
JOURNAL OF ALGORITHMS 13, 414-430 (1992)

Generating Necklaces

FRANK RUSKEY *

Depatiment of Computer Science, University of Vktoria, P.O. Box 1700,
Victoria, British Columbia, Canada V8W2Y2

AND

CARLA SAVAGE+ AND TERRY MIN YIH WANG

Department of Computer Science, North Carolina State University,
Box 8206, Raleigh, North Carolina 27612-8206

Received March 1,199l; revised May 8, 1991

A k-color, n-bead necklace is an equivalence class of k-sty n-tuples under
rotation. In this paper, we analyze an algorithm due to Fredricksen, Kessler, and
Maiorana (FKM) to show that necklaces can be generated in constant amortized
time. We also present a new approach to generating necklaces which we conjecture
can also be implemented in constant amortized time. The FKM algorithm gener-
ates a list of n-tuples which includes, among other things, the lexicographically
smallest element of each k-color, n-bead necklace. Previously it had been shown
only that the list contains at most O(n . N(k, n)) elements, where N(k, n) is the
number of k-color, n-bead necklaces, and that successive elements can be gener-
ated in worst case time O(n), giving a bound of O(n* . N(k, n)) on the time for the
algorithm. We show that the number of elements generated by the FKM algorithm
approaches (k/(/c - 1)). N(k, n) and the total time is only O(N(k, n)). A by-
product of our analysis is a precise characterization of the list generated by FKM,
which makes a recursive description possible. o 1992 Academic press, I X

1. INTRODUCTION

In this paper, we consider the problem of efficiently generating neck-
laces. A necklace of n beads in k colors is an equivalence class of k-ary

*Research supported by the Natural Sciences and Engineering Research Council of
Canada under Grant A3379.

‘Research supported by the National Science Foundation Grant No. CCR8906500, the
National Security Agency Grant No. MDA904-H-1025 and DIMACS (Center for Discrete
Mathematics and Theoretical Computer Science), a National Science Foundation Science
and Technology Center, NSF-STC 88-09648.

414
0196-6774/92 $5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

GENERATING NECKLACES 415

n-tuples under rotation. That is, if u denotes the rotation

then the k-ary n-tuples x and y are in the same equivalence class or
necklace if and only if C&X) = y for some integer j.

Let N(k, n) denote the number of n-bead necklaces in k colors. It is
known that

(See, e.g., [Ma]>, where 4 is the Euler totient function, so that

$k”) 5 N(k,n) I ;(k” + (n - l)k”‘*.) (2)

So, in applications where every rotation of a given k-ary n-tuple repre-
sents the same phenomenon, it would be more efficient to work with only
one representative of each necklace, rather than all k” of the n-tuples. A
necklace is thus identified with its representative.

A simple and elegant algorithm was proposed in [FrMa] and [FrKe] to
generate for each necklace the lexicographically smallest element. We will
refer to this as the FKM algorithm. A disadvantage of the FKM algorithm
is that there can be gaps in which as many as [(n - 1)/2] non-necklaces
are examined between any two necklaces generated. For the case k = 2
the authors of [FrKe] prove an upper bound of l(n - 1)/2jiV(2, n) on the
number of n-tuples generated and examined by the algorithm. The time
spent generating and checking each element is O(n), giving an overall
time for the algorithm of O(n2 * N(2, n)). However, this does not establish
an asymptotic improvement over the direct approach of generating euery
k-ary n-tuple and checking each one to see if it is the representative of its
necklace, at a cost of time O(n) per check.

In this paper, we present a new analysis of the FKM algorithm to show
that it can generate all necklaces, for given k and n, in constant amortized
rime, that is, the total time is O(N(k, n)). Our analysis is based on a new
characterization of the list of k-ary n-tuples examined by the FKM
algorithm. This new characterization is used to give a more illuminating
proof of the algorithm, as well as a recursive description of the number of
n-tuples examined and the total time required. As a consequence, we show
that the number of n-tuples is O(N(k, n)) and, in fact, approaches
(k/(k - 1)) . N(k, n) in the limit. We also show a bound of O(N(k, n))
on the total time required to generate all necklaces. Thus, although there

416 RUSKEY, SAVAGE, AND WANG

can still be gaps of l(n - 1)/2] between successive necklaces generated,
the aueruge time per necklace is constant.

We also describe in this paper a new algorithm which generates the
lexicographically smallest element in each necklace. The number of k-ary
n-tuples generated and examined by the new algorithm is at most twice
the total number of necklaces. This algorithm has the advantage that it
can be implemented so that there is a gap of at most one non-necklace
examined between any two necklaces generated. However, in the current
implementation, for each n-tuple examined, time O(n) is spent to check
whether it is a necklace, i.e., the lexicographically smallest of all of its
rotations. This gives a total time of O(n * A&k, n)). We conjecture that
there is a more efficient scheme to handle and/or avoid necklace-testing
which will admit an O(N(k, n&time implementation.

In Section 2, we describe the FKM algorithm, prove its correctness, and
analyze it, based on a new characterization of the n-tuples which it
examines. In Section 3, we describe our new necklace algorithm, prove
that it examines no more than twice the number of necklaces, and discuss
how to implement it to remove gaps. Section 4 contains concluding
remarks. In the remainder of this section, we introduce notation and
terms.

We will regard a k-ary n-tuple, a, as a string over the alphabet
z.k = IO,. . .) k - 1). 2: is the set of all length-n strings over Z’k and Z,* is
the set of all strings (of any length) over Zk, including the empty string A.
For (Y E C; and 1 I i I n, we use (Y~ to denote the ith symbol of (Y so
that (Y = (pi . *. (Y,. For (Y, p E C;, CL+ denotes the concatenation of (Y
and p and for a E Xk, a’ denotes the string of length t in which every
symbol is a. For C-X, p E C,*, we use C-Y I p (a < /3> to denote that (Y
precedes (strictly precedes) /3 in lexicographic order, and similarly for L
and >.

For the remainder of this paper, we use necklace to denote the
lexicographically smallest member of an equivalence class of 2; under
rotation. Formally,

DEFINITION 1. The string a! E 2; is a necklace if CX~ * . . CX,, I (yi . . *
alla1 ~**ai-,foralllIi~n.

2. THE FKM ALGORITHM

For a given n and k, the FKM algorithm generates a list, F(k, n)
consisting of a certain subset of 21 in lexicographic order. The list
FCk, n) begins with the string 0” and ends with (k - 1)“. For a given (Y
on F(k, n), the successor of (Y, succ(a>, is obtained from (Y as follows.

GENERATING NECKLACES 417

k=2,n=6

0000
0001
0002
0010 0
0011
6012
0020 0
0021

k=3,n=4

0022
0101
0102
0110 l

0111
0112
0120 0
0121

0122 1111
0202 1112
0210 0 1121 l

0211 1122
0212 1212
0220 0 1221 l

0221 1222
0222 2222

FIG. 1. The FKM algorithm (read down columns).

DEFINITION 2. For (Y < (k - l)“, SUC&X> = (cq *. . cyi-i(q + l))‘cr,
* * . crj, where i is the largest integer 1 I i I n such that q < k - 1 and
C, j are such that ti + j = n and j < i.

It is shown in [FrMa] that no necklace can lie strictly between two
elements of F(k, n), so that all necklaces appear on F(k, n). Thus,
discarding non-necklaces of F(k, n) would result in a list of all necklaces
in increasing order. Figure 1 shows examples of lists F(k, n), where
non-necklaces are indicated by bullets. Figure 2 illustrates how a gap of
length l(9 - O/21 = 4 can occur between successive necklaces when k = 2
and n = 9.

It is claimed in [FrKe] that succ(cy> is a necklace if and only if the “i” of
Definition 2 is a divisor of n and we prove this in Lemma 3. Incorporating
this test for necklace-checking, the entire algorithm can be summarized by
the PASCAL code in Fig. 3.

In order to analyze the FKM algorithm, we first show how to character-
ize the elements of F(k, n). This will result in a proof of correctness for
the algorithm which will allow us to bound the size of the list FCk, n) and
the total amount of work done.

DEFINITION 3. The string (Y E 2; is a pre-necklace if ap is a necklace
for some p E 2:.

418 RUSKEY, SAVAGE, AND WANG

011101111
011110111 0
011111011~
011111101.
011111110 l

011111111

FIG. 2. Gaps in the FKM algorithm for k = 2, n = 9.

FKM Algorithm

for i := 0 to n do a[il := 0;
Print(a);
i := n;
repeat

aCi1 := a[il + 1;
for j := 1 to n-i do a[j+il := a[j];
if n mod i = 0 then Print(a);
i := n;
while a[i] = k-l do i := i-l;

until i = 0;

FIG. 3. The FKM algorithm (note @I = 0).

We will eventually show, in Theorem 2, that the elements of F(k, n)
are exactly the pre-necklaces in 2;.

THEOREM 1 (Characterization of pre-necklaces). a! E 22 is a pre-neck-
laceifandonlyifui e-0 (Y,,z(Y~ *.a (Y,-~+~ foreveryiwithlsi<n.

Proo$ If ar is a pre-necklace, then by definition, cup is a necklace for
some p E S,*. Then for 1 5 i 5 n,

so cri .* * an 2 cl1 * ‘. a,-i+l.

On the other hand, if

(3)

GENERATING NECKLACES 419

for all i: 1 I i I n, we claim that a(k - 1)” is a necklace. Otherwise, for
some i,

ffi -* * a,(k - 1)“q **. (YiTl < a(k - 1)“.

However, by (3) and (41, (Y~ * * 4 (Y, = (Yla,-i+l> that is,

“j = ffj+i-1 forlljln-i+l.

(4)

(5)

But then to satisfy (41,

(k - l)‘-l -< Cl!,-i+2 * * * (Y,

which can hold only if

crj=k-1 forn-i+2IjIn. (6)

But (5) and (6) together imply (Y = (k - 1)” which contradicts (4). So,
dk - 1)” is a necklace and therefore (Y is a pre-necklace. 0

COROLLARY 1. If (Y E 2; is a pre-necklace, dk - 1) is a pre-necklace.

Proof For any i: 1 I i I n, if (Y is a pre-necklace, then by Theorem 1,
(yi *** an 2 a1 * * ’ (Y”-i+l* Therefore, q . * * cr,(k - 1) 2 q *. *
(Y,++~. Furthermore, the last symbol of dk - 1) is k - 1 which satisfies
k - 1 2 (Ye, so by Theorem 1, a(k - 1) is a pre-necklace. 0

DEFINITION 4. The string (Y E Z; is a prime necklace if cq * * 5 (Y, <
ffi . . ' ana1 **.q-,foralll<iIn.

LEMMA 1. For (Y E 2; and a,, < k - 1, if (Y is a pre-necklace, then
a, -** (~,-~(a, + 1) ti a prime necklace.

proof. Since (Y is a pre-necklace, for any 1 I i < n,

ai *- * a, 2 a1 *** a,-i+l.

Thus,

so that

which means a, . * * (Y,- &an + 1) is a prime necklace. Cl

420 RUSKEY, SAVAGE, AND WANG

LEMMA 2. Zf a is a necklace, then (Y’ is a necklace for t 2 1.

Proof This is clear for t = 1. For t 2 1, any rotation of a’ has the
form y(~‘-‘p for some y, p E 2,: with LY = By. But since (Y is a necklace,
YP 2 PY, so

yd-‘fl = (yp)’ 2 (Py)’ = d

and (Y’ is a necklace. 0

LEMMA 3. Zf CY E 2: is a prime necklace and cx = By, for p, y E Xi,*,
y # A, the empty string, then for any t 2 1,

(a) a*/3 is a pre-necklace and

(b) LY’~ is a necklace if and only if IPI = 0.

Proof. Since CY is a necklace, a’+’ and CY’ are both necklaces by
Lemma 2. Thus, CX*P is a pre-necklace (since &/3y is a necklace) and, if
IpI = 0, a necklace. If IpI > 0, then /3y < yP, since CY is prime and,
therefore,

Pa’ = P(PY>' < P(YP)' = (PY)'P = d%

so that a’/3 is not a necklace. 0

The FKM algorithm, for a given n, generates a list Fbz, k), of strings
in X2, beginning with 0”. For (Y # (k - 1Y, SUCC((Y), the successor of (Y on
F(k, n), is described in Definition 2 as

where i > 0 is the largest integer such that (Y~ < k - 1 and I, j are such
that ti + j = n and j < i. We can now show the following.

THEOREM 2. TF(k, n) is a Bt of allpre-necklaces in Xi in lexicographic
order.

Proof: We first show by induction that every element of 9Tk, n) is a
pre-necklace. This is clearly true for the first element, 0”. If pre-necklace
(Y # (k - 1)” appears on F(k, n), then

succ(a) = (a1 *. * q-1(cYi + l))‘(Yi . . . aj

for some j, k, t, where

a = (a1 **- cl-1 q(k - l)*-i)

GENERATING NECKLACES 421

and rri < k - 1. Since (Y is a pre-necklace, so is cyi * * * ai-iai, and,
therefore, ai * - * aiml(ai -t 1) is a prime necklace by Lemma 1. Thus,
succ(cr) is a pre-necklace by Lemma 3.

Clearly, (Y < succ(a) for all (Y < (k - 1)” on FCk, n). To show every
pre-necklace in 2; is on .9Tk, n), suppose p is the lexicographically
smallest pre-necklace which does not appear on F(k, n). Then p # (k -
l)“, since (k - 1)” = succ((k - 2Xk - l)“-‘1 and (k - 2Xk - l>“-i
would be a pre-necklace smaller than p, Thus there must be a pre-neck-
lace (Y on Y(k, n) such that (Y < p < succ(cu). Let i be the largest integer
such that ai < k - 1. Then

and

SUCC(a) = ((Yl ‘*’ ~i-1(Qi + l))lal, *.’ “j,

where it + j = n and j < i. Then since a < p < SUCC((Y), px = (Y, for
1 5 x < i - 1 and pi = ai + 1. So, it is possible to find the largest s 2 1
such that

P = (a1 ’ ’ ’ ai_,((Yi + l))“p for some /3 E 2;.

If s = t, then P < (~1 * *. ‘Yj. If s I t, Pi * *. Pi < (~1 * * * ai-i(ai + 1).
In either case, p < p1 * * * pIPI, contradicting that p is a pre-necklace. 0

We now analyze the FKM algorithm, first by finding the size I 9Tk, n>l
of the list generated.

LEMMA 4. For all k and n satisfying k 2 2, n 2 2,

(N(k,n + 1) - l)/(k - 1) s(F(k,n)j s[SP(k,n - 1)1 +N(k,n).

Proof. Note that by Theorem 2, each /3 on F(k, n) has the form
/3=craforsomeaEZkandaon9(k,n-l).Ifa<k-1,byLcmma
3(b), succ(a> will be a necklace. Thus

I(ponY(k,n):j?,<k-l}[<N(k,n). (7)

By Corollary 1, a(k - 1) is on F(k, n) for every (I! on 9Tk, n - 0, so

I{p on F(k,n): p, = k - l}\ =15r(k,n - l)\. (f-9

The second inequality claimed in the lemma now follows from (7) and (8).

422 RUSKEY, SAVAGE, AND WANG

Note that each (Y # 0” on Y(k, n) is a prefix of at most k - 1
necklaces on 9(k, II + 1) and 0” is the prefix of k necklaces. Thus,

N(k,n + 1) I (k - l)l9(k,n)l + 1

and the first inequality of the lemma follows. •I

If we define I p(k, 0)l = 0, then from the recursion of the second
inequality in Lemma 4, we obtain

lY(k,n)I -< iN(k,i).
i=l

(9)

In Theorem 3, we show that

bW,n)I _
,!% N(k,n)

k
k-l

so that, in particular, 1 STk, n>l is OW(k, n)). First a technical lemma is
needed.

LEMMA 5. For all k 2 2,

ProojI An inductive argument shows that

The left-hand side of (10) has f(j) = n/(jk”-‘1 and thus by the equality
above, the left-hand side of (10) is equal to

(n Tj)kj

= ~~l(p~l:j)~+~~~(ppl:j)(nlj)kj.
j=O

To prove the lemma observe that the first term on the right above
converges to kP/(k - l>P (see [Kn, p. 9011, and we will show that the
second term converges to zero. First, note that if f 2 C, where C is any

GENERATING NECKLACES

constant greater than p/c& - l), then

423

(11)

L&t

Then

g(i) k i n-j-l

s(i + 1) =
.-.

j+p n-j ’

By (ll), the last two factors are greater than l/G for C < j 5 n - C - 1,
so g(j) is strictly decreasing on the range C I j I n - C - 1.

Since g(j) converges to 0 for each fixed j,

We can now break the sum up into two parts as follows:

n-c Lfil n-c
C g(i) = C g(i) +

j-C j=C

56 P -l+C i I C
p - 1 (n - C)kC

Each of these terms converges to 0. 0

THEOREM 3. For all k 2 2,

proof. We bound the ratio I F(k, n)l /N(k, n) from above and below
by functions which both converge to k/(k - 1). For the upper bound,

424 RUSKEY, SAVAGE, AND WANG

from (2) and (9),

and

N(k, n) 2 k”/n.

IF(k,n)l I C;al(ki/i) + (k(“+1)‘2 - l)/(k”” + 1)

N(k,n) k”/n k”/n

On the right side of the inequality, clearly the second term converges to 0
and, by Lemma 5, the first term converges to k/(k - 1).

For the lower bound, from Lemma 4 and (21,

n+l

(k - l)IZF(k,n)(2 N(k,n + 1) - 1 > k - 1.

From (2) then,

(k _ 1) Pwn)l (kn+‘/n) - 1

N(k, n) 2 (k” + (n - l)k”/‘)/n

and the right-hand side converges to k. This gives the lower bound of
k/(k - 1) on lim,,, I F(k, n)l/N(k, n). q

To analyze the time required by the FKM algorithm, note that the work
done, once the initial string 0” has been generated, consists of

(i) finding for each (Y on F(k, n) the largest i such that (Y~ < k - 1.
(ii) copying (or * * . CX- r(cyi + 1) repeatedly into positions i +

1 , . . . , n to obtain SUCC((Y), and
(iii) testing whether i divides n to determine whether succ(cu) is a

necklace by Lemma 3(b).

We can tabulate the divisors of n at the beginning of the algorithm, so
the time, for each (Y, to find succ(a) is proportional to n - i + 1. For each
LY on FCk, n) define

w(a) = n - i -t 1,

GENERATING NECKLACES 425

where ai < k - 1 but aj = k - 1 for i > i. Note that

w(a) = 1 if an < k - 1 and w(a(k - 1)) = w(a) + 1. (12)

The total time for the FKM algorithm for given k and n is bounded by a
constant times W(k, n), where

W(b) = c w(a)*
(Ion 97k,n)

LEMMA 6. For all k and n satisfying k 2 2, n 2 2, W(k, n) = W(k, n -
1) + I.Hk,n)l.

Proof. Every p on Y(k, n) either has the form a(k - 1) for some a
on ZT(k, n) or has p,, < k - 1, so

W(k,n) = c w(P)
/3 on mk, n)

= c w(a(k - 1)) + c WV%
&k-l) on FCk, n) /3 on F(k,.); pk<k-l

By (12) this gives

W(k,n) = c w(a)
a(k-1)on FCk,n)

+ c l+ c 1.
a(k- 1) on FCk, n) pan .%k,n);pk<k-1

Since a(k - 1) is on F(k, n) if and only if a is on 9% n - 1) (by
Corollary 1 and Theorem 2), the first term is W(k, n - 1). The sum of the
second two terms is just I9Tk, n)l. 0

If we define W(k, 0) = 0, then from the recurrence of Lemma 6 we have

W(k,n) = 5 jF(k,i)).
i=l

(13)

The following theorem establishes that the total running time of the FKh4
algorithm is linear in the number of necklaces.

THEOREM 4. For any c > (k/(k - l))*, 12 can be chosen large enough
so that

W(k,n) I c *N(k,n).

426 RUSKEY, SAVAGE, AND WANG

Proof: By (13) and (91,

W(k,n) = : IF(k,i)l I 2 &(k,j).
i=l i=l jzzl

So, by (21,

W(k, n)
N(k,n) -<

C:&Jkj/j)
k”/n

+ C~==,Cj=,((j - l)/j)kj/’
k”/n

The last term converges to 0 and by Lemma 5, the first term on the
right-hand side of the inequality converges to (k/(k - 1))‘. 0

3. A NEW ALGORITHM FOR GENERATING NECKLACES

In this section, we describe a new algorithm for generating necklaces in
which the number of strings examined is never more than twice the
number of necklaces. For simplicity, we focus on the case for two colors,
but the generalization to k colors is described in detail in [WaSa].

Our idea for generating necklaces of two-color beads was inspired by a
result in [LiHiCa] that a certain variation on the shuffle-exchange graph is
hamiltonian. (The graph of [LiHiCa] is actually the deBruijn graph, which
is known to be hamiltonian.)

When k = 2, the n-tuples are bit strings which we regard as elements of
(0,l)“. Define a function 7 on (0, 1)” by

where < denotes the complement of the bit x,. As in Section 1, U(X)
denotes the rotation of string x one position left.

In the new algorithm, a tree of necklaces is generated as follows:
Starting with the string x = 0” as root, we generate as the children of x
all those necklaces of the form T&(X) for some j satisfying 1 I j I n - 1.
This procedure is applied recursively to each child of X. We show first that
every necklace will be generated.

LEMMA 7. Every n-bead necklace will appear in the tree with root 0”.

Proof: Let x be an n-bead necklace. We show by induction on t, the
number of ones in x, that x is in the tree. If t = 0 then x = O”, which is
the root of the tree. For t > 0, note that x = (~1 for some (Y E (0, l}n-l,
since x must be the lexicographically smallest in its class. Thus x = ra(Ocr).
The representative y of the class containing Oa has t - 1 ones, so must be

GENERATING NECKLACES 427

in the tree, by induction. Since Ocll is a rotation of y, x = r&(y), for some
j, so x will be a child of y in the tree. q

Although at first glance it would appear that we need to examine every
string of the form (~1 with this procedure, this is not the case. We show in
Theorem 5 below that if X, T(X), and (T(X) are not necklaces, then TV(X)
is not a necklace. It follows for a necklace y # 00. . . 01 that if r&(y) is
not a necklace for some j, then, r&‘+‘(y) is also not II necklace.

As a result, from a necklace y, we generate the T&Y), starting with
j = 1, until the first j is found for which T&(Y) is not a necklace. By
Theorem 5, we are guaranteed that at this point all children of y have
been found. An example is given in Fig. 4.

The proof of Theorem 5 is based on the following lemma.

LEMMA 8. Ifx = O’lal, where t > 0 and a E {O,l}*, then

(a) if there are /3, y E (0, 1)” such that a = pO’+‘y then x is not a
necklace;

(b) if x is not a necklace, then there are /?, y E (0, l}* such that
a = p0’y.

Proof In case (a), the string O’+‘ylO’l/3 is a rotation of x which
precedes x in lexicographic order.

In case (b), let ak(x> be a rotation of x with ak(x) <x. Then
ak(~> = 0’6 for some S E {O,l}’ (with 6 < lal.) Since ak(x> #x, (Y
must contain 0’ as a contiguous substring. 0

THEOREM 5. For bitstring x E (0, l}“, if x, T(X), and a(x) are not
necklaces, then w(x) is not a necklace.

proof. If x = la, then TU(X) = (~0 which is not a necklace unless
a = oo... 0, in which case u(x) = 0.. . 01 is a necklace.

Also, since x is not a necklace, x # 0” and x # O”-‘1, so we may
assume that either (i) x = O’lal or (ii) x = 0’1~~0 for some t > 0 and
a E {o,l}*.

In case (9, since x is not a necklace, by Lemma B(b), (r = PO’y for some
p, y E {O,l}*. But then MU = O’-‘1~~11. So, by Lemma B(a), TU(X) is
not a necklace.

In case (ii), r(x) = O’lal and MU = O’-‘1~~01. Since T(X) is not a
necklace, application of Lemma 8 shows as in case (i) that MU is not a
necklace. 0

We summarize in Fig. 5 the recursive algorithm for generating the
lexicographically smallest representatives of the n-bread necklaces in two
colors. Note that by Theorem 5 and as discussed above, while generating

428 RUSKEY, SAVAGE, AND WANG

00000

ru(oo111) ru~(00111)

= 01111 = 11101
non-neellace

/

70(01111)
= 11111

I

tu(lll11)
= 11110
fl0Xl-IIeelltXe

\
ru~(O1111)
= 11100
non-necklace

nqooo1) nqo001) rd(oooo1)
= 00011 = 00101 = 01001

non-necklace

/\ /\

ro(oo011) ro2(oo011)
= 01101

ra(00101) z0~(00101)

= 00111 = 01011 = 10101
non-necklace non-necklace

/ \

FIG. 4. The tree of necklaces for k = 2, n = 5.

the children of the necklace y in the tree, at most one n-tuple is examined
which is not a necklace. Thus the total number of n-tuples examined is at
most 2 . N(2, n).

A recursive implementation will give rise to gaps in this algorithm: as
necklaces are implicitly stacked, it could occur that for several consecutive
necklaces on the stack, the next candidate “child” to be tested turns out to
be a non-necklace. We can avoid this gap with a nonrecursive implementa-
tion in which a necklace y is pushed on the stack only after checking that
x, the next sibling of y to be examined, is actually a necklace. In this case,
x can be saved on the stack with y to avoid generating and checking x
twice.

GENERATING NECKLACES 429

!lho Color Necklaces

procedure Bearch(
~tPut(Y);
done := hhzq
while (not(done)) do

Y := +);
2 := T(y);
if 2 is a necklace then mbrch(z)

else done := true;

output(00. - .oo);
8eareh(OO.. . 01);

FIG. 5. New algorithm to generate n-bead necklaces in two colors.

In spite of avoiding gaps, in the current implementation we spend O(n)
time per string generated to determine whether the string is a necklace.
This makes the total time for the algorithm O(n * N(k, n)). However, we
conjecture that necklace-checking could be implemented in amortized
constant time, for example, by a scheme like the following: At each
necklace, x, we store information, 1(x, j) which is sufficient for us to
determine, perhaps in constant time, whether 6) T&V) is a necklace and
(ii> the information 1(&(x), 1). After the entire subtree of raj(x) has
been generated and searched recursively, the information at the node x is
updated to give 1(x, j + 11, based on Z(x, j) and the current information
at node T&X).

4. CGNCLUDING REMARKS

We have defined a new set of objects, called pre-necklaces, as those
strings which are prefixes of necklaces. We have shown that for given n
and k, the ratio of the number of n-bead, k-color pre-necklaces to
necklaces is bounded by a constant and in the limit this ratio is k/(k - 1).
For given n and k, we showed that the FKM algorithm generates all
n-bead, k-color necklaces in constant amortized time.

We have also described a new approach to generating necklaces which
we conjecture can be implemented in constant amortized time. If so, this
algorithm could be competitive with the FKM algorithm for k = 2: Al-

430 RUSKEY, SAVAGE, AND WANG

though in both algorithms the number of strings examined approaches
2 . N(k, n) when k = 2, the FKM algorithm approaches this limit from
above, whereas the new algorithm approaches it from below.

We ask whether it is possible, by any strategy, to generate necMaces in
worst case constant time? As a variation, is it possible to list necklaces in
some Gray-code-like order [Gi, Jo, Lu, Ru, Sal?

ACKNOWLEDGMENTS

Thanks to Herb Wilf (for suggesting this problem and for help with the proof of Lemma 5)
and Pete Winkler (for helpful discussions on the FKM algorithm).

REFERENCES

[FrKe] H. FREDRICK~EN AND I. J. KESSLER, An algorithm for generating necklaces of
beads in two colors, &Crete Math. 61 (19861, 181-188.

[FrMa] H. FREDRICKSEN AND J. MAIOWA, Necklaces of beads in k colors and k-ary de
Bruijn sequences, Dircrete Math. 23, No. 3 (19781, 207-210.

[Gil E. N. GILBERT, Gray codes and paths on the n-cube, Bell Systems Tech. I. (19581,
815-826.

[Jo] S. M. JOHNSON, Generation of permutations by adjacent transpositions, Math.
Comp. 17 (19631, 282-285.

[Gl D. E. KNUTH, The Art of Computer Programming, Vol. 1, Fundamental Algorithms,
2nd ed., Addison-Wesley, Reading, MA, 1973.

[LiHiCa] W. LIIJ, T. H. HILDEBRANDT, AND R. CAVIN III, Hamiltonian cycles in the
shuffle-exchange network, IEEE Trans. Comput. C-38, No. 5 (1989), 745-750.

[Lul J. LUCAS, The rotation graph of binary trees is Hamiltonian, J. Algorithms 8
(19871, 503-535.

[MaI G. MACKIW, “Applications of Abstract Algebra,” Wiley, New York, 1985.
[Rul F. RUSKEY, Adjacent interchange generation of combinations, J. Algorithms 9

(19881, 162-180.
[Sal C. SAVAGE, Gray code sequences of partitions, J. Algorithms 10, No. 4 (1989).
[WaSa] T. WANG AND C. SAVAGE, “A New Algorithm for Generating Necklaces,” Report

TR-90-20, Department of Computer Science, North Carolina State University,
1990.

