
Address Family Transition Router
Manual

I

S

C

Copyright c© 2009 Internet Systems Consortium, Inc. (”ISC”)

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all

copies.

THE SOFTWARE IS PROVIDED ”AS IS” AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

2

Contents

1 INTRODUCTION 5
1.1 System Requirements . 5

2 BUILD 7
2.1 Configuration flags . 7

3 USAGE 9
3.1 System setup . 9
3.2 Options . 9
3.3 aftr . 9
3.4 Configuration File . 10
3.5 aftr.conf . 10
3.6 Interactive commands . 14
3.7 aftr.commands . 14
3.8 Command Summary . 17

4 SYSLOG 19
4.1 Trace . 19

A Appendices 21
A.1 Security . 21
A.2 Debug primer . 21
A.3 BUG REPORTS . 21

3

Chapter 1

INTRODUCTION

This is a stand-alone, user mode application that implements a dual-stack lite (DS-lite) Address Family
Transition Router (AFTR, aka. carrier-grade NAT) as described in draft-ietf-softwire-dual-stack-lite-
02.txt. It is expected to work on operating systems that support the tun (4) device, and has been tested
on Linux and FreeBSD.

The primary purpose of this implementation is to provide a proof of concept of the specification. While it
is implemented to be reasonably scalable with regard to the number NAT connections and the number
of IPv4/IPv6 tunnels, it is generally not expected to be used in a production environment. Likewise,
configuration and management flexibility are limited.

1.1 System Requirements

• OS: Linux or FreeBSD. Linux kernel version must be greater than 2.6.26, to correct a small-packet-
drop problem in tunnel46 rcv().

• CPU: Shouldn’t matter, but we have only tested it with the Intel architecture. Either 32 or 64 bit
CPU should be okay. Note that a 32 bit usermode app can run on a 64 bit kernel.

• Memory: No special requirement for the purpose of proof of concept with a small number of
client hosts. Note the connection tracking of netfilter is known to be memory greedy (i.e., more
than 16GB system is recommended for production).

• Processor speed: No special requirement for the purpose of proof of concept with a few number of
client hosts. Note the performance is bound to the kernel/user context switch latency, so a bench-
marking program (bench.c, start and stop) is provided; this sends 1M pings to 192.168.0.4
from 10.0.0.1 through tun0 (*please* change these addresses in the code).

5

Chapter 2

BUILD

tar zxvpf aftr-usermode-snapshot-YYYYMMDD.tgz

This creates a a directory named aftr-usermode-snapshot-YYYYMMDD, which we refer to as $src path
hereafter.

cd $src path

./configure

make

An executable file aftr will be created, the executable binary of the AFTR daemon program. This is
expected to be run on $src path (there is no make install step) and when needed under gdb.

2.1 Configuration flags

Here is the list of configuration flags (i.e., CFLAGS):

• AFTRCONFIG: config file path (default aftr.conf)

• AFTRSCRIPT: script file path (default ./aftr-script)

• AFTRDEVICE: name of the interface/device (default tun0)

• AFTRPORT: port for TCP control channels (default 1015)

• AFTRFACILITY: syslog facility (default LOG LOCAL5)

• AFTRLOGOPTION: openlog option (default LOG NDELAY)

• TRACE NAT: enable tracing of NAT entry creation/deletion (default is undef, i.e., only tunnels
and buckets are traced)

• NOPRIVACY: trace all addresses and ports in NAT entry tracing (default is undef)

• SIGNSHDR: define it to add a signature header in structures (default is undef)

• SIZES: define it to print sizes of principal data structures (default is undef)

• USE TUN PI: use the tun pi struct in tun interface/device I/O (required on some platforms for
IPv6 support)

• notyet: some unfinished and arguable features (undef of course)

7

Chapter 3

USAGE

3.1 System setup

Linux: Add interface configuration, disable netfilter, enable IPv4 forwarding (look at confs directory).
Note on the testbed interface configuration needs some help (service network restart) and net-
filter tables to be flushed (iptables -F and ip6tables -F) explicitly.

FreeBSD: Add interface configuration, enable IPv4 forwarding (look at confs/freebsd-aftr-rc.
conf).

Note: even they don’t seem to bother, it is fine to disable ICMP redirects (Linux net.ipv4.conf.all.send redirects,
FreeBSD net.inet.ip.redirect).

Clients: look at confs directory for configurations used in the testbed.

3.2 Options

Included inline aftr (8)

3.3 aftr

Name

aftr — Address Family Transition Router

Synopsis

aftr [-g] [-t] [-c config-file] [-d device-name] [-p port-number] [-s
script-file] [-u socket-name]

OPTIONS

-g By default the aftr process becomes a daemon, -g keeps it in foreground with logging to stderr.

-t -t can be used to check a configuration file.

9

CHAPTER 3. USAGE 3.4. CONFIGURATION FILE

-c config-file The aftr daemon requires a configuration file. By default it is named aftr.conf,
and is located in $src path. The AFTRCONFIG environment variable and the -c argument give
an alternate path. A sample configuration file is provided in $src path/confs/aftr.conf (OS
independent).

-d device-name Linux: The aftr process opens /dev/net/tun and set the name of the interface to the
AFTRDEVICE environment variable or the -d command line argument value or by default ’tun0’.

FreeBSD: The aftr process opens /dev/tunXXX from the AFTRDEVICE environment variable or
the -d command or by default /dev/tun0. The ’auto’ value uses the first free /dev/tunXXX
device.

The tunnel interface/device specification can be a full path (/dev/...), a relative name or a num-
ber.

-p port-number Use the port-number for TCP control channels. Default is 1015.

-s script-file The aftr daemon executes a shell script file with start on invocation. This is named
by default aftr-script and located in $src path. The AFTRSCRIPT environment variable and
the -s argument give an alternate path. This file could be even empty, but must exist.

The aftr daemon will eventually execute the shell script file with the stop argument before it exits.

The confs directory provides examples (in fact the script used in our testbed). freebsd-aftr-*
variant are for a FreeBSD based AFTR.

-u socket-name As an alternative to TCP over IPv4 and IPv6 with localhost control channels, the aftr
process can accept PF UNIX stream socket control channel on the socket-name.

SEE ALSO

aftr.conf(5), aftr.commands(5)

AUTHOR

Internet Systems Consortium

3.4 Configuration File

Included inline aftr-conf (5)

3.5 aftr.conf

Name

aftr.conf — configuration file for aftr

Synopsis

aftr.conf

10

CHAPTER 3. USAGE 3.5. AFTR.CONF

DESCRIPTION

The aftr daemon requires a configuration file. By default it is named aftr.conf, and is located in
$src path. The AFTRCONFIG environment variable and the -c argument give an alternate path. A
sample configuration file is provided in $src path/confs/aftr.conf (OS independent).

The configuration file consists of a set of one-line configuration commands. Commands are not case
sensitive. Any line beginning with ’#’ or whitespace is ignored as a comment.

Configuration and interactive commands belong to sections:

• section zero is for global parameters which must be defined before anything else when they are
not kept to their default values, for instance defmtu.

• section one is for required parameters, for instance acl6.

• section two is for reloadable parameters, for instance nat.

• interactive only commands are in the section three.

GLOBAL CONFIGURATION COMMANDS

autotunnel on|off Alias of default tunnel auto on|off.

bucket tcp|udp|icmp size size Specifies the bucket size. Compile time options are [TCP|UDP|ICMP]BUCKSZ,
default values are: TCPBUCKSZ 10, UDPBUCKSZ 8, ICMPBUCKSZ 3. Minimum is 0 (excluded) and
maximum 255.

decay 1|5|15 decay Specifies decay values for 1, 5 and 15 mn rates. Compile time options are DECAY{1,5,15},
default values are: DECAY1 exp(-1/60), DECAY5 exp(-1/300), DECAY15 exp(-1/900). Minimum is
0.0 and maximum 1.0.

default fragment equal on|off Enables or disables equalizing the length of IPv6 fragments. Default is
off.

default fragment lifetime lifetime Specifies the lifetime of fragments in reassembly queues. Com-
pile time option is FRAG LIFETIME, default value is 30 seconds. Minimum is 0 (excluded) and
maximum 1200.

default fragment ipv6|in|out maxcount maxcount Maximum number of entries in reassembly queues
(’in’ is IPv4 from clients to the Internet, ’out’ is IPv4 from the Internet to clients). Compile time
options are FRAG{6,IN,OUT} MAXCNT, default values are 1024. Minimum is 0 (included so it is
possible to disable reassembly), maximum is 16535.

default hold lifetime lifetime Specifies the lifetime of expired NAT entries in the hold queue. Com-
pile time option is HOLD LIFETIME, default value is 120 seconds. Minimum is 0 (included), max-
imum is 600.

default nat lifetime tcp|closed|udp|icmp|retrans lifetime Specifies the lifetime of dynamic NAT en-
tries (’closed’ is for closed TCP sessions, ’retrans’ is used for response not yet received). Com-
pile time options are [TCP|CLOSED TCP|UDP|ICMP|RETRANS] LIFETIME, default values are TCP
(600), closed TCP (120, aka 2*MSL), UDP (300), ICMP (30), retrans (10). Minimum is 0 (excluded),
maximum 36000 (10 hours).

default pool tcp|udp|echo min-max Specifies the default port (or id for icmp echo) ranges for pools.
Compile time options are [TCP|UDP] [MIN|MAX]PORT, ICMP [MIN|MAX]ID, default values are

11

CHAPTER 3. USAGE 3.5. AFTR.CONF

TCP MINPORT 2048, UDP MINPORT 512, ICMP MINID 0, TCP MAXPORT 65535, UDP MAXPORT 65535,
ICMP MAXID 65535. Minimum is 1 (0 for ICMP), maximum 63535.

default tunnel auto on|off Enables or disables on-the-fly tunnel creation. Default is on.

default tunnel mss on|off This enables or disables TCP MSS patching on packets going from and to
tunnels. Can be overridden by per-tunnel configuration. If any tunnels are explicitly configured,
this must be specified before them. Default is off.

default tunnel mtu mtu Specifies mtu as the default IPv6 MTU of tunnels. Can be overridden by per-
tunnel configuration.

default tunnel toobig on|off|strict This specifies the policy for packets from the Internet which are too
big (i.e., they don’t fit in one IPv6 encapsulating packet) and are marked as “don’t fragment”. ’On’
means a ICMPv4 packet too big error is returned to the source, ’off’ the packet just go through, and
’strict’ the packet is dropped with a ICMPv4 error. Default is on (i.e., the packet is encapsulated
into some IPv6 fragments and a ICMP error is returned for path MTU determination).

default tunnel fragment ipv6|ipv4 maxcount maxcount Specifies the maximum number of reassem-
bly queue entries per tunnel. Compile time options are FRAGTN[46] MAXCNT, default values
are FRAGTN6 MAXCNT 16, FRAGTN4 MAXCNT 64. Mininum is 0 (included for reassembly disable),
maximum is 255.

default tunnel nat tcp|udp|icmp maxcount maxcount Specifies the maximum number of NAT entries
per tunnel. Compile time options are [TCP|UDP|ICMP] MAXTNATCNT, default values are TCP MAXNATCNT
2000, UDP MAXNATCNT 200, ICMP MAXNATCNT 50. Minimum is 0 (included), maximum is 65535.

default tunnel nat tcp|udp|icmp rate limit Specifies the maximum rate of dynamic NAT creation per
second. Compile time options are [TCP|UDP|ICMP] MAXTNATRT, default values are TCP MAXNATRT
50, UDP MAXNATRT 20, ICMP MAXNATRT 5. Minimum is 0 (included), maximum 255.

defmss on|off Alias of default tunnel mss on|off.

defmtu mtu Alias of default tunnel mtu mtu.

deftoobig on|off|strict Alias of default tunnel toobig on|off|strict.

eqfrag on|off Alias of default fragment equal on|off.

quantum quantum Specifies the number of packets dealt with in one main loop round (i.e., the size of
a slice of work). Compile time option is QUANTUM, default value is 20. Minimum is 2 (included),
maximum is 255.

REQUIRED CONFIGURATION COMMANDS

address endpoint IPv6 address IPv6 address is the AFTR endpoint address of the Softwire tun-
nels. If the DHCPv6 ds-lite option is used, this address must match the advertised address.

It is a required command: it absolutely must be present in the aftr.conf file; the aftr daemon
will not start without it.

12

CHAPTER 3. USAGE 3.5. AFTR.CONF

address icmp IPv4 address IPv4 address is a global IPv4 address used as the source for ICMP
errors sent back to the Internet (i.e., the ICMPv4 errors will look like returned from an intermediate
router that has this address). It is a required command.

pool IPv4 address [tcp|udp|echo min-max] This specifies a global IPv4 address that will be used as
the source address of NAT’ed packets sent to the Internet. Multiple global addresses can be speci-
fied, at least one is required.

The optional part limits the port (or id) range used for the protocol with the global IPv4 address in
dynamical bindings (i.e., not static or A+P bindings which can use the reserved ports outside the
range).

acl6 IPv6 prefix/prefix length This adds an (accept) entry in the IPv6 ACL. Note for a regular
IPv6 packet the ACL is checked only when no tunnel was found, and the default is “deny all”, so
at least one acl6 entry in the configuration file is required.

RELOADABLE CONFIGURATION COMMANDS

tunnel IPv6 remote [IPv4 src] This specifies an IPv4-in-IPv6 tunnel configuration. IPv6 remote is
the remote (ds-lite client) IPv6 address of the tunnel. Either the tunnel is associated with a source
address in a round robin way or it is associated to the specified IPv4 src.

nat IPv6 remote tcp|udp IPv4 src port src IPv4 new port new This defines a static binding/NAT
entry for the client behind the tunnel at IPv6 remote. * src are the source IPv4 address and port
at the tunnel side of the NAT, * new are the source IPv4 address and port at the Internet side of
the NAT. IPv4 new should be a reserved source NAT address, port new must not be inside a
dynamic port range.

prr IPv6 remote tcp|udp IPv4 port This defines a Port-Range Router/A+P null NAT entry for the
client behind the tunnel at IPv6 remote. IPv4 and port are the source IPv4 address and port at
the tunnel side of the NAT. They stay unchanged both ways: this entry is used to check authoriza-
tion and perform port routing.

nonat IPv6 remote IPv4/prefix length This defines a No-NAT tunnel for the client behind the
tunnel at IPv6 remote and the prefix IPv4/prefix length. No translation is performed for
matching packets.

mss IPv6 remote on|off This enables or disables TCP MSS patching on packets going from and to the
tunnel of IPv6 remote. Default is off.

mtu IPv6 remote mtu This changes the IPv6 MTU of the tunnel of IPv6 remote to mtu.

toobig IPv6 remote on|off|strict Per-tunnel configuration of the too big policy.

debug set [level] Specifies the debug level. Default is 0. If set to non 0, verbose log messages will be
dumped to stderr. The higher the level is, the noiser the logs are. At present, the meaningful levels
are 1 (log tunnel creation), 3 (log packet reads and writes), and 10 (function entry tracing). If the
level is omitted, it is set to 1.

13

CHAPTER 3. USAGE 3.6. INTERACTIVE COMMANDS

try tunnel IPv6 remote Create when it doesn’t already exist an IPv4-in-IPv6 tunnel, returns in all
cases the description of the tunnel entry. This command should be used by tools managing tem-
porary port forwarding. IPv6 remote must be acceptable for IPv6 ACLs.

try nat IPv6 remote tcp|udp IPv4 src port src IPv4 new port new Create when it doesn’t already
exist a static binding/NAT entry. This command should be used by tools managing temporary
port forwarding. The tunnel must exist.

SEE ALSO

aftr(8), aftr.commands(5)

AUTHOR

Internet Systems Consortium

3.6 Interactive commands

Included inline aftr-commands (5)

3.7 aftr.commands

Name

aftr.command — interactive commands for aftr

Synopsis

aftr.commands

DESCRIPTION

The aftr daemon runs in the background. After it starts, it can be controlled interactively from a control
channel (aka. a session).

All of the reloadable configuration commands can be allowed to run from the command line, to add or
change configuration. In addition, the following commands can be run interactively.

INTERACTIVE COMMANDS

abort Call abort(3) to create a core file. Please try to use it only on forked processes.

echo xxx Echo the command. This can be used for an external tool to synchronize with the AFTR
daemon.

14

CHAPTER 3. USAGE 3.7. AFTR.COMMANDS

fork Fork the aftr process. In the parent the current session is closed (so after this command you’ll talk
only to the child) and other activities, including packet forwarding, are continued. In the child all
file descriptors at the exception of the current session are closed.

This command should be used before to execution an expensive and atomic operation like list
commands or some debug commands, and of course the abort command.

help [all] List available or all commands.

kill Orderly kill the aftr process.

load file Redirect the input of the current session from the content of the file. This is done in an atomic
way (i.e., there is no other activity during the operation) but exists if a command fails.

quit Obsolete, use session close (for closing the current session) or kill (for killing the process).

reboot Reboot the whole process.

reload Reload the section two part of the config file. This is sliced with the packet forwarding, but not
with session reading (so you can’t execute a command until reload is finished).

The reload process uses a generation system: static NAT, PRR/A+P and no-NAT entries in the
reloaded file are put in the next generation. If the reload succeeds, global entries in older gen-
erations are garbaged collected, if it fails new generation entries are backtracked to the previous
generation. Garbage collection and backtracking are sliced with the packet forwarding, another
reload command is forbidden until they finish so a reload flushes the input buffer of the current
session.

show dropped|stat Aliases of debug dropped and debug stat, display dropped packet and general
statistics.

DEBUG COMMANDS

noop Returns LOG: alive.

debug check [nat|nonat|pool|session|tunnel] Performs some sanity checks on structures. Reserved to
expert usage on a forked process (or better core file debugged with gdb). Note it uses recusive
deep structure walking so can eat a lot of stack.

debug disable [clear] Disable per-tunnel debug counters. Optionally clear them.

debug dropped This displays the dropped packet statistics with reasons.

debug enable addr Enable per-tunnel debug counters for the tunnel with addr remote IPv6 address.
Note the counters can be incremented only when the involved tunnel is known, for instance, only
after reassembly.

debug fragment IPv6|in|out This displays the list of IPv4 or IPv6 fragments awaiting reassembly.

15

CHAPTER 3. USAGE 3.7. AFTR.COMMANDS

debug fragment addr This displays information about a single fragment or fragment chain. add> is
the memory address of the fragment structure (from a previous debug fragment command).

debug hash This displays some statistics about the various hash tables (fragment, nat, and tunnel).

debug nat This displays some information about the nat hash table and entry table.

debug nat addr This displays detailed information about a single nat binding. addr is the memory
address of the nat structure (from a previous debug nat command).

debug nonat This displays the list of no-nat tunnel entries.

debug pool This displays the global IPv4 addresses that will be used for NAT mapping.

debug session This displays the control channel session types with the number of active sessions.

debug stat This displays some general statistics about packets in and out. If per-tunnel debug counters
are enable, displays them.

debug tunnel This displays some information about the tunnel table.

debug tunnel IPv6 remote This displays some information about a single tunnel.

DELETE COMMANDS

delete acl6 IPv6 address This removes the IPv6 ACL entry with the IPv6 address.

delete nat IPv6 remote tcp|udp IPv4 port This removes a static or dynamic NAT binding.

delete nonat IPv6 remote This removes a no-nat tunnel entry.

delete prr IPv6 remote tcp|udp IPv4 port This removes a Port-Range Router/A+P null NAT bind-
ing.

delete tunnel IPv6 remote This removes a tunnel and all NAT bindings associated with it.

LIST COMMANDS

list acl6 List IPv6 ACLs.

list default List all the default values which can be set by a ’default’/’global’ command.

list nat [conf|static|prr|dynamic|all|global] List the NAT entries in the configuration file format. De-
fault is to list only the configured (’conf’) NAT entries. ’global’ lists the the configured global (i.e.,
not by a session) NAT entries.

16

CHAPTER 3. USAGE 3.8. COMMAND SUMMARY

list nonat List all the No-NAT tunnel entries in the configuration file format.

list pool List the NATted source addresses with current port ranges in the configuration file format.

list session [name|generation] List the static NAT, PRR/A+P and no-NAT entries created by the cur-
rent session or the session with name or with generation (note these entries will be flushed
when the session will be closed so this command can be used to get them in order to include them
in the config).

list tunnel List the tunnel entries in the configuration file format, including specific MTU (if different
from the default MTU).

SESSION COMMANDS

These commands deal directly with sessions (aka. control channels).

session close [name|generation] Close the current or designed session. Delete all the static NAT,
PRR/A+P and no-NAT entries created by the current session and which were not promoted to
global/permanent entries by a reload.

session config on|off Enable/disable the section two configuration commands. By default configura-
tion commands must go to the config file.

session log on|off Log errors or don’t for the current session. Default is on.

session name [name] Display or set the name of the current session. The stdio initial session is statically
named ’tty’.

session notify on|off Log tunnel removal or don’t to the current session. Default is off.

SEE ALSO

aftr(8), aftr.conf(5)

AUTHOR

Internet Systems Consortium

3.8 Command Summary

Table 3.1:

Name Section Syntax
abort interactive
acl6 one or two IPv6/prefix length
address one endpoint IPv6|icmp IPv4
autotunnel zero on|off
debug >= two set|enable|...|tunnel

17

CHAPTER 3. USAGE 3.8. COMMAND SUMMARY

Table 3.1: (continued)

Name Section Syntax
defmss zero on|off
defmtu zero mtu
deftoobig zero on|off|strict
delete == add acl6|nat|nonat|prr|tunnel
echo interactive xxx
eqfrag zero on|off
fork interactive
help interactive [all]
kill interactive
list interactive nat|nonat|pool|tunnel
load interactive file
mss >= two IPv6 on|off
mtu >= two IPv6mtu
nat two IPv6 tcp|udp IPv4 src ...
nonat two IPv6IPv4/prefix length
noop interactive
pool one IPv4 [tcp|udp|echo min-max]
prr two IPv6 tcp|udp IPv4port
reboot interactive
reload interactive
session interactive close|config|log|name|notify
show interactive dropped|stat
toobig >= two IPv6 on|off|strict
try two tunnel IPv6 | nat IPv6 tcp|udp IPv4 src ...
tunnel two IPv6 [IPv4]

18

Chapter 4

SYSLOG

Errors, debug messages, traces, etc, are logged through syslog with aftr as the program name.

The default facility is LOG LOCAL5 (can be changed at compile time by setting AFTRFACILITY), the
default openlog() option is LOG NDELAY (can be changed at compile time by setting AFTRLOGOPTION,
for instance to add LOG PID). Levels are:

• critical errors (i.e., the process must be rebooted) to LOG CRIT

• error conditions (i.e., bad packets, not critical memory allocation failures, bad commands, etc) to
LOG ERR

• warnings to LOG WARNING

• informational messages (including I/O logs) to LOG INFO

• debug messages (cf. debug set xxx) to LOG DEBUG

• trace messages (see next section) to LOG NOTICE

4.1 Trace

Trace messages are:

• tunnel add|del client IPv6

• seconds bucket client IPv6 natted IPv4 tcp|udp [#port]+

If TRACE NAT was defined at compile time (default is undefined):

if NOPRIVACY is kept undefined:

• seconds nat add|del client IPv6 tcp|udp natted IPv4 port

if NOPRIVACY is defined:

• seconds nat add|del client IPv6 tcp|udp client IPv4 client port natted IPv4 natted port
destination IPv4 destination port

19

Appendix A

Appendices

A.1 Security

The aftr process needs the root privilege to open the tunnel interface/device. The TCP over IPv4/IPv6
control channels are bound to localhost so are limited to the local node. There are many tools which
provide a secure connection forwarding, for instance ssh -L. The PF UNIX control channel relies on
standard file system permissions (cf. umask), it should be used for finer control than node access.

The try command is protected against not authorized tunnel creation.

A.2 Debug primer

Unlimit the core dump size if you’d like to get core file on crashes or with the abort command. On Linux
twist the core naming to something better than core (cf. core(5)). Please keep the binary associated to
core files. As the fork command is fun but eats memory put enough memory in the aftr box...

When the aftr process is not (yet) crashed but seems no longer to forward packets:

• go to an open session (try to keep on in case the alternative fails) or if none open a new one

• check if it is responsive using the noop (answer LOG: alive), if not try to get a core file (attach
in gdb and use gcore), kill it (another way to get a core file with ˆ\ / kill) and relaunch it

• if not in a hurry try to understand the issue with show stat and show dropped

• open a second session, send fork to get a child process where you can use extensive debug, in-
cluding gdb, on it. If you don’t know or you can’t understand, abort the child process to get a core
file.

• update the config file if needed, reboot the parent/main process (it will lose all the state and restart
from the beginning)

Summary for the busy operator:

• noop -> nothing: go to the shell to kill and relaunch it

• noop -> expected message: open another session, send fork, wait for the child pid message, send
abort on this new session. On the previous session (where you sent noop), send reboot

A.3 BUG REPORTS

Bug reports should be sent to: aftr-bugs@isc.org <mailto:aftr-bugs@isc.org>

21

mailto:aftr-bugs@isc.org

	1 INTRODUCTION
	1.1 System Requirements

	2 BUILD
	2.1 Configuration flags

	3 USAGE
	3.1 System setup
	3.2 Options
	3.3 aftr
	3.4 Configuration File
	3.5 aftr.conf
	3.6 Interactive commands
	3.7 aftr.commands
	3.8 Command Summary

	4 SYSLOG
	4.1 Trace

	A Appendices
	A.1 Security
	A.2 Debug primer
	A.3 BUG REPORTS

