
An E�cient Algorithm for Generating Necklaces with Fixed DensityJoe Sawada� Frank RuskeyyDepartment of Computer Science,University of Victoria, Victoria, B.C., CANADAAbstractA k-ary necklace is an equivalence class of k-ary strings under rotation. A necklace of �xeddensity is a necklace where the number of zeroes is �xed. We present a fast, simple, recursivealgorithm for generating (i.e., listing) �xed density k-ary necklaces or aperiodic necklaces. Thealgorithm is optimal in the sense that it runs in time proportional to the number of necklacesproduced.1 IntroductionThere are many reasons to develop algorithms for producing lists of basic combinatorial objects.First, the algorithms are truely useful and �nd many applications in diverse areas such as hard-ware and software testing, non-parametric statistics, and combinatorial chemistry. Secondly, thedevelopment of these algorithms can lead to mathematical discoveries about the objects themselves,either experimentally, or through insights gained in the development of the algorithms.The primary performance goal in an algorithm for listing a combinatorial family is an algorithmwhose running time is proportional to the number of objects produced. The amount of outputrequired to print the objects is not the correct measure: the correct measure is the amount of datastructure change that the objects undergo, since typical applications only need to process thatpart of successive object that changes. In this paper an e�cient algorithm is one that uses only aconstant amount of computation per object, in an amortized sense. Such algorithms are also saidto be CAT, for Constant Amortized Time.Necklaces are a fundamental type of combinatorial object, arising naturally, for example, inthe construction of single-track Gray codes, in the enumeration of irreducible polynomials over�nite �elds, and in the theory of free Lie algebras. E�cient algorithms for exhaustively generatingnecklaces were �rst developed by Fredricksen and Kessler [4] and Fredricksen and Maiorana [5],although they did not prove that they were e�cient. They were proven to be e�cient by Ruskey,Savage, and Wang [7]. Closely related algorithms for generating Lyndon words (aperiodic necklaces)were developed by Duval [3] and shown to be e�cient by Berstel and Pocchiola [1]. Subsequently,a recursive algorithm was developed that was more
exible and easier to analyze than the earlieralgorithms, which were all iterative [2]. In many applications not all necklaces are required, butrather only those of �xed density (the number of zeroes is �xed). Previous to this paper, no e�cientgeneration algorithm for �xed density necklaces was known.�Research supported by NSERC. e-mail: jsawada@csr.uvic.cayResearch supported by NSERC. e-mail: fruskey@csr.uvic.ca1

Previous �xed density necklace algorithms had running times ofO(n�N(n; d)) (Wang and Savage[8]) and O(N(n)) (Fredricksen and Kessler [4]), where N(n; d) denotes the number of necklaces withlength n and density d and N(n) denotes the number of necklaces with length n. Wang and Savagebase their algorithm on �nding a Hamilton cycle in a graph related to a tree of necklaces. Themain feature of their algorithm is that it also generates the strings in Gray code order. The basisof Fredricksen and Kessler's algorithm is a mapping of lexicographically ordered compositions tonecklaces. Both algorithms consider only binary necklaces, but our results apply over a generalalphabet. We take a new approach by �rst modifying Ruskey's recursive algorithm for generatingnecklaces [2] and then optimizing it for the �xed density case. Recursive algorithms have severaladvantages over their iterative counterparts. They are generally simpler and easier to analyze.They are are more suitable to conversion to a backtracking algorithms, since subtrees are easilypruned from the computation tree. In fact, we have used just such a backtracking to discover newminimal di�erence covers (sets of numbers achieving all possible di�erences, mod n).In the following section we will give some de�nitions related to necklaces and then in Section3 we will introduce a fast algorithm for generating �xed density k-ary necklaces. In Section 4 weanalyze the algorithm, proving the algorithm is CAT for any density.2 Background and De�nitionsA k-ary necklace is an equivalence class of k-ary strings under rotation. We identify each necklacewith the lexicographically least representative in its equivalence class. The set of all k-ary necklaceswith length n is denoted Nk(n). For example N2(4) = f0000,0001,0011,0101,0111,1111g. Thecardinality of Nk(n) is denoted Nk(n).An important class of necklaces are those that are aperiodic. An aperiodic necklace is calleda Lyndon word. Let Lk(n) denote the set of all k-ary Lyndon words with length n. For exampleL2(4) = f0001,0011,0111g. The cardinality of Lk(n) is denoted Lk(n).A string � is a pre-necklace if it is a pre�x of some necklace. The set of all k-ary pre-necklaceswith length n is denoted Pk(n). For example P2(4) = N2(4) [f0010,0110g. The cardinality ofPk(n) is Pk(n).We denote �xed density necklaces, Lyndon words and pre-necklaces in a similar manner byadding the additional parameter d to represent the number of non-zero characters in the strings.We refer to the number d as the density of the string. Thus the set of k-ary necklaces withdensity d is represented by Nk(n; d) and has cardinality Nk(n; d). For example N3(4; 2) =f0011,0012,0021,0022,0101,0102,0202g. Similarly, the set of �xed density Lyndon words is rep-resented by Lk(n; d) with cardinality Lk(n; d). The set of �xed density pre-necklaces is denoted byPk(n; d) and has cardinality Pk(n; d). In addition, we introduce the set P0k(n; d) which containsthe elements of Pk(n; d) whose last character is non-zero. Its cardinality is denoted P 0k(n; d).To count �xed density necklaces we let N(n0; n1; � � �nk�1) denote the number of necklacescomposed of ni occurrences of the symbol i, for i = 0; 1; : : : ; k-1. Let the density of the necklaced = n1 + � � �+ nk�1 and n0 = n � d. It is known from Gilbert and Riordan [6] thatN(n0; n1; : : : ; nk�1) = 1n Xjngcd(n0;n1;:::;nk�1)�(j) (n=j)!(n0=j)!(n1=j)! � � �(nk�1=j)! (1)To get the number of �xed density necklaces with length n and density d, we sum over all possible2

procedure Gen (t, p : integer);local j : integer;beginif t > n then PrintIt(p)else beginat := at�p; Gen(t + 1, p);for j 2 fat�p + 1; : : : ; k� 2; k� 1g do beginat := j; Gen(t+ 1, t);end;end;end fof Geng; Figure 1: The recursive necklace algorithm.values of n1; n2; : : : ; nk�1 Nk(n; d) = Xn1+���+nk�1=dN(n0; n1; : : : ; nk�1)The number of �xed density Lyndon words are counted by a similar formula.3 Generating Fixed Density NecklacesWe use a two step approach to develop a fast algorithm for generating �xed density necklaces. Firstwe create a new necklace algorithm based on the recursive necklace generation algorithm Gen(t; p)(Figure 1) [2]. We then optimize this new necklace algorithm for the �xed density case by makinga few key observations about �xed density necklaces.To begin we give a brief overview of Gen(t; p). The general approach of this algorithm is togenerate all length n pre-necklaces. The pre-necklace being generated is stored in the array a; oneposition for each character. We assume that a0 = 0. The initial call is Gen(1,1) and each recursivecall appends a character to the pre-necklace to get a new pre-necklace. At the beginning of eachrecursive call to Gen(t; p), the length of the pre-necklace being generated is t� 1 and the length ofthe longest Lyndon pre�x is p. As long as the length of the current pre-necklace is less than n, eachcall to Gen(t; p) makes one recursive call for each valid value for the next character in the string,updating the values of both t and p in the process. This algorithm can generate necklaces, Lyndonwords or pre-necklaces of length n in lexicographic order by specifying which object we want togenerate. The function PrintIt(p) allow us to di�erentiate between these various objects as shownin Table 1.The computation tree for Gen(t; p) consists of all pre-necklaces of length less than or equal ton. As an example, we show a computation tree for N2(4) in Figure 2. By comparing the number ofnodes in the computation tree to the number of objects generated it was shown that this algorithmis CAT [2].3.1 Modi�ed Necklace AlgorithmFor every necklace of positive density, the last character of the string must be non-zero. Thus,if we are concerned only with generating necklaces or Lyndon words we can reduce the size of3

Sequence type PrintIt(p)Pre-necklaces (Pk(n)) Println(a[1::n])Lyndon words (Lk(n)) if p = n then Println(a[1::n])Necklaces (Nk(n)) if n mod p = 0 then Println(a[1::n])Table 1: Di�erent objects output by di�erent versions of PrintIt.
0000 0001 0010 0011 0101 0110 0111 1111

111011010001000

110100

0 1

Figure 2: Computation Tree for N2(4) from Gen(t; p)the computation tree by compressing all of the pre-necklaces whose last character is 0. Looking atFigure 2, we want to generate only the nodes in bold. This results in the modi�ed computation treeshown in Figure 3. Notice that at each successive level in this tree we are incrementing the densityof the pre-necklace rather than the length. To generate this modi�ed tree we create a recursiveroutine based on the original necklace algorithm in Figure 1; however, rather than determining thevalid values for the next position in the string, we need to determine both the valid positions andthe values for the next non-zero character.To make this change we use the array a to hold the positions of the non-zero characters andmaintain another array b to indicate the values of the non-zero characters. The ith element of thearray a represents the position of the ith non-zero character, and the ith element of the array brepresents the value of the ith non-zero character. Thus if we generate a necklace with length 7with a = [3,4,5,7] and b = [1,3,2,1], the corresponding necklace is 0013201. (We can also maintainthe original necklace structure by performing some extra constant time operations.) Note that inthe binary case, the second array b is not necessary since all non-zero characters must be 1. Weuse the parameter t to indicate the current density of the string. The length of the current stringis at. Since all Lyndon pre�xes end in a non-zero character, we let ap indicate the length of thelongest Lyndon pre�x. Using these two parameters, we can compute all valid positions and valuesfor the next non-zero character.To determine the valid positions and values for the next non-zero character and to maintain thelexicographic ordering we compute the maximum position and the minimum value for that position4

0011 0101

0001 01 1

011 11

1111

1110111

001

Figure 3: Computation Tree for N2(4) from Gen2(t; p)so that the new string still has the pre-necklace property. We compute this maximal position forthe next character using the following expressionb(t+ 1)=pcap + a(t+1) mod p:The minimal value for this position is bp if (t + 1) mod p = 0 and b(t+1) mod p otherwise. By theproperties of pre-necklaces all larger values at the maximal position are also valid [7]. Also, allpositions before the maximum position and greater than the position of the last assigned non-zerocharacter (at) can hold all values ranging from 1 to k� 1. (Note that since we want to generate allnecklaces with length n, we restrict the position to be less than or equal to n.) For each of thesevalid combinations of position and value, we lexicographically assign the position to at+1 and thevalue to bt+1, followed by a recursive call updating both t and p. Finally, if the position of the lastnon-zero element is greater than or equal to n, we call the PrintIt(p) function to print out eitherthe Lyndon words or necklaces in a similar manner to the original algorithm Gen(t; p).This modi�ed algorithm, Gen2(t; p), for generating necklaces is given in Figure 4. Each initialbranch of the computation tree is a result of a separate call to Gen2(t; p), each call specifying adi�erent combination for the position and value of the �rst non-zero character. Note that the 0string is not generated by Gen2 and must be generated separately. The nodes of the resultingcomputation tree for Gen2(t; p) are all pre-necklaces with length less than or equal to n whose lastcharacter is non-zero. Observe that we are not restricted to generating the necklaces in lexicographicorder. Many orders are possible by re-ordering the order of the recursive calls.3.2 Fixed Density Necklace AlgorithmWe now optimize our modi�ed algorithm for the �xed density case by making several observations.First, we restrict the position of the �rst non-zero character depending on the density. In particular,there are no necklaces with density d that can have the �rst non-zero character in a position aftern � d+ 1 or before b(n � 1)=d+ 1c. Also, if we are generating a string with length n and densityd and have just placed the ith non-zero character then the (i+ 1)st non-zero character must comebefore the position n � (d � i) + 2. If we place the next character at or after this position then5

procedure Gen2 (t, p : integer);local i; j;max : integer;beginif at � n then PrintIt(p)else beginmax = (t+ 1)=p � ap + a(t+1) mod p;if max � n then beginat+1 :=max;if (t+ 1) mod p = 0 then bt+1 := bp;else bt+1 := b(t+1) mod p;Gen2 (t+ 1, p);end else beginmax := n; at+1 := n; bt+1 := 1;Gen2 (t+ 1, t + 1);end;for i 2 fbt+1 + 1; : : : ; k� 2; k� 1g do beginbt+1 := i;Gen2 (t+ 1, t + 1);end;for j 2 fmax� 1; max� 2; : : :at + 1g do beginat+1 := j;for i 2 f1; : : : ; k � 2; k� 1g do beginbt+1 := i;Gen2 (t+ 1, t + 1);end; end; end;end fof Gen2g;Figure 4: Modi�ed recursive necklace algorithmany resulting string with length n will have density less than d. Also, because the last non-zerocharacter must be in the nth position, we stop the string generation after placing the (d � 1)stnon-zero character. Thus, the strings generated by following this last restriction are strings withlength less than n and density d � 1. By following this approach, we may generate up to k � 1strings for each call to PrintIt(p) since we can place up to k � 1 characters in the nth position.However, it is not always the case that we will generate all k � 1 strings or even any strings witheach call to PrintIt(p). Thus we add an additional constant time test to see which values can beplaced in the nth position. This test is similar to the test for �nding the maximal valid positionand minimum value for the next non-zero character as outlined in the previous sub-section. Once aminimum value is determined (if there is one at all), we perform the usual tests to determine if thestring is a necklace or a Lyndon word. All larger values for the nth position will result in a stringthat is a Lyndon word [7]. Thus the overall work done in the PrintIt(p) function to determine thevalid strings remains constant for each string generated.In summary, we use our modi�ed necklace algorithm outlined in Figure 4 with the followingoptimizations:1. The �rst non-zero character must be between n� d+ 1 and (n� 1)=d+ 1 inclusive.6

000001 00001 0001 001 01 1

000011 000101 00011 001001 00101 0011

0001101 00100110001011 00101010000111 0011001Figure 5: Computation Tree (solid edges only) for N2(7; 3) from GenFix(t; p)2. The ith non-zero character must be placed at or before the (n� d+ i)th position.3. Stop generating when we have assigned d� 1 non-zero characters.4. Determine valid values for nth position in PrintIt(p) function.The computation tree for generating N2(7; 3) is given in Figure 5. The dotted lines indicatethe initial branches we do not need to follow by modi�cation 1. The arrows indicate the stringsproduced by adding the �nal character to the nth position. The bold strings indicate the actualnecklaces produced by the PrintIt(p) function. The remaining string (0011001) is rejected since itis not a necklace.The algorithm for generating �xed density necklaces and Lyndon words in lexicographic order isgiven in Figure 6. In the binary case we make use of the fact that we can generate binary necklaceswith density d > n=2 by complementing the output from generating necklaces with density n � d.In this case, however, the strings generated are not in lexicographic order and are not necessarilythe lexicographic representatives for their respective equivalence classes.4 Analysis of AlgorithmIn this section we show that GenFix(t; p) is CAT. We start the analysis by analyzing several trivialcases. When the desired density of the string is n the computation tree and strings produced areequivalent to the generation of Nk�1(n) which we already know is CAT. When the density is 0 wesimply generate the 0 string, and when d = 1 we generate the k�1 strings where the last bit rangesfrom 1 to k � 1 and the rest of the string is all 0's. In each case where the density is greater than0 the resulting strings are generated in constant amortized time.For the non-trivial cases we examine the number of nodes in the computation tree, notingthat the amount of work to generate each node is constant. When 1 < d < n, the nodes in thecomputation tree consist only of pre-necklaces that end in a non-zero bit with density i rangingfrom 1 to d� 1 and length ranging from (n� 1)=d+ i to n� d+ i. Recall that P0k(n; d) is the setof pre-necklaces with length n and density d where the last bit is non-zero. Thus, the size of thecomputation tree for our �xed density algorithm (1 < d < n) is bounded by the expression7

procedure GenFix (t, p : integer);local i; j;max; tail : integer;beginif t � d� 1 then PrintIt(p);else begintail := n � (d� t) + 1;max := ((t+ 1)=p) � ap + a(t+1) mod p;if max � tail then beginat+1 :=max;if (t+ 1) mod p = 0 then bt+1 := bp;else bt+1 =: b(t+1) mod p;GenFix(t + 1, p);for i 2 fbt+1 + 1; : : : ; k � 2; k� 1g do beginbt+1 := i;GenFix(t + 1, t+ 1);end;tail := max� 1;end;for j 2 ftail; tail� 1; : : :at + 1g do beginat+1 := j;for i 2 f1; : : : ; k � 2; k� 1g do beginbt+1 := i;GenFix(t + 1, t+ 1);end; end; end;end fof GenFixg;Figure 6: Fixed density necklace algorithmCompTreek(n; d) � d�1Xi=1 n�d+iXj=n�1d +iP 0k(j; i)Recall that we generate binary �xed-density necklaces with density greater than n=2 by generatingN(n; n� d) and complementing the output. Therefore in the case where k = 2 (and only in thiscase) we have the restriction that d is less than or equal to n=2.To prove that our algorithm is e�cient we will show that the ratio between the size of thecomputation tree and the number of strings produced is bounded by a constant. Since there doesnot appear to be a simple explicit formula for P 0k(n; d) our approach will be to derive an upperbound in terms of Nk(n; d) and Lk(n; d).Lemma 1 P 0k(n; d) � Nk(n; d) + Lk(n; d)Proof: Partition P0k(n; d) into two classes: necklaces and non-necklaces. We show the existenceof an injective mapping (proof omitted) from the non-necklaces to Lk(n; d). 28

We can now bound our computation tree as the sum of �xed density necklaces and �xed densityLyndon words: CompTreek(n; d) � d�1Xi=1 n�d+iXj=n�1d +iNk(j; i) + Lk(j; i):However, by plugging the formulas for �xed density necklaces and Lyndon words into the aboveexpression we end up with a complicated quadruple sum. Therefore we will prove two lemmaswhich give simple bounds for �xed density Lyndon words and necklaces.Lemma 2 The following inequality is valid for all 0 � d � n:Lk(n; d) � 1n nd!(k � 1)dProof: Each element of Lk(n; d) is a representative of an equivalence class of k-ary strings, eachwith n elements. If we add up the elements from each equivalence class we will get nLk(n; d)unique strings each of length n and density d. The expression �nd�(k� 1)d counts the total numberof k-ary strings with length n and density d. Therefore Lk(n; d) � 1n�nd�(k� 1)d. 2A similar bound for Nk(n; d) is more di�cult to obtain. Here we bound Nk(n; d) by Lk(n; d).Lemma 3 The following inequality is valid for all 0 < d < n:1n nd!(k � 1)d � Nk(n; d) � 2Lk(n; d)Proof: By considering case when j = 1 in equation (1) and noting that the remaining terms areall non-negative we haveNk(n; d) � 1n Xn1+���+nk�1=d n!(n0!)(n1!) � � �(nk�1!) = 1n nd!(k � 1)dThere exists an injective mapping from the periodic necklaces to Lyndon words of the samelength and density (proof omitted), implying the upper bound Nk(n; d) � 2Lk(n; d). 2We now use the previous lemmas and some basic binomial coe�cient identities to get a simpleupper bound on the size of the computation tree:CompTreek(n; d) � 3 d�1Xi=1 n�d+iXj=1 Lk(j; i)� 3 d�1Xi=1 n�d+iXj=1 1j ji!(k � 1)i= 3 d�2Xi=1 1i n� d+ ii !(k � 1)i + 3d� 1 n� 1d� 1!(k � 1)d�1 (2)9

< 6d� 1 n � 1d� 1!(k� 1)d�1 + 3d� 1 n� 1d� 1!(k � 1)d�1 (3)= 9d� 1 n � 1d� 1!(k� 1)d�1The simpli�cation between equations (2) and (3) is a result of the following lemma. We omit theproof by induction on d.Lemma 4 For either f 1 < d < n and k > 2g or f 1 < d � n=2 and k = 2g the following inequalityis valid: d�2Xi=1 1i n� d+ ii !(k� 1)i < 2d� 1 n � 1d� 1!(k � 1)d�1:Recall that our goal is to prove that the ratio of nodes in the computation tree to the number ofstrings produced is bounded by a constant. From Lemma 3 we have a lower bound on the numberof strings produced Nk(n; d) > 1n nd!(k � 1)d = 1d n� 1d� 1!(k � 1)dThus the ratio of our computation tree to necklaces produced is:CompTreek(n; d)Nk(n; d) < 9 d(d� 1)(k� 1) � 18Experimentally, this constant is less than 3.Theorem 1 Algorithm GenFix for generating �xed density k-ary necklaces is CAT.References[1] J. Berstel and M. Pocchiola, Average cost of Duval's algorithm for generating Lyndon words,Theoretical Computer Science, 132 (1994) 415-425.[2] K. Cattell, F. Ruskey, J. Sawada, C.R. Miers, M. Serra, Generating Unlabeled Necklaces andIrreducible Polynomials over GF(2), manuscript, 1998.[3] J-P. Duval, G�en�eration d'une section des classes de conjugaison et arbre des mots de Lyndonde longueur born�ee, Theoretical Computer Science, 60 (1988) 255-283.[4] H. Fredricksen and I.J. Kessler, An algorithm for generating necklaces of beads in two colors,Discrete Mathematics, 61 (1986) 181-188.[5] H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences,Discrete Mathematics, 23 (1978) 207-210.[6] E.N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Mathematics,5 (1961) 657-665.[7] F. Ruskey, C.D. Savage, and T. Wang, Generating necklaces, J. Algorithms, 13 (1992) 414-430.[8] T.M.Y Wang and C.D. Savage, A Gray code for necklaces of �xed density, SIAM J. DiscreteMath, 9 (1996) 654-673. 10

