
The Transport Sample Protocol: A Provider/Consumer
programming Tutorial

Frederik DEWEERDT

frederik.deweerdt@gmail.com

Eric NOULARD

eric.noulard@gmail.com

Version 1.0 of October 20th, 2006

Abstract

This document is a TSP programmer primer's guide. Using it you should be able to quickly
understand what are the TSP objectives, how to install TSP on your system and how to use
TSP within your application. In order to fully understand the document one should have a
reasonable understanding of C language programming and basic knowledge of TCP/IP networked
application.

CONTENTS CONTENTS

Contents

1 What is TSP? 1
1.1 TSP principles . 1
1.2 The TSP tools . 2
1.3 Getting TSP . 4

2 Installing TSP 5
2.1 Software Prerequisite . 5
2.2 TSP binary installation . 5

2.2.1 TSP binary installation for Windows . 5
2.2.2 TSP binary installation for Unix . 8

2.3 TSP source installation . 9
2.3.1 TSP source installation for Windows . 9
2.3.2 TSP source installation for Unix . 11
2.3.3 TSP Source tree primer . 14

3 Testing TSP installation 15
3.1 Standalone TSP test (1 host) . 15
3.2 Networked TSP test (at least 2 machines) . 16

4 Building a TSP Provider 19
4.1 The observed application . 19
4.2 Providerizing the program . 20

5 Building a TSP consumer 28
5.1 Writing a simple consumer . 29
5.2 Ready-to-use consumers . 32

A Installing prerequisite software 33
A.1 CMake . 33
A.2 ACPLT-ONCRPC . 33

A.2.1 Verifying Portmap Service/Daemon . 33
A.3 PthreadsWin32 . 33
A.4 NullSoft Scriptable Install System . 34

References 34

i

LIST OF LISTINGS LIST OF TABLES

List of Listings

1 A simpli�ed simulator . 19
2 Headers of the TSP aware simulator . 21
3 TSP core initialization . 22
4 GLU initialization function . 25
5 GLU get Sample Symbol Information . 25
6 GLU run . 26
7 Headers of the TSP consumer application . 29
8 Initialize TSP consumer library and open TSP Session 29
9 Request for Information on TSP Symbols . 30
10 Requesting selected symbols . 30
11 Consumer Sample loop . 31
12 Terminate TSP consumer . 32

List of Figures

1 TSP Provider/Consumer principles . 1
2 TSP typical sequence . 20
3 GLU vs TSP library . 21
4 Windows Help TSP API documentation . 24

List of Tables

1 TSP tools synoptic . 2

ii

1 WHAT IS TSP?

1 What is TSP?

1.1 TSP principles

TSP stands for the Transport Sample Protocol. TSP is a sampling framework, mostly written in
C and accessible in a wide variety of languages (Java, Ruby, Perl, Python) and platforms (Linux,
OpenBSD, FreeBSD, Solaris, DEC OSF and Windows).

The aim of TSP is to provide an easy and straightforward way for programmers to sample data
that lies within a running program. To achieve that goal, TSP provides two core components:

� The TSP provider. Plugged into the observed program, it's role is to provide the observed data
to the outside world (TSP consumer) by embedding it in the TSP protocol.

� The TSP consumer negotiate with a TSP provider the data he wants to consumer. It is able
to parse and understand the TSP protocol and display collected data it in some useful way.

This TSP principle is depicted on �gure 1 on page 1. A TSP provider may be any application which

Figure 1: TSP Provider/Consumer principles

wants to expose any evolving data to the outside world in a easy, e�cient and dynamic fashion.
The evolving data provided by a TSP provider are called TSP symbols. A TSP consumer is an
application which wants to get the evolving value TSP symbols in order to display or store those
values. A typical TSP usage in the satellite test and integration domain is to have EGSE which are
TSP providers and Graphical display which are TSP consumers.

Using the TSP software development kit you will be able to bring the simple e�ciency of TSP
into your application.

1

1.2 The TSP tools 1 WHAT IS TSP?

1.2 The TSP tools

TSP itself is both a Protocol and a Software Development Kit (SDK) including a set of ready-to-use
tools such as sample �le recorder, GUI graph display, Blackboard Library [Dew06] and others helpers
tools and/or library. It is out of the scope of this document to describe them all, we just provide here
on Table 1a synoptic list of TSP Tools which indicates their role and if those tools are available on
Unix, Windows or other TSP supported platforms. In the following table the �rst column �P/C/B�
indicates whether the TSP tools is on Provider side, Consumer side, or Both sides. When only
a speci�c unix platform (Solaris, Linux, FreeBSD, . . .) is concerned it is indicated as such in the
�Platform� column, otherwise Unix is given. If you want more detailed informations about TSP tools
please consult [Tea06, �11 TSP Applications].

Table 1: TSP tools synoptic

P/C/B Tool
Name

Description Platform

B TSP Core The TSP Core is the base TSP software module in C language.
This is the mandatory module for building TSP Provider or
Consumer in C. The TSP Core may be con�gured to use ONC-
RPC or XML-RPC. XML-RPC channel is currently in alpha
stage. Concerned TSP source locations:

� tsp/src/core/common

� tsp/src/core/ctrl

� tsp/src/core/ctrl_init

� tsp/src/core/driver

� tsp/src/core/include

� tsp/src/core/rpc

� tsp/src/core/misc_utils

Unix
Win32

P Stubbed
Server

The TSP Stubbed Server is a TSP provider which generates
1000 TSP tests symbols at 100Hz. It can viewed as faked
simulator whose purpose is to be an example of TSP Provider
side programming. Concerned TSP source locations:

� tsp/src/providers/stub

Unix
Win32

P RT
Stubbed

This is a variant of TSP Stubbed Server running on PC type
machine under linux, which is driven by the RTC chip and
use POSIX compliant realtime system interface. Concerned
TSP source locations:

� tsp/src/providers/rt_stub

Linux

5 table continues on next page 5

2

1.2 The TSP tools 1 WHAT IS TSP?

Table 1: TSP tools synoptic (continued)

P/C/B Tool
Name

Description Platform

P VX
Stubbed

VXWorks speci�c version of TSP Stubbed Server. Concerned
TSP source locations:

� tsp/src/providers/vxstub

VxWorks

P RES
Reader

Binary RES �le format (EADS-Astrium) reader. Concerned
TSP source locations:

� tsp/src/providers/res_reader

Unix

P Gen
Reader

Generic �le reader. The generic �le reader may read data �le
in di�erent �le format and provides symbols value as described
by the �le format handler. Concerned TSP source locations:

� tsp/src/providers/generic_reader

Unix

P BB
Provider

Blackboard provider. Concerned TSP source locations:

� tsp/src/providers/bb_provider

Unix Vx-
Works

C Visu 3D An experimental OpenGL consumer. Concerned TSP source
locations:

� tsp/src/consumers/Visu3D

Linux

C Ascii
Writer

A TSP consumer which may write to ascii �les in di�erent �le
format. Concerned TSP source locations:

� tsp/src/consumers/ascii_writer

Unix

C GDisp A Graphical (GTK+1.2) TSP consumer which may display
graphs and textual values. Concerned TSP source locations:

� tsp/src/consumers/gdisp

Unix

C Targa A Sophisticated Graphical (GTK+1.2) TSP consumer which
may display graphs and textual values. Using Targa one may
build it's synoptic interactively and save/restore your sam-
pling con�guration. Concerned TSP source locations:

� tsp/src/consumers/gdisp+

Unix

5 table continues on next page 5

3

1.3 Getting TSP 1 WHAT IS TSP?

Table 1: TSP tools synoptic (continued)

P/C/B Tool
Name

Description Platform

C Generic
Consumer

The generic TSP consumer is a test consumer which o�ers
command line options for sending any TSP Request to a TSP
provider. sampling con�guration. Concerned TSP source lo-
cations:

� tsp/src/consumers/generic

Unix
Win32

� end of table �

1.3 Getting TSP

TSP is an Open Source software1 one may get the TSP software at TSP home on Savannah [TSP].
The download section, http://download.savannah.nongnu.org/releases/tsp/ contains source
and binary release for di�erent languages and platform.

1TSP license is LGPL www.gnu.org/licenses/lgpl.html

4

http://download.savannah.nongnu.org/releases/tsp/
www.gnu.org/licenses/lgpl.html

2 INSTALLING TSP

2 Installing TSP

TSP is an Open Source software so one may install TSP either from a pre-compiled binary installer
of from the source archive using your favorite C compiler and some development tools. If you do not
understand the di�erence between source installation and binary installation it means you certainly
needs a binary installer. Binary installer comes as an executable �.exe� program on the Windows
platform and as an RPM or [compressed] Tar archive on Unix platform.

2.1 Software Prerequisite

TSP needs some third party tools which needs to be installed before TSP. The main dependencies
are:

1. Binary installation dependencies

(a) a POSIX thread library

(b) an ONC-RPC library and portmapper

2. Source installation dependencies

(a) CMake build system [CMa]

(b) a POSIX thread library

(c) an ONC-RPC library and portmapper

(d) NSIS Installer (Windows Platform Only) [NSI]

Since pre-requisite depends on the target platform (Linux, Windows, Solaris. . .), please read the
appropriate speci�c installation instructions in the forthcoming section below.

2.2 TSP binary installation

2.2.1 TSP binary installation for Windows

1. Get tsp-<x.y.z>-Windows.exe from http://download.savannah.nongnu.org/releases/tsp/

5

http://download.savannah.nongnu.org/releases/tsp/

2.2 TSP binary installation 2 INSTALLING TSP

2. Execute the installer by doudble-clicking on the downloaded �le. You should have administrator
privilege to perform a successful installation

3. Accept the LGPL license policy (Open Source Software)

6

2.2 TSP binary installation 2 INSTALLING TSP

4. Choose whether you want system path to be modi�ed for including TSP executable. If you
choose �Add tsp to the system PATH for all users� every user of the system may launch TSP
SDK excutable from any location. If unsure check �Add tsp to the system PATH for all users�.

5. Chose TSP install location

7

2.2 TSP binary installation 2 INSTALLING TSP

6. Chose TSP start menu folder name

7. The TSP for Windows installer will install prerequisite softwares and copy some DLL to system
folder. This is not a choice but it may takes some time thus be patient. . .

8. TSP is now properly installed on your system

2.2.2 TSP binary installation for Unix

It is not an objective of the TSP Team to maintain and distribute binary packages for many Unix
�avor (All Linux distribution, Solaris, DEC OSF. . .). So the favorite way of installing TSP on Unix
is from source. Nevertheless, if your source installation does not go smooth you may ask for help on
the TSP Developer mail list http://lists.nongnu.org/mailman/listinfo/tsp-devel.

8

http://lists.nongnu.org/mailman/listinfo/tsp-devel

2.3 TSP source installation 2 INSTALLING TSP

2.3 TSP source installation

If you have made a TSP binary installation you may skip this section.

TSP can be downloaded as a source code tar.gz archive from http://download.savannah.

nongnu.org/releases/tsp/. Note that the tar.gz source archive is as usable on the windows plat-
form as it is on unix platforms2. The TSP source code is portable and con�gurable. The CMake TSP
build system detect what may be compiled on the host platform and con�gure the source accordingly.

As TSP, since version 0.8.1, uses the CMake build system, CMake is a prerequisite for any TSP
source installation. Please check that you have a properly installed CMake (see A.1) before reading
on about source installation. TSP source are meant to be built using CMake out-of-source build
feature. This means that the compiled binaries (object, libraries and executable) are produced in a
separate tree from the source tree. You will see TSP with CMake source con�guration example in
the forthcoming sections.

2.3.1 TSP source installation for Windows

1. Check you have the minimal prerequisite softwares installed:

(a) CMake see A.1.

2. Get tsp-<x.y.z>-Source.tar.gz from http://download.savannah.nongnu.org/releases/tsp/

3. Unpack the archive at your favorite place. In the following screenshot the source location is
C:\Data\tsp .

4. Run CMake and chose a build directory which is separate from source (this is called out of
source build).

5. Click on Con�gure, CMake will ask you for which build tools he should generate �les, for
example �Visual Studio 7 .Net 2003 �:

2Many Windows Zip softwares are able to extract tar.gz archives, see for example http://www.7-zip.org/

9

http://download.savannah.nongnu.org/releases/tsp/
http://download.savannah.nongnu.org/releases/tsp/
http://download.savannah.nongnu.org/releases/tsp/
http://www.7-zip.org/

2.3 TSP source installation 2 INSTALLING TSP

6. After the Generator is selected on you Clicked OK, CMake will do its �rst discover task and
you should obtain something similar to:

7. Then click on Con�gure again in order to make CMake do its con�guration task, and you get:

10

2.3 TSP source installation 2 INSTALLING TSP

8. Finally click on OK in order to make CMake generate the project �les. If you open the build
directory you will see that you now have a �Microsoft Visual Studio 7 .Net� solution �le TSP.sln

which is ready to use.

2.3.2 TSP source installation for Unix

The installation under Unix is straightforward, just deviating slightly from the standard ./configure;

make ; make install routine since we want an out of source build:

1. Check you have the CMake installed (see A.1).

2. Get tsp-<x.y.z>-Source.tar.gz from http://download.savannah.nongnu.org/releases/tsp/

3. Unpack the archive at your favorite place:

cd $HOME; tar zxvf tsp-<x.y.z>-Source.tar.gz . The command should create a directory
$HOME\tsp-x.y.z-Sources containing the whole TSP C SDK sources.

4. Create your build directory cd $HOME; mkdir tsp_build and change directory cd tsp_build

.

5. Run CMake from within the build directory,

� you may run the default con�guration using the non interactive cmake command

cmake $HOME\tsp-x.y.z-Sources

� or you may run the interactive curse CMake interface ccmake which looks like the
Windows interface in a full text version.

(a) You run ccmake $HOME\tsp-x.y.z-Sources and get:

11

http://download.savannah.nongnu.org/releases/tsp/

2.3 TSP source installation 2 INSTALLING TSP

(b) Then you hit 'c' key for �con�gure� and make CMake do its �rst discover task and
you get

(c) Afterwards you hit 'c' key again for making CMake do its con�guration work:

(d) Last step is to hit 'g' for making CMake generate the Make�les. CCMake exits
properly and you may proceed as if you had launch cmake (and not ccmake).

6. Launch the build command and wait for termination:

12

2.3 TSP source installation 2 INSTALLING TSP

the command make will build TSP.

Note that make may eventually re-run the non-interactive cmake automatically. You should
not worry about this.

7. Packaging TSP:

Before installing TSP it's better to build a binary TSP package you will be able to deploy on
every machine you need, just as you can do with the TSP for Windows installer.

The command make package will build the binary TSP package.

Will build a unix tar and gzip-compressed archive whose name depends on your machine
architecture, in our example this leads us to: tsp-0.8.1-Linux-i686.tar.gz .

8. Install TSP

Take the tsp-<version>-<system>-<arch>.tar.gz binary TSP package you have built in the
previous step and untar the archive at the install place you want with the following command:

tar zxvf tsp-0.8.1-Linux-i686.tar.gz

This will produce a tsp-0.8.1-Linux-i686 directory containing the TSP install directory
tree:

13

2.3 TSP source installation 2 INSTALLING TSP

tsp-0.8.1-Linux-i686

|-- bin

|-- include

|-- lib

`-- scripts

� bin contains binary executables,

� include contains public include �les,

� lib contains libraries,

� scripts contains helper scripts and test �les.

After that you may want to update your PATH to include <path_to_tsp_install>/bin .

2.3.3 TSP Source tree primer

A quick look at the TSP sources may be helpful in understanding and locating the TSP components:

<tspdir> $ tree -L 2

[...]

|-- src

| |-- consumers

| |-- core

| |-- providers

[...]

The core directory contains the code implementing the core TSP functionalities: both the
consumer and provider API are implemented there.

The consumers directory contains readily available TSP consumers coded by the TSP team.
They target a wide range of uses, and are well beyond the scope of this document, it is recommended
to refer to the TSP Design & Programming Guide Document [Tea06].

The providers directory contains TSP providers that might prove useful as reference for the
future provider writer. In particular, the src/providers/stub directory contains the Stub Server
provider.

14

3 TESTING TSP INSTALLATION

3 Testing TSP installation

To make sure that we now have a working TSP installation on our system, we will proceed two small
tests:

� the �rst test will check a TSP installation on a single host which may or may not be connected
to a LAN,

� the second test will check a TSP installation on 2 hosts interconnected with a TCP/IP LAN.

3.1 Standalone TSP test (1 host)

This test simply consists in launching two TSP applications:

� one provider, the stub server and,

The Stub Server is a test and tutorial TSP provider that generates TSP Symbols value at
approximately 100Hz. It is used to test TSP installation and may be used to test new TSP
consumers.

� one consumer the stdout consumer,

The Stdout Client consulmer is a test and tutorial TSP consumer which may connect to any
TSP provider and request a speci�ed number of TSP symbols and print their ebolving values
on standard output.

The screenshots shown hereafter are taken on a Windows system but you may run the same test on
any TSP supported unix systems too. The test TSP applications used here may be launched from
the TSP start menu on windows but we will give you the corresponding command line command
and arguments usable both on Windows and on Unix platforms.

1. Launch the Stub Server, either with command line tsp_stub_server (Unix) or
tsp_stub_server.exe (Windows) or even from the TSP start menu group:

Now the StubServer is running and wainting for a TSP consumer to connect. The StubServer
console window should display something like that:

If ever the StubServer is not able to start please check if you RPC Portmapper is running
properly as described at �A.2.1.

15

3.2 Networked TSP test (at least 2 machines) 3 TESTING TSP INSTALLATION

2. Launch the Stdout Client, either with command line tsp_stdout_client -p 10 -s 2 -n 0

(Unix) or tsp_stdout_client.exe -p 10 -s 2 -n 0 (Windows) or even from the TSP start
menu group:

Now the StdOut Client console window should display just like that:

The Stdout display TSP symbols values provided by the Stubbed Server. This is an in�nite
loop you may terminate by hitting Ctrl-C within the Stdout Client console window.

Now you should close both windows.
The console should not close, otherwise it means that something in the initialization went wrong.

In case it does close, consider running the 'cmd.exe' program, change dir to the directory where the
provider's binary lies, and launch it by typing tsp_stub_server.exe , you should be able to read
an informative message.

3.2 Networked TSP test (at least 2 machines)

TSP is meant to be used between several hosts exchanging data using the TSP protocol. When the
standalone TSP is OK you may run the same test using 2 machines. You have to run the Stubbed
Server just as before and to run the Stdout Client from a command line and providing the necessary
network argument.

On our example the StubbedServer is run on a Windows box whose IP address is 192.168.0.2, so
that the Stdout Client running on a Linux Box connected to the Windows box's network should be
run with the following command line:

tsp_stdout_client.exe -u 192.168.0.1 -p 10 -s 2 -n 0

The corresponding screens shots are shown just below:

16

3.2 Networked TSP test (at least 2 machines) 3 TESTING TSP INSTALLATION

If the Stdout client cannot connect to the Stubbed Server:

1. Check TSP installation on each box by running the standalone test

2. Check the network connectivity between the provider box and the consumer box by trying
network connectivity test like ping each other.

3. Check whether the provider box does not have some �rewall software activated.

If one of your host is a Linux box you may play with several graphical TSP consumers with
your StubbedServer running. Note that some TSP consumers may not have been compiled on
your systems if some development libraries (libxml2, gtk+1.2 etc. . .) have not been detected
by CMake. In the scripts directory of your TSP installation you have some handy TSP
consumer con�guration �les.

� TSP GDisp:

tsp_gdisp -u 192.168.0.1 -x <TSP_install_dir>/scripts/stub_gdisp_config.xml

This should lead to something like:

� TSP Ascii Writer:

tsp_ascii_writer -u 192.168.0.1 -x <TSP_install_dir>/scripts/stub_ascii_writer_config.dat

17

3.2 Networked TSP test (at least 2 machines) 3 TESTING TSP INSTALLATION

Check [Tea06, �11.2 TSP Consumers] if you want more instructions.

18

4 BUILDING A TSP PROVIDER

4 Building a TSP Provider

This section describes the necessary steps needed to add a provider to an existing program. For
simplicity's sake, this program will consist on a simple loop incrementing two variables. Our job will
be to make those variables available to a basic TSP consumer.

We will start by studying the original code, then we will had the necessary TSP hooks to make
the code TSP aware. We will then use targa , which is a handy GTK+ TSP consumer3, to display
the data. To conclude, we will write a simple consumer to display the value of our variable to a
console's screen.

4.1 The observed application

Listing 1 shows a sample simulator in action. It simply consists in a simulation() function (line
8), that runs as a thread. This function iterates 20000 times, incrementing the test_variable1

(line 20) and decrementing the test_variable2 (line 21), both of which, we will suppose, are of
crucial importance for our project.

Listing 1: A simpli�ed simulator
1 #include <s td i o . h>
2 #include <a s s e r t . h>
3 #include <pthread . h>
4

5 /*
6 * The pseudo s imu la t ion func t i on
7 */
8 void * s imu la t i on (void *unused)
9 {

10 unsigned long t e s t_var i ab l e1 ;
11 unsigned long t e s t_var i ab l e2 ;
12

13 t e s t_var i ab l e1 = 0 ;
14 t e s t_var i ab l e2 = ~0UL;
15 /*
16 * The pseudo s imu la tor main loop .
17 */
18 while (t e s t_var i ab l e1 < 20000) {
19 /* Update i n t e r na l s t a t e o f our s imu la tor */
20 t e s t_var i ab l e1++;
21 t e s t_var iab l e2 −−;
22 /* wait f o r next s imu la tor c y c l e */
23 us l e ep (100000) ;
24 }
25 return NULL;
26 }
27

28 /*
29 * This the main entry po in t o f our
30 * pseudo s imu la tor
31 */
32 int main (int argc , char *argv [])
33 {
34 pthread_t simu_thread ;
35 int r e t ;
36

37 p r i n t f ("#\n") ;
38 p r i n t f ("# Launching <Observed App >\n") ;
39 p r i n t f ("#\n") ;
40

41 /* Create a thread which launches the s imu la t ion func t i on */
42 r e t = pthread_create(&simu_thread , NULL, s imulat ion , NULL) ;
43

44 /* pthread_create re tcode must not be NULL */

3You'll �nd the sources at src/consumers/gdisp+

19

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

45 a s s e r t (! r e t) ;
46

47 /* Wait f o r the s imu la t ion terminat ion by j o i n in g the
48 * s imu la t ion thread
49 */
50 pthread_join (simu_thread , NULL) ;
51

52 p r i n t f ("#=== End ===#\n") ;
53 return 0 ;
54 }

4.2 Providerizing the program

Now that we identi�ed the data to be provided by our program, we will proceed the necessary steps
to make the simulator TSP-aware.

Let's recall from [Tea06] that being a TSP provider means being able to answer to TSP requests,
those TSP requests are used between a TSP provider and a TSP consumer to negotiate the samples
they will exchange. A typical TSP request sequence is shown on �gure 2.

Figure 2: TSP typical sequence

The typical TSP sequence is simple:

1. Negotiate sampling con�guration with the provider,

20

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

2. Start sampling and loop to receive samples,

3. Ask for sampling termination.

This may seems hard to implements but the TSP Library makes it really simple to do. The TSP
Library will take care of handling the request/answer mecanism for us as soon as the application:

� Implements and register a object-oriented C callback object called the GLU.

� Calls some TSP API for initialization and termination,

� Tells the TSP library for sample update.

Figure 3 illustrate the layered aspect of TSP GLU interface.

Figure 3: GLU vs TSP library

The TSP GLU object is a C structure which contains data and pointer to functions. We may
not detail the whole structure content here but the main idea is that whenever the TSP library
needs informations for �lling-up TSP Answer to Consumer TSP request (available sample symbol
list, name and type description of the symbols etc...), the TSP Library will call the GLU structured
callback object our application has provided. Let's go for some source code now.

As expected, we will �rst include the needed TSP headers at the top of the source �le. This is
shown in listing 2.

Listing 2: Headers of the TSP aware simulator
1 /* */
2 #include <tsp_abs_types . h> /* p la t form independant data types d e f i n i t i o n */
3 #include <tsp_prov ider_in i t . h> /* prov ider i n i t API */
4 #include <tsp_glu . h> /* TSP GLU ob j e c t d e f i n i t i o n and API */
5 #include <tsp_common . h> /* TSP common s t r u c t u r e manipulat ion API */
6 #include <tsp_datapool . h> /* TSP prov ider datapoo l API */
7 /* */

21

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

Those headers contains the needed prototypes of the functions used in listing 3 in order to interface
our application with the TSP Library. The listing 3 illustrates how to create a GLU object in our
main application and register it to TSP library during its initialization. This example is taken from
the Stubbed Server provider you may found in tsp/src/provider/stub the example has been
slightly modi�ed to makes it more simple and readable at �rst glance. You should read all the code
and comments keeping in mind the 3 steps for programming a TSP provider:

1. Build your own GLU object structured callback,

2. Register the GLU object into TSP Provider library and initialize TSP,

3. Launch TSP provider request handler AKA TSP_provider_run .

Listing 3: TSP core initialization
1 /* dec l a r e my GLU ob j e c t s t a t i c v a r i a b l e */
2 stat ic GLU_handle_t* stub_GLU = NULL;
3

4 /* Create the GLU ob j e c t ins tance */
5 GLU_handle_t *STUB_GLU_create ()
6 {
7 /*
8 * Create a d e f a u l t GLU ob j e c t ins tance
9 */

10 GLU_handle_create(&stub_GLU , /* po in t e r to po in t e r to GLU ob j e c t */
11 "SampleTSPProvider" , /* Provider name */
12 GLU_SERVER_TYPE_ACTIVE, /* my GLU can ' t wai t i t i s ACTIVE */
13 1 0 0 . 0) ; /* my adve r t i s e d base frequency (in Hz) */
14

15 /*
16 * Now we must prov ide GLU member func t i ons
17 * which w i l l be c a l l e d by TSP prov ider l i b r a r y in order
18 * to b u i l d TSP answers to TSP consumer r e que s t s
19 */
20

21 stub_GLU−>i n i t i a l i z e = &STUB_GLU_init ; /* i n i t i a l i z e GLU member func t i on po in t e r */
22 stub_GLU−>run = &s imula t i on ; /* main loop GLU member func t ion po in t e r */
23

24 /* prov ides ge t Sample Symbol In fo L i s t GLU member func t i ons */
25 stub_GLU−>ge t_s s i_ l i s t = &STUB_GLU_get_ssi_list ;
26

27 /* prov ides ge t Sample Symbol Extended Information from PGI member func t i on po in t e r
28 * PGI = Provider Globa l Index
29 */
30 stub_GLU−>get_ssei_list_fromPGI = &STUB_GLU_get_ssei_list_fromPGI ;
31

32 return stub_GLU ;
33 }
34

35 int main (int argc , char *argv [])
36 {
37 int r e t ;
38

39 p r i n t f ("# Launching <Sample server >\n") ;
40

41 /* Create our s t ruc tu r ed GLU ca l l b a c k s */
42 GLU_handle_t *GLU_stub = GLU_stub_create () ;
43

44 /* I n i t i a l i z e TSP Provider l i b r a r y and r e g i s t e r OUR GLU ob j e c t
45 * so t ha t the TSP core knows i t and i s a b l e
46 * to c a l l appropr ia te c a l l b a c k GLU member func t i ons .
47 */
48 i f (TSP_STATUS_OK == TSP_provider_init (GLU_stub , &argc , &argv)) {
49

50 /* con f i gure TSP reque s t hand l ing SIMPLE mode */
51 unsigned int f l a g s = TSP_ASYNC_REQUEST_SIMPLE;
52

22

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

53 /* TSP Request Handler w i l l loop f o r e v e r when s t a r t e d */
54 f l a g s |= TSP_ASYNC_REQUEST_BLOCKING;
55

56 /*
57 * S tar t TSP reque s t hand l ing loop
58 * In t h i s case the func t i on w i l l not re turn
59 * un t i l the program i s i n t e r rup t ed (Ctr l−C) .
60 *

61 * Provider run w i l l :
62 * 1− Cal l GLU−−>i n i t i a l i z e ()
63 * 2− S tar t a thread running GLU−−>run ()
64 * 3− S tar t TSP reque s t handler
65 */
66 i f (TSP_STATUS_OK != TSP_provider_run (f l a g s)) {
67 return −1;
68 }
69

70 /* Terminate TSP Provider l i b r a r y */
71 TSP_provider_end () ;
72

73 /* * * NO TSP_xxx func t i ons may be c a l l e d a f t e r t h i s c a l l * * */
74 }
75 return 0 ;
76 }

We will review the functions and their role one by one hereafter, nevertheless keep in mind that
the most up to date information is in the concerned headers sources �les themselves. The TSP
headers are documented using doxygen4 structured comments, so that complete and browsable API
documentation may be generated either in HTML format or CHM (Windows Help) format as illus-
trated at �gure 4 on page 24. The TSP Windows help �le is available through the TSP menu group.
The root HTML index document may be found in <TSP_INSTALL_DIR>/doc/api/html/index.html

and may be opened by any HTML Browser5.
Now let's go further inside TSP provider API role and features:

� TSP_provider_init(handle_t* theGLU, int* argc, char** argv[])

Initialize the TSP provider library and register theGLU structured callback. argc and argv

are the classical arguments of a main program. If you don't have them you should fake them
like this:

int argc = 1;

char** argv = 0;

argv = (char**)calloc(argc+1, sizeof(char*));

argv[0] = strdup("MyOwnProvider");

argv[1] = NULL;

� TSP_provider_run(int spawn_mode)

Start TSP provider library. This will call the GLU->initialize() function and then launch
the TSP request handler (ONC RPC request handler in the default case). The spawn_mode

is a mask of OR-ed values:

4http://www.doxygen.org
5You may �nd an online version of TSP API documentation at http://www.ts2p.org/tsp/API_doc/html/index.

html

23

http://www.doxygen.org
http://www.ts2p.org/tsp/API_doc/html/index.html
http://www.ts2p.org/tsp/API_doc/html/index.html

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

Figure 4: Windows Help TSP API documentation

� the asynchronous request mode. This will tell TSP if several and dynamically registered
request handler should be used or not. For now only TSP_ASYNC_REQUEST_SIMPLE is
supported since TSP_ASYNC_REQUEST_DYNAMIC is not implemented yet.

� the blocking mode. This indicates if the call to TSP_provider_run should block or
not. When TSP_ASYNC_REQUEST_NON_BLOCKING mode is invoked a new thread is started
and function returns, whereas when TSP_ASYNC_REQUEST_BLOCKING mode is requested
function never return unless program receive a signal.

� TSP_provider_end()

Finalize the TSP provider library, i.e. shut down TSP. No TSP calls may done after this call,
not even to TSP_provider_init again.

Now we should have a look at the di�erents GLU mandatory member functions we have to
implement:

� GLU->initialize shown in listing 4 must de�ne what TSP symbols the providers will o�er.
The GLU should de�ne a list of symbols to provide. This list is a TSP_sample_symbol_info_list_t

structure containing TSP_sample_symbol_info_t elements. Those structures may be manip-
ulated with TSP_SSIList_xxx and TSP_SSI_xxx API de�ned in <tsp_common.h> . The
minimal information that should be provided for a TSP symbols is:

24

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

� its name, which is a human readable label associated to the data (its key),

� its provider global index, which a unique integer identi�er used by TSP core to index the
provided symbol,

� its TSP type (DOUBLE, FLOAT, INT8/16/32. . . , browse TSP API documentation for
the complete enum TSP_datatype_t de�nition)

� its dimension, 1=scalar, >1 array of symbol. TSP only support rank 1 array.

� its period, which is how often the provider update the symbol value if unsure put 1 (see
[Tea06] for detail on this).

Listing 4: GLU initialization function
1 [. . .]
2 stat ic TSP_sample_symbol_info_list_t X_SSI_list ;
3 [. . .]
4 int STUB_GLU_init(GLU_handle_t * th i s , int fa l lback_argc ,
5 char * f a l lback_argv [])
6 {
7 int32_t s i z e ;
8

9 /* I n i t i a l i z e prov ided sample in f o l i s t f o r 1 symbol */
10 i f (TSP_STATUS_OK!=TSP_SSILi s t_in i t ia l i ze (&X_SSI_list , 1)) {
11 return FALSE;
12 }
13 /*
14 * I n i t i a l i z e a TSP_sample_symbol_info_t s t r u c t u r e
15 * which w i l l ho ld metadata f o r ' t e s t_va r i a b l e '
16 */
17 TSP_SSI_init ia l ize (TSP_SSIList_getSSI (X_SSI_list , 0) ,
18 "test_variable" , /* name */
19 0 , /* prov ider g l o b a l index */
20 0 ,0 , /* pgridx , pgrank */
21 TSP_TYPE_DOUBLE, /* type */
22 1 , /* dimension */
23 0 ,0 , /* o f f s e t , nelem */
24 1 , /* per iod */
25 0) ; /* phase */
26 /* compute symbol memory s i z e */
27 s i z e =
28 X_sample_symbol_info . dimension * tsp_type_size [X_sample_symbol_info . type] ;
29

30 /* This i s not r e a l l y needed here f o r now ,
31 * but l e t ' s r e g i s t e r the b i g g e s t s i z e we ' l l dea l wi th
32 */
33 i f (taille_max_symbol < s i z e) {
34 taille_max_symbol = s i z e ;
35 }
36 return TRUE;
37 }

� GLU->get_ssi_list shown in listing 5 should return the complete list of provided symbols.
We simply provides the value of our static variable X_SSI_list previously initialized by
GLU->initialize() .

Listing 5: GLU get Sample Symbol Information
1 int

2 STUB_GLU_get_ssi_list (GLU_handle_t* h_glu , TSP_sample_symbol_info_list_t* symbol_l i s t)
3 {
4 symbol_list−>TSP_sample_symbol_info_list_t_len =
5 X_SSI_list . TSP_sample_symbol_info_list_t_len ;
6 symbol_list−>TSP_sample_symbol_info_list_t_val =
7 X_SSI_list . TSP_sample_symbol_info_list_t_val ;
8

9 return TRUE;
10 }

25

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

� GLU->run which is our application updated simulation and shown in listing 6. GLU->run

must be the main TSP provider update loop. It should feed the TSP datapool with sample
values at the chosen provider pace.

Listing 6: GLU run
1 void * s imu la t i on (void * a th i s)
2 {
3 /* my t e s t v a r i a b l e */
4 double t e s t_var i ab l e ;
5 /* a GLU datapoo l item */
6 glu_item_t * item ;
7 /* the a t h i s i s the po in t e r on the GLU ob j e c t i t s e l f */
8 GLU_handle_t* c t h i s = (GLU_handle_t*) a t h i s ;
9 int symbols_nb , *ptr_index ;

10 int temp ;
11

12 item = c a l l o c (1 , s izeof (* item)) ;
13 a s s e r t (item) ;
14 /* Reserve enough memory fo r one symbol */
15 item−>raw_value=c a l l o c (1 , taille_max_symbol) ;
16 a s s e r t (item−>raw_value) ;
17

18 t e s t_var i ab l e = 0 . 0 ;
19 while (1) {
20 /*
21 * Reverse l i s t o f wanted items index
22 * The TSP Provider l i b r a r y maintains the l i s t o f
23 * o f a l l symbols t ha t are reques t ed by connected TSP consumers .
24 * This i s handy way fo r a prov ider to only update a reduced s e t
25 * o f prov ided symbol .
26 * Using t h i s scheme a prov ider may p o t e n t i a l l y o f f e r
27 * a huge number o f symbols wh i l e only e f f e c t i v e l y prov id ing a few .
28 */
29 TSP_datapool_get_reverse_list (c th i s−>datapool ,&symbols_nb , &ptr_index) ;
30 item−>s i z e = X_sample_symbol_info . dimension * tsp_type_size [X_sample_symbol_info . type] ;
31

32 /* Export to the consumers at which _internal_ time , the data was sampled */
33 item−>time = my_time ;
34

35 /* Assign the new va lue to our v a r i a b l e */
36 * ((double*) item−>raw_value) = te s t_va r i ab l e ;
37

38 /*
39 * Enqueue the v a r i a b l e value , so t ha t
40 * next commit w i l l take in to account the new va lue s e t
41 * s epara t ing PUSH from COMMIT (see l a t e r)
42 * ensure t ha t TSP w i l l prov ide a coherent s e t o f sample
43 */
44 TSP_datapool_push_next_item (c th i s−>datapool , item) ;
45

46 /* Perform complex computations on our t e s t v a r i a b l e */
47 t e s t_var i ab l e++;
48

49 /*
50 * Commit ALL the v a r i a b l e ' s new va lue s
51 * to the data poo l
52 * so t ha t TSP Library may send the whole s e t to consumer .
53 */
54 TSP_datapool_push_commit (c th i s−>datapool ,my_time , GLU_GET_NEW_ITEM) ;
55

56 /* Increase the s imu la t ion ' s i n t e r na l time re f e r ence */
57 my_time++;
58 tsp_usleep (TSP_USLEEP_PERIOD_US) ;
59 }
60 return NULL;
61 }

� void TSP_datapool_get_reverse_list (TSP_datapool_t* datapool, int *nb, int **list)

26

4.2 Providerizing the program 4 BUILDING A TSP PROVIDER

this function gets the symbol list of a given data pool. The data pool in question lies within the
TSP provider we are connected to. As expected, the list's size and the list itself are returned
in the nb and list arguments of the function.

� int TSP_datapool_push_next_item (TSP_datapool_t* datapool, glu_item_t* item)

This function enqueues a glu_item, which is a TSP symbol value. Those value are kept in the
provider datapool until TSP_datapool_push_commit is called.

� int TSP_datapool_push_commit(TSP_datapool_t* datapool, time_stamp_t time_stamp,

GLU_get_state_t state)

The commit that we've just refered to above. This informs the underlying TSP core that new
data is ready to be sent to consumer side. The TSP core will then handle the delivery of the
actual data to the consumer.

Let's summarize what we have done:
After writing our 3 GLU minimal member functions:

� GLU->initialize , see listing 4

� GLU->run , see listing 6

� GLU->get_ssi_list , see listing 5

and the main program initializing TSP provider lib (see listing 3) we have a functionnally run-
ning TSP provider o�ering a single TSP Symbol. TSP provider side programming has many more
possibilities you may discover by reading more provider source code in tsp/src/providers/stub

and others tsp/src/providers/xxx .
Keep in mind that documentation is never as accurate as source code itself. That's why TSP

API documentation is extracted from directly from source code using Doxygen in order to make it
available as soon as code is updated.

Moreover TSP is an Open Source project so you should not hesitate to ask questions on the TSP
Development mailing list at http://lists.nongnu.org/mailman/listinfo/tsp-devel.

27

http://lists.nongnu.org/mailman/listinfo/tsp-devel

5 BUILDING A TSP CONSUMER

5 Building a TSP consumer

Now that we have handled the provider side aspect of TSP programming let's continue on the TSP
Consumer side.

A TSP consumer is an application that wants to get TSP sample symbols informations and
evolving values of a subset of the provided symbols. As already shown on �gure 1 on page 1 and then
more precisely on �gure 2 on page 20 a TSP consumer negotiate with one or several TSP provider(s)
the sample symbols value he wants to receive.

The typical TSP consumer/TSP provider negotiation sequence shown on �gure 2 is recalled here:

1. Open a TSP Session (mandatory).

Send the TSP_request_open the consumer will get a TSP session Id to be used in other TSP
request calls.

2. Get Sample Information (optional).

Using the previously obtained TSP session Id you may ask the provider for information regard-
ing the symbols he may provide you.

Send TSP_request_informations and/or TSP_request_filtered_informations . Using
those requests the TSP consumer may get a (�ltered) list of available TSP Symbols.

3. Request for Sample (mandatory).

The TSP Consumer selects the list of TSP Sample Symbols he wants to get using their name,
sampling period and phase. The consumer sends one or several TSP_request_sample until he
gets an OK from the TSP provider. The provider may refuse the sample request for di�erent
reason:

� one or several requested symbols are unknown,

� speci�ed period may not be satis�ed,

� number of active (i.e. sampling) TSP Session is exhausted,

� provider speci�c reason.

4. Request for Sample Initialization (mandatory).

When the last TSP_request_sample sent by the consumer is accepted by the provider, the
consumer may send TSP_request_sample_init which tells the provider to allocate a socket
for the consumer sampling session and be ready to send as soon as the consumer is connected.
The TSP_answer_sample_init tells the consumer how to connect (IP address and socket
port).

5. Read Sample (mandatory loop)

As soon as the consumer is connected he only have to loop on calling TSP_consumer_read_sample

for getting sample values.

6. Request for Sample Destroy (mandatory).

Tells the provider to stop sending sample and to close the socket.

7. Request Close (mandatory).

Tells the provider to close the TSP Session. No more TSP request may be sent using the
previously obtained session Id.

28

5.1 Writing a simple consumer 5 BUILDING A TSP CONSUMER

We will show in the following section how to program a simple TSP consumer. Now if you only
want to quickly get a consumer for testing your own TSP provider or to experiment with TSP you
may skipped directly to �5.2.

5.1 Writing a simple consumer

We will shown in this speci�c section how to program a simple TSP consumer in C. This consumer
will be able to ask for the �rst n sample symbols o�ered by any TSP provider. All example of code
below are taken from tsp/src/consumers/stdout TSP consumer. The program have been slightly
modi�ed in order to ease understanding and presentation.

As usual the listing 7 shows the necessary headers you need for writing our TSP consumer
application.

Listing 7: Headers of the TSP consumer application
1 /* */
2 #include <tsp_sys_headers . h> /* p la t form independant data types d e f i n i t i o n */
3 #include <tsp_pr jc fg . h> /* TSP pro j e c t con f i g header */
4 #include <tsp_consumer . h> /* TSP consumer API */
5 /* */

The TSP consumer library initialization and open session is shown at listing 8.

Listing 8: Initialize TSP consumer library and open TSP Session
1

2 TSP_provider_t prov ide r ;
3

4 /*
5 * I n i t i a l i z e TSP consumer l i b r a r y
6 */
7 i f (TSP_STATUS_OK!=TSP_consumer_init(&argc , &argv)) {
8 r e t code =1;
9 return r e t code ;

10 }
11

12 /*
13 * Connect to the TSP prov ider r eque s t handler us ing
14 * a TSP URL
15 */
16 prov ide r = TSP_consumer_connect_url (prov ider_ur l) ;
17

18 /*
19 * Check i f we r e a l l y found a prov ider us ing the URL
20 */
21 i f (prov ide r) {
22 const char* i n f o = TSP_consumer_get_connected_name (prov ide r) ;
23 p r i n t f ("Found provider <%s>" , i n f o) ;
24 }
25 else {
26 r e t code = 3 ;
27 return r e t code ;
28 }
29

30 /*
31 * Now send the TSP Request Open
32 */
33 i f (TSP_STATUS_OK!=TSP_consumer_request_open (provider , 0 , NULL)) {
34 return −1;
35 }

29

5.1 Writing a simple consumer 5 BUILDING A TSP CONSUMER

Now we are ready for using our TSP Session. Listing 9 describe how to retrieve TSP Symbols
Information from our TSP Session.

Listing 9: Request for Information on TSP Symbols
1

2 TSP_sample_symbol_info_t* aSSI = NULL;
3

4 /*
5 * Send TSP Request Information to the prov ider
6 * the TSP se s s i on i s im p l i c i t l y a s so c i a t ed with the
7 * prov ider .
8 */
9 i f (TSP_STATUS_OK!=TSP_consumer_request_information (prov ide r)) {

10 return −1;
11 }
12

13 /*
14 * Retr ieve prov ider informat ion from prov ider Sess ion o b j e c t
15 */
16 i n fo rmat ion = TSP_consumer_get_information (prov ide r) ;
17

18 /*
19 * The return informat ion o b j e c t contain the l i s t
20 * o f a v a i l a b l e symbols , aka a Sample Symbol In fo L i s t = SSI L i s t .
21 */
22 p r i n t f ("Provider is offering %d symbols on the provider" ,
23 TSP_SSIList_getSize (in format ion−>symbols)) ;
24

25 /*
26 * Each element o f the l i s t i s a SSI = Sample Symbol In fo
27 * which i s a s t r u c t u r e conta in ing s e v e r a l in format ion :
28 * name , dimension , type , minimal p o s s i b l e period , prov ider g l o b a l index . . .
29 * (consu l t API documentation to know more)
30 */
31 for (i = 0 ; i < TSP_SSIList_getSize (in format ion−>symbols) , ++i) {
32 aSSI = TSP_SSIList_getSSI (in format ion−>symbols , i) ;
33 p r i n t f ("Symbol <%s> has PGI <%d> and minimal possible period <%d>\n" ,
34 aSSI−>name , aSSI−>provider_global_index , aSSI−>per iod) ;
35 }

Note that if do not want to be �ooded with a list of 1000000 symbols coming from provider on
may use the �ltered request for information:

TSP_consumer_request_filtered_information(provider) .
See API documentation for the usage of the �ltered request. Now that we have some information

about available symbols we may build a TSP Request Sample for getting the �rst n symbols. This
is shown by Listing 10.

Listing 10: Requesting selected symbols
1

2 /* dec l a r e the l i s t o f r eques t ed symbols */
3 TSP_sample_symbol_info_list_t requested_symbols ;
4 /*
5 * Request n symbols i f n < number o f a v a i l a b l e symbol
6 * Else Request number o f a v a i l a b l e symbol .
7 */
8 int nb_symbols = n < TSP_SSIList_getSize (in format ion−>symbols) ?
9 n : TSP_SSIList_getSize (in format ion−>symbols) ;

10

11 /* I n i t i a l i z e reques t ed symbols l i s t */
12 TSP_SSILi s t_in i t ia l i ze (&requested_symbols , nb_symbols) ;
13

14 /*
15 * Now for each reques t ed symbol
16 * we have to t e l l
17 * − i t s name
18 * − the reques t ed per iod o f sampling
19 */

30

5.1 Writing a simple consumer 5 BUILDING A TSP CONSUMER

20 for (i = 0 ; i < TSP_SSIList_getSize (requested_symbols) ; ++i) {
21 TSP_SSI_initial ize_request_minimal (TSP_SSIList_getSSI (requested_symbols , i) ,
22 TSP_SSIList_getSSI (in format ion−>symbols , i)−>name ,
23 per iod) ;
24 p r i n t f (" symbol <%d> is <%s>\n" , i , TSP_SSIList_getSSI (symbols , i)−>name) ;
25 }
26

27 /* Now send Request Sample */
28 i f (TSP_STATUS_OK!=TSP_consumer_request_sample (provider , &symbols)) {
29 return −1;
30 }
31

32 /* And f i n a l l y ask f o r s t a r t i n g sampling process */
33 i f (TSP_STATUS_OK!=TSP_consumer_request_sample_init (provider , 0 , 0)) {
34 return −1;
35 }

Note that each TSP_xxx function returns a TSP status which is TSP_STATUS_OK on success
and TSP_STATUS_ERROR_xxx on error. One should always check the returned code. For example a
Provider may return TSP_STATUS_ERROR_SYMBOLS to a TSP request sample, which means that the
request may not be satis�ed because some sample symbol are unknown from provider. When this
occurs you should check the provider_global_index of each sample symbol in the symbols list
for a −1 value. Every symbol whose PGI is −1 is unknown from the provider, thus you may either
remove those symbols from your request and send the updated request or request user action (TSP
Consumer GUI). You may read the Ascii Writer code (located in tsp/src/consumers/ascii_writer

) which implements a kind of �ignore unknown� symbols feature.
Now we can enter the loop for sample read and terminate sampling when we have received p

samples. This is shown in Listing 11.

Listing 11: Consumer Sample loop
1

2 int new_sample ;
3

4 /* A TSP sample as returned by read_sample */
5 TSP_sample_t sample ;
6

7 /* The number o f r e ce i v ed sample s e t */
8 int n_received_sample = 0 ;
9

10 do {
11 i f (TSP_STATUS_OK==TSP_consumer_read_sample (provider ,&sample , &new_sample)) {
12

13 /* We have some sample to process */
14 i f (new_sample) {
15 n_received_sample++;
16 p r i n t f ("%s=%f\n" ,
17 TSP_SSIList_getSSI (requested_symbols ,
18 sample . provider_global_index)−>name ,
19 sample . uvalue . double_value) ;
20 }
21

22 /*
23 * we have not r ece i v ed any sample yet ,
24 * wait a l i t t l e time in order to avoid busy loop
25 */
26 else {
27 tsp_usleep (100*1000) ; /* g i v e s time [10 Hz] f o r sample to come in */
28 }
29 else {
30 /* TSP sample read error */
31 return −1;
32 }
33 } while (n_received_sample < p) ;
34

35 /* End Sampling Process */
36 i f (TSP_STATUS_OK!=TSP_consumer_request_sample_destroy (prov ide r)) {

31

5.2 Ready-to-use consumers 5 BUILDING A TSP CONSUMER

37 return −1;
38 }
39

40 /* Release memory */
41 TSP_SSIList_final ize(&requested_symbols) ;

Now we terminate TSP session and �nalize TSP consumer library as shown in listing 12

Listing 12: Terminate TSP consumer
1

2 /*
3 * Terminate TSP Sess ion
4 */
5 i f (TSP_STATUS_OK!=TSP_consumer_request_close (prov ide r)) {
6 return −1;
7 }
8

9 /*
10 * Disconnect from prov ider and End TSP consumer l i b r a r y .
11 */
12 TSP_consumer_disconnect_one (prov ide r) ;
13 TSP_consumer_end () ;

We have reviewed how to program a simple TSP consumer using the TSP Consumer library. We
have not handled some complex cases where symbols may be of di�erents types or how to request
array or array slice. The main thing to remember is that all information you need to know about
your sample symbol should be included in the updated list sample symbol information list you get
from:

TSP_consumer_request_sample(provider, &symbols)

The interested reader should now have su�cient knowledge to read more TSP consumer codes by
himself in the TSP source tsp/src/consumers/xxx in order to discover more complicated cases.

Again you should remember that TSP is an Open Source software with a living community living
at https://savannah.nongnu.org/projects/tsp/. Do not hesitate to ask your tricky question on
the developper mailing list: http://lists.nongnu.org/mailman/listinfo/tsp-devel.

5.2 Ready-to-use consumers

There is a growing numbers of ready-to-use TSP consumers, please check [Tea06, �11.2 TSP Con-
sumers] for more informations on using ready-to-use TSP consumers. You may check the platform
availabilty of each consumer �rst in table 1 on page 2 of this document. You may �nd information
on each TSP Consumers application online directly at http://www.ts2p.org/tsp/API_doc/html/
group__TSP__Consumers.html.

And again, you should ask for information on the mailing list: http://lists.nongnu.org/

mailman/listinfo/tsp-devel.

32

https://savannah.nongnu.org/projects/tsp/
http://lists.nongnu.org/mailman/listinfo/tsp-devel
http://www.ts2p.org/tsp/API_doc/html/group__TSP__Consumers.html
http://www.ts2p.org/tsp/API_doc/html/group__TSP__Consumers.html
http://lists.nongnu.org/mailman/listinfo/tsp-devel
http://lists.nongnu.org/mailman/listinfo/tsp-devel

A INSTALLING PREREQUISITE SOFTWARE

A Installing prerequisite software

A.1 CMake

TSP uses cmake [CMa] as build system, CMake is used by many important opensource projects
(KDE, MySQL, ...). This build system o�ers two crucial advantages regarding multi-platform build:

• CMake is multi-platform

• CMake supports various development environments

• CMake 2.4.x comes with two other very interesting tools

◦ CPack which is a package generator tools, still in beta but used by TSP for generating
Windows installer and Linux binary archive.

◦ CTest which may be used to drive testing (use by TSP is under examination).

On Windows CMake has a graphical frontend that can be used to de�ne build con�guring vari-
ables: are we doing a win32 build, which binaries do we want to build, etc. . . CMake will generate
the appropriate build �les (Make�les, Visual Studio project �les, . . .). On Linux there is a curse UI
(ccmake) which o�ers the same functionnalities.

It is recommended to have a look at http://www.cmake.org/HTML/Documentation.html, to get
familiar with this powerful and versatile set of tools.

A.2 ACPLT-ONCRPC

The Win32 TSP port use a package called ACPLT ONCPRC, which is a win32 port of the original
Sun code. Since we had to recompile it with our target C compiler, the modi�ed version of ACPLT
ONCRPC has been shipped along with the TSP source in tsp/external/ACPLT-ONCRPC/ . The
TSP Team did send the patched source back to the original authors. The original project's home
page is: http://www.plt.rwth-aachen.de/index.php?id=258

A.2.1 Verifying Portmap Service/Daemon

An RPC Server program should be able to register to the so-called RPC Portmapper. The RPC
portmapper is generally a daemon on Unix and this is a Windows Service on the Windows platform.
A TSP provider includes an RPC Server, so if you want your favorite TSP Provider to be able to
start you should have an RPC portmapper up and running. On Windows, you can check that the
RPC Portmapper is running by opening Control Panel/Administration Tools/Services in order to
check that everything is behaving as expected. On Linux the command service portmap status

(run as root) will show you the status of the RPC portmapper. For other platform please contact
your system administrator for help on this subject.

A.3 PthreadsWin32

33

http://www.cmake.org/HTML/Documentation.html
http://www.plt.rwth-aachen.de/index.php?id=258

A.4 NullSoft Scriptable Install System REFERENCES

PthreadsWin32 is a software package developped and maintained by Red Hat Inc. Albeit it's
thread implementation is not as �ne grained that under Linux, unit tests showed a su�cient coverage
of TSP needs. The project's home page is: http://sourceware.org/pthreads-win32/. In order to
ease TSP source usage, the TSP source tree ship a version of PthreadWin32 which has been tested
with TSP in tsp/external/PthreadWin32 .

A.4 NullSoft Scriptable Install System

The Win32 TSP port use NullSoft Scriptable Install System (NSIS) [NSI] in order to produce the
TSP for Windows Binary Installer. In fact we use CPack which has an NSIS Generator http:

//www.cmake.org/Wiki/CPack:Generator_Information. NSIS has an Open Source license and
may be downloaded here: http://nsis.sourceforge.net/.

References

[CMa] CMake Homepage. https://www.cmake.org/.

[Dew06] Frederik Deweerdt. The blackboard: a debugging and reporting tool. Technical report,
TSP Team, 2006. In preparation.

[NSI] NSIS Homepage. http://nsis.sourceforge.net/.

[Tea06] The TSP Team. The TSP Design & Programming Guide. Technical Report Rev. 1.0 for
TSP v0.8.0, The TSP Team, 2006. Available at http://download.savannah.nongnu.org/
releases/tsp/tsp_programming_guide-1.0.pdf.

[TSP] TSP Homepage at Savannah. https://savannah.nongnu.org/projects/tsp.

34

http://sourceware.org/pthreads-win32/
http://www.cmake.org/Wiki/CPack:Generator_Information
http://www.cmake.org/Wiki/CPack:Generator_Information
http://nsis.sourceforge.net/
https://www.cmake.org/
http://nsis.sourceforge.net/
http://download.savannah.nongnu.org/releases/tsp/tsp_programming_guide-1.0.pdf
http://download.savannah.nongnu.org/releases/tsp/tsp_programming_guide-1.0.pdf
https://savannah.nongnu.org/projects/tsp

	TSP Programming Tutorial
	Contents
	List of Listings
	List of Figures
	List of Tables

	1 What is TSP?
	1.1 TSP principles
	1.2 The TSP tools
	1.3 Getting TSP

	2 Installing TSP
	2.1 Software Prerequisite
	2.2 TSP binary installation
	2.2.1 TSP binary installation for Windows
	2.2.2 TSP binary installation for Unix

	2.3 TSP source installation
	2.3.1 TSP source installation for Windows
	2.3.2 TSP source installation for Unix
	2.3.3 TSP Source tree primer

	3 Testing TSP installation
	3.1 Standalone TSP test (1 host)
	3.2 Networked TSP test (at least 2 machines)

	4 Building a TSP Provider
	4.1 The observed application
	4.2 Providerizing the program

	5 Building a TSP consumer
	5.1 Writing a simple consumer
	5.2 Ready-to-use consumers

	A Installing prerequisite software
	A.1 CMake
	A.2 ACPLT-ONCRPC
	A.2.1 Verifying Portmap Service/Daemon

	A.3 PthreadsWin32
	A.4 NullSoft Scriptable Install System

	References

