

avr-libc Reference Manual
1.0.5

Generated by Doxygen 1.3.8

Sun Dec 19 22:53:56 2004

CONTENTS i

Contents

1 AVR Libc 1

1.1 Supported Devices. 2

2 avr-libc Module Index 4

2.1 avr-libc Modules . 4

3 avr-libc Data Structure Index 5

3.1 avr-libc Data Structures. 5

4 avr-libc Page Index 5

4.1 avr-libc Related Pages. 5

5 avr-libc Module Documentation 6

5.1 Bootloader Support Utilities. 6

5.1.1 Detailed Description. 6

5.1.2 Define Documentation. 7

5.2 CRC Computations. 9

5.2.1 Detailed Description. 9

5.2.2 Function Documentation. 10

5.3 EEPROM handling. 11

5.3.1 Detailed Description. 11

5.3.2 Define Documentation. 12

5.3.3 Function Documentation. 13

5.4 AVR device-specific IO definitions. 14

5.5 Program Space String Utilities. 15

5.5.1 Detailed Description. 15

5.5.2 Define Documentation. 16

5.5.3 Function Documentation. 19

5.6 Additional notes from<avr/sfr_defs.h> 22

5.7 Power Management and Sleep Modes. 23

5.7.1 Detailed Description. 23

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

CONTENTS ii

5.7.2 Define Documentation. 24

5.7.3 Function Documentation. 24

5.8 Watchdog timer handling. 25

5.8.1 Detailed Description. 25

5.8.2 Define Documentation. 25

5.9 Character Operations. 27

5.9.1 Detailed Description. 27

5.9.2 Function Documentation. 28

5.10 System Errors (errno). 29

5.10.1 Detailed Description. 29

5.10.2 Define Documentation. 30

5.11 Integer Type conversions. 30

5.12 Mathematics. 30

5.12.1 Detailed Description. 30

5.12.2 Define Documentation. 31

5.12.3 Function Documentation. 32

5.13 Setjmp and Longjmp. 35

5.13.1 Detailed Description. 35

5.13.2 Function Documentation. 36

5.14 Standard Integer Types. 37

5.14.1 Detailed Description. 37

5.14.2 Typedef Documentation. 38

5.15 Standard IO facilities. 39

5.15.1 Detailed Description. 39

5.15.2 Define Documentation. 42

5.15.3 Function Documentation. 43

5.16 General utilities. 53

5.16.1 Detailed Description. 53

5.16.2 Define Documentation. 55

5.16.3 Typedef Documentation. 56

5.16.4 Function Documentation. 56

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

CONTENTS iii

5.16.5 Variable Documentation. 64

5.17 Strings. 64

5.17.1 Detailed Description. 64

5.17.2 Function Documentation. 65

5.18 Interrupts and Signals. 72

5.18.1 Detailed Description. 72

5.18.2 Define Documentation. 76

5.18.3 Function Documentation. 77

5.19 Special function registers. 77

5.19.1 Detailed Description. 77

5.19.2 Define Documentation. 79

6 avr-libc Data Structure Documentation 82

6.1 div_t Struct Reference. 82

6.1.1 Detailed Description. 82

6.2 ldiv_t Struct Reference. 82

6.2.1 Detailed Description. 82

7 avr-libc Page Documentation 83

7.1 Acknowledgments . 83

7.2 avr-libc and assembler programs. 84

7.2.1 Introduction. 84

7.2.2 Invoking the compiler . 84

7.2.3 Example program. 85

7.2.4 Pseudo-ops and operators. 88

7.3 Frequently Asked Questions. 90

7.3.1 FAQ Index . 90

7.3.2 My program doesn’t recognize a variable updated within an
interrupt routine . 91

7.3.3 I get "undefined reference to..." for functions like "sin()". . . 91

7.3.4 How to permanently bind a variable to a register?. 91

7.3.5 How to modify MCUCR or WDTCR early?. 92

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

CONTENTS iv

7.3.6 What is all this _BV() stuff about?. 92

7.3.7 Can I use C++ on the AVR?. 93

7.3.8 Shouldn’t I initialize all my variables?. 94

7.3.9 Why do some 16-bit timer registers sometimes get trashed?. 94

7.3.10 How do I use a #define’d constant in an asm statement?. . . . 95

7.3.11 Why does the PC randomly jump around when single-stepping
through my program in avr-gdb?. 96

7.3.12 How do I trace an assembler file in avr-gdb?. 96

7.3.13 How do I pass an IO port as a parameter to a function?. . . . 98

7.3.14 What registers are used by the C compiler?. 100

7.3.15 How do I put an array of strings completely in ROM?. 101

7.3.16 How to use external RAM?. 103

7.3.17 Which -O flag to use?. 104

7.3.18 How do I relocate code to a fixed address?. 105

7.3.19 My UART is generating nonsense! My ATmega128 keeps
crashing! Port F is completely broken!. 105

7.3.20 Why do all my "foo...bar" strings eat up the SRAM?. 106

7.3.21 Why does the compiler compile an 8-bit operation that uses
bitwise operators into a 16-bit operation in assembly?. 107

7.3.22 How to detect RAM memory and variable overlap problems?. 107

7.3.23 Is it really impossible to program the ATtinyXX in C?. . . . 108

7.3.24 What is this "clock skew detected" messsage?. 108

7.3.25 Why are (many) interrupt flags cleared by writing a logical 1?109

7.3.26 Why have "programmed" fuses the bit value 0?. 109

7.3.27 Which AVR-specific assembler operators are available?. . . . 110

7.4 Inline Asm . 110

7.4.1 GCC asm Statement. 111

7.4.2 Assembler Code. 112

7.4.3 Input and Output Operands. 113

7.4.4 Clobbers . 117

7.4.5 Assembler Macros. 119

7.4.6 C Stub Functions. 120

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

CONTENTS v

7.4.7 C Names Used in Assembler Code. 121

7.4.8 Links . 122

7.5 Using malloc() . 122

7.5.1 Introduction. 122

7.5.2 Internal vs. external RAM. 123

7.5.3 Tunables for malloc(). 124

7.5.4 Implementation details. 125

7.6 Release Numbering and Methodology. 126

7.6.1 Release Version Numbering Scheme. 126

7.6.2 Releasing AVR Libc. 127

7.7 Memory Sections. 129

7.7.1 The .text Section. 130

7.7.2 The .data Section. 130

7.7.3 The .bss Section. 130

7.7.4 The .eeprom Section. 130

7.7.5 The .noinit Section. 131

7.7.6 The .initN Sections. 131

7.7.7 The .finiN Sections. 132

7.7.8 Using Sections in Assembler Code. 133

7.7.9 Using Sections in C Code. 134

7.8 Installing the GNU Tool Chain. 134

7.8.1 Required Tools. 135

7.8.2 Optional Tools . 135

7.8.3 GNU Binutils for the AVR target. 136

7.8.4 GCC for the AVR target. 137

7.8.5 AVR Libc . 138

7.8.6 UISP . 139

7.8.7 Avrdude. 139

7.8.8 GDB for the AVR target. 139

7.8.9 Simulavr . 140

7.8.10 AVaRice. 140

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

1 AVR Libc 1

7.9 Using the avrdude program. 141

7.10 Using the GNU tools. 142

7.10.1 Options for the C compiler avr-gcc. 143

7.10.2 Options for the assembler avr-as. 147

7.10.3 Controlling the linker avr-ld. 149

7.11 A simple project. 151

7.11.1 The Project. 151

7.11.2 The Source Code. 153

7.11.3 Compiling and Linking. 155

7.11.4 Examining the Object File. 156

7.11.5 Linker Map Files. 159

7.11.6 Intel Hex Files . 161

7.11.7 Make Build the Project. 161

7.12 Example using the two-wire interface (TWI). 163

7.12.1 Introduction into TWI . 163

7.12.2 The TWI example project. 164

7.12.3 The Source Code. 164

7.13 Todo List .177

7.14 Deprecated List. 177

1 AVR Libc

The latest version of this document is always available from
http://savannah.nongnu.org/projects/avr-libc/

The AVR Libc package provides a subset of the standard C library for Atmel AVR 8-bit
RISC microcontrollers. In addition, the library provides the basic startup code needed
by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/

1.1 Supported Devices 2

list, so you will usually be able to get your problem resolved. You can subscribe to
the list athttp://www.avr1.org/mailman/listinfo/avr-gcc-list/.
Before posting to the list, you might want to try reading theFrequently Asked Ques-
tionschapter of this document.

Note:
This document is a work in progress. As such, it may contain in-
correct information. If you find a mistake, please send an email to
avr-libc-dev@nongnu.org describing the mistake. Also, send us an email
if you find that a specific topic is missing from the document.

1.1 Supported Devices

The following is a list of AVR devices currently supported by the library.

AT90S Type Devices:

• at90s1200[1]

• at90s2313

• at90s2323

• at90s2333

• at90s2343

• at90s4414

• at90s4433

• at90s4434

• at90s8515

• at90c8534

• at90s8535

ATmega Type Devices:

• atmega8

• atmega103

• atmega128

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://www.avr1.org/mailman/listinfo/avr-gcc-list/.

mailto:avr-libc-dev@nongnu.org

1.1 Supported Devices 3

• atmega16

• atmega161

• atmega162

• atmega163

• atmega169

• atmega32

• atmega323

• atmega64 [untested]

• atmega8515 [untested]

• atmega8535 [untested]

ATtiny Type Devices:

• attiny11[1]

• attiny12[1]

• attiny15[1]

• attiny22

• attiny26

• attiny28[1]

Misc Devices:

• at94K[2]

• at76c711[3]

• at43usb320

• at43usb355

• at86rf401

Note:
[1] Assembly only. There is no direct support for these devices to be programmed
in C since they do not have a RAM based stack. Still, it could be possible to
program them in C, see theFAQ for an option.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

2 avr-libc Module Index 4

Note:
[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note:
[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.

2 avr-libc Module Index

2.1 avr-libc Modules

Here is a list of all modules:

Bootloader Support Utilities 6

CRC Computations 9

EEPROM handling 11

AVR device-specific IO definitions 14

Program Space String Utilities 15

Power Management and Sleep Modes 23

Watchdog timer handling 25

Character Operations 27

System Errors (errno) 29

Integer Type conversions 30

Mathematics 30

Setjmp and Longjmp 35

Standard Integer Types 37

Standard IO facilities 39

General utilities 53

Strings 64

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

3 avr-libc Data Structure Index 5

Interrupts and Signals 72

Special function registers 77

Additional notes from <avr/sfr_defs.h> 22

3 avr-libc Data Structure Index

3.1 avr-libc Data Structures

Here are the data structures with brief descriptions:

div_t 82

ldiv_t 82

4 avr-libc Page Index

4.1 avr-libc Related Pages

Here is a list of all related documentation pages:

Acknowledgments 83

avr-libc and assembler programs 84

Frequently Asked Questions 90

Inline Asm 110

Using malloc() 122

Release Numbering and Methodology 126

Memory Sections 129

Installing the GNU Tool Chain 134

Using the avrdude program 141

Using the GNU tools 142

A simple project 151

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5 avr-libc Module Documentation 6

Example using the two-wire interface (TWI) 163

Todo List 177

Deprecated List 177

5 avr-libc Module Documentation

5.1 Bootloader Support Utilities

5.1.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

The macros in this module provide a C language interface to the bootloader support
functionality of certain AVR processors. These macros are designed to work with all
sizes of flash memory.

Note:
Not all AVR processors provide bootloader support. See your processor datasheet
to see if it provides bootloader support.

Todo
From email with Marek: On smaller devices (all except ATmega64/128), __SPM_-
REG is in the I/O space, accessible with the shorter "in" and "out" instructions -
since the boot loader has a limited size, this could be an important optimization.

API Usage Example
The following code shows typical usage of the boot API.

#include <avr/interrupt.h>
#include <avr/pgmspace.h>

#define ADDRESS 0x1C000UL

void boot_test(void)
{

unsigned char buffer[8];

cli();

// Erase page.
boot_page_erase((unsigned long)ADDRESS);
while(boot_rww_busy())
{

boot_rww_enable();

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.1 Bootloader Support Utilities 7

}

// Write data to buffer a word at a time. Note incrementing address
// by 2. SPM_PAGESIZE is defined in the microprocessor IO header file.
for(unsigned long i = ADDRESS; i < ADDRESS + SPM_PAGESIZE; i += 2)
{

boot_page_fill(i, (i-ADDRESS) + ((i-ADDRESS+1) << 8));
}

// Write page.
boot_page_write((unsigned long)ADDRESS);
while(boot_rww_busy())
{

boot_rww_enable();
}

sei();

// Read back the values and display.
// (The show() function is undefined and is used here as an example
// only.)
for(unsigned long i = ADDRESS; i < ADDRESS + 256; i++)
{

show(utoa(pgm_read_byte(i), buffer, 16));
}

return;
}

Defines

• #defineBOOTLOADER_SECTION__attribute__ ((section (".bootloader")))
• #defineboot_spm_interrupt_enable() (__SPM_REG|= (uint8_t)_BV(SPMIE))
• #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_-

BV(SPMIE))
• #defineboot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
• #defineboot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
• #defineboot_spm_busy() (__SPM_REG & (uint8_t)_BV(SPMEN))
• #defineboot_spm_busy_wait() do{}while(boot_spm_busy())
• #defineboot_page_fill(address, data) __boot_page_fill_normal(address, data)
• #defineboot_page_erase(address) __boot_page_erase_normal(address)
• #defineboot_page_write(address) __boot_page_write_normal(address)
• #defineboot_rww_enable() __boot_rww_enable()
• #defineboot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)

5.1.2 Define Documentation

5.1.2.1 #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_-
BV(SPMIE))

Check if the SPM interrupt is enabled.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.1 Bootloader Support Utilities 8

5.1.2.2 #define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)

Set the bootloader lock bits.

Parameters:
lock_bits A mask of which Boot Loader Lock Bits to set.

Note:
In this context, a ’set bit’ will be written to a zero value.

For example, to disallow the SPM instruction from writing to the Boot Loader memory
section of flash, you would do this macro as such:

boot_lock_bits_set (_BV (BLB12));

And to remove any SPM restrictions, you would do this:

boot_lock_bits_set (0);

5.1.2.3 #define boot_page_erase(address) __boot_page_erase_normal(address)

Erase the flash page that contains address.

Note:
address is a byte address in flash, not a word address.

5.1.2.4 #define boot_page_fill(address, data) __boot_page_fill_normal(address,
data)

Fill the bootloader temporary page buffer for flash address with data word.

Note:
The address is a byte address. The data is a word. The AVR writes data to the
buffer a word at a time, but addresses the buffer per byte! So, increment your
address by 2 between calls, and send 2 data bytes in a word format! The LSB of
the data is written to the lower address; the MSB of the data is written to the higher
address.

5.1.2.5 #define boot_page_write(address) __boot_page_write_normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note:
address is a byte address in flash, not a word address.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.2 CRC Computations 9

5.1.2.6 #define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__-
COMMON_ASB))

Check if the RWW section is busy.

5.1.2.7 #define boot_rww_enable() __boot_rww_enable()

Enable the Read-While-Write memory section.

5.1.2.8 #define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(SPMEN))

Check if the SPM instruction is busy.

5.1.2.9 #define boot_spm_busy_wait() do{}while(boot_spm_busy())

Wait while the SPM instruction is busy.

5.1.2.10 #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)∼_-
BV(SPMIE))

Disable the SPM interrupt.

5.1.2.11 #define boot_spm_interrupt_enable() (__SPM_REG|= (uint8_t)_-
BV(SPMIE))

Enable the SPM interrupt.

5.1.2.12 #define BOOTLOADER_SECTION __attribute__ ((section (".boot-
loader")))

Used to declare a function or variable to be placed into a new section called .boot-
loader. This section and its contents can then be relocated to any address (such as the
bootloader NRWW area) at link-time.

5.2 CRC Computations

5.2.1 Detailed Description

#include <avr/crc16.h>

This header file provides a optimized inline functions for calculating 16 bit cyclic re-
dundancy checks (CRC) using common polynomials.

References:

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.2 CRC Computations 10

See the Dallas Semiconductor app note 27 for 8051 assembler example and general
CRC optimization suggestions. The table on the last page of the app note is the key to
understanding these implementations.

Jack Crenshaw’s "Impementing CRCs" article in the January 1992 isue ofEmbedded
Systems Programming. This may be difficult to find, but it explains CRC’s in very clear
and concise terms. Well worth the effort to obtain a copy.

Functions

• __inline__uint16_t_crc16_update(uint16_t__crc,uint8_t__data)
• __inline__uint16_t_crc_xmodem_update(uint16_t__crc,uint8_t__data)
• __inline__uint16_t_crc_ccitt_update(uint16_t__crc,uint8_t__data)

5.2.2 Function Documentation

5.2.2.1 __inline__ uint16_t _crc16_update (uint16_t __crc, uint8_t __data)
[static]

Optimized CRC-16 calcutation.

Polynomial: x∧16 + x∧15 + x∧2 + 1 (0xa001)

Initial value: 0xffff

This CRC is normally used in disk-drive controllers.

5.2.2.2 __inline__uint16_t _crc_ccitt_update (uint16_t __crc, uint8_t __data)
[static]

Optimized CRC-CCITT calculation.

Polynomial: x∧16 + x∧12 + x∧5 + 1 (0x8408)

Initial value: 0xffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Note:
Although the CCITT polynomial is the same as that used by the Xmodem protocol,
they are quite different. The difference is in how the bits are shifted through the

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.3 EEPROM handling 11

alorgithm. Xmodem shifts the MSB of the CRC and the input first, while CCITT
shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.

uint16_t
crc_ccitt_update (uint16_t crc, uint8_t data)
{

data ^= lo8 (crc);
data ^= data << 4;

return ((((uint16_t)data << 8) | hi8 (crc)) ^ (uint8_t)(data >> 4)
^ ((uint16_t)data << 3));

}

5.2.2.3 __inline__uint16_t _crc_xmodem_update (uint16_t __crc, uint8_t __-
data) [static]

Optimized CRC-XMODEM calculation.

Polynomial: x∧16 + x∧12 + x∧5 + 1 (0x1021)

Initial value: 0x0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.

uint16_t
crc_xmodem_update (uint16_t crc, uint8_t data)
{

int i;

crc = crc ^ ((uint16_t)data << 8);
for (i=0; i<8; i++)
{

if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;

else
crc <<= 1;

}

return crc;
}

5.3 EEPROM handling

5.3.1 Detailed Description

#include <avr/eeprom.h>

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.3 EEPROM handling 12

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Note:
All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending, time-
critical applications should first poll the EEPROM e. g. usingeeprom_is_ready()
before attempting any actual I/O.
This library will notwork with the ATmega169 since this device has the EEPROM
IO ports at different locations!

avr-libc declarations

• #defineeeprom_is_ready() bit_is_clear(EECR, EEWE)
• #defineeeprom_busy_wait() do {} while (!eeprom_is_ready ())
• uint8_teeprom_read_byte(constuint8_t∗addr)
• uint16_teeprom_read_word(constuint16_t∗addr)
• void eeprom_read_block(void ∗buf, const void∗addr, size_t n)
• void eeprom_write_byte(uint8_t∗addr,uint8_tval)
• void eeprom_write_word(uint16_t∗addr,uint16_tval)
• void eeprom_write_block(const void∗buf, void∗addr, size_t n)

Backwards compatibility defines

• #defineeeprom_rb(addr) eeprom_read_byte ((uint8_t∗)(addr))
• #defineeeprom_rw(addr) eeprom_read_word ((uint16_t∗)(addr))
• #defineeeprom_wb(addr, val) eeprom_write_byte ((uint8_t ∗)(addr), (uint8_-

t)(val))

IAR C compatibility defines

• #define_EEPUT(addr, val) eeprom_wb(addr, val)
• #define_EEGET(var, addr) (var) = eeprom_rb(addr)

5.3.2 Define Documentation

5.3.2.1 #define _EEGET(var, addr) (var) = eeprom_rb(addr)

Read a byte from EEPROM.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.3 EEPROM handling 13

5.3.2.2 #define _EEPUT(addr, val) eeprom_wb(addr, val)

Write a byte to EEPROM.

5.3.2.3 #define eeprom_busy_wait() do {} while (!eeprom_is_ready ())

Loops until the eeprom is no longer busy.

Returns:
Nothing.

5.3.2.4 #define eeprom_is_ready() bit_is_clear(EECR, EEWE)

Returns:
1 if EEPROM is ready for a new read/write operation, 0 if not.

5.3.2.5 #define eeprom_rb(addr) eeprom_read_byte ((uint8_t ∗)(addr))

Deprecated
Useeeprom_read_byte()in new programs.

5.3.2.6 #define eeprom_rw(addr) eeprom_read_word ((uint16_t ∗)(addr))

Deprecated
Useeeprom_read_word()in new programs.

5.3.2.7 #define eeprom_wb(addr, val) eeprom_write_byte ((uint8_t ∗)(addr),
(uint8_t)(val))

Deprecated
Useeeprom_write_byte()in new programs.

5.3.3 Function Documentation

5.3.3.1 void eeprom_read_block (void∗ buf, const void∗ addr, size_tn)

Read a block ofn bytes from EEPROM addressaddr to buf .

5.3.3.2 uint8_t eeprom_read_byte (constuint8_t ∗ addr)

Read one byte from EEPROM addressaddr .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.4 AVR device-specific IO definitions 14

5.3.3.3 uint16_t eeprom_read_word (constuint16_t ∗ addr)

Read one 16-bit word (little endian) from EEPROM addressaddr .

5.3.3.4 void eeprom_write_block (const void∗ buf, void ∗ addr, size_tn)

Write a block ofn bytes to EEPROM addressaddr from buf .

5.3.3.5 void eeprom_write_byte (uint8_t ∗ addr, uint8_t val)

Write a byteval to EEPROM addressaddr .

5.3.3.6 void eeprom_write_word (uint16_t ∗ addr, uint16_t val)

Write a wordval to EEPROM addressaddr .

5.4 AVR device-specific IO definitions

#include <avr/io.h>

This header file includes the apropriate IO definitions for the device that has been spec-
ified by the-mmcu= compiler command-line switch. This is done by diverting to the
appropriate file<avr/io XXXX.h > which should never be included directly. Some
register names common to all AVR devices are defined directly within<avr/io.h >,
but most of the details come from the respective include file.

Note that this file always includes

#include <avr/sfr_defs.h>

SeeSpecial function registersfor the details.

Included are definitions of the IO register set and their respective bit values as specified
in the Atmel documentation. Note that Atmel is not very consistent in its naming
conventions, so even identical functions sometimes get different names on different
devices.

Also included are the specific names useable for interrupt function definitions as docu-
mentedhere.

Finally, the following macros are defined:

• RAMEND

A constant describing the last on-chip RAM location.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 15

• XRAMEND

A constant describing the last possible location in RAM. This is equal to RA-
MEND for devices that do not allow for external RAM.

• E2END

A constant describing the address of the last EEPROM cell.

• FLASHEND

A constant describing the last byte address in flash ROM.

• SPM_PAGESIZE

For devices with bootloader support, the flash pagesize (in bytes) to be used for
theSPMinstruction.

5.5 Program Space String Utilities

5.5.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either theLPMor ELPMinstructions.

Note:
These functions are an attempt to provide some compatibility with header files
that come with IAR C, to make porting applications between different compilers
easier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).
If you are working with strings which are completely based in ram, use the stan-
dard string functions described inStrings.
If possible, put your constant tables in the lower 64K and usepgm_read_byte_-
near()or pgm_read_word_near()instead ofpgm_read_byte_far()or pgm_read_-
word_far()since it is more efficient that way, and you can still use the upper 64K
for executable code.

Backwards compatibility macros

• #definePRG_RDB(addr) pgm_read_byte(addr)

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 16

Defines

• #definePSTR(s) ({static char __c[] PROGMEM = (s); &__c[0];})
• #definepgm_read_byte_near(address_short) __LPM((uint16_t)(address_short))
• #define pgm_read_word_near(address_short) __LPM_word((uint16_-

t)(address_short))
• #define pgm_read_dword_near(address_short) __LPM_dword((uint16_-

t)(address_short))
• #definepgm_read_byte_far(address_long) __ELPM((uint32_t)(address_long))
• #define pgm_read_word_far(address_long) __ELPM_word((uint32_-

t)(address_long))
• #define pgm_read_dword_far(address_long) __ELPM_dword((uint32_-

t)(address_long))
• #definepgm_read_byte(address_short) pgm_read_byte_near(address_short)
• #definepgm_read_word(address_short) pgm_read_word_near(address_short)
• #definepgm_read_dword(address_short) pgm_read_dword_near(address_short)
• #definePGM_Pconst prog_char∗
• #definePGM_VOID_Pconst prog_void∗

Functions

• void ∗ memcpy_P(void ∗, PGM_VOID_P, size_t)
• int strcasecmp_P(const char∗, PGM_P) __ATTR_PURE__
• char∗ strcat_P(char∗, PGM_P)
• int strcmp_P(const char∗, PGM_P) __ATTR_PURE__
• char∗ strcpy_P(char∗, PGM_P)
• size_tstrlcat_P(char∗, PGM_P, size_t)
• size_tstrlcpy_P(char∗, PGM_P, size_t)
• size_tstrlen_P(PGM_P) __ATTR_CONST__
• int strncasecmp_P(const char∗, PGM_P, size_t) __ATTR_PURE__
• char∗ strncat_P(char∗, PGM_P, size_t)
• int strncmp_P(const char∗, PGM_P, size_t) __ATTR_PURE__
• char∗ strncpy_P(char∗, PGM_P, size_t)

5.5.2 Define Documentation

5.5.2.1 #define PGM_P const prog_char∗

Used to declare a variable that is a pointer to a string in program space.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 17

5.5.2.2 #define pgm_read_byte(address_short) pgm_read_byte_near(address_-
short)

Read a byte from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.3 #define pgm_read_byte_far(address_long) __ELPM((uint32_-
t)(address_long))

Read a byte from the program space with a 32-bit (far) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.4 #define pgm_read_byte_near(address_short) __LPM((uint16_-
t)(address_short))

Read a byte from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.5 #define pgm_read_dword(address_short) pgm_read_dword_-
near(address_short)

Read a double word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.6 #define pgm_read_dword_far(address_long) __ELPM_dword((uint32_-
t)(address_long))

Read a double word from the program space with a 32-bit (far) address.

Note:
The address is a byte address. The address is in the program space.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 18

5.5.2.7 #define pgm_read_dword_near(address_short) __LPM_-
dword((uint16_t)(address_short))

Read a double word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.8 #define pgm_read_word(address_short) pgm_read_word_-
near(address_short)

Read a word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.9 #define pgm_read_word_far(address_long) __ELPM_word((uint32_-
t)(address_long))

Read a word from the program space with a 32-bit (far) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.10 #define pgm_read_word_near(address_short) __LPM_word((uint16_-
t)(address_short))

Read a word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.11 #define PGM_VOID_P const prog_void∗

Used to declare a generic pointer to an object in program space.

5.5.2.12 #define PRG_RDB(addr) pgm_read_byte(addr)

Deprecated
Usepgm_read_byte()in new programs.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 19

5.5.2.13 #define PSTR(s) ({static char __c[] PROGMEM = (s); &__c[0];})

Used to declare a static pointer to a string in program space.

5.5.3 Function Documentation

5.5.3.1 void∗ memcpy_P (void∗ dest, PGM_VOID_P src, size_tn)

Thememcpy_P()function is similar tomemcpy(), except the src string resides in pro-
gram space.

Returns:
Thememcpy_P()function returns a pointer to dest.

5.5.3.2 int strcasecmp_P (const char∗ s1, PGM_P s2)

Compare two strings ignoring case.

Thestrcasecmp_P()function compares the two strings s1 and s2, ignoring the case of
the characters.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Returns:
Thestrcasecmp_P()function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.5.3.3 char∗ strcat_P (char∗ dest, PGM_P src)

Thestrcat_P()function is similar tostrcat()except that thesrc string must be located
in program space (flash).

Returns:
Thestrcat()function returns a pointer to the resulting stringdest.

5.5.3.4 int strcmp_P (const char∗ s1, PGM_P s2)

The strcmp_P()function is similar tostrcmp()except that s2 is pointer to a string in
program space.

Returns:
Thestrcmp_P()function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater than s2.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 20

5.5.3.5 char∗ strcpy_P (char∗ dest, PGM_P src)

Thestrcpy_P()function is similar tostrcpy()except that src is a pointer to a string in
program space.

Returns:
Thestrcpy_P()function returns a pointer to the destination string dest.

5.5.3.6 size_t strlcat_P (char∗ dst, PGM_P, size_tsiz)

Concatenate two strings.

Thestrlcat_P()function is similar tostrlcat(), except that thesrcstring must be located
in program space (flash).

Appends src to string dst of size siz (unlikestrncat(), siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unless siz<=
strlen(dst)).

Returns:
Thestrlcat_P()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval
>= siz, truncation occurred.

5.5.3.7 size_t strlcpy_P (char∗ dst, PGM_P, size_tsiz)

Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:
Thestrlcpy_P()function returns strlen(src). If retval>= siz, truncation occurred.

5.5.3.8 size_t strlen_P (PGM_Psrc)

The strlen_P() function is similar to strlen(), except that src is a pointer to a string in
program space.

Returns:
The strlen() function returns the number of characters in src.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.5 Program Space String Utilities 21

5.5.3.9 int strncasecmp_P (const char∗ s1, PGM_P s2, size_tn)

Compare two strings ignoring case.

Thestrncasecmp_P()function is similar tostrcasecmp_P(), except it only compares the
first n characters of s1.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

n The maximum number of bytes to compare.

Returns:
Thestrcasecmp_P()function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.5.3.10 char∗ strncat_P (char∗ dest, PGM_P src, size_tlen)

Concatenate two strings.

Thestrncat_P()function is similar tostrncat(), except that thesrcstring must be located
in program space (flash).

Returns:
Thestrncat_P()function returns a pointer to the resulting string dest.

5.5.3.11 int strncmp_P (const char∗ s1, PGM_P s2, size_tn)

Thestrncmp_P()function is similar tostrcmp_P()except it only compares the first (at
most) n characters of s1 and s2.

Returns:
Thestrncmp_P()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.5.3.12 char∗ strncpy_P (char∗ dest, PGM_P src, size_tn)

Thestrncpy_P()function is similar tostrcpy_P()except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.6 Additional notes from <avr/sfr_defs.h> 22

Returns:
Thestrncpy_P()function returns a pointer to the destination string dest.

5.6 Additional notes from <avr/sfr_defs.h>

The <avr/sfr_defs .h> file is included by all of the<avr/ioXXXX .h> files,
which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on the_SFR_ASM_COMPATdefine.
Some examples from<avr/iom128 .h> to show how to define such macros:

#define PORTA _SFR_IO8(0x1b)
#define TCNT1 _SFR_IO16(0x2c)
#define PORTF _SFR_MEM8(0x61)
#define TCNT3 _SFR_MEM16(0x88)

If _SFR_ASM_COMPATis not defined, C programs can use names likePORTAdirectly
in C expressions (also on the left side of assignment operators) and GCC will do the
right thing (use short I/O instructions if possible). The__SFR_OFFSETdefinition is
not used in any way in this case.

Define_SFR_ASM_COMPATas 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (∗.S) source files, so it is done automatically if__ASSEMBLER__is defined. By
default, all addresses are defined as if they were memory addresses (used inlds/sts
instructions). To use these addresses inin/out instructions, you must subtract 0x20
from them.

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define __SFR_OFFSET 0

This automatically subtracts 0x20 from I/O space addresses, but it’s a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, the__SFR_OFFSETdefinition is no longer necessary
and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRat different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEM8(0x68)

#if _SFR_IO_REG_P(SPMCR)
out _SFR_IO_ADDR(SPMCR), r24

#else
sts _SFR_MEM_ADDR(SPMCR), r24

#endif

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.7 Power Management and Sleep Modes 23

You can use thein/out/cbi/sbi/sbic/sbis instructions, without the_SFR_-
IO_REG_P test, if you know that the register is in the I/O space (as withSREG, for
example). If it isn’t, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define__SFR_OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresses (soSREGis 0x5f), and (if code size and
speed are not important, and you don’t like the ugly #if above) you can always use
lds/sts to access them. But, this will not work if__SFR_OFFSET!= 0x20, so use a
different macro (defined only if__SFR_OFFSET== 0x20) for safety:

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations of_SFR_ASM_COMPATand__SFR_OFFSETare
supported - the_SFR_ADDR(SPMCR)macro can be used to get the address of the
SPMCRregister (0x57 or 0x68 depending on device).

The old inp()/outp() macros are still supported, but not recommended to use in new
code. The order ofoutp()arguments is confusing.

5.7 Power Management and Sleep Modes

5.7.1 Detailed Description

#include <avr/sleep.h>

Use of theSLEEP instruction can allow your application to reduce it’s power com-
sumption considerably. AVR devices can be put into different sleep modes by chang-
ing theSMnbits of theMCUControl Register (MCUCR). Refer to the datasheet for the
details relating to the device you are using.

Sleep Modes

Note:
Some of these modes are not available on all devices. See the datasheet for target
device for the available sleep modes.

• #defineSLEEP_MODE_IDLE0
• #defineSLEEP_MODE_ADC_BV(SM0)
• #defineSLEEP_MODE_PWR_DOWN_BV(SM1)
• #defineSLEEP_MODE_PWR_SAVE(_BV(SM0) | _BV(SM1))
• #defineSLEEP_MODE_STANDBY(_BV(SM1) | _BV(SM2))
• #define SLEEP_MODE_EXT_STANDBY (_BV(SM0) | _BV(SM1) | _-

BV(SM2))

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.7 Power Management and Sleep Modes 24

Sleep Functions

• void set_sleep_mode(uint8_tmode)
• void sleep_mode(void)

5.7.2 Define Documentation

5.7.2.1 #define SLEEP_MODE_ADC _BV(SM0)

ADC Noise Reduction Mode.

5.7.2.2 #define SLEEP_MODE_EXT_STANDBY (_BV(SM0)| _BV(SM1) | _-
BV(SM2))

Extended Standby Mode.

5.7.2.3 #define SLEEP_MODE_IDLE 0

Idle mode.

5.7.2.4 #define SLEEP_MODE_PWR_DOWN _BV(SM1)

Power Down Mode.

5.7.2.5 #define SLEEP_MODE_PWR_SAVE (_BV(SM0)| _BV(SM1))

Power Save Mode.

5.7.2.6 #define SLEEP_MODE_STANDBY (_BV(SM1)| _BV(SM2))

Standby Mode.

5.7.3 Function Documentation

5.7.3.1 void set_sleep_mode (uint8_t mode)

Set the bits in theMCUCRto select a sleep mode.

5.7.3.2 void sleep_mode (void)

Put the device in sleep mode. How the device is brought out of sleep mode depends on
the specific mode selected with theset_sleep_mode()function. See the data sheet for
your device for more details.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.8 Watchdog timer handling 25

5.8 Watchdog timer handling

5.8.1 Detailed Description

#include <avr/wdt.h>

This header file declares the interface to some inline macros handling the watchdog
timer present in many AVR devices. In order to prevent the watchdog timer configura-
tion from being accidentally altered by a crashing application, a special timed sequence
is required in order to change it. The macros within this header file handle the required
sequence automatically before changing any value. Interrupts will be disabled during
the manipulation.

Note:
Depending on the fuse configuration of the particular device, further restrictions
might apply, in particular it might be disallowed to turn off the watchdog timer.

Defines

• #definewdt_reset() __asm__ __volatile__ ("wdr")
• #definewdt_enable(timeout) _wdt_write((timeout)| _BV(WDE))
• #definewdt_disable() _wdt_write(0)
• #defineWDTO_15MS0
• #defineWDTO_30MS1
• #defineWDTO_60MS2
• #defineWDTO_120MS3
• #defineWDTO_250MS4
• #defineWDTO_500MS5
• #defineWDTO_1S6
• #defineWDTO_2S7

5.8.2 Define Documentation

5.8.2.1 #define wdt_disable() _wdt_write(0)

Disable the watchdog timer, if possible. This attempts to turn off theWDEbit in the
WDTCRregister.

5.8.2.2 #define wdt_enable(timeout) _wdt_write((timeout)| _BV(WDE))

Enable the watchdog timer, configuring it for expiry aftertimeout (which is a com-
bination of theWDP0throughWDP2to write into theWDTCRregister).

See also the symbolic constantsWDTO_15MSet al.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.8 Watchdog timer handling 26

5.8.2.3 #define wdt_reset() __asm__ __volatile__ ("wdr")

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction
is required before the timer expires, otherwise a watchdog-initiated device reset will
occur.

5.8.2.4 #define WDTO_120MS 3

SeeWDT0_15MS

5.8.2.5 #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on
a free-running RC oscillator, the times are approximate only and apply to a supply
voltage of 5 V. At lower supply voltages, the times will increase. For older devices,
the times will be as large as three times when operating at Vcc = 3 V, while the newer
devices (e. g. ATmega128, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1 s, 2 s.
Symbolic constants are formed by the prefixWDTO_, followed by the time.

Example that would select a watchdog timer expiry of approximately 500 ms:

wdt_enable(WDTO_500MS);

5.8.2.6 #define WDTO_1S 6

SeeWDT0_15MS

5.8.2.7 #define WDTO_250MS 4

SeeWDT0_15MS

5.8.2.8 #define WDTO_2S 7

SeeWDT0_15MS

5.8.2.9 #define WDTO_30MS 1

SeeWDT0_15MS

5.8.2.10 #define WDTO_500MS 5

SeeWDT0_15MS

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.9 Character Operations 27

5.8.2.11 #define WDTO_60MS 2

WDT0_15MS

5.9 Character Operations

5.9.1 Detailed Description

These functions perform various operations on characters.

#include <ctype.h>

Character classification routines

These functions perform character classification. They return true or false status de-
pending whether the character passed to the function falls into the function’s classifi-
cation (i.e. isdigit() returns true if its argument is any value ’0’ though ’9’, inclusive.)

• int isalnum(int __c) __ATTR_CONST__
• int isalpha(int __c) __ATTR_CONST__
• int isascii(int __c) __ATTR_CONST__
• int isblank(int __c) __ATTR_CONST__
• int iscntrl (int __c) __ATTR_CONST__
• int isdigit (int __c) __ATTR_CONST__
• int isgraph(int __c) __ATTR_CONST__
• int islower(int __c) __ATTR_CONST__
• int isprint (int __c) __ATTR_CONST__
• int ispunct(int __c) __ATTR_CONST__
• int isspace(int __c) __ATTR_CONST__
• int isupper(int __c) __ATTR_CONST__
• int isxdigit (int __c) __ATTR_CONST__

Character convertion routines

If c is not an unsigned char value, orEOF, the behaviour of these functions is undefined.

• int toascii(int __c) __ATTR_CONST__
• int tolower(int __c) __ATTR_CONST__
• int toupper(int __c) __ATTR_CONST__

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.9 Character Operations 28

5.9.2 Function Documentation

5.9.2.1 int isalnum (int__c)

Checks for an alphanumeric character. It is equivalent to(isalpha(c) ||
isdigit(c)) .

5.9.2.2 int isalpha (int__c)

Checks for an alphabetic character. It is equivalent to(isupper(c) ||
islower(c)) .

5.9.2.3 int isascii (int__c)

Checks whetherc is a 7-bit unsigned char value that fits into the ASCII character set.

5.9.2.4 int isblank (int __c)

Checks for a blank character, that is, a space or a tab.

5.9.2.5 int iscntrl (int __c)

Checks for a control character.

5.9.2.6 int isdigit (int __c)

Checks for a digit (0 through 9).

5.9.2.7 int isgraph (int__c)

Checks for any printable character except space.

5.9.2.8 int islower (int__c)

Checks for a lower-case character.

5.9.2.9 int isprint (int __c)

Checks for any printable character including space.

5.9.2.10 int ispunct (int__c)

Checks for any printable character which is not a space or an alphanumeric character.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.10 System Errors (errno) 29

5.9.2.11 int isspace (int__c)

Checks for white-space characters. For the avr-libc library, these are: space, form-
feed (’\f’), newline (’\n’), carriage return (’\r’), horizontal tab (’\t’), and vertical tab
(’\v’).

5.9.2.12 int isupper (int__c)

Checks for an uppercase letter.

5.9.2.13 int isxdigit (int __c)

Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F.

5.9.2.14 int toascii (int__c)

Convertsc to a 7-bit unsigned char value that fits into the ASCII character set, by
clearing the high-order bits.

Warning:
Many people will be unhappy if you use this function. This function will convert
accented letters into random characters.

5.9.2.15 int tolower (int__c)

Converts the letterc to lower case, if possible.

5.9.2.16 int toupper (int__c)

Converts the letterc to upper case, if possible.

5.10 System Errors (errno)

5.10.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variableerrno when an error occurs. The
file, <errno.h >, provides symbolic names for various error codes.

Warning:
Theerrno global variable is not safe to use in a threaded or multi-task system. A
race condition can occur if a task is interrupted between the call which setserror

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.11 Integer Type conversions 30

and when the task examineserrno . If another task changeserrno during this
time, the result will be incorrect for the interrupted task.

Defines

• #defineEDOM 33
• #defineERANGE34

5.10.2 Define Documentation

5.10.2.1 #define EDOM 33

Domain error.

5.10.2.2 #define ERANGE 34

Range error.

5.11 Integer Type conversions

#include <inttypes.h>

This header file includes the exact-width integer definitions from<stdint.h >, and
extends them with additional facilities provided by the implementation.

5.12 Mathematics

5.12.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Note:
In order to access the functions delcared herein, it is usually also required to addi-
tionally link against the librarylibm.a . See also the relatedFAQ entry.

Defines

• #defineM_PI 3.141592653589793238462643
• #defineM_SQRT21.4142135623730950488016887

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.12 Mathematics 31

Functions

• doublecos(double __x) __ATTR_CONST__
• doublefabs(double __x) __ATTR_CONST__
• doublefmod (double __x, double __y) __ATTR_CONST__
• doublemodf (double __value, double∗__iptr)
• doublesin (double __x) __ATTR_CONST__
• doublesqrt(double __x) __ATTR_CONST__
• doubletan(double __x) __ATTR_CONST__
• doublefloor (double __x) __ATTR_CONST__
• doubleceil (double __x) __ATTR_CONST__
• doublefrexp (double __value, int∗__exp)
• doubleldexp(double __x, int __exp) __ATTR_CONST__
• doubleexp(double _x) __ATTR_CONST__
• doublecosh(double __x) __ATTR_CONST__
• doublesinh(double __x) __ATTR_CONST__
• doubletanh(double __x) __ATTR_CONST__
• doubleacos(double __x) __ATTR_CONST__
• doubleasin(double __x) __ATTR_CONST__
• doubleatan(double __x) __ATTR_CONST__
• doubleatan2(double __y, double __x) __ATTR_CONST__
• doublelog (double __x) __ATTR_CONST__
• doublelog10(double __x) __ATTR_CONST__
• doublepow(double __x, double __y) __ATTR_CONST__
• int isnan(double __x) __ATTR_CONST__
• int isinf (double __x) __ATTR_CONST__
• doublesquare(double __x) __ATTR_CONST__
• doubleinverse(double) __ATTR_CONST__

5.12.2 Define Documentation

5.12.2.1 #define M_PI 3.141592653589793238462643

The constantpi .

5.12.2.2 #define M_SQRT2 1.4142135623730950488016887

The square root of 2.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.12 Mathematics 32

5.12.3 Function Documentation

5.12.3.1 double acos (double__x)

Theacos()function computes the principal value of the arc cosine ofx . The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.12.3.2 double asin (double__x)

The asin() function computes the principal value of the arc sine ofx . The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.12.3.3 double atan (double__x)

The atan() function computes the principal value of the arc tangent ofx . The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.12.3.4 double atan2 (double__y, double__x)

Theatan2()function computes the principal value of the arc tangent ofy / x , using
the signs of both arguments to determine the quadrant of the return value. The returned
value is in the range [-pi, +pi] radians. If bothx andy are zero, the global variable
errno is set toEDOM.

5.12.3.5 double ceil (double__x)

The ceil() function returns the smallest integral value greater than or equal tox , ex-
pressed as a floating-point number.

5.12.3.6 double cos (double__x)

The cos() function returns the cosine ofx , measured in radians.

5.12.3.7 double cosh (double__x)

Thecosh()function returns the hyperbolic cosine ofx .

5.12.3.8 double exp (double_x)

The exp() function returns the exponential value ofx .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.12 Mathematics 33

5.12.3.9 double fabs (double__x)

The fabs() function computes the absolute value of a floating-point numberx .

5.12.3.10 double floor (double__x)

Thefloor() function returns the largest integral value less than or equal tox , expressed
as a floating-point number.

5.12.3.11 double fmod (double__x, double__y)

The function fmod() returns the floating-point remainder ofx / y .

5.12.3.12 double frexp (double__value, int ∗ __exp)

The frexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in theint object pointed to byexp .

The frexp() function returns the valuex , such thatx is a double with magnitude in the
interval [1/2, 1) or zero, andvalue equalsx times 2 raised to the power∗exp . If
value is zero, both parts of the result are zero.

5.12.3.13 double inverse (double)

The functioninverse()returns1 / x .

Note:
This function does not belong to the C standard definition.

5.12.3.14 int isinf (double__x)

The functionisinf() returns 1 if the argumentx is either positive or negative infinity,
otherwise 0.

5.12.3.15 int isnan (double__x)

The functionisnan()returns 1 if the argumentx represents a "not-a-number" (NaN)
object, otherwise 0.

5.12.3.16 double ldexp (double__x, int __exp)

Theldexp()function multiplies a floating-point number by an integral power of 2.

Theldexp()function returns the value ofx times 2 raised to the powerexp .

If the resultant value would cause an overflow, the global variable errno is set to
ERANGE, and the value NaN is returned.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.12 Mathematics 34

5.12.3.17 double log (double__x)

Thelog() function returns the natural logarithm of argumentx .

If the argument is less than or equal 0, a domain error will occur.

5.12.3.18 double log10 (double__x)

Thelog() function returns the logarithm of argumentx to base 10.

If the argument is less than or equal 0, a domain error will occur.

5.12.3.19 double modf (double__value, double∗ __iptr)

The modf() function breaks the argumentvalue into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a double
in the object pointed to byiptr .

Themodf() function returns the signed fractional part ofvalue .

5.12.3.20 double pow (double__x, double__y)

The functionpow() returns the value ofx to the exponenty .

5.12.3.21 double sin (double__x)

The sin() function returns the sine ofx , measured in radians.

5.12.3.22 double sinh (double__x)

Thesinh()function returns the hyperbolic sine ofx .

5.12.3.23 double sqrt (double__x)

The sqrt() function returns the non-negative square root ofx .

5.12.3.24 double square (double__x)

The functionsquare()returnsx ∗ x .

Note:
This function does not belong to the C standard definition.

5.12.3.25 double tan (double__x)

The tan() function returns the tangent ofx , measured in radians.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.13 Setjmp and Longjmp 35

5.12.3.26 double tanh (double__x)

Thetanh()function returns the hyperbolic tangent ofx .

5.13 Setjmp and Longjmp

5.13.1 Detailed Description

While the C language has the dreadedgoto statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides thesetjmp()and longjmp() functions. setjmp()and
longjmp()are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Note:
setjmp()andlongjmp()make programs hard to understand and maintain. If possi-
ble, an alternative should be used.

For a very detailed discussion ofsetjmp()/longjmp(), see Chapter 7 ofAdvanced Pro-
gramming in the UNIX Environment, by W. Richard Stevens.

Example:

#include <setjmp.h>

jmp_buf env;

int main (void)
{

if (setjmp (env))
{

... handle error ...
}

while (1)
{

... main processing loop which calls foo() some where ...
}

}

...

void foo (void)
{

... blah, blah, blah ...

if (err)
{

longjmp (env, 1);
}

}

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.13 Setjmp and Longjmp 36

Functions

• int setjmp(jmp_buf __jmpb)
• void longjmp(jmp_buf __jmpb, int __ret) __ATTR_NORETURN__

5.13.2 Function Documentation

5.13.2.1 void longjmp (jmp_buf__jmpb, int __ret)

Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last call ofsetjmp()with the corre-
sponding__jmpbargument. Afterlongjmp() is completed, program execution contin-
ues as if the corresponding call ofsetjmp()had just returned the value__ret.

Note:
longjmp() cannot cause 0 to be returned. Iflongjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Parameters:
__jmpb Information saved by a previous call tosetjmp().

__ret Value to return to the caller ofsetjmp().

Returns:
This function never returns.

5.13.2.2 int setjmp (jmp_buf__jmpb)

Save stack context for non-local goto.

#include <setjmp.h>

setjmp()saves the stack context/environment in__jmpbfor later use bylongjmp(). The
stack context will be invalidated if the function which calledsetjmp()returns.

Parameters:
__jmpb Variable of typejmp_buf which holds the stack information such that

the environment can be restored.

Returns:
setjmp() returns 0 if returning directly, and non-zero when returning from
longjmp()using the saved context.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.14 Standard Integer Types 37

5.14 Standard Integer Types

5.14.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling
your own typedefs.

Note:
If avr-gcc’s -mint8 option is used, no 32-bit types will be available for all ver-
sions of GCC below 3.5.

8-bit types.

• typedef signed charint8_t
• typedef unsigned charuint8_t

16-bit types.

• typedef intint16_t
• typedef unsigned intuint16_t

32-bit types.

• typedef longint32_t
• typedef unsigned longuint32_t

64-bit types.

• typedef long longint64_t
• typedef unsigned long longuint64_t

Pointer types.

These allow you to declare variables of the same size as a pointer.

• typedefint16_tintptr_t
• typedefuint16_tuintptr_t

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.14 Standard Integer Types 38

5.14.2 Typedef Documentation

5.14.2.1 typedef intint16_t

16-bit signed type.

5.14.2.2 typedef longint32_t

32-bit signed type.

5.14.2.3 typedef long longint64_t

64-bit signed type.

5.14.2.4 typedef signed charint8_t

8-bit signed type.

5.14.2.5 typedefint16_t intptr_t

Signed pointer compatible type.

5.14.2.6 typedef unsigned intuint16_t

16-bit unsigned type.

5.14.2.7 typedef unsigned longuint32_t

32-bit unsigned type.

5.14.2.8 typedef unsigned long longuint64_t

64-bit unsigned type.

5.14.2.9 typedef unsigned charuint8_t

8-bit unsigned type.

5.14.2.10 typedefuint16_t uintptr_t

Unsigned pointer compatible type.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 39

5.15 Standard IO facilities

5.15.1 Detailed Description

#include <stdio.h>

Warning:
This implementation of the standard IO facilities is new to avr-libc. It is not yet
expected to remain stable, so some aspects of the API might change in a future
release.

This file declares the standard IO facilities that are implemented inavr-libc . Due
to the nature of the underlying hardware, only a limited subset of standard IO is im-
plemented. There is no actual file implementation available, so only device IO can be
performed. Since there’s no operating system, the application needs to provide enough
details about their devices in order to make them usable by the standard IO facilities.

Due to space constraints, some functionality has not been implemented at all (like some
of the printf conversions that have been left out). Nevertheless, potential users of
this implementation should be warned: theprintf andscanf families of functions,
although usually associated with presumably simple things like the famous "Hello,
world!" program, are actually fairly complex which causes their inclusion to eat up
a fair amount of code space. Also, they are not fast due to the nature of interpreting
the format string at run-time. Whenever possible, resorting to the (sometimes non-
standard) predetermined conversion facilities that are offered by avr-libc will usually
cost much less in terms of speed and code size.

In order to allow programmers a code size vs. functionality tradeoff, the function
vfprintf() which is the heart of the printf family can be selected in different flavours
using linker options. See the documentation ofvfprintf() for a detailed description.
The same applies tovfscanf()and thescanf family of functions.

The standard streamsstdin , stdout , andstderr are provided, but contrary to the
C standard, since avr-libc has no knowledge about applicable devices, these streams
are not already pre-initialized at application startup. Also, since there is no notion
of "file" whatsoever to avr-libc, there is no functionfopen() that could be used to
associate a stream to some device. (Seenote 1.) Instead, the functionfdevopen() is
provided to associate a stream to a device, where the device needs to provide a function
to send a character, to receive a character, or both. There is no differentiation between
"text" and "binary" streams inside avr-libc. Character\n is sent literally down to the
device’sput() function. If the device requires a carriage return (\r) character to be
sent before the linefeed, itsput() routine must implement this (seenote 2).

It should be noted that the automatic conversion of a newline character into a carriage
return - newline sequence breaks binary transfers. If binary transfers are desired, no
automatic conversion should be performed, but instead any string that aims to issue a
CR-LF sequence must use" \r \n" explicitly.

For convenience, the first call tofdevopen() that opens a stream for reading

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 40

will cause the resulting stream to be aliased tostdin . Likewise, the first call to
fdevopen() that opens a stream for writing will cause the resulting stream to be
aliased to both,stdout , andstderr . Thus, if the open was done with both, read
and write intent, all three standard streams will be identical. Note that these aliases are
indistinguishable from each other, thus callingfclose() on such a stream will also
effectively close all of its aliases (note 3).

All the printf andscanf family functions come in two flavours: the standard name,
where the format string is expected to be in SRAM, as well as a version with the suffix
"_P" where the format string is expected to reside in the flash ROM. The macroPSTR
(explained inProgram Space String Utilities) becomes very handy for declaring these
format strings.

Note 1:
It might have been possible to implement a device abstraction that is compatible
with fopen() but since this would have required to parse a string, and to take all
the information needed either out of this string, or out of an additional table that
would need to be provided by the application, this approach was not taken.

Note 2:
This basically follows the Unix approach: if a device such as a terminal needs
special handling, it is in the domain of the terminal device driver to provide this
functionality. Thus, a simple function suitable asput() for fdevopen() that
talks to a UART interface might look like this:

int
uart_putchar(char c)
{

if (c == ’\n’)
uart_putchar(’\r’);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

Note 3:
This implementation has been chosen because the cost of maintaining an alias
is considerably smaller than the cost of maintaining full copies of each stream.
Yet, providing an implementation that offers the complete set of standard
streams was deemed to be useful. Not only that writingprintf() instead of
fprintf(mystream, ...) saves typing work, but since avr-gcc needs to re-
sort to pass all arguments of variadic functions on the stack (as opposed to passing
them in registers for functions that take a fixed number of parameters), the ability
to pass one parameter less by implyingstdin will also save some execution time.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 41

Defines

• #definegetchar() fgetc(stdin)
• #defineFILE struct __file
• #definestdin(__iob[0])
• #definestdout(__iob[1])
• #definestderr(__iob[2])
• #defineEOF(-1)
• #defineputc(__c, __stream) fputc(__c, __stream)
• #defineputchar(__c) fputc(__c, stdout)
• #definegetc(__stream) fgetc(__stream)

Functions

• FILE ∗ fdevopen(int(∗__put)(char), int(∗__get)(void), int __opts)
• int fclose(FILE ∗__stream)
• int vfprintf (FILE ∗__stream, const char∗__fmt, va_list __ap)
• int vfprintf_P (FILE ∗__stream, const char∗__fmt, va_list __ap)
• int fputc (int __c, FILE∗__stream)
• int putc (int __c, FILE∗__stream)
• int putchar (int __c)
• int printf (const char∗__fmt,...)
• int printf_P(const char∗__fmt,...)
• int sprintf (char∗__s, const char∗__fmt,...)
• int sprintf_P(char∗__s, const char∗__fmt,...)
• int snprintf(char∗__s, size_t __n, const char∗__fmt,...)
• int snprintf_P(char∗__s, size_t __n, const char∗__fmt,...)
• int vsprintf (char∗__s, const char∗__fmt, va_list ap)
• int vsprintf_P(char∗__s, const char∗__fmt, va_list ap)
• int vsnprintf(char∗__s, size_t __n, const char∗__fmt, va_list ap)
• int vsnprintf_P(char∗__s, size_t __n, const char∗__fmt, va_list ap)
• int fprintf (FILE ∗__stream, const char∗__fmt,...)
• int fprintf_P (FILE ∗__stream, const char∗__fmt,...)
• int fputs(const char∗__str, FILE∗__stream)
• int fputs_P(const char∗__str, FILE∗__stream)
• int puts(const char∗__str)
• int puts_P(const char∗__str)
• size_t fwrite (const void∗__ptr, size_t __size, size_t __nmemb, FILE∗__-

stream)
• int fgetc(FILE ∗__stream)
• int getc(FILE ∗__stream)
• int ungetc(int __c, FILE∗__stream)
• char∗ fgets(char∗__str, int __size, FILE∗__stream)

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 42

• char∗ gets(char∗__str)
• size_tfread(void ∗__ptr, size_t __size, size_t __nmemb, FILE∗__stream)
• void clearerr(FILE ∗__stream)
• int feof (FILE ∗__stream)
• int ferror (FILE ∗__stream)
• int vfscanf(FILE ∗__stream, const char∗__fmt, va_list __ap)
• int vfscanf_P(FILE ∗__stream, const char∗__fmt, va_list __ap)
• int fscanf(FILE ∗__stream, const char∗__fmt,...)
• int fscanf_P(FILE ∗__stream, const char∗__fmt,...)
• int scanf(const char∗__fmt,...)
• int scanf_P(const char∗__fmt,...)
• int sscanf(const char∗__buf, const char∗__fmt,...)
• int sscanf_P(const char∗__buf, const char∗__fmt,...)
• FILE ∗ fdevopen (int(∗put)(char), int(∗get)(void), int opts __attribute__-

((unused)))

Variables

• __file∗ __iob []

5.15.2 Define Documentation

5.15.2.1 #define EOF (-1)

EOFdeclares the value that is returned by various standard IO functions in case of an
error. Since the AVR platform (currently) doesn’t contain an abstraction for actual files,
its origin as "end of file" is somewhat meaningless here.

5.15.2.2 #define FILE struct __file

FILE is the opaque structure that is passed around between the various standard IO
functions.

5.15.2.3 #define getc(__stream) fgetc(__stream)

The macrogetc used to be a "fast" macro implementation with a functionality iden-
tical to fgetc(). For space constraints, inavr-libc , it is just an alias forfgetc .

5.15.2.4 int getchar(void) fgetc(stdin)

The macrogetchar reads a character fromstdin . Return values and error handling
is identical tofgetc().

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 43

5.15.2.5 #define putc(__c, __stream) fputc(__c, __stream)

The macroputc used to be a "fast" macro implementation with a functionality iden-
tical to fputc(). For space constraints, inavr-libc , it is just an alias forfputc .

5.15.2.6 #define putchar(__c) fputc(__c, stdout)

The macroputchar sends characterc to stdout .

5.15.2.7 #define stderr (__iob[2])

Stream destined for error output. Unless specifically assigned, identical tostdout .

If stderr should point to another stream, the result of anotherfdevopen() must
be explicitly assigned to it without closing the previousstderr (since this would also
closestdout).

5.15.2.8 #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take
astream argument.

The first stream opened with read intent usingfdevopen() will be assigned to
stdin .

5.15.2.9 #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don’t take
astream argument.

The first stream opened with write intent usingfdevopen() will be assigned to both,
stdin , andstderr .

5.15.3 Function Documentation

5.15.3.1 void clearerr (FILE ∗ __stream)

Clear the error and end-of-file flags ofstream .

5.15.3.2 int fclose (FILE∗ __stream)

This function closesstream , and disallows and further IO to and from it.

It currently always returns 0 (for success).

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 44

5.15.3.3 FILE∗ fdevopen (int(∗ put)(char), int(∗ get)(void), int opts __attribute_-
_((unused)))

This function is a replacement forfopen() .

It opens a stream for a device where the actual device implementation needs to be
provided by the application. If successful, a pointer to the structure for the opened
stream is returned. Reasons for a possible failure currently include that neither the
put nor theget argument have been provided, thus attempting to open a stream with
no IO intent at all, or that insufficient dynamic memory is available to establish a new
stream.

If the put function pointer is provided, the stream is opened with write intent. The
function passed asput shall take one character to write to the device as argument ,
and shall return 0 if the output was successful, and a nonzero value if the character
could not be sent to the device.

If the get function pointer is provided, the stream is opened with read intent. The
function passed asget shall take no arguments, and return one character from the
device, passed as anint type. If an error occurs when trying to read from the device,
it shall return-1 .

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assigned tostdin , and the first one opened
with write intent is assigned to both,stdout andstderr .

The third parameteropts is currently unused, but reserved for future extensions.

5.15.3.4 int feof (FILE ∗ __stream)

Test the end-of-file flag ofstream . This flag can only be cleared by a call toclearerr().

Note:
Since there is currently no notion for end-of-file on a device, this function will
always return a false value.

5.15.3.5 int ferror (FILE ∗ __stream)

Test the error flag ofstream . This flag can only be cleared by a call toclearerr().

5.15.3.6 int fgetc (FILE∗ __stream)

The functionfgetc reads a character fromstream . It returns the character, orEOF
in case end-of-file was encountered or an error occurred. The routinesfeof() or ferror()
must be used to distinguish between both situations.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 45

5.15.3.7 char∗ fgets (char∗ __str, int __size, FILE ∗ __stream)

Read at mostsize - 1 bytes fromstream , until a newline character was encoun-
tered, and store the characters in the buffer pointed to bystr . Unless an error was
encountered while reading, the string will then be terminated with aNULcharacter.

If an error was encountered, the function returns NULL and sets the error flag of
stream , which can be tested usingferror(). Otherwise, a pointer to the string will
be returned.

5.15.3.8 int fprintf (FILE ∗ __stream, const char∗ __fmt, ...)

The functionfprintf performs formatted output tostream . Seevfprintf()
for details.

5.15.3.9 int fprintf_P (FILE ∗ __stream, const char∗ __fmt, ...)

Variant offprintf() that uses afmt string that resides in program memory.

5.15.3.10 int fputc (int__c, FILE ∗ __stream)

The functionfputc sends the characterc (though given as typeint) to stream . It
returns the character, orEOFin case an error occurred.

5.15.3.11 int fputs (const char∗ __str, FILE ∗ __stream)

Write the string pointed to bystr to streamstream .

Returns 0 on success and EOF on error.

5.15.3.12 int fputs_P (const char∗ __str, FILE ∗ __stream)

Variant offputs()wherestr resides in program memory.

5.15.3.13 size_t fread (void∗ __ptr, size_t__size, size_t__nmemb, FILE ∗ __-
stream)

Readnmembobjects,size bytes each, fromstream , to the buffer pointed to by
ptr .

Returns the number of objects successfully read, i. e.nmembunless an input error
occured or end-of-file was encountered.feof() andferror()must be used to distinguish
between these two conditions.

5.15.3.14 int fscanf (FILE∗ __stream, const char∗ __fmt, ...)

The functionfscanf performs formatted input, reading the input data fromstream .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 46

Seevfscanf()for details.

5.15.3.15 int fscanf_P (FILE∗ __stream, const char∗ __fmt, ...)

Variant offscanf()using afmt string in program memory.

5.15.3.16 size_t fwrite (const void∗ __ptr, size_t__size, size_t__nmemb, FILE ∗
__stream)

Write nmembobjects,size bytes each, tostream . The first byte of the first object
is referenced byptr .

Returns the number of objects successfully written, i. e.nmembunless an output error
occured.

5.15.3.17 char∗ gets (char∗ __str)

Similar tofgets()except that it will operate on streamstdin , and the trailing newline
(if any) will not be stored in the string. It is the caller’s responsibility to provide enough
storage to hold the characters read.

5.15.3.18 int printf (const char∗ __fmt, ...)

The function printf performs formatted output to streamstderr . See
vfprintf() for details.

5.15.3.19 int printf_P (const char∗ __fmt, ...)

Variant ofprintf() that uses afmt string that resides in program memory.

5.15.3.20 int puts (const char∗ __str)

Write the string pointed to bystr , and a trailing newline character, tostdout .

5.15.3.21 int puts_P (const char∗ __str)

Variant ofputs()wherestr resides in program memory.

5.15.3.22 int scanf (const char∗ __fmt, ...)

The functionscanf performs formatted input from streamstdin .

Seevfscanf()for details.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 47

5.15.3.23 int scanf_P (const char∗ __fmt, ...)

Variant ofscanf()wherefmt resides in program memory.

5.15.3.24 int snprintf (char∗ __s, size_t__n, const char∗ __fmt, ...)

Like sprintf() , but instead of assumings to be of infinite size, no more thann
characters (including the trailing NUL character) will be converted tos .

Returns the number of characters that would have been written tos if there were
enough space.

5.15.3.25 int snprintf_P (char∗ __s, size_t__n, const char∗ __fmt, ...)

Variant ofsnprintf() that uses afmt string that resides in program memory.

5.15.3.26 int sprintf (char∗ __s, const char∗ __fmt, ...)

Variant ofprintf() that sends the formatted characters to strings .

5.15.3.27 int sprintf_P (char∗ __s, const char∗ __fmt, ...)

Variant ofsprintf() that uses afmt string that resides in program memory.

5.15.3.28 int sscanf (const char∗ __buf, const char∗ __fmt, ...)

The functionsscanf performs formatted input, reading the input data from the buffer
pointed to bybuf .

Seevfscanf()for details.

5.15.3.29 int sscanf_P (const char∗ __buf, const char∗ __fmt, ...)

Variant ofsscanf()using afmt string in program memory.

5.15.3.30 int ungetc (int__c, FILE ∗ __stream)

Theungetc()function pushes the characterc (converted to an unsigned char) back onto
the input stream pointed to bystream . The pushed-back character will be returned
by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

Theungetc()function returns the character pushed back after the conversion, orEOFif
the operation fails. If the value of the argumentc character equalsEOF, the operation
will fail and the stream will remain unchanged.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 48

5.15.3.31 int vfprintf (FILE ∗ __stream, const char∗ __fmt, va_list __ap)

vfprintf is the central facility of theprintf family of functions. It outputs values
to stream under control of a format string passed infmt . The actual values to print
are passed as a variable argument listap .

vfprintf returns the number of characters written tostream , or EOF in case of
an error. Currently, this will only happen ifstream has not been opened with write
intent.

The format string is composed of zero or more directives: ordinary characters (not
), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character. The arguments must properly correspond
(after type promotion) with the conversion specifier. After the , the following appear in
sequence:

• Zero or more of the following flags:

– # The value should be converted to an "alternate form". For c, d, i, s, and
u conversions, this option has no effect. For o conversions, the precision of
the number is increased to force the first character of the output string to
a zero (except if a zero value is printed with an explicit precision of zero).
For x and X conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it.

– 0 (zero) Zero padding. For all conversions, the converted value is padded
on the left with zeros rather than blanks. If a precision is given with a
numeric conversion (d, i, o, u, i, x, and X), the 0 flag is ignored.

– - A negative field width flag; the converted value is to be left adjusted on
the field boundary. The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a 0 if both are
given.

– ’ ’ (space) A blank should be left before a positive number produced by a
signed conversion (d, or i).

– + A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

• An optional decimal digit string specifying a minimum field width. If the con-
verted value has fewer characters than the field width, it will be padded with
spaces on the left (or right, if the left-adjust173 ment flag has been given) to fill
out the field width.

• An optional precision, in the form of a period . followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives the
minimum number of digits to appear for d, i, o, u, x, and X conversions, or the
maximum number of characters to be printed from a string fors conversions.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 49

• An optionall length modifier, that specifies that the argument for the d, i, o, u,
x, or X conversion is a"long int" rather thanint .

• A character that specifies the type of conversion to be applied.

The conversion specifiers and their meanings are:

• diouxX The int (or appropriate variant) argument is converted to signed decimal
(d and i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation. The letters "abcdef" are used for x conversions; the letters
"ABCDEF" are used for X conversions. The precision, if any, gives the minimum
number of digits that must appear; if the converted value requires fewer digits, it
is padded on the left with zeros.

• p Thevoid ∗ argument is taken as an unsigned integer, and converted similarly
as a#x command would do.

• c The int argument is converted to an"unsigned char" , and the resulting
character is written.

• s The "char ∗" argument is expected to be a pointer to an array of character
type (pointer to a string). Characters from the array are written up to (but not
including) a terminating NUL character; if a precision is specified, no more than
the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array,
the array must contain a terminating NUL character.

• A is written. No argument is converted. The complete conversion specification
is "%%".

• eE The double argument is rounded and converted in the format
"[-]d.ddde177dd" where there is one digit before the decimal-point char-
acter and the number of digits after it is equal to the precision; if the precision
is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears. AnE conversion uses the letter’E’ (rather than’e’) to introduce
the exponent. The exponent always contains two digits; if the value is zero, the
exponent is 00.

• fF The double argument is rounded and converted to decimal notation in the
format "[-]ddd.ddd" , where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.
If a decimal point appears, at least one digit appears before it.

• gG The double argument is converted in stylef or e (or F or E for G conver-
sions). The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as 1. Stylee is
used if the exponent from its conversion is less than -4 or greater than or equal to

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 50

the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

In no case does a non-existent or small field width cause truncation of a numeric field;
if the result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three
different flavours ofvfprintf() can be selected using linker options. The defaultvf-
printf() implements all the mentioned functionality except floating point conversions.
A minimized version ofvfprintf() is available that only implements the very basic in-
teger and string conversion facilities, but none of the additional options that can be
specified using conversion flags (these flags are parsed correctly from the format spec-
ification, but then simply ignored). This version can be requested using the following
compiler options:

-Wl,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the follow-
ing options should be used:

-Wl,-u,vfprintf -lprintf_flt -lm

Limitations:
• The specified width and precision can be at most 127.

• For floating-point conversions, trailing digits will be lost if a number close to
DBL_MAX is converted with a precision> 0.

5.15.3.32 int vfprintf_P (FILE ∗ __stream, const char∗ __fmt, va_list __ap)

Variant ofvfprintf() that uses afmt string that resides in program memory.

5.15.3.33 int vfscanf (FILE∗ __stream, const char∗ __fmt, va_list __ap)

Formatted input. This function is the heart of thescanf family of functions.

Characters are read fromstream and processed in a way described byfmt . Conver-
sion results will be assigned to the parameters passed viaap .

The format stringfmt is scanned for conversion specifications. Anything that doesn’t
comprise a conversion specification is taken as text that is matched literally against
the input. White space in the format string will match any white space in the data
(including none), all other characters match only itself. Processing is aborted as soon as
the data and format string no longer match, or there is an error or end-of-file condition
onstream .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 51

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the character . Possible options can follow the :

• a ∗ indicating that the conversion should be performed but the conversion result
is to be discarded; no parameters will be processed fromap ,

• the characterh indicating that the argument is a pointer toshort int (rather
thanint),

• the characterl indicating that the argument is a pointer tolong int (rather
than int , for integer type conversions), or a pointer todouble (for floating
point conversions).

In addition, a maximal field width may be specified as a nonzero positive decimal
integer, which will restrict the conversion to at most this many characters from the
input stream. This field width is limited to at most 127 characters which is also the
default value (except for thec conversion that defaults to 1).

The following conversion flags are supported:

• Matches a literal character. This is not a conversion.

• d Matches an optionally signed decimal integer; the next pointer must be a
pointer toint .

• i Matches an optionally signed integer; the next pointer must be a pointer to
int . The integer is read in base 16 if it begins with0x or 0X, in base 8 if it
begins with0, and in base 10 otherwise. Only characters that correspond to the
base are used.

• o Matches an octal integer; the next pointer must be a pointer tounsigned
int .

• u Matches an optionally signed decimal integer; the next pointer must be a
pointer tounsigned int .

• x Matches an optionally signed hexadecimal integer; the next pointer must be a
pointer tounsigned int .

• f Matches an optionally signed floating-point number; the next pointer must be
a pointer tofloat .

• e, g, E, G Equivalent tof .

• s Matches a sequence of non-white-space characters; the next pointer must be a
pointer tochar , and the array must be large enough to accept all the sequence
and the terminatingNULcharacter. The input string stops at white space or at the
maximum field width, whichever occurs first.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.15 Standard IO facilities 52

• c Matches a sequence of width count characters (default 1); the next pointer must
be a pointer tochar , and there must be enough room for all the characters (no
terminatingNULis added). The usual skip of leading white space is suppressed.
To skip white space first, use an explicit space in the format.

• [Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointer tochar , and there must be enough
room for all the characters in the string, plus a terminatingNULcharacter. The
usual skip of leading white space is suppressed. The string is to be made up
of characters in (or not in) a particular set; the set is defined by the characters
between the open bracket [character and a close bracket] character. The set
excludes those characters if the first character after the open bracket is a circum-
flex ∧. To include a close bracket in the set, make it the first character after the
open bracket or the circumflex; any other position will end the set. The hyphen
character- is also special; when placed between two other characters, it adds all
intervening characters to the set. To include a hyphen, make it the last character
before the final close bracket. For instance,[∧]0-9-] means the set ofevery-
thing except close bracket, zero through nine, and hyphen. The string ends with
the appearance of a character not in the (or, with a circumflex, in) set or when
the field width runs out.

• p Matches a pointer value (as printed byp in printf()); the next pointer must be
a pointer tovoid .

• n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointer toint . This
is not a conversion, although it can be suppressed with the∗ flag.

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that, while
there was input available, no conversions were assigned; typically this is due to an
invalid input character, such as an alphabetic character for ad conversion. The value
EOFis returned if an input failure occurs before any conversion such as an end-of-file
occurs. If an error or end-of-file occurs after conversion has begun, the number of
conversions which were successfully completed is returned.

By default, all the conversions described above are available except the floating-point
conversions, and the[conversion. These conversions will be available in the extended
version provided by the librarylibscanf_flt.a . Note that either of these conver-
sions requires the availability of a buffer that needs to be obtained at run-time using
malloc(). If this buffer cannot be obtained, the operation is aborted, returning the value
EOF. To link a program against the extended version, use the following compiler flags
in the link stage:

-Wl,-u,vfscanf -lscanf_flt -lm

A third version is available for environments that are tight on space. This version is

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 53

provided in the librarylibscanf_min.a , and can be requested using the following
options in the link stage:

-Wl,-u,vfscanf -lscanf_min -lm

In addition to the restrictions of the standard version, this version implements no field
width specification, no conversion assignment suppression flag (∗), non specification,
and no general format character matching at all. All characters infmt that do not
comprise a conversion specification will simply be ignored, including white space (that
is normally used to consumeanyamount of white space in the input stream). However,
the usual skip of initial white space in the formats that support it is implemented.

5.15.3.34 int vfscanf_P (FILE∗ __stream, const char∗ __fmt, va_list __ap)

Variant ofvfscanf()using afmt string in program memory.

5.15.3.35 int vsnprintf (char∗ __s, size_t__n, const char∗ __fmt, va_list ap)

Like vsprintf() , but instead of assumings to be of infinite size, no more thann
characters (including the trailing NUL character) will be converted tos .

Returns the number of characters that would have been written tos if there were
enough space.

5.15.3.36 int vsnprintf_P (char∗ __s, size_t__n, const char∗ __fmt, va_list ap)

Variant ofvsnprintf() that uses afmt string that resides in program memory.

5.15.3.37 int vsprintf (char∗ __s, const char∗ __fmt, va_list ap)

Like sprintf() but takes a variable argument list for the arguments.

5.15.3.38 int vsprintf_P (char∗ __s, const char∗ __fmt, va_list ap)

Variant ofvsprintf() that uses afmt string that resides in program memory.

5.16 General utilities

5.16.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the ISO standard,
plus some AVR-specific extensions.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 54

Data Structures

• structdiv_t
• structldiv_t

Non-standard (i.e. non-ISO C) functions.

• #defineRANDOM_MAX 0x7FFFFFFF
• char∗ itoa (int __val, char∗__s, int __radix)
• char∗ ltoa (long int __val, char∗__s, int __radix)
• char∗ utoa(unsigned int __val, char∗__s, int __radix)
• char∗ ultoa(unsigned long int __val, char∗__s, int __radix)
• long random(void)
• void srandom(unsigned long __seed)
• long random_r(unsigned long∗ctx)

Conversion functions for double arguments.

Note that these functions are not located in the default library,libc.a , but in the
mathematical library,libm.a . So when linking the application, the-lm option needs
to be specified.

• #defineDTOSTR_ALWAYS_SIGN0x01
• #defineDTOSTR_PLUS_SIGN0x02
• #defineDTOSTR_UPPERCASE0x04
• char∗ dtostre(double __val, char∗__s, unsigned char __prec, unsigned char

__flags)
• char∗ dtostrf(double __val, char __width, char __prec, char∗__s)

Defines

• #defineRAND_MAX 0x7FFF

Typedefs

• typedef int(∗ __compar_fn_t)(const void∗, const void∗)

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 55

Functions

• __inline__ voidabort(void) __ATTR_NORETURN__
• int abs(int __i) __ATTR_CONST__
• long labs(long __i) __ATTR_CONST__
• void ∗ bsearch(const void∗__key, const void∗__base, size_t __nmemb, size_t

__size, int(∗__compar)(const void∗, const void∗))
• div_t div (int __num, int __denom) __asm__("__divmodhi4") __ATTR_-

CONST__
• ldiv_t ldiv (long __num, long __denom) __asm__("__divmodsi4") __ATTR_-

CONST__
• void qsort (void ∗__base, size_t __nmemb, size_t __size,__compar_fn_t__-

compar)
• longstrtol (const char∗__nptr, char∗∗__endptr, int __base)
• unsigned longstrtoul(const char∗__nptr, char∗∗__endptr, int __base)
• __inline__ longatol (const char∗__nptr) __ATTR_PURE__
• __inline__ intatoi (const char∗__nptr) __ATTR_PURE__
• void exit (int __status) __ATTR_NORETURN__
• void ∗ malloc(size_t __size) __ATTR_MALLOC__
• void free(void ∗__ptr)
• void ∗ calloc(size_t __nele, size_t __size) __ATTR_MALLOC__
• doublestrtod(const char∗__nptr, char∗∗__endptr)
• doubleatof (const char∗__nptr)
• int rand(void)
• void srand(unsigned int __seed)
• int rand_r(unsigned long∗ctx)

Variables

• size_t__malloc_margin
• char∗ __malloc_heap_start
• char∗ __malloc_heap_end

5.16.2 Define Documentation

5.16.2.1 #define DTOSTR_ALWAYS_SIGN 0x01

Bit value that can be passed inflags to dtostre().

5.16.2.2 #define DTOSTR_PLUS_SIGN 0x02

Bit value that can be passed inflags to dtostre().

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 56

5.16.2.3 #define DTOSTR_UPPERCASE 0x04

Bit value that can be passed inflags to dtostre().

5.16.2.4 #define RAND_MAX 0x7FFF

Highest number that can be generated byrand().

5.16.2.5 #define RANDOM_MAX 0x7FFFFFFF

Highest number that can be generated byrandom().

5.16.3 Typedef Documentation

5.16.3.1 typedef int(∗ __compar_fn_t)(const void∗, const void∗)

Comparision function type for qsort(), just for convenience.

5.16.4 Function Documentation

5.16.4.1 __inline__ void abort (void)

The abort() function causes abnormal program termination to occur. In the limited
AVR environment, execution is effectively halted by entering an infinite loop.

5.16.4.2 int abs (int__i)

Theabs()function computes the absolute value of the integeri .

Note:
Theabs()andlabs()functions are builtins of gcc.

5.16.4.3 double atof (const char∗ __nptr)

The atof() function converts the initial portion of the string pointed to bynptr to
double representation.

It is equivalent to calling

strtod(nptr, (char **)NULL);

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 57

5.16.4.4 int atoi (const char∗ string)

Convert a string to an integer.

The atoi() function converts the initial portion of the string pointed to bynptr to
integer representation.

It is equivalent to:

(int)strtol(nptr, (char **)NULL, 10);

except thatatoi() does not detect errors.

5.16.4.5 long int atol (const char∗ string)

Convert a string to a long integer.

Theatol() function converts the initial portion of the string pointed to bystringp to
integer representation.

It is equivalent to:

strtol(nptr, (char **)NULL, 10);

except thatatol() does not detect errors.

5.16.4.6 void∗ bsearch (const void∗ __key, const void∗ __base, size_t__nmemb,
size_t__size, int(∗ __compar)(const void∗, const void∗))

The bsearch() function searches an array ofnmembobjects, the initial member of
which is pointed to bybase , for a member that matches the object pointed to by
key . The size of each member of the array is specified bysize .

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bycompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

The bsearch() function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

5.16.4.7 void∗ calloc (size_t__nele, size_t__size)

Allocatenele elements ofsize each. Identical to callingmalloc() usingnele
∗ size as argument, except the allocated memory will be cleared to zero.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 58

5.16.4.8 div_t div (int __num, int __denom)

The div() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure nameddiv_t that contains two int members namedquot and
rem.

5.16.4.9 char∗ dtostre (double__val, char ∗ __s, unsigned char__prec, unsigned
char __flags)

The dtostre()function converts the double value passed inval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done in the format"[-]d.ddde177dd" where there is one digit be-
fore the decimal-point character and the number of digits after it is equal to the preci-
sionprec ; if the precision is zero, no decimal-point character appears. Ifflags has
the DTOSTRE_UPPERCASE bit set, the letter’E’ (rather than’e’) will be used to
introduce the exponent. The exponent always contains two digits; if the value is zero,
the exponent is"00" .

If flags has the DTOSTRE_ALWAYS_SIGN bit set, a space character will be placed
into the leading position for positive numbers.

If flags has the DTOSTRE_PLUS_SIGN bit set, a plus sign will be used instead of
a space character in this case.

Thedtostre()function returns the pointer to the converted strings .

5.16.4.10 char∗ dtostrf (double __val, char __width, char __prec, char ∗ __s)

The dtostrf() function converts the double value passed inval into an ASCII repre-
sentationthat will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done in the format"[-]d.ddd" . The minimum field width of the
output string (including the’ .’ and the possible sign for negative values) is given in
width , andprec determines the number of digits after the decimal sign.

Thedtostrf()function returns the pointer to the converted strings .

5.16.4.11 void exit (int__status)

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing.

In a C++ context, global destructors will be called before halting execution.

5.16.4.12 void free (void∗ __ptr)

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 59

Thefree()function causes the allocated memory referenced byptr to be made avail-
able for future allocations. Ifptr is NULL, no action occurs.

5.16.4.13 char∗ itoa (int __val, char ∗ __s, int __radix)

Convert an integer to a string.

The functionitoa() converts the integer value fromval into an ASCII representation
that will be stored unders . The caller is responsible for providing sufficient storage in
s .

Note:
The minimal size of the buffers depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length of 8∗
sizeof (int) + 1 characters, i.e. one character for each bit plus one for the string
terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

If radix is 10 and val is negative, a minus sign will be prepended.

Theitoa() function returns the pointer passed ass .

5.16.4.14 long labs (long__i)

Thelabs()function computes the absolute value of the long integeri .

Note:
Theabs()andlabs()functions are builtins of gcc.

5.16.4.15 ldiv_t ldiv (long __num, long __denom)

The ldiv() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure namedldiv_t that contains two long integer members named
quot andrem.

5.16.4.16 char∗ ltoa (long int __val, char ∗ __s, int __radix)

Convert a long integer to a string.

The functionltoa() converts the long integer value fromval into an ASCII represen-
tation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 60

Note:
The minimal size of the buffers depends on the choice of radix. For example,
if the radix is 2 (binary), you need to supply a buffer with a minimal length of 8
∗ sizeof (long int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

If radix is 10 and val is negative, a minus sign will be prepended.

Theltoa() function returns the pointer passed ass .

5.16.4.17 void∗ malloc (size_t__size)

The malloc() function allocatessize bytes of memory. Ifmalloc() fails, a NULL
pointer is returned.

Note thatmalloc()doesnot initialize the returned memory to zero bytes.

See the chapter aboutmalloc() usagefor implementation details.

5.16.4.18 void qsort (void∗ __base, size_t__nmemb, size_t__size, __compar_-
fn_t __compar)

The qsort() function is a modified partition-exchange sort, or quicksort.

The qsort() function sorts an array ofnmembobjects, the initial member of which is
pointed to bybase . The size of each object is specified bysize . The contents of the
array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

5.16.4.19 int rand (void)

Therand()function computes a sequence of pseudo-random integers in the range of 0
to RAND_MAX(as defined by the header file<stdlib.h>).

Thesrand()function sets its argumentseed as the seed for a new sequence of pseudo-
random numbers to be returned byrand(). These sequences are repeatable by calling
srand()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 61

In compliance with the C standard, these functions operate onint arguments. Since
the underlying algorithm already uses 32-bit calculations, this causes a loss of preci-
sion. Seerandom() for an alternate set of functions that retains full 32-bit precision.

5.16.4.20 int rand_r (unsigned long∗ ctx)

Variant of rand() that stores the context in the user-supplied variable located atctx
instead of a static library variable so the function becomes re-entrant.

5.16.4.21 long random (void)

Therandom()function computes a sequence of pseudo-random integers in the range of
0 toRANDOM_MAX(as defined by the header file<stdlib.h>).

The srandom()function sets its argumentseed as the seed for a new sequence of
pseudo-random numbers to be returned byrand(). These sequences are repeatable by
callingsrandom()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

5.16.4.22 long random_r (unsigned long∗ ctx)

Variant ofrandom()that stores the context in the user-supplied variable located atctx
instead of a static library variable so the function becomes re-entrant.

5.16.4.23 void srand (unsigned int__seed)

Pseudo-random number generator seeding; seerand().

5.16.4.24 void srandom (unsigned long__seed)

Pseudo-random number generator seeding; seerandom().

5.16.4.25 double strtod (const char∗ __nptr, char ∗∗ __endptr)

The strtod() function converts the initial portion of the string pointed to bynptr to
double representation.

The expected form of the string is an optional plus (’+’) or minus sign (’-’)
followed by a sequence of digits optionally containing a decimal-point character, op-
tionally followed by an exponent. An exponent consists of an’E’ or ’e’ , followed
by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.

Thestrtod()function returns the converted value, if any.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 62

If endptr is notNULL, a pointer to the character after the last character used in the
conversion is stored in the location referenced byendptr .

If no conversion is performed, zero is returned and the value ofnptr is stored in the
location referenced byendptr .

If the correct value would cause overflow, plus or minusHUGE_VALis returned (ac-
cording to the sign of the value), andERANGEis stored inerrno . If the correct value
would cause underflow, zero is returned andERANGEis stored inerrno .

FIXME: HUGE_VAL needs to be defined somewhere. The bit pattern is 0x7fffffff, but
what number would this be?

5.16.4.26 long strtol (const char∗ __nptr, char ∗∗ __endptr, int __base)

The strtol() function converts the string innptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determined by iss-
pace()) followed by a single optional’+’ or ’-’ sign. Ifbase is zero or 16, the string
may then include a"0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is’0’ , in which case it is
taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter ’A’ in either upper or lower case represents 10,’B’ represents 11, and so forth,
with ’Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however, strtol() stores the original value of
nptr in endptr . (Thus, if∗nptr is not’ \0’ but∗∗endptr is ’ \0’ on return, the
entire string was valid.)

The strtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurs,errno is set toERANGEand the function return value is clamped
to LONG_MINor LONG_MAX, respectively.

5.16.4.27 unsigned long strtoul (const char∗ __nptr, char ∗∗ __endptr, int __-
base)

The strtoul() function converts the string innptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by iss-
pace()) followed by a single optional’+’ or ’-’ sign. Ifbase is zero or 16, the string
may then include a"0x" prefix, and the number will be read in base 16; otherwise, a

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.16 General utilities 63

zero base is taken as 10 (decimal) unless the next character is’0’ , in which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base.
(In bases above 10, the letter’A’ in either upper or lower case represents 10,’B’
represents 11, and so forth, with’Z’ representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however, strtoul() stores the original value of
nptr in endptr . (Thus, if∗nptr is not’ \0’ but∗∗endptr is ’ \0’ on return, the
entire string was valid.)

The strtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter case, strtoul() returns ULONG_MAX, and
errno is set toERANGE. If no conversion could be performed, 0 is returned.

5.16.4.28 char∗ ultoa (unsigned long int__val, char ∗ __s, int __radix)

Convert an unsigned long integer to a string.

The functionultoa()converts the unsigned long integer value fromval into an ASCII
representation that will be stored unders . The caller is responsible for providing suf-
ficient storage ins .

Note:
The minimal size of the buffers depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length of 8∗
sizeof (unsigned long int) + 1 characters, i.e. one character for each bit plus one
for the string terminator. Using a larger radix will require a smaller minimal buffer
size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

Theultoa()function returns the pointer passed ass .

5.16.4.29 char∗ utoa (unsigned int__val, char ∗ __s, int __radix)

Convert an unsigned integer to a string.

The functionutoa()converts the unsigned integer value fromval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 64

Note:
The minimal size of the buffers depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length of 8∗
sizeof (unsigned int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter’a’ .

Theutoa()function returns the pointer passed ass .

5.16.5 Variable Documentation

5.16.5.1 char∗ __malloc_heap_end

malloc() tunable.

5.16.5.2 char∗ __malloc_heap_start

malloc() tunable.

5.16.5.3 size_t__malloc_margin

malloc() tunable.

5.17 Strings

5.17.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Note:
If the strings you are working on resident in program space (flash), you will need
to use the string functions described inProgram Space String Utilities.

Functions

• void ∗ memccpy(void ∗, const void∗, int, size_t)

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 65

• void ∗ memchr(const void∗, int, size_t) __ATTR_PURE__
• int memcmp(const void∗, const void∗, size_t) __ATTR_PURE__
• void ∗ memcpy(void ∗, const void∗, size_t)
• void ∗ memmove(void ∗, const void∗, size_t)
• void ∗ memset(void ∗, int, size_t)
• int strcasecmp(const char∗, const char∗) __ATTR_PURE__
• char∗ strcat(char∗, const char∗)
• char∗ strchr(const char∗, int) __ATTR_PURE__
• int strcmp(const char∗, const char∗) __ATTR_PURE__
• char∗ strcpy(char∗, const char∗)
• size_tstrlcat(char∗, const char∗, size_t)
• size_tstrlcpy(char∗, const char∗, size_t)
• size_tstrlen(const char∗) __ATTR_PURE__
• char∗ strlwr (char∗)
• int strncasecmp(const char∗, const char∗, size_t) __ATTR_PURE__
• char∗ strncat(char∗, const char∗, size_t)
• int strncmp(const char∗, const char∗, size_t) __ATTR_PURE__
• char∗ strncpy(char∗, const char∗, size_t)
• size_tstrnlen(const char∗, size_t) __ATTR_PURE__
• char∗ strrchr(const char∗, int) __ATTR_PURE__
• char∗ strrev(char∗)
• char∗ strsep(char∗∗, const char∗)
• char∗ strstr(const char∗, const char∗) __ATTR_PURE__
• char∗ strtok_r(char∗, const char∗, char∗∗)
• char∗ strupr(char∗)

5.17.2 Function Documentation

5.17.2.1 void∗ memccpy (void∗ dest, const void∗ src, int val, size_tlen)

Copy memory area.

Thememccpy()function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Returns:
Thememccpy()function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 66

5.17.2.2 void∗ memchr (const void∗ src, int val, size_tlen)

Scan memory for a character.

Thememchr()function scans the first len bytes of the memory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Returns:
The memchr()function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

5.17.2.3 int memcmp (const void∗ s1, const void∗ s2, size_tlen)

Compare memory areas.

The memcmp()function compares the first len bytes of the memory areas s1 and s2.
The comparision is performed using unsigned char operations.

Returns:
Thememcmp()function returns an integer less than, equal to, or greater than zero
if the first len bytes of s1 is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

Note:
Be sure to store the result in a 16 bit variable since you may get incorrect results if
you use an unsigned char or char due to truncation.

Warning:
This function is not -mint8 compatible, although if you only care about testing for
equality, this function should be safe to use.

5.17.2.4 void∗ memcpy (void∗ dest, const void∗ src, size_tlen)

Copy a memory area.

Thememcpy()function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Usememmove()if the memory areas do overlap.

Returns:
Thememcpy()function returns a pointer to dest.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 67

5.17.2.5 void∗ memmove (void∗ dest, const void∗ src, size_tlen)

Copy memory area.

Thememmove()function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns:
Thememmove()function returns a pointer to dest.

5.17.2.6 void∗ memset (void∗ dest, int val, size_tlen)

Fill memory with a constant byte.

The memset()function fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns:
Thememset()function returns a pointer to the memory area dest.

5.17.2.7 int strcasecmp (const char∗ s1, const char∗ s2)

Compare two strings ignoring case.

Thestrcasecmp()function compares the two strings s1 and s2, ignoring the case of the
characters.

Returns:
The strcasecmp()function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.17.2.8 char∗ strcat (char ∗ dest, const char∗ src)

Concatenate two strings.

Thestrcat()function appends the src string to the dest string overwriting the ’\0’ char-
acter at the end of dest, and then adds a terminating ’\0’ character. The strings may not
overlap, and the dest string must have enough space for the result.

Returns:
Thestrcat()function returns a pointer to the resulting string dest.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 68

5.17.2.9 char∗ strchr (const char ∗ src, int val)

Locate character in string.

Thestrchr()function returns a pointer to the first occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Returns:
The strchr() function returns a pointer to the matched character or NULL if the
character is not found.

5.17.2.10 int strcmp (const char∗ s1, const char∗ s2)

Compare two strings.

Thestrcmp()function compares the two strings s1 and s2.

Returns:
Thestrcmp()function returns an integer less than, equal to, or greater than zero if
s1 is found, respectively, to be less than, to match, or be greater than s2.

5.17.2.11 char∗ strcpy (char ∗ dest, const char∗ src)

Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
’\0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns:
Thestrcpy()function returns a pointer to the destination string dest.

Note:
If the destination string of astrcpy()is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

5.17.2.12 size_t strlcat (char∗ dst, const char∗ src, size_tsiz)

Concatenate two strings.

Appends src to string dst of size siz (unlikestrncat(), siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unless siz<=
strlen(dst)).

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 69

Returns:
Thestrlcat()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval>=
siz, truncation occurred.

5.17.2.13 size_t strlcpy (char∗ dst, const char∗ src, size_tsiz)

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:
Thestrlcpy()function returns strlen(src). If retval>= siz, truncation occurred.

5.17.2.14 size_t strlen (const char∗ src)

Calculate the length of a string.

The strlen() function calculates the length of the string src, not including the terminat-
ing ’\0’ character.

Returns:
The strlen() function returns the number of characters in src.

5.17.2.15 char∗ strlwr (char ∗ string)

Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns:
Thestrlwr() function returns a pointer to the converted string.

5.17.2.16 int strncasecmp (const char∗ s1, const char∗ s2, size_tlen)

Compare two strings ignoring case.

Thestrncasecmp()function is similar tostrcasecmp(), except it only compares the first
n characters of s1.

Returns:
The strncasecmp()function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 70

5.17.2.17 char∗ strncat (char ∗ dest, const char∗ src, size_tlen)

Concatenate two strings.

Thestrncat()function is similar tostrcat(), except that only the first n characters of src
are appended to dest.

Returns:
Thestrncat()function returns a pointer to the resulting string dest.

5.17.2.18 int strncmp (const char∗ s1, const char∗ s2, size_tlen)

Compare two strings.

Thestrncmp()function is similar tostrcmp(), except it only compares the first (at most)
n characters of s1 and s2.

Returns:
Thestrncmp()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.17.2.19 char∗ strncpy (char ∗ dest, const char∗ src, size_tlen)

Copy a string.

The strncpy()function is similar tostrcpy(), except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:
Thestrncpy()function returns a pointer to the destination string dest.

5.17.2.20 size_t strnlen (const char∗ src, size_tlen)

Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating ’\0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns:
The strnlen function returns strlen(src), if that is less than len, or len if there is no
’\0’ character among the first len characters pointed to by src.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.17 Strings 71

5.17.2.21 char∗ strrchr (const char ∗ src, int val)

Locate character in string.

Thestrrchr()function returns a pointer to the last occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Returns:
The strrchr()function returns a pointer to the matched character or NULL if the
character is not found.

5.17.2.22 char∗ strrev (char ∗ string)

Reverse a string.

Thestrrev()function reverses the order of the string.

Returns:
Thestrrev()function returns a pointer to the beginning of the reversed string.

5.17.2.23 char∗ strsep (char∗∗ string, const char∗ delim)

Parse a string into tokens.

The strsep()function locates, in the string referenced by∗string, the first occurrence
of any character in the string delim (or the terminating ’\0’ character) and replaces it
with a ’\0’. The location of the next character after the delimiter character (or NULL,
if the end of the string was reached) is stored in∗string. An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returned in∗string to ’\0’.

Returns:
Thestrtok_r()function returns a pointer to the original value of∗string. If∗stringp
is initially NULL, strsep()returns NULL.

5.17.2.24 char∗ strstr (const char ∗ s1, const char∗ s2)

Locate a substring.

Thestrstr()function finds the first occurrence of the substrings2 in the strings1 . The
terminating ’\0’ characters are not compared.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.18 Interrupts and Signals 72

Returns:
Thestrstr()function returns a pointer to the beginning of the substring, or NULL
if the substring is not found. If s2 points to a string of zero length, the function
returns s1.

5.17.2.25 char∗ strtok_r (char ∗ string, const char∗ delim, char ∗∗ last)

Parses the string s into tokens.

strtok_r parses the string s into tokens. The first call to strtok_r should have string as
its first argument. Subsequent calls should have the first argument set to NULL. If a
token ends with a delimiter, this delimiting character is overwritten with a ’\0’ and a
pointer to the next character is saved for the next call to strtok_r. The delimiter string
delim may be different for each call. last is a user allocated char∗ pointer. It must be
the same while parsing the same string. strtok_r is a reentrant version of strtok().

Returns:
Thestrtok_r()function returns a pointer to the next token or NULL when no more
tokens are found.

5.17.2.26 char∗ strupr (char ∗ string)

Convert a string to upper case.

Thestrupr()function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.

Returns:
Thestrupr()function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

5.18 Interrupts and Signals

5.18.1 Detailed Description

Note:
This discussion of interrupts and signals was taken from Rich Neswold’s docu-
ment. SeeAcknowledgments.

It’s nearly impossible to find compilers that agree on how to handle interrupt code.
Since the C language tries to stay away from machine dependent details, each compiler
writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.18 Interrupts and Signals 73

called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it’s normally executing compiler-generated code.
It’s important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with__-
attribute__((interrupt)) .

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined with one of two macros,
INTERRUPT()andSIGNAL(). These macros register and mark the routine as an in-
terrupt handler for the specified peripheral. The following is an example definition of
a handler for the ADC interrupt.

#include <avr/signal.h>

INTERRUPT(SIG_ADC)
{

// user code here
}

Refer to the chapter explainingassembler programmingfor an explanation about inter-
rupt routines written solely in assembler language.

If an unexpected interrupt occurs (interrupt is enabled and no handler is installed, which
usually indicates a bug), then the default action is to reset the device by jumping to
the reset vector. You can override this by supplying a function named__vector_-
default which should be defined with eitherSIGNAL() or INTERRUPT()as such.

#include <avr/signal.h>

SIGNAL(__vector_default)
{

// user code here
}

The interrupt is chosen by supplying one of the symbols in following table. Note that
every AVR device has a different interrupt vector table so some signals might not be
available. Check the data sheet for the device you are using.

[FIXME: Fill in the blanks! Gotta read those durn data sheets ;-)]

Note:
TheSIGNAL() andINTERRUPT()macros currently cannot spell-check the argu-
ment passed to them. Thus, by misspelling one of the names below in a call to
SIGNAL() or INTERRUPT(), a function will be created that, while possibly being
usable as an interrupt function, is not actually wired into the interrupt vector table.
No warning will be given about this situation.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.18 Interrupts and Signals 74

Signal Name Description
SIG_2WIRE_SERIAL 2-wire serial interface (aka. I178C [tm])
SIG_ADC ADC Conversion complete
SIG_COMPARATOR Analog Comparator Interrupt
SIG_EEPROM_READY Eeprom ready
SIG_FPGA_INTERRUPT0
SIG_FPGA_INTERRUPT1
SIG_FPGA_INTERRUPT2
SIG_FPGA_INTERRUPT3
SIG_FPGA_INTERRUPT4
SIG_FPGA_INTERRUPT5
SIG_FPGA_INTERRUPT6
SIG_FPGA_INTERRUPT7
SIG_FPGA_INTERRUPT8
SIG_FPGA_INTERRUPT9
SIG_FPGA_INTERRUPT10
SIG_FPGA_INTERRUPT11
SIG_FPGA_INTERRUPT12
SIG_FPGA_INTERRUPT13
SIG_FPGA_INTERRUPT14
SIG_FPGA_INTERRUPT15
SIG_INPUT_CAPTURE1 Input Capture1 Interrupt
SIG_INPUT_CAPTURE3 Input Capture3 Interrupt
SIG_INTERRUPT0 External Interrupt0
SIG_INTERRUPT1 External Interrupt1
SIG_INTERRUPT2 External Interrupt2
SIG_INTERRUPT3 External Interrupt3
SIG_INTERRUPT4 External Interrupt4
SIG_INTERRUPT5 External Interrupt5
SIG_INTERRUPT6 External Interrupt6
SIG_INTERRUPT7 External Interrupt7
SIG_OUTPUT_COMPARE0 Output Compare0 Interrupt
SIG_OUTPUT_COMPARE1A Output Compare1(A) Interrupt
SIG_OUTPUT_COMPARE1B Output Compare1(B) Interrupt
SIG_OUTPUT_COMPARE1C Output Compare1(C) Interrupt
SIG_OUTPUT_COMPARE2 Output Compare2 Interrupt
SIG_OUTPUT_COMPARE3A Output Compare3(A) Interrupt
SIG_OUTPUT_COMPARE3B Output Compare3(B) Interrupt
SIG_OUTPUT_COMPARE3C Output Compare3(C) Interrupt
SIG_OVERFLOW0 Overflow0 Interrupt
SIG_OVERFLOW1 Overflow1 Interrupt
SIG_OVERFLOW2 Overflow2 Interrupt
SIG_OVERFLOW3 Overflow3 Interrupt
SIG_PIN
SIG_PIN_CHANGE0
SIG_PIN_CHANGE1
SIG_RDMAC
SIG_SPI SPI Interrupt
SIG_SPM_READY Store program memory ready
SIG_SUSPEND_RESUME
SIG_TDMAC
SIG_UART0
SIG_UART0_DATA UART(0) Data Register Empty Interrupt
SIG_UART0_RECV UART(0) Receive Complete Interrupt
SIG_UART0_TRANS UART(0) Transmit Complete Interrupt

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.18 Interrupts and Signals 75

Signal Name Description
SIG_UART1
SIG_UART1_DATA UART(1) Data Register Empty Interrupt
SIG_UART1_RECV UART(1) Receive Complete Interrupt
SIG_UART1_TRANS UART(1) Transmit Complete Interrupt
SIG_UART_DATA UART Data Register Empty Interrupt
SIG_UART_RECV UART Receive Complete Interrupt
SIG_UART_TRANS UART Transmit Complete Interrupt
SIG_USART0_DATA USART(0) Data Register Empty Interrupt
SIG_USART0_RECV USART(0) Receive Complete Interrupt
SIG_USART0_TRANS USART(0) Transmit Complete Interrupt
SIG_USART1_DATA USART(1) Data Register Empty Interrupt
SIG_USART1_RECV USART(1) Receive Complete Interrupt
SIG_USART1_TRANS USART(1) Transmit Complete Interrupt
SIG_USB_HW

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the I bit of the status register (SREG).

• #definesei() __asm__ __volatile__ ("sei" ::)
• #definecli() __asm__ __volatile__ ("cli" ::)

Macros for writing interrupt handler functions

• #defineSIGNAL(signame)
• #defineINTERRUPT(signame)
• #defineEMPTY_INTERRUPT(signame)

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to
be enabled separately if interrupts for this device are desired. While some devices
maintain their interrupt enable bit inside the device’s register set, external and timer
interrupts have system-wide configuration registers.

Example:

// Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIE1));

// Do some work...

// Disable all timer interrupts.
timer_enable_int(0);

Note:
Be careful when you use these functions. If you already have a different interrupt
enabled, you could inadvertantly disable it by enabling another intterupt.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.18 Interrupts and Signals 76

• __inline__ voidtimer_enable_int(unsigned char ints)

5.18.2 Define Documentation

5.18.2.1 #define cli() __asm__ __volatile__ ("cli" ::)

#include <avr/interrupt.h>

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

5.18.2.2 #define EMPTY_INTERRUPT(signame)

Value:

void signame (void) __attribute__ ((naked)); \
void signame (void) { __asm__ __volatile__ ("reti" ::); }

#include <avr/signal.h>

Defines an empty interrupt handler function. This will not generate any prolog or
epilog code and will only return from the ISR. Do not define a function body as this
will define it for you. Example:

EMPTY_INTERRUPT(SIG_ADC);

5.18.2.3 #define INTERRUPT(signame)

Value:

void signame (void) __attribute__ ((interrupt)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

5.18.2.4 #define sei() __asm__ __volatile__ ("sei" ::)

#include <avr/interrupt.h>

Enables interrupts by clearing the global interrupt mask. This function actually com-
piles into a single line of assembly, so there is no function call overhead.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.19 Special function registers 77

5.18.2.5 #define SIGNAL(signame)

Value:

void signame (void) __attribute__ ((signal)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

5.18.3 Function Documentation

5.18.3.1 __inline__ void timer_enable_int (unsigned charints) [static]

#include <avr/interrupt.h>

This function modifies thetimsk register. The value you pass viaints is device
specific.

5.19 Special function registers

5.19.1 Detailed Description

When working with microcontrollers, many of the tasks usually consist of controlling
the peripherals that are connected to the device, respectively programming the subsys-
tems that are contained in the controller (which by itself communicate with the circuitry
connected to the controller).

The AVR series of microcontrollers offers two different paradigms to perform this task.
There’s a separate IO address space available (as it is known from some high-level
CISC CPUs) that can be addressed with specific IO instructions that are applicable to
some or all of the IO address space (in , out , sbi etc.). The entire IO address space
is also made available asmemory-mapped IO, i. e. it can be accessed using all the
MCU instructions that are applicable to normal data memory. The IO register space is
mapped into the data memory address space with an offset of 0x20 since the bottom
of this space is reserved for direct access to the MCU registers. (Actual SRAM is
available only behind the IO register area, starting at either address 0x60, or 0x100
depending on the device.)

AVR Libc supports both these paradigms. While by default, the implementation uses
memory-mapped IO access, this is hidden from the programmer. So the programmer
can access IO registers either with a special function likeoutb() :

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.19 Special function registers 78

#include <avr/io.h>

outb(PORTA, 0x33);

or they can assign a value directly to the symbolic address:

PORTA = 0x33;

The compiler’s choice of which method to use when actually accessing the IO port is
completely independent of the way the programmer chooses to write the code. So even
if the programmer uses the memory-mapped paradigm and writes

PORTA |= 0x40;

the compiler can optimize this into the use of ansbi instruction (of course, provided
the target address is within the allowable range for this instruction, and the right-hand
side of the expression is a constant value known at compile-time).

The advantage of using the memory-mapped paradigm in C programs is that it makes
the programs more portable to other C compilers for the AVR platform. Some people
might also feel that this is more readable. For example, the following two statements
would be equivalent:

outb(DDRD, inb(DDRD) & ~LCDBITS);
DDRD &= ~LCDBITS;

The generated code is identical for both. Whitout optimization, the compiler strictly
generates code following the memory-mapped paradigm, while with optimization
turned on, code is generated using the (faster and smaller)in/out MCU instructions.

Note that special care must be taken when accessing some of the 16-bit timer IO reg-
isters where access from both the main program and within an interrupt context can
happen. SeeWhy do some 16-bit timer registers sometimes get trashed?.

Modules

• groupAdditional notes from<avr/sfr_defs.h>

Bit manipulation

• #define_BV(bit) (1 << (bit))

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.19 Special function registers 79

IO register bit manipulation

• #definebit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))
• #definebit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
• #defineloop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))
• #defineloop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

Deprecated Macros

• #definecbi(sfr, bit) (_SFR_BYTE(sfr) &=∼_BV(bit))
• #definesbi(sfr, bit) (_SFR_BYTE(sfr)|= _BV(bit))
• #defineinb(sfr) _SFR_BYTE(sfr)
• #defineoutb(sfr, val) (_SFR_BYTE(sfr) = (val))
• #defineinw(sfr) _SFR_WORD(sfr)
• #defineoutw(sfr, val) (_SFR_WORD(sfr) = (val))
• #defineoutp(val, sfr) outb(sfr, val)
• #defineinp(sfr) inb(sfr)
• #defineBV(bit) _BV(bit)

5.19.2 Define Documentation

5.19.2.1 no no integer part ORI _BV(bit) (1<< (bit))

#include <avr/io.h>

Converts a bit number into a byte value.

Note:
The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when using_BV().

5.19.2.2 #define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))

#include <avr/io.h>

Test whether bitbit in IO registersfr is clear. This will return non-zero if the bit is
clear, and a 0 if the bit is set.

5.19.2.3 #define bit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))

#include <avr/io.h>

Test whether bitbit in IO registersfr is set. This will return a 0 if the bit is clear,
and non-zero if the bit is set.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.19 Special function registers 80

5.19.2.4 #define BV(bit) _BV(bit)

Deprecated
For backwards compatibility only. This macro will eventually be removed.

Use_BV() in new programs.

5.19.2.5 #define cbi(sfr, bit) (_SFR_BYTE(sfr) &=∼_BV(bit))

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Clear bitbit in IO registersfr .

5.19.2.6 #define inb(sfr) _SFR_BYTE(sfr)

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs.

5.19.2.7 #define inp(sfr) inb(sfr)

Deprecated
For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs.

5.19.2.8 #define inw(sfr) _SFR_WORD(sfr)

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Read a 16-bit word from IO register pairsfr .

Use direct access in new programs.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

5.19 Special function registers 81

5.19.2.9 #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is clear.

5.19.2.10 #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is set.

5.19.2.11 #define outb(sfr, val) (_SFR_BYTE(sfr) = (val))

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs.

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<= 20020203).

5.19.2.12 #define outp(val, sfr) outb(sfr, val)

Deprecated
For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs.

5.19.2.13 #define outw(sfr, val) (_SFR_WORD(sfr) = (val))

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

6 avr-libc Data Structure Documentation 82

Write the 16-bit valueval to IO register pairsfr . Care will be taken to write the
lower register first. When used to update 16-bit registers where the timing is critical
and the operation can be interrupted, the programmer is the responsible for disabling
interrupts before accessing the register pair.

Use direct access in new programs.

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<= 20020203).

5.19.2.14 #define sbi(sfr, bit) (_SFR_BYTE(sfr)|= _BV(bit))

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Set bitbit in IO registersfr .

6 avr-libc Data Structure Documentation

6.1 div_t Struct Reference

6.1.1 Detailed Description

Result type for functiondiv().

Data Fields

• int quot
• int rem

The documentation for this struct was generated from the following file:

• stdlib.h

6.2 ldiv_t Struct Reference

6.2.1 Detailed Description

Result type for functionldiv().

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7 avr-libc Page Documentation 83

Data Fields

• longquot
• long rem

The documentation for this struct was generated from the following file:

• stdlib.h

7 avr-libc Page Documentation

7.1 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn’t have a terrific,free set of tools to develop AVR
projects. We all owe thanks to:

• The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

• Denis Chertykov [denisc@overta.ru] for making the AVR-specific
changes to the GNU tools.

• Denis Chertykov and Marek Michalkiewicz [marekm@linux.org.pl] for
developing the standard libraries and startup code forAVR-GCC .

• Uros Platise for developing the AVR programmer tool,uisp.

• Joerg Wunsch [joerg@FreeBSD.ORG] for adding all the AVR development
tools to the FreeBSD [http://www.freebsd.org] ports tree and for pro-
viding the basics for thedemo project.

• Brian Dean [bsd@bsdhome.com] for developingavrdude (an alternative to
uisp) and for contributingdocumentationwhich describes how to use it.Avr-
dudewas previously calledavrprog.

• Eric Weddington [eric@ecentral.com] for maintaining theWinAVR
package and thus making the continued improvements to the Opensource AVR
toolchain available to many users.

• Rich Neswold for writing the original avr-tools document (which he graciously
allowed to be merged into this document) and his improvements to thedemo
project.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

mailto:denisc@overta.ru

mailto:marekm@linux.org.pl

mailto:joerg@FreeBSD.ORG

http://www.freebsd.org

mailto:bsd@bsdhome.com

mailto:eric@ecentral.com

7.2 avr-libc and assembler programs 84

• All the people who have submitted suggestions, patches and bug reports. (See
the AUTHORS files of the various tools.)

• And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

7.2 avr-libc and assembler programs

7.2.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

• Code for devices that do not have RAM and are thus not supported by the C
compiler.

• Code for very time-critical applications.

• Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily using theinline assemblerfacility
of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

• Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler’s macro concept is
basically targeted to use a macro in place of an assembler instruction).

• Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAM,initializing the RAM variablescan also be utilized.

7.2.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler frontend (avr-gcc) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

• There is basically only one program to be called directly,avr-gcc , regardless
of the actual source language used.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 85

• The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

• The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crt XXX.o) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembler file ends in .S (the capital letter "s"). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is
made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

Alternatively, the language can explicitly be specified using the-x
assembler-with-cpp option.

7.2.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

#include <avr/io.h> ; Note [1]

work = 16 ; Note [2]
tmp = 17

inttmp = 19

intsav = 0

SQUARE = PD6 ; Note [3]

; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNT0 is set

.section .text

.global main ; Note [5]
main:

rcall ioinit
1:

rjmp 1b ; Note [6]

.global SIG_OVERFLOW0 ; Note [7]
SIG_OVERFLOW0:

ldi inttmp, 256 - tmconst + fuzz
out _SFR_IO_ADDR(TCNT0), inttmp ; Note [8]

in intsav, _SFR_IO_ADDR(SREG) ; Note [9]

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 86

sbic _SFR_IO_ADDR(PORTD), SQUARE
rjmp 1f
sbi _SFR_IO_ADDR(PORTD), SQUARE
rjmp 2f

1: cbi _SFR_IO_ADDR(PORTD), SQUARE
2:

out _SFR_IO_ADDR(SREG), intsav
reti

ioinit:
sbi _SFR_IO_ADDR(DDRD), SQUARE

ldi work, _BV(TOIE0)
out _SFR_IO_ADDR(TIMSK), work

ldi work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCR0), work

ldi work, 256 - tmconst
out _SFR_IO_ADDR(TCNT0), work

sei

ret

.global __vector_default ; Note [10]
__vector_default:

reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the IO port
definitions for the device. Note that not all include files can be included into assembler
sources.

Note [2]

Assignment of registers to symbolic names used locally. Another option would be to
use a C preprocessor macro instead:

#define work 16

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a
CPP macro which will be substituted by its value (6 in this case) before actually being
passed to the assembler.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 87

Note [4]

The assembler uses integer operations in the host-defined integer size (32 bits or longer)
when evaluating expressions. This is in contrast to the C compiler that uses the C type
int by default in order to calculate constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per
second. Since we use timer 0 without any prescaling options in order to get the de-
sired frequency and accuracy, we already run into serious timing considerations: while
accepting and processing the timer overflow interrupt, the timer already continues to
count. When pre-loading theTCCNT0register, we therefore have to account for the
number of clock cycles required for interrupt acknowledge and for the instructions to
reloadTCCNT0(4 clock cycles for interrupt acknowledge, 2 cycles for the jump from
the interrupt vector, 2 cycles for the 2 instructions that reloadTCCNT0). This is what
the constantfuzz is for.

Note [5]

External functions need to be declared to be .global.main is the application entry
point that will be jumped to from the ininitalization routine incrts1200.o .

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer 0 overflow interrupt service. Asleep instruction
(using idle mode) could be used as well, but probably would not conserve much energy
anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get theusual namesthat are also available to C programs. The
linker will then put them into the appropriate interrupt vector slots. Note that they must
be declared .global in order to be acceptable for this purpose. This will only work if
<avr/io.h > has been included. Note that the assembler or linker have no chance
to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file usingavr-objdump or avr-nm , a name
like __vector_ N should appear, withN being a small integer number.)

Note [8]

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 88

As explained in the section aboutspecial function registers, the actual IO port address
should be obtained using the macro_SFR_IO_ADDR. (The AT90S1200 does not have
RAM thus the memory-mapped approach to access the IO registers is not available. It
would be slower than usingin / out instructions anyway.)

Since the operation to reloadTCCNT0is time-critical, it is even performed before
savingSREG. Obviously, this requires that the instructions involved would not change
any of the flag bits inSREG.

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary
to save at least the state of the flag bits inSREG. (Note that this serves as an example
here only since actually, all the following instructions would not modifySREGeither,
but that’s not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict
with those used outside. In the case of a RAM-less device like the AT90S1200, this can
only be done by agreeing on a set of registers to be used exclusively inside the interrupt
routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken
to follow theregister usage guidelinesimposed by the C compiler. Also, any register
modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]

As explained inInterrupts and Signals, a global "catch-all" interrupt handler that
gets all unassigned interrupt vectors can be installed using the name__vector_-
default . This must be .global, and obviously, should end in areti instruction. (By
default, a jump to location 0 would be implied instead.)

7.2.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas)
manual. The manual can be found online as part of the current binutils release under
http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly
different than the one being used by other assemblers. Numeric constants follow the C
notation (prefix0x for hexadecimal constants), expressions use a C-like syntax.

Some common pseudo-ops include:

• .byte allocates single byte constants

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://sources.redhat.com/binutils/.

7.2 avr-libc and assembler programs 89

• .ascii allocates a non-terminated string of characters

• .asciz allocates a\0-terminated string of characters (C string)

• .data switches to the .data section (initialized RAM variables)

• .text switches to the .text section (code and ROM constants)

• .set declares a symbol as a constant expression (identical to .equ)

• .global (or .globl) declares a public symbol that is visible to the linker (e. g.
function entry point, global variable)

• .extern declares a symbol to be externally defined; this is effectively a comment
only, as gas treats all undefined symbols it encounters as globally undefined any-
way

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an as-
sembler environment that uses relocatable object files, as it is the linker that determines
the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-
specific operators available which are unfortunately not yet described in the official
documentation. The most notable operators are:

• lo8 Takes the least significant 8 bits of a 16-bit integer

• hi8 Takes the most significant 8 bits of a 16-bit integer

• pm Takes a program-memory (ROM) address, and converts it into a RAM ad-
dress. This implies a division by 2 as the AVR handles ROM addresses as 16-bit
words (e.g. in anIJMP or ICALL instruction), and can also handle relocatable
symbols on the right-hand side.

Example:

ldi r24, lo8(pm(somefunc))
ldi r25, hi8(pm(somefunc))
call something

This passes the address of functionsomefunc as the first parameter to function
something .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 90

7.3 Frequently Asked Questions

7.3.1 FAQ Index

1. My program doesn’t recognize a variable updated within an interrupt routine

2. I get "undefined reference to..." for functions like "sin()"

3. How to permanently bind a variable to a register?

4. How to modify MCUCR or WDTCR early?

5. What is all this _BV() stuff about?

6. Can I use C++ on the AVR?

7. Shouldn’t I initialize all my variables?

8. Why do some 16-bit timer registers sometimes get trashed?

9. How do I use a #define’d constant in an asm statement?

10. Why does the PC randomly jump around when single-stepping through my pro-
gram in avr-gdb?

11. How do I trace an assembler file in avr-gdb?

12. How do I pass an IO port as a parameter to a function?

13. What registers are used by the C compiler?

14. How do I put an array of strings completely in ROM?

15. How to use external RAM?

16. Which -O flag to use?

17. How do I relocate code to a fixed address?

18. My UART is generating nonsense! My ATmega128 keeps crashing! Port F is
completely broken!

19. Why do all my "foo...bar" strings eat up the SRAM?

20. Why does the compiler compile an 8-bit operation that uses bitwise operators
into a 16-bit operation in assembly?

21. How to detect RAM memory and variable overlap problems?

22. Is it really impossible to program the ATtinyXX in C?

23. What is this "clock skew detected" messsage?

24. Why are (many) interrupt flags cleared by writing a logical 1?

25. Why have "programmed" fuses the bit value 0?

26. Which AVR-specific assembler operators are available?

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 91

7.3.2 My program doesn’t recognize a variable updated within an interrupt rou-
tine

When using the optimizer, in a loop like the following one:

uint8_t flag;
...

while (flag == 0) {
...

}

the compiler will typically optimize the access toflag completely away, since its
code path analysis shows that nothing inside the loop could change the value offlag
anyway. To tell the compiler that this variable could be changed outside the scope of
its code path analysis (e. g. from within an interrupt routine), the variable needs to be
declared like:

volatile uint8_t flag;

Back toFAQ Index.

7.3.3 I get "undefined reference to..." for functions like "sin()"

In order to access the mathematical functions that are declared in<math.h >, the
linker needs to be told to also link the mathematical library,libm.a .

Typically, system libraries likelibm.a are given to the final C compiler command
line that performs the linking step by adding a flag-lm at the end. (That is, the initial
lib and the filename suffix from the library are written immediately after a-l flag. So
for a libfoo.a library, -lfoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to thelibm.a file at the same place
on the command line, i. e.after all the object files (∗.o). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index.

7.3.4 How to permanently bind a variable to a register?

This can be done with

register unsigned char counter asm("r3");

SeeC Names Used in Assembler Codefor more details.

Back toFAQ Index.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 92

7.3.5 How to modify MCUCR or WDTCR early?

The method of early initialization (MCUCR, WDTCRor anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S

#include <avr/io.h>

.section .init1,"ax",@progbits

ldi r16,_BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

Assemble it, link the resultingxram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the new.init N sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup – no stack and no__zero_reg__ yet),
and no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leave__stack at its default value (end of internal SRAM
– faster, and required on some devices like ATmega161 because of errata), and add
-Wl,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, including how to use them from C code, see
Memory Sections.

Back toFAQ Index.

7.3.6 What is all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some IO register. While the device documentation provides mnemonic names for
the various bits in the IO registers, and theAVR device-specific IO definitionsreflect
these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
ansbi() call), so the definitions cannot usefully be made as byte values in the first
place.

So in order to access a particular bit number as a byte value, use the_BV() macro.
Of course, the implementation of this macro is just the usual bit shift (which is done

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 93

by the compiler anyway, thus doesn’t impose any run-time penalty), so the following
applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.

"BV" stands for "bit value", in case someone might ask you. :-)

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on
compare match (COM2x = 0b01), and clear timer on compare match (CTC2= 1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index.

7.3.7 Can I use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc, .cpp or .C will automati-
cally cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the nameavr-c++ .

However, there’s currently no support forlibstdc++ , the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

• Obviously, none of the C++ related standard functions, classes, and template
classes are available.

• The operatorsnew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

• Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into

extern "C" { . . . }

(This could certainly be fixed, too.)

• Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off using-fno-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference to__gxx_personality_sj0 .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 94

Constructors and destructorsaresupported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index.

7.3.8 Shouldn’t I initialize all my variables?

Global and static variables are guaranteed to be initialized to 0 by the C standard.
avr-gcc does this by placing the appropriate code into section .init4 (seeThe .initN
Sections). With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits
being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the.bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target’s SRAM.)

In contrast, global and static variables that have an initializer go into the.datasection
of the file. This will cause them to consume space in the object file (in order to record
the initializing value),and in the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure" their variables really get a 0
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it’s usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, variables should only be explicitly initialized if the initial value is non-
zero.

Back toFAQ Index.

7.3.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 95

two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value register (TCNTn), the input capture
register (ICRn), and write access to the output compare registers (OCRnM). Refer to
the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it’s usually best to use the
SIGNAL() macro when declaring the interrupt function, and to ensure that interrupts
are still disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the
cli() andsei()macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

uint16_t
read_timer1(void)
{

uint8_t sreg;
uint16_t val;

sreg = SREG;
cli();
val = TCNT1;
SREG = sreg;

return val;
}

Back toFAQ Index.

7.3.10 How do I use a #define’d constant in an asm statement?

So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation error:"Error: constant value required" .

PORTBis a precompiler definition included in the processor specific file included in
avr/io .h. As you may know, the precompiler will not touch strings andPORTB,
instead of0x18 , gets passed to the assembler. One way to avoid this problem is:

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 96

asm volatile("sbi %0, 0x07" : "I" (PORTB):);

Note:
avr/io .h already provides asbi() macro definition, which can be used in C pro-
grams.

Back toFAQ Index.

7.3.11 Why does the PC randomly jump around when single-stepping through
my program in avr-gdb?

When compiling a program with both optimization (-O) and debug information (-g)
which is fortunately possible inavr-gcc , the code watched in the debugger is opti-
mized code. While it is not guaranteed, very often this code runs with the exact same
optimizations as it would run without the-g switch.

This can have unwanted side effects. Since the compiler is free to reorder code ex-
ecution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative jump (rjmp)
instruction, which will need one additional word of ROM.

Another side effect of optimzation is that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the
first variable is no longer used inside that function, even though the variable is still in
lexical scope. When trying to examine the variable inavr-gdb , the displayed result
will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern. In most cases, you are better off leaving
optimizations enabled while debugging.

Back toFAQ Index.

7.3.12 How do I trace an assembler file in avr-gdb?

When using the-g compiler option,avr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a singlestep command
in gdb . This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, since the-g compiler switch does not
apply to the assembler.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 97

So in order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it’s the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn’t
know about this.) This is done using the (GNU) assembler option-gstabs .

Example:

$ avr-as -mmcu=atmega128 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend
(either implicitly by passing a source file ending in .S, or explicitly using-x
assembler-with-cpp), the compiler frontend needs to be told to pass the
-gstabs option down to the assembler. This is done using-Wa,-gstabs . Please
take care toonly pass this option when compiling an assembler input file. Otherwise,
the assembler code that results from the C compilation stage will also get line number
information, which confuses the debugger.

Note:
You can also use-Wa,-gstabs since the compiler will add the extra’-’ for
you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmega128 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -o foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to have been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the letterb for a backward reference, orf for a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

myfunc: push r16
push r17
push r18
push YL
push YH
...
eor r16, r16 ; start loop
ldi YL, lo8(sometable)
ldi YH, hi8(sometable)
rjmp 2f ; jump to loop test at end

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 98

1: ld r17, Y+ ; loop continues here
...
breq 1f ; return from myfunc prematurely
...
inc r16

2: cmp r16, r18
brlo 1b ; jump back to top of loop

1: pop YH
pop YL
pop r18
pop r17
pop r16
ret

Back toFAQ Index.

7.3.13 How do I pass an IO port as a parameter to a function?

Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{

port |= mask;
}

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

*port |= mask;
}

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)
{

set_bits_func_wrong (PORTB, 0xaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);

return (0);
}

The first function will generate object code which is not even close to what is intended.
The major problem arises when the function is called. When the compiler sees this call,
it will actually pass the value of thePORTBregister (using anIN instruction), instead
of passing the address ofPORTB(e.g. memory mapped io addr of0x38 , io port0x18
for the mega128). This is seen clearly when looking at the disassembly of the call:

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 99

set_bits_func_wrong (PORTB, 0xaa);
10a: 6a ea ldi r22, 0xAA ; 170
10c: 88 b3 in r24, 0x18 ; 24
10e: 0e 94 65 00 call 0xca

So, the function, once called, only sees the value of the port register and knows nothing
about which port it came from. At this point, whatever object code is generated for
the function by the compiler is irrelevant. The interested reader can examine the full
disassembly to see that the function’s body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of
the io port to the function so that you can read and write to it in the function. Here’s
the object code generated for the function call:

set_bits_func_correct (&PORTB, 0x55);
112: 65 e5 ldi r22, 0x55 ; 85
114: 88 e3 ldi r24, 0x38 ; 56
116: 90 e0 ldi r25, 0x00 ; 0
118: 0e 94 7c 00 call 0xf8

You can clearly see that0x0038 is correctly passed for the address of the io port.
Looking at the disassembled object code for the body of the function, we can see that
the function is indeed performing the operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

f8: fc 01 movw r30, r24
*port |= mask;

fa: 80 81 ld r24, Z
fc: 86 2b or r24, r22
fe: 80 83 st Z, r24

}
100: 08 95 ret

Notice that we are accessing the io port via theLD andST instructions.

Theport parameter must be volatile to avoid a compiler warning.

Note:
Because of the nature of theIN andOUTassembly instructions, they can not be
used inside the function when passing the port in this way. Readers interested in
the details should consult theInstruction Setdata sheet.

Finally we come to the macro version of the operation. In this contrived example, the
macro is the most efficient method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);
11c: 88 b3 in r24, 0x18 ; 24
11e: 80 6f ori r24, 0xF0 ; 240
120: 88 bb out 0x18, r24 ; 24

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 100

Of course, in a real application, you might be doing a lot more in your function which
uses a passed by reference io port address and thus the use of a function over a macro
could save you some code space, but still at a cost of execution speed.

Care should be taken when such an indirect port access is going to one of the 16-bit
IO registers where the order of write access is critical (like some timer registers). All
versions of avr-gcc up to 3.3 will generate instructions that use the wrong access order
in this situation (since with normal memory operands where the order doesn’t matter,
this sometimes yields shorter code).

Seehttp://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html
for a possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be
disabled if the respective pointer variable is declared to bevolatile , so the correct
behaviour for 16-bit IO ports can be forced that way.

Back toFAQ Index.

7.3.14 What registers are used by the C compiler?

• Data types:

char is 8 bits,int is 16 bits,long is 32 bits,long long is 64 bits,float and
double are 32 bits (this is the only supported floating point format), pointers
are 16 bits (function pointers are word addresses, to allow addressing the whole
128K program memory space on the ATmega devices with> 64 KB of flash
ROM). There is a-mint8 option (seeOptions for the C compiler avr-gcc) to
makeint 8 bits, but that is not supported by avr-libc and violates C standards
(int mustbe at least 16 bits). It may be removed in a future release.

• Call-used registers (r18-r27, r30-r31):

May be allocated by gcc for local data. Youmayuse them freely in assembler
subroutines. Calling C subroutines can clobber any of them - the caller is re-
sponsible for saving and restoring.

• Call-saved registers (r2-r17, r28-r29):

May be allocated by gcc for local data. Calling C subroutines leaves them un-
changed. Assembler subroutines are responsible for saving and restoring these
registers, if changed. r29:r28 (Y pointer) is used as a frame pointer (points to
local data on stack) if necessary.

• Fixed registers (r0, r1):

Never allocated by gcc for local data, but often used for fixed purposes:

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html

7.3 Frequently Asked Questions 101

r0 - temporary register, can be clobbered by any C code (except interrupt handlers
which save it),maybe used to remember something for a while within one piece of
assembler code

r1 - assumed to be always zero in any C code,maybe used to remember something for
a while within one piece of assembler code, butmustthen be cleared after use (clr
r1). This includes any use of the[f]mul[s[u]] instructions, which return their
result in r1:r0. Interrupt handlers save and clear r1 on entry, and restore r1 on exit (in
case it was non-zero).

• Function call conventions:

Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, includingchar , have one free
register above them). This allows making better use of themovwinstruction on
the enhanced core.

If too many, those that don’t fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to
64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by the caller
(unsigned char is more efficient thansigned char - just clr r25). Argu-
ments to functions with variable argument lists (printf etc.) are all passed on stack, and
char is extended toint .

Warning:
There was no such alignment before 2000-07-01, including the old patches for
gcc-2.95.2. Check your old assembler subroutines, and adjust them accordingly.

Back toFAQ Index.

7.3.15 How do I put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified.
In this case, you don’t want to waste ram storing the constant strings. The most obvious
(and incorrect) thing to do is this:

#include <avr/pgmspace.h>

PGM_P array[2] PROGMEM = {
"Foo",
"Bar"

};

int main (void)
{

char buf[32];
strcpy_P (buf, array[1]);
return 0;

}

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 102

The result is not want you want though. What you end up with is the array stored in
ROM, while the individual strings end up in RAM (in the .data section).

To work around this, you need to do something like this:

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar[] PROGMEM = "Bar";

PGM_P array[2] PROGMEM = {
foo,
bar

};

int main (void)
{

char buf[32];
PGM_P p;
int i;

memcpy_P(&p, &array[i], sizeof(PGM_P));
strcpy_P(buf, p);
return 0;

}

Looking at the disassembly of the resulting object file we see that array is in flash as
such:

00000026 <array>:
26: 2e 00 .word 0x002e ; ????
28: 2a 00 .word 0x002a ; ????

0000002a <bar>:
2a: 42 61 72 00 Bar.

0000002e <foo>:
2e: 46 6f 6f 00 Foo.

foo is at addr 0x002e.

bar is at addr 0x002a.

array is at addr 0x0026.

Then in main we see this:

memcpy_P(&p, &array[i], sizeof(PGM_P));
70: 66 0f add r22, r22
72: 77 1f adc r23, r23
74: 6a 5d subi r22, 0xDA ; 218
76: 7f 4f sbci r23, 0xFF ; 255
78: 42 e0 ldi r20, 0x02 ; 2
7a: 50 e0 ldi r21, 0x00 ; 0

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 103

7c: ce 01 movw r24, r28
7e: 81 96 adiw r24, 0x21 ; 33
80: 08 d0 rcall .+16 ; 0x92

This code reads the pointer to the desired string from the ROM tablearray into a
register pair.

The value ofi (in r22:r23) is doubled to accomodate for the word offset required to
access array[], then the address of array (0x26) is added, by subtracting the negated
address (0xffda). The address of variablep is computed by adding its offset within the
stack frame (33) to the Y pointer register, andmemcpy_Pis called.

strcpy_P(buf, p);
82: 69 a1 ldd r22, Y+33 ; 0x21
84: 7a a1 ldd r23, Y+34 ; 0x22
86: ce 01 movw r24, r28
88: 01 96 adiw r24, 0x01 ; 1
8a: 0c d0 rcall .+24 ; 0xa4

This will finally copy the ROM string into the local bufferbuf .

Variablep (located at Y+33) is read, and passed together with the address of buf (Y+1)
to strcpy_P. This will copy the string from ROM tobuf .

Note that when using a compile-time constant index, omitting the first step (reading
the pointer from ROM viamemcpy_P) usually remains unnoticed, since the compiler
would then optimize the code for accessingarray at compile-time.

Back toFAQ Index.

7.3.16 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external
RAM is going to be used for.

Basically, the bitSRE(SRAM enable) in theMCUCRregister needs to be set in order
to enable the external memory interface. Depending on the device to be used, and
the application details, further registers affecting the external memory operation like
XMCRAandXMCRB, and/or further bits inMCUCRmight be configured. Refer to the
datasheet for details.

If the external RAM is going to be used to store the variables from the C program
(i. e., the .data and/or .bss segment) in that memory area, it is essential to set up the
external memory interface early during thedevice initializationso the initialization of
these variable will take place. Refer toHow to modify MCUCR or WDTCR early?for
a description how to do this using few lines of assembler code, or to the chapter about
memory sections for anexample written in C.

The explanation ofmalloc() contains adiscussionabout the use of internal RAM vs.
external RAM in particular with respect to the various possible locations of theheap

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 104

(area reserved formalloc()). It also explains the linker command-line options that are
required to move the memory regions away from their respective standard locations in
internal RAM.

Finally, if the application simply wants to use the additional RAM for private data
storage kept outside the domain of the C compiler (e. g. through achar ∗ variable
initialized directly to a particular address), it would be sufficient to defer the initializa-
tion of the external RAM interface to the beginning ofmain(), so no tweaking of the
.init1 section is necessary. The same applies if only the heap is going to be located
there, since the application start-up code does not affect the heap.

It is not recommended to locate the stack in external RAM. In general, accessing exter-
nal RAM is slower than internal RAM, and errata of some AVR devices even prevent
this configuration from working properly at all.

Back toFAQ Index.

7.3.17 Which -O flag to use?

There’s a common misconception that larger numbers behind the-O option might auto-
matically cause "better" optimization. First, there’s no universal definition for "better",
with optimization often being a speed vs. code size tradeoff. See thedetailed discus-
sionfor which option affects which part of the code generation.

A test case was run on an ATmega128 to judge the effect of compiling the library itself
using different optimization levels. The following table lists the results. The test case
consisted of around 2 KB of strings to sort. Test #1 used qsort() using the standard
library strcmp(), test #2 used a function that sorted the strings by their size (thus had
two calls to strlen() per invocation).

When comparing the resulting code size, it should be noted that a floating point version
of fvprintf() was linked into the binary (in order to print out the time elapsed) which
is entirely not affected by the different optimization levels, and added about 2.5 KB to
the code.

Optimization
flags

Size of .text Time for test #1 Time for test #2

-O3 6898 903µs 19.7 ms
-O2 6666 972µs 20.1 ms
-Os 6618 955µs 20.1 ms
-Os
-mcall-prologues

6474 972µs 20.1 ms

(The difference between 955µs and 972µs was just a single timer-tick, so take this
with a grain of salt.)

So generally, it seems-Os -mcall-prologues is the most universal "best" opti-
mization level. Only applications that need to get the last few percent of speed benefit
from using-O3 .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 105

Back toFAQ Index.

7.3.18 How do I relocate code to a fixed address?

First, the code should be put into a newnamed section. This is done with a section
attribute:

__attribute__ ((section (".bootloader")))

In this example, .bootloader is the name of the new section. This attribute needs to be
placed after the prototype of any function to force the function into the new section.

void boot(void) __attribute__ ((section (".bootloader")));

To relocate the section to a fixed address the linker flag-section-start is used.
This option can be passed to the linker using the-Wl compiler option:

-Wl,--section-start=.bootloader=0x1E000

The name after section-start is the name of the section to be relocated. The number
after the section name is the beginning address of the named section.

Back toFAQ Index.

7.3.19 My UART is generating nonsense! My ATmega128 keeps crashing! Port
F is completely broken!

Well, certain odd problems arise out of the situation that the AVR devices as shipped
by Atmel often come with a default fuse bit configuration that doesn’t match the user’s
expectations. Here is a list of things to care for:

• All devices that have an internal RC oscillator ship with the fuse enabled that
causes the device to run off this oscillator, instead of an external crystal. This
often remains unnoticed until the first attempt is made to use something critical
in timing, like UART communication.

• The ATmega128 ships with the fuse enabled that turns this device into AT-
mega103 compatibility mode. This means that some ports are not fully usable,
and in particular that the internal SRAM is located at lower addresses. Since by
default, the stack is located at the top of internal SRAM, a program compiled for
an ATmega128 running on such a device will immediately crash upon the first
function call (or rather, upon the first function return).

• Devices with a JTAG interface have theJTAGENfuse programmed by default.
This will make the respective port pins that are used for the JTAG interface un-
available for regular IO.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 106

Back toFAQ Index.

7.3.20 Why do all my "foo...bar" strings eat up the SRAM?

By default, all strings are handled as all other initialized variables: they occupy RAM
(even though the compiler might warn you when it detects write attempts to these RAM
locations), and occupy the same amount of flash ROM so they can be initialized to the
actual string by startup code. The compiler can optimize multiple identical strings into
a single one, but obviously only for one compilation unit (i. e., a single C source file).

That way, any string literal will be a valid argument to any C function that expects a
const char ∗ argument.

Of course, this is going to waste a lot of SRAM. InProgram Space String Utilities, a
method is described how such constant data can be moved out to flash ROM. How-
ever, a constant string located in flash ROM is no longer a valid argument to pass to a
function that expects aconst char ∗-type string, since the AVR processor needs
the special instructionLPMto access these strings. Thus, separate functions are needed
that take this into account. Many of the standard C library functions have equivalents
available where one of the string arguments can be located in flash ROM. Private func-
tions in the applications need to handle this, too. For example, the following can be
used to implement simple debugging messages that will be sent through a UART:

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

void
uart_putchar(char c)
{

if (c == ’\n’)
uart_putchar(’\r’);

loop_until_bit_is_set(USR, UDRE);
UDR = c;

}

void
debug_P(const char *addr)
{

char c;

while ((c = pgm_read_byte(addr++)))
uart_putchar(c);

}

int
main(void)
{

debug_P(PSTR("foo was here\n"));
return 0;

}

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 107

Note:
By convention, the suffix_P to the function name is used as an indication that
this function is going to accept a "program-space string". Note also the use of the
PSTR()macro.

Back toFAQ Index.

7.3.21 Why does the compiler compile an 8-bit operation that uses bitwise oper-
ators into a 16-bit operation in assembly?

Bitwise operations in Standard C will automatically promote their operands to an int,
which is (by default) 16 bits in avr-gcc.

To work around this use typecasts on the operands, including literals, to declare that
the values are to be 8 bit operands.

This may be especially important when clearing a bit:

var &= ~mask; /* wrong way! */

The bitwise "not" operator (∼) will also promote the value inmask to an int. To keep
it an 8-bit value, typecast before the "not" operator:

var &= (unsigned char)~mask;

Back toFAQ Index.

7.3.22 How to detect RAM memory and variable overlap problems?

You can simply runavr-nm on your output (ELF) file. Run it with the-n option, and
it will sort the symbols numerically (by default, they are sorted alphabetically).

Look for the symbol_end , that’s the first address in RAM that is not allocated by
a variable. (avr-gcc internally adds 0x800000 to all data/bss variable addresses, so
please ignore this offset.) Then, the run-time initialization code initializes the stack
pointer (by default) to point to the last avaialable address in (internal) SRAM. Thus,
the region between_end and the end of SRAM is what is available for stack. (If your
application usesmalloc(), which e. g. also can happen insideprintf(), the heap for
dynamic memory is also located there. SeeUsing malloc().)

The amount of stack required for your application cannot be determined that easily.
For example, if you recursively call a function and forget to break that recursion, the
amount of stack required is infinite. :-) You can look at the generated assembler code
(avr-gcc ... -S), there’s a comment in each generated assembler file that tells
you the frame size for each generated function. That’s the amount of stack required for

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.3 Frequently Asked Questions 108

this function, you have to add up that for all functions where you know that the calls
could be nested.

Back toFAQ Index.

7.3.23 Is it really impossible to program the ATtinyXX in C?

While some small AVRs are not directly supported by the C compiler since they do not
have a RAM-based stack (and some do not even have RAM at all), it is possible anyway
to use the general-purpose registers as a RAM replacement since they are mapped into
the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this
together with a toolkit on his web page:

http://lightner.net/avr/ATtinyAvrGcc.html

Back toFAQ Index.

7.3.24 What is this "clock skew detected" messsage?

It’s a known problem of the MS-DOS FAT file system. Since the FAT file system has
only a granularity of 2 seconds for maintaining a file’s timestamp, and it seems that
some MS-DOS derivative (Win9x) perhaps rounds up the current time to the next sec-
ond when calculating the timestamp of an updated file in case the current time cannot
be represented in FAT’s terms, this causes a situation wheremake sees a "file coming
from the future".

Since all make decisions are based on file timestamps, and their dependencies, make
warns about this situation.

Solution: don’t use inferior file systems / operating systems. Neither Unix file systems
nor HPFS (aka NTFS) do experience that problem.

Workaround: after saving the file, wait a second before startingmake. Or simply
ignore the warning. If you are paranoid, execute amake clean all to make sure
everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message
can also happen if the file server’s clock differs too much from the network client’s
clock. In this case, the solution is to use a proper time keeping protocol on both sys-
tems, like NTP. As a workaround, synchronize the client’s clock frequently with the
server’s clock.

Back toFAQ Index.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://lightner.net/avr/ATtinyAvrGcc.html

7.3 Frequently Asked Questions 109

7.3.25 Why are (many) interrupt flags cleared by writing a logical 1?

Usually, each interrupt has its own interrupt flag bit in some control register, indicating
the specified interrupt condition has been met by representing a logical 1 in the respec-
tive bit position. When working with interrupt handlers, this interrupt flag bit usually
gets cleared automatically in the course of processing the interrupt, sometimes by just
calling the handler at all, sometimes (e. g. for the U[S]ART) by reading a particular
hardware register that will normally happen anyway when processing the interrupt.

From the hardware’s point of view, an interrupt is asserted as long as the respective bit
is set, while global interrupts are enabled. Thus, it is essential to have the bit cleared
before interrupts get re-enabled again (which usually happens when returning from an
interrupt handler).

Only few subsystems require an explicit action to clear the interrupt request when using
interrupt handlers. (The notable exception is the TWI interface, where clearing the
interrupt indicates to proceed with the TWI bus hardware handshake, so it’s never done
automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra
sure any pending interrupt gets cleared before re-activating global interrupts (e. g.
an external edge-triggered one), it can be necessary to explicitly clear the respective
hardware interrupt bit by software. This is usually done by writing a logical 1 into this
bit position. This seems to be illogical at first, the bit position already carries a logical
1 when reading it, so why does writing a logical 1 to itclear the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a singleOUTinstruction,
and it is clear that only this single interrupt request bit will be cleared. There is no need
to perform a read-modify-write cycle (like, anSBI instruction), since all bits in these
control registers are interrupt bits, and writing a logical 0 to the remaining bits (as it
is done by the simpleOUTinstruction) will not alter them, so there is no risk of any
race condition that might accidentally clear another interrupt request bit. So instead of
writing

TIFR |= _BV(TOV0); /* wrong! */

simply use

TIFR = _BV(TOV0);

Back toFAQ Index.

7.3.26 Why have "programmed" fuses the bit value 0?

Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased
E[E]PROM cells have all bits set to the value 1, so unprogrammed fuses also have a
logical 1. Conversely, programmed fuse cells read out as bit value 0.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 110

Back toFAQ Index.

7.3.27 Which AVR-specific assembler operators are available?

SeePseudo-ops and operators.

Back toFAQ Index.

7.4 Inline Asm

AVR-GCC

Inline Assembler Cookbook

About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

It’s assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It’s not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer toavr-libc and assembler programsfor this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release checkhttp://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://www.ethernut.de/.

7.4 Inline Asm 111

Note:
As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://savannah.nongnu.org/projects/avr-libc/.

7.4.1 GCC asm Statement

Let’s start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

Eachasm statement is devided by colons into (up to) four parts:

1. The assembler instructions, defined as a single string constant:

"in %0, %1"

2. A list of output operands, separated by commas. Our example uses just one:

"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (_SFR_IO_ADDR(PORTD))

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of theasm instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit.
0 refers to the first1 to the second operand and so forth. From the above example:

0 refers to"=r" (value) and

1 refers to"I" (_SFR_IO_ADDR(PORTD)) .

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/.

7.4 Inline Asm 112

lds r24,value
/* #APP */

in r24, 12
/* #NOAPP */

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected registerr24 for storage of the value read
from PORTD. The compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to theasm statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

The last part of theasm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won’t use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

7.4.2 Assembler Code

You can use the same assembler instruction mnemonics as you’d use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:
The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
::);

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it’s own assembler code.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 113

You may also make use of some special registers.

Symbol Register
__SREG__ Status register at address 0x3F
__SP_H__ Stack pointer high byte at address 0x3E
__SP_L__ Stack pointer low byte at address 0x3D
__tmp_reg__ Register r0, used for temporary storage
__zero_reg__ Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at
the end of your code. It’s a good idea to use__tmp_reg__ and__zero_reg__
instead ofr0 or r1 , just in case a new compiler version changes the register usage
definitions.

7.4.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in parantheses.AVR-GCC3.3 knows the following constraint characters:

Note:
The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.
The x register isr27:r26 , the y register isr29:r28 , and thez register is
r31:r30

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 114

Constraint Used for Range
a Simple upper registers r16 to r23
b Base pointer registers

pairs
y, z

d Upper register r16 to r31
e Pointer register pairs x, y, z
G Floating point constant 0.0
I 6-bit positive integer

constant
0 to 63

J 6-bit negative integer
constant

-63 to 0

K Integer constant 2
L Integer constant 0
l Lower registers r0 to r15
M 8-bit integer constant 0 to 255
N Integer constant -1
O Integer constant 8, 16, 24
P Integer constant 1
q Stack pointer register SPH:SPL
r Any register r0 to r31
t Temporary register r0
w Special upper register

pairs
r24, r26, r28, r30

x Pointer register pair X x (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)

These definitions seem not to fit properly to the AVR instruction set. The author’s as-
sumption is, that this part of the compiler has never been really finished in this version,
but that assumption may be wrong. The selection of the proper contraint depends on
the range of the constants or registers, which must be acceptable to the AVR instruction
they are used with. The C compiler doesn’t check any line of your assembler code. But
it is able to check the constraint against your C expression. However, if you specify
the wrong constraints, then the compiler may silently pass wrong code to the assem-
bler. And, of course, the assembler will fail with some cryptic output or internal errors.
For example, if you specify the constraint"r" and you are using this register with an
"ori" instruction in your assembler code, then the compiler may select any register.
This will fail, if the compiler choosesr2 to r15 . (It will never chooser0 or r1 ,
because these are uses for special purposes.) That’s why the correct constraint in that
case is"d" . On the other hand, if you use the constraint"M" , the compiler will make
sure that you don’t pass anything else but an 8-bit value. Later on we will see how to
pass multibyte expression results to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren’t strict enough. There is, for example, no constraint, which restricts integer

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 115

constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r
adiw w,I and r,r
andi d,M asr r
bclr I bld r,I
brbc I,label brbs I,label
bset I bst r,I
cbi I,I cbr d,I
com r cp r,r
cpc r,r cpi d,M
cpse r,r dec r
elpm t,z eor r,r
in r,I inc r
ld r,e ldd r,b
ldi d,M lds r,label
lpm t,z lsl r
lsr r mov r,r
movw r,r mul r,r
neg r or r,r
ori d,M out I,r
pop r push r
rol r ror r
sbc r,r sbci d,M
sbi I,I sbic I,I
sbiw w,I sbr d,M
sbrc r,I sbrs r,I
ser d st e,r
std b,r sts label,r
sub r,r subi d,M
swap r

Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies
= Write-only operand, usually used for all

output operands.
+ Read-write operand (not supported by

inline assembler)
& Register should be used for output only

Output operands must be write-only and the C expression result must be an lvalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 116

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint"0"
tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must add the& constraint modifier to
your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
: "=&r" (input)
: "I" (_SFR_IO_ADDR(port)), "r" (output)

);

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses the& constraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %B0" "\n\t"
"mov %B0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

First you will notice the usage of register__tmp_reg__ , which we listed among
other special registers in theAssembler Codesection. You can use this register without
saving its contents. Completely new are those lettersA andB in %A0and%B0. In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %D0" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"
"mov __tmp_reg__, %B0" "\n\t"

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 117

"mov %B0, %C0" "\n\t"
"mov %C0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code you use%A0to refer
to the lowest byte of the first operand,%A1to the lowest byte of the second operand
and so on. The next byte of the first operand will be%B0, the next byte%C0and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input
operand

"e" (ptr)

and the compiler selects registerZ (r30:r31), then

%A0refers tor30 and

%B0refers tor31 .

But both versions will fail during the assembly stage of the compiler, if you explicitely
needZ, like in

ld r24,Z

If you write

ld r24, %a0

with a lower casea following the percent sign, then the compiler will create the proper
assembler line.

7.4.4 Clobbers

As stated previously, the last part of theasm statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed
to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 118

asm volatile(
"cli" "\n\t"
"ld r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)
: "r24"

);

The compiler might produce the following code:

cli
ld r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering registerr24 is, to make use of the special tem-
porary register__tmp_reg__ defined by the compiler.

asm volatile(
"cli" "\n\t"
"ld __tmp_reg__, %a0" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a0, __tmp_reg__" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)

);

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)

);
}

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 119

Now every thing seems correct, but it isn’t really. The assembler code modifies the
variable, thatptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The
worst thing you can do in this case is:

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)
: "memory"

);
}

The special clobber "memory" informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t *ptr;

This way, the compiler expects the value pointed to byptr to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

7.4.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could be
found in the directoryavr/include . Using such include files may produce compiler
warnings, if they are used in modules, which are compiled in strict ANSI mode. To
avoid that, you can write__asm__ instead ofasm and__volatile__ instead of
volatile . These are equivalent aliases.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 120

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special pattern=, which is replaced by a unique
number on eachasm statement. The following code had been taken from
avr/include/iomacros.h :

#define loop_until_bit_is_clear(port,bit) \
__asm__ __volatile__ (\
"L_%=: " "sbic %0, %1" "\n\t" \

"rjmp L_%=" \
: /* no outputs */ \
: "I" (_SFR_IO_ADDR(port)), \

"I" (bit) \
)

When used for the first time,L_%=may be translated toL_1404 , the next usage might
createL_1405 or whatever. In any case, the labels became unique too.

Another option is to use Unix-assembler style numeric labels. They are explained in
How do I trace an assembler file in avr-gdb?. The above example would then look like:

#define loop_until_bit_is_clear(port,bit) \
__asm__ __volatile__ (\
"1: " "sbic %0, %1" "\n\t" \

"rjmp 1b" \
: /* no outputs */ \
: "I" (_SFR_IO_ADDR(port)), \

"I" (bit) \
)

7.4.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay(uint8_t ms)
{

uint16_t cnt;
asm volatile (

"\n"
"L_dl1%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %B0, %B2" "\n"
"L_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"brne L_dl2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dl1%=" "\n\t"
: "=&w" (cnt)
: "r" (ms), "r" (delay_count)
);

}

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.4 Inline Asm 121

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delay_count must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in theclobbersection, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

uint16_t inw(uint8_t port)
{

uint16_t result;
asm volatile (

"in %A0,%1" "\n\t"
"in %B0,(%1) + 1"
: "=r" (result)
: "I" (_SFR_IO_ADDR(port))
);

return result;
}

Note:
inw() is supplied by avr-libc.

7.4.7 C Names Used in Assembler Code

By defaultAVR-GCCuses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of theasm statement:

unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

With AVR-GCCyou can specify the use of a specific register:

void Count(void)
{

register unsigned char counter asm("r3");

... some code...
asm volatile("clr r3");
... more code...

}

The assembler instruction,"clr r3" , will clear the variable counter.AVR-GCCwill
not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.5 Using malloc() 122

is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept theasm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the functionCalc() will create assembler instructions to call the function
CALCULATE.

7.4.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user
manual. The latest version of the gcc manual is always available here:
http://gcc.gnu.org/onlinedocs/

7.5 Using malloc()

7.5.1 Introduction

On a simple device like a microcontroller, implementing dynamic memory allocation
is quite a challenge.

Many of the devices that are possible targets of avr-libc have a minimal amount of
RAM. The smallest parts supported by the C environment come with 128 bytes of
RAM. This needs to be shared between initialized and uninitialized variables (sections
.data and .bss), the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management
which could help in separating the mentioned RAM regions from being overwritten by
each other.

The standard RAM layout is to place .data variables first, from the beginning of the
internal RAM, followed by .bss. The stack is started from the top of internal RAM,
growing downwards. The so-called "heap" available for the dynamic memory allocator
will be placed beyond the end of .bss. Thus, there’s no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of
the allocator). There is still a risk that the heap and stack could collide if there are large
requirements for either dynamic memory or stack space. The former can even happen
if the allocations aren’t all that large but dynamic memory allocations get fragmented
over time such that new requests don’t quite fit into the "holes" of previously freed
regions. Large stack space requirements can arise in a C function containing large
and/or numerous local variables or when recursively calling function.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://gcc.gnu.org/onlinedocs/

7.5 Using malloc() 123

Note:
The pictures shown in this document represent typical situations where the RAM
locations refer to an ATmega128. The memory addresses used are not displayed
in a linear scale.

!

brkval (<= *SP − __malloc_margin)

__malloc_heap_start == __heap_start
__bss_end
__data_end == __bss_start

__data_start

RAMENDSP

0x
FF

FF

variables
.data

variables
.bss

0x
10

FF

0x
01

00

heap stack

on−board RAM external RAM

0x
11

00

Figure 1: RAM map of a device with internal RAM

Finally, there’s a challenge to make the memory allocator simple enough so the code
size requirements will remain low, yet powerful enough to avoid unnecessary memory
fragmentation and to get it all done with reasonably few CPU cycles since microcon-
trollers aren’t only often low on space, but also run at much lower speeds than the
typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these con-
straints, and offers some tuning options that can be used if there are more resources
available than in the default configuration.

7.5.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where
only internal RAM is available. Extreme care must be taken to avoid a stack-heap
collision, both by making sure functions aren’t nesting too deeply, and don’t require
too much stack space for local variables, as well as by being cautious with allocating
too much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the ex-
ternal RAM, regardless of whether or not the variables from the .data and .bss sections
are also going to be located there. The stack should always be kept in internal RAM.
Some devices even require this, and in general, internal RAM can be accessed faster
since no extra wait states are required. When using dynamic memory allocation and
stack and heap are separated in distinct memory areas, this is the safest way to avoid a
stack-heap collision.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.5 Using malloc() 124

7.5.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behavior ofmalloc()
to the expected requirements and constraints of the application. Any changes to these
tunables should be made before the very first call tomalloc(). Note that some library
functions might also use dynamic memory (notably those from theStandard IO facili-
ties), so make sure the changes will be done early enough in the startup sequence.

The variables__malloc_heap_start and__malloc_heap_end can be used
to restrict themalloc() function to a certain memory region. These variables are stati-
cally initialized to point to__heap_start and__heap_end , respectively, where
__heap_start is filled in by the linker to point just beyond .bss, and__heap_end
is set to 0 which makesmalloc()assume the heap is below the stack.

If the heap is going to be moved to external RAM,__malloc_heap_end mustbe
adjusted accordingly. This can either be done at run-time, by writing directly to this
variable, or it can be done automatically at link-time, by adjusting the value of the
symbol__heap_end .

The following example shows a linker command to relocate the entire .data and .bss
segments, and the heap to location 0x1100 in external RAM. The heap will extend up
to address 0xffff.

avr-gcc ... -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff ...

Note:
Seeexplanationfor offset 0x800000. See the chapter aboutusing gccfor the-Wl
options.

__data_start

SP
RAMEND

__malloc_heap_end == __heap_end
brkval
__malloc_heap_start == __heap_start

__bss_end
__data_end == __bss_start

0x
11

00

.data
variables

.bss
heap

0x
FF

FF

external RAM

0x
10

FF

0x
01

00

stack

on−board RAM

variables

Figure 2: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in
internal RAM, something like the following could be used. Note that for demonstration

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.5 Using malloc() 125

purposes, the assignment of the various regions has not been made adjacent in this
example, so there are "holes" below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown
in light bisque color in the picture below).

avr-gcc ... -Wl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff ...

SP
RAMEND
__bss_end
__data_end == __bss_start

__data_start

__malloc_heap_start == __heap_start
brkval

__malloc_heap_end == __heap_end

0x
10

FF

0x
01

00

stack

on−board RAM

0x
11

00

0x
FF

FF

.data
variablesvariables

.bss

external RAM

heap

0x
3F

FF

0x
20

00

Figure 3: Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack
in order to prevent a stack-heap collision when extending the actual size of the heap
to gain more space for dynamic memory. It will not try to go beyond the current
stack limit, decreased by__malloc_margin bytes. Thus, all possible stack frames
of interrupt routines that could interrupt the current function, plus all further nested
function calls must not require more stack space, or they will risk colliding with the
data segment.

The default value of__malloc_margin is set to 32.

7.5.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header
prepended that records the size of the allocation. This is later used byfree(). The
returned address points just beyond that header. Thus, if the application accidentally
writes before the returned memory region, the internal consistency of the memory al-
locator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that
have been returned in previous calls tofree(). Note that all of this memory is considered
to be successfully added to the heap already, so no further checks against stack-heap
collisions are done when recycling memory from the freelist.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.6 Release Numbering and Methodology 126

The freelist itself is not maintained as a separate data structure, but rather by modifying
the contents of the freed memory to contain pointers chaining the pieces together. That
way, no additional memory is reqired to maintain this list except for a variable that
keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum
chunk size on the freelist is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request.
If there’s a chunk available on the freelist that will fit the request exactly, it will be
taken, disconnected from the freelist, and returned to the caller. If no exact match could
be found, the closest match that would just satisfy the request will be used. The chunk
will normally be split up into one to be returned to the caller, and another (smaller)
one that will remain on the freelist. In case this chunk was only up to two bytes larger
than the request, the request will simply be altered internally to also account for these
additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where
__malloc_margin will be considered if the heap is operating below the stack, or
where__malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the request,NULLwill eventually be
returned to the caller.

When callingfree(), a new freelist entry will be prepared. An attempt is then made to
aggregate the new entry with possible adjacent entries, yielding a single larger entry
available for further allocations. That way, the potential for heap fragmentation is
hopefully reduced.

7.6 Release Numbering and Methodology

7.6.1 Release Version Numbering Scheme

7.6.1.1 Stable Versions A stable release will always have a minor number that is
an even number. This implies that you should be able to upgrade to a new version of
the library with the same major and minor numbers without fear that any of the APIs
have changed. The only changes that should be made to a stable branch are bug fixes
and under some circumstances, additional functionality (e.g. adding support for a new
device).

If major version number has changed, this implies that the required versions of gcc and
binutils have changed. Consult the README file in the toplevel directory of the AVR
Libc source for which versions are required.

7.6.1.2 Development Versions The major version number of a development series
is always the same as the last stable release.

The minor version number of a development series is always an odd number and is 1

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.6 Release Numbering and Methodology 127

more than the last stable release.

The patch version number of a development series is always 0 until a new branch is cut
at which point the patch number is changed to 90 to denote the branch is approaching
a release and the date appended to the version to denote that it is still in development.

All versions in development in cvs will also always have the date appended as a fourth
version number. The format of the date will be YYYYMMDD.

So, the development version number will look like this:

1.1.0.20030825

While a pre-release version number on a branch (destined to become either 1.2 or 2.0)
will look like this:

1.1.90.20030828

7.6.2 Releasing AVR Libc

The information in this section is only relevant to AVR Libc developers and can be
ignored by end users.

Note:
In what follows, I assume you know how to use cvs and how to checkout multiple
source trees in a single directory without having them clobber each other. If you
don’t know how to do this, you probably shouldn’t be making releases or cutting
branches.

7.6.2.1 Creating a cvs branch The following steps should be taken to cut a branch
in cvs:

1. Check out a fresh source tree from cvs HEAD.

2. Update the NEWS file with pending release number and commit to cvs HEAD:

Change "Changes since avr-libc-<last release>:" to "Changes in avr-libc-
<this_relelase>:".

3. Set the branch-point tag (setting<major> and<minor> accordingly):

’cvs tag avr-libc-<major>_<minor>-branchpoint’

4. Create the branch:

’cvs tag -b avr-lib-<major>_<minor>-branch’

5. Update the package version in configure.in and commit configure.in to cvs
HEAD:

Change minor number to next odd value.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.6 Release Numbering and Methodology 128

6. Update the NEWS file and commit to cvs HEAD:

Add "Changes since avr-libc-<this_release>:"

7. Check out a new tree for the branch:

’cvs co -r avr-lib-<major>_<minor>-branch’

8. Update the package version in configure.in and commit configure.in to cvs
branch:

Change the patch number to 90 to denote that this now a branch leading up to a
release. Be sure to leave the<date> part of the version.

9. Bring the build system up to date by running reconf and doconf.

10. Perform a ’make distcheck’ and make sure it succeeds. This will create the
snapshot source tarball. This should be considered the first release candidate.

11. Upload the snapshot tarball to savannah.

12. Announce the branch and the branch tag to the avr-libc-dev list so other devel-
opers can checkout the branch.

Note:
CVS tags do not allow the use of periods (’.’).

7.6.2.2 Making a release A stable release will only be done on a branch, not from
the cvs HEAD.

The following steps should be taken when making a release:

1. Make sure the source tree you are working from is on the correct branch:

’cvs update -r avr-lib-<major>_<minor>-branch’

2. Update the package version in configure.in and commit it to cvs.

3. Update the gnu tool chain version requirements in the README and commit to
cvs.

4. Update the ChangeLog file to note the release and commit to cvs on the branch:

Add "Released avr-libc-<this_release>."

5. Bring the build system up to date by running reconf and doconf.

6. Perform a ’make distcheck’ and make sure it succeeds. This will create the
source tarball.

7. Tag the release (_<patch> is not given if this is the first release on this branch):

’cvs tag avr-lib-<major>_<minor>_<patch>-release’

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.7 Memory Sections 129

8. Upload the tarball to savannah.

9. Generate the latest documentation and upload to savannah.

10. Announce the release.

The following hypothetical diagram should help clarify version and branch relation-
ships.

cvs tag avr−libc−1_0_1−release

cvs tag −b avr−libc−1_0−branch

cvs tag avr−libc−1_0−branchpoint

set version to 1.1.0.<date>

set version to 0.90.90.<date>

set version to 1.0
cvs tag avr−libc−1_0−release

1.2 Branch1.0 BranchHEAD

set version to 1.0.0.<date>

cvs tag avr−libc−1_2−branchpoint

cvs tag avr−libc−2.0−branchpoint

cvs tag −b avr−libc−1_2−branchset version to 1.3.0.<date>

set version to 2.1.0.<date>

set version to 1.1.90.<date>

set version to 1.0.1

set version to 1.2
cvs tag avr−libc−1_2−release

Figure 4: Release tree

7.7 Memory Sections

Remarks:
Need to list all the sections which are available to the avr.

Weak Bindings
FIXME: need to discuss the .weak directive.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.7 Memory Sections 130

The following describes the various sections available.

7.7.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note:
The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

7.7.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by adding-Wl,-Tdata, addr to the avr-gcc command
used to the link your program. Not thataddr must be offset by adding 0x800000
the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offsetexplained]

Note:
When usingmalloc() in the application (which could even happen inside library
calls),additional adjustmentsare required.

7.7.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

7.7.4 The .eeprom Section

This is where eeprom variables are stored.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.7 Memory Sections 131

7.7.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will causeavr-gcc to issue an error:

int bar __attribute__ ((section (".noinit"))) = 0xaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-Wl,-section-start=.noinit=0x802000 to the avr-gcc command line
at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -Wl,--section-start=.noinit=0x802000 ...

Note:
Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

7.7.6 The .initN Sections

These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of the.text section.

The purpose of these sections is to allow for more specific placement of code within
your program.

Note:
Sometimes, it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names which tell the linker where to stick a
chunk of code which isnota function. Notice that the examples forasmandC can
not be called as functions and should not be jumped into.

The.initN sections are executed in order from 0 to 9.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.7 Memory Sections 132

.init0:
Weakly bound to __init(). If user defines __init(), it will be jumped into immedi-
ately after a reset.

.init1:
Unused. User definable.

.init2:
In C programs, weakly bound to initialize the stack.

.init3:
Unused. User definable.

.init4:

Copies the .data section from flash to SRAM. Also sets up and zeros out the .bss sec-
tion. In Unix-like targets, .data is normally initialized by the OS directly from the
executable file. Since this is impossible in an MCU environment,avr-gcc instead
takes care of appending the .data variables after .text in the flash ROM image. .init4
then defines the code (weakly bound) which takes care of copying the contents of .data
from the flash to SRAM.

.init5:
Unused. User definable.

.init6:
Unused for C programs, but used for constructors in C++ programs.

.init7:
Unused. User definable.

.init8:
Unused. User definable.

.init9:
Jumps into main().

7.7.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a
call toexit(). These all are subparts of the.text section.

The.finiN sections are executed in descending order from 9 to 0.

.finit9:
Unused. User definable. This is effectively where _exit() starts.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.7 Memory Sections 133

.fini8:
Unused. User definable.

.fini7:
Unused. User definable.

.fini6:
Unused for C programs, but used for destructors in C++ programs.

.fini5:
Unused. User definable.

.fini4:
Unused. User definable.

.fini3:
Unused. User definable.

.fini2:
Unused. User definable.

.fini1:
Unused. User definable.

.fini0:
Goes into an infinite loop after program termination and completion of any _exit()
code (execution of code in the .fini9 -> .fini1 sections).

7.7.8 Using Sections in Assembler Code

Example:

#include <avr/io.h>

.section .init1,"ax",@progbits
ldi r0, 0xff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), r0

Note:
The ,"ax", tells the assembler that the section is allocatable ("a"), executable
("x") and contains data ("@progbits"). For more detailed information on the .sec-
tion directive, see the gas user manual.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 134

7.7.9 Using Sections in C Code

Example:

#include <avr/io.h>

void my_init_portb (void) __attribute__ ((naked)) \
__attribute__ ((section (".init1")));

void
my_init_portb (void)
{

outb (PORTB, 0xff);
outb (DDRB, 0xff);

}

7.8 Installing the GNU Tool Chain

Note:
This discussion was taken directly from Rich Neswold’s document. (SeeAcknowl-
edgments).
This discussion is Unix specific. [FIXME: troth/2002-08-13: we need a volunteer
to add windows specific notes to these instructions.]

This chapter shows how to build and install a complete development environment for
the AVR processors using the GNU toolset.

The default behaviour for most of these tools is to install every thing under the
/usr/local directory. In order to keep the AVR tools separate from the base
system, it is usually better to install everything into/usr/local/avr . If the
/usr/local/avr directory does not exist, you should create it before trying to
install anything. You will needroot access to install there. If you don’t have root
access to the system, you can alternatively install in your home directory, for exam-
ple, in$HOME/local/avr . Where you install is a completely arbitrary decision, but
should be consistent for all the tools.

You specify the installation directory by using the-prefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory
or some of the tools will not work correctly. To ensure consistency and simplify the
discussion, we will use$PREFIX to refer to whatever directory you wish to install in.
You can set this as an environment variable if you wish as such (using a Bourne-like
shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note:
Be sure that you have yourPATHenvironment variable set to search the direc-
tory you install everything inbeforeyou start installing anything. For example, if

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 135

you use-prefix=$PREFIX , you must have$PREFIX/bin in your exported
PATH. As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Warning:
If you haveCCset to anything other thanavr-gcc in your environment, this will
cause the configure script to fail. It is best to not haveCCset at all.

Note:
The versions for the packages listed below are known to work together. If you mix
and match different versions, you may have problems.

7.8.1 Required Tools

• GNU Binutils (2.14)

http://sources.redhat.com/binutils/

Installation

• GCC (3.3.1)

http://gcc.gnu.org/

Installation

• AVR Libc (1.0)

http://savannah.gnu.org/projects/avr-libc/

Installation

Note 2003-08-15: The 1.0 branch was created today.

7.8.2 Optional Tools

You can develop programs for AVR devices without the following tools. They may or
may not be of use for you.

Note:
The following programs are in constant development and the stated versions may
be less than current when you read this. Check the given websites for the latest
versions.

• uisp (20030618)

http://savannah.gnu.org/projects/uisp/

Installation

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://sources.redhat.com/binutils/

http://gcc.gnu.org/

http://savannah.gnu.org/projects/avr-libc/

http://savannah.gnu.org/projects/uisp/

7.8 Installing the GNU Tool Chain 136

• avrdude (4.1.0)

http://savannah.nongnu.org/projects/avrdude/

Installation

Usage Notes

• GDB (6.0)

http://sources.redhat.com/gdb/

Installation

Note 2003-08-15: gdb-6.0 should be released soon.

• Simulavr (0.1.1)

http://savannah.gnu.org/projects/simulavr/

Installation

• AVaRice (2.0)

http://avarice.sourceforge.net/

Installation

Note 2003-08-15: avarice-2.0 only exists in cvs, there should be 2.1 release soon.

7.8.3 GNU Binutils for the AVR target

The binutils package provides all the low-level utilities needed in building and ma-
nipulating object files. Once installed, your environment will have an AVR assembler
(avr-as), linker (avr-ld), and librarian (avr-ar andavr-ranlib). In addi-
tion, you get tools which extract data from object files (avr-objcopy), dissassem-
ble object file information (avr-objdump), and strip information from object files
(avr-strip). Before we can build the C compiler, these tools need to be in place.

Download and unpack the source files:

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note:
Replace

with the version of the package you downloaded.

Note:
If you obtained a gzip compressed file (.gz), usegunzip instead ofbunzip2 .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avrdude/

http://sources.redhat.com/gdb/

http://savannah.gnu.org/projects/simulavr/

http://avarice.sourceforge.net/

7.8 Installing the GNU Tool Chain 137

It is usually a good idea to configure and buildbinutils in a subdirectory so as not
to pollute the source with the compiled files. This is recommended by thebinutils
developers.

$ mkdir obj-avr
$ cd obj-avr

The next step is to configure and build the tools. This is done by supplying arguments
to theconfigure script that enable the AVR-specific options.

$../configure --prefix=$PREFIX --target=avr --disable-nls

If you don’t specify the -prefix option, the tools will get installed in the
/usr/local hierarchy (i.e. the binaries will get installed in/usr/local/bin ,
the info pages get installed in/usr/local/info , etc.) Since these tools are chang-
ing frequently, It is preferrable to put them in a location that is easily removed.

When configure is run, it generates a lot of messages while it determines what
is available on your operating system. When it finishes, it will have created several
Makefile s that are custom tailored to your platform. At this point, you can build the
project.

$ make

Note:
BSD users should note that the project’sMakefile uses GNUmake syntax.
This means FreeBSD users may need to build the tools by usinggmake.

If the tools compiled cleanly, you’re ready to install them. If you specified a destination
that isn’t owned by your account, you’ll needroot access to install them. To install:

$ make install

You should now have the programs from binutils installed into$PREFIX/bin . Don’t
forget toset your PATHenvironment variable before going to build avr-gcc.

7.8.4 GCC for the AVR target

Warning:
You must install avr-binutilsand make sure yourpath is setproperly before in-
stalling avr-gcc.

The steps to buildavr-gcc are essentially same as forbinutils:

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 138

$ bunzip2 -c gcc-<version>.tar.bz2 | tar xf -
$ cd gcc-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \

--disable-nls
$ make
$ make install

To save your self some download time, you can alternatively download only the
gcc-core- <version >.tar.bz2 and gcc-c++- <version >.tar.bz2
parts of the gcc. Also, if you don’t need C++ support, you only need the core part
and should only enable the C language support.

Note:
Early versions of these tools did not support C++.
The stdc++ libs are not included with C++ for AVR due to the size limitations of
the devices.

7.8.5 AVR Libc

Warning:
You must install avr-binutils, avr-gccand make sure yourpath is setproperly
before installing avr-libc.

Note:
If you have obtained the latest avr-libc from cvs, you will have to run thereconf
script before using either of the build methods described below.

To build and install avr-libc:

$ gunzip -c avr-libc-<version>.tar.gz
$ cd avr-libc-<version>
$./doconf
$./domake
$ cd build
$ make install

Note:
Thedoconf script will automatically use the$PREFIX environment variable if
you have set and exported it.

Alternatively, you could do this (shown for consistency withbinutils andgcc):

$ gunzip -c avr-libc-<version>.tar.gz | tar xf -
$ cd avr-libc-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 139

7.8.6 UISP

Uisp also uses theconfigure system, so to build and install:

$ gunzip -c uisp-<version>.tar.gz | tar xf -
$ cd uisp-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

7.8.7 Avrdude

Note:
It has been ported to windows (via cygwin) and linux. Other unix systems should
be trivial to port to.

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Note:
Installation into the default location usually requires root permissions. However,
running the program only requires access permissions to the appropriateppi(4)
device.

Building and installing on other systems should use theconfigure system, as such:

$ gunzip -c avrdude-<version>.tar.gz | tar xf -
$ cd avrdude-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

7.8.8 GDB for the AVR target

Gdb also uses theconfigure system, so to build and install:

$ bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
$ cd gdb-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX --target=avr
$ make
$ make install

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 140

Note:
If you are planning on usingavr-gdb , you will probably want to install either
simulavror avaricesince avr-gdb needs one of these to run as a a remote target
backend.

7.8.9 Simulavr

Simulavr also uses theconfigure system, so to build and install:

$ gunzip -c simulavr-<version>.tar.gz | tar xf -
$ cd simulavr-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note:
You might want to have already installedavr-binutils, avr-gccandavr-libc if you
want to have the test programs built in the simulavr source.

7.8.10 AVaRice

Note:
These install notes are not applicable to avarice-1.5 or older. You probably don’t
want to use anything that old anyways since there have been many improvements
and bug fixes since the 1.5 release.

AVaRice also uses theconfigure system, so to build and install:

$ gunzip -c avarice-<version>.tar.gz | tar xf -
$ cd avarice-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note:
AVaRice uses the bfd library for accessing various binary file formats. You may
need to tell the configure script where to find the lib and headers for the link to
work. This is usually done by invoking the configure script like this (Replace
<hdr_path > with the path to thebfd.h file on your system. Replace<lib_-
path > with the path tolibbfd.a on your system.):

$ CPPFLAGS=-I<hdr_path> LDFLAGS=-L<lib_path> ../configure --prefix=$PREFIX

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.9 Using the avrdude program 141

Note:
As of 2003-08-15, no offical AVaRice release works like this. Use a 2.0 snapshot
until the 2.1 release is made, or use obtain the source from cvs.

7.9 Using the avrdude program

Note:
This section was contributed by Brian Dean [bsd@bsdhome.com].
The avrdude program was previously called avrprog. The name was changed to
avoid confusion with the avrprog program that Atmel ships with AvrStudio.

avrdude is a program that is used to update or read the flash and EEPROM memories
of Atmel AVR microcontrollers on FreeBSD Unix. It supports the Atmel serial pro-
gramming protocol using the PC’s parallel port and can upload either a raw binary file
or an Intel Hex format file. It can also be used in an interactive mode to individually
update EEPROM cells, fuse bits, and/or lock bits (if their access is supported by the
Atmel serial programming protocol.) The main flash instruction memory of the AVR
can also be programmed in interactive mode, however this is not very useful because
one can only turn bits off. The only way to turn flash bits on is to erase the entire
memory (usingavrdude ’s -e option).

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Once installed,avrdude can program processors using the contents of the .hex file
specified on the command line. In this example, the filemain.hex is burned into the
flash memory:

avrdude -p 2313 -e -m flash -i main.hex

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9101

avrdude: erasing chip
avrdude: done.
avrdude: reading input file "main.hex"
avrdude: input file main.hex auto detected as Intel Hex

avrdude: writing flash:
1749 0x00
avrdude: 1750 bytes of flash written
avrdude: verifying flash memory against main.hex:
avrdude: reading on-chip flash data:
1749 0x00
avrdude: verifying ...
avrdude: 1750 bytes of flash verified

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

mailto:bsd@bsdhome.com

7.10 Using the GNU tools 142

avrdude done. Thank you.

The -p 2313 option letsavrdude know that we are operating on an AT90S2313
chip. This option specifies the device id and is matched up with the device of the same
id in avrdude ’s configuration file (/usr/local/etc/avrdude .conf). To list
valid parts, specify the-v option. The-e option instructsavrdude to perform a
chip-erase before programming; this is almost always necessary before programming
the flash. The-m flash option indicates that we want to upload data into the flash
memory, while-i main.hex specifies the name of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use
-m eeprom instead of-m flash .

To use interactive mode, use the-t option:

avrdude -p 2313 -t
avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101
avrdude>

The ’?’ command displays a list of valid
commands:

avrdude> ?
>>> ?
Valid commands:

dump : dump memory : dump <memtype> <addr> <N-Bytes>
read : alias for dump
write : write memory : write <memtype> <addr> <b1> <b2> ... <bN>
erase : perform a chip erase
sig : display device signature bytes
part : display the current part information
send : send a raw command : send <b1> <b2> <b3> <b4>
help : help
? : help
quit : quit

Use the ’part’ command to display valid memory types for use with the
’dump’ and ’write’ commands.

avrdude>

7.10 Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally,
the generic documentation of these tools is fairly large and maintained intexinfo
files. Command-line options are explained in detail in the manual page.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 143

7.10.1 Options for the C compiler avr-gcc

7.10.1.1 Machine-specific options for the AVR The following machine-specific
options are recognized by the C compiler frontend.

• -mmcu=architecture

Compile code forarchitecture. Currently known architectures are

avr1 Simple CPU core, only assembler
support

avr2 "Classic" CPU core, up to 8 KB of
ROM

avr3 "Classic" CPU core, more than 8 KB of
ROM

avr4 "Enhanced" CPU core, up to 8 KB of
ROM

avr5 "Enhanced" CPU core, more than 8 KB
of ROM

By default, code is generated for the avr2 architecture.

Note that when only using-mmcu=architecturebut no-mmcu=MCU type, including
the file<avr/io.h > cannot work since it cannot decide which device’s definitions
to select.

• -mmcu=MCU type

The following MCU types are currently understood by avr-gcc. The table matches
them against the corresponding avr-gcc architecture name, and shows the preprocessor
symbol declared by the-mmcu option.

Architecture MCU name Macro
avr1 at90s1200 __AVR_AT90S1200__
avr1 attiny11 __AVR_ATtiny11__
avr1 attiny12 __AVR_ATtiny12__
avr1 attiny15 __AVR_ATtiny15__
avr1 attiny28 __AVR_ATtiny28__
avr2 at90s2313 __AVR_AT90S2313__
avr2 at90s2323 __AVR_AT90S2323__
avr2 at90s2333 __AVR_AT90S2333__
avr2 at90s2343 __AVR_AT90S2343__
avr2 attiny22 __AVR_ATtiny22__
avr2 attiny26 __AVR_ATtiny26__
avr2 at90s4414 __AVR_AT90S4414__
avr2 at90s4433 __AVR_AT90S4433__

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 144

Architecture MCU name Macro
avr2 at90s4434 __AVR_AT90S4434__
avr2 at90s8515 __AVR_AT90S8515__
avr2 at90c8534 __AVR_AT90C8534__
avr2 at90s8535 __AVR_AT90S8535__
avr2 at86rf401 __AVR_AT86RF401__
avr3 atmega103 __AVR_ATmega103__
avr3 atmega603 __AVR_ATmega603__
avr3 at43usb320 __AVR_AT43USB320__
avr3 at43usb355 __AVR_AT43USB355__
avr3 at76c711 __AVR_AT76C711__
avr4 atmega8 __AVR_ATmega8__
avr4 atmega8515 __AVR_ATmega8515__
avr4 atmega8535 __AVR_ATmega8535__
avr5 atmega16 __AVR_ATmega16__
avr5 atmega161 __AVR_ATmega161__
avr5 atmega162 __AVR_ATmega162__
avr5 atmega163 __AVR_ATmega163__
avr5 atmega169 __AVR_ATmega169__
avr5 atmega32 __AVR_ATmega32__
avr5 atmega323 __AVR_ATmega323__
avr5 atmega64 __AVR_ATmega64__
avr5 atmega128 __AVR_ATmega128__
avr5 at94k __AVR_AT94K__

• -morder1

• -morder2

Change the order of register assignment. The default is

r24, r25, r18, r19, r20, r21, r22, r23, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14, r13,
r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r0, r1

Order 1 uses

r18, r19, r20, r21, r22, r23, r24, r25, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14, r13,
r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r0, r1

Order 2 uses

r25, r24, r23, r22, r21, r20, r19, r18, r30, r31, r26, r27, r28, r29, r17, r16, r15, r14, r13,
r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r1, r0

• -mint8

Assume int to be an 8-bit integer. Note that this is not really supported by
avr-libc , so it should normally not be used. The default is to use 16-bit integers.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 145

• -mno-interrupts

Generates code that changes the stack pointer without disabling interrupts. Normally,
the state of the status registerSREGis saved in a temporary register, interrupts are
disabled while changing the stack pointer, andSREGis restored.

• -mcall-prologues

Use subroutines for function prologue/epilogue. For complex functions that use many
registers (that needs to be saved/restored on function entry/exit), this saves some space
at the cost of a slightly increased execution time.

• -minit-stack= nnnn

Set the initial stack pointer tonnnn. By default, the stack pointer is initialized to the
symbol__stack , which is set toRAMENDby the run-time initialization code.

• -mtiny-stack

Change only the low 8 bits of the stack pointer.

• -mno-tablejump

Do not generate tablejump instructions. By default, jump tables can be used to op-
timize switch statements. When turned off, sequences of compare statements are
used instead. Jump tables are usually faster to execute on average, but in particular for
switch statements where most of the jumps would go to the default label, they might
waste a bit of flash memory.

• -mshort-calls

Use rjmp/rcall (limited range) on>8K devices. Onavr2 andavr4 architec-
tures (less than 8 KB or flash memory), this is always the case. Onavr3 andavr5
architectures, calls and jumps to targets outside the current function will by default use
jmp/call instructions that can cover the entire address range, but that require more
flash ROM and execution time.

• -mrtl

Dump the internal compilation result called "RTL" into comments in the generated
assembler code. Used for debugging avr-gcc.

• -msize

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 146

Dump the address, size, and relative cost of each statement into comments in the gen-
erated assembler code. Used for debugging avr-gcc.

• -mdeb

Generate lots of debugging information tostderr .

7.10.1.2 Selected general compiler optionsThe following general gcc options
might be of some interest to AVR users.

• -On

Optimization leveln. Increasingn is meant to optimize more, an optimization level of
0 means no optimization at all, which is the default if no-O option is present. The
special option-Os is meant to turn on all-O2 optimizations that are not expected to
increase code size.

Note that at-O3 , gcc attempts to inline all "simple" functions. For the AVR target,
this will normally constitute a large pessimization due to the code increasement. The
only other optimization turned on with-O3 is -frename-registers , which could
rather be enabled manually instead.

A simple-O option is equivalent to-O1 .

Note also that turning off all optimizations will prevent some warnings from being
issued since the generation of those warnings depends on code analysis steps that are
only performed when optimizing (unreachable code, unused variables).

See also theappropriate FAQ entryfor issues regarding debugging optimized code.

• -Wa, assembler-options

• -Wl, linker-options

Pass the listed options to the assembler, or linker, respectively.

• -g

Generate debugging information that can be used by avr-gdb.

• -ffreestanding

Assume a "freestanding" environment as per the C standard. This turns off automatic
builtin functions (though they can still be reached by prepending__builtin_ to
the actual function name). It also makes the compiler not complain whenmain()

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 147

is declared with avoid return type which makes some sense in a microcontroller
environment where the application cannot meaningfully provide a return value to its
environment (in most cases,main() won’t even return anyway). However, this also
turns off all optimizations normally done by the compiler which assume that functions
known by a certain name behave as described by the standard. E. g., applying the
function strlen() to a literal string will normally cause the compiler to immediately
replace that call by the actual length of the string, while with-ffreestanding , it
will always call strlen() at run-time.

• -funsigned-char

Make any unqualfiedchar type an unsigned char. Without this option, they default to
a signed char.

• -funsigned-bitfields

Make any unqualified bitfield type unsigned. By default, they are signed.

• -fshort-enums

Allocate to anenum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.

• -fpack-struct

Pack all structure members together without holes.

7.10.2 Options for the assembler avr-as

7.10.2.1 Machine-specific assembler options

• -mmcu=architecture

• -mmcu=MCU name

avr-as understands the same-mmcu= options asavr-gcc. By default, avr2 is assumed,
but this can be altered by using the appropriate .arch pseudo-instruction inside the
assembler source file.

• -mall-opcodes

Turns off opcode checking for the actual MCU type, and allows any possible AVR
opcode to be assembled.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 148

• -mno-skip-bug

Don’t emit a warning when trying to skip a 2-word instruction with a
CPSE/SBIC/SBIS/SBRC/SBRS instruction. Early AVR devices suffered from a
hardware bug where these instructions could not be properly skipped.

• -mno-wrap

For RJMP/RCALLinstructions, don’t allow the target address to wrap around for de-
vices that have more than 8 KB of memory.

• -gstabs

Generate .stabs debugging symbols for assembler source lines. This enables avr-gdb
to trace through assembler source files. This optionmust notbe used when assembling
sources that have been generated by the C compiler; these files already contain the
appropriate line number information from the C source files.

• -a[cdhlmns= file]

Turn on the assembler listing. The sub-options are:

• c omit false conditionals

• d omit debugging directives

• h include high-level source

• l include assembly

• minclude macro expansions

• n omit forms processing

• s include symbols

• =file set the name of the listing file

The various sub-options can be combined into a single-a option list;=file must be the
last one in that case.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 149

7.10.2.2 Examples for assembler options passed through the C compilerRe-
member that assembler options can be passed from the C compiler frontend using-Wa
(seeabove), so in order to include the C source code into the assembler listing in
file foo.lst , when compilingfoo.c , the following compiler command-line can be
used:

$ avr-gcc -c -O foo.c -o foo.o -Wa,-ahls=foo.lst

In order to pass an assembler file through the C preprocessor first, and have the assem-
bler generate line number debugging information for it, the following command can be
used:

$ avr-gcc -c -x assembler-with-cpp -o foo.o foo.S -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file
name with the suffix .S (upper-case letter S) will make the compiler automatically
assume-x assembler-with-cpp , while using .s would pass the file directly to
the assembler (no preprocessing done).

7.10.3 Controlling the linker avr-ld

7.10.3.1 Selected linker options While there are no machine-specific options for
avr-ld, a number of the standard options might be of interest to AVR users.

• -l name

Locate the archive library namedlib name.a , and use it to resolve currently
unresolved symbols from it. The library is searched along a path that con-
sists of builtin pathname entries that have been specified at compile time (e. g.
/usr/local/avr/lib on Unix systems), possibly extended by pathname entries
as specified by-L options (that must precede the-l options on the command-line).

• -L path

Additional location to look for archive libraries requested by-l options.

• -defsym symbol=expr

Define a global symbolsymbolusingexpras the value.

• -M

Print a linker map tostdout .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.10 Using the GNU tools 150

• -Map mapfile

Print a linker map tomapfile.

• -cref

Output a cross reference table to the map file (in case-Map is also present), or to
stdout .

• -section-start sectionname=org

Start sectionsectionnameat absolute addressorg.

• -Tbss org

• -Tdata org

• -Ttext org

Start thebss , data , or text section atorg, respectively.

• -T scriptfile

Use scriptfile as the linker script, replacing the default linker script. De-
fault linker scripts are stored in a system-specific location (e. g. under
/usr/local/avr/lib/ldscripts on Unix systems), and consist of the AVR
architecture name (avr2 through avr5) with the suffix .x appended. They describe how
the variousmemory sectionswill be linked together.

7.10.3.2 Passing linker options from the C compiler By default, all unknown
non-option arguments on the avr-gcc command-line (i. e., all filename arguments that
don’t have a suffix that is handled by avr-gcc) are passed straight to the linker. Thus,
all files ending in .o (object files) and .a (object libraries) are provided to the linker.

System libraries are usually not passed by their explicit filename but rather using the
-l option which uses an abbreviated form of the archive filename (see above). avr-
libc ships two system libraries,libc.a , and libm.a . While the standard library
libc.a will always be searched for unresolved references when the linker is started
using the C compiler frontend (i. e., there’s always at least one implied-lc option),
the mathematics librarylibm.a needs to be explicitly requested using-lm . See also
theentry in the FAQexplaining this.

Conventionally, Makefiles use themake macroLDLIBS to keep track of-l (and
possibly-L) options that should only be appended to the C compiler command-line

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 151

when linking the final binary. In contrast, the macroLDFLAGSis used to store other
command-line options to the C compiler that should be passed as options during the
linking stage. The difference is that options are placed early on the command-line,
while libraries are put at the end since they are to be used to resolve global symbols
that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line using the-Wl
compiler option, seeabove. This option requires that there be no spaces in the appended
linker option, while some of the linker options above (like-Map or -defsym) would
require a space. In these situations, the space can be replaced by an equal sign as
well. For example, the following command-line can be used to compilefoo.c into an
executable, and also produce a link map that contains a cross-reference list in the file
foo.map :

$ avr-gcc -O -o foo.out -Wl,-Map=foo.map -Wl,--cref foo.c

Alternatively, a comma as a placeholder will be replaced by a space before passing the
option to the linker. So for a device with external SRAM, the following command-line
would cause the linker to place the data segment at address 0x2000 in the SRAM:

$ avr-gcc -mmcu=atmega128 -o foo.out -Wl,-Tdata,0x802000

See the explanation of thedata sectionfor why 0x800000 needs to be added to the ac-
tual value. Note that unless a-minit-stack option has been given when compiling
the C source file that contains the functionmain() , the stack will still remain in inter-
nal RAM, through the symbol__stack that is provided by the run-time startup code.
This is probably a good idea anyway (since internal RAM access is faster), and even
required for some early devices that had hardware bugs preventing them from using
a stack in external RAM. Note also that the heap formalloc() will still be placed
after all the variables in the data section, so in this situation, no stack/heap collision
can occur.

7.11 A simple project

At this point, you should have the GNU tools configured, built, and installed on your
system. In this chapter, we present a simple example of using the GNU tools in an AVR
project. After reading this chapter, you should have a better feel as to how the tools are
used and how aMakefile can be configured.

7.11.1 The Project

This project will use the pulse-width modulator (PWM) to ramp an LED on and off
every two seconds. An AT90S2313 processor will be used as the controller. The circuit

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 152

for this demonstration is shown in theschematic diagram. If you have a development
kit, you should be able to use it, rather than build the circuit, for this project.

GND

(MOSI)PB5

Q
1

4
m
h
z

GND

GND

.
1
u
f

C
4

VCC

R1

20K

.
0
1
u
f

C
3

18pf

C2

18pf

C1
*

See note [7]

R2
LED5MM
D1

IC1

1

10
20

5

4

19
18
17
16
15
14
13
12

11
9
8
7
6
3
2

AT90S2313P
(RXD)PD0
(TXD)PD1
(INT0)PD2
(INT1)PD3
(T0)PD4
(T1)PD5
(ICP)PD6

(AIN0)PB0
(AIN1)PB1

PB2
(OCI)PB3

PB4

(MISO)PB6
(SCK)PB7

RESET

XTAL2

XTAL1

VCC
GND

Figure 5: Schematic of circuit for demo project

The source code is given indemo.c. For the sake of this example, create a file called
demo.c containing this source code. Some of the more important parts of the code
are:

Note [1]:
ThePWMis being used in 10-bit mode, so we need a 16-bit variable to remember
the current value.

Note [2]:
SIGNAL() is a macro that marks the function as an interrupt routine. In this case,
the function will get called when the timer overflows. Setting up interrupts is
explained in greater detail inInterrupts and Signals.

Note [3]:
This section determines the new value of thePWM.

Note [4]:
Here’s where the newly computed value is loaded into thePWMregister. Since
we are in an interrupt routine, it is safe to use a 16-bit assignment to the register.
Outside of an interrupt, the assignment should only be performed with interrupts
disabled if there’s a chance that an interrupt routine could also access this register
(or another register that usesTEMP), see the appropriateFAQ entry.

Note [5]:
This routine gets called after a reset. It initializes thePWMand enables interrupts.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 153

Note [6]:
The main loop of the program does nothing – all the work is done by the interrupt
routine! If this was a real product, we’d probably put aSLEEPinstruction in this
loop to conserve power.

Note [7]:
Early AVR devices saturate their outputs at rather low currents when sourcing cur-
rent, so the LED can be connected directly, the resulting current through the LED
will be about 15 mA. For modern parts (at least for the ATmega 128), however
Atmel has drastically increased the IO source capability, so when operating at 5
V Vcc, R2 is needed. Its value should be about 150 Ohms. When operating the
circuit at 3 V, it can still be omitted though.

7.11.2 The Source Code

/*
* --
* "THE BEER-WARE LICENSE" (Revision 42):
* <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
* --
*
* Simple AVR demonstration. Controls a LED that can be directly
* connected from OC1/OC1A to GND. The brightness of the LED is
* controlled with the PWM. After each period of the PWM, the PWM
* value is either incremented or decremented, that’s all.
*
* $Id: demo.c,v 1.1.2.3 2004/07/21 21:07:54 joerg_wunsch Exp $
*/

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>

#if defined(__AVR_AT90S2313__)
define OC1 PB3
define OCR OCR1
define DDROC DDRB
#elif defined(__AVR_AT90S2333__) || defined(__AVR_AT90S4433__)
define OC1 PB1
define DDROC DDRB
define OCR OCR1
#elif defined(__AVR_AT90S4414__) || defined(__AVR_AT90S8515__) || \

defined(__AVR_AT90S4434__) || defined(__AVR_AT90S8535__) || \
defined(__AVR_ATmega163__)

define OC1 PD5
define DDROC DDRD
define OCR OCR1A
#elif defined(__AVR_ATmega8__)
define OC1 PB1
define DDROC DDRB

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 154

define OCR OCR1A
define PWM10 WGM10
define PWM11 WGM11
#elif defined(__AVR_ATmega32__)
define OC1 PD5
define DDROC DDRD
define OCR OCR1A
define PWM10 WGM10
define PWM11 WGM11
#elif defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__)
define OC1 PB5
define DDROC DDRB
define OCR OCR1A
define PWM10 WGM10
define PWM11 WGM11
#else
error "Don’t know what kind of MCU you are compiling for"
#endif

#if defined(COM11)
define XCOM11 COM11
#elif defined(COM1A1)
define XCOM11 COM1A1
#else
error "need either COM1A1 or COM11"
#endif

enum { UP, DOWN };

volatile uint16_t pwm; /* Note [1] */
volatile uint8_t direction;

SIGNAL (SIG_OVERFLOW1) /* Note [2] */
{

switch (direction) /* Note [3] */
{

case UP:
if (++pwm == 1023)

direction = DOWN;
break;

case DOWN:
if (--pwm == 0)

direction = UP;
break;

}

OCR = pwm; /* Note [4] */
}

void
ioinit (void) /* Note [5] */
{

/* tmr1 is 10-bit PWM */
TCCR1A = _BV (PWM10) | _BV (PWM11) | _BV (XCOM11);

/* tmr1 running on full MCU clock */

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 155

TCCR1B = _BV (CS10);

/* set PWM value to 0 */
OCR = 0;

/* enable OC1 and PB2 as output */
DDROC = _BV (OC1);

timer_enable_int (_BV (TOIE1));

/* enable interrupts */
sei ();

}

int
main (void)
{

ioinit ();

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [6] */
;

return (0);
}

7.11.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the
compiler needs to know the processor type so the-mmcu option is specified. The
-Os option will tell the compiler to optimize the code for efficient space usage (at the
possible expense of code execution speed). The-g is used to embed debug info. The
debug info is useful for disassemblies and doesn’t end up in the .hex files, so I usually
specify it. Finally, the-c tells the compiler to compile and stop – don’t link. This
demo is small enough that we could compile and link in one step. However, real-world
projects will have several modules and will typically need to break up the building of
the project into several compiles and one link.

$ avr-gcc -g -Os -mmcu=at90s2333 -c demo.c

The compilation will create ademo.o file. Next we link it into a binary called
demo.elf .

$ avr-gcc -g -mmcu=at90s2333 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses the-mmcu
option to choose start-up files and run-time libraries that get linked together. If this
option isn’t specified, the compiler defaults to the 8515 processor environment, which
is most certainly what you didn’t want.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 156

7.11.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the
processor?) The GNU Binutils suite is made up of many useful tools for manipulating
object files that get generated. One tool isavr-objdump , which takes information
from the object file and displays it in many useful ways. Typing the command by itself
will cause it to list out its options.

For instance, to get a feel of the application’s size, the-h option can be used. The
output of this option shows how much space is used in each of the (the .stab and .stabstr
sections hold the debugging information and won’t make it into the ROM file).

An even more useful option is-S . This option disassembles the binary file and inter-
sperses the source code in the output! This method is much better, in my opinion, than
using the-S with the compiler because this listing includes routines from the libraries
and the vector table contents. Also, all the "fix-ups" have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.lst

Here’s the output as saved in thedemo.lst file:

demo.elf: file format elf32-avr

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 000000cc 00000000 00000000 00000094 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000000 00800060 000000cc 00000160 2**0
CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000003 00800060 00800060 00000160 2**0
ALLOC

3 .noinit 00000000 00800063 00800063 00000160 2**0
CONTENTS

4 .eeprom 00000000 00810000 00810000 00000160 2**0
CONTENTS

5 .stab 000005d0 00000000 00000000 00000160 2**2
CONTENTS, READONLY, DEBUGGING

6 .stabstr 000005b9 00000000 00000000 00000730 2**0
CONTENTS, READONLY, DEBUGGING

Disassembly of section .text:

00000000 <__vectors>:
0: 0a c0 rjmp .+20 ; 0x16
2: 63 c0 rjmp .+198 ; 0xca
4: 62 c0 rjmp .+196 ; 0xca
6: 61 c0 rjmp .+194 ; 0xca
8: 60 c0 rjmp .+192 ; 0xca
a: 0a c0 rjmp .+20 ; 0x20
c: 5e c0 rjmp .+188 ; 0xca
e: 5d c0 rjmp .+186 ; 0xca

10: 5c c0 rjmp .+184 ; 0xca
12: 5b c0 rjmp .+182 ; 0xca

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 157

14: 5a c0 rjmp .+180 ; 0xca

00000016 <__ctors_end>:
16: 11 24 eor r1, r1
18: 1f be out 0x3f, r1 ; 63
1a: cf ed ldi r28, 0xDF ; 223
1c: cd bf out 0x3d, r28 ; 61
1e: 4f c0 rjmp .+158 ; 0xbe

00000020 <__vector_5>:
volatile uint16_t pwm; /* Note [1] */
volatile uint8_t direction;

SIGNAL (SIG_OVERFLOW1) /* Note [2] */
{

20: 1f 92 push r1
22: 0f 92 push r0
24: 0f b6 in r0, 0x3f ; 63
26: 0f 92 push r0
28: 11 24 eor r1, r1
2a: 2f 93 push r18
2c: 8f 93 push r24
2e: 9f 93 push r25

switch (direction) /* Note [3] */
30: 80 91 60 00 lds r24, 0x0060
34: 99 27 eor r25, r25
36: 00 97 sbiw r24, 0x00 ; 0
38: 19 f0 breq .+6 ; 0x40
3a: 01 97 sbiw r24, 0x01 ; 1
3c: 31 f5 brne .+76 ; 0x8a
3e: 14 c0 rjmp .+40 ; 0x68

{
case UP:

if (++pwm == 1023)
40: 80 91 61 00 lds r24, 0x0061
44: 90 91 62 00 lds r25, 0x0062
48: 01 96 adiw r24, 0x01 ; 1
4a: 90 93 62 00 sts 0x0062, r25
4e: 80 93 61 00 sts 0x0061, r24
52: 80 91 61 00 lds r24, 0x0061
56: 90 91 62 00 lds r25, 0x0062
5a: 8f 5f subi r24, 0xFF ; 255
5c: 93 40 sbci r25, 0x03 ; 3
5e: a9 f4 brne .+42 ; 0x8a

direction = DOWN;
60: 81 e0 ldi r24, 0x01 ; 1
62: 80 93 60 00 sts 0x0060, r24
66: 11 c0 rjmp .+34 ; 0x8a

break;

case DOWN:
if (--pwm == 0)

68: 80 91 61 00 lds r24, 0x0061
6c: 90 91 62 00 lds r25, 0x0062
70: 01 97 sbiw r24, 0x01 ; 1
72: 90 93 62 00 sts 0x0062, r25
76: 80 93 61 00 sts 0x0061, r24

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 158

7a: 80 91 61 00 lds r24, 0x0061
7e: 90 91 62 00 lds r25, 0x0062
82: 89 2b or r24, r25
84: 11 f4 brne .+4 ; 0x8a

direction = UP;
86: 10 92 60 00 sts 0x0060, r1

break;
}

OCR = pwm; /* Note [4] */
8a: 80 91 61 00 lds r24, 0x0061
8e: 90 91 62 00 lds r25, 0x0062
92: 9b bd out 0x2b, r25 ; 43
94: 8a bd out 0x2a, r24 ; 42
96: 9f 91 pop r25
98: 8f 91 pop r24
9a: 2f 91 pop r18
9c: 0f 90 pop r0
9e: 0f be out 0x3f, r0 ; 63
a0: 0f 90 pop r0
a2: 1f 90 pop r1
a4: 18 95 reti

000000a6 <ioinit>:
}

void
ioinit (void) /* Note [5] */
{

/* tmr1 is 10-bit PWM */
TCCR1A = _BV (PWM10) | _BV (PWM11) | _BV (XCOM11);

a6: 83 e8 ldi r24, 0x83 ; 131
a8: 8f bd out 0x2f, r24 ; 47

/* tmr1 running on full MCU clock */
TCCR1B = _BV (CS10);

aa: 81 e0 ldi r24, 0x01 ; 1
ac: 8e bd out 0x2e, r24 ; 46

/* set PWM value to 0 */
OCR = 0;

ae: 1b bc out 0x2b, r1 ; 43
b0: 1a bc out 0x2a, r1 ; 42

/* enable OC1 and PB2 as output */
DDROC = _BV (OC1);

b2: 88 e0 ldi r24, 0x08 ; 8
b4: 87 bb out 0x17, r24 ; 23

timer_enable_int (_BV (TOIE1));

/* enable interrupts */
sei ();

}

int
main (void)

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 159

{
ioinit ();

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [6] */
;

return (0);
}

b6: 80 e8 ldi r24, 0x80 ; 128
b8: 89 bf out 0x39, r24 ; 57
ba: 78 94 sei
bc: 08 95 ret

000000be <main>:
be: cf ed ldi r28, 0xDF ; 223
c0: d0 e0 ldi r29, 0x00 ; 0
c2: de bf out 0x3e, r29 ; 62
c4: cd bf out 0x3d, r28 ; 61
c6: ef df rcall .-34 ; 0xa6
c8: ff cf rjmp .-2 ; 0xc8

000000ca <__bad_interrupt>:
ca: 9a cf rjmp .-204 ; 0x0

7.11.5 Linker Map Files

avr-objdump is very useful, but sometimes it’s necessary to see information about
the link that can only be generated by the linker. A map file contains this information.
A map file is useful for monitoring the sizes of your code and data. It also shows where
modules are loaded and which modules were loaded from libraries. It is yet another
view of your application. To get a map file, I usually add-Wl,-Map,demo.map to
my link command. Relink the application using the following command to generate
demo.map (a portion of which is shown below).

$ avr-gcc -g -mmcu=at90s2313 -Wl,-Map,demo.map -o demo.elf demo.o

Some points of interest in thedemo.map file are:

.rela.plt
*(.rela.plt)

.text 0x00000000 0xcc
*(.vectors)
.vectors 0x00000000 0x16 ../../../build/crt1/crts2313.o

0x00000000 __vectors
0x00000000 __vector_default
0x00000016 __ctors_start = .

The .text segment (where program instructions are stored) starts at location 0x0.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 160

*(.fini2)
*(.fini1)
*(.fini0)

0x000000cc _etext = .

.data 0x00800060 0x0 load address 0x000000cc
0x00800060 PROVIDE (__data_start, .)

*(.data)
(.gnu.linkonce.d)

0x00800060 . = ALIGN (0x2)
0x00800060 _edata = .
0x00800060 PROVIDE (__data_end, .)

.bss 0x00800060 0x3
0x00800060 PROVIDE (__bss_start, .)

*(.bss)
*(COMMON)
COMMON 0x00800060 0x3 demo.o

0x0 (size before relaxing)
0x00800060 direction
0x00800061 pwm
0x00800063 PROVIDE (__bss_end, .)
0x000000cc __data_load_start = LOADADDR (.data)
0x000000cc __data_load_end = (__data_load_start + SIZEOF (.data))

.noinit 0x00800063 0x0
0x00800063 PROVIDE (__noinit_start, .)

(.noinit)
0x00800063 PROVIDE (__noinit_end, .)
0x00800063 _end = .
0x00800063 PROVIDE (__heap_start, .)

.eeprom 0x00810000 0x0 load address 0x000000cc
(.eeprom)

0x00810000 __eeprom_end = .

The last address in the .text segment is location0xf2 (denoted by_etext), so the
instructions use up 242 bytes of FLASH.

The .data segment (where initialized static variables are stored) starts at location0x60 ,
which is the first address after the register bank on a 2313 processor.

The next available address in the .data segment is also location0x60 , so the application
has no initialized data.

The .bss segment (where uninitialized data is stored) starts at location0x60 .

The next available address in the .bss segment is location 0x63, so the application uses
3 bytes of uninitialized data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t
any EEPROM variables.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 161

7.11.6 Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most (if
not all) programmers will not accept a GNU executable as an input file, so we need to
do a little more processing. The next step is to extract portions of the binary and save
the information into .hex files. The GNU utility that does this is calledavr-objcopy .

The ROM contents can be pulled from our project’s binary and put into the file
demo.hex using the following command:

$ avr-objcopy -j .text -j .data -O ihex demo.elf demo.hex

The resultingdemo.hex file contains:

:100000000AC063C062C061C060C00AC05EC05DC09B
:100010005CC05BC05AC011241FBECFEDCDBF4FC026
:100020001F920F920FB60F9211242F938F939F93CD
:10003000809160009927009719F0019731F514C05D
:10004000809161009091620001969093620080938C
:10005000610080916100909162008F5F9340A9F4EC
:1000600081E08093600011C08091610090916200F6
:10007000019790936200809361008091610090915C
:100080006200892B11F410926000809161009091C0
:1000900062009BBD8ABD9F918F912F910F900FBEE3
:1000A0000F901F90189583E88FBD81E08EBD1BBC1B
:1000B0001ABC88E087BB80E889BF78940895CFEDAB
:0C00C000D0E0DEBFCDBFEFDFFFCF9ACF56
:00000001FF

The-j option indicates that we want the information from the .text and .data segment
extracted. If we specify the EEPROM segment, we can generate a .hex file that can be
used to program the EEPROM:

$ avr-objcopy -j .eeprom --change-section-lma .eeprom=0 -O ihex demo.elf demo_eeprom.hex

The resultingdemo_eeprom.hex file contains:

:00000001FF

which is an empty .hex file (which is expected, since we didn’t define any EEPROM
variables).

7.11.7 Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file.
To build the demo project usingmake, save the following in a file calledMakefile .

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.11 A simple project 162

Note:
ThisMakefile can only be used as input for the GNU version ofmake.

PRG = demo
OBJ = demo.o
MCU_TARGET = at90s2313
OPTIMIZE = -O2

DEFS =
LIBS =

You should not have to change anything below here.

CC = avr-gcc

Override is only needed by avr-lib build system.

override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) $(DEFS)
override LDFLAGS = -Wl,-Map,$(PRG).map

OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump

all: $(PRG).elf lst text eeprom

$(PRG).elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)

clean:
rm -rf *.o $(PRG).elf *.eps *.png *.pdf *.bak
rm -rf *.lst *.map $(EXTRA_CLEAN_FILES)

lst: $(PRG).lst

%.lst: %.elf
$(OBJDUMP) -h -S $< > $@

Rules for building the .text rom images

text: hex bin srec

hex: $(PRG).hex
bin: $(PRG).bin
srec: $(PRG).srec

%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@

%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@

%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

Rules for building the .eeprom rom images

eeprom: ehex ebin esrec

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 163

ehex: $(PRG)_eeprom.hex
ebin: $(PRG)_eeprom.bin
esrec: $(PRG)_eeprom.srec

%_eeprom.hex: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@

%_eeprom.srec: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O srec $< $@

%_eeprom.bin: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O binary $< $@

Every thing below here is used by avr-libc’s build system and can be ignored
by the casual user.

FIG2DEV = fig2dev
EXTRA_CLEAN_FILES = *.hex *.bin *.srec

dox: eps png pdf

eps: $(PRG).eps
png: $(PRG).png
pdf: $(PRG).pdf

%.eps: %.fig
$(FIG2DEV) -L eps $< $@

%.pdf: %.fig
$(FIG2DEV) -L pdf $< $@

%.png: %.fig
$(FIG2DEV) -L png $< $@

7.12 Example using the two-wire interface (TWI)

Some newer devices of the ATmega series contain builtin support for interfacing the
microcontroller to a two-wire bus, called TWI. This is essentially the same called I2C
by Philips, but that term is avoided in Atmel’s documentation due to patenting issues.

For the original Philips documentation, see

http://www.semiconductors.philips.com/buses/i2c/index.html

7.12.1 Introduction into TWI

The two-wire interface consists of two signal lines namedSDA(serial data) andSCL
(serial clock) (plus a ground line, of course). All devices participating in the bus are
connected together, using open-drain driver circuitry, so the wires must be terminated
using appropriate pullup resistors. The pullups must be small enough to recharge

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

http://www.semiconductors.philips.com/buses/i2c/index.html

7.12 Example using the two-wire interface (TWI) 164

the line capacity in short enough time compared to the desired maximal clock fre-
quency, yet large enough so all drivers will not be overloaded. There are formulas in
the datasheet that help selecting the pullups.

Devices can either act as a master to the bus (i. e., they initiate a transfer), or as a
slave (they only act when being called by a master). The bus is multi-master capable,
and a particular device implementation can act as either master or slave at different
times. Devices are addressed using a 7-bit address (coordinated by Philips) transfered
as the first byte after the so-called start condition. The LSB of that byte is R/∼W, i. e.
it determines whether the request to the slave is to read or write data during the next
cycles. (There is also an option to have devices using 10-bit addresses but that is not
covered by this example.)

7.12.2 The TWI example project

The ATmega TWI hardware supports both, master and slave operation. This example
will only demonstrate how to use an AVR microcontroller as TWI master. The imple-
mentation is kept simple in order to concentrate on the steps that are required to talk to
a TWI slave, so all processing is done in polled-mode, waiting for the TWI interface to
indicate that the next processing step is due (by setting the TWINT interrupt bit). If it
is desired to have the entire TWI communication happen in "background", all this can
be implemented in an interrupt-controlled way, where only the start condition needs to
be triggered from outside the interrupt routine.

There is a variety of slave devices available that can be connected to a TWI bus. For the
purpose of this example, an EEPROM device out of the industry-standard24Cxx series
has been chosen (wherexxcan be one of01, 02, 04, 08, or16) which are available from
various vendors. The choice was almost arbitrary, mainly triggered by the fact that an
EEPROM device is being talked to in both directions, reading and writing the slave
device, so the example will demonstrate the details of both.

Usually, there is probably not much need to add more EEPROM to an ATmega system
that way: the smallest possible AVR device that offers hardware TWI support is the
ATmega8 which comes with 512 bytes of EEPROM, which is equivalent to an 24C04
device. The ATmega128 already comes with twice as much EEPROM as the 24C16
would offer. One exception might be to use an externally connected EEPROM device
that is removable; e. g. SDRAM PC memory comes with an integrated TWI EEPROM
that carries the RAM configuration information.

7.12.3 The Source Code

/*
* --
* "THE BEER-WARE LICENSE" (Revision 42):
* <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 165

* --
*/

/* $Id: twitest.c,v 1.1.2.1 2004/08/09 21:47:48 joerg_wunsch Exp $ */

/*
* Simple demo program that talks to a 24Cxx IšC EEPROM using the
* builtin TWI interface of an ATmega device.
*/

#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>

#include <avr/io.h>
#include <avr/twi.h> /* Note [1] */

#define DEBUG 1

/*
* System clock in Hz.
*/

#define SYSCLK 14745600UL /* Note [2] */

/*
* Compatibility defines. This should work on ATmega8, ATmega16,
* ATmega163, ATmega323 and ATmega128 (IOW: on all devices that
* provide a builtin TWI interface).
*
* On the 128, it defaults to USART 1.
*/

#ifndef UCSRB
ifdef UCSR1A /* ATmega128 */
define UCSRA UCSR1A
define UCSRB UCSR1B
define UBRR UBRR1L
define UDR UDR1
else /* ATmega8 */
define UCSRA USR
define UCSRB UCR
endif
#endif
#ifndef UBRR
define UBRR UBRRL
#endif

/*
* Note [3]
* TWI address for 24Cxx EEPROM:
*
* 1 0 1 0 E2 E1 E0 R/~W 24C01/24C02
* 1 0 1 0 E2 E1 A8 R/~W 24C04
* 1 0 1 0 E2 A9 A8 R/~W 24C08
* 1 0 1 0 A10 A9 A8 R/~W 24C16
*/

#define TWI_SLA_24CXX 0xa0 /* E2 E1 E0 = 0 0 0 */

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 166

/*
* Maximal number of iterations to wait for a device to respond for a
* selection. Should be large enough to allow for a pending write to
* complete, but low enough to properly abort an infinite loop in case
* a slave is broken or not present at all. With 100 kHz TWI clock,
* transfering the start condition and SLA+R/W packet takes about 10
* ¸ts. The longest write period is supposed to not exceed ~ 10 ms.
* Thus, normal operation should not require more than 100 iterations
* to get the device to respond to a selection.
*/

#define MAX_ITER 200

/*
* Number of bytes that can be written in a row, see comments for
* ee24xx_write_page() below. Some vendor’s devices would accept 16,
* but 8 seems to be the lowest common denominator.
*
* Note that the page size must be a power of two, this simplifies the
* page boundary calculations below.
*/

#define PAGE_SIZE 8

/*
* Saved TWI status register, for error messages only. We need to
* save it in a variable, since the datasheet only guarantees the TWSR
* register to have valid contents while the TWINT bit in TWCR is set.
*/

uint8_t twst;

/*
* Do all the startup-time peripheral initializations: UART (for our
* debug/test output), and TWI clock.
*/

void
ioinit(void)
{

#if SYSCLK <= 1000000UL
/*

* Note [4]
* Slow system clock, double Baud rate to improve rate error.
*/

UCSRA = _BV(U2X);
UBRR = (SYSCLK / (8 * 9600UL)) - 1; /* 9600 Bd */

#else
UBRR = (SYSCLK / (16 * 9600UL)) - 1; /* 9600 Bd */

#endif
UCSRB = _BV(TXEN); /* tx enable */

/* initialize TWI clock: 100 kHz clock, TWPS = 0 => prescaler = 1 */
#if defined(TWPS0)

/* has prescaler (mega128 & newer) */
TWSR = 0;

#endif

#if SYSCLK < 3600000UL
TWBR = 10; /* smallest TWBR value, see note [5] */

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 167

#else
TWBR = (SYSCLK / 100000UL - 16) / 2;

#endif
}

/*
* Note [6]
* Send character c down the UART Tx, wait until tx holding register
* is empty.
*/

int
uart_putchar(char c)
{

if (c == ’\n’)
uart_putchar(’\r’);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

/*
* Note [7]
*
* Read "len" bytes from EEPROM starting at "eeaddr" into "buf".
*
* This requires two bus cycles: during the first cycle, the device
* will be selected (master transmitter mode), and the address
* transfered. Address bits exceeding 256 are transfered in the
* E2/E1/E0 bits (subaddress bits) of the device selector.
*
* The second bus cycle will reselect the device (repeated start
* condition, going into master receiver mode), and transfer the data
* from the device to the TWI master. Multiple bytes can be
* transfered by ACKing the client’s transfer. The last transfer will
* be NACKed, which the client will take as an indication to not
* initiate further transfers.
*/

int
ee24xx_read_bytes(uint16_t eeaddr, int len, uint8_t *buf)
{

uint8_t sla, twcr, n = 0;
int rv = 0;

/* patch high bits of EEPROM address into SLA */
sla = TWI_SLA_24CXX | (((eeaddr >> 8) & 0x07) << 1);

/*
* Note [8]
* First cycle: master transmitter mode
*/

restart:
if (n++ >= MAX_ITER)

return -1;
begin:

TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN); /* send start condition */

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 168

while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_REP_START: /* OK, but should not happen */
case TW_START:

break;

case TW_MT_ARB_LOST: /* Note [9] */
goto begin;

default:
return -1; /* error: not in start condition */

/* NB: do /not/ send stop condition */
}

/* Note [10] */
/* send SLA+W */
TWDR = sla | TW_WRITE;
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MT_SLA_ACK:

break;

case TW_MT_SLA_NACK: /* nack during select: device busy writing */
/* Note [11] */

goto restart;

case TW_MT_ARB_LOST: /* re-arbitrate */
goto begin;

default:
goto error; /* must send stop condition */

}

TWDR = eeaddr; /* low 8 bits of addr */
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MT_DATA_ACK:

break;

case TW_MT_DATA_NACK:
goto quit;

case TW_MT_ARB_LOST:
goto begin;

default:
goto error; /* must send stop condition */

}

/*
* Note [12]
* Next cycle(s): master receiver mode

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 169

*/
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN); /* send (rep.) start condition */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_START: /* OK, but should not happen */
case TW_REP_START:

break;

case TW_MT_ARB_LOST:
goto begin;

default:
goto error;

}

/* send SLA+R */
TWDR = sla | TW_READ;
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MR_SLA_ACK:

break;

case TW_MR_SLA_NACK:
goto quit;

case TW_MR_ARB_LOST:
goto begin;

default:
goto error;

}

for (twcr = _BV(TWINT) | _BV(TWEN) | _BV(TWEA) /* Note [13] */;
len > 0;
len--)

{
if (len == 1)

twcr = _BV(TWINT) | _BV(TWEN); /* send NAK this time */
TWCR = twcr; /* clear int to start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MR_DATA_NACK:

len = 0; /* force end of loop */
/* FALLTHROUGH */

case TW_MR_DATA_ACK:
*buf++ = TWDR;
rv++;
break;

default:
goto error;

}
}

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 170

quit:
/* Note [14] */
TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); /* send stop condition */

return rv;

error:
rv = -1;
goto quit;

}

/*
* Write "len" bytes into EEPROM starting at "eeaddr" from "buf".
*
* This is a bit simpler than the previous function since both, the
* address and the data bytes will be transfered in master transmitter
* mode, thus no reselection of the device is necessary. However, the
* EEPROMs are only capable of writing one "page" simultaneously, so
* care must be taken to not cross a page boundary within one write
* cycle. The amount of data one page consists of varies from
* manufacturer to manufacturer: some vendors only use 8-byte pages
* for the smaller devices, and 16-byte pages for the larger devices,
* while other vendors generally use 16-byte pages. We thus use the
* smallest common denominator of 8 bytes per page, declared by the
* macro PAGE_SIZE above.
*
* The function simply returns after writing one page, returning the
* actual number of data byte written. It is up to the caller to
* re-invoke it in order to write further data.
*/

int
ee24xx_write_page(uint16_t eeaddr, int len, uint8_t *buf)
{

uint8_t sla, n = 0;
int rv = 0;
uint16_t endaddr;

if (eeaddr + len < (eeaddr | (PAGE_SIZE - 1)))
endaddr = eeaddr + len;

else
endaddr = (eeaddr | (PAGE_SIZE - 1)) + 1;

len = endaddr - eeaddr;

/* patch high bits of EEPROM address into SLA */
sla = TWI_SLA_24CXX | (((eeaddr >> 8) & 0x07) << 1);

restart:
if (n++ >= MAX_ITER)

return -1;
begin:

/* Note [15] */
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN); /* send start condition */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_REP_START: /* OK, but should not happen */

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 171

case TW_START:
break;

case TW_MT_ARB_LOST:
goto begin;

default:
return -1; /* error: not in start condition */

/* NB: do /not/ send stop condition */
}

/* send SLA+W */
TWDR = sla | TW_WRITE;
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MT_SLA_ACK:

break;

case TW_MT_SLA_NACK: /* nack during select: device busy writing */
goto restart;

case TW_MT_ARB_LOST: /* re-arbitrate */
goto begin;

default:
goto error; /* must send stop condition */

}

TWDR = eeaddr; /* low 8 bits of addr */
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MT_DATA_ACK:

break;

case TW_MT_DATA_NACK:
goto quit;

case TW_MT_ARB_LOST:
goto begin;

default:
goto error; /* must send stop condition */

}

for (; len > 0; len--)
{

TWDR = *buf++;
TWCR = _BV(TWINT) | _BV(TWEN); /* start transmission */
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((twst = TW_STATUS))

{
case TW_MT_DATA_NACK:

goto error; /* device write protected -- Note [16] */

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 172

case TW_MT_DATA_ACK:
rv++;
break;

default:
goto error;

}
}

quit:
TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); /* send stop condition */

return rv;

error:
rv = -1;
goto quit;

}

/*
* Wrapper around ee24xx_write_page() that repeats calling this
* function until either an error has been returned, or all bytes
* have been written.
*/

int
ee24xx_write_bytes(uint16_t eeaddr, int len, uint8_t *buf)
{

int rv, total;

total = 0;
do

{
#if DEBUG

printf("Calling ee24xx_write_page(%d, %d, %p)",
eeaddr, len, buf);

#endif
rv = ee24xx_write_page(eeaddr, len, buf);

#if DEBUG
printf(" => %d\n", rv);

#endif
if (rv == -1)

return -1;
eeaddr += rv;
len -= rv;
buf += rv;
total += rv;

}
while (len > 0);

return total;
}

void
error(void)
{

printf("error: TWI status %#x\n", twst);

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 173

exit(0);
}

void
main(void)
{

uint16_t a;
int rv;
uint8_t b[16];
uint8_t x;

ioinit();

fdevopen(uart_putchar, NULL, 0);

for (a = 0; a < 256;)
{

printf("%#04x: ", a);
rv = ee24xx_read_bytes(a, 16, b);
if (rv <= 0)

error();
if (rv < 16)

printf("warning: short read %d\n", rv);
a += rv;
for (x = 0; x < rv; x++)

printf("%02x ", b[x]);
putchar(’\n’);

}
#define EE_WRITE(addr, str) ee24xx_write_bytes(addr, sizeof(str)-1, str)

rv = EE_WRITE(55, "The quick brown fox jumps over the lazy dog.");
if (rv < 0)

error();
printf("Wrote %d bytes.\n", rv);
for (a = 0; a < 256;)

{
printf("%#04x: ", a);
rv = ee24xx_read_bytes(a, 16, b);
if (rv <= 0)

error();
if (rv < 16)

printf("warning: short read %d\n", rv);
a += rv;
for (x = 0; x < rv; x++)

printf("%02x ", b[x]);
putchar(’\n’);

}

printf("done.\n");

}

Note [1]

The header file<avr/io.h > contains some macro definitions for symbolic constants
used in the TWI status register. These definitions match the names used in the Atmel

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 174

datasheet except that all names have been prefixed withTW_.

Note [2]

The clock is used in timer calculations done by the compiler, for the UART baud rate
and the TWI clock rate.

Note [3]

The address assigned for the 24Cxx EEPROM consists of 1010 in the upper four bits.
The following three bits are normally available as slave sub-addresses, allowing to
operate more than one device of the same type on a single bus, where the actual sub-
address used for each device is configured by hardware strapping. However, since the
next data packet following the device selection only allows for 8 bits that are used as
an EEPROM address, devices that require more than 8 address bits (24C04 and above)
"steal" subaddress bits and use them for the EEPROM cell address bits 9 to 11 as re-
quired. This example simply assumes all subaddress bits are 0 for the smaller devices,
so the E0, E1, and E2 inputs of the 24Cxx must be grounded.

Note [4]

For slow clocks, enable the 2 x U[S]ART clock multiplier, to improve the baud rate
error. This will allow a 9600 Bd communication using the standard 1 MHz calibrated
RC oscillator. See also the Baud rate tables in the datasheets.

Note [5]

The datasheet explains why a minimum TWBR value of 10 should be maintained when
running in master mode. Thus, for system clocks below 3.6 MHz, we cannot run the
bus at the intented clock rate of 100 kHz but have to slow down accordingly.

Note [6]

This function is used by the standard output facilities that are utilized in this example
for debugging and demonstration purposes.

Note [7]

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 175

In order to shorten the data to be sent over the TWI bus, the 24Cxx EEPROMs support
multiple data bytes transfered within a single request, maintaining an internal address
counter that is updated after each data byte transfered successfully. When reading
data, one request can read the entire device memory if desired (the counter would wrap
around and start back from 0 when reaching the end of the device).

Note [8]

When reading the EEPROM, a first device selection must be made with write intent
(R/∼W bit set to 0 indicating a write operation) in order to transfer the EEPROM ad-
dress to start reading from. This is calledmaster transmitter mode. Each completion
of a particular step in TWI communication is indicated by an asserted TWINT bit in
TWCR. (An interrupt would be generated if allowed.) After performing any actions
that are needed for the next communication step, the interrupt condition must be man-
ually cleared bysettingthe TWINT bit. Unlike with many other interrupt sources, this
would even be required when using a true interrupt routine, since as soon as TWINT is
re-asserted, the next bus transaction will start.

Note [9]

Since the TWI bus is multi-master capable, there is potential for a bus contention when
one master starts to access the bus. Normally, the TWI bus interface unit will detect this
situation, and will not initiate a start condition while the bus is busy. However, in case
two masters were starting at exactly the same time, the way bus arbitration works, there
is always a chance that one master could lose arbitration of the bus during any transmit
operation. A master that has lost arbitration is required by the protocol to immediately
cease talking on the bus; in particular it must not initiate a stop condition in order to not
corrupt the ongoing transfer from the active master. In this example, upon detecting a
lost arbitration condition, the entire transfer is going to be restarted. This will cause a
new start condition to be initiated, which will normally be delayed until the currently
active master has released the bus.

Note [10]

Next, the device slave is going to be reselected (using a so-called repeated start con-
dition which is meant to guarantee that the bus arbitration will remain at the current
master) using the same slave address (SLA), but this time with read intent (R/∼W bit
set to 1) in order to request the device slave to start transfering data from the slave to
the master in the next packet.

Note [11]

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.12 Example using the two-wire interface (TWI) 176

If the EEPROM device is still busy writing one or more cells after a previous write
request, it will simply leave its bus interface drivers at high impedance, and does not
respond to a selection in any way at all. The master selecting the device will see the
high level at SDA after transfering the SLA+R/W packet as a NACK to its selection
request. Thus, the select process is simply started over (effectively causing arepeated
start condition), until the device will eventually respond. This polling procedure is
recommended in the 24Cxx datasheet in order to minimize the busy wait time when
writing. Note that in case a device is broken and never responds to a selection (e. g.
since it is no longer present at all), this will cause an infinite loop. Thus the maximal
number of iterations made until the device is declared to be not responding at all, and
an error is returned, will be limited to MAX_ITER.

Note [12]

This is calledmaster receiver mode: the bus master still supplies the SCL clock, but the
device slave drives the SDA line with the appropriate data. After 8 data bits, the master
responds with an ACK bit (SDA driven low) in order to request another data transfer
from the slave, or it can leave the SDA line high (NACK), indicating to the slave that
it is going to stop the transfer now. Assertion of ACK is handled by setting the TWEA
bit in TWCR when starting the current transfer.

Note [13]

The control word sent out in order to initiate the transfer of the next data packet is
initially set up to assert the TWEA bit. During the last loop iteration, TWEA is de-
asserted so the client will get informed that no further transfer is desired.

Note [14]

Except in the case of lost arbitration, all bus transactions must properly be terminated
by the master initiating a stop condition.

Note [15]

Writing to the EEPROM device is simpler than reading, since only a master transmitter
mode transfer is needed. Note that the first packet after the SLA+W selection is always
considered to be the EEPROM address for the next operation. (This packet is exactly
the same as the one above sent before starting to read the device.) In case a master
transmitter mode transfer is going to send more than one data packet, all following
packets will be considered data bytes to write at the indicated address. The internal
address pointer will be incremented after each write operation.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.13 Todo List 177

Note [16]

24Cxx devices can become write-protected by strapping their∼WC pin to logic high.
(Leaving it unconnected is explicitly allowed, and constitutes logic low level, i. e. no
write protection.) In case of a write protected device, all data transfer attempts will be
NACKed by the device. Note that some devices might not implement this.

7.13 Todo List

Group avr_boot From email with Marek: On smaller devices (all except AT-
mega64/128), __SPM_REG is in the I/O space, accessible with the shorter "in"
and "out" instructions - since the boot loader has a limited size, this could be an
important optimization.

7.14 Deprecated List

Global eeprom_rb(addr) Useeeprom_read_byte()in new programs.

Global eeprom_rw(addr) Useeeprom_read_word()in new programs.

Global eeprom_wb(addr, val) Useeeprom_write_byte()in new programs.

Global PRG_RDB(addr) Usepgm_read_byte()in new programs.

Global cbi(sfr, bit) #include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Global sbi(sfr, bit) #include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Global inb(sfr) #include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Global outb(sfr, val) #include <avr/io.h>

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

7.14 Deprecated List 178

Global inw(sfr) #include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Global outw(sfr, val) #include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Global outp(val, sfr) For backwards compatibility only. This macro will eventually
be removed.

Global inp(sfr) For backwards compatibility only. This macro will eventually be
removed.

Global BV(bit) For backwards compatibility only. This macro will eventually be
removed.

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

Index
$PATH,134
$PREFIX,134
–prefix,134
_BV

avr_sfr,79
_EEGET

avr_eeprom,12
_EEPUT

avr_eeprom,12
__compar_fn_t

avr_stdlib,55
__malloc_heap_end

avr_stdlib,63
__malloc_heap_start

avr_stdlib,63
__malloc_margin

avr_stdlib,63
_crc16_update

avr_crc,10
_crc_ccitt_update

avr_crc,10
_crc_xmodem_update

avr_crc,10

abort
avr_stdlib,55

abs
avr_stdlib,55

acos
avr_math,31

Additional notes from <avr/sfr_-
defs.h>, 21

asin
avr_math,31

atan
avr_math,31

atan2
avr_math,31

atof
avr_stdlib,56

atoi
avr_stdlib,56

atol

avr_stdlib,56
AVR device-specific IO definitions,14
avr_boot

boot_is_spm_interrupt,7
boot_lock_bits_set,7
boot_page_erase,7
boot_page_fill,8
boot_page_write,8
boot_rww_busy,8
boot_rww_enable,8
boot_spm_busy,8
boot_spm_busy_wait,8
boot_spm_interrupt_disable,8
boot_spm_interrupt_enable,9
BOOTLOADER_SECTION,9

avr_crc
_crc16_update,10
_crc_ccitt_update,10
_crc_xmodem_update,10

avr_eeprom
_EEGET,12
_EEPUT,12
eeprom_busy_wait,12
eeprom_is_ready,12
eeprom_rb,13
eeprom_read_block,13
eeprom_read_byte,13
eeprom_read_word,13
eeprom_rw,13
eeprom_wb,13
eeprom_write_block,13
eeprom_write_byte,13
eeprom_write_word,14

avr_errno
EDOM, 29
ERANGE,29

avr_interrupts
cli, 75
EMPTY_INTERRUPT,75
INTERRUPT,75
sei,76
SIGNAL, 76

INDEX 180

timer_enable_int,76
avr_math

acos,31
asin,31
atan,31
atan2,31
ceil, 32
cos,32
cosh,32
exp,32
fabs,32
floor, 32
fmod,32
frexp,32
inverse,32
isinf, 33
isnan,33
ldexp,33
log, 33
log10,33
M_PI, 31
M_SQRT2,31
modf,33
pow,33
sin,34
sinh,34
sqrt,34
square,34
tan,34
tanh,34

avr_pgmspace
memcpy_P,18
PGM_P,16
pgm_read_byte,16
pgm_read_byte_far,16
pgm_read_byte_near,16
pgm_read_dword,17
pgm_read_dword_far,17
pgm_read_dword_near,17
pgm_read_word,17
pgm_read_word_far,17
pgm_read_word_near,18
PGM_VOID_P,18
PRG_RDB,18
PSTR,18
strcasecmp_P,18

strcat_P,19
strcmp_P,19
strcpy_P,19
strlcat_P,19
strlcpy_P,20
strlen_P,20
strncasecmp_P,20
strncat_P,21
strncmp_P,21
strncpy_P,21

avr_sfr
_BV, 79
bit_is_clear,79
bit_is_set,79
BV, 79
cbi, 79
inb, 79
inp, 80
inw, 80
loop_until_bit_is_clear,80
loop_until_bit_is_set,80
outb,80
outp,81
outw,81
sbi,81

avr_sleep
set_sleep_mode,24
sleep_mode,24
SLEEP_MODE_ADC,23
SLEEP_MODE_EXT_-

STANDBY, 23
SLEEP_MODE_IDLE,24
SLEEP_MODE_PWR_DOWN,

24
SLEEP_MODE_PWR_SAVE,24
SLEEP_MODE_STANDBY,24

avr_stdint
int16_t,37
int32_t,37
int64_t,37
int8_t,37
intptr_t,38
uint16_t,38
uint32_t,38
uint64_t,38
uint8_t,38

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 181

uintptr_t,38
avr_stdio

clearerr,43
EOF,42
fclose,43
fdevopen,43
feof, 44
ferror,44
fgetc,44
fgets,44
FILE, 42
fprintf, 44
fprintf_P,44
fputc,44
fputs,45
fputs_P,45
fread,45
fscanf,45
fscanf_P,45
fwrite, 45
getc,42
getchar,42
gets,45
printf, 46
printf_P,46
putc,42
putchar,42
puts,46
puts_P,46
scanf,46
scanf_P,46
snprintf,46
snprintf_P,46
sprintf,46
sprintf_P,46
sscanf,47
sscanf_P,47
stderr,42
stdin,42
stdout,43
ungetc,47
vfprintf, 47
vfprintf_P,50
vfscanf,50
vfscanf_P,52
vsnprintf,52

vsnprintf_P,52
vsprintf,53
vsprintf_P,53

avr_stdlib
__compar_fn_t,55
__malloc_heap_end,63
__malloc_heap_start,63
__malloc_margin,63
abort,55
abs,55
atof,56
atoi,56
atol,56
bsearch,56
calloc,57
div, 57
DTOSTR_ALWAYS_SIGN,55
DTOSTR_PLUS_SIGN,55
DTOSTR_UPPERCASE,55
dtostre,57
dtostrf,57
exit, 58
free,58
itoa,58
labs,58
ldiv, 59
ltoa,59
malloc,59
qsort,59
rand,60
RAND_MAX, 55
rand_r,60
random,60
RANDOM_MAX, 55
random_r,60
srand,60
srandom,61
strtod,61
strtol,61
strtoul,62
ultoa,62
utoa,63

avr_string
memccpy,65
memchr,65
memcmp,65

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 182

memcpy,65
memmove,66
memset,66
strcasecmp,66
strcat,66
strchr,67
strcmp,67
strcpy,67
strlcat,68
strlcpy,68
strlen,68
strlwr, 68
strncasecmp,68
strncat,69
strncmp,69
strncpy,69
strnlen,69
strrchr,70
strrev,70
strsep,70
strstr,71
strtok_r,71
strupr,71

avr_watchdog
wdt_disable,25
wdt_enable,25
wdt_reset,25
WDTO_120MS,25
WDTO_15MS,25
WDTO_1S,26
WDTO_250MS,26
WDTO_2S,26
WDTO_30MS,26
WDTO_500MS,26
WDTO_60MS,26

avrdude, usage,141
avrprog, usage,141

bit_is_clear
avr_sfr,79

bit_is_set
avr_sfr,79

boot_is_spm_interrupt
avr_boot,7

boot_lock_bits_set
avr_boot,7

boot_page_erase
avr_boot,7

boot_page_fill
avr_boot,8

boot_page_write
avr_boot,8

boot_rww_busy
avr_boot,8

boot_rww_enable
avr_boot,8

boot_spm_busy
avr_boot,8

boot_spm_busy_wait
avr_boot,8

boot_spm_interrupt_disable
avr_boot,8

boot_spm_interrupt_enable
avr_boot,9

Bootloader Support Utilities,5
BOOTLOADER_SECTION

avr_boot,9
bsearch

avr_stdlib,56
BV

avr_sfr,79

calloc
avr_stdlib,57

cbi
avr_sfr,79

ceil
avr_math,32

Character Operations,26
clearerr

avr_stdio,43
cli

avr_interrupts,75
cos

avr_math,32
cosh

avr_math,32
CRC Computations,9
ctype

isalnum,27
isalpha,27
isascii,27

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 183

isblank,27
iscntrl,28
isdigit, 28
isgraph,28
islower,28
isprint,28
ispunct,28
isspace,28
isupper,28
isxdigit, 28
toascii,28
tolower,29
toupper,29

disassembling,156
div

avr_stdlib,57
div_t, 82
DTOSTR_ALWAYS_SIGN

avr_stdlib,55
DTOSTR_PLUS_SIGN

avr_stdlib,55
DTOSTR_UPPERCASE

avr_stdlib,55
dtostre

avr_stdlib,57
dtostrf

avr_stdlib,57

EDOM
avr_errno,29

EEPROM handling,11
eeprom_busy_wait

avr_eeprom,12
eeprom_is_ready

avr_eeprom,12
eeprom_rb

avr_eeprom,13
eeprom_read_block

avr_eeprom,13
eeprom_read_byte

avr_eeprom,13
eeprom_read_word

avr_eeprom,13
eeprom_rw

avr_eeprom,13

eeprom_wb
avr_eeprom,13

eeprom_write_block
avr_eeprom,13

eeprom_write_byte
avr_eeprom,13

eeprom_write_word
avr_eeprom,14

EMPTY_INTERRUPT
avr_interrupts,75

EOF
avr_stdio,42

ERANGE
avr_errno,29

exit
avr_stdlib,58

exp
avr_math,32

fabs
avr_math,32

FAQ, 89
fclose

avr_stdio,43
fdevopen

avr_stdio,43
feof

avr_stdio,44
ferror

avr_stdio,44
fgetc

avr_stdio,44
fgets

avr_stdio,44
FILE

avr_stdio,42
floor

avr_math,32
fmod

avr_math,32
fprintf

avr_stdio,44
fprintf_P

avr_stdio,44
fputc

avr_stdio,44

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 184

fputs
avr_stdio,45

fputs_P
avr_stdio,45

fread
avr_stdio,45

free
avr_stdlib,58

frexp
avr_math,32

fscanf
avr_stdio,45

fscanf_P
avr_stdio,45

fwrite
avr_stdio,45

General utilities,53
getc

avr_stdio,42
getchar

avr_stdio,42
gets

avr_stdio,45

inb
avr_sfr,79

inp
avr_sfr,80

installation,134
installation, avarice,140
installation, avr-libc,138
installation, avrdude,139
installation, avrprog,139
installation, binutils,136
installation, gcc,137
Installation, gdb,139
installation, simulavr,140
installation, uisp,139
int16_t

avr_stdint,37
int32_t

avr_stdint,37
int64_t

avr_stdint,37
int8_t

avr_stdint,37
Integer Type conversions,30
INTERRUPT

avr_interrupts,75
Interrupts and Signals,72
intptr_t

avr_stdint,38
inverse

avr_math,32
inw

avr_sfr,80
isalnum

ctype,27
isalpha

ctype,27
isascii

ctype,27
isblank

ctype,27
iscntrl

ctype,28
isdigit

ctype,28
isgraph

ctype,28
isinf

avr_math,33
islower

ctype,28
isnan

avr_math,33
isprint

ctype,28
ispunct

ctype,28
isspace

ctype,28
isupper

ctype,28
isxdigit

ctype,28
itoa

avr_stdlib,58

labs
avr_stdlib,58

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 185

ldexp
avr_math,33

ldiv
avr_stdlib,59

ldiv_t, 82
log

avr_math,33
log10

avr_math,33
longjmp

setjmp,35
loop_until_bit_is_clear

avr_sfr,80
loop_until_bit_is_set

avr_sfr,80
ltoa

avr_stdlib,59

M_PI
avr_math,31

M_SQRT2
avr_math,31

malloc
avr_stdlib,59

Mathematics,30
memccpy

avr_string,65
memchr

avr_string,65
memcmp

avr_string,65
memcpy

avr_string,65
memcpy_P

avr_pgmspace,18
memmove

avr_string,66
memset

avr_string,66
modf

avr_math,33

outb
avr_sfr,80

outp
avr_sfr,81

outw
avr_sfr,81

PGM_P
avr_pgmspace,16

pgm_read_byte
avr_pgmspace,16

pgm_read_byte_far
avr_pgmspace,16

pgm_read_byte_near
avr_pgmspace,16

pgm_read_dword
avr_pgmspace,17

pgm_read_dword_far
avr_pgmspace,17

pgm_read_dword_near
avr_pgmspace,17

pgm_read_word
avr_pgmspace,17

pgm_read_word_far
avr_pgmspace,17

pgm_read_word_near
avr_pgmspace,18

PGM_VOID_P
avr_pgmspace,18

pow
avr_math,33

Power Management and Sleep Modes,
23

PRG_RDB
avr_pgmspace,18

printf
avr_stdio,46

printf_P
avr_stdio,46

Program Space String Utilities,15
PSTR

avr_pgmspace,18
putc

avr_stdio,42
putchar

avr_stdio,42
puts

avr_stdio,46
puts_P

avr_stdio,46

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 186

qsort
avr_stdlib,59

rand
avr_stdlib,60

RAND_MAX
avr_stdlib,55

rand_r
avr_stdlib,60

random
avr_stdlib,60

RANDOM_MAX
avr_stdlib,55

random_r
avr_stdlib,60

sbi
avr_sfr,81

scanf
avr_stdio,46

scanf_P
avr_stdio,46

sei
avr_interrupts,76

set_sleep_mode
avr_sleep,24

setjmp
longjmp,35
setjmp,36

Setjmp and Longjmp,34
SIGNAL

avr_interrupts,76
sin

avr_math,34
sinh

avr_math,34
sleep_mode

avr_sleep,24
SLEEP_MODE_ADC

avr_sleep,23
SLEEP_MODE_EXT_STANDBY

avr_sleep,23
SLEEP_MODE_IDLE

avr_sleep,24
SLEEP_MODE_PWR_DOWN

avr_sleep,24

SLEEP_MODE_PWR_SAVE
avr_sleep,24

SLEEP_MODE_STANDBY
avr_sleep,24

snprintf
avr_stdio,46

snprintf_P
avr_stdio,46

Special function registers,77
sprintf

avr_stdio,46
sprintf_P

avr_stdio,46
sqrt

avr_math,34
square

avr_math,34
srand

avr_stdlib,60
srandom

avr_stdlib,61
sscanf

avr_stdio,47
sscanf_P

avr_stdio,47
Standard Integer Types,36
Standard IO facilities,38
stderr

avr_stdio,42
stdin

avr_stdio,42
stdout

avr_stdio,43
strcasecmp

avr_string,66
strcasecmp_P

avr_pgmspace,18
strcat

avr_string,66
strcat_P

avr_pgmspace,19
strchr

avr_string,67
strcmp

avr_string,67
strcmp_P

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 187

avr_pgmspace,19
strcpy

avr_string,67
strcpy_P

avr_pgmspace,19
Strings,64
strlcat

avr_string,68
strlcat_P

avr_pgmspace,19
strlcpy

avr_string,68
strlcpy_P

avr_pgmspace,20
strlen

avr_string,68
strlen_P

avr_pgmspace,20
strlwr

avr_string,68
strncasecmp

avr_string,68
strncasecmp_P

avr_pgmspace,20
strncat

avr_string,69
strncat_P

avr_pgmspace,21
strncmp

avr_string,69
strncmp_P

avr_pgmspace,21
strncpy

avr_string,69
strncpy_P

avr_pgmspace,21
strnlen

avr_string,69
strrchr

avr_string,70
strrev

avr_string,70
strsep

avr_string,70
strstr

avr_string,71

strtod
avr_stdlib,61

strtok_r
avr_string,71

strtol
avr_stdlib,61

strtoul
avr_stdlib,62

strupr
avr_string,71

supported devices,1
System Errors (errno),29

tan
avr_math,34

tanh
avr_math,34

timer_enable_int
avr_interrupts,76

toascii
ctype,28

tolower
ctype,29

tools, optional,135
tools, required,135
toupper

ctype,29

uint16_t
avr_stdint,38

uint32_t
avr_stdint,38

uint64_t
avr_stdint,38

uint8_t
avr_stdint,38

uintptr_t
avr_stdint,38

ultoa
avr_stdlib,62

ungetc
avr_stdio,47

utoa
avr_stdlib,63

vfprintf

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

INDEX 188

avr_stdio,47
vfprintf_P

avr_stdio,50
vfscanf

avr_stdio,50
vfscanf_P

avr_stdio,52
vsnprintf

avr_stdio,52
vsnprintf_P

avr_stdio,52
vsprintf

avr_stdio,53
vsprintf_P

avr_stdio,53

Watchdog timer handling,24
wdt_disable

avr_watchdog,25
wdt_enable

avr_watchdog,25
wdt_reset

avr_watchdog,25
WDTO_120MS

avr_watchdog,25
WDTO_15MS

avr_watchdog,25
WDTO_1S

avr_watchdog,26
WDTO_250MS

avr_watchdog,26
WDTO_2S

avr_watchdog,26
WDTO_30MS

avr_watchdog,26
WDTO_500MS

avr_watchdog,26
WDTO_60MS

avr_watchdog,26

Generated on Sun Dec 19 22:54:00 2004 for avr-libc by Doxygen

		AVR Libc

		Supported Devices

		avr-libc Module Index

		avr-libc Modules

		avr-libc Data Structure Index

		avr-libc Data Structures

		avr-libc Page Index

		avr-libc Related Pages

		avr-libc Module Documentation

		Bootloader Support Utilities

		Detailed Description

		Define Documentation

		CRC Computations

		Detailed Description

		Function Documentation

		EEPROM handling

		Detailed Description

		Define Documentation

		Function Documentation

		AVR device-specific IO definitions

		Program Space String Utilities

		Detailed Description

		Define Documentation

		Function Documentation

		Additional notes from <avr/sfr_defs.h>

		Power Management and Sleep Modes

		Detailed Description

		Define Documentation

		Function Documentation

		Watchdog timer handling

		Detailed Description

		Define Documentation

		Character Operations

		Detailed Description

		Function Documentation

		System Errors (errno)

		Detailed Description

		Define Documentation

		Integer Type conversions

		Mathematics

		Detailed Description

		Define Documentation

		Function Documentation

		Setjmp and Longjmp

		Detailed Description

		Function Documentation

		Standard Integer Types

		Detailed Description

		Typedef Documentation

		Standard IO facilities

		Detailed Description

		Define Documentation

		Function Documentation

		General utilities

		Detailed Description

		Define Documentation

		Typedef Documentation

		Function Documentation

		Variable Documentation

		Strings

		Detailed Description

		Function Documentation

		Interrupts and Signals

		Detailed Description

		Define Documentation

		Function Documentation

		Special function registers

		Detailed Description

		Define Documentation

		avr-libc Data Structure Documentation

		div_t Struct Reference

		Detailed Description

		ldiv_t Struct Reference

		Detailed Description

		avr-libc Page Documentation

		Acknowledgments

		avr-libc and assembler programs

		Introduction

		Invoking the compiler

		Example program

		Pseudo-ops and operators

		Frequently Asked Questions

		FAQ Index

		My program doesn't recognize a variable updated within an interrupt routine

		I get `¨undefined reference to...`¨ for functions like `¨sin()`¨

		How to permanently bind a variable to a register?

		How to modify MCUCR or WDTCR early?

		What is all this _BV() stuff about?

		Can I use C++ on the AVR?

		Shouldn't I initialize all my variables?

		Why do some 16-bit timer registers sometimes get trashed?

		How do I use a #define'd constant in an asm statement?

		Why does the PC randomly jump around when single-stepping through my program in avr-gdb?

		How do I trace an assembler file in avr-gdb?

		How do I pass an IO port as a parameter to a function?

		What registers are used by the C compiler?

		How do I put an array of strings completely in ROM?

		How to use external RAM?

		Which -O flag to use?

		How do I relocate code to a fixed address?

		My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!

		Why do all my `¨foo...bar`¨ strings eat up the SRAM?

		Why does the compiler compile an 8-bit operation that uses bitwise operators into a 16-bit operation in assembly?

		How to detect RAM memory and variable overlap problems?

		Is it really impossible to program the ATtinyXX in C?

		What is this `¨clock skew detected`¨ messsage?

		Why are (many) interrupt flags cleared by writing a logical 1?

		Why have `¨programmed`¨ fuses the bit value 0?

		Which AVR-specific assembler operators are available?

		Inline Asm

		GCC asm Statement

		Assembler Code

		Input and Output Operands

		Clobbers

		Assembler Macros

		C Stub Functions

		C Names Used in Assembler Code

		Links

		Using malloc()

		Introduction

		Internal vs. external RAM

		Tunables for malloc()

		Implementation details

		Release Numbering and Methodology

		Release Version Numbering Scheme

		Releasing AVR Libc

		Memory Sections

		The .text Section

		The .data Section

		The .bss Section

		The .eeprom Section

		The .noinit Section

		The .initN Sections

		The .finiN Sections

		Using Sections in Assembler Code

		Using Sections in C Code

		Installing the GNU Tool Chain

		Required Tools

		Optional Tools

		GNU Binutils for the AVR target

		GCC for the AVR target

		AVR Libc

		UISP

		Avrdude

		GDB for the AVR target

		Simulavr

		AVaRice

		Using the avrdude program

		Using the GNU tools

		Options for the C compiler avr-gcc

		Options for the assembler avr-as

		Controlling the linker avr-ld

		A simple project

		The Project

		The Source Code

		Compiling and Linking

		Examining the Object File

		Linker Map Files

		Intel Hex Files

		Make Build the Project

		Example using the two-wire interface (TWI)

		Introduction into TWI

		The TWI example project

		The Source Code

		Todo List

		Deprecated List

