
How Fragments Become an NFA:

Or, How Sausage is Made

March 22, 2011

1 Fragments

Figure 1 shows an arbitrary fragment A. Along the left edge of the fragment is
its in list i0, . . . , in−1, a list of n vertices by which the fragment may be entered;
along the right edge is the fragment’s out list 〈o0, s0〉, . . . , 〈om−1, sm−1〉, a list of
m pairs where the oi is a vertex from which the fragment may be exited and si

is the position in oi’s outgoing edge list where new edges should be inserted. k is
the position in the fragment’s in list where edges skipping the fragment should
be inserted. For nonskippable fragments, k = ∅. (Note that ∅ 6= 0; rather, it is
intended to mean “none”. Zero is a valid insertion point in a list, ∅ is not.) For
skippable fragments, 0 ≤ k ≤ n. The order of outgoing edges for any vertex is
clockwise, starting from the top.

i0 〈o0, s0〉

k
...

...
in−1 〈om−1, sm−1〉

A

Figure 1: An arbitrary fragment

2 Atoms

Figure 2 shows an atomic fragment, i.e., a fragment consisting of a single vertex v.
(Such a fragment may be produced by a literal, a character class, or the dot.)
The in and out lists consist of v only, and the new edge insertion point for v is 0,
the head of v’s out edge list, because v’s out edge list is empty. Atoms are not
skippable, so k = ∅.

1

v 〈v, 0〉

Figure 2: An atom

3 Repetition

Figure 3 shows how A is converted to A? or A??. In the greedy case, A?.k =
min(A.k, |A.In|) (where ∅ is treated like +∞), while in the nongreedy case
A??.k = 0. In both cases A?.In = A??.In = A.In, A?.Out = A??.Out = A.Out.

i0 〈o0, s0〉

k
...

...
in−1 〈om−1, sm−1〉

A

A?

(a) Greedy

0

i0 〈o0, s0〉
...

...
in−1 〈om−1, sm−1〉

A

A??

(b) Nongreedy

Figure 3: Single repetition

Figure 4 shows how A is converted to A+ or A+?. Out edges are added
from each oi to each ij to create the necessary loops. Adding a plus does not
affect the skippability of A, due to the fact that matching the empty string once
is the same as matching the empty string any greater number of times; hence
A?.k = A??.k = A.k.

i0 〈o0, s0〉
...

...
in−1 〈om−1, sm−1〉

A

A+

(a) Greedy

i0 〈o0, s0〉
...

...
in−1 〈om−1, sm−1〉

A

A+?

(b) Nongreedy

Figure 4: Unbounded repetition

No diagrams are given for the conversion of A to A∗ or A∗?, as these are
equivalent to (A+)? and (A+?)??, respectively, so can be constructed from the
above.

2

4 Alternation

Figure 5 shows how A|B is formed from A and B. In all cases, A|B.In =
A.In + B.In, A|B.Out = A.Out + B.Out. Finally,

A|B.k =


∅ if A.k = B.k = ∅,
A.k if A.k 6= ∅,
|A.In|+ B.k if B.k 6= ∅.

The intuition behind the skippability for A|B is as follows: If a fragment is
skippable, that means it matches the empty string. If A matches the empty
string, since A matches for A have priority over matches for B, the empty string
should be matched by A|B with the priority A gives it. Otherwise, if A is not
skippable, but B is, since A|B.In is just B.In with A.In prepended to it, and
B.k is an insertion position, B.k needs to be shifted by the size of A.In to give
us A|B.k.

3

i1 〈o1, s1〉
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉
...

...
in 〈om, sm〉

B

A|B

(a) A.k = B.k = ∅

i1 〈o1, s1〉

k
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉
...

...
in 〈om, sm〉

B

A|B

(b) A.k 6= ∅

i1 〈o1, s1〉
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉

k
...

...
in 〈om, sm〉

B

A|B

(c) A.k = ∅, B.k 6= ∅

Figure 5: Alternation

4

5 Concatenation

Figure 6 shows how AB is formed from A and B. There are four cases, depending
on whether either A or B is skippable. In what follows, the bracket notation
indicates array slices.

AB.k =

{
A.k + B.k if A.k 6= ∅ and B.k 6= ∅,
∅ otherwise.

AB.In =

{
A.In[0 : A.k − 1] + B.In + A.In[A.k : |A.In|] if A.k 6= ∅,
A.In otherwise.

AB.Out =

{
B.Out + {〈v, s〉 | 〈v, s′〉 ∈ A.Out ∧ s = |v.Out|+ B.k} if B.k 6= ∅,
B.Out otherwise.

The skippability of A determines AB.In; the skippability of B determines
AB.Out; the skippability of A and B jointly determine the skippability of
AB.k.

5

i1 〈o1, s1〉
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉
...

...
in 〈om, sm〉

B

AB

(a) A.k = B.k = ∅

i1 〈o1, s1〉
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉
...

...
in 〈om, sm〉

B

AB

(b) A.k = ∅, B.k 6= ∅

i1 〈o1, s1〉

k
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉
...

...
in 〈om, sm〉

B

AB

(c) A.k 6= ∅, B.k = ∅

i1 〈o1, s1〉

k
...

...
in 〈om, sm〉

A

i1 〈o1, s1〉
...

...
in 〈om, sm〉

B

AB

(d) A.k 6= ∅, B.k 6= ∅

Figure 6: Concatenation

6

