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ABSTRACT:   Our work takes place in the context  of the HLA standard and its application in real-time systems  
context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time 
computer  systems.  Many  works  have  been  invested  in  order  to  providing  real-time  capabilities  to  Run  Time  
Infrastructures  (RTI)  to  run  real  time  simulation.  Most  of  these  initiatives  focus  on  major  issues  including  QoS 
guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating  
systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions,  
this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running  
on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for  
designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed  
real-time simulation with CERTI.

1. Introduction

Modern systems become more and more complex with 
an  increasing  number  of  both  components  and 
interactions between them. These different applications 
often  require  their  services  to  be  delivered  with  the 
respect to a given period of time (deadline). This focus 
is  the  problematic  of  real-time  system  which  are 
defined as those systems in which the correctness  of 
the system not only depends on the logical results of 
computation,  but  also  on  the  time  at  which  these 
results  are  produced  [1].  A  real-time  application  is 
usually comprised of a set of cooperating tasks which 
are activated  at  regular  intervals and/or  on particular 
events.  They  also  need  a  reliable  prediction  of  the 
worst-case scenario that can arise and to know how to 
deal  with  it  efficiently  and  effectively.  Apart  from 
satisfying  the  timing  constraints,  another  important 
characteristic  of  real-time  systems  is  the  notion  of 
predictability.

Real-time  systems  are  broadly  classified  into  two 
categories  based  on  the  nature  of  deadline,  namely, 
hard real-time systems, in which the consequences of 
not  executing  a  task  before  its  deadline  may  be 
catastrophic  and  soft  real-time systems,  in which  the 
utility of results produced by a task with a soft deadline 
decreases  over  time  after  the  deadline  expires. 
Examples of hard real-time systems are avionic control 
and nuclear plant control. Telephone switching system 
and  image  processing  applications  are  examples  for 
soft real-time systems.

The  emergence  of  computer  networks  have  led  to 
implementation of technologies to control calculations 
located  on  different  computers  which  can 
communicate  over  a  global  (or  local)  network.  The 
uses of these technologies have increased and this has 
necessitated  the  development  of  standards,  such  as 
CORBA  [2]  for  client-server  paradigm,  to  respond 
consistently to problems involved by this distribution 



(heterogeneous  computers,  taking  into  account  the 
network).

In  the  field  of  simulation,  the  use  of  network 
technology  has  led  to  an  emergence  of  specific 
simulations,  called  distributed  simulations  which 
involve several different simulations connected by one 
or  more  computer  networks.  In  a  distributed 
simulation,  interoperability  between  distributed 
components is essential to ensure consistent behavior. 
In this sense, all distributed players must communicate 
well  and  interact  following  a  common  framework 
which  is  set  by  a  middleware  compliant  with  a 
standard of distributed simulation, like the High Level 
Architecture  (HLA) in  DMSO 1.3  version  [3],  or  in 
IEEE 1516 version [4].

Middleware in computing terms is used to describe a 
software  agent  acting  as  an  intermediary  between 
different distributed processes. This software has to be 
seen  in  the  domain  of  interoperability.  It  is  a 
connectivity  software  which  allows,  usually,  several 
applications to run on one or several computers, and to 
interact across a network (see Figure 1).

Figure 1: Middleware vision

The middleware involved in CORBA standard is called 
the ORB (Object Request Broker) and the one implies 
in  HLA  standard  is  named  the  RTI  (Run  Time 
Infrastructure).  The  RTI  is  the  software 
implementation of the HLA Interface Specification. It 
is  a  middleware  for  the  proper  functioning  of 
distributed  simulation  in  accordance  with  the 
principles and specifications from HLA standard.

For years, the French Aerospace Laboratory (ONERA) 
was  developing  his  own  middleware  RTI  compliant 
with  HLA  standard  called  CERTI  [5]  [6],  running 
under several operating systems including Linux and 
Windows. This middleware is available from the web 
site  http://www.cert.fr/CERTI.  We  will  use  this  RTI 

for our work in order to investigate how we can get 
real time properties to an HLA real-time simulation.

This  paper  firstly  introduces  organizational  issues  of 
the problem description focusing on running real-time 
simulation with HLA. We then discuss of related and 
current works issues about this problematic. Next, we 
give  a  detailed presentation  of  our  work including a 
formal  model  to  validate  real-time  simulations.  To 
finish, we present our future works and a conclusion.

2. Problem Description

2.1 Does HLA standard support real-time? 

Traditional standards and middleware architectures are 
not  very suitable for supporting real-time constraints. 
The advantages and the success of these techniques for 
distributed  computing  and  the  emergence  of  interest 
for real-time systems implies that research community 
tries to adapt current middleware standards to include 
real-times  properties.  For  example,  Real-Time 
CORBA  is  an  enhancement  of  CORBA.  It  was 
designed by the Real-Time Special Interest  Group of 
the  Object  Management  Group  (RTSIG-OMG),  with 
participation of several companies in the field of the 
embedded  systems,  like  Boeing  and  Objective 
Interface  for  example.  The  Real-Time  CORBA 
specifications [7] allow the management of hardware 
resources  whereas  CORBA  is  an  intermediate  layer 
between  the  operating  systems  and  the  applications. 
One  of  the  key  specifications  is  the  end-to-end 
predictability. To reach this goal, Real-Time CORBA 
supports  fixed  priority  scheduling.  This  scheduling 
method defines  static  priority  levels  for  each thread. 
These priorities, despite their value at the initialization, 
could not be modified during their lifetime.

Works  to  include  real-time  specifications  and 
properties  to  HLA  standard  are  less  advanced  than 
CORBA ones. Indeed, HLA does not currently address 
real-time  simulation  and  HLA  compliant  simulation 
could  not  require  any  quality  of  service  from  the 
underlying middleware  (RTI).  Firstly,  HLA does  not 
provide  interfaces  to  specify  end  to  end  prediction 
requirement  for  federate.  Secondly,  HLA  does  not 
allow  the  management  of  underlying  Operating 
System(s) in term of priority or resource.  Thirdly, in 
distributed case, HLA only supports two transportation 
types : the reliable one and the best-effort one, usually 
encoded  with  the  TCP  and  UDP  network  protocols 
which are not suitable for real-time constraints.  These 
different  limitations have crucial impact for real-time 
simulation  systems  where  the  amount  and 
predictability of RTI overhead is an important design 
factor. 

https://savannah.nongnu.org/projects/certi


2.2 Different action levels for a real time simulation

The  temporal  properties  of  distributed  real-time 
simulation are obtained from a complex combination 
of the application structure, the HLA middleware used 
(the  standard  implementation  in  a  chosen  language), 
the  software  infrastructure  (operating  systems  and 
communication  protocols)  and  finally  the  physical 
infrastructure (type of computers, type of networks and 
distribution topology). These different levels imply to 
answer some relevant questions :

1. Hardware level : What material should we use? Is 
it  good  enough  to  meet  the  expectations  of  the 
intended application?

2. Software  level :What  programming  language 
should I use? Which operating system is best?

3. Middleware level :  What type of middleware we 
want  to  use?  What  is  it  operating  mechanisms 
involved? What services should it offer?

4. Application level  : What we want to model with 
the simulation? What kind of tasks are implies in 
the problem?

5. Formal  level :  What  formal  methods  can  be 
applied to verify that the system will perform well 
according to the requirements of the designer?

2.3 CERTI

We claim that the choice of a RTI (Middleware level) 
is  a  very  important  part  for  real-time  simulation 
problem because that implies which operating system, 
which  programming  language  and  which  hardware 
could be used for compliance with RTI (Hardware and 
Software level). 

In  our  approach,  to  not  have  to  do  all  work  from 
scratch,  we  will  rely  on  and  extend  an  existing 
middleware for real-time purpose. Our choice is to use 
CERTI Open Source RTI managed and maintained by 
ONERA team. It is a RTI who is recognizable through 
its original architecture of communicating processes. It 
is a distributed system involving two processes, a local 
one  (RTIA)  and  a  global  one  (RTIG),  as  well  as  a 
library (libRTI) linked with each federate. The CERTI 
architecture  is  depicted  in  Figure  2.  Each  federate 
process  interacts  locally  with  an  RTI  Ambassador 
process  (RTIA)  through  a  Unix-domain  socket.  The 
RTIA processes exchange messages over the network, 
in particular with the RTIG process, via TCP (and also 
UDP) sockets, in order  to run the various distributed 
algorithms  associated  with  the  RTI  services.  This 
particular architecture will have a significant impact on 
the evaluation of CERTI for use in a real-time context 
in  particular  for  scheduling  part  as  we  will  see  in 
section 4.2 .

Figure 2: CERTI architecture

2.4 Underlying Software and Hardware

In  this  paper,  for  hardware  level,  we firstly  want  to 
validate  our  approach  on  a  single  processor  based 
hardware  architecture.  Real-time  problem  in 
distributed  case  is  much more  complex and requires 
consideration of the communication resource (network 
messages) in the formal model (see section 6.1) . 

For the software level,  we choose Linux Red Hawk, an 
operating system compliant with POSIX standard for 
real-time  [8].  It  is  a  Real-Time  Operating  System 
(RTOS) and must overcome the uncertainty in time, it 
is  not  necessarily  faster  (more  efficient)  than  a 
conventional  operating  system  called  "time  sharing" 
but must help to add determinism to Os calls from the 
middleware.

This RTOS have been already used in the simulation 
domain by TNO laboratory which use this OS to run 
their  own  RTI  also  implemented  in  C++.  Their 
experiments  have  been well  concluding  for  the  real-
time context [9].

3. Previous and Related Works

3.1 Toward periodic federate

The  concept  of  repeatability  within  real-time 
simulations  has  been  introduced  by  Fujimoto   and 
McLean  [10]  [11].  Federates  engaged  in  a  real-time 
simulation  repeat  the  same  pattern  of  execution 
periodically  with  a  time  step  noted  Δt.  During  each 
step,  federates  carry  four  phases  (see  Figure  3):  (1) 
reception  phase   ,  (2)  a  calculation  phase,  (3)  a 
transmission phase and (4) a slack time phase. 



Figure 3: Periodic federate

A similar  approach  was proposed  by  ONERA in   a 
collaborative study with the CNES  laboratory (Centre 
National  d'Etudes  Spatiales)  [12].  Each  federate 
involved  in  the  simulation  represents  an  embedded 
system  which  performs  calculations  with  periodic 
cycles.  This  study  has  highlighted  the  necessity  of 
adding  a  synchronization   phase  to  other  phases  for 
each execution step of repeatable federates to be sure 
to  maintain  consistency  between  each  cycles  (see 
Figure 4).

Figure 4: Periodic federate with synchronization 
phase

Usually this synchronization phase is made (for each 
federate)  by  consulting  local  wall  clock  time.  In 
Fujimoto and McLean works, it is implicitly made by 
time  management  mechanisms  in  which 
synchronization and reception phases are made in the 
same  time  (see  part  3.2).  CNES  studies  present  an 
original  synchronization  mechanism  by  sending  an 
interaction  from  the  fastest  federate  and  have  also 
showed the performance of time management services 
in CERTI for federates with short execution cycles (see 
section 3.3). 

To  resume,  the  synchronization  phase  can  be  done 
either by three different methods :
1. By  consulting  the  hardware  clock  (Wall  clock 

Time)  on  a  mono-processor  system;  or  using  a 
distribution of hardware clock like RCIM system 
for distributed applications.

2. The  federate  which  have  the  high  speed  cycle 
sends an interaction to all each others in order to 

rhythm  the  execution  of  all  others  federates 
involved in the federation.

3. The use of Time Management HLA mechanisms 
to ensure messages delivery in all federation and 
synchronize  every  federates  steps.  The  time 
advance can be correlated to an hardware clock to 
ensure the respect of real time constraints.

This  synchronization  phase  is  essential  in  the 
distributed  context  where  the  different  nodes  do  not 
have  the  same  timing  reference  (each  using  its  own 
local  wall-clock  time).  For  present  work,  we simply 
consider  periodic  federates  case  in  which  each  one 
synchronizes by consulting the local  wall  clock time 
(common for all federate on a uni-processor system).

3.2 The tick() service

One of the most significant source of indeterminism in 
HLA simulation is the  tick() service.  This service, 
although it is not present in the interface specifications 
for  the  standard  1.3  (this  service  is  present  in  IEEE 
1516  standard  under  the  name 
EvoqueCallback()),  is  usually  still  implemented 
in a RTI. It is a necessary service which allows the RTI 
to invoke callbacks for the federate using this service.

Both  tick()versions present problems for real-time 
simulations.  In  the  case  of  bounded  tick()version 
(version that accepts two timing parameters Tmin and 
Tmax), we know that RTI will release the processor 
for  federate  (and  therefore  the  application)  for  the 
worst at time  t = Tmax. However, it can not be sure 
that this federate  will receive the callback before the 
expected time Tmax. That is a matter for the reliability 
of   application  (fault  tolerance).  In  other  tick() 
version  (the  one  without  any  timing  arguments),  the 
federate is sure that the RTI will release processor only 
when the callback will be expected, however it has no 
way  to  know  when  this  callback  will  happen  and 
therefore  presents  problem of  temporal  uncertainty.  

Moreover, in CERTI case,  tick() was not blocking. 
It immediately returned when the RTI could not launch 
any  callback  in  return,  or  it  returned  after  having 
launched a particular callback. Generally, the callback 
function,  launched by the RTI,  assigns  a  value for  a 
flag to  mark  if  the  callback  is  arrived.  This  is  done 
while the federate enters in a busy waiting loop. This 
loop  generates,  on  each  tick() call,  exchanges  of 
messages  between  the  federate  and  its  RTIA.  It 
generates also useless context switches between these 
two processes. So the processor resource may be only 
used by these only two processes : this may seriously 
disrupt real-time federates.
To avoid such a lock of the processor, this service was 
re-implemented  for  CERTI  in  a  blocking  mode  for 
CNES studies.  In  other  words,  this  function  returns 



only after a callback function has been launched by the 
RTI.  Structure  of  programming  is  syntactically  the 
same,  but  semantically,  things  are  very  different 
because only a few messages are generated and only 
two  context  switches  are  involved.  This  makes  the 
processor free to be used by many other processes as 
long as it is not possible to return from a tick() call.

3.3 Time Management use for real-time

Time management mechanisms provided by HLA are 
one  of  the  main  benefits  of  this  simulation  standard 
[13].  These  services  could  benefit  from  real-time 
assurances.  Indeed,  these  mechanisms  allow  a 
consistent  global  time throughout  the  simulation and 
could help to ensure respect of deadlines and to keep 
consistency  between  the  different  federates  cycles 
during  their  executions.  Specifically,  each simulation 
message is assigned a time-stamp, and the RTI ensures 
that messages are delivered to each federate  in time-
stamp order, and no message is delivered to a federate 
in  its  past.  The  principal  operation  required  to 
implement time management services is determination 
of  the  Lower  Bound  on  Time-Stamp (LBTS)  of  any 
subsequent  message  that  may be later  received for  a 
federate.  The  LBTS  value  is  crucial  because  any 
message  with  time-stamp  less  than  LBTS  can  be 
delivered to the federate while still guaranteeing time-
stamp order delivery. 

ONERA/CNES  experiments  show  that  time 
management  seems  good  for  real-time.  Indeed,  best 
results  are  obtained  by  requiring  time  management 
services  in  both  tests  cases  of  study.  These  services 
generate some overhead. But, in fact, this overhead is 
compensated by the better synchronization that  these 
services  enforce  between  federates.  This  better 
synchronization  between federates  reduces  latency  in 
data exchanges, reduces the cycle duration and makes 
the  global  behavior  more  regular  because  jitters  are 
also very reduced. In fact the time advancing algorithm 
enforces a very good synchronizing for federates that 
seems  to  be  the  best  efficient  approach. 
Each federate is a time stepped driven federate and its 
lookahead is equal to its time step. For ONERA/CNES 
experiments, the original Chandy and Misra algorithm 
[14] can be used because it is efficient (with this large 
positive lookahead) and it is not subject to time creep 
problem (the number of NULL messages is acceptable 
and the different time steps are neighbor).

For  others  kind  of  applications,  other  time 
management  algorithms  like Samadi's  algorithm [15] 
or Mattern's algorithm [16], should be used to limit the 
number  of  NULL  messages  exchanged  between  all 
federates.  However,  in  these  cases,  computation  of 
LBTS  cannot  generally  be  guaranteed  to  complete 
within  a  bounded  time  because  it  depends  on  the 

participation of all other federates in the execution and 
transient messages cause an LBTS computation to be 
aborted  and  retried.  Fujimoto  and  McLean  have 
modified  the  LBTS computation in order to respect  a 
bounded  time  computation  for  real-time  executions 
[17]. The authors have then proposed an extension for 
time-stamp  assignment  in  Time  Management 
mechanisms  called  “the  offset-epoch  method”  to 
increase  the  efficiency  of  the  original  time 
management  algorithm by eliminating these transient 
messages and computing an LBTS adapted to this new 
method [18].

3.4 Real-time RTI vision

The  RTI  is  the  HLA  underlying  middleware   for 
interconnecting  the  various  federates  to  a  global 
federation execution. So, it must provide predictability 
and  ensure  that  simulation  services   work  in 
accordance with the timing constraints.  In  literature, 
different approaches have been proposed to implement 
a real-time RTI. These different approaches include:
1. Multi-threaded synchronous process for RTI [19, 

20, 21] ;
2. Global scheduling services in RTI [19, 20, 21] ;
3. Real-time  Optimized  RTI  services  like  time 

Management from Fujimoto and McLean [19] (see 
also section 3.3) or Data Distribution Management 
for Boukerche works [21];

4. Quality  of  service  communication  with,  for 
example,  RSVP  protocols  [22]  or  specific 
protocols like VRTP [23] ;

5. Use  a  real-time  operating  system  to  allow 
preemptive priority scheduling.

These different techniques allow a better use of system 
resources,  better  scalability  when  the  number  of 
federated  using  the  RTI  grows  and  also  a  higher 
reactivity for RTI services. 

In  our  case,  a  key  benefit  is  to  master  the 
implementation  of  RTI  used  and  thus  able  to 
incorporate  changes  in  the  source  code  to  ensure 
temporal   predictability  of  CERTI.  The  CERTI  has, 
originally,  no  mechanism  for  taking  into  account 
quality of service and no tools to provide an end to end 
predictability. In this sense, it does not handle events 
differently  according  to  a  priority  and  it  uses  no 
predictability mechanism whatsoever at the network or 
the  operating  system.  The  initial  results,  providing 
some answers about using CERTI in the context of a 
real-time  application,  came  from  ONERA/CNES 
studies. These studies  have shown that CERTI (in its 
original version) is able to assume multiple real-time 
federates with short period. The second step is give it 
some mechanism to  ensure  end  to  end predictability 
and determinism.



3.5 Scheduling theory

One commonly proposed way of constructing a hard 
real-time system is to build the system from a number 
of  periodic  tasks,  each  assigned static  priorities,  and 
dispatched at run-time according to the static priority 
preemptive scheduling algorithm. The main thrust  of 
scheduling theory research with this approach has been 
to derive an analysis that can bound the behavior of the 
tasks at run-time. 

Original  work  by  Liu  and  Layland  [24]  provides  a 
priori analysis to determine if a set of periodic tasks 
would  be  guaranteed  to  meet  their  deadlines.  They 
propose a definition of a periodic task based on timing 
parameters:
A periodic task is a quadruplet <ri , Ci , Di , Pi> as,
-ri is the time of initial activation of the task;
-Ci is the worst case execution time;
-Di is the deadline;
-Pi is the period.

Furthermore,  in  this  work  each  task  is  assigned  a 
unique  priority  monotonically  with  task  period,  and 
hence  the  name  rate  monotonic  scheduling.  Current 
rate monotonic scheduling (RMS) theory assumes that 
the  deadline  of  a  task  is  equal  to  the  task  period. 
Deadline Monotonic Scheduling (DMS), proposed by 
Leung  and  Whitehead  [25],  is  also  a  static  priority 
scheduling approach (like RMS) where the priority of a 
task is assigned according to its deadline.

Characteristics of a periodic task such as its period , its 
deadline or  its worst  case computation time must  be 
evaluated before the system run. The behavior of the 
real-time system must be predictable which means that 
with certain assumptions it should be possible to show 
at  design  time  that  all  the  timing  constraints  of  the 
application  will  be  met.  Since  these  timing 
characteristics  of  periodic  tasks  are  known,  100% 
guarantees  can  be  given,  at  design  time,  that  their 
timing  constraints  will  be  satisfied.  The  primary 
criterion  in  the  static  scheduling of  periodic  tasks  is 
predictability,  i.e.,  determining  a  feasible  schedule 
wherein all tasks meet their timing requirements.

4. Towards a Real Time CERTI

4.1 Need of formal model for validation

To our  knowledge,  no  related  work  from simulation 
community  has  linked  any  formal  model  from 
scheduling  theory  (uni-processor  or  distributed)  with 
concepts  of  distributed  simulations.  Thus  real-time 
simulations  are  validated  by  experiments  rather  than 
formal models and schedulability tests. We claim that a 
formal model compliant with schedulability techniques 
is essential to validate real-time simulations composed 

by periodic federates. We choose to first validate our 
approach on a single processor system by using well 
known schedulabilty techniques. 

4.2 Basic assumptions

An HLA simulation consists of five phases (see Figure 
5).  We  consider  that  it  is  not  necessary  to  ensure 
temporal  properties for all  HLA services involved in 
each phase. Our interest is clearly for services implied 
in  simulation  loop  (Object  Management  and  Time 
Management). In this paper, we only take into account 
Object Management services.

Figure 5: HLA simulation scheme

This  paper  presents  the  first  results  that  have  been 
proved  for  a  single  processor  problem.  However,  to 
apply  our  method,  we  need  to  make  some  basic 
assumptions:
1. Federate-RTIA pair is taken like one and only real 

time task;
2. RTIG is the highest priority task, it only runs when 

it is needed;
3. Tasks therefore share the same timing reference 

(the CPU one), there is no need to synchronize the 
different cycles of funds (using time management 
mechanisms or sending interactions explained 
above in section 3.1);

4. Tasks  communicate  via  a  call  to 
updateAttributesValues()  service,  we 
assume  that  the  receiver  federate  is  awaiting 



reflectAttributesValues()  callback  in 
reception phase (i.e. the assumption that he calls 
tick() service in its blocking version at the right 
time);

5. Here  we  focus  on  static  scheduling  algorithms 
within  priorities  for  each  task  of  the  system  is 
calculated  before  the  computation  phase  of  the 
system (see section 3.5). Indeed, these algorithms 
are  deployed  in  the  case  of  embedded  systems 
because they have a predictable behavior.

4.3 Periodic task with precedence constraint model

Under  the  above  assumptions,  federates  simulate 
periodic  processes  (like  different  avionics  systems 
components) and so therefore we can consider them as 
periodic tasks defined by Liu and Layland or  Leung 
and Whitehead (explained in 3.5).  Periodic  tasks  are 
time-driven  and  recur  at  regular  intervals  called  the 
period.  However  in  our  case,  these  different  tasks 
communicate by using HLA principles (through calls 
to  the  RTI  services  implies  in  simulation  loop  like 
updateAttributeValues()  or 
sendInteractions()).These  communications 
could  be  represented  by  periodic  messages  like  in 
figure  6.  In  this  figure,  federate  1  runs  periodically 
with a 10ms period and send a message to federate 2 
which runs at the same period. 

Figure 6: Illustration of a message exchange 
between two federates

When two tasks of the same period are related by a 
data-dependency,  we  can  simply  impose  that  the 
producer  always executes before the consumer using 
Rate Monotonic Analysis (RMA). This corresponds to 
usual  simple  precedence  constraints  which  is  our 
interest  in  present  paper.  Indeed,  these 
communications  between periodic  federates  (periodic 
tasks in the model) can be seen as simple precedence 
constraints requiring that the task issuing the message 
runs  before  the  receiving  task  (see  Figure  7).  These 
dependencies between tasks can also be solved using 
techniques from Chetto [26]  combined with Deadline 
monotonic  Analysis  (DMA).  The  principle  of  these 
alternatives is to make independent tasks by changing 
temporal parameters from dependent tasks. 

Figure 7: Illustration of precedence constraint 
between federates

When  the  message  producer  task  and  the  message 
consumer task have different periods, there are several 
possible  communication patterns.  For instance,  if  the 
producer  is  10  times  faster  than  the  consumer,  the 
specification  can  impose  that  the  consumer  takes 
produced  data  by  the  second  instance  out  of  10 
successive  instances.  Such  communication  patterns 
correspond  to  more  complex  extended  precedence 
constraints, which only relate a subset of instances for 
communicating  tasks.  To  solve  these  kinds  of 
precedence  constraints,  we  need  some  others  more 
recent models like new models developed at ONERA 
[27]. 

4.4 Evaluate WCET 

The  calculation  of  Worst  Case  Execution  Time 
(WCET) is a key parameter for scheduling because it 
allows to determine the Ci parameter value for a task. 
In  our case, a task (Federate-RTIA) consists of three 
phases:  a  phase  of  receiving  the  data,  a  calculation 
phase of the new data, a phase of transmission of this 
new data. We assume that the time for synchronization 
phase is null. The WCET of the task will be equal to 
the sum of the WCET for each phase :

Ci = WCET(Receive) + WCET(Compute) + WCET(Send)

Calculation of the WCET(Compute) should take into 
account specific calculations made by the federate and 
the context switching time of the process (if it would 
change  its  priority  during  the  simulation  loop).
Calculation  of  values  for  WCET(Receive)  and 
WCET(Send)  must  take  into  account  the  context 
switching time between federates and their RTIAs, the 
time  to  read  and  write  on  different  communication 
sockets  (TCP,  UDP  or  Unix  sockets)  and  time  for 
RTIG computation (which is the task with the highest 
priority  and  that  is  only  activated  on  request  for 
federates communications).

5. Illustration

5.1 Original test case

To illustrate our approach we will take a test case from 
the collaborative work between ONERA and CNES. It 



is a federation composed of 4 periodic federates which 
a real time system composed of 4 tasks (see figure 8):
1. Fed1 : <0, 5, 50 , 50> ;
2. Fed2

 
: <0, 1 , 10 , 10> ;

3. Fed3
 
: <0, 1 , 10 , 10> ;

4. Fed4
 
: <0, 1 , 10 , 10> .

We assume that every Ci is equal to ten percent of the 
task's  period.  That  is  a  pessimistic  evaluation  which 
take into account all WCET computing phases (explain 
in  section  4.4).  We  can  use  some  more  important 
computing time for each task, but in present work, it is 
just  to  give  an  illustration  for  our  proposed 
methodology.

Figure 8: Data exchange in ONERA/CNES 
federation

In this example, two problems arise to apply 
techniques for solving simple precedence constraints 
between tasks:
1. Communicating  tasks  do  not  run  at  the  same 

period.  That  is  not  compliant  with  simple 
precedence scheme explain in section 4.3.

2. There  is  a  cyclical  dependence  problem  in  the 
graph  between  tasks  Fed1 and  Fed4 that  are 
interdependent on the same period:

 P (Fed4) = P (Fed1) = P (m14) = P (m41)

5.2 Unfolding the graph task

To solve the first  problem explained before we must 
unfold the graph of tasks. In this sense, we divide each 
previous task into a set of subtasks. The period of each 
subtask is equal to the hyper-period for the set of  basic 
tasks  (hyper-period is the least common multiple of of 
all tasks periods). We retain the principle of the critical 
moment  in  order  to  apply  the  Deadline  Monotonic 
algorithm (the critical moment is when all tasks started 
at the same time, all ri are equal to 0). In this test case, 

hyper-period is 50 milliseconds and we obtain a set of 
twelve subtasks :
1. Fed1

1

 
: <0, 5, 50 , 50> ;

2. Fed2
1 : <0, 1, 10 , 50> ;

3. Fed2
2

 
: <0, 1, 20 , 50> ;

4. Fed2
3

 
: <0, 1, 30 , 50> ;

5. Fed2
4 : <0, 1, 40 , 50> ;

6. Fed2
5 : <0, 1, 50 , 50> ;

7. Fed3
1

 
: <0, 1, 10 , 50> ;

8. Fed3
2

 
: <0, 1, 20 , 50> ;

9. Fed3
3

 
: <0, 1, 30 , 50> ;

10. Fed3
4

 
: <0, 1, 40 , 50> ;

11. Fed3
5 : <0, 1, 50 , 50> ;

12. Fed4
1 : <0, 5, 50 , 50> .

To solve the second problem from the interdependence 
explain in section 5.1, we should spread on the tasks 
graph for two times hyper-period (2*50 milliseconds = 
100  milliseconds).  This  technique  transforms 
interdependence  between  tasks  Fed1 and  Fed4 in 
simple  dependence  between  four  subtasks.  Indeed, 
Fed11 is dependent with Fed42 and Fed12 is dependent 
with  Fed41.  We obtain a set of 24 subtasks relies by 
simple precedence constraints (see Figure 9) :
1. Fed1

1

 
: <0, 5, 50 , 100> ;

2. Fed1
2

 
: <0, 5, 100 , 100> ;

3. Fed2
1

 
: <0, 1, 10 , 100> ;

4. Fed2
2

 
: <0, 1, 20 , 100> ;

5. Fed2
3

 
: <0, 1, 30 , 100> ;

6. Fed2
4

 
: <0, 1, 40 , 100> ;

7. Fed2
5 : <0, 1, 50 , 100> ;

8. Fed2
6

 
: <0, 1, 60 , 100> ;

9. Fed2
7

 
: <0, 1, 70 , 100> ;

10. Fed2
8

 
: <0, 1, 80 , 100> ;

11. Fed2
9

 
: <0, 1, 90 , 100> ;

12. Fed2
10 : <0, 1, 100 , 100> ;

13. Fed3
1

 
: <0, 1, 10 , 100> ;

14. Fed3
2 : <0, 1, 20 , 100> ;

15. Fed3
3

 
: <0, 1, 30 , 100> ;

16. Fed3
4 : <0, 1, 40 , 100> ;

17. Fed3
5

 
: <0, 1, 50 , 100> ;

18. Fed3
6

 
: <0, 1, 60 , 100> ;

19. Fed3
7

 
: <0, 1, 70 , 100> ;

20. Fed3
8

 
: <0, 1, 80 , 100> ;

21. Fed3
9

 
: <0, 1, 90 , 100> ;

22. Fed3
10

 
: <0, 1, 100 , 100> ;

23. Fed4
1

 
: <0, 5, 50 , 100> ;

24. Fed4
2 : <0, 5, 100 , 100> .



Figure 9: Simple precedence constraints graph for 
ONERA/CNES federation

This  is  easily  verified  using  the  CHEDDAR  open 
source tool  [28] for instance.  Priorities for the set of 
subtasks  are  given  in  figure  9  (using  deadline 
monotonic analysis combined with Chetto techniques 
for precedence).

5.3 Additional real-time mechanism for CERTI

The main problem from these techniques is to change 
priority of CERTI processes for each periodic step of 
simulation. This change must be apply not only on the 
federates processes but also on the RTIAs processes. 
To allow these priorities changes for each federate and 
its associated RTIA (it is divided into sub-tasks, each 
with  its  own  priority),  we  have  added  to  CERTI 
interface different methods. Modification of priority is 
also  rely  on  the  choice  of  real-time  scheduling 
algorithms  for  POSIX/Linux.  Two  real-time 
algorithms,  SCHED_FIFO  and  SCHED_RR,  are 
intended for time-critical applications that need precise 
control over the way in which runnable processes are 
selected for execution. Only processes with superuser 
privileges can get a static priority higher than 0 (and 
lower than 99 for Linux system) and can therefore be 
scheduled  under  SCHED_FIFO  or  SCHED_RR.  All 
scheduling is  preemptive:  if  a  process  with a  higher 
static priority gets ready to run, the current process will 
be preempted and returned into its waiting list. In this 
case,  we use  the  SCHED_FIFO techniques  which  is 
compatible with deadline monotonic hypothesis.

Another  interface  added  in  CERTI  allows  to  use 
affinity mechanism.  CPU  affinity  is  a  scheduler 
property that bonds a process to a given set of CPUs on 
the system. The Linux scheduler will honor the given 
CPU affinity  and the  process  will  not  run any  other 
CPUs. However,  we  can  be  sure  that  on  multi-
processor platform, we only have one processor for the 

federation  execution  to  respect  our  basic  scheduling 
assumptions (uni-processor scheduling).

We also use the mlockall mechanism for each federate 
and its RTIA processes to disables memory paging into 
the address space of the calling process. This includes 
the pages of the code, data and stack segment, as well 
as shared libraries, user space and kernel data, shared 
memory and memory mapped files. All mapped pages 
are  guaranteed  to  be  resident  in  RAM  when  the 
mlockall system call returns successfully and they are 
guaranteed  to  stay  in  RAM  until  the  pages  are 
unlocked again or until the process terminates or starts 
another  program.  Real-time  applications  require 
deterministic  timing,  and,  like  scheduling,  memory 
paging  is  one  major  cause  of  unexpected  program 
execution delays.

6. Future Trends

6.1 Model formal extension to distributed case

In a distributed real-time system, the timely availability 
of  computational  results  is  guaranteed  only  if  the 
underlying  network  supports  timely  delivery  of 
messages.  That  is,  if the time at which a message  is 
sent  and  the  length  of  the  message,  it  should  be 
possible to predict the time at which the message will 
be delivered to the destination. Such a requirement can 
be  satisfied  only  if  the  network  ensures  predictable 
communication delays. Thus, to ensure the safety of a 
real-time  application  implemented  on  a  distributed 
real-time system, the tasks (as well as the messages) 
must be properly scheduled on each node (as well as 
on  each  communication  channel).  We  should 
investigate  a  novel  approach  to  take  into  account  a 
formal model for tasks (execution units) and also for 
messages  (communication  units)  from  Saad-
Bouzefrane's  work  [29].  All  communicating  tasks 
update their timing parameters (including the time of 
initial activation  ri of the task) by taking into account 
messages timing parameters. We want to combine this 
approach with Audsley's algorithm [30] on each node 
for  validation  of  the  global  distributed  system 
(Audsley's algorithm is the only optimal algorithm for 
a set of periodic tasks with different initial activation 
time).  Indeed,  we  hope  this  new  approach  help  for 
validation of a distributed simulation using CERTI.

6.2  Add some deterministic mechanism for CERTI

CERTI is a software developed in C++. This language 
is  usually  used to  implement  some RTI  (MAK RTI, 
DMSO  RTI-NG,  RTI  KIT).  Its  benefits  in  term  of 
performance  make it  a  good language for simulation 
mechanism. However, this language have some gap for 
real-time  like  memory  allocation  which  implements 
algorithm  with  non  bounded  time  to  compute  in  its 



original version. We want to include some predictable 
allocation  techniques  and  algorithms  like  the  TLSF 
library [31],  which source code is available under GPL 
license.
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