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Abstract 

A k-ary necklace is an equivalence class of t-ary strings 
under rotation. A necklace of fixed density is a necklace 
where the number of zeroes is fixed. We present a fast, 
simple, recursive algorithm for generating (i.e., listing) 
fixed density X--ary necklaces or aperiodic necklaces. 
The algorithm is optimal in the sense that it runs in time 
proportional to the number of necklaces produced. 

1 Introduction. 

There are many reasons to develop algorithms for 
producing lists of basic combinatorial objects. First, the 
algorithms are truely useful and find many applications 
in diverse areas such as hardware and software testing, 
non-parametric statistics, and combinatorial chemistry. 
Secondly, the development of these algorithms can 
lead to mathematical discoveries about the objects 
themselves, either experimentally, or through insights 
gained in the development of the algorithms. 

The primary performance goal in an algorithm for 
listing a combinatorial family is an algorithm whose 
running time is proportional to the number of objects 
produced. The amount of output required to print 
the objects is not the correct measure: the correct 
measure is the amount of data structure change that the 
objects undergo, since typical applications only need to 
process that part of successive object that changes. In 
this paper an efficient algorithm is one that uses only 
a constant amount of computation per object, in an 
amortized sense. Such algorithms are also said to be 
CAT, for Constant Amortized Time. 

Necklaces are a fundamental type of combinatorial 
object, arising naturally, for example, in the construc- 
tion of single-track Gray codes, in the enumeration of 
irreducible polynomials over finite fields, and in the the- 
ory of free Lie algebras. Efficient algorithms for ex- 
haustively generating necklaces were first developed by 
Fredricksen and Kessler [4] and Fredricksen and Maio- 
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rana [5]: although they did not prove that they were 
efficient. They were proven to be efficient by Ruskey, 
Savage, and Wang [i]. Closely related algorithms for 
generating Lyndon words (aperiodic necklaces) were de- 
veloped by Duval[3] and shown to be efficient by Berstel 
and Pocchiola [l]. Subsequently, a recursive algorithm 
was developed that was more flexible and easier to ana- 
lyze than the earlier algorithms, which were all iterative 
[2]. In many applications not all necklaces are required, 
but rather only those of fixed density (the number of 
zeroes is fixed). Previous to this paper, no efficient gen- 
eration algorithm for fixed density necklaces was known. 

Previous fixed density necklace algorithms had run- 
ning times of O(n ’ N(n, d)) (Wang and Savage [8]) and 
O(lv(n)) (Fredricksen and Kessler [4]), where r\i(n,d) 
denotes the number of necklaces with length n and den- 
sity d and N(n) denotes the number of necklaces with 
length n. Wang and Savage base their algorithm on 
finding a Hamilton cycle in a graph related to a tree of 
necklaces. The main feature of their algorithm is that it 
also generates the strings in Gray code order. The ba- 
sis of Fredricksen and Kessler’s algorithm is a mapping 
of lexicographically ordered compositions to necklaces. 
Both algorithms consider only binary necklaces, but our 
results apply over a general alphabet. We take a new ap 
preach by first modifying Ruskey’s recursive algorithm 
for generating necklaces [2] and then optimizing it for 
the fixed density case. Recursive algorithms have sev- 
eral advantages over their iterative counterparts. They 
are generally simpler and easier to analyze. They are 
are more suitable to conversion to a backtracking algo- 
rithms, since subtrees are easily pruned from the com- 
putation tree. In fact, we have used just such a back- 
tracking to discover new minimal difference covers (sets 
of numbers achieving all possible differences, mod n). 

In the following section we will give some definitions 
related to necklaces and then in Section 3 we will 
introduce a fast algorithm for generating fixed density 
k-ary necklaces. In Section 4 we analyze the algorithm, 
proving the algorithm is CAT for any density. 
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2 Background and Definitions. 

A k-ary necklace is an equivalence class of k-ary 
strings under rotation. We identify each necklace with 
the lexicographically least representative in its equiv- 
alence class. The set of all k-ary necklaces with 
length n is denoted Nk (n). For example N?(4) = 
{0000,0001,0011,0101,0111,1111}. The cardinality of 
Nk(n) is denoted No. 

-4n important class of necklaces are those that 
are aperiodic. An aperiodic necklace is called a Lyn- 
don word. Let LI;(R) denote the set of all k-ary 
Lyndon words with length R. For example L?(4) = 
{0001,0011,0111}. The cardinality of Lk(n) is denoted 
Lk(R). 

A string cr is a pre-necklace if it is a prefix of some 
necklace. The set of all k-ary pre-necklaces with length 
R is denoted Pk(n). For example P?(4) = Nz(4) u 

{0010,0110}. Th e cardinality of Pk (7~) is Pk(lz). 
We denote fixed density necklaces, Lyndon words 

and pre-necklaces in a similar manner by adding the 
additional parameter d to represent the number of non- 
zero characters in the strings. We refer to the number 
d as the density of the string. Thus the set of k- 
ary necklaces with density d is represented by Nk (n, d) 
and has cardinality -vk(n, d). For example Na(4,2) = 
(0011,0012,0021,0022,0101,0102,0202}. Similarly, the 
set of fixed density Lyndon words is represented by 
Lk(n, d) with cardinality Lk(n,d). The set of fixed 
density pm-necklaces is denoted by Pk(n, d) and has 
cardinality Pk(n, d). In addition, we introduce the set 
P;(n, d) which contains the elements of Pk(n, d) whose 
last character is non-zero. Its cardinality is denoted 
PL(n, 4. 

To count fixed density necklaces we let 
i~(no,nl,--‘nk-1) denote the number of neck- 
laces composed of ni occurrences of the symbol i, 
for i = 0, 1, . . . , k-l. Let the density of the necklace 
d = nl + ..e + nk-1 and ‘to = n - d. It is known from 
Gilbert and Riordan [6] that 

N(no,...,nk-1) = ; c b(j) (n/j)! 
j\@(w,...,nk-1) 

(mljY~..(~k--lld! 

(2.1) 

To get the number of fixed density necklaces with length 
n and density d, we sum over all possible values of 
Rl,n2 ,..., nk-1 

n;k(n, d) = c NtnO, nl,. . . , nk-1) 

The number of fixed density Lyndon words are counted 
similarly 

To begin we give a brief overview of Gen(t , p). 
The general approach of this algorithm is to generate 
all length n pre-necklaces. The pre-necklace being 
generated is stored in the array a; one position for each 
character. We assume that a0 = 0. The initial call 
is Gen(l,l) and each recursive call appends a character 
to the pre-necklace to get a new pre-necklace. At the 
beginning of each recursive call to G&(t, p), the length 
of the pre-necklace being generated is t - 1 and the 
length of the longest Lyndon prefix is p. As long as the 
length of the current pm-necklace is less than n, each 
call to Gen(t,p) makes one recursive call for each valid 
value for the next character in the string, updating the 

L(no,....nk-1) = : n c 
1\9cd(no,...,%.--l) 

‘(j) (no,j)!!?!~fksl /j)!, 

Lk(%d) = c L(nO:‘h,...,nk-1) 

nl+...+nkm1=d 

In the binary case these expressions simplify as follows 

Currently, it is not known how to count fixed density 
pre-necklaces. 

3 Generating Fixed Density Necklaces. 

We use a two step approach to develop a fast algorithm 
for generating fixed density necklaces. First we create a 
new necklace algorithm based on the recursive necklace 
generation algorithm Gen(t,p) (Figure 1) [2]. We then 
optimize this new necklace algorithm for the fixed 
density case by making a few key observations about 
fixed density necklaces. 

procedure Gen ( t, p : integer ); 
local j : integer; 
begin 

if t > n then Printlt( p ) 
else begin 

1) do begin 
at -- .- j; Gen( t-t 1, t ); 

end; 
end; 

end {of Gen); 

Figure 1: The recursive necklace algorithm. 
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0000 0001 0010 0011 0101 0110 0111 1111 

Figure 2: Computation Tree for Ilj?(4) from Gen(t,p) 

values of both t and p in the process. This algorithm is 0. Looking at Figure 2; we want to generate only the 
can generate necklaces, Lyndon words or pm-necklaces nodes in bold. This results in the modified computation 
of length R in lexicographic order by specifying which tree shown in Figure 3. Notice that at each successive 
object we want to generate. The function Printlt(p) level in this tree we are incrementing the density of the 
allow us to differentiate between these various objects pm-necklace rather than the length. To generate this 
as shown in Table 1. modified tree we create a recursive routine based on 

the original necklace algorithm in Figure 1; however, 
rather than determining the valid values for the next 

Pre-necklaces (Pk(n)) print( a[l..n] ) position in the string, we need to determine both the 

pi character. valid positions and the values for the next non-zero 

To make this change we use the array a to hold 
the positions of the non-zero characters and maintain 

Table 1: Output of PrintIt for different objects. another array b to indicate the values of the non-zero 
characters. The ith element of the array a represents 
the position of the ith non-zero character, and the ith 

The computation tree for Gen(t,p) consists of all element of the array b represents the value of the ith 
pm-necklaces of length less than or equal to R. As non-zero character. Thus if we generate a necklace 
an example, we show a computation tree for jVz(4) in with length 7 with a = [3,4,5,7] and b = [1,3,2,1], 
Figure 2. By comparing the number of nodes in the the corresponding necklace is 0013201. (We can also 
computation tree to the number of objects generated it maintain the original necklace structure by performing 
was shown that this algorithm is CAT [2]. some extra constant time operations.) Note that in the 

binary case, the second array b is not necessary since all 
3.1 Modified Necklace Algorithm. non-zero characters must be 1. We use the parameter t 

For every necklace of positive density, the last to indicate the current density of the string. The length 
character of the string must be non-zero. Thus, if we of the current string is at. Since all Lyndon prefixes end 
are concerned only with generating necklaces or Lyndon in a non-zero character, we let up indicate the length of 
words we can reduce the size of the computation tree by the longest Lyndon prefix. Using these two parameters, 
compressing all of the pre-necklaces whose last character 
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0011 

1111 

Figure 3: Computation Tree for N?(4) from GenZ(t,p) 

we can compute all valid positions and values for the 
next non-zero character. 

To determine the valid positions and values for the 
next non-zero character and to maintain the lexico- 
graphic ordering we compute the maximumposition and 
the minimum value for that position so that the new 
string still has the pre-necklace property. We compute 
this maximal position for the next character using the 
following expression 

l(t + l)/pjap f a(t+l) mod P’ 

The minimal value for this position is b, if (t + 1) mod 
P = 0 and b(t+l) modp otherwise. By the properties 
of pre-necklaces all larger values at the maximal posi- 
tion are also valid [il. Also, all positions before the 
maximum position and greater than the position of the 
last assigned non-zero character (at) can hold all val- 
ues ranging from 1 to k - 1. (Note that since we want 
to generate all necklaces with length n, we restrict the 
position to be less than or equal to n.) For each of 
these valid combinations of position and value: we lexi- 
cographically assign the position to at+1 and the value 
to bt+l, followed by a recursive call updating both t and 
p. Finally, if the position of the last non-zero element is 
greater than or equal to n, we call the Printlt(p) ftmc- 
tion to print out either the Lyndon words or necklaces 
in a similar manner to the original algorithm Gen(t , p). 

This modified algorithm, Gen2(t, p), for generating 
necklaces is given in Figure 4. Each initial branch of 
the computation tree is a result of a separate call to 

procedure Gen2 ( t, p : integer ): 
local i.j.max : integer; 
begin 

if ar 2 n then Printlt( p ) 
else begin 

ma2 = (t + 1)/p * ap + a(,tl) mod p; 

if max 5 n then begin 
at+1 := max; 
if (t + 1) mod p = 0 then bt+l := 6,; 
else &+1 := b(t+,) mod p; 
Gen2 ( t + 1, p ); 

end else begin 
max := n; at+1 := n; bt+l := 1; 
Gen2 (tS1, ttl ); 

end; 
for i E {bt+l + 1,. . . , k - 2, k - 1) do begin 

b *+1 := i; 
Gen2 ( t+l, t-t1 ); 

end; 
for j E {max - 1, max - 2,. . at + 1) do begin 

at+1 := j; 
for i E {l, . . . , k - 2, k - 1) do begin 

b r+l := i; 
Gen2 ( t + 1, t + 1 ); 

end; 
end; 

end; 
end {of Gen3); 

Figure 4: Modified recursive necklace algorithm 
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Figure 5: Computation Tree (solid edges only) for -V2(7,3) from GenFix(t, p) 

Gen2(t, p), each call specifying a different combination 
for the position and value of the first non-zero character. 
Note that the 0 string is not generated by Gen2 and must 
be generated separately. The nodes of the resulting 
computation tree for Gen2(t,p) are all pre-necklaces 
with length less than or equal to n whose last character 
is non-zero. Observe that we are not restricted to 
generating the necklaces in lexicographic order. Many 
orders are possible by re-ordering the order of the 
recursive calls. 

3.2 Fixed Density Necklace Algorithm. 
We now optimize our modified algorithm for the 

fixed density case by making several observations. First, 
we restrict the position of the first non-zero character 
depending on the density. In particular, there are no 
necklaces with density d that can have the first non- 
zero character in a position after n - d + 1 or before 

l(n- 1)/d +- 1 J . .4lso, if we are generating a string with 
length n and density d and have just placed the ith 
non-zero character then the (i + 1)st non-zero character 
must come before the position n - (d - i) + 2. If we 
place the next character at or after this position then 
any resulting string with length n will have density less 
than d. Also, because the last non-zero character must 
be in the nth position, we stop the string generation 
after placing the (d - 1)st non-zero character. Thus, 
the strings generated by following this last restriction 
are strings with length less than n and density d - 1. 
By following this approach, we may generate up to k - 1 
strings for each call to PrintIt since we can place up to 
k - 1 characters in the nth position. However, it is not 
always the case that we will generate all k - 1 strings 
or even any strings with each call to Printlt(p). Thus 

we add an additional constant time test to see which 
values can be placed in the nth position. This test is 
similar to the test for finding the maximal valid position 
and minimum value for the next non-zero character as 
outlined in the previous sub-section. Once a minimum 
value is determined (if there is one at all), we perform 
the usual tests to determine if the string is a necklace 
or a Lyndon word. All larger values for the nth position 
will result in a string that is a Lyndon word [T]. Thus 
the overall work done in the Printlt(p) function to 
determine the valid strings remains constant for each 
string generated. 

In summary, we use our modified necklace algorithm 
outlined in Figure 4 with the following optimizations: 

1. The first non-zero character must be between n - 
d+l and (n- 1)/d + 1 inclusive. 

2. The ith non-zero character must be placed at or 
before the (n - d + i)th position. 

3. Stop generating when we have assigned d - 1 non- 
zero characters. 

4. Determine valid values for nth position in Printlt(p) 
function. 

The computation tree for generating A$(7,3) is 
given in Figure 5. The dotted lines indicate the initial 
branches we do not need to follow by modification 1. 
The arrows indicate the strings produced by adding the 
final character to the nth position. The bold strings 
indicate the actual necklaces produced by the Printlt(p) 
function. The remaining string (0011001) is rejected 
since it is not a necklace. 

In the binary case we make use of the fact that 
we can generate binary necklaces with density d > n/2 
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by complementing the output from generating necklaces 
with density n - d. In this case: however. the strings 
generated are not in lexicographic order and are not 
necessarily the lexicographic representatives for their 
respective equivalence classes. 

The algorithm for generating fixed density necklaces 
and Lyndon words in lexicographic order is given in 
Figure 6. 

procedure GenFix ( t, p : integer ): 
local i! j, maz. tail : integer; 
begin 

if t 1 d - 1 then Printlt(p): 

else begin 
tail := n - (d-t) + I; 
maz := ((t + 1)/p) * ap + a(r+l) mod p; 
if maz 5 tail then begin 

atti := max; 
if (t + 1) mod p = 0 then bttl := 6,; 
eke bt+l =: b(,,,) mod p; 

GenFix( t-t 1, p ); 
foriE{bc+i+l,. ..,li-2,X--1)do begin 

b t+* := i; 
GenFix( t + 1, t + 1 ); 

end; 
tail := ma2 - 1; 

end; 
for j E {tail, tail - 1, . . . at + l} do begin 

at+1 := j; 

for i E (1,. . . , k - 2, k - l} do begin 
b t-+.1 := i; 
GenFix( t + 1, t + 1 ); 

end; 
end; 

end; 
end {of GenFix); 

Figure 6: Fixed density necklace algorithm 

of work to generate each node is constant. When 
1 < d < n, the nodes in the computation tree consist 
only of pre-necklaces that end in a non-zero bit with 
density i ranging from 1 to d- 1 and length ranging from 
(n-l)/d+i to n-d+i. Recall that Pk(n, d) is the set of 
pre-necklaces with length n and density d where the last 
bit is non-zero. Thus: the size of the computation tree 
for our fixed density algorithm (1 < d < n) is bounded 
by the expression 

4 Analysis of Algorithm. 

In this section we show that GenFix(t,p) is C.4T. We 
start the analysis by analyzing several trivial cases. 
When the desired density of the string is n the compu- 
tation tree and strings produced are equivalent to the 
generation of Nk-r (n) which we already know is C.4T. 
When the density is 0 we simply generate the 0 string, 
and when d = 1 we generate the k - 1 strings where the 
last bit ranges from 1 to It - 1 and the rest of the string 
is all 0’s. In each case where the density is greater than 
0 the resulting strings are generated in constant amor- 
tized time. 

For the non-trivial cases we examine the number of 
nodes in the computation tree, noting that the amount 

d-l n-d+i 

CompTreek(n, d) 5 c c PL(j: i) 
i=l j=y+i 

Recall that we generate binary fixed-density necklaces 
with density greater than nf 2 by generating N(n, n- d) 
and complementing the output. Therefore in the case 
where k = 2 (and only in this case) we have the 
restriction that d is less than or equal to n/2. 

To prove that our algorithm is efficient we will show 
that the ratio between the size of the computation tree 
and the number of strings produced is bounded by a 
constant. Since there does not appear to be a simple 
explicit formula for PL(n, d) our approach will be to 
derive an upper bound in terms of Nk (n, d) and Lk (n, d) 

LEMMA 4.1. PL(n, d) 5 Nk(n, d) + &(n, d) 

Proof. Partition P;(n, d) into two classes: necklaces 
and non-necklaces. We show the existence of an injec- 
tive mapping (proof omitted) from the non-necklaces 
to Lk (72, d). 0 

We can now bound our computation tree as the 
sum of fixed density necklaces and fixed density Lyndon 
words: 

d-l n-d+; 

COmpTreek(n,d) 5 c c Nk(j,i) + Lk(j,i). 

i=l 3=*+i 

However, by plugging the formulas for fixed density 
necklaces and Lyndon words into the above expression 
we end up with a complicated quadruple sum. Therefore 
we will prove two lemmas which give simple bounds for 
fixed density Lyndon words and necklaces. 

LEMMA 4.2. The following inequality is valid for all 
O<d<n: 

Lk(n,d) 5 - ; (1) (k - ljd 
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Proof. Each element of Lk(n, d) is a representative of an 
equivalence class of I;-ary strings, each with n elements. 
If we add up the elements from each equivalence class 
we will get nLk(n, d) unique strings each of length n 
and density d. The expression (“,)(k - I)d counts the 
total number of k-ary strings with length n and density 
d. Therefore Lk(n,d) 5 $(“,)(k - l)d. 0 

A similar bound for .‘Vk (n, d) is more difficult to 
obtain. Here we bound Nk(n, d) by Lk (n, d). 

LEMMA 4.3. The following inequality is valid for all 
O<dcn: 

i(i)(k- l)d 5 IVk(n,d) _< SLk(n,d) 

Proof. By considering case when j = 1 in equation 
(2.1) and noting that the remaining terms are all non- 
negative we have 

c 
n? 

(no!) .. . (n&l!) 
= ;(;)(k- I)~ 

There exists an injective mapping from the periodic 
necklaces to Lyndon words of the same length and 
density (proof omitted), implying the upper bound 
Nc(vd) 5 %(n,d). cl 

We now use the previous lemmas and some basic 
binomial coefficient identities to get a simple upper 
bound on the size of the computation tree: 

d-l n-d+i 

CompTreek(n,d) 5 3x c Lk(j,i) 
i=I j=l 

(4.2) 

(4.3) 

The simplification between equations (4.2) and (4.3) 
is a result of the following lemma. We omit the proof 
by induction on d. 

LEMMA 4.4. For either ( 1 < d < n and k > 2) or 
{ 1 < d 2 n/2 and I; = 2) the following inequality is 
valid: 

Recall that our goal is to prove that the ratio of 
nodes in the computation tree to the number of strings 
produced is bounded by a constant. From Lemma 
4.3 we have a lower bound on the number of strings 
produced 

.vk(n: d) > - ; (3 (k - 1)d = f (“, 1;) (k - 1)d 

Thus the ratio of our computation tree to necklaces 
produced is: 

CompTreek(n, d) < 9 

Nk(? 4 (d-l;k-1) ‘I8 

Experimentally, this constant is less than 3. 

THEOREM 4.1. Algorithm GenFix for generating fixed 
density k-ary necklaces is CAT. 
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