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Abstract

This is the proof document of the IsarMathLib project version 1.9.8.
IsarMathLib is a library of formalized mathematics for Isabelle2019
(ZF logic).
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1 Introduction to the IsarMathLib project

theory Introduction imports ZF.equalities

begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in



a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib
contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is
disjoint with} put between two sets to denote our notion of disjointness.
The left side of the = symbol is the notion being defined, the right side
says how we define it. In Isabelle 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.
definition

AreDisjoint (infix "{is disjoint withl}" 90) where

"A {is disjoint with} B= A N B = 0"

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or "corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the "shows” keyword we give the statement to show.
The <— symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ” A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}
B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with "assume A {is disjoint with} B and the last
statement is "then have B {is disjoint with} A”. It is a typical pattern

10



when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the — symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with "moreover”. The ”"show” keyword is like "have”, except that
it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:
shows "A {is disjoint with} B +— B {is disjoint with} A"

(proof)

1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_la reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_zF_1
on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The func1 theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain ”datatype” (7) with some recursive properties. IsarMathLib’s
Finitel and Finite_ZF_1 theories develop more facts about this notion.
These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
approach is presented in Finite_ZF theory file.

In FinOrd_ZzF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).

InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form ag = x, ant1 = f(an).

Fold_ZF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

11



Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form ag-aj - .. - ay, (i.e. products
of finite sequences), where ”-” is an associative binary operation.
CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of
depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.

Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_zF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.

In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real_ZF_1.

In the IntDiv_ZF_IML theory we translate some properties of the integer
quotient and reminder functions studied in the standard Isabelle’s IntDiv_2ZF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

12



Cardinal_ZF provides a couple of theorems about cardinals that are mostly
used for studying properties of topological properties (yes, this is kind of
meta). The main result (proven without AC) is that if two sets can be
injectively mapped into an infinite cardinal, then so can be their union.
There is also a definition of the Axiom of Choice specific for a given cardinal
(so that the choice function exists for families of sets of given cardinality).
Some properties are proven for such predicates, like that for finite families of
sets the choice function always exists (in ZF) and that the axiom of choice
for a larger cardinal implies one for a smaller cardinal.

Group_ZF_4 considers conjugate of subgroup and defines simple groups. A
nice theorem here is that endomorphisms of an abelian group form a ring.
The first isomorphism theorem (a group homomorphism A induces an iso-
morphism between the group divided by the kernel of h and the image of h)
is proven.

Turns out given a property of a topological space one can define a local ver-
sion of a property in general. This is studied in the the Topology_ZF_properties_2
theory and applied to local versions of the property of being finite or com-
pact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff).
There are a couple of nice applications, like one-point compactification that
allows to show that every locally compact Hausdorff space is regular. Also
there are some results on the interplay between hereditability of a property
and local properties.

For a given surjection f : X — Y, where X is a topological space one can
consider the weakest topology on Y which makes f continuous, let’s call it
a quotient topology generated by f. The quotient topology generated by an
equivalence relation r on X is actually a special case of this setup, where f
is the natural projection of X on the quotient X/r. The properties of these
two ways of getting new topologies are studied in Topology_ZF_8 theory.
The main result is that any quotient topology generated by a function is
homeomorphic to a topology given by an equivalence relation, so these two
approaches to quotient topologies are kind of equivalent.

As we all know, automorphisms of a topological space form a group. This
fact is proven in Topology_zF_9 and the automorphism groups for co-cardinal,
included-set, and excluded-set topologies are identified. For order topologies
it is shown that order isomorphisms are homeomorphisms of the topology
induced by the order. Properties preserved by continuous functions are stud-
ied and as an application it is shown for example that quotient topological
spaces of compact (or connected) spaces are compact (or connected, resp.)

The Topology_zF_10 theory is about products of two topological spaces. It
is proven that if two spaces are Ty (or 11, T5, regular, connected) then their
product is as well.

Given a total order on a set one can define a natural topology on it gener-
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ated by taking the rays and intervals as the base. The Topology_ZF_11 the-
ory studies relations between the order and various properties of generated
topology. For example one can show that if the order topology is connected,
then the order is complete (in the sense that for each set bounded from
above the set of upper bounds has a minimum). For a given cardinal x we
can consider generalized notion of kK — separability. Turns out k-separability
is related to (order) density of sets of cardinality x for order topologies.

Being a topological group imposes additional structure on the topology of the
group, in particular its separation properties. In Topological_ Group_ZF_1.thy
theory it is shown that if a topology is Tp, then it must be T3 , and that the
topology in a topological group is always regular.

For a given normal subgroup of a topological group we can define a topology

on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy
theory it is shown that such topology on the quotient group makes it a topo-

logical group.

The Topological_Group_ZF_3.thy theory studies the topologies on subgroups

of a topological group. A couple of nice basic properties are shown, like

that the closure of a subgroup is a subgroup, closure of a normal subgroup

is normal and, a bit more surprising (to me) property that every locally-
compact subgroup of a Ty group is closed.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0 context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisarO
context is valid (can be used) in the complex0 context. All theories us-
ing the translated results will import the Metamath_interface theory. The
Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2
contain the theorems imported from the Metamath’s set.mm database. As

the translated proofs are rather verbose these theories are not printed in

this proof document. The full list of translated facts can be found in the
Metamath_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are
printed in this proof document as examples of how translated proofs look
like.

end
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2 First Order Logic

theory Foll imports ZF.Trancl
begin

Isabelle/ZF builds on the first order logic. Almost everything one would
like to have in this area is covered in the standard Isabelle libraries. The
material in this theory provides some lemmas that are missing or allow for
a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to
do something like using trans_def results up Isabelle in an infinite loop).

lemma Foll_L2: assumes
Al: W xyz (x,y) €Er Ay, z) €r — (x, z) € r"
shows "trans(r)"

(proof )

Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Foll_L3: assumes Al: "trans(r)" and A2: "( a,b) € r A ( b,c)
€ r"

shows "( a,c) € r"
(proof)

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Foll_L4:

assumes Al: "antisym(r)" and A2: "( a,b) € r"* "( b,a) € r"
shows "a=b"
(proof)

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of given three statements is true.

definition
"Exactly_1_of_3_holds(p,q,r) =
(pvgvr) A (p — q A -r) A (@ — p A ) A (xr — —p A "

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

lemma Foll_L5:
assumes "pVqVr"
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and "p — —-q A —r"

and "9 — —p A —r"

and "r — —-p A —q"

shows "Exactly_1_of_3_holds(p,q,r)"
(proof)

If exactly one of p, ¢, holds and p is not true, then ¢ or 7.

lemma Foll_L6:
assumes Al: "-p" and A2: "Exactly_1_of_3_holds(p,q,r)"
shows "qvr"

(proof)

If exactly one of p, q,r holds and ¢ is true, then r can not be true.

lemma Foll_L7:
assumes Al: "q" and A2: "Exactly_1_of_3_holds(p,q,r)"
shows "—r"

(proof)

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds(p,q,T)
predicate. More on that at www.solcon.nl/mklooster/calc/calc-tri.html .

lemma Foll_L38:
shows "Exactly_1_of_3_holds(p,q,r) ¢— (p+<—q<—r) A —(pAgAr)"
(proof )

A property of the Exactly_1_of_3_holds predicate.

lemma Foll_L8A: assumes Al: "Exactly_1_of_3_holds(p,q,r)"
shows "p «— —(q V )"

(proof)

Exclusive or definition. There is one also defined in the standard Isabelle,
denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

definition
Xor (infix]l "Xor" 66) where
"p Xor g = (pvg) A —~(p A Q)"
The ”exclusive or” is the same as negation of equivalence.

lemma Foll_L9: shows "p Xor q «— —(p<—q)"

(proof)

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes Al: "equiv(X,r)" and A2: "(x,y) € r"
shows "(y,x) € r"
(proof)

end
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3 ZF set theory basics

theory ZF1 imports ZF.equalities
begin

Standard Isabelle distribution contains lots of facts about basic set theory.
This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If one collection is contained in another, then we can say the same abot their
unions.

lemma collection_contain: assumes "ACB" shows "(JA C |JB"

(proof )

If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes "C#0" and "VyeC. b(y) = A"
shows "(|JyeC. b(y)) = A" (proof)

The union af all values of a constant meta-function belongs to the same set
as the constant.

lemma ZF1_1_12: assumes A1:"C#0" and A2: "VxeC. b(x) € A"
and A3: "Vx y. x€C A yeC — b(x) = b(y)"
shows "(|Jx€C. b(x))eA"

(proof)

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised Isabelle can not handle this
automatically.

lemma ZF1_1_L4: assumes Al: "VxeX.VyeY. a(x,y) = b(x,y)"
shows "{a(x,y). (x,y) € XxY} = {b(x,y). (x,y) € XxY}"
(proof)

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. This is similar to ZF1_1_L4, except that the
set definition varies over peXxY rather than ( x,y)eXxY.

lemma ZF1_1_L4A: assumes Al: "VxeX.VyeY. a({ x,y)) = b(x,y)"
shows "{a(p). p € XxY} = {b(x,y). (x,y) € XxY}"
(proof)

A lemma about inclusion in cartesian products. Included here to remember
that we need the U x V # () assumption.
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lemma prod_subset: assumes "UxV#Q0" "UxV C XxY" shows "UCX" and "VCY"
(proof)

A technical lemma about sections in cartesian products.

lemma section_proj: assumes "A C XxY" and "UxV C A" and "x € U" 'y
E Vll
shows "U C {teX. (t,y) € A}" and "V C {teY. (x,t) € A}"

(proof)

If two meta-functions are the same on a set, then they define the same set
by separation.
lemma ZF1_1_L4B: assumes "Vx€X. a(x) = b(x)"

shows "{a(x). x€X} = {b(x). xeX}"

(proof)

A set defined by a constant meta-function is a singleton.
lemma ZF1_1_L5: assumes "X#0" and "Vxe€X. b(x) = c"
shows "{b(x). x€X} = {c}" (proof)
Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.

lemma subset_with_property: assumes "Y = {x€X. b(x)}"
shows "Y C X"

(proof)

We can choose an element from a nonempty set.

lemma nonempty_has_element: assumes "X#0" shows "Jx. xeX"

(proof)

In Isabelle/ZF the intersection of an empty family is empty. This is exactly
lemma Inter_O from Isabelle’s equalities theory. We repeat this lemma
here as it is very difficult to find. This is one reason we need comments
before every theorem: so that we can search for keywords.

lemma inter_empty_empty: shows "0 = 0" (proof)
If an intersection of a collection is not empty, then the collection is not

empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty.

lemma inter_nempty_nempty: assumes "[]A # 0" shows "A#0"

(proof)

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A x B, where A€ S,B e T.

definition
"ProductCollection(T,8) = |JUET.{UxV. VeS}"
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The union of the product collection of collections S, T is the cartesian prod-
uct of S and |JT.

lemma ZF1_1_L6: shows "|J ProductCollection(S,T) = |JS x |JT"
(proof)

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes Al: "I#0" and A2: "VieI. P(i) C X"
shows "( (i€I. P(i) ) C X"

(proof)

Isabelle/ZF has a "THE” construct that allows to define an element if there
is only one such that is satisfies given predicate. In pure ZF we can express
something similar using the indentity proven below.

lemma ZF1_1_18: shows "|J {x} = x" (proof)

Some properties of singletons.

lemma ZF1_1_L9: assumes Al: "3J! x. x€A A @(x)"
shows
"Ja. {x€A. o)} = {a}"
"J {xeA. p(x)} € A"
"ol {xeh. px)H"
(proof )

A simple version of ZF1_1_L9.

corollary sigleton_extract: assumes "J! x. x€A"
shows "(|J A) € A"
(proof)

A criterion for when a set defined by comprehension is a singleton.

lemma singleton_comprehension:
assumes Al: "yeX" and A2: "VxeX. VyeX. P(x) = P(y)"
shows "(|J{P(x). x€X}) = P(y)"

(proof)

Adding an element of a set to that set does not change the set.

lemma set_elem_add: assumes "x€X" shows "X U {x} = X" (proof)

Here we define a restriction of a collection of sets to a given set. In romantic
math this is typically denoted X N M and means {X NA: A€ M}. Note
there is also restrict(f, A) defined for relations in ZF.thy.

definition
RestrictedTo (infixl "{restricted to}" 70) where
"M {restricted to} X = {X N A . A &€ M}

A lemma on a union of a restriction of a collection to a set.

lemma union_restrict:
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shows "|J (M {restricted to} X) = (M) N X"
(proof)

Next we show a technical identity that is used to prove sufficiency of some
condition for a collection of sets to be a base for a topology.
lemma ZF1_1_L10: assumes Al: "VUeC. JA€B. U = [JA"
shows "JUJ {J{AeB. U = [JA}. UeC} = |JC"
(proof)

Standard Isabelle uses a notion of cons(A,a) that can be thought of as
AU{a}.

lemma consdef: shows "cons(a,A) = A U {a}"

(proof)

If a difference between a set and a sigleton is empty, then the set is empty
or it is equal to the sigleton.
lemma singl_diff_empty: assumes "A - {x} = 0"

shows "A = 0 V A = {x}"

(proof )

If a difference between a set and a sigleton is the set, then the only element
of the singleton is not in the set.
lemma singl_diff_eq: assumes Al: "A - {x} = A"

shows "x ¢ A"

(proof)

A basic property of sets defined by comprehension. This is one side of
standard Isabelle’s separation that is in the simp set but somehow not
always used by simp.

lemma comprehension: assumes "a € {xe€X. p(x)}"
shows "acX" and "p(a)" (proof)

end

4 Natural numbers in IsarMathLib

theory Nat_ZF_IML imports ZF.Arith

begin

The ZF set theory constructs natural numbers from the empty set and the
notion of a one-element set. Namely, zero of natural numbers is defined
as the empty set. For each natural number n the next natural number is
defined as n U {n}. With this definition for every non-zero natural number
we get the identity n = {0, 1,2,..,n — 1}. It is good to remember that when
we see an expression like f : n — X. Also, with this definition the relation
”less or equal than” becomes ”C” and the relation ”less than” becomes ”€”.
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4.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the
one that uses the = sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The next theorem is a version of induction on natural numbers that I was
thought in school.

theorem ind_on_nat:
assumes Al: "ncnat" and A2: "P(0)" and A3: "Vkénat. P(k)—P(succ(k))"
shows "P(n)"

(proof)
A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes Al: "n € nat" and A2: "n#0"
shows "Jke€nat. n = succ(k)"

(proof)

What is succ, anyway?

lemma succ_explained: shows "succ(n) = n U {n}"

(proof)

Empty set is an element of every natural number which is not zero.

lemma empty_in_every_succ: assumes Al: "n € nat"
shows "0 € succ(n)"

(proof)

If one natural number is less than another then their successors are in the
same relation.

lemma succ_ineq: assumes Al: "n € nat"
shows "Vi € n. succ(i) € succ(m)"

(proof)

For natural numbers if k& C n the similar holds for their successors.

lemma succ_subset: assumes Al: "k € nat" '"n € nat" and A2: "kCn"
shows "succ(k) C succ(n)"
(proof )
For any two natural numbers one of them is contained in the other.
lemma nat_incl_total: assumes Al: "i € nat" "j € nat"
shows "i C j VvV j C i"
(proof )

The set of natural numbers is the union of all successors of natural numbers.
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lemma nat_union_succ: shows "nat = (|Jn € nat. succ(n))"
(proof)

Successors of natural numbers are subsets of the set of natural numbers.

lemma succnat_subset_nat: assumes Al: "n € nat" shows "succ(n) C nat"
(proof)

Element of a natural number is a natural number.

lemma elem_nat_is_nat: assumes Al: "n € nat" and A2: "ken"
shows "k < n" "k € nat" "k < n" "(k,n) € Le"

(proof)

The set of natural numbers is the union of its elements.

lemma nat_union_nat: shows "nat = (J nat"

{proof)

A natural number is a subset of the set of natural numbers.

lemma nat_subset_nat: assumes Al: "n € nat" shows "n C nat"

(proof)

Adding a natural numbers does not decrease what we add to.

lemma add_nat_le: assumes Al: "n € nat" and A2: "k € nat"
shows
"'n < n #+ k"
"n C n #+ k"
"'n C k #+ n"
(proof)

Result of adding an element of k is smaller than of adding k.

lemma add_1t_mono:
assumes "k € nat" and "jek"
shows
"(n #+ j) < (n #+ K"
"(n #+ j) € (o #+ K"
(proof)

A technical lemma about a decomposition of a sum of two natural numbers:
if a number ¢ is from m + n then it is either from m or can be written as a
sum of m and a number from n. The proof by induction w.r.t. to m seems
to be a bit heavy-handed, but I could not figure out how to do this directly
from results from standard Isabelle/ZF.

lemma nat_sum_decomp: assumes Al: "n € nat" and A2: "m € nat"
shows "Vi e m#+ n. 1 €émV (3j € n. i =m #+ "

(proof)

A variant of induction useful for finite sequences.

lemma fin_nat_ind: assumes Al: "n € nat" and A2: "k € succ(n)"
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and A3: "P(0)" and A4: "Vjen. P(j) — P(succ(j))"
shows "P(k)"
(proof )

Some properties of positive natural numbers.

lemma succ_plus: assumes "n € nat" "k € nat"
shows
"succ(n #+ j) € nat"
"succ(n) #+ succ(j) = succ(succ(n #+ j))"

(proof)

4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form
{n+j:5€0..k—1}.

The interval is determined by two parameters: starting point and length.
Recall that in standard Isabelle’s Arith.thy the symbol #+ is defined as the
sum of natural numbers.

definition

"NatInterval(n,k) = {n #+ j. jek}"

Subtracting the beginning af the interval results in a number from the length
of the interval.It may sound weird, but note that the length of such interval
is a natural number, hence a set.

lemma inter_diff_in_len:
assumes Al: "k € nat" and A2: "i € NatInterval(n,k)"
shows "i #- n € k"

(proof)

Intervals don’t overlap with their starting point and the union of an interval
with its starting point is the sum of the starting point and the length of the
interval.

lemma length_start_decomp: assumes Al: "n € nat" "k € nat"
shows
"n N NatInterval(n,k) = O"
"n U NatInterval(n,k) = n #+ k"

(proof)

Sme properties of three adjacent intervals.

lemma adjacent_intervals3: assumes "n € nat" "k € nat" "m € nat"
shows
"n #+ k #+ m
"n #+ k #+ m
"n #+ k #+ m

(proof)

(n #+ k) U NatInterval(n #+ k,m)"
n U NatInterval(n,k #+ m)"
n U NatInterval(n,k) U NatInterval(n #+ k,m)"
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end

5 Order relations - introduction

theory Order_ZF imports Foll
begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions
In this section we formulate the definitions related to order relations.

A relation r is "total” on a set X if for all elements a,b of X we have a is
in relation with b or b is in relation with a. An example is the < relation on
numbers.

definition
IsTotal (infixl "{is total on}" 65) where
"r {is total on} X = (Va€X.VbeX. ( a,b) € r V ( b,a) € r)"

A relation r is a partial order on X if it is reflexive on X (i.e. (z,x) for
every x € X), antisymmetric (if (z,y) € r and (y,x) € r, then = = y) and
transitive (x,y) € r and (y, z) € r implies (z, z) € r).
definition

"IsPartOrder(X,r) = (refl(X,r) A antisym(r) A trans(r))"

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition
"IsLinOrder(X,r) = ( antisym(r) A trans(r) A (r {is total on} X))"

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that (r,u) € r for all z € A. In addition, the empty set is
defined as bounded.

definition
"IsBoundedAbove(A,r) = ( A=0 V (Ju. Vx€A. ( x,u) € r))"
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We define sets bounded below analogously.

definition
"IsBoundedBelow(A,r) = (A=0 V (31. Vxe€A. ( 1,x) € r))"
A set is bounded if it is bounded below and above.
definition
"IsBounded(A,r) = (IsBoundedAbove(A,r) A IsBoundedBelow(A,r))"
The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_ZF_2_L1 for more intuitive notation.
definition
"Interval(r,a,b) = r‘‘{a} N r-““{p}"
We also define the maximum (the greater of) two elemnts in the obvious
way.
definition
"GreaterOf(r,a,b) = (if ( a,b) € r then b else a)"
The definition a a minimum (the smaller of) two elements.
definition

"SmallerOf (r,a,b) = (if ( a,b) € r then a else b)"

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
"HasAmaximum(r,A) = JIMeEA.Vx€A. ( x,M) € "

A similar definition what it means that a set has a minimum.

definition
"HasAminimum(r,A) = Im€A.Vx€A. ( m,x) € r"

Definition of the maximum of a set.

definition

"Maximum(r,A) = THE M. MeA A (Vxe€A. ( x,M) € )"
Definition of a minimum of a set.
definition

"Minimum(r,A) = THE m. m€A A (Vx€A. (m,x) € )"

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.Viea(a,u) € r} = (N,car{a}. Recall that in Is-
abelle/ZF r-¢¢(a) denotes the inverse image of the set A by relation r (i.e.
r-“(W)={x: (z,y) € r for some y € A}).

definition
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"Supremum(r,A) = Minimum(r,()acA. r‘‘{a})"

Infimum is defined analogously.

definition
"Infimum(r,A) = Maximum(r,[)acA. r-‘‘{a})"

We define a relation to be complete if every nonempty bounded above set
has a supremum.
definition

IsComplete ("_ {is complete}") where

"r {is complete} =
VA. IsBoundedAbove(A,r) A A#0 — HasAminimum(r,()acA. r‘‘{a})"

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes "r {is total on} X" and "acX"
shows "(a,a) € r" (proof)

A total relation is reflexive.

lemma total_is_refl:
assumes "r {is total on} X"
shows "refl(X,r)" (proof)

A linear order is partial order.

lemma Order_ZF_1_L2: assumes "IsLinOrder(X,r)"
shows "IsPartOrder(X,r)"

(proof)

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes "IsPartOrder(X,r)" and "r {is total on} X"
shows "IsLinOrder(X,r)"

(proof)
Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes "r {is total on} X" and "ACX"
shows "r {is total on} A"

(proof)
A linear relation is linear on any subset.

lemma ord_linear_subset: assumes "IsLinOrder(X,r)" and "ACX"
shows "IsLinOrder(A,r)"

(proof)

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:
assumes "r {is total on} X" and "ACX" and "acX"
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shows "A = {x€A. (x,a) € r} U {x€A. (a,x) € r}"
(proof)

A technical fact about reflexive relations.

lemma refl_add_point:
assumes "refl(X,r)" and "A C B U {x}" and "B C X" and
"x € X" and "VyeB. (y,x) € r"
shows "VacA. (a,x) € r"

(proof)

5.2 Intervals
In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows "x € Interval(r,a,b) <— ( a,x) € r A ( x,b) € "

(proof)

Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_zF_2_L1
into two lemmas.

lemma Order_ZF_2_L1A: assumes "x € Interval(r,a,b)"
shows "( a,x) € r" "( x,b) € r"

(proof)

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes "( a,x) € r" "( x,b) € r"
shows "x € Interval(r,a,b)"
{proof)

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes "refl(X,r)"
and "a€X" "bex" and "( a,b) € r"
shows
"a € Interval(r,a,b)"
"b € Interval(r,a,b)"

{proof)

Under the assumptions of Order_ZF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes "refl(X,r)"
and "a€X" "beX" and "( a,b) € r"
shows "Interval(r,a,b) # 0"

(proof)

If a,b,c,d are in this order, then [b,¢|] C [a,d]. We only need trasitivity for
this to be true.
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lemma Order_ZF_2_L3:
assumes Al: "trans(r)" and A2:"( a,b)er" "( b,c)er" "( c,d)er"
shows "Interval(r,b,c) C Interval(r,a,d)"

(proof)

For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.
lemma Order_ZF_2_L4:

assumes Al: "refl(X,r)" and A2: "antisym(r)" and A3: "acX"

shows "Interval(r,a,a) = {a}"

(proof)

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes Al: "trans(r)" and A2: "( a,b) ¢ r"
shows "Interval(r,a,b) = O"

(proof)

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes Al: "r C XxX"
shows "Interval(r,a,b) C X"

(proof)

5.3 Bounded sets

In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes "refl(X,r)" and "aeX"
shows "IsBounded({a},r)"

(proof)

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes "r C XxX"
and "IsBoundedAbove(A,r)"
shows "ACX" (proof)

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes "r C XxX"
and "IsBoundedBelow(A,r)"
shows "ACX" (proof)

For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes "r {is total on} X"
and "XGX" Ilyexll
shows
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(x,Greater0f (r,x,y))
"(y,Greater0f (r,x,y))
"(SmallerOf (r,x,y),X)
"(SmallerOf (r,x,y),y)
(proof )

If A is bounded above by u, B is bounded above by w, then AU B is bounded
above by the greater of u, w.

S
S
€
S

lemma Order_ZF_3_L2B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ueX" "weX"
and A4: "Vx€A. ( x,u) € r" "VxeB. ( x,w) € r"
shows "Vx€AUB. (x,Greater0f(r,u,w)) € r"

(proof)

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedAbove(A,r)" "IsBoundedAbove(B,r)"
and A4: "r C XxX"
shows "IsBoundedAbove(AUB,r)"

(proof)

For total and transitive relations if a set A is bounded above then AU {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedAbove(A,r)" and A4: "acX" and A5: "r C XxX"
shows "IsBoundedAbove(AU{al},r)"

(proof)

If A is bounded below by I, B is bounded below by m, then AU B is bounded
below by the smaller of u, w.

lemma Order_ZF_3_L5B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "1leX" "meX"
and A4: "VxeA. ( 1,x) € r" "VxeB. ( m,x) € r"
shows "Vx€AUB. (Smaller0f(r,l,m),x) € r"

(proof)

For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedBelow(A,r)" "IsBoundedBelow(B,r)"
and A4: "r C XxX"
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shows "IsBoundedBelow(AUB,r)"
(proof)

For total and transitive relations if a set A is bounded below then AU {a}
is bounded below.

lemma Order_ZF_3_L7:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedBelow(A,r)" and A4: "acX" and A5: "r C XxX"
shows "IsBoundedBelow(AU{al},r)"

(proof)

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes "r {is total on} X" and "trans(r)"
and "IsBounded(A,r)" "IsBounded(B,r)"
and "r C XxX"
shows "IsBounded(AUB,r)"

(proof)

For total and transitive relations if a set A is bounded then A U {a} is
bounded.

lemma Order_ZF_3_L8:
assumes "r {is total on} X" and "trans(r)"
and "IsBounded(A,r)" and "acX" and "r C XxX"
shows "IsBounded(AU{a},r)"

(proof)

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes Al: "VachA. (1,a) € r"
shows "IsBoundedBelow(A,r)"

(proof)

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes Al: "VacA. (a,u) € r"
shows "IsBoundedAbove(A,r)"

(proof)

Intervals are bounded.

lemma Order_ZF_3_L11: shows
"IsBoundedAbove(Interval(r,a,b),r)"
"IsBoundedBelow(Interval(r,a,b),r)"
"IsBounded(Interval(r,a,b),r)"

(proof )
A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes Al: "IsBoundedBelow(A,r)" and A2: "BCA"

shows "IsBoundedBelow(B,r)"
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(proof)

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes Al: "IsBoundedAbove(A,r)" and A2: "BCA"
shows "IsBoundedAbove(B,r)"

(proof)

If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and
antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:
assumes Al: "r {is total on} X"
and A2: "trans(r)" and A3: "antisym(r)"
and A4: "r C XxX" and A5: "X#0"
and A6: "VxeX. Jach. x#a A (x,a) € r"
shows "—IsBoundedAbove(A,r)"

(proof)

The set of elements in a set A that are nongreater than a given element is
bounded above.

lemma Order_ZF_3_L15: shows "IsBoundedAbove({x€A. (x,a) € r},r)"

(proof)

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes Al: "IsBoundedBelow(A,r)"
shows "IsBounded({x€A. (x,a) € r},r)"

(proof)

end

6 More on order relations

theory Order_ZF_1 imports ZF.Order ZF1
begin

In Order_ZF we define some notions related to order relations based on the
nonstrict orders (< type). Some people however prefer to talk about these
notions in terms of the strict order relation (< type). This is the case for the
standard Isabelle Order.thy and also for Metamath. In this theory file we
repeat some developments from Order_ZzF using the strict order relation as
a basis. This is mostly useful for Metamath translation, but is also of some
general interest. The names of theorems are copied from Metamath.
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6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and
relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write
as R Orders A is written ROrdA in Metamath.

definition

StrictOrder (infix "Orders" 65) where
"R Orders A = Vx y z. (x€A A yeA A z€d) —
((x,y) € R +— —(x=y V (y,x) € R)) A
({(x,y) € R A {y,z) € R — (x,z) € R)"

The definition of supremum for a (strict) linear order.

definition
"Sup(B,A,R) =
U {x € A. (VyeB. (x,y) ¢ R) A
(Vyeh. (y,x) € R — (3z€B. (y,z) € R))}"

Definition of infimum for a linear order. It is defined in terms of supremum.

definition
"Infim(B,A,R) = Sup(B,A,converse(R))"

If relation R orders a set A, (in Metamath sense) then R is irreflexive,
transitive and linear therefore is a total order on A (in Isabelle sense).

lemma orders_imp_tot_ord: assumes Al: "R Orders A"
shows
"irrefl(A,R)"
"trans[A] (R)"
"part_ord(A,R)"
"linear(A,R)"
"tot_ord(A,R)"
(proof)

A converse of orders_imp_tot_ord. Together with that theorem this shows
that Metamath’s notion of an order relation is equivalent to Isabelles tot_ord
predicate.

lemma tot_ord_imp_orders: assumes Al: "tot_ord(A,R)"
shows "R Orders A"

(proof)

6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This con-
tinues the development contained in the standard Isabelle’s Order.thy with
a view towards using the theorems translated from Metamath.
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A relation orders a set iff the converse relation orders a set. Going one
way we can use the the lemma tot_od_converse from the standard Isabelle’s
Order.thy.The other way is a bit more complicated (note that in Isabelle for
converse(converse(r)) = r one needs r to consist of ordered pairs, which
does not follow from the StrictOrder definition above).

lemma cnvso: shows "R Orders A <— converse(R) Orders A"

{(proof)

Supremum is unique, if it exists.

lemma supeu: assumes Al: "R Orders A" and A2: "xe€A" and

A3: "VyeB. (x,y) ¢ R" and A4: "Vye€A. (y,x) € R — ( Jz€B. (y,z) €
R)"

shows

"Jix. xeAA(VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — ( 3z€B. (y,z) €
R
(proof)

Supremum has expected properties if it exists.

lemma sup_props: assumes Al: "R Orders A" and

A2: "JIxeA. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — ( 3z€B. (y,z)
€ RrRD"

shows

"Sup(B,A,R) € A"

"WyeB. (Sup(B,A,R),y) ¢ R"

"WyeA. (y,Sup(B,A,R)) € R — ( Jz€B. (y,z) € R )"
(proof)

Elements greater or equal than any element of B are greater or equal than
supremum of B.

lemma supnub: assumes Al: "R Orders A" and A2:
"JIxeA. (VyeB. (x,y) ¢ R) A (Vye€hA. (y,x) € R — ( IzeB. (y,z) € R))"
and A3: "c € A" and A4: "Vz€B. (c,z) ¢ R"
shows "(c, Sup(B,A,R)) ¢ R"

(proof)

end

7 Even more on order relations
theory Order_ZF_la imports Order_ZF
begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.
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7.1 DMaximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes Al: "antisym(r)" and A2: "HasAmaximum(r,A)"
shows "3 IM. McA A (VxeA. ( x,M) € )"
(proof)

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes Al: "antisym(r)" and A2: "HasAminimum(r,A)"
shows "J!m. meA A (Vx€A. ( m,x) € )"

{(proof)

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes Al: "antisym(r)" and A2: "HasAmaximum(r,A)"
shows "Maximum(r,A) € A" "Vxe€A. <x,Maximum(r,A)> e r"

(proof)

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes Al: "antisym(r)" and A2: "HasAminimum(r,A)"
shows "Minimum(r,A) € A" "Vx€A. (Minimum(r,A),x) € r"

(proof)

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:
assumes Al: "r {is total on} (AUB)" and A2: "trans(r)"
and A3: "HasAmaximum(r,A)" "HasAmaximum(r,B)"
shows "HasAmaximum(r,AUB)"

(proof)

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_16:
assumes Al: "r {is total on} (AUB)" and A2: "trans(r)"
and A3: "HasAminimum(r,A)" "HasAminimum(r,B)"
shows "HasAminimum(r,AUB)"

(proof)

Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes "HasAmaximum(r,A)"
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shows "IsBoundedAbove(A,r)"
(proof)

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes "HasAminimum(r,A)"
shows "IsBoundedBelow(A,r)"

(proof)

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_L8: assumes "refl(X,r)" and "acX"
shows "HasAmaximum(r,{a})" "HasAminimum(r,{a})"

(proof)

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ACX" and A4: "aeX" and A5: "HasAmaximum(r,A)"
shows "HasAmaximum(r,AU{al})"

(proof)

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ACX" and A4: "aeX" and A5: "HasAminimum(r,A)"
shows "HasAminimum(r,AU{a})"

{(proof)

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes Al: "r {is total on} X" and
A2: "trans(r)" and
A3: "r C XxX" and
Ad: "VA. IsBounded(A,r) A A#0 — HasAminimum(r,A)" and
A5: "B#0" and A6: "IsBoundedBelow(B,r)"
shows "HasAminimum(r,B)"

(proof)

A dual to Order_zZF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes Al: "r {is total on} X" and
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A2: "trans(r)" and

A3: "r C XxX" and

Ad: "VA. IsBounded(A,r) A A#0 — HasAmaximum(r,A)" and
A5: "B#0" and A6: "IsBoundedAbove(B,r)"

shows "HasAmaximum(r,B)"

(proof)

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes "antisym(r)" and "HasAminimum(r,A)" and "VacA. (L,a) € r"
shows "(L,Minimum(r,A)) € r"
(proof)

If a set has a maximum and all its elements are less or equal than M, then
the maximum of the set is less or equal than M.

lemma Order_ZF_4_L13:
assumes "antisym(r)" and "HasAmaximum(r,A)" and "VacA. (a,M) € r"
shows "(Maximum(r,A),M) € r"

{proof)

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
assumes Al: "antisym(r)" and A2: "M € A" and
A3: "VacA. (a,M) € r"
shows "Maximum(r,A) = M"

(proof)

If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:
assumes Al: "antisym(r)" and A2: "m € A" and
A3: "Va€cA. (m,a) € r"
shows "Minimum(r,A) = m"

(proof)

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:
assumes Al: "antisym(r)" and A2: "r {is total on} X" and
A3: "ACX" and
A4: "—HasAmaximum(r,A)" and

A5: "xeA"
shows "JyeA. (x,y) € r A y#x"
(proof)
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7.2 Supremum and Infimum
In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes "u € ([|acA. r‘‘{a})" and "acA"
shows "(a,u) € "

(proof)

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes "1 € ((acA. r-‘‘{a})" and "acA"
shows "(1,a) € "

(proof)

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAminimum(r,()a€A. r‘‘{a})" and
A4: "VaeA. (a,u) € r"
shows "(Supremum(r,A),u) € r"

(proof)

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAmaximum(r,()acA. r-‘‘{a})" and
Ad: "VaeA. (1,a) € r"
shows "(1,Infimum(r,A)) € r"

(proof)

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "VxeA. (x,z) € r" and
Ad: "Wy, (VzxeA. (x,y) € r) — (z,y) € "
shows
"HasAminimum(r,()acA. r‘‘{a})"
"z = Supremum(r,A)"
(proof)

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:
assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAmaximum(r,A)"
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shows
"HasAminimum(r,()acA. r‘‘{a})"
"Maximum(r,A) = Supremum(r,A)"

(proof)

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes Al: "r C XxX" and A2: "antisym(r)" and
A3: "r {is complete}" and
Ad: "ACX" "A#0" and A5: "IxeX. VyeA. (y,x) € "
shows
"Supremum(r,A) € X"
"Wx€A. (x,Supremum(r,A)) € r"

(proof)

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than y.

lemma Order_ZF_5_L8:
assumes Al: "r C XxX" and A2: "IsLinOrder(X,r)" and
A3: "r {is completel}" and
A4: "ACX" "As#0" and A5: "Ixe€X. VyeA. (y,x) € r" and

A6: "(y,Supremum(r,A)) € r" "y # Supremum(r,A)"
shows "JzeA. (y,z) € r Ay # z"
(proof)

7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the < type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

definition
"StrictVersion(r) = r - {(x,x). x € domain(xr)}"

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
"(x,y) € StrictVersion(r) +— (x,y) € r A x#y"

{proof)

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
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assumes Al: "antisym(r)" and A2: "(a,b) € StrictVersion(zr)"
shows "(b,a) ¢ StrictVersion(r)"

(proof)

The strict version of totality.

lemma strict_of_tot:
assumes "r {is total on} X" and "a€X" "beX" "a#b"
shows "(a,b) € StrictVersion(r) V (b,a) € StrictVersion(r)"

(proof)

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes Al: "antisym(r)" and A2: "r {is total on} X"
and A3: "acX" "beX"
and A4: "s = StrictVersion(r)"
shows "Exactly_1_of_3_holds((a,b) € s, a=b,(b,a) € s)"
(proof )

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes Al: "IsLinOrder(X,r)" and
A2: "aeX" "beX" and
A3: "s = StrictVersion(r)"
shows "Exactly_1_of_3_holds((a,b) € s, a=b,(b,a) € s)"
(proof )

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes Al: "antisym(r)" and A2: "(a,b) € "
shows "(b,a) ¢ StrictVersion(r)"

(proof)

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes Al: "trans(r)" and A2: "antisym(r)" and
A3: "s= StrictVersion(r)" and A4: "(a,b) € s" "(b,c) € s"
shows "(a,c) € s"

(proof)

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes Al: "trans(r)" and A2: "antisym(r)"
shows "trans(StrictVersion(r))"

(proof)
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The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.
lemma strict_of_compl:
assumes Al: "r C XxX" and A2: "IsLinOrder(X,r)" and
A3: "r {is completel}" and
Ad: "ACX" "AZ£0" and A5: "s = StrictVersion(r)" and
A6: "JueX. VyehA. (y,u) € s"
shows
"JxeX. ( VyeA. (x,y) ¢ s ) A (VyeX. (y,x) € s — (Iz€A. (y,z) € s))"
(proof )

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes Al: "r C AxA"
shows "StrictVersion(r) C AxA"

(proof)

end

8 Order on natural numbers

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF
begin

This theory proves that < is a linear order on N. < is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

8.1 Order on natural numbers
This is the only section in this theory.

To prove that < is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:
assumes "acnat" and "bé&nat"
shows "a < b Vv b < a"

{(proof)

< is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.

lemma NatOrder_ZF_1_L2:
shows
"antisym(Le)"
"trans (Le)"
"Le {is total on} nat"
"IsLinOrder(nat,Le)"

(proof)
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The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as
well as a member).

lemma natord_lin_on_each_nat:
assumes Al: "n € nat" shows "IsLinOrder(n,Le)"

(proof)

end

9 Functions - introduction

theory funcl imports ZF.func Foll ZF1
begin

This theory covers basic properties of function spaces. A set of functions
with domain X and values in the set Y is denoted in Isabelle as X — Y. It
just happens that the colon ”:” is a synonym of the set membership symbol
€ in Isabelle/ZF so we can write f : X — Y instead of f € X — Y. This is
the only case that we use the colon instead of the regular set membership

symbol.

9.1 Properties of functions, function spaces and (inverse) im-
ages.

Functions in ZF are sets of pairs. This means that if f : X — Y then
f € X xY. This section is mostly about consequences of this understanding
of the notion of function.

We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that £-° ¢ (A) means the
inverse image of the set A.

definition
"PresColl(f,S,T) = V A€T. f-<<(A)eS"

A definition that allows to get the first factor of the domain of a binary
function f: X XY — Z.

definition
"fstdom(f) = domain(domain(f))"

If a function maps A into another set, then A is the domain of the function.
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lemma funci_1_L1: assumes "f:A—C" shows "domain(f) = A"
(proof )

Standard Isabelle defines a function(f) predicate. the next lemma shows
that our function satisfy that predicate. It is a special version of Isabelle’s
fun_is_function.

lemma fun_is_fun: assumes "f:X—Y" shows "function(f)"
(proof)
A lemma explains what fstdom is for.

lemma fstdomdef: assumes Al: "f: XxXY — Z" and A2: "YZ0"
shows "fstdom(f) = X"

(proof )
A first-order version of Pi_type.

lemma funci_1_L1A: assumes Al: "f:X—Y" and A2: "VxeX. £(x) € 2"
shows "f:X—Z"

(proof)

A variant of func1l_1_L1A.

lemma func1_1_L1B: assumes Al: "f:X—Y" and A2: "YCZ"
shows "f:X—Z"

(proof)

There is a value for each argument.

lemma funci_1_L2: assumes Al: "f:X—Y" "xeX"
shows "JdyeY. (x,y) € £"
(proof)

The inverse image is the image of converse. True for relations as well.

emma vimage_converse: shows '"r- = converselr
1 g h n lf(A) ()(t(A)ll

(proof)

The image is the inverse image of converse.

lemma image_converse: shows "converse(r)-‘‘(A) = r¢ ‘(A"
{proof)

The inverse image by a composition is the composition of inverse images.

lemma vimage_comp: shows "(r 0 s)-““(A) = s=““(r-““(A))"

(proof)

A version of vimage_comp for three functions.

lemma vimage_comp3: shows "(r 0 s 0 t)-““(A) = t=““(s=““(x-““ (A"

(proof)

Inverse image of any set is contained in the domain.
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lemma funci_1_L3: assumes Al: "f:X—Y" shows "f-‘‘(D) C X"

(proof)

The inverse image of the range is the domain.

lemma funcli_1_L4: assumes "f:X—Y" shows "f-‘‘(Y) = X"
(proof)

The arguments belongs to the domain and values to the range.

lemma funci_1_L5:
assumes Al: "( x,y) € f" and A2: "f:X—Y"
shows "xeX A yeY"

(proof)

Function is a subset of cartesian product.

lemma fun_subset_prod: assumes Al: "f:X—Y" shows "f C XxY"
(proof)

The (argument, value) pair belongs to the graph of the function.

lemma funci_1_L5A:
assumes Al: "f:X—Y" "xeX" "y = £°(x)"
shows "(x,y) € f" "y € range(f)"

(proof)
The next theorem illustrates the meaning of the concept of function in ZF.

theorem fun_is_set_of_pairs: assumes Al: "f:X—Y"
shows "f = {(x, £‘(x)). x € X}"
(proof)

The range of function thet maps X into Y is contained in Y.

lemma funci_1_L5B:
assumes Al: "f:X—Y" shows "range(f) C Y"

(proof)

The image of any set is contained in the range.

lemma funcl_1_L6: assumes Al: "f:X—Y"
shows "f¢(B) C range(f)" and "f‘‘(B) C Y"
(proof)
The inverse image of any set is contained in the domain.
lemma funci_1_L6A: assumes Al: "f:X—Y" shows "f-‘‘(A)CX"
(proof)
Image of a greater set is greater.

lemma funci_1_L8: assumes Al: "ACB" shows "f‘‘(A)C f£¢¢(B)"

(proof)
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A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma funci_1_19: assumes Al: "f:X—Y" and A2: "ACX"
shows "A C f-““(£f<“(A))"

(proof)

The inverse image of the image of the domain is the domain.

lemma inv_im_dom: assumes Al: "f:X—Y" shows "f-“‘(f‘‘(X)) = X"

(proof)

A technical lemma needed to make the func1_1_L11 proof more clear.

lemma func1_1_L10:
assumes Al: "f C XxY" and A2: "3J!y. (yeY A (x,y) € £)"
shows "Jly. (x,y) € £"

(proof)

If f C X xY and for every z € X there is exactly one y € Y such that
(z,y) € f then f maps X to Y.

lemma funci_1_L11:
assumes "f C XxY" and "Vxe€X. J'y. yeY A (x,y) € £"
shows "f: X—Y" (proof)

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lambda expressions syntax so I
could not apply it. This lemma is a workaround for this. Besides, lambda
expressions are not readable.

lemma funci_1_L11A: assumes Al: "VxeX. b(x) € Y"
shows "{( x,y) € XxY. b(x) = y} : X—>Y"

(proof)

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes Al: "VxeX. b(x) € Y"
shows "{(x,b(x)). x€X} : X—Y"
(proof)

The value of a function defined by a meta-function is this meta-function.

lemma funci_1_L11B:
assumes Al: "f:X—Y" "xeX"

and A2: "f = {{ x,y) € XxY. b(x) = y}"
shows "f‘(x) = b(x)"
(proof)

The next lemma will replace funci_1_L11B one day.

lemma ZF_fun_from_tot_val:
assumes Al: "f:X—Y" "xeXx"
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and A2: "f = {(x,b(x)). x€X}"
shows "f‘(x) = b(x)"
(proof )

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

lemma ZF_fun_from_tot_valO:
assumes "f:X—Y" and "f = {(x,b(x)). x€X}"
shows "VxeX. f(x) = b(x)"
(proof)

Another way of expressing that lambda expression is a function.

lemma lam_is_fun_range: assumes "f={(x,g(x)). x€X}"
shows "f:X—range(£f)"

(proof)

Yet another way of expressing value of a function.

lemma ZF_fun_from_tot_vall:
assumes "x€X" shows "{(x,b(x)). x€X}(x)=b(x)"

(proof)

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma funci1_1_L11C: assumes Al: "f:X—Y" and A2: "Vx€A. b(x)€EB"
and A3: "XNA = 0" and Dg: "g = f U {(x,b(x)). x€A}"
shows
"g : XUA — YUB"
"WxeX. g(x) = £x"
"WxeA. g‘(x) = b(x)"
(proof)

We can extend a function by specifying its value at a point that does not
belong to the domain.

lemma func1_1_L11D: assumes Al: "f:X—Y" and A2: "a¢X"
and Dg: "g = £ U {(a,b)}"
shows
"g @ XU{a} — YU{b}"
"WxeX. g(x) = £x"
llgl (a) = bll
(proof)

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma funci_1_L11E:
assumes Al: "f:X—Y" and
A2: "VxeA. b(x)€eB" and
A3: "XNA = 0" and A4: "a¢ XUA"
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and Dg: "g = £ U {(x,b(x)). x€A} U {(a,c)}"
shows
"g : XUAU{a} — YUBU{c}"
"WxeX. gi(x) = £(x)"
"Wxeh. g (x) = b(x)"
"g‘(a) = "
(oroof)

A way of defining a function on a union of two possibly overlapping sets. We
decompose the union into two differences and the intersection and define a
function separately on each part.

lemma fun_union_overlap: assumes "Vx€ANB. h(x) € Y" "VxeA-B. f(x)
€ Y" "VxeB-A. g(x) € Y"

shows "{(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)). x
€ AUB}: AUB — Y"
(proof)

Inverse image of intersection is the intersection of inverse images.

lemma invim_inter_inter_invim: assumes "f:X—Y"
shows "f-‘“(ANB) = f-““(A) N f-“<(B)"

(proof)

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes invim_inter_inter_invim
which is proven for the case of two sets.

lemma func1_1_L12:
assumes Al: "B C Pow(Y)" and A2: "B#0" and A3: "f:X—Y"
shows "f-“((\B) = ((\U€B. £-<(U))"

(proof)

The inverse image of a set does not change when we intersect the set with
the image of the domain.

lemma inv_im_inter_im: assumes "f:X—Y"
shows "f-““(A N £°°(X)) = f=““(A)"
(proof)

If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.
lemma func1l_1_L13: assumes Al:"f-‘‘(A) # 0" shows "A#OQO"

(proof)
If the image of a set is not empty, then the set is not empty. Proof by
contradiction.
lemma func1l_1_L13A: assumes Al: "f‘‘(A)#0" shows "A#Q"

(proof)

What is the inverse image of a singleton?
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lemma funci_1_L14: assumes "fcX—Y"
shows "f-¢‘({y}) = {xeX. £°(x) = y}"
(proof )

A lemma that can be used instead fun_extension_iff to show that two
functions are equal

lemma func_eq: assumes "f: X—Y" "g: X—Z"
and "VxeX. £f(x) = g‘(x)"
shows "f = g" (proof)

Function defined on a singleton is a single pair.

lemma func_singleton_pair: assumes Al: "f : {a}—>X"
shows "f = {(a, £(a))}"
(proof)

A single pair is a function on a singleton. This is similar to singleton_fun
from standard Isabelle/ZF.

lemma pair_func_singleton: assumes Al: "y € Y"
shows "{(x,y)} : {x} — Y"
(proof)

The value of a pair on the first element is the second one.

lemma pair_val: shows "{(x,y)}‘(x) = y"

(proof)

A more familiar definition of inverse image.

lemma funci_1_L15: assumes Al: "f:X—Y"
shows "f-¢“(A) = {xeX. £(x) € A}"
(proof)

A more familiar definition of image.

lemma func_imagedef: assumes Al: "f:X—Y" and A2: "ACX"
shows "f“(A) = {£(x). x € A}"
(proof)

The image of a set contained in domain under identity is the same set.

lemma image_id_same: assumes "ACX" shows "id(X)‘‘(A) = A"

(proof)

The inverse image of a set contained in domain under identity is the same
set.

lemma vimage_id_same: assumes "ACX" shows "id(X)-¢‘(4) = A"

{proof)

What is the image of a singleton?

lemma singleton_image:
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assumes "feX—Y" and "xeX"
shows "f‘‘{x} = {f(x)}"
(proof )

If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma func1_1_L15D: assumes "f:X—Y" "x€A" "ACX"
shows "f‘(x) € £°“(A)"
(proof)

Range is the image of the domain. Isabelle/ZF defines range (f) as domain(converse(£)),
and that’s why we have something to prove here.

lemma range_image_domain:
assumes Al: "f:X—Y" shows "f‘‘(X) = range(f)"

(proof)

The difference of images is contained in the image of difference.

lemma diff_image_diff: assumes Al: "f: X—Y" and A2: "ACX"
shows "f “(X) - £¢(A) C £ “(X-A)"
(proof)

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes Al: "f:X—Y" and
A2: "I#0" and A3: "VieI. P(i) C X"
shows "f¢‘((i€Il. P(1)) C ( (i€l. £°(P(1)) )"
(proof)

The image of union is the union of images.

lemma image_of_Union: assumes Al: "f:X—Y" and A2: "VAeM. ACX"
shows "f ‘(UM = J{£(a). AeM}"
(proof)

The image of a nonempty subset of domain is nonempty.

lemma funci_1_L15A:
assumes Al: "f: X—Y" and A2: "ACX" and A3: "AF0"
shows "f‘‘(A) # 0"

(proof )

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma funcil_1_L15B:
assumes "f:X—Y" and "ACX" and "Vyef‘‘(A). P(y)"
shows "VxeA. P(£f(x))"
(proof)

An image of an image is the image of a composition.

lemma funcl_1_L15C: assumes Al: "f:X—Y" and A2: "g:Y—Z"
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and A3: "ACX"

shows

"gC (£ (A)) = {gf (£ (x)). xeA}"

llg‘l(fl{(A)) = (g O f){((A)ll
(proof)

What is the image of a set defined by a meta-fuction?

lemma funci_1_L17:
assumes Al: "f € X—Y" and A2: "Vx€A. b(x) € X"
shows "f‘‘({b(x). x€A}) = {f°(b(x)). x€A}"
(proof)

What are the values of composition of three functions?

lemma funci_1_L18: assumes Al: "f:A—B" "g:B—C" "h:C—D"
and A2: "xeA"
shows
"h0Ogo®(x) €DdD"
"hOogOfH) & =h (g EGN"
(proof)

A composition of functions is a function. This is a slight generalization of
standard Isabelle’s comp_fun
lemma comp_fun_subset:

assumes Al: "g:A—B" and A2: "f:C—D" and A3: "B C C"
shows "f 0 g : A — D"

(proof)

This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Con-

tributed by Victor Porton.

lemma comp_eq_id_iffl: assumes Al: "g: B—A" and A2: "f: A—C"
shows "(VyeB. £(g‘(y)) =y) «— £ 0 g = id(B)"

(proof)

A lemma about a value of a function that is a union of some collection of
functions.
lemma fun_Union_apply: assumes Al: "[JF : X—Y" and
A2: "fcF" and A3: "f:A—B" and A4: "xcA"
shows "(JF)‘(x) = £(x)"
(proof )

9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict(£,A) of to mean a function
(or relation) f restricted to a set. This means that if f is a function defined
on X and A is a subset of X then restrict(f,A) is a function whith the
same values as f, but whose domain is A.

What is the inverse image of a set under a restricted fuction?
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lemma funci_2_L1: assumes Al: "f:X—Y" and A2: "BCX"
shows "restrict(f,B)-‘‘(A) = £f-“‘(A) N B"
(proof)

A criterion for when one function is a restriction of another. The lemma
below provides a result useful in the actual proof of the criterion and appli-
cations.
lemma funcl_2_L2:

assumes Al: "f:X—Y" and A2: "g € A—Z"

and A3: "ACX" and A4: "f N AXZ = g"

shows "VxeA. g‘(x) = £°(x)"
(proof)

Here is the actual criterion.

lemma func1_2_L3:
assumes Al: "f:X—Y" and A2: "g:A—Z"
and A3: "ACX" and A4: "f N AXZ = g"
shows "g = restrict(f,A)"

(proof)
Which function space a restricted function belongs to?

lemma funcl_2_L4:
assumes Al: "f:X—Y" and A2: "ACX" and A3: "VxeA. £ (x) € Z2"
shows "restrict(f,A) : A—Z"

(proof)

A simpler case of func1_2_14, where the range of the original and restricted
function are the same.

corollary restrict_fun: assumes Al: "f:X—Y" and A2: "ACX"
shows "restrict(f,A) : A — Y"

(proof)

A composition of two functions is the same as composition with a restriction.

lemma comp_restrict:
assumes Al: "f : A—B" and A2: "g : X — C" and A3: "BCX"
shows "g 0 f = restrict(g,B) 0 f"

(proof)
A way to look at restriction. Contributed by Victor Porton.

lemma right_comp_id_any: shows "r 0 id(C) = restrict(r,C)"

(proof)

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to
shorten proofs.

We define constant(= ¢) functions on a set X in a natural way as ConstantFunction(X, ¢).
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definition
"ConstantFunction(X,c) = Xx{c}"
Constant function belongs to the function space.

lemma funci_3_L1:
assumes Al: "ce€Y" shows "ConstantFunction(X,c) : X—Y"

(proof)
Constant function is equal to the constant on its domain.

lemma funci_3_L2: assumes Al: "xeX"
shows "ConstantFunction(X,c) ‘(x) = c"

(proof)

9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.
For injections the image a difference of two sets is the difference of images

lemma inj_image_dif:
assumes Al: "f € inj(A,B)" and A2: "C C A"
shows "f¢“(A-C) = £“(A) - £°<(C)"

(proof )

For injections the image of intersection is the intersection of images.

lemma inj_image_inter: assumes Al: "f € inj(X,Y)" and A2: "ACX" "BCX"
shows "f¢‘(ANB) = £¢“(A) N £°“(B)"

(proof )

For surjection from A to B the image of the domain is B.

lemma surj_range_image_domain: assumes Al: "f € surj(A,B)"
shows "f¢‘(A) = B"
(proof)

For injections the inverse image of an image is the same set.

lemma inj_vimage_image: assumes "f € inj(X,Y)" and "ACX"
shows "f-‘‘(£¢‘(4)) = A"
(proof)

For surjections the image of an inverse image is the same set.

lemma surj_image_vimage: assumes Al: "f € surj(X,Y)" and A2: "ACY"
shows "f¢‘(£-°¢(4)) = A"
(proof )

A lemma about how a surjection maps collections of subsets in domain and
rangge.

lemma surj_subsets: assumes Al: "f € surj(X,Y)" and A2: "B C Pow(Y)"
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shows "{ £°“(U). U € {f-““(V). VeB} } = B"
(proof )

Restriction of an bijection to a set without a point is a a bijection.

lemma bij_restrict_rem:

assumes Al: "f € bij(A,B)" and A2: "acA"

shows "restrict(f, A-{a}) € bij(A-{a}, B-{f‘(a)P)"
(proof )

The domain of a bijection between X and Y is X.

lemma domain_of_bij:
assumes Al: "f € bij(X,Y)" shows "domain(f) = X"
(proof)

The value of the inverse of an injection on a point of the image of a set
belongs to that set.
lemma inj_inv_back_in_set:
assumes Al: "f € inj(A,B)" and A2: "CCA" and A3: "y € £°<(C)"
shows
"converse(f) ‘(y) € C"
"f‘(converse(f) ‘(y)) = y"
(proof)

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.
lemma inj_point_of_image:

assumes Al: "f € inj(A,B)" and A2: "CCA" and

A3: "x€A" and A4: "f‘(x) € £<(C)"
shows "x € C"

(proof)
For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes Al: "f € inj(A,B)" and
A2: "I#0" and A3: "VieI. P(i) C A"
shows "f¢‘((i€l. P(1)) = ( [i€l. £°°(P(1)) )"

(proof)

An injection is injective onto its range. Suggested by Victor Porton.

lemma inj_inj_range: assumes "f € inj(A,B)"
shows "f € inj(A,range(£))"

{proof)

An injection is a bijection on its range. Suggested by Victor Porton.

lemma inj_bij_range: assumes "f € inj(A,B)"
shows "f € bij(A,range(£))"
(proof)

A lemma about extending a surjection by one point.
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lemma surj_extend_point:
assumes Al: "f € surj(X,Y)" and A2: "a¢X" and
A3: "g = £ U {(a,b)}"
shows "g € surj(XuU{a},YU{pb})"

(proof)

A lemma about extending an injection by one point. Essentially the same
as standard Isabelle’s inj_extend.

lemma inj_extend_point: assumes "f € inj(X,Y)" "a¢X" "bgy"
shows "(f U {(a,b)}) € inj(Xu{a},YU{b})"
(proof)

A lemma about extending a bijection by one point.

lemma bij_extend_point: assumes "f € bij(X,Y)" "a¢X" "bgy"
shows "(f U {(a,b)}) € bijXu{a},Yu{b})"
(proof )

A quite general form of the a='b = 1 implies a = b law.

lemma comp_inv_id_eq:
assumes Al: "converse(b) 0 a = id(A)" and
A2: "a C AXB" "b € surj(4A,B)"
shows "a = b"

(proof)

A special case of comp_inv_id_eq - the a™'b = 1 implies a = b law for
bijections.
lemma comp_inv_id_eq_bij:

assumes Al: "a € bij(A,B)" "b € bij(A,B)" and

A2: "converse(b) 0 a = id(A)"
shows "a = b"

(proof)

Converse of a converse of a bijection the same bijection. This is a special
case of converse_converse from standard Isabelle’s equalities theory where
it is proved for relations.

lemma bij_converse_converse: assumes "a € bij(4,B)"
shows "converse(converse(a)) = a"

(proof)

If a composition of bijections is identity, then one is the inverse of the other.

lemma comp_id_conv: assumes Al: "a € bij(A,B)" "b € bij(B,A)" and
A2: "b 0 a = id(A)"
shows "a = converse(b)" and "b = converse(a)"

(proof)

A version of comp_id_conv with weaker assumptions.

lemma comp_conv_id: assumes Al: "a € bij(A,B)" and A2: "b:B—A" and
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A3: "VxeA. b‘(a‘(x)) = x"
shows "b € bij(B,A)" and "a = converse(b)" and "b = converse(a)"
(proof )

For a surjection the union if images of singletons is the whole range.

lemma surj_singleton_image: assumes Al: "f € surj(X,Y)"
shows "(JxeXx. {£‘(x)}) = y"
(proof)

9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product
of two sets. Such functions are called functions of two variables (although
really in ZF all functions admit only one argument). For every function of
two variables we can define families of functions of one variable by fixing the
other variable. This section establishes basic definitions and results for this
concept.

We can create functions of two variables by combining functions of one
variable.

lemma cart_prod_fun: assumes "f;:X;—=Y;" "f5:X;—Y2" and
"g = {(p,(f1 (fst(p)),f2 (snd(p)))). p € Xy xXp}"
shows "g: X;xXo — YiXxYa" (proof)

A reformulation of cart_prod_fun above in a sligtly different notation.

lemma prod_fun:
assumes "f:X;—Xp" "g:X3—Xy"
shows "{{(x,y),{(f‘x,g‘y)). (x,y)€X1xX3}:X3 xX3—XaxXq"

(proof)

Product of two surjections is a surjection.

theorem prod_functions_surj:

assumes "fesurj(A,B)" "gesurj(C,D)"

shows "{((al,a2),(f‘al,g‘a2)).(al,a2)cAxC} € surj(AxC,BxD)"
(proof)

For a function of two variables created from functions of one variable as in
cart_prod_fun above, the inverse image of a cartesian product of sets is the
cartesian product of inverse images.

lemma cart_prod_fun_vimage: assumes "f;:X;—Y;" "fo:X3—Ys" and
"g = {{p,(f1 (£st(p)),f2¢(snd(p)))). p € X1 xXo}"
shows "g—”(A1XA2) = fl—”(Al) X fg-(‘(Ag)"

(proof)

For a function of two variables defined on X x Y, if we fix an x € X we
obtain a function on Y. Note that if domain(f) is X X Y, range(domain(£f))
extracts Y from X x Y.
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definition
"FixlstVar(f,x) = {({y,f‘(x,y)). y € range(domain(f))}"

For every y € Y we can fix the second variable in a binary function f :
X XY — Z to get a function on X.

definition
"Fix2ndVar(f,y) = {(x,f‘(x,y)). x € domain(domain(f))}"

We defined FixlstVar and Fix2ndVar so that the domain of the function is
not listed in the arguments, but is recovered from the function. The next
lemma is a technical fact that makes it easier to use this definition.

lemma fix_var_fun_domain: assumes Al: "f : XxY — Z"
shows
"xeX — FixlstVar(f,x) =
"y€Y — Fix2ndVar(f,y) =

(proof)

.y c Y}u
X,y)). x € X}"
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If we fix the first variable, we get a function of the second variable.

lemma fix_1st_var_fun: assumes Al: "f : XxY — Z" and A2: "xeX"
shows "FixlstVar(f,x) : Y — Z"

(proof)

If we fix the second variable, we get a function of the first variable.

lemma fix_2nd_var_fun: assumes Al: "f : XXY — Z" and A2: "yeY"
shows "Fix2ndVar(f,y) : X — 2"

(proof)

What is the value of Fix1stVar (f,x) at y € Y and the value of Fix2ndVar (f,y)
at x € X77

lemma fix_var_val:
assumes Al: "f : XxY — Z" and A2: "xeX" ‘'"yey"
shows
"FixlstVar(f,x) ¢ (y)
"Fix2ndVar (f,y) < (x)
(proof)

Fixing the second variable commutes with restrictig the domain.

lemma fix_2nd_var_restr_comm:
assumes Al: "f : XxY — Z" and A2: "yeY" and A3: "X; C X"
shows "Fix2ndVar(restrict(f,X;xY),y) = restrict(Fix2ndVar(f,y),X;)"

(proof)

The next lemma expresses the inverse image of a set by function with fixed
first variable in terms of the original function.

lemma fix_1st_var_vimage:
assumes Al: "f : XxXY — Z" and A2: "xeX"
shows "FixlstVar(f,x)-‘‘(A) = {yeY. (x,y) € £-<“(A)}"
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(proof)

The next lemma expresses the inverse image of a set by function with fixed
second variable in terms of the original function.

lemma fix_2nd_var_vimage:
assumes Al: "f : XxXY — Z" and A2: "yeY"
shows "Fix2ndVar(f,y)-‘‘(A) = {xeX. (x,y) € £-<“(A)}"

(proof)

end

10 Binary operations

theory func_ZF imports funcl
begin

In this theory we consider properties of functions that are binary operations,
that is they map X x X into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f,g: X — R we define (f + g)(z) = f(z) + g(z).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it "lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X') we are defining f lifted to function space
over X as the binary function (a set of pairs) on the space F' = X — range(f)
such that the value of this function on pair (a, b) of functions on X is another
function ¢ on X with values defined by c(z) = f(a(z),b(z)).

definition

Lift2FcnSpce (infix "{lifted to function space over}" 65) where
"f {lifted to function space over} X =
{{ p,{{x, £ (fst(p) ‘(%) ,snd(P) ‘(x))). x € X}).
p € (X—range(f))x (X—range(f))}"

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes Al: "f : YxXY—=Y"
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and A2: "p €(X—range(f))x (X—range(£))"

shows

"{(x,f(fst(p) ‘() ,snd(p) ‘(x))). x € X} : X—range(f)"
(proof)

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:
assumes Al: "f : YxXY—Y"
and A2: "p € (X—range(f))x(X—range(f))" and A3: "xeX"
and A4: "P = {(x,f(fst(p) ‘(x),snd(p)‘(x))). x € X}"
shows "P‘(x) = £(fst(p) ‘(x),snd(p) ‘ (x))"

{proof)

Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:
assumes "f : YXY—=Y"
and "F = f {lifted to function space over} X"
shows "F : (X—range(f)) X (X—range(f))— (X—range(£))"

{proof)

The values of the lift are defined by the values of the liftee in the natural
way.
theorem func_ZF_1_L4:
assumes Al: "f : YXY—-Y"
and A2: "F = f {lifted to function space over} X"
and A3: "s:X—range(f)" "r:X—range(f)"
and A4: "xeX"
shows "(F'(s,r))‘(x) = £ (s*x),r (x))"
(proof )

10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

” N

Typically we say that a binary operation on a set G is ”associative” if
(r-y)-z=x-(y-2) for all z,y,z € G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation 4+ or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P(z,y) to denote the value
of the operation P on a pair (z,y) € G X G.

definition
IsAssociative (infix "{is associative on}" 65) where
"P {is associative on} G = P : GXG—G A
vV x€eG Vyea. VvV zceQqa.
(PP Ux,y)),z) = PC (x,P°Uy,2z))) )"
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A binary function f: X x X — Y is commutative if f(x,y) = f(y,x). Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix "{is commutative on}" 65) where
"f {is commutative on} G = Vx€G. VyeG. £(x,y) = £(y,x)"

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:
assumes Al: "f : GXG—G"
and A2: "F = f {lifted to function space over} X"
and A3: "s : X—range(f)" "r : X—range(£f)"
and A4: "f {is commutative on} G"
shows "F‘(s,r) = F'(r,s)"

{(proof)

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes "f : GXG—G"
and "f {is commutative on} G"
and "F = f {lifted to function space over} X"
shows "F {is commutative on} (X—range(f))"

(proof)

The lift of an associative function is associative.

lemma func_ZF_2_L3:
assumes A2: "F = f {lifted to function space over} X"
and A3: "s : X—range(f)" "r : X—range(f)" "q : X—range(f)"
and A4: "f {is associative on} G"
shows "F‘(F‘(s,r),q) = F‘(s,F(r,q))"
(proof)

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes Al: "f {is associative on} G"
and A2: "F = f {lifted to function space over} X"
shows "F {is associative on} (X—range(f))"

{(proof)

10.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.
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The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes Al: "f:XxX—Y" and A2: "ACX"
and A3: "f {is commutative on} X"
shows "restrict(f,AxA) {is commutative on} A"

(proof)

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix "{is closed under}" 65) where
"A {is closed under} f = Vx€A. Vye€A. £(x,y) € A"

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes Al: "f {is associative on} X"
and A2: "ACX" and A3: "A {is closed under} f"
and A4: "x€A" "yeA" "zeA"
and A5: "g = restrict(f,AxA)"
shows "g‘(g‘(x,y),2z) = g“(x,g"(y,2))"
(proof )

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes Al: "f {is associative on} X"
and A2: "ACX" and A3: "A {is closed under} f"
shows "restrict(f,AxA) {is associative on} A"

(proof)

The essential condition to show that if a set A is closed with respect to an
operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes "A {is closed under} f"
and "ACB" and "x€A" ‘"yeA" and "g = restrict(f,BxB)"
shows "g‘(x,y) € A"

(proof )

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:
assumes Al: "A {is closed under} f"
and A2: "ACB"
shows "A {is closed under} restrict(f,BxB)"

(proof)

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.
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lemma func_ZF_4_16:
assumes "A {is closed under} f"
and "B {is closed under} f"
and "x € ANB" "y& ANB"
shows "f‘(x,y) € ANB" (proof)

Intersection of sets that are closed with respect to an operation is closed
under the operation.
lemma func_ZF_4_L7:

assumes "A {is closed under} f"

"B {is closed under} f"
shows "ANB {is closed under} f"

(proof)

10.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X — X defined by C(f,g) = f o g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter 0. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of (X —
X)x (X = X)) x (X = X).

We define the notion of composition on the set X as the binary operation
on the function space X — X that takes two functions and creates the their
composition.

definition
"Composition(X) =
{(p,fst(p) 0 snd(p)). p € X=X xEX—=X)}"

Composition operation is a function that maps (X — X) x (X — X) into

X - X.

lemma func_ZF_5_L1: shows "Composition(X) : (X—X)Xx(X—=X)—=E-=X)"
(proof)

The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes "f:X—X" and "g:X—X"
shows "Composition(X)‘(f,g) = £ 0 g"

(proof)

What is the value of a composition on an argument?

lemma func_ZF_5_L3: assumes "f:X—X" and "g:X—X" and "xeX"
shows "(Composition(X) ‘(f,g))‘(x) = £(g‘(x))"
(proof)

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes Al: "f:X—X" "g:X—=X" "h:X—X"
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and A2: "C = Composition(X)"
shows "C‘(C‘(f,g),h) = C( £,C°(g,h))"
(proof)

Composition is an associative operation on X — X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows "Composition(X) {is associative on} (X—X)"

(proof)

10.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.

A function that maps every point to itself is the identity on its domain.

lemma indentity_fun: assumes Al: "f:X—Y" and A2:"VxeX. f‘(x)=x"
shows "f = id(X)"

(proof)

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes Al: "f : X—X"
shows "Composition(X) ‘(f,id(X)) = £"
"Composition(X) ‘(id(X),f) = f"

(proof)

An intuitively clear, but surprsingly nontrivial fact:identity is the only func-
tion from a singleton to itself.

lemma singleton_fun_id: shows "({x} — {x}) = {id({x})}"
(proof)

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows "bij({x},{x}) = {id({x}H)}"
(proof)

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes Al: "f:X—X" and
A2: "peX" and A3: "f‘(p) = p" and
A4: "restrict(f, X-{p}) = id&X-{pH"
shows "f = id(X)"

(proof)

10.6 Lifting to subsets

Suppose we have a binary operation f : X x X — X written additively as
flx,y) = x +y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+ B ={x+y:2 € A,y € B}. This new
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operation which we will call ” f lifted to subsets” inherits many properties of
f, such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p € Pow(X) x Pow(X), say p = (A, B), where A, B C X. Then we assign
this pair of sets the set {f(z,y) :xz € A,y € B} ={f(2') : 2’ € A x B} The
set on the right hand side is the same as the image of A x B under f. In the
definition we don’t use A and B symbols, but write fst(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
components of an ordered pair p. See the lemma lift_subsets_explained
for a more intuitive notation.

definition
Lift2Subsets (infix "{lifted to subsets of}" 65) where
"f {lifted to subsets of} X =
{{p, £°“(fst(p)xsnd(p))). p € Pow(X) xPow(X)}"

The lift to subsets defines a binary operation on the subsets.

lemma 1ift_subsets_binop: assumes Al: "f : X X X — Y"
shows "(f {lifted to subsets of} X) : Pow(X) X Pow(X) — Pow(Y)"

(proof)

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F*(A,B) = {£(x,y). x € A, y
€ B}, but Isabelle/ZF does not allow such syntax.

lemma 1ift_subsets_explained: assumes Al: "f : XxX — Y"
and A2: "A C X" "B C X" and A3: "F = f {lifted to subsets of} X"

"F¢(A,B) C Y" and

"FC(A,B) = £°(AXB)"

"F(A,B) = {£‘(p). p € AxB}"

"F(A,B) = {f(x,y) . (x,y) € AxB}"
(proof)

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma 1lift_subset_suff: assumes Al: "f : X x X — Y" and
A2: "A C X* "B C X" and A3: "x€A" "yeB" and
A4: "F = f {lifted to subsets of} X"
shows "f‘(x,y) € F‘(A,B)"

(proof)

A kind of converse of 1ift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma lift_subset_nec: assumes Al: "f : X x X — Y" and
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A2: "A C X" "B C X" and

A3: "F = f {lifted to subsets of} X" and

Ad: "z € F(A,B)"

shows "Jdx y. x€A A y€B A z = £(x,y)"
(proof)

Lifting to subsets inherits commutativity.

lemma 1lift_subset_comm: assumes Al: "f : X X X — Y" and
A2: "f {is commutative on} X" and
A3: "F = f {lifted to subsets of} X"
shows "F {is commutative on} Pow(X)"

(proof)

Lifting to subsets inherits associativity. To show that F'((A, B)C) = F(A, F(B,C))
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma 1lift_subset_assoc: assumes Al: "f : X x X — X" and
A2: "f {is associative on} X" and
A3: "F = f {lifted to subsets of} X"
shows "F {is associative on} Pow(X)"

(proof)

10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a-(b+c¢) = a-b+a-c and (b+c¢)-a = b-a+c-a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClass1 theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
"IsDistributive (X A,M) X.VbeX.VceX.

= (
M‘(a,A‘(b,c)) = A°(M(a,b),M* < >>
M (A“(b,c),a) = A°(M‘(b,a),M (c,a) )"

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:
assumes Al: "IsDistributive(X,A,M)"
and A2: "YCX"
and A3: "Y {is closed under} A" "Y {is closed under} M"
and A4: "A, = restrict(A,YXY)" "M, = restrict(M,YxY)"
and A5: "a€Y" "bey" ‘'cey"
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shows "M, ‘( a,A.‘(b,c) ) = A.‘( M.‘(a,b),M,“(a,c) ) A
M. ( A-“(b,c),a ) = A.( M.“(b,a), M.‘(c,a) )"
(proof)

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes "IsDistributive(X,A,M)"
and "YCX"
and "Y {is closed under} A"
"Y {is closed under} M"
and "A, = restrict(A,YXY)" "M, = restrict(M,YxY)"
shows "IsDistributive(Y,A,,M.)"

(proof)
end

11 More on functions

theory func_ZF_1 imports ZF.Order Order_ZF_la func_ZF
begin

In this theory we consider some properties of functions related to order
relations

11.1 Functions and order
This section deals with functions between ordered sets.
If every value of a function on a set is bounded below by a constant, then

the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes "f:X—Y" and "ACX" and "VxeA. (L,f‘(x)) € r"
shows "IsBoundedBelow(f‘‘(A),r)"

(proof)

If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:
assumes "f:X—Y" and "ACX" and "VxeA. (f‘(x),U) € r"
shows "IsBoundedAbove(f‘‘(A),r)"

(proof)

Identity is an order isomorphism.

lemma id_ord_iso: shows "id(X) € ord_iso(X,r,X,r)"
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(proof)

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:
shows "ord_iso({x},r,{x},r) = {id({x})}"
(proof)

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
between (A, r) and (B, R) we can not conclude that R is antisymmetric (we
can only show that RN (B x B) is).

lemma max_image_ord_iso:
assumes Al: "antisym(r)" and A2: "antisym(R)" and
A3: "f € ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)"
shows "HasAmaximum(R,B)" and "Maximum(R,B) = f‘(Maximum(r,A))"

(proof)

Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:
assumes "antisym(r)" and "f € ord_iso(A,r,A,r)"
and "HasAmaximum(r,A)"
shows "Maximum(r,A) = f¢(Maximum(r,A))"
(proof)

If two sets are order isomorphic and we remove z and f(z), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "a € A"
shows "restrict(f,A-{a}) € ord_iso(A-{a},r,B-{f‘(a)},R)"

(proof)

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:
assumes Al: "antisym(r)" and "f € ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)" and A5: "M = Maximum(r,A)"
shows "restrict(f,A-{M}) € ord_iso(A-{M}, r, B-{f‘(M},R)"
(proof )

Lemma about extending order isomorphisms by adding one point to the
domain.

lemma ord_iso_extend: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "My ¢ A" "Mz ¢ B" and
A3: "VacA. (a, My) € r" "VbeB. (b, Mg) € R" and
A4: "antisym(r)" "antisym(R)" and
AB: "(M4,My) € T +— (Mp,Mp) € R"
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shows "f U {( M4,Mp)} € ord_iso(AU{M4} ,r,BU{M} ,R)"
(proof)

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.
lemma rem_max_ord_iso:

assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and

A2: "HasAmaximum(r,X)" "HasAmaximum(R,Y)"

"ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) # O"

shows "ord_iso(X,r,Y,R) # 0"
(proof)

11.2 Projections in cartesian products
In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X =Y x {y} (a "slice”) and Y. We will
call this the SliceProjection(Yx{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
"SliceProjection(X) = {(p,fst(p)). p € X }"

A slice projection is a bijection between X x {y} and X.

lemma slice_proj_bij: shows
"SliceProjection(Xx{y}): Xx{y} — X"
"domain(SliceProjection(Xx{y})) = Xx{y}"
"VpeXx{y}. SliceProjection(Xx{y}) ‘(p) = fst(p)"
"SliceProjection(Xx{y}) € bijEx{y},X)"

(proof)

11.3 Induced relations and order isomorphisms

When we have two sets X,Y, function f : X — Y and a relation R on
Y we can define a relation r on X by saying that x r y if and only if
f(x) R f(y). This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
the case when R is an order relation and f is a bijection. The standard
Isabelle’s Order theory defines the notion of a space of order isomorphisms
between two sets relative to a relation. We expand that material proving
that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f: X - Y
the InducedRelation(f,R).

definition
"InducedRelation(f,R) =
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{p € domain(f)xdomain(f). (f‘(fst(p)),f‘(snd(p))) € R}"

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:
assumes "(x,y) € InducedRelation(f,R)"
shows "(f‘(x),f‘(y)) € R"
(proof)

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes "f:A—B" and
"X€A" HYEA" and "<f((X),f‘(y)> 6 R"
shows "(x,y) € InducedRelation(f,R)"

(proof)

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:
assumes "f € ord_iso(A,r,B,R)" and
"(f(x),f(y)) € R" and "x€A" "yeA"
shows "(x,y) € r"

{proof)

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes "R C BxB" and "f:A—B"
shows "InducedRelation(f,R) C AxA"

{proof)

A bijection is an order homomorphisms between a relation and the induced
one.
lemma bij_is_ord_iso: assumes Al: "f € bij(A,B)"

shows "f € ord_iso(A,InducedRelation(f,R),B,R)"

(proof)

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" and A3: "antisym(R)"
shows "antisym(r)"

(proof)
Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" and A3: "trans(R)"
shows "trans(r)"

(proof)

Order isomorphisms preserve totality.

67



lemma ord_iso_pres_tot: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" and A3: "R {is total on} B"
shows "r {is total on} A"

(proof)

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes "f € ord_iso(A,r,B,R)" and
"r C AxA" and "IsLinOrder(B,R)"
shows "IsLinOrder(A,r)"

{proof)

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:
assumes Al: "f € bij(A,B)" and A2: "IsLinOrder(B,R)"
shows "IsLinOrder (A,InducedRelation(f,R))"

(proof)

The image by an order isomorphism of a bounded above and nonempty set
is bounded above.

lemma ord_iso_pres_bound_above:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" and

A3: "IsBoundedAbove(C,r)" "C#£O"
shows "IsBoundedAbove(f¢‘(C),R)" "f“(C) # O"
(proof)

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" and
A3: "CCA" and A4: "HasAminimum(R,f‘‘(C))"
shows "HasAminimum(r,C)"

(proof)

Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.
lemma ord_iso_pres_rel_image:

assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and

A3: "acA"
shows "f‘‘(r‘‘{a}) = R ‘{f<(a)}"
(proof)

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and
A3: "CCA"
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shows "{f‘‘(r¢‘{a}). acC} = {R“‘{b}. b € £°°(CO}"
(proof)

The image of the set of upper bounds is the set of upper bounds of the
image.
lemma ord_iso_pres_min_up_bounds:

assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" "R C BxB"
and

A3: "CCA" and A4: "C#0"

shows "f¢‘(NacC. r*‘{a}) = (bef“(C). R ‘{bH"
(proof )

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and A3: "R {is completel}"
shows "r {is completel}"

(proof)

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes Al: "f € bij(A,B)"
and A2: "R C BxB" and A3: "R {is completel}"
shows "InducedRelation(f,R) {is completel}"

(proof)

end

12 Finite sets - introduction

theory Finite_ZF imports ZF1 Nat_ZF_IML ZF.Cardinal
begin

Standard Isabelle Finite.thy contains a very useful notion of finite powerset:
the set of finite subsets of a given set. The definition, however, is specific
to Isabelle and based on the notion of ”datatype”, obviously not something
that belongs to ZF set theory. This theory file devolopes the notion of
finite powerset similarly as in Finite.thy, but based on standard library’s
Cardinal.thy. This theory file is intended to replace IsarMathLib’s Finitel
and Finite_ZF_1 theories that are currently derived from the ”datatype”
approach.

12.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite pow-
ersets: if the empty set has some property and this property is preserved
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by adding a single element of a set, then this property is true for all finite
subsets of this set.

We defined the finite powerset FinPow(X) as those elements of the powerset
that are finite.

definition
"FinPow(X) = {A € Pow(X). Finite(A)}"

The cardinality of an element of finite powerset is a natural number.

lemma card_fin_is_nat: assumes "A € FinPow(X)"
shows "|A| € nat" and "A ~ |A|"

(proof)

A reformulation of card_fin_is_nat: for a finit set A there is a bijection
between |A| and A.
lemma fin_bij_card: assumes Al: "A € FinPow(X)"

shows "db. b € bij(|Al, A"
(proof)

If a set has the same number of elements as n € N, then its cardinality is n.
Recall that in set theory a natural number n is a set that has n elements.

lemma card_card: assumes "A ~ n" and "n € nat"

shows "|A| = n"

(proof)

If we add a point to a finite set, the cardinality increases by one. To under-
stand the second assertion |[AU{a}| = |A|U{|A|} recall that the cardinality
|A| of A is anatural number and for natural numbers we have n+1 = nU{n}.

lemma card_fin_add_one: assumes Al: "A € FinPow(X)" and A2: "a € X-A"
shows

"l1A U {a}| = succ( |A] )"
1A U {a}] = |Al U {IAI}"
(proof )

We can decompose the finite powerset into collection of sets of the same
natural cardinalities.

lemma finpow_decomp:
shows "FinPow(X) = (n € nat. {A € Pow(X). A =~ n})"
{proof)

Finite powerset is the union of sets of cardinality bounded by natural num-
bers.

lemma finpow_union_card_nat:
shows "FinPow(X) = ((Jn € nat. {A € Pow(X). A < n})"
(proof)
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A different form of finpow_union_card_nat (see above) - a subset that has
not more elements than a given natural number is in the finite powerset.

lemma lepoll_nat_in_finpow:

assumes '"n € nat" "A C X" "A <"
shows "A € FinPow(X)"
(proof)

Natural numbers are finite subsets of the set of natural numbers.

lemma nat_finpow_nat: assumes "n € nat" shows "n € FinPow(nat)"

(proof)

A finite subset is a finite subset of itself.

lemma fin_finpow_self: assumes "A € FinPow(X)" shows "A € FinPow(A)"

(proof)

If we remove an element and put it back we get the set back.

lemma rem_add_eq: assumes "acA" shows "(A-{a}) U {a} = A"

(proof)

Induction for finite powerset. This is smilar to the standard Isabelle’s
Fin_induct.

theorem FinPow_induct: assumes Al: "P(0)" and
A2: "WA € FinPow(X). P(A) — (Va€eX. P(A U {a}))" and
A3: "B € FinPow(X)"
shows "P(B)"

(proof)

A subset of a finites subset is a finite subset.

lemma subset_finpow: assumes "A € FinPow(X)" and "B C A"
shows "B € FinPow(X)"

(proof)

If we subtract anything from a finite set, the resulting set is finite.

lemma diff_finpow:
assumes "A € FinPow(X)" shows "A-B € FinPow(X)"

(proof)

If we remove a point from a finites subset, we get a finite subset.

corollary fin_rem_point_fin: assumes "A € FinPow(X)"
shows "A - {a} € FinPow(X)"
{proof )

Cardinality of a nonempty finite set is a successsor of some natural number.

lemma card_non_empty_succ:
assumes Al: "A € FinPow(X)" and A2: "A # 0"
shows "dn € nat. |A| = succ(n)"
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(proof)

Nonempty set has non-zero cardinality. This is probably true without the
assumption that the set is finite, but I couldn’t derive it from standard
Isabelle theorems.

lemma card_non_empty_non_zero:
assumes "A € FinPow(X)" and "A # O"
shows "|A| # O"

(proof)

Another variation on the induction theme: If we can show something holds
for the empty set and if it holds for all finite sets with at most k elements
then it holds for all finite sets with at most k + 1 elements, the it holds for
all finite sets.

theorem FinPow_card_ind: assumes Al: "P(0)" and
A2: "VkéEnat.
(VA € FinPow(X). A S k — P(A)) —
(VA € FinPow(X). A < succ(k) — P(A))"
and A3: "A € FinPow(X)" shows "P(A)"
(proof)

Another type of induction (or, maybe recursion). The induction step we try
to find a point in the set that if we remove it, the fact that the property
holds for the smaller set implies that the property holds for the whole set.

lemma FinPow_ind_rem_one: assumes Al: "P(0)" and
A2: "V A € FinPow(X). A # 0 — (dacA. P(A-{a}) — P(A))"
and A3: "B € FinPow(X)"
shows "P(B)"

(proof)

Yet another induction theorem. This is similar, but slightly more compli-
cated than FinPow_ind_rem_one. The difference is in the treatment of the
empty set to allow to show properties that are not true for empty set.

lemma FinPow_rem_ind: assumes Al: "VA € FinPow(X).
A =0V (JdacA. A = {a} v P(A-{a}) — P(A)"
and A2: "A € FinPow(X)" and A3: "AZ£0"
shows "P(A)"

(proof)

If a family of sets is closed with respect to taking intersections of two sets
then it is closed with respect to taking intersections of any nonempty finite
collection.

lemma inter_two_inter_fin:
assumes Al: "VVET. VWET. VN W € T" and
A2: "N # 0" and A3: "N € FinPow(T)"
shows "((N € T)"

(proof)
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If a family of sets contains the empty set and is closed with respect to taking
unions of two sets then it is closed with respect to taking unions of any finite
collection.

lemma union_two_union_fin:
assumes Al: "0 € C" and A2: "VAeC. VBeC. AUB € C" and
A3: "N € FinPow(C)"
shows "|JN € C"

(proof)

Empty set is in finite power set.

lemma empty_in_finpow: shows "0 € FinPow(X)"
(proof )

Singleton is in the finite powerset.

lemma singleton_in_finpow: assumes "x € X"
shows "{x} € FinPow(X)" (proof)

Union of two finite subsets is a finite subset.

lemma union_finpow: assumes "A € FinPow(X)" and "B € FinPow(X)"
shows "A U B € FinPow(X)"

(proof)

Union of finite number of finite sets is finite.

lemma fin_union_finpow: assumes "M € FinPow(FinPow(X))"
shows "|JM € FinPow(X)"

(proof)

If a set is finite after removing one element, then it is finite.

lemma rem_point_fin_ fin:
assumes Al: "x € X" and A2: "A - {x} € FinPow(X)"
shows "A € FinPow(X)"

(proof)

An image of a finite set is finite.

lemma fin_image_fin: assumes "VVeB. K(V)eC" and "N € FinPow(B)"
shows "{K(V). VeN} € FinPow(C)"

(proof)

Union of a finite indexed family of finite sets is finite.

lemma union_fin_list_fin:
assumes Al: "n € nat" and A2: "Vk € n. N(k) € FinPow(X)"
shows
"{N(k). k € n} € FinPow(FinPow(X))" and "(Jk € n. N(k)) € FinPow(X)"

(proof)

end
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13 Finite sets

theory Finitel imports ZF.EquivClass ZF.Finite funcl ZF1
begin

This theory extends Isabelle standard Finite theory. It is obsolete and
should not be used for new development. Use the Finite_ZF instead.

13.1 Finite powerset

In this section we consider various properties of Fin datatype (even though
there are no datatypes in ZF set theory).

In Topology_ZF theory we consider induced topology that is obtained by
taking a subset of a topological space. To show that a topology restricted
to a subset is also a topology on that subset we may need a fact that if T is
a collection of sets and A is a set then every finite collection {V;} is of the
form V; = U; N A, where {U;} is a finite subcollection of 7". This is one of
those trivial facts that require suprisingly long formal proof. Actually, the
need for this fact is avoided by requiring intersection two open sets to be
open (rather than intersection of a finite number of open sets). Still, the fact
is left here as an example of a proof by induction. We will use Fin_induct
lemma from Finite.thy. First we define a property of finite sets that we want
to show.

definition
"Prfin(T,A,M) = ( (M = 0) | (IN€ Fin(T). VVe M. 3 Ue N. (V = UNA)))"

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
of the ind_step lemma are those needed by the main induction step in lemma
Fin_induct (see standard Isabelle’s Finite.thy).

lemma ind_step: assumes A: "V Ve TA. 3 UET. V=UNA"
and Al: "WETA" and A2: "Me Fin(TA)"
and A3: "W¢M" and A4: "Prfin(T,A,M)"
shows "Prfin(T,A,cons(W,M))"

(proof)

Now we are ready to prove the statement we need.

theorem FinRestr0O: assumes A: "V V € TA. 4 Ue T. V=UNA"
shows "V M& Fin(TA). Prfin(T,A,M)"
(proof)

This is a different form of the above theorem:

theorem ZF1FinRestr:
assumes Al:"Me Fin(TA)" and A2: "M#0"
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and A3: "V Ve TA. 3 Ue T. vV=UNA"
shows "JNe& Fin(T). (VVe M. 3 Ue N. (V = UNA)) A N=#£0"
(proof)

Purely technical lemma used in Topology_ZF_1 to show that if a topology is
T5, then it is Tj.
lemma Finitel L2:

assumes A:"3U V. (UeT A VET A x€U A yeV A UNV=0)"
shows "JUET. (x€U A ygU)"

(proof)

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

lemma Finitel L3_IndStep:
assumes Al1:"VA B. ((AeC A BeC) — AUBEC)"
and A2: "AeC" and A3: "N€Fin(C)" and A4:"A¢N" and A5:"(JN € C"
shows "|Jcons(A,N) € C"

(proof)

The lemma: a collection closed with respect to taking a union of two sets is
closed under taking finite unions.

lemma Finitel_L3:
assumes Al: "0 € C" and A2: "VA B. ((AeC A BeC) — AUBeC)" and

A3: "Ne Fin(C)"
shows "(JNecC"
(proof)

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finitel_L3, because the intersection of empty collection
is undefined (or should be treated as such). To simplify notation we define
the property to be proven for finite sets as a separate notion.

definition
"IntPr(T,N) = (W=0 1] (N € )"
The induction step.

lemma Finitel_L4_IndStep:
assumes Al: "VA B. ((A€ET A BET) — ANBET)"
and A2: "AeT" and A3:"NeFin(T)" and A4:"A¢N" and A5:"IntPr(T,N)"
shows "IntPr(T,cons(A,N))"

(proof)

The lemma.

lemma Finitel_L4:
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assumes Al: "VA B. A€T AN BET — ANB € T"
and A2: "NeFin(T)"
shows "IntPr(T,N)"

(proof)

Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.

lemma Finitel_L5:
assumes Al: "VA B. ((A€T A BET) — ANBeT)"
and A2: "N#0" and A3: "N€Fin(T)"
shows "N € T"

(proof)

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them
results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction. The next lemma
is the induction step.
lemma fin_image_fin_IndStep:

assumes "VVeB. K(V)eC"

and "UeB" and "NeFin(B)" and "U¢N" and "{K(V). VEN}€Fin(C)"

shows "{K(V). Vecons(U,N)} € Fin(C)"

(proof)

The lemma:

lemma fin_image_fin:
assumes Al: "VVeB. K(V)eC" and A2: "NeFin(B)"
shows "{K(V). VeN} € Fin(C)"

(proof)

The image of a finite set is finite.

lemma Finitel_ L6A: assumes Al: "f:X—Y" and A2: "N € Fin(X)"
shows "f¢¢“(N) € Fin(Y)"

(proof)

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel L6B:
assumes Al: "VxeX. a(x) € Y" and A2: "{b(y).y€Y} € Fin(Z)"
shows "{b(a(x)).x€X} € Fin(Z)"

(proof)

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel_L6C:
assumes Al: "VyeY. b(y) € Z" and A2: "{a(x). x€X} € Fin(Y)"
shows "{b(a(x)).x€X} € Fin(Z)"
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(proof)

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty and prove by contradiction. Should be in ZF1.thy

lemma Finitel_L9: assumes Al:"[|A # 0" shows "A#0"

(proof)

Cartesian product of finite sets is finite.

lemma Finitel_L12: assumes Al: "A € Fin(A)" and A2: "B € Fin(B)"
shows "AxB € Fin(AxB)"

(proof)

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

definition
"Characteristic(A,default,x) = (if x€A then x else default)"

A finite subset is a finite subset of itself.

lemma Finitel_L13:
assumes Al1:"A € Fin(X)" shows "A € Fin(A)"

(proof)

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finitel_L14: assumes Al: "A € Fin(X)" "B € Fin(Y)"
shows "AxXB € Fin(XxY)"
(proof)

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finitel_L15:
assumes Al: "{b(x). x€A} € Fin(B)" "{c(x). x€A} € Fin(C)"
and A2: "f : BXC—E"
shows "{f‘( b(x),c(x)). x€A} € Fin(E)"

(proof)

Singletons are in the finite powerset.
lemma Finitel_L16: assumes "xe€X" shows "{x} € Fin(X)"
{proof )
A special case of Finite1_L15 where the second set is a singleton. Group_ZF_3

theory this corresponds to the situation where we multiply by a constant.

lemma Finitel_L16AA: assumes "{b(x). x€A} € Fin(B)"
and "ceC" and "f : BXC—E"
shows "{f‘( b(x),c). x€A} € Fin(E)"

(proof)

First order version of the induction for the finite powerset.
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lemma Finitel_L16B: assumes Al: "P(0)" and A2: "B€Fin(X)"
and A3: "VAcFin(X) .VxeX. X¢A A P(A) —PAU{x})"
shows "P(B)"

(proof)

13.2 Finite range functions

In this section we define functions f : X — Y, with the property that
f(X) is a finite subset of Y. Such functions play a important role in the
construction of real numbers in the Real_ZF series.

Definition of finite range functions.

definition
"FinRangeFunctions(X,Y) = {f:X—Y. £°°(X) € Fin(Y)}"

Constant functions have finite range.

lemma Finitel_L17: assumes "c€Y" and "X#0"
shows "ConstantFunction(X,c) € FinRangeFunctions(X,Y)"

(proof)

Finite range functions have finite range.

lemma Finitel L18: assumes "f € FinRangeFunctions(X,Y)"
shows "{f‘(x). xe€X} € Fin(Y)"

(proof)

An alternative form of the definition of finite range functions.

lemma Finitel_L19: assumes "f:X—Y"
and "{f‘(x). x€X} € Fin(Y)"
shows "f € FinRangeFunctions(X,Y)"

(proof)

A composition of a finite range function with another function is a finite
range function.

lemma Finitel_L20: assumes Al:"f € FinRangeFunctions(X,Y)"
and A2: "g : Y—Z"
shows "g 0 f € FinRangeFunctions(X,Z)"

(proof)

Image of any subset of the domain of a finite range function is finite.

lemma Finitel_L21:
assumes "f € FinRangeFunctions(X,Y)" and "ACX"
shows "f¢¢(A) € Fin(Y)"

(proof)

end
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14 Finite sets 1

theory Finite_ZF_1 imports Finitel Order_ZF_la
begin

This theory is based on Finitel theory and is obsolete. It contains properties
of finite sets related to order relations. See the FinOrd theory for a better
approach.

14.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

lemma Finite_ZF_1_1_L1:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "AeFin(X)" and A4: "xeX" and A5: "A=0 V HasAmaximum(r,A)"
shows "AU{x} = 0 V HasAmaximum(r,AU{x})"

(proof)

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "BEFin(X)"
shows "B=0 V HasAmaximum(r,B)"

(proof)

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "AcFin(X)" and A4: "xeX" and A5: "A=0 V HasAminimum(r,A)"
shows "AU{x} = 0 V HasAminimum(r,AU{x})"

(proof)

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "B € Fin(X)"
shows "B=0 V HasAminimum(r,B)"

(proof)

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "BeFin(X)"
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shows "IsBounded(B,r)"
(proof )

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.

theorem Finite_ZF_1_T2:
assumes Al: "IsLinOrder(X,r)" and A2: "A € Fin(X)" and A3: "A#0"
shows
"Maximum(r,A) € A"
"Minimum(r,A) € A"
"WxeA. (x,Maximum(r,A)) €
"Wx€A. (Minimum(r,A),x) €
(proof)

I.ll
I.ll

A special case of Finite_ZF_1_T2 when the set has three elements.

corollary Finite_ZF_1_L2A:
assumes Al: "IsLinOrder(X,r)" and A2: "acX" "beX" "ceX"
shows
"Maximum(r,{a,b,c}) € {a,b,c}"
"Minimum(r,{a,b,c}) € {a,b,c}"
"Maximum(r,{a,b,c}) € X"
"Minimum(r,{a,b,c}) € X"
"(a,Maximum(r,{a,b,c})) € r
"(b,Maximum(r,{a,b,c})) € r"
"(c,Maximum(r,{a,b,c})) € r
(proof)

If for every element of X we can find one in A that is greater, then the A
can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:

assumes Al: "r {is total on} X"
and A2: "trans(r)" and A3: "antisym(r)"
and Ad: "r C XxX" and A5: "X#0"
and A6: "VxeX. JacA. x#a A (x,a) € r"
shows "A ¢ Fin(X)"

(proof)

end

15 Finite sets and order relations

theory FinOrd_ZF imports Finite_ ZF func_ZF_1

begin
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This theory file contains properties of finite sets related to order relations.
Part of this is similar to what is done in Finite_ZF_1 except that the devel-
opment is based on the notion of finite powerset defined in Finite_ZF rather
the one defined in standard Isabelle Finite theory.

15.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

theorem fin_has_max:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "B € FinPow(X)" and A4: "B # 0"
shows "HasAmaximum(r,B)"

(proof)

For linearly ordered nonempty finite sets the maximum is in the set and
indeed it is the greatest element of the set.

lemma linord_max_props: assumes Al: "IsLinOrder(X,r)" and
A2: "A € FinPow(X)" "A # O"
shows
"Maximum(r,A) € A"
"Maximum(r,A) € X"
"Va€ch. (a,Maximum(r,A)) € r"

(proof)

15.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the
same number of elements, then they are order-isomorphic and the isomor-
phism is unique. This allows us to talk about ”enumeration” of a linearly
ordered finite set. We define the enumeration as the order isomorphism
between the number of elements of the set (which is a natural number
n=4{0,1,..,n —1}) and the set.

A really weird corner case - empty set is order isomorphic with itself.

lemma empty_ord_iso: shows "ord_iso(0,r,0,R) # 0"
(proof)

Even weirder than empty_ord_iso The order automorphism of the empty set
is unique.
lemma empty_ord_iso_uniq:

assumes "f € ord_iso(0,r,0,R)" "g € ord_iso(0,r,0,R)"

shows "f = g"

(proof)

81



The empty set is the only order automorphism of itself.

lemma empty_ord_iso_empty: shows "ord_iso(0,r,0,R) = {0}"
(proof )

An induction (or maybe recursion?) scheme for linearly ordered sets. The
induction step is that we show that if the property holds when the set is
a singleton or for a set with the maximum removed, then it holds for the
set. The idea is that since we can build any finite set by adding elements on
the right, then if the property holds for the empty set and is invariant with
respect to this operation, then it must hold for all finite sets.

lemma fin_ord_induction:
assumes Al: "IsLinOrder(X,r)" and A2: "P(0)" and
A3: "VA € FinPow(X). A # 0 — (P(A - {Maximum(r,A)}) — P(A)"
and A4: "B € FinPow(X)" shows "P(B)"

(proof)

A sligltly more complicated version of fin_ord_induction that allows to
prove properties that are not true for the empty set.

lemma fin_ord_ind:
assumes Al: "IsLinOrder(X,r)" and A2: "VA € FinPow(X).
A=0V (A= {Maximum(r,A)} V P(A - {Maximum(r,A)}) — P(A))"
and A3: "B € FinPow(X)" and A4: "B=£0"
shows "P(B)"

(proof)

Yet another induction scheme. We build a linearly ordered set by adding
elements that are greater than all elements in the set.

lemma fin_ind_add_max:
assumes Al: "IsLinOrder(X,r)" and A2: "P(0)" and A3: "V A € FinPow(X).

(V x € X-A. P(A) A (Va€A. (a,x) € r ) — P(A U {x))"
and A4: "B € FinPow(X)"
shows "P(B)"

(proof)

The only order automorphism of a linearly ordered finite set is the identity.

theorem fin_ord_auto_id: assumes Al: "IsLinOrder(X,r)"
and A2: "B € FinPow(X)" and A3: "B#£0"
shows "ord_iso(B,r,B,r) = {id(B)}"

(proof)

Every two finite linearly ordered sets are order isomorphic. The statement
is formulated to make the proof by induction on the size of the set easier,
see fin_ord_iso_ex for an alternative formulation.

lemma fin_order_iso:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
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A2: "n € nat"

shows "VA € FinPow(X). VB € FinPow(Y).

A~nAB=n— ord_iso(A,r,B,R) # 0"
(proof)

Every two finite linearly ordered sets are order isomorphic.

lemma fin_ord_iso_ex:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A € FinPow(X)" "B € FinPow(Y)" and A3: "B =~ A"
shows "ord_iso(A,r,B,R) # 0"

(proof)

Existence and uniqueness of order isomorphism for two linearly ordered sets
with the same number of elements.

theorem fin_ord_iso_ex_uniq:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A € FinPow(X)" "B € FinPow(Y)" and A3: "B =~ A"
shows "d!f. f € ord_iso(A,r,B,R)"

(proof)

end

16 Equivalence relations

theory EquivClassl imports ZF.EquivClass func_ZF ZF1
begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass theory. That development is very good and
all, but we really would prefer an approach contained within the a standard
ZF set theory, without extensions specific to Isabelle. That is why this
theory is written.

16.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation r C X x X and a function f : X —
X. The function f can be compatible (congruent) with r in the sense that if
two elements z, y are related then the values f(z), f(z) are also related. This
is especially useful if r is an equivalence relation as it allows to ”project”
the function to the quotient space X/r (the set of equivalence classes of
r) and create a new function F' that satifies the formula F([z],) = [f(z)],
When f is congruent with respect to r such definition of the value of F' on the
equivalence class [z], does not depend on which 2 we choose to represent the
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class. In this section we also consider binary operations that are congruent
with respect to a relation. These are important in algebra - the congruency
condition allows to project the operation to obtain the operation on the
quotient space.

First we define the notion of function that maps equivalent elements to equiv-
alent values. We use similar names as in the Isabelle’s standard EquivClass
theory to indicate the conceptual correspondence of the notions.

definition
"Congruent (r,f) =
Vxy. (x,y) €Er — (£°X,£(y)) € o))"

Now we will define the projection of a function onto the quotient space. In
standard math the equivalence class of x with respect to relation r is usually
denoted [z],. Here we reuse notation r{z} instead. This means the image
of the set {z} with respect to the relation, which, for equivalence relations
is exactly its equivalence class if you think about it.

definition
"ProjFun(A,r,f) =
{{c,Ux€c. - {£°(X)}). c € (A//D)}"

Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:
assumes Al: "equiv(A,r)" and A2: "C € A//r" and A3: "xeC"
shows "xeA"

(proof)

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:
assumes "ACX" shows "{r‘‘{x}. x€A} C X//r"

(proof)

If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:
assumes Al: "equiv(A,r)" "C € A//r" and A2: "xeC"
shows "r‘‘{x} = C"

(proof)

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:
assumes "equiv(A,r)" "C € A//r" "xeC" ‘"yeC"
shows "(x,y) € "

(proof)

Every z is in the class of y, then they are equivalent.
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lemma EquivClass_1_L2B:
assumes Al: "equiv(A,r)" and A2: "yeA" and A3: "x € r‘‘{y}"
shows "(x,y) € r"

(proof)

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:
assumes Al: "equiv(A,r)" and A2: "Congruent(r,f)"
and A3: "C € A//r" "xeC" "yeC"
ShOWS llrl l{ft (X)} = rl ({f( (y)}ll

(proof)

The values of congruent functions are in the space.

lemma EquivClass_1_L4:
assumes Al: "equiv(A,r)" and A2: "C € A//r" "xeC"
and A3: "Congruent(r,f)"
shows "f‘(x) € A"

(proof)

Equivalence classes are not empty.

lemma EquivClass_1_L5:
assumes Al: "refl(A,r)" and A2: "C € A//r"
shows "C#0"

(proof)

To avoid using an axiom of choice, we define the projection using the ex-
pression | J o 7({f(2)}). The next lemma shows that for congruent function
this is in the quotient space A/r.

lemma EquivClass_1_L6:
assumes Al: "equiv(A,r)" and A2: "Congruent(r,f)"
and A3: "C € A//r"
shows "(|JxeC. r ‘{f‘(x)}) € A//x"

(proof)

Congruent functions can be projected.

lemma EquivClass_1_TO:

assumes "equiv(A,r)" "Congruent(r,f)"
shows "ProjFun(A,r,f) : A//r — A//x"
(proof)

We now define congruent functions of two variables (binary funtions). The
predicate Congruent?2 corresponds to congruent?2 in Isabelle’s standard EquivClass
theory, but uses ZF-functions rather than meta-functions.

definition
"Congruent2(r,f) =
(Vx1 %2 y1 y2. (X1,%2) € T A (y1,y2) €T —>
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(£(x1,y1), £9(x2,y2) ) € D"

Next we define the notion of projecting a binary operation to the quotient
space. This is a very important concept that allows to define quotient
groups, among other things.

definition
"ProjFun2(A,r,f) =
{p,J z € fst(p)xsnd(p). r* ‘{£(2)}). p € (A//x)x(A//x) }"

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "C; € A//xr" "Cy € A//x"
and A4: "z; € CyxCy" "z € CyxCy"
shows "r ‘{f‘(z;)} = r* ‘{f(z)}"
(proof)

The values of congruent functions of two variables are in the space.

lemma EquivClass_1_L8:
assumes Al: "equiv(A,r)" and A2: "C; € A//r" and A3: "Cy, € A//r"
and A4: "z € Cy;xCy" and A5: "Congruent2(r,f)"
shows "f‘(z) € A"

(proof)

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
f is a function.

lemma EquivClass_1_L8A:
assumes Al: "equiv(A,r)" and A2: "x€A" "yeA"
and A3: "Congruent2(r,f)"
shows "f‘(x,y) € A"

(proof)

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "p € (A//r)x(A//T)"
shows "(|J z € fst(p)xsnd(p). r*‘{f(2)}) € A//r"
(proof)

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:

assumes "equiv(A,r)" "Congruent2(r,f)"
shows "ProjFun2(A,r,f) : (A//r)x(A//r) — A//x"
(proof)

The projection diagram commutes. I wish I knew how to draw this diagram
in LaTeX.
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lemma EquivClass_1_L10:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "xe€A" ‘yeA"
shows "ProjFun2(A,r,f) ‘(r‘‘{x},r‘‘{y}) = r {fx,y)}"
(proof)

16.2 Projecting commutative, associative and distributive
operations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.

The projection of commutative operation is commutative.

lemma EquivClass_2_L1: assumes

Al: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "f {is commutative on} A"

and A4: "cl € A//x" "c2 € A//x"

shows "ProjFun2(A,r,f) ‘(c1,c2) = ProjFun2(A,r,f) ‘(c2,c1)"
(proof)

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:
assumes "equiv(A,r)" and "Congruent2(r,f)"
and "f {is commutative on} A"
shows "ProjFun2(A,r,f) {is commutative on} A//r"

(proof)

The projection of an associative operation is associative.

lemma EquivClass_2_L2:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is associative on} A"
and A4: "c1 € A//r" "c2 € A//r" "c3 € A//x"
and A5: "g = ProjFun2(A,r,f)"
shows "g‘(g(c1,c2),c3) = g{cl,g‘(c2,c3))"
(proof)

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is associative on} A"
shows "ProjFun2(A,r,f) {is associative on} A//r"

(proof)

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with respect
to the equivalence relation.
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lemma EquivClass_2_L3:
assumes Al: "IsDistributive(X,A,M)"
and A2: "equiv(X,r)"
and A3: "Congruent2(r,A)" "Congruent2(r,M)"
and A4: "a € X//r" "b € X//r" "c € X//r"
and A5: "A, = ProjFun2(X,r,A)" "M, = ProjFun2(X,r,M)"
shows "M, ‘(a,A, (b,c)) = A, ( Mp*( M,“(a,c)) A
Mp( Ap‘(b,c),a ) = A, ( My (b,a), .a))"
(proof)

a,b),
M, ¢ (c

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.
lemma EquivClass_2_L4: assumes Al: "IsDistributive(X,A,M)"

and A2: "equiv(X,r)"

and A3: "Congruent2(r,A)" "Congruent2(r,M)"

shows "IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))"

(proof)

16.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r~1(r(A)). For equivalence relations saturated sets are unions of equiva-
lence classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B C X/r by saying that [z], € B iff x € A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [x],.

The following defines the notion of a saturated set. Recall that in Isabelle
- “(A) is the inverse image of A with respect to relation r. This definition
is not specific to equivalence relations.

definition
"IsSaturated(r,A) = A = r-““(r‘“(A))"

For equivalence relations a set is saturated iff it is an image of itself.

lemma EquivClass_3_L1: assumes Al: "equiv(X,r)"
shows "IsSaturated(r,A) <— A = ‘(A"

(proof)

For equivalence relations sets are contained in their images.

lemma EquivClass_3_L2: assumes Al: "equiv(X,r)" and A2: "ACX"
shows "A C r°“(A)"

(proof)

The next lemma shows that if ”~” is an equivalence relation and a set A is
such that a € A and a ~ b implies b € A, then A is saturated with respect
to the relation.

2
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lemma EquivClass_3_L3: assumes Al: "equiv(X,r)"
and A2: "r C XxX" and A3: "ACX"
and A4: "VxeA. VyeX. (x,y) € r — yeA"
shows "IsSaturated(r,A)"

(proof)

If AC X and A is saturated and x ~ y, then « € A iff y € A. Here we show
only one direction.

lemma EquivClass_3_L4: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX"
and A4: "(x,y) € "
and A5: "xeX" ‘yeA"
shows "xeA"

(proof)
If AC X and A is saturated and x ~ y, then x € A iff y € A.

lemma EquivClass_3_L5: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX"
and A4: "xeX" ‘"yeX"
and A5: "(x,y) € r"
shows "x€A <— yecA"

(proof)

If A is saturated then x € A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX" and A4: "xe&X"
and A5: "B = {r‘‘{x}. xcA}"
shows "x€A «— r‘‘{x} € B"

(proof)

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or. Note that we don’t really care what Xor is here,
this is true for any predicate.

lemma EquivClass_3_L7: assumes "equiv(X,r)"
and "IsSaturated(r,A)" and "ACX"
and "xeX" ‘"yeX"
and "B = {r‘‘{x}. x€A}"
and "(x€A) Xor (yeA)"
shows "(r¢‘{x} € B) ZXor (r‘‘{y} € B)"
(proof)

end

17 Finite sequences

theory FiniteSeq_ZF imports Nat_ZF_IML funcl
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begin

This theory treats finite sequences (i.e. maps n — X, where n = {0,1,..,n—
1} is a natural number) as lists. It defines and proves the properties of basic
operations on lists: concatenation, appending and element etc.

17.1 Lists as finite sequences

A natural way of representing (finite) lists in set theory is through (finite)
sequences. In such view a list of elements of a set X is a function that maps
the set {0,1,..n—1} into X. Since natural numbers in set theory are defined
so that n = {0, 1,..n— 1}, a list of length n can be understood as an element
of the function space n — X.

We define the set of lists with values in set X as Lists(X).

definition
"Lists(X) = |Jn€nat.(@—X)"

The set of nonempty X-value listst will be called NELists (X).

definition
"NELists(X) = [Jn€nat. (succ(@)—X)"

We first define the shift that moves the second sequence to the domain
{n,..,n + k — 1}, where n,k are the lengths of the first and the second
sequence, resp. To understand the notation in the definitions below recall
that in Isabelle/ZF pred(n) is the previous natural number and denotes the
difference between natural numbers n and k.

definition

"ShiftedSeq(b,n) = {(j, b‘(j #- n)). j € NatInterval(n,domain(b))}"

We define concatenation of two sequences as the union of the first sequence
with the shifted second sequence. The result of concatenating lists a and b
is called Concat(a,b).

definition
"Concat(a,b) = a U ShiftedSeq(b,domain(a))"

For a finite sequence we define the sequence of all elements except the first
one. This corresponds to the ”tail” function in Haskell. We call it Tail here
as well.

definition
"Tail(a) = {(k, a‘(succ(k))). k € pred(domain(a))}"

A dual notion to Tail is the list of all elements of a list except the last one.
Borrowing the terminology from Haskell again, we will call this Init.

definition
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"Init(a) = restrict(a,pred(domain(a)))"

Another obvious operation we can talk about is appending an element at
the end of a sequence. This is called Append.

definition
"Append(a,x) = a U {(domain(a),x)}"

If lists are modeled as finite sequences (i.e. functions on natural intervals
{0,1,..,n — 1} = n) it is easy to get the first element of a list as the value
of the sequence at 0. The last element is the value at n — 1. To hide this
behind a familiar name we define the Last element of a list.

definition
"Last(a) = a‘(pred(domain(a)))"

Shifted sequence is a function on a the interval of natural numbers.

lemma shifted_seq_props:
assumes Al: "n € nat" "k € nat" and A2: "b:k—X"
shows
"ShiftedSeq(b,n): NatInterval(n,k) — X"
"Vi € NatInterval(n,k). ShiftedSeq(b,n) ‘(i) = b‘(i #- n)"
"/ jek. ShiftedSeq(b,n)‘(n #+ j) = b (j)"
(proof)

Basis properties of the contatenation of two finite sequences.

theorem concat_props:
assumes Al: "n € nat" "k € nat" and A2: "a:n—X" "b:k—X"
shows
"Concat(a,b): n #+ k — X"
"Vicn. Concat(a,b) (i) = a‘(i)"
"Vi € NatInterval(n,k). Concat(a,b) ‘(i) = b‘(i #- n)"
"Wj € k. Concat(a,b)‘(n #+ j) = b‘(G)"
(proof)

Properties of concatenating three lists.

lemma concat_concat_list:

assumes Al: "n € nat" "k € nat" "m € nat" and
A2: "a:n—X" "b:k—X" "c:m—X" and

A3: "d = Concat(Concat(a,b),c)"

shows

"d : n #+k #+ m — X"

"Wj €mn. d(3) =a‘(GPH"

"Wj € k. d°(n #+ j) = b ()"

"j €m. d(n #+ k #+ j) = c ("
(proof)

Properties of concatenating a list with a concatenation of two other lists.

lemma concat_list_concat:
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assumes Al: "n € nat" "k € nat" "m € nat" and

A2: "a:n—X"  "b:k—X" "c:m—X" and
A3: "e = Concat(a, Concat(b,c))"
shows

"e : n #+k #+ m — X"

"€ mn. e (§) = a(j"

"WVj e k. e‘(n#+ j)=Db(G)"

"Wj Em. e‘(n #+ k #+ j) = c ("
(proof)

Concatenation is associative.

theorem concat_assoc:

assumes Al: "n € nat" "k € nat" "m € nat" and

A2: "a:n—X" "b:k—X" "c:m—X"

shows "Concat(Concat(a,b),c) = Concat(a, Concat(b,c))"
(proof )

Properties of Tail.

theorem tail_props:
assumes Al: "n € nat" and A2: "a: succ(n) — X"
shows
"Tail(a) : n — X"
"Wk € n. Tail(a) ‘(k) = a‘(succ(k))"
(proof)

Properties of Append. It is a bit surprising that the we don’t need to assume
that n is a natural number.

theorem append_props:
assumes Al: "a: n — X" and A2: "xeX" and A3: "b = Append(a,x)"
shows
"b : succ(n) — X"
"Vken. b(k) = a‘(k)"
"p¢(n) = x"
(proof)

A special case of append_props: appending to a nonempty list does not
change the head (first element) of the list.

corollary head_of_append:
assumes "n€ nat" and "a: succ(n) — X" and "xeX"
shows "Append(a,x)‘(0) = a‘(0)"
(proof)

Tail commutes with Append.

theorem tail_append_commute:
assumes Al: "n € nat" and A2: "a: succ(n) — X" and A3: "xeX"
shows "Append(Tail(a),x) = Tail(Append(a,x))"

(proof)

92



Properties of Init.

theorem init_props:
assumes Al: "n € nat" and A2: "a: succ(n) — X"
shows
"Init(a) : n — X"
"Wken. Init(a)‘(k) = a‘(k)"
"a = Append(Init(a), a‘(n))"
(proof)

If we take init of the result of append, we get back the same list.
lemma init_append: assumes Al: "n € nat" and A2: "a:n—X" and A3: "x
€ X"

shows "Init(Append(a,x)) = a"

(proof)

A reformulation of definition of Init.

lemma init_def: assumes "n € nat" and "x:succ(n)—X"
shows "Init(x) = restrict(x,n)"

(proof)

A lemma about extending a finite sequence by one more value. This is just
a more explicit version of append_props.
lemma finseq_extend:

assumes "a:n—X" "yeX" "b =a U {(n,y)}"

shows

"b: succ(n) — X"

"Vken. b(k) = a‘ (k)"

"pe (Il) = yn

(proof)

The next lemma is a bit displaced as it is mainly about finite sets. It is
proven here because it uses the notion of Append. Suppose we have a list of
element of A is a bijection. Then for every element that does not belong to
A we can we can construct a bijection for the set AU {z} by appending x.
This is just a specialised version of lemma bij_extend_point from funci.thy.
lemma bij_append_point:
assumes Al: "n € nat" and A2: "b € bij(n,X)" and A3: "x ¢ X"
shows "Append(b,x) € bij(succ(n), X U {x})"
(proof)

The next lemma rephrases the definition of Last. Recall that in ZF we have
{0,1,2,..,n} = n+ 1 =succ(n).

lemma last_seq_elem: assumes "a: succ(n) — X" shows "Last(a) = a‘(n)"

(proof)

If two finite sequences are the same when restricted to domain one shorter
than the original and have the same value on the last element, then they are
equal.
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lemma finseq_restr_eq: assumes Al: "n € nat" and
A2: "a: succ(n) — X" "b: succ(n) — X" and
A3: "restrict(a,n) = restrict(b,n)" and
Ad: "a‘(n) = b‘(n)"
shows "a = b"

(proof)

Concatenating a list of length 1 is the same as appending its first (and only)
element. Recall that in ZF set theory 1 = {0}.

lemma append_lelem: assumes Al: "n € nat" and
A2: "a: n — X" and A3: "b : 1 — X"
shows "Concat(a,b) = Append(a,b‘(0))"

(proof)

A simple lemma about lists of length 1.

lemma list_lenl_singleton: assumes Al: "xeX"
shows "{(0,x)} : 1 — X"
{(proof)

A singleton list is in fact a singleton set with a pair as the only element.

lemma list_singleton_pair: assumes Al: "x:1—X" shows "x = {(0,x°(0))}"

(proof)
When we append an element to the empty list we get a list with length 1.

lemma empty_appendl: assumes Al: "xeX"
shows "Append(0,x): 1 — X" and "Append(0,x) ‘(0) = x"

(proof)

Appending an element is the same as concatenating with certain pair.

lemma append_concat_pair:
assumes "n € nat" and "a: n — X" and "xeX"
shows "Append(a,x) = Concat(a,{(0,x)})"
(proof)

An associativity property involving concatenation and appending. For proof
we just convert appending to concatenation and use concat_assoc.

lemma concat_append_assoc: assumes Al: "n € nat" "k € nat" and
A2: "a:n—X" "b:k—X" and A3: "x € X"
shows "Append(Concat(a,b),x) = Concat(a, Append(b,x))"

(proof)

An identity involving concatenating with init and appending the last ele-
ment.
lemma concat_init_last_elem:

assumes "n € nat" "k € nat" and

"a: n — X" and "b : succ(k) — X"
shows "Append(Concat(a,Init(b)),b‘(k)) = Concat(a,b)"

94



(proof)

A lemma about creating lists by composition and how Append behaves in
such case.

lemma list_compose_append:
assumes Al: "n € nat" and A2: "a : n — X" and
A3: "x € X" and A4: "c : X — Y"
shows
"¢ 0 Append(a,x) : succ(n) — Y"
"¢ 0 Append(a,x) = Append(c 0 a, c‘(x))"
(proof)

A lemma about appending an element to a list defined by set comprehension.

lemma set_list_append: assumes
Al: "Vi € succ(k). b(i) € X" and
A2: "a = {(i,b(i)). i € succ(k)}"
shows
"a: succ(k) — X"
"{(i,b(i)). i € k}: k — X"
"a = Append({(i,b(i)). i € k},b(k))"
(proof)

An induction theorem for lists.

lemma list_induct: assumes Al: "Vbel—X. P(b)" and
A2: "VbeNELists(X). P(b) — (VxeX. P(Append(b,x)))" and
A3: "d € NELists(X)"
shows "P(d)"

(proof)

17.2 Lists and cartesian products

Lists of length n of elements of some set X can be thought of as a model of
the cartesian product X™ which is more convenient in many applications.

There is a natural bijection between the space (n+1) — X of lists of length
n + 1 of elements of X and the cartesian product (n — X) x X.

lemma lists_cart_prod: assumes "n € nat"
shows "{(x,(Init(x),x‘(n))). x € succ(n)—X} € bij(succ(n)—X, (a—=X)xX)"
(proof)

We can identify a set X with lists of length one of elements of X.

lemma singleton_list_bij: shows "{(x,x°(0)). x€1—X} € bij(1—=X,X)"

(proof)
We can identify a set of X-valued lists of length with X.

lemma list_singleton_bij: shows
"{(x,{(0,x)}).x€X} € bij(X,1-X)" and
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"{y,y(0)). ye1—=X} = converse({(x,{(0,x)}).x€X})" and
"{(x,{(0,x)}).x€X} = converse({(y,y‘(0)). ye1—-X})"
(proof)

What is the inverse image of a set by the natural bijection between X-valued
singleton lists and X7

lemma singleton_vimage: assumes "UCX" shows "{xc1—X. x‘(0) € U} =
{ {{(0,y)}. yeu}"
(proof )

A technical lemma about extending a list by values from a set.

lemma list_append_from: assumes Al: "n € nat" and A2: "U C n—X" and
A3: "V C X"

shows

"{x € succ(n)—X. Init(x) € U A x‘(n) € V} = (|JyeV.{Append(x,y).x€U"
(proof)

end

18 Inductive sequences

theory InductiveSeq_ZF imports Nat_ZF_IML FiniteSeq_ZF
begin

In this theory we discuss sequences defined by conditions of the form ag =
x, ap+1 = f(ap) and similar.

18.1 Sequences defined by induction

One way of defining a sequence (that is a function a : N — X)) is to provide
the first element of the sequence and a function to find the next value when
we have the current one. This is usually called ”defining a sequence by
induction”. In this section we set up the notion of a sequence defined by
induction and prove the theorems needed to use it.

First we define a helper notion of the sequence defined inductively up to a
given natural number n.

definition
"InductiveSequenceN(x,f,n) =
THE a. a: succ(n) — domain(f) A a‘(0) = x A (Vkén. a‘(succ(k)) = f(a‘(k)))"

From that we define the inductive sequence on the whole set of natural
numbers. Recall that in Isabelle/ZF the set of natural numbers is denoted
nat.

definition
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"InductiveSequence(x,f) = |Jn€nat. InductiveSequenceN(x,f,n)"

First we will consider the question of existence and uniqueness of finite
inductive sequences. The proof is by induction and the next lemma is the
P(0) step. To understand the notation recall that for natural numbers in
set theory we have n = {0,1,..,n — 1} and succ(n)= {0, 1,..,n}.

lemma indseq_exun0: assumes Al: "f: X—X" and A2: "xeX"

shows

"J1 a. a: succ(0) - X A a‘(0) = x A ( Vke0. a‘(succ(k)) = f(a‘(k))
)ll
(proof)

A lemma about restricting finite sequences needed for the proof of the in-
ductive step of the existence and uniqueness of finite inductive seqgences.

lemma indseq_restrict:

assumes Al: "f: X—=X" and A2: "xeX" and A3: "n € nat" and

A4: "a: succ(succ(@))— X A a‘(0) = x A (Vkeésucc(n). a‘(succ(k)) =
fa‘ &))"

and A5: "a, = restrict(a,succ(n))"

shows

"a,: succ(n) = X A a,‘(0) = x A ( Vkén. a,‘(succ(k)) = £(a,“(k)) )"
(proof )

Existence and uniqueness of finite inductive sequences. The proof is by
induction and the next lemma is the inductive step.

lemma indseq_exun_ind:
assumes Al: "f: X—=X" and A2: "xeX" and A3: "n € nat" and
Ad: "J! a. a: succ(n) — X A a‘(0) = x A (Vkén. a‘(succ(k)) = £(a‘ (&))"
shows
"J1 a. a: succ(succ(n)) — X A a‘(0) = x A
( Vk€succ(n). a‘(succ(k)) = £(a‘(k)) )"
(proof)

The next lemma combines indseq_exun0 and indseq_exun_ind to show the
existence and uniqueness of finite sequences defined by induction.

lemma indseq_exun:
assumes Al: "f: X—X" and A2: "xeX" and A3: "n € nat"
shows
"41 a. a: succ(n) - X A a‘(0) = x A (Vkén. a‘(succ(k)) = £f(a“ &))"

(proof)

We are now ready to prove the main theorem about finite inductive se-
quences.

theorem fin_indseq_props:
assumes Al: "f: X—X" and A2: "x€X" and A3: "n € nat" and
A4: "a = InductiveSequenceN(x,f,n)"
shows
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"a: succ(n) — X"

"a‘(0) = x"

"Wken. a‘(succ(k)) = £(a‘ k)"
(proof)

A corollary about the domain of a finite inductive sequence.

corollary fin_indseq_domain:
assumes Al: "f: X—X" and A2: "xe€X" and A3: "n € nat"
shows "domain(InductiveSequenceN(x,f,n)) = succ(n)"

(proof)

The collection of finite sequences defined by induction is consistent in the
sense that the restriction of the sequence defined on a larger set to the
smaller set is the same as the sequence defined on the smaller set.

lemma indseq_consistent: assumes Al: "f: X—X" and A2: "xeX" and
A3: "i € nat" "j € nat" and A4: "i C j"
shows
"restrict (InductiveSequenceN(x,f,j),succ(i)) = InductiveSequenceN(x,f,i)"

(proof)

For any two natural numbers one of the corresponding inductive sequences
is contained in the other.

lemma indseq_subsets: assumes Al: "f: X—X" and A2: "xe€X" and
A3: "i € nat" "j € nat" and

A4: "a = InductiveSequenceN(x,f,i)" "b = InductiveSequenceN(x,f,j)"
shows "a C b Vb C a"
(proof)

The first theorem about properties of infinite inductive sequences: inductive
sequence is a indeed a sequence (i.e. a function on the set of natural numbers.

theorem indseq_seq: assumes Al: "f: X—X" and A2: "xeX"
shows "InductiveSequence(x,f) : nat — X"

(proof)

Restriction of an inductive sequence to a finite domain is the corresponding
finite inductive sequence.

lemma indseq_restr_eq:
assumes Al: "f: X—=X" and A2: "x€X" and A3: "n € nat"
shows
"restrict(InductiveSequence(x,f),succ(n)) = InductiveSequenceN(x,f,n)"

(proof)

The first element of the inductive sequence starting at x and generated by
f is indeed z.

theorem indseq_valatO: assumes Al: "f: X—X" and A2: "xeX"
shows "InductiveSequence(x,f)‘(0) = x"

(proof)
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An infinite inductive sequence satisfies the inductive relation that defines it.

theorem indseq_vals:
assumes Al: "f: X—X" and A2: "x€X" and A3: "n € nat"
shows
"InductiveSequence(x,f) ‘ (succ(n)) = f‘(InductiveSequence(x,f)‘(n))"

(proof)

18.2 Images of inductive sequences

In this section we consider the properties of sets that are images of inductive
sequences, that is are of the form { (™ () : n € N} for some z in the domain
of f, where f(") denotes the n’th iteration of the function f. For a function
f: X — X and a point x € X such set is set is sometimes called the orbit
of x generated by f.

The basic properties of orbits.

theorem ind_seq_image: assumes Al: "f: X—X" and A2: "xeX" and
A3: "A = InductiveSequence(x,f)‘‘(nat)"
shows "xcA" and "VyeA. £(y) € A"

(proof)

18.3 Subsets generated by a binary operation

In algebra we often talk about sets ”generated” by an element, that is sets
of the form (in multiplicative notation) {a"|n € Z}. This is a related to a
general notion of "power” (as in @™ = a-a-..-a ) or multiplicity n-a =
a-+a+ ..+ a. The intuitive meaning of such notions is obvious, but we need
to do some work to be able to use it in the formalized setting. This sections
is devoted to sequences that are created by repeatedly applying a binary
operation with the second argument fixed to some constant.

Basic propertes of sets generated by binary operations.

theorem binop_gen_set:

assumes Al: "f: XxXY — X" and A2: "xeX" ‘"yeY" and

A3: "a = InductiveSequence(x,Fix2ndVar(f,y))"

shows

"a : nat — X"

"a‘‘(nat) € Pow(X)"

"x € a‘‘(nat)"

"Wz € a‘‘(nat). Fix2ndVar(f,y)‘(z) € a‘‘(nat)"
(proof)

A simple corollary to the theorem binop_gen_set: a set that contains all
iterations of the application of a binary operation exists.

lemma binop_gen_set_ex: assumes Al: "f: XxY — X" and A2: "xe€X" ‘'yeY"
shows "{A € Pow(X). x€A A (Vz € A. £(z,y) € A) } # 0"
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(proof)

A more general version of binop_gen_set where the generating binary oper-
ation acts on a larger set.

theorem binop_gen_setl: assumes Al: "f: XxY — X" and
A2: "X; C X" and A3: "xeX;" "yeY" and
A4: "VteX,. £(t,y) € X;" and
A5: "a = InductiveSequence(x,Fix2ndVar(restrict(f,X;xY),y))"
shows
"a : nat — X"
"a‘‘(nat) € Pow(Xy)"
"x € a‘“(nat)"
"Wz € a‘‘(nat). Fix2ndVar(f,y)‘(z) € a‘‘(nat)"
"Wz € a‘‘(nat). £°(z,y) € a‘‘(nat)"
(proof)

A generalization of binop_gen_set_ex that applies when the binary operation
acts on a larger set. This is used in our Metamath translation to prove
the existence of the set of real natural numbers. Metamath defines the real
natural numbers as the smallest set that cantains 1 and is closed with respect
to operation of adding 1.

lemma binop_gen_set_exl: assumes Al: "f: XxY — X" and
A2: "Xy C X" and A3: "xeX;" "yeY" and
Ad: "WteX;. £(t,y) € X1"
shows "{A € Pow(X;). x€éA A (Vz € A. £(z,y) € A) } # O"
(proof)

18.4 Inductive sequences with changing generating function

A seemingly more general form of a sequence defined by induction is a
sequence generated by the difference equation z,+1 = f,(x,) where n — f,
is a given sequence of functions such that each maps X into inself. For
example when f,(z) := x 4+ z, then the equation S, 11 = f,,(S,) describes
the sequence n — S, = sg+ > ;. Zn, i.e. the sequence of partial sums of
the sequence {so, zo, z1, 3, .. }.

The situation where the function that we iterate changes with n can be
derived from the simpler case if we define the generating function appro-
priately. Namely, we replace the generating function in the definitions
of InductiveSequenceN by the function f : X xn — X xn, f(z, k) =
(fe(z),k+ 1) if & < n, (fr(x),k) otherwise. The first notion defines the
expression we will use to define the generating function. To understand the
notation recall that in standard Isabelle/ZF for a pair s = (z,n) we have
fst(s) = = and snd(s) = n.

definition

"StateTransfFunNMeta(F,n,s) =
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if (snd(s) € n) then (F‘(snd(s))‘(fst(s)), succ(snd(s))) else s"

Then we define the actual generating function on sets of pairs from X x

{0,1,..,n}.

definition
"StateTransfFunN(X,F,n) = {(s, StateTransfFunNMeta(F,n,s)). s € Xxsucc(n)}"

Having the generating function we can define the expression that we cen use
to define the inductive sequence generates.

definition
"StatesSeq(x,X,F,n) =
InductiveSequenceN((x,0), StateTransfFunN(X,F,n),n)"

Finally we can define the sequence given by a initial point x, and a sequence
F of n functions.

definition
"InductiveSeqVarFN(x,X,F,n) = {(k,fst(StatesSeq(x,X,F,n)‘(k))). k €
succ(n)}"

The state transformation function (StateTransfFunN is a function that trans-
forms X x n into itself.

lemma state_trans_fun: assumes Al: "n € nat" and A2: "F: n — (X—=X)"
shows "StateTransfFunN(X,F,n): Xxsucc(n) — Xxsucc(n)"

(proof)

We can apply fin_indseq_props to the sequence used in the definition of
InductiveSeqVarFN to get the properties of the sequence of states generated
by the StateTransfFunN.

lemma states_seq_props:
assumes Al: "n € nat" and A2: "F: n - (X—=X)" and A3: "xeX" and
A4: "b = StatesSeq(x,X,F,n)"

shows
"b : succ(n) — Xxsucc(n)"
nb((o) = <X’O>Il

"Wk € succ(n). snd(b‘(k)) = k"
"Wkeén. b‘(succ(k)) = (F (k) ‘(fst(b‘(k))), succ(k))"
(proof )

Basic properties of sequences defined by equation z,4+1 = fn(xy).

theorem fin_indseq_var_f_props:
assumes Al: "n € nat" and A2: "xeX" and A3: "F: n — (X—X)" and
A4: "a = InductiveSeqVarFN(x,X,F,n)"
shows
"a: succ(n) — X"
"a‘(0) = x"
"Wken. a‘(succ(k)) = F (k) ‘(a‘(k))"
(proof)
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A consistency condition: if we make the sequence of generating functions
shorter, then we get a shorter inductive sequence with the same values as in
the original sequence.

lemma fin_indseq_var_f_restrict: assumes
Al: "n € nat" "i € nat" "xeX" "F: n — X=X "G: i - X=X
and A2: "i C n" and A3: "Vjei. G°(j) = F(j)" and A4: "k € succ(i)"
shows "InductiveSeqVarFN(x,X,G,i)‘ (k) = InductiveSeqVarFN(x,X,F,n)‘(k)"
(proof)

end

19 Folding in ZF

theory Fold_ZF imports InductiveSeq_ZF
begin

Suppose we have a binary operation P : X x X — X written multiplicatively
as P(x,y) = x-y. In informal mathematics we can take a sequence {x }reo..n
of elements of X and consider the product zg-x1-..-x,. To do the same thing
in formalized mathematics we have to define precisely what is meant by that
7....7. The definitition we want to use is based on the notion of sequence
defined by induction discussed in InductiveSeq_zF. We don’t really want to
derive the terminology for this from the word ”product” as that would tie it
conceptually to the multiplicative notation. This would be awkward when
we want to reuse the same notions to talk about sums like zg + x1 + .. + 5.

In functional programming there is something called ”fold”. Namely for a
function f, initial point a and list [b, ¢, d] the expression fold(f, a, [b,c,d])
is defined to be f(£f(f(a,b),c),d) (in Haskell something like this is called
foldl). If we write f in multiplicative notation we get a - b- ¢ - d, so this
is exactly what we need. The notion of folds in functional programming
is actually much more general that what we need here (not that I know
anything about that). In this theory file we just make a slight generalization
and talk about folding a list with a binary operation f : X x Y — X with
X not necessarily the same as Y.

19.1 Folding in ZF

Suppose we have a binary operation f : X XY — X. Then every y € Y
defines a transformation of X defined by T} () = f(z,y). In IsarMathLib
such transformation is called as Fix2ndVar(f,y). Using this notion, given a
function f: X x Y — X and a sequence y = {yi }ren of elements of X we
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can get a sequence of transformations of X. This is defined in Seq2TransSeq
below. Then we use that sequence of tranformations to define the sequence
of partial folds (called FoldSeq) by means of InductiveSeqVarFN (defined in
InductiveSeq_ZF theory)