
Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

Martin Adelantado
Pierre Siron

Jean-Baptiste Chaudron
ONERA/DTIM

2 avenue E. Belin
31055 Toulouse Cedex

France
martin.adelantado@onera.fr, pierre.siron@onera.fr, jean-baptiste.chaudron@onera.fr

Pierre Siron
Jean-Baptiste Chaudron

Université de Toulouse, ISAE
10 avenue E. Belin

31055 Toulouse Cedex
France

pierre.siron@isae.fr

Keywords:
High Level Architecture, Distributed Simulation, Real time Systems, Scheduling Algorithms, Real-time Memory

Handling.

ABSTRACT: Our work takes place in the context of the HLA standard and its application in real-time systems
context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time
computer systems. Many works have been invested in order to providing real-time capabilities to Run Time
Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS
guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating
systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions,
this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running
on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for
designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed
real-time simulation with CERTI.

1. Introduction

Modern systems become more and more complex with
an increasing number of both components and
interactions between them. These different applications
often require their services to be delivered with the
respect to a given period of time (deadline). This focus
is the problematic of real-time system which are
defined as those systems in which the correctness of
the system not only depends on the logical results of
computation, but also on the time at which these
results are produced [1]. A real-time application is
usually comprised of a set of cooperating tasks which
are activated at regular intervals and/or on particular
events. They also need a reliable prediction of the
worst-case scenario that can arise and to know how to
deal with it efficiently and effectively. Apart from
satisfying the timing constraints, another important
characteristic of real-time systems is the notion of
predictability.

Real-time systems are broadly classified into two
categories based on the nature of deadline, namely,
hard real-time systems, in which the consequences of
not executing a task before its deadline may be
catastrophic and soft real-time systems, in which the
utility of results produced by a task with a soft deadline
decreases over time after the deadline expires.
Examples of hard real-time systems are avionic control
and nuclear plant control. Telephone switching system
and image processing applications are examples for
soft real-time systems.

The emergence of computer networks have led to
implementation of technologies to control calculations
located on different computers which can
communicate over a global (or local) network. The
uses of these technologies have increased and this has
necessitated the development of standards, such as
CORBA [2] for client-server paradigm, to respond
consistently to problems involved by this distribution

(heterogeneous computers, taking into account the
network).

In the field of simulation, the use of network
technology has led to an emergence of specific
simulations, called distributed simulations which
involve several different simulations connected by one
or more computer networks. In a distributed
simulation, interoperability between distributed
components is essential to ensure consistent behavior.
In this sense, all distributed players must communicate
well and interact following a common framework
which is set by a middleware compliant with a
standard of distributed simulation, like the High Level
Architecture (HLA) in DMSO 1.3 version [3], or in
IEEE 1516 version [4].

Middleware in computing terms is used to describe a
software agent acting as an intermediary between
different distributed processes. This software has to be
seen in the domain of interoperability. It is a
connectivity software which allows, usually, several
applications to run on one or several computers, and to
interact across a network (see Figure 1).

Figure 1: Middleware vision

The middleware involved in CORBA standard is called
the ORB (Object Request Broker) and the one implies
in HLA standard is named the RTI (Run Time
Infrastructure). The RTI is the software
implementation of the HLA Interface Specification. It
is a middleware for the proper functioning of
distributed simulation in accordance with the
principles and specifications from HLA standard.

For years, the French Aerospace Laboratory (ONERA)
was developing his own middleware RTI compliant
with HLA standard called CERTI [5] [6], running
under several operating systems including Linux and
Windows. This middleware is available from the web
site http://www.cert.fr/CERTI. We will use this RTI

for our work in order to investigate how we can get
real time properties to an HLA real-time simulation.

This paper firstly introduces organizational issues of
the problem description focusing on running real-time
simulation with HLA. We then discuss of related and
current works issues about this problematic. Next, we
give a detailed presentation of our work including a
formal model to validate real-time simulations. To
finish, we present our future works and a conclusion.

2. Problem Description

2.1 Does HLA standard support real-time?

Traditional standards and middleware architectures are
not very suitable for supporting real-time constraints.
The advantages and the success of these techniques for
distributed computing and the emergence of interest
for real-time systems implies that research community
tries to adapt current middleware standards to include
real-times properties. For example, Real-Time
CORBA is an enhancement of CORBA. It was
designed by the Real-Time Special Interest Group of
the Object Management Group (RTSIG-OMG), with
participation of several companies in the field of the
embedded systems, like Boeing and Objective
Interface for example. The Real-Time CORBA
specifications [7] allow the management of hardware
resources whereas CORBA is an intermediate layer
between the operating systems and the applications.
One of the key specifications is the end-to-end
predictability. To reach this goal, Real-Time CORBA
supports fixed priority scheduling. This scheduling
method defines static priority levels for each thread.
These priorities, despite their value at the initialization,
could not be modified during their lifetime.

Works to include real-time specifications and
properties to HLA standard are less advanced than
CORBA ones. Indeed, HLA does not currently address
real-time simulation and HLA compliant simulation
could not require any quality of service from the
underlying middleware (RTI). Firstly, HLA does not
provide interfaces to specify end to end prediction
requirement for federate. Secondly, HLA does not
allow the management of underlying Operating
System(s) in term of priority or resource. Thirdly, in
distributed case, HLA only supports two transportation
types : the reliable one and the best-effort one, usually
encoded with the TCP and UDP network protocols
which are not suitable for real-time constraints. These
different limitations have crucial impact for real-time
simulation systems where the amount and
predictability of RTI overhead is an important design
factor.

https://savannah.nongnu.org/projects/certi

2.2 Different action levels for a real time simulation

The temporal properties of distributed real-time
simulation are obtained from a complex combination
of the application structure, the HLA middleware used
(the standard implementation in a chosen language),
the software infrastructure (operating systems and
communication protocols) and finally the physical
infrastructure (type of computers, type of networks and
distribution topology). These different levels imply to
answer some relevant questions :

1. Hardware level : What material should we use? Is
it good enough to meet the expectations of the
intended application?

2. Software level :What programming language
should I use? Which operating system is best?

3. Middleware level : What type of middleware we
want to use? What is it operating mechanisms
involved? What services should it offer?

4. Application level : What we want to model with
the simulation? What kind of tasks are implies in
the problem?

5. Formal level : What formal methods can be
applied to verify that the system will perform well
according to the requirements of the designer?

2.3 CERTI

We claim that the choice of a RTI (Middleware level)
is a very important part for real-time simulation
problem because that implies which operating system,
which programming language and which hardware
could be used for compliance with RTI (Hardware and
Software level).

In our approach, to not have to do all work from
scratch, we will rely on and extend an existing
middleware for real-time purpose. Our choice is to use
CERTI Open Source RTI managed and maintained by
ONERA team. It is a RTI who is recognizable through
its original architecture of communicating processes. It
is a distributed system involving two processes, a local
one (RTIA) and a global one (RTIG), as well as a
library (libRTI) linked with each federate. The CERTI
architecture is depicted in Figure 2. Each federate
process interacts locally with an RTI Ambassador
process (RTIA) through a Unix-domain socket. The
RTIA processes exchange messages over the network,
in particular with the RTIG process, via TCP (and also
UDP) sockets, in order to run the various distributed
algorithms associated with the RTI services. This
particular architecture will have a significant impact on
the evaluation of CERTI for use in a real-time context
in particular for scheduling part as we will see in
section 4.2 .

Figure 2: CERTI architecture

2.4 Underlying Software and Hardware

In this paper, for hardware level, we firstly want to
validate our approach on a single processor based
hardware architecture. Real-time problem in
distributed case is much more complex and requires
consideration of the communication resource (network
messages) in the formal model (see section 6.1) .

For the software level, we choose Linux Red Hawk, an
operating system compliant with POSIX standard for
real-time [8]. It is a Real-Time Operating System
(RTOS) and must overcome the uncertainty in time, it
is not necessarily faster (more efficient) than a
conventional operating system called "time sharing"
but must help to add determinism to Os calls from the
middleware.

This RTOS have been already used in the simulation
domain by TNO laboratory which use this OS to run
their own RTI also implemented in C++. Their
experiments have been well concluding for the real-
time context [9].

3. Previous and Related Works

3.1 Toward periodic federate

The concept of repeatability within real-time
simulations has been introduced by Fujimoto and
McLean [10] [11]. Federates engaged in a real-time
simulation repeat the same pattern of execution
periodically with a time step noted Δt. During each
step, federates carry four phases (see Figure 3): (1)
reception phase , (2) a calculation phase, (3) a
transmission phase and (4) a slack time phase.

Figure 3: Periodic federate

A similar approach was proposed by ONERA in a
collaborative study with the CNES laboratory (Centre
National d'Etudes Spatiales) [12]. Each federate
involved in the simulation represents an embedded
system which performs calculations with periodic
cycles. This study has highlighted the necessity of
adding a synchronization phase to other phases for
each execution step of repeatable federates to be sure
to maintain consistency between each cycles (see
Figure 4).

Figure 4: Periodic federate with synchronization
phase

Usually this synchronization phase is made (for each
federate) by consulting local wall clock time. In
Fujimoto and McLean works, it is implicitly made by
time management mechanisms in which
synchronization and reception phases are made in the
same time (see part 3.2). CNES studies present an
original synchronization mechanism by sending an
interaction from the fastest federate and have also
showed the performance of time management services
in CERTI for federates with short execution cycles (see
section 3.3).

To resume, the synchronization phase can be done
either by three different methods :
1. By consulting the hardware clock (Wall clock

Time) on a mono-processor system; or using a
distribution of hardware clock like RCIM system
for distributed applications.

2. The federate which have the high speed cycle
sends an interaction to all each others in order to

rhythm the execution of all others federates
involved in the federation.

3. The use of Time Management HLA mechanisms
to ensure messages delivery in all federation and
synchronize every federates steps. The time
advance can be correlated to an hardware clock to
ensure the respect of real time constraints.

This synchronization phase is essential in the
distributed context where the different nodes do not
have the same timing reference (each using its own
local wall-clock time). For present work, we simply
consider periodic federates case in which each one
synchronizes by consulting the local wall clock time
(common for all federate on a uni-processor system).

3.2 The tick() service

One of the most significant source of indeterminism in
HLA simulation is the tick() service. This service,
although it is not present in the interface specifications
for the standard 1.3 (this service is present in IEEE
1516 standard under the name
EvoqueCallback()), is usually still implemented
in a RTI. It is a necessary service which allows the RTI
to invoke callbacks for the federate using this service.

Both tick()versions present problems for real-time
simulations. In the case of bounded tick()version
(version that accepts two timing parameters Tmin and
Tmax), we know that RTI will release the processor
for federate (and therefore the application) for the
worst at time t = Tmax. However, it can not be sure
that this federate will receive the callback before the
expected time Tmax. That is a matter for the reliability
of application (fault tolerance). In other tick()
version (the one without any timing arguments), the
federate is sure that the RTI will release processor only
when the callback will be expected, however it has no
way to know when this callback will happen and
therefore presents problem of temporal uncertainty.

Moreover, in CERTI case, tick() was not blocking.
It immediately returned when the RTI could not launch
any callback in return, or it returned after having
launched a particular callback. Generally, the callback
function, launched by the RTI, assigns a value for a
flag to mark if the callback is arrived. This is done
while the federate enters in a busy waiting loop. This
loop generates, on each tick() call, exchanges of
messages between the federate and its RTIA. It
generates also useless context switches between these
two processes. So the processor resource may be only
used by these only two processes : this may seriously
disrupt real-time federates.
To avoid such a lock of the processor, this service was
re-implemented for CERTI in a blocking mode for
CNES studies. In other words, this function returns

only after a callback function has been launched by the
RTI. Structure of programming is syntactically the
same, but semantically, things are very different
because only a few messages are generated and only
two context switches are involved. This makes the
processor free to be used by many other processes as
long as it is not possible to return from a tick() call.

3.3 Time Management use for real-time

Time management mechanisms provided by HLA are
one of the main benefits of this simulation standard
[13]. These services could benefit from real-time
assurances. Indeed, these mechanisms allow a
consistent global time throughout the simulation and
could help to ensure respect of deadlines and to keep
consistency between the different federates cycles
during their executions. Specifically, each simulation
message is assigned a time-stamp, and the RTI ensures
that messages are delivered to each federate in time-
stamp order, and no message is delivered to a federate
in its past. The principal operation required to
implement time management services is determination
of the Lower Bound on Time-Stamp (LBTS) of any
subsequent message that may be later received for a
federate. The LBTS value is crucial because any
message with time-stamp less than LBTS can be
delivered to the federate while still guaranteeing time-
stamp order delivery.

ONERA/CNES experiments show that time
management seems good for real-time. Indeed, best
results are obtained by requiring time management
services in both tests cases of study. These services
generate some overhead. But, in fact, this overhead is
compensated by the better synchronization that these
services enforce between federates. This better
synchronization between federates reduces latency in
data exchanges, reduces the cycle duration and makes
the global behavior more regular because jitters are
also very reduced. In fact the time advancing algorithm
enforces a very good synchronizing for federates that
seems to be the best efficient approach.
Each federate is a time stepped driven federate and its
lookahead is equal to its time step. For ONERA/CNES
experiments, the original Chandy and Misra algorithm
[14] can be used because it is efficient (with this large
positive lookahead) and it is not subject to time creep
problem (the number of NULL messages is acceptable
and the different time steps are neighbor).

For others kind of applications, other time
management algorithms like Samadi's algorithm [15]
or Mattern's algorithm [16], should be used to limit the
number of NULL messages exchanged between all
federates. However, in these cases, computation of
LBTS cannot generally be guaranteed to complete
within a bounded time because it depends on the

participation of all other federates in the execution and
transient messages cause an LBTS computation to be
aborted and retried. Fujimoto and McLean have
modified the LBTS computation in order to respect a
bounded time computation for real-time executions
[17]. The authors have then proposed an extension for
time-stamp assignment in Time Management
mechanisms called “the offset-epoch method” to
increase the efficiency of the original time
management algorithm by eliminating these transient
messages and computing an LBTS adapted to this new
method [18].

3.4 Real-time RTI vision

The RTI is the HLA underlying middleware for
interconnecting the various federates to a global
federation execution. So, it must provide predictability
and ensure that simulation services work in
accordance with the timing constraints. In literature,
different approaches have been proposed to implement
a real-time RTI. These different approaches include:
1. Multi-threaded synchronous process for RTI [19,

20, 21] ;
2. Global scheduling services in RTI [19, 20, 21] ;
3. Real-time Optimized RTI services like time

Management from Fujimoto and McLean [19] (see
also section 3.3) or Data Distribution Management
for Boukerche works [21];

4. Quality of service communication with, for
example, RSVP protocols [22] or specific
protocols like VRTP [23] ;

5. Use a real-time operating system to allow
preemptive priority scheduling.

These different techniques allow a better use of system
resources, better scalability when the number of
federated using the RTI grows and also a higher
reactivity for RTI services.

In our case, a key benefit is to master the
implementation of RTI used and thus able to
incorporate changes in the source code to ensure
temporal predictability of CERTI. The CERTI has,
originally, no mechanism for taking into account
quality of service and no tools to provide an end to end
predictability. In this sense, it does not handle events
differently according to a priority and it uses no
predictability mechanism whatsoever at the network or
the operating system. The initial results, providing
some answers about using CERTI in the context of a
real-time application, came from ONERA/CNES
studies. These studies have shown that CERTI (in its
original version) is able to assume multiple real-time
federates with short period. The second step is give it
some mechanism to ensure end to end predictability
and determinism.

3.5 Scheduling theory

One commonly proposed way of constructing a hard
real-time system is to build the system from a number
of periodic tasks, each assigned static priorities, and
dispatched at run-time according to the static priority
preemptive scheduling algorithm. The main thrust of
scheduling theory research with this approach has been
to derive an analysis that can bound the behavior of the
tasks at run-time.

Original work by Liu and Layland [24] provides a
priori analysis to determine if a set of periodic tasks
would be guaranteed to meet their deadlines. They
propose a definition of a periodic task based on timing
parameters:
A periodic task is a quadruplet <ri , Ci , Di , Pi> as,
-ri is the time of initial activation of the task;
-Ci is the worst case execution time;
-Di is the deadline;
-Pi is the period.

Furthermore, in this work each task is assigned a
unique priority monotonically with task period, and
hence the name rate monotonic scheduling. Current
rate monotonic scheduling (RMS) theory assumes that
the deadline of a task is equal to the task period.
Deadline Monotonic Scheduling (DMS), proposed by
Leung and Whitehead [25], is also a static priority
scheduling approach (like RMS) where the priority of a
task is assigned according to its deadline.

Characteristics of a periodic task such as its period , its
deadline or its worst case computation time must be
evaluated before the system run. The behavior of the
real-time system must be predictable which means that
with certain assumptions it should be possible to show
at design time that all the timing constraints of the
application will be met. Since these timing
characteristics of periodic tasks are known, 100%
guarantees can be given, at design time, that their
timing constraints will be satisfied. The primary
criterion in the static scheduling of periodic tasks is
predictability, i.e., determining a feasible schedule
wherein all tasks meet their timing requirements.

4. Towards a Real Time CERTI

4.1 Need of formal model for validation

To our knowledge, no related work from simulation
community has linked any formal model from
scheduling theory (uni-processor or distributed) with
concepts of distributed simulations. Thus real-time
simulations are validated by experiments rather than
formal models and schedulability tests. We claim that a
formal model compliant with schedulability techniques
is essential to validate real-time simulations composed

by periodic federates. We choose to first validate our
approach on a single processor system by using well
known schedulabilty techniques.

4.2 Basic assumptions

An HLA simulation consists of five phases (see Figure
5). We consider that it is not necessary to ensure
temporal properties for all HLA services involved in
each phase. Our interest is clearly for services implied
in simulation loop (Object Management and Time
Management). In this paper, we only take into account
Object Management services.

Figure 5: HLA simulation scheme

This paper presents the first results that have been
proved for a single processor problem. However, to
apply our method, we need to make some basic
assumptions:
1. Federate-RTIA pair is taken like one and only real

time task;
2. RTIG is the highest priority task, it only runs when

it is needed;
3. Tasks therefore share the same timing reference

(the CPU one), there is no need to synchronize the
different cycles of funds (using time management
mechanisms or sending interactions explained
above in section 3.1);

4. Tasks communicate via a call to
updateAttributesValues() service, we
assume that the receiver federate is awaiting

reflectAttributesValues() callback in
reception phase (i.e. the assumption that he calls
tick() service in its blocking version at the right
time);

5. Here we focus on static scheduling algorithms
within priorities for each task of the system is
calculated before the computation phase of the
system (see section 3.5). Indeed, these algorithms
are deployed in the case of embedded systems
because they have a predictable behavior.

4.3 Periodic task with precedence constraint model

Under the above assumptions, federates simulate
periodic processes (like different avionics systems
components) and so therefore we can consider them as
periodic tasks defined by Liu and Layland or Leung
and Whitehead (explained in 3.5). Periodic tasks are
time-driven and recur at regular intervals called the
period. However in our case, these different tasks
communicate by using HLA principles (through calls
to the RTI services implies in simulation loop like
updateAttributeValues() or
sendInteractions()).These communications
could be represented by periodic messages like in
figure 6. In this figure, federate 1 runs periodically
with a 10ms period and send a message to federate 2
which runs at the same period.

Figure 6: Illustration of a message exchange
between two federates

When two tasks of the same period are related by a
data-dependency, we can simply impose that the
producer always executes before the consumer using
Rate Monotonic Analysis (RMA). This corresponds to
usual simple precedence constraints which is our
interest in present paper. Indeed, these
communications between periodic federates (periodic
tasks in the model) can be seen as simple precedence
constraints requiring that the task issuing the message
runs before the receiving task (see Figure 7). These
dependencies between tasks can also be solved using
techniques from Chetto [26] combined with Deadline
monotonic Analysis (DMA). The principle of these
alternatives is to make independent tasks by changing
temporal parameters from dependent tasks.

Figure 7: Illustration of precedence constraint
between federates

When the message producer task and the message
consumer task have different periods, there are several
possible communication patterns. For instance, if the
producer is 10 times faster than the consumer, the
specification can impose that the consumer takes
produced data by the second instance out of 10
successive instances. Such communication patterns
correspond to more complex extended precedence
constraints, which only relate a subset of instances for
communicating tasks. To solve these kinds of
precedence constraints, we need some others more
recent models like new models developed at ONERA
[27].

4.4 Evaluate WCET

The calculation of Worst Case Execution Time
(WCET) is a key parameter for scheduling because it
allows to determine the Ci parameter value for a task.
In our case, a task (Federate-RTIA) consists of three
phases: a phase of receiving the data, a calculation
phase of the new data, a phase of transmission of this
new data. We assume that the time for synchronization
phase is null. The WCET of the task will be equal to
the sum of the WCET for each phase :

Ci = WCET(Receive) + WCET(Compute) + WCET(Send)

Calculation of the WCET(Compute) should take into
account specific calculations made by the federate and
the context switching time of the process (if it would
change its priority during the simulation loop).
Calculation of values for WCET(Receive) and
WCET(Send) must take into account the context
switching time between federates and their RTIAs, the
time to read and write on different communication
sockets (TCP, UDP or Unix sockets) and time for
RTIG computation (which is the task with the highest
priority and that is only activated on request for
federates communications).

5. Illustration

5.1 Original test case

To illustrate our approach we will take a test case from
the collaborative work between ONERA and CNES. It

is a federation composed of 4 periodic federates which
a real time system composed of 4 tasks (see figure 8):
1. Fed1 : <0, 5, 50 , 50> ;
2. Fed2

: <0, 1 , 10 , 10> ;

3. Fed3

: <0, 1 , 10 , 10> ;

4. Fed4

: <0, 1 , 10 , 10> .

We assume that every Ci is equal to ten percent of the
task's period. That is a pessimistic evaluation which
take into account all WCET computing phases (explain
in section 4.4). We can use some more important
computing time for each task, but in present work, it is
just to give an illustration for our proposed
methodology.

Figure 8: Data exchange in ONERA/CNES
federation

In this example, two problems arise to apply
techniques for solving simple precedence constraints
between tasks:
1. Communicating tasks do not run at the same

period. That is not compliant with simple
precedence scheme explain in section 4.3.

2. There is a cyclical dependence problem in the
graph between tasks Fed1 and Fed4 that are
interdependent on the same period:

 P (Fed4) = P (Fed1) = P (m14) = P (m41)

5.2 Unfolding the graph task

To solve the first problem explained before we must
unfold the graph of tasks. In this sense, we divide each
previous task into a set of subtasks. The period of each
subtask is equal to the hyper-period for the set of basic
tasks (hyper-period is the least common multiple of of
all tasks periods). We retain the principle of the critical
moment in order to apply the Deadline Monotonic
algorithm (the critical moment is when all tasks started
at the same time, all ri are equal to 0). In this test case,

hyper-period is 50 milliseconds and we obtain a set of
twelve subtasks :
1. Fed1

1

: <0, 5, 50 , 50> ;

2. Fed2
1 : <0, 1, 10 , 50> ;

3. Fed2
2

: <0, 1, 20 , 50> ;

4. Fed2
3

: <0, 1, 30 , 50> ;

5. Fed2
4 : <0, 1, 40 , 50> ;

6. Fed2
5 : <0, 1, 50 , 50> ;

7. Fed3
1

: <0, 1, 10 , 50> ;

8. Fed3
2

: <0, 1, 20 , 50> ;

9. Fed3
3

: <0, 1, 30 , 50> ;

10. Fed3
4

: <0, 1, 40 , 50> ;

11. Fed3
5 : <0, 1, 50 , 50> ;

12. Fed4
1 : <0, 5, 50 , 50> .

To solve the second problem from the interdependence
explain in section 5.1, we should spread on the tasks
graph for two times hyper-period (2*50 milliseconds =
100 milliseconds). This technique transforms
interdependence between tasks Fed1 and Fed4 in
simple dependence between four subtasks. Indeed,
Fed11 is dependent with Fed42 and Fed12 is dependent
with Fed41. We obtain a set of 24 subtasks relies by
simple precedence constraints (see Figure 9) :
1. Fed1

1

: <0, 5, 50 , 100> ;

2. Fed1
2

: <0, 5, 100 , 100> ;

3. Fed2
1

: <0, 1, 10 , 100> ;

4. Fed2
2

: <0, 1, 20 , 100> ;

5. Fed2
3

: <0, 1, 30 , 100> ;

6. Fed2
4

: <0, 1, 40 , 100> ;

7. Fed2
5 : <0, 1, 50 , 100> ;

8. Fed2
6

: <0, 1, 60 , 100> ;

9. Fed2
7

: <0, 1, 70 , 100> ;

10. Fed2
8

: <0, 1, 80 , 100> ;

11. Fed2
9

: <0, 1, 90 , 100> ;

12. Fed2
10 : <0, 1, 100 , 100> ;

13. Fed3
1

: <0, 1, 10 , 100> ;

14. Fed3
2 : <0, 1, 20 , 100> ;

15. Fed3
3

: <0, 1, 30 , 100> ;

16. Fed3
4 : <0, 1, 40 , 100> ;

17. Fed3
5

: <0, 1, 50 , 100> ;

18. Fed3
6

: <0, 1, 60 , 100> ;

19. Fed3
7

: <0, 1, 70 , 100> ;

20. Fed3
8

: <0, 1, 80 , 100> ;

21. Fed3
9

: <0, 1, 90 , 100> ;

22. Fed3
10

: <0, 1, 100 , 100> ;

23. Fed4
1

: <0, 5, 50 , 100> ;

24. Fed4
2 : <0, 5, 100 , 100> .

Figure 9: Simple precedence constraints graph for
ONERA/CNES federation

This is easily verified using the CHEDDAR open
source tool [28] for instance. Priorities for the set of
subtasks are given in figure 9 (using deadline
monotonic analysis combined with Chetto techniques
for precedence).

5.3 Additional real-time mechanism for CERTI

The main problem from these techniques is to change
priority of CERTI processes for each periodic step of
simulation. This change must be apply not only on the
federates processes but also on the RTIAs processes.
To allow these priorities changes for each federate and
its associated RTIA (it is divided into sub-tasks, each
with its own priority), we have added to CERTI
interface different methods. Modification of priority is
also rely on the choice of real-time scheduling
algorithms for POSIX/Linux. Two real-time
algorithms, SCHED_FIFO and SCHED_RR, are
intended for time-critical applications that need precise
control over the way in which runnable processes are
selected for execution. Only processes with superuser
privileges can get a static priority higher than 0 (and
lower than 99 for Linux system) and can therefore be
scheduled under SCHED_FIFO or SCHED_RR. All
scheduling is preemptive: if a process with a higher
static priority gets ready to run, the current process will
be preempted and returned into its waiting list. In this
case, we use the SCHED_FIFO techniques which is
compatible with deadline monotonic hypothesis.

Another interface added in CERTI allows to use
affinity mechanism. CPU affinity is a scheduler
property that bonds a process to a given set of CPUs on
the system. The Linux scheduler will honor the given
CPU affinity and the process will not run any other
CPUs. However, we can be sure that on multi-
processor platform, we only have one processor for the

federation execution to respect our basic scheduling
assumptions (uni-processor scheduling).

We also use the mlockall mechanism for each federate
and its RTIA processes to disables memory paging into
the address space of the calling process. This includes
the pages of the code, data and stack segment, as well
as shared libraries, user space and kernel data, shared
memory and memory mapped files. All mapped pages
are guaranteed to be resident in RAM when the
mlockall system call returns successfully and they are
guaranteed to stay in RAM until the pages are
unlocked again or until the process terminates or starts
another program. Real-time applications require
deterministic timing, and, like scheduling, memory
paging is one major cause of unexpected program
execution delays.

6. Future Trends

6.1 Model formal extension to distributed case

In a distributed real-time system, the timely availability
of computational results is guaranteed only if the
underlying network supports timely delivery of
messages. That is, if the time at which a message is
sent and the length of the message, it should be
possible to predict the time at which the message will
be delivered to the destination. Such a requirement can
be satisfied only if the network ensures predictable
communication delays. Thus, to ensure the safety of a
real-time application implemented on a distributed
real-time system, the tasks (as well as the messages)
must be properly scheduled on each node (as well as
on each communication channel). We should
investigate a novel approach to take into account a
formal model for tasks (execution units) and also for
messages (communication units) from Saad-
Bouzefrane's work [29]. All communicating tasks
update their timing parameters (including the time of
initial activation ri of the task) by taking into account
messages timing parameters. We want to combine this
approach with Audsley's algorithm [30] on each node
for validation of the global distributed system
(Audsley's algorithm is the only optimal algorithm for
a set of periodic tasks with different initial activation
time). Indeed, we hope this new approach help for
validation of a distributed simulation using CERTI.

6.2 Add some deterministic mechanism for CERTI

CERTI is a software developed in C++. This language
is usually used to implement some RTI (MAK RTI,
DMSO RTI-NG, RTI KIT). Its benefits in term of
performance make it a good language for simulation
mechanism. However, this language have some gap for
real-time like memory allocation which implements
algorithm with non bounded time to compute in its

original version. We want to include some predictable
allocation techniques and algorithms like the TLSF
library [31], which source code is available under GPL
license.

7. References

[1] J.A.Stankovic: “Misconceptions about real-time
computing”, IEEE Computer Journal, 1988.

[2] Object Management Group: “Minimum CORBA -
Joint Revised”, OMG Document orbos/98-08-04,
1998.

[3] DMSO: “High Level Architecture Specifications”
Version 1.3. 1998.

[4] IEEE: “Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA). Std 1516.
2001.

[5] B. Bréholée, P. Siron: “CERTI: Evolutions of the
ONERA RTI Prototype” Fall Simulation
Interoperability Workshop. September 2002.

[6] P. Siron, E. Noulard, J.-Y. Rousselot: “CERTI”
www.cert.fr/CERTI. 2008.

[7] Object Management Group: “Real-Time CORBA
- Joint Revised Submission”, OMG Document
orbos/99-02-12, Febuary 1999.

[8] B.O.Gallmeister: “POSIX.4: programming for the
real world”, O'Reilly & Associates, Inc. 1995.

[9] R.Jansen, W.Huiskamp, J.Boomgaardt, M. Brassé:
“Real-time Scheduling of HLA Simulator
Components”, 2004.

[10] R.M.Fujimoto: “Zero Lookahead And
Repeatability In The High Level Architecture” In
Proceedings of the 1997 Spring Simulation
Interoperability Workshop, 1997.

[11] R.M.Fujimoto, T. McLean: “Repeatability in real-
time distributed simulation executions”
Proceedings of the fourteenth workshop on
Parallel and distributed simulation, 2000.

[12] E.Noulard, B.D'Ausbourg, P.Siron: “Running Real
Time Distributed Simulations under Linux and
CERTI”, European Simulation Interoperability
Workshop, 2007.

[13] R.M.Fujimoto: “Time Management in the High
Level Architecture” Simulation, 71, pp 388-400.
December 1998.

[14] K.M.Chandy, J.Misra: “Distributed Simulation: A
Case Study in Design and Verification of
Distributed Programs”, Software Engineering,
IEEE Transactions, 1979.

[15]F.Mattern: “Efficient algorithms for distributed
snapshots and global virtual time approximation”,
Journal of Parallel and Distributed Computing,
1993.

[16]B.Samadi: “Distributed simulation algorithms
andd performance analysis”, Phd thesis,
University of California, Los Angeles, 1985.

[17] T.McLean: “Hard Real-Time Simulations using
HLA” Proceedings of the Simulation
Interoperability Standards Organization (SISO)
Simulation Interoperability Workshop, 2001.

[18] T.McLean, R.Fujimoto : “Predictable Time
Management for Real-Time Distributed
Simulation” Proceedings of the seventeenth
workshop on Parallel and Distributed simulation,
2003.

[19] T.McLean, R.Fujimoto, B.Fitzgibbons:
“Middleware for real-time distributed
simulationsl”, Concurrency and Computation:
Practice and Experience, 2004.

[20] H.Zao, N.D.Georganas: “Architecture proposal for
Real-Time RTI” Proceedings of the Simulation
Interoperability Standards Organization (SISO)
Simulation Interoperability Workshop, 2000.

[21] A.Boukerche, L.Kaiyuan: “A Novel Approach to
Real-Time RTI Based Distributed Simulation
System” Proceedings of the 38th annual
Symposium on Simulation, 2005.

[22] H.Zao: “HLA Streaming and Real-Time
Extensions” Phd thesis, School of Information
Technology Engineering, University of Ottawa,
2001.

[23]D.Bruzman, M.Zyda, K.Watsen,
M.Macedonia: “Virtual Reality Transfer Protocol
Design rational” Proceedings of the sixth IEEE
Workshop on Enabling Technologies, 1997.

[24] C.L. Liu, J.W.Layland: “Scheduling
algorithms for multiprogramming in a hard real-
time environnment”, Journal of the Association for
Computing Machinery, 1973.

[25] J. Y. T.Leung, J.Whitehead: “On the complexity
of fixed-priority scheduling of periodic, real-time
tasks”, Journal of Performance Evaluation, 1982.

[26] H.Chetto, M.Silly, T.Bouchentouf: “Dynamic
scheduling of real-time tasks under precedence
constraints”, Real-Time Systems Journal, 1990

[27] J.Forget, F.Boniol, E.Grolleau, D.Lesens,
C.Pagetti : “Scheduling Dependent Periodic Tasks
Without Synchronization Mechanisms”, 16th
IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, April 2010.

[28] F.Singhoff, J.Legrand, L.Nana, L.Marcé:
“Cheddar : a flexible Real Time Scheduling
framework”, Ada Letters, 2004.

[29]S.Saad-Bouzefrane: “Etude temporelle des
Applications Temps Réel Distribuées à
Contraintes Strictes basée sur une Analyse
d'Ordonnançabilité”, Phd thesis, Université de
Poitiers, 1998.

[30]N.C.Audsley, “Optimal priority assignment and
feasibility of static priority tasks with arbitrary
start time”, Technical Report, Real-Time Systems
Research Group, Dept. of Computer Science,
University of York, England, 1991.

http://www.cert.fr/CERTI

[31] M.Masmano, I.Ripoll, A.Crespo, J. Rea: “TLSF:
A New Dynamic Memory Allocator for Real-
Time Systems”, Real-Time Systems, Euromicro
Conference on, 2004.

Author Biographies

PIERRE SIRON was graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1980, and received his doctorate in
1984. He is currently a Research Engineer at ONERA
and he works in parallel and distributed systems. He is
leader of the CERTI Project. He is also Professor at the
University of Toulouse, ISAE, and the head of the
computer science program of the SUPAERO formation
(French High School for Engineers in Aerospace
Sciences).

MARTIN ADELANTADO was graduated from a
 French High School for Engineers in Computer
 Science (ENSEEIHT) in 1979, and received his

 doctorate in 1981. He is an ONERA (French
Aeronautics and Space Research Center) Research
Engineer and works at the Information Processing and
Modelling Department (DTIM). His fields of interest
include simulation, real-time systems and distributed
systems.

JEAN-BAPTISTE CHAUDRON received the DEA
 in Artificial Intelligence (equivalent to fifth years of
University studies) in Université Paul Sabatier,
Toulouse, France. He pursues a PhD degree in
computer science at ONERA/DTIM/SER, Toulouse,
France. He is currently working on the extension of the
High Level Architecture (HLA) towards the world of
real-time.

