6 - 18

<PORATION COMPANY CONFIDENTIAL

~ainframe Configuration Manager Module (MCM}

The purpose of the Mainframe Configuration Management Module (MCM} is to
.ow other modules in a 0814 Network to access the Configuration informa

.on located in the mainframe of the 0814 node where the MCM resides. This
.nformation is stored online in the mainframe memory and offline in CMOS
RAM's (CMEM}.

This document describes the functions performed by the MCM as well as the
command structure, the Addressed Packet Format, and the CMOS Rams (CMEM} used
to store offline parameters.

The configuration information maintained at a 0814 node can be broken
down into two parts: node parameters and port parameters. Node parameters
are those parameters common to the node. Port parameters are definitions of
the terminal's and the port's properties.

The currently active port parameters are located at the port, and there
fore, are maintained by the port modules. The node parameters are the~
parameters that are maintained online by the MCM. Both node and port para
meters are maintained offline by the MCM.

I
5.7.1 Hardware and Firmware

This section describes the hardware/firmware and 1/0 Communications inter
face required by the MCM.

1) Options Card

MCM ·requires an options card on every 0814 Mainframe. The MCM
controls all system access to the CMOS RAM residing on the options
card after system initialization. This CMEM stores off-line user
configurations, and is expected to survive power and system fail
ures. A battery is used to back up the low power CMOS RAM in case
of power down.

2} Firmware

Rev. 3

Since the CMEM is not directly mapped in the 6800 address space the
MCM must use the firmware to access it. Up to four configurations
are mapped in the CMEM space depending on the maximum number of
ports required per configuration as defined in the options PROM (see
subsection on CMEM Map Table). Each port currently takes 24 bytes
of dedicated CMEM space.

0814 System Software Manual
Section 5.7 - 1 Rev. 3

/
!

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.2 General Functional Description

The MCM performs two di sti net functions. The first function is the main
tenance of onl ine node parameters. These parameters reside in the mainframe
memory and specify information about the node as a whole, rather than informa
tion about any particular ports .on the node. This function is performed by a
batch task with entry point MGM$NODE:ENTRY.

The second function is the maintenance of offline (GMEM) configuration
parameters. These include node and port information for all the different
configurations. This function is performed by another batch task, with entry
point MGM$GMEM:ENTRY.

Addressed Packets provide the only user interface with MGM. Each Addres
sed Packet contains a list of commands specifying ope rat i ans to be performed
on configuration data. If the Addressed Packet is sent to MGM$GMEM only the
offline configuration parameters are modified. A node boot must occur before
any changes made may take effect. If the Addressed Packet is sent to
MGM$NODE the online node parameters are first modified, and the packet is
then sent to MCM$GMEM to modify the corresponding offline parameters.

The onl ine and offl ine parameter maintenance functions are described in
the following subsections.

5.7.2.1 Online Node Parameter Maintenance (Submodule MCM$NODE)

Since the online node parameters are the only parameters accessible
through this submodule, the configuration and port specified in packets
received by this submodule must be O. (See subsection on Addressed Packet
format.) If they are not, an error code is placed in the packet error code
and the packet is returned (via the MAP) to its source. The routine examines
and executes each command in the sequence they appear in the packet.

If any errors occur, an appropriate error code is stored in the packet,
the command in error is aborted, and the next command is processed.

If the command is a valid read, the field is obtained from the mainframe
memory and stored in the packet for return to the source. If the command is
a valid write, the field is updated.

If, at the end of the packet, any val id writes have been performed, the
packet is rerouted (via the MAP) to the Offline Maintenance module of MGM for
updating of the CMEM. Otherwise, the packet is returned (via the MAP) to its
source.

Rev. 3
0814 System Software Manual

Section 5.7 - 2 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.2.2 Offline (CMEM) Parameter Maintenance (Submodule MCM$CMEM)

The configuration specified in packets received by this submodule may be
either O or 1 through 4. If the configuration is zero, the online parameters
have al ready been updated by the IP or Online Maintenance module and this
module is to perform the corresponding offline update. The configuration and
port are checked for an empty configuration, invalid configuration, or
invalid port. If any of these errors occur, an appropriate error code is
pl aced in the packet error code and the packet is sent back to its source.
The routine then examines and executes each command in the sequence they
appear in the packet.

If a command is detected that al ready has a non-zero error code other
than 11 online change not allowed", the command is bypassed. This occurs if
the online update detects an error. Also, if the configuration is zero, only
val id writes contained in the packet are performed, since all reads were
previously executed by the IP or Online Maintenance module and need not be
duplicated.

If any errors occur, an appropriate error code is stored in the packet,
the command in error is aborted, and the next command is processed.

If the command is a valid read, the field is obtained from offline memory
and stored in the packet for return to the source. If the command is a valid
write, the field is updated.

The command may also be a valid copy command, either configuration copy
or port copy, in which case the corresponding operation is performed.

At the end of the packet, the packet is returned to the original source.

5.7.3 Addressed Packet Format

The configuration information is requested and returned in Addressed
Packets (the same packet is used to return information).

One configuration and port can be referenced in a packet. Therefore,
these fields occur only once in the packet. The Command Code, Value, and
Error Code fields, i.e., the Command Field, can occur up to 81 times and are
terminated by a special END command. Any information appearing in the packet
after the END command is ignored, but is maintained intact. The fields in
the packet are defined as follows:

Rev. 3
D814 System Software Manual

Section 5.7 - 3 Rev. 3

CODEX CORPORATION

OF$MAP:PSIZE
OF$MAP:DSTND
OF$MAP:DSTPT
OF$MAP:DSTMOD
OF$MAP:SRCND
OF$MAP:SRCPT
OF$MAP:SRCMOD
OF$MAP:AP_CNFG
OF$MAP :AP JORT
OF$MAP: AP JKER
OF$MAP:AP_CMND
OF$MAP:AP_VALUE
OF$MAP:AP_ECODE

I Packet S1ze
Dest Node
Dest Port
Dest Modu1e
Source Node
Source Port
Source Module
ConfiA Number
Port um6er
Packet trr. Code

_fommand Code
~alue Field
trror Code

.
-cm-n"""d"""c_o...,d-e_(,..,x'"'"' """'FF""'') I

._u_n_us_e_d _____ j

COMPANY CONFIDENTIAL

AP
Hea der

I

I
Comm and Field

I

Last Command

The AP Header is described in the section on System Data Structures.

Config Number - 1 byte - configuration to be referenced:

0 = current online ~onfiguration
1-4 = offline configurations 1 through 4

Port Number - 1 byte - Port to be referenced:

O = node parameters
1 = illegal

2-225 = ports 2 through 255

Packet Error Code - 1 byte - This field contains zero when the packet is
returned to the source if the configuration and port are valid~ other
wise, none of the commands were processed and this field contains one of
the following error codes:

EQ$MEM:EG_IVCNFG = Invalid configuration
EQ$MCM:EC_IVPORT = Invalid port
EQ$MCM:EULCNFG = Null configuration

Command Field - 3 bytes - Occur~ng up to 81 times, as follows:

Rev. 3

Command Code - 1 byte - High order bit indicates reading or writing
of field (0 = read, 1 = write). The remaining bits indicate a par
ticular data item to be referenced (see Summary of Commands). For
most, but not all, command codes the data item is a particular para
meter in CMEM, either a port or a node parameter.

D814 System Software Manual
Section 5.7 - 4 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Value Field - 1 byte - If the Command Code indicates a read, when
the packet is returned to its source this field will contain the
value (right justified) retrieved from the referenced field. If the
Command Code indicates a write, this field must contain the new
value (right justified) to be placed in the referenced field.

Error Code - 1 byte - This field should be initialized to zero when
the packet is created. It will contain zero when the packet is
returned to the source if the operation was performed successfully,
otherwise, it will contain an error code indicating why the opera
tion could not be performed, as follows:

EQ$MCM:EG_ILLCMD = Illegal command
· EQ$MCM:EC_INVCMD =Command invalid for config/port

EQ$MCM:EC_INVVAL = Invalid value

5.7.4 Offline Memory Format

The offline CMOS RAM (CMEM), as previously mentioned, contains node and
port parameters. Up to 4 different configurations may be stored in this
CMEM.

The next two subsections describe the formats for node and port paramet
ers. For each field the following is given:

1)

~~
4)

The name of the field
The size of the field
The command name to access the field
A description of the field

CMEM is divided into segments each consisting of 24 contiguous bytes.
Parameters for each port use a single segment of CMEM.

5.7.4.1 Node Parameters

This information is maintained in the two segments which would normally
be reserved for ports O and 1. Therefore, ports 0 and 1 cannot be defined in
the configuration.

The following parameters are maintained in this entry:

CMEM Checksum - 2 bytes - EQ$MCM:OF_CHKSM - This field is maintained only
in the first configuration. It contains the end-around carry checksum
for CMEM. There is no command to read or write this field as it is
maintained internal to MCM.

Rev. 3
0814 System Software Manual

Section 5. 7 - 5 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Currently Active Configuration - 1 byte - EQ$MCM:CUCNF - This field is
maintained only in the first configuration. It is used on a reboot to
determine what configuration was running when the system went down.
Note: There is no command to read or write this field, as it should be
known by all nodes and ports.

Reaort Node Number - 1 byte - EQ$MCM:CUPTN - This field contains the
no e to which all system report messages are to be sent.

Report Port Number - 1 byte - EQ$MCM:CUPTP - This field contains the
port to which all system report messages are to be sent.

Routing Debug Flags - 1 byte - EQ$MCM:CC...RDBF - Bit flags to control the
routing system trace option (see subsection on Mainframe Path Manager
Module).

Buffer Utilization Threshold - 1 byte - EQ$MCM:CC_BUTH - Threshold value
(in percent) of the number of buffers used versus the number of buffers
allocated.

Processor Loadin Threshold - 1 byte - EQ$MCM:CULTH - Threshold mean
value in percent of all processor loading.

Averaging Time Constant - 1 byte - EQ$MCM:CC....AVTC - Value of MSM 1 s averag
ing time constant {see su~section on MSM).

Active Software Level Revision Number - 1 byte - EQ$MCM:CC....ASWLV...REV -
Revision number of current software.

Active Software Level Release Number - 1 byte - EQ$MCM:CC....ASWLV...RELEASE -
Release number of current software.

Active Software Source Node - 1 byte - EQ$MCM:CC....ASWSRCNO - Node from
which software is to be loaded.

Active Software Source Port - 1 byte - EQ$MCM:CC....ASWSRCPT - Port from
which software is to be loaded.

5.7.4.2 Port Parameters

Port parameters are defined for each type of port supported by the 0814
system. The first two fields always define the type of port and the subtype.

Generic Tfipe - 4 bits - EQ$MCM:Cc_GTYP - Defines the type of IP;
I/NP, I/S P, I/ATP, etc.

Subtype - 4 bits - EQ$MCM:Cc_sTvP - Defines the subtype of the IP;
spoofing I/STP, normal I/STP, etc.

i • e.,

i .e.,

Rev. 3
0814 System Software Manual

Section 5.7 - 6 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The rest of the fields vary depending on the Generic Type, as follows:

Processor Loadin Threshold - 7 bits - EQ$MCM:CULIP - Threshold value
ln percent o processor oading danger level for the port.

Buffer Utilization Threshold - 7 bits - EQ$MCM:CC-8UIP - Threshold value
(in percent) of buffer utilization danger level for the port.

Time Constant Factor - 7 bits - EQ$MCM:CC_TIME - A parameter controlling
the statistics collection weighting.

5.7.4.2.1 Intelligent Network Port (I/NP)

~ - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:CC_SPDL - The line speed in
~Y. This field is broken into two 1-byte fields for updating and
retrieval (SPDH being the high order byte and SPDL the low order byte).

Comm. Node - 2 bits - EQ$MCM:CC_MODE - Specifies whether the IP is oper
ating in full duplex, local loopback, or remote loopback.

NRZI Mode - 1 bit - EQ$MCM:CC__NRZI - NRZ/NRZI coding specification.

USON - 8 bits (EQ$MCM:cc__usoN. Data rate ...,...,._,_..,.....,.....,,__,.......__,.--_,_....,__a...,....a rm i s i s sued.

NOAK - 7 bits (EQ$MCM:CC__NOAK). Time (in ____ ..,._ __ _.. ___ _.,. __ --+......,..__...,.

w1ll wait without receiving any ACKs from
before declaring itself dead.

5.7.4.2.2 Transfer Port (XP)

Recv. Adj. Node - 7 bits - EQ$MCM: CC....RADN - Contains the number of the
node which will transmit to this port.

Recv. Adj. Port - 1 byte - EQ$MCM:CC....RADP - Contains the number of the
port which will transmit to this port.

Xmit. Adj. Node - 7 bits - EQ$MCM:CCJADN - Contains the number of the
node to which this port will transmit.

Xmi t. Adj. Port - 1 byte - EQ$MCM: CCJADP - Contains the number of the
port to which this port will transmit.

Xmit. Network Port - 1 byte - EQ$MCM:CC_XNTP - Contains the number of the
port at this node used to transmit to the Xmit. Adj. Node/Port. If this
field is zero, the 6050 will choose the NP to be used to transmit to the
Xmit. Adj. Node/Port.

Rev. 3
0814 System Software Manual

Section 5.7 - 7 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.4.2.3 Intelligent Synchronous Terminal Port (l/STP)

Speed - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:SPDL - (same as for I/NP).

Code Type - 1 byte - EQ$MCM:CC_CODE - Specifies the code type used by the
terminal.

Data Bits - 2 bits - EQ$MCM:CC_QBTS - Specifies the number of bits con
tained in each character transmitted and received at the terminal (not
including any parity bit). The valid values are:

O = 5 bits
1 = 6 bits
2 = 7 bits
3 = 8 bits

Parity - 2 bits - EQ$MCM:CURTY - Specifies whether even, odd, mark, or
space parity is used by the terminal.

Of lay - 1 byte - EQ$MCM: CG_OEL Y - Defines the amount of ti me to delay
a ter receiving the first character of a block for the terminal before
sending it.

Comm. Mode - 2 bits - EQ$MCM:CG....MODE - Same as for I/NP.

{OPl Mode - 1 byte - EQ$MCM:CC_OPMD - Defines special operating charac
ter1stics of the terminal port or modem.

Routing - 3 bits - EQ$MCM:CC_RTNG - Specifies whether dynamic, or fixed
routing is to be used. Also specifies path priority.

Dest. Node - 7 bits - EQ$MCM :CC_QSTN - Defines the node that data from
the term1nal is destined for.

Dest. Port- 1 byte - EQ$MCM:CUSTP - Defines the port that data from the
terminal is destined for.

Xmit. Adj. Node - 7 bits - EQ$MCM:CG_XADN - Same as for XP.

Xmit. Adj. Port - 1 byte - EQ$MCM:cc_xAoP - Same as for XP.

Xmit. Path Priority - 3 bits - EQ$MCM:CG_XPTY - Specifies the network
pr10r1ty of this terminal (used to calculate the slot weight).

Xmit. Network Port - 1 byte - EQ$MCM:CG_XNTP - Same as for XP.

Security Level - 3 bits - EQ$MCM:CUECL - Priority of call for shortest
path routing. 7 = high, 0 = low.

Call Type - 2 bits - EQ$MCM:CLCALL - Method of call handling within the
0814 network: Leased Line, Autodial, Dialup, contention.

Rev. 3
0814 System Software Manual

Section 5.7 - 8 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

RTS/CTS Delaf - 1 byte - EQ$MCM:CC_CTSD - Delay for presenting CTS (in
milliseconds after detection of RTS.

Comp. Eff. Threshold - 1 byte - EQ$MCM:CC_CEIP - Threshold value (in
percent) of the number of bits received from the user equipment to the
number of bits sent over the network.

Error Density Threshold - 7 bits - EQ$MCM:CC_EDIP - Threshold value (in
percent) of the number of characters received with bad parity to the
total number of characters received.

5.7.4.2.4 Intelligent Asynchronous Terminal Port (I/ATP}

Code Type - 1 byte - EQ$MCM:CC_COOE - Same as for I/STP.

Speed - 2 bytes - EQ$MCM:CC_SPDH & EQ$MCM:SPDL - The line speed in·
binary, if external clocking is to be used. Otherwise, if internal clock
ing is to be used, the high order byte is set to X1 FF 1 and the low order
byte contains an encoded speed (X 1 00 1 to X1 FF 1 being the 2651 on-chip
baud rates). This field is broken into two 1-byte fields for updating
and retrieval (SPOH being the high order byte and SPDL the low order
byte).

Data Bits - 2 bits - EQ$MCM:CC.J)BTS - Same as for I/STP.

Stop Bits - 2 bits - EQ$MCM:CC-5TPB - Defines the number of stop bits for
asynchronous transmission. The valid values are:

0 = 1 bit
1 = 1 bit
2 = 1.5 bits
3 = 2 bits

Parity - 2 bits - EQ$MCM:CC_pRTY - Same as for I/STP.

Auto Echo - 1 bit - EQ$MCM:CC_ECHO - Specifies whether chraracters re
ceived from the terminal are to be echoed back to the terminal.

Flyback - 1 byte - EQ$MCM:CC_FLYB - Defines the character to be searched
for when transmitting to a mechanical printer. When this character ·is
detected, PAD characters are transmitted for a defined period of time to
allow the carriage to return. Typically, this field is set to the car
riage return character. If this character is set to zero, no search
occurs.

Garble Character - 1 byte - EQ$MCM:CC_GARB - Defines the hex character to
be sent to the terminal when a character is received containing bad
parity.

Rev. 3
0814 System Software Manual

Sect i on 5. 7 .;. 9 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.

{OP) Mode - 1 byte - EQ$MCM:CC_OPMD - Same as for I/STP.

Routing - 3 bits - EQ$MCM:Cc....RTNG - Same as for I/STP.

Dest. Node - 7 bits - EQ$MCM:CC_DSTN - Same as for I/STP.

Dest. Port - 1 byte - EQ$MCM:CC_DSTP - Same as for I/STP.

Xmit. Adj. Node - 7 bits - EQ$MCM:CG_XADN - Same as for XP.

Xmit. Adj. Port - 1 byte - EQ$MCM:cc_xADP - Same as for XP.

Xmit. Path Priority - 3 bits - EQ$MCM:CC_XPTY - Same as for 1/STP.

Xmit. Network Port - 1 byte - EQ$MCM:cc_xNTP - Same as for XP.

Error Density Threshold - 7 bits - EQ$MCM:CC_EDIP - Threshold value (in
percent) of the number of characters received with bad parity, framing
error, or overrun to the total number of characters received.

5.7.4.2.5 Intelligent Bit-Oriented-Protocol Port {I/BOP)

Speed - 2 bytes - EQ$MCM:CG_SPDH and EQ$MCfvl...CG_SPDL - Same as for I/NP.

Data Bits - 2 bits - EQ$MCM:CC_DBTS - Same as for 1-/STP.

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.

Routing - 3 bits - EQ$MCM:CC_RTNG - Same as for I/STP.

Dest. Node - 7 bits - EQ$MCM:CC_DSTN - Same as for I/STP.

Dest. Port - 1 byte - EQ$MCM:CC_DSTP - Same as for I/STP.

Xmt. Adj. Node - 7 bits - EQ$MCM:cc_xADN - Same as for XP.

Xmt. Adj. Port - 1 byte - EQ$MCM:cc_xADP - Same as for XP.

Xmt. Path Priority - 3 bits - EQ$MCM:cc_xPTY - Same as for I/STP.

Xmt. Network Port - 1 byte - EQ$MCM:CG_XNTP - Same as for I/NP.

Comp. Eff. Threshold - 1 byte - EQ$MCM:CC_CEIP - Same as for I/STP.

Error Density Threshold - 7 bits - EQ$MCM:CC_EDIP - Threshold value (in
percent) of number of bad frames received versus total number of frames
received.

Rev. 3
D814 System Software Manual

Section 5.7 - 10

/

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Proc. Load. Threshold
meters.

7 bits EQ$MCM: CU LIP Same as in port para-

Buff. Util. Threshold - 7 bits - EQ$MCM:CUUIP - Same as in port para
meters.

Security Level - 3 bits - EQ$MCM:cc_sEcL - Same as for I/STP.

Call Type - 2 bits - EQ$MCM:CC_CALL - Same as for l/STP.

RTS/CTS Delay - 1 byte - EQ$MCM:CC_CTSD - Same as for I/STP.

NRZ/NRZI Option - 1 bit - EQ$MCM:CC_NRZI - NRZ/NRZI coding.

Bad FCS Option - 1 bit - EQ$MCM:CC--8FCS - disposition of a frame received
with bad FCS (abort or discard).

Address Field Ext. - 1 bit - EQ$MCM:CC....AEXT - Specifies whether address
field of a frame may be extended.

Control Field Ext. - 1 bit - EQ$MCM:CC_CEXT - Specifies wehther control
field of a frame may be extended.

Logical Control Field - 1 bit - EQ$MCM:CC_LCF - Specifies whether there
is a logical control field in a frame.

Abort Ext. Idle - 1 bit - EQ$MCM:CC....AIDL - Specifies whether an abort is
to be followed by a~ idle.

Two Flags Option - 1 bit - EQ$MCM:CG....2FLG - Specifies whether a flag can
act as closing and opening flags at the same time.

5.7.4.2.6 Intelligent Control Terminal Port (I/CTP}

Speed - 2 bytes - EQ$MCM:CG_SPDH & EQ$MCM:SPDL - Same as for I/ATP.

Data Bits - 2 bits - EQ$MCM:CC_DBTS - Same as for I/STP.

Stop Bits - 2 bits - EQ$MCM:CC_$TPB - Same as for I/ATP.

Parity - 2 bits - EQ$MCM:CURTY - Same as for I/STP.

Auto Echo - 1 bit - EQ$MCM:CC_ECHO - Same as for I/ATP.

Flyback - 1 byte - EQ$MCM:CC__FLYB - Same as for I/ATP.

Garble Character - 1 byte - EQ$MCM:CC_GARB - Same as for I/ATP.

Comm. Mode - 2 bits - EQ$MCM:CC_MODE - Same as for I/NP.

Rev. 3
D814 System Software Manual

Section 5.7 - 11 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.4.2.7 Autospeed Definition Port (ADP)

Code Type - 1 byte - EQ$MCM:CC_CODE - Sa~e as for I/STP;

Speed - 2 bytes - EQ$MCM:CC....SPDH & OF$CMEM:SPDL - Same as for I/ATP.

Data Bits - 2 bits - EQ$MCM:CC_J)BTS - Same as for I/STP.

Stop Bits - 2 bits - EQ$MCM:CG_STPB - Same as for I/ATP.

Parity - 2 bits - EQ$MCM:CURTY - Same as for I/STP.

Auto Echo - 1 bit - EQ$MCM:CC_ECHO - Same as for I/ATP.

Flyback - 1 byte - EQ$MCM:CG_FLYB - Same as for I/ATP.

Garble Character - 1 byte - EQ$MCM:CG_GARB - Same as for I/ATP.

Comm. Mode - 2 bits - EQ$MCM:CC.J>10DE - Same as for I/STP.

(OP) Mode - 1 byte - EQ$MCM:CC_OPMD - Same as for I/STP.

Recognition Character - 1 byte - EQ$MCM:CUCHR - Defines the autospeed
character for this definition.

Substitution Character - 1 byte - EQ$MCM:CC....SCHR - Defines the character
to be sent in place of the autospeed character.

5.7.4.3 Special CMEM Conunands

Certain CMEM commands perform actions which are more complex than simply
reading or writing one port or node parameter. These commands are listed
here:

Copy Port - EQ$MCM:CC_CPYP - This command causes all the port parameters
for the port to be copied to the port whose number is contained in the
value field. The Copy Port command copies port parameters between port
CMEM entries in the same configuration. It cannot be used to copy data
between different configurations.

Li st VPs - EQ$MCM: CC_LSTV - This command causes a 1 i st of a 11 VPs asso
c1 ated with the port (which must be a physical multi-threaded port) to be
appended to the addressed packet. If the list cannot be appended without
overflowing the maximum allowable size of an addressed packet {255 bytes)
an error occurs.

Rev. 3
D814 System Software Manual

Section 5.7 - 12 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The format of the list is such that the n 1 th byte in the list is the VP
associated with thread number n. If n is not a val id thread (meaning
there is no VP for that thread number} then an 0 byte is stored if n is
less than the highest valid thread. The last byte in the list is the VP
associated with the highest valid thread number.

The above commands ignore the high order (read/write} bit in the command
code.

5.7.5 CMEM Definition

The fo 11 owing is a map of the CMEM entries for the 0814 system. Note,
all fields with the same name for different port types are assigned the'""'Sailie
relative locations.

Node Parameters

CHKSM CHKSM
BlJTH

I I
I/NP

GTYP
I STYP NRZI

SPDH SPDL

TIMC

XP

6TYP
STYP RADN

Rev. 3

ACMF RPTN RPTP RDBF
PITH AVTC R-rV R-rVT

I I I

USON NOAK

I

RADP XADN XADP XNTP

0814 System Software Manual
Section 5.7 - 13

NlrDT PlrRI

I I

I

PLIP BUIP I

I

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

I/STP

GTYP I I CALL I RTNG
STYP

SPDH

CTSD

I/MSTP, l/MATP

VATP

GTYP
STYP

DSTN DSTP

SPDL CODE

PPAD

TIMC

XADN XADP XNTP
~N

DELY SYNC IDLL

THRO CEIP EDIP

STYP DSTN DSTP XADN XADP XNTP

SPDH SPDL

CTSD

I/BOP

STYP DSTN

SPDH SPDL

CTSP TIMC

Rev. 3

CODE GARB FLYB FDLY

PPAD THRO CEIP EDIP

DSTP XADN XADP XNTP

CLCK AIDL 2FLG

CEIP EDIP

0814 System Software Manual
Section 5.7 - 14

SECL XPTY
MUOI::.
DBTS *1

TRNS

PUP BUIP

DBTS *1

XONN XOFF

*2 ~PTY -1
MODE
DBTS

PUP BUIP I

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

l/CTP

I GTYP PSTPBI
STYP PSPDH PSPDL PDBTS PFLYB PPRTY

EAU
STPB

SPDH I SPDL I I GARB I FLYB I DBTS *1 I MODE I
TIMC PLIB BUIP I

ADP

GTYP NCR!
STYP RCHR SCHR

SPDH SPDL CODE GARB FLYB OPMD

*1 - Contains PRTY, ADCM, LOGG, ASP - for VATP contain DROP also.

*2 - For IBOP contains CALL, SECL.

5.7.6 CMEM Map Table

This table, which is built by MSI at system intialization from informa
tion stored in the Options ROM, describes wher• the four different configura
tions start in CMEM and how many port entries are available in each configur
ation. The address of this table is set up at OF$SYS:CMCMT. Each entry is
three bytes long, containing: MP# - this is the number of highest port allow
ed for the configuration, and CMEM Base Address - this is the base address of
the configuration. The table appears as follows:

Rev. 3

- Configuration #1
- Configuration #2
- Configuration #3

r. - Configuration #4
........,,,.;.:-..+--,,~.;...,....,---

- Ending Address of Config. 4 + 1

D814 System Software Manual
Section 5.7 - 15 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.7.7 Options ROM Port Option Table

This table resides in the Options ROM and is used to validate a port gen
eric type and subtype for a particular 0814 sub-system. Each entry for a par
ticular generic type is two bytes long, containing a bit for each subtype,
indicating the validity of that subtype. If a bit is zero, the subtype is in
valid for the system. The bit position for a particular subtype is deter
mined from right to left by the subtype value, i.e., the LSB corresponds to
subtype zero, the next higher bit to subtype 1, etc. For the generic port
type to be allowed, the subtype O bit in the ports entry in this table must
be set.

5.7.8 Summary of Commands

The following is a
addressed packet. The
prefixed by EQ$MCM: C.C_.
produce a write command.

Rev. 3

summary of the command codes passed to MCM in the
command names given are defined if EQ$MCM and are
The commands should be ORed with EQ$MCM:CC_WRITE to

0814 System Software Manual
Section 5.7 - 16 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

------Command valid for-------
N I x A
0 I p D
D N p
E p

Command
RPTN x
RPTP x
EDTH x
CERT x
RRTH x
CETH x
BUTH x
PLTH x
AVTC x
REV x
REL x
NODE x
PORT x
GTYP x x x
STYP x x x
CODE x
SPDH x x
SPDL x x
DBTS x
STPB x
PRTY x
ECHO x
FLYB x
GARB x
MODE x x
OPMD x
DELY
RTNG x
DSTN
DSTP
XADN x
XADP x
XPTY
XNTP x
RADN x
RADP x
RCHR x
SCHR x
CPYC
CPYP
EMPC

Rev. 3

I I I I
I I I I
s A c B
T T T 0
p p p p Field Referenced

Report Node
Report Port
Error Density Threshold
Error Rate Threshold
ReXmit. Rate Threshold
Compress. Eff. Threshold
Buffer Util. Threshold
Process. Loading Threshold
Averaging Time Constant
Current Software Revision Number
Current Software Release Number
Current Software Source Node
Current Software Source Port

x x x x Generic Type
x x x x Subtype
x x Code Type
x x x x Speed (MS Byte)
x x x x Speed (LS Byte)
x x x x Data Bits

x x Stop Bits
x x x Parity

x x Auto Echo
x x Flyback
x x Garb 1 e Char.

x x x x Comm. Mode
x x (OP) Mode
x Delay
x x x Routing
x x x Dest. Node
x x x Dest. Port
x x x Xmt. Adj • Node
x x x Xmt. Adj. Port
x x x Xmt. Path Priority
x x x Xmt. Network Port

Rev. Adj. Node
Rev. Adj. Port
Recognition Char.
Substitution Char.
Copy Confi g.
Copy Port
Empty Confi g.

(Continued on next page.)

0814 System Software Manual
Section 5.7 - 17 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

------Command valid for-------
N I x A
0 I p D
D N p
E p

Command
LSTV

CTSD x
SECL x
CALL x
TIMC x x
USON x
NOAK x
NRZI x
BFCS
AEXT
CEXT
LCF
AIDL
2FLG
CEIP
EDIP
PUP x
BUIP x
PPAD

THRO

Rev. 3

I I I I
I I I I
s A c B
T T T 0
p p p p Field Referenced

Append List of VP's associated
with a multi-threaded port
(ordered by thread number)

x x x RTS/CTS Delay
x x x Se cu ri ty Level
x x .x Call Type
x x x x Time Constant Factor (Statistics)

User Data Rate Threshold (/100)
No-Ack Timeout

x NRZ/NRZI Coding
x Bad FCS Option
x Address Field Extension Option
x Control Field Extension Option
x Logical Control Field Option
x Abort followed by Idle
x 2 Flags/l Flag Option

x x x Compression Efficiency Threshold
x x x Error Density Threshold
x x x x Processor Loading Threshold
x x x x Buffer Utilization Threshold

Physical Port Address (valid
a 11 VP types)

for

Thread Number (valid for all VP
types)

0814 System Software Manual
Section 5.7 - 18 Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8 Mainframe Network Link Control Module (MNL)

5.8.1 Functional Specification

The processing of network link data is divided into two software modules,
one residing in the mainframe and the other residing in the I/NP. The pur
pose of this section is to describe the functions of the Mainframe Network
Link Control Module (MNL).

This section references the D814 Bus Interface Chip Functional Specifica
tion and the reader should be familiar with that document.

5.8.1.1 General Description

The MNL module is responsible for assembling data into 'frames' (or
blocks) to be moved (via the I/NP) across a network link to another node in
the network. It is also responsible for receiving such frames (via the I/NP)
from adj a cent nodes and di stri but i ng the data contained in these frames to
the appropriate buffers, I/TPs and/or system modules in the local node. The
function of the I/NP is to move the frames of data built by the MNL module
error free across network links. The interface between MNL and the I/NP is
the Bus Interface Chip (BIC), and in particular the BIC data FIFOs. In per
forming its functions, MNL handles all data passed between the mainframe and
the I/NP via the BIC data FIFOs.

In addition to assembling frames for transmission to other nodes and dis
tributing frames received from other nodes, the MNL module has responsibility
for the local 'transmission' of data between I/TPs co-located at a node.
This function will be referred to as the 'Local NP' function. The 'Local NP'
will always exist at a node, and will be automatically configured at system
initialization time. The port address X'Ol' is the reserved 'Local NP'
address and no other port may be configured at that address.

MNL is also responsible for monitoring for certain system error condi
tions. These will be explained below.

5.8.1.2 Frame Types

There are three types of frames MNL sends to and receives from other
nodes. These are Control Frames, Addressed Packet Frames and Data Frames.
Control Frames contain system control information such as system boot infor
mation, routing control, path management control, and link set up and initial
ization information. Addressed Packet Frames contain system and/or user
packet messages that are to be moved through the network via the 6050 dynamic
packet system. Data Frames contain user data received from I/TPs that must
be moved through the network. Control Frames are always given priority over
Data and Addressed Packet Frames by MNL.

D814 System Software Manual
Section 5.8 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

The 1 Local NP 1 does not use a frame structure and therefore does not
transmit either Control Frames or Data Frames. Furthermore, addressed
packets are not sent via the 1 Local NP 1 •

5.8.1.3 Internal Frame Structure

Information passed between the MNL module and I/NP is transmitted in
frames through the BIC data 'FIFOs. These frames do not have the same format
as the frames sent over the high speed network link. To di st i ngui sh between
these two types of frames, we wi 11 ca 11 frames which are exchanged between
the MNL module and the I/NP, Internal Frames. The formats of the three types
of Internal Frames are defined below. The first byte of any frame exchanged
between the mainframe and I/NP contains a type identifier which designates
the frame that follows as either control, addressed packet or data.

5.8.1.3.1 Jnternal Control Frame Format

Internal Control Frames consis~ of multiple fields as follows:

1. Frame Type Identifier (FTI): A one byte field equal to X1 C0 1 for
control Frames.

2. Control Message Fields: A control message consists of three sub
fields as follows:

a. Length/Terminator Subfield - A one byte subfield. If equal to
X1 0l 1 this subfield terminates the control frame. If not equal
to X1 0l 1 , this subfield equals the total number of bytes in the
current control message field (including the length byte).

b. Control Message Body - A multiple byte field of data which is
passed to the system module which processes the control mes
sage.

x•o1•
control control control control
message length message length

"nu "nu 1
body body

Internal Control Frame Format

0814 System Software Manual
Section 5.8 - 2

1

FTI
>

x•co•

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.3.2 Internal Addressed Packet Frame Format

Internal Addressed Packet Frames consist of multiple fields as follows:

1. Frame Type Identifier (FTI): A one byte field equal to X1 80 1 for
Addressed Packet Frames.

2. Addressed Packet Fields: An addressed packet consists of two sub
fields as follows:

a. Length/Terminator Subfields - A one byte subfield. If equal to
X1 0l 1 , this subfield terminates the addressed packet frame. If
not equal to X10l 1 , this subfield equals the total number of
bytes in the current addressed packet field (including the
1 ength byte).

b. Addressed Packet Body - A multiple byte field of data which is
passed to the system router which processes the addressed
packet when it arrives at the remote node.

address address address address FTI
X1 0l 1 packet packet packet packet >

"n .. "n" 1 1 X1 80 1

body 1 ength body 1 ength
I

Internal Addressed Packet Frame Format

5.8.1.3.3 Internal Data Frame Format

The Internal Data Frame Format consists of multiple fields as follows:

1. Frame Type Identifier: A one byte field equal to X1 40 1 for Data
Frames.

2. Slot Fields: Multiple byte fields containing one or more Data Slot
Subfields. The format of the Data Slot subfield is as follows:

i) Address/Terminator Subfield - A one byte subfield. If equal to
1 X1 Ol 1, the Frame is terminated. If greater than X 1 01 1 but
less than or equal to X1 FF 1 , then this field specifies the port
address at the remote node to which the nibble Data Subfield is
to be delivered. x•oo• is not allowed.

D814 System Software Manual
Section 5.8 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

ii) Nibble Data Subfield - A multiple byte subfield where each byte
contains one or two 4 bit code segments, called nibbles. The
format of the bytes is as f o 11 ows:

a) X'ab' (a .ne. 0, b .ne. 0) - 2 data nibbles

b} X'Ob' (b .ne. 0) - 1 data nibble

c) X'aO' (O<a<F) -in-channel control s i gna 1 (ICS)

d) X'FO' - nibble data slot terminator

e) X'OO' is not all owed

X'Ol' X'FO' DATA ADR X'FO' DATA ADR FTI
X'40' >

Internal Data Frame Format

5.8.1.3.4 BIC Data FIFO Coding

The BIC data FIFOs are implemented in hardware in such a way that reading
an empty FIFO will return a value of X'OO'. This scheme allows software to
eliminate a status check of a FIFO before a read if X1 00 1 is never stored in
the FIFO. This feature is used by the MNL Moduleand I/NP to speed up pro
cessing and reduce I/0 bus overhead (e.g., status reads).

In order to take advantage of this feature, data transferred through the
FIFO must be coded such that X'OO' never appears. The following coding
scheme is used for passing data through the BIC data FIFOs:

Data Byte

X'Ol --> X1 FE 1

X'OO'

X1 FF 1

FIFO Code

X'Ol' --> X'FE'

X'FF' ,X'FE'

x I FF I 'x I FD I

This coding causes approximately a 1 percent increase in bi.as transfer
overhead, but reduces software overhead by as much as 25 percent per byte
transferred.

D814 System Software Manual
Section 5.8 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.4 Port Control Block Interface

MNL uses the Port Control Block (PCB) both as a shared data interface
with other Mainframe modules and as its own data area for data relevant to a
particular port. The PCB and its vaMous substructures is described in the
section on Subsystem Data Structures. These modules interface with MNL
through the PCB:

Mainframe Path Management, Routing, and Congestion Control Module
(MPMRCCM).

Mainframe Addressed Packet Control Module (MAP).

Mainframe Statistics and Monitoring Module (MSM).

Mainframe Multithreaded Port Control Module {MMP).

The PCB interface with each of these modules is described in the section
of this document devoted to that module and will not be described further
here.

5.8.1.5 Detailed Functional Description

The MNL Module performs several distinct functions. These are listed
below and are discussed in detail in the following subsections.

1. Initialization
2. Link Start Up
3. Internal Frame Transmission
4. Internal Frame Reception
5. 'Local NP' Processing
6. Failure Recovery
7. Miscellaneous Utility Functions

5.8.1.5.1 Initialization

The MNL initialization routine MNL$INIT:INP is called by the system ini
tialization module {MSI) at system boot time. It is called once to initial
ize the 'Local NP' module and once for each I/NP configured in the system.

When the initialization routine is called, the address of the correspond
ing I/NP PCB is passed in the X register. At this time all data structures
and lock byte areas have been allocated for the corresponding I/NP, software
has been loaded to the I/NP, and the D814 mainframe multitasking operating
system is running.

D814 System Software Manual
Section 5.8 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

The initialization of the MNL Module for the I/NP consists of the follow
ing steps:

1. The I/NP's PCB status bits are initialized for link start up.

2. The Control Frame queue, Remote Addressed Packet queue, and Slot Add
queue are set up and initialized.

3. Two data spaces are obtained from the free data space queue, one for
the transmitter module and one for the receiver module.

4. Exit initialization.

The initialization of the MNL Module for the 'Local NP' consists of the
fo 11 owing steps:

1. A Slot Add queue is set up and initialized for the 'Local NP'.

2. The 'Local NP' PCB is initialized to the start up state.

3. The 'Local NP' software module is started.

4. Exit initialization.

If any error occurs such that the NP cannot be initialized, MNL$INIT:INP
returns to the caller with CC:Z=l. Otherwise it returns with CC:Z=O.

5.8.1.5.2 Link Start Up

When an I/NP starts up, it initial-i zes its software and sends an 'I/NP
Active' packet to the MNL module. Upon receiving this packet MNL initializes
its transmitter and receiver modules and sends the 'Start Up Link' packet to
the I/NP.

When the I/NP receives this packet, it reinitializes the link and tries
to establish communications with the remote node. When communication is
achieved, initialization parameters are exchanged between the local and
remote nodes. The I/NP then sends the 'Link Up' packet to MNL with the fol
lowing initialization parameters included:

1. Remote Node's Number
2. Remote I/NP's Port Address
3. Remote Node's Software Level
4. Remote Node's ~onfiguration Number
5. Local I/NP Line Speed (BPS)
6. Round Trip Link Delay (milliseconds)

0814 System Software Manual
Section 5.8 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

When the 'Link Up' packet arrives, MNL notifies the system Down-Line Load
module of the new link. Then the remote node's software level is compared to
the local node's software level. If they are different, MNL exits. Other
wise, the system boot module is notified of the new 1 ink's presence. Next
the remote node's configuration level is compared to the local node's configu
ration level. If they are different, MNL exits. If they are the same, the
link is brought up normally, the routing manager is informed of the new link
and the node number of the remote node, and MNL exits.

5.8.1.5.3 Internal Frame Transmission

Internal frame transmission to the I/NP is handled by the MNL Transmitter
Module. The basic function of the transmitter is to collect data to be trans
mitted to the remote node, form that data into internal frames, and transmit
the internal frames to the I/NP through the BIC data FIFOs. In performing
this basic task, the transmitter must also maintain its data structures,
accept commands from its slot Add Queue, and monitor for 'KILL' signals.

5.8.1.5.3.1 MNL Transmitter Data Structures

The MNL transmitter is concerned primarily with four data structures, the
Contra 1 Frame Queue, the Remote Addressed Packet Queue, the Slot Add Queue,
and the Transmit Slot List.

Control Frame Queue:

The control frame queue is a queue data structure (see section on MUT,
subsection on MUT$QUE) which contains control messages to be transmitted.
Control messages are stored in Byte File format (see section on MBM, sub
section on MBM$BFILE).

Remote Addressed Packet Queue:

The Remote Addressed packet Queue is a queue data structure which con
tains addressed packets to be transmitted. The addressed packets in the
queue are in Byte File format.

Slot Add Queue:

The Slot Add Queue is a Byte Queue (see section on MBM, subsection on
MBM$BQUE) which contains port addresses of s 1 ots to be· added to the Trans
mit Slot List.

D814 System Software Manual
Section 5.8 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Transmit Slot List:

The Transmit Slot List is a linked list of slots which are to be trans
mitted over the high speed network link. The entries in the list are the
slot substructures of PCB 1 s whose ports MNL scans for data to be included
in the link traffic. (See subsection on PCB in Subsystem Data Structures
section.)

5.8.1.5.3.2 MNL Transmitter Functional Description

The MNL Transmitter Submodule sends· internal frames to an I/NP through
the outbound BIC data FIFO when the I/NP requests them. For each frame re
quest, the transmitter wi 11 send a control frame if any control messages are
queued. If the queue is empty, MNL will send alternating Addressed Packet
and Data frames. If no addressed packets are queued, only data frames are
sent.

If a data frame is to be sent, the Slot Add Queue is checked and any new
slots to be added to the frame are linked in. Following this, each slot in
the Transmit Slot List is serviced. If no data is to be sent for a slot, the
slot is not included in the frame. If .data is to be sent, up to approximate
ly a slot weight worth of nibbles are sent. Each slot is monitored for
1 KILL 1 signals as it is serviced. If a 'KILL' signal is detected, special
1 KILL 1 flags are set. When all slots have been processed, the frame termina
tor is sent. If at the end of a frame 1 KILL 1 flags were set, the transmitter
rescans the Transmit Slot List, unlinks the slots for which 1 KILL 1 signals
were detected, and sends the appropriate messages to the Path Manager Module.
The transmitter than waits for the next frame request from the I/NP.

5.8.1.5~4 Internal Frame Reception

The reception of internal frames from an I/NP is the job of the MNL
Receiver Modu 1 e. The I /NP delivers frames to the recei ver one at a ti me in
the order in which they are transmitted from the remote node.

5.8.1.5.4.1 MNL Receiver Data Structures

The receiver interacts primarily with three data structures, the control
Frame Dispatch Table, the Port Directory, and XP Byte FIFOs.

Control Frame Dispatch Table:

The Control Frame Dispatch Table defines which system modules are to pro
cess control messages received over the high speed link. The entries in
the table are indexed by the control frame destination code included in
each control message.

D814 System Software Manual
Section 5.8 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

Port Di rectory:

The Port Directory is a table of pointers to Port Control Blocks {PCB).
Each port defined in the system must have a PCB. This table is indexed
by port address.

XP Byte FIFO:

XP Byte FIFOs are Byte FIFO data structures (see Section 6.3) used for
buffering path data at intermediate nodes on a path.

5.8.1.5.4.2 MNL Receiver Functional Description

The MNL Receiver Module receives frames in the 'Internal Frame' format
from the I/NP through the inbound BIC data FIFO. Its main function is to dis
tribute the data contained in the frames to the appropriate system modules
and buffers.

When a Control Frame is received, the control frame distribution code in
each control message is used to dispatch each control message to the proper
module for processing.

When an Addressed Packet Frame is received, all addressed packets in the
frame are sent to the MAP$ROUTE module for processing.

When a data frame is received, slot data must be distributed. Slot data
is distributed differently for XP's and I/TP's. For an XP data slot the data
is stored in the XP Byte queue. For an I/TP, the data is sent directly to
the I/TP via the outbound BIC data FIFO. If the FIFO is full, the receiver
waits for a short time {about 10 milliseconds) for it to go non-full.. If it
does not go non-full, the I/TP is declared dead, data to the port is dis
carded, and 'clear call 1 message is sent to the PMM.

5.8.1.5.5 'Local NP' Processing

The 'Local NP' Module is responsible for two basic functions. The first
is to move data between co-located I/TPs so that local I/TP - I/TP communica
tions is possible. The second is to flush data from XP byte queues on paths
whose transmit I/NP link has fai 1 ed. In performing each of these functions
the 'Local NP' must appear functionally similar to a 'real 1 I/NP and respond
to 1 KILL 1 signals, 'add slot' commands, and send appropriate messages to the
rest of the system as error or failure conditions may require. The 1 Local
NP' module does not process either control frames or address packets.

0814 System Software Manual
Section 5.8 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.5.1 'Local NP' Data Structures

The 'Local NP' module has several data structures it utilizes in perform
ing its functions. These include the Slot Add Queue, Transmit Slot List and
Port Di rectory. (These data structures were described in the previous two
subsections.)

5.8.1.5.5.2 'Local NP' Functional Description

The 'Local NP' services its Transmit Slot List periodically. The period
is dynamically set by the module in response to the load requirements
measured during the last service period. In no case wi 11 the period be more
than 50 milliseconds between service intervals or less than 20 milliseconds.

At the beginning of each service period the Slot Add Queue is checked and
any new slots to be added are linked onto the Transmit Slot List. Then each
slot in this transit list is processed. If a slot is an l/TP to l/TP path,
data is moved directly from FIFO to FIFO. If any outbound FIFO becomes full,
the 'Local NP' sets a flag in the port's slot data structure and proceeds to
the next slot in its transmit list. If the FIFO remains full for 4 scans,
the I/TP is declared dead, and a 'clear call' message is sent to the MPM. If
a full FIFOs worth of data or more is moved during.the servicing of any slot,
the 1 Local NP 1 service period is reduced by 1 mi 11 i second. If no slot has a
full FIFOs worth of data to move, the service interval is increased by 1
millisecond. If a slot is an XP slot data is flushed from the XP byte queue
until empty or 'KILL' signal is seen.

For all slots, if a 'KILL' signal is encountered, the slot is unlinked
from the transmit list and the appropriate message is sent to the PMM·. At
the end of the transmit list processing, the 'Local NP' delays itself until
the next service period is to begin.

5.8.1.5.6 Failure Recovery

There are two basic failure modes associated with an I/NP. The first is
an I/NP failure and the second is a high speed network link failure.

The Mainframe Diagnostic Monitor Module (MOM) is responsible for detect
ing I/NP failures. When such a failure is observed the MNL failure module is
called so that the appropriate shut down of the link is done. Once this is
finished, the MOM takes over again to perform diagnostics on the IP to test
its hardware viability. If no fault can be detected in the hardware (a soft
ware fai 1 ure is assumed), MOM re 1 oads the I/NP software and starts the MNL
high-speed link recovery procedure.

If the I/NP detects a link failure condition, it sends the 'framing lost'
message directly to MNL which then starts the link recovery procedure.

0814 System Software Manual
Section 5~8 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.6.1 Failure Interlocks

Before starting failure recovery for any port, all tasks which use the
port data structures must be locked out of those data structures so that they
do not interfere with the recovery. To accomp 1 i sh this, two 1 ock bytes are
used to interlock between port failures and user tasks. The first 1 ock byte
is called the Status Lock Byte and the second lock byte is called the User
Lock Byte.

Status Lock Byte

This lock byte contains port status flags. If any fail status bits are
set in this byte a user task may not access the re 1 ated port data struc
tures. The format of this byte is as follows:

7 6 5

I

4 3 2

I

1 0

1

I' I
Lock bit,
always 1

Recovery
in progress
= 1 if recovery
= 0 if normal

Framing Lost
0 = framing acquired
1 = framing lost

Link status availability
= 1 not available for user data
= 0 available for user data

I P Fa i 1 u re bi t = O otherwise

I = 1 failure detected

IP up = 0 IP up
= 1 if waiting for initialization packet

IP loaded bit = O IP loaded
= 1 if not loaded

0814 System Software Manual
Section 5.8 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

User Lock Byte

This lock byte contains flags which are set by various user tasks when
they are accessing port data structures. Any user task must lock the
status lock byte before setting a user flag. If the status of the port
is inconsistant with using a desired port data structure, the user task
may not use that data structure and must exit not setting a user flag and
restoring the status lock byte. The format of the MNL user lock byte is
as follows:

7 6 5 4 3 2

I

1

I

0

I
I

Lock bit,
always 1

AP bit = 1 if any
AP module
is using PCB

= O if no
AP module
is using PCB

MNL Control = 1 If an MNL control module is
running

= 0 otherwise

MNL XMTR = 1 If MNL transmitter is running
= 0 otherwise

MNL RCVR = 1 if MNL receiver is running
= 0 otherwise

0814 System Software Manual
Section 5.8 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.6.2 MNL Hardware Failure Submodule

When this submodule is called, the MOM module has detected an I/NP fail
ure and has set the IP fail status bit. This submodule is responsible for
the orderly shut down of the 1 ink and notifying other system modules of the
failure.

The link shut down procedure consists of the following steps:

1. Notification of the link failure is sent to the MRM, MPM, MSB, and
MDL modules.

2. Wait for all users to stop using the I/NP's data structures.

3. Return all packets on the Remote Packet Queue and IP Outbound Packet
Queue to the router.

4. Throw away all Control Frames in the Control Frame Queue.

5. Transfer all XP slots in the Transmit Slot List and in the Slot Add
Queue to the 'Local NP' via its Slot Add Queue.

6. Set the transmitter and receiver initialization bits so that they
will start up in the correct mode.

7. Set the 'Framing Lost' status bit in the port's status lock byte.

8. Return to the MOM module for IP testing.

5.8.1.5.6.3 Link Failure Recovery

This module may be called from the I/NP via a 'framing lost' message or
from the I/NP after a new software load.

If the 'framing lost' status bit is not set then the link failure was
detected by the I/NP. Set the 'recovery in progress' bit in the status lock
byte and execute Steps 1 through 7 of the link shut down procedure described
in the previous section. Then clear the 'recovery in progress' bit and send
the 'Activate Link' message to the I/NP and terminate.

If the 'framing lost' status bit is already set, link shut down has
already been done. Send the 'Activate Link' message to the I/NP and ter
minate.

0814 System Software Manual
Section 5.8 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

5.8.1.5.7 Miscellaneous MNL Utility Functions

The MNL module provides ·several utility functions that are used by MNL
and other system modules to perform miscellaneous functions. The entry
points for these functions are described here:

Entry MNL$UTIL:Q2RAPQ

Queues an addressed packet to a remote addressed packet queue for
transmission by MNL.

Entry conditions --

X register -- Addressed packed bytefile header address

B register -- Port number of the I/NP

Exit conditions --

X, A registers -- Destroyed

B register -- unchanged

CC:C -- Set if and only if I/NP is down

Data space -- OF$DS:BFADR, OF$DS:BFTMP destroyed

Entry MNL$UTIL:SENDCF --

Enqueues a control frame for transmission by MNL

Entry conditions --

X register -- Points to control frame bytefile header

Exit Conditions

All reegisters destroyed
Data space - may be destroyed
If the I/NP is up, the control frame is enqueued. If not, it is
deleted.

Entry MNL$UTIL:DISTCF

Distributes a control frame or a control-frame format message

Entry conditions --

X register -- Points to header buffer of message bytefile

0814 System Software Manual
Section 5.8 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

Data space - destroyed
Control is passed to message handler (via jmp) with pointer to the
message bytefi le stored in OF$DS: BFADR. The message handler must
terminate in a RTS. \

Entry MNL$UTIL:KILLSLOTSWITCH --

Kills a slot and sends ICSKILLFAIL along path

Alternate entry MNL$UTIL:KILLSLOTFAIL --

Kills a slot and sends ICSKILLFAIL

Entry conditions (called by MPM) --

X register -- Points to PCB's path data substructure

Data space -- OF$MPM:D5-PCBPTR points to the port's PCB.
OF$MPM:D5-.PATHDSS points to path data substructure.

Exit Conditions

A register -- Destroyed
B register -- unchanged
X register -- unchanged

This routine sets the appropriate fail bits in the slot data
substructure causing MNL to delete the slot.

Entry MNL$UTIL:ADDSLOT --

Adds a slot (called by MPM when a path becomes Active)

Entry conditions --

B register -- Port number of the port {XP, ITP, or VP) whose
data is to be included in the link traffic

A register -- I/NP port number

Exit Conditions

All registers destroyed
Port number is queued on the appropriate slot add queue.
EQ$PCB:LOCK...USER5-SLOT is set in source port's user lock byte.

D814 System Software Manual
Section 5.8 - 15

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry MNL$RECVRY:MRMFAILACK

Receives acknowle~gement to LDOWN message sent to MRM

Entry conditions --

B register -- I/NP address

Called by MRM when processing of LDOWN is complete

Exit Conditions

All registers destroyed
Data space - OF$DS:BFADR, OF$DS:MFTMP destroyed

Entry MNL$RECVRY:MPMFAILACK

Called by MPM to acknowledge receipt of the LINKFAIL message

Entry conditions --

B register -- contains I/NP address

Called after MPM has received and processed the LINKFAIL
message from the I/NP in B register

Exit Conditions -
All registers destroyed
MNL 1 s link failure cleanup is complete and the link is ready to
be brought back up

0814 System Software Manual
Section 5.8 - 16

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9 Mainframe Downline Load Module

Introduction

This module will service the following requests from the Mainframe Diag
nostic Module (MOM):

1. Load a local port(s) with the specified software. (Note that I/NP,
I/GBNP, I/FOP are all special cases. See Section 5.9.1.2.)

2. Load a specified software to a remote node through a specified local
port.

3. Upload of mainframe software to a neighboring node, through a speci
fied local port.

4. Upload of mainframe software to a remote node so that the remote
node can pass it on to its neighbor that is not running.

5. Abort loading of a specified port(s).

MDL will inform MOM upon the completion of each load; and in case a cer
tain port cannot be loaded due to some unrecoverable error, MOM wi 11 be
informed and the request terminated. Otherwise MDL will retry indefinitely
to fulfill the request.

Sources of each software wi 11 not be specified by MOM. However, the
following rules will always apply:

1. There wi 11 be a list of software names; and if any of these are
requested, MDL will first search for that software in a running port
or mainframe. ·

2. All other software will come from the floppy only.

3. Updated software running in a port or mainframe will not be chosen
as a source of software.

4. In choosing a source of software from a port, the ability of the
port to upload software in terms of resources such as processor
loading will be taken into consideration.

5.9.1 MDL Algorithm Main Features

Where possible, port software is loaded from an already-loaded local
port. A node needing software not available locally locates a source of that
software by a broadcast mechanism combined with a point-to-point addressed
packet protocol.

Rev. 2 0814 System Software Manual
Section 5.9 - 1

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

The algorithm attempts to allocate bandwidth so that usually no more than
one downline load is going through any one link in each direction.

In general, software should be loaded from a nearby source of the needed
software although the algorithm is not optimal in this respect.

A more detailed description of the algorithm follows.

5.9.1.1 Bandwidth Availability

We say that outbound bandwidth is available to load a remote node B from
local node A if the first link on the shortest path known to the Routing Mana
ger from A to B is not currently on the shortest path known to the Routing
Manager from A to any other node now being loaded.

Similarly, we say that inbound bandwidth is available in the above situa
tion if the last 1 ink on the shortest path from A to B is not currently on
the shortest path from B to any other node now being loaded.

Bandwidth availability is determined from the Inbound and Outbound Load
Lists. The Inbound Load List lists all nodes from which the local node is
loading along with the corresponding software types being loaded. The Out
bound Load List lists all nodes to which the local node is loading along with
the software types being loaded. When inbound or outbound bandwidth is to be
allocated, the proper load list is scanned and it is determined if sufficient
bandwidth exists, as explained above. If so, the new node and software type
are entered. Bandwidth is de-allocated by simply deleting the proper entry
from the load list.

This scheme does not guarantee at all times that no link will be used for
more than one inbound and one outbound 1 oad to/from the 1oca1 node, but it
does make that infrequent.

5.9~1.2 Loading of Special Ports I/NP, I/GBNP, I/FOP

All local ports can be loaded in the same way by the mainframe first
obtaining the software and then passing it to the port through the BIC.

For I/NP and I/GBNP since there is always another port of the same type
at the other end of the 1 ink, the needed software can be obtained through
that link. An I/FOP can be loaded from the floppy that may be mounted on one
of its drives. In all three cases, MDL will attempt to load them by all
possible means simultaneously and the method that initiates the loading first
will be the chosen method. ·

Rev. 2 0814 System Software Manual
Section 5.9 - 2

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9.1.3 Local Loading

This section and Remote Loading (Section 5.9.1.4) will discuss the algo
rithm used to locate the best source of software. Best in the sense that it
will complete the load as quickly as possible and with minimal impact on
ongoing network activities, 'if the network is already running.

For each request, MDL will first determine if the software requested must
come from a floppy. If so, a local floppy is searched for. If none exists
or software not on the floppy, then a remote floppy is searched for by broad
casting a request to MDL in other nodes. If the software can come from a
running port, then a packet is sent to each eligible port in the local node
requesting for possible upload. Responses are then collected over a period
of time, and one is chosen by means of an indicator in the reply packet from
the ports.

If no local ports are available or cannot upload due to some conditions
such as no available resource to upload or software has been edited, then a
remote source is searched for by means of a broadcast mechanism.

5.9.1.4 Remote Loading

In repsonse to a broadcast request for software from another node, MDL
will do the following:

1. Determine if bandwidth is available; if not, then rebroadcast the
request with the requesting node as the root address.

2. If bandwidth is available, then search for a source locally in the
similar manner as described in Section 5.9.1.3. If software is not
available, then rebroadcast as above. If software is available,
then a message is returned to the requester with the information as
to the port address which has the software.

It is then left to the requesting MDL to communicate with the source port
to obtain the software. The source MDL will not intervene other than receive
messages from the requesting MDL at the beginning and the end of an upload.
The purpose of this is to update the bandwidth load table.

The following describes how messages are passed between MDL in different
nodes in locating software.

Rev. 2 D814 System Software Manual
Section 5.9 - 3

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

MDL State

MDL maintains a load state for each software type. This state may have
the following values:

Not Interested J!!!l - This node neither has nor wants the software.

Loaded - This node can supply the software to remote nodes.

Needy - This node needs and has broadcast a request for the software.

Waiting for Software (WFS) - This node has sent a .send Me Software mes
sage to a potential source node and is waiting to complete a downline
1 oad.

MDL Messages

The following messages are sent between MDL modules:

Broadcast Software Request (Software Type, Source Node) - Abbreviated
BSR. Sent as control frame along the minimum depth spanning tree rooted
at originating node. It is a general request for sources of the speci
fied software to make their whereabouts known.

A BSR received over a link with available inbound bandwidth is retrans
mitted over all outgoing links with available outbound bandwidth of the
minimum depth spanning tree rooted at the source node of the BSR. If
there is no available inbound bandwidth over the source link, then the
BSR is not broadcast. Similarly, the BSR is not sent over any outgoing
link without available bandwidth. This bandwidth checking helps to
minimize congestion while multiple downline loads are in progress.

I Have Software (Software Type, Source Node) - Abbreviated IHS. Addres
sed packet sent in response to a Broadcast Request indicating that Source
Node has the software and sufficient bandwidth to send it to the receiv
ing node.

Send Me Software (Software Type, Source Node, Highest Address, so far,
Loadedf - Abbreviated SMS. Addressed packet requesting software. Used
to pace addressed packets containing downline load data.

MDL State Machine

MDL may be thought of as a set of state machines, one for each software
type. The MDL state machine is summarized in the diagram. The entry in the
table corresponding to a given state and event is the action taken· by MDL if
the event occurs while in that state. State transitions are shown by placing
the new state in parentheses.

Rev. 2 D814 System Software Manual·
Section 5.9 - 4

Rev. 2

COMPANY CONFIDENTIAL

Event

BSR
Received

SMS
Received

IHS
Received

Software
Received

Timeout

Port load
requested
by MSI or
MOM

Rev. 2

I

I

Loaded

Send IHS if
bandwidth
available

Allocate
bandwidth if
not already
allocated.
Send software
if allocation
success fu 1 •

Ignore

Ignore

De-allocate
bandwidth for
any node not
heard from
since last
time out

Load software

MDL State Diagram

State

Needy NI

Broadcast on Broadcast
originating on spanning
node's tree
spanning tree

Ignore Ignore

I
I

I I
Send SMS I Ignore
(WFS)

Ignore Ignore

Broadcast BR Ignore
if bandwidth
available
for load

I I
Remember that I Broadcast
this port I BSR (NEEDY)
needs software

0814 System Software Manual
Section 5. 9 - 5

CODEX CORPORATION

WFS

Broadcast on
spanning tree

Ignore

I
I

I
Ignore

If last block,
then (LOADED) ;
Else send SMS
if needed.

Broadcast BSR
(NEEDY)

I
I Remember that

I this port
needs software

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9.2 External Interfaces

This section describes all the interfaces between MDL and the other modes
in the network. In all cases except for the actual upload of port software
to a remote node from a 1oca1 port, .the 1oca1 MDL wi 11 communicate with the
local port.

5.9.2.1 MDL - MOM Interface

Requests to load software is assumed to come from MDM. All requests are
passed in a packet (see MOM specification for a detailed description of these
packets).

Except for the loading of a remote port, through a local I/NP or I/GBNP,
MDL will assume that all destination ports are not running and is ready to
receive reset 1 (s~e IP ROM Section).

MDL will not check the compatibility of the software and the receiving
port. When loading a local port, MDL will check for the port type to see if
its one of the I/NP or I/GBNP to start a special loading sequence. Other-
wise, no other check is done. ·

Unless an unrecoverable error occurs or a request is received to stop
loading a port, MDL will try indefinitely to load that port with the
requested software. For each request, MDL will inform MOM when the loading
is complete, via an addressed packet.

5.9.2.2 MDL - MIL Interface

When loading a local I/NP or I/GBNP, MDL will attempt to do this by get
ting software from the port at the other end of the 1 ink, as well as the
normal way. To do this, MIL$LOAD DNP is called to load the port with suffi
cient software to communicate across the link. MDL will wait for a response
from MIL before doing anything else with the port.

5.9.2.3 MDL - FOP Interface

MDL will interface with I/FOP to obtain software form one of the disks
mounted or to give commands to the I/FOP to load itself. See I/FOP speci
fication for a detailed description of the commands.

5.9.2.4 MDL - Running Port

MDL will call IP$UTIL:MEMUPD to request for possible software upload or
for specific software. See the section on IP$UTIL:MEMUPD for more detail on
the interface.

Rev. 2 0814 System Software Manual
Section 5.9 - 6

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

5.9.2.5 MDL - I/NP or I/GBNP

When uploading software to a neighboring node that is not running, MDL
will have to communicate with a local I/NP or I/GBNP that is connected to it.
The format and the sequence of the upload is as follows.

Data passed are split up into blocks and formatted as shown below. The
local port will then reformat this information before passing it to the
neighbor.

Each block wi 11 be of the same format, except that the first block wi 11
have a command byte (supplied by MDM) in the first byte. This command will
indicate to the receiving port in the neighboring node as to the type of
software passed.

Data passed are encoded as follows:

X'OO' --> X'FFFF'

X'FF' --> X'FFFE'

Note that M =#of bytes encoded, and this is not included in the byte
count.

Rev. 2

FTI

Byte Count N i 255

Encoded Data, Byte 1

Byte 2

I Encoded Data, Byte N + M I

D814 System Software Manual
Section 5.9 - 7

Rev. 2

COMPANY CONFIDENTIAL CODEX.CORPORATION

5.9.2.6 MDL and Mainframe Updating Mo{.fule

There is a requirement that Mainfr_ame software that is already updated
will not be passed to an IPLing mainframe. To accomplish this there will be
a lockbyte which will indicate one of four states: (1) lockbyte not avail
able; (2) lockbyte available, software already updated; (3) lockbyte avail
able, software not yet updated; and (4) lockbyte available, uploading in
progress.

5.9.2.7 MDL and Other Mainframe Modules

MRM$BROADCAST:ENTRY is called to get list of neighboring nodes for broad
casting purposes.

MRM$ROUTE:PACKET is called to send packets.

5.9.3 MDL Structure

This module consists of six submodules:

1. MDL$REQUEST
2. MDL$BROADCAST
3. MDL$LOCATOR
4. MDL$LOADER
5.· MDL$XPORTS
6. MDL$TIMER
7. MDL$EXEC

The descritpion of each submodule and their functions are in Section
5.9.3.1 to 5.9.3.6. In designing this module, the following are the major
goals:

1. Wherever possible, all ports requiring the same software are loaded
at the same time.

2. Any request that requires software that is a 1 ready in the progress
of downline loading will be delayed until the loading is complete.
This does not apply to software that must come from a floppy disk.

3. MDL controls buffer usage for downline loading. Buffer availability
will be monitored, and request for software will not be generated if
a threshold is exceeded. In all interfaces MDL dictates the flow of
data into the mainframe.

Rev. 2 0814 System Software Manual
Section 5.9 - 8

Rev. 2

COMPANY CONFIDENTIAL CODEX .CORPORATION

5.9.3.1 MDL$REQUEST Submodule

All requests to MDL are assumed to come from the local MOM. All requests
must be initially processed by this submodule. All messages returned to MOM
come from this submodule, and any requests that are rejected are sent back to
this submodule. The following are the major functions of this submodule:

1. Check validity of request, i.e., that the port address is legal and
that it is configured.

2. For each new request, the outstanding requests are checked for any
that include port addresses in the new request. Any downline load
ing on those ports are then terminated.

3. Requests that require software that need not come from a floppy disk
and are in the process of downline loading will be delayed until the
loading is complete.

4. For special ports, I/NP, I/GBNP and I/FOP., MDL$XPORT is called to
initiate the alternate method of loading.

5. Make up packets and send to local MOM to inform the end of each
request.

5.9.3.2 MDL$BROADCAST

This submodule is responsible for locating the software source that is
nearest to the requestor. It accepts requests from the local MDL as well as
remote MDL.

For remote nodes, MDL$LOCATOR is called to locate a local source. If the
source exists, then the original requester is informed. If none exists, then
the request is rebroadcast and then deleted.

For local ports, MDL$LOCATOR is called. If the source exists, then
MDL$LOADER is inf armed. If not, a request is broadcast and the whole pro
cedure is repeated every 6 seconds until a source is found.

5.9.3.3 MDL$LOCATOR

This submodule deals with the locating of software at the local node.
This includes communicating with local I/FOP and searching for software in
one of the mounted floppy's.

For each request, this submodule performs the search once and reports on
the success or failure and the whereabouts and type of source if found.

Rev. 2 0814 System Software Manual
Section 5.9 - 9

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

In locating a source of software from local running ports, this submodule
will choose a source that is most able to upload software.

In a 11 cases a response is sent back to the user whether a source is
found or not. All requests are assumed to come from the local MOL$BROAOCAST.

5.9.3.4 MOL$LOAOER

This submodule handles the loading of local ports and neighboring nodes
through a local port (I/NP or I/GBNP).

Functionally, this submodule consists of 5 ports:

1. Formatting of incoming data. This is different for a software from
I/FOP and local running ports.

2. Loading of formatted software through BIC interface to download
local port.

3. Loading of remote node through a local port with interface as
described in Section 5.9.2.5.

4. Maintain flow of incoming software and monitor buffers availability.
This includes repeating of request of software from source.

5. Read BIC status flags at the end of the 1 oad and report it· to
MOL$REQUEST.

5.9.3.5 MOL$XPORTS

This submodule deals with the loading of I/NP, l/GBNP and I/FOP by their
respective alternate methods. Requests to stop loading of the ports are also
handled here, and there are two types: (1) stop if loading has not started,
and (2) stop under all circumstances.

At the end of the load, a report is sent back to MOL$REQUEST.

Note that requests to stop loading may not be serviced immediately, since
certain functions such as loading I/NP with dummy software have to be com
pleted before interruptions.

5.9.3.6 MOL$TIMER

This is a schedule task that runs once every 2 seconds. Its only func
tion is to send a packet to the other submodules to inform them of the elapse
of 2 seconds.

Rev. 2 0814 System Software Manual
Section 5.9 - 10

Rev. 2

COMPANY CONFIDENTIAL

Rev. 2 0814 System Software Manual
Section 5.9 - 11

CODEX CORPORATION

Rev. 2

COMPANY CONFIDENTIAL CODEX CORPORATION

Local MOM <--------
Remote

MDL$BROADCAST

******* *************** ********************** **************

v

MDL$REQUEST

v
I I

1---------->\ __ M __ o __ L$ __ B __ Ro __ Ao __ c __ As __ r_j<-----

1-------> MDL$UPLOAD
v v <-----

-----------> MDL$EXEC

A A I _______ _
MDL$TIMER

------------->!
---------->1 MDL$XPORT

---.,,.A---· Load from
Remote Node

<-----

************************** ******************* **************

Rev. 2

v v

RNP/RGBNP <---- MIL$LOADNP
Local Local

Load
RNP/RGBNP

0814 System Software Manual
Section 5.9 - 12

Rev. 2

COMPANY CONFIDENTIAL

Local/Remote
MF UPDATE

(Get MF Software)
A

A
I Load

Remote
Node

INP/IGBNP

A

CODEX CORPORATION

****************************** **************** *********************

-----> MDL$LOCATOR

---> MDL$LOADER

FOP
Self IPL
(Local)

Load
Local
Ports

***** **** ***************** ****************** *********************

Rev. 2

v v

FOP
Local/Remote

v
IP UPLOAD

Local/Remote

v

IP - ROM
Local

0814 System Software Manual
Section 5.9 - 13

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10 Mainframe Initialization Module

The Mainframe Initialization Module (MSI} is responsible for initializing
the Mainframe hardware and operating system and performing various simple
initial checks for system integrity.

5.10.1 MSI Entry Conditions

MSI is entered by all mainframe processors at MSI$RSTART:ENTRY from the
ROM-resident mainframe IPL Module (MIL} after any system restart. If the
restart was a software restart (initiated by MDL for a software inconsistency
or by MSB for a configuration inconsistency), then configuration and software
information is stored in Local Storage (the fields are described in the MSB
subsection). All mainframe processors but one are halted immediately after
entry into MSI, and one MSI from that point on runs only on that processor.

5.10.2 MSI RAM Initialization

MSI initializes various areas of RAM for use by the mainframe operating
system and other mainframe software components. These are:

1. Lock byte area. Those lock bytes not allocated permanently either
by MSI at runtime or in equate file OF$SYSLCK are allocated by MSI
to a dynamic lock byte pool for use as needed during system opera
tion. Lock bytes are described in the 6000 Logic Design Specifica
tion. Individual lock bytes are explained in the subsection des
cribing the module and data structures using them.

2. Data spaces. MSI allocates the data spaces from RAM and initializes
them as required by Mainframe Task Control. Data spaces are dis
cussed in the subsection on MTG and in the 6000 Logic Design Specifi
cation.

3. Fixed RAM. Fixed blocks of RAM are allocated by MSI for tables and
other fixed data structures used by various modules.

4. Dynamic buffers. The dynamic buffer pool used by MBM (see subsec
tion on Mainframe Operating System) is initialized by MSI. MSI also
sizes memory, verifies that data may be stored in the data area of
memory, clears the data area to 0, and verifies that the lock byte
are starts at address X'400'. If any error is found, the system
halts with an appropriate message displayed on the front panel.

D814 System Software Manual
Section 5.10 - 1

I

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10.3 MSI Dynamic Routing System Initialization

The Mainframe Routing Manager (see subsection on Mainframe Path Manage
ment, Routing, and Congestion Control Module) provides two initialization
subroutines that are called by MSI. These are MRM$INIT:NONDYNAMIC, called to
initialilze of MRM's fixed data structures, and MRM$INIT:DYNAMIC, called to
initialize all MRM's dynamic data structures. MRM$INIT:NONDYNAMIC uses an
MSI fixed memory allocation routine (described later) and is therefore called
before the free buffer pool is set up. MRM$INIT:DYNAMIC, on the other hand,
uses the free buffer pool and is, called after the free buffer pool has been
initialized.

5.10.4 Node Configuration Parameter Initialization

MSI reads the node-related configuration parameters from CMEM into page O
memory at the 1abe1 s prefixed by OF$PGO: SY_. In addition, the act i ve con
fi gu ration number, either the previous active configuration stored in CMEM or
the configuration passed by MSB in Local Storage, is both written to location
OF$PGO:SY_ACNF and stored in the ACNF field in CMEM. MSI also sets up the
CMEM map table from configuration information.

The CMEM node parameters and the map table are all described in the sub
section on the Mainframe Configuration Module.

5.10.5 MSI System Boot Module Interface

MSI leaves complete configuration and software descriptive information in
the system area fields prefixed by OF$SYS:MSB_RESTART_. These fields are dis
cussed in the subsection on the Mainframe System Boot (MSB) Module.

MSI also calls MSB entries MSB$INIT:START and MSB$MAIN:START to initial
ize MSB (see subsection on MSB).

5.10.6 Mainframe Panel Control Module Initialization

MSI calls Mainframe Panel Control (MPC) entries MPC$INIT:START and
MPC$INIT:SCAN to initialize MPC (see subsection on MPC).

5.10.7 MSI Scheduled and Batch Task Initialization

MSI constructs from templates the Scheduled Task table and the Batch Task
table used by MTC for Scheduled and Batch Tasks, respectively. (See subsec
tion on Mainframe Operating System.) These templates are defined in equate
files EQ$SCHD and EQ$BATCH and reside in MSI$MAIN.

0814 System Software Manual
Section 5.10 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10.8 MSI Port Initialization

MSI provides these initialization functions:

1. Port Control Block (PCB) initialization - a PCB for each permanent
(non-dynamic) configured port is allocated and initialized. This
includes allocation and initialization of all associated data sub
structures (see PCB discussion in subsection on Mainframe Subsystem
Data Structures).

2. Port loading - MSI calls Mainframe Downline Load (MDL) routine
MDL$SUBS:LOADIP for each configured I/P. This initiates a load of
each port. When and if the load completes a Load Complete addressed
packet is sent to batch task MSI$INIT. This process is discussed
more completely in the subsection on MDL.

3. Physical port initialization - MSI leaves the port BIG FIFO regis
ters in their normal operational state. For further information
about BIG FIFO we consult the subsections on the Mainframe Addressed
Packet Module and the Mainframe Network Link Module.

5.10.9 MSI Machine Cycle Timing

MSI computes the number of M6800 eye l es executed per mi 11 i second by a
single processor under approximately normal conditio.ns. It saves this number
in OF$PGO:MSM_CPS for use by the Mainframe Statistics and Monitoring (MSM)
Module (see subsection on MSM).

5.10.10 Boot Complete System Report

When all the mainframe software has been successfully initialized a Boot
Complete system report is sent. (System ·reports are described in the sub-
section on MSM.) This system report has these parameters:

1. Configuration
2. Software source node
3. Software rev1s1on
4. Software rel ease
5. Software source port

The system report code is EQ$SYSRPT:BOOTCOMP.

D814 System Software Manual
Section 5.10 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.10.11 MSI Subroutines

MSI submodule MSI$SUBS contains subroutines used both by MSI and by
externa 1 mainframe modu 1 es. Those subroutines which may be used by externa 1
modules are listed here.

1. MSI$SUBS:AFMS

This routine is called to allocate 255 or less bytes of free memory
from the free memory list. It may only be called by initialization
routines cal led by MSI$MAIN before the free buffer pool has been
allocated.

On Entry B-reg = Number of bytes required

On Return X-reg = Pointer to available memory
A-reg = Destroyed (unless error)
B-reg = Destroyed

If the block cannot be allocated, the error code for "OUT OF MEMORY'
is loaded into A-reg and control returned to the caller with CC:C =
1.

2. MSI$SUBS:AFML

This routine is ca 11 ed to a 11 ocate more than 255 bytes of free mem
ory from the free memory list. It uses MSI$SUBS:AFMS to do the
actual allocation and may not be called after free buffer pool
allocation.

On Entry A-reg = MSB of number of bytes required
B-reg = LSB of number of bytes required

On Return X-reg = Pointer to available memory
A-reg = Destroyed (unless error)
B-reg = Destroyed

If the block cannot be allocated, the error code for "OUT OF MEMORY"
is loaded into A-reg and control returned to the caller with CC:C =
1.

3. MSI$SUBS:ROR

This routine is called to read one byte from the offline ROM resid
ing on the options card (see subsection on Mainframe Configuration
Module).

On Entry B-reg = Offset into ROM

D814 System Software Manual
Section 5.10 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

On Return A-reg = Unchanged
B-reg = Value from ROM
X-reg = Unchanged

Note: This routine, at the present ti me, does not access the ROM.
Tr-reads the bytes from a table in RAM.

0814 System Software Manual
Section 5.10 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.11 Multi-Threaded Port Control Module

The Mainframe Multi-threaded Port Control Module (MMT} provides the soft
ware interface between the mainframe software and the multi-threaded terminal
ports. MMT multiplexes and demultiplexes the data streams for many virtual
ports through the Bus Interface Chip (BIG} interface with a single multi
threaded I/TP.

MMT is designed to make the virtual port interface with external main
frame modules resemble as closely as possible the single-threaded interface
so that virtual ports and single-threaded ports may be handled by common
1 ogi c.

5.11.1 MMT Port Control Block Interface

Port Control Blocks (PCBs - see sections on Mainframe Subsystem Data
Structures} are the main interface between MMT and other mainframe software
modules. Each physical multi-threaded Terminal Port has a stripped-down PCB
and each Virtual Port has a PCB which is functionally equivalent, from the
point of view of other mainframe software modules, to the PCB of a single
threaded terminal port.

5.11.1.1 Multi-Threaded Terminal Port PCB

The PCB associated with the Multi-Threaded Terminal Port is needed for
functions which involve the port as a whole rather than an individual virtual
port residing in the physical port. Such functions are implemented by means
of addressed packets sent to the physical port address. The Multi-Threaded
Terminal Port PCB therefore has as its only substructure the Packet Data Sub
structure (see subsection on Subsystem Data Structures). It should be noted
that the inbound and outbound addressed packet queues for the port are
located in this PCB, not in the individual VP PCB's (described below}.

5.11.1.2 Virtual Port (VP} PCB

As already noted, the VP PCB is, from the point of view of external main
frame modules, functionally similar to the PCB of a single-threaded I/TP.

Since the VP has no physical BIG FIFOs associated with it, inbound and
outbound data byte queues take their place. These byte queues may be located
using pointers in the PCB Slot Data Substructure. All data belonging in the
user data stream (that is, all data which would otherwise flow through the
data BIG} goes through the proper data byte queue between the MMT and any
external mainframe module.

D814 System Software Manual
Section 5.11 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

5.11.2 MMT BIC Interface

The Bus Interface Chip (BIC) data FIFOs are the interface between MMT and
the Multi-Threaded Port software. The data format used is the Multi-Threaded
High-Speed Data Interface described in Section 3 of the System Software Speci
fication. Data for a particular thread in this format is preceded by a
one-byte VP address and terminated by an ICS called the Multi-Threaded
End-of-Slot (MTEOS).

The inbound and outbound data FIFO Reader's and Sender's Flags are used
for control functions: The reader of a data FIFO clears the FIFO's Sender's
Flag and sets the Reader's Flag to signal to the writer that it may begin
sending data; the writer sets the Sender's Flag and clears the Reader's Flag
to signal to the slot reader that it has completed its transmission of data
slots.

MMT, running every 25 milliseconds, uses this mechanism to control the
timing of inbound (port to mainframe) data transmission so that data is not
sent inbound unt i 1 MMT is active and ready to read data. The timing and
control sequences involved in slot transmission in both directions is illus
trated in the following figures.

•
D814 System Software Manual

Section 5.11 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Data Flow from Multi-Threaded Port to Mainframe
Over BIC Inbound Data FIFO

MAINFRAME

Sets Reader's Flag and
Clears Sender's Flag
when ready to read data

•

. .

PORT

<Slot 1 Slot N

Sets Sender's Flag, clears
Reader's Flag when all
data is in FIFO •

25 Millisecond delay

Sets Reader's Flag and
Clears Sender's Flag
when ready for next
batch of slots.

etc.

0814 System Software Manual
Section 5.11 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Data Flow from Mainframe to Multi-Threaded Port
Over BIC Outbound Data FIFO

MAINFRAME PORT

Slot N Slot 1 >

Sets Sender's Flag
Clears Reader's Flag

Sets Reader's Flag, clears
Sender's Flag when done
reading

25 Millisecond delay

Slot N Slot l >

etc.

D814 System Software Manual
Section 5.11 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

5.11.3 Operational Overview of MMT

MMT is a low-priority task activated every 25 milliseconds at entry point
MMT$MAIN:ENTRY. There it activates, if possible, one of at most three concur
rent scanning tasks. The scanning task first reads the inbound BIC data FIFO
for each physical multi-threaded port and fills all the received data byte
queues associated with that port. Next it again goes through the 1 i st of
physical multi-threaded ports and, at each port, multiplexes all the data
stored in the transmit data byte queues of VP's associated with it into the
outbound BIC data FIFO.

To aid in the above processing, all multi-threaded port VP PCBs are
linked together by means of the link field in the PCB main data structure,
and access to any single port by MMT tasks is interlocked through the USER
lockbyte. The slot data substructures for VP PCBs associated with each phy
sical port PCB are linked by means of the VPLINK fields in each slot data sub
structure and in the physical PCB. This linking together of PCBs is done at
system initialization time in subroutine MMT$INIT.

The data format used for data sent between port software and MMT over a
multiplexed BIC is the Multi-Threaded High-Speed Data Interface (MTHSDI) des
cribed in Section 3. This interface is designed so that MMT may handle data
for any given VP transparently, scanning for no control characters other than
the slot terminator. It should be noted that MTHSDI provides no 11 end of
data 11 signal. As a result the MMT scanning tasks must assume that when an
inbound BIC FIFO is empty, the port has sent all the data it desires to send.
Because of this, the port must be able to keep up with the mainframe the vast
majority of the time or data will back up in the port. Also, to maintain
mainframe efficiency, the port should almost always be able to empty the out
bound FIFO fast enough to prevent it from becoming full.

0814 System Software Manual
Section 5.11 - 5

•

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

5.12 Mainframe Diagnostics Monitoring and Physical Port Control Module

5.12.1 Introduction

The MOM performs the following offline I/P management and failure monitor
ing functions:

1. Through an addressed packet user interface, any port may be brought
on 1 i ne or taken of fl i ne and any desired software may be 1 oaded to
any offline port, any adjacent I/NP, or any adjacent 6000 Mainframe.
(The term 1 offline 1 is used in this section to refer to a port which
is not available for its normal port fUnctions such as sending and
receiving addressed packets, establishing paths, etc.) The addres
sed packet user interface also provides various control and monitor
ing features to be used in conjunction with these functions.

2. Automatic Loading - MOM is responsible for supervising the Automatic
Loading process, the means by which an adjacent node or a local port
may be tested (if required) and supplied with the required system
software of the active revision and release level without operator
i nte rvent ion.

3. Failure Monitoring - MOM considers an I/P to have failed if no
packet is received from the port for a 12-second period. When this
happens, the port is automatically taken offline by MOM and the
I/CTP operator is notified through a system report. De pending on
the sort of port fai 1 ure, MOM may then attempt to bring it back
onl ine. MOM al so runs various simple onl ine mainframe tests and
sends system reports when errors are found.

4. System Error Handling - MOM entry point MDM$SYSERR: CRASH is ca 11 ed
whenever a fata 1 system error occurs. Upon entry, the A register
contains the appropriate error code, as defined in the file
EQ$SYSERR.

5. Mainframe Code Space Interface - MOM submodule MDM$UPLOAD provides
the only interface by which system components external to the local
mainframe may access the Mainframe RAM code space. The interface is
through addressed packets, with a destination (module dispatch
number) of EQ$MDT:MDM...UPLOAD or queued to batch task number
EQ$BATCH:MDM_UPLOAD. The packet formats are identical to those of
I/P module IP$UPLOAD and will not be described further here.

MDM's most important function is to provide a sort of gateway by which
local and remote user interface modules may interface with ports not actively
running system software. The physical BIC interface with such ports is
handled either directly by MOM or by the Mainframe Downline Load Module (MDL)
in response to commands from its local MOM.

Rev. 3 0814 System Software Manual
Section 5.12 - 1

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The means by which this gateway is implemented is the MOM addressed
packet user interface, mentioned in 1 above. The term 'user' in this section
is taken to mean any module invoking this gateway function through the addres-
sed packet user interface. Such modules include: ·

Mainframe System Initialization Module (MSI) - Submodule MSI$INIT uses
MOM to initialize, test, and load a port when it is initially brought up.

I/CTP - The I/CTP, under operator control , may use any of the functions
provided by the MOM addressed packet user interface.

Mainframe Panel Control Module (MPC) - Module MPC allows an operator,
through the mainframe front panel , to perform a subset of the functions
provided by the addressed packet user interface.

5.12.2 Detailed Specification of the Addressed Packet User Interface

The MOM user interface includes commands to be sent in addressed packets
from the user to MOM and various addressed packet messages to be sent from
MOM back to the user during the execution of the command. Packets are sent
to MOM by queueing them to the batch task number 11 EQ$BATCH:MOUP 11 • The
entry point for this batch task is 11MOM$COMMANDJ:NTRY 11 , and the dispatch
number is 11 EQ$MOT:MDUP 11 •

For every command executed by MOM, at least one 'MOM Report' is sent back
to the user. The MOM report format is used both for diagnostics packets and
for sending MOM System Reports. It will be discussed in a later subsection.
When an MOM command terminates at a port, the user is always notified with an
MOM Report, but if the user is not local, it cannot be guaranteed that the
message will arrive at its destination (although it is extremely rare for
this not to happen).

MOM command packets contain both fixed-length and variable-length fields.
Offsets for fields are defined in file OF$MDM and are prefixed by OF$MDM:AP_.
The first parameter is at offset OF$MDM:AP_CC in all command packets and con
tains the MOM command code for the particular command. Other fields depend
on the command code.

The following commands are supported:

Rev. 3

Run Local Port (command code EQ$MOM:CC_RLP).

Run Remote Node (command code EQ$MDM:Cc:....RRN).

Initiate Automatic Load (command code EQ$MDM:CG_IAL).

Port Failure (command code EQ$MDM:CC_PORTFAIL).

Check Ports for Diagnostics Packets (command code
EQ$MDM:CG_CHECK....DIAGS).

0814 System Software Manual
Section 5.12 - 2

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The following subsections detail the packet formats required by each.

5.12.2.1 Run Local Port Command Packet Format

This command is used to perform all the basic MOM local port functions.
It can be used to perform these functions on a 1 i st of ports or on a single
port. The command packet contains the following fields:

Function (at offset OF$MDM:AP_FUNCTION) - This byte specifies the func
tion(s) to be performed on the port(s) contained in the Port List field
(described 1 ater). Each function corresponds to one bit in the byte and
most combinations may be specified. Where more than one function is
specified, they are performed in the order below:

Rev. 3

Reset - If bit EQ$MDM: RESET is set, and the port is on-1 i ne, it is
taken offline and certain 'cleanup' functions, described in the sub
section on the local port interface, are performed. If it is in
diagnostic monitoring mode, the monitoring is cancelled. If a port
is a multi-threaded port, then the cleanup procedures are performed
for each virtual port that is linked to the multi-threaded port.

ROM Diagnostics - If bit EQ$MDM:ROM_DIAG is set, several stages of
diagnostics are performed on the port. If all stages are success
ful,· the port can be loaded with software. If any stage fails, a
system report will be sent with an error code that is unique to the
stage that failed (see EQ$MDM:EC_), and the port is left in a state
that requires a RESET function before MOM will do further process
ing. The stages of ROM Diagnostics are:

1. Basic diagnostics for the port hardware. This test is
1 ni ti ated by gi v1 ng the port a "Reset !1 11 , and takes 8
seconds to complete. MOM will expect the "Port Bit" to be
set in the port 1 s Packet Bic Status register if the test
was successful.

2. Parity diagnostics. This test is initiated by giving the
port a "Reset 311 • MOM expects the Packet Bic Status regis
ter to equal a value of Hex 84 if the test was successful.
The test is foll owed by a Reset ~, Reset 1, sequence to
leave the port in a non-error state.

3. Basic Bic test. This test checks that the Bic is opera
t1 ona I on a basic 1 evel , and can be used to 1 oad Software
into the port.

0814 System Software Manual
Section 5.12 - 3

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Load - If bit EQ$MDM:LOAD is set, the port is loaded with the soft
ware- in the software field, assuming the port is of loadable type,
and in a loadable state.

Set Start Address - If bit EQ$MDM:SET_START_ADDRESS is set, then the
address in the field START is taken to be the start address for the
code currently loaded in all of the referenced ports. This function
can be used to modify the start address from the file (if any) down
line loaded with the LOAD function.

Monitor - If bit EQ$MDM:MONITOR is set, then the port is started
(assuming a start address has been specified or was passed in the
load block), the parameter list is passed to it in a Diagnostic
Packet, and the port is monitored every 30 seconds for diagnostic
packets which are then passed to the user as wil 1 be described
later. (Diagnostic Packets are addressed packets passed between
port diagnostics and the mainframe, whether or not the mainframe is
running 0814 system software. They are described· in the section on
Subsystem Interfaces). The port is now considered to be in 1 di ag
nostic monitoring mode 1 • The conunand wi 11 -not terminate (meaning
the port leaves diagnostic monitoring mode) until a Diagnostic
Packet with type equal to 11 termination 11 is received, or until an MOM
Reset command cancels it.

Set Onl i ne - If bit EQ$MDM: ONLINE is set, then MOM wi 11 execute the
on-line procedures, described in the 'Local Port Interfaces• sec
tion, after the port has been successfully loaded with operating
software.

(Note: The 1 monitor 1 and 'set on-line• functions are inconsistent
wTElleach other. If both these functions are specified, only moni
tor is performed. If the reset function is specified, no other func
tion except ROM diagnostics can be performed unless the 1 oad func-
tion is also specified.) ·

Software (at offset OF$MDM:AP_SOFTWARE) - 8-byte field identifying the
file to be loaded, if the 1 load 1 bit was set in the function field. The
field must be in one of these formats:

Rev. 3

1. If standard port operating software is to be loaded, it must
contain a O in ~he first byte.

2. If a standard startup diagnostic is to be loaded, it must con
tain a X1 FF 1 in the first byte.

3. If the file to be loaded is neither the standard startup diag
nostic nor the standard operating software, the eight byte file
name in ASCII must be specified.

0814 System Software Manual
Section 5.12 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Monitoring Flags (at offset OF$MDM:AP_MFLAGS) - This contains bits which
specify various options for diagnostic monitoring if the monitor bit was
set in the Function field. If bit EQ$MDM:MFLAG5_UPDATE is set, then
update, as well as Termination, Diagnostic Packets are sent to the user;
otherwise, only the Termination Packet is sent. The port is polled every
30 seconds to see if there are any packets to be sent. If bit
EQ$MDM:MFLAGS_ASCII is set, then the ASCII portion of the Diagnostics
Packet will be forwarded to the user. If the bit 1 EQ$MDM:MFLAGS_BINARY 1

is set, then the bi nary portion wi 11 be forwarded to the user. The user
can select either, both, or neither of these fields to be forwarded.
(See Subsystem Int~rfaces for a description of the Diagnostic Packet
format.)

Start (at offset OF$MDM:AP _START) - This is the 2-byte start address to
be set if the 'Set Start Address' function was specified. If 0, the code
in the port will not be all owed to run until a non-zero start address is
set.

Port List (at offset OF$MDM:APJORT.J..IST) - This is a variable-length
list of ports terminated either by the end of the packet or by a O delim
iter. The functions specified in the FUNCTION field are performed on all
the ports in this list. If more than one port is listed, the command is
handled as if it were really a set of identical command packets each of
which involved one and only one port. Therefore, if a completion message
is sent to the user, for example, when the last function of a command is
successfully completed, one such message would be sent for every port in
the list. The port list can contain different types of ports, but if
standard software is specified, ports requiring identical software will
be grouped together into separate load request packets. Load request
packets are sent to the Down Line Loader (MDL), where the load operation
is actually performed, unless the port is a floppy disk or a floppy disk
emulator port, and standard diagnostics software is requested. MOM
handles the down load operation itself for those two cases.

Parameter List (optionally follows the Port List) - If diagnostic monitor
ing was specified in the FUNCTION field, the parameter list is sent to
the port (preceded by the number of parameters) after the port's diagnos
tic software has been successfully loaded and sent a start co.de.

5.12.2.2 Run Remote Node Command Packet Format

This command is used to manipulate a remote adjacent node through an oper-
ational local I/NP. The command packet contains the following fields:

Function (at offset OF$MDM:AP_FUNCTION) ~ This byte specifies the func
tion(s) to be performed on the adjacent node, in a manner similar to that
of the FUNCTION parameter in the Run Local Port command. The foll owing
functions are supported:

Rev. 3 0814 System Software Manual
Section 5.12 - 5

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Hard Boot - If bit EQ$MOM:HA~OBOOT is set, then the remote adjacent
I NP is sent the NP boot sequence causing it to restart, and then
accept any software it is sent from this node. Once a node is hard
booted it will only accept software from the I/NP which received the
NP boot sequence=--

Load Mainframe - If bit EQ$MOM:LOAO_MF is sent, then the remote adja
cent mainframe is to be loaded and started executing the software
specified in the software field. To be sure that the remote main
frame will load this software, as opposed to software received over
some other link adjacent to it, the Hard Boot function should al so
be specified.

This bit need only be specified if the user wants to specify the
software to be loaded. Otherwise, MOM will respond to help messages
sent by the remote node and will load whatever software it requests.

MOM will send an immediate acknowledge back to the origin of Run Remote
Node command. The acknowledge is the original command, with the source and
destination exchanged.

Software (at offset OF$MOM:AP_SOFTWARE) - 8-byte field identifying the
name of the file to be loaded, if the 'load mainframe' bit is set in the
Function field. The file is specified as follows:

1. If standard Mainframe operating software is to be loaded, it
must contain X'OlOO' in the first two bytes.

2. If the standard Mainframe diagnostic package is to be loaded,
it must contain X'OlFF' in the first two bytes.

3. If the file to be loaded is neither the standard startup
di agnostic nor the standard operating software, the eight byte
file name in ASCII must be specified.

Port Number (at offset OF$MOM:AP_poRT__LIST) - The command must contain a
single port number through which the operations will be performed. The
port must be an up and running I/NP.

5.12.2.3 Initiate Automatic Load Command Packet Format

This command causes MOM to start the standard 1 oad sequence for local
ports. If a port is taken of fl i ne for some reason, this command may be used
to bring it back online. MOM will then run diagnostic if indicated, load the
port, and set it online. All this will happen automatically without any fur
ther user intervention. When MOM processes this command, it immediately
sends a response back to the user to indicate that the command has been suc
cessfully received. No message is sent by MOM to the user when loading is
completed, al though a system report is normally sent when any node or port
comes up.

Rev. 3 0814 System Software Manual
Section 5.12 - 6

Rev. 3

CODEX CORPORATION COM>ANY CONFIDENTIAL

The diagnostics enable bit (EQ$MDM:IAP DIAG) inside the function byte at
offset OF$MDM:AP FUNCTION causes MOM to generate a 11 Run Local Port" command
packet and queue it to the Command Processor batch task. The packet con
tains:

1. The Reset Function
2. The ROM Diagnostics Function
3. The Load Function
4. The Monitor Function
5. The Codes for Standard Diagnostics Software
6. No Monitoring Flags

If an error is encountered, a systems report is sent. Otherwise, when a
successful diagnostics termination packet is received by MOM, it generates
another 11 Run Local Port 11 command packet. This time. the packet contains:

1. The Load Function
2. The ON-LINE Function
3. The Codes for Standard Operating Software

If the diagnostics enable bit is not set in the 11 lnitiate Automatic Load11

command, then the MOM operation is identical to a 11 Run Local Port" command
with the following contents:

1. The Reset Function
2. The ROM Diagnostics Function
3. The Load Function
4. The ON-LINE Function
5. The Codes for Standard Operating Software

Beginning at offset OF$MDM:APJORT_LIST, the command packet contains a
list of the port addresses to be loaded.

5.12.2.4 Declare Port Failure

If an MOM user detects a port failure, this command can be used to inform
MOM of the failure immediately rather than waiting for MOM to time 12 seconds
of inactivity· on the port before the failure is declared. The command will
cause MOM to look at the port's BIC status for a parity error, and then send
the appropriate system report. If the failure was due to the first parity
encountered in the last 30 minutes, an 11 Initiate Automatic Load 11 command will
be generated for the port entered in the command packet at the offset
OF$MDM:APJORL.LIST. The automatic load command will have the diagnostic
function selected.

Rev. 3 0814 System Software Manual
Section 5.12 - 7

Rev. 3

CODEX CORPORATION COtt>ANY CONFIDENTIAL

5.12.3 MOM Interface With Mainframe Oownline Load Module (MOL)

As already noted, MOM uses MOL to load software when required. The inter
face with MOL is described in detail in the subsection on that module. Only
the important features of that interface will be summarized here.

The interface with MOL is through addressed packet format messages,
queued to the MOL batch task number 11 EQ$BATCH:MDLREQUEST". The command code
in the packet contains one of the following:

Load Local Port - MOM uses this MOL command to locate and down load
formatted 1 oad blocks to any port type except floppy disks or floppy
emulators, that are loading standard diagnostics software. These
load block types have to be down loaded from the MOM submodule
'DOWNLOAD'.

Load Remote Node - Causes MDL to initiate loading of a remote main~
frame through a 1 ocal opera ti ona 1 I /NP. Any 1 oad a 1 ready in pro
gress is cancelled.

Load Remote Port - Causes MDL to i ni ti ate 1 oadi ng of a remote NP,
through a 1o~ai operational I/NP.

Abort Load - Cause MDL to terminate a load in progress.

MDL's responsibility is strictly to get a port loaded with the proper
software. MDL does not start the port or time out if the port cannot be
1 oaded. Further, MDL'l nterf aces with no system component other than the
1 ocal MOM.

MDL sends a message back to MOM whenever a 1 oad of a port 1 is ted in one
of the Load Port commands above is completed, whether or not the load was suc
cessful. Possible reasons for a load failure are port failure and an invalid
port address. A 1 oad cannot fail because the software could not be found,
since MDL in such a case retries indefinitely.

MOL also informs MOM whenever an Abort Load command is complete.

5.12.4 MOM Reports and System Reports

MOM system reports as well as messages sent to users of the MOM addressed
packet user interface share a common format and are known collectively as MOM
reports. This format allows MOM to build an error message, for example, be
fore deciding whether it is to go to a user or be sent as a system report.
All system report fields (defined in file OF$RPT) are present in MOM Reports.
The system report code field OF$RPT:CODE always contains the system report
code EQ$SYSRPT:MDM, which allows the report to be sent as a system report
with no reformatting. Fields in the data area of the report are defined by
offsets in file OF$MOM as follows:

Rev. 3 0814 System Software Manual
Section 5.12 - 8

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

OF$MDM:REPORT_pORT - Port to which the report refers, O if Mainframe.

OF$MDM:REPORT_TYPE - Contains the type of report:

EQ$MDM:REPORT_DIAG_UPDATE - Report contains contents of Update Diag
nostic Packet.

EQ$MDM:REPORT_DIAG_TERM - Report contains contents of Termination
Diagnostic Packet.

EQ$MDM: REPORT_FAILURE - A test run by MOM itself has failed, for
example the BIC loopback. Since the MOM report format is used in
all MOM system reports, one of the errors discussed 1 ater under
Failure Monitoring could for example be reported in this packet.

OF$MOM:REPORT_EC - Error code. The meaning of error codes depends on the
report type. If .the report is a Termination or Update message, then the
error code is the Summary Status Byte from the Diagnostic Packet (a value
of zero implies no error). Otherwise, it is defined in file EQ$MDM and
prefixed by EQ$MOM:EC_.

OF$MOM: REPORT_BIN_LEN - This contains the number of bytes of bi nary data
that follow this byte. The use of the binary data is defined by the
diagnostic software.

String of ASCII Characters - Following the list of binary data, starts
the list of ASCII characters. The length of the packet is used to locate
the last character.

Undeliverable MOM system reports are returned to MOM at entry point
MOM$SYSRPT:ENTRY by the addressed packet router. These are then rerouted to
the Mainframe Panel Control Module for display on the .front panel.

5.12.5 MOM Interfaces Used in Providin Software Over a Link to an Unloaded

This subsection describes the MOM interfaces involved in loading software
to a remote adjacent node (referred to as the 'loading node') which is. run
ning the 'ROM NP', a special bootstrap module loaded through a call to the
Mainframe IPL Module (MIL).

A loading node communicates with an adjacent network node using HELP mes
sages, described in the sections dealing with I/NP and ROM NP 1 ink protocol
sections. The HELP message is used both to bring the 1 ink up and to send
parameters from the loading node to the node running system software. When a
HELP message is first received by an I /NP, MNL is informed through the Link
Active addressed packet that the link (which it had previously considered to
be down) is now opera ti anal • This message contains all the HELP message 1 s

Rev. 3 0814 System Software Manual
Section 5.12 - 9

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

parameters including a possibly empty software specification field·. Si nee
the HELP is otherwise treated by the I/NP as an AMSTR or ASEC message
(described in the sub sec ti on on I /NP software), the 1 ink is now up and data
may be sent. MNL calls MOM subroutine MOM$LINK:UP as follows· to pass it the
HELP message parameters in its received link Active message:

Entry Conditions:

X-register points to the link Active message received by MNL, con
taining the HELP message parameters. Before calling this routine
MNL must have determined from the message parameters that a HELP
message rather than an ordinary AMSTR/ASEC message was received.

On Exit:

All registers and data space fields are destroyed. The message byte
file has been deleted.

Function - The subroutine sets the 'IPL in Progress' bit in the I/NP
PCB's status lockbyte, which is a signal to MNL that the link is in use
by MOM. What MOM does depends on the HELP message's parameters:

Rev. 3

If the 'type' parameters is 'diagnostic result', then it is meant
only to supply information to the ICTP operator. A system report is
sent with the message parameters in the MOM Report format discussed
earlier, and nothing more happens.

If the software revision and release are specified and are different
from the ~ctive software, a system report is also sent.

If the restart type is NP-boot, a system report is sent.

If a fatal error is specified as the error code, a system report is
similarly sent.

If the 'type' parameter is 'load', the error code has its high order
bit set (either no error or non-fatal error), the restart type is
1 software restart 1 or 1 power-up 1 , and the software revision and re
l ease are consistent with the active software, then software is to
be downline loaded without operator intervention. If a specific
software module is requested, then that module is downline loaded to
either the remote Mainframe or the remote I /NP, as indicated by the
M and N bits in the HELP message parameter byte. If no specific
module is requested but the mainframe is not loaded (this is indi
cated by the L bit in the Help Parameters field of the HELP mes
sage), then the Mainframe software is downline loaded. If the error
code is a non-fatal error (higher than X1 7F 1 but not X1 FF 1), then a
system report is sent but the proper software is al so loaded as
above.

0814 System Software Manual
Section 5.12 - 10

Rev. 3

CODEX CORPORATION COll>ANY CONFIDENTIAL

· Once MOM has been informed that a 1 ink with a 1 oadi ng node has been
brought up, no mainframe module other than MOM or MDL (Mainframe Downline
Load Module) is allowed to access the I/NP's BIC data FIFO until MOM has been
informed that the same 1 ink has gone down. This is guaranteed through the
'IPL in Progress' bit in the I/NP PCB. To implement the interlock, the fol
lowing subroutine must be called whenever MNL receives a link Failure message
from an I/NP or whenever an I/NP is declared to be down:

Entry Point:

MDM$LINKDOWN

Calling Conditions:

A-Register - Contains address of the I/NP

On Exit:

All registers and data space fields are destroyed and the 1 IPL in
Progress' bit in the I/NP's status lockbyte is cleared.

Function - The subroutine does nothing if the 'IPL in Progress' bit is
not set. Otherwise MOM terminates any load in progress using the I/NP.
This is done by sending MDL an 'abort' command and waiting for the
response. Before returning, the IPL in Progress bit is cleared.

It should be noted that this routine and MDM$LINKUP are the only rou
tines which modify the IPL in Progress bit for an I/NP.

5.12.6 MOM Local Port Interface

This subsection describes the interfaces needed for MDM's local port
functions. ·

5.12.6.1 Port Control Block (PCB) - Offline Port Cleanup and MOM Local
Storage

This subsection . describes those MOM 1 ocal port interfaces implemented
through the PCB of the IP involved. The PCB of a local IP is used by MOM for
1 ocal storage of MOM data relating to the port and to implement required
synchronization for the 1 cleanup 1 functions which must be performed by var
ious mainframe modules when a port is to be brought off-1 ine by MOM. The
remainder of this subsection discusses the above functions.

Rev. 3 0814 System Software Manual
Section 5.12 - 11

Rev. 3

CODEX CORPORATION COfl>ANY CONFIDENTIAL

Each I/P PCB contains in its MAIN data substructure a field,
OF$PCB:MAIN_DDSS, which contains a possibly zero pointer to a Diagnostic Data
Substructure (DOSS). The DOSS is a single buffer which is allocated and
delocated as needed by MOM. It is not referenced by external modules and is
not allocated for a port which is up and running 0814 port system software.
The DOSS is used by MOM for storage of data associated with an off-line I/P.

Each I/P also has a STATUS lockbyte which is used for synchronization
with other Mainframe modules when bringing a port on-line or off-line. An
on-1 ine port is assumed to be running system software and may perform all of
its normal system functions, while an off-line port may only interface with
the rest of the network through MOM or MDL. The STATUS 1 ockbyte has a DOWN
bit which is set by MOM whenever a port is taken offline. Also in the STATUS
1 ockbyte are 1 busy' bi ts for each system module for which cleanup must be
done when an I /P is taken of fl i ne. The mask for a module 1 s busy bit is
EQ$PCB:LOCK_STATUS:xxx BUSY where 'xxx' is the module name. A module sets
its busy bit whenever-it is using the port BIC FIFO's (this may be for an
indefinite period) and MOM may not do physical IO to the port while any busy
bits are set. On the other hand, no module may set a busy bit while its DOWN
bit is set by MOM. Each module having a busy bit provides to MOM a cleanup
subroutine which may be called after the DOWN bit has been set to do whatever
cleanup the port must do and turn off the busy bit. A module 1 s cleanup sub
routine has ·entry point xxx$CLEANUP: ENTRY where 'xxx 1 is again the module
name. Therefore, to take a port off-line, MOM must do the following:

1. Set the port's DOWN bit.

2. For each busy bit which is set, call the proper module's cleanup
subroutine. There are busy bits and cleanup subroutines for modules
MNL, MAP, MMT, and MPM.

3. Wait for all busy bits to clear.

Once this has been done, MOM may do whatever it wants with the port.

MOM will put a port on-line after it receives a successful load response
from MDL, and the ONLINE function was specified. The steps are:

1. The down bit in the port's Status lockbyte is reset.

2. The down bit in the port 1 s. Packet 1 ockbyte is reset.

3. The pointer to the diagnostics substructure in the port 1 s PCB is
zeroed, and the buffer is returned to the operating system.

4. A start code (Hex 55) is sent to the port's BIC ~ FIFO.

5. When the first Wakeup packet is received from the port, the active
configuration is put in Byte 9 of the Packet, and the packet is
queued to the Packet Transmitter. The Senders flags are set in the
BIC status registers to enable the port to read the packet.

Rev. 3 0814 System Software Manual
Section 5.12 - 12

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The two-bit TIMER field in the PCB Packet lockbyte is used in port fail
ure monitoring. It contains the number of 6-second monitoring periods since
an addressed packet was last received from a port. The addressed packet
router clears it whenever it receives a packet from the port. Every six
seconds a scheduled MOM task increments the TIMER field and declares the port
to be dead if it is incremented to 2. Since a port is required to send a
packet at least every ten seconds, an operational port cannot be declared
dead. When MOM declares a port dead, it is taken offline and a system report
sent.

MOM periodically runs various port and system diagnostic tests. When an
error is found an attempt is made to report it to the network operator
through a system report. If the system report packet is returned, it is
rerouted to the Mainframe front panel •.

The following diagnostic procedures are· run by MOM:

Port Failure Monitoring - Any physical port from which no addressed
packet 1s received for roughly twelve seconds is considered to have
fail ed. When MOM discovers such a timeout, it takes the port offl ine.
After the port is taken off-1 ine, MOM does a reset-3 to the port data BIC
and reads data from the inbound data FIFO. This data, which must--oeless
than 128 bytes, is pl aced . in a MOM Report packet and sent as a system
report with either a 'port time-out' error code (if there was no parity
error) or a 'RAM parity failure' error. If the error was a parity error
and if the port had not failed in the previous 30 minutes, an automatic
load of the port is then initiated.

RAM Test - A memory test is run continuously at priority 0, the lowest
Mainframe priority level. This test consists of a free buffer memory
test and a code space checksum test. If a buffer is found to contain a
bad memory location, a system report containing the bad address is sent.
If the code checksum at location OF$SYS :MILCHECKSUM (a 2-byte checksum
computed by adding bytes with wrap-around carry) does not match the check
sum computed by MOM an error also occurs.

Lockbyte Test - Every three seconds all the lockbytes except the debugger
1 ockbyte are tested. If any l ockbyte is found to be cl ear for more than
1000 microcycles, an error occurs and a system report containing the lock
byte address is sent.

Link Monitorin~ - Every 30 minutes, starting 30 minutes after system
startup, an MO system report is sent for every I/NP whose link is down.
A link is considered down if the Framing Lost bit is set in the I/NP' s
STATUS lockbyte.

Rev. 3 0814 System Software Manual
Section 5.12 - 13

Rev. 3

CODEX CORPORATION COll>ANY CONFIDENTIAL

CMEM Test - Every 30 minutes Configuration Memory is checksummed in the
same manner as code space. If the checksum does not match the checksum
stored in the first two bytes of CMEM, an error system report is sent.
CMEM is read using routines provided by the Mainframe Configuration
Manager Module (MCM).

5.12.8 System Errors

Fatal errors in any Mainframe system module are handled by calling MDM
routine MDM$SYSERR:CRASH with the appropriate error code, defined in file
EQ$SYSERR, in the calling A register. MDM$SYSERR:CRASH first checks if the
Debugger Port is plugged in. (The debugger port is always in slot 0, which
is an otherwise invalid port address.) If the Debugger Port is there, the
debugger is invoked. Otherwise a 6000 software restart is done and the error
code is passed to the IPL ROM as described in the Firmware Section on the
Mainframe IPL Module.

Rev. 3 0814 System Software Manual
Section 5.12 - 14

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13 Mainframe Subsystem Data Structures

This subsection describes all mainframe data structures not attached
specifically to any individual mainframe module and, therefore, not described
elsewhere.

5.13.1 Port Directory

Addresses X'200' to X1 3FF' contain the mainframe Port Directory. The
address in RAM of the Port Control Block (PCB) for port number i will be
found at off set 2*i into the Port Di rectory if such a PCB exists. If there
is no port.!' then the entry for it will be X'OOOO'.

The Port Directory is interlocked through lockbyte OF$SYSLCK:PORTDIR and
may be accessed through mainframe utility MUT$PCB.

5.13.2 Port Control Blocks

A Port Control Block (PCB) is maintained in the mainframe for each user
data source or destination. These include all physical IP's as well as
virtual ports (associated with an individual data stream through a multi
plexed I/TP) and XP's (associated with the data stream for a user path at an
intermediate node).

Fixed PCB's are created by the Mainframe System Initialization Module
(MSI) and· dynamic PCB's are created by the Mainframe Path Management, Rout
ing, and Congestion Control Module (MPMRCCM). The modules having read/write
access to PCB's are MPMRCCM, the Mainframe Addressed Packet Module (MAP), the
Mainframe Network Link Module (MNL), and the Mainframe Statistics and Moni
toring Module (MSM). In addition, various mainframe modules read static
information from the PCB's.

The structure of a PCB depends on the type of port with which it is asso
ciated. Each PCB has a top level main data structure containing some fields
common to all PCB's as well as some fields dependent on the type of port.
The PCB has various data substructures depending on the type of port. In
general, each substructure contains data used primarily by one specific
module or submodule. The structure of the PCB is described in the following
subsections.

D814 System Software Manual
Section 5.13 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13.2.1 Main Data Structure (All Offsets are Prefixed by OF$PCB:MAIN_)

Fields common to all port types:

TYPE

PADR

LOCKS

- Port type (high order nibble) and subtype (low order
nibble)

- Port address

Pointer to port's lockbyte area. Each port has speci
fic lock bytes associated with it for synchronization
between different tasks accessing the PCB.

Fields only found in I/NP PCB 1 s:

XMT

RCV

NPLINK

- Pointer to MNL Transmit Data Substructure

- Pointer to MNL Receiver Data Substructure

- Link to next I/NP PCB. 0 if last PCB in linked list.
It should be noted that this linked list is unchang
ing once normal system operation has begun.

Fields only found in I/TP, XP, and VP PCB's:

SLOT

PATH

- Pointer to Slot Data Substructure (used by MNL$XMT)

- Pointer to Path Data Substructure (used by MPMRCCM)

Fields conunon to all PCB 1 s except LNP, VP and XP:

PACKET

DOSS

MDM..J.OAD

PARITV_COUNT

- Pointer to Packet Data Substructure (used by MAP)

- Pointer to Diagnostic Data Substructure used by Main
frame Diagnostic and Physical Port Control Module
(MOM) for scratch storage. This field is set to 0 by
MOM when the substructure is unallocated.

- MDM's load control flags (described in subsection on
MOM).

- Counter maintained by MOM of port memory parity
errors in a 30-minute time period.

0814 System Software Manual
Section 5.13 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13.2.2 MNL Receiver Data Substructure
(All offsets are Prefixed by OF$PCB:RCV_):

DS - Data space number for MNL$RCV task for this link

RNODE - Remote node at other end of link

FILEINUSE - Address of byte file being received

STACK - Stack for MNL$RCV

5.13.2.3 MNL Transmitter Data Substructure
(All Offsets are Prefixed by OF$PCB:XMT_):

DS

SAQ

CFQ

CFQDB

- Data space number for MNL$XMT task for this link. 0
if link down.

- Pointer to slot add queue

- Pointer to control frame queue descriptor block (Used
only to shorten code.)

- Control frame queue descriptor block

RAPQ - Pointer to remote addressed packet packet queue

RAPQDB

RNODE

RP ORT

LNKDLY

LNKSPD

APPTHRUPUT

descriptor block

- Remote addressed packet queue descriptor block

- Number of node at remote end of this link

- Number of I/NP at remote end of this link

- Link delay in hundredths of a second

Nominal link speed

Apparent link throughput in characters per second
(for MPM)

FILEINUSE - Address of byte file being transmitted. 0 if none.-

XMTLST

RCONFIG

RSWLVL

- Pointer to linked list of slot substructures of ports
included in this link's active data traffic.

- Remote node's configuration level

- Remote node's software revision/release level

D814 System Software Manual
Section 5.13 - 3

I ,

r\
l

CODEX CORPORATION

TRAFFIC

STACK

COMPANY CONFIDENTIAL

- Long term outbound 1 ink traffic (see subsection on
MPMRCCM)

- Stack for MNL$XMT

5.13.2.4 Packet Data Substructure, Not Present in I/NP, VP, or XP PCB's
(All Offsets are Prefixed by OF$PCB:PACKET_):

XMTLNK

RCVLNK

- Link used by MAP to queue this substructure to the
MAP Addressed Packet Transmitter queue

Link used by MAP to queue this substructure to the
MAP Addressed Packet Receiver queue

OPQTOP, OPQBOT,
and OPQLOCK - Pointers to start of, end of, and 1 ock byte asso

ciated with the outbound packet queue descriptor
block for packets sent to this port.

RCVPTR

IPADR

Pointer to packet currently being received

- Port address (address of associated physical port in
VP PCB 1 s)

5.13.2.5 Path Data Substructure, Present in I/TP, XP and VP PCB 1 s
(All Offsets are Prefixed by OF$PCB:PATl-L.):

Fields used by I/TP and VP PCB 1 s:

CSTATE

RN ODE

RP ORT

PSTATE

SST ATE

SPD

PRIO

PXAN

PXAP

- Call state

- Remote node for call

- Remote port for call

- Primary transmit path state

- Secondary transmit path state

- Path's source port speed

- Path's priority level

- Primary transmit path adjacent node

- Primary transmit path adjacent port (number of XP or
I/TP at next node on path)

D814 System Software Manual
Section 5.13 - 4

CODEX CORPORATION

PXNP

PRAN

PRAP

PRNP

SXAN

SXAP

SXNP

SRAN

SRAP

SRNP

SHOPS

COMPANY CONFIDENTIAL

- Primary transmit path I/NP

- Primary receive path adjacent node

- Primary receive path adjacent port (number of XP or
I/TP in previous node or path)

- Primary receive path I/NP

- Secondary transmit path adjacent node

- Secondary transmit path adjacent port

- Secondary transmit path adjacent port

Secodnary receive path adjacent node

- Secondary receive path adjacent port

- Secondary receive path I/NP

- Secondary receive path 1 ength

Fields used by XP PCB's:

XSTATE - Path state

DST ND - Path destination node

DST PT - Path destination port

SRCND - Path source node

SRCPT - Path source port

SPD - Same as for I/TP

PRIO - Same as for I/TP

XAN - Transmit adjacent node

XAP - Transmit adjacent port
.
XNP - Transmit path outgoing I/NPO

RAN - Receive path incoming adjacent node

RNP Receive path incoming I/NP

Congestion Control fields, present in all path substructures:

RRSWITCHPORT- See subsection on MPM$CCM

0814 System Software Manual
Section 5.13 - 5

,_ >

CODEX CORPORATION COMPANY CONFIDENTIAL

5.13.2.6 Diagnostic Data Substructures, Present in All Physical Port PCBs:

The Diagnostic Data Substructure is created by MOM whenever a port is
taken off-1 i ne and returned to the free buff er poo 1 if and when it is put
back on-line. It is used for scratch storage by MOM. The fields of the
Diagnostic Data Substructure are described in the subsection on MOM.

5.13.2.7 PCB Lock Bytes

In addition to its various substructures, the PCB of each physical or
virtual port has a lock byte area. This is a set of contiguous lock bytes
used for synchronization both among different mainframe modules and among
separate tasks in the same module. Since all lock bytes are allocated perm
anently at system initialization, a dynamic PCB such as an XP, PCB may not
have a lock byte area. In such cases, the OF$PCB:MAIN....LOCKS field is the
main data substructure in left O. Lock bytes are defined by offsets prefixed
by OF$PCB:LOCK...... and bit fields within a PCB lockbyte are defined by bit masks
prefixed by EQ$PCB:LOCK. The following is a list of all lock bytes used for
a 11 port types:

STATUS - This lock byte exists in every Intelligent Port (I/P) or
Virtual Port (VP) PCB. It is used for synchronization
between MOM and other mainframe modules when bringing a
port on-line or taking it off-line. It contains a DOWN
bit which is set when the port is considered off-line by
MOM and a BUSY bit for each of four different modules.
The BUSY bits are set by the respective modules when they
are using the port. The DOWN and BUSY bits are described
more fully in the subsection on MOM.

USERS - This lock byte is currently used only by the Mainframe
Network Link (MNL) Module. It is used to synchronize
among the MNL transmit and receive tasks and the MNL
addressed packet message handler task when links are
brought up and down. Its use is described more fully in
the subsection on MNL.

PACKET - This lock byte is used for synchronization between the
Mainframe Addressed Packet (MAP) Module and MOM when a
physical port is brought on-line and when required
addressed-packet cleanup is performed to take a physical
port off-line. It contains the following bit fields
defined by masks prefixed by EQ$PCB: LOCK....PACKET_:

,

DOWN - Cleanup bit set by MAP$CLEANUP at start of clean-
up and cl ea red by MOM when the port is brought
back on-1 ine.

0814 System Software Manual
Section 5.13 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

TIMER - Two bit timer field used by MOM to decide when a\.....
port has timed out. The field is reset by MA~_
to 0 whenever a packet is received from the port
and is incremented by MOM every six seconds
while port is on-line. When the timer is incre
mented to 2, the port is considered to have
fail ed.

RCV & XMT - MAP addressed packet receiver and transmitter
active bits, in that order. The appropriate bit
is set by MAP$PINT when a packet receive or
transmit interrupt occurs and is reset by
MAP$PRCV (RCV bit) or MAP$PXMT (XMT bit) when
handling of the interrupt is comp 1 eted. The RCV
or XMT bit is set if and only if the inbound or.
outbound packet BIC FIFO, respectively, is in by
MAP. When MAP sets a FIFO flag at the end of
interrupt processing, it must do so simultaneous
ly with the clearing of the RCV/XMT bit.

UP This bit is set if and only if the port is up
for the purpose of receiving outbound packets.
It is set by MOM after the initial wakeup packet
from a newly operational port has been received
and sent back to the port. lt is cleared by MOM
when the port is taken off-line. It is needed
to guarantee that the first packet any physical
port receives is the response to its wakeup
packet.

0814 System Software Manual
Section 5.13 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6. INTELLIGENT PORT MODULE DEFINITIONS

The D814 intelligent port software consists of software in three general
classes.

1. Intelligent Port Operating System (IPOS)
2. Common Software
3. Unique Protocol Software ,I

The operating system software is common to all ports, though certain sub
modules in this module may not be present in every port subsystem. This
module is described in Section 6.1

The common software consists of a collection of modules which are used by
a general cl ass of ports, but not by a 11 ports. Software of this type is
presented in Sections 6.3 through 6.5.

The unique protocol software is that part of a port which implements its
specific communications personality in interfacing with the outside world.
These modules are presented beginning with Section 6.6.

6.1 Intelligent Port Operating System

The Intelligent Port Operating System Module {IPOS) is organized as a set
of submodules, each of which provides a related set of functions.

1. System Scheduler
2. Real-Time Clock and Timer
3. Batch Processor
4. Buffer Utilities
5. Queue Manipulation
6. Addressed Packet Handler
7. Utilities
8. IPOS Initialization
9. Processor Loading Calculation
10. Light Control
11. Memory Modification
12. Software Uploader
13. Background Checker

Descriptions of these modules are found in Sections 6.1.1 through 6.1.10.

IPOS itself is maintained as two closely knit units designated as IPOS
and IPOS/09. The designate IPOS supports the M6800 processor and IPOS/09
supports the M6809 processor. While most Operating System modules for both
the 6800 and 6809 are identical in operation, the Initialization, Real-Time
Clock, and Scheduler are different; these modules are provided with separate
descriptions. Task Control Blocks are also different for IPOS and IPOS/09.

Rev. 2 D814 System Software Manual
Section 6.1 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.1 Task Scheduler Submodule

The scheduler recognizes seventeen software process priority levels. The
lowest level is zero and the highest level is sixteen.

Before continuing with the description of the scheduler, some terms need
to be defined. A task is RUNNING when it has control of the processor. A
task is INITIATED when it is placed in the task queue of a specific priority
level. A task is STARTED when it is removed from the task queue and given
control of the processor. A task is SUSPENDED when an interrupt is being
serviced or when its machine state is stacked so that a higher level task may
be run. A task is RESUMED when its machine state is unstacked and it is
given control of the processor. A task TERMINATES when it informs the sched
uler that it has no more work to do, and its actual machine state is removed
from the stack by the scheduler. A FORK occurs when one task causes another
task to be initiated, but the task wliTCll causes the initiation does not wish
to be terminated. A TERMFORK occurs when one task wishes to terminate and
wants another task to be initiated (either at the same or another priority
level).

The functions to be performed by the task scheduler are:

a. Initiate a task (from an interrupt routine) at a specific prior
ity level and enter scheduler.

b. Fork another task (from process level) at a speci fie priority
level and enter scheduler.

c. Fork another task (from process level) at a specific priority
level and terminate the forking task, entering the scheduler.

d. Terminate a (process level) task and enter scheduler.

e. Dispatching of hardware interrupt requests.

Task Initiation

Each task which is running or initiated in the system (or in a timer rou
tine, see 6.1.2) must have a task control block (TCB) associated with it.
Task control blocks will be buffers obtained from the buffer management mod
ule (see 6.1.4). These buffers will be linked into the task queues when the
task is initiated and will be placed in a table of active TCBs when the task
is started.

Rev. 2 D814 System Software Manual
Section 6.1 - 2

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The IP software can be running in one of two modes at any instant in
time: interrupt level or process level. Interrupt level is the level at
which interrupts are serviced and tasks are initiated, started, and termi
nated. At interrupt level interrupts are always masked. Process level runs
almost exclusively with interrupts enabled. Only during delicate operations
like queue manipulation, which could leave a data structure in an unviable
state if interrupted, will interrupts be masked. Note that, using these
definitions of interrupt and process level, it is possible to enter inter
rupt 1eve1 from process 1eve1 without receiving an interrupt. This is the
case when a task terminates and enters the scheduler to pi ck up a new task.
This is an entry into interrupt level as we have defined it.

The port processor will spend as little time as possible with interrupts
masked. ·This is accomplished by having the actual interrupt routines typi
cally set up work for a process level task and enter the scheduler which
decides which task to run next. Any volatile information is captured from
the hardware by the interrupt routine and saved. This is information such as
inbound terminal data from the 2651, 2651 status, BIC status, etc.

When an interrupt occurs, IPOS wi 11 di spat ch to the proper interrupt
handler. The interrupt handler may service the interrupt directly, or it may
initiate a task to service the interrupt at some software priority level. It
may be necessary to communicate some information to this task. If so, the
information can be passed in the Task Control Block.

When a task is initiated, if the new task is of a higher priority than
the task when was running, the new is started. If the new task is of equal
or lower priority compared to the task which was running, the task which was
running is resumed, and the new task is queued to a task level queue.

The scheduler takes total responsibility for "queued" (initiated) tasks
and the associated priority level task queues. The same entry point may be
successfully initiated and in the task queue more than once concurrently,
even at several different priority levels, if this should be desirable. It
is, however, the job of a multiply queued task to find and manipulate the
correct data each time it is started.

Note that for IPOS/09, all task initiation is performed using system
macros.

Task Termination

When a task runs to completion, it requests termination. At this time
all task queues and the highest priority task which is suspended are scanned.
The highest priority task of the above receives control.

Rev. 2 0814 System Software Manual
Section 6.1 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Task Control Blocks

The format of an IPOS Task Control Block (TCB) is:

0 - 1 2 - 3 4 - 5 6 7 8 - 9 A - B C - D E - F
TS UDR

TSK....LNK IPOS TMILCNT LVL ? ??? ??? ??? TSK....SP
TMR.-1.NIC I IPOS/09

10 - 11 12 - 13 14 15 16 - 17 18 - 19 lA - lB lC - 1D lE - lF I
RUN

BQTOP BQBOTM FLG ? ??? ??? ??? ??? ???

Note that TCBs for IPOS/09 are always 256 bytes long and aligned on a 256
byte boundary. The fields defined above are common to both IPOS and IPOS/09.

The fields are:

TSK...LNK - Used by the scheduler to link the TCB into the job queue. Used
by the timer routines to link the TCB into the timer queue. Used as
scratch area by other system routines (.IPOS) reserved for scheduler
(IPOS/09).

TSK....ADR - The entry point address of the task associated with the TCB
when the TCB is queued to either the job queue or the timer queue. Used
as scratch area by other system routines. This fie 1 d is used on 1 y in
reference to IPOS, not IPOS/09, which reserves these bytes for the TIMER
(queuing} at all times.

LVL - This byte is the level byte. The bit assignments in the byte are:

0 - 4
5 - 7

Software priority level number
Unused currently

TMILCNT - The timer delay count for the timer routines. (Used only
during delay operations.}

TSK...SP - Contains a pointer to the task stack.

Rev. 2 0814 System Software Manual
Section 6.1 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The above bytes (0 - F) of the active TCB (belonging to the task which is
running) is mapped to locations x•oooo' through X1 000F 1 at all times by the
IPOS scheduler to decrease IPOS overhead; IPOS/09 uses the 6809 direct page
register to map locations x•oooo• - X1 00FF 1 •

The fields in bytes 10 - 14 of the TCB are used only by batch tasks (see
Section 6.1.3); therefore, they are free and available in all TCBs except
Batch TCBs {BTCBs).

BQTOP - Pointer to top entry queued to BTCB.
BQBOTM - Pointer to bottom entry queued to BTCB.
RUNFLG - Non-zero if BTCB task is running or queued to be run.

The entry points for obtaining TCBs are:

Entry Point - IP$SCHD:GTCB {IPOS, IPOS/09)

Function

Get a TCB of specified length and set it up. This call may be used only
during initialization. Also clears the first 5 bytes of the second buf
fer in case the TCB is to be used as a Batch TCB (see 6.1.3). IPOS/09
will force 256 byte TCB alignment. Buffers lost in aligning TCBs are
recoverable using IP$SCHD:GTCB_CLEANUP.

Entry Conditions - {JSR IP$SCHD:GTCB)

* A register contains the task priority.

* {IPOS) B register contains the number of buffers to be included in
the TCB in addition to the mapped 16 bytes (may not be zero).

{IPOS/09) B register N/A, all TCBs are 256 bytes long.

* X register contains the task entry point address.

Exit Conditions

*
*

A, B registers destroyed
X register points to the TCB

Entry Point - IP$SCHD:GTCB1 {IPOS only)

Function

Identical to IP$SCHD:GTCB, except that only one additional buffer is
obtained. The B register need not be set on entry.

Rev. 2 0814 System Software Manual
Section 6.1 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Conditions (JSR IP$SCHD:CLEANUP) IPOS/09

None

Exit Conditions

A,B,U,X,Y destroyed.

Function

Release GTCB wasted buffers.

User Program Interface

The IP operating system maintains a job queue for each· priority level.
Tasks are removed from the queues on a first-in first-out basis. If there is·
a choice between running a suspended task or starting a new task of the same
priority as the suspended task, the decision will always be to resume the
suspended task. The routines for accessing the job queues and terminating
tasks are given below.

Entry Point - IP$SCHD:FORKTCB
\

Function

Initiate a logically parallel task at a specified priority level (1 - 8).

Entry Conditions - JSR IP$SCHD:FORKTCB (IPOS);

*
*

System Macro FORK (IPOS/09)

X Register points to the TCB to be forked
TCB contains the entry address and the software level number

Exit Conditions

*
*
*

All registers destroyed (IPOS)
A,B,X registers destroyed (IPOS/09)
CC: I= 0

Entry Points - IP$SCHD:TERMFORKTCB

Function

Initiate a task at a specified priority level after terminating the
call er.

Entry Conditions - (JMP IP$SCHD:TERMFORKTCB) IPOS;
System Macros TFORK IPOS/09

*
TFORKI (Interrupt Level IPOS/09)

X register points to the TCB to be forked
* TCB contains the entry address (IPOS) and the software level number

Rev. 2 0814 System Software Manual
Section 6.1 - 6

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

* None

NOTE: This routine does not return to the caller.

Entry Point - IP$SCHD:TERM and IP$SCHD:TERM NOTCB
(Note: Entered via SWI3 for TPOS/09)

System Macros TERM and TERMN

Function

Terminates execution of the calling task and enters the scheduler for
selection of the next task.

Entry Conditions

* None

Exit Conditions

* None

NOTE: This entry point does not return to the caller •.

In addition to the above entry points, there are macro instructions which
generate in-line code for forking task levels 9-16. This is known as a fast
fork.

Two macros are available for performing fast forks, FSTFRK and FSTFRKR.
They reside in MAC$>FRKMAC (IPOS) and MAC$>FORKMC (IPOS/09}.

The form of FRKMAC is:

LABEL

LABEL

Where:

FSTFRK

FSTFRK

TCBPTR,LEVEL,*

LEVEL

(IPOS}

(IPOS/09}

LABEL is an optional label which is to be assigned to the first instruc
tion generated by FSTFRK.

TCBPTR is the name of a 2 byte location in memory which contains a
pointer to the task control block to fork.

Rev. 2 0814 System Software Manual
Section 6.1 - 7

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

LEVEL is the number (9-16) of the IPOS software level at which to fork
the TCB.

* Is an optional parameter indicating that the code is to be assembled in
an interrupt routine of that interrupts are masked on entry to FSTFRK and
are NOT to be unmasked on exit from FSTFRK. It is either left unspeci
fiedor is specified as an asterisk.

The form for FSTFRKR is:

LABEL

Where:

FSTFRKR
FSTFRKR

TCBPTR,REG,*
REG

(IPOS ONLY)
(IPOS/09)

REG is either A or B, depending on which register contains the IPOS soft-
ware level on entry to FSTFRKR. ,

All other parameters are as in FSTFRK above.

Fast fork macros destroy the X register (IPOS only; A-reg IPOS/09).
FSTFRKR destroys the register specified as REG.

Examples of proper calls are:

LBL24 FSTFRK
FSTFRKR

OFIPITP:XYZTCB,EQIPITP:XYZLVL
OFIPITP:ABCTCB,B,*

System Macros

IPOS/09 uses system macros to perform task initiation, task termination,
and timer delay functions. The macros and parameters are:

FASTCB TSKADR, LEVEL

This macro creates a TCB at a fast fork level (9-16) and places the TCB
into the fast job queue. TSKADR is the TCB starting address, LEVEL is
the TCB running level. If TSKADR is omitted, the starting address is
assumed to already be in the X-register. LEVEL must be specified.

FORK TCB, LEVEL

This macro queues a TCB for task initiation (levels 0-16). TCB is a
pointer to a TCB (if specified); if omitted, the X-register is assumed to
already point to the TCB. LEVEL is the task running level (if speci
fied); if omitted, the task runs at the level last stored in the TCB.

Rev. 2 0814 System Software Manual
Section 6.1 - 8

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

TFORK TCB, LEVEL, RESTART

This macro terminates the currently active processor level task and forks
another (or the same) processor level task. RESTART, if specified, indi
cates the next starting address for the task terminating; if not speci
fied, the next instruction after the TFORK macro will receive control the
next time the task is initiated. TCB and LEVEL are as for the FORK
macro.

TFORKI TCB, LEVEL

This macro is equivalent to TFORK but terminates an interrupt level rou
tine. TCB and LEVEL are as for the FORK macro.

TERM

This macrto terminates an interrupt level routine. There are no para-·
meters.

TERMN RESTART

This macro terminates a processor level routine. RESTART is as for the
TFORK macro.

BTERM

This macro is used by the batch task utility and is equivalent to TERMN
exept that 11 RESTART 11 is automatically reset to the original task starting
address. BTERM requires no parameters.

FSTFRK LEVEL

This macro initiates a fast fork processor level (9-16) task. Level
(required) specifies the level at which the TCB was created (FASTCB).

FSTFRKR REG

This macro is equivalent to FSTFRK with the level in Register 11 REG 11 •

DELAY TIME

This macro causes the processor level routine executing it to be delayed
(suspended) for a specific time period. 1111 TIME 11 specifies the suspension
period (in increment of 10 ms) if 11 TIME 11 is not specified TMR._CNT is
assumed to be already set in the TCB.

FORKDELAY !IME, TCB, LEVEL

This macro causes a processor level routine to be forked after a delayed
period of time. 11 TIME 11 is as for the DELAY macro. 11 TCB 11 and 11 LEVEL 11 are
as in the FORK macro.

Rev. 2 0814 System Software Manual
Section 6.1 - 9

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Interrupt Handling (IPOS)

When an interrupt occurs, IPOS determines which device is requesting ser
vice and dispatches through a table set up at assembly and link time to the
appropriate interrupt routine. A predetermined (by equates) set of addresses
are used to contain the entry point addresses for user program entry points
to service interrupts which are to be handled by the protocol module(s).

Interrupt Handling (IPOS/09)

IPOS/09 interrupt handling makes use of the 6809 expanded capabilities to
allow vectored interrupts. An I/0 area address access immediately determines
the location in a 128 entry vector table of the correct routine to handle all
possible interrupts. The interrupt vector table is defined by user routines
during module assembly. The IPOS/09 related entries (RTC, BIC O) are handled
by IPOS/09. Prioritization of system interrupts and BIC-1 interrupts are
controlled via an assembled vector control byte.

Example

Last is a scenario, illustrated in Figure 6.1.1, of how this scheme
works. The level assignments shown in the table below are assumed for the
example.

Int. 2651 input, 2651 output, control signal change, real time clock
update

8 Outbound FIFO data through to outbound protocol buffer
7 Outbound protocol through to 2651 output buffer
6 Inbound data from buffer to BIC FIFO
5 Inbound terminal buffer, protocol, to FIFO buffer
4 Outbound packet transfer for BIC packet queue
3 Inbound packet transfer into BIC packet queue
2 Packet processing
1 Real time clock dependent routines {batch)
O Background diagnostics

The scenario is:

a. The port processor is running background diagnostics at level
o.

Rev. 2

b. An interrupt from the BIC initiates a level 4 transfer from the
Packet FIFO. Level 0 is suspended.

c. Before terminating, level 4 forks a level 2 packet processing
task via a software interrupt.

d. Level 4 terminates and level 2 starts.

0814 System Software Manual
Section 6.1 - 10

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 2

e. The real time clock interrupts and schedules a task at level 1.
since we suspended level 2, the clock task at level 1 is flag
ged as active and level 2 is resumed.

f. Leve 1 2 TERMFORKs and initiates a packet to be sent inbound at
level 3.

g. An interrupt from the 2651 is received and a 1eve1 5 task is
initiated to handle an inbound transfer. The level 3 task is
suspended and the level 5 task starts.

h. Let us assume that this is a synchronous terminal and that this
transfer is simply waiting for the end of a message. Level 5
terminates and level 3 is resumed.

i. Level 3 finishes and terminates and the level 1 clock task is.
started.

j. Level 1 terminates, no other tasks are active so level O, back
ground diagnostics, are resumed.

0814 System Software Manual
Section 6.1 - 11

Rev. 2

CODEX CORPORATION

T = Terminate

I = Initiate

Rev. 2

COMPANY CONFIDENTIAL

d f h i j
T.
I.

8. . . .

b c . I~ ,-
. I .

. . -~- ~I_. -~-
. I . . . I

7. • • . • • • • . . •

6. • • • • • • • • • • • • • • • • • • •

5.
4. .1_1. · 1

3. • j_

2.

1.

0_1.
a

.

.

Figure 6.1.1

0814 System Software Manual
Section 6.1 - 12

I
• l_j.

• • • I ----

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.2 Real-Time Clock Submodule

The Real-Time Clock Submodule provides the timing capabilities of IPOS,
including time-of-day, interval timing, timed task initiations, and task
delaying.

Clock Functions

a. Provide an interval timer which continually increments every 10
milliseconds (24 bits}.

b. Provide for initiating a task after a period of time has elapsed (in
increments of 10 ms}.

c. Provide for delaying a running task for a period of time (in incre
ments of 10 ms).

Interval Timer

Routines will be provided to set and read the current value of the 24-bit
interval timer for use in recording elapsed time, detecting delays, and any
other need to know how much ti me has elapsed si nee a prior event. The user
routine may utilize as many or as few of the 24 bits as it desires, or any
subfie~d, to obtain the time interval/resolution trade-off it requires.

Entry Point - IP$RTC:SETIME

Entry Conditions

*
*

B register = high 8 bits of 24-bit timer
X register = low 16 bits of 24-bit timer

Exit Conditions

* All registers unchanged

Entry Point - IP$RTC:GETIME

Entry Conditions

* None

Exit Conditions

*
*
*

Rev. 2

A registe~ unchanged (U,X IPOS/09)
B register = high 8 bits of 24 bit-timer
X register = low 16 bits of 24-bit timer

0814 System Software Manual
Section 6.1 - 13

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Timed Task Initiation

A 16-bit timed task initiation is started by setting a non-zero value
into the timer count of a task's TCB and chaining it into the clock timer
list via a routine to be provided. The timers decrement and the associated
entry points are initiated when their timers reach zero. Time specification
is in 10 millisecond units.

Entry Point - IP$RTC:FORKDELAY

Entry Conditions {IPOS)

*
*

X register points to TCB to be forked
TSK..TMR must be set in the TCB

Entry Conditions {IPOS/09)

Called using system macro FORKDELAY.

Exit Conditions

A, B registers destroyed {IPOS)
A register destroyed {IPOS/09) .

Delaying a Task

A running task may ask to be delayed for a period of time (letting other
tasks, even of the same or lower priority level run in the meantime) by cal
ling a routine to be provided. Machine state (registers and condition codes)
will not be preserved during a delay, but the delaying task may leave informa
tion on the stack or in the TCB.

Entry Point - IP$RTC:DELAY

Entry Conditions {IPOS)

* TSK..TMR must be set in the TCB

Entry Conditions {IPOS/09)

Called using system macro DELAY.

Exit Conditions

* All registers destroyed {IPOS)
A,X registers destroyed (IPOS/09)
TSK...ADR destroyed ·(IPOS)

Rev. 2 D814 System Software Manual
Section 6.1 - 14

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

IP$RTC:CHANGE

This routine alters the value of the OFIPTCB:TMR....CNT field of a task on
the RTC timer queue. This effectively changes the restart time of a delayed
(or delay-forked) task. Interrupts are masked during the procedure.

OFIPTCB:XBYTE is set at termination, and may be used as a 'val id' flag
for routines which are cancellable.

Entry Point - IP$RTC:CHANGE

Entry Conditions:

X-reg - TCB to be updated
OFIPTCB:XSAVE - New delay interval

Processing

1. New TMR_CNT = time elapsed since last RTC interrupt + new delay
interval (OFIPTCB:TMR....CNT = OFIP0S:TVP + OFIPTCB:XSAVE)

2. If this TCB is next to time out (i.e., OFIPTCB:TMR._CNT
<OFIPTCB:XHOLD), then OFIP0S:THOLD = OFIPTCB:TMR....CNT

3. OFIPTCB:XBYTE = 1

Exit Conditions

A-reg, B-reg - destroyed
X-reg - unchanged
OFIPTCB:XBYTE = 1

Recommendations

Current ISTP$ASCII:BSC_TBL
ISTP$EBCDIC:BSC_TBL
ISTP$TRANSC:BSC_TBL

moved to
IP$BSCTBL:ASCII
IP$BSCTBL:EBCDIC
IP$BSCTBL:TRANSC

Since they will be used by both MSTP and SSTP_BSC.

Rev. 2 0814 System Software Manual
Section 6.1 - 15

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.3 Batch Processing Submodule

The purpose of batch processing is to allow one task with one task con
trol block to sequentially process information in an order determined by the
first-come first-served principle.

The functions performed by the batch processing submodule are:

a. Enqueue a request to a BTCB and fork the task if it is not
running.

b. Dequeue a request from the current running BTCB and terminate
if none.

Requests are in the form of buffers (or byte files or byte queues) queued
{chained) to the BTCB.

Batch Task Control Blocks (BTCBs) must be obtained at initialization time
because they depend on the ability to obtain contiguous memory buffers from
the free buffer pool (see 6.1.1). BTCBs, however, are a minimum of three
buffers 1 ong.

The fields in the second BTCB buffer are:

BQTOP - Pointer to top entry queued to BTCB
BQBOTM - Pointer to bottom entry queued to BTCB
RUNFLG - Non-zero if BTCB task is running (or queued to be run, 6809)

The first 2 bytes of the entry 1 s buffer are used to enqueue it to the
TCB.

The routine for enqueueing a batch request is IP$BATCH:ENQ.

If the BTCB queue is not empty, the last entry is linked to the new entry
and BQBOTM is set to point to the new entry. If the queue was empty, a
pointer to the new entry is also saved in BQTOP. If enqueueing to an empty
queue, the run flag is checked. If the flag is set, control is returned to
the caller. Otherwise, the run flag is set, the BTCB is forked, and then
control is passed to the caller.

Entry Conditions

*

*

Rev. 2

X register points to the BTCB to which the enqueue is to be per
formed

A, B registers point to the element to be enqueued

0814 System Software Manual
Section 6.1 - 16

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

* All registers destroyed
.

The routine for dequeueing batch requests (IP$BATCH:DEQTRM) is intended
to be used by the batch tasks to obtain the requests queued to them.

IP$BATCH:DEQTRM - A dequeue is attempted from the current BTCB (pointed
to be OFIP0S:TCBADR). If no entries are present, it pops the return
address off the stack and performs an IP$SCHED:TERM_NOTCB (6800) or
IP$SCHD:BATCl-LTERM {6909) to terminate after clearing the run flag in the
BTCB. If an entry is present, its pointer to the next entry is saved as
BQTOP. IF this pointer is zero, the bottom pointer, BQBOTM, is also
cleared.

Entry Conditions

* None

Exit Conditions

*
*

X register points to the dequeued element
A, B registers destroyed

6.1.4 Buffer Management Submodule

Introduction

The Buffer Management Submodule {FBMS) is part of the 0814 IP operating
system. This module contains utility routines for maintaining the port's
free buffer pool. The buffers in this pool are the dynamic memory units
which tasks can obtain and return in real-time to meet such memory require
ments as temporary data storage, input/output character buffering, and inter
task communication message buffers.

General Description

The FBMS has two main functions. The first function is to maintain the
0814 I/P free buffer pool and to keep the statistical information necessary
for determining buffer utilization. The second function is to provide use
ful buffer utility features for the system in a central software module. Two
buffering utilities are provided. The first is a general byte file utility
and the second is a byte queue buffe~ utility.

Rev. 2 0814 System Software Manual
Section 6.1 - 17

Rev. 2
I

CODEX CORPORATION COMPANY CONFIDENTIAL

1. Free Buffer Pool Management

The 0814 software system maintains a pool of fixed size free buffers so
that tasks in the system may be able to dynamically obtain memory resources.
This pool is created at IPOS initialization time by the System Initializa
tion Module and is maintained during system execution by the Buffer Manage
ment Module (FBMS). Tasks can obtain and return buffers from this pool by
calling subroutines in the FBMS. The pool is kept as a queue so that a
historical record of buffer use is available and so that background memory
diagnostics which will test all of the buffer pool can be implemented. The
buffer manager maintains a count of the total number of buffers in the free
pool and a count of those presently allocated to software tasks. These
numbers are used to calculate buffer utilization statistics.

The buffer pool will have two operating modes - normal and priority.
When the number of free buffers in the pool is 1 ess than a specified thresh
old, the buffer pool goes into "priority" mode. In this mode only "priority"
get buffer requests wi 11 be a 11 owed to be successful. The purpose of the
priority mode is to control buffer pool underrun. In priority mode, system
software modules that need buffers but are low priority wi 11 suspend opera
tion until the buffer pool builds back up again to an acceptable level and
the pool reenter~ normal mode. When the pool goes into priority mode, a flag
will be set so that a monitoring task can report the condition at some later
time.

A.

0 - 3 4 - 5 6 - 0 E - F

QUEUE LINKS LBPTR LNKPTR

QUEUE LINKS - 4 bytes for use by queue utility (see 6.1.5)
LBPTR - Pointer to last buffer in list
LNKPTR - Pointer to next buffer in list

The following operations will be available on free buffer pool:

Routine GBUF - Obtains one buffer from the free buffer pool

Entry Point - IP$FBMS:GBUF__pRI - High priority entry

Entry Point - IP$FBMS:GBUF

Entry Conditions

* None

Rev. 2 0814 System Software Manual
Section 6.1 - 18

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

B.

c.

Exit Conditions

*

B,X registers destroyed

If buffer available:

X-reg = address of buffer
CC:Z = 0
CC:I = 0

* If buffer not available:

CC:Z = 1 and CC:I = 0

Routine GLIST - Get formatted linked list of buffers

Entry Point - IP$FBMS:GLIST

Entry Conditions

* B-reg = number of buffers in list (n<= 255, n=0=256)

Exit Conditions

*
*

*
*

X-reg = pointer to list header
B-reg = destroyed
U-reg = destroyed (IPOS/09)
CC:I = 0
CC:Z = 1 if not successful

Routine RBUF - Return one buffer to the free buffer pool

Entry Point - IP$FBMS:RBUF

Entry Conditions

* X-reg = Address of buffer

Exit Conditions

B,X-reg = destroyed
U-reg = destroyed (IPOS/09)

* CC:I = 0

Rev. 2 0814 System Software Manual
Section 6.1 - 19

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

D.

E.

Entry Point - IP$FBMS:RBUF_SP

* Resets pointer to beginning of buffer

Entry Conditions

* X-reg = Any address in returned buffer

Exit Conditions

* Same as RBUF

Routine RLIST - Returns list of 1 n1 buffers

Entry Point - IP$FBMS:RLIST

Entry Conditions

* X-reg = Address of 1 i st of buffers to be returned, LBPTR of first
buffer = pointer to the 1 ast buffer in the 1 i st. NBUFS of first
buffer= count of 1 n1 buffers in the list.

Exit Conditions

A,B,X-reg = destroyed
U-reg = destroyed {IPOS/09)

* CC: I = 0

Routine RCHAIN - Returns list of buffers

Entry Point - IP$FBMS:RCHAIN

Entry Conditions

* X-reg = Address of returned 1 i st of buffers, LNKPTR of the 1 ast
buffer in the list must be null.

Exit Conditions

* CC: I = 0

Rev. 2 0814 System Software Manual
Section 6.1 - 20

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

2. Byte File Buffer Utility

IP$BFILE provides a utility submodule for creating, deleting, and main
taining a byte file buffer system. These byte file buffers are not multipro
cessor interlocked so only one task may be using a byte file buffer at any
one time.

The structure of a byte file is that it has a header buffer pointing to a
list of buffers, each linked to the next with the last 2 bytes. The format
of the header buffer is:

0 1 2 3 I 4 5 I 6 I 7 I 8 1 9 I A I B c 0 E F

BYTES 0 - 3
BYTES 4 & 5
BYTE 6
BYTE 7
BYTE 8
BYTE 9
BYTE A
BYTES B -> D
BYTES E & F

- Reserved for linking files to lists
- Pointer to last buffer in file
- Total # of buffers making up file
- Number of bytes allocated in file body
- Address of highest written byte
- Address of last byte written
- Address of last byte read
- Not used
- Pointer to first buffer of file body

The file body is composed of a linked list of buffers where the first 14
bytes of each buffer are byte file data storage and the last 2 bytes are a
link pointer to the next buffer in the file body. The last link pointer in
the file is zero.

The following functions will be provided for manipulating byte file buf
fers:

A.

Routine CREATE - Creates a byte file

Entry Point - IP$BFILE:CREATE

Entry Conditions

* None

Rev. 2 0814 System Software Manual
Section 6.1 - 21

Rev. 2

CODEX CORPORATION

B.

c.

Exit Conditions

* If available:

B-reg = destroyed
X-reg =file header address
CC:Z = CC:I = 0
OFIPTCB:XSAVE = ptr to byte file descriptor

* If not available:

B-reg = destroyed
CC:Z = 1
CCI = 0

Routine DELETE - Deletes a file

Entry Point - IP$BFILE:DELETE

Entry Conditions

* X-reg = File header address

Exit Conditions

*
*
*

All registers destroyed
OFIPTCB:XSAVE = ptr to byte file descriptor
CC:I = 0

Routine READ - Reads byte 1 n1 from a given file

Entry Point - IP$BFILE:READ

Entry Conditions

*
*

B-reg = Byte address 1 n1

X-reg =File descriptor address

Exit Conditions

*
*
*

A-reg = Contents of the nth byte
CC:V = 'out of range• error
OFIPTCB:XSAVE = ptr to byte file descriptor

Rev. 2 D814 System Software Manual
Section 6.1 - 22

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

D.

E.

F.

Routine SREAD - Reads sequentially 'next' byte from a file

Entry Point - IP$BFILE:S~EAD

Entry Conditions

* X-reg = File header address

Exit Conditions

* A-reg= Contents of the 'next' byte
* B-reg = Address of 'next' byte in file
* CC:V = 'out or range' error
* OFIPTCB:XSAVE = ptr to byte file descriptor

Routine WRITE - Writes into the nth byte of file

Entry Point - IP$BFILE:WRITE

Entry Conditions

*
*
*

A-reg = Data byte to be written to file
B-reg = Byte address 'n'
X-reg = File descriptor address

Exit Conditions

*
*
*

CC:Z = 'unable to write' message
CC:I = May be cleared to 0
OFIPTCB:XSAVE = ptr to byte file descriptor

Routine SWRITE - Writes sequentially into 'next' byte of file

Entry Point - IP$BFILE:SWRITE

Entry Conditions

*
*

A-reg = Data byte to be written to file
X-reg = File descriptor address

Exit Conditions

*
*
*
*

B-reg =Address of 'next' byte
CC:Z = 'unable to write' message
CC:I may be cleared to 0
OFIPTCB:XSAVE = ptr to byte file descriptor

Rev. 2 D814 System Software Manual
Section 6.1 - 23

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3. Byte Queue Buffer Utility

IP$BQUE provides a utility submodule for creating, deleting, and maintain
ing byte queue data structures. The byte queues are multiprocessor inter
locked so that one task may be putting bytes into a byte queue while another
task may be removing bytes from the queue. Because of in~erlocking X'OO' may
not be stored in the byte queue. Byte queues have no maximum size.

The first buffer, known as the queue descriptor, has the following
format:

I 0 - 3 4 - 5 6 7 - 8 9 - 10 11 - 13 14 - l5
T T T -i ~ r

LAST # HEAD TAIL LINK
N/A BUFFER BUFFERS POINTER POINTER N/A POINTER

BYTES O - 3 - Are reserved for use by the Queue Utility routines.
BYTES 4 & 5 - Currently unused.
BYTES 6 & 7 - Contains the number of buffers in the list.
BYTES 8 & 9 - Point to the next byte to get.
BYTES 10 & 11 - Point to the next byte to put.
BYTES 12 - 13 - Point to next byte to be read.
BYTES 14 & 15 - Currently unused.

The next byte to be written (pointed to by tail pointer) always contains
binary zeroes. When a byte is to be written into the byte queue, the next
byte is cleared to zero and then the new data byte is written. This allows
the 'get' routine to check for an empty queue without having to disable inter
rupts and compare head and tail pointers. It simply gets the byte pointed to
be the head pointer; if it is zero, the queue is empty.

A.

The byte queue routines consists of four user called subroutines.

Routine CREATE - Creates a byte queue

Entry Point - IP$BQUE:CREATE

Entry Conditions

* none

Rev. 2 0814 System Software Manual
Section 6.1 - 24

Rev. 2

CODEX CORPORATION

B.

c.

Exit Conditions

* If available:

X-reg = Address of queue descriptor
CC:Z = 0
CC: I = 0
OFIPTCB:XSAVE = ptr to byte queue descriptor

* If not available:

CC:Z = 1
CC:! - 0

Routine DELETE - Deletes a byte queue

Entry Point - IP$BQUE:DELETE

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

* CC: I = 0

Routine PUTBYT - Puts a byte into a queue

Entry Point - IP$BQUE:PUTBYT

Entry Conditions

*
*

A-reg = A byte of data
X-reg = Queue descriptor address

Exit Conditions

*
*
*
*

B-reg = destroyed
CC:Z = 'unable to enqueue' message
CC:I may be cleared to 0
OFIPTCB:XSAVE = ptr to byte queue descriptor

Rev. 2 D814 System Software Manual
Section 6.1 - 25

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

o.

E.

F.

Routine GETBYT - Gets a byte from a queue

Entry Point - IP$BQUE:GETBYT

Entry Conditions

* X-reg = Queue descriptor address

Exit Conditions

*
*
*
*

A-reg = Dequeued byte from queue
CC:Z = 'Empty queue' condition
CC:I may be cleared to 0
OFIPTCB:XSAVE = ptr to byte queue descriptor

Routine READBYT - non-destructive read of byte from a queue

Entry Point - IP$BQUE:READBYT

Entry Conditions

* X-reg - queue descriptor address

Exit Conditions

*
*
*
*

A-reg = byte read from queue
CC:Z = 'End of queue' condition
CC:I = may be cleared to O
OFIPTCB:XSAVE = ptr to byte queue descriptor

Routine READBYT_RESET - reset READBYT pointer to beginning of byte queue

Entry Point - IP$BQUE:READBYT_RESET

Entry Conditions

* X-reg = queue descriptor address

Exit Conditions

*
*
*
*
*

A-reg = byte read from queue before reset or 0 if end
B-reg = destroyed
CC:Z = 'End of Queue' condition
CC:I = may be cleared to 0
OFIPTCB:XSAVE = ptr to byte queue descriptor

Rev. 2 0814 System Software Manual
Section 6.1 - 26

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

4. Ring Buffer Utility

IP$RING provides a utility submodule for creating and maintaining ring
buff er data structures.

A ring buff er is formed from a 1 i st of buffers in contiguous memory
spaces. The first buffer is used as a header for the ring. Its fields hold
the pointers and values necessary for ring maintenance as defined below.

0 - 1

GET
POINTER

Bytes

0 - 1:
2 - 3:
4 - 5:
6 - 7:

8:
9:

10-13:
14-15:

2 - 3

PUT
POINTER

4 - 5

UNUSED

Point to the next
Point to the next
Currently unused.

6 - 7

TOP
POINTER

8

SIZE

byte to be read.

9

COUNT

byte to be written.

10 - 13

I I UNUSED

Point to the last byte in the buffer list.
Number of data bytes allowed in the ring.
Number of data bytes currently in the ring.
Currently unused.
Standard buffer link to the first data buffer.

14 - 15

LINK
POINTER

The structure is manipulated in a wrap-around fashion. Data is entered
and removed freom the ring according to FIFO, but emptied buffers are not
released. Instead, the Get and Put pointers follow each other around the
ring. Since the buffers are contiguous, after either kind of access, the
appropriate pointer is updated by merely incrementing it. (Thus, the next
byte to be read is not always in the buffer indicated by the link pointer of
the header.) When either pointer (Get or Put) indicates that the last byte
in the 1ist has been accessed (i.e., pointer= Top Pointer), it is updated to
point to the first byte in the list (i.e., pointer <-- Link Pointer).

Note: A ring buffer may contain at most 255 bytes of data.

The ring buffer routines consist of four user called subroutines:

A.

Routine CREATE: creates a ring buffer

Entry Point - IP$RING:CREATE

Entry Conditions

B-reg = size of ring buffer to be obtained

Rev. 2 D814 System Software Manual
Section 6.1 - 27

Rev. 2

CODEX CORPORATION

B.

c.

Exit Conditions

X-reg = address of ring buffer header (If CC:Z = 0)
A-reg = destroyed
B-reg = destroyed
CC:Z = 0, successful completion
CC:Z = 1, no buffers available

Routine PUT: puts a byte in the ring buffer

Entry Point - IP$RING:PUT

Entry Conditions

B-reg = byte to be put in buffer
X-reg = address of ring buffer header

Exit Conditions

A-reg = destroyed
B,X-regs = unchanged
CC:Z = 0, successful
CC:Z = 1, ring buffer full
CC:C = 0, ring <= half full
CC:C = 1, ring > half full

Routine PUT2: puts 2 bytes in the ring buffer

Entry Point - IP$RING:PUT2

Entry Conditions

A-reg = first byte to be put in ring
B-reg = second byte to be put in ring
X-reg = address of ring buffer header

Exit Conditions

A-reg = destroyed
B,X regs = unchanged
CC:Z = O, successful
CC:Z = 1, ring buffer full
CC:C = 0, ring <= half full
CC:C = 1, ring >half full

Rev. 2 0814 System Software Manual
Section 6.1 - 28

COMPANY CONFIDENTIAL

\

Rev. 2

CODEX CORPORATION

D.

Routine GET: gets a byte from the ring buffer

Entry Point - IP$RING:GET

Entry Conditions

X-reg = address of ring buffer header

Exit Conditions

A-reg = destroyed
B-reg = byte from ring buffer (if CC:Z = O}
X-reg = unchanged
CC:Z = 0, successful
CC:Z = 1, ring buffer empty
CC:C = 0, ring <= half full
CC:C = 1, ring> half full

Rev. 2 0814 System Software Manual
Section 6.1 - 29

COMPANY CONFIDENTIAL

I

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.5 Queue Utility Submodule

The Queue Utility Submodule provides a standard and safe (interrupt
masked) method of implementing and manipulating queues in the D814 IP soft
ware.

Queue Elements

Data structures of any size or shape may be queued by the Queue Utility
Submodule. The only requirement is that the structure to be queued have a
field within it for queueing purposes, and that it have such a field for
every queue that it can be a member of simultaneously. It is helpful if
these fields are at the beginning of the structure, as the queue manipula
tion routines accept and return pointers (called element pointers) to these
fields.

Queue Descriptor Blocks

A queue descriptor block is a small area of storage used for bookkeeping
on a queue. One is needed for each queue and should be allocated in a fixed
pl ace in memory, as the user wi 11 need to supply a pointer to the queue
descriptor block whenever he wishes to manipulate the associated queue.

Entry Point - IP$QUEUE:INITQUEUE

Entry Conditions

* X register points to the queue descriptor to be initialized

Exit Conditions

* All registers unchanged

Queue Manipulation Functions

Enqueue 2.!!. Element

Link a new element into a queue by placing it behind the current tail }
element. Pointers are required to the new queue element and the queue block
to which it is to be queued.

Entry Point - IP$QUEUE:ENQUEUE

Entry Conditions

*
*

Rev. 2

A, B registers point to the new entry
X register points to the queue descriptor block

D814 System Software Manual
Section 6.1 - 30

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

*
*

All registers unchanged
CC:C = 1 if queue was formerly empty

Dequeue an Element

Remove an element from the head of a queue. A pointer to the queue des
criptor block is required. A pointer to the dequeued element is returned, or
null if the queue was empty. The forward and backward pointers of the
dequeued element are zeroed.

Entry Point - IP$QUEUE:DEQUEUE

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

*
*
*

X register points to the dequeued element, or zero
CC:Z = 1 if queue was formerly empty
CC:C = 1 if queue is now empty

Access a Queue Element

A routine will be supplied which 11 steps through 11 a queue, returning a
pointer to the 11 next 11 element in the queue (starting with the head) each time
it is called. Returns null if the queue is empty or the end has been
reached. Requires a pointer to the queue descriptor block.

There is a routine for resetting the 11 next 11 element to be the first ele
ment in the queue.

Entry Point - IP$QUEUE:QUEUETOP

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

*

Rev. 2

All registers unchanged

0814 System Software Manual
Section 6.1 - 31

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

There is an entry point for stepping through the queue.

Entry Point - IP$QUEUE:QUEUENEXT

Entry Conditions

* X register points to the queue descriptor block -

Exit Conditions

*
*

X register points to the 11 next 11 element
CC:Z = 1 if the queue is empty or the end is reached

Remove Last Element Accessed

Remove the last element accessed by the QUEUENEXT routine and relink the
queue as necessary (as the e 1 ement removed may have been at any random point
in the queue). Returns null if the queue was empty or the accessing routine
was run to the end of the queue, otherwise returns a pointer to the element
removed. The forward and backward pointers of the element removed are
zeroed. Requires a pointer to the queue descriptor block.

Entry Point - IP$QUEUE:DEQUEUELAST

Entry Conditions

* X register points to the queue descriptor block

Exit Conditions

*
*
*

X register Points to the element dequeued
CC:Z = 1 if the queue was formerly empty
CC:C = 1 if the queue is now empty

6.1.6 Addressed Packet Handler

The Addressed Packet Handler is responsible for receiving outbound
packets from the BIC and sending inbound packets to the BIC. The outbound
addressed packets are handled by the Addressed Packed Receiver and the in
bound packets are handled by the Addressed Packed Transmitter. No 1 ogi ca 1
connection is required between the two.

In addition, an Addressed Packet Router routine is supplied to distrib
ute packets to their destination. The reader should be familiar with the
addressed packet format described in Section 3.2.2.

Rev. 2 0814 System Software Manual
Section 6.1 - 32

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The Addressed Packet Handler is comprised of three sections:

1. Addressed Packet Receiver routines
2. Addressed Packet Transmitter routines
3. Packet Router routines

The following sections describe these routines in more detail.

Addressed Packet Receiver

The Addressed Packet Receiver has two entry points.

1. Packet Receiver Interrupt Handler
2. Packet Receiver

The first entry is an interrupt entry initiated when a BIC outbound
packet interrupt occurs. The second entry performs the actual packet recep
tion and assembly.

Packet Receiver fnterrupt Handler

This entry is initiated by the occurrence of an outbound packet inter
rupt. This routine runs at interrupt level as defined in Section 6.1.1. It
di sab 1 es the BIC outbound packet interrupt, forks the Packet Receiver, and
exits.

Packet Receiver

This routine (which is forked by the Packet Receiver Interrupt Handler)
reads the addressed packet segments sent through the BIC, assembles the seg
ments into packets, and calls the distribution routine to distribute the
packet to the appropriate IP routine.

Addressed Packet Transmitter

The Addressed Packet Transmitter contains three entry points:

1. Packet Transmit Queue Routine
2. Packet Transmitter Interrupt Handler
3. Packet Transmitter

The first entry is a subroutine used to queue a packet to the Packet
Transmitter.

The second entry is an interrupt entry initiated when a BIC inbound
packet interrupt occurs. The third entry performs the actual packet trans
mission.

Rev. 2 0814 System Software Manual
Section 6.1 - 33

Rev. 2

,I

CODEX CORPORATION COMPANY CONFIDENTIAL

Packet Transmit Queue Routine

This routine is called by the Packet Router when a packet is to be sent
to the mainframe.

The routine queues the packet to the Packet Transmitter. If the trans
mitter is not al ready active, the inbound packet interrupt in enab 1 ed. In
either case, the routine returns to the caller.

Entry Point - IP$APKT:XMTQUE

Entry Conditions .

* X register points to the packet to be sent

Exit Conditions

?

Packet Transmitter Interrupt Handler

This routine is initiated when a BIC inbound packet interrupt occurs and
it runs at interrupt level. It disables the inbound packet interrupt, forks
the Packet Transmitter, and exits.

Packet Transmitter

This routine sends the addressed packet to the BIC inbound packet buffer.

If no packet is in progress, the routine obtains the first packet queued
to it. If no packets are on the queue, the routine leaves the BIC inbound
packet interrupts masked and terminates. Otherwise, the packet length is
obtained and the Transmitter Packet Pointer is set to first byte of the
packet.

Non-Local Packet Router Routine

This routine may be called by any routine in the IP to distribute a
packet to its destination. It is passed the address of the packet buffer.

The routine first checks whether the packet is for a module {n this IP.

If the pa·cket is not for a local module, the routine calls the Packet
Transmit Queue routine and returns to the caller.

Rev. 2 0814 System Software Manual
Section 6.1 - 34

Rev. 2

•

CODEX CORPORATION COMPANY CONFIDENTIAL

If the packet is for a module at this I/P, meaning it is either addressed
to this physical port or to a virtual port within this port, a thread number
is written in the destination port field of the packet. If the destination
is the physical port the thread number O is used. The packet is then deliv
ered, if possible, to the proper module using the local packet router rou
tine. If the packet cannot be delivered it is either returned to the sender
or, if that cannot be done, discarded.

Entry Point - IP$APKT:ROUTE

Entry Conditions

* X register points to the packet to be routed.

Exit Conditions

* All registers destroyed.

Local Packet Router Routine

This routine may be called by any IP subroutine to deliver a packet to a
destination module within the local IP. Packets in a multi-threaded port
being delivered by this routine must have the destination thread number in
the packet destination port field rather than the destination port address.
This routine rather than the non-local packet router must be used when
delivering a packet to a particular thread within a multi-threaded port if
the thread's VP address is unknown.

The routine first checks that the packet destination module is valid and,
if not, returns to the caller with an error condition. Otherwise the packet
is enqueued to the proper TCB using the batch enqueue routine of Section
6.1.3 and the routine returns to the caller.

Entry Point - IP$APKT:ROUTE._LOCAL

Entry Condition

X-register points to the packet to be delivered.

Exit Condition

CC:Z =set if and only if the packet could not be delivered

All registers destroyed.

Rev. 2 0814 System Software Manual
Section 6.1 - 35

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Address Packet Utilities

There is an address packet utility (entry point IP$APKT:SDSWAP) which
will swap the source and destination address fields for an Addressed Packet.
This process is useful for returning a packet.

Entry Point - IP$APKT:SDSWAP

Entry Conditions

* X-register points to address packet header buffer

Exit Conditions

* All registers destroyed.

6.1.7 Utility Submodule

Routines in this module are general utility routines that are defined so
as to require no. local storage. They are almost totally interruptable. Any
intermediate storage required is allocated on the stack or in the task's TCB
scheduler bytes.

Multiply

The unsigned integer 8 x 8 bit multiply routine is IP$UTIL:MULT. There
are no error returns possible from this operation.

Entry Point - IP$UTIL:MULT

Function

Multiply two 8-bit unsigned numbers to get a 16-bit unsigned number.

Entry Conditions - (JSR IP$UTIL:MULT)

*
*

A-register contains multiplier
B-register contains multiplicand

Exit Conditions

*
*
*

Rev. 2

A-reg = High order part of product
B-reg = Low order part of product
X-reg = Destroyed

0814 System Software Manual
Section 6.1 - 36

• Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Divide

The 16-bit by 8-bit unsigned integer divide routine is IP$UTIL:DIV. An
8-bit quotient and an 8-bit remainder are returned. The possible error
returns are division by zero {C set on return) and quotient overflow by 8
bits exceeded {V set on return).

Entry Point - IP$UTIL:DIV

Function

Divide a 16-bit unsigned number by an 8-bit unsigned number producing an
8-bit unsigned quotient and an 8-bit unsigned remainder.

Entry Conditions - {JSR IP$UTIL:DIV)

*
*

A-reg = Divisor
X-reg = Dividend

Exit Conditions

*
*
*

A-reg = Quotient
B-reg = Remainder
X-reg = Destroyed

NOTE: {Sets 1 V1 when quotient overflows 8 bits. The outputs are
unpredictable in this case. 'C' is set for division by zero.
Returned quotient and remainder are zero.)

Block Copy

The block copy routine is IP$UTIL:COPY. It will copy a string on any
length possible in the system to another specified location. The routine is
a little slow setting up and dismissing, but runs reasonably fast once under
way. Thus, this routine is useful to copy blocks longer than about 8 bytes,
but wi 11 take, pro port i ona 11 y, a 1 ong ti me to copy only a few bytes. The
main feature of this routine is that it is re-entrant and totally interrupt
able.

Entry Point - IP$UTIL:COPY

Function

Copy a block of consecutive data bytes from a source area to a desti na
tion area.

Rev. 2 0814 System Software Manual
Section 6.1 - 37

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Conditions - (JSR IP$UTIL:COPY)

* X-reg = Pointer to a 6 byte parameter vector

BYTES O - 1 - Number of bytes to copy
BYTES 2 - 3 - Pointer to source area
BYTES 4 - 5 - Pointer to destination area

Exit Conditions

*
*
*
*

A-reg = Destroyed
B-reg = Destroyed
X-reg = Destroyed
CC: I = 0

NOTE: (ses 2 bytes on stack.)

Line Speed Encode/Decode

The utility package provides routines for encoding and decoding 16-bit
link and path speeds into a 1-byte number in a sort of floating point format.
The encoded speed is composed of a four-bit exponent {high order nibble) and
a four-bit mantissa (low order nibble).

The actual speed is computed at:

S = (16 1/2 + B)2A - 16 (truncated if not an integer)

where:

S = Actual speed
A = Exponent
B = Mantissa

The encoded speed exponent and mantissa are computed as:

A = [log2 (S + 16)] - 4 (truncated if not an integer)

B = S + 16 - 16 (truncated if not an integer)
2A

This encoding scheme results in accuracy better than ±6.3 percent for
speeds greater than 15 and better than ±3.2 percent for greater than 1008.

Encoded speeds are continuous in that, if A and C are encoded speeds and
A < B < C, then B is a valid encoded speed and the actual speed represented
by B is less than that represented by C and greater than that represented by
A.

Rev. 2 D814 System Software Manual
Section 6.1 - 38

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The package has the following entry points:

Entry Point - IP$UTIL:SPD-ENCODE

Entry Condition

* A, B registers - contain 16-bit speed

Exit Condition

* A-reg = speed in "floating point" format
* B-reg = destroyed
* OFIPTCB:XSAVE = destroyed

Entry Point - IP$UTIL:SPD....DECODE

Entry Condition

* A-reg = speed in "floating point" format

Exit Condition

* A, B registers = Actual speed (if no overflow)
* OFIPTCB:XSAVE = destroyed
* CC:C = Set if and only if overflow out of 16th bit occurs in

decoding. If CC:C is set, then A, B contain X'FFFF'

Rev. 2 0814 System Software Manual
Section 6.1 - 39

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.1.8 IPOS Initialization

IP$INIT:IPINIT is the initial entry point of the IPOS. It turns on all
controllable lights on the IP rail briefly and then shuts them off. It
initializes IPOS control variables, the task queues, the timer queue, and
sets up the free buffer pool. It sets up TCBs for the timer queue task, the

. background diagnostics task, the addressed packet receiver and transmitter
tasks, and the timeout packet sender task. The timeout packet sender is
forked and the packet transmit queue is created and initialized.

Next the user initialization is started by jumping to OFIPVEC:USERINIT.
The user initail ization may perform any IPOS function except a delay at this
time, and must return to IPOS initialization with an RTS instruction.

Next a BTCB is obtained for the software uploader (Section 6.1.11) and an
entry in the Module Dispatch Table {MDT) added.

Next a TCB is obtained for the processor loading calculation task and the
"wake up 11 initial addressed packet task. Both tasks are forked. A TCB is
obtained for the receiver for the reply to the "wake up" packet is obtained
and set into the AP module dispatch table.

Outbound packet interrupts are enabled and the real-time clock is
started. The map register is enabled (IPOS only). The stack is set to
appear as though the background diagnostic task was running and has been sus
pended. The scheduler is then entered as though an interrupt is being
returned to cause task scheduling.

6.1.9 Light Manipulation Submodule

t

This module will control the lights on the rail on the D814 IP cards.

The IPOS light control routines {IP$LITE) are as follows:

IP$LITE:ON - Lights corresponding to 1 bits in the A register are turned
on immediately. Lights corresponding to 0 bits are not affected.

IP$LITE:OFF - Lights corresponding to 1 bits in the A register are turned
off immediately. Lights corresponding to O bits are not affected.

IP$LITE:CHANGE - Lights corresponding to 1 bits in the A register are
changed in state (on becomes off, off becomes on). Lights corresponding
to O bits are not affected.

IP$LITE:FLASH - Lights corresponding to 1 bits in the A register are
turned on at the next tick for the real-time clock, and are turned off 1
tick later. This routine produces one flash, not continued flashing.
However, if at least one flash is requested between each clock tick, the
light will stay lighted continuously. Lights corresponding to 0 bits are
not affected.

Rev. 2 D814 System Software Manual
Section 6.1 - 40

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

IP$LITE:FORCE - Lights corresponding to 1 bits in the A register are
turned on immediately. Lights corresponding to Obits are turned off
immediately. The entire light register is set according to the contents
of the A register.

IP$LITE :BLINKON - Causes the lights corresponding to 1 bits in the A
register to be reversed in state 10 times a second. This action contin
ues until I P$LITE: BLI NKOFF is ca 11 ed for the same 1 i ght. Lights corre
sponding to 0 bits are not affected.

IP$LITE:BLINKOFF - Causes the lights corresponding to 1 bits in the A reg
ister to stop the action initiated by IP$LITE:BLINKON. This routine has
no affect on a light which has not been set bl inking by IP$LITE:BLINKON.
Lights corresponding to 0 bits are not affected. Note that a light which
is in the on state when blinking is stopped by IP$LITE:BLINKOFF will stay
in the on state unless turned off by IP$LITE:OFF. Lights which are off
will stay off unless turned on by IP$LITE:ON.

All of the above routines destroy the A register.

6.1.10 Processor Loading Calculation Submodule

The operating system will assume the responsibility for supplying the IP
M6800 processor loading percentage to the application programs.

The processor loading calculation module will, at six second intervals,
calculate a number which is the percentage of processing potential (O per
cent - 100 percent) which is NOT used by the background task in the pre
ceedi ng six seconds. This processing time will have been used either by the
applications (user) program or by operating system overhead. A processor
loading of 0 percent should be impossible, since it would imply that the
operating system is not running.

The number will be supplied in a one-byte field, OFIP0S:PROCLOAD, and
should always be between O and 100 decimal.

6.1.11 IPOS Memory Modification

IPOS maintains a batch task utility which supports the reading and writ
ing of on-line port memory, destructively or non-destructively. Nondestruc
tive operations insert zeros for data whenever 1/0 areas are specified.
Destructive operations have no restrictions as to which locations can be
accessed.

The module requires an operation code in the requesting addressed packets
to indicate which operation is to be performed.

Rev. 2 0814 System Software Manual
Section 6.1 - 41

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Operations:

1) Read memory, non-destructive
2) Read memory, destructive
3) Write memory, non-destructive
4) Write memory, destructive.

The requesting packets are of the form:

1) one byte packet length
2) 3 byte destination (node, port, module)
3) 3 byte source (node, port, module)
4) one byte operation code
5) 3 bytes unused by IPOS utility
6) one byte completion code
7) 2 bytes starting location
8) one byte data length (length/AP for read non-destructive)
9) a. one byte number of AP's (only for read non-destructive)

b. reserved' (zero) bytes (only for write, 2 bytes)
10} n bytes DATA (only in write case)

The returning packets are of the form:

1) one byte packet length
2} 3 byte destination (nodes port, module)
3) 3 byte source (node, port, module)
4) one byte operation code (from request packet)
5) 2 byte starting location
6) one byte data length (length/AP for read non-destructive)
7) twa bytes reflected from requesting packet
8) one byte software designation field (for reads only}
9} one byte sequence number (read non-destructive only}

10) one .byte comp 1 et ion code
11} a. one byte number of bytes written (write non-destructive only)

b. n bytes DATA (read cases only)
c. reserved (write destructive only}

12} n bytes DATA (write cases)

Read destructive is not allowed to occur during software uploading or a
read non-destructive. Writes cannot occur during software uploading or dur
ing any of the operations described above. Attempting to do so will result
in an error code being set in the returned addressed packet completion code
field.

Rev. 2

NOTE: This batch task is added as the second slot of the module dis
patch table (MDT) during IPOS initialization.

D814 System Software Manual
Section 6.1 - 42

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

IPOS maintains timers (set when a read or write request is first accepted
by the receiving port) which are used in conjunction with a software lockbyte
to prevent simultaneous read (non-destructive) and write (destructive and non
destructive) or read destructive accessing of a port. If the timer expires,
and no further requests have been received from a port, IPOS unlocks the port
for a 11 ope rat ions (if only one access or) or decrements the count of active
port readers (if multiple non-destructive readers).

6.1.12 IPOS Software Uploader

IPOS contains the software upload facility for 0814 ports. Software up
loading involves:

1. The port 1 s standard loadblock header is sent upline (to the main
frame/node) upon request.

2. After the loadblock header is requested and received, port software
is passed as a series of addressed packets whose number and length
are specified by the requesting node 1 s module. Multiple software
requests are made before all ports software has been uploaded.

The requests and data are passed through the packet BIC. This up 1 oad
facility is provided as a batch task which is set up during IPOS initializa
tion and added as the second slot of the MDT.

Software uploads may be requested at anytime without affecting the opera
tional port. Once uploading has begun, it will prohibit writes or destruc
tive reads (Section 6.1.11) from occurring on the software supplying port.
If the port is locked (already conmitted to write modification or destructive
operation), the initial software upload request will be rejected.

Addressed Packet formats are found below.

Header Request

1. one byte packet length
2. 3 byte destination (node, port, module)
3. 3 byte source (node, port, module)
4. one byte operation code (header request code)

Header Response

1. one byte packet length
2. 3 byte destination (node, port, module)
3. 3 byte source (node, port, module)
4. one byte requested operation code
5. one bytes software designation field (normal port type software,

specialized loadable software, specialized non-loadable software)
6. one byte processor loading

Rev. 2 0814 System Software Manual
Section 6.1 - 43

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

7. one byte completion code
8. one byte ·reserved
9. 8 byte loadblock header (2 byte starting address, 2 byte byte count,

2 byte loading address, 2 byte checksum)

Software Requests

1. one byte packet length
2. 3 byte destination (node, port, module)
3. 3 byte source (node, port, module)
4. one byte operation code (non-destructive read code)
5. 2 byte starting location
6. one byte data length per (maximum 140 bytes) port generated AP
7. one byte number of APs to be returned
8. 3 bytes to be reflected in response packets

Software Response

1. one byte packet length
2. 3 byte destination (node, port, module)
3. 3 byte source (node, port, module)
4. one byte operation code
5. 2 byte starting location
6. one byte data length
7. 3 bytes reflected
8. one byte sequence number
9. one byte completion code

10. n-bytes DATA

6.1.13 Background Checker

IPOS runs a non-terminating task at level O which performs checking func
tions to insure software integrity:

1. Buffers are obtained from the IPOS free buffer pools and checked to
insure parity and RAM failures are detected.

2. Code space is checksummed to insure software integrity is main
tained. Checksumming is restarted by the IPOS memory modification
routine after each modification to program space.

Rev. 2 0814 System Software Manual
Section 6.1 - 44

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.2 Configuration Control

The Configuration Control Module (IPCC$>XMTRCV) must be included in all
I/P's. This module handles the interface with the I/P online (running) con
figuration. It answers requests for I/P online parameter values and ser
vices parameter change requests. The format of configuration request pack
ets is described in Section 5.7. The I/P Configuration Control Module
utilizes the same format, of course. All requests are passed along to the
mainframe Configuration Control Module (Section 5.7), which updates the off
line configuration, if necessary, before returning the request to the sender.
It is important to realize that most I/P parameters are not changeable in the
onl i ne configuration. The I/P Configuration Control ModUTe runs as a batch
task with module number EQIPMDT:CHAILXMTRCV. The entry point is
IPCC$XMTRCV:ENTRY.

Multi-threaded port IPCC request packets may be addressed either to the
physical port or to a virtual port (VP) within the physical port. Packets
addressed to the phys i ca 1 port are used to handle parameters for the port as
a whole (for example buffer utilization threshold) while packets addressed to
a virtual port are used to handle parameters for that particular VP's thread
within the port {for example, compression efficiency threshold).

The parsing of the request packet is driven by tables called Code Lists.
OFIPVEC:CODELIST+l contains a pointer to the Code List for physical port
requests and OFIPVEC:MT_CODELIST+l contains a pointer to the code to the
Li st for the vi rtua 1 port requests. The pointer at OF$ IP$VEC: MT_CODELIST is
left 0 for single-threaded ports. Each Code List contains a .. list of applic
able parameter codes. The write bit (EQ$MCM:CC...WRITE) is set in the code if
the parameter is changeable online and not set if it is not changeable
online.

Each Code Li st has associated with one or more of the Characteristics
Lists. The Characteristics List contains a one byte entry with the value of
each parameter in its Code List. The parameters in both tables are in
exactly the same order. The physical port Code List has one Characteristics
List. The pointer to this list resides at OFIPVEC:CHARLIST+l. The virtual

- port Code List, if it exists, has a Characteristics List for each VP in the
port. These lists reside at offset OFIPTHREAD:IPCG..J..IST in the thread
structures of the VP's. (The thread structure is a data area for the VP
allocated at port initialization by module ITP$.)

Two command code errors are possible when a request packet is parsed:

a. If an invalid code (one not found in the list of parameter codes) is
encountered, the error code EQ$MCM:EC_INVCMD is set on the command.

b. If a code is valid, but the write bit is
but not in the 1 i st of parameter
EQ$MCM:EG_NOTONLN is set, this indicates
changeable online.

0814 System Software Manual
Section 6.2 - 1

set in the request packet,
codes , the error code

that the parameter is not

CODEX CORPORATION . COMPANY CONFIDENTIAL

Under normal operation, requests for parameter values are filled in, and
requested parameter value changes are made and the request packet is sent to
the mainframe Configuration Control Module. This module ignores value
requests, and value change requests which have been flagged with error codes.
It makes changes in the offline configuration corresponding to all value
changes with no error code. The packet is then returned to the originator.

0814 System Software Manual
Section 6.2 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.3 Call Manager

The CMM is responsible for establishing and terminating calls. In addi
tion, the CMM also establishes the network transmit path from its port to the
remote port. Call establishment and disconnection is accomplished via addres
sed packets containing various command codes. The Call Manager is comprised
of three sections:

1. Initialization
2. Addressed Packet Handler
3. Call Initiator and Terminator

The following sections describe these routines in more detail.

6.3.1 Initialize Call Manager Data Structure

The Initialize Call Manager Data Structure routine initializes the CMM
data structure (for every thread connected to this port, if the port is
multi-threaded) and contains one entry point:

CMM Initialization

This routine is initiated by the protocol initiation routine.

Entry Point - IPCMMINIT:ENTRY

Entry Conditions

Reg Y - Thread structure address - MTP only

.Exit Conditions

Reg Y - Preserved - MTP only
All registers destroyed.

6.3.2 Call Manager Main Addressed Packet Handler

This module receives an addressed packet from the AP router. It first
checks to see if the packet is being returned in error; if so, special handl
ing is performed. The packet 1 s command code is then looked up in the CC
table and the correct module is called. In the case of a multi-threaded
port, the thread number is obtained fromthe destination port field of the
addressed packet to select the proper call data area. The routine contains
one entry point:

IPCMMMAIN:AP

This entry point is initiated by receiving an AP which is routed on the
basis of the entry in the MDT.

Rev. 2 D814 System Software Manual
Section 6.3 - 1

Rev. 2

CODEX CORPORATION

Entry Point - IPCMMMAIN:AP

Entry Conditions

None

Exit Conditions

All registers destroyed.

6.3.3 Call Manager Addressed Packet Handler

COMPANY CONFIDENTIAL

This routine contains a few submodules that process the addressed packets
received by the Call Manager Main Packet Handler routine. Each submodule
processes a specific AP command type. In the case of a multi- threaded port,
the thread number is obtained from the destination port field of th~
addressed packet to select the proper call data area. The different AP
command types which are processed include:

CREATE CALL AP - from Protocol
CALL ACCEPTED AP - from Protocol
ACTIVATED CALL ACKNOWLEDGE AP - from PMM
INITIATE CALL AP - from CMM
INITIATE CALL ACKNOWLEDGE AP - from CMM
XMIT PATH ACTIVE AP - from PMM
XMIT PATH ERROR AP - from PMM
RECV PATH ACTIVATED AP -·from PMM
RECV PATH FAILURE AP - from Pre ARQ-Receive
HANG-UP CALL AP - from Protocol
CALL CLEARED AP - from PMM

Detailed information on the different AP commands are contained in the
D814 Product Functional Specification, Appendix B.

The following two diagrams show call establishment and call termination.
Call establishment is shown in the simplest case, with no errors. It shows
the case where only one side is attempting to establish the call.

Rev. 2 0814 System Software Manual
Section 6.3 - 2

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

CaTI In1t1ator Call Receiver

Protocol l CMM PMM PMM CMM Protocol
T

CRECALL--+--->{ER}
I I

INITCALL--+------------+------------+--->(EL}

CALLREQ---+--->
I

{AV}<---+-CALLACC

I

<---1---ACTCALL

I ACTCALLACK-
I
-->{IL}

{IR}<---- -----·------- ------------ -INITCALLACK

ACTCALL--+---->

<--- --ACTCALLACK

ESTXMTPATH-+----> I I
I I

<----+--XMTPATHACT RCVPATHACT--+---->{AC)
I

<----+-ESTXMTPATH
I I CALLCRE--+---->

(AC)<----+--RCVPATHACT XMTPATHACT--+---> I
I I I

<---1---CALLCRE I I I
(ER} = Establishing Remote State
(EL) =Establishing Local State
(AC) = Active State
(AV) = Activating State
(IR) = Inactive Remote
{IL) = Inactive Local

I

Rev. 2 0814 System Software Manual
Section 6.3 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Call Term1nator I I
Protocol 1 CMM PMM PMM CMM Protocol

I
I

HANGUP--+--->{DC)
I

CLRCALL--+--->
I

(ID)<----+--CALLCLRD CALLCLRD--+---->(ID)

I <-----+---CALLEND
l

(DC) = Disconnecting State
(ID) = IDle state

6.3.4 Protocol AP Interface

CALLEND---+----->
1

The formats of the body portion of the addressed packets used to inter
f ace to the protocol module are given below:

CRECALL

CALLCRE

CALLREQ

CALLACC

HANGUP

CALLE ND

Rev. 2

Byte

7

8

9

10

7

7

8

9

10

7

8

7

7

8

Contents

EQIPCMM:CC_CRECALL

Protocol Dependent Characteristics Byte 1

Protocol Dependent Characteristics Byte 2

Protocol Dependent Characteristics Byte 3

EQIPCMM:CC_CALLCRE

EQIPCMM:CC_CALLREQ

Protocol Dependent Characteristics Byte 1

Protocol Dependent Characteristics Byte 2

Protocol Dependent Characteristics Byte 3

EQIPCMM:CALLACC

Error Code or Zero

EQIPCMM:CC_HANGUP

EQIPCMM:CC....CALLEND

Error Code or ~

D814 System Software Manual Rev. 2
Section 6.3 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

6.3.5 Remote Call Manager AP Interface

Byte Contents

I NITCALL 7

8

9

10

11

12

INITCALLACK 7

8

Rev. 2

EQIPCMM:CC_INITCALL

Protocol Dependent Characteristics

Protocol Dependent Characteristics

Protocol Dependent Characteristics

Port Generic Type

Local Characteristics

EQIPCMM:CC_INITCALLACK

Error Code or Zero

D814 System Software Manual
Section 6.3 - 5

Byte 1

Byte 2

Byte 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.3.6 Path Manager AP Interface

The formats of the body portion of the addressed packets used to inter
face to the Mainframe Path Manager are given below:

ACT CALL

ACTCALLACK

ESTXMTPATH

XMTPATHACT

XMTPATHERR

RCVPATHACT

RCVPATHFAIL

CLRCALL

CALLCLRD

Rev. 2

Byte

7

8

9

10

7

8

7

8

9

10

11

12

7

8

7

8

7

8

9

7

7

7

Contents

EQ$MPM:CC_ACTCALL

Remote Node

Remote Port

Initial Estimate Effective Speed

EQIPCMM:CC_CALLACT

Error Code or Zero

EQ$MPM:CC_ESTXMTPATH

Local Port Speed

Path Priority/Routing Option

Transfer Adjacent Node

Transfer Adjacent Port

Transfer Network Port

EQIPCMM:cc_xMTPATHACT

Number of Hops in Path

EQIPCMM:cc_xMTPATHERR

Error Code

EQIPCMM:CC-RCVPATHACT

Number of Hops in Path

Path Priority Code

EQIPCMM:CC_RCVPATHFAIL

EQ$MPM:CC_CLRCALL

EQIPCMM:CC_CALLCLRD

0814 System Software Manual
Section 6.3 - 6

Rev. 2

COD~X CORPORATION COMPANY CONFIDENTIAL

6.4 Single-Threaded Data Movement

Siegle-threaded data movement refers to the transfer of data between
terminals over a line that is effectively point-~o-point, whether it be a
permanent or switched connection. In the 0814 system, this implies that no
two physical terminals share a single set of I/TP software, hence messages
are not interleaved.

The 0814 is responsible for upholding data integrity during its movement
across the network. It does not, however, use an explicit end-to-end error
detection scheme in order to maintain acceptable levels of data accuracy.
Instead, an ARQ mechanism has been designed which is activated when a link or
a node failure has been detected. This, in conjunction with the checking
done by the INP, insures minimal data loss across the link.

The ARQ and flow control measures are implemented at those points at
which data is transferred to and from the BIC. The modules which are respons
ible for this are discussed in the following two subsections.

6.4.1 BIC FIFO Handler (Module IP$FIFO$}

The BIC FIFO Handler is responsible for the transfer of data INTO the BIC
Inbound and OUT of the BIC Outbound FIFO's. The module is composed of rou
tines to accomplish the following tasks:

1. FIFO initialization
2. FIFO interrupt handling

The means used to accomplish these tasks are described in the following
sections.

6.4.1.1 FIFO Initialization (Submodule IP$FIFO$INIT)

This submodule is called for two reasons,

1. for original FIFO data structure·initialization, and
2. for reinitialization while the IP is active.

Accordingly, the submodule is comprised of two routines. The first is
called by the protocol module during its own initialization phase, the second
at CALLEND, again being invoked by the protocol module. The entry points and
functions of each are defined below.

Entry Point - IP$FIF0$INIT:ENTRY

Rev. 3 0814 System Software Manual
Section 6.4 - 1

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Function

Gets TCB's for FIFO Interrupt handlers, disables Inbound and enables Out
bound FIFO's, and clears FIFO data structures.

Entry Conditions

None

Exit Conditions

All registers destroyed.

Entry Point - IP$FIFO$INIT:REINIT

Function

Disables BIC Inbound FIFO and enables BIC Outbound FIFO and clears OB
FIFO of residual data.

Entry Conditions

None

Exit Conditions

All registers destroyed.

{In actuality, the second routine is merely a subset of the instructions
of the routine performing the original initialization tasks.)

6.4.1.2 FIFO Interrupt Handling (Submodule IP$FIFO$INT)

This submodule handles Inbound and Outbound FIFO interrupts and contains
two entry points, one to handle each type of IRQ. The first is entered when
a BIC Inbound FIFO interrupt occurs; the second by the occurrence of a BIC
Outbound FIFO interrupt.

Entry Point - IP$FIF0$INT:XMT

Function

Disables BIC Inbound FIFO Interrupts and forks IP$FLOW$XMIT which per
forms the Inbound FIFO transmit function.

Rev. 3 D814 System Software Manual
Section 6.4 - 2

Rev. 3

CODEX CORPORATION

Entry Conditions

None

Exit Conditions

None

Entry Point - IP$FIFO$INT:RCV

Function

COMPANY CONFIDENTIAL

Disables Outbound FIFO interrupts and forks IP$FLOW$RECV which performs
the Outbound FIFO receiver function.

Entry Conditions

None

Exit Conditions

None

6.4.2 Flow Control and ARQ (Module IP$FLOW)

The Flow control and ARQ module is responsible for controlling data flow
into the network and insuring proper data flow from the network. It con
tains an ARQ mechanism which is activated when a link or node failure has
been detected or if the free buffer pool becomes exhausted. This mechanism
is linked to the end-to-end flow control procedure.

The Fl ow Contra l and ARQ Module is comprised of routines to ae,comp l i sh
the following five tasks:

1. Flow control and ARQ initialization
2. Inbound pre-ARQ flow control
3. Inbound post-ARQ flow control
4. Outbound pre-ARQ flow control
5. Outbound post-ARQ flow control

The fo 11 owing sections describe in more detail the routines which see to
the completion of these tasks.

Rev. 3 0814 System Software Manual
Section 6.4 - 3

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.2.1 Flow Control and ARQ Initialization (Submodule IP$FLOW$INIT)

This submodule is called for two reasons,

1. for original FLOW data structure initialization, and
2. for reinitialization while the IP is active.

A<:cordingly, the submodule is comprised of two rout·ines. The first is
called by the protocol module during its own initialization phase, the second
at CALLEND, again being invoked by the protocol module. The entry points and
functions of each are defined below.

Entry Point - IP$FLOW$INIT:ENTRY

Function

Initializes Flow Control and ARQ data structures and creates Inbound and
Outbound data buffers.

Entry Conditions

None

Exit Conditions

All registers destroyed.

Entry Point - IP$FLOW$INIT:REINIT

Function

Deletes previous Inbound and Outbound data buffers, reinitializes Flow
Control data structures, and creates new Inbound and Outbound buffers.

Entry Conditions

None

Exit Conditions

All registers destroyed.

(In actuality, the first routine is merely a subset of the instructions
belonging to the routine performing the reinitialization task.)

Rev. 3 0814 System Software Manual
Section 6.4 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.2.2 Inbound Pre-ARQ Flow Control (Submodule IP$FLOW$PXMT)

Function

Called by the Inbound Protocol Module (IBP} at interrupt level on a per
character basis. This submodule moves unencoded data into the IB byte
queue chain, which is composed of blocks of "Alpha" length.

Entry Points - IP$FLOW$PXMT:ENTRY1
IP$FLOW$PXMT:ENTRY2

Entry Conditions

ENTRYl: A-reg = data byte

ENTRY2: A-reg = 1st data byte
B-reg = 2nd data byte

Exit Conditions

A-reg = preserved
All other registers destroyed.

6.4.2.3 Inbound Post-ARQ Flow Control (Submodule IP$FLOW$XMIT)

Function

Obtains data from the corresponding Inbound Data Buffer. It vectors to
ADC with the data to be encoded. The encoder returns with an encoded
data byte which is compacted and. then written to the BIC IBF IFO. When
the BIC IBFIFO is full, FLOW$XMIT enables BIC IBFIFO half empty inter
rupts and terminates the task. This submodule is initiated when the BIC
IBFIFO is able to accept a byte of data. It is responsible for sending
ACK ICS's, and for resending unacknowledged blocks, in the event 1 of link
or node failure or buffer overflow. In addition, it is responsible for
signalling processing speed changes to downstream nodes.

Entry Point - IP$FLOW$XMIT:ENTRY

Entry Conditions

None

Exit Conditions

All registers destroyed.

Rev. 3 D814 System Software Manual
Section 6.4 - 5

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.2.4 Outbound Pre-ARQ Flow Control (Submodule IP$FLOW$RECV)

Function

Obtain data from the BIC OBFIFO and pass it to ADC to be decoded. The
decoder returns the decoded character which is sent to the Outbound Pro
tocol Module (OBP) to be moved to the corresponding Outbound Data Buffer.
This submodule is responsbile for re-enabling BIC OBFIFO half full inter
rupt when the BIC IBFIFO is empty, deleting associated buffer and enabl
ing BIC IBFIFO when .a block is· acknowledged, and performing outbound
error recovery procedures after the receipt of an OVF (buffer overflow)
ICS or a KILLFAIL ICS which indicates a link or node failure at the
remote data transmitter. EBK (end of block) ICS bytes cause this sub
module to enable the BIC IBFIFO and inform FLOW$XMIT to send an ACK ICS,
via an escape, escape sequence sent to outbound protocol module.

Entry Point - IP$FLOW$RECV:ENTRY

Entry Conditions

None

Exit Conditions

All registers destroyed.

===
Further understanding of the ARQ and Flow Control method used in the D814

system can be achieved by studying the following diagrams. These illustrate
program control fl ow and briefly describe the processing done in both normal
and recovery modes.

Rev. 3 D814 System Software Manual
Section 6.4 - 6

Rev. 3

CODEX CORPORATION

..

Rev. 3

J

0814 System Software Manual
Section 6.4 - 7

COMPANY CONFIDENTIAL

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

FLOW CONTROL MODULES
I IPOS IBP PXMT XMIT ADC$ENCODE FIFO$INT IPOS

a) IRQ---+----->

I b) JSR----+----->

I c)
I

r I <------+-----T
I I

d) <-----+-----T

I
I

e) <-----+-- IRQ

I f) <-----+------------+--FSTFRK I I

Rev. 3

I T-----+--->

g) JSR----+---->
I

I h} <-----+----T
I

T-----+------------+----------+--> i)

Inbound Data -- Normal Transmission

Figure 6.4-1

ARQ-FLOW CONTROL

0814 System Software Manual
Sectl-On 6.4 - 8

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

· a) I POS gets 2651 receiver ready IRQ and vectors to I BP at interrupt
level to obtain receiver data byte.

b) IBP calls FLOW$PXMT with data byte.

c) FLOW$PXMT moves the data to the IB ARQ buffer chain.

d) IBP finishes interrupt handling and returns control to IPOS.

e) IPOS gets IB FIFO IRQ, routes it to FIFO$INT.

f) FLOW$XMIT gets data byte from the IB ARQ buffer chain.

g) FLOW$XMIT calls ADC to encode the data byte.

h) ADC$DECODE returns with encoded byte which FLOW$XMIT moves to the
BIC IBFIFO and proceeds to step f) as long as IB data buffer is not
empty and BIC IBFIFO is not full.

i) FLOW$XMIT terminates the task with IB ARQ buffer chain empty, BIC IB
FIFO full, or transmitter metered off.

Note: Where a block in the chain becomes completely transmitted, addi
tional processing takes place {e.g., insertion of ICS's, metering
off).

Note: When the flow control transmitter is called with the "send ACK" flag
set, FLOW$XMIT merely decrements the flag and writes an ACK ICS to
the BIC IBFIFO as data.

Rev. 3 0814 System Software Manual
Section 6.4 - 9

Rev. 3

CODEX CORPORATION tOMPANY CONFIDENTIAL

IPOS FIFO$INT FLOW$XMIT

a) IRQ---+---->
I FSTFRK---+---->

<-----+----T I I
b} <-----+----------+----T

c)
I I IRQ---+---->
I FSTFRK---+---->

<-----+----T I I
d) ------+----------+----T

e)
I I IRQ---+--.-->
I FSTFRK---+---->

<-----+----T I I
f) <-----+----------+----T

I I
Inbound Data -- Recovery Processing

Figure 6.4-2

ARQ-FLOW CONTROL

(This sequence is initiated whenever the flow control Transmitter is entered
with the transmit recovery flag set to 4. Its function is to retransmit the
data blocks pointed to by the recovery buffer pointer.)

Rev. 3 0814 System Software Manual
Section 6.4 - 10

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

a) Transmit Recovery Flag = 3

IPOS gets BIC IBFIFO IRQ and routes it to FIFO$INT. FIFO$INT dis
ables BIC IBFIFO IRQ 1 s, FSTFRKS FLOW$XMIT and terminates task.

b} Recovery Phase 3

FLOW$XMIT sets the transmit recovery flag = 3 and writes a REC ICS
to the BIC IBFIFO, to indicate recovery parameters follow.

c) Transmit Recovery Flag = 2

Repeat of a) if FIFO was full after step b}, otherwise step c) is
omitted and control is continued to step d).

d} Recovery Phase 2

FLOW$XMIT sets the transmit recovery flag = 2 and writes the status
of the local free buffer pool to BIC IBFIFO.

~) Transmit Recovery Flag = 1

Repeat of a) if FIFO was full after step d}, otherwise omit step e).

f} Recovery Phase 1

Rev. 3

FLOW$XMIT sets the transmit recovery flag = 0 and writes the local
transmitter and receiver status byte to the BIC IBFIFO. The local
receiver status nibble provides the remote transmitter with the know
ledge of the 1 ast block transmitted in full. The local transmitter
status nibble provides the remote receiver with the knowledge of the
1 ast b 1 ock the remote receiver acknowledged. The current transmit
block pointer is set to the recovery block pointer and the BQUE read
pointer for this block is reset to the beginning of the block.

FLOW$XMIT is now in normal mode and continuously reads from the cur
rent block to be retransmitted and writes each byte to the BIC
IBFIFO until the IB data buffer is empty or the BIC IB FIFO is full.

0814 System Software Manual
Section 6.4 - 11

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

I

a)

g)

Rev. 3

I FLOW CONTROL I
MODULE

IPOS FIFOj_INT FLOW$RECV ADC$DECODE OBP

' IRQ--+---->

I I
FSTFRK---+-----> b)

<----+----T I
c)

I
----------+----->

I
d) <----------+-----T

I
JSR---------+------------+--> e)

I I If) <----------+------------+---T
I

<---·1·----------1----T
I

Outbound Data -- Normal Transmission

Figure 6.4-3

ARQ-FLOW CONTROL

D814 System Software Manual
Section 6.4 - 12

I

I

I

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

a) IPOS gets BIC OBFIFO IRQ, routes it to FIF0$INT. FIF0$INT disables
Outbound FIFO interrupts, FSTFRKs FLOW$RECV.

b) FLOW$RECV gets a byte from the OBFIFO and tests the byte received:

If ACK ICS, updates count for last block ACK'ed, enables the
BIC IBFIFO if necessary, deletes byte queue pointed to by the
recovery buffer pointer and sets next link as new recovery
buffer pointer.

If EBK ICS, cl ears count of last character received, updates
number of blocks received, and calls OBP through vector with
escape, escape sequence.

If KILLFAIL ICS, sets receive recovery flag = 5.

If OVF ICS, causes local transmitter recovery initialization
and toggles the remote overflow indicator.

If data:

c) Calls ADC$DECODE to decode on a per nibble basis.

d) ADC$DECODE returns with decoded character or asks for next nibble.

e) FLOW$RECV calls OBP with decoded character.

f) OBP buffers the character in the appropriate OB data buffer.

g) Go to step b) unless BIC OBFIFO is empty. When the FIFO is empty,
re-enables BIC OBFIFO interrupts and terminates the task.

Rev. 3 0814 System Software Manual
Section 6.4 - 13

Rev. 3

CODEX CORPORATION

)

IPOS FIFO$INT FLOW$RECV

a) IRQ---+---->
I FSTFRK---+---->

<-----+----T I
b)

I
<-----+----------+----T

c)
I I IRQ---+----> .~

I FSTFRK---+---->
<-----+----T I I

d) <-----+----------+----T
I I e) IRQ---+---->
I FSTFRK---+---->

<-----+----T I I
f) <-----+----------+----T

I I g) IRQ---+---->
I FSTFRK---+---->

<-----+----T I I
h) <-----+----------+----T

I I i) IRQ---+---->
I FSTFRK---+---->

<-----+----T I I
j) <-----+----------+----T

l 1
Outbound Data -- Recovery Processing

Figure 6.4-4

ARQ-FLOW CONTROL

COMPAllY CONFIDENTIAL

(This sequence is initiated whenever FLOW$RECV is entered with the receive
recovery flag set to 5. Its. function is to ignore all data received until
the block and character last correctly received is received again.)

Rev. 3 0814 System Software Manual. Rev. 3
Section 6.4 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

a) Receive Recovery Flag = 5

IPOS gets BIG OBFIFO IRQ, routes it to FIFO$INT. FIFO$INT disables
BIG OBFIFO IRQ's, FSTFRKS FLOW$RECV and terminates.

b) Recovery Phase 5

FLOW$RECV discards all data until a REC ICS is received, then it
sets receive recovery flag = 4.

c) Receive Recovery Flag = 4

Repeat of a) if BIG OBFIFO is empty, otherwise control proceeds to
step d).

d) Recovery Phase 4

FLOW$RECV reads parameter byte from SIC OBFIFO and compares the
remote buffer pool status against the local version. If unequal,
buffer overrun recovery is initiated at the local transmitter; the
receive recovery flag is set to 3.

e) Receive Recovery Flag = 3

Repeat of step a) if B IC OBF IFO is empty, otherwise, control pro
ceeds to step f).

f) Recovery Phase 3

FLOW$RECV reads parameter byte from BIC OBFIFO and computes the num
ber of blocks to discard and the number of lost acknowledgements.
It deletes the block the recovery pointer is pointing to and trans
fers the link to the next BQUE to the recovery pointer for each lost
ACK. In addition, the number of blocks not outstanding and the
number of last block ACK'ed are updated for each lost ACK. Finally
the Receive Recovery Flag is set to 2.

g) Receive Recovery Flag = 2

Rev. 3

Repeat of step a), if BIC OBFIFO is empty, otherwise, control pro
ceeds to step h).

0814 System Software Manual
Section 6.4 - 15

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

h) Recovery Phase 2

FLOW$RECV gets data byte from the BIC OBF IFO.

If EBK ICS, tests the number of blocks to discard. If equal to
zero, post end of recovery since EBK was the last byte received prop
erly. If the number of blocks to discard was not equal to zero, the
number is decremented and control returns to loop check the FIFO for
more data.

, If data byte, and the number of blocks to discard is non-zero, the
byte is discarded and control returns to loop check the FIFO for
more data.

If data byte and the number of blocks to discard is now equal to
zero, the number of nibbles received properly prior to failure.
becomes the number of nibbles to discard, and the recei ve recovery
flag is set to one. If there were no nibbles received this block,
the receive recovery flag is reset and the data is buffered norm
ally.

i) Receive Recovery Flag= 1

Repeat of a) if BIC OBFIFO is empty, otherwise, control proceeds to
step j).

j) Recovery Phase 1

FLOW$RECV gets data byte from BIC OBF IFO and updates the count of
nibbles to discard for a single or double data nibble. If the count
remains non-zero, control returns to loop check the FIFO for more
data. When the count of nibbles to discard becomes zero the receive
recovery flag is set to zero. If the count becomes zero on the
first half of a double data nibble, only the first half is dis
carded, the high order nibble is shifted to the low order position
and is buffered as good data.

===
In order to delineate the path of data transfer for quick reference, the

following diagrams have been supplied. In each, 11 ::::> 11 indicates data move
ment; 11 ---> 11 shows a change in program control.

Rev. 3 0814 System Software Manual
Section 6.4 - 16

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

I BIC IBFIFO I
:~ l:~~---->1 FIF0$INT I

~~ F<
. . v
~ ~:::::::::: l_fl_o_w_x-m1-.t-

A A A
. . . . I I
. . ----->

ADC : : : : : : : : : : : > ENCODE
IB BUFFER

, __ C_HA_I_N_ <: : : : : I
flow pxmt

A A

IRQ---> COMM r~~~~~~~~I IBP
RCVR

ARQ-FLOW CONTROL Operation -- INBOUND

.. . .
I

FIFO$INT I
IFSTFRK

.
: : v

I IB BUFFER I 1----1 <----> ADC
CHAIN :::::> flow xmit <::::> ENCODE

ARQ-FLOW CONTROL Operation -- INBOUND RECOVERY

D814 System Software Manual
Section 6.4 - 17

Rev. 3

CODEX CORPORATION

Rev. 3

I BIC OBFIFO
IRQ I : :

I FIF0$INT 1<--------- ~~

~~::::::::::::~~
I :
v v

-~~~;;~~I flow recv
: : FSTFRK : A

: I

OB DATA
BUFFER
A

..

v v
__ oB_P __ I : : : : : : : : : :

. >I I
-~~~~~~> ADCM$DECODE

ARQ-FLOW CONTROL Operation -- OUTBOUND

D814 System Software Manual
Section 6.4 - 18

COMPANY CONFIDENTIAL

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3 Adaptive Data Compression Scheme

Following is a complete description of the adaptive data compression
algorithm, including timing estimates. There are 5 parts to this section:

1) General Description
2) Transmitter
3) Receiver
4) Initialization
5) Timing Estimates

6.4.3.1 General Description of the Algorithm

The D814 data compression algorithm attempts to encode frequent charac
ters into short codewords, and 1 ess frequent characters into 1 arger code~
words, so as to reduce the average number of bits used per character. It is
adaptive in that it does not require a prior statistical description of the
source but will search for a code matched to the source. This objective
requires two distinct actions.

First, the characters must be kept ordered by relative frequencies (high
frequency <-> low rank). This is done simply by exchanging the ranks of the
ith ranked and (i-l)th ranked characters when the ith ranked character
occurs. The precise algorithm is given in Section 6.4.3.2.2.

Secondly, the best code must be computed and a method must be found to
encode and decode. This section describes the code structure. The encoding
and decoding algorithms are explained in Sections 6.4.3.2.3 and 6.4.3.3.3.

For ease of implementation, codewords are required to have a length of 4,
8 or 12 bits (1, 2 or 3 nibbles). Moreover, the 0 nibble is forbidden, as it
is reserved for control purposes at lower levels in the network structure.

We can view the code as a 15-ary tree, with branches labeled 1 to F and
leaves at levels 1, 2 or 3 (Figure 6.4.3.1).

Rev. 3 0814 System Software Manual
Section 6.4 - 19

Rev. 3

CODEX CORPORATION

Rev. 3

COMPANY Cortf IDENTIAL

1

2

3

4

5
I 1

-------- I 2

1----------. .
----------. .

-------F
1
2

: . .

---------£
I _________ ~

---------F

F
1

---------F

Figure 6.4.3.1

0814 System Software Manual
Section 6.4 - 20

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

N4, NS and Nl2 denote the numbers of possible leaves (not necessarily
actual characters) at levels 1, 2 and 3 respectively. We want the tree to be
complete (all nodes have 15 outgoing branches) so that N4 + NS + N12 has the
form 15 + 14k, for some integer k, chosen so that N4 + NS + Nl2 is at 1 east
as large as the number of symbols in the source alphabet.

Also, as the code is complete, Kraft equality must be satisfied, thus N4
(15-1) + NS (15-2) + N12 (15-3) = 1. This rel at ion, together with the one
about N4 + NS + N12, leaves only one degree of freedom for the tree. We
choose N4 as that parameter.

From the previous relations, one can see that every time N4 is increased
by 1, NS decreases by 16 and N12 increases by 15. This suggests that if the
most likely character encoded into an S bit codeword occurs more frequently
than the 15 1 east 1 i ke ly characters encoded into S bit codewords, then N4
should be increased so as to reduce the average codeword length. Similarly,
if the 15 most likely characters encoded ito 12 bit codewords occur more fre
quently than the least likely character encoded in a 4 bit codeword, then N4
should be decreased. The optimality of this search rule in the quest for the
best code can be established by means of a convexity argument. The precise
implementation is described in Section 6.4.3.2.3.

From the previous discussion, we should maintain:

DRIFTl = II occurrences of least likely 1 nibble character, minus II of
occurrences of 15 most likely J nibble characters.

DRIFT2 = II occurrences of 15 least likely 2 nibble character, minus II
occurrences of most likely 2 nibble character.

when DRIFTl reaches 0, N4 should be decreased
DRIFT2 reaches 0, N4 should be increased

Instead, the algorithm maintains DRIFT=DRIFT1-DRIFT2.

when it underflows, N4 should be decreased
overflows, N4 should be increased

This increases the speed of convergence, but has the disadvantage that no
steady state code can be reached. This is not a problem, however, as a
source is never really stationary.

Rev. 3 DS14 System Software Manual
Section 6.4 - 21

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.2 Transmitter {IP$ADCM$ENCODE:ENTRY)

The transmitter forms a single subroutine. It is entered with the actual
character in Register B, and terminates with the codeword in Registers A and
B as follows:

1 nibble:
2 nibble:
3 nibble:

A
0 0
0 0
0 H

B
0 H
H M
M L

It then jumps to the routine that puts the nibbles in the inbound buffer.

Entry Point - IP$ACDM$ENCODE:ENTRY

Entry Conditions

B Reg contains character to be encoded

The detailed description follows. For simplicity, we divide the transmit
ter into 3 we 11 defined routines that that are described separately. They
are:

Transmitter Code Update
Transmitter Rank Update
Transmitter Encoding

6.4.3.2.1 Transmitter Code Updating

This is the first transmitter routine. It starts and ends with the
actual character to be encoded in Register A. In between it checks if the
code must be changed due to the transmission of the previous character by com
paring DRIFT with 12B and O.

If a code update is necessary, the following parameters must be computed:

N4
N4 + NB - 15
N4 + NB
N4 + NB + 15
- N12 - 16
EORF
{N4 + 1) 15
{N4 + 1) 15 + 2 +

where [] denote integer part.

Rev. 3 DB14 System Software Manual
Section 6.4 - 22

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

In addition, DRIFT must be reset to 64. N4 + NB + Nl2 is set at initial
ization and never changes. The algorithm uses the old values of N4 and N4 +
NB - 15 in order to compute the new ones. It then recomputes all other para
meters from N4, N4 + N8 - 15 and N4 + NB + Nl2.

Computations are trivial, except the one of

I-Na -1-I
I_ 15 _I

If N8 = a (16) + b = a (15) + (a + b)
(note that a + b < 30, as N8 < 255)

then ,-N8 -1-, = a if a + b < 16
- 15 -

= a + 1 if a + b > 16

,-N8 -1-1 is computed as follows:
- 15 -

put N8 in Reg B
transfer Reg B to Reg A
shift Reg B to the right 4 times. Now Reg B = a.
add Reg B to Reg A
If the result is more than 15, increment Register B

Timing (# Cycles)

If DRIFT=O or 128, no change necessary, 7 cycles.
I

If DRIFT=O or 128 but
DRIFT=O and N4 already 0

or DRIFT=l28 and N8 already <16 {i.e., {N4 + NB -15) <15) then no
change is actually made, only 48 cycles are used.

If a change must be made, it requires 162 cycles.

Rev. 3 0814 System Software Manual
Section 6.4 - 23

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.2.2 Transmitter Rank Update Routine

This routine starts with a character in Register A. It updates tables as
explained below and finishes with the character rank in Register B.

The transmitter maintains 2 tables to keep track of the ordering of the
characters. Tables are aligned with page boundaries.

P-table: Indexed by character number.
Contains the rank of a character, with very frequent char
acters being 1 ow rank.

IP-table: Indexed by rank.
Its ith element contains the name of the ith ranked char
acter.

When character NCHAR occurs, the routine consults the P-table to find its
rank PN, which is used by the transmitter encoding module. ,If PN is not
zero, NCHAR is swapped with the next most likely character. Thus,

P(NCHAR)
P(IP(PN-1))
IP(PN)
IP(PN-1)

<---PN-1
<---PN
<---IP(PN-1)
<---NCHAR

In this way the most likely characters tend to drift to low rank posi
tions.

Timing (# cycles)

Rev. 3

Normal character: 76
Character with rank 0: 19

0814 System Software Manual
Section 6.4 - 24

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.2.3 Transmitter Encoding

This routine starts with the character rank in Register B. It computes
the codeword and checks if the code should be changed later. It terminates
with the codeword in Registers A and B and returns to the calling program.

Timing (# Cycles)

4 bit codeword

8 bit codeword

12 bit codeword

normal
least likely
most likely
normal (15/16)
normal (1/16)
15 least likely (15/16)
15 least likely (1/16)
15 most likely (15/16)
15 most likely (1/16)
normal (15/16)
normal (1/16)

Following is a detailed explanation. Numbers
fl ow chart.

N4 = # of 1 nibble codewords
N8 = # of 2 nibble codewords in the com2leted
N12 = # of 3 nibble codewords in the com2leted

is always a multiple of 15.

20
30
34
40
56
50
66
50
60
40
66

refer to

code tree.
code tree.

the tests in the

Note that N12

1) Compare B with N4. If less, then B is encoded into a 4 bit code
word by incrementing it. If it is the least likely 4 bit codeword,
DRIFT is increased.

2) Uses the Z flag from 1. If set, B corresponds to the most likely 8
bit codeword and DRIFT is increased.

3) Compare B with N4 + N8. If 1 ess, it corresponds to an 8 bit code
word, else to a 12 bit codeword

4) Check if B corr~sponds to one of the 15 least likely codewords. If
so, DRIFT is decreased. Note that if N8 is less than 16, the most
likely 8 bit codeword is also one of the 15 least likely 8 bit code
words. To save processing, this is not checked here, but is taken
care of by the transmitter code update routine which will not change
the code if DRIFT=128 but N8 is less than 16.

Rev. 3 D814 System Software Manual
Section 6.4 - 25

Rev. 3

CODEX CORPORATION

0

1(0}

2(1)

3

4

5

i nibble IJ

(i) character rank
---- illegal nibble

Rev. 3

0 I _________

1(15)

2pq

3 (2)

4 Pl
15(14)

0(15)

1(16)

2(17)
15(30)

0(31) I ________ _

1(32)
15(46)

Figure 6.4.3.2

Example: N4 = 2

l-N8 -1-,
- 15 - = 2

0814 System Software Manual
Section 6.4 - 26

COMPANY CONFIDENTIAL

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

An 8 bit codeword is generated by adding B to a base, then checking
if the resulting codeword terminates with the 0 nibble. If so, the
codeword is 11 folded 11 , see Figure 6.4.3.2. One can show that the
number of folded codewords is the integer part of

Thus the most likely 8 bit codeword (B = N4} is encoded into

(N4 + 1} 16 + 1 + 1-N8 -1-,
- 15 -

so that base to which B should be added is

(N4 + 1) 15 + 2 + l-N8 -1-I
I_ 15 _I .

5) If the codeword must be folded, it is shifted right four times then
added to {N4 +l} 15. It is guaranteed that a folded codeword will
never terminate with the 0 nibble, as

l-N8 -1-l
- 15 - < 15

6) We must generate a 12 bit codeword. If it is one of the most 15
likely, DRIFT is decremented.

The S LSB of the codeword are determined by subtracting (N4 + NS +
N12), so that if Bis equal to {N4 +NS+ N12) -1 (i.e., the least
likely character in the completed alphabet}, the S LSB of the code
word are FF. The 4 MSB of the result are never 0000, as N12 <240
and B> N4 + NS, thus (256 +) B - (N4 + NS + N12) >16. The 4 LSB-can
be 0000, thus leading to an illegal codeword. -

"-
7) If the 4 LSB are 0000, B is shifted right 4 times, and the result is

Rev. 3

added to X, where X = 240 if N12 = 240, and X = -N12 -16 otherwise.
Thus if the result of the subtraction (in 6) is FO (i.e., the least
likely unlawful 12 bit codeword), the resulting codeword is 15 - N12
- 16 = (N4 + NS -1} - (N4 + NS + N12), i.e. just above the most
likely 3 nibble codeword (N4 + N8) - (N4 +NS+ N12).

The most significant nibble of 3 nibble codewords is always F,
except if Test 7 is true and N12 = 240, in which case it is E. EORF
contains 0 or 1, depending on N12.

0814 System Software Manual
Section 6.4 - 27

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.3 Receiver {IP$ADCM$DECODE:ENTRY}

The receiver consists of one subroutine. It is entered with a non zero
nibble in the lower part of Register A. It returns either with Z = 0, in
which case no comp 1 ete codeword has been received, or with A c 1 ea red and Z =
1, and a character in B.

Entry Point - IP$ADCM$DECODE:ENTRY

Entry Conditions

.A Reg with non-zero nibble to be decoded in lower part

Exit Conditions

If complete codeword received:

A Reg = 0
B Reg = decoded character
X Reg = destroyed
z = 0

If not complete codeword:

A Reg = destroyed
B Reg = destroyed
X Reg = intact
z = 1

The detailed description follows. For simplicity we divide the receiver
into 3 well defined routines that are described separately. They are:

Receiver Decoder
Receiver Rank Update
Receiver Code Update

6.4.3.3.1 Receiver Decoder Routine
I

This routine starts with a nibble in Register A, and decodes it. If a
complete codeword has been received, the rank of the character is placed in
Register A and the program continues with the receiver rank update routine,
else control is returned to the calling program.

l/'.

Rev. 3 0814 System Software Manual
Section 6.4 - 28

Rev. 3

CODEX CORPORATION

Timing (# Cycles}

First Second
Nibble Nibble

4 bit c.w. normal 24
least likely 32

8 bit c.w. most likely 21 60
normal (15/16} 21 56
normal (1/16} 21 68
15 least likely (15/16} 21 66
15 1 east 1 i kely (1/16} 21 78

12 bit c.w. 15 most likely (15/16} 21 27
15 most likely (1/16} 21 27
normal (15/16} 21 27
normal (1/16} 21 27

The variable STATE is defined as follows:

STATE = (00} if first nibble H is being processed
(OH} if second nibble M is being processed
{HM} if third nibble L is being processed

COMPANY CONFIDENTIAL

Third
Nibble

64
72/76

54
62/66

Note: If STATE = {H,M} then H = E or F and bit 7 always 1.

Following are the details of the algorithm.

1} If the first nibble < N4, we have the complete word. If =N4, it is
the least likely 4 bft codeword and DRIFTl must be incremented. The
rank is obtained by decreasing by 1.

2) Compute {H,M). The result is compared with

{N4 + 1) 16 + N8 + 1-N8 -1-1
- 15 - '

which is the least likely 8 bit codeword or an illegal codeword
smaller than the most significant 8 bits of any 12 bit codeword.
This test determines whether we have a complete 8 bit codeword.

3) Compare with {N4 + 1) 16 + 1 + 1-N8 -1-1
- 15 _

Rev. 3

which is the most likely 8 bit codeword.

If =, it is the most likely 8 bit codeword. Decrease DRIFT2 and
set the rank to N4.

0814 System Software Manual
Section 6.4 - 29

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

If less than, we undo the second phase of the encoding by adding N4
+ 1 and multiplying by 16. We thus get the illegal codeword that
was the output of the first phase of the encoding.

We undo the first phase of the encoding by subtracting

(N4 + 1) 15 + 2 + 1-N8 -1-,
- 15 -

and obtain the rank.

4) If one of the 15 least likely 12 bit codewords, increase DRIFT2.

5) Check if H was E or F and compute the least significant byte of the
3 nibble codeword.

6) Compares that byte with the final byte of the most likely 12 bit
codeword, N4 + NB - (N4 + N8 + N12) = - N12.

A 11 less than 11 resu 1 t indicates that the first
resulted in an illegal codeword. We can recover
word by subtracting -N12 and multiplying by 16.
the encoding is undone by adding N4 + N8 + N12.

encoding operation
that i 11ega1 code
The first phase of

7) Finally DRIFTl is updated if the codeword is one of the 15 most
likely 12 bit codewords.

6.4.3.3.2 Receiver Rank Update Routine

This routine starts with a rank in Register A. It updates a table as
explained below, computes the character corresponding to the rank, places it
in Register B and returns to the calling program with Register A cleared.

The receiver contains only one table, the IP-table. It is updated
exactly as in the transmitter. Thus, if rank PN occurs and is not zero,
IP(PN) and IP(PN-1) are swapped, and the old value of IP(PN) is the output.

Timing (# cycles)

Rev. 3

Norma 1 41
If rank =O : 12

0814 System Software Manual
Section 6.4 - 30

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.3.3 Receiver Code Update

This routine performs a role similar to the Transmitter Code Update rou
tine, using the same algorithm and about the same number of cycles.

If a code update is necessary, the following parameters must be computed:

N4
N4 + N8 + 15
N4 + N8 - 15
- Nl2

{N4 + 1) 16 + 1 +

{N4 + 1) 15 + 2 +

{N4 + 1) 16 + N8 +

DRIFT must be reset.

1-N8 -1-,
- 15 -

,-N8 -1-1
- 15 _

1-N8 -1-1
- 15 _

The routine has two entries, DECN4 and INCN4, depending whether N4 should
be decreased or increased.

6.4.3.4 Initialization {IP$ADCM$INIT:ENTRY)

The following parameters must be initialized.

6.4.3.4.1 Transmitter

Alphabet Size

Parameters
N4

32 64 128 256

13 12 10 0
28 41 66 207 N4 + N8 - 15

N4 + N8 + Nl2
DRIFT

43 71 141 11 { = 267)

Rev. 3

P table
IP table

128 128 128 128
Natural Numbering, 255, 0, ••• 254
Natural Numbering, 1, ••• 255, 0

0814 System Software Manual
Section 6.4 - 31

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.4.3.4.2 Receiver

The initialization is the same as for the transmitter, except that the P
table is not defined for the receiver, but STATE must be set to O.

In addition the routine INCN4 must be executed to compute all the para
meters used in the decoder routine. The similar operations in the transmit
ter routine will be executed automatically when the first character is
encoded, as DRIFT was initialized to 128.

6.4.3.5 Timing Estimates (# Cycles)

. Estimates regarding the transmitter encoder and receiver decoder routines
have been obtained by adding 10 to Linde's original estimates.

Transmitter

Code Update
Rank Update
Encoder (8 bit code) Uniform alphabet

Skewed alphabet

Receiver

Code Update
Decoder (8 bit code) Uniform alphabet

Skewed alphabet
Rank Update

Grand Total (Transmit and Receive):

Total :

Total:

11
76
44
32

119-131

1
92
57
41

134-150

243-281

With a full-duplex 1200 cps terminal, this would mean 336xl03 cycles per
second, or 17 percent of the processor capacity. The previous figures are
somewhat pessimistic, simulation results on actual files, averaged over 1000
characters, hover between 93 cycles/character when long strings of O's are
transmitted and 250 cycles/character for files containing object code, with
210 cycles/character being typical (13 percent of processor capacity).

Rev. 3 D814 System Software Manual
Section 6.4 - 32

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5 Multi-Threaded Data Movement

Multi-threaded data movement refers to the transfer of data between ter
minals over a line that is effectively shared. In the 0814 system, this
implies that many physical terminals share a single set of I/TP software,
hence messages are interleaved.

The 0814 is responsible for upholding data integrity during its movement
across the network. It does not, however, use an explicit end-to-end error
detection scheme in order to maintain acceptable levels of data accuracy.
Instead, an ARQ mechanism has been designed which is activated when a link or
a node failure has been detected. This, in conjunction with the checking
done by the INP, insures minimal data loss across the link.

The ARQ and flow control measures are implemented at those points at
which data is transferred to and from the BIC. The modules which are respons
ible for this are discussed in the following two subsections.

6.5.1 BIC FIFO Handler

The multi -threaded data movement module uses the same BIC handler as the
single-threaded data movement described in Section 6.4.1.

6.5.2 Flow Module (IP$MFLOW)

The multithreaded data flow module is responsible for multiplexing the
data streams of individual threads into the multithreaded data stream format,
MTHSDI (described in Section 3.2.3.2 of this specification).

It is comprised of routines to accomplish the following tasks:

1. Flow module initialization
2. Pre-transmit
3. Transmit
4. Receive

The following sections describe in more detail the routines which see to
the completion of these tasks.

Rev. 3 0814 System Software Manual
Section 6.5 - 1

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Thread
1

Inbound Flow Interface

{ s,ect ion I)

Thread
1

:::::::::>

.. . .
• • 2

.........

I 111
=========>1 I=========

2 ::::::~~:::::>1 IB 1----->1 FLOW I::::::~~ I ~~::::::::
16

Rev. 3

I PROT 1:::::>1 PXMT I Individual ::
:: IB BQUE ::

-- --- Chains : :

~ ~ : ;~: : : : > i---~ '.: : : : : ; ;

0814 System Software Manual
Section 6.5 - 2

I __

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Inbound Flow Interface

(Section II)

FIFO not full

I v

Scheduler
A

I FIFO
full

ll
·····'1 FLOW IB :::::> ADC :::::> FLOW :::::::>! FLOW IB
..... BUFFER -----> ENCODER -----> NIBBLE ------->! FIFO

'1 RE~~ER I I I I I COMPACTOR I ,-~~~~~I DRIVER

I I . I :: A AA

I ; ; I __ >,--, ______________________ I ~ ~ I : : ..
I : : : : : : : >I EXCEPT! ON I : I I I PROCESSING I I . . : :

vv
I -------~=~~-~~=-~~=-----------1 : ~ I >I POLL NEXT --------- I BIC

Buff er empty I THREAD
or metered off ~

Rev. 3

I none ready

v
Scheduler

D814 System Software Manual
Section 6.5 - 3

I IB FIFO

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.1 Flow Initialization (Submodule IP$MFLOW$INIT)

This submodule is called for two reasons,

1. for original FLOW data structure initialization, and
2. for reinitialization while the IP is active.

Accordingly, the submodule is comprised of two routines. The first is
called by the protocol module during its own initialization phase, the second
at GALLENO, again being invoked by the protocol module. The entry points and
functions of each are defined below.

Entry Point - IP$MFLOW$INIT:ENTRY

Function

I nit i a 1 i zes data structures common to physi ca 1 port and then uses the
thread index table to locate the thread structure addresses of each
thread and sequentially initializes Flow Control and ARQ data structures
and creates Inbound and Outbound data buffers for each potential thread
which may ultimately be connected to this port.

Entry Conditions

None

Exit Conditions

All registers destroyed.

Entry Point - IP$MFLOW$INIT:REINIT

Function

Deletes previous Inbound chain and Outbound data buffers, reinitializes
Flow Control data structures, and creates new Inbound and Outbound
buffers for the thread at GALLENO.

Entry Conditions

Y-Reg - points to the thread at GALLENO

Exit Conditions

All registers destroyed.

Rev. 3 0814 System Software Manual
Section 6.5 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.2 Inbound Pre-ARQ Flow Control (Submodule IP$MFLOW$PXMT}

Function

Called by the Inbound protocol module when the DTE has generated a char
acter. This submodule moves the data into the Inbound byte queue chain.
In addition, it performs the function of chaining individual byte queues,
associated with a particular thread, and for mai ntai ni ng the size of
individual byte queues to the block size dynamically determined by the
network in the form of the network variable 11 alpha 11 •

Entry Points - IP$MFLOW$PXMT:ENTRY1
IP$MFLOW$PXMT:ENTRY2

Entry Conditions

ENTRY!: A-Reg = data byte
ENTRY2: A-Reg = MS data byte

B-Reg = LS data byte
Y-Reg = Thread structure address

Exit Conditions

A, B, X-Reg = destroyed
Y-Reg = preserved

6.5.2.3 Inbound Post-ARQ Flow Control (Submodule IP$MFLOW$XMIT)

Function

Obtains data from the Inbound byte queue chain corresponding to the
thread polled, calls the data compression encoder and places the result
ing codeword in the BIC IBFIFO. This submodule is initiated when the BIC
IBFIFO is able to accept at least a half FIFO of data, and is structured
as a loop as typically it will transfer many bytes in one call. It term
inates when either all the Inbound buffers are empty or are metered OFF,
or when the IBFIFO is full.

Secondary functions include the retransmission of unacknowledged blocks
in the event of link or node failures or buffer overflow, .and the trans
mission of ICS 1 s.

Its function can be decomposed in 5 submodules:

- Inbound Buffer Reader
- Exception Processing
- Next Thread
- Compactor
- IBFIFO Handler

Rev. 3 0814 System Software Manual
Section 6.5 - 5

Rev. 3

CODEX CORPORATION

6.5.2.3.1 Inbound Buffer Reader Submodule

Entry Point - IP$MFLOW$XMIT:ENTRY

Entry Conditions

None

Exit Conditions

A-Reg = Data to encode
Y-Reg = Thread structure index

COMPANY CONFIDENTIAL

The Inbound Buffer Reader submodule first checks if an exception condi
tion exists, in which case control is passed to the Exception processing sub
module.

Its main function is to pass a data byte to the adaptive encoder module.
The data byte is either a 1 eftover form the previous use of the compactor
submodule or is obtained from the IB data buffer.

If none is available, control is transferred to the 11 Next Thread 11 sub
module.

6.5.2.3.2 Exception Processing Submodule

This submodule is normally called by the Inbound Buffer Reader submodule
when an exception condition is detected. Processing the exception can result
in:

- Generating an ICS_ACK
-5PDUP or SPOON
_BUFOV
_REC

- Sending a slot address
- Sending recovery parameters
- Reinitializing submodules in case of failure detection

In addition, the submodule interfaces with the Call Manager, statistics
and outbound protocol modules, as those can request the transmission of ICS's
SPDUP, SPOON, REC and ACK. The processing of those requests consist in set
ting internal flags. The following entries should be used:

Entry Point - IP$MFLOW$XMIT: SPEED

Entry Conditions

A-Reg set to the number of ICS_SPDUP (if > 0) or IC$_SPDDN (if < O} to be
sent.

Rev. 3 0814 System Software Manual
Section 6.5 - 6

Rev. 3

CODEX CORPORATION

Exit Conditions

A-Reg
Y, B, X-Reg

= Wiped out
= Unchanged

Entry Point - IP$MFLOW$XMIT:ACK

Entry Conditions

None

Exit Conditions

A-Reg = Wiped out
Y, B, X-Reg =Unchanged

6.5.2.3.3 Next Thread Submodule

COMPANY CONFIDENTIAL

This submodule is called by the Inbound Reader submodule when a buffer is
empty or metered OFF. It determines from which thread data' should be sent
next. It then generates the ICLlnd of Slot and passes it to the IBFIFO
Handler submodule. It sets the exception condition and prepares the Next
Slot address for future ·use by the IB BIC FIFO driven routines.

6.5.2.3.4 Compactor Submodule

This submodule processes the return from the adaptive encoder module. It
updates the number of encoded nibbles and removes as many 0 nibbles as possi
ble before passing control to the IBFIFO Handler. Its point of entry depends
on the number of nibbles in the codeword.

Entry Point - IP$MFLOW$XMIT:SNGL
IP$MFLOW$XMIT:DBL
IP$MFLOW$XMIT:TRPL

Entry Conditions

SNGL and DBL: A-Reg is data
TRPL A-Reg is MS nibble

B-Reg is LS byte

6.5.2.3.5 IB FIFO Handler Submodule

Called by the compactor, exception processing and next thread submodules.
Writes the data in the IBFIFO. Returns control to scheduler if FIFO ful 1,
else to the IB buffer reader submodule.

Rev. 3 0814 System Software Manual
Section 6.5 - 7

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.5.2.4 Receive (Submodule IP$MFLOW$RECV)

Function

Obtains data from the OBFIFO, calls the data compression decoder and
calls the protocol module. This submodule is initiated when the BIC
OBFIFO contains data and is structured as a loop, as typically it will
transfer many bytes in one call. It terminates when the OBFIFO is empty.

Secondary functions include the orderly processing of retransmitted data.

Its function can be decomposed in 5 submodules:

- Outbound FIFO Reader
- Decompactor
- More Nibble
- Post Exception Check
- Exception Processing

•

Rev. 3 0814 System Software Manual
Section 6.5 - 8

Rev. 3

CODEX CORPORATION

Rev. 3 0814 System Software Manual
Section 6.5 - 9

COMPANY CONFIDENTIAL

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Outbound Flow Interface

Scheduler
I A

FIFO I I FIFO
full ~ I empty

(Section I)

BIG
OB FIFO

l:::::>I OB FIFO l:~~~~>I DECOM- l:~~~~~~>I ADC 1::::::::::::::

j I READER 1-----> j_P_A_c_rE_R_/-------> 1 D_E_c_oD_E_l-~=~~~=-------
---- • · A A AA complete

: : : : : > data
-----> control

Rev. 3

. . I decode I .= =. ni· bbl e : : I incomplete
I _V ___ I __

: : '---------~~~=-~~~=~--------! CHECK I I SNAIBVBEDLE 1<-------------
1------------>I

.. > I I
I

----------->1 EXCEPTION
PROCESSING

/<-----------------------------

D814 System Software Manual
Section 6.5 - 10

Rev. 3

CODEX CORPORATION

. >I
I POST
I EXCEPTION

----------> CHECK

IT
I

______________ \

___________________ !

Rev. 3

Outbound Flow In~erface

(Section II)

1 1-1
~~====>1 1====~~
: : 2
::::::>

..

......

: : : : : : : >

: : 16 1-1 : : ...•.• > •...•.
l_I

0814 System Software Manual
Section 6.5 - 11

COMPANY CONFIDENTIAL

Scheduler

I
v

OUTBOUND
PROTOCOL

Rev. 3

CODEX CORPORATION

6.5.2.4.1 Outbound FIFO Reader

Entry Point - IP$MFLOW$RECV:ENTRY

Entry Conditions

None

Exit Conditions

A-Reg = Data from FIFO
Y-Reg = Thread structure address

COMPANY CONFIDENTIAL

The Outbound buffer reader submodule takes data from the OBFIFO and
passes control to the data decompactor if no exception condition exists, else
to the exception processing submodule. If no data is present, it returns
control to the scheduler, after enabling Outbound interrupts from the DTE.

6.5.2.4.2 Decompactor

The decompactor di sassemb 1 es bytes into ni bb 1 es and ca 11 s the adaptive
data compression decoder.

6.5.2.4.3 Check Saved Nibble

Entry Point - IP$MFLOW$RECV:MORE

Entry Conditions

Y-Reg = Thread structure index

Exit Conditions

Y-Reg = Thread structure index
A-Reg = Nibble to decode

This submodule is called either by the ADC decode or the protocol module
when the previous ·nibble has been processed. If there is an outstanding
nibble in the decompactor, it calls the ADC decode, else the Outbound FIFO
reader.

Rev. 3 D814 System Software Manual
Section 6.5 - 12

Rev. 3

CODEX CORPORATION

6.5.2.4.4 Post Exception Check

Entry Point - IP$MFLOW$RECV:CHAR

Entry Conditions

A-Reg = Decoded character

COMPANY CONFIDENTIAL

This submodule is called by the ADC decode when a character has been com
pletely decoded. If the receiver is in retransmission mode, control is
passed to the Exception Processing submodule, else to check for a saved
nibble.

6.5.2.4.5 Exception Processing

This submodule is called when an exception condition (Retransmission, ICS
or Slot Address Present) is met.

Rev. 3 D814 System Software Manual
Section 6.5 - 13

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.6 Intelligent Control Terminal Port (I/CTP)

The I/CTP is organized as a set of functionally independent table-driven
submodules which support the operator interface to the 0814 Network. As
such, its primary goal is flexibility of structure and external clarity.

The I/CTP modules perform the following functions:

1. Operator command processing
2. Report control
3. Statistics control
4. System service monitoring
5. Protocol control
6. Device control

6.6.1 Output

The I/CTP supports two output devices, a terminal or display screen which
is always present and an optional line or character printer. Either device
may run at speeds ranging from 75 baud to 19.2K baud.

The I/CTP supports a hardcopy mode in which all terminal input and output
are displayed at the printer. Statistics, reports, and messages may be
optionally printed at either device or both. When statistics, messages, or
reports are being displayed at the line printer, if the hardcopy mode is also
in effect, only one copy of the text is produced at the line printer.

In hardcopy mode, control character inputs are displayed at the line
printer as 11 CTL-X 11 except for carriage return and line feed. Editing func
tions {character delete, line delete) are performed before the line is sent
to the printer.

The following defines the available input/output options:

1. Statistics

a) repetitive {automatic, periodic)

Printer required. Always displayed at line printer, never at
terminal.

b) single {one-time request)

Always displayed at terminal. May also be displayed at
printer.

0814 System Software Manual
Section 6.6 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

2. Reports

Always displayed at printer if printer exists. Displayed at term
inal if no printer or as explicit option.

3. Messages

Same as reports.

6.6.2 Operator Command Processor

The I/CTP receives operator commands (see D814 Program Product Specifica
tion) from an asynchronous terminal and interprets them. Command interpreta
tion is defined in the Network Control Language table (NCL) which contains
command parameters as expected from a terminal, including all optional valid
abbreviations. The NCL is based on the Language Descriptor Table (LDT) which
contains the lists of operator commands, command control bytes for internal
usage, and routine address pointers for command interpretation and execution.

Command parameters are processed one-by-one with value verifications per
formed on those parameters which require data. Unrecognized commands (a com
mand not found in the LDT) are rejected with a bell rung at the operator con
sole. Invalid parameters. (parameters not found in the NCL) are rejected with
an indication of the specific invalid keyword parameter.

As commands are parsed, they place the I/CTP command interpreter at dif
ferent command context 1eve1 s. Each command 1eve1 has one or more subcom
mands which are acceptab 1 e at that 1eve1. Thus a comp 1 ete command may be
entered on one 1 i ne at the termi na 1 or as a series of commands where each
subsequent command places the· I/CTP a further level down. This is analogous
to an N-level tree structure where every node specifies both an action to the
operator screen and a tree substructure. The minimal action at nodes other
than the lowest is to display the context level at which the command just
entered places the interpreter.

Certain control and special character sequences from the terminal are
interpreted specially by the I/CTP. Character deletion and line deletion are
supported. Other control sequences allow movement, one or more levels, along
the command tree structure (including return to the top) and along parallel
nodes of the same level.

Additionally, a command inquiry mode is supported. Command-lines, term
inated with the inquiry character, produce text explanations of valid command
parameters.

D814 System Software Manual
Section 6.6 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The commands available at the top level are:

1. Message (MSG) - Send operator text to another control port or data
gram port.

2. Statistics (STAT) - Request statistics from a network port.

3. Configuration Editor (CED) - Modify or display network configuration
information.

4. System Services (SS) - Perform operator services and utilities.

5. Mode - Set l/CTP command mode. All co11111ands are not available from
all modes.

6. Reset - Reboot the I/CTP to an operator-defined speed.

7. Report (REP) - Print all queued reports.

8. Boot - Reboot the local node.

6.6.3 Report Control

The 0814 nodes and ports have the facility to generate reports. Severe
condition reports are sometimes referred to: as alarms. Reports are used as
the notification mechanism between the node/port and the network operator(s).

Report packets are converted to printable format using the Report Descrip
tor Table (RDT). The ROT defines the range of report values acceptable to
the l/CTP and- the text and parameter display format of each report. Report
strings may be assembled by the l/CTP as a function of parametric values con
tained in the report itself.

If a report is received and ready to be displayed at the operator term
inal, the terminal prompt character is changed to notify the operator that he
should return to the top context level and request report printing. If multi
ple reports for the terminal are to be queued and the source node and port
and the report code are the same, they are combined into a single report with
a multiplicity indicator appended. The string displayed has the parameter
value(s) of the first received report.

If the terminal keyboard has been idle for 10 seconds when the first term
inal report is ready to be displayed, a message as displayed at the terminal
(with a bell indication). Reports printed at the terminal are produced a
page at a time. If more reports remain, the prompt character does not
revert.

0814 System Software Manual
Section 6.6 - 3

CODEX CORPORATION

Entry Point - ICTP$REPORT:SPOOLER

Function

Print reports, if any, to terminal or printer.

Entry Conditions

I/CTP initialization completed.

Exit Conditions

Does not terminate, delays until reporting requested.

Entry Point - ICTP$REPORT:RPTQ (Batch Task)

Function

Queue received reports to report spooler queue.

Entry Conditions

Report-type addressed packet batched.

Exit Conditions

COMPANY CONFIDENTIAL

Prompt character set. Report queued (if unique) or multiplicity indica
tor incremented and packet freed.

6.6.4 Statistics

The I/CTP has the facility to request operational statistics form any net
work node or port and to display the returned value(s) at the I/CTP screen or
printer. Statistics are maintained by all 0814 ports and mainframes and may
be requested once only or automatically at periodic intervals.

Statistics requests (in the form of IPOS addressed packets) are con
structed and sent by the I/CTP with no response quaranteed, i.e., the I/CTP
does not require a response from the port under inquiry. When the request is
returned by the inquired port, it is sent to report control to be displayed.
If, however, the port inquiried does not respond or the response (or original
I/CTP request) are undeliverable due to network conj est ion or failure of a
single pathed I/NP, then no indication will occur.

The I/CTP receives statistics addressed packets from the various 0814
network nodes and ports in response to a statistics request from the I/CTP.
The I/CTP maintains self-statistics of processor loading, memory and buffer
utilization. The statistics are timestamped upon receipt by the I/CTP. The
I/CTP message function (dalagram interface) is also handled by this module.

0814 System Software Manual
Section 6.6 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Reports contain a one-byte field which is used to locate the print format
of the statistics report in the Statistics Descriptor Table (SOT). The SOT
is a table of format lists specifying the text, variable locations, lengths
and display format.

Entry Point - ICTP$STATS:SPOOLER

Function:

Display statistics and messages.

Entry Conditions:

I/CTP initialization completed. Runs continuously printing when statis
tics or message packets are queued.

Exit Conditions:

None. Does not terminate.

6.6.5 System Services

The I/CTP has system service utilities which may be run on an active 0814
network, although extreme caution should be exercised to prevent unpredict
able perturbations in the active network. The utilities allow handnng of
the I/FOP files (file and directory listings, disk modification and editing),
node and port memory examination and modification, port diagnostic loading,
and single node or port rebooting. The I/CTP system services also has the
capacity to build and send operator defined IPOS addressed packets.

Memory display/examination is supported in three modes:

1. Block memory display

In this mode up to 64 consecutive bytes of node or port RAM, ROM or
PROM may be displayed in hexadecimal. If the zone overlaps a node
lock byte area, the integrity of that area will be maintained. If
the zone overlaps an I/O area or the master controller area, unpre
dictable results may occur if the node is active.

2. Byte memory display/modification

In this mode a single byte of node or port RAM, ROM, or PROM may be
examined and RAM modified. If modified, an acknowledgement of the
change is made. Non-acknowledgement mode may be selected to a 11 ow
manipulation of I/0 areas. In acknowledge mode changes to ROM,
PROM, or I/0 areas willnot verify.

0814 System Software Manual
Section 6.6 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

3. Write byte/block memory

In this mode from one to four bytes of port or node RAM may be
written. Verification is optional. Writing to ROM, PROM, or I/0
areas will not verify.

Port diagnostics loading or an active 0814 node is available from any
0814 software floppy disk (with the default disk being the current BOOT soft
ware floppy disk). Any floppy file on a software disk may be loaded to any
port whose address is even (except the loading l/CTP port). Node diagnostics
loading is not supported via the I/CTP.

Single node and individual port rebooting is also supported by the utili
ties. A request to the specified node is created, sent, and acknowledged to
the I/CTP terminal.

The I/FOP floppy disk mani pul at or uti 1 iti es are provided as part of the
system services. A floppy disk may be:

1. Listed

Listings of disk filenames and current status are requestable to the
terminal or optionally to the printer. The floppy can optionally be
locked into a static mode or allowed to remain active while direc
tory listings are collected. General floppy status information (num
ber of files, number of spare records, etc.) may also be listed.

Specific lists (item by item) of free sectors and error records may
be listed.

2. Dump/Modify

From one to 256 bytes of floppy disk sector data may be displayed at
the l/CTP and modified with verification acknowledgement. Data may
be requested by file (where applicable) or by track and sector.

3. Verification/Recovery

The Error Records Pool (ERP) may be tested. Each entry is tested
multiply to verify the error condition which originally caused the
entry to be placed in the ERP. Records which no longer cause errors
may be listed or returned to the free sectors pool.

Physical verification may also be performed in one of two modes:

1. Full-disk verification

Every sector of every track is read, written, read and compared
to establish physical integrity. Records not comparing or
causing 1/0 errors are noted in a list.

0814 System Software Manual
Section 6.6 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

2. Full-disk testing

Every sector of every track is read multiply. Records causing
I/0 errors are listed.

A garbage collect utility is also provided to analyze disk
integrity and report on anomalies if encountered.

4. Log file manipulations

0814 log files may be printed to the terminal or printer. No arith
metic transformations are performed. Fields, other than those
standard to all log file records (see Section 6.7) are printed as
single byte hexadecimal fields.

The system service utilities also provide a byte file creation function.
An entire IPOS byte file addressed packet may be assembled (excluding the
length byte which is maintianed by the utility) and queued for transmission.
This allows single operation testing of addressed packet-driven functions.

6.6.6 Protocol

The I/CTP interfaces with the I/FOP using a simplified protocol. Com
mands sent to the floppy contain ARQ sequence codes. Commands returned from
the I/FOP (responses) contain an ARQ ACK/NAK indicator, the ARQ sequence
code, and a command return code. I/0 error counts are also indicated in
responses.

The I/CTP also has a protocol associated with the datagram message facil
ity. Normally an acknowledgement is returned by the receiving I/CTP or
I/DGP. If the message is returned in error, the reason is displayed as a NAK
on the message. If no ACK/NAK is received, no indication of this fact is
printed.

6.6.7 Device Control

The I/CTP may operate two Signetics 2651 communications chips. One is
used for the terminal and the other, optionally, for the printer. The term
inal and printer are initialized as defined by configuration memory.

Data bytes are transferred one by one through the 2651. Input charac-
ters, except nulls, are stored in a circular buffer after any required edit
ing. Null characters are ignored. If the buffer is full, the input charac
ter is ignored. Overrun characters are replaced in the buffer by a default
garble character. Terminal breaks detected or loss of CTS cause the I/CTP to
reboot itself (only). The same effect is achieved by entering the I/CTP
reset command.

D814 System Software Manual
Section 6.6 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Output characters are taken from a circular buffer and transmitted a byte
at a time. If a flyback character is detected in the buffer, 3 nulls are
sent immediately following the character. When the buffer is empty, the
transmitter interrupt is disabled and request-to-send set low. The interrupt
and RTS are reset when the first character is placed in the circular buffer.

Entry Point - ICTP$CTIO:S265l_INT

Function:

2651 terminal interrupt handler.

Entry Conditions:

2651 interrupt outstanding; buffer pointer set.

Exit Conditions:

2651 interrupt serviced; buffer pointer advanced {if required).

Special Note:

The CTIO submodule has multiple entry points not listed here. Each of
the entry points performs a single simple function such as screen clear
ance, cursor control, single of multiple line feeds and a carriage
return.

6.6.8 Report Formats

A list of 0814 report/alarm text is provided in Appendix I of the 0814
Product Functional Specification. This section provides the format of the
address packet expected by the I/CTP to produce that text. Parameters
received by the I/CTP may be displayed as hexadecimal, bi nary, decimal, or
ASCII values, under control of the ROT specification of the particular
report.

The report packets are listed in the same order as the Product Functional
Specification. Each report is prefixed by the Standard IPOS Addressed Packet
header {length byte; destination node, port and module bytes; source node,
port and module bytes) and a one-byte field which defines the type of port
{mainframe or node, I/ATP, l/STP, etc.). This code is used to generate a
report prefix when the report is displayed at the terminal or printer.

The type byte is followed by a one-byte selector which defines the report
to which the parameters apply. This field is the report number. Following
the report number are any parameters required for the report. The reports
are listed below. All fields, unless otherwise designated, are one-byte
1 ong.

0814 System Software Manual
Section 6.6 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

REPORT 0 - System Diagnostic (any node or port)

1. N-bytes of parameters (displayed in hexadecimal byte by byte)

REPORT 1 - Boot Complete (any node)

1. Running configuration (displayed in decimal)

2. Initiating node number (displayed in hexadecimal)

3. Boot code

This field is used to define what type of Boot complete report
is to be displayed. The meaning of the remaining parameters is
a function of this code. These parameters are displayed in
hexadecimal after the message text.

\a) p ewer Up

No further parameters.

b) Automatic Boot

3 one-byte fields of zeroes. Initiating port number (hexa
decimal).

c) Operator

Running software rev1s1on number (hexadecimal).
Running software release number (hexadecimal).
Software source node (hexadecimal)
Software source port (hexadecimal)

REPORT 2 - Processor Utilization Exception (any node or port)

1. Current processor loading percentage value (displayed in deci
mal)

REPORT 3 - Buffer Utilization Exception (any node or port)

1. Current buffer utilization percentage (decimal)

0814 System Software Manual
Section 6.6 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

REPORT 4 - Link Up (I/NP}

1. Initiating I/NP node (hexadecimal)
2. Initiating I/N~ port (hexadecimal}
3. Adjacent I/NP node (hexadecimal)
4. Adjacent I/NP port (hexadecimal}
5. 2-byte speed (hexadecimal)

REPORT 5 - Link Down (I/NP}

1. Initiating I/NP node (hexadecimal)
2. Initiating I/NP port (hexadecimal)
3. Adjacent I/NP node (hexadecimal)
4. Adjacent I/NP port (hexadecimal)
5. 2-byte speed (hexadecimal~
6. Cause code

a) Remote I/NP request
b) Node request
c) No ACK timeout
d) XMT clock failure
e) RCV clock failure
f) CTS dropped
g) DCD dropped
h) System failure

REPORT 6 - Unexpected Link Initialization (I/NP)

1. No parameters

REPORT 7 - Overrun {I/NP)

1. No parameters

REPORT B - Unexpected Link Activation (I/NP)

1. No parameters

REPORT 9 - Data Threshold Exceeded (any port)

1. 2-byte current user data rate per second (displayed in decimal)

D814 System Software Manual
Section 6.6 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

REPORT 10 - Error Density Exceeded (any port)

1. 2-byte count of errors per second (displayed in decimal)

REPORT 11 - Master Directory Invalid (I/FOP)

1. Drive number
2. 8-byte volume ID in ASCII
3. 16-byte file name in ASCII
4. Track number (displayed in decimal)
5. Sector number (decimal)

REPORT 12 - Subdirectory Invalid (I/FOP)

1. Drive number
2. 8-byte volume ID in ASCII
3. 16-byte file name in ASCII
4. Track number of subdirectory record (decimal)
5. Sector number of subdirectory record (decimal)
6. Cause code

a) Bad forward pointer
b) Bad backward pointer
c) Invalid data record
d) Invalid sequence number
e) Invalid filename

NOTE: Report packets with cause codes a - c are followed by two
one-byte fields which are the pointer (or data record
track and sector) and are displayed in hexadecimal.
Packets with cause code d are followed by a one-byte
sequence number which is displayed in hexadecimal.

REPORT 13 - Free Records Pool (Type 1; I/FOP)

1. Drive number
2. 8-byte volume ID in ASCII
3. Track under dispute (decimal)
4. Sector under dispute (decimal)
5. 16-byte ASCII filename

REPORT 14 - Free Records Pool (Type 2; I/FOP)

1. Drive number
2. 8-byte ASCII volume ID
3. Track of unallocated record (decimal)
4. Section of unallocated record (decimal)

0814 System Software Manual
Section 6.6 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

REPORT 15 - WRITE ERROR (I/FOP)

1. Drive number
2. 8-byte ASCII volume ID
3. 16-byte ASCII filename (or keyword, i.e., MD, ERP, FSM, FLR2,

etc.)
4. Track of write failure
5. Sector of write failure
6. Cause code

a) Not ready
b) Write protect
c) Record not found
d) Lost data
e) CRC error - ID
f) CRC error - data
g) Write fault (should never occur)

REPORT 16 - Read Error {I/FOP)

1. Drive number
2. 8-byte ASCII volume ID
3. 16-byte ASCII filename (or keyword, i.e., MD, ERP, FSM, VLR2,

etc.)
4. Track of read failure
5. Sector of read failure
6. Cause code - see report 15

REPORT 17 - Insufficient Memory (any port)

1. 2-byte memory size (decimal)

REPORT.18 - I/FOP Initialized (long form)

1. Drive number
2. 8-byte ASCII volume ID
3. Density indication code:

a) Single density
b) Dual density

4. Sides indication code:

a) Single sided
b) Dual sided

5. 2-byte count of Master Directory Sectors (decimal)

D814 System Software Manual
Section 6.6 - 12

'

CODEX CORPORATION COMPANY CONFIDENTIAL

6. MO validity code:

a) Null (blanks)
b) Valid
c) Invalid

7. 2-byte count of subdirectory sectors (decimal)
8. Subdirectory validity code - see MD validity code
9. 2-byte count of free sectors (decimal)

10. Free sectors validity code - see MD validity codes
11. 2-byte count of error records entries (decimal)
12. ERP validity code - see MO validity code
13. 2-byte count of physically and logically consistent files
14. Write protect code:

a) Yes
b) No

REPORT 19 - Directory Error (I/FOP)

1. Drive number
2. 8-byte ASCII volume ID
3. Directory type code:

a) Null (no character)
b) Sub-

4. 16-byte ASCII filename
5. Error track (decimal)
6. Error sector (decimal)
7. Accessing node (hexadecimal)
8. Accessing port (hexadecimal)
9. Cause code:

a) Recoverable I/0 error on READ
b) Unrecoverable I/0 error on READ

REPORT 20 - Disk Fu 11 (I /FOP)

1. Drive number
2. 8-byte ASCII volume IO
3. 16-byte ASCII filename (or keyword, i.e., FSM, ERP, MD, etc.)

REPORT 21 - Invalid Log Port

1. Node of specified I/CTP (hexadecimal)
2. Port specified as I/CTP (hexadecimal)

D814 System Software Manual
Section 6.6 - 13

CODEX CORPORATION

REPORT 22 - I/FDP Initialization (short form)

1. Drive number
2. 8-byte ASCII volume ID

1. Mainframe Statistics

1. Processor loading percentage value
2. Buffer utilization percentage value
3. 2-byte apparent node throughput
4. 2-byte statistical node throughput
5. 2-byte capacity in KCP's

2. I/NP Statistics

1. Processor loading percentage value
2. Buffer utilization percentage value
3. Retransmitted frames count
4. Normal frame transmission count
5. 2-byte user data bytes count
6. Average delay in MS
7. NAK count
8. Average ARQ
9. Maximum buffers count (2 bytes)

3. I/ATP Statistics

1. Processor loading percentage
2. Buffer utilization percentage
3. 2-byte buffer maximum count
4. Compression efficiency percentage
5. Error rate value

4. I/CTP Statistics

1. Processor loading percentage
2. Buffer utilization percentage
3. 2-byte maximum buffers count

0814 System Software Manual
Section 6.6 - 14

COMPANY CONFIDENTIAL

(decimal display)
(decimal display)
(decimal display)
(decimal display)
(decimal display)

(decimal display)
(decimal display)
(decimal display)
(decimal display)
(decimal display)
(decimal display)
(decimal display)
(decimal display)
(decimal display)

(decimal)
(decimal)
(decimal)
(decimal)
(decimal)

(decimal)
(decimal)
(decimal)

CODEX CORPORATION

5. I/FOP Statistics

6.

7.

8.

9.

10.

1. Drive number
2. 8 byte volume ID
3. Processor loading percentage
4. Buffer utilization percentage
5. 2-byte maximum buffers count
6. Average number of READ I/0 commands

per second
7. Average number of WRITE I/0 commands

per second
8. Number of accessors
9. Number of accessor commands processed

10. Volume ID and drive number
11. Write protect status
12. Average READ I/O error rate per minute
13. Average WRITE I/O error rate per minute
14. Number of files opened for READ
15. Number of files opened for WRITE

I/SSTP-BSC Statistics

To be defined.

I/SSTP-HASP Statistics

To be defined.

I/MXP Statistics

To be defined.

I/MATP Statistics

To be defined.

I/STP Statistics

To be defined.

0814 System Software Manual
Section 6.6 - 15

COMPANY CONFIDENTIAL

(decimal)

(decimal)
(decimal)
(decimal)

(decimal)

(decimal)

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.7 Intelligent FloppY Disk Port (I/FOP)

The I/FOP is. organized as a set of functionally independent submodules
which allow guaranteed storage and retrieval of data in a 0814 network. The
time and memory required to support these functions is of secondary import
ance to the assurance of the total accuracy of the data transfer and file
integrity.

The I/FOP modules perform the following functions:

1. Initialization
2. Protocol Management
3. File Management
4. Device/Line Control

Function 4 is really two functions. Device control refers to an I/FOP
which is maintaining its files on a real floppy disk attached to a port.
Line control refers to a floppy which is maintaining its files on a floppy
emulator referenced over a communications line. For any I/FOP, only one of
the two functions will exist.

6.7.1 I/FOP Data Structures

6.7.1.1 Commands and Responses

The I/FOP uses commands to transfer information between the floppy disk
and a requestor. A requestor may be any node or port in a 0814 network.
Commands contain protocol fields (sequence numbers, ARQ, return codes) and
information required by the file management system. A command, having been
processed by an I /FOP is returned to the request or. A returned command is
referred to as a response. Commands are of the following format:

L DEST SOURCE F# I/O CTR I CC I S# I RC I Pn I
where:

L is a one byte length specification (equivalent to the IPOS addressed
packet length field, physically).

DEST is the 3 byte addressed packet destination field. It defines the
node, port and module to which the command is issued.

SOURCE is the 3 byte addressed packet source field, specifying the com
mand initiator node, port, and module.

F# is a one byte field specifying the file reference number and drive
selected.

Rev. 2 0814 System Software Manual
Section 6.7 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/0 CTR is a one byte field returned to the requestor containing the
count if I/0 errors encountered in attempting to execute the command.
The count is the number of errors to read or write I/0 commands required
to execute the requestor command. If more than one read or write was

, required to satisfy the requestor command it is the maximum error count
of all 1/0 commands. The count does not indicate I/0 errors to reads or
writes of directory type records. ~

.ff. is a one byte command code. The I/FOP command codes are:

1. OPEN - create a 1 ogi ca 1 connection between a request or and a floppy
disk file.

2. CREATE - create a logical connection between a requestor to allow
the creation of a floppy disk file.

3. READ - read a record from a floppy file.

4. WRITE - write a record to a floppy disk file.

5. RESET - set the next read or next write location pointer for a fi 1 e
to a specified value.

6. CLOSE - sever the logical connection between a floppy file and a
requestor.

7. DELETE - erase a floppy disk file.

8. UPDATE - read and write a fi 1 e. Write operation is performed on
last read record and for the same count of characters as last read
operation.

9. LOCK (drive) - prevent accessing of a drive in write, and/or read_
mode by all requestors other than the command initiator, or allow
certain types of normally prohibited accessing simultaneous to
normal accessing modes.

10. UNLOCK (drive) - reverse a LOCK command.

11. STATUS FLOPPY - return the status information about a particular
floppy.

12. STATUS FILE - return the status information about ·a particular
floppy disk file.

13. LOG - add a record to the system log file.

14. ADD - add a record to a normal' floppy disk file.

Rev. 2 0814 System Software Manual
Section 6.7 - 2

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

15. TEST TRACK - test a specified track on the floppy, and turn a read
abflity indicator for each sector of that track. This testing is
non-destructive and does not cause a report to be issued by the
I/RFDP when an error occurs--reading a sector for a track.

16. NOP - hold the connection between the requestor and the floppy file
open, do not timeout and automatically sever the link.

RC is a one byte field returned to the requestor indicating the final
status of the command operation.

fr!_ is a variable length command code dependent parameter string.

Responses are created by setting the I/0 counter and RC fields and
replacing the parameter field with data or status information, as required.

6.7.1.2 The FILE-ID Table (FID)

This table associates requestors to I/FOP File Control Blocks (FCBs).
The table is of the form:

FCB 1 ptr FCB 2 ptr FCB N ptr I
Association is a function of the F# field of the command.

6.7.1.3 File Control Blocks (FCB) .

An FCB is used to maintain pointers, status, and counters for an active
requester/floppy file association. A requester is active once it has sent an
OPEN, CREATE, ADD, LOG, or LOCK command, and that command has been accepted
and processed by the I/FOP. Processing of these commands causes an FCB to be
assigned for a requester. A requester is said to be nonactive when it CLOSEs
a file (implicitly or explicitly), or it UNLOCKS a drive (implicitly or
explicitly). Explicit CLOSEs result from CLOSE commands from the requestor,
implicit CLOSEs result from command timeout conditions.

The FCB has the foll owing format:

Rev. 2

RN RP RM NS HS EC ST LC CMD PTR NR NW

I FRT POINTER I FS I cs I OM I MOP I TIMER FIELDS

0814 System Software Manual
Section 6.7 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

where:

RN is the one byte requestor node from the OPEN, CREATE, ADD, LOG or LOCK
command which established the connection.

RP is the one byte requestor port from the OPEN, CREATE, ADD, LOG, or
LUCK command which established the connection.

RM is the one byte request or module from the request or OPEN, CREATE,
LUCK, LOG, or ADD command which established the connection.

NS is a one byte field containing the next expected sequence number.

HS is a one byte field containing the highest sequence number allowed.
HS-NS defines the command sequence number window.

EC is a one byte error counter field.

ST is a one byte status field.

LC is a one byte field containing the last successfully complete command
rrom the requestor.

CMD PTR is a two byte pointer to the command currently being executed by
the I/FOP. . .

NR is a two byte pointer to the next-read location for the floppy disk
Tile.

NW is the two byte pointer to the next-write location for the floppy disk
Tile.

FRT POINTER is a two byte pointer to the FRT {see 6.7.1.4).

FS is a two byte pointer to the first subdirectory record for the fi 1 e
{memory pointer}.

CS is a two byte memory pointer to the current subdirectory being used
for the floppy file {memory pointer}.

OM is a two byte field with the first byte specifying the open mode, and
the second byte containing the security mode. The I/FOP supports three
types of security:

1. Low security - the current subdirectory record is written to disk
only when all data record pointers in it are filled.

2. High security - the current subdirectory is written to the floppy
disk whenever a data record is added to the file.

Rev. 2 0814 System Software Manual
Section 6. 7 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3. Maximum securit! - same as high security, pl us every data record
written is rea back and verified before declaring the operation
successfully completed.

MOP is a 4 byte pointer into the Master Directory. This entry is really
two 2 byte Master Di rectory pointers. The first 2 bytes specify the
sequence number and record index of the entry for the file, and the
second 2 bytes specify the track and sector of the same record on the
floppy disk.

Timer Fields - This field is used to maintain I/FOP convnand timers.
Timeout conditions cause an implicit CLOSE (or UNLOCK) to be performed.

6.7.1.4 Former Requests Table (FRT)

The FRT provides the I/FOP with a limited capacity to satisfy duplicate
(or overlapping) requests for data from the same file without requiring
actual disk 1/0. The table is composed of daisy chained entries of the form:

I K I #R I #E \ DATA pointer Next FRT pointer

where:

K is a one byte key used to identify the file to which this FRT refers.

#Risa one byte count of requesters currently accessing the file in
read-type mode.

#E is a one byte count of the number of entries currently in this FRT
entry's data chain.

DATA pointer is a two byte pointer to the first entry of an FRT data
chain.

Next FRT pointer is a two byte pointer to the next FRT entry or zero, if
the current FRET entry is the last.

The data chain is of the form:

Rev. 2

D-ID LEN DATA ptr Next data block pointer

D814 System Software Manual
Section 6. 7 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

where:

D-ID is a two byte field containing the track and sector from which the
data was taken.

LEN is a one byte data length indicator.

DATA ptr is a two byte pointer to the actual data.

Next data block pointer is a two byte pointer to the next data block
entry, or zero if the current data block is the last.

6.7.1.5 The Command Holding Queue (CHQ)

The CHQ is a queue pair (two associated queues) used to hold ADD and LOG
commands received by an I/FOP when the drive specified by the command is
LOCKED, or all available FCBs are in use. Commands are protocol prevalidated
prior to enqueuei ng to the CHQ. When a drive UNLOCKS (or an FCB becomes
available), the commands are dequeued and processed.

Note that if an ADD or LOG command is received, and the appropriate CHQ
is nonempty, that command, after validation, wi 11 a 1 so be queued to the CHQ
(after timestamping) to maintain data order. All LOG file commands are time
stamped by the I/FOP.

6.7.1.6 The Virtual Master Directory Table {VMDT)

The VMDT is used to minimize I/0 to the Master Directory. It is composed
of four entries (per drive) of the form:

\ MD S# I RES I MD data pointer

where:

MD S# is a one byte sequence number.

RES is one reserved byte.

MD data pointer is a two byte memory pointer to the MD record.

Rev. 2 0814 System Software Manual
Section 6.7 - 6

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.7.2 I/FOP File Structures

6.7.2.1 The Volume Label Records (VLRs)

Every 0814 floppy disk has two VLRs. The first (VLR-1) is at a fixed
location on every floppy disk, and contains:

1. 8 byte ASCII label (blank filled)

2. One byte disk type identifier (logger, program etc.)

3. One byte density/sides indicator

4. Two byte pointer to the second VLR record (VLR-2).

5. 64 bytes of optional disk identification text.

The VLR-2 record contains:

1. One byte record identifier.

2. 8 byte ASCII label (same as VLR-1).

3. Two byte pointer to the first Master Directory record.

4. Two byte pointer to the first Error Records Pool (ERP) record.

5. Two byte pointer to the last ERP record.

6. Two byte count of the number of subdirectory type records currently
in use.

7. Two byte count of the number of data records currently in use.

8. Two byte count of the number of free (unallocated) sectors currently
available.

9. Two byte count of the number of ERP entries.

10. Two byte number of the next available sector on the RST track for
emergency CLOSE procedures. The RST track (Reserved Sector Track)
is the last track of a 0814 floppy. This track is reserved for use
by the I/FOP when a disk full condition would prevent the final
CLOSE command processing for a file.

11. A one byte indicator of the validity of the count fields. When this
field is zero, the count fields are possibly invalid (file OPENed
and currently under processing).

Rev. 2 0814 System Software Manual
Section 6.7 - 7

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.7.2.2 The Master Directory

Every 0814 floppy disk contains at least one MOR (Master Directory
Record). MDRs contain the filename, availability indicator, and first sub
directory pointer for 0814 disk files. The availability indicator is used to
mark physically or logically impaired disk files, and deleted files. A file
is logically impaired when an invalid field is detected by the I/FOP soft
ware. A file is physically impaired when one or more records of that file
are unreadable.

Each MOR also contains a record ID (1 byte), a sequence number (1 byte),
and a forward pointer (2 bytes). The pointers contain track and sector
values.

6.7.2.3 Subdirectory Records

Subdirectory records or File Di rectory Records (FDRs) contain pointers to
the data records of a disk file, and forward and back pointers to the other
FDRs of that file. In addition, FDRs contain a record ID (1 byte), and a
sequence field (1 byte).

The first FDR also contains a 4 byte file length, a 3 byte indicator of
the last requester to access the file in read-type mode (node, port, and
module), a 3 byte indicator of the last requester to access the file in
write-type mode (node, port, and module), a 3 byte indicator of the requester
which created the file (node, port, and module), a count of the FDRs which
compose the file (1 . byte), a count of data records (2 bytes), and a 2 byte
pointer to the last FDR for the file (track, sector).

6.7.2.4 The Error Records Pool (ERP)

The ERP is a di rectory containing a list of those sectors on the 0814
floppy which have caused unrecoverable 1/0 errors (refer 6.7.5). Each entry
is 3 bytes long, containing the track and sector pointer and a one byte indi
cation of whether the I/0 failure resulted from a read operation or a write
operation. If the record was added to the ERP as the result of a read opera
tion the record type is also contained in the indicator byte (e.g. MOR, FDR,
etc.).

Each ERP di rectory record al so contains a record identifier (1 byte) , a
one byte sequence number, a two byte forward pointer, and a two byte back
pointer. ·

Rev. 2 0814 System·Software Manual
Section 6.7 - 8

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.7.2.5 The Free Sectors Map (FSM)

The FSM contains a bit map corresponding to the sectors of a 0814 floppy
disk. Allocation and deallocation of sectors on the floppy by the file
management system is keyed from this map. Each FSM contains a one byte
record ID, a one byte sequence number, and a two byte forward pointer, in
addition to the map bits.

The map bits are grouped to correspond to tracks on the disk, i.e. 26
bits for a single density drive (using 4 bytes with the low order 6 bits
unused), and 52 bits for a dual density drive (using 7 bytes with the low
order 4 bits unused). A 1 bit in the FSM indicates that the corresponding
sector on the floppy is available.

Rev. 2 0814 System Software Manual
Section 6.7 - 9

Rev. 2

CODEX CORPORATION

6.7.2.6 I/FOP Logical Floppy Layout

I v
MOR

1D I SEQ #
==============

• • • • .
• • . . •

+-->

I
ptr I fname

• • . . •
+-1 MOR ptr 1---
v

I MOR 2
ID I SEQ #

=============
• • • . .

MOR ptr (=O) I

Rev. 2

VLR

VOLIO I PTR
I v

VLR-2

ID VOLIO

PTR PTR PTR

v
FSM

ID I SEQ #
================

+--l __ F_s_M_.p_t_r __ j +--I

I
'-> FSM '->

1D I SEQ #
================

I FSM ptr
+--

0814 System Software Manual
Section 6.7 - 10

COMPANY CONFIDENTIAL

ID I

I v

ERP
SEQ #

============== . • • • •

. . • . •
• • . . .
. . • • •

ERP ptr I 0

ERP 2
IO I SEQ I

============== . . . • .
• • . . .
. . . • •

ERP ptr

<--+

I

<+

Rev. 2

CODEX CORPORATION

--> FDR <-+ '->
Q # I_+

f name hdr
============= --+

r--1 tr I __..____.__ 0

I __ >,---

r-1
I
·-->

ptr ptr

FDR 3 , ____ _
ID SEQ #
fname hdr

<-

+--
1

->

============= +--·

1---1---+-- -- ---->
0 0

tr

I

I

FSM
ID I SEQ #

================

UNUSED
RECORD

DATA
RECORD

->

+--

I

->I

COMPANY CONFIDENTIAL

ERP 3
ID I SEQ #

==============! . . .
0

0 I

ERROR
RECORD

. .

ptr

Note: For ease of graphical representation, some of the record fields have
been positionally shifted on some records.

Rev. 2 D814 System Software Manual
Section 6.7 - 11

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.7.2.7 I/FOP Command Packet Layouts

I/FOP OPEN Command Layout

PL On Op Dm Sn I Sp I Sm I FREF I CC I RC SEQ# IOERR# PARMS I

PL - byte 0:
On - byte 1:
Op - byte 2:
Om - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6:

Packet length (EQ$IFDP:CMD OPEN XLEN)
Destination node - -
Destination port
Destination module (EQIPMDT:COMMAND_FDP)
Source node
Source port
Source module

FREF - byte 7: File Reference number (Drive number). Filled in by I/FOP
whenever FCB allocated, Must be copied to all subsequent
commands for that file.

CC - byte 8: Command code (EQ$IFDP:CMD OPEN) OPEN an existing file.
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

OPEN MODE -

byte 12: Options selected from combinations:

OPEN for write (ERQ$IFDP:ACMODE OPENWR)
Lock drive against READY/WRITE TEQ$IFDP:ACMODE LOCKRD).
Lock drive against WRITE (EQ$IFDP:ACMODE LOCKWR).
Lock drive allowing READS and WRITES (EQIFDP:ACMODE LOCKO).
Access file in DIRECT mode (EQ$IFDP:ACMODE DIRECT).
Access file in UPDATE mode (EQ$IFDP:ACMODE-UPDATE).
Access file in MOD mode (EQ$IFDP:ACMODE MOD).
Access file in CP mode (EQ$IFDP:ACMODE CP).

CP-type.
CP-type.
CP-type.

Note: 1) If no bits are selected, the access mode would be READ, sequential.
2) .open mode DIRECT WIRTE is not supported; this combination is equi va

lent to UPDATE DIRECT or UPDATE DIRECT MOD.
3) CP type commands lock the entire drive~ not just a file.

SECURITY MODE -

Rev. 2

byte 13:

LOW Security - Update FDR (subdirectory) record to disk only when
an entire FDR record is filled.
(EQ$IFDP:FCB_OM.SECLOW).

0814 System Software Manual
Section 6.7 - 12 ,

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

HIGH Security - Update FDR to disk after each write.
(EQ$IFDP:VCM_OM.SECHIGH}.

MAXIMUM Security - High security plus verify each write. IF written
records does not verify, write a new record. Repeat
until record verifies.

FILENAME - bytes 14-29.

ASCII filename, left adjusted, blank (X 1 20 1 } filled. Alphanumeric unique
(by drive} file name.

RESPONSES:

Operation completed (RC=EQ$IFDP:RC_DONE}. Following fields appended.

byte 30 - Sides/density byte. Bits possibly
sided (EQ$IFDP:VLRI SIDEN OS};
(EQ$IFDP:VLRI SIDEN.SD); bit not
single. -

bytes 31-33 - File length (in bytes}.

set are: Double
double density

set indicates

Operation incomplete (RC=EQ$IFDP:RC UNAVAIL). File already accessed in a
mode which prohibits access as specified.

byte 30 - Same as for completed operation.

bytes 31-33 - Current accessing node, port, and module.

Operation incomplete (RC=EQ$IFDRP:RC MAXREQ}. Maximum number of
requestors for specified drive has been readied. No commands requiring a new
FCB will be excepted until requestors currently accessing file relinquish
their FCBs.

Operation incomplete (RC=EQ$IFDP:RC LOCKED). Drive specified has been
locked previously against mode specified-(READ or WRITE}.

Operation incomplete (RC=EQ$IFDP:RC LOGBAD}. File specified has been
found to be logically inconsistent. Accessing prohibited unless in CP mode.

Operation incomplete (RC=EQ$IFDP:RC PHYBAD}. File specified has been
found to be physically impaired. Accessing prohibited unless in CP mode.

Operation incomplete (RC=EQ$IFDP:RC_SFTPROT}. Disk has been software
write protected.

Operation incomplete (RC=EQ$IFDP:RC_SECMODE). Security mode specified as
invalid.

Rev. 2 0814 System Software Manual
Section 6.7 - 13

Rev. 2

CODEX CORPORATION

Operation incomplete (RC=EQ$IFDP:RC_INV_FNAME).
invalid.

COMPANY CONFIDENTIAL

Specified filename

Operation incomplete (RC=EQ$IFDP:RC DISKFULL). Disk is full. May occur
in either read or write access commands.-

Operation incomplete (RC=EQ$IFDP:RC_NOTRDY). Drive not ready.

Operation incomplete (RC=EQ$IFDP:RC IOERR). I/0 error occurred and did
not vanish after repeated retries (see I/0 err counter for number of
retries).

Operation incomplete (RC=EQ$IFDP:RC_NOFILE). Filename specified not
found.

Operation incomplete (RC=EQ$IFDP:RC INV MODE). Access mode bit configur-
ation illegal (e.g., READ,MOD). - -

Operation incomplete (RC=EQ$IFDP:RC_INV_DRV}. Drive specified invalid.

Operation incomplete (RC=EQ$IFDP:RC INV MD}. File not found, invalid
(logically or physically} Master Directory chain.

Operation incomplete (RC=EQ$IFDP:RC FORCED CLOSE). Connection to drive
or file severed. An I/CTP has FORCED the requestor or the specified drive
has been physical l opened. Thi_s response may occur at any time and contains
the last ACKed sequence number.

Operation incomplete (RC=EQ$IFDP:RC WRPROT}. Drive has physical write
protect. This response may occur to either read or write accessing modes.

Operation incomplete (RC=EQ$:FDP:RC_OFFLINE). Drive offline.

Rev. 2 D814 System Software Manual
Section 6.7 - 14

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP CREATE Conunand Layout

PL I On I Op I Om I Sn I Sp I Sm I FREF I CC I RC I SEQ# IOERR# PARMS I

PL - byte 0: Packet length {EQ$1FDP:CMD CREATE XLEN)
On - byte 1: Destination node - -
Op - byte 2: Destination port

'om - byte 3: Destination module {EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (Drive number)
CC - byte ~: Conunand code {EQ$IFDP:CMD CREATE) Create a new file.
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of 1/0 errors during co111T1and execution

PARMS:

byte 12: Create mode (must be OPENNR, see open conunand).
byte 13: Security code (see OPEN command).

bytes 14-29: Filename (see OPEN co11111and).
bytes 30-52: Optional text. ASCII, blank filled.

RESPONSES~

No bytes appended.

Return codes as defined for OPEN command, plus:
Operation incomplete (RC=EQ$1FDP:RC_EXISTS). File already exists on
specified drive.

Rev. 2 0814 System Software Manual
Section 6.7 - 15

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP LOCK Conmand Layout

PL On Op I Om Sn I Sp I Sm I FREF I CC I RC SEQ# I IOERR# PARMS I

PL - byte 0: Packet length (EQ$IFDP:CMD LOCK XLEN)
On - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (Drive number)
CC - byte 8: Command code (EQ$IFDP:CMD LOCK)
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of 1/0 errors during command execution

PARMS:

byte 12: Lock mode:

Lock drive against all READ and WRITE requesters (prevent
new accessors). .EQ$1FDP :ACMODE_ LOCKRD.

RESPONSES:

Lock drive against new WRITE type request ors
(EQ$IFDP:ACMODE_LOCKWR).

Lock drive allowing simultaneous accessing with normal
requester (EQ$IFDP:ACMODE_LOCKO).

Conmand complete (RC=EQ$IFDP:RC DONE). Drive LOCKed into specified mode.
CP-type commands may be specified. -

Conmand incomplete (RC=EQ$IFDP :RC WAITLOCK). Ori ve 1 ocked but currently
has active user(s) in the prohibited state. Periodic checks for those users
disconnecting will be made. When all such users are disconnected, the com
mand completed response code is given; otherwise this response code is given.
No timeouts will occur while waiting. Note: The response packets will all
have the same sequence numbers. ~

Command incomplete (RC=EQ$IFDP:RC_INV_PORT). Requestor is not an l/CTP.

Command incomplete (RC=EQ$IFDP:RC LOCKED). Drive already locked; bytes
13-15 contain locking node, port, and module.

Rev. 2 0814 System Software Manual
Section 6.7 - 16

Rev. 2

CODEX CORPORATION

OTHER RESPONSES:

See OPEN command.

Rev. 2 D814 System Software Manual
Section 6.7 - 17

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP READ Command Layout

PL on I op om Sn I sp I Sm I FREF I cc I RC SEQ# I IOERR# PARMS

PL - byte O:
On - byte 1:
Op - byte 2:
Om - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6:

FREF - byte 7:

Packet length (EQ$IFDP:CMD READ XLEN)
Destination node - -
Destination port
Destination module {EQIPMDT:C0tf.1AND_FDP)
Source node
Source port
Source module

File Reference number (From OPEN response)
CC - byte 8: Command code {EQ$IFDP:CMD READ) READ bytes from an OPENed

file. -
RC - byte 9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

bytes 12-14: Byte location. Offset into file where the first byte is
location O.

byte 15: Read length; Number of bytes to read. (Less than ~29
and multiple 16)

byte 16: Unused. May be used for information re.quester wishes to
·have returned with response for identification purposes.

RESPONSES:

Operation complete (RC=EQ$IFDP:RC_DONE).

byte 17-n Data read.

Operation incomplete {RC=EQ$IFDP:RC FORCED CLOSE). Connection to file
has been . severed by an I/CTP or other CP-type requester. Fi le must be
re-OPENed.

Operation incomplete {RC=EQ$IFDP:RC POST CMDTO). Command completed but
I/FOP has timed out on commands. All commands received but not yet processed
will have this return code if successfully completed. New commands not
accepted; file must be reOPENed.

Operation incomplete (RC=EQ$IFDP:RC_INV_ACC). Command invalid in OPEN
specified mode.

Operation incomplete (RC=EQ$IFDP:RC TOO HIGH). Maximum number of. com
mands (EQ$IFDP:CMD WINDOW) allowed ·to -be -outstanding has been exceeded.
Command rejected until commands received are processed.

Rev. 2 0814 System Software Manual
Section 6.7 - 18

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Operation incomplete {RC=EQ$IFDP:RC NDOWN). File pointed to by file
reference number field was not OPENed by-this requestor. FREF field may not
have been copied from OPEN or CREATE command.

Operation incomplete (RC=EQ$IFDP:RC INV LOC). Read location not sequen-
tial to last read location (Mode ~ DIREC'f). Bytes 17-19 contain expected
read location.

Operation incomplete (RC=EQ$IFDP:RCGTEOF). Read location extends across
or exceeds end of fi 1 e. If extends across, a 11 data to end of fi 1 e wi 11 be
included.

OTHER CODES:

See OPEN command.

Rev. 2 0814 System Software Manual
Section 6.7 - 19

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

l/FDP READC Conmand Layout

Pl I On I Dp I Om I Sn I Sp I Sm I FREF I CC I RC I SEQ# I IOERR# PARMS I

PL - byte 0: Packet length {EQ$IFDP:CMD READC XLEN)
Dn - byte 1: Destination node - -
Dp - byte 2: Destination port
Dm - byte 3: Destination module {EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number
CC - byte 8: Conmand code {EQ$FDP:CMD READ)
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during conmand execution

PARMS:

bytes 12-14: Read location
byte 15: Length (multiple of 16, less than or equal to 128)

RESPONSES:

Command Complete

byte 16-N: Data (length requested)
bytes N-n+8: Filename

OTHER RESPONSES:

Same as READ command.

Rev. 2 0814 System Software Manual
Section 6.7 - 20

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP WRITE Command Layout

PL On Op Om sn I sp I sm I FREf I cc I RC I SEQ# IOERR# PARMS

PL - byte 0:
On - byte 1:
Op - byte 2:
Dm - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6:

FREF - byte 7:

Packet length {EQ$IFDP:CMD WRITE XLEN)
Destination node - -
Destination port
Destination module {EQIPMDT:COt+1AND_FDP)
Source node
Source port
Source module

File Reference number (from CREATE/OPEN response)
CC - byte 8: Command code (EQ$IFDP:CMD WRITE) Write a block of data to

a file. -
RC - byte 9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

bytes 12-14: WRITE location (file offset, relative to first byte=dis-
placement O). .

byte 15: Data length (multiple of 16, less than or equal to 128)
byte 16: Unused. May be used by requester for identification of

response.
byte 17-n Data to be written to disk.

RESPONSES:

Command completed (RC=EQ$IFDP:RC_DONE). Data bytes not returned.

Command incomplete (RC=EQ$IFDP:RC INV LEN). Length specified does not
match data byte count (17-n) • - -

Command incomplete (RC=EQ$IFDP:RC INV LOC). Mode ~ DIRECT. Write loca
tion not sequential to last write. Next expected write location is stored at
bytes 17+128 {145).

OTHER RESPONSES:

See OPEN and READ commands.

Rev. 2 0814 System Software Manual
Section 6.7 - 21

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP RESET Conmand Layout

PL On Op I Om Sn I Sp I Sm I FREF I CC I RC SEQ# IOERR# PARMS

PL - byte 0: Packet length {EQ$IFDP:CMD RESET XLEN)
On - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from OPEN command)
CC - byte 8: Command code (EQ$1FDP:CMD+RESET)
RC - byte 9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

bytes 12-14: Reset-to location.· ·

RESPONSES:

Cominand .complete (EQ$IFDP :RC DONE). Next read and write locations set to
specified value. -

Command incomplete (EQ$IFDP:RC_GTEOF). RESET LOCATION exceeds file
length.

OTHER RESPONESES:

See OPEN and WRITE commands.

Rev. 2 0814 System Software Manual
Section 6.7 - 22

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP UPDATE Conmand Layout

PL Dn Dp Dm Sn I Sp I Sm I FREF I CC I RC I SEQ# I IOERR# PARMS I

PL - byte 0: Packet length (EQ$IFDP:CMD UPDATE XLEN)
Dn - byte 1: Destination node - -
Dp - byte 2: Destination port
Dm - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from OPEN response)
CC - byte 8: Command code (EQ$IFDP:CMD UPDATE)
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

bytes 12-14: File byte reference (location)
byte 15: Length (less than 129 and multile of 16)
byte 16: Type (READ=EQ$IFDP:UPDATE RD; WRITE=EQ$IFDP:UPDATE WR)
byte 17-n Data (write update) - . -

RESPONSES: See WRITE, READ comands

GP-Update:

byte 12: Track
byte 13: Sector
byte 14: Unused
byte 15-n As for normal update

RESPONSES:

Command complete. (Data read or written)

Command incomplete (RC=EQ$IFDP:RC_INV_TRK). Invalid track value.

Conmand incomplete (RC=EQ$IFDP:RC_INV_SEC). Invalid sector value.

Command incomplete (RC=EQ$IFDP:RC INV UPDCMD). Invalid update command
sequence (e.g. WRITE, WRITE) - -

OTHER RESPONSES:

See READ, WRITE commands.

Rev. 2 0814 System Software Manual
Section 6.7 - 23

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP CLOSE Cormnand Layout

PL I Dn I Dp I Dm I Sn I Sp I Sm I FREF I CC I RC I SEQ# I IOERR# PARMS I

PL - byte O: Packet length (EQ$IFDP:CMD CLOSE XLEN)
Dn - byte 1: Destination node - -
Op - byte 2: Destination port
Dm - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from OPEN conunand)
CC - byte 8: Command code
RC - byte 9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of 1/0 errors during conunand execution

PARMS:

RESPONSES:

Command complete (RC=EQ$IFDP:RC DONE). Connection with file completed.
Active records have been written to disk.

OTHER RESPONSES:

See OPEN command.

Rev. 2 0814 System Software Manual
Section 6.7 - 24

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP UNLOCK Comnand Layout

PL On Op Om Sn I Sp I Sm I FREF I CC I RC I SEQ# IOERR# PARMS I

PL - byte 0:
On - byte 1:
Op - byte 2:
Om - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6:

FREF - byte 7:
CC - byte 8:
RC - byte 9:

SEQ# - byte 10:
IOERR# - byte 11:

PARMS:

Packet length (EQ$IFDP:CMD UNLOCK XLEN)
Destination node - -
Destination port
Destination module (EQIPMDT:COMMAND_FDP)
Source node
Source port
Source module

File Reference number (from LOCK response)
Command code (EQ$IFDP:CMD UNLOCK)
Return code -
Sequence number (modulo 8)
Count of I/0 errors during command execution

byte 12: Unlock mode:

RESPONSES:

Unlock from LOCKRD to LOCKWR (permit read-type accessors)
EQ$IFDP:UNLOCK_MODE2

Unlock from LOCKRD or LOCKWR to LOCK~ (permit read and
write type accessors) EQ$IFDP:UNLOCK_MODE1

Unlock complete (through issuing GP-type commands)
EQ$IFDP:UNLOCK_RELSE

Command complete (RC=EQ$IFDP:RC_DONE). Drive state changed as specified.

Command incomplete (RC=EQ$IFDP:RC_NOTLOCK). Drive not locked by
requestor.

OTHER RESPONSES:

See OPEN command.

Rev. 2 0814 System Software Manual
Section 6.7 - 25

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP QUERY ACCESSOR Command Layout

PL On Op Om I Sn I Sp I Sm I FREF I CC I RC I SEQ# I IOERR# PARMS l

PL - byte 0: Packet length (EQ$IFDP:CMD QUERYACC XLEN)
On - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (Drive number IF standalone) or \
from OPEN/LOCK response.

CC - byte 8: Command code (EQ$IFDP:CMD QUERRYACC). List active
requestor for drive. -

RC - byte 9: Return code
SE9# - byte 10: Sequence number (modulo 8)

IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

byte 12: Drive number being querried.

RESPONSES:

Command complete (RC=EQ$IFDP:RC_DONE).

bytes 13-52: Node, port, and module of all requestors accessing speci
fied drive. If node=~, not active and port and module
should be ignored. ~

OTHER RESPONSES:

See OPEN command.

NOTE: This command may be issued standalone (not preceded by OPEN or
LOCK command) in which case the FREF field is used only to find
a free FCB on any drive, or by an active user. When issued in
standalone mode, the connection is severed upon command comple
tion.

Rev. 2 0814 System Software Manual
Section 6.7 - 26

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP STATUS FLOPPY Command Layout

PL Dn Dp Dm I Sn I Sp I Sm I FREF I CC I RC I SEQ# IOERR# PARMS I

PL - byte O: Packet length (EQ$IFDP:CMD_STATFL_XLEN)
Dn - byte 1: Destination node
Dp - byte 2: Destination port
Dm - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (Drive number, if standalone, else
from OPEN/LOCK command.

CC - byte 8: Command code
RC - byte 9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

byte 12: Drive number

RESPONSES:

Command completed (RC=EQ$IFDP:RC_DONE).

byte 13: ONLINE/OFFLINE indicator (~=OFFLINE). If offline, other
fields are not returned.

bytes 14-21:
byte 22:

byte 23:
byte 24:
byte 25:
byte 26:

bytes 27-29:
bytes 30-31:
bytes 32-33:
bytes 34-35:
bytes 36-37:
bytes 38-101:

OTHER RESPONSES:

Volume label (ASCII)
Disk type: Software (EQ$IFDP:DTYPE PGM);
Logger (EQ$IFDP:DTYPE LOG); GeneraT (EQ$IFDP:DTYPE GEN).
Software revision (~ Tf not software disk) -
Software release (~ if not software disk)
Side/density byte (see OPEN command)
Next available sector of Reserve Sectors Track
Free sectors count
ERP entry count
Data records count
FDR (subdirectory) records count
File count
Volue label identification text (ASCII)

See QUERY ACCESSORS command.

Rev. 2 0814 System Software Manual
Section 6.7 - 27

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP FILE STATUS Command Layout

PL On Op Om Sn I Sp I Sm I FREF I CC I RC I SEQ# I IOERR# PARMS I

PL - byte 0:
On - byte 1:
Op - byte 2:
Om - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6~

Packet length (EQ$IFDP:STATFI XLEN)
Destination node -
Destination port
Destination module (EQIPMDT:COMMAND_FDP)
Source node
Source port
Source module

FREF - byte 7: File Reference number (from OPEN command, or Drive number,
if standalone)

CC - byte 8: Command code (EQ$IFDP:CMD STATFI). Return file statistics
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

byte 12: Drive number
byte 13: Unused

bytes 14-29: Filename (see OPEN command)

RESPONSES:

Command completed (RC=EQ$IFDP:RC_DONE)

byte 30: Number of accessors currently using file (issued OPENs)
byte 31: File validity byte. Bits:

EQ$IFDP:DISK DELETE - File marked deleted. (file may not
be found if Master Directory slot
reused).,

EQ$IFDP:DISK PHYBAD - File marked physically bad (caused
- I/O error upon reading).

EQ$IFDP:DISK LOGBAD - File marked logically bad (pointer
- invalid.

bytes 32-34: File length (in bytes)
byte 35: Number of FDR records in file

bytes 36-37: Data records count
bytes 38-40: Creating node, port, and module of file

~,~,~=Prime emulator
bytes 41-43: Last reading node, port, and module

(last OPEN with MODE=READ)

Rev. 2 0814 System Software Manual
Section 6.7 - 28

Rev. 2

CODEX CORPORATION

bytes 44-46: Last writing node, port and module
(last OPEN with MODE=WRITE, UPDATE)

bytes 47-69: Optional file text (ASCII)

OTHER RESPONSES:

See QUERY ACCESSORS command.

Rev. 2 0814 System Software Manual
Section 6.7 - 29

COMPANY CONFIDENTIAL

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP TEST TRACK Co11111and Layout

PL I Dn I Op I Om Sn I Sp I Sm I FREF I CC I RC I SEQ# IOERR# PARMS I

PL - byte O:
On - byte 1:
Op - byte 2:
Om - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6:

FREF - byte 7:
CC - byte 8:

RC - byte 9:·
SEQ# - byte 10:

IOERR# - byte 11:

PARMS:

Packet length (EQ$IFDP:CMD TESTRK XLEN)
Destination node - -
Destination port
Destination module (EQIPMDT:COMMANO_FDP)
Source node
Source port
Source module

File Reference number (from LOCK co11111and)
Command code (EQ$IFIDP:CMO TESTRK) Non-destructive track
read. -
Return code
Sequence number (modulo 8}
Count of I/0 errors during command execution

byte 12: Track to test
byte 13: Drive to test

RESPONSES:

Co11111and complete (RC=EQ$IFDP:RC_DONE):

bytes 14 40: Returned status bytes (1 per sector}:

EQ$IFOP:TTRK SEEKERR - Seek ERROR occurred reading sector.
EQ$IFOP:BADREC - Record was readable after multiple

retries. Retry value is low nibble
of status byte.

EQ$IFDP:FREEREC - Record is marked FREE (available}
in FSM. .

EQ$IFDP:RESERVE - REserved, should always be zero.

Command incomplete (RC=EQ$IFDP:RC NOTLOCK}. Requester has not LOCKED
drive. This command is valid from all LOCK (GP-type) states.

OTHER RESPONSES:

See OPEN command.

NOTE: 1/0. errors encountered during execution of a test track co11111and
do not generate system reports.

Rev. 2 D814 System Software Manual
Section 6.7 - 30

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP CHANGE OPTIONAL FILE TEXT Command Layout

PL On Op I Om I Sn I sp I Sm I FREF I cc I RC I SEQ# I IOERR# PARMS

PL - byte 0: Packet length {EQ$IFDP:CMD CHFTX XLEN)
On - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module {EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number {from LOCK response)
CC - byte 8: Command code {EQ$IFDP:CMD CHFTX)
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number {modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

bytes 12-34: New file text {blank fill, ASCII)

RESPONSES:

Command complete {RC=EQ$IFDP:RC_DONE). Optional text replaced and
record{s) written disk.

OTHER RESPONSES:

See WRITE command.

Rev. 2 0814 System Software Manual
Section 6.7 - 31

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP CHANGE VOLUME LABEL TEXT Conmand Layout

PL on Op I om I Sn I Sp I Sm I FREF I cc I RC I SEQ# IOERR# PARMS

PL - byte 0: Packet length (EQ$IFDP:CMD CHVTXT XLEN}
On - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module (EQIPMDT:COMMAND_FDP}
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from LOCK response}
CC - byte 8: Command code (EQ$IFDP:CMD CHVTXT}
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of 1/0 errors during command execution

PARMS:

byte 12 : Drive#
Bytes 13-20: Volume
bytes 21-84: New optional label volume label text {ASCII, blank filled

(X'20'}.

RESPONSES: '

Conmand complete (RC=EQ$IFDP :RC_DONE}. VLRl record updated and written
to disk.

Command incomplete (RC=EQ$IFDP:RC_INV_LEN). Packet length incorrect.

Command incomplete (RC=EQ$IFDP:RC NOFILE}. Volume label does ot match
for specified drive. -

Conmand incomplete (RC= EQ$IFDP:INV_DRV}. Invalid drive#.

OTHER RESPONSES:

See LOCK conmand.

Rev. 2 0814 System Software Manual
Section 6.7 - 32

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP CHANGE VOL-ID Conmand Layout

PL On Op Om I Sn I Sp I Sm I FREF I cc I RC I SEQ# IOERR# PARMS

PL - byte 0: Packet length (EQ$IFDP:CMD CHVOL XLEN)
Dn - byte 1: Destination node - -
Dp - byte 2: Destination port
Dm - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from LOCK response)
CC - byte 8: Command code (EQ$IFDP:CMD CHVOL)
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/O errors during conmand execution

PARMS:

byte 12 Drive number
bytes 13-20: Current VOL-ID
bytes 21-28: New VOL-ID (ASCII, left adjusted, blank filled (X 1 20 1)

RESPONSES:

Command complete (RC=EQ$IFDP:RC DONE). New volume label copied to VLRl
and VLR2 records and updated to disk-:

Command incomplete (EQ$IFDP:RC NOFILE). Current VOL-ID does not match
specified value. -

Command incomplete (EQ$IFDP:RC_INV_LEN). Current or new VOL-ID has incor
rect length.

OTHER RESPONSES:

See OPEN command.

Rev. 2 0814 System Software Manual
Section 6.7 - 33

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP DELETE Conmand Layout

PL I on op om Sn I Sp I Sm I FREF I cc I RC I SEQ# I IOERR# PARMS I

PL - byte 0: Packet length (EQ$IFDP:CMD DELETE XLEN)
Dn - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module (EQIPMDT:COMMAND_FDP}
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF byte 7: File Reference number (Drive number, if standalone, else
from OPEN/LOCK command)

CC - byte 8:

RC - byte 9:
SEQ# - byte 10:

IOERR# - byte 11:

PARMS:

byte 12
byte 13

bytes 14-29:

RESPONSES:

Conmand code (EQ$IFDP:CMD DELETE) Delete on existing
disk file. -
Return code
Sequence number (modulo 8)
Count of I/0 errors during conmand execution

Drive number, if standalone, else zero.
Unused. May be used by request or for conmand i dent ifi

cat ion purposes.
Filename (see OPEN command).

Command completed (EQ$IFDP:RC DONE}. All data records and subdirectory
records have been returned to- the-availability pool (FSM}; the Master Di rec
tory entry has been marked available, and all records updated have been
written to disk.

Conmand incomplete (EQ$IFDP:RC DONE WITH ERRORS}. While releasing
records a logical or physical incons"Tstency was detected. The process was
discontinued and the Master Directory entry for the file marked available and
logically or physically impaired.

OTHER RESPONSES:

See OPEN conmand.

Rev. 2 0814 System Software Manual
Section 6.7 - 34

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP ADD Command Layout

PL On Op Dm Sn I sp I sm I FREF I cc I RC I SEQ# IOERR# PARMS I

PL - byte
On - byte
Op - byte
Om - byte
Sn - byte
Sp - byte
Sm - byte

FREF - byte

0:
1:
2:
3:
4:
5:
6:

7:

Packet length (EQ$IFDP:CMD ADD XLEN)
Destination node - -
Destination port
Destination module (EQIPMDT:COMMAND_FDP)
Source node
Source port
Source module

File Reference number (Drive number)
CC - byte 8: Command code (EQ$IFDP:CMD ADD). Add a block of data to

existing file. -
RC - byte 9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/0 errors during command execution

PARMS:

byte 12: Data length (multiple of 16; less than 128).
byte 13: Unused

bytes 14-29: Filename (see OPEN command)
byte 30-n Data

RESPONSES:

Command completed {RC=EQ$IFDP:RC DONE). Data added to file and written
to disk. Command response may be delayed indefinitely if drive specified is
LOCKED when command received by I/FOP (in which case it was queued until the
specified drive was UNLOCKed). Command will also be queued if no FCBs are
available when received and processed when an FCB becomes available. The
file is automatically CLOSED upon command termination.

NOTE: This implies data sequentiality may be lost in rare instances.

ADD command release the FCB upon completion.

OTHER RESPONSES:

See OPEN, WRITE, and CLOSE commands.

Rev. 2 0814 System Software Manual
Section 6.7 - 35

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP LOG Command Layout

PL on Op om Sn I Sp I Sm I FREF I cc I RC I SEQ# I IOERR# PARMS I

PL - byte O:
Dn - byte 1:
Dp - byte 2:
Dm - byte 3:
Sn - byte 4:
Sp - byte 5:
Sm - byte 6:

FREF - byte 7:
CC - byte 8:

Packet length (EQ$IFDP:CMD LOG XLEN)
Destination node - -
Destination port
Destination module (EQIPMDT:COMMAND_FDP)
Source node
Source port
Source module

File Reference number
Command code (EQ$ IFDP: CMD LOG). Add data to System
Logging File. -

RC - byte 9: Return code
SEQ# - byte 10: Sequence number (modulo 8)

IOERR# - byte 11: Count of 1/0 errors during command execution

PARMS: (Written to disk)

byte 12:
byte 13:
byte 14:
byte 15:

Initiator node
Initiator port
Initiator module
Initiator port type (EQ$MISC:GTYPE XXX)
Reserved (used by I/FOP for time-stamping) bytes 16-19:

byte 20: Operation code (e.g., OPEN, LOCK, CALL, HANGUP, CLOSE,
UNLOCK)

bytes 21-27: Varied by port type

For I/FOP LOG entries:

Rev. 2

byte 21: Drive number
byte 22: Read command count MSB (CLOSE, UNLOCK)

Master Director1 Sequence number (OPEN)
Lock mode (LOCK)

byte 23: Master Directory Index (OPEN)
Read command count LSB (CLOSE, UNLOCK)
Unused (LOCK)

byte 24: Master Directory Accessor count (OPEN)
Write command count MSB (CLOSE, UNLOCK)
Unused (LOCK)

byte 25: Master Directory validity indicator (OPEN)
Write command count LSB (CLOSE, UNLOCK)
Unused (LOCK)

byte 26: Total 1/0 performed MSB (CLOSE, UNLOCK)
Unused (OPEN, LOCK)

byte 27: Total 1/0 performed LSB (CLOSE, UNLOCK)
Unused (OPEN, LOCK)

0814 System Software Manual
Section 6.7 - 36

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

NOTE: The UNLOCK command code is recognized by the I /FOP as the
only command code which is negative. The operation code,
if UNLOCK is composed of two components:

B'XXXXXXXX' where "1" indicates unlock, and "XXXXXXX"
represents the UNLOCK node.

For ITPs:

byte 21: Call type (e.g., leased, TP dial)
byte 22: Calling or called node
byte 23: Calling or called port
byte 24: Thread number (multi-threaded ports)

bytes 25-27: Unused

For NPs:

byte 21: Remote node
byte 22: Remote port

bytes 23-24: Speed
bytes 25-27: Unused

Rev. 2 0814 System Software Manual
Section 6.7 - 37

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP FORCE Command Layout

PL On Op Om sn I sp I sm I FREF I cc I RC SEQ# 10ERR# PARMS

PL - byte 0: Packet length (EQ$IFDP:CMD FORCE XLEN)
On - byte 1: Destination node - -
Op - byte 2: Destination port
Om - byte 3: Destination module (EQIPMDT:COMMAND_FDP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from LOCK command)
CC - byte 8: Command code (EQ$IFDP:CMD FORCE). FORCE disconnection of ·

active requestor. -
RC - byte ·9: Return code

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of 1/0 errors during command execution

PARMS:
byte 12: Drive of requestor being forced
byte 13: Node of requestor being forced
byte 14: Port of requestor being forced .
byte 15: Module of requestor being forced

RESPONSES:

Command completed (RC=EQ$IFDP:RC DONE). Requestor linkage CLOSED/
UNLOCKED. Requestor notified. -

OTHER RESPONSES:

See QUERY ACCESSORS command.

Rev. 2 0814 System Software Manual
Section 6.7 - 38

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

I/FOP FORCE DRIVE REINITIALIZATION Conmand Layout

PL On Op I Om I Sn I Sp I Sm I FREF I CC I RC I SEQ# I IOERR# PARMS I

PL - byte 0: Packet length (EQ$IFOP:CMO FRCINIT XLEN)
On - byte 1: Oest i nation node· - -
Op - byte 2: Destination.port
Om - byte 3: Destination module (EQIPMOT:COMMANO_FOP)
Sn - byte 4: Source node
Sp - byte 5: Source port
Sm - byte 6: Source module

FREF - byte 7: File Reference number (from LOCK command)
CC - byte 8: Command code (EQ$IFOP:CMO FRCINIT)
RC - byte 9: Return code -

SEQ# - byte 10: Sequence number (modulo 8)
IOERR# - byte 11: Count of I/O errors during command execution

PARMS:

byte 12: Drive to initialize

RESPONSES:

Conmand completed (RC=EQ$IFOP:RC DONE). Drive initialization started all
requesters on drive (if online) are-automatically forced before initializa
tion starts (including requestor) for that drive.

Command incomplete (RC=EQ$IFOP:RC_OONE_WITH_ERRORS).
online.

OTHER RESPONSES:

See QUERY ACCESSORS command.

Rev. 2 0814 System Software Manual
Section 6.7 - 39

Ori ve a 1 ready

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.7.3 Initialization

I/FOP initialization is provided as two components: (1) port or soft-
ware initialization, and (2) disk verification/initialization.

Port initialization includes allocation of the FCBs and FID, the GHQ,
BTCBs and MDT, setting/clearing of accumulators and counters for statistics
and system variables, configurational memory (CMEM) retrieval and storage,
and initiation of disk verification/initiation. Port initialization is
called by the operating system during IPOS user initialization.

Disk verification/initialization includes physical and logical verifi
cation of all mounted and ready floppy drives and disks, determination of
floppy vo 1 ume IDs and status, creation of the RST and VMDT, disk verifi ca
tion (normal or optional extended verification), notification to the report
node of the drive and floppy in it i a 1 status, and enab 1 i ng of the software
which validates and queues received commands. Disk verification is forked by
port initialization.

Normal disk verification includes checking the validity of the MOR
records (sequence number/pointer checking), the ERP records (sequence number/
pointer checking), the FSM, and VLR-2 counts. Optionally, under control of a
CMEM value, extended initialization may be initiated. Extended initializa
tion includes normal initialization plus checking of each FDR record for
valid directory and data record pointers. The data records are not actually
read during this operation.

Sector recovery is also part of initialization. If verification detects
a logical inconsistency (possibly as the result of the deletion of a logic
ally or physically impaired disk file), a report is issued to the report
node, and, if CMEM so specifies, the error wi 11 be corrected by software.
Correction takes the form of rewriting one or more sectors, based on infor
mation compiled during the initialization process. If CMEM does not indicate
that errors should be corrected as detected, no action, other than the
report, wi 11 be taken. ·

Note that if a drive is not readied when the port starts disk verifica
tion/initialization, initialization of that drive will await its being
readied. An alarm is issued to the Report node, in this case.

Entry Point - IFDP$INIT:START

Function

Port initialization

Entry Condition

None

Rev. 2 0814 System Software Manual
Section 6.7 - 40

Rev. 2

CODEX CORPORATION

Exit Conditions

All registers unset.
Disk verification/initialization forked.

Entry Point - IFDP$INIT:DISK_VER

Function

Normal disk verification
Optional (CMEM) extended disk verification

Entry Condition

None

Exit Conditions

All registers unset.
All mounted and enabled drives initialized.

COMPANY CONFIDENTIAL

Initial drive and disk status reported to Report node.

6.7.4 Protocol Management

Every command received by the I/FOP contains a sequence number field
which is used to manage the ARQ and flow control. Certain commands (OPEN,
CREATE, DELETE) use this field to establish flow control parameters.. Other
commands (ADD, LOG), ignore this field because their nature implies a one
time mode of accessing the I/FOP.

OPEN, CREATE, and DELETE commands, when received from a requester not
already active, set the starting sequence number. Commands from this re
quester are expected to sequentially increment this field (module 16). If a
sequence number is found to be invalid (nonsequential to the last command
received from this requester), a NAK bit and the last correctly received
sequence number are used to set the return code of the command, and the
response returned to the requester. A 11 commands received for a request or
which has the NAK outstanding indication set, except a command with the mis
sing sequence number (lost, rejected, or ignored) are discarded. The NAK
outstanding i ndi ca ti on is unset when the correct sequence number is finally
received and validated.

Flow control is established by discarding commands, independent of their
sequence number, if eight outstanding commands already exist (are validated
and queued) for that request or. This procedure wi 11 cause the next command
accepted from that requester to have an invalid sequence field, and thus be
NAK'd.

Rev. 2 0814 System Software Manual
Section 6.7 - 41

Rev. 2

..

CODEX CORPORATION COMPANY CONFIDENTIAL

An additional protocol function involves command which are valid but
which produce error results (e.g. a RESET beyond the end-of-file). If the
error does not cause the severance of the FCB/requestor connection (implicit
CLOSE), an indicator is set, and the response returned to the requester with
the command error code. When the indicator is set, commands from .this
request or, other than a command with the same sequence number as the error
command, are discarded. --

To insure that no requester hangs (possibly as the result of a single
path node failure or a port crash of the requester), the I/FOP runs a com
mand timer. Expiration of this timer causes the file being accessed to be
CLOSEd (or the drive to be UNLOCKed) and the requestor/FCB linkage to be
sundered. Ports expecting long delays between commands (other than LOG or
ADD commands) may hold the connection by sending NOP commands, or the timer,
which is CMEM defined, may be increased. The former option allows special
ization for a single port without global extention of the timer. The com-.
mand timer is reset and disabled when a valid command is received from a
requester, whether or not that command is actually executed. The timer is
enabled (started when the command begins actual processing.

Entry Point - IFDP$RCV:START (batch task)

Function

Receive requester commands
Protocol verification
Satisfaction of commands not requiri'ng I/0

Entry Conditions

One or more commands queued by IPOS

Exit Conditions

No commands remaining on batch queue

6.7.5 File Management

I/FOP file management is a function of both the requester and the I/FOP
software. Files are handled in one of 3 modes, depending on the security
code specified in the OPEN or CREATE:

Low security - the current subdirectory record is written to disk only
when a data record write fills the current subdirectory record, or the
file is closed.

High security - the current subdirectory is written to disk after every
data record write.

Rev. 2 0814 System Software Manual
Section 6.7 - 42

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Maximum security - high security, pl us every data record write is fol -
I owed by a reacr for that record and a veri fi cation of that record before
declaring the command successful.

The first and current subdirectory records are always resident in memory.
When the current subdirectory is reset, if the access mode is read, the
record is checked for inconsistent or invalid pointers and/or counter. If an
error is detected, the file availability byte is set to indicate a logically
impaired disk file. Impaired files can be deleted, however, some records may
be temporarily lost until the next I/FOP IPL.

The file management function is responsible for processing protocol vali
dated commands, and issuing multiple I/0 requests to perform the command
specified action(s). It is also responsible for creating and maintenance of
the FRTs. Once I/0 has completed, the file management function is also
responsible for error detection and correction.

1/0 errors to write commands cause the bad sector to be added to the ERP,
a new sector obtained from the FSM, and the operation to be retried until
either the operation is successful, or no more free sectors are available (at
which time the command is handled under disk-full processing). 1/0 error to
read commands cause the operation to be retried 11 n11 times, where 11 n11 is CMEM
defined, before the operation is terminated with an error response the record
pointer and type indicter added to the ERP, and the file availability indi
cator set to show the file as physically disabled. If the record was a MOR,
or FDR, the file is implicitly closed. If the read operation completes suc
cessfully after one or more· (but less than 11 n11) retried, and the record is a
directory type record, LOG record, or the file open security mode is maximum,
the error record is copied to another location and the record added to the
ERP.

Satisfied (or physically unsatisfiable) commands are then returned to the
requester. If the command is a CLOSE or UNLOCK, the CHQ is checked for possi
ble entries.

Entry Point - IFDP$FLOPPY:START (batch task)

Function

Command processor (I/0 related commands)
File management

Entry Conditions

One or more commands queued

Exit Conditions

No commands queued to batch queue

Rev. 2 0814 System Software Manual
Section 6.7 - 43

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point - IFDP$XMT:START {batch task)

Function

Response return routine

Entry Conditions

One or more commands queued

Exit Conditions

No commands queued

6.7.6 Device Control

The I/FOP manages from 1 to 4 floppy disks (single. or dual density,
single or dual sided), interleaving I/0 commands. Requester commands are
broken down to I/0 commands by the file management function, and used to set
the track, and sector registers, and the drive selector. Each I/0 request is
single streamed with the next command not being processed until the prior
command completes, and the data/status from that command has been saved/
analyzed.

Data bytes are transferred to and from the disk via a 1771 (or 1791)
using a 128 byte FIFO with CRC verification under hardware control. For
write operations, if the data block is less than a sector size, the remain
der of a record is zero f i 11 ed. One interrupt is given for every sector of
data bytes transferred.

Data read is stored in memory and a pointer to the memory block saved.

Entry Point - IFDP$FLOPPY:IRQ

Function

Floppy'interrupt handler

Entry Conditions

Floppy IRQ enabled and outstanding

Exit Conditions

Floppy IRQ disabled
IFDP$FLOPPY:IO forked

Called J!l

IPOS interrupt handler

Rev. 2 0814 System Software Manual
Section 6.7 - 44

Rev. 2

CODEX CORPORATION

Entry Point - IFDP$FLOPPY:IO

Function

Floppy data/status management

Entry Conditions

Floppy IRQ disabled
Floppy data and or status set
I/0 return address stored in memory

Exit Conditions -
Floppy IRQ enabled
Control passed to I/0 return address

Called~

IFDP$FLOPPY: IRQ

6.7.7 Line Control

COMPANY CONFIDENTIAL

When using a floppy disk emulator instead of a real floppy disk, proces
sing is essentially equivalent to that specified in device control (6.7.6},
except that an I/0 control block is built from the I/0 command registers and
transmitted, using a Signetics 2651, over a communications line. Data and
status are returned as another I/0 control block which is then converted into
a form equivalent to that from real disk. The 1/0 control blocks have an
end-around checksum which is used to verify both commands (at the remote end}
and responses (at the I/FOP). When the checksum does not validate at the
I/FOP, the command is resent 11 n11 times before returning an 1/0 error indica
tion. The communications line may run from speeds of 50 baud to 19.2 K baud.

The 1/0 control blocks are of the general form:

CC I NODE I PORT I PARMS I CHECKSUM

where 11 CC 11 is the command code, 11 NODE 11 is the I/FOP node designation,
"PORT" is the I/FDP port designation, 11 PARMS 11 is a command dependent parame
ter string (usually including a track and sector designation), and 11 CHECKSUM 11

is a two byte end-around checksum.

Rev. 2 0814 System Software Manual
Section 6.7 - 45

Rev. 2

CODEX CORPORATION COMPMY CONFIDENTIAL

Responses from the emulator have the form:

I RC I NODE I PORT I REPLY DATA I CHECKSUM I
where 11 RC 11 is the response code (same va 1 ue as CC), 11 NODE 11 and 11 PORT11 are

as defined for command blocks, "REPLY DATA" is a response field containing
either data bytes, or command completion status, and 11 CHECKSUM11 is a two byte
end-around checksum generated by the emulator.

Entry Point - IFDP$FLOPPY:IRQ

Function

I/FOP 2651 interrupt handler

Entry Conditions

2651 IRQ enabled

Exit Conditions

2651 IRQ disabled
IFDP$FLOPPY:IO forked (on complete block)

Entry Point - IFDP$FLOPPY:IO

Function

Floppy data/status handler

Entry Conditions

1/0 control block stored
2651 disabled

Exit Conditions

2651 enabled
Control passed to 1/0 return address

Called BY

IFDP$FLOPPY:IRQ

Rev. 2 D814 System Software Manual
Section 6.7 - 46

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.8 Intelligent Network Port (I/NP)

The I/NP module is organized as a set of submodules which are active in
areas of unique functionality.

1) Initialization
2) Protocol Management
3) Device Management
4) Mainframe Interface
5) Statistics
6) Exceptions Monitoring

6.8.1 I/NP Data Structures

The I/NP uses frames, enveloped by protocol, to transfer information
between 0814 mainframe modules (MNL). The frames are of two formats, one for
system level communications between connecting I/NP's (Figure 1) and one for
customer data transferral (Figure 2). The frames are of the following
format:

FLAG NODE cc PARMS ARQ 1 FCS

Figure 1

FLAG NODE FTI/SEQ DATA ARQ 1 FCS

Figure 2

The fields are:

FLAG - One byte (X'7E') start of frame marker and close of prior frame
~any) marker.

NODE - One byte initiating I/NP node number.

CC - One byte command code of the form B 1 lxxxxxxx 1 • The command codes
are:

1)
2)
3)
4)
5)
6)

Link I nit (LI)
Link Down (LD)
Assume Master (AMSTR)
Assume Secondary (ASEC)
Delay Determine (DD)
Delay Determine Response (DOR)

0814 System Software Manual
Section 6.8 - 1

\

CODEX CORPORATION COMPANY CONFIDENTIAL

PARMS - 11 N11 byte parameter field.

ARQ - One byte ARQ control field composed of two segments:

1) 1 bit {high order) ACK/NAK indicator

2) 7 bit sequence number (only six least significant bits are
used).

FTl/SEQ - frame .I.Ype !ndicator: One byte field:

1) 2 bit FTI (see section 9, Mainframe Network Link {MNL) for FTI
values).

2) 6 bit Link frame sequence number.

DATA - 11 N11 bytes of network data {internal frames)

FCS - 16 bit Frame Check Sequence

NOTE: For system level frames, the software protocol fields {not gen
erated under hardware control) are:

NODE cc ARQ'

For customer data transferral {al so referred to as 1 ink data transfer
ral):

NODE FTI/SEQ ARQ'

6.8.1.1 ARQ Buffers

The I/NP uses tables of ARQ buffer pointers {the Retransmit Queue) to
track point-to-point link data transferral. System level frames are not kept
in the Retransmission queue. Maintenance of the tab 1 e is performed by the
protocol submodule. The table is of the form:

I BOF 1 PTR I BOF 2 PTR I l BOF N PTR I
Each entry in the table is a pointer to an IPOS byte queue in which the

customer data {in MNL Internal Frame format) and the protocol fields have
been stored, or zero if that slot has been acknowledged and not refilled with
new data. At 1 east one entry (for the current frame under transmission) is
a 1 ways found in the tab 1 e. Note that the ARQ' protoco 1 fie 1 d is not stored
in the retransmission queue but is fetched from memory when require<r. This
insures that the most up-to-date ARQ information is always sent.

D814 System Software Manual
Section 6.8 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.8.1.2 Buffer Pools

The I/NP uses a transmitter and receiver pool of buffers to avoid the
overhead of constant a 11 ocat ion and rea 11 ocat ion of byte queue headers. The
entries in both pools are basic byte queue headers (2 buffers). The pool
buffers are daisy chained, with the first entry pointer stored in system
memory.

6.8.2 Initialization

I/NP initialization is provided as two components: (1) port initializa
tion, and (2) protocol initialization.

Port initialization includes clearing accumulators and counters for
statistics variables, setting of state variables, creation of the ARQ table
(Retransmit Queue), creation of the buffer pools, creation of the TCB's and
BTCB' s for IPOS interfacing, configuration memory retrieval and storage, and
device initialization. Selection of NRZ/NRZI encoding, modem signal timing,
and line speed are determined, and sent to the 6854, as a part of I/NP device
initialization. Port initialization is called by the operating system as
part of IPOS user initialization.

Protocol initialization includes synchronization with the remote I/NP
over the communications 1 ine, and initial notification to the mainframe of
protocol initialization completion. Refer to the chart in section 6.8.8, and
the 0814 Product Functional Specification for further information on I/NP
initialization and synchronization sequences. Protocol initialization is
invoked by port initialization to initially synchronize l/NP's, and by the
protocol manager when resynchronization is required.

Entry Point - INP$INIT:START

Function

Port initialization

Entry Conditions

None

Exit Conditions

All registers unset
CC: I = 0
Mainframe (MNL) notified (I/NP active)

0814 System Software Manual
Section 6.8 - 3

,,

..

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point - INP$INIT:COMMON....BOOT_RESTART

Function

Protocol initialization

Entry Conditions

I/NP active or I/NP fail must have been sent previously to the mainframe
MNL module.

Exit Conditions

All registers unset
Connecting I/NP's synchronized for data transferral.

6.8.3 Protocol Management

Every frame sent or received by an I/NP contains an ARQ field composed of
a one bit NAK indicator and seven bits of sequence number (with only the 6
least significant bits used. This field, along with the sequence number
field is used to support the I/NP's Go-Back-N ARQ.

6.8.3.1 Protocol Management - Transmission

The I/NP transmitter protocol function {TPF) supplies protocol fields for
new network data frames, and tracks available protocol sequence values. This
task is forked by the device handling function when a complete link frame has
been transmitted, and the 6854 transmitter interrupt is disabled to start the
6854 in idle synchronization {flag fill mode).

The protocol fields (see Figure 2) are preset by the transmission func
tion for the device handling function. The sequence values {SEQ of FTI/SEQ
in Figure 2) cycle through the range from 0 to 63, inclusive, with the FTI
bits also being passed in this field.

Frame selection is a function of the current I/NP state. In the normal
state {LINKUP), when all available values for sequence numbers has been used,
TPF initiates automatic retransmission until values become available. A
value becomes available as the result of the reception of an ACK. Retrans
mitted frames, and I/NP synchronization frames are prebuilt, i.e., all bytes
required for the frame are already stored in a byte queue. New data frames
{sent when not in retransmission mode, or tracking delay timing) have only
the 1 ink frame protoco 1 fie 1 ds stored in the byte queue; the data for the
frame is taken from the BIC (BIC-1, refer section 6.8.4.1}.

0814 System Software Manual
Section 6.8 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Retransmission is a 1 so activated when no ACK or NAK is received over a
measured period of time, independent of the number of ARQ buffers currently
in use. The period of ti me (in seconds) is specified as a CMEM opt i ona 1
parameter. The I/NP automatically tracks the time required for frames to be
transmitted across the comrnuni cat ions 1 i ne, received and processed by the
remote I/NP, and for that frame to be returned and processed by the 1oca1
I/NP. This time (roundtrip delay time) is updated automatically once every
minute.

If the I/NP is not in the LINKUP state, frames, including protocol
fie 1 ds, a re generated as defined in Appendix H of the D814 Product Spec i fi -
cation.

6.8.3.2 Protocol Management - Reception

The I/NP Receiver Protocol Function (RPF) is a batch task which analyzes
frames received and queued by the device handler function, verifies sequen
tial integrity, and passes frames to the mainframe interface module (MNL).
Received ARQ fie 1 ds are stored for use by the TPF, as required. The parsed
frames are passed in byte queues.

Validation, and responses to received frames, as a function of the I/NP
state, are defined in Appendix H of the D814 Product Specification.

6.8.4 Device Management Function

The I/NP uses the Motorola 6854 ADLC communications Chip to send and
receive link frames. Interrupts are separated into receive and transmit
interrupts by the 6854 interrupt handler, and passed to one of two following
submodules.

6.8.4.1 Device Management - Transmission

Frame transmission is performed, a byte at a time, by placing bytes into
the 6854 transmission FIFO under interrupt control. Protocol fields are
preselected by the TPF (refer to section 6.8.3.1). If the frame itself is
not pre bu i 1 t by the TPF, as defined by a memory indicator, then the data for
that frame is taken from the BIC (BIC-1) and copied to a byte queue (a 1 so
preset by TPF) as it is transmitted.

Underrun conditions detected by the 6854 cause the frame under trans
mission to abort (hardware controlled), and the aborted frame to be resent
(from the starting flag). When the condition occurs, the entire byte queue
and protocol fields sent prior to the condition are sent, as a new frame,
before continuing to transmit those bytes (if any) that would have been sent
had the underrun not occurred. Thus, any frame passed to the transmitter
device handler is guaranteed to be transmitted.

0814 System Software Manual
Section 6.8 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

When a 11 data for a frame has been sent, the ACK/NAK ARQ field is re
trieved from memory and appended to the frame. The FCS bytes are generated
by the hardware, as is the closing flag.

Clear-to-send (CTS} is tracked. When lost a timer (defined in CMEM) is
started. If CTS does not return before the timer expiration, the I/NP transi
tions to the LINK KILL state and transmission of frames is aborted.

When transmission of a frame has completed, the 6854 transmitter inter
rupt is disabled and the TPF invoked via an IPOS fork to determine the source
of the next frame to transmit.

Entry Point - INP$XMT:START

Function

Manage 6854 transmitter interrupts

Entry Condi ti ans

Interrupt Level
Byte queue and next frame type preset
6854 transmitter interrupt enabled

Exit Conditions

All registers unset
TPF forked

6.8.4.2 Device Management - Reception

Frame reception is performed, a byte at a time, from the 6854 receiver
FIFO under interrupt control. The fields (bytes) are parsed into a byte
queue obtained from the I/NP buffer pool. If no buffers are available, the
frame is discarded. Recovery of the frame is a function of the transmission
protocol manager. If the node field has the most significant bit set, the
frame is discarded. If an overrun condition occurs while receiving a frame,
that frame is discarded.

When a complete frame has been received, if the FCS indicator from the
6854 specifies that the frame is invalid, the frame is discarded. If valid,
the frame is batch queued to the RPF.

Data Carrier Detect (DCD) is tracked. If lost, a timer (defined in CMEM)
is started. If the timer expires prior to the time DCD returns, the I/NP
transitions to the lINK KILL state.

0814 System Software Manual
Section 6.8 - 6

CODEX CORPORATION

Entry Point - INP$RCV:START

Function

6854 re~eiver interrupt handler

Entry Conditions

6854 receiver enabled
Data in 6854 receiver FIFO

Exit Conditions

All registers unset
Parsed frame batched to RPF

6.8.5 Mainframe Interface Function (MIF)

COMPANY CONFIDENTIAL

The I/NP passes and receives mainframe Internal frames from MNL using the
BIG (BIC-1). When the TPF decides to cause a data frame to be constructed
(refer sec. 6.8.3.1), BIC-1 is set to cause an interrupt to the mainframe to
notify MNL that data is required. Outbound interrupts (mainframe to I/NP) do
not occur, and are not enabled.

On the I /NP receiver side, when a frame has been verified by RPF, it is
passed to the mainframe (MNL) over the BIG. Data is pl aced in the Inbound
FIFO as long as a not-full condition exists and data is available. When the
full condition occurs, BIG interrupts (Inbound only) are enabled with the
interrupt condition set for ha l f-empty not ifi cation. When no more data is
available, the MIF terminates with the BIG interrupt disabled. The inter
rupt is reenabled by the RPF when more data becomes available, at which time
that data will be transferred to the mainframe.

Whenever data is being placed into the BIG Inbound FIFO, and until the
end of data, or full condition occurs, the BIG Inbound FIFO interrupts are
disabled.

Entry Point - INP$BTF:START

Function

Transfer data from RPF to mainframe

Entry Conditions

BIC-1 interrupts disabled
Byte queue with data queued

0814 System Software Manual
Section 6.8 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

All registers unset
BIC-1 full or no more data

6.8.6 Statistics

Frame counts (initial and retransmitted), overhead and user character
counts, NAK counts, delay counters, and average retransmission queue size
(nonzero entry counts) are maintained. The stati sties values are sampled
every 4 seconds, and that snapshot passed to a separate internal routine for
evaluation. Evaluation is performed by adding the latest statistics snap
shot into a running accumulator, and dividing the resultant figure in half,
giving a 6 second average of performance. The statistics maintained by the
I/NP are:

1) Count of NAK 1 s received.

2) Count of frames retransmitted.

3) Count of overhead and non-overhead bytes transmitted. An overhead
byte is any byte generated by the 0814 network. Non-overhead bytes
are those bytes generated directly by the customer terminal.

4) Average ARQ size. Number of entries in the Retransmission queue.

5) Average roundt rip delay ti me.
required to transmit a frame
received and reflected back by
to be received.

The roundtrip delay time is the time
to a remote I/NP, have that frame
the remote I /NP, and for that frame

6) Buffer utilization. The ratio of buffers in use to the number of
available buffers, expressed as a percentage.

Requests for the average accumulator values are received (and returned)
in IPOS addressed packets. Requests received during link initiation, or
during link recovery receive a not-ready indication.

The I/NP also sends a specialized statistics packet to the mainframe
(MCC) every 30 seconds. This packet contains overhead and user character
counts over the 30 second period and is used as part of 0814 congestion
control.

0814 System Software Manual
Section 6.8 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

6.8.7 Exceptions Monitoring Function

The I/NP performs periodic evaluations of exceptions parameters (as speci
fied in CMEM), and hardware failures in the 6854. The CMEM parameters are:

1)

2)

3)

4)

Error Density
averaged).

Number of r~transmitted frames (per second,

Processor Loading - Ratio of the number of processor cycles used, to
the cycles available, expressed as a percentage.

Buffer Utilization - Ratio of the number of buffers in use, to the
number of possible buffers available, expressed as a percentage.

Data Rate - The number of bytes of user data transmitted (divided by
TOOT per second, averaged. .

If the value of the periodic evaluation exceeds the CMEM parameter value,
an alarm (addressed packet) is sent to the Report node, specifying the error
and evaluated value.

CTS and DCD are also tracked by the I/NP. If either signal is lost, an
al arm is sent to the Report node. If the lost signal remains down 11 x11

seconds (see sec. 6.8.4), an alarm is sent.

Transitions to the LINK UP and LINK DOWN state cause alarm packets to be
sent to the Report node with the node and port of both I /NP 1 s and the CMEM
defined line speed.

D814 System Software Manual
Section 6.8 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

6.8.8 I/NP Initialization Sequences

Mainframe
Network I/NP'
Link

1 <--I/NP ACTIVE

2 LINK DOWN-->

3 LINK DOWN-->

4 LINK DOWN-->

5 ACT I/NP-> LD-->

6 LINK INIT -->

7 LINK INIT-->

8 ASSUME MASTER-->

9 ASSUME MASTER-->

10 LINK UP<-
IF {O) <--
DF' {0)---> DF'{0,0)-->

11 IF' {1)--->
IF{l)<---- DF'{l,1)-->

12 IF' (2)--->
IF{2)<---- DF'{2,2)-->

13

14 IF I (X)--->
IF{Y)<---- DF'{X,X)-->

15 IF I {X+l)->

*
*
*

FRAME LOST

Mainframe
I/NP Network

I/NP ACTIVE-->

<--LINK DOWN

<--LINK DOWN <--ACT I/NP

<--LINK INIT

<--LINK INIT

<--LINK INIT

<--ASSUME SECONDARY

<--ASSUME SECONDARY

<--DF(-1,0) -->LINK UP
<--IF{O)

<--DF{-1,1)

<--DF{0,2) -->IF'{O)

<--DF(l,3) -->IF'(l)

<--DF{X-l,Y+2)
<---IF{Y+2)
--->IF'{X-1)

DF 1 {NY,X+l)--> <--DF(X,Y+3)
<---IF{Y+3)
--->IF'{X)

16 IF I (X+2)-->
DF'{Y,X+2)---> <--DF(X+l,Y+l)

<--DF{X+l,Y+2)

D814 System Software Manual
Section 6.8 - 10

--->IF' {X+l)

CODEX CORPORATION

17 IF'(X+3)-->
IF(Y+l)<-- DF'(Y+2,X+3)-> <--DF(X+2,Y+3)

18 IF'(X+4)-->
DF(Y+2)<-- DF'(Y+3,X+4)-> <--DF(X+3,Y+4)

*
*
*

(18*) MNL DECIDES TO ABORT LINK

19 ABORT LINK-->
IF(M) <-- DF'(M,N+l)-->

20
LINK DOWN-->

21 LINK DOWN-->

*
*
*

<--DF(N,M+l)

<--DF(N+l,M+2)

<--LINK DOWN

COMPANY CONFIDENTIAL

--->IF I (X+2)

--->IF'(X+3)
<---IF (Y+4)

--->IF' (N)
<--IF(M+l)

--->IF' (N+l)
<---IF(M+2)

--->LINK FAIL

STEPS 3 THROUGH 12 ARE REPEATED TO RESYNCHRONIZE

*
*
*

CTS OR DCD DRPS OR 6854 CLOCK FAILS

22 LINK FAIL<-
IF 1 (A+l)--->

23

LINK DOWN-->

LINK DOWN-->
*
*
*

-->IF' (A)
<--DF(A,B) <--IF(B)

<--LINK DOWN --->LINK FAIL

STEPS 3 THROUGH 12 ARE REPEATED TO RESYNCHRONIZE

Note: Although this chart implies simultaneity, the timing is independent,
and asynchronous.

Abbreviations:

1) Underlined names are IPOS addressed packets.

2) DF(AM,N) is the representation of a data frame (I-frame) whose
sequence number is "N" and whose ACK field is "M"; if "A" is blank,
the field is an ACK, if "A" has the value "N", the field is a NAK.

D814 System Software Manual
Section 6.8 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

3) IF{x) is the graphical representation of the data from (or for) link
data frame DF(AM,x).

Explanation:

Step 1 - Both I/NPs have just been IPL'd. An I/NP ACTIVE address packet
is sent from the I/NP to the mainframe.

Step 2 - The I/NPs transmit LINK DOWN (LO) link frames. I/NP states are
LINK DOWN.

Step 3 - The second mainframe has decided to bring up its I/NP. To do
so, it sends the I/NP an ACTIVATE I/NP (ACT I/NP) addressed packet.

Step 4 -The second I/NP transitions state to LINK INIT. The first I/NP,
not having received an ACTIVATE I/NP remains in the LINK DOWN state.

Step 5 - The first mainframe decided to bring up its I/NP (see Step 4).

Step 6 - Both I/NP's are transmitting LINK IN1T frames.

Stee 7 - The second I/NP has assumed the secondary role in the synchroni
zat10n. It transitions state to LINK SECONDARY !NIT. The first I/NP,
using the same algorithm, has decided it will assume the primary role.
Note, however, that it does not change state until Step 8.

Step 8 - The first I/NP, having received an ASSUME SECONDARY frame now
transitions state to LINK MASTER !NIT and transmits ASSUME MASTER frames.
The second I/NP is still in the LINK SECONDARY INIT state.

Step 9 - The second I/NP, having received the first I/NP's ASSUME MASTER
has now verified full duplex communications capability and is ready to
transmit data. It notifies the mainframe that it is ready using a LINK
UP addressed packet and changes state to LINK UP. The mainframe provides
data for the first I-frame (data frame). The first I/NP is still in the
LINK MASTER !NIT state.

Step 10 - The first I/NP, having received the second I/NP' s data frame
has established full duplex communications capability and is ready to
transmit. It notifies the mainframe (see Step 9) and passes the data to
the mainframe. It takes data from the mainframe to send its first data
frame. The state transitions to LINK UP.

Step 11 - The I/NPs are in normal communications mode. The states are
LINK UP. Data is being taken from the respective mainframe, enveloped
with protocol fields (sequence and ACK/NAK) and transmitted to the remote
I/NP.

0814 System Software Manual
Section 6.8 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

Note: Despite the timing implied by the chart, both I/NP's are transmit
ting independently. This means that received sequence n.umbers are sequen
tial, but that the ACK/NAK fields may or may not be sequential. When two
frames are received by an I/NP before it completes transmitting one
frame, the ACK/NAK number returned when the frame being transmitted com
pletes is two higher than the previous ACK/NAK field transmitted by that
same I/NP. ·

Step 12 - Transmission and reception continues asynchronously and inde
pendently, as long as received sequence fields are sequential.

Step 13 - A frame is lost. The receiving I/NP (the first I/NP) does not
see sequence number 11 Y+l 11, but instead sees 11 Y+2 11 • The frame could be
lost through line noise garbling, or have been discarded by the receiv
ing I/NP as the result of a buffer shortage.

Step 14 - Sequence number 11 Y+l 11 is missed by I/NP's, the second I/NP con
tinues normally.

Stee 15 - INP' sends a NAK. The last valid sequence number received
{ 11 Y) is returned. The second I/NP is sti 11 transmitting normally.

Step 16 - The second I/NP has received the NAK of I/NP 1 • It begins
retransmitting from sequence number 11 Y+l 11 , and passes the data received
to the mainframe. ARQ buffers through 11 Y" are freed by the second I/NP.

Step 17 - I/NP' now receives frame 11 Y+l 11 and 11 Y+2 11 • 11 Y+l 11 readies I/NP'
to receive additional data frames. Note that the ACK/NAK field is doubly
incremented. Asynchronous normal communications is restored. I/NP' con
tinues retransmitting frames received prior to the NAK.

Step 18 - All retransmitted frames from the second I/NP have been sent,
new data· is now requested from the mainframe for transmission.

Step (18*} - The mainframe decides to bring the link down. (Possibly to
adjust inconsistent software).

Steb 19 - The mainframe (MNL) has decided to shutdown its I/NP.
so y sending an ABORT LINK addressed packet.

It does

Ste~ 20 - The first I/NP transitions state to LINK KILL (effectively LINK
DOW). The second I/NP, unaware of the change of state, continues
sending normally.

Step 21 - The second I/NP receives the LINK DOWN frame and transitions
state to LINK KILL. It notifies the mainframe of the transition and
transmits LINK DOWN frames. Both I/NP's will remain down until an
ACTIVATE I/NP is received from their respective mainframes.

D814 System Software Manual
Section 6.8 - 13 -

CODEX CORPORATION COMPANY CONFIDENTIAL

Step 22 - Having detected a hardware error (or no frames from the remote
I/NP for an extended period of time) the first I/NP declares itself dead.
It notifies the mainframe and transitions state to LINK KILL. The second
I/NP remains in the LINK UP state.

Stet 23 - The second I/NP sees the LINK DOWN frame and transitions state
to INK KILL. Both I/NP's are now shutdown.

0814 System Software Manual
Section 6.8 - 14

CODEX CORPORATION COMPANY CONFIDENTIAL

6.9 Intelligent Group Band Network Port (l/GBNP)

The I/GBNP contains two microprocessors, one on the I Engine 2 (Engine)
card, and one on the V.35 Bit-oriented Protocol {V-Bit) card. Although both
processors share access to memory and the MC6854 Advanced Data Link Control
ler {ADLC), they are used to perform separate functions. The Engine proces
sor receives data to be transmitted from the Mainframe Network Link {MNL)
software via the Bus Interface Chips {BICs}, and places it into memory
buffers. The V-Bit processor acts as a Direct Memory Access {OMA} controller
between the Engine's memory and the ADLC transmitter registers. It also per
forms a OMA function from the ADLC 1 s receiver to the Engine's memory. The
Engine processor moves characters from memory via the BICs to MNL. The
remainder of the port functions are carried out in the Engine processor.

The I/GBNP software subsystem is organized as groups of modules which are
responsible for unique functional subsets of the I/GBNP. The groups of
modules are: ·

1. Intelligent Port Operating System
2. l/GBNP Initialization
3. Configuration Management
4. Statistics Management
5. Monitoring Module
6. Protocol Management and Data Movement
7. V-Bit Diagnostic Program

6.9.1 Design Considerations

The list which follows explains some decisions which were made in the
design of the l/GBNP and the factors which influenced the choices.

Frame Size - The size of the frames sent over the group band network link
will be 128 bytes maximum plus 1 flag and 2 CRC bytes for a total of 131
bytes or 1048 bits. {As a future enhancement, the frame size could be made a
parameter which could be configured during port initialization with any fixed
value which is 128 or less. This parameter would have to be set to a value
which would allow the worst case number of unacknowledged frames expected for
the link to be stored for retransmission.) At 64K bits per second {8000
bytes per second} the time to transmit this block is 131/8000 second or
16.375 milliseconds. This number directly affects the total worst case delay
experienced by a character in passing through a node. Larger blocks increase
the delay, but also improve the efficiency by allowing transmission of a
higher percentage of MNL data bytes and a lower percentage of overhead {pro
tocol and control) bytes. A full frame of data has 125 data bytes and 6 over
head bytes {only 3 of which are stored in memory) for a total efficiency of
125/131 or 95.4 percent. Since there are 128 possible Frame Sequence Num
bers, 16K of memory wi 11 be required to store 128 frames of 128 bytes each.
This represents two seconds 1 worth of data in storage for possible retrans
mission. This figure is reasonable in that two satellite hops introduce the

Rev. 1 0814 System Software Manual
Section 6.9 - 1

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

maximum reasonably expected delay in the transmission medium, and each such
hop accounts for less than 1 second in round-trip delay. Hence, if the
entire retransmission queue fills before an ACK is received, automatically
initiating a series of retransmissions is a reasonable course of action.
Note that if frames of less than the maximum size are transmitted, the
retransmission queue may fill in less than two seconds.

Frame Format - Several differences exist between the frame format chosen
for the I/GBNP and the format used in the I/NP. Since the two network ports
have no common data rate, this is not seen as a cause for concern. The
sequence numbers are seven bits long in the I/GBNP. The extra sequence num
bers are necessary to a 11 ow a larger number of outstanding unacknowledged
frames due to the higher data rate of the port. The Frame Type Indicator
(FTI) cannot share a byte with the ACK/NAK field. The FTI will be transmit
ted between I/GBNP 1 s as a full byte of data. Neither the FTI nor any other
MNL data need receive any special handling by the I/GBNP. Link frame bound
aries are insensitive to MNL frame boundaries. The ACK/NAK field has been
pl aced near the beginning of the frame in a fixed location. There is no
advantage to placing the ACK/NAK field at the end of the frame, since the OMA
scheme prohibits changing ·a frame in memory after it is scheduled for trans
mission, and the retransmission queue is completely allocated during initial
ization for all time, hence, no buffer space is saved by having the ACK/NAK
field be as current as possible.

6.9.2 I/GBNP Data Structures

Much of the random access memory in the I /GBNP may be accessed (phys i -
cally) by either of the processors, but access to various locations is
restricted by software convention. The programs executed by the two proces
sors are kept separate, as are various local data structures. Certain loca
tions are shared, such as the Transmit Queue and various inter-processor
communications bytes, but each of these is written by only one of the pro
cessors. The hardware physically prevents the V-Bit processor from accessing
the lowest 16K bytes of engine memory space, so this area is used to hold the
engine's program.

6.9.2.1 Frame Structure

The I/GBNP uses frames, enveloped by CRC protected protocols, to trans
fer information between 0814 l/GBNPs. Two types of frames are used. The
first type of frame is called a supervisory frame (see Figure 6.9-lA). This
type of frame only contains data exchanged between l/GBNPs. The second type
of frame is called a data frame (see Figure 6.9-18). This type of frame only
contains data exchanged between two MNL modules in remote 0814 mainframes.
Only data frames are protected by a Go-Back-N ARQ error protection scheme.
Supervisory frames are protected against loss (when necessary) by higher
levels in the I/GBNP software.

Rev. 1 0814 System Software Manual
Section 6.9 - 2

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

6.9.2.1.1 Supervisory Frames Types

There are six different Supervisory Frames transmitted/received by an
I/GBNP (Figure 6.9-lA).

11 ccccccc 11 Code Frame Type

Link/Intialization (LI)
Link Down (LO)
Assume Master (AMSTR)
Assume Secondary (ASEC)
Delay Determine (DD)

1
2
3
4
5
6 Delay Determine Response {DOR)

The format of each of these frames is given in Figure 6.9-2. Some common
notation used frame parameter naming is as follows:

= Frame Sender's parameter xxx S(xxx)
R(xxx)
N,P
CFG

= Frame Receiver's parameter xxx
= Node #, Port #

(Validation)

SW REV
SW REL
T

= Boot Configuration Number
= Software Revision Level
= Software Release
= Time (LSB of 24 bit 10 msec clock)

(NOTE: S(N) must equal the A field in any frame)

6.9.2.1.2 Data Frame Types

There is only one type of Data Frame (see Figure 6.9-lB).
of data frames are passed transparently between MNL modules
frames. The only interpretation done by the I/GBNP of MNL data
tion is for statistical purposes; this will be explained later.

Rev. 1 D814 System Software Manual
Section 6.9 - 3

The contents
in 0814 main
frame informa-

Rev. 1

CODEX CORPORATION

I/GBNP Link Frame Formats

T
L . . . A
G

CS = B 'lccccccc' -v-
Control Code

F
L . . . A
G

CD = B ·~nnnnnnn'

Frame Seq #

Figure 6.9-lA

Supervisory Frame

CC ITT
CRC PARAMETERS cs

128 Bytes Max!

Figure 6.9-lB

Data Frame

CC ITT ..
CRC MNL DATA CD

128 Bytes Max!

For All Frames: A= Initiating Node#

A/N = B 'Xnnnnnnn'

A/N

A/N

COMPANY CONFIDENTIAL

1~
A l ~ . . .

F
L

A A . . .
G

1-~eq # of last good frame revd

Rev. 1

I 0 = ACK
-->

1 = NAK

D814 System Software Manual
- Section 6.9 - 4 _

Rev. 1

CODEX CORPORATION

I F
L c c
A R R
G c c

F
L c c
A R R
G c c

L C C
A R R
G C C

r
L c c
A R R
G c c

Rev. 1

t
I HELP R
L TYPE T
L

F
I HELP R
L TYPE T
L

F
I HELPI R
L TYPE T
L

r
I HELP R
L TYPE T
L

Supervisory Frame Formats

Figure 6.9-2

R
p

R
p

R
p

s
R SSW SSW c
N REL REV F

G
LINK INIT

FILLER

LINK DOWN

s
R SSW SSW c
N REL REV F

G
ASSUME MASTER

R I SSW
N REL

s
SSW I c
REV F

G
ASSUME SECONDARY

FILLER

DELAY DETERMINE

s
R R UN- UN- c
p N USED USED F

G
DELAY DETERMINE

s
T

s
T

s
T

s
T

D814 System Software Manual
Section 6.9 - 5

s
p

s
p

s
p

s
p

COMPANY CONFIDENTIAL

t
s A L
N $81 I A A

N G

A I F
s L
N $83 ~ l A

A
G

F
S A L
N $84 I A A

N G

F
s A L
N $86 I A A

N G

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

6.9.2.2 Frame Queues

There are two structures for storing frames in the I/GBNP. The first
structure is the Outbound Frame Retransmit Queue {RXMTQ). This queue holds
copies of frames which have been transmitted but not yet acknowledged. The
second structure is the Inbound BIC Data Frame Queue (IBDFQ) which contains
data frames for delivery to the D814 MNL module via the BIC data FIFO.

Both frame queues are of fixed length and preallocated for the rapid
access required for high speed lines. The RXMTQ contains 64 frame buffers of
128 bytes each, and the IBDFQ contains 16 frame buffers of 128 bytes each.
The total storage required for frame queues is thus 10,240 bytes.

6.9.2.3 Statistics and Monitoring Table

The I/GBNP uses the standard statistics routines to collect statistics on
the parameters listed below. These parameters are inserted into the standard
statistics request packet response in addition to the ones reported by the
common software. The number of bytes listed is the number used by the para
meter in the statistics packet.

RETRANSMITTED FRAMES
NEW DATA FRAMES TRANSMITTED
MNL BYTES SENT
ROUND-TRIP LINK DELAY {MSEC)
NAKS RECEIVED

(2 Bytes)
(2 Bytes)
(2 Bytes)
(2 Bytes)
(2 Bytes)
(1 Byte)
(2 Bytes)

UNACKNOWLEDGED FRAMES OUTSTANDING
AVAILABLE (UNUSED) BANDWIDTH (CHARS)

6.9.2.4 State Table

The I/GBNP state table really controls the operation of the I/GBNP since
it is a state driven subsystem. The I/GBNP can be in the following master
states:

1. Link Up (LU)

2. Link Down (LO)

3. Link Ki 11 (LK)

4. Link Initiate (LI)

Rev. 1

- Normal state when frames are being ex
changed between I/GBNPs.

- I/GBNP not ready or not authorized to bring
up link.

The I/GBNP is aborting the link and clean
ing up internal data structures. When all
internal recovery is complete, the state
transitions to the LO state.

- This is the link initialization state used
to synchronize bringing up the link between
two I/GBNPs.

0814 System Software Manual
Section 6.9 - 6

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

5. Assume Master (AMSTR) - In this state the I/GBNP has assumed the
role of link master for the link initial
ization sequence.

6. Assume Secondary (ASEC) In this state the I/GBNP has assumed the
secondary role during link initialization.

In addition to the master I/GBNP state parameter, the following state
parameters and flags are necessary for I/GBNP operation.

1. Last ACK Received
2. Last Frame Transmitted
3. Nak Request Flag
4. Last Frame Received
5. Retransmit Mode Flag
6. Next Frame Expected

6.9.2.5 Configuration Tables

(LAST_ACK_RCVD)
(LAST_$E QNJMTD)
(NAK...FLG)
(LAST_BLOC_RCVD)
{RXMT_FLG)
(NXT_FRM..._EXP)

This table contains the configuration related parameters. These parame
ters are:

CMEl'LGTYP
CMEM....STYP
CMEM..._TIMC
CMEM....SPDH-1
CMEM....SPOL_ ->
CMEM._MOOE
CMEM....RTTH
CMEM..._BUTH

CMEM....PLTH

CMEM..._NRZI
CMEM....TACK

Generic Port Type
Port Subtype
Statistics Time Constant
Configured speed. No relation to actual speed. Not used.
Not used.
Not used.
Threshold for retransmit rate system report.
Threshold for buffer utilization system report (should be
CMEM_BUIP).
Threshold for processor loading system port (should be
CMEM....PLI P).
NRZ/NRZI Encoding Selector
No ACK timeout threshold.

6.9.3 I/GBNP Main Modules

6.9.3.1 I/GBNP IP Operating System

The I /GBNP wi 11 use the standard 6809 Inte 11 i gent Port Operating System
(IPOS/09) described in Section 6.1 of this manual. It is assumed that
IPOS/09 IRQ dispatching works using SWI3 for termination, RT! to resume and
start tasks.

Rev. 1 0814 System Software Manual
Section 6.9 - 7

Rev. 1

• CODEX CORPORATION COMPANY CONFIDENTIAL

6.9.3.2 Initialization

The I/GBNP initialization routine executes in the Engine processor with
the V-Bit processor held in a reset state. It creates and initializes all
the TCBs required for its operation and copies the V-Bit program into the
V-Bit card's memory.

It then requests and receives CMEM parameters from the mainframe and
sends another packet to the mainframe to report that it is active and ready
to try to bring the link up. When it receives a packet instructing it to do
so, it enters 11 L ink Initial ization 11 state, initializes the ADLC chip, and
rel eases the V-Bit processor's RESET 1 ine. The port then begins sending
supervisory frames in an effort to achieve synchronization with the remote
GBNP.

6.9.3.3 Configuration Management

The port presently uses its own configuration module, but could be modi
fied to use the system standard routine.

6.9.3.4 Statistics Management

The port uses the standard statistics modules to report statistics upon
request and to send system reports when alarm conditions occur.

6.9.3.5 Monitoring Module

This module will bring the link down if any of the following conditions
exist for longer than the configured {CMEM....NOAK) threshold period:

CTS Off
DCD Off
No new acknowledgements received.

6.9.3.6 Protocol Management and Data Movement

The Protocol Management and Data Movement functions are executed in both
processors and consists of six submodules:

1.
2.
3.
4.
5.
6.

Rev. 1

BIC IRQ Control
Outbound BIC Driver
Outbound Protocol/OMA Initiation
ADLC OMA Driver {Executed in V-Bit proc.)
Inbound Protocol/OMA Initiation
Inbound BIC Driver

0814 System Software Manual
Section 6.9 - 8

{BICIRQ)
(OBBIC)
{OBPDMA)
{ADMA)
{IBPDMA)
(IBBIC)

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

The general structure is diagrammed in Figure 6.9-4. The submodules oper
ate asynchronously from one another. Communication and coordination between
the processors and among submodules in the engine processor is accomp 1 i shed
by using RAM flags. The functions of each submodule are described below.
All Engine submodules execute at the IRQ. level.

6.9.3.6.1 BIC IRQ Control (BICIRQ)

This submodule is entered upon receipt of an interrupt from the BIC to
determine which of the BIC Driver submodules to execute.

6.9.3.6.2 Outbound BIC Driver (OBBIC)

This submodule receives control from BICIRQ when the BIC FIFO is half
full or completely full (choice to be based on actual experience). It re
moves bytes of data from the BIC and places them into a buffer in the retrans
mit queue (RXMTQ). When this buffer becomes full the BIC IRQ is disabled io
prevent further characters from being read from the BIC until OBPDMA has
scheduled the full buffer for transmission. Since OBBIC and OBPDMA have dif
fe-rent functions involving the same buffer in RXMTQ, both of them run with
IRQ masked. Si nee OBBIC only runs upon receipt of a BIC interrupt, it is
expected that MNL will keep filling the BIC FIFO with nonzero data frequently
enough to prevent a small number of characters placed into the FIFO from
experiencing an unacceptable delay while waiting for enough characters to
cause an interrupt. Zero characters may not be placed into the FIFO because
a zero is used to mark the start of pad characters in a partially full frame.

6.9.3.6.3 Outbound Protocol/OMA Initiation (OBPDMA)

This submodule receives control when an IRQ is received from the V-Bit
card. This IRQ occurs when the ADMA submodule has completed transmitting the
previous buffer. If a supervisory frame has been built, it is selected for
transmission instead of the data frame built by OBBIC. If there is no super
visory frame, OBPDMA terminates the RXMTQ buffer being filled by OBBIC
(unless it has already been completely filled) by placing a zero byte in the
next character position. For either kind of frame, the current ACK/NAK byte
is placed into the buffer. The buffer address is then passed to ADMA for
transmission and a new buffer (if available) is set up for OBBIC to fill.
BIC outbound FIFO interrupts are then enabled so that OBBIC will start fil
ling the new buffer. If OBPDMA receives control when OBBIC has not started
to fill a RXMTQ buffer because of lack of BIC FIFO data, a full-sized frame
with no data bytes (first data byte position zero) will be sent. If all 127
RXMTQ data frame entries are full of unacknowledged but al ready-transmitted
frames, OBPDMA switches to retransmit mode.

Rev. 1 0814 System Software Manual
Section 6.9 - 9

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

6.9.3.6.4 ADLC OMA Driver (ADMA)

The ADMA submodule is in constant control of the processor on the V-Bit
card. It receives a pointer to a 128-byte buffer in the Engine's memory. It
transmits the data contained in the buffer as a single link frame through the
M68B54 Advanced Data Link Controller chip. When the last character has been
passed to the ADLC chip, an interrupt is sent to the Engine to request
another buff er address from OBPDMA.

Along with the transmitter code, ADMA also contains receiver code which
accepts received characters from the ADLC chip and places them into a
128-byte buffer in IBDFQ, the address of which is received from IBPDMA. When
the buff er has been fi 11 ed, ADMA interrupts the Engi n'e to cause IBPDMA to
run.

6.9.3.6.5 Inbound Protocol/OMA Initiation (IBPDMA)

The IBPDMA module is run when an interrupt is received from the V-Bit
processor, to notify the Engine that a buffer in the Inbound BIC Data FIFO
Queue has been filled with a received link frame. The ACK/NAK field is read
and processed, by releasing RXMTQ buffers as necessary (if it is an ACK), or
by changing to retransmit mode (and possibly al so rel easing some buffers) if
it is a NAK. If the frame is a supervisory frame, a task is forked to pro
cess it. If it is a data frame, the sequence number is checked and is con
verted to an ACK/NAK byte to be transmitted in the next outbound frame. The
data frame is then linked to a queue to be passed through the BIC FIFO to
MNL. If necessary, the BIC FIFO interrupt is enabled.

6.9.3.6.6 Inbound BIC Driver (IBBIC)

This routine is executed upon receipt of an interrupt which signifies
that the BIC FIFO is ready to accept more characters to be passed to MNL. It
removes characters from IBDFQ and places them into the FIFO. If a zero byte
is read from IBDFQ, it signifies that the link frame contains no more actual
data bytes. If IBBIC finishes processing the last IBDFQ buffer, it disables
further BIC Inbound FIFO interrupts.

Rev. 1 0814 System Software Manual
Section 6.9 - 10

Rev. 1

CODEX CORPORATION

Rev. 1

..

0814 System Software Manual
Section 6.9 - 11

COMPANY CONFIDENTIAL

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

6
0
5
0

M
A
I
N
F
R
A
M
E

Rev. 1

Group Band Network Port

Data Movement Software Structure

Figure 6.9-4A

ENGINE PROCESSOR

---->11111111111111111--> OBBIC -----> ------> OBPDMA ----->-------

---------- I
<---111111 \ \ \ 1111111 \ <--- ,_188_1c <--

1-11-
••• <--1_1s_P_oM_A_ <-- <-----

ENGINE PROCESSOR I
- - - - - - - - - - - - -· - - - - - -

0814 System Software Manual
Section 6.9 - 12

Rev. 1

CODEX CORPORATION

I
----------------->

--------------<---

Rev. 1

COMPANY CONFIDENTIAL

Group Band Network Port

Data Movement Software Structure

Figure 6.9-4B

OMA PROCESSOR

----->l~XM~T~ ------------>[[[\------->

I
RCV 1<-----1JI1<------------------------

OMA PROCESSOR

0814 System Software Manual
Section 6.9 - 13

0
A
T
A

L
I
N
K

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

6.9.3.6.7 V-Bit Diagnostic Program (DIAG)

Si nee the memory on the V-Bit card is not parity-checked by hardware,
this module is executed periodically by the background diagnostic task as a
port-dependent diagnostic subroutine. It compares the 11 copy 11 of the V-Bit
program stored in the V-Bit card's memory with the 11 original 11 stored in the
Engine's memory.

Rev. 1 0814 System Software Manual
Section 6.9 - 14

Rev. 1

CODEX CORPORATION COMPANY CONFIDENTIAL

6.10 Intelligent Datagram Port (I/DGP)

6.10.1 Overview

6.10.1.1 Introduction

Any even numbered port except 0 in the D814 network can be configured to
be an I/DGP port. In addition, each Control Terminal Port (I/CTP) will have
all the functions of the I/DGP. All references to I/DGP in this document are
also applicable to the portion of I/CTP that it is in common with.

The I/DGP subsystem consist of the following modules:

1. I/POS (see Section 6.1)
2. User Interface (see PFS)
3. Message Manager
4. Statistic Gathering
5. Special 1/0 Routines

6.10.1.2 Design Philosophy

The basic goal in the design of the I/DGP is to:

J. Have the user interface as flexible and simple to use as possible so
as to aid the unfami 1 i ar without overburdening the so phi sti cated
users.

2. Provide powerful features, but taking the necessary measures to
avoid the datagram traffic from significantly impacting the net
work's performance.

6.10.2 Message Manager

6.10.2.1 Introduction

The set of routines that make up the Message Manager can be divided func-
tionally into two parts:

1. Datagram Transmitter (see Section 6.10.2.5)
2. Datagram Receiver (see Section 6.10.2.6)

Datagrams in the D814 network are transmitted in addressed packets (see
Section 6.5), which can be up to 256 bytes of data and control information.
The I/DGP allows up to 15 addressed packets per datagram, and the actual
number and size of these addressed packets can be easily changed to optimize
network efficiency.

D814 System Software Manual
Section 6.10 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

The addressed packets (AP's) are sent from the source I/DGP to its main
frame. From the source I/DGP 's mainframe the AP' s are then sent to the
destination mainframe. There all of the AP's that belong to a datagram are
first accounted for before any AP is retransmitted to the destination I/DGP.

6.10.2.2 Design Considerations

The major problems in the design of the I/DGP are:

1. Network congestion due to the high priority of addressed packet
traffic and the capability of the user in sending a datagram to many
destinations simultaneously.

2. Buffer under-run from generating too many addressed packets at once.

The problems are dealt with by:

1. Reducing the number of transmissions required.

2. Generate the addressed packets from a low priority task.

3. Limiting the replies to cases where the number of destinations is
small.

6.10.2.3 Datagram Format

The format of the addressed packet for datagrams follows the same format
as other addressed packets for the first seven (0 to 6) and 1 ast bytes.
Additionally, the following information is required:

1. Message number - To uniquely identify each datagram.

2. Sequence and numbering of each address packet in the datagram.

3. Indi cater to show if reply is required.

4. Addresses of the I/DGP ports within the node that is to receive the
datagram.

Items 1, 2 and 3 are in each AP, and item 4 is only in the first AP.
Thus, for each datagram all AP have the first 10 bytes of identical informa
tion, except for the sequence number. The last byte of each addressed packet
will carry the error code, same as other addressed packets, if the error code
bit is '1'.

D814 System Software Manual
Section 6.10 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.10.2.4 Acknowledgement Format

When requested, the receiving I/DGP port wi 11 return an acknowledgement,
in the form of a short datagram, to the sending I/DGP. The information in
the acknowledgement is to include:

1. Address of receiving port and node.

2. Address of sending port and node.

3. Message number.

4. Time that the datagram was received.

6.10.2.S Datagram Transmitter

This set of routines performs the following functions:

1. Collect data from the User Interface and time stamp the datagram.

2. Organize the destination addresses for possible grouping of them to
reduce the number of transmissions.

3. Set the acknow-ledgement flag, if required.

4. Generate the addressed packets and send each set of them at specific
time intervals, short enough to allow for reasonable response time
and long enough to avoid adversely impacting the mainframe 1 s ·
resources.

S. Li st any expected acknowledgements for datagrams sent, if any, set
timer for those ack 1 s to return. If not received within the time
allowed, then assume lost and queue a message to inform the user.

6.10.2.6 Datagram Receiver

This set of routines performs the following functions:

1. Assemble received addressed packets into datagrams.

2. Time stamp the datagram.

3. Arrange the datagram into a format suitable to send to the user.

4. Return ack 1s if required.

D814 System Software Manual
Section 6.la - 3

CODEX CORPORATION

6.10.3 Error Messages

The following is a list of possible error messages:

1. Node NN not in the network.

COMPANY CONFIDENTIAL

2. Port PP at node NN is not a Datagram or Control Terminal Port.

3. Message MMMM to node NN port PP lost.

4. No acknowledgement received for message MMMM to node NN port PP.

5. Receive Queue full at node NN.

6. Buffers full, cannot accept any message.

7. Invalid node address.

8. Invalid port address.

9. No destination entered.

10. No message entered.

11. Message too long, 512 characters maximum.

12. Message aborted by user, return to output mode.

13. Idle at input mode too long, return to output mode.

6.10.4 Statistic Collection

The following statistics are monitored:

1. Processor loading.

2. Buffer utilization.

3. Maximum buffer size.

4. Line hit (errors on 2651).

0814 System Software Manual
Section 6.10 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

6.10.5 Mainframe Interface

After the addressed packets are setup for transmission, they will be sent
to the mainframe one at a time. There will be two mainframe submodules to
handle these datagram AP' s. One module to handle datagrams with specific
destination node address and the other to handle datagrams that are to be
sent to all nodes in the network, including one to the receiving datagram
module in the same node.

Since the specific port address information is contained in the first
addressed packet only, the submodule in the destination mainframe has to wait
for a complete set of addressed packets before transmitting them to its I/DGP
ports. This submodule is expected to return addressed packets in case of
transmission errors or missing addressed packets. A time interval will. be
set, after the arrival of the first addressed packet, for the arrival of a
complete datagram; after which it is assumed that the remaining addressed.
packets are lost.

In the case of transmission to all I/DGP ports in a node, it is assumed
that the mainframe submodule that handles this task will determine where the
I/DGP ports are in its node.

0814 System Software Manual
Section 6.10 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

-,

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.11 Intelligent Asynchronous Terminal Port Protocol Software

This subsystem has been deleted from 0814 system software.

Rev. 2 0814 System Software Manual
Section 6.11 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.12 Intelligent Synchronous Terminal Port Protocol Software

This subsystem has been deleted from 0814 system software.

Rev. 2 0814 System Software Manual
Section 6.12 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.13

The Intelligent Spoofed Synchronous Terminal Port Protocol Module (2780/
3780 BSC Version) (I/SSTP-BSC, herein referred to as IS/BSC) is organized as
a set of submodules, each of which pro vi des a re 1 ated set of functions.
These functions include:

1) System Initialization
2) Communications Interrupt Handling
3) Network Spoofing Control
4) Inbound Protocol Handling
5) Outbound Protocol Handling
6) Call Manager Interface
7) Statistics and Exception Monitoring

Descriptions of the submodules which perform these functions are found
throughout Sections 6.13.1 through 6.13.7.

Because spoofing utilizes protocol intervention to increase throughput,
several of the ISBSC modules have intelligence far beyond that of their
counterparts in non-spoofed ports. Data is not merely moved - it is verified
and generated as well.

The terminals involved in a BSC "conversation" each have a specific role:
one is sender of data (MASTER), the other receiver/acknowledger of data
(SLAVE). In order for spoofing to be exercised, it is necessary that the
spoofing controller be able to identify the role of its user and emulate the
functions of the opposing role. Add.itionally, since· this determination is
not made .unt i1 a conversation is begun, the contra 11 er must be capab 1 e of
temporarily suspending protocol intervention when desirable.

The specific tasks associated with each role are identified below:

Master SPOC

Spoofed Data Transmission -

Rev. 2

* receives data from master
* checks BCC value, discarding message if incorrect
* generates and sends FACK 1 s (false ACK's) to master for data correct

ly received.
* NAK's incorrectly received blocks
* generates and sends WACK's to master when outstanding ACK's exceeds

calculated maximum
* sends RVI's and EOT's received from slave to master
* transmits data across the network

D814 System Software Manual
Section 6.13 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Normal Data Transmission -

* receives and transmits data in both directions across the network
* generates and sends WACK's to master when required to maintain

orderly transmission

Slave SPOC

Spoofed Data Transmission -

* receives and buffers data from the network
* transmits data to slave
* receives slave responses and transmits them across _the network

(excluding NAK's and WACK's)
* resends NAK'ed data
* generates and sends TTD's to slave when lacking data from master
* sends ENQ when 3-second timeout occurs

Normal Data Transmission -

* receives and transmits data in both directions across the network
* generates and sends TTD's to slave when required to maintain orderly

transmission

6.13.1 System Initialization (Submodule ISBSC$INIT)

The function of this submodule is to start IP common modules (i.e.,
ADCM$, CMM$, FIFO$, FLOW$) and to initialize the IS/BSC data structures. The
submodule is composed of three routines. The first routine is called by IPOS
to begin initialization of the protocol tasks, the second is forked by the
first, and the third routin~ is a batch task with an entry in the Module Dis
patch Table that is scheduled subsequently.

The first routine initializes all protocol state variables and data struc
tures for statistics accumulation, and obtains buffers to be used as perman
ent TCB's for all other IS/BSC submodules. In addition, it obtains the
Holding Buffers used by the 2651 interrupt routines as temporary storage of
data to, be sent or data that has been received, and forks the second routine
(ISBSC$INIT:REQ) before returning to IPOS.

ISBSC$INIT:REQ builds a configuration-request addressed packet and routes
it to the mainframe MCM$CMEM module (see Section 5. 7). The return of an
addressed packet containing the -requested information- causes scheduling of
the third routine (ISBSC$INIT:CONF), that which initializes the remaining
data structures and completes the initialization process for the IS/BSC.

Rev. 2 D814 System Software Manual
Section 6.13 - 2

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point - ISBSC$INIT:ENTRY

Function

Initialize IS/BSC data structures, start IP corTUTion modules, and obtain
2651 Holding Buffers.

Entry 8onditions

* None

Exit Conditions

All registers destroyed

Entry Point - ISBSC$INIT:REQ

Function

Build a configuration-request packet

Entry Conditions

* Forked

Exit Conditions

* Terminates

Entry Point - ISBSC$INIT:CONF

Function

Complete IS/BSC data structure initialization based on the information
contained in returned configuration-request packet.

Entry Conditions

* Batch Task

Exit Conditions

* Terminates

6.13.2 Communications Interrupt Handling (Submodule ISBSC$COMM)

This submodule is invoked by IPOS to service any interrupt requests from
the 2651 CorTUTiunications Interface Chip and the Auxiliary Control Signal
Register. ISBSC$COMM: IRQ scans the contents of the ACS Status Register to
identify the requestor, and routes the IRQ to the appropriate IRQ processor.

Rev. 2 0814 System Software Manual
Section 6.13 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Interrupts from the 2651 are of three types: Receiver Ready, Transmitter
Ready, and Data Set Change. ACS interrupts are modem signal changes, hence
are handled in the same way as 2651 Data Set Changes.

Entry Point - ISBSC$COMM:IRQ

Function

Dispatch 2651 and ACS IRQ's to the appropriate interrupt processing rou
tine.

Entry Conditions

* ACS or 2651 IRQ

Exit Conditions

* Terminates

Receiver Ready (IRQ) Routine (RECEIVE)

This routine performs processing necessitated by a 2651 Receiver Ready
interrupt. It has 6 basic functions to perform:

1)

2)

3)
4)
5)
6)

Move data from the 2651 to the Receive Holding Buffer, encoding when
necessary (see Section 6.13.2.1).
Detect and record parity and BCC errors by means of the 2653 Poly
nomial Generator/Checker
Update spoofing controller variables
Discard blocks received in error
Fork spoofing controller modules
Fork IBP module

After processing a data byte, the routine returns control to
ISBSC$COMM:IRQ which checks for other pending interrupts.

Transmitter Ready (IRQ) Routine (TRANSMIT)

This routine responds to 2651 transmitter ready IRQ's. It has 5 basic
functions:

1) Move data from the Transmit Buffer to the 2651
2) Decode data and modem control signals (see Section 6.13.2.1)
3) Insert between-block syn and idle characters
4) Process modem signals received from the network.
5) Verify data accuracy by means of the 2653 .

Rev. 2 0814 System Software Manual Rev. 2
Section 6.13 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

After processing a data byte, control is returned to ISBSC$COMM:IRQ which
checks for other pending interrupts.

Note: Modem signal changes are processed by setting the appropriate bits
in tlie'Auxiliary Control Signal Register and the 2651 Command Register. The
2651 Command Register is detailed in the Signetics 2651 PCI document. Infor
mation concerning the ACSR structure and use is found in the Hardware System
Spec. It is useful to note that the only bits of the ACSR which are utilized
in the IS/BSC (other than IRQ) are BUSY (ACS_IN), CTS and RNG (ACS_OUT). CTS
is used only when Clear to Send Delay is activated.

Data Set Change (IRQ) Routine (ISBSC$COMM:DSC)

This routine is responsible for handling Data Set (Modem) changes. It i~
initiated by the occurrence of a data set change interrupt from the 2651 or
ACSR. The data set signals that can cause this interrupt (at the local 2651
or ACSR) are:

1) DCD - data carrier ~etect
2) DSR - data set ready
3) RI - ring in

When this routine is entered, the 2651 1 s Status register and the ACSR are
read. The above mentioned signals are formed into a Modem Cnt l. Signal byte
and the byte is encoded as described in Section 6 .13. 2 .1. The encoded data
is placed in the Receive Holding Buffer and the routine exits. If Clear-to
Send Delay is activated, the routine to generate this signal is delay-forked.

6.13.2.1 Data Encoding/Decoding

Data encoding is performed as follows:

Data (D) ==>

Modem Signals(S) ==>

(D)
(X 1 FF 1 ,X 1 8l 1)

(X 1 FF 1 ,X 1 FF 1)

if 0 <
if (D)
if (D)

(X 1 FF 1 ,s)1 if (S)
(x I FF I , x I 80 I) if (s)

(D) < X1 FF 1

= 0
= X1 FF 1

> 0
= 0

Call signals==> (X 1 FF 1 ,X 1 82 1)I Request Call Termination

Note: S<X 1 0F 1 (i.e., high order nibble must be zero)

Data. decoding is the inverse of the encoding procedure, except that Call
Signals are not decoded. The Call Signals described above are special
signals used by the CMM Interface to terminate a call.

Rev. 2 D814 System Software Manual
Section 6.13 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.13.3 Network Spoofing Control (Submodule ISBSC$SPOC)

This submodule controls the movement of data between the Transmit Holding
Buffer and the Transmit Buffer, and the generation of all spoofed messages.
Additionally, it handles the discarding of previous outbound blocks and
enabling of the 2651 transmitter.

The submodule is composed of 3 routines:

ISBSC$SPOC: IMMED
ISBSC$SPOC:DELAYED
ISBSC$SPOC:NEGATIVE

Entry Point

ISBSC$SPOC: IMMED

Function

Generate positive spoofed responses {ACK's) or transfer actual data to
the transmit buffer.

Entry Conditions

* Forked

Exit Conditions

* Terminates

Entry Point

ISBSC$SPOC:DELAYED

Function

Generate WACK's, TTD's or ENQ's, depending on the value of
OFIPTCB:XSAVE3, and spoof EOT when TTD or ENQ limits are exceeded.

Entry Conditions

Forked *
* OFIPTCB:XSAVE3 = flag indicating desired message

Exit Conditions

* Terminates

Rev. 2 0814 System Software Manual
Section 6.13 - 6

Rev. 2

CODEX CORPORATION

Entry Point

ISBSC$SPOC:NEGATIVE

Function

COMPANY CONFIDENTIAL

Generate NAK or ENQ outbound messages based on the value of
OF$ISBSC:PORT-5TAT.

Entry Conditions

* Forked

Exit Conditions

* Terminates

· 6.13.4 Inbound Protocol Handling (Submodule ISBSC$IBP)

This protocol routine is forked by the Receiver Ready (IRQ) ro~tine when
data has been moved to the Receive Buffer.

As long as a call·is in progress, the contents of the Receive Buffer are
sent to the Adaptive Data Compress ion Encoder where they are encoded and
stored in the Inbound Data Buffer. If no call is in progress all data,
excluding Data Set Change Signals, are ignored; these may be used to initiate
a call.

Entry Point

ISBSC$IBP:GETCHAR

Entry Conditions

* Forked

Exit Conditions

* Terminates

6.13.5 Outbound Protocol Handling (ISBSC$0BP)

This protocol routine is forked by the PRE-ARQ/BIC Receiver or the Spoof
ing Controller when data is to be moved to the Transmit Holding Buffer. When
no bytes are available, it sets a flag (ARQ fork flag) indicating to the
PRE-ARQ/BIC Receiver to fork this routine when new data is placed in the Out
bound Data Buffer.

Rev. 2 D814 System Software Manual
Section 6.13 - 7

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The submodule 1) moves bytes to the Transmit Holding Buffer, 2) inserts
Internal Signals {!S's) when spoofing to cause the 2653 to do BCC checking,
3) updates the ACT count, discarding ACK blocks when spoofing, and 4) flags
the Spoofing Contra 11 er module when data is ready for movement to the Trans
mit Buffer.

The routine terminates without setting the fork flag when a complete BSC
data block is in the Transmit Holding Buffer.

Entry Point
' ISBSC$0BP:ENTRY

Entry Conditions

* Forked

Exit Conditions

* Terminates

6.13.6 Call Manager Interface (ISBSC$CMI)

This submodule is responsible for handling communications between the
protocol modules and the Call Manager. It has 3 entry points:

ISBSC$CMI:ENTRY
ISBSC$CMI:SEND_CRECALL
ISBSC$CMI:SEND_HANGUP

and performs 5 distinct tasks:

1) Call End Processing
2) Call Request Processing
3) Call Created Processing
4) Hangup Request
5) Create Call Request

Entry Point - ISBSC$CMI:ENTRY

Function

(CMM -->Protocol)
(CMM -->Protocol)
(CMM -->Protocol)
{Protocol --> CMM}
(Protocol --> CMM)

Dequeue an addressed packet from the Call Manager, activate the appro
priate routine to process it by identifying the command code contained in
the addressed packet message field.

Rev. 2 0814 System Software Manual
Section 6.13 - 8

Rev. 2

CODEX CORPORATION

Entry Conditions

* None

Exit Conditions

* All registers destroyed

Call End Processing

COMPANY CONFIDENTIAL

This routine is invoked by ISBSC$CMI:ENTRY upon receipt of a call end AP
from the Call Manager. It initiates reinitialization of IP common routines,
and sends a create call AP to the Call Manager when a new call is indicated.

Call Reguest Processing

, This routine is invoked by ISBSC$CM I : ENTRY when a 11 Ca ll Request 11 AP is
received from the Call Manager. It is responsible for rejecting calls when
the port is already busy or there is no answer, for raising 11 RING 11 1-5 times
when the terminal DSR is down, and for sending "Call Accepted" AP' s to the
Call Manager.

Call Created Processing

This routine is invoked by ISBSC$CMI:ENTRY upon receipt of a 11 Call
Created" AP from the Call Manager. The routine enables the BIC IB and OB
FIFO' s and the 2651 receiver so the newly active call can proceed with data
transmission.

Entry Point - ISBSC$CMI:SEND_HANGUP

Function

This routine is called by the Spoofing Controller or the Call Manager
Interface. Its function is to construct and route to the Call Manager an
hangup addressed packet.

Entry Conditions

* None

Exit Conditions

*
*

A-Reg destroyed
X-Reg destroyed

Entry Point - ISBSC$CMI:SEND_CRECALL

Rev. 2 0814 System Software Manual
Section 6.13 - 9

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Function

This routine is called by the Protocol modules or the Ca-11 Manager Inter
face. It handles the construction and routing of a create call addressed
packet to the Call Manager.

'Entry Conditions

* None

Exit Conditions

*
*

A-Reg destroyed
X-Reg destroyed

6.13.7 Statistics and Monitoring (Submodule ISBSC$STAT)

This submodule is responsible for monitoring the performance of the
ISBSC, reporting error and exception conditions to the network report port,
and responding to requests for port statistics. It has three external entry
points:

1. ISBSC$STAT:COLLECT_STATS
2. ISBSC$STAJ:STAT
3. ISBSC$STAT:MONITOR

Entry Point - ISBSC$STAT:COLLECT-5TATS

Function

Collects instantaneous values for processor loading, encoder nibbles in,
encoder nibbles out, number of buffers in use, number of characters
received from the 2651, number of blocks received from the 2651, number
of b 1 ocks received in error, and current character error count. Forks
the monitoring routine (ISBSC$STAT:MONITOR). (This routine is initiated
by IPOS every 6 seconds.)

Entry Conditions

* None

Exit Conditions

* All registers destroyed

Entry Point - ISBSC$STAT:MONITOR

Rev. 2 0814 System Software Manual
Section 6.13 - 10

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Function

Updates the weighted-average value for each statistic using the current
instantaneous value. Calculates instantaneous processor load, buffer
utilization, compression efficiency, character error rate and block error
rate, comparing percentages to th res hold values and reporting exceptions
to Network Report Port.

Entry Conditions

* None·

Exit Conditions

* None

Entry Point - ISBSC$STAT:STAT

Function

Creates and sends a statistics addressed packet in response to statistics
request from the CTP. Statistics included:

1. Processing Loading - As calculated by IPOS (see Section 6.1.10}.

2. Buffer Utilization - The ratio of the number of buffers currently in
use to the total number of buffers in the free buffer pool, times
100%.

3. Compression Efficiency - the ratio of the total number of bits
(including parity bit} from the· terminal to the number of bits
resulting from code compression, times 100%.

4. Character Error rate - the ratio of the number of characters with
bad parity received from the terminal to the total number of charac
ters received, times 100%.

5. Statistical Loading - the ratio of the number of characters from the
terminal to the maximum number of characters which the terminal
could have sent in the elapsed time, times 100%.

6. Compressed Loading - The ratio of the number of bits resulting from
code compression to the maximum number of bits (including parity
bit} the terminal could have sent in the elapsed time, times 100%.

7. Block Error Rate - The ratio of the number of blocks received with
either parity or BCC errors from the terminal to the total number of
blocks received, times 100%.

Rev. 2 0814 System Software Manual
Section 6.13 - 11

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Conditions

* None

Exit Conditions

* None

At this point it seems desirable to deviate from the module functional
specifications in order to illustrate IS/BSC data flow and the interaction of
IS/BSC submodules and IP Co111T1on routines.

In transmitting data from a local to a remote terminal port, a number of
data and hardware structures are used to temporarily hold data. These
transfers of data all ow IS/BSC modules to determine the type 'of processing
required and to perform the necessary and/or desirable protocol functions
(i.e., sync filling, data compression, etc.).

Rev. 2 0814 System Software Manual
Section 6.13 - 12

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

The fol lowing diagrams indicate the structures used (by name only) and
the direction of data flow in the IS/BSC.

1 · 2651
I Receiver

2651
Trans
mitter

I I Receive

!-->,Holding
Buff er

I I
Transmit

INBOUND DATA MOVEMENT

\ I Receive
1-->,Buffer

I I

I I Inbound

1-->1 Data
Buffer

ARQ BUFFERS

I I
BIC

<-- Buffer <--
Transmit
Holding
Buffer

<--
Outbound

Data
Buff er

<---- OBFIFO <-- 6000

OUTBOUND DATA MOVEMENT

(Data in the Receive and Transmit Holding Buffers may never go any fur
ther, but may be discarded - e.g., inbound error blocks, outbound ACK's;
during spoofing.)

The following diagrams graphically illustrate combined logic and data
flow in the ISBSC. Separate diagrams are given for spoofed and non-spoofed
operation to emphasize the difference in transfer of control to SPOC. Note
that even when not spoofing, the Spoofing Controller is active in data
movement.

Rev. 2 D814 System Software Manual
Section 6.13 - 13

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

INBOUND OUTBOUND

Structures
2651 RCVR I

ISBSC Routines Structures
Ste OBFIFO

~ I IRQ
: -------> FORK
: : : : : : : : : : > 1-c-oM-M-I----->

. .
__ R_HO_L_D __ j <: : : :

v

FSTFRK
s
p

I :
IRQj :

<------ :
1---=F""""I F=o""""R"""'C.,..,,..V -I < : : : : : : : : :

JSR I ~
v v

I FLOW RECV

FSTFRKI
.

RBOF
0

c
: : : : : : : >I oso80FF

.

...•...•.. >I
I v

IBP I
~ I JSR
v v

ENCODE I

IBOBDFF -----
.

. .
I<: : : : :

:::::::::>I FIFO XMTI
A
I JSR

IRQ I
BIC IBFIFOl----- 1

A
•· .

: v v

. .

I v
A : : I OBP

JsRI A

. . . .

v :
I DECODE

. .
I<

~ ~~~~~~~~~~~~~~~~~! XHOLD

: > I XBU F

.
__ C_OM....,M...--_I <: : : : : : : :

: A
: I IRQ
• I . ------: : : : : : : : : I FLOW XMIT :::: : : : : : > 1---.2 6-s1---x"'Rr-R~

==> DATA FLOW
--> LOGIC FLOW

ISBSC - Spoofed Operation

Note: This diagram ignores all structures and routines associated with
AWQ?'FLOW control except those which directly interface with ISBSC routines.

Rev. 2 D814 System Software Manual
Section 6.13 - 14

Rev. 2

CODEX CORPORATION

INBOUND

Structures
2651 RCVR

: I
:) IRQ
: -------> - --: : : : : : : : : : > I COMM

.
__ R_HO_L_D __ I <:: : :

v
RBOF

.

.......... >I
I v

FSTFRK

IBP I
~ I JSR
v v

ENCODE I

. .
_I_B_DB_O_F_F _I < : : : : :

==> DATA FLOW
--> LOGIC FLOW

COMPANY CONFIDENTIAL

OUTBOUND

ISBSC Routines Structures
BIC OBFIFO

I :

s
p

0

c

IRQ j :
<------- : ------1 FIFO RCV I<::::::::::

JSR I ~
v v I I FLOW RECV

I FSTFRKI

I
.
: : : : : : : > l __ O_BD_B_O_FF_

I FORK J
. _ __,,....I <---1-..... 0B P--

A JSR I A

. .

. . . .

v :
I DECODE

.
I<

~:::: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l __ X_HO_L_D __

: > I XBU F

.
COMM I <: : : : : : : : --:__,A.---
: I IRQ
• I . ------: : : : : : : : : > 1---.2""6 51.......,X'""MT"'"R.--

ISBSC - Non-Spoofed Operation

Note: This diagram ignores all structures and routines associated with
ARQ/FLOW control except those which directly interface with ISBSC routines.

Rev. 2 D814 System Software Manual
Section 6.13 - 15

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

Protocol Software

The Intelligent Spoofed Synchronous Terminal Port Protocol Module (HASP
version) (I/SSTP-HASP, herein referred to as IS/HSP) is organized as a set of
submodules, each of which provides a related set of functions. These func
tions include:

1) System Initialization
2) Communications Interrupt Handling
3) Network Spoofing Control
4) Call Manager Interface
5) Statistics and Exception Monitoring

Descriptions of the submodules which perform these functions are found
throughout Sections 6.14.1 through 6.14.5.

6.14.1 System Initialization (Submodule ISHSP$INIT)

The function of this submodule is to start IP common modules (i.e.,
ADCM$, CMM$, FIFO$, FLOW$) and to initialize the IS/HSP data structures. The
submodule is composed of three routines. The first routine is called by IPOS
to begin initialization of the protocol tasks, the second is forked by the
first, and the third routine is a batch task with an entry in the Module
Dispatch Table that is scheduled subsequently.

The fi·rst routine initializes all protocol state variables and data struc
tures for statistics accumulation, and obtains buffers to be used as perman
ent TCB's for all other IS/HSP submodules. In addition, it obtains the Spoof
ing Buffer and Holding Buffers used by the 2651 interrupt routines as tempor
ary storage of data to be sent or data that has been received, and forks the
second routine (ISHSP$INIT:REQ) before returning to IPOS.

ISHSP$INIT:REQ builds a configuration-request addressed packet and routes
it to the mainframe MCM$CMEM module (see Section 5.7). The return of an
addressed packet containing the requested information causes schedu 1 i ng of
the third routine (ISHSP$INIT:CONF), that which initializes the remaining
data structures and completes and the initialization process for the IS/HSP.
Included in this initialization stage is the calculation of the maximum num
ber of outstanding blocks permitted.

Of particular importance to IS/HSP is the correspondence of FCS bits to
RCB's, information of which is received from CMEM at this time.

Entry Point - ISHSP$INIT:ENTRY

Function

Initialize IS/HSP data structures, start IP common modules, and obtain
2651 Holding Buffers and Spoofing Buffer.

0814 System Software Manual
Section 6.14 - 1

CODEX CORPORATION

Entry Conditions

* None

Exit Conditions ·-
* All registers destroyed

Entry Point - ISHSP$INIT:REQ

Function

Build a configuration-request packet

Entry Conditions

* None

Exit Conditions

* None

Entry Point - ISHSP$INIT:CONF

Function

COMPANY CONFIDENTIAL

Complete IS/HSP data structure initialization based on the information
contained in returned configuration-request packet.

Entry Conditions

* None

Exit Conditions

* None

6.14.2 Communications Interrupt Handling (Submodule ISHSP$COMM)

This submodule is responsible for handling interrupts caused by the 2651
communications circuit. Interrupt types include:

1) Receiver Ready
2) Transmitter Ready
3) Data Set (MODEM) Change

Whenever a 2651 interrupt is received, it is routed to a routine
(ISHSP$COMM: IRQ) which determines what type of interrupt has occurred and
dispatches it to the appropriate interrupt processor.

D814 System Software Manual
Section 6.14 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point - ISHSP$COMM:IRQ

Function

Dispatch 2651 IRQ's to their corresponding interrupt routines.

Receiver Ready (IRQ) Routine (ISHSP$COMM:RCV)

This routine is utilized to handle the 2651's receiver section, being
initiated by the occurrence of a receiver ready interrupt. It performs 3
functions:

1) Moves data from the 2651 to the Receive Holding Buffer.
2) Performs data encoding (as detailed in Section 6.14.2.1).
3) Detects and records line errors.

The routine only relinquishes control when a data set change occurs or
when no more data is available.

Transmitter Ready (IRQ) Routine (ISHSP$COMM:XMT)

This routine is utilized to handle the 2651's transmitter section, being
initiated by the occurrence of a transmitter ready interrupt. It has 4
basic functions to perform:

1) Move data from the Transmit Holding Buffer to the 2651.
2) Decode data and modem control signals (as detailed in Section

6.14.2.1).
3) Line fi 11 (either syn or pad characters) when unable to transmit

data.
4) Process modem signal changes received from the network.

The routine only relinquishes control when a data set change occurs or
when no data remains in the Transmit Holding Buffer.

Note: Modem signal changes are processed by setting the appropriate bits
in the Auxiliary Control Signal Register and the 2651 Conmand Register.
The 2651 Conmand Register is detailed in the Signetics 2651 PCI document.
Information concerning the ACSR structure and use is found in the Hard
ware System Specification. It is useful to note that the only bits of
the ACSR which are utilized in the IS/HSP (other than IRQ) are BUSY
{ACS_JN), CTS and RNG (ACS....OUT). CTS is used only when Clear to Send
Delay is activated.

0814 System Software Manual
Section 6.14 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Data Set Change (IRQ) Routine (ISHSP$COMM:DSC)

This routine is responsible for handling Data Set (Modem) changes. It is
initiated by the occurrence of a data set change interrupt from the 2651
or ACSR. The data set signals that can cause this interrupt (at the
local 2651 or ACSR) are:

1) DCD - data carrier detect
2) DSR - data set ready
3) RI - ring in

When this routine is entered, the 2651's Status Register and the ACSR are
read. The above mentioned signals are formed into a Modem Cntl. Signal
byte and the byte is encoded as described in Section 6.14.2.1. The
encoded data is placed in the Receive Holding Buffer and the routine
exits. -However, if the buffer is full, the routine retries until success-
ful. . .

6.14.2.1 Data Encoding/Decoding

Data encoding is performed as follows:

Data (D) ==> (D) I if 0 < (D) < x I FF I
(X'FF' ,X 1 8l 1) I if (D) = 0
(XI FF I ,x I FF I) if (D) = X1 FF 1

Modem Signals(S) ==> (X 1 FF 1 ,s)1 if (S) > 0
(x I FF I 'x I 80 I) if (S) = 0

Call signals ==> (X 1 FF 1 ,X 1 82')1 Request Call Termination
(XI FF I ,x 1 83 1) Call Termination Granted

Note: S<X'7F' (i.e., high order bit must be zero)

Data decoding is the inverse of the encoding procedure, except that Call
Signals are not decoded. The Call Signals described above are special
signals used by the CMM Interface to terminate a call.

6.14.3 Network Spoofing Control (Submodule ISHSP$SPOC)

This submodule is responsible for handling the protocol operations
required in a HASP spoofing environment as detailed in the D814 Product Func
tional Specification, Appendix F. In short, the Spoofing Controller regu
lates the flow of data so that communications appear to proceed as in a
non-spoofed HASP network, sometimes by generating responses like those of the
remote CPU (i.e., ACKO, WAB) in the absence of real outbound data.

D814 System Software Manual
Section 6.14 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

The cont roll er is physically divided into Inbound and Outbound Protocol
Processors which are described in the following subsections. Familiarity
with multileaved data block structure is assumed throughout.

Note: The structure of a typical HASP transmission block can be found in
Appendix F of the 0814 Functional Specification.

Protocol In Processor

This protocol routine is forked by the Receiver Ready (IRQ) routine when
data has been placed in the Receive Holding Buffer. The functions per
formed by this routine include:

1) BCB verification

2) FCS monitoring and reflective updating of metering indicators

3) BCC calculation and verification

4) Appending of "abort" ICS's to incorrectly received data blocks

5) Appending of "in response to data" flags to data blocks (when
applicable)

6) Ti ming for, and generation of, ACKO' s and WAB' s in the absence of
outbound data to maintain synchronization

7) Updating of outstanding block count

If a call is in progress, the data in the Receive Holding Buffer is given
to the Adaptive Data Compression Encoder after appropriate processing;
otherwise, all data is ignored until a call is established. In either
case, recognition of changes in the terminal's DSR ·signal are transmitted
to the Call Manager for processing.

Entry Point - ISHSP$SPOC:IBP

Entry Conditions

* None

Exit Conditions

* None

0814 System Software Manual
Section 6.14 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

Protocol Out Processor

This protocor routine is forked by the Transmitter Ready (IRQ) routine,
the pre-ARQ/BIC Receiver, or the Call Manager when data is to be moved to
the Transmit Holding Buffer. Its responsibilities include:

1) Comparison of RCB's to metering indicators, performing metering off
when appropriate

2) Calculation of new BCC's for data blocks which have had records
metered off

3) Resetting of BCB's when metering on

4) Formulation of metered data into normal transmission blocks

5) Retransmittal of NAKed data blocks

6) Error recovery

7) Updating of outstanding block count

8) Regulation of data block transmittal (i.e., one response received
===> one block transmitted)

9) Generation of remote modem control signals (in particular RTS and
CTS).

The routine calls the Adaptive Data Compression Decoder in order to
obtain data bytes from the OB Data Buff er. When a "request ca 11 termination 11

or "call terminate" signal is received (see Section 6.14.2.1), the signal is
passed to the Call Manager for processing and is not placed in the Holding
Buffer. When no bytes are available, it sets a flag (ARQ Fork flag) indicat
ing to the Pre-ARQ/BIC Receiver to fork this routine when data becomes avail
able, and it resets a flag (Transmitter Fork flag) indicating to the Trans
mitter Ready (IRQ) routine not to fork this routine when the Xmit holding
buffer falls below half full.

As bytes are transferred to the Transmit Holding Buffer, if the communi
cations transmitter is not running it is started by enabling the 2651 trans
mitter. This causes a transmitter ready IRQ, which causes the Transmitter
Ready (IRQ) routine to start sending the data contained in the Holding Buf
fer. When the Transmit Buff er fi 11 s, the routine sets the Transmitter Fork
flag and terminates.

Entry Point - ISHSP$SPOC:OBP

Entry Conditions

* None

D814 System Software Manual
Section 6.14 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

Exit Conditions

* None

6.14.4 Call Manager Interface (ISHSP$CMI)

This submodule is responsible for handling communications between the
Protocol modules and the Call Manager. It has one external entry point
{ISHSP$CMI:ENTRY}, and performs 5 distinct tasks:

1) Call End Processing
2} Call Request Processing
3} Call Created Processing
4) Hangup Request
5) Create Call Request

{CMM -->Protocol}
(CMM -->Protocol)
(CMM -->Protocol}
(Protocol --> CMM)
{Protocol --> CMM}

The routines to process the first three are activated by ISHSP$CMI:ENTRY
upon receipt of an addressed packet from the Call Manager. The latter two
are subroutines used by the Spoofing Controller and the other CMI routines,
and are invoked by a JSR.

Entry Point - ISHSP$CMI:ENTRY

Function

Dequeue an addressed packet from the Call Manager, activate the appro
priate routine to process it by identifying the command code contained in
the addressed packet message field.

Entry Conditions

* None

Exit Conditions

* All registers destroyed

Call End Processing {ISHSP$CMI:CALLEND}

This routine is invoked by receipt of a call end AP from the Call Mana
ger. It initiates reinitialization of IP common routines, and sends a
create call AP to the Call Manager when a new call is indicated.

0814 System Software Manual
Section 6.14 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Call Request Processing (ISHSP$CMl:CALLCRE)

This routine is invoked by the receipt of a call request AP from the Call
Manager. It is responsible for setting an error flag when the port is
al ready busy or when the call has been improperly routed, and sends a
call accepted AP to Call Manager.

Call Created Processing (ISHSP$CMl:CALLCRE)

This routine is invoked by the receipt of a call created addressed packet
from the Call Manager. It enables the 2651 receiver and BIC Inbound and
Outbound FIFO's so a call can be established.

Hangup Request {ISHSP$CMl:SEND_HANGUP)

This routine is called by the Spoofing Controller or the Call Manager
Interface. Its function ·is to construct and route to the Call Manager an
hangup address packet.

Create Call Request (ISHSP$CMl:SEND_CRECALL)

This routine is called by the Protocol modules or the Call Manager Inter
face. It handles the construction and routing of a create call addressed
packet to the Call Manager.

===
At this point it seems desirable to take an aside from module functional

specifications in order to illustrate IS/HSP data flow and the interaction of
IS/HSP submodules and IP Common routines.

In transmitting data from a local to a remote terminal port, a number of
data and hardware structures are used to temporarily hold data. These
transfers of data allow IS/HSP modules to determine the type of processing
required and to perform the necessary and/or desirable protocol functions
{i.e., sync filling, data compression, etc.).

The following diagrams indicate the structures used (by name only) and
the direction of data flow in the IS/HSP.

0814 System Software Manual
Section 6.14 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

INBOUND DATA MOVEMENT

IB
2651 --> OF$ISHSP: --> DATA --> BIC --> 6000

RECEIVER RR ING BUFFER IBFIFO

OUTBOUND DATA MOVEMENT

OF$ISHSP: I
2651 <-- XRING <-- OB <-- BIC <-- 6000

TRANSMITTER A DATA OBFIFO
<-- BUFFER

SPOOFING
BUFFER ·

In this schemata, data is concurrently moved from the OB Data Buffer into
the Spoofing Buffer and XRING. The Spoofing Buffer saves a copy of an entire
b 1 ock transmitted; the OB Data Buffer is ready to accept a new b 1 ock. Data
transfer from the Spoofing Buffer to XRING occurs only when a NAK response is
encountered, indicating that the block previously transmitted was not correct
ly received, hence requires retransmittal.

(In pursuit of optimization, direct data transfer between the OB Data
Buffer and XRING may be eliminated. All data to XRING may be required to
first pass through the Spoofing Buffer.)

In order to gain a full understanding of how the IS/HSP submodules inter
act to accomplish their task, it is helpful to study the diagrams in Section
6.12 which briefly trace the path of data and logic through the I/STP. The
only difference in program control flow for the IS/HSP is that SPOC replaces
both IBP and OBP of I/STP.

D814 System Software Manual
Section 6.14 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

6.14.5 Statistics and Monitoring (ISHSP$STAT)

This routine is responsible for monitoring the performance of the IS/HSP
and reporting the information as a system alarm to the network Report Port.
In addition, any system module can request current information from this
module.

The individual modules in the IS/HSP are responsible for updating monitor
ing information as follows:

1) Receiver Ready Interrupt Routine

a) Number of characters received
b) Number of errors that occurred
c) Number of characters after encoding

2) Adaptive Data Compression Encoder

a) Number of nibbles encoded
b) Number of resulting nibbles

The statistics routine is started by IP initialization and runs every 6
seconds. Each time it executes, it calculates the following statistics:

1) Compression Efficiency - The ratio of the total number of bits
(including parity bit) from the terminal to the number of bits
resulting from code compression times 100%.

2) Character Error Rate - The ratio of the number of characters with
bad parity received from the termi na 1 to the tot a 1 number of char
acters received, times 100%.

3) Buffer Utilization - The ratio of the number of buffers currently in
use to the total number of buffers in the free buffer pool, times
100%.

4) Processor Loading - As calculated by IPOS (see Section 6.1.10).

The results of these calculations are compared to their respective thresh
olds, which are obtained from the mainframe during initialization. If any
threshold has been exceeded, an alarm packet is constructed and sent to the
network Report Port.

If a packet is received from a system module requesting statistics, an
addressed packet containing the above information, as well as:

1) Statistic Loading - The ratio of the number of characters from the
terminal to the maximum number of characters which the terminal
could have sent in the elapsed time, times 100%.

0814 System Software Manual
Section 6.14 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

2) Compressed Loading - The ratio of the number of bits resulting from
code compression to the maximum number of bits (including parity
bit) the terminal could have sent in the elapsed time, times 100%.

3) Memory Utilization - The ratio of the size of the port software
(including page zero and system areas) to the total memory size of
the physical port on which the software is running, times 100%.

is constructed and returned to the requesting module.

Entry Point - ISHSP$STAT:MONITOR

Function

Calculate statistics and send exception report addressed packets to the·
network Report Port.

Entry Conditions:

* None

Exit Conditions:

* None

Entry Point - ISHSP$STAT:AP

Function

Calculate statistics and send a statistics addressed packet to the
requesting module.

Entry Conditions:

* None

Exit Conditions:

* None

0814 System Software Manual
Section 6.14 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

\

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.15 Intelligent Bit-Oriented-Protocol Terminal Port (I/BOP) Protocol Module

6.15.1 Introduction

An I/BOP is an intelligent terminal port designed to interface HDLC (High
Level Data Link Control) type protocols so that two DTE's supporting such pro
tocols can communicate through the D814 network.

The I/BOP requires a communications section based on a Motorola MC6854
ADLC chip and ACS (Auxiliary Control Signal) register.

Running under the 6800 IP Operating System (IPOS, Section 6.1), the
I/BOP-specific module that is described here is divided into the following
submodules:

1) Initialization
2) Communications Control Processing
3) Protocol Handling
4) Call Manager Interfacing
5) Statistics and Monitoring

6.15.2 Functional Submodule Description

In this section, the functions of an I/BOP are described as belonging to
5 submodules as follows.

6.15.2.1 Initialization Submodule (IBOP$INIT:)

The function of this submodule is to make the I/BOP ready for a user.
_

Called by IPOS during the port initialization time, IBOP$INIT:START
initializes common single-threaded l/TP modules, and allocates storage blocks
for I/BOP data structures and initializes them. Finally, it forks
IBOP$INIT:SETUP and terminates. IBOP$INIT:SETUP then, started by the IPOS
scheduler, sends an Addressed Packet to MCM$CMEM of the Mainframe Configura
tion Control Module (see Section 5.7) to request for configuration parameters
which are eventually received by IBOP$INIT:CONF (module number EQIPMDT:IPP_
INIT) for the port configuration. When the port is configured accordingly,
the port initialization is complete. Then, a call is set up if a leased line
is in effect.

After a tab 1 e of configuration parameters has been bui 1t by this sub
module, it is used by IPCC$XMTRCV of the IP Configuration Control Module (see
Section 6.2) for configuration reads or reconfigurations.

The configurable parameters for an I/BOP are specified in the Section
3.2.7 of the 0814 Product Functional Specification.

Rev. 3 D814 System Software Manual
Section 6.15 - 1

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.15.2.2 Communications Control Submodule (IBOP$COMM:)

This submodule has the complete control over the communications section
of the I/BOP. It processes interrupts from the local communications section,
and detects Circuit Control Signals (CCS's) received from the remote port to
reflect the signaled conditions at the local communications section.

In order to exchange virtual circuit control information with the remote
port, an internal encoding/decoding scheme is used as follows.

Data (D) ==> (D) if 0 < (D) < X1 FF 1

(X 1 FF 1 , X1 8l 1) if (D) = 0
{XI FF I' X1 FF 1) if (D) = X1 FF 1

Frame CCS ==> (X 1 FF 1 , x 1 84 1) good frame (good FCS)
(X 1 FF 1 , x 1 85 1) bad frame (bad FCS)
(X'FF', x 1 86 1) aborted frame
(X 1 FF 1 , X1 87 1) mark idle

Modem CCS (S) ==> (XI FF I ' s) if (S)/> 0
(x I FF I ' x I 80 I) if (S) = 0

Call Termination CCS ==> (XI FF I ' x 1 83 1) call termination

Note: S<X 1 7F 1 (i.e., high order bit must be zero)

All the interrupts are entered at IBOP$COMM:IRQ by the IPOS.

Entry Point - IBOP$COMM:IRQ

After determining the cause of the interrupt, this routine calls one of
the fo 11 owing three routines whose functions are described in the subsequent
subsections.

1) Transmitter Controller

2) Receiver Controller

3) Modem Signal Change Handler

Rev. 3 0814 System Software Manual
Section 6.15 - 2

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

1) Transmitter Controller (IBOP$COMM:XMT)

This routine is called by IBOP$COMM:IRQ when the interrupt was
originated from the 6854 transmitter.

Data bytes are retrieved from a transmit frame byte queue (see Sec
tion 7.1 for byte queue description) only if it contains a complete
frame. Therefore, a transmitter underrun is prevented. However, it
will result in a delay of one frame.

If the data from a transmit frame byte queue is user data, it is
transmitted and then the routine returns. If it is a frame CCS, the
MC6854 is instructed to send either a closing or abort flag as appro
priate. If it is a modem CCS, the appropriate change is made to the
communications section. After the control function has been per
formed, the transmit frame byte queue is deleted and the routine
goes back to its beginning to process another data from the next
transmit frame byte queue. If there is no such a transmit frame
byte queue completely assembled yet, the 6854 transmitter is dis
abled.

The modem signal changes made by this routine are the opposite (RS
232-C protocol wise) to those sensed at the remote port. The fo 1-
1 owing relationship exists between the signals sensed at the remote
port and those changed at the local port:

Data Set Ready (DSR)
Data Carrier Detect (DCD)
Make Busy (MB)

<----> Data Terminal Ready (DTR)
<----> Request to Send (RTS)
<----> Ring In (RI)

If CTS went down, the 6854 transmitter is reset and the active trans
mit frame byte queue is reset so that the frame can be retransmitted
when CTS comes up.

2) Receiver Controller (IBOP$COMM:RCV)

Rev. 3

Ca 11 ed by IBOP$COMM: IRQ when the interrupt was originated from the
receiver, this routine first checks the cause of the ·interrupt.

If it is a Receiver Data Available interrupt, a byte from the 6854
receiver is passed to IP$FLOW$PXMT routine. If the interrupt is due
to an end of a frame, an appropriate frame CCS is passed.

If a mark idle condition is detected in the input stream, it is
translated into the corresponding frame CCS to reflect this cond i
t ion at the remote port.

D814 System Software Manual
Section 6.15 - 3

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

3} Modem Signal Change Handler (IBOP$COMM:MODEM)

There are four modem signals whose changes cause the transfer of
control to this routine:

1. Data Set Ready {DSR}
2. Data Carrier Detect (DCD)
3. Make Busy (MB)
4. Clear To Send (CTS}

If the interrupt is due to any changes in the first three signals,
the Protocol Inbound routine (IBOP$PROT:INB) is called.

If CTS came up, the 6854 transmitter is enabled as long as there is
a complete transmit frame byte queue to transmit.

If DCD came up, the SPARE_CTS is raised after configured CTS-delay
time period. If DCD went down, it is dropped.

6.15.2.3 Protocol Handler Submodule (IBOP$PROT:)

This submodule is responsible for moving data between the Communications
Control Submodule and the ARQ/Flow control {IP$FLOW$} Module. Additionally,
it calls the Call Manager Interface Submodule in order to establish or term
inate a call.

The actions performed by this submodule depend on the cal 1 state which
may be one of the following:

1. idle: There is no call being established, terminated, or active.
2. calling: A call is being established.
3. active: A call has been established.
4. terminating: A call is being terminated.

There are two protocol handling routines:

l} Outbound Protocol Handler
2) Inbound Protocol Handler

The functions of these routines are described below.

Rev. 3 D814 System Software Manual
Section 6.15 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

1) Outbound Protocol Handler (IBOP$PROT:OUTB)

This routine is called by the IP$FLOW$RECV when data is available to
be moved to the transmitter.

Entry Point - IBOP$PROT:OUTB

If the data received by this routine is user data, it is put into
the last transmit frame byte queue.

If it is an abort frame CCS, it is ut into the last transmit frame
byte queue. However, if it is a bad frame CCS, the routine proces
ses it depending on the configurable bad frame option as follows.
If the option is set for abort, a frame CCS for an abort is put into
the last transmit frame byte queue instead. But, if the option is
set for discard, the entire transmit frame byte queue is discarded.
When the routine finishes building a transmit frame byte queue by
append.ing a frame CCS (none for a good frame CCS), it enables the
6854 transmitter. Then it creates a new transmit frame byte queue
to be ready for subsequent_ data.

When the routine receives a 'call termination' CCS, the ensuing
action depends on the call state. If it is 'idle', the CCS is
ignored. If it is 'active', the call state is changed to 'terminat
ing', the call light is made blinking, and the same 'call termina
tion 1 CCS is passed back to IP$FLOW$PXMT. If the ca 11 state is
'calling' or _'terminating', the routine calls IBOP$CMI:HANGUP to
clear the call.

2) Inbound Protocol Handler (IBOP$PROT:INB)

Rev. 3

This routine is called by IBO$COMM:MODEM when a modem signal has
been changed.

If DSR came up and the auto-dial call option is in effect, the rou
tine calls IBOP$CMI:CRECALL in the Call Manager Interface Submodule.
If DSR went down and the call state is 'active' under either
auto-dial or contention call option, the routine changes the call
state to 'terminating' and passes a 'call termination' CCS to
IP$FLOW$PXMT. If the call state is 'calling' when the 'DSR down' is
detected, the call state is just changed to 'terminating'.

If the call state is 'active', the modem signal· is encoded into a
modem CCS and passed to the remote port by calling IP$FLOW$PXMT.

0814 System Software Manual
Section 6.15 - 5

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.15.2.4 Call Manager Interface Submodule (IBOP$CMI:)

Being called by the Protocol Handling Submodule when a call is to be
established or terminated, this submodule interfaces with the IP Call Manager
Module (CMM, see Section 6.3) to communicate with a remote port regarding
call maintenance procedures. Being called by the Protocol Handling Submodule
when a call is to be established or terminated.

The routines in this submodu 1 e be 1 ong to one of the two categories: the
first is for sending Addressed Packets to CMM, and the second is for handling
Addressed Packets received from CMM.

1) Call Addressed Packet Sender

There are two routines which send Addressed Packets to CMM:
I BOP$CMI: CRECALL for changing the ca 11 state to 'call i ng' , making·
the call light blinking, and sending a 'create call' Addressed
Packet; and IBOP$CMl:HANGUP for making the call state 'terminating'
and sending a 'hang up' Addressed Packet. They are called when a
call is to be established and terminated respectively.

2) Call Addressed Packet Receiver

Rev. 3

The routine IBOP$CMI :AP-RCV (module number EQIPMDT: IPP_cMM),
running as a batch task, retrieves a ca 11 Addressed Packet from its
input job queue and calls one of the following three routines
depending on the type of the Addressed Packet. There are three
types of call Addressed Packets acknowledged by this submodule.

a. Received a 'call requested' Addressed Packet:
(IBOP$CMI:CALLREQ)

The incoming call is accepted if the call state is 'idle' under
the contention call option or if the call state is 'idle' or
'calling' under the auto-dial or leased line call option and
the ca 11 i ng node/port is correct. For a content ion or auto
dial call to be accepted, DSR must be up. Otherwise, the user
is notified by raising RI modem signal 5 times.

If the call is accepted, the call state is made 'calling', the
call light is made blinking, and a 'call accepted' Addressed
Packet is sent back to CMM. If the call is rejected, the 'call
accepted' Addressed Packet is sent back to CMM with an error
code.

0814 System Software Manual
Section 6.15 - 6

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

b. Received a 'call created' Addressed Packet: (IBO$CMI:CALLCRE)

If the call state is 'calling•, the routine sets it to
1 active 1 , reinitializes the transmit frame data structures,
passes a local modem CCS to the remote port, enables the 6854
receiver and BIC FIF0 1 s, and changes the call light from blink
ing to on. If the call state is 1 terminating 1 , it sends a
'hang up• Addressed Packet to CMM.

c. Received a 'call ended' Addressed Packet: (IBOP$CMI:CALLEND)

This routine first checks the error code in the 1 call ended 1

Addressed Packet. If it indicates a busy condition at the
remote port, the routine tries again to establish a call.

If there is no error in the Addressed Packet, it checks the
call state. If it is 'idle', the routine does nothing. If it
is •calling', it tries again to establish the call. Otherwise,
the routine changes the call state to 'idle', reinitializes the
port, and turns off the call light.

Then, it tries to establish a call again if the call option is
either leased-line or auto-dial with DSR up.

6.15.2.5 Statistics and Monitoring Submodule (IBOP$~M:)

This submodule is responsible for monitoring the performance of the I/BOP
and reporting it to the network report port as any exception condition
arises. It works with the Statistics and Monitoring Module (IPSM) by pro
viding I/BOP-specific monitoring and statistics-gathering functions.

I

Toward that end, it is required that the Adaptive Data Compression
Encoder (IP$ADCM:ENCODE, see Section 6.4) calculates the following. '

1. Number of bytes encoded
2. Number of resulting nibbles

Also, the following statistics-gathering operations are imbedded in the
Communications Control Submodule within the I/BOP Protocol Module.

1. In the Receiver Controller (IBOP$COMM:RCV)

a) Number of frames received
b) Number of frames received with bad FCS

2. In the Transmitter Controller (IBOP$COMM:XMT)

Rev. 3

a) Number of frames transmitted

0814 System Software Manual
Section 6.15 - 7

•

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

When called by IPSMUPDATE:TASK, IBOP$SM:MON computes the following
based on the last monitoring period.

1. Compression Efficiency - The ratio of the number of bits received to
the number of bits resulting from adaptive data compression for a
specific time period, multiplied by 100%.

2. Receiver Frame Error Rate - The ratio of the number of frames
received with bad FCS to the total number of frames recei ved for a
specific time period, multiplied by 100%.

The results of the above calculations are compared to their respective
thresholds obtained as configuration parameters during the port initializa
tion. If any threshold has been exceeded, a monitoring report Addressed
Packet is constructed and sent to the network report port.

When called by IPSMSTAT:TASK, IBOPSMSTAT appends the above statistics
as well as the following in the current statistics report addressed packet.

1) Statistical Loading - The ratio of the number of bits received to
the maximum number of bits which could have been received for a
specific time period, multiplied by 100%.

2) Compressed Loading - The ratio of the number of bits resulting from
adaptive data compression to the maximum number of bits which could
have been received for a specific time period, multiplied by 100%.

3) Transmit Frame Rate - The rate of frames being transmitted measured
for a specific time period, in frames/sec.

4) Receive Frame Rate - The rate of frames being received measured for
a specific time period, in frames/sec.

6.15.3 Data Flow and Program Control Flow

Finally, a pictorial overview of the data flow and program control flow
in an I/BOP is presented below.

Rev. 3 0814 System Software Manual
Section 6.15 - 8

Rev. 3

CODEX CORPORATION

Rev. 3 0814 System Software Manual
Section 6.15 - 9

COMPANY CONFIDENTIAL

Rev. 3

CODEX CORPORATION

IRQ IP$
- - - - -> FIFO$

I INT

BIC
OUTB
FIFO

BIC
INB
FIFO

IP$ I
FIFO 1-
INT

->
I

IP$
ADCM$
DECODE I
A I
I v
IP$

FLOW$
RECV

A

COMPANY CONFIDENTIAL

JSR IBOP$
-> PROT:

I OUTB

ARQ Block j(-----

IP$ B~te
FLOW$

XMIT (--- Queues,.j-~A.-- ----....----
V I

IP$
ADCM$
ENCODE

--------------~>'(--------------,)'~:--------------
Interrupt Handler

-> Control Fl ow
--> Data Fl ow

Rev. 3

1 I
Task

Figure 6.15-A

I/BOP SW Structure

D814 System Software Manual
Section 6.15 - 10

Interrupt Handler

Rev. 3

CODEX CORPORATION

>I Frame

I Blte
I

gueues
I

- - - - -------

IBOP$
PROT:

INB I
I I

JSR v v

IP$
FLOW$
PXMT

- - -> Control Flow
--> Data Fl ow

Rev. 3

(

IRQ

I<- - - - -
IBOP$
COMM:

I > XMT

JSR IRQ
<- - <- - - - -

!BOP$
< COMM: <

MODEM

JSR IRQ
<- - - - - <- - - - -
<

IBOP$
COMM: (_

RCV

Interrupt Handler

Figure 6.15-B

I/BOP SW Structure

D814 System Software Manua 1
Section 6.15 - 11

COMPANY CONFIDENTIAL

I 6854
>I XMT

>
ACSR
OUT

ACSR
IN

6854
RCV

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.16 MODULE ITP

6.16.1 Overview and Definition of Terms

An explanation of the concepts of 1 thread 1 and 'virtual port' is neces
sary for an understanding of the function of module ITP$.

A thread is an interface seen by the user as a distinct terminal capable
of calling other terminals. ITP 1 s may be single-threaded or multi-threaded.
A single-threaded port, at its simplest, provides one RS232 connector for a
user terminal while a multi-threaded port might provide more than one such
connector. Each thread establishes and disconnects calls independently of
other threads in the port. Threads are numbered within a port roughly sequen
tially from 0 to 63. Single-threaded ports are considered to have one thread
whose number is 0 {O is an invalid thread number for a multi-threaded port)
and non-terminal ports are considered to have no threads.

Each thread within a multi-threaded port is considered to be a Virtual
Port {VP) and has a VP ID from 2 to 255 by which it may be addressed from
other ports in the network. VP ID 1 s are, therefore, unique within the node
while thread numbers are only unique within a particular port.

Module ITP$ is responsible for translating beween the VP ID 1 s used out
side of the port and the thread numbers used within the port software and for
providing data areas associated with each of the threads in the port.

6.16.2 Data Structures

ITPS 1 s most important function is the support of these thread-related
data structures:

1. VP Directory: This structure is allocated for all multi-threaded
ports. It is a 256-byte area of contiguous memory aligned on a page
boundary. The n 1 th byte of the VP directory contains the thread num
ber associated with VP number n. If there is no thread in this port
associated with that VP number; then the n 1 th byte is O.
OFIPCOMM:VP....DIRECTORY is a one-byte pointer to the page on which
this structure resides. If the VP directory is not allocated {if,
in other words, this is not a ·multi-threaded port), then
OFIPCOMM:VP....DIRECTORY contains a O.

2. Thread Directory: This structure· is allocated for all multi
threaded ports. It resides in contiguous memory and begins on a
page boundary. Byte n of the Thread Directory contains the VP num
ber associated with thread number n, or 0 if there is no VP for that

Rev. 2

type of number. The number of bytes in the Thread Directory is
equal to the maximum configured thread number plus 1.
OFIPCOMM:THREAILDIRECTORY is a one-byte pointer to the page on
which the Thread Directory resides. If this is not a multi-threaded
port, this pointer is cleared.

D814 System Software Manual
Section 6.16 - 1

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

3. Thread Structures: These pre areas of contiguous memory, one for
each thread in the port. Each thread structure contains as its
first byte the VP number for the thread. In addition, the Thread
Structure has the following data areas:

Call Manager Area - This area contains fields used by the Call
Manager and prefixed by OFIPTHREAD:CMM.._. Only the Call
Manager may write to these fields.

Protocol Area - This area contains fields written by the I/P
protocol modules and prefixed by OFIPTHREAD:IPP_.

4. Thread Structure Index: This is an index to the Thread Structures
discussed above. The size of the Thread Structure index is 2M + 2
where M is the highest thread number configured for the port, stored
in OF$! P$COMM :MAX-THREAD. The n 1 th two-byte entry in the index is
the address of the thread structure for thread number n. Location.
OFIPCOMM:THREAILINDEX points to the thread structure index. The
thread structures and the thread structure index are allocated for
all I/TP 1 s.

• 6.16.3 ITP$ Entry Points

Module ITP$ is composed of the following submodules --

MTINIT Initialization code for multi-threaded ports.

STINIT -- Initialization code for single-threaded ports.

THREAD -- Utility for thread structures. Common to all I/TP's.

TRANSLATE -- VP ID to thread number translation utility. Common to
all ports.

The external entry points into these submodules are listed below:

Subroutine ITP$MTINIT:USER

Rev. 2

Function --

This subroutine is called from the user initialization code
before any dynamic buffers have been deleted. It allocates a
2k contiguous area of memory which should be big enough to
contain all the ITP$ data structures.

Calling Sequence --

Cal led with the thread structure size in X register. All regis
ters and user-alterable TCB fields are destroyed on return to
the call er.

D814 System Software Manual
Section 6.16 - 2

Rev. 2

CODEX CORPORATION CCJllPANY CONFIDENTIAL

Subroutine ITP$MTINIT:CMEM

Function --

Called from user initialization code in multi-threaded ports to
complete initialization of ITP$ data structures·. This routine
sends an inquiry packet to the Mainframe Configuration Module
requesting a list of VP 1 s configured for the port. It then

·waits for ITP$MTINIT:AP to process the packet before returning
to the caller.

Calling Sequence --

No calling arguments. All registers and user-alterable TCB
fields are destroyed. On return, all ITP$ data structures are
initialized and may be used by external modules. Also, the I/P
port address is known and all thread structures have been·
cl eared.

Routine ITP$MTINIT:AP

Function --

Completes the initialization begun by ITP$MTINIT:INIT. It is
an addressed pa.cket task activated -by the response from MCM to
the inquiry packet sent by ITP$MTINIT:USER.

Subroutine ITP$STINIT:USER

Function --

Called from user initialization in single-threaded ports to
take the place of ITP$MTINIT:USER. It completes all ITP$ ini- ·
tialization. There is no MCM inquiry packet sent by ITP$ in
single-threaded ports •

. Calling Sequence --

No calling arguments. All registers and user-alterable TCB
fields are destroyed on return to the caller.

Subroutine ITP$THREAD:LOCATE

Rev. 2

Function --

Provides the user with the address of the thread structure for
any desired thread.

Calling Sequence --

Entry -- Calling A register contains the thread number.

0814 System Software Manual
Section 6.16 - 3

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL·

Exit -- On exit, X register contains the address of the thread
structure (if any) for the thread in the calling A register.
An invalid thread number is signaled by setting the CC:Z bit
and returning 0 in the X register.

Subroutine ITP$TRANSLATE:VP-TQ_THREAD

Rev. 2

Function --

Looks up a VP number in the VP directory (if it is allocated)
and returns the corresponding thread number, if there is a
non-zero thread number in the VP directory.

Calling Sequence --

Entry -- Calling A register must contain the VP number. ITP
initialization must be complete before calling this routine.

Exit -- On exit, A register contains the thread number .for the
calling A register, if it was valid. CC:Z is set if and only
if there is no val id thread for the VP number passed in the A
register. It should be noted that this .subroutine never
returns a thread number of 0 since the only way a thread 0 may
exist in· a port is if the port is single threaded. If that is
the case, the thread is not associated with any VP.

0814 System Software Manual
Section- 6.16 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.17 Intelligent Multiple Asynchronous Terminal Port Protocol Software

The Intelligent Multiple Asynchronous Terminal Port Protocol Module
(IMATP) passes data from 1 - 16 asynchronous termi na 1 s to the 0814 Network
without protocol intervention. It is organized as a collection of submod
ules, each responsible for performing a related set of functions. These
functions include:

1) System Initialization
23) Communications Interrupt

) Protocol Handling
4) Call Manager Interface
5) Statistics and Exception

Handling

Monitoring

Descriptions of the submodules which perform these tasks are found in
Sections 6.16.l through 6.16.5.

The IMATP user data structures, called thread structures, are data areas
for each configured terminal. These thread structures are initialized by an
accessed through module ITP$. They are discussed in Section 6.16.

6.17.1 System Initialization (submodule IMATP$INIT)

This submodule is responsible for starting multithread IP Common routines
(i.e., Data Compression Module, Call Manager, FIFO Interrupt Handlers, ARQ
and Flow Control) and allocating and initializing I/MATP data structures. It
consists of three distinct routines. The first is called by IPOS during its
own initialization phase to begin initialization of the protocol tasks; the
second is forked by the first; and the third routine is a batch task with an
entry in the Module Dispatch Table that is scheduled subsequently.

The first routine calls routine ITP$MTINIT:INIT to allocate sufficient
contiguous storage for the maximum conceivable number of thread structures.
The thread structure size is specified in the call to ITP$MTINIT:INIT. It
then forks the second routine (IMATP$INIT:REQ) and returns to IPOS.

IMATP$INIT:REQ first calls ITP$MTINIT:CMEM to complete the initialization
of the thread structures. ITP$MTINIT:CMEM gets from Mainframe Configuration
Memory a list of all threads configured for this port and initializes 'a
thread structure for each, placing the VP address in the first byte and clear
ing the rest of the structure. The thread structures contain all permanent
data structures which must be maintained for each configured thread. The
following sorts of MATP data items are in the thread structures:

Receive and Transmit Holding Buffers used by the 2651 interrupt rou
tines for temporary stroage of incoming and outgoing data.

Protocol state variables.

Data structures for statistics accumulation.

D814 System Software Manual
Section 6.17 - 1

CODEX CORPORATION COMPANY CONFIDENTIAL

After calling ITP$MTINIT:CMEM, the routine routes terminal configuration
request addressed packets (one for each configured thread) to Mainframe
Module MCM$CMEM (see Section 5.7).

The receipt of termi na 1 configuration parameters (vi a addressed packets)
causes scheduling of the third routine, IMATP$INIT:CONF. IMATP$INIT :CONF is
responsible for storing CMEM parameters in the individual thread structures
initializing the 265l's for asynchronous transmission, and initializing the
remaining I/MATP data structures. Additionally, verification that the
aggregate speeds of the terminals does not exceed the current limit of 9600
baud is done at this time. If the limit is exceeded, a message is sent to
the operator and the system traps.

NOTE: It may be benefi ci a 1 to store the thread number in the headers of
the Receive and Transmit Holding Buffers and Echo Buffers. This allows
us to proceed with one thread of communications by maintaining the
address of the correct buffer in the X-register, without allocating addi~
tional space or tying up a register to keep track of the thread. In this
way, repeated table look-ups during the Communications Interrupt and Pro
tocol Handling routines are eliminated.

Entry Point: IMATP$INIT:ENTRY

Function:

Begin I/MATP data structure initialization.

Entry Conditions:

* None

Exit Conditons:

* All registers destroyed.

Entry Point: IMATP$INIT:REQ

Function:

Complete thread structure initialization and send configuration-request
packets for all VP's to the Mainframe.

Entry Conditions:

* None

Exit Conditions:

* None

0814 System Software Manual
Section 6.17 - 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point: IMATP$INIT:CONF

Fun ct ion:

Complete I/MATP data structure initialization based on the information
contained in returned configuration-request packets.

Entry Conditions:

* None

Exit Conditions:

* None

6.17.2 Communications Interrupt Handling (submodule IMATP$COMM)

This submodule is responsible for servicing interrupts received from the
2651 communications circuits. Interrupt types include:

1) Receiver Ready
2) Transmitter Ready
3) Data Set {MODEM) Change

IPOS routes all 2651 IRQ 1 s to a routine {IMATP$COMM:IRQ) that botn deter
mines interrupt type (by reading the ACS Register and 2651 Status Register)
and does polling to locate the requesting 2651. The IRQ is dispatched to the
processing routine corresponding to the interrupt type, with the X-register
pointing to the Holding Buffer associated with the requesting 2651. (This
address is found in the Correspondence Table mentioned in IMATP$INIT.)

After processing each data byte, the interrupt processors return control
to IMATP$COMM:IRQ, which checks to see if there is more to do before termin
ating. To insure that no heavily loaded 2651 may monopolize processing time,
IMATP$COMM:IRQ maintains a count of the number of data bytes processed for
one thread during the current session. If the number exceeds the maximum
permitted for one session, the routine will poll and service the other 2651 1 s
before granting the original requestor a second session.

NOTE: Polling of 2651 1 s occurs in a pre-determined, fixed order which is
based on the addresses of the D814 hardware. For polling purposes, 1 ow
address===> high priority. Thus, the 2651 1 s on the QBYTE card with the
lowest address have the highest priority and are polled first. Similar
ly, on any particular QBYTE card, the 2651 with the lowest address is
polled first.

D814 System Software Manual
Section 6.17 - 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point: IMATP$COMM:IRQ

Function:

Dispatch 2651 IRQ 1 s to their corresponding processing routines

Entry Conditions

* None

Exit Conditions

* None

Receiver Ready (IRQ) Routine (IMATP$COMM:RCV)

This routine is initiated by the occurrence of a Receiver Ready IRQ for a
2651. It is responsible for performing three functions:

1) Moving data from the 2651 to the corresponding Receiver Ho 1 ding
Buffer (and Echo Buffer, if auto echo).

2) Performing data encoding (as detailed in Section 6.11.2.1).
3) Detecting and recording line and parity errors.

When necessary, IMATP$COMM:RCV will fork the Protocol In Processor, first
identifying the data stream by storing the address of the correct Receive
Holding Buffer in the TCB for that Processor.

Transmitter Ready (IRQ) Routine (IMATP$COMM:XMT)

This routine is utilized to handle the 2651 1 s transmitter section, and is
initiated by the occurrence of a Transmitter Ready interrupt. It has
four basic functions to perform:

1)

2)

3)
4)

Move data from a Transmit Holding Buffer (and Echo Buffer, if auto
echo is enabled) to the corresponding 2651.
Decode data and modem control signals (as detailed in Section
6.11.2.1).
Process modem signal changes received from the network.
Execute software support of data parity (when enabled).

When necessary, IMATP$COMM: XMT wi 11 fork the Protocol Out Processor,
first identifying the outgoing data stream by storing the address of the
correct Transmit Holding Buffer in the TCB for that Processor:

NOTE: Modem signal changes are processed by setting the appropriate bits
lnthe Auxiliary Control Signal Register and the 2651 Command Register.
The 2651 Command register is detailed in the Signetics 2651 PCI document.
Information concerning the ACSR structure and use is found in the Hard
ware System Specification. All equated bits of the ACSR are utilized in
the I/MATP.

D814 System Software Manual
Section 6.17 - 4

CODEX CORPORATION COMPANY CONFIDENTIAL

Data Set Change (IRQ) Routine (IMATP$COMM:DSC)

This routine is initiated by the occurrence of a Data Set Change inter
rupt from a Local 2651 or ACS Register. The data set signals that cause
this type of interrupt include:

1) DCD - data carrier detect
2) DSR - data set ready
3) RI - ring in
4) Sec. TxD - secondary transmit data
5) Sec. RTS - secondary request to send

Modem changes are processed by i sol ati ng the bits of the 2651 Status
Register and ACS Register which correspond to these signals and combining
them to form a Modem Control Signal byte. This byte is encoded (as
described in Section 6.11.2.1) and placed in the Receive Holding Buffer.

6.17.3 Protocol Handling (Submodules IMATP$IBP and IMATP$0BP)

The primary responsibility of the protocol handlers is the movement of
data between the Encoder/Decoder routines and the Communications Transmit and
Receive Holding Buffers. Additionally, they transfer modem signal changes to
the Call Manager when required to initiate or terminate a call. There are
two protocol processors:

1) Protocol In Processor
2) Protocol Out Processor

Protocol In processor (IMATP$IBP)

This protocol routine is forked by the Receiver Ready (IRQ) routine when
data has been placed in a Receive Holding Buffer.

All data (excluding DSR signal changes) are ignored until a call has been
established. While the call remains active, the contents of the appro
priate Receive Holding Buffer are sent to the Data Compression Encoder
with the thread number identified in the B-register.

Movement of data from a specific Receive Holding Buffer continues until
the buffer is emptied OR the maximum number permitted during one session
has been exceeded. At this point, the "next" Receive Holding Buffer is
scanned for data, and the process. is repeated until no data remains in
any of the Receive Holding Buffers. ·

Receipt of ICS's indicating changes in a terminal's DSR signal are always
transmitted to the Call Manager for processing. Additional responsibili
ties include the generation and sending of 11 calling 11 messages to remote
terminals when attempting to establish dial calls.

D814 System Software Manual
Section 6.17 - 5

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Point: IMATP$IBP:ENTRY

Entry Conditions:

* None

Exit Conditions:

* None

Protocol Out processor (IMATP$0BP)

This protocol routine is forked by Transmitter Ready (IRQ) routine or the
Pre-ARQ/BIC Receiver routine when data is to be moved to a Transmit Hold
ing Buffer. It calls the Data Compression Decoder to obtain data byte.s
from the corresponding Outbound Data Buffer, then selectively moves them
into the Transmit Holding Buffer.

When the active Outbound Data Buffer is emptied OR the maximum number of
bytes to be accepted from a terminal during one session has been
exceeded, OR the Transmit Holding Buffer for that OB Data Buffer fills
(whichever comes first), the 11 next 11 OB Data Buffer is scanned for data
and the process is repeated.

When bytes are no 1 anger available from any OB Data Buffer, the routine
sets the ARQ Fork flag (indicating to the· Pre-ARQ/BIC Receiver to fork
this routine when data becomes available, and resets the Transmitter Fork
flag (indicating to the Transmitter Ready (IRQ) routine not to fo~k this
routine when any Transmit Holding Buffer falls below half full).

As bytes are transferred to a Holding Buffer, if its 2651 transmitter is
not running, it is enab 1 ed. This creates a Transmitter Ready IRQ, which
causes the Communtcati ons Interrupt Handler to start removing data from
the Holding Buffers.

Any ' request ca 11 termination' or 'ca 11 terminate' s i gna 1 s received (see
Section 6.11.2.1), are passed to the Call Manager for processing and are
not placed in the Holding Buffers.

Entry Point: IMATP$0BP:ENTRY

Entry Conditions:

* None

Exit Conditions:

* None

0814 System Software Manual
Section 6.17 - 6

CODEX CORPORATION COMPANY CONFIDENTIAL

6.17.4 Call Manager Interface (IMATP$CMI)
'

This submodule is responsible for handling communications between the
Protocol modules and the Call Manager. It has one external entry point
(IMATP$CMI:ENTRY), and performs five distinct tasks:

1) Call End Processing
2) Call Request Processing
3) Call Created Processing
4) Hangup Request
5) Create Call Request

(CMM --->Protocol)
(CMM --->Protocol)
(CMM --->Protocol)
(Protocol ---> CMM)
(Protocol ---> CMM)

The routines to process the first three are activated by IMATP$CMI:ENTRY
upon receipt of an addressed packet from the Call Manager. The latter two
are subroutines used by the Inbound and Outbound Protocol modules and the
other CMI routines.

Entry Point: IMATP$CMI:ENTRY

Function:

Dequeue an addressed packet from the Call Manager and activate the appro
priate routine to process it by identifying the command code contained in
the addressed packet message field.

Entry Conditions:

* None

Exit Conditions:

* None

Call End Processing (IMATP$CMI:CALLEND)

This routine is activated by receipt of a 11 call end 11 AP from the Ca 11
Manager. At 11 normal 11 call end, it starts reinitialization of ARQ/FLOW
control and resets call state variables. The routine also resends a
11 create call 11 AP to the Call Manager when the remote terminal has indi
cated it is 11 busy 11 OR the call was ended before it was fully established.

Call Request Processing (IMATP$CMI:CALLREQ)

This routine is invoked by the receipt of a 11 call request 11 AP from the
Call Manager. It is responsible for rejecting calls when the port is
a 1 ready busy OR the 11 request 11 packet has been imp roper ly routed. Other
wise the routine sends a 11 call accepted 11 AP to Call Manager.

0814 System Software Manual
Section 6.17 - 7

CODEX CORPORATION COMPANY CONFIDENTIAL

Call Created Processing (IMATP$CMI:CALLCRE)

This routine is invoked following the receipt of a "call created" addres
sed packet from the Call Manager. It enables the 2651 receiver and BIG
Inbound and Outbound FIFO's so a call can proceed.

Hangup Request (IMATP$CMI:SEND HANGUP)

This routine is called by the Protocol modules or the Call Manager Inter
face. Its function is to construct and route to the Call Manager an
"hangup" addressed packet.

Create Call Request (IMATP$CMI:SEND CRECALL)

This routine is called by the Protocol modules or the Call Manager Inter
face. It handles the construction and routing of a "create call" addres
sed packet to the Call Manager.

===

At this point it seems desirable to diverge from module functional speci
fications in order to delineate and discuss those characteristics of the
I/MATP which set it apart from the single-threaded I/ATP.

As indicated in the introductory paragraph of Section 6.17, the I/MATP
passes data from 1 - 16 asynchronous terminals. Multiple terminals per set
of port software create a number of complexities in establishing and main
taining communications. There are multiple 2651 communications chips; multi
ple Receive and Transmit Holding Buffers; multiple Inbound and Outbound Data
Buffers; but only one BIG chip used to transmit the data from these across
the network. Despite this, each individual terminal of the I/MATP must have
the ability to converse with an I/ATP terminal, a terminal "belonging to"
another I/MATP, or another terminal within the same l/MATP, concurrent to
active communications involving other terminals of the same I/MATP. In addi
tion to this, multi licit must be trans arent across the link, i.e., communi
cation between an I an MA must 1n no way dif er rom that betwen two
I/ATP 1 s from the I/ATP 1 s perspective. In order to address this problem, the
concepts of "thread" number and "Virtual Port" (VP) came into existence.

When a singly-threaded port requests call establishment, it identifies
itself by means of node and port number. This is not sufficient routing
information when dealing with multiply-threaded ports. In the case of an
I/MATP, we know that each terminal sends and receives data via a specific
2651, and there will be no more than 16 terminals per port. For this reason
(based on QBYTE-card number and 2651 hardware address) each terminal is
uniquely identifiable by permanently associating with it a number ranging 0 -
F. This number, the "thread" number, is mentioned throughout Section 6.16
and effectively creates 16 fixed data paths through the I/MATP.

D814 System Software Manual
Section 6.17 - 8

CODEX CORPORATION COMPANY CONFIDENTIAL

It would appear that the addition of thread number to addressed packets
for call establishment would be a quick and simple solution to the routing
problem. However, this violates our second requirement, that of transpar
ency. In order to maintain this transparency, Vi rtua 1 Port numbers may be
assigned to each I/MATP by the mainframe during port initialization. The
Call Manager maintains a table which associates with each Virtual Port number
a specific thread number. Communications between the Call Manager and a
terminal are identified by thread number; addressed packets travelling across
the network contain Virtual Port numbers. The IPOS addressed packet system
has the responsibility of changing the AP field containing destination port
so that it is meaningful to the receiver of the addressed packet. (More
detailed information on this can be found in Sections 6.1, 6.3 and 6.5 of
this document.)

The following is a summary which may help to clarify the points brought
up in the preceeding discussion.

Assume throughout that we are dealing with communications internal to a
single node. The node consists of three ports:

Port 12 IMATP with one QBYTE
Port 20 -- !ATP
Port 56 -- IMATP with two QBYTEs

At initialization time, the mainframe allocates:

VP numbers 3,5,7,9 to Port 12
VP number 35,37,39,41,43,45,47,49 to Port 56

The relationship between thread numbers and VP numbers within the two
IMATP's is as follows:

Port 12
Thread # VP#

I 0 3
1 5
2_ l
]_ 1_

Port
Thread #

0

56
VP#

35
37

Note: These are permanent assignments in the IMATP.

0814 System Software Manual
Section 6.17 - 9

CODEX CORPORATION COMPANY CONFIDENTIAL

No matter what two terminals are communicating (even when two IMATPs),
each Call Manager believes that the remote terminal is an IATP. For
instance, when Port 20 communicates with Port 56, Thread 3, its Call Manager
believes it is talking to Port 41. Similarly, when Port 56, Thread 7 com
municates with Port 12, Thread 2 the Call Manager for Port 12 believes the
communication is with Port 49, the Call Manager for Port 56 believes the com
munication is with Port 7.

When the IPOS addressed packet router for Port 12 receives an AP for Port
7, it recognizes it as referring to Thread 2.

The following diagram graphically illustrates the data paths described
above.

0814 System Software Manual
Section 6.17 - 10

CODEX CORPORATION COMPANY CONFIDENTIAL

Port 20
I

IATP I

1 __ 1;+=-1 I
VP
41

6000
------- --1 VP

I I I 7

I
VP I 49

IMATP 11~ATP11-1 I 11 I c 0

I 1 I I I M I 1
2 c --- --M-- +---2
3---+ --M- I I 3 ----
4 M Port 12
5
6
7---+ I ---- ---------------Port 5-6

NODE 6

Figure 6.17.1

In order to gain a full understanding of how the I/MATP submodules inter
act to accomplish their task, it is helpful to study the diagrams in Section
6.6.11 which briefly trace the path of data and logic through the I/ATP.

The only differences in program control flow for the I/MATP are: AP is
replaced by CMI, the Data Compression module is fixed, not adaptive, and
FLOW$ represents the multithread ARQ/Flow control submodules (MFLOW$).

What must also be kept in mind is that there are multiple terminals
involved, hence a number of calls may be in progress at any given time.

===

0814 System Software Manual
Section 6.17 - 11

CODEX CORPORATION COMPANY CONFIDENTIAL

6.17.5 Statistics and Monitoring (IMATP$STAT)

This routine is responsible for monitoring the performance of the I/MATP
and reporting the information as a system alarm to the network Report Port.
In addition, any system module can request current information from this
module.

The individual modules in the I/MATP are responsible for updating monitor
ing information as follows:

1) Receiver Ready interrupt routine

a) Number of characters received
b} Number of errors that occurred
c) Number of characters after encoding

2) 'Data Compression Encoder

a) Number of nibbles encoded
b) Number of resulting nibbles

The statistics routine is started by IP initialization and runs every 6
seconds. Each time it executes, it calculates the following port level
statistics:

1) Buffer Utilization - The ratio of the number of buffers currently in
use to the total number of buffers in the free buffer pool, times
100%.

2) Processor Loading - As calculated by IPOS (see Section 6.1.10).

The results of these calculations are compared to their respective thresh
olds, which are obtained from the mainframe during initialization. If either
threshold has been exceeded, an alarm packet is constructed and sent to the
network Report Port.

If a packet is received from system module requesting terminal statis
tics, an addressed packet containing the above information, as well as:

1) Statistical Loading - The ratio of the number of characters from the
terminal to the maximum number of characters which the terminal
could have sent in the elapsed time, times 100%.

2) Compressed Loading - The ratio of the number of bits resulting from
code compression to the maximum number of bits (including parity
bit) the terminal could have sent in the elapsed time, times 100%.

0814 System Software Manual
Section 6.17 - 12

CODEX CORPORATION COMPANY CONFIDENTIAL

3) Compression Efficiency - the ratio of the total number of bits
(including parity bit) from the terminal to the number of bits
resulting from code compression, times 100%.

4) Character Error Rate - The ratio of the number of characters with
bad parity received from the terminal to the total number of
characters received, times 100%.

is constructed and returned to the requesting module.

Note: Statistics must be requested by node and VIRTUAL PORT number in
the I/MATP.

Entry Point: IMATP$STAT:MONITOR

Function:

Calculate statistics and send exception report addressed packets to the
network Report Port

Entry Conditons:

* None

Exit Conditions:

* None

Entry Point: IMATP$STAT:AP

Function:

Calculate statistics and send a statistics addressed packet to the
requesting module.

Entry Conditons:

* None

Exit Conditions:

* None

0814 System Software Manual
Section 6.17 - 13

CODEX CORPORATION COMPANY CONFIDENTIAL

0814 Software Manual

CODEX CORPORATION COMPANY CONFIDENTIAL

6.18 Intelligent Multiple Synchronous Terminal Port Protocol Software

The Intelligent Multiple Synchronous Terminal Port Protocol Module
(IMSTP) passes data from 1-16 synchronous terminals to the D814 Network with
out protocol intervention. It is organized as a collection of submodules,
each responsible for performing a related set of functions. These functions
include:

1. System Initialization
2. Communications Interrupt Handling
3. Protocol Handling
4. Call Manager Interface
5. Statistics and Exception Monitoring

Descriptions of the submodu 1 es which perform these tasks are found in
Sections 6.18.1 through 6.18.5.

The I/MSTP user data structures, called thread structures, are data areas
reserved for each configured terminal. The thread structures are initialized
and accessed by calls to module ITP$ and are discussed in detail in Section
6.16.

6.18.1 System Initialization (Submodule IMSTP$INIT)

This submodule consists of three distinct routines. The first
(IMSTP$INIT:ENTRY) is called by IPOS during port initialization to begin
protocol-specific initialization tasks; the second (IMSTP$INIT:REQ) is forked
by IMSTP$INIT:ENTRY; and the third routine is a batch task that is scheduled
on receipt of an addressed packet containing configuration information.

IMSTP$INIT:ENTRY is responsible for starting common multithread IP ini
tialization routines (i.e., Data Compression, Call Manager, FIFO Interrupt
Handler and ARQ/Flow Control) and calling ITP$MTINIT:USER to allocate a block
of contiguous memory to be later divided into thread structures for use by
assigned VP's. It additionally obtains and initializes buff~rs to be used as
permanent TCB' s by IMSTP modules, sets up the port Modu 1 e Di spat ch Tab 1 e,
creates a temporary byte file containing addresses of ring buffers allocated
for data storage by 2651 interrupt routines, and forks IMSTP$INIT:REQ before
terminating.

IMSTP$INIT:REQ first calls ITP$MTINIT:CMEM to request VP numbers config
ured for the port and await 1) the division and formatting of the previous
ly allocated block of contiguous memory into thread structures (one for each
VP), and 2) the release of all unused memory within this block. Upon return
from this routine, the th read di rectory created by ITP$MTI NIT: AP is scanned.
For each valid thread, a configuration-request packet is constructed and
routed, the thread structure variables are initialized, and previously allo
cated ring buffers are assigned as receive and transmit holding buffers.
When thread initialization is complete, all unassigned ring buffers are
released and the routine terminates.

Rev. 2 D814 System Software Manual
Section 6.18 - 1

Rev. 2

CODEX CORPORATION ClltPANY CONFIDENTIAL

IMSTP$INIT:CONF dequeues configuration addressed packets, storing CMEM
parameters in the individual thread structures. In addition to this, it ini
tializes the 2651 1 s for synchronous transmission, calculates parameters used
in statistics and monitoring tasks and verifies that the aggregate speeds of
the terminals does not exceed the current 9600 baud limit. Before terminat
ing, the routine sets the bits in OFIPCOMM:INILfLAGS indicating to the
Call Manager that protocol initialization is complete.

NOTE: It may be beneficial to store the thread number in the headers of
·the Receive and Transmit Holding Buffers. This allows us to proceed with one
thread of communications by maintaining the address of the correct buffer in
the index register without allocating additional space or tying up a register
to keep track of the thread. In this way, repeated table look-ups during the
Communications Interrupt and Protocol handling routines are eliminated.

Entry Point - IMSTP$INIT:ENTRY

Function

Initialize I/MSTP data structures, start IP common modules and obtain
2651 Holding Buffers.

Entry Conditions

* None

.Exit Conditions

* All registers destroyed

Entry Point - IMSTP$INIT:REQ

Function

Build a configuration-request packet

Entry Conditions

* None

Exit Conditions

* None

Entry Point - IMSTP$INIT:CONF

Function

Complete I/MSTP data structure initialization based on the information
contained in returned configuration-request packet.

Rev. 2 0814 System Software Manual
Section 6.18 - 2

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Entry Conditions

* None

Exit Conditions

* None

6.18.2 Co11111unications Interrupt Handling (Submodule IMSTP$COMM}

This submodule is responsible for servicing interrupts tracked by the ACS
Status Register. IMSTP IRQ's are generated by the following:

1. 2651 Communications Chip
2. ACS Register

All such interrupt requests are routed to IMSTP$COMM:IRQ that both deter
mines interrupt type (by reading the ACS Register and .2651 Status Register}
and does polling to locate the requesting 2651. The IRQ is dispatched to the
corresponding interrupt processor with the index .register pointing to the
holding buffer associated with the active thread.

2651 interrupts are of three types:. receiver ready, transmitter ready,
and data set change. ACS interrupts are processed identically to 2651 data
set changes.

After processing each data byte the interrupt processors return control
to IMSTP$COMM: IRQ, which checks for outstanding interrupts. To insure that
no heavily loaded 2651 may monopolize processing time, IMSTP$COMM:IRQ main
tains a count of the number of data bytes processed for one thread during the
current session. If the number exceeds the maximum permitted for one ses
sion, the routine will poll and service the other 2651's before granting the
original requester a second session.

NOTE: Polling of 2651 's occurs in a predetermined, fixed order which is
based on the addresses of the 0814 hardware. For polling purposes, low
address===> high priority. Thus, th~ 2651's on the QBYTE card with the low
est address have the highest priority and are polled first. Similarly, on
any particular QBYTE card, the 2651 with the lowest address is polled first.

Entry Point - IMSTP$COMM:IRQ

Function

Po 11 threads to 1 ocate requester and dispatch ACS Status Register IRQ 1 s
to their corresponding interrupt routines.

Rev. 2 0814 System Software Manual
Section 6.18 - 3

Rev. 2

CODEX CORPORATION CCMPANY CONFIDENTIAL

2651 Receiver Ready (IRQ) Routine (RECEIVE)

This routine is utilized to handle the 265l's receiver section, being ini
tiated by the occurrence of a receiver ready interrupt. It perfonns. 5 func
tions:

1. Moves data from the 2651 to the Receive Holding Buffer.
2. Performs data encoding (as detailed in Section 6.18.2.1).
3. Detects and records.line and parity errors.
4. Inserts Parity Check ICS's.
5. Disables 2651 receiver between blocks to force sync hunt.

When necessary, RECEIVE will fork the Protocol In Processor, first identi
fy; ng the data stream by storing the address of the correct Receive Holding
Buffer in the TCB for that processor.

Transmitter Ready (IRQ) Routine (TRANSMIT)

This routine is utilized to handle the 265l's transmitter section, being
initiated by the occurrence of a transmitter ready interrupt. It has 4 basic
functions to perfonn:

1. Move data from the Transmit Holding Buffer to the 2651.
2. Decode data and modem control signals (as detailed in Section

6.18.2.1).
3. Line fil 1 (either syn or pad characters) when unable to transmit

data.
4. Process modem sign~l changes received from the network.

When necessary, TRANSMIT will fork the Protocol Out Processor, first iden
tifying the outgoing data stream by storing the address of the correct Trans
mit Holding Buffer in the TCB for that Processor.

NOTE: Modem signal changes are processed by setting the appropriate bits
in tlie"Auxi·liary Control Signal Register and the 2651 Command Register. The
2651 Command Register is detailed in the Signetics 2651 PCI document. Infor
mation concerning the ACSR structure and use is found in· the Hardware System
Spec. It is useful to note that the only bits of the ACSR which are utilized
in the I/MSTP (other than IRQ) are BUSY (AC5.._IN), CTS and RNG (AC5-0UT). CTS
is used only when Clear to Send Delay is activated.

2651 or ACS Register DATA Set Change (IRQ) Routine (DSCHG)

This routine is responsible for handling Data Set (Modem) changes. It is
initiated by the occurrence of a data set change interrupt from the 2651 or
ACSR. The data set signals that can cause this interrupt (at the local 2651
or ACSR) are:

Rev. 2 D814 System Software Manual
Section 6.18 - 4

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

1. DCD - Data Carrier Detect
2. DSR - Data Set Ready
3. RI - Ring In

Modem changes are processed by i sol at i ng the bi ts of the 2651 Status
Register and ACS Register which correspond to these signals and combining
them to form a Modem Control Signal byte. This byte is encoded (as described
in Section 6.18.2.1) and placed in the Receive Holding Buffer.

6.18.2.1 Data Encoding/Decoding

Data encoding is performed as follows:

Data (D) ==> (D) if 0 < (D) < X'FF'
(x I FF I 'x I 81') if (D) = 0
(X 1FF 1 ,X 1 FF 1) if (D) = X 'FF'

Modem Signals (s) ==> (X'FF',s)I if (S) > 0
(X_'FF' ,X 1 80 1) if (S) = 0

Call Signals ==>(X 1 FF 1 ,X 1 82')1 Request Call Termination
(x I FF I 'x I 83 I) Call Termination Granted

Note: S~X'7F' (i.e, high order bit must be zero)

Data decoding is the inverse of the encoding procedure, except that Call
Signals are not decoded. The Call Signals described above are special sig
nals used by'the CMM Interface to terminate a call.

6.18.3 Protocol Handling (Submodules IMSTP$IBP and IMSTP$0BP)

The primary responsibility of the protocol handlers is the movement of
data between the Encoder/Decoder routines and the Communications Transmit and
Receive Holding Buffers. Additionally, they transfer modem signal changes to
the Call Manager when required to initiate or terminate a call. There are
two protocol processors:

1. Protocol In processor
2. Protocol Out processor

Protocol In Processor (IMSTP$IBP)

This protocol routine is forked by the Receiver Ready (IRQ) routine when
data has been placed in a Receive Holding Buffer.

All data (excluding DSR signal changes) are ignored until a call has been
established. While the call remains active, the contents of the appropriate
Receive Holding Buffer are sent to the Data Compression Encoder with the
thread number identified in the B-register.

Rev. 2 D814 System Software Manual
Section 6.18 - 5

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Movement of data from a specific Receive Holding Buffer continues until
the buffer is emptied OR the maximum number permitted during one session has
been exceeded. At this point, the "next" Receive Holding Buffer is scanned
for data, and the process is repeated until no data remains in any of the
Receive Holding Buffers. ·

Receipt of ICS's indicating changes in a terminal's DSR signal are always
transmitted to the Call Manager for processing.

Entry Point - IMSTP$IBP:ENTRY

Entry Conditions

* None

Exit Conditions

* None

Protocol Out Processor (IMSTP$0BP)

This protocol routine is forked by Transmitter Ready (IRQ) routine or the
Pre-ARQ/BIC Receiver routine when data is to be moved to a Transmit Holding
Buffer. It calls the Data Compression Decoder to obtain data bytes from the
corresponding Outbound Data Buffer and "tracks" them by means of a finite
state machine to insure that the appropriate mode of sync-filling (trans
parent or normal) will occur only where permissible within the BSC message
block.

When the active Outbound Data Buffer is emptied OR the maximum number of
bytes to be accepted from a terminal during one session has been exceeded, OR
the Transmit Holding Buffer for the OB Data Buffer fills (whichever comes
first), the "next" OB Data Buffer is scanned for data and the process is
repeated.

When bytes are no longer available from any OB Data Buffer, the routine
sets the ARQ Fork flag (indicating to the Pre-ARQ/BIC Receiver to fork this
routine when data becomes available, and resets the Transmitter Fork flag
(indicating to the Transmitter Ready (IRQ) routine not to fork this routine
when any Transmit Holding Buffer falls below half full).

As bytes are transferred to a Holding Buffer, if its 2651 transmitter is
not running, it is enabled. This creates a Transmitter Ready IRQ, which
causes the Communications Interrupt Handler to start removing data from the
Holding Buffers.

Any 'request call termination' or 'call terminate' signals received (see
Section 6.18.2.1) are passed to the Call Manager for processing and are not
placed in the Holding Buffers.

Rev. 2 D814 System Software Manual
Section 6.18 - 6

Rev. 2

CODEX CORPORATION C(JIJPANY CONFIDENTIAL

Entry Point - IMSTP$0BP:ENTRY

Entry Conditions

* None

Exit Conditions

* None

6.18.4 Call Manager Interface (IMSTP$CMI)

This submodule is responsible for handling communications between the
Protocol modules and the Call Manager. It has one external entry point
(IMSTP$CMI:ENTRY), and performs five distinct tasks:

1. Call End Processing
2. Call Request Processing
3. Call Created Processing
4. Hangup Request
5. Create Call Request

(CMM ---> Protocol)
(CMM --->Protocol)
(CMM ---> Protocol)
(Protocol ---> CMM)
(Protocol ---> CMM)

The routines to process the first three are activated by IMSTP$CMI:ENTRY
upon re-cei pt of an addressed packet from the Ca 11 Manager. The 1 atter two
are subroutines used by the Inbound and Outbound Protocol modules and the
other CM! routines.

Entry Point - IMSTP$CMI:ENTRY

Function

Dequeue an addressed packet from the Call Manager and activate the appro
priate routine to process it by identifying the command code contained in
the addressed packet message field.

Entry Conditions

* None

Exit Conditions

* None

Call End Processing (IMSTP$CMI:CALLEND)

This routine is activated by receipt of a 11call end 11 AP from the Call
Manager, At 11 normal 11 call end, it starts reinitialization of ARQ/FLOW con
trol and resets call state variabres. The routine also resends a 11 create
call 11 AP to the Call Manager when the remote tenni nal has indicated it is
11 busy 11 OR the call .was ended before it was fully established.

Rev. 2 0814 System Software Manual
Section 6.18 - 7

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

Call Request Processing (IMSTP$CMI:CALLREQ)

This routine is invoked by the receipt of a 11 call request 11 AP from the
Call Manager. It is responsible for rejecting calls when the port is already
busy OR the 11 request 11 packet has been improperly routed. Otherwise the rou
tine sends a 11 call accepted 11 AP to Call Manager.

Call Created Processing (IMSTP$CMI:CALLCRE)

This routine is invoked following the receipt of a 11 cal1 created"
addressed packet from the Call Manager. It enables the 2651 receiver and SIC
Inbound and Outbound FIF0 1 s so a call can proceed.

Hangup Request (IMSTP$CMI:SEND HANGUP)

This routine is called by the Protocol modules or the Call Manager Inter
face. Its function is to construct and route to the Call Manager a 11 hangup 11

addressed packet.

Create Call Request (IMSTP$CMI:SEND CRECALL)

This routine is called by the Protocol modules or the Call Manager Inter
face. It handles the construction and routing of a 11 create call 11 addressed
packet to the Call Manager.

=
At this point it seems desirable to diverge from module functional speci

fications in order to delineate and discuss those characteristics of the
l/MSTP which set it apart from the singly-threaded I/STP.

As indicated in the introductory paragraph of Section 6.18, the I/MSTP
passes data from 1-16 synchronous terminals. Multiple terminals per set of
port software create a number of complexities -in establishing and maintaining
communications. There are multiple 2651 communications chips; multiple
Receive and Transmit Holding Buffers; multiple Inbound and Outbound Data Buf
fers; but only one SIC chip used to transmit the data from these across the
network. Despite this, each individual terminal of the l/MSTP must have the
ability to converse with an l/STP terminal, a terminal 11 belonging to 11 another
I/MSTP, or another terminal within the same l/MSTP, concurrent to active com
munications i nvo lvi ng other termi tia 1 s · of the same I /MSTP. In addition to
this, multi licit must be trans arent across the link, i.e., communications
between an an MS must 1 n no way 1 er from that between two
I/STP 1 s from the I/STP 1 s perspective. In order to address this problem, the
concepts of 11 thread 11 number and "Virtual Port" (VP) came into existence.

Rev. 2 D814 System Software Manual
Section 6.18 - 8

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

NOTE: These are pennanent assignments in the IMSTP.

No matter what two termi na 1 s are communicating (even when two IMSTPs),
each Call Manager believes that the remote tenninal is an ISTP. For instance
when Port 20 communicates with Port 56, Thread 3, its Call Manager believes
it is talking to Port 41. Similarly, when Port 56, Thread 7 communicates
with Port 12, Thread 2 the Call Manager for Port 12 believes the communica
tion is with Port 49, the Call Manager for Port 56 believes the communication
is. with Port 7.

When the IPOS addressed packet router for Port 12 receives an AP for Port
7, it recognizes it as referring to Thread 2.

The following diagram graphically illustrates the data paths described
above.

Rev. 2

IMSTP
0
2

Port 20

ISTP

I ~~ 1-----~ ----i- 6000

I F--1 v~ I

Lil T
-1 I IMSTP
c I o M 1

2 c '--- -M-- -+---2
3---+ --M-- ---'

~ I M

~---1 -----1----------------'
Port -SO

NODE 6

Figure 6.18.1

0814 System Software Manual
Section 6.18 - 10

_I 3
Port 12

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

In order to gain a full understanding of how the I/MSTP submodules inter
act to accomplish their task, it i.s helpful to study the diagrams in Section
6.12 which briefly trace the path of data and logic through the I/STP.

The only differences in program control flow for the I/MSTP are: the
Data Compression module is fixed, not adaptive, and F~OW$ represents the
multithread ARQ/Flow control submodules (MFLOW$).

What must al so be kept in mind is that there are multiple tenni nal s
involved, hence a number of calls may be in progress at any given time.

6.18.5 Statistics and Monitoring (Submodule IMSTP$STAT)

This submodule is responsible for monitoring the performance of the
IMSTP, reporting error and exception conditions to the network report port,.
and responding to requests for port statistics. It has three external entry
points:

1. IMSTP$STAT:COLLECT....STATS
2. IMSTP$STAT:STAT
3. IMSTP$STAT:MONITOR

Entry Point - IMSTP$STAT:COLLECT....STATS

Function

Collects instantaneous values for processor loading, encoder nibbles in,
encoder nibbles out, number of buffers in use, number of characters
received from the 2651, and current error count. Forks the monitoring
routine (IMSTP$STAT:MONITOR). (This routine is initiated by IPOS every 6
seconds.)

Entry Conditions

* None

Exit Conditions

* All registers destroyed

Entry Point - IMSTP$STAT:MONITOR

Function

Updates the weighted-average value for each statistic using the current
instantaneous value. Calculates instantaneous processor load, buffer
utilization, compression efficiency and character error rate, comparing
percentages to threshold values and reporting exceptions to Network
Report Port.

Rev. 2 0814 System Software Manual
Section 6.18 - 11

Rev. 2

CODEX CORPORATION COMPANY CONFIDENTIAL

6.19 Intelligent Multiplex Port (I/MXP) Protocol Module

6.19.1 Introduction

An Intelligent Multiplex Port (I/MXP) is an intelligent terminal port
designed to interface with a Multiplex Port of another 6000 series Intelli
gent Network Processor or a Front-End Processor over a high-speed link in
order to establish multiplexed data paths according to the Codex Multiplex
Protocol (see Codex Multiplex Protocol Specification).

The l/MXP uses a similar hardware and the same line layer (HDLC) protocol
as the intelligent Bit-Oriented Protocol terminal port (I/BOP, see Section
6.15). The hardware consists of an I/ENG2 card and an I/BIT daughter card
based on a Motorola MC6854 ADLC chip and an Auxiliary Control Signal Register
(ACSR).

The l/MXP supports all types of threads; asynchronous, bi nary synchron
ous (BSC), and bit-oriented protocol threads.

Running under the 6809 IP Operating System (IPOS 09), and interfacing
with the Multi-threaded Data Movement Module (MTDM, Section 6.5), Call
Manager Module (CMM, Section 6.3) and IP Configuration Control Module (CCM,
Section 6.2), the I/MXP-specific module that is described here is divided
into the following submodules:

1. Initialization
2. LJne Layer Protocol Handling
3. ARQ Layer Protocol Handling
4. MUX Layer Protocol Handling
5. Connection Layer Protocol Handling
6. Call Manager Interfacing
7. Statistics Gathering and Monitoring

Before going into the description of the l/MXP Protocol Module, a few
naming conventions need to be defined here.

Each multiplexed data path which is a logical construct in software with
in the local I/MXP is called a thread. The remote terminal port at the end
of a 6050 subnetwork, be it an I/TP or a thread in another I/MXP, is called a
remote TP. Away from the 6050 subnetwork, the l/MXP is connected to another
Multiplex Port, which is called a remote MXP, via a high-speed link called
MUX link. The local TP is the TP in the other subnetwork which is eventually
connected to the remote TP for the thread through the MUX link.

Rev. 3 0814 System Software Manual
Section 6.19 - 1

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

l_I
Remote

TP

'---~

6050 Network

Local Remote
I/MXP I/MXP

6.19.2 Functional Submodule Description

Other 6000 Network

In this section the functions of an I/MXP are described as belonging to
one of the 7 submodules listed above.

6.19.2.1 Initialization Submodule (IMXP$INIT:)

The function of this submodule is to make the I/MXP ready for users.
Called by IPOS ~9 during the port initialization, IMXP$INIT:START initializes
common multi-threaded I/TP modules and allocates storage blocks for I/MXP
data structures and initializes them. Finally, it forks IMXP$INIT:REQ.J>ORT_
CONF and returns to IPOS ~9. IMXP$INIT:REQ.J>ORT_CONF then, started by the
IPOS ~ scheduler, calls ITP$MTINIT:CMEM and sends addressed packets to the
Mainframe Configuration Control Module (see Section 5.7) to request for
thread configuration parameters which are eventually received by IMXP$INIT:
CONF (module number EQIPMDT: IPP_INIT). These addressed packet formats are
described in Section 5.7.3. When a thread is configured, call is set up for
the thread if it is specified as a leased-line connection.

After tables of configuration parameters are built by this submodule, it
is used by the IP Configuration Control Module for configuration reads or
updates (see Section 6.2).

The configurable parameters for an I/MXP as a whole are the following:

- Port generic type
- Port sub-type
- Speed
- Mode (normal/local loopback/remote loopback)
- Control field extension (Extended ARQ sequencing)
- Processor loading threshold
- Buffer utilization threshold
- Frame receive error rate threshold
- Retransmit frame rate threshold
- Statistics averaging time constant factor

Rev. 3 0814 System Software Manual
Section 6.19 - 2

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The confi gurab 1 e parameters for each thread are the same as the VP con
figuration parameters for the asynchronous, BSC, and BOP threads except that
a new parameter 'Slot Weight' is added.

6.19.2.2 Line Layer Protocol Handler Submodule (IMXP$LINE:)

This submodule has the complete control over the line communications
section hardware of the I/MXP. Entry to this submodule is via an interrupt
for which the IPOS ~9 gives control to IMXP$LINE:IRQ.

Entry Point - IMXP$LINE:IRQ

After determining the cause of the interrupt, this routine calls one of
the following three routines whose functions are described in the subsequent
subsections.

1. Line Transmitter Controller
2. Line Receiver Controller
3. Modem Signal Change Handler

1. Line Transmitter Controller (IMXP$LINE:XMT)

Rev. 3

This routine is called by IMXP$LINE:IRQ if the interrupt was origi
nated by the 6854 transmitter.

For each transmitter interrupt, a character is read and transmitted
from the current byte queue. If the current byte queue is empty,
the processing depends on whether there is a slot byte queue
enqueued in a chain. If there is one, the routine makes it the cur
rent slot byte queue, and reads and transmits its first character.
If there is none, the frame is terminated. As a character is trans
mitted it is also put into the frame byte queue if it came from a
chained byte queue in order to save the frame byte queue in the most
compact form.

The Line Transmitter Controller transmits all user data collected up
to the time when it gets to the thread; therefore, delay is mini
mized.

When there is no more character in the frame, the routine terminates
the frame and disables further transmitter interrupts by controlling
the 6854 transmitter. Then the pointer to the slot byte queue chain
is saved in the transmit frame byte queue header, and the ARQ Trans
mitter task is fast-forked.

0814 System Software Manual
Section 6.19 - 3

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

2. Line Receiver Controller (IMXP$LINE:RCV)

Called by IMXP$LINE: IRQ if the interrupt was originated by the 6854
receiver, this routine first checks the cause of the interrupt.

If it is a Receiver Data Available interrupt, a byte is retrieved
from the 6854 receiver and p 1 aced in a receive frame byte queue
which is being assemb 1 ed. If the interrupt is due to an end of a
frame, the receive frame byte queue is enqueued to the input job
queue of the ARQ Layer Receiver task and it is forked if it is not
already active.

However, if the frame is aborted or received with a bad FCS, the
receive frame byte queue is just returned to the free buffer pool.
Thus, the Line Receiver Controller passes only good frames to the
ARQ Layer Receiver task.

The reception of a Remote Reset command, which is a spec i a 1 abort
frame (see Codex Multiplex Protocol Specification), causes an inter
rupt with the postamb 1 e command byte saved in the Remote Loopback
Register. This is used to recognize any change of normal/lopback
mode in the MUX link.

3. Modem Signal Change Handler (IMXP$LINE:MODEM)

All the input modem signals, DSR, DCD, and CTS, are to be strapped
high so that none of those signals would cause an interrupt. The
recovery from a temporary 1 ink-down condition can be done under the
Multiplex Protocol.

Therefore, the Auxiliary Control Signal (ACS) register interrupt
will be trapped.

6.19.2.3 ARQ Layer Protocol Handler Submodule (IMXP$ARQ:)

This submodule is responsible not only for maintaining information trans-
fer but also for setting up the MUX link according to the Multiplex Protocol.

There are two ARQ layer protocol handling tasks, one for each direction:

1. ARQ Layer Transmitter Task
2. ARQ Layer Receiver Task

The functions of these are described below:

Rev. 3 0814 System Software Manual
Section 6.19 - 4

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

1. ARQ Layer Transmitter Task (IMXP$ARQ:XMT)

This task is fast-forked either by the ARQ Layer Receiver task when
a Supervisory frame (S-frame) or Unnumbered frame (U-frame) needs to
be transmitted or by the Line Transmitter Cantrall er routine when a
frame has been transmitted.

When the task is started, it takes the previous frame's byte queue
from the transmit frame pointer and tests its control byte. If it
is an S or U-frame, the byte queue is destroyed. If it is an
I-frame in the normal information transmit state, it is enqueued to
the retransmit queue and the chained slot byte queues are destroyed.
However, if it is an I-frame in the information retransmit state
nothing is done to the frame.

If there is an S or U-frame to be transmitted, or an I-frame to be.
retransmitted, the ARQ transmitter task removes it from the frame
queue, sets up correct control (C) field, and and places its pointer
in the transmit frame pointer. Otherwise, it creates a new frame
byte queue, puts an I-frame header, and calls MUX transmit. Then it
chains the first slot byte queue to be transmitted to the transmit
frame byte queue.

After the pointer to the frame has been set up for the Line Trans
mitter Controller, the 6854 transmitter interrupt is enabled.
Finally, the ARQ transmitter task is terminated.

2. ARQ Layer Receiver Task (IMXP$ARQ:RCV)

Rev. 3

This task is forked by the Line Receiver Contra 11 er when a receive
frame byte queue is enqueued to its input job queue and the queue
was previously empty.

When started, it dequeues a receive frame byte queue from the top of
its input job queue and processes the A and C fie 1 ds by feeding the
ARQ Layer Transmitter task with received ARQ information and also by
controlling the MUX link as needed. A FRMR frame is fully processed
by this task, resulting in a transfer to the link set-up state.

If the frame is either an S or U-frame, it is completely processed
by the task and the byte queue is returned to the free buffer pool.
If an S or U-frame needs to be transmitted in response, an S or
U-frame byte queue is generated and enqueued to the S and U-frame
input job queue of the ARQ Layer Transmitter task. At this time the
ARQ Layer Transmitter task is forked.

If the received frame is an I-frame, however, it is passed to the
MUX Layer Receiver task by enqueuing the receive frame byte queue to
the input job queue of the MUX Layer Receiver task and forking it.

0814 System Software Manual
Section 6.19 - 5

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.19.2.4 MUX Layer Protocol Handler Submodule (IMXP$MUX:)

There are 4 MUX Layer protocol handling tasks:

1. MUX Layer Transmitter Routine
2. MUX Layer Receiver Task
3. MUX Layer Control Transmitter Task
4. MUX Layer Control Receiver Task

The functions of these tasks are described below.

1. MUX Layer Transmitter Routine (IMXP$MUX:XMT)

MUX Layer transmitter is ca 11 ed by the ARQ Layer Transmitter task
whenever a frame may be sent. It first writes the MUX layer control
byte, and copies a_ control slot command from the MUX Layer control
slot byte queue if there is any to be transmitted, then returns to
the caller.

2. MUX Layer Receiver Task (IMXP$MUX:RCV)

This task is forked by the ARQ Layer Receiver task when a received
I-frame has been already processed for the A and C fields.

If a MUX layer control slot is present in the frame, it is enqueued
to the receive MUX layer control slot byte queue and the MUX Layer
Control Receiver task is forked unless it is already active.

Then the task calls the Connection Layer Receiver routine to process
a 11 supervisory and user slot data in the frame.

The task terminates when there is no more received I-frame byte
queue to process.

3. MUX Layer Control Transmitter Task (IMXP$MUX:CTRL_XMT)

Rev. 3

When an I /CTP in a 6050 network needs to read or write information
such as configuration parameters, statistics, or statistics thresh
o 1 ds maintained by a TP connected to the remote MXP, it may send an
addressed packet to this batch task.

The task retrieves an addressed packet from its input job queue, con
verts it to a MUX layer control slot command (see Appendix A of the
Codex Multiplex Protocol Specification), and then enqueues it to the
input job queue of the MUX Layer Transmitter routine.

081~ System Software Manual
Section 6.19 - 6

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

The I/MXP is always a controlling unit since the MUX layer control
interface is implemented only for a MXP of a lower-level 6000 series
INP. Therefore, the task only needs to Transmit commands.

The task runs in a half-duplex mode in the sense that the response
must be received by the MUX Layer Control Receiver task for a
transmitted command before it transmits another command.

However, if the response is not received within 20 seconds, the task
will effectively discard the previous command and send a new one.

4. MUX Layer Control Receiver Task (IMXP$MUX:CTRl..RCV)

Forked by the MUX Layer Receiver task, this task dequeues the next
MUX layer control slot response from its input job queue.

The task checks whether the response in the MUX layer control slot
is the one that is expected. If it is the correct response, the
task routes a response AP to the source node/port of the ori gi na l
command, and then forks the MUX Layer Control Transmitter task to
transmit another command, if there is any, before the task termi
nates itself. If the response is not the correct one, it is dis
carded, and the next MUX layer control slot response is dequeued
from its input job queue. If there is none, the task terminates.

For the relationship between any two Multiplex Ports of different
systems, refer to the Single Line Interface Functional Specifica
tion.

6.19.2.5 Connection Layer Protocol Handler Submodule (IMXP$CONN:)

This submodule performs multiplexing and demultiplexing of the individual
data threads between the Multi-Threaded Data Movement module (MTDM) and the
MUX layer. It is also responsible for using CMI to establish and terminate
calls in response to state transitions in the individual threads.

Connection layer is implemented as a family of coupled finite state
machines. State information is shared in a common table called the Thread
Data structure. There is one thread data structure for each thread
supported. Due to space restrictions and the added complexity that would be
introduced by providing multiple slot groups, there may be no more than 31
slots in the MUX port. Therefore, all slots are assumed to be in slot group
number ~.

It is a functional requirement of the MUX port that it provide a mapping
between the 6050 Circuit Control Signals (CCS) and the In-Stream Control
Codes (ISCC) used in the Multiplex Protocol. This mapping is shown below.

Rev. 3 D814 System Software Manual
Section 6.19 - 7

Rev. 3

CODEX CORPORATION

ISCC

User Data {D)
{X 1 FF 1)

Control Signal Update (CSU)
{X 1 0l 1 ,

<--->
<--->

<--->

COMPANY CONFIDENTIAL

ccs

(D) if X 1 ~2 1 < {D) < X1 FF 1

, x • FF • , x • 82 ·r
Modem CCS

(X 1 FF 1 ,

0 I 0 I 0 I 1 I* I MB I RTS I DTR I) I 0 I 0 0 0 0 RI DCD I DSR I)

where * means that the bit is not used.

The bit correspondence between the two modem signals are:

But,

DTR <---> DSR
RTS <---> DCD
MB <---> RI

(X 1 0l 1 ,

o I o I o I 1 I* I o I o I o I)

<--->

Data Path Initialization (DPI) <--
(X10l 1, X120 1)

(x I FF I ' x I 80 I)

Call Termination CCS
(XI FF I' x I 83 1)

When a DPI is received from the remote MXP, it is discarded and a DPIA is
transmitted back to the remote MXP for the data path. (Call Termination
CCS has been already generated within 6050 network due to the prior recep
tion of CSU for DTR down for auto-dial, dial, or contention call option.)

Data Path Initialization
Acknowledgement (DPIA)
(XI 01 1 t XI 30 I)

Control Signal Update
Request (CSUR)
(X 1 0l 1 , X1 40 1)

Start Break

---> Discarded

---> Processed and discarded

---> Break for 500 msec
{X 10l 1, X1 70 1) (X 1 FF 1 , X1 93 1, X1 FF 1 , X1 92 1)

Stop Break
(XI 01 1 t XI 80 I)

Rev. 3

---> Discarded

D814 System Software Manual
Section 6.19 - 8

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Break for n-character time <---> Break for a time period
(x I 01 1 ' XI 7n I) 1 (X 1 FF 1 , X1 9n1•, X1 FF 1 , X1 9n2 1)

(n1, n2) makes an integer in
10 msec units.

Autospeed Initialization
(X' 01 1 , X' An 1)

<---> Autospeed Initialization CCS
(X' FF 1 , X 1 An 1)

Escape Output
(x 1 01•, x•o1 1)

<---> X'Ol 1 as data
(x 1 01 1)

There are some other ISCC 1 s that are required to support BOP data traf
fic. They are not listed above since they are not specified yet.

There are two routines in this submodule that are described below.

1. Connection Layer Transmitter Routine (IMXP$CONN:XMT)

Rev. 3

As the MTDM outbound interface, the routine is responsible for
receiving characters from MTDM, translating CS strings to ISCC
strings where necessary and placing them onto either the thread slot
hold byte queue or a thread slot-weight overflow byte queue.

If additional characters may not be placed in the current slot byte
queue because of flow control, or if a slot flow-control overflow
byte queue already exists for the thread, the character or string is
placed on the slot flow-control overflow byte queue, which will be
created if it does not already exist. If the slot weight is over
flowed, a new byte queue is created and chained to the previous slot
byte queue. In a critical section it tests for the presence of a
slot hold byte queue pointer in the thread data structure, creating
one if none is present. It then updates the count field of the slot
and places the character in the slot 1s byte queue. The protocol
requirement that slots may have one or two byte headers is hanbdl ed
by setting the get-byteand read bytepoi nters of the s 1 ot byte queue
to the second byte of the byte queue when the byte queue is created,
then moving them back to the first byte when the count reaches 8.
To avoid prolonged interrupt-masked operation, the critical section
will be broken wherever possible by 11 windows 11 • When the CCs string
1 FFFF' is received, it is immediately acknowledged by a call to
IP$FLOW$XMT:ACK.

0814 System Software Manual
Section 6.19 - 9

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

2. Connection Layer Receiver Routine (IMXP$CONN:RCV)

Rev. 3

Connection Layer Receiver is called by MUX Layer Receiver whenever a
frame is available to be demultiplexed. It is implemented as nested
state machines. The outermost state machine breaks up the frame
into slots and associates each slot with a thread. Long and short
form slots are decomposed into one byte input tokens to one of the
two inner state machines. Supervisory slots are similarly decom
posed to feed the other state machine.

The data slot state machine is responsible for call management and
for the ISCC to CCS mapping. It a 1 so authorizes fl ow from the
remote MXP. For connections other than leased line, call management
is actuated by the state of DTR in the/\Modem ISCC. For contention
connections, this may be caused at the remote end by a DTE respond
ing to ringing on the RI pin. For auto-dial connections, it will be
caused by app 1 i cat ion of power to the remote modem or termi na 1 • TP
dial will be supported as per the I/MATP design specification.

Fl ow control for received data streams is based on an authorization
mechanism. It is a goal to try to keep the number of characters
authorized for each thread at any given time greater than the number
of characters of delay imposed by the physical link, so as to pre
vent the loss of effective bandwidth caused by forcing the remote
port to wait for additional authorization. On the other hand, it is
necessary to prevent a single VP from degrading port performance by
committing more buffers than it can reasonably consume. Therefore,
flow control strategy calls for allowing each VP to authorize a part
of the free pool proport i ona 1 to its speed re 1 at i ve to the sum of
the speeds of the virtual ports, but limited to second link delay
(to cover the worst case of 2-hop satellite link).

When FCA's are received, if there are any characters on the thread's
slot flow-control overflow byte queue, characters are moved to the
thread's slot hold byte queue or a slot-weight overflow byte queue
until flow control authorization is again exhausted.

0814 System Software Manual
Section 6.19 - 10

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6.19.2.6 Call Manager Interface Submodule (IMXP$CMI:)

The Call Manager Interface is responsible for communication between the
Connection Layer and the Call Manager. It consists of utility subroutines
for creating and terminating calls, and an addressed packet handler.

The utility subroutines, IMXP$CMI:CRECALL and IMXP$CMI:HANGUP respec
tively build and send Create Call and Hangup addressed packets to the AP
routing module.

The Call Addressed Packet Receiver Task IMXP$CMI :APRCV is started by
IPOS ~ when an addressed packet is received for the thread. It dispatches on
the following addressed packets:

1. Call Created

Call Created packets cause CMI to initialize the thread and send a
modem ISCC to the remote MXP.

2. Call Request

Call Request addressed packets result in call acceptance for avail
able lines in leased line ports if the calling node is the same as
the configured partner. The same holds for auto-dial; however, if
DTR is down, RI is raised five times for 3 seconds, with 6 seconds
between rings. For contention ports, it does not check calling
address against a configured value.

3. Call End

Ca 11 End addressed packets cause the thread to be reset, and the
port set to a waiting condition.

6.19.2.7 Statistics and Monitoring Submodule (IMXP$SM:)

This submodule is responsible for monitoring the performance of the I/MXP
and reporting it to the Network Report Port as any exception condition
arises. It works with the Statistics and Monitoring module (IP~9SM) by
providing I/MXP-specific monitoring and statistics-gathering functions.

Toward that end, the
embedded in the Protocol
Module.

following statistics-gathering operations are
Handling Submodules within the I/MXP Protocol

1. In the Line Transmitter Controller (IMXP$LINE:XMT)

Rev. 3

1. Number of bytes transmitted.
2. Number of frames transmitted.

0814 System Software Manual
Section 6.19 - 11

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

2. In the Line Receiver Controller (IMXP$LINE:RCV)

1. Number of bytes received.
2. Number of frames received.
3. Number of frames .received with bad FCS.

3. In the ARQ Layer Transmitter Task (IMXP$ARQ:XMT)

1. Number of frames retransmitted.

4. In the Connection Layer Transmitter Routine {IMXP$CONN:XMT)

1. User data bytes transmitted.

5. In the Connection Layer Receiver Routine (IMXP$CONN:RCV)

1. Number of bytes received for each thread.

When called by IP~9SMUPDATE task, IMXPSMMON computes the following
based on the last monitoring period.

1.. Error density (Receive Frame Error Rate) - The ratio of the number
of frames received with bad FCS to the total number of frames
received, multiplied by 100%.

2. Retransmit Frame Rate - The rate of frames being retransmitted in
frames/ sec.

3. Thread Compression Efficiency - The ratio of the number of input
nibbles to the number of output nibbles of the adaptive data com
pression, multiplied by 100%. This is calculated for each active
thread.

4. Thread Statistical Loading - The ratio of the number of bits
received to the maximum number of bits which could be received,
multiplied by 100%. This is calculated for each active thread.

5. Thread Compressed Loading - The ratio of the number of bits result
ing from the adaptive data compression to the maximum number of bits
that could be received (derived from the configured VP speed), multi
plied by 100%. This is calculated for each active thread.

The results of the above calculations are compared to their respective
thresholds which have been obtained as configuration parameters during the
port initialization. If any threshold has been exceeded, a monitoring report
addressed packet is constructed and sent to the Network Report Port. The
monitoring of the Port Processor Loading and Buffer Utilization is done by
IP~9SMUPDATE task.

Rev. 3 0814 System Software Manual
Section 6.19 - 12

'Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

When called by IP~9SMSTAT:TASK, IMXPSMSTAT appends the above statis
tics (1 and 2 for the port, and 3, 4, and 5 for a thread) as well as the
following (for the port only) in the current statistics report addressed
packet.

1. Statistical Loading - The ratio of the number of bits received to
the maximum number of bits which could have been received by the
6854 receiver, multiplied by 100%.

2. Transmit Frame Rate - The rate of frames being transmitted in
frames/sec.

3. Receive Frame Rate - The rate of frames being received in frames/
sec.

4. Traffic Density - The ratio of the number of user data bytes trans
mitted to the total number of bytes (user data bytes + overhead
bytes) transmitted, multiplied by 100%. '

5. Retransmit Queue Size - The average number of frames in the retrans
mission queue.

Since there is no pre-allocated retransmission buffer space, the Retrans
mission Buffer Utilization as specified in the Codex Multiplex Protocol can
not be calculated. Instead, the statistics for the average Retransmit Queue
Size has been added.

6.19.3 Overview of Data and Program Control Flow

Finally, a pictorial overview of the data flow and program control flow
in an I/MXP is presented below.

Rev. 3 D814 System Software Manual
Section 6.19 - 13

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

6854 transmitter ACSR-out 6854 receiver I I ACSR-in
A A

IRQ I I I j__L-
1 LINE:XMT I

A

I I

I~ I IRQ
v v

LINE :RCV

FAST-FORK : I I : FAST-FORK
v I

(rev frame byte Q's)

Rev. 3

(xmt frame byte Q)
I A
,: I FAST-FORK
l~I :---~~-ri~i~~;-------

1 AAA

11
l(xmt S,U-frame byte Q's)

I

I I

~ v
I ARQ:RCV I

T\: <-' I

JSR I I~> (rexmt I-frame byte Q's) I FORK

I I v I

(xmt I-frame byte Q) (same rev frame byte Q's)
- with room for A, C fields

I A

I

0814 System Software Manual
Section 6.19 - 14

I

v v

I

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

Rev. 3

I A

v I
MUX:XMT

A
I
(xmt MUX control (rev MUX control

s 1 ot addressed
packet) A

slot byte Q)

I MUX:CfRL.RCV I <------------
1 batch task

I ___ > (response addressed
packets)

Picked up j____ MUX:CTR[J(MT I
by LINE:XMT A batch task

{XMT slotAbyte Q's) I
mmand addressed packets)

I I v v
MUX:RCV

I JSR

v v
I I [thread data structures] I CONN·RCV I

~ A •• A j _________ I CM! I <---------~
JSR 1 j I (rev thread byte Q's)

(call addressed packets) I I ..

l~I
A

Mainframe Outbound

LJ
I CMM I I v v

MfDM$RCV

CCM

I IPOS{.'J9 I I v
Mainframe Inbound

D814 System Software Manual
Section 6.19 - 15

Rev. 3

CODEX CORPORATION COMPANY CONFIDENTIAL

•

0814 Software Manual

