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A k-color, n-bead necklace is an equivalence class of k-sty n-tuples under 
rotation. In this paper, we analyze an algorithm due to Fredricksen, Kessler, and 
Maiorana (FKM) to show that necklaces can be generated in constant amortized 
time. We also present a new approach to generating necklaces which we conjecture 
can also be implemented in constant amortized time. The FKM algorithm gener- 
ates a list of n-tuples which includes, among other things, the lexicographically 
smallest element of each k-color, n-bead necklace. Previously it had been shown 
only that the list contains at most O(n . N(k, n)) elements, where N(k, n) is the 
number of k-color, n-bead necklaces, and that successive elements can be gener- 
ated in worst case time O(n), giving a bound of O(n* . N(k, n)) on the time for the 
algorithm. We show that the number of elements generated by the FKM algorithm 
approaches (k/(/c - 1)). N(k, n) and the total time is only O(N(k, n)). A by- 
product of our analysis is a precise characterization of the list generated by FKM, 
which makes a recursive description possible. o 1992 Academic press, I X  

1. INTRODUCTION 

In this paper, we consider the problem of efficiently generating neck- 
laces. A necklace of n beads in k colors is an equivalence class of k-ary 
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n-tuples under rotation. That is, if u denotes the rotation 

then the k-ary n-tuples x and y are in the same equivalence class or 
necklace if and only if C&X) = y for some integer j. 

Let N(k, n) denote the number of n-bead necklaces in k colors. It is 
known that 

(See, e.g., [Ma]>, where 4 is the Euler totient function, so that 

$k”) 5 N(k,n) I ;(k” + (n - l)k”‘*.) (2) 

So, in applications where every rotation of a given k-ary n-tuple repre- 
sents the same phenomenon, it would be more efficient to work with only 
one representative of each necklace, rather than all k” of the n-tuples. A 
necklace is thus identified with its representative. 

A simple and elegant algorithm was proposed in [FrMa] and [FrKe] to 
generate for each necklace the lexicographically smallest element. We will 
refer to this as the FKM algorithm. A disadvantage of the FKM algorithm 
is that there can be gaps in which as many as [(n - 1)/2] non-necklaces 
are examined between any two necklaces generated. For the case k = 2 
the authors of [FrKe] prove an upper bound of l(n - 1)/2jiV(2, n) on the 
number of n-tuples generated and examined by the algorithm. The time 
spent generating and checking each element is O(n), giving an overall 
time for the algorithm of O(n2 * N(2, n)). However, this does not establish 
an asymptotic improvement over the direct approach of generating euery 
k-ary n-tuple and checking each one to see if it is the representative of its 
necklace, at a cost of time O(n) per check. 

In this paper, we present a new analysis of the FKM algorithm to show 
that it can generate all necklaces, for given k and n, in constant amortized 
rime, that is, the total time is O(N(k, n)). Our analysis is based on a new 
characterization of the list of k-ary n-tuples examined by the FKM 
algorithm. This new characterization is used to give a more illuminating 
proof of the algorithm, as well as a recursive description of the number of 
n-tuples examined and the total time required. As a consequence, we show 
that the number of n-tuples is O(N(k, n)) and, in fact, approaches 
(k/(k - 1)) . N(k, n) in the limit. We also show a bound of O(N(k, n)) 
on the total time required to generate all necklaces. Thus, although there 
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can still be gaps of l(n - 1)/2] between successive necklaces generated, 
the aueruge time per necklace is constant. 

We also describe in this paper a new algorithm which generates the 
lexicographically smallest element in each necklace. The number of k-ary 
n-tuples generated and examined by the new algorithm is at most twice 
the total number of necklaces. This algorithm has the advantage that it 
can be implemented so that there is a gap of at most one non-necklace 
examined between any two necklaces generated. However, in the current 
implementation, for each n-tuple examined, time O(n) is spent to check 
whether it is a necklace, i.e., the lexicographically smallest of all of its 
rotations. This gives a total time of O(n * A&k, n)). We conjecture that 
there is a more efficient scheme to handle and/or avoid necklace-testing 
which will admit an O(N(k, n&time implementation. 

In Section 2, we describe the FKM algorithm, prove its correctness, and 
analyze it, based on a new characterization of the n-tuples which it 
examines. In Section 3, we describe our new necklace algorithm, prove 
that it examines no more than twice the number of necklaces, and discuss 
how to implement it to remove gaps. Section 4 contains concluding 
remarks. In the remainder of this section, we introduce notation and 
terms. 

We will regard a k-ary n-tuple, a, as a string over the alphabet 
z.k = IO,. . . ) k - 1). 2: is the set of all length-n strings over Z’k and Z,* is 
the set of all strings (of any length) over Zk, including the empty string A. 
For (Y E C; and 1 I i I n, we use (Y~ to denote the ith symbol of (Y so 
that (Y = (pi . *. (Y,. For (Y, p E C;, CL+ denotes the concatenation of (Y 
and p and for a E Xk, a’ denotes the string of length t in which every 
symbol is a. For C-X, p E C,*, we use C-Y I p (a < /3> to denote that (Y 
precedes (strictly precedes) /3 in lexicographic order, and similarly for L 
and >. 

For the remainder of this paper, we use necklace to denote the 
lexicographically smallest member of an equivalence class of 2; under 
rotation. Formally, 

DEFINITION 1. The string a! E 2; is a necklace if CX~ * . . CX,, I (yi . . * 
alla1 ~**ai-,foralllIi~n. 

2. THE FKM ALGORITHM 

For a given n and k, the FKM algorithm generates a list, F(k, n) 
consisting of a certain subset of 21 in lexicographic order. The list 
FCk, n) begins with the string 0” and ends with (k - 1)“. For a given (Y 
on F(k, n), the successor of (Y, succ(a>, is obtained from (Y as follows. 
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k=2,n=6 

0000 
0001 
0002 
0010 0 
0011 
6012 
0020 0 
0021 

k=3,n=4 

0022 
0101 
0102 
0110 l 

0111 
0112 
0120 0 
0121 

0122 1111 
0202 1112 
0210 0 1121 l 

0211 1122 
0212 1212 
0220 0 1221 l 

0221 1222 
0222 2222 

FIG. 1. The FKM algorithm (read down columns). 

DEFINITION 2. For (Y < (k - l)“, SUC&X> = (cq *. . cyi-i(q + l))‘cr, 
* * . crj, where i is the largest integer 1 I i I n such that q < k - 1 and 
C, j are such that ti + j = n and j < i. 

It is shown in [FrMa] that no necklace can lie strictly between two 
elements of F(k, n), so that all necklaces appear on F(k, n). Thus, 
discarding non-necklaces of F(k, n) would result in a list of all necklaces 
in increasing order. Figure 1 shows examples of lists F(k, n), where 
non-necklaces are indicated by bullets. Figure 2 illustrates how a gap of 
length l(9 - O/21 = 4 can occur between successive necklaces when k = 2 
and n = 9. 

It is claimed in [FrKe] that succ(cy> is a necklace if and only if the “i” of 
Definition 2 is a divisor of n and we prove this in Lemma 3. Incorporating 
this test for necklace-checking, the entire algorithm can be summarized by 
the PASCAL code in Fig. 3. 

In order to analyze the FKM algorithm, we first show how to character- 
ize the elements of F(k, n). This will result in a proof of correctness for 
the algorithm which will allow us to bound the size of the list FCk, n) and 
the total amount of work done. 

DEFINITION 3. The string (Y E 2; is a pre-necklace if ap is a necklace 
for some p E 2:. 
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011101111 
011110111 0 
011111011~ 
011111101. 
011111110 l 

011111111 

FIG. 2. Gaps in the FKM algorithm for k = 2, n = 9. 

FKM Algorithm 

for i := 0 to n do a[il := 0; 
Print(a); 
i := n; 
repeat 

aCi1 := a[il + 1; 
for j := 1 to n-i do a[j+il := a[j]; 
if n mod i = 0 then Print(a); 
i := n; 
while a[i] = k-l do i := i-l; 

until i = 0; 

FIG. 3. The FKM algorithm (note @I = 0). 

We will eventually show, in Theorem 2, that the elements of F(k, n) 
are exactly the pre-necklaces in 2;. 

THEOREM 1 (Characterization of pre-necklaces). a! E 22 is a pre-neck- 
laceifandonlyifui e-0 (Y,,z(Y~ *.a (Y,-~+~ foreveryiwithlsi<n. 

Proo$ If ar is a pre-necklace, then by definition, cup is a necklace for 
some p E S,*. Then for 1 5 i 5 n, 

so cri .* * an 2 cl1 * ‘. a,-i+l. 

On the other hand, if 

(3) 
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for all i: 1 I i I n, we claim that a(k - 1)” is a necklace. Otherwise, for 
some i, 

ffi -* * a,(k - 1)“q **. (YiTl < a(k - 1)“. 

However, by (3) and (41, (Y~ * * 4 (Y, = (Yla,-i+l> that is, 

“j = ffj+i-1 forlljln-i+l. 

(4) 

(5) 

But then to satisfy (41, 

(k - l)‘-l -< Cl!,-i+2 * * * (Y, 

which can hold only if 

crj=k-1 forn-i+2IjIn. (6) 

But (5) and (6) together imply (Y = (k - 1)” which contradicts (4). So, 
dk - 1)” is a necklace and therefore (Y is a pre-necklace. 0 

COROLLARY 1. If (Y E 2; is a pre-necklace, dk - 1) is a pre-necklace. 

Proof For any i: 1 I i I n, if (Y is a pre-necklace, then by Theorem 1, 
(yi *** an 2 a1 * * ’ (Y”-i+l* Therefore, q . * * cr,(k - 1) 2 q *. * 
(Y,++~. Furthermore, the last symbol of dk - 1) is k - 1 which satisfies 
k - 1 2 (Ye, so by Theorem 1, a(k - 1) is a pre-necklace. 0 

DEFINITION 4. The string (Y E Z; is a prime necklace if cq * * 5 (Y, < 
ffi . . ' ana1 **.q-,foralll<iIn. 

LEMMA 1. For (Y E 2; and a,, < k - 1, if (Y is a pre-necklace, then 
a, -** (~,-~(a, + 1) ti a prime necklace. 

proof. Since (Y is a pre-necklace, for any 1 I i < n, 

ai *- * a, 2 a1 *** a,-i+l. 

Thus, 

so that 

which means a, . * * (Y,- &an + 1) is a prime necklace. Cl 
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LEMMA 2. Zf a is a necklace, then (Y’ is a necklace for t 2 1. 

Proof This is clear for t = 1. For t 2 1, any rotation of a’ has the 
form y(~‘-‘p for some y, p E 2,: with LY = By. But since (Y is a necklace, 
YP 2 PY, so 

yd-‘fl = (yp)’ 2 (Py)’ = d 

and (Y’ is a necklace. 0 

LEMMA 3. Zf CY E 2: is a prime necklace and cx = By, for p, y E Xi,*, 
y # A, the empty string, then for any t 2 1, 

(a) a*/3 is a pre-necklace and 

(b) LY’~ is a necklace if and only if IPI = 0. 

Proof. Since CY is a necklace, a’+’ and CY’ are both necklaces by 
Lemma 2. Thus, CX*P is a pre-necklace (since &/3y is a necklace) and, if 
IpI = 0, a necklace. If IpI > 0, then /3y < yP, since CY is prime and, 
therefore, 

Pa’ = P(PY>' < P(YP)' = (PY)'P = d% 

so that a’/3 is not a necklace. 0 

The FKM algorithm, for a given n, generates a list Fbz, k), of strings 
in X2, beginning with 0”. For (Y # (k - 1Y, SUCC((Y), the successor of (Y on 
F(k, n), is described in Definition 2 as 

where i > 0 is the largest integer such that (Y~ < k - 1 and I, j are such 
that ti + j = n and j < i. We can now show the following. 

THEOREM 2. TF(k, n) is a Bt of allpre-necklaces in Xi in lexicographic 
order. 

Proof: We first show by induction that every element of 9Tk, n) is a 
pre-necklace. This is clearly true for the first element, 0”. If pre-necklace 
(Y # (k - 1)” appears on F(k, n), then 

succ( a) = (a1 *. * q-1( cYi + l))‘(Yi . . . aj 

for some j, k, t, where 

a = ( a1 **- cl-1 q(k - l)*-i) 
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and rri < k - 1. Since (Y is a pre-necklace, so is cyi * * * ai-iai, and, 
therefore, ai * - * aiml(ai -t 1) is a prime necklace by Lemma 1. Thus, 
succ(cr) is a pre-necklace by Lemma 3. 

Clearly, (Y < succ(a) for all (Y < (k - 1)” on FCk, n). To show every 
pre-necklace in 2; is on .9Tk, n), suppose p is the lexicographically 
smallest pre-necklace which does not appear on F(k, n). Then p # (k - 
l)“, since (k - 1)” = succ((k - 2Xk - l)“-‘1 and (k - 2Xk - l>“-i 
would be a pre-necklace smaller than p, Thus there must be a pre-neck- 
lace (Y on Y(k, n) such that (Y < p < succ(cu). Let i be the largest integer 
such that ai < k - 1. Then 

and 

SUCC(a) = ((Yl ‘*’ ~i-1(Qi + l))lal, *.’ “j, 

where it + j = n and j < i. Then since a < p < SUCC((Y), px = (Y, for 
1 5 x < i - 1 and pi = ai + 1. So, it is possible to find the largest s 2 1 
such that 

P = (a1 ’ ’ ’ ai_,( (Yi + l))“p for some /3 E 2;. 

If s = t, then P < (~1 * *. ‘Yj. If s I t, Pi * *. Pi < (~1 * * * ai-i(ai + 1). 
In either case, p < p1 * * * pIPI, contradicting that p is a pre-necklace. 0 

We now analyze the FKM algorithm, first by finding the size I 9Tk, n>l 
of the list generated. 

LEMMA 4. For all k and n satisfying k 2 2, n 2 2, 

(N(k,n + 1) - l)/(k - 1) s(F(k,n)j s[SP(k,n - 1)1 +N(k,n). 

Proof. Note that by Theorem 2, each /3 on F(k, n) has the form 
/3=craforsomeaEZkandaon9(k,n-l).Ifa<k-1,byLcmma 
3(b), succ(a> will be a necklace. Thus 

I(ponY(k,n):j?,<k-l}[<N(k,n). (7) 

By Corollary 1, a(k - 1) is on F(k, n) for every (I! on 9Tk, n - 0, so 

I{p on F(k,n): p, = k - l}\ =15r(k,n - l)\. (f-9 

The second inequality claimed in the lemma now follows from (7) and (8). 
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Note that each (Y # 0” on Y(k, n) is a prefix of at most k - 1 
necklaces on 9(k, II + 1) and 0” is the prefix of k necklaces. Thus, 

N(k,n + 1) I (k - l)l9(k,n)l + 1 

and the first inequality of the lemma follows. •I 

If we define I p(k, 0)l = 0, then from the recursion of the second 
inequality in Lemma 4, we obtain 

lY(k,n)I -< iN(k,i). 
i=l 

(9) 

In Theorem 3, we show that 

bW,n)I _ 
,!% N(k,n) 

k 
k-l 

so that, in particular, 1 STk, n>l is OW(k, n)). First a technical lemma is 
needed. 

LEMMA 5. For all k 2 2, 

ProojI An inductive argument shows that 

The left-hand side of (10) has f(j) = n/( jk”-‘1 and thus by the equality 
above, the left-hand side of (10) is equal to 

(n Tj)kj 

= ~~l(p~l:j)~+~~~(ppl:j)(nlj)kj. 
j=O 

To prove the lemma observe that the first term on the right above 
converges to kP/(k - l>P (see [Kn, p. 9011, and we will show that the 
second term converges to zero. First, note that if f 2 C, where C is any 
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constant greater than p/c& - l), then 

423 

(11) 

L&t 

Then 

g(i) k i n-j-l 

s(i + 1) = 
.-. 

j+p n-j ’ 

By (ll), the last two factors are greater than l/G for C < j 5 n - C - 1, 
so g(j) is strictly decreasing on the range C I j I n - C - 1. 

Since g(j) converges to 0 for each fixed j, 

We can now break the sum up into two parts as follows: 

n-c Lfil n-c 
C g(i) = C g(i) + 

j-C j=C 

56 P -l+C i I C 
p - 1 (n - C)kC 

Each of these terms converges to 0. 0 

THEOREM 3. For all k 2 2, 

proof. We bound the ratio I F(k, n)l /N(k, n) from above and below 
by functions which both converge to k/(k - 1). For the upper bound, 
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from (2) and (9), 

and 

N( k, n) 2 k”/n. 

IF(k,n)l I C;al(ki/i) + (k(“+1)‘2 - l)/(k”” + 1) 

N(k,n) k”/n k”/n 

On the right side of the inequality, clearly the second term converges to 0 
and, by Lemma 5, the first term converges to k/(k - 1). 

For the lower bound, from Lemma 4 and (21, 

n+l 

(k - l)IZF(k,n)( 2 N(k,n + 1) - 1 > k - 1. 

From (2) then, 

(k _ 1) Pwn)l (kn+‘/n) - 1 

N(k, n) 2 (k” + (n - l)k”/‘)/n 

and the right-hand side converges to k. This gives the lower bound of 
k/(k - 1) on lim,,, I F(k, n)l/N(k, n). q 

To analyze the time required by the FKM algorithm, note that the work 
done, once the initial string 0” has been generated, consists of 

(i) finding for each (Y on F(k, n) the largest i such that (Y~ < k - 1. 
(ii) copying (or * * . CX- r(cyi + 1) repeatedly into positions i + 

1 , . . . , n to obtain SUCC((Y), and 
(iii) testing whether i divides n to determine whether succ(cu) is a 

necklace by Lemma 3(b). 

We can tabulate the divisors of n at the beginning of the algorithm, so 
the time, for each (Y, to find succ(a) is proportional to n - i + 1. For each 
LY on FCk, n) define 

w(a) = n - i -t 1, 
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where ai < k - 1 but aj = k - 1 for i > i. Note that 

w(a) = 1 if an < k - 1 and w(a(k - 1)) = w(a) + 1. (12) 

The total time for the FKM algorithm for given k and n is bounded by a 
constant times W(k, n), where 

W(b) = c w(a)* 
(Ion 97k,n) 

LEMMA 6. For all k and n satisfying k 2 2, n 2 2, W(k, n) = W(k, n - 
1) + I.Hk,n)l. 

Proof. Every p on Y(k, n) either has the form a(k - 1) for some a 
on ZT(k, n) or has p,, < k - 1, so 

W(k,n) = c w(P) 
/3 on mk, n) 

= c w(a(k - 1)) + c WV% 
&k-l) on FCk, n) /3 on F(k,.); pk<k-l 

By (12) this gives 

W(k,n) = c w(a) 
a(k-1)on FCk,n) 

+ c l+ c 1. 
a(k- 1) on FCk, n) pan .%k,n);pk<k-1 

Since a( k - 1) is on F( k, n) if and only if a is on 9% n - 1) (by 
Corollary 1 and Theorem 2), the first term is W(k, n - 1). The sum of the 
second two terms is just I9Tk, n)l. 0 

If we define W( k, 0) = 0, then from the recurrence of Lemma 6 we have 

W(k,n) = 5 jF(k,i)). 
i=l 

(13) 

The following theorem establishes that the total running time of the FKh4 
algorithm is linear in the number of necklaces. 

THEOREM 4. For any c > (k/(k - l))*, 12 can be chosen large enough 
so that 

W(k,n) I c *N(k,n). 
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Proof: By (13) and (91, 

W(k,n) = : IF(k,i)l I 2 &(k,j). 
i=l i=l jzzl 

So, by (21, 

W(k, n) 
N(k,n) -< 

C:&Jkj/j) 
k”/n 

+ C~==,Cj=,((j - l)/j)kj/’ 
k”/n 

The last term converges to 0 and by Lemma 5, the first term on the 
right-hand side of the inequality converges to (k/(k - 1))‘. 0 

3. A NEW ALGORITHM FOR GENERATING NECKLACES 

In this section, we describe a new algorithm for generating necklaces in 
which the number of strings examined is never more than twice the 
number of necklaces. For simplicity, we focus on the case for two colors, 
but the generalization to k colors is described in detail in [WaSa]. 

Our idea for generating necklaces of two-color beads was inspired by a 
result in [LiHiCa] that a certain variation on the shuffle-exchange graph is 
hamiltonian. (The graph of [LiHiCa] is actually the deBruijn graph, which 
is known to be hamiltonian.) 

When k = 2, the n-tuples are bit strings which we regard as elements of 
(0,l)“. Define a function 7 on (0, 1)” by 

where < denotes the complement of the bit x,. As in Section 1, U(X) 
denotes the rotation of string x one position left. 

In the new algorithm, a tree of necklaces is generated as follows: 
Starting with the string x = 0” as root, we generate as the children of x 
all those necklaces of the form T&(X) for some j satisfying 1 I j I n - 1. 
This procedure is applied recursively to each child of X. We show first that 
every necklace will be generated. 

LEMMA 7. Every n-bead necklace will appear in the tree with root 0”. 

Proof: Let x be an n-bead necklace. We show by induction on t, the 
number of ones in x, that x is in the tree. If t = 0 then x = O”, which is 
the root of the tree. For t > 0, note that x = (~1 for some (Y E (0, l}n-l, 
since x must be the lexicographically smallest in its class. Thus x = ra(Ocr). 
The representative y of the class containing Oa has t - 1 ones, so must be 
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in the tree, by induction. Since Ocll is a rotation of y, x = r&(y), for some 
j, so x will be a child of y in the tree. q 

Although at first glance it would appear that we need to examine every 
string of the form (~1 with this procedure, this is not the case. We show in 
Theorem 5 below that if X, T(X), and (T(X) are not necklaces, then TV(X) 
is not a necklace. It follows for a necklace y # 00. . . 01 that if r&(y) is 
not a necklace for some j, then, r&‘+‘(y) is also not II necklace. 

As a result, from a necklace y, we generate the T&Y), starting with 
j = 1, until the first j is found for which T&(Y) is not a necklace. By 
Theorem 5, we are guaranteed that at this point all children of y have 
been found. An example is given in Fig. 4. 

The proof of Theorem 5 is based on the following lemma. 

LEMMA 8. Ifx = O’lal, where t > 0 and a E {O,l}*, then 

(a) if there are /3, y E (0, 1)” such that a = pO’+‘y then x is not a 
necklace; 

(b) if x is not a necklace, then there are /?, y E (0, l}* such that 
a = p0’y. 

Proof In case (a), the string O’+‘ylO’l/3 is a rotation of x which 
precedes x in lexicographic order. 

In case (b), let ak(x> be a rotation of x with ak(x) <x. Then 
ak(~> = 0’6 for some S E {O,l}’ (with 6 < lal.) Since ak(x> #x, (Y 
must contain 0’ as a contiguous substring. 0 

THEOREM 5. For bitstring x E (0, l}“, if x, T(X), and a(x) are not 
necklaces, then w(x) is not a necklace. 

proof. If x = la, then TU(X) = (~0 which is not a necklace unless 
a = oo... 0, in which case u(x) = 0.. . 01 is a necklace. 

Also, since x is not a necklace, x # 0” and x # O”-‘1, so we may 
assume that either (i) x = O’lal or (ii) x = 0’1~~0 for some t > 0 and 
a E {o,l}*. 

In case (9, since x is not a necklace, by Lemma B(b), (r = PO’y for some 
p, y E {O,l}*. But then MU = O’-‘1~~11. So, by Lemma B(a), TU(X) is 
not a necklace. 

In case (ii), r(x) = O’lal and MU = O’-‘1~~01. Since T(X) is not a 
necklace, application of Lemma 8 shows as in case (i) that MU is not a 
necklace. 0 

We summarize in Fig. 5 the recursive algorithm for generating the 
lexicographically smallest representatives of the n-bread necklaces in two 
colors. Note that by Theorem 5 and as discussed above, while generating 
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00000 

ru(oo111) ru~(00111) 

= 01111 = 11101 
non-neellace 

/ 

70(01111) 
= 11111 

I 

tu(lll11) 
= 11110 
fl0Xl-IIeelltXe 

\ 
ru~(O1111) 
= 11100 
non-necklace 

nqooo1) nqo001) rd(oooo1) 
= 00011 = 00101 = 01001 

non-necklace 

/\ /\ 

ro(oo011) ro2(oo011) 
= 01101 

ra(00101) z0~(00101) 

= 00111 = 01011 = 10101 
non-necklace non-necklace 

/ \ 

FIG. 4. The tree of necklaces for k = 2, n = 5. 

the children of the necklace y in the tree, at most one n-tuple is examined 
which is not a necklace. Thus the total number of n-tuples examined is at 
most 2 . N(2, n). 

A recursive implementation will give rise to gaps in this algorithm: as 
necklaces are implicitly stacked, it could occur that for several consecutive 
necklaces on the stack, the next candidate “child” to be tested turns out to 
be a non-necklace. We can avoid this gap with a nonrecursive implementa- 
tion in which a necklace y is pushed on the stack only after checking that 
x, the next sibling of y to be examined, is actually a necklace. In this case, 
x can be saved on the stack with y to avoid generating and checking x 
twice. 
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!lho Color Necklaces 

procedure Bearch( 
~tPut(Y); 
done := hhzq 
while (not(done)) do 

Y := +); 
2 := T(y); 
if 2 is a necklace then mbrch(z) 

else done := true; 

output(00. - .oo); 
8eareh(OO.. . 01); 

FIG. 5. New algorithm to generate n-bead necklaces in two colors. 

In spite of avoiding gaps, in the current implementation we spend O(n) 
time per string generated to determine whether the string is a necklace. 
This makes the total time for the algorithm O(n * N(k, n)). However, we 
conjecture that necklace-checking could be implemented in amortized 
constant time, for example, by a scheme like the following: At each 
necklace, x, we store information, 1(x, j) which is sufficient for us to 
determine, perhaps in constant time, whether 6) T&V) is a necklace and 
(ii> the information 1(&(x), 1). After the entire subtree of raj(x) has 
been generated and searched recursively, the information at the node x is 
updated to give 1(x, j + 11, based on Z(x, j) and the current information 
at node T&X). 

4. CGNCLUDING REMARKS 

We have defined a new set of objects, called pre-necklaces, as those 
strings which are prefixes of necklaces. We have shown that for given n 
and k, the ratio of the number of n-bead, k-color pre-necklaces to 
necklaces is bounded by a constant and in the limit this ratio is k/(k - 1). 
For given n and k, we showed that the FKM algorithm generates all 
n-bead, k-color necklaces in constant amortized time. 

We have also described a new approach to generating necklaces which 
we conjecture can be implemented in constant amortized time. If so, this 
algorithm could be competitive with the FKM algorithm for k = 2: Al- 
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though in both algorithms the number of strings examined approaches 
2 . N(k, n) when k = 2, the FKM algorithm approaches this limit from 
above, whereas the new algorithm approaches it from below. 

We ask whether it is possible, by any strategy, to generate necMaces in 
worst case constant time? As a variation, is it possible to list necklaces in 
some Gray-code-like order [Gi, Jo, Lu, Ru, Sal? 
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