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Abstract. Recently, a Gray code for unrestricted binary necklaces and their rel-
atives was discovered by Vajnovszki [Discrete Mathematics & Theoretical Com-
puter Science, to appear]. The Gray code is constructed by modifying the classi-
cal FKM algorithm for generating necklaces in lexicographic order. We present
a generalisation of Vajnovszki’s algorithm, giving a Gray code for necklaces and
their relatives over an arbitrarily-large alphabet. Each string in the resulting
code differs from adjacent strings in at most three positions. To our knowledge
this is the first Gray code for necklaces of arbitrary base.

Mathematics Subject Classifications (2000). 68R15, 05A99, 05C45

1 Introduction

Consider a string of beads of various colours arranged on a loop of string: such
an object is typically called a necklace, and, conveniently, this corresponds to
the analogous mathematical object: a necklace is a string of characters which
is lexicographically minimal out of all of its possible rotations. If the string is
also lexicographically minimal with respect to reversing it, it is a bracelet. Two
other, more abstract, concepts are related: a pre-necklace is a string which is a
prefix of some necklace, and a Lyndon word is an aperiodic necklace (that is,
a necklace that is not composed of a whole number of repeated copies of some
smaller string).

Throughout this paper we discuss strings over a fixed alphabet Σ = {0, 1, . . .,
σ − 1}, where |Σ| = σ ≥ 2. Define an equivalence relation ∼ on Σn by x ∼ y iff
there exist non-empty strings u, v such that x = uv and y = vu, and we say that
x ≤ y iff x is lexicographically (in dictionary order) smaller than y. We denote
the reversal of a string x as xR. The sets of necklaces, bracelets, pre-necklaces
and Lyndon words of length n, can now be defined as

Nn
def
= {x ∈ Σn | x ≤ y for all y such that y ∼ x}

Bn
def
= {x ∈ Σn | x ≤ y and x ≤ yR for all y such that y ∼ x}

Pn
def
= {x ∈ Σn | xy ∈ N(n+k) for some y where |y| = k}

Ln
def
= {x ∈ Nn | x 6= yk for all y ∈ Σ∗ and k ≥ 2}

175



176 M. WESTON AND V. VAJNOVSZKI

respectively.

For example, Figure 1 shows the length 4 pre-necklaces over a 3-ary alphabet
and indicates which strings are also necklaces and Lyndon words.

Output Necklace Lyndon Word Output Necklace Lyndon Word
0000 X 0122 X X

0001 X X 0202 X

0002 X X 0210
0010 0211 X X

0011 X X 0212 X X

0012 X X 0220
0020 0221 X X

0021 X X 0222 X X

0022 X X 1111 X

0101 X 1112 X X

0102 X X 1121
0110 1122 X X

0111 X X 1212 X

0112 X X 1221
0120 1222 X X

0121 X X 2222 X

Figure 1: Base 3 pre-necklaces of length 4 (read down columns in order).

Generating necklaces and their relatives is a relatively well-studied problem;
Fredricksen with Kessler and Maiorana [3, 4] developed the FKM algorithm for
generating necklaces, pre-necklaces, and Lyndon words of any base; Duval [2]
independently developed a version of the algorithm for Lyndon words. A recur-
sive version, along with counting results and further analysis, can be found in
[1, 8].

The table in Figure 1 shows the pre-necklaces in the order outputted from
the FKM algorithm; note that there are strings that differ from adjacent strings
by up to n positions (for example, 0222→ 1111). In general this is true of the
output from the FKM algorithm. A k-Gray code for a set of strings X is an
ordering for X such that the Hamming distance (number of positions that are
different) between any two consecutive strings in the ordering is at most k. Gray
codes were introduced by Gray [5] in the context of listing binary strings such
that adjacent strings differ by exactly 1 bit. They have since been extensively
studied and generalised to various combinatorial objects, see [11] for an excellent
survey on combinatorial applications. A k-Gray code is circular if it also has
the property that its first and last elements also differ in at most k positions.
A 1-Gray code gives a Hamilton path in the appropriate adjacency graph, and
a circular 1-Gray code gives a Hamilton circuit.

Binary strings of a fixed length and fixed number of 1s are said to have fixed

density. There have previously been published two algorithms for generating
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Gray codes for binary necklaces of fixed density; the first is due to Ueda [15],
which also considers binary Lyndon words, and the second is from Savage and
Wang [19]. These two Gray codes are both optimal in the sense that they are
2-Gray codes, and since there can be no 1-Gray code for any set of fixed density
binary strings this is the best that can be done.

For necklaces and their relatives of unrestricted density (i.e. considering
the entire set Nn, etc) over a binary alphabet, the first Gray code was due
to Vajnovszki [17]. This Gray code is based on modifying the recursive FKM
algorithm [3, 4, 8] to output strings in a 3-Gray code order; this result provides
the first Gray code of any type for binary necklaces, pre-necklaces and Lyndon
words. At this time it is still unknown whether this is optimal, or whether a
2-Gray code for binary necklaces and their relatives can be constructed.

The existence of a 3-Gray code for these objects is, in fact, not surprising in
itself. Consider the graph constructed where nodes are elements of the sets under
consideration, and nodes are adjacent where they differ by one character in one
position. Sekanina [14] showed that if such a graph is connected, then some
ordering where adjacent elements differ in at most 3 places is always possible;
see also [7, p. 32]. The difficulty lies in the construction of such an ordering.

The contribution of this paper is to generalise the result of [17] to the general
case of arbitrary base. We give a 3-Gray code listing for necklaces and their
relatives of length n over the alphabet Σ = {0, 1, . . . , σ − 1}. To our knowledge
it is the first example of a Gray code for arbitrary base necklaces.

2 Preliminaries

Let x, y ∈ Σn be two strings of length n. We define a total order relation, ≺,
called the local reflected order, which is a natural generalisation of the binary
local reflected order from [16].

Definition 1 (≺) Let k be the leftmost position in which x and y differ, and

let m be the number of characters that are not σ − 1 in the length k − 1 prefix

of x. x ≺ y if either m is even and xk < yk or m is odd and xk > yk; otherwise

y ≺ x.

Note that this ordering has the property that strings with a common prefix
are contiguous in the ordering; orderings with this property are called gen-

lex [18]. For the binary case the local reflected order ≺ induces a 1-Gray code
on {0, 1}n, the set of all binary strings of length n, and a 2-Gray code on the
strings in {0, 1}n with fixed density (a fixed number of non-zero bits) [17].

Definition 2 ([17]) A string set X ⊂ Σn is called absorbent if for any x =
x1x2 . . . xn ∈ X and any k ≤ n, x1x2 . . . xk(σ − 1)n−k is also a string in X.

The following Lemma is proved in [17] for the binary case, but the proof also
applies for the σ-ary case, substituting “σ − 1” for “1” in the proof in [17].
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Lemma 1 ([17]) The sets of σ-ary strings, pre-necklaces, necklaces, bracelets,

and Lyndon words of length n are all absorbent.

3 The 3-Gray code for σ-ary alphabets

In this section we show that the local reflected order yields a 3-Gray code on
the sets of pre-necklaces, necklaces and Lyndon words of length n over an ar-
bitrary alphabet. This presentation very much follows [17] in that Lemma 2,
Corollary 1, and Theorem 1 are virtually identical, except extended to the σ-ary
case.

Let X ⊂ Σn, x ∈ X and let k be the leftmost position where x differs from
its predecessor in ≺ order (and x is not the initial string in the order). Since ≺
is a genlex ordering, x1x2 . . . xk is the shortest prefix of x such that for all y ≺ x

we have y1y2 . . . yk ≺ x1x2 . . . xk. We call xk+1xk+2 . . . xn the first discriminant

suffix of x. Similarly the last discriminant suffix of x, xk+1xk+2 . . . xn, is the
n−k suffix of x where k is the leftmost position where x differs from its successor
in ≺ order (assuming x is not the final string in the order).

Let |y|σ−1 denote the number of characters that are not σ − 1 in the string
y.

Lemma 2 If x is a string in an absorbent subset X ⊂ Σn and xk+1xk+2 . . . xn

is the first or the last discriminant suffix of x, then |xk+1xk+2 . . . xn|σ−1 ≤ 1.

Proof. We derive a contradiction by supposing that |xk+1xk+2 . . . xn|σ−1 > 1,
where xk+1xk+2 . . . xn is the first discriminant suffix of x. Then there are at
least two indices i and j, with k + 1 ≤ i < j = n, such that xi 6= σ − 1 and
xj 6= σ − 1 and xi+1 = xi+2 = · · · = xj−1 = σ − 1. Since X is absorbent,
x′ = x1x2 . . . xi−1(σ − 1)n−i+1 and x′′ = x1x2 . . . xj−1(σ − 1)n−j+1 are both
in X . By Definition 1, either x′ ≺ x or x′′ ≺ x, since the number of non-
(σ − 1) characters of the relevant prefixes of x′ and x′′ must differ in parity.
Thus since X ordered by ≺ is prefix partitioned (it is a genlex ordering), the
leftmost position where x differs from its predecessor is greater than k, and so
xk+1xk+2 . . . xn is not the first discriminant suffix of x, which contradicts the
assumption that it was. The case where xk+1xk+2 . . . xn is the last discriminant
suffix is treated similarly. �

Corollary 1 If X is an absorbent subset of Σn, then X listed in ≺ order is a

3-Gray code.

Proof. Let y be the successor of x in X with respect to ≺ order and let k be
the leftmost position where x differs from y. Then xk+1xk+2 . . . xn is the last
discriminant suffix of x, and yk+1yk+2 . . . yn is the first discriminant suffix of y.
By Lemma 2, xi = yi = σ − 1 for all k + 1 ≤ i ≤ n except at most two of them.
Since xi = yi for all 1 ≤ i ≤ k− 1, and xk 6= yk, the Hamming distance between
x and y is at most three. �

The main theorem now follows directly from Corollary 1 and Lemma 1.
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Theorem 1 The ≺ order gives a 3-Gray code on the sets of σ-ary pre-necklaces,

necklaces, and Lyndon words of length n.

Note that the first element in these lists is 0(σ − 1)n−1, and the last is
(σ − 1)(σ − 1)(σ − 1)n−1 for Lyndon words and (σ − 1)n for necklaces and pre-
necklaces, and thus the Gray codes produced are circular, as the first and last
elements of the lists differ in at most two positions.

4 Algorithm

In this section we give a modification of Vajnovszki’s algorithm [17], which itself
is a modification of the recursive FKM algorithm [3, 4, 8]. Like the algorithms
in [17] and [3, 4, 8], it generates pre-necklaces, necklaces, and Lyndon words,
according to the behaviour of the function Print(p): if Print outputs the array
a at every call, it produces the pre-necklaces, if Print outputs only when p = n

it produces the Lyndon words, and if Print outputs only if p is a divisor of n

the necklaces are produced.
In the algorithm the parameter z keeps track of the number of (σ−1)s in the

prefix of the string up to position t. The recursive FKM algorithm is modified
by changing the direction of the for loop, depending on the parity of z.

The initial call is gen(0, 1, 1) with the initialisation a[0]← 0. See Figure 2
for the pseudocode.

In [9] it is shown that the recursive implementation of the FKM algorithm
works in constant amortised time per string outputted, which is as fast as could
be expected, and thus our algorithm does as well.

5 Final remarks

Vajnovszki points out that the binary version of this Gray code can be easily
extended to produce bracelets [17] and, though we have not yet verified it, we
suspect that the general (σ-ary) version can also be used to produce a 3-Gray
code for bracelets.

Experimental analysis of our algorithm suggests that the proportion of 1-, 2-,
and 3-changes between successive words generated is very different: for example
there tend to be very few (less than 1%) of 3-changes, and the ratio of 1-changes
to 2-changes increases as n increases. Further analysis of the algorithm would
shed light on the causes of these phenomena.

An open question is still whether there exists any 2-Gray code for neck-
laces and their relatives; as evidenced by the earlier work on fixed-density neck-
laces [19, 15] this seems to be a harder question.

There has been much recent work in generating other variations of necklaces
such as unlabelled necklaces (necklaces for strings equivalent under rotation
and symbol permutation) [1], necklaces with forbidden substrings [10], plane
trees [13, 6] and bracelets [12]. We suspect that Gray codes can be found using
techniques similar to ours for many of these objects.
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PROCEDURE gen( z, t, p : integer );

local j : integer;

if ( t > n ) then Print(p);

else

if ( a[t− p] = σ − 1 ) then

a[t]← a[t− p];
gen( z, t + 1, p );

else

if ( z is even )

for j ← a[t− p] to σ − 1 do

a[t]← j;

if ( j 6= σ − 1 ) then z ← z + 1 end if;

if ( j 6= a[t− p] ) then p← t end if;

gen( z, t + 1, p );

end for;

else

for j ← σ − 1 downto a[t− p] do

a[t]← j;

if ( j 6= σ − 1 ) then z ← z + 1 end if;

if ( j 6= a[t− p] ) then p← t end if;

gen( z, t + 1, p );

end for;

end if;

end if;

end if;

end PROCEDURE;

Figure 2: Modified recursive FKM algorithm to generate 3-Gray code for σ-ary
necklaces, pre-necklaces, and Lyndon words.
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