
Guile-WWW Modules Reference

Copyright c© 2007, 2008, 2009, 2010, 2011 Thien-Thi Nguyen
Copyright c© 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “Copying” and
“GNU General Public License” are included exactly as in the original, and provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

The (www *) Modules . 1

1 (www http) . 2
1.1 High-Level HTTP Operation . 2
1.2 Low-Level HTTP Message Object Access . 3
1.3 Common Messages . 3

2 (www url) . 5
2.1 High-Level URL Object Conversion . 5
2.2 Low-Level URL Object Construction . 5
2.3 Low-Level URL Object Access . 5
2.4 Character Decoding/Encoding . 6

3 (www cgi) . 7
3.1 Initialization and Discovery . 7
3.2 Data Transfer In . 7
3.3 Uncollated Form Data . 9

4 (www main) . 10

5 (www url-coding) . 11

6 (www utcsec) . 12

7 (www server-utils big-dishing-loop) 13

8 (www server-utils parse-request) 16

9 (www server-utils form-2-form) 17

10 (www server-utils filesystem) 18

11 (www server-utils cgi-prep) 23

12 (www server-utils cookies) 25

13 (www server-utils answer) 28

ii

14 (www server-utils log) . 32

15 (www server-utils modlisp) 33

16 (www data http-status) . 34

17 (www data mime-types) . 35

Index . 38

The (www *) Modules 1

The (www *) Modules

Guile-WWW is a set of Guile Scheme modules providing support for navigating HTTP
connections, parsing URLs, handling CGI operations, and fetching WWW resources. This
document corresponds to Guile-WWW 2.32.

Chapter 1: (www http) 2

1 (www http)

The (www http) module includes procedures for high-level HTTP operation, low-level
HTTP message object access, and common messages.

1.1 High-Level HTTP Operation

[Procedure]http:connect proto addrfam address [address-rest. . .]
Return a TCP stream socket connected to the location specified by protocol proto,
addrfam and address. proto is PF_INET or PF_UNIX, and the other args take corre-
sponding forms:

PF_INET (AF_INET ipaddr portno), where ipaddr is an integer. Use (car
(hostent:addr-list (gethost host))) to compute the ipaddr of host
(a string).

PF_UNIX (AF_UNIX filename), made, for example, by
(list AF_UNIX "/tmp/foo-control").

Note that PF_foo and AF_foo are names of variables that have constant values, not
symbols.

[Procedure]http:open host [port]
Return an HTTP connection (a socket) to host (a string) on TCP port port (default
80 if unspecified).

[Procedure]http:request method url [headers [body]]
Submit an HTTP request using method and url, wait for a response, and return the
response as an HTTP message object.
method is the name of some HTTP method, e.g. "GET" or "POST". url is a url
object returned by url:parse. Optional args headers and body are lists of strings
that comprise the lines of an HTTP message. The strings should not end with ‘CR’
or ‘LF’ or ‘CRLF’; http:request handles that. Also, the Content-Length header and
Host header are calculated automatically and should not be supplied. Here are two
examples:

(http:request "get" parsed-url
(list "User-Agent: Anonymous/0.1"

"Content-Type: text/plain"))

(http:request "post" parsed-url
(list "User-Agent: Fred/0.1"

"Content-Type: application/x-www-form-urlencoded")
(list (string-append "search=Gosper"

"&case=no"
"&max_hits=50")))

As a special case (demonstrated in the second example above), when Content-Type
is application/x-www-form-urlencoded and there is only one line in the body, the
final ‘CRLF’ is omitted and the Content-Length is adjusted accordingly.

Chapter 1: (www http) 3

1.2 Low-Level HTTP Message Object Access

[Procedure]http:message-version msg
Return the HTTP version in use in HTTP message msg .

[Procedure]http:message-status-code msg
Return the status code returned in HTTP message msg .

[Procedure]http:message-status-text msg
Return the text of the status line from HTTP message msg .

[Procedure]http:message-status-ok? msg
Return #t iff status code of msg indicates a successful request.

[Procedure]http:status-ok? status
Return #t iff status (a string) begins with "2".

[Procedure]http:message-body msg
Return the body of the HTTP message msg .

An HTTP message header is represented by a pair. The car is a symbol representing
the header name, and the cdr is a string containing the header text. E.g.:

’((date . "Thu, 29 May 1997 23:48:27 GMT")
(server . "NCSA/1.5.1")
(last-modified . "Tue, 06 May 1997 18:32:03 GMT")
(content-type . "text/html")
(content-length . "8097"))

Note: these symbols are all lowercase, although the original headers may be mixed-case.
Clients using this library should keep this in mind, since Guile symbols are case-sensitive.

[Procedure]http:message-headers msg
Return a list of the headers from HTTP message msg .

[Procedure]http:message-header header msg
Return the header field named header from HTTP message msg , or #f if no such
header is present in the message.

1.3 Common Messages

[Procedure]http:head url
Submit an http request using the HEAD method on the url. The Host header is
automatically included.

[Procedure]http:get url
Submit an http request using the GET method on the url. The Host header is auto-
matically included.

Chapter 1: (www http) 4

[Procedure]http:post-form url extra-headers fields
Submit an http request using the POST method on the url. extra-headers is a list of
extra headers, each a string of form "name: value . . .".
The "Content-Type" and "Host" headers are sent automatically and do not need to
be specified. fields is a list of elements of the form (fkey . fvalue), where fkey is a
symbol and fvalue is normally a string.
fvalue can also be a list of file-upload specifications, each of which has the form
(source name mime-type transfer-encoding). source can be a string or a thunk
that returns a string.
The rest of the elements are strings or symbols: name is the filename (only the non-
directory part is used); mime-type is a type/subtype pair such as "image/jpeg", or
#f to mean "text/plain". transfer-encoding is one of the tokens specified by RFC
1521, or #f to mean "binary". File-upload spec elements with invalid types result in
a "bad upload spec" error prior to the http request.
Note that source is used directly without further processing; it is the caller’s respon-
sibility to ensure that the MIME type and transfer encoding specified describe source
accurately.

Chapter 2: (www url) 5

2 (www url)

The (www url) module provides procedures for high-level url object conversion, low-level
url object construction and access, and character decoding/encoding.

2.1 High-Level URL Object Conversion

[Procedure]url:parse string
Parse string and return a url object, with one of the following "schemes": HTTP,
FTP, mailto, unknown.

[Procedure]url:unparse url
Return the url object formatted as a string. Note: The username portion is not
included!

2.2 Low-Level URL Object Construction

[Procedure]url:make scheme [args. . .]
Construct a url object with specific scheme and other args. The number and meaning
of args depends on the scheme.

[Procedure]url:make-http host port path
Construct a HTTP-specific url object with host, port and path portions.

[Procedure]url:make-ftp user host port path
Construct a FTP-specific url object with user, host, port and path portions.

[Procedure]url:make-mailto address
Construct a mailto-specific url object with an address portion.

2.3 Low-Level URL Object Access

[Procedure]url:scheme url
Extract and return the "scheme" portion of a url object. url:scheme is an unfortu-
nate term, but it is the technical name for that portion of the URL according to RFC
1738. Sigh.

[Procedure]url:address url
Extract and return the "address" portion of the url object.

[Procedure]url:unknown url
Extract and return the "unknown" portion of the url object.

[Procedure]url:user url
Extract and return the "user" portion of the url object.

[Procedure]url:host url
Extract and return the "host" portion of the url object.

Chapter 2: (www url) 6

[Procedure]url:port url
Extract and return the "port" portion of the url object.

[Procedure]url:path url
Extract and return the "path" portion of the url object.

2.4 Character Decoding/Encoding

[Procedure]url:decode str
Re-export url-coding:decode. See Chapter 5 [url-coding], page 11.

[Procedure]url:encode str reserved-chars
Re-export url-coding:encode. See Chapter 5 [url-coding], page 11.

Chapter 3: (www cgi) 7

3 (www cgi)

The (www cgi) module provides procedures to support painlessly writing Common Gateway
Interface scripts to process interactive forms. These scripts typically follow the following
steps: initialization and discovery, data transfer in, data transfer out.

3.1 Initialization and Discovery

[Procedure]cgi:init [opts. . .]
(Re-)initialize internal data structures. This must be called before calling any other
‘cgi:foo’ procedure. For FastCGI, call this “inside the loop” (that is, for each CGI
invocation).
opts are zero or more symbols that configure the module.

uploads-lazy
This controls how uploaded files, as per cgi:uploads and cgi:upload,
are represented.

Unrecognized options are ignored.

[Procedure]cgi:form-data?
Return #t iff there is form data available.

[Procedure]cgi:names
Return a list of variable names in the form. The order of the list is the same as that
found in the form for the first occurance of each variable and each variable appears
at most once. For example, if the form has variables ordered a b a c d b e, then the
returned list would have order a b c d e.

[Procedure]cgi:cookie-names
Return a list of cookie names.

3.2 Data Transfer In

[Procedure]cgi:getenv key
Return the value of the environment variable associated with key , a symbol. Unless
otherwise specified below, the return value is a (possibly massaged, possibly empty)
string. The following keys are recognized:
• server-software-type
• server-software-version
• server-hostname
• gateway-interface
• server-protocol-name
• server-protocol-version
• server-port (integer)
• request-method
• path-info

Chapter 3: (www cgi) 8

• path-translated
• script-name
• query-string
• remote-host
• remote-addr
• authentication-type
• remote-user
• remote-ident
• content-type
• content-length (integer, possibly 0)
• http-accept-types (list, possibly empty, of strings)
• http-user-agent
• http-cookie

Keys not listed above result in an "unrecognized key" error.

[Procedure]cgi:values name
Fetch any values associated with name found in the form data. Return a list, even
if it contains only one element. A value is either a string, or #f. When there are
multiple values, the order is the same as that found in the form.

[Procedure]cgi:value name
Fetch only the car from (cgi:values name). Convenient for when you are certain
that name is associated with only one value.

[Procedure]cgi:uploads name
Return a list of file contents associated with name, or #f if no files are available.
Uploaded files are parsed by parse-form (see Chapter 9 [form-2-form], page 17). If
the uploads-lazy option is specified to cgi:init, then the file contents are those
directly returned by form-2-form. If unspecified, the file contents are strings with
the object property #:guile-www-cgi whose value is an alist with the following keys:

#:name identical to name (sanity check)

#:filename
original/suggested filename for this bunch of bits

#:mime-type
something like "image/jpeg"

#:raw-mime-headers
the MIME headers before parsing

Note that the string’s object property and the keys are all keywords. The associated
values are strings.
Unless uploads-lazy is specified (to cgi:init), cgi:uploads can only be called once
per particular name. Subsequent calls return #f. Caller had better hang onto the
information, lest the garbage man whisk it away for good. This is done to minimize
the amount of time the file is resident in memory.

Chapter 3: (www cgi) 9

[Procedure]cgi:upload name
Fetch the first file associated with form var name. Can only be called once per name,
so the caller had better be sure that there is only one file associated with name. Use
cgi:uploads if you are unsure.

[Procedure]cgi:cookies name
Fetch any cookie values associated with name. Return a list of values in the order
they were found in the HTTP header, which should be the order of most specific to
least specific path associated with the cookie. If no cookies are associated with name,
return #f.

[Procedure]cgi:cookie name
Fetch the first cookie value associated with name.

3.3 Uncollated Form Data

With cgi:values, when a name occurs more than once, its associated values are collated,
thus losing information about the relative order of different and intermingled names. For
this, you can use cgi:nv-pairs to access the uncollated (albeit ordered) form data.

[Procedure]cgi:nv-pairs
Fetch the list of (name . value), in the same order as found in the form data. A
name may appear more than once. A value is either a string, or #f.

Chapter 4: (www main) 10

4 (www main)

The (www main) module provides a generic interface useful for retriving data named by any
URL. The URL scheme http is pre-registered.

[Procedure]www:set-protocol-handler! proto handler
Associate for scheme proto the procedure handler. proto is a symbol, while handler
is a procedure that takes three strings: the host, port and path portions, respectively
of a url object. Its return value is the return value of www:get (for proto), and need
not be a string.

[Procedure]www:get url-string
Parse url-string into portions. For HTTP, open a connection, retrieve and return
the specified document. Otherwise, consult the handler procedure registered for the
particular scheme and apply it to the host, port and path portions of url-string . If
no such handler exists, signal "unknown URL scheme" error.

There is also the convenience proc www:http-head-get.

[Procedure]www:http-head-get url-string [alist?]
Parse url-string into portions; issue an "HTTP HEAD" request. Signal error if the
scheme for url-string is not http. Optional second arg alist? non-#f means return
only the alist portion of the HTTP response object.

Chapter 5: (www url-coding) 11

5 (www url-coding)

The (www url-coding) module provides two procedures for decoding and encoding URL
strings for safe transmission according to RFC 1738.

[Procedure]url-coding:decode str
Return a new string made from url-decoding str. Specifically, turn + into space, and
hex-encoded %XX strings into their eight-bit characters.

[Procedure]url-coding:encode str reserved-chars
Return a new string made from url-encoding str, unconditionally transforming those
in reserved-chars, a list of characters, in addition to those in the standard (internal)
set.

Chapter 6: (www utcsec) 12

6 (www utcsec)

The (www utcsec) module provides procedures to work with the utc-seconds of an object,
that is, the number of seconds after epoch, in the GMT time zone (also known as UTC).

[Procedure]format-utcsec port format utc-seconds
Write to output port port the utc-seconds formatted according to format (a string).
If port is #f, return the output string, instead. This uses strftime, q.v.

[Procedure]rfc1123-date<- port utc-seconds
Write to output port port the utc-seconds formatted according to RFC1123. If port
is #f, return the output string, instead.
For example:

(rfc1123-date<- #f 1167791441)
⇒ "Wed, 03 Jan 2007 02:30:41 GMT"

[Procedure]<-rfc1123-date s
Parse the RFC1123-compliant date string s, and return the utc-seconds it represents.
For example:

(<-rfc1123-date "Wed, 03 Jan 2007 02:30:41 GMT")
⇒ 1167791441

[Procedure]<-mtime filespec
Return the utc-seconds of the modification time of filespec. filespec can be a filename
(string), a port opened on a statable file, or the object resulting from a stat on one
of these.
For example:

(= (<-mtime "COPYING")
(<-mtime (open-input-file "COPYING"))
(<-mtime (stat "COPYING")))

⇒ #t

[Procedure]<-ctime filespec
Return the utc-seconds of the creation time of filespec. filespec can be a filename
(string), a port opened on a statable file, or the object resulting from a stat on one
of these.

[Procedure]rfc1123-now
The "current time" formatted according to RFC1123.

Chapter 7: (www server-utils big-dishing-loop) 13

7 (www server-utils big-dishing-loop)

The (www server-utils big-dishing-loop) module provides procedures that facilitate
generation of a customized listener/dispatch proc.

[Procedure]named-socket family name [keyword value. . .]
Keywords: socket-setup

Return a new socket in protocol family with address name.

First, evaluate (socket family SOCK_STREAM 0) to create a new socket sock. Next,
handle #:socket-setup, with value setup, like so:

#f Do nothing. This is the default.

procedure Call procedure on sock.

((opt . val) ...)
For each pair in this alist, call setsockopt on sock with the pair’s opt
and val.

Lastly, bind sock to name, which should be in a form that is appopriate for family .
Two common cases are:

PF_INET (AF_INET ipaddr portno), made, for example, by
(list AF_INET INADDR_ANY 4242).

PF_UNIX (AF_UNIX filename), made, for example, by
(list AF_UNIX "/tmp/foo-control").

Note that PF_foo, AF_foo, and INADDR_foo are names of variables that have constant
values, not symbols.

[Procedure]echo-upath M upath [extra-args. . .]
Use mouthpiece M (see Chapter 13 [answer], page 28) to compose and send a
"text/plain" response which has the given upath (a string) and any extra-args as its
content. Shut down the socket for both transmission and reception, then return #t.

This proc can be used to ensure basic network connectivity (i.e., aliveness testing).

[Procedure]make-big-dishing-loop [keyword value. . .]
Return a proc dish that loops serving http requests from a socket. dish takes one arg
ear, which may be a pre-configured socket, a TCP port number, or a list of the form:
(family address ...). When ear is a TCP port number, it is taken to be the list
(PF_INET AF_INET INADDR_ANY ear).

In the latter two cases, the socket is realized by calling named-socket with parameters
family and name taken from the car and cdr, respectively, of the list, with the
#:socket-setup paramater (see below) passed along unchanged.

dish behavior is controlled by the keyword arguments given to make-big-dishing-
loop. The following table is presented roughly in order of the steps involved in
processing a request, with default values shown next to the keyword.

Chapter 7: (www server-utils big-dishing-loop) 14

#:socket-setup #f
This may be a proc that takes a socket, or a list of opt/val pairs which
are passed to setsockopt. Socket setup is done for newly created sockets
(when dish is passed a TCP port number), prior to the bind call.

#:queue-length 0
The number of clients to queue, as set by the listen system call. Setting
the queue length is done for both new and pre-configured sockets.

#:concurrency #:new-process
The type of concurrency (or none if the value is not recognized). Here
are the recognized values:

#:new-process
#:new-process/nowait

Fork a new process for each request. The latter does not wait
for the child process to terminate before continuing the listen
loop.

#f Handle everything in the current in process (no concurrency).
Unrecognized values are treated the same as #f.

#:bad-request-handler #f
If the first line of an HTTP message is not in the proper form, this
specifies a proc that takes a mouthpiece m. Its return value should be
the opposite boston value of the #:loop-break-bool value, below. See
Chapter 13 [answer], page 28.

#:method-handlers ()
This alist describes how to handle the (valid) HTTP methods. Each
element has the form (method . handler). method is a symbol, such as
GET; and handler is a procedure that handles the request for method.
handler normally takes two arguments, the mouthpiece m and the upath
(string), composes and sends a response, and returns non-#f to indicate
that the big dishing loop should continue.
The proc’s argument list is configured by #:need-headers, #:need-
input-port and #:explicit-return. Interpretation of the proc’s return
value is configured by #:explicit-return and #:loop-break-bool. See
below.

#:need-headers #f
#:need-input-port #f

If non-#f, these cause additional arguments to be supplied to the han-
dler proc. If present, the headers arg precedes the input port arg. See
Chapter 8 [parse-request], page 16. The input port is always positioned
at the beginning of the HTTP message body.
If #:need-input-port is #f, after the handler proc returns, the port is
shutdown in both (r/w) directions. When operating concurrently, this
is done on the child side of the split. See Section “Network Sockets and
Communication” in The Guile Reference Manual.

Chapter 7: (www server-utils big-dishing-loop) 15

#:explicit-return #f
If non-#f, this arranges for a continuation to be passed (as the last argu-
ment) to the handler proc, and ignores that proc’s normal return value
in favor of one explicitly passed through the continuation. If the con-
tinuation is not used, the effective return value is computed as (not
#:loop-break-bool).

#:loop-break-bool #f
Looping stops if the effective return value of the handler is eq? to this
value.

#:unknown-http-method-handler #f
If #f, silently ignore unknown HTTP methods, i.e., those not specified
in #:method-handlers. The value may also be a procedure that takes
three arguments: a mouthpiece m, the method (symbol) and the upath
(string). Its return value should be the opposite boolean value of the
#:loop-break-bool value, below. See Chapter 13 [answer], page 28.

#:parent-finish close-port
When operating concurrently (#:concurrency non-#f), the “parent” ap-
plies this proc to the port after the split.

#:log #f This proc is called after the handler proc returns. Note that if ear is a
unix-domain socket, the client parameter will be simply "localhost". See
Chapter 14 [log], page 32.

#:status-box-size #f
This may be a non-negative integer, typically 0, 1 or 2. It is used by
#:log (has no meaning if #:log is #f). See Chapter 14 [log], page 32.

#:style #f
An object specifying the syntax of the first-line and headers. The default
specifies a normal HTTP message (see Chapter 1 [http], page 2).

The combination of #:need-headers, #:need-input-port and #:explicit-return
mean that the #:GET-upath proc can receive anywhere from two to five arguments. Here
is a table of all the possible combinations (1 means non-#f and 0 means #f):

+----- #:explicit-return
| +--- #:need-input-port
| | +- #:need-headers
| | |
| | | args to #:GET-upath proc
===== ==============================
0 0 0 M upath
0 0 1 M upath headers
0 1 0 M upath in-port
0 1 1 M upath headers in-port
1 0 0 M upath return
1 0 1 M upath headers return
1 1 0 M upath in-port return
1 1 1 M upath headers in-port return

Chapter 8: (www server-utils parse-request) 16

8 (www server-utils parse-request)

The (www server-utils parse-request) module provides procedures to read the first line,
the headers and the body, of an HTTP message on the input port.

[Procedure]read-first-line port
Parse the first line of the HTTP message from input port and return a list of the
method, URL path and HTTP version indicator, or #f if the line ends prematurely
or is otherwise malformed. A successful parse consumes the trailing ‘CRLF’ of the
line as well. The method is a symbol with its constituent characters upcased, such
as GET; the other elements are strings. If the first line is missing the HTTP version,
parse-first-line returns the default "HTTP/1.0".

[Procedure]hqf<-upath upath
Parse upath and return three values representing its hierarchy, query and fragment
components. If a component is missing, its value is #f.

(hqf<-upath "/aa/bb/cc?def=xyz&hmm#frag")
⇒ #<values "/aa/bb/cc" "def=xyz&hmm" "frag">

(hqf<-upath "/aa/bb/cc#fr?ag")
⇒ #<values "/aa/bb/cc" #f "fr?ag">

[Procedure]alist<-query query-string
Parse urlencoded query-string and return an alist. For each element (name . value)
of the alist, name is a string and value is either #f or a string.

[Procedure]read-headers port
Parse the headers of the HTTP message from input port and return a list of key/value
pairs, or #f if the message ends prematurely or is otherwise malformed. Both keys
and values are strings. Values are trimmed of leading and trailing whitespace and may
be empty. Values that span more than one line have their "continuation whitespace"
reduced to a single space. A successful parse consumes the trailing ‘CRLF’ of the
header block as well.

Sometimes you are interested in the body of the message but not the headers. In this case,
you can use skip-headers to quickly position the port.

[Procedure]skip-headers port
Scan without parsing the headers of the HTTP message from input port, and return
the empty list, or #f if the message ends prematurely. A successful scan consumes
the trailing ‘CRLF’ of the header block as well.

[Procedure]read-body len port
Return a new string of len bytes with contents read from input port.

Chapter 9: (www server-utils form-2-form) 17

9 (www server-utils form-2-form)

The (www server-utils form-2-form) module provides a procedure to parse a string in
‘multipart/form-data’ format.

[Procedure]parse-form content-type-more raw-data
Parse raw-data as raw form response data of enctype ‘multipart/form-data’ and
return an alist.
content-type-more is a string that should include the boundary="..." information.
(This parameter name reflects the typical source of such a string, the Content-Type
header value, after the ‘multipart/form-data’.)
Each element of the alist has the form (name . value), where name is a string and
value is either a string or four values (extractable by call-with-values):

filename A string, or #f.

type A string representing the MIME type of the uploaded file.

raw-headers
A string, including all eol crlf chars. Incidentally, the type should be
(redundantly) visible in one of the headers.

squeeze A procedure that takes one arg abr (standing for access byte range). If
abr is #f, then internal references to the uploaded file’s data are dropped.
Otherwise, abr should be a procedure that takes three arguments: a
string, a beginning index (integer, inclusive), and an ending index (inte-
ger, exclusive).

If there is no type information, value is a simple non-empty string, and no associated
information (filename, raw-headers, squeeze) is kept.
parse-form ignores degenerate uploads, that is those parts of raw-data where the
part header specifies no filename and the part content-length is zero or unspecified.

why squeeze?

The squeeze interface can help reduce data motion. Consider a common upload scenario:
client uploads file(s) for local (server-side) storage.

classic squeeze
* * 0. (current-input-port)
* * 1. Guile-WWW string (for parsing purposes)
* 2. your substring (image/jpeg)
* * 3. filesystem

You can achieve the same effect as the “classic” approach by specifying substring (or
something like it) as the access-byte-range proc, but you don’t have to. You could, instead,
call squeeze with a procedure that writes the byte range directly to the filesystem.

Chapter 10: (www server-utils filesystem) 18

10 (www server-utils filesystem)

The (www server-utils filesystem) module provides procedures for cleaning filenames,
checking filesystem access, and mapping from a URL path to a filename.

[Procedure]cleanup-filename name
Return a new filename made from cleaning up filename name. Cleaning up is a
transform that collapses each of these, in order:
• ‘//’
• ‘/./’
• ‘/foo/../’

into a single slash (‘/’), everywhere in name, plus some fixups. The transform nor-
mally preserves the trailing slash (if any) in name, and does not change any leading
‘..’ components if name is relative, i.e., does not begin with slash. Due to proper
‘/foo/../’ cancellation for relative name, however, the result may be the empty
string. (Here, proper means that foo is not ‘..’, but a normal filename component.)

Following is a fairly comprehensive list of the cleanup-filename edge cases, paired by
name and result. The numbers represent string lengths.

0 ;; empty string
0 ;; result is empty string

1 /
1 /

2 ok
2 ok

3 ok/
3 ok/

3 /ok
3 /ok

4 /ok/
4 /ok/

1 . ;; relative name
0 ;; result is empty string

2 ./ ;; likewise
0 ;; note, end-slash not preserved

2 /.
1 /

Chapter 10: (www server-utils filesystem) 19

3 /./
1 /

2 .. ;; relative, with leading double-dot
2 .. ;; unchanged

3 ../ ;; likewise
3 ../

3 /.. ;; absolute
1 / ;; can’t go higher than root

4 /../
1 /

4 ./.. ;; next 8 are like the previous 4;
2 .. ;; they show that . makes no difference

5 ./../
3 ../

5 /./..
1 /

6 /./../
1 /

4 ../.
2 ..

5 .././
3 ../

5 /../.
1 /

6 /.././
1 /

5 ../.. ;; relative
5 ../.. ;; leading .. sequences unchanged

6 ../../
6 ../../

6 /../.. ;; absolute
1 / ;; can’t go higher than root

Chapter 10: (www server-utils filesystem) 20

7 /../../
1 /

4 z/.. ;; relative
0 ;; only dir cancelled ⇒ empty string

5 z/../ ;; likewise
0

5 /z/.. ;; absolute
1 /

6 /z/../
1 /

6 z/../o ;; next 4 like previous 4, with trailing component
1 o

7 z/../o/
2 o/

7 /z/../o
2 /o

8 /z/../o/
3 /o/

8 z/./../o ;; next 4 like previous 4;
1 o ;; they show that . makes no difference

9 z/./../o/
2 o/

9 /z/./../o
2 /o

10 /z/./../o/
3 /o/

9 z/../../o ;; relative, more double-dot than parents
4 ../o ;; leftover double-dot preserved

10 z/../../o/
5 ../o/

10 /z/../../o ;; absolute, more double-dot than parents

Chapter 10: (www server-utils filesystem) 21

2 /o ;; all cancelled

11 /z/../../o/
3 /o/

43 ../../abc/././bye0/./../def/bye1/bye2/../.. ;; bye bye-bye
14 ../../abc/def/

44 ../../abc/././bye0/./../def/bye1/bye2/../../
14 ../../abc/def/

44 /../../abc/././bye0/./../def/bye1/bye2/../..
9 /abc/def/

45 /../../abc/././bye0/./../def/bye1/bye2/../../
9 /abc/def/

[Procedure]access-forbidden?-proc docroot forbid-rx
Create and return a filesystem-access procedure based on docroot and forbid-rx. The
returned procedure p takes a filename and returns #t if access to that file should be
denied for any of the following reasons:

• filename does not begin with docroot

• filename matches regular expression forbid-rx

If forbid-rx is #f, the regular expression check is skipped. p returns #f if access should
be granted.

[Procedure]upath->filename-proc docroot [dir-indexes]
Create and return a url-path-to-filename mapping procedure based on docroot. The
returned procedure p takes a (string) upath and returns a valid local filename path
for the requested resource, or #f if that file cannot be found. Optional arg dir-indexes
specifies an ordered list of filenames to try if the resolved filename path turns out to
be a directory.

If no such files exist, return the directory name. As a special case, when p encounters
a value of #f during iteration over dir-indexes, it returns #f immediately.

For example, presuming files ‘/a/b/c.txt’ and ‘/a/b/index.html’ both exist and
are readable:

(define resolve (upath->filename-proc
"/a/b/"
’("index.shtml" "index.html")))

(resolve "/random") ⇒ #f
(resolve "/c.txt") ⇒ "/a/b/c.txt"
(resolve "/") ⇒ "/a/b/index.html"

Directory names are always returned with a trailing slash.

Chapter 10: (www server-utils filesystem) 22

[Procedure]filename->content-type filename [default]
Return a valid Content-Type string which matches filename best. Matching is done
by comparing the extension (part of filename after the last "." if available) against
a table. If none match, return "application/octet-stream". Optional arg default
specifies another value to use instead of "application/octet-stream".
If there are multiple MIME types associated with the extension, return the first one.
See Chapter 17 [mime-types], page 35, proc put-mime-types!, for more info.

Chapter 11: (www server-utils cgi-prep) 23

11 (www server-utils cgi-prep)

Often the server cannot do everything by itself, and makes use of external programs invoked
in a common gateway interface environment. These programs are also known as CGI scripts.

The (www server-utils cgi-prep) module provide a procedure to set up such an en-
vironment. Actually invoking the CGI script is not covered.

[Procedure]cgi-environment-manager initial-bindings
Return a closure encapsulating initial-bindings, a list of pairs (name . value), where
name is a symbol listed in the following table, and value is a string unless otherwise
noted.
• server-hostname

• gateway-interface

• server-port (integer)
• request-method

• path-info

• path-translated

• script-name

• query-string

• remote-host

• remote-addr

• authentication-type

• remote-user

• remote-ident

• content-type

• content-length (integer, or #f)
• http-user-agent

• http-cookie

• server-software

• server-protocol

• http-accept-types (list of strings)

If name is not recognized, signal "unrecognized key" error. Encapsulation includes
name=value formatting.
The closure accepts these commands:

name value
Encapsulate an additional binding. name and value are as above.

#:clear! Drop the additional bindings. Note that initial bindings can never be
dropped (you can always create a new closure).

#:environ-list
Return a list of strings suitable for passing to environ or as the second
argument to execle.

Any other command results in a "bad command" error.

Chapter 11: (www server-utils cgi-prep) 24

example

Following is a simple example of how to use cgi-environment-manager. A more realistic
example would include port and connection management, input validation, error handling,
logging, etc. First, we set up the manager with more-or-less constant bindings.

(define M (cgi-environment-manager
’((server-software . "FooServe/24")
(server-protocol . "HTTP/1.0")
(server-port . 80))))

Later, we add connection-specific bindings. We use read-first-line from the Chapter 8
[parse-request], page 16 module.

(define PORT ...)
(define UPATH (list-ref (read-first-line PORT) 1))
(define QMARK (string-index UPATH #\?))
(define CGI (substring UPATH 0 QMARK))

(M ’script-name CGI)
(M ’query-string (substring UPATH (1+ QMARK)))

Lastly, we spawn the child process, passing the constructed environment as the second arg
to execle, and drop the connection-specific bindings afterwards.

(let ((pid (primitive-fork)))
(if (zero? pid)

(execle CGI (M #:environ-list) (list CGI)) ; child
(waitpid pid))) ; parent

(M #:clear!)

Now we can re-use M for another connection.

Chapter 12: (www server-utils cookies) 25

12 (www server-utils cookies)

Cookies are bits of client-side state the server can maintain through designated HTTP re-
sponse headers. At this time (2009), there are two specifications, RFC21091 and RFC29652,
the latter obsoleting the former.

This chapter describes the (www server-utils cookies) module, which provides facili-
ties for creating such headers, and parsing those sent by the client. Procedures that return
trees are meant to be used with the mouthpiece command #:add-header (see Chapter 13
[answer], page 28).

[Procedure]simple-parse-cookies string
Parse string for cookie-like fragments using the simple regexp:

(,[\t]*)*([^=]+)=([^,]+)

Return a list of elements (name . value), where both name and value are strings.
For example:

(simple-parse-cookies "abc=def; z=z, ans=\"42\", abc=xyz")
⇒ (("abc" . "def; z=z") ("ans" . "\"42\"") ("abc" . "xyz"))

[Procedure]rfc2109-set-cookie-string name value [keyword value. . .]
Keywords: path, domain, expires, secure

Return a string suitable for inclusion into an HTTP response header as a cookie with
name and value. Both args may be strings, symbols or keywords. Also, recognize and
format appropriately the optional keyword parameters #:path, #:domain, #:expires
(strings); and #:secure (boolean).

[Procedure]rfc2965-set-cookie2-tree M [cookie-specs. . .]
Compute a list suitable for inclusion in an HTTP response header, composed by
formatting cookie-specs, each a list of the form (name value a1 v1...). Each name
may be a string, symbol or keyword. Each value may be a string or symbol. Each a
must be a keyword, precisely one of:

#:Comment #:CommentURL #:Discard #:Domain
#:Max-Age #:Path #:Port #:Secure

The #:Version attribute is automatically included as the last one; it cannot be spec-
ified (or de-specified).

Possible values for v depend on a. If a is #:Discard or #:Secure, then there is no
v (it must be omitted). If a is #:Port, then v must be either a number; a list of
numbers, for instance (8001 8002 8003); or omitted entirely. If a is #:Max-Age, then
v must be a number. For all other a, v can be a string or symbol.

If M is #f, return a list. The car of the list is the keyword #:Set-Cookie2, and
the cdr is a tree of strings. Otherwise M should be a mouthpiece (see Chapter 13
[answer], page 28) in which case it is applied with the #:add-header command to the
list.

1 RFC2109
2 RFC2965

http://www.faqs.org/rfcs/rfc2109.html
http://www.faqs.org/rfcs/rfc2965.html

Chapter 12: (www server-utils cookies) 26

example

Here is an example that demonstates both RFC2109 and RFC2965 formatting. Notable
differences: the keyword to specify the path is now capitalized; the representation of the
cookie’s value is now double-quoted.

;; RFC2109
(rfc2109-set-cookie-string ’war ’lose #:path "/ignorance/suffering")
⇒ "Set-Cookie: war=lose; path=/ignorance/suffering"

;; RFC2965
(use-modules ((www server-utils answer) #:select (walk-tree)))

(define TREE (rfc2965-set-cookie2-tree
’(war lose #:Path "/ignorance/suffering" #:Discard)))

(car TREE)
⇒ #:Set-Cookie2

(walk-tree display (cdr TREE))
a war="lose";Path="/ignorance/suffering";Discard;Version=1

To generate a cookie spec from the Cookie http response header sent by a client, you can
use rfc2965-parse-cookie-header-value.

[Procedure]rfc2965-parse-cookie-header-value s [flags. . .]
Parse the Cookie HTTP response header string s. Return a list of the form (vers
n [cookie-spec...]), where vers is the version number of the cookie specification,
0 (zero) for RFC2109 compliance and 1 (one) for RFC2965 compliance; and n is the
number of cookie-specs the cdr of the form.
Each cookie-spec has the form: (name value a1 v1...). name, value are strings.
Each a is a keyword, one of #:Path, #:Domain or #:Port. Each v is a string, except
for that associated with #:Port, which is can be either a single number or a list of
numbers.
Optional flags configure the parsing and/or return value.

#:keep-attribute-dollarsign-prefix
Prevent conversion of, for example, #:$Port to #:Port.

#:strict-comma-separator
Disable support for older clients that use a semicolon to separate cookies
instead of a comma. Normally, parsing copes (heuristically) with this by
reparsing an unrecognized attribute as the beginning of a new cookie.
With this flag, an unrecognized attribute signals an error.

#:canonicalize-NAME-as-keyword
Convert the name in each cookie-spec into a keyword whose first character
and characters following a hyphen are upcased. For example, "session-
id-no" would become #:Session-Id-No.

Parsing may signal an error and display an error message in the form: “situation while
context”, where situation is one of “unexpected end”, “missing equal-sign”, “bad

Chapter 12: (www server-utils cookies) 27

attribute”, or “missing semicolon”; and context is one of: “reading string”, “reading
token”, “reading pair”, “reading one cookie” or “parsing”. The error message also
displays string s on a line by itself and on the next line a caret by itself indented to
be at (or near) the site of the error.

RFC2965 also specifies some other small algorithms, some of which are codified as proce-
dures available in this module.

[Procedure]reach h
Return the reach (a string) of host name h. Quoting from RFC2965 section 1 (Ter-
minology):
The reach R of a host name H is defined as follows:
If

- H is the host domain name of a host; and,
- H has the form A.B; and
- A has no embedded (that is, interior) dots; and
- B has at least one embedded dot, or B is the string "local".

then the reach of H is .B.
Otherwise, the reach of H is H.
Note that comparison with "local" uses string=?, i.e., case-sensitively.

Chapter 13: (www server-utils answer) 28

13 (www server-utils answer)

The (www server-utils answer) module provides a simple wrapper around the format-
ting/accounting requirements of a standard HTTP response. Additionally, the #:rechunk-
content facility allows some degree of performance tuning; a server may be able to achieve
better throughput with certain chunk sizes than with others.

The output from mouthpiece and string<-headers is formatted according to their
optional style argument. By default, headers have the form:

NAME #\: #\space VALUE #\cr #\lf

Additionally, for mouthpiece, the first line, preceding all the headers, has the form:
HTTP/1.0 nnn msg

and a single #\cr #\lf pair separates the headers from the body. See Chapter 15 [modlisp],
page 33, for another way to format this information.

[Procedure]mouthpiece out-port [status-box [style]]
Return a command-delegating closure capable of writing a properly formatted HTTP
1.0 response to out-port. Optional arg status-box is a list whose car is set to the
numeric status code given to a #:set-reply-status command. If status-box has
length of two or more, its cadr is set to the content-length on #:send-reply. A
content-length value of #f means there have been no calls to #:add-content. The
commands and their args are:

#:reset-protocol!
Reset internal state, including reply status, headers and content. This is
called automatically by #:send-reply.

#:set-reply-status number message

Set the reply status. message is a short string.

#:set-reply-status:success
This is equivalent to #:set-reply-status 200 "OK".

#:add-header name value

name may be #f, #t, a string, symbol or keyword. value is a string. If
name is #f or #t, value is taken to be a pre-formatted string, "A: B" or
"A: B\r\n", respectively. If name is not a boolean, value may also be a
tree of strings or a number.

#:add-content [tree ...]
tree may be a string, a nested list of strings, or a series of such. Subse-
quent calls to #:add-content append their trees to the collected content
tree thus far.

#:add-formatted format-string [args ...]
format-string may be #f to mean ~S, #t to mean ~A, or a normal format
string. It is used to format args, and the result passed to #:add-content.

#:add-direct-writer len write

len is the number of bytes that procedure write will output to its arg,
out-port (passed back), when called during #:send-reply. This is to
allow sendfile(2) and related hackery.

Chapter 13: (www server-utils answer) 29

#:content-length
Return the total number of bytes in the content added thus far.

#:rechunk-content chunk

chunk may be #f, in which case a list of the string lengths collected thus
far is returned; #t which means to use the content length as the chunk size
(effectively producing one chunk); or a number specifying the maximum
size of a chunk. The return value is a list of the chunk sizes.
It is an error to use #:rechunk-content with a non-#f chunk in the
presence of a previous #:add-direct-writer.

#:inhibit-content! bool

Non-#f bool arranges for #:send-reply (below) to compute content
length and add the appropriate header, as usual, but no content is actu-
ally sent. This is useful, e.g., when answering a HEAD request. If bool is
#f, #:send-reply acts normally (i.e., sends both headers and content).

#:send-reply [close]
Send the properly formatted response to out-port, and reset all inter-
nal state (status reset, content discarded, etc). It is an error to invoke
#:send-reply without having first set the reply status.
Optional arg close means do a shutdown on out-port using close — di-
rectly, if an integer, or called with no arguments, if a thunk — as the
shutdown how argument. (Note: If out-port is not a socket, this does
nothing silently.) See 〈undefined〉 [Network Sockets and Communication],
page 〈undefined〉.
If close is specified, the closure forgets about out-port internally; it is an
error to call other mouthpiece commands, subsequently.

example

Here is an example that uses most of the mouthpiece commands:
(use-modules (www server-utils filesystem) (scripts slurp))

(define SERVER-NAME "Guile-WWW-example-server")
(define SERVER-VERSION "1.0")
(define STATUS (list #f #f))
(define M (mouthpiece (open-output-file "fake") STATUS))

(define (transmit-file filename)
(M #:set-reply-status:success)
(M #:add-header #:Server (string-append SERVER-NAME " "

SERVER-VERSION))
(M #:add-header #:Connection "close")
(M #:add-header #:Content-Type (filename->content-type

filename "text/plain"))
(M #:add-content (slurp filename))
(simple-format #t "rechunked: ~A\n"

Chapter 13: (www server-utils answer) 30

(M #:rechunk-content (* 8 1024)))
;; We don’t shutdown because this is a file port;
;; if it were a socket, we might specify 2 to
;; stop both reception and transmission.
(M #:send-reply))

(transmit-file "COPYING")
a rechunked: (8192 8192 1605)
STATUS
⇒ (200 17989)

For higher performance, you can preformat parts of the response, using CRLF, and some
lower-level convenience procedures. If preformatting is not possible (or desirable), you can
still declare a nested list of strings (aka tree) to have a flat length, i.e., the size in bytes a
tree would occupy once flattened, thus enabling internal optimizations. (The flat length of
a string is its string-length.)

[Constant String]CRLF
The string “\r\n”.

[Object Property]flat-length object
Return the flat length of object, or #f if not yet computed.

[Procedure]fs s [args. . .]
Return a new string made by using format string s on args. As in simple-format
(which this procedure uses), ~A expands as with display, while ~S expands as with
write.

[Procedure]walk-tree proc tree
Call proc for each recursively-visited leaf in tree, excluding empty lists. It is an error
for tree to contain improper lists.

[Procedure]tree-flat-length! tree
If tree is a string, return its string-length. If tree already has a flat-length,
return that. Otherwise, recursively compute, set, and return the flat-length of
tree.

[Procedure]string<-tree tree
Return a new string made from flattening tree. Set the flat-length (using tree-
flat-length!) of tree by side effect.

[Procedure]string<-headers alist [style]
Return a string made from formatting name/value pairs in alist, according to the
optional style argument. If unspecified or specified as #f, the default is to format
headers like so:

NAME #\: #\space VALUE #\cr #\lf

Each name may be a string, symbol or keyword. Each value may be a string, number,
symbol, or a tree.

Chapter 13: (www server-utils answer) 31

[Procedure]string<-header-components n v [n1 v1...]
Return a string made from formatting header name n and value v . Additional headers
can be specified as alternating name and value args. Each header is formatted like
so: “name: value\r\n”.
Each n may be a string, symbol or keyword. Each v may be a string, number, symbol,
or a tree.
NOTE: This proc will be removed after 2011-12-31. Use string<-headers instead.

example

Here is transmit-file from the above example, slightly modified to use preformatted
headers and fs:

(define CONSTANT-HEADERS
(string<-headers
‘((#:Server . ,(fs "~A ~A" SERVER-NAME SERVER-VERSION))

(#:Connection . "close"))))

(define (transmit-file filename)
(M #:set-reply-status:success)
(M #:add-header #t CONSTANT-HEADERS)
(M #:add-header #:Content-Type (filename->content-type

filename "text/plain"))
(M #:add-content (slurp filename))
(display (fs "rechunked: ~A\n" (M #:rechunk-content (* 8 1024))))
(M #:send-reply))

Note that mouthpiece accepts trees for both #:add-header and #:add-content commands.
Thus, the following two fragments give the same result, although the latter is both more
elegant and more efficient:

;; Doing things "manually".
(walk-tree (lambda (string)

(M #:add-content string))
tree)

;; Letting the mouthpiece handle things.
(M #:add-content tree)

Chapter 14: (www server-utils log) 32

14 (www server-utils log)

The (www server-utils log) module provides procedure generators for writing log infor-
mation to an output port. Each generator is conventionally named log-SOMETHING-proc.

[Procedure]log-http-response-proc port [gmtime? [stamp-format
[method-pair?]]]

Return a procedure that writes an HTTP response log entry to port. The procedure
is called with args client, method, upath (strings or symbols) and status (either an
atom or a list), and writes a one-line entry of the form:

CLIENT - - [YYYY-MM-DD:HH:MM:SS TZ] "METHOD UPATH" ST1 ST2...

where the ‘YYYY..TZ’ are the year, month, day, hour, minute, second and timezone
components, respectively, of the localtime representation of the current time; and
‘STn’ are the space-separated elements of status.
Optional second arg gmtime? non-#f means use gmtime instead of localtime.
Optional third arg stamp-format specifies a format string passed to strftime to
use for the timestamp portion that appears between the square braces (default:
"%Y-%m-%d:%H:%M:%S %Z").
Optional fourth arg method-pair? non-#f means that method is expected to be a
pair (meth . vers), in which case the portion between the double quotes becomes
"meth upath vers". This is to support excruciating conformity to Apache for the
benefit of downstream programs that might fall over less than gracefully otherwise.
Please enjoy the slack.
The buffering mode for port is set to line-buffered.

Chapter 15: (www server-utils modlisp) 33

15 (www server-utils modlisp)

The (www server-utils modlisp) module provides support for the implementing the Lisp
side of the Apache mod lisp protocol, in the form of a header-grokking protocol object for
the big dishing loop, and a style elements object for the mouthpiece. When these objects
are specified, the headers are read from (written to) the Apache front end in the form:

name #\lf value #\lf

with a lone ‘end\n’ to separate the headers from the body. Furthermore, on input, the head-
ers must include method, url and server-protocol. On output, the status information
(always output first) has the form:

"Status" #\lf nnn #\space msg #\lf

Note that this is in essense the same format as used for the headers, with name being
‘Status’ and value being ‘nnn msg ’.

[Object]modlisp-hgrok
An object suitable for the value of make-big-dishing-loop keyword argument
#:style. See Chapter 7 [big-dishing-loop], page 13.

[Object]modlisp-ish
An object suitable as the optional style argument for both string<-headers and
mouthpiece. See Chapter 13 [answer], page 28.

Although these are separate objects, you should probably use or not use them in con-
junction, lest the front-end (Apache) server become confused.

Chapter 16: (www data http-status) 34

16 (www data http-status)

The (www data http-status) module exports a single procedure:

[Procedure]http-status-string number
Return the string associated with HTTP status number.

example

Here is a simple example using this module:
(use-modules ((www data http-status)

#:select (http-status-string)))

(define (h2 n)
(format #f "<H2>~A ~A</H2>"

n (http-status-string n)))

(h2 404) ⇒ "<H2>404 Not Found</H2>"
(h2 307) ⇒ "<H2>307 Temporary Redirect</H2>"

Chapter 17: (www data mime-types) 35

17 (www data mime-types)

The (www data mime-types) module maintains an internal hash table mapping filename
extensions to one or more mime-types.

The exported procedures provide convenience abstractions over the underlying hash-
table manipulation operations, including extension and mime-type validation, init from a file
in a “standard” format (i.e., that of ‘/etc/mime.types’ or ‘~/.mime.types’), and support
for straightforward incremental init (aka merging). There are two predefined entries in the
hash table:

text => text/plain
html => text/html

To support merging, the put-FOO procedures both take a symbol resolve as the first arg,
which specifies how conflicts should be handled. This happens when the hash table already
contains an entry for extension and new-mime-type differs from old-mime-type.

error Throw an error with key mime-type-conflict, displaying a message describing
the extension, old-mime-type and new-mime-type.

prefix Make the mime-type of extension a list (unless already one), with new-mime-
type at the beginning.

suffix Make the mime-type of extension a list (unless already one), with new-mime-
type at the end.

stomp Use new-mime-type directly, discarding old-mime-type.

quail Discard new-mime-type, keeping old-mime-type.

For any other method, the operation throws an error, with key invalid-resolve.
Validation happens on all “put” operations. The extension must be a symbol, such as

txt. The mime-type must be a symbol with exactly one ‘/’ (slash) in its name, such as
text/plain, or a proper list of such symbols. The mime-type may also be #f, which means
to remove extension from the hash table.

If an entry does not validate, the operation throws an error, with key invalid-
extension or invalid-mime-type.

[Procedure]reset-mime-types! size
Clear all entries from the mime-types hash table, and prepare it for size (approxi-
mately) entries. This procedure must be called before any others in this module.

[Procedure]put-mime-types-from-file! resolve filename
Open filename and parse its contents as “mime-types” format. This line-oriented file
format is briefly described as follows:
• Blank lines and lines beginning with ‘#’ are ignored.
• Lines of the format mime-type (only one symbol) are ignored.
• Otherwise, the line is expected to be in the format mime-type extension ex-

tension..., that is, at least one extension must be present. Each extension
results in an entry in the hash table.

Put those those entries that specify an extension into the hash table, validating both
extension and mime-type first. resolve specifies how to resolve extension conflicts.

Chapter 17: (www data mime-types) 36

[Procedure]put-mime-types! resolve [extension1 mime-type1 ...]
Put extension1/mime-type1 . . . into the hash table, validating both extension and
mime-type first. resolve specifies how to resolve extension conflicts.
If an extension is given but there is no mime-type (i.e., the list has an odd length),
throw an error with key missing-mime-type.

[Procedure]mime-types<-extension ext
Return the mime-type(s) associated with ext (a symbol or string), or #f if none are
found. Note that generally the value may be a single mime-type or a list of them.

[Procedure]select-extensions sel
Return a list of extensions in the hash table that match the sel criteria (a symbol). If
sel is #t, return all the extensions; if single, only those who have a single mime-type
associated; if multiple, only those who have more than one mime-type associated.

why select-extensions?

The last procedure is intended to ease non-generalizable merging, without providing too
much exposure to implementation internals. Suppose you want to maintain a local policy
of having only one mime-type associated per extension (to keep things simple). In that
case, after populating the hash, you can fix up those entries, like so:

(reset-mime-types! 491)
(put-mime-types-from-file! ’prefix "/etc/mime.types")
(define AMBIGUOUS (select-extensions ’multiple))

(use-modules (ice-9 format))
(define (display-ext ext)
(format #t "~7,@A ~A~%" ext (mime-types<-extension ext)))

(for-each display-ext AMBIGUOUS)
ent (chemical/x-ncbi-asn1-ascii chemical/x-pdb)
sdf (application/vnd.stardivision.math chemical/x-mdl-sdfile)
sh (application/x-sh text/x-sh)

csh (application/x-csh text/x-csh)
cpt (application/mac-compactpro image/x-corelphotopaint)
asn (chemical/x-ncbi-asn1 chemical/x-ncbi-asn1-spec)
wrl (model/vrml x-world/x-vrml)
tcl (application/x-tcl text/x-tcl)
ra (audio/x-pn-realaudio audio/x-realaudio)

spl (application/futuresplash application/x-futuresplash)
m3u (audio/mpegurl audio/x-mpegurl)

;; Local policy: For foo.wrl, we want the last variant,
;; but everything else we’ll settle for the first.
(define ((keep! yes) ext)
(put-mime-types!
’stomp ext
(yes (mime-types<-extension ext))))

Chapter 17: (www data mime-types) 37

((keep! reverse) ’wrl)
(for-each (keep! car) AMBIGUOUS)

(for-each display-ext AMBIGUOUS)
asn chemical/x-ncbi-asn1
wrl x-world/x-vrml
tcl application/x-tcl
ra audio/x-pn-realaudio

spl application/futuresplash
m3u audio/mpegurl
ent chemical/x-ncbi-asn1-ascii
sdf application/vnd.stardivision.math
sh application/x-sh

csh application/x-csh
cpt application/mac-compactpro

Seasoned schemers will note that the same result could have been achieved if resolve were
allowed to be a general resolution procedure instead of simply a method specifier. Perhaps
that feature will be added in the future, and select-extensions replaced by map-mime-
types. We’ll see. . .

Index 38

Index

#
#:bad-request-handler, make-big-dishing-loop

. 13
#:concurrency, make-big-dishing-loop 13
#:domain, rfc2109-set-cookie-string 25
#:expires, rfc2109-set-cookie-string 25
#:explicit-return, make-big-dishing-loop . . 13
#:log, make-big-dishing-loop 13
#:loop-break-bool, make-big-dishing-loop . . 13
#:method-handlers, make-big-dishing-loop . . 13
#:need-headers, make-big-dishing-loop 13
#:need-input-port, make-big-dishing-loop . . 13
#:parent-finish, make-big-dishing-loop 13
#:path, rfc2109-set-cookie-string 25
#:queue-length, make-big-dishing-loop 13
#:secure, rfc2109-set-cookie-string 25
#:socket-setup, make-big-dishing-loop 13
#:socket-setup, named-socket 13
#:status-box-size, make-big-dishing-loop . . 13
#:style, make-big-dishing-loop 13
#:unknown-http-method-handler,

make-big-dishing-loop 13

<
<-ctime . 12
<-mtime . 12
<-rfc1123-date . 12

A
access-forbidden?-proc . 21
add-content . 28
add-direct-writer . 28
add-formatted . 28
add-header . 28
alist<-query . 16

B
bad-request-handler . 14

C
cgi-environment-manager . 23
cgi:cookie . 9
cgi:cookie-names . 7
cgi:cookies . 9
cgi:form-data? . 7
cgi:getenv . 7
cgi:init . 7
cgi:names . 7
cgi:nv-pairs . 9
cgi:upload . 9

cgi:uploads . 8
cgi:value . 8
cgi:values . 8
cleanup-filename . 18
concurrency . 14
content-length . 28
CRLF . 30

E
echo-upath . 13
explicit-return . 14

F
filename->content-type . 22
flat-length . 30
format-utcsec . 12
fs . 30

H
hqf<-upath . 16
http-status-string . 34
http:connect . 2
http:get . 3
http:head . 3
http:message-body . 3
http:message-header . 3
http:message-headers . 3
http:message-status-code . 3
http:message-status-ok? . 3
http:message-status-text . 3
http:message-version . 3
http:open . 2
http:post-form . 4
http:request . 2
http:status-ok? . 3

I
inhibit-content! . 29

L
log . 15
log-http-response-proc . 32
loop-break-bool . 15

M
make-big-dishing-loop . 13
method-handlers . 14
mime-types<-extension . 36

Index 39

modlisp-hgrok . 33
modlisp-ish . 33
mouthpiece . 28

N
named-socket . 13
need-headers . 14
need-input-port . 14

P
parent-finish . 15
parse-form . 17
put-mime-types! . 36
put-mime-types-from-file! 35

Q
queue-length . 14

R
reach . 27
read-body . 16
read-first-line . 16
read-headers . 16
rechunk-content . 29
reset-mime-types! . 35
reset-protocol! . 28
rfc1123-date<- . 12
rfc1123-now . 12
rfc2109-set-cookie-string 25
rfc2965-parse-cookie-header-value 26
rfc2965-set-cookie2-tree 25

S
select-extensions . 36
send-reply . 29
set-reply-status . 28

set-reply-status:success 28
simple-parse-cookies . 25
skip-headers . 16
socket-setup . 14
status-box-size . 15
string<-header-components 31
string<-headers . 30
string<-tree . 30
style . 15

T
tree-flat-length! . 30

U
unknown-http-method-handler 15
upath->filename-proc . 21
url-coding:decode . 11
url-coding:encode . 11
url:address . 5
url:decode . 6
url:encode . 6
url:host . 5
url:make . 5
url:make-ftp . 5
url:make-http . 5
url:make-mailto . 5
url:parse . 5
url:path . 6
url:port . 6
url:scheme . 5
url:unknown . 5
url:unparse . 5
url:user . 5

W
walk-tree . 30
www:get . 10
www:http-head-get . 10
www:set-protocol-handler! 10

	The (www *) Modules
	(www http)
	High-Level HTTP Operation
	Low-Level HTTP Message Object Access
	Common Messages

	(www url)
	High-Level URL Object Conversion
	Low-Level URL Object Construction
	Low-Level URL Object Access
	Character Decoding/Encoding

	(www cgi)
	Initialization and Discovery
	Data Transfer In
	Uncollated Form Data

	(www main)
	(www url-coding)
	(www utcsec)
	(www server-utils big-dishing-loop)
	(www server-utils parse-request)
	(www server-utils form-2-form)
	(www server-utils filesystem)
	(www server-utils cgi-prep)
	(www server-utils cookies)
	(www server-utils answer)
	(www server-utils log)
	(www server-utils modlisp)
	(www data http-status)
	(www data mime-types)
	Index

