
752

An Efficient Algorithm for Generating IVecklaces with Fixed Density

Joe Sawada’ Frank Ruskeyt

Department of Computer Science:
University of Victoria, Victoria, B.C.. CAK;.L\D.A

Abstract

A k-ary necklace is an equivalence class of t-ary strings
under rotation. A necklace of fixed density is a necklace
where the number of zeroes is fixed. We present a fast,
simple, recursive algorithm for generating (i.e., listing)
fixed density X--ary necklaces or aperiodic necklaces.
The algorithm is optimal in the sense that it runs in time
proportional to the number of necklaces produced.

1 Introduction.

There are many reasons to develop algorithms for
producing lists of basic combinatorial objects. First, the
algorithms are truely useful and find many applications
in diverse areas such as hardware and software testing,
non-parametric statistics, and combinatorial chemistry.
Secondly, the development of these algorithms can
lead to mathematical discoveries about the objects
themselves, either experimentally, or through insights
gained in the development of the algorithms.

The primary performance goal in an algorithm for
listing a combinatorial family is an algorithm whose
running time is proportional to the number of objects
produced. The amount of output required to print
the objects is not the correct measure: the correct
measure is the amount of data structure change that the
objects undergo, since typical applications only need to
process that part of successive object that changes. In
this paper an efficient algorithm is one that uses only
a constant amount of computation per object, in an
amortized sense. Such algorithms are also said to be
CAT, for Constant Amortized Time.

Necklaces are a fundamental type of combinatorial
object, arising naturally, for example, in the construc-
tion of single-track Gray codes, in the enumeration of
irreducible polynomials over finite fields, and in the the-
ory of free Lie algebras. Efficient algorithms for ex-
haustively generating necklaces were first developed by
Fredricksen and Kessler [4] and Fredricksen and Maio-

‘Research supported by NSERC. jsaoada@csr.uvic .ca
+Research supported by NSERC. f ruskey@csr .uvic . ca

rana [5]: although they did not prove that they were
efficient. They were proven to be efficient by Ruskey,
Savage, and Wang [i]. Closely related algorithms for
generating Lyndon words (aperiodic necklaces) were de-
veloped by Duval[3] and shown to be efficient by Berstel
and Pocchiola [l]. Subsequently, a recursive algorithm
was developed that was more flexible and easier to ana-
lyze than the earlier algorithms, which were all iterative
[2]. In many applications not all necklaces are required,
but rather only those of fixed density (the number of
zeroes is fixed). Previous to this paper, no efficient gen-
eration algorithm for fixed density necklaces was known.

Previous fixed density necklace algorithms had run-
ning times of O(n ’ N(n, d)) (Wang and Savage [8]) and
O(lv(n)) (Fredricksen and Kessler [4]), where r\i(n,d)
denotes the number of necklaces with length n and den-
sity d and N(n) denotes the number of necklaces with
length n. Wang and Savage base their algorithm on
finding a Hamilton cycle in a graph related to a tree of
necklaces. The main feature of their algorithm is that it
also generates the strings in Gray code order. The ba-
sis of Fredricksen and Kessler’s algorithm is a mapping
of lexicographically ordered compositions to necklaces.
Both algorithms consider only binary necklaces, but our
results apply over a general alphabet. We take a new ap
preach by first modifying Ruskey’s recursive algorithm
for generating necklaces [2] and then optimizing it for
the fixed density case. Recursive algorithms have sev-
eral advantages over their iterative counterparts. They
are generally simpler and easier to analyze. They are
are more suitable to conversion to a backtracking algo-
rithms, since subtrees are easily pruned from the com-
putation tree. In fact, we have used just such a back-
tracking to discover new minimal difference covers (sets
of numbers achieving all possible differences, mod n).

In the following section we will give some definitions
related to necklaces and then in Section 3 we will
introduce a fast algorithm for generating fixed density
k-ary necklaces. In Section 4 we analyze the algorithm,
proving the algorithm is CAT for any density.

753

2 Background and Definitions.

A k-ary necklace is an equivalence class of k-ary
strings under rotation. We identify each necklace with
the lexicographically least representative in its equiv-
alence class. The set of all k-ary necklaces with
length n is denoted Nk (n). For example N?(4) =
{0000,0001,0011,0101,0111,1111}. The cardinality of
Nk(n) is denoted No.

-4n important class of necklaces are those that
are aperiodic. An aperiodic necklace is called a Lyn-
don word. Let LI;(R) denote the set of all k-ary
Lyndon words with length R. For example L?(4) =
{0001,0011,0111}. The cardinality of Lk(n) is denoted
Lk(R).

A string cr is a pre-necklace if it is a prefix of some
necklace. The set of all k-ary pre-necklaces with length
R is denoted Pk(n). For example P?(4) = Nz(4) u

{0010,0110}. Th e cardinality of Pk (7~) is Pk(lz).
We denote fixed density necklaces, Lyndon words

and pre-necklaces in a similar manner by adding the
additional parameter d to represent the number of non-
zero characters in the strings. We refer to the number
d as the density of the string. Thus the set of k-
ary necklaces with density d is represented by Nk (n, d)
and has cardinality -vk(n, d). For example Na(4,2) =
(0011,0012,0021,0022,0101,0102,0202}. Similarly, the
set of fixed density Lyndon words is represented by
Lk(n, d) with cardinality Lk(n,d). The set of fixed
density pm-necklaces is denoted by Pk(n, d) and has
cardinality Pk(n, d). In addition, we introduce the set
P;(n, d) which contains the elements of Pk(n, d) whose
last character is non-zero. Its cardinality is denoted
PL(n, 4.

To count fixed density necklaces we let
i~(no,nl,--‘nk-1) denote the number of neck-
laces composed of ni occurrences of the symbol i,
for i = 0, 1, . . . , k-l. Let the density of the necklace
d = nl + ..e + nk-1 and ‘to = n - d. It is known from
Gilbert and Riordan [6] that

N(no,...,nk-1) = ; c b(j) (n/j)!
j\@(w,...,nk-1)

(mljY~..(~k--lld!

(2.1)

To get the number of fixed density necklaces with length
n and density d, we sum over all possible values of
Rl,n2 ,..., nk-1

n;k(n, d) = c NtnO, nl,. . . , nk-1)

The number of fixed density Lyndon words are counted
similarly

To begin we give a brief overview of Gen(t , p).
The general approach of this algorithm is to generate
all length n pre-necklaces. The pre-necklace being
generated is stored in the array a; one position for each
character. We assume that a0 = 0. The initial call
is Gen(l,l) and each recursive call appends a character
to the pre-necklace to get a new pre-necklace. At the
beginning of each recursive call to G&(t, p), the length
of the pre-necklace being generated is t - 1 and the
length of the longest Lyndon prefix is p. As long as the
length of the current pm-necklace is less than n, each
call to Gen(t,p) makes one recursive call for each valid
value for the next character in the string, updating the

L(no,....nk-1) = : n c
1\9cd(no,...,%.--l)

‘(j) (no,j)!!?!~fksl /j)!,

Lk(%d) = c L(nO:‘h,...,nk-1)

nl+...+nkm1=d

In the binary case these expressions simplify as follows

Currently, it is not known how to count fixed density
pre-necklaces.

3 Generating Fixed Density Necklaces.

We use a two step approach to develop a fast algorithm
for generating fixed density necklaces. First we create a
new necklace algorithm based on the recursive necklace
generation algorithm Gen(t,p) (Figure 1) [2]. We then
optimize this new necklace algorithm for the fixed
density case by making a few key observations about
fixed density necklaces.

procedure Gen (t, p : integer);
local j : integer;
begin

if t > n then Printlt(p)
else begin

1) do begin
at -- .- j; Gen(t-t 1, t);

end;
end;

end {of Gen);

Figure 1: The recursive necklace algorithm.

754

A A I /A I
0000 0001 0010 0011 0101 0110 0111 1111

Figure 2: Computation Tree for Ilj?(4) from Gen(t,p)

values of both t and p in the process. This algorithm is 0. Looking at Figure 2; we want to generate only the
can generate necklaces, Lyndon words or pm-necklaces nodes in bold. This results in the modified computation
of length R in lexicographic order by specifying which tree shown in Figure 3. Notice that at each successive
object we want to generate. The function Printlt(p) level in this tree we are incrementing the density of the
allow us to differentiate between these various objects pm-necklace rather than the length. To generate this
as shown in Table 1. modified tree we create a recursive routine based on

the original necklace algorithm in Figure 1; however,
rather than determining the valid values for the next

Pre-necklaces (Pk(n)) print(a[l..n]) position in the string, we need to determine both the

pi character. valid positions and the values for the next non-zero

To make this change we use the array a to hold
the positions of the non-zero characters and maintain

Table 1: Output of PrintIt for different objects. another array b to indicate the values of the non-zero
characters. The ith element of the array a represents
the position of the ith non-zero character, and the ith

The computation tree for Gen(t,p) consists of all element of the array b represents the value of the ith
pm-necklaces of length less than or equal to R. As non-zero character. Thus if we generate a necklace
an example, we show a computation tree for jVz(4) in with length 7 with a = [3,4,5,7] and b = [1,3,2,1],
Figure 2. By comparing the number of nodes in the the corresponding necklace is 0013201. (We can also
computation tree to the number of objects generated it maintain the original necklace structure by performing
was shown that this algorithm is CAT [2]. some extra constant time operations.) Note that in the

binary case, the second array b is not necessary since all
3.1 Modified Necklace Algorithm. non-zero characters must be 1. We use the parameter t

For every necklace of positive density, the last to indicate the current density of the string. The length
character of the string must be non-zero. Thus, if we of the current string is at. Since all Lyndon prefixes end
are concerned only with generating necklaces or Lyndon in a non-zero character, we let up indicate the length of
words we can reduce the size of the computation tree by the longest Lyndon prefix. Using these two parameters,
compressing all of the pre-necklaces whose last character

755

0011

1111

Figure 3: Computation Tree for N?(4) from GenZ(t,p)

we can compute all valid positions and values for the
next non-zero character.

To determine the valid positions and values for the
next non-zero character and to maintain the lexico-
graphic ordering we compute the maximumposition and
the minimum value for that position so that the new
string still has the pre-necklace property. We compute
this maximal position for the next character using the
following expression

l(t + l)/pjap f a(t+l) mod P’

The minimal value for this position is b, if (t + 1) mod
P = 0 and b(t+l) modp otherwise. By the properties
of pre-necklaces all larger values at the maximal posi-
tion are also valid [il. Also, all positions before the
maximum position and greater than the position of the
last assigned non-zero character (at) can hold all val-
ues ranging from 1 to k - 1. (Note that since we want
to generate all necklaces with length n, we restrict the
position to be less than or equal to n.) For each of
these valid combinations of position and value: we lexi-
cographically assign the position to at+1 and the value
to bt+l, followed by a recursive call updating both t and
p. Finally, if the position of the last non-zero element is
greater than or equal to n, we call the Printlt(p) ftmc-
tion to print out either the Lyndon words or necklaces
in a similar manner to the original algorithm Gen(t , p).

This modified algorithm, Gen2(t, p), for generating
necklaces is given in Figure 4. Each initial branch of
the computation tree is a result of a separate call to

procedure Gen2 (t, p : integer):
local i.j.max : integer;
begin

if ar 2 n then Printlt(p)
else begin

ma2 = (t + 1)/p * ap + a(,tl) mod p;

if max 5 n then begin
at+1 := max;
if (t + 1) mod p = 0 then bt+l := 6,;
else &+1 := b(t+,) mod p;
Gen2 (t + 1, p);

end else begin
max := n; at+1 := n; bt+l := 1;
Gen2 (tS1, ttl);

end;
for i E {bt+l + 1,. . . , k - 2, k - 1) do begin

b *+1 := i;
Gen2 (t+l, t-t1);

end;
for j E {max - 1, max - 2,. . at + 1) do begin

at+1 := j;
for i E {l, . . . , k - 2, k - 1) do begin

b r+l := i;
Gen2 (t + 1, t + 1);

end;
end;

end;
end {of Gen3);

Figure 4: Modified recursive necklace algorithm

756

Figure 5: Computation Tree (solid edges only) for -V2(7,3) from GenFix(t, p)

Gen2(t, p), each call specifying a different combination
for the position and value of the first non-zero character.
Note that the 0 string is not generated by Gen2 and must
be generated separately. The nodes of the resulting
computation tree for Gen2(t,p) are all pre-necklaces
with length less than or equal to n whose last character
is non-zero. Observe that we are not restricted to
generating the necklaces in lexicographic order. Many
orders are possible by re-ordering the order of the
recursive calls.

3.2 Fixed Density Necklace Algorithm.
We now optimize our modified algorithm for the

fixed density case by making several observations. First,
we restrict the position of the first non-zero character
depending on the density. In particular, there are no
necklaces with density d that can have the first non-
zero character in a position after n - d + 1 or before

l(n- 1)/d +- 1 J . .4lso, if we are generating a string with
length n and density d and have just placed the ith
non-zero character then the (i + 1)st non-zero character
must come before the position n - (d - i) + 2. If we
place the next character at or after this position then
any resulting string with length n will have density less
than d. Also, because the last non-zero character must
be in the nth position, we stop the string generation
after placing the (d - 1)st non-zero character. Thus,
the strings generated by following this last restriction
are strings with length less than n and density d - 1.
By following this approach, we may generate up to k - 1
strings for each call to PrintIt since we can place up to
k - 1 characters in the nth position. However, it is not
always the case that we will generate all k - 1 strings
or even any strings with each call to Printlt(p). Thus

we add an additional constant time test to see which
values can be placed in the nth position. This test is
similar to the test for finding the maximal valid position
and minimum value for the next non-zero character as
outlined in the previous sub-section. Once a minimum
value is determined (if there is one at all), we perform
the usual tests to determine if the string is a necklace
or a Lyndon word. All larger values for the nth position
will result in a string that is a Lyndon word [T]. Thus
the overall work done in the Printlt(p) function to
determine the valid strings remains constant for each
string generated.

In summary, we use our modified necklace algorithm
outlined in Figure 4 with the following optimizations:

1. The first non-zero character must be between n -
d+l and (n- 1)/d + 1 inclusive.

2. The ith non-zero character must be placed at or
before the (n - d + i)th position.

3. Stop generating when we have assigned d - 1 non-
zero characters.

4. Determine valid values for nth position in Printlt(p)
function.

The computation tree for generating A$(7,3) is
given in Figure 5. The dotted lines indicate the initial
branches we do not need to follow by modification 1.
The arrows indicate the strings produced by adding the
final character to the nth position. The bold strings
indicate the actual necklaces produced by the Printlt(p)
function. The remaining string (0011001) is rejected
since it is not a necklace.

In the binary case we make use of the fact that
we can generate binary necklaces with density d > n/2

757

by complementing the output from generating necklaces
with density n - d. In this case: however. the strings
generated are not in lexicographic order and are not
necessarily the lexicographic representatives for their
respective equivalence classes.

The algorithm for generating fixed density necklaces
and Lyndon words in lexicographic order is given in
Figure 6.

procedure GenFix (t, p : integer):
local i! j, maz. tail : integer;
begin

if t 1 d - 1 then Printlt(p):

else begin
tail := n - (d-t) + I;
maz := ((t + 1)/p) * ap + a(r+l) mod p;
if maz 5 tail then begin

atti := max;
if (t + 1) mod p = 0 then bttl := 6,;
eke bt+l =: b(,,,) mod p;

GenFix(t-t 1, p);
foriE{bc+i+l,. ..,li-2,X--1)do begin

b t+* := i;
GenFix(t + 1, t + 1);

end;
tail := ma2 - 1;

end;
for j E {tail, tail - 1, . . . at + l} do begin

at+1 := j;

for i E (1,. . . , k - 2, k - l} do begin
b t-+.1 := i;
GenFix(t + 1, t + 1);

end;
end;

end;
end {of GenFix);

Figure 6: Fixed density necklace algorithm

of work to generate each node is constant. When
1 < d < n, the nodes in the computation tree consist
only of pre-necklaces that end in a non-zero bit with
density i ranging from 1 to d- 1 and length ranging from
(n-l)/d+i to n-d+i. Recall that Pk(n, d) is the set of
pre-necklaces with length n and density d where the last
bit is non-zero. Thus: the size of the computation tree
for our fixed density algorithm (1 < d < n) is bounded
by the expression

4 Analysis of Algorithm.

In this section we show that GenFix(t,p) is C.4T. We
start the analysis by analyzing several trivial cases.
When the desired density of the string is n the compu-
tation tree and strings produced are equivalent to the
generation of Nk-r (n) which we already know is C.4T.
When the density is 0 we simply generate the 0 string,
and when d = 1 we generate the k - 1 strings where the
last bit ranges from 1 to It - 1 and the rest of the string
is all 0’s. In each case where the density is greater than
0 the resulting strings are generated in constant amor-
tized time.

For the non-trivial cases we examine the number of
nodes in the computation tree, noting that the amount

d-l n-d+i

CompTreek(n, d) 5 c c PL(j: i)
i=l j=y+i

Recall that we generate binary fixed-density necklaces
with density greater than nf 2 by generating N(n, n- d)
and complementing the output. Therefore in the case
where k = 2 (and only in this case) we have the
restriction that d is less than or equal to n/2.

To prove that our algorithm is efficient we will show
that the ratio between the size of the computation tree
and the number of strings produced is bounded by a
constant. Since there does not appear to be a simple
explicit formula for PL(n, d) our approach will be to
derive an upper bound in terms of Nk (n, d) and Lk (n, d)

LEMMA 4.1. PL(n, d) 5 Nk(n, d) + &(n, d)

Proof. Partition P;(n, d) into two classes: necklaces
and non-necklaces. We show the existence of an injec-
tive mapping (proof omitted) from the non-necklaces
to Lk (72, d). 0

We can now bound our computation tree as the
sum of fixed density necklaces and fixed density Lyndon
words:

d-l n-d+;

COmpTreek(n,d) 5 c c Nk(j,i) + Lk(j,i).

i=l 3=*+i

However, by plugging the formulas for fixed density
necklaces and Lyndon words into the above expression
we end up with a complicated quadruple sum. Therefore
we will prove two lemmas which give simple bounds for
fixed density Lyndon words and necklaces.

LEMMA 4.2. The following inequality is valid for all
O<d<n:

Lk(n,d) 5 - ; (1) (k - ljd

758

Proof. Each element of Lk(n, d) is a representative of an
equivalence class of I;-ary strings, each with n elements.
If we add up the elements from each equivalence class
we will get nLk(n, d) unique strings each of length n
and density d. The expression (“,)(k - I)d counts the
total number of k-ary strings with length n and density
d. Therefore Lk(n,d) 5 $(“,)(k - l)d. 0

A similar bound for .‘Vk (n, d) is more difficult to
obtain. Here we bound Nk(n, d) by Lk (n, d).

LEMMA 4.3. The following inequality is valid for all
O<dcn:

i(i)(k- l)d 5 IVk(n,d) _< SLk(n,d)

Proof. By considering case when j = 1 in equation
(2.1) and noting that the remaining terms are all non-
negative we have

c
n?

(no!) .. . (n&l!)
= ;(;)(k- I)~

There exists an injective mapping from the periodic
necklaces to Lyndon words of the same length and
density (proof omitted), implying the upper bound
Nc(vd) 5 %(n,d). cl

We now use the previous lemmas and some basic
binomial coefficient identities to get a simple upper
bound on the size of the computation tree:

d-l n-d+i

CompTreek(n,d) 5 3x c Lk(j,i)
i=I j=l

(4.2)

(4.3)

The simplification between equations (4.2) and (4.3)
is a result of the following lemma. We omit the proof
by induction on d.

LEMMA 4.4. For either (1 < d < n and k > 2) or
{ 1 < d 2 n/2 and I; = 2) the following inequality is
valid:

Recall that our goal is to prove that the ratio of
nodes in the computation tree to the number of strings
produced is bounded by a constant. From Lemma
4.3 we have a lower bound on the number of strings
produced

.vk(n: d) > - ; (3 (k - 1)d = f (“, 1;) (k - 1)d

Thus the ratio of our computation tree to necklaces
produced is:

CompTreek(n, d) < 9

Nk(? 4 (d-l;k-1) ‘I8

Experimentally, this constant is less than 3.

THEOREM 4.1. Algorithm GenFix for generating fixed
density k-ary necklaces is CAT.

References

PI

PI

143

PI

161

PI

[81

J. Berstel and M. Pocchiola, -4verage cost of Duval’s
algorithm for generating Lyndon words, Theoretical
Computer Science, 132 (1994) 415-425.
Ii. Cattell, F. Ruskey, 3. Sawada, C.R. Miers, M.
Serra, Generating Unlabeled Necklaces and Irreducible
Polynomials over GF(2), manuscript, 1998.
J-P. Duval, G&&ration d’une section des classes de
conjugaison et arbre des mots de Lyndon de longueur
bomde, Theoretical Computer Science: 60 (1988) 255-
383.
H. Fredricksen and I. 3. Kessler, An algorithm for
generating necklaces of beads in two colors, Discrete
Mathematics, 61 (1986) 181-188.
H. Fredricksen and J. Maiorana, Necklaces of beads
in k colors and R-ary de Bruijn sequences, Discrete
Mathematics , 23 (19i8) 207-210.
E.N. Gilbert and J. Riordan, Symmetry types of peri-
odic sequences, Illinois J. Mathematics, 5 (1961) 65i-
665.
F. Ruskey, C.D. Savage, and T. Wang, Generating
necklaces, J. Algorithms, 13 (1992) 414-430.
T.M.Y Wang and C.D. Savage, -4 Gray code for
necklaces of fixed density, SIAM J. Discrete Math, 9
(1996) 654-673.

