
GraphBLAS: graph algorithms
in the language of linear algebra

Table of Contents
GraphBLAS: faster and more general sparse matrices for MATLAB .. 1
Sparse integer matrices .. 2
Sparse single-precision matrices .. 2
Mixing MATLAB and GraphBLAS matrices ... 3
Faster matrix operations ... 4
A wide range of semirings .. 4
The max.plus tropical semiring .. 5
A boolean semiring ... 5
GraphBLAS operators, monoids, and semirings .. 7
Element-wise operations ... 10
Subtracting two matrices ... 11
Element-wise 'multiplication' ... 12
Overloaded operators ... 13
Overloaded functions ... 15
Zeros are handled differently ... 16
Displaying contents of a GraphBLAS matrix .. 17
Storing a matrix by row or by column .. 20
Hypersparse matrices ... 22
The mask and accumulator .. 24
The descriptor ... 25
Integer arithmetic is different in GraphBLAS ... 26
An example graph algorithm: breadth-first search ... 27
Example graph algorithm: Luby's method in GraphBLAS ... 27
Sparse deep neural network ... 28
Solving the sparse deep neural network problem with GraphbLAS ... 29
Solving the sparse deep neural network problem with MATLAB ... 29
Extreme performance differences between GraphBLAS and MATLAB. 30
Limitations and their future solutions .. 30
GraphBLAS operations ... 36
List of gb.methods ... 36

GraphBLAS is a library for creating graph algorithms based on sparse linear algebraic operations over semirings. Visit
http://graphblas.org for more details and resources. See also the SuiteSparse:GraphBLAS User Guide in this package.

SuiteSparse:GraphBLAS, (c) 2017-2019, Tim Davis, Texas A&M University, http://faculty.cse.tamu.edu/davis

GraphBLAS: faster and more general sparse
matrices for MATLAB

GraphBLAS is not only useful for creating graph algorithms; it also supports a wide range of sparse matrix
data types and operations. MATLAB can compute C=A*B with just two semirings: 'plus.times.double'
and 'plus.times.complex' for complex matrices. GraphBLAS has 1,040 unique built-in semirings, such as

1

http://graphblas.org
http://faculty.cse.tamu.edu/davis

GraphBLAS: graph algorithms
in the language of linear algebra

'max.plus' (https://en.wikipedia.org/wiki/Tropical_semiring). These semirings can be used to construct a
wide variety of graph algorithms, based on operations on sparse adjacency matrices.

GraphBLAS supports sparse double and single precision matrices, logical, and sparse integer matrices:
int8, int16, int32, int64, uint8, uint16, uint32, and uint64. Complex matrices will be added in the future.

clear all
rng ('default') ;
X = 100 * rand (2) ;
G = gb (X) % GraphBLAS copy of a matrix X, same type

G =

 2x2 GraphBLAS double matrix, standard CSC, 4 entries

 (1,1) 81.4724
 (2,1) 90.5792
 (1,2) 12.6987
 (2,2) 91.3376

Sparse integer matrices
Here's an int8 version of the same matrix:

S = int8 (G) % convert G to a full MATLAB int8 matrix
G = gb (X, 'int8') % a GraphBLAS sparse int8 matrix

S =

 2x2 int8 matrix

 81 12
 90 91

G =

 2x2 GraphBLAS int8_t matrix, standard CSC, 4 entries

 (1,1) 81
 (2,1) 90
 (1,2) 12
 (2,2) 91

Sparse single-precision matrices
Matrix operations in GraphBLAS are typically as fast, or faster than MATLAB. Here's an unfair compar-
ison: computing X^2 with MATLAB in double precision and with GraphBLAS in single precision. You
would naturally expect GraphBLAS to be faster.

2

GraphBLAS: graph algorithms
in the language of linear algebra

Please wait ...

n = 1e5
X = spdiags (rand (n, 201), -100:100, n, n) ;
G = gb (X, 'single') ;
tic
G2 = G^2 ;
gb_time = toc ;
tic
X2 = X^2 ;
matlab_time = toc ;
fprintf ('\nGraphBLAS time: %g sec (in single)\n', gb_time) ;
fprintf ('MATLAB time: %g sec (in double)\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
 matlab_time / gb_time) ;

n =

 100000

GraphBLAS time: 0.532322 sec (in single)
MATLAB time: 9.59964 sec (in double)
Speedup of GraphBLAS over MATLAB: 18.0335

Mixing MATLAB and GraphBLAS matrices
The error in the last computation is about eps('single') since GraphBLAS did its computation in single
precision, while MATLAB used double precision. MATLAB and GraphBLAS matrices can be easily
combined, as in X2-G2. The sparse single precision matrices take less memory space.

err = norm (X2 - G2, 1) / norm (X2,1)
eps ('single')
whos G G2 X X2

err =

 1.5049e-07

ans =

 single

 1.1921e-07

 Name Size Bytes Class Attributes

 G 100000x100000 241879772 gb
 G2 100000x100000 481518572 gb
 X 100000x100000 322238408 double sparse
 X2 100000x100000 641756808 double sparse

3

GraphBLAS: graph algorithms
in the language of linear algebra

Faster matrix operations
But even with standard double precision sparse matrices, GraphBLAS is typically faster than the built-in
MATLAB methods. Here's a fair comparison:

G = gb (X) ;
tic
G2 = G^2 ;
gb_time = toc ;
err = norm (X2 - G2, 1) / norm (X2,1)
fprintf ('\nGraphBLAS time: %g sec (in double)\n', gb_time) ;
fprintf ('MATLAB time: %g sec (in double)\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
 matlab_time / gb_time) ;

err =

 0

GraphBLAS time: 0.543849 sec (in double)
MATLAB time: 9.59964 sec (in double)
Speedup of GraphBLAS over MATLAB: 17.6513

A wide range of semirings
MATLAB can only compute C=A*B using the standard '+.*.double' and '+.*.complex' semirings. A semi-
ring is defined in terms of a string, 'add.mult.type', where 'add' is a monoid that takes the place of the
additive operator, 'mult' is the multiplicative operator, and 'type' is the data type for the two inputs to the
mult operator (the type defaults to the type of A for C=A*B).

In the standard semiring, C=A*B is defined as:

C(i,j) = sum (A(i,:).' .* B(:,j))

using 'plus' as the monoid and 'times' as the multiplicative operator. But in a more general semiring, 'sum'
can be any monoid, which is an associative and commutative operator that has an identity value. For
example, in the 'max.plus' tropical algebra, C(i,j) for C=A*B is defined as:

C(i,j) = max (A(i,:).' + B(:,j))

This can be computed in GraphBLAS with:

C = gb.mxm ('max.+', A, B).

n = 3 ;
A = rand (n) ;
B = rand (n) ;
C = zeros (n) ;
for i = 1:n
 for j = 1:n
 C(i,j) = max (A (i,:).' + B (:,j)) ;

4

GraphBLAS: graph algorithms
in the language of linear algebra

 end
end
C2 = gb.mxm ('max.+', A, B) ;
fprintf ('\nerr = norm (C-C2,1) = %g\n', norm (C-C2,1)) ;

err = norm (C-C2,1) = 0

The max.plus tropical semiring
Here are details of the "max.plus" tropical semiring. The identity value is -inf since max(x,-inf) = max (-
inf,x) = -inf for any x.

gb.semiringinfo ('max.+.double') ;

 GraphBLAS Semiring: max.+.double (built-in)
 GraphBLAS Monoid: semiring->add (built-in)
 GraphBLAS BinaryOp: monoid->op (built-in) z=max(x,y)
 GraphBLAS type: ztype double size: 8
 GraphBLAS type: xtype double size: 8
 GraphBLAS type: ytype double size: 8
 identity: [-inf] terminal: [inf]

 GraphBLAS BinaryOp: semiring->multiply (built-in) z=plus(x,y)
 GraphBLAS type: ztype double size: 8
 GraphBLAS type: xtype double size: 8
 GraphBLAS type: ytype double size: 8

A boolean semiring
MATLAB cannot multiply two logical matrices. MATLAB R2019a converts them to double and uses
the conventional +.*.double semiring instead. In GraphBLAS, this is the common Boolean 'or.and.logical'
semiring, which is widely used in linear algebraic graph algorithms.

gb.semiringinfo ('|.&.logical') ;

 GraphBLAS Semiring: |.&.logical (built-in)
 GraphBLAS Monoid: semiring->add (built-in)
 GraphBLAS BinaryOp: monoid->op (built-in) z=or(x,y)
 GraphBLAS type: ztype bool size: 1
 GraphBLAS type: xtype bool size: 1
 GraphBLAS type: ytype bool size: 1
 identity: [0] terminal: [1]

 GraphBLAS BinaryOp: semiring->multiply (built-in) z=and(x,y)
 GraphBLAS type: ztype bool size: 1
 GraphBLAS type: xtype bool size: 1
 GraphBLAS type: ytype bool size: 1

clear
A = sparse (rand (3) > 0.5)
B = sparse (rand (3) > 0.2)

5

GraphBLAS: graph algorithms
in the language of linear algebra

A =

 3x3 sparse logical array

 (2,1) 1
 (2,2) 1
 (3,2) 1
 (1,3) 1

B =

 3x3 sparse logical array

 (1,1) 1
 (2,1) 1
 (3,1) 1
 (1,2) 1
 (2,2) 1
 (3,2) 1
 (1,3) 1
 (2,3) 1
 (3,3) 1

try
 % MATLAB R2019a does this by casting A and B to double
 C1 = A*B
catch
 % MATLAB R2018a throws an error
 fprintf ('MATLAB R2019a required for C=A*B with logical\n') ;
 fprintf ('matrices. Explicitly converting to double:\n') ;
 C1 = double (A) * double (B)
end
C2 = gb (A) * gb (B)

MATLAB R2019a required for C=A*B with logical
matrices. Explicitly converting to double:

C1 =

 (1,1) 1
 (2,1) 2
 (3,1) 1
 (1,2) 1
 (2,2) 2
 (3,2) 1
 (1,3) 1
 (2,3) 2
 (3,3) 1

C2 =

6

GraphBLAS: graph algorithms
in the language of linear algebra

 3x3 GraphBLAS bool matrix, standard CSC, 9 entries

 (1,1) 1
 (2,1) 1
 (3,1) 1
 (1,2) 1
 (2,2) 1
 (3,2) 1
 (1,3) 1
 (2,3) 1
 (3,3) 1

Note that C1 is a MATLAB sparse double matrix, and contains non-binary values. C2 is a GraphBLAS
logical matrix.

whos
gb.type (C2)

 Name Size Bytes Class Attributes

 A 3x3 68 logical sparse
 B 3x3 113 logical sparse
 C1 3x3 176 double sparse
 C2 3x3 1079 gb

ans =

 'logical'

GraphBLAS operators, monoids, and semi-
rings

The C interface for SuiteSparse:GraphBLAS allows for arbitrary types and operators to be constructed.
However, the MATLAB interface to SuiteSparse:GraphBLAS is restricted to pre-defined types and oper-
ators: a mere 11 types, 66 unary operators, 275 binary operators, 44 monoids, 16 select operators, and
1,865 semirings (1,040 of which are unique, since some binary operators are equivalent: 'min.logical' and
'&.logical' are the same thing, for example). The complex type and its binary operators, monoids, and
semirings will be added in the near future.

That gives you a lot of tools to create all kinds of interesting graph algorithms. In this GraphBLAS/demo
folder are three of them:

bfs_gb % breadth-first search
dnn_gb % sparse deep neural network (http://graphchallenge.org)
mis_gb % maximal independent set

See 'help gb.binopinfo' for a list of the binary operators, and 'help gb.monoidinfo' for the ones that can be
used as the additive monoid in a semiring.

help gb.binopinfo

7

GraphBLAS: graph algorithms
in the language of linear algebra

 GB.BINOPINFO list the details of a GraphBLAS binary operator

 Usage

 gb.binopinfo
 gb.binopinfo (op)
 gb.binopinfo (op, type)

 For gb.binopinfo(op), the op must be a string of the form
 'op.type', where 'op' is listed below. The second usage allows the
 type to be omitted from the first argument, as just 'op'. This is
 valid for all GraphBLAS operations, since the type defaults to the
 type of the input matrices. However, gb.binopinfo does not have a
 default type and thus one must be provided, either in the op as
 gb.binopinfo ('+.double'), or in the second argument, gb.binopinfo
 ('+', 'double').

 The MATLAB interface to GraphBLAS provides for 25 different binary
 operators, each of which may be used with any of the 11 types, for
 a total of 25*11 = 275 valid binary operators. Binary operators
 are defined by a string of the form 'op.type', or just 'op'. In
 the latter case, the type defaults to the type of the matrix inputs
 to the GraphBLAS operation.

 The 6 comparator operators come in two flavors. For the is*
 operators, the result has the same type as the inputs, x and y,
 with 1 for true and 0 for false. For example isgt.double (pi, 3.0)
 is the double value 1.0. For the second set of 6 operators (eq,
 ne, gt, lt, ge, le), the result is always logical (true or false).
 In a semiring, the type of the add monoid must exactly match the
 type of the output of the multiply operator, and thus
 'plus.iseq.double' is valid (counting how many terms are equal).
 The 'plus.eq.double' semiring is valid, but not the same semiring
 since the 'plus' of 'plus.eq.double' has a logical type and is thus
 equivalent to 'or.eq.double'. The 'or.eq' is true if any terms
 are equal and false otherwise (it does not count the number of
 terms that are equal).

 The following binary operators are available. Many have equivalent
 synonyms, so that '1st' and 'first' both define the first(x,y) = x
 operator.

 operator name(s) f(x,y) | operator names(s) f(x,y)
 ---------------- ------ | ----------------- ------
 1st first x | iseq x == y
 2nd second y | isne x ~= y
 min min(x,y) | isgt x > y
 max max(x,y) | islt x < y
 + plus x+y | isge x >= y
 - minus x-y | isle x <= y
 rminus y-x | == eq x == y
 * times x*y | ~= ne x ~= y
 / div x/y | > gt x > y
 \ rdiv y/x | < lt x < y

8

GraphBLAS: graph algorithms
in the language of linear algebra

 | || or lor x | y | >= ge x >= y
 & && and land x & y | <= le x <= y
 xor lxor xor(x,y) |

 The three logical operators, lor, land, and lxor, also come in 11
 types. z = lor.double (x,y) tests the condition (x~=0) || (y~=0),
 and returns the double value 1.0 if true, or 0.0 if false.

 Example:

 % valid binary operators
 gb.binopinfo ('+.double') ;
 gb.binopinfo ('1st.int32') ;

 % invalid binary operator (an error; this is a unary op):
 gb.binopinfo ('abs.double') ;

 gb.binopinfo generates an error for an invalid op, so user code can
 test the validity of an op with the MATLAB try/catch mechanism.

 See also gb, gb.unopinfo, gb.semiringinfo, gb.descriptorinfo.

help gb.monoidinfo

 GB.MONOIDINFO list the details of a GraphBLAS monoid

 Usage

 gb.monoidinfo
 gb.monoidinfo (monoid)
 gb.monoidinfo (monoid, type)

 For gb.monoidinfo(op), the op must be a string of the form
 'op.type', where 'op' is listed below. The second usage allows the
 type to be omitted from the first argument, as just 'op'. This is
 valid for all GraphBLAS operations, since the type defaults to the
 type of the input matrices. However, gb.monoidinfo does not have a
 default type and thus one must be provided, either in the op as
 gb.monoidinfo ('+.double'), or in the second argument,
 gb.monoidinfo ('+', 'double').

 The MATLAB interface to GraphBLAS provides for 44 different
 monoids. The valid monoids are: '+', '*', 'max', and 'min' for all
 but the 'logical' type, and '|', '&', 'xor', and 'ne' for the
 'logical' type.

 Example:

 % valid monoids
 gb.monoidinfo ('+.double') ;
 gb.monoidinfo ('*.int32') ;

 % invalid monoids

9

GraphBLAS: graph algorithms
in the language of linear algebra

 gb.monoidinfo ('1st.int32') ;
 gb.monoidinfo ('abs.double') ;

 gb.monoidinfo generates an error for an invalid monoid, so user
 code can test the validity of an op with the MATLAB try/catch
 mechanism.

 See also gb.unopinfo, gb.binopinfo, gb.semiringinfo,
 gb.descriptorinfo.

Element-wise operations
Binary operators can be used in element-wise matrix operations, like C=A+B and C=A.*B. For the matrix
addition C=A+B, the pattern of C is the set union of A and B, and the '+' operator is applied for entries in
the intersection. Entries in A but not B, or in B but not A, are assigned to C without using the operator.
The '+' operator is used for C=A+B but any operator can be used with gb.eadd.

A = gb (sprand (3, 3, 0.5)) ;
B = gb (sprand (3, 3, 0.5)) ;
C1 = A + B
C2 = gb.eadd ('+', A, B)
C1-C2

C1 =

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) 0.666139
 (3,1) 0.735859
 (1,2) 1.47841
 (2,2) 0.146938
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

C2 =

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) 0.666139
 (3,1) 0.735859
 (1,2) 1.47841
 (2,2) 0.146938
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

ans =

10

GraphBLAS: graph algorithms
in the language of linear algebra

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) 0
 (3,1) 0
 (1,2) 0
 (2,2) 0
 (3,2) 0
 (2,3) 0
 (3,3) 0

Subtracting two matrices
A-B and gb.eadd ('-', A, B) are not the same thing, since the '-' operator is not applied to an entry that is
in B but not A.

C1 = A-B
C2 = gb.eadd ('-', A, B)

C1 =

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) -0.666139
 (3,1) -0.735859
 (1,2) -0.334348
 (2,2) -0.146938
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

C2 =

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) 0.666139
 (3,1) 0.735859
 (1,2) -0.334348
 (2,2) 0.146938
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

But these give the same result

C1 = A-B
C2 = gb.eadd ('+', A, gb.apply ('-', B))
C1-C2

C1 =

11

GraphBLAS: graph algorithms
in the language of linear algebra

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) -0.666139
 (3,1) -0.735859
 (1,2) -0.334348
 (2,2) -0.146938
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

C2 =

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) -0.666139
 (3,1) -0.735859
 (1,2) -0.334348
 (2,2) -0.146938
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

ans =

 3x3 GraphBLAS double matrix, standard CSC, 7 entries

 (1,1) 0
 (3,1) 0
 (1,2) 0
 (2,2) 0
 (3,2) 0
 (2,3) 0
 (3,3) 0

Element-wise 'multiplication'
For C = A.*B, the result C is the set intersection of the pattern of A and B. The operator is applied to
entries in both A and B. Entries in A but not B, or B but not A, do not appear in the result C.

C1 = A.*B
C2 = gb.emult ('*', A, B)
C3 = double (A) .* double (B)

C1 =

 3x3 GraphBLAS double matrix, standard CSC, 1 entries

 (1,2) 0.518474

12

GraphBLAS: graph algorithms
in the language of linear algebra

C2 =

 3x3 GraphBLAS double matrix, standard CSC, 1 entries

 (1,2) 0.518474

C3 =

 (1,2) 0.5185

Just as in gb.eadd, any operator can be used in gb.emult:

A
B
C2 = gb.emult ('max', A, B)

A =

 3x3 GraphBLAS double matrix, standard CSC, 4 entries

 (1,2) 0.572029
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

B =

 3x3 GraphBLAS double matrix, standard CSC, 4 entries

 (1,1) 0.666139
 (3,1) 0.735859
 (1,2) 0.906378
 (2,2) 0.146938

C2 =

 3x3 GraphBLAS double matrix, standard CSC, 1 entries

 (1,2) 0.906378

Overloaded operators
The following operators all work as you would expect for any matrix. The matrices A and B can be Graph-
BLAS matrices, or MATLAB sparse or dense matrices, in any combination, or scalars where appropriate:

 A+B A-B A*B A.*B A./B A.\B A.^b A/b C=A(I,J)
 -A +A ~A A' A.' A&B A|B b\A C(I,J)=A

13

GraphBLAS: graph algorithms
in the language of linear algebra

 A~=B A>B A==B A<=B A>=B A<B [A,B] [A;B]
 A(1:end,1:end)

For A^b, b must be a non-negative integer.

A
B
C1 = [A B]
C2 = [double(A) double(B)] ;
assert (isequal (double (C1), C2))
C1 = A^2
C2 = double (A)^2 ;
assert (isequal (double (C1), C2))
C1 = A (1:2,2:end)
A = double (A) ;
C2 = A (1:2,2:end) ;
assert (isequal (double (C1), C2))

A =

 3x3 GraphBLAS double matrix, standard CSC, 4 entries

 (1,2) 0.572029
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226

B =

 3x3 GraphBLAS double matrix, standard CSC, 4 entries

 (1,1) 0.666139
 (3,1) 0.735859
 (1,2) 0.906378
 (2,2) 0.146938

C1 =

 3x6 GraphBLAS double matrix, standard CSC, 8 entries

 (1,2) 0.572029
 (3,2) 0.566879
 (2,3) 0.248635
 (3,3) 0.104226
 (1,4) 0.666139
 (3,4) 0.735859
 (1,5) 0.906378
 (2,5) 0.146938

C1 =

14

GraphBLAS: graph algorithms
in the language of linear algebra

 3x3 GraphBLAS double matrix, standard CSC, 5 entries

 (2,2) 0.140946
 (3,2) 0.0590838
 (1,3) 0.142227
 (2,3) 0.0259144
 (3,3) 0.151809

C1 =

 2x2 GraphBLAS double matrix, standard CSC, 2 entries

 (1,1) 0.572029
 (2,2) 0.248635

Overloaded functions
Many MATLAB built-in functions can be used with GraphBLAS matrices:

A few differences with the built-in functions:

S = sparse (G) % makes a copy of a gb matrix
F = full (G) % adds explicit zeros, so numel(F)==nnz(F)
F = full (G,id) % adds explicit identity values to a gb matrix
disp (G, level) % display a gb matrix G; level=2 is the default.
e = nnz (G) % # of entries in a gb matrix G; some can be zero
X = nonzeros (G) % all the entries of G; some can be zero

In the list below, the first set of Methods are overloaded built-in methods. They are used as-is on Graph-
BLAS matrices, such as C=abs(G). The Static methods are prefixed with "gb.", as in C = gb.apply (...).

methods gb

Methods for class gb:

abs horzcat le single
all int16 length size
amd int32 logical sparse
and int64 lt spfun
any int8 max spones
bandwidth isa min sqrt
ceil isbanded minus subsasgn
colamd isdiag mldivide subsindex
complex isempty mpower subsref
conj isfinite mrdivide sum
ctranspose isfloat mtimes symamd
diag ishermitian ne symrcm
disp isinf nnz times
display isinteger nonzeros transpose
dmperm islogical norm tril

15

GraphBLAS: graph algorithms
in the language of linear algebra

double ismatrix not triu
eig isnan numel uint16
end isnumeric nzmax uint32
eps isreal or uint64
eq isscalar plus uint8
find issparse power uminus
fix issymmetric prod uplus
floor istril rdivide vertcat
full istriu real
gb isvector repmat
ge kron round
gt ldivide sign

Static methods:

apply empty gbtranspose subassign
assign emult monoidinfo threads
binopinfo expand mxm type
build extract nvals unopinfo
chunk extracttuples reduce vreduce
clear eye select
descriptorinfo format semiringinfo
eadd gbkron speye

Zeros are handled differently
Explicit zeros cannot be automatically dropped from a GraphBLAS matrix, like they are in MATLAB
sparse matrices. In a shortest-path problem, for example, an edge A(i,j) that is missing has an infinite
weight, (the monoid identity of min(x,y) is +inf). A zero edge weight A(i,j)=0 is very different from an
entry that is not present in A. However, if a GraphBLAS matrix is converted into a MATLAB sparse
matrix, explicit zeros are dropped, which is the convention for a MATLAB sparse matrix. They can also
be dropped from a GraphBLAS matrix using the gb.select method.

G = gb (magic (3)) ;
G (1,1) = 0 % G(1,1) still appears as an explicit entry
A = double (G) % but it's dropped when converted to MATLAB sparse
H = gb.select ('nonzero', G) % drops the explicit zeros from G
fprintf ('nnz (G): %d nnz (A): %g nnz (H): %g\n', ...
 nnz (G), nnz (A), nnz (H)) ;

G =

 3x3 GraphBLAS double matrix, standard CSC, 9 entries

 (1,1) 0
 (2,1) 3
 (3,1) 4
 (1,2) 1
 (2,2) 5
 (3,2) 9
 (1,3) 6
 (2,3) 7

16

GraphBLAS: graph algorithms
in the language of linear algebra

 (3,3) 2

A =

 (2,1) 3
 (3,1) 4
 (1,2) 1
 (2,2) 5
 (3,2) 9
 (1,3) 6
 (2,3) 7
 (3,3) 2

H =

 3x3 GraphBLAS double matrix, standard CSC, 8 entries

 (2,1) 3
 (3,1) 4
 (1,2) 1
 (2,2) 5
 (3,2) 9
 (1,3) 6
 (2,3) 7
 (3,3) 2

nnz (G): 9 nnz (A): 8 nnz (H): 8

Displaying contents of a GraphBLAS matrix
Unlike MATLAB, the default is to display just a few entries of a gb matrix. Here are all 100 entries of a
10-by-10 matrix, using a non-default disp(G,3):

G = gb (rand (10)) ;
% display everything:
disp (G,3)

G =

 10x10 GraphBLAS double matrix, standard CSC, 100 entries

 (1,1) 0.0342763
 (2,1) 0.17802
 (3,1) 0.887592
 (4,1) 0.889828
 (5,1) 0.769149
 (6,1) 0.00497062
 (7,1) 0.735693
 (8,1) 0.488349
 (9,1) 0.332817
 (10,1) 0.0273313

17

GraphBLAS: graph algorithms
in the language of linear algebra

 (1,2) 0.467212
 (2,2) 0.796714
 (3,2) 0.849463
 (4,2) 0.965361
 (5,2) 0.902248
 (6,2) 0.0363252
 (7,2) 0.708068
 (8,2) 0.322919
 (9,2) 0.700716
 (10,2) 0.472957
 (1,3) 0.204363
 (2,3) 0.00931977
 (3,3) 0.565881
 (4,3) 0.183435
 (5,3) 0.00843818
 (6,3) 0.284938
 (7,3) 0.706156
 (8,3) 0.909475
 (9,3) 0.84868
 (10,3) 0.564605
 (1,4) 0.075183
 (2,4) 0.535293
 (3,4) 0.072324
 (4,4) 0.515373
 (5,4) 0.926149
 (6,4) 0.949252
 (7,4) 0.0478888
 (8,4) 0.523767
 (9,4) 0.167203
 (10,4) 0.28341
 (1,5) 0.122669
 (2,5) 0.441267
 (3,5) 0.157113
 (4,5) 0.302479
 (5,5) 0.758486
 (6,5) 0.910563
 (7,5) 0.0246916
 (8,5) 0.232421
 (9,5) 0.38018
 (10,5) 0.677531
 (1,6) 0.869074
 (2,6) 0.471459
 (3,6) 0.624929
 (4,6) 0.987186
 (5,6) 0.282885
 (6,6) 0.843833
 (7,6) 0.869597
 (8,6) 0.308209
 (9,6) 0.201332
 (10,6) 0.706603
 (1,7) 0.563222
 (2,7) 0.575795
 (3,7) 0.056376
 (4,7) 0.73412

18

GraphBLAS: graph algorithms
in the language of linear algebra

 (5,7) 0.608022
 (6,7) 0.0400164
 (7,7) 0.540801
 (8,7) 0.023064
 (9,7) 0.165682
 (10,7) 0.250393
 (1,8) 0.23865
 (2,8) 0.232033
 (3,8) 0.303191
 (4,8) 0.579934
 (5,8) 0.267751
 (6,8) 0.916376
 (7,8) 0.833499
 (8,8) 0.978692
 (9,8) 0.734445
 (10,8) 0.102896
 (1,9) 0.353059
 (2,9) 0.738955
 (3,9) 0.57539
 (4,9) 0.751433
 (5,9) 0.93256
 (6,9) 0.281622
 (7,9) 0.51302
 (8,9) 0.24406
 (9,9) 0.950086
 (10,9) 0.303638
 (1,10) 0.563593
 (2,10) 0.705101
 (3,10) 0.0604146
 (4,10) 0.672065
 (5,10) 0.359793
 (6,10) 0.62931
 (7,10) 0.977758
 (8,10) 0.394328
 (9,10) 0.765651
 (10,10) 0.457809

That was disp(G,3), so every entry was printed. It's a little long, so the default is not to print everything.

With the default display (level = 2):

G

G =

 10x10 GraphBLAS double matrix, standard CSC, 100 entries

 (1,1) 0.0342763
 (2,1) 0.17802
 (3,1) 0.887592
 (4,1) 0.889828
 (5,1) 0.769149

19

GraphBLAS: graph algorithms
in the language of linear algebra

 (6,1) 0.00497062
 (7,1) 0.735693
 (8,1) 0.488349
 (9,1) 0.332817
 (10,1) 0.0273313
 (1,2) 0.467212
 (2,2) 0.796714
 (3,2) 0.849463
 (4,2) 0.965361
 (5,2) 0.902248
 (6,2) 0.0363252
 (7,2) 0.708068
 (8,2) 0.322919
 (9,2) 0.700716
 (10,2) 0.472957
 (1,3) 0.204363
 (2,3) 0.00931977
 (3,3) 0.565881
 (4,3) 0.183435
 (5,3) 0.00843818
 (6,3) 0.284938
 (7,3) 0.706156
 (8,3) 0.909475
 (9,3) 0.84868
 (10,3) 0.564605
 ...

That was disp(G,2) or just display(G), which is what is printed by a MATLAB statement that doesn't have
a trailing semicolon. With level = 1, disp(G,1) gives just a terse summary:

disp (G,1)

G =

 10x10 GraphBLAS double matrix, standard CSC, 100 entries

Storing a matrix by row or by column
MATLAB stores its sparse matrices by column, refered to as 'standard CSC' in SuiteSparse:GraphBLAS.
In the CSC (compressed sparse column) format, each column of the matrix is stored as a list of entries,
with their value and row index. In the CSR (compressed sparse row) format, each row is stored as a list
of values and their column indices. GraphBLAS uses both CSC and CSR, and the two formats can be
intermixed arbitrarily. In its C interface, the default format is CSR. However, for better compatibility with
MATLAB, this MATLAB interface for SuiteSparse:GraphBLAS uses CSC by default instead.

rng ('default') ;
gb.clear ; % clear all prior GraphBLAS settings
default_format_is = gb.format
C = sparse (rand (2))
G = gb (C)

20

GraphBLAS: graph algorithms
in the language of linear algebra

gb.format (G)

default_format_is =

 'by col'

C =

 (1,1) 0.8147
 (2,1) 0.9058
 (1,2) 0.1270
 (2,2) 0.9134

G =

 2x2 GraphBLAS double matrix, standard CSC, 4 entries

 (1,1) 0.814724
 (2,1) 0.905792
 (1,2) 0.126987
 (2,2) 0.913376

ans =

 'by col'

Many graph algorithms work better in CSR format, with matrices stored by row. For example, it is common
to use A(i,j) for the edge (i,j), and many graph algorithms need to access the out-adjacencies of nodes,
which is the row A(i,;) for node i. If the CSR format is desired, gb.format ('by row') tells GraphBLAS to
create all subsequent matrices in the CSR format. Converting from a MATLAB sparse matrix (in standard
CSC format) takes a little more time (requiring a transpose), but subsequent graph algorithms can be faster.

gb.format ('by row') ;
default_format_is = gb.format
G = gb (C)
The_format_for_G_is = gb.format (G)
default_format_is_now_back_to = gb.format ('by col')
H = gb (C)
The_format_for_H_is = gb.format (H)
But_G_is_still = gb.format (G)
err = norm (H-G,1)

default_format_is =

 'by col'

G =

21

GraphBLAS: graph algorithms
in the language of linear algebra

 2x2 GraphBLAS double matrix, standard CSR, 4 entries

 (1,1) 0.814724
 (1,2) 0.126987
 (2,1) 0.905792
 (2,2) 0.913376

The_format_for_G_is =

 'by row'

default_format_is_now_back_to =

 'by col'

H =

 2x2 GraphBLAS double matrix, standard CSC, 4 entries

 (1,1) 0.814724
 (2,1) 0.905792
 (1,2) 0.126987
 (2,2) 0.913376

The_format_for_H_is =

 'by col'

But_G_is_still =

 'by row'

err =

 0

Hypersparse matrices
SuiteSparse:GraphBLAS can use two kinds of sparse matrix data structures: standard and hypersparse, for
both CSC and CSR formats. In the standard CSC format used in MATLAB, an m-by-n matrix A takes O(n
+nnz(A)) space. MATLAB can create huge column vectors, but not huge matrices (when n is huge).

clear all
[c, huge] = computer ;
C = sparse (huge, 1) % MATLAB can create a huge-by-1 sparse column
try

22

GraphBLAS: graph algorithms
in the language of linear algebra

 C = sparse (huge, huge) % but this fails
catch me
 error_expected = me
end

C =

 All zero sparse: 281474976710655x1

error_expected =

 MException with properties:

 identifier: 'MATLAB:array:SizeLimitExceeded'
 message: 'Requested 281474976710655x281474976710655
 (2097152.0GB) array exceeds maximum array size preference. Creation
 of arrays greater than this limit may take a long time and cause
 MATLAB to become unresponsive. See <a href="matlab: helpview([docroot
 '/matlab/helptargets.map'], 'matlab_env_workspace_prefs')">array size
 limit or preference panel for more information.'
 cause: {0x1 cell}
 stack: [4x1 struct]

In a GraphBLAS hypersparse matrix, an m-by-n matrix A takes only O(nnz(A)) space. The difference can
be huge if nnz (A) << n.

G = gb (huge, 1) % no problem for GraphBLAS
H = gb (huge, huge) % this works in GraphBLAS too

G =

 281474976710655x1 GraphBLAS double matrix, standard CSC, 0 entries

H =

 281474976710655x281474976710655 GraphBLAS double matrix,
 hypersparse CSC, 0 entries

Operations on huge hypersparse matrices are very fast; no component of the time or space complexity
is Omega(n).

I = randperm (huge, 2) ;
J = randperm (huge, 2) ;
H (I,J) = 42 ; % add 4 nonzeros to random locations in H
H = (H' * 2) ; % transpose H and double the entries
K = gb.expand (pi, H) ; % K = pi * spones (H)
H = H + K % add pi to each entry in H
numel (H) % this is huge^2, a really big number

23

GraphBLAS: graph algorithms
in the language of linear algebra

H =

 281474976710655x281474976710655 GraphBLAS double matrix,
 hypersparse CSC, 4 entries

 (78390279669562,27455183225557) 87.1416
 (153933462881710,27455183225557) 87.1416
 (78390279669562,177993304104065) 87.1416
 (153933462881710,177993304104065) 87.1416

ans =

 7.9228e+28

All of these matrices take very little memory space:

whos C G H K

 Name Size Bytes Class
 Attributes

 C 281474976710655x1 32 double
 sparse
 G 281474976710655x1 989 gb

 H 281474976710655x281474976710655 1244 gb

 K 281474976710655x281474976710655 1244 gb

The mask and accumulator
When not used in overloaded operators or built-in functions, many GraphBLAS methods of the form
gb.method (...) can optionally use a mask and/or an accumulator operator. If the accumulator is '+' in
gb.mxm, for example, then C = C + A*B is computed. The mask acts much like logical indexing in MAT-
LAB. With a logical mask matrix M, C<M>=A*B allows only part of C to be assigned. If M(i,j) is true,
then C(i,j) can be modified. If false, then C(i,j) is not modified.

For example, to set all values in C that are greater than 0.5 to 3, use:

C = rand (3)
C1 = gb.assign (C, C > 0.5, 3) % in GraphBLAS
C (C > .5) = 3 % in MATLAB
err = norm (C - C1, 1)

C =

 0.9575 0.9706 0.8003
 0.9649 0.9572 0.1419
 0.1576 0.4854 0.4218

24

GraphBLAS: graph algorithms
in the language of linear algebra

C1 =

 3x3 GraphBLAS double matrix, standard CSC, 9 entries

 (1,1) 3
 (2,1) 3
 (3,1) 0.157613
 (1,2) 3
 (2,2) 3
 (3,2) 0.485376
 (1,3) 3
 (2,3) 0.141886
 (3,3) 0.421761

C =

 3.0000 3.0000 3.0000
 3.0000 3.0000 0.1419
 0.1576 0.4854 0.4218

err =

 0

The descriptor
Most GraphBLAS functions of the form gb.method (...) take an optional last argument, called the de-
scriptor. It is a MATLAB struct that can modify the computations performed by the method. 'help gb.de-
scriptorinfo' gives all the details. The following is a short summary of the primary settings:

d.out = 'default' or 'replace', clears C after the accum op is used.

d.mask = 'default' or 'complement', to use M or ~M as the mask matrix.

d.in0 = 'default' or 'transpose', to transpose A for C=A*B, C=A+B, etc.

d.in1 = 'default' or 'transpose', to transpose B for C=A*B, C=A+B, etc.

d.kind = 'default', 'gb', 'sparse', or 'full'; the output of gb.method.

A = sparse (rand (2)) ;
B = sparse (rand (2)) ;
C1 = A'*B ;
C2 = gb.mxm ('+.*', A, B, struct ('in0', 'transpose')) ;
err = norm (C1-C2,1)

err =

25

GraphBLAS: graph algorithms
in the language of linear algebra

 0

Integer arithmetic is different in GraphBLAS
MATLAB supports integer arithmetic on its full matrices, using int8, int16, int32, int64, uint8, uint16,
uint32, or uint64 data types. None of these integer data types can be used to construct a MATLAB sparse
matrix, which can only be double, double complex, or logical. Furthermore, C=A*B is not defined for
integer types in MATLAB, except when A and/or B are scalars.

GraphBLAS supports all of those types for its sparse matrices (except for complex, which will be added
in the future). All operations are supported, including C=A*B when A or B are any integer type, for all
1,865 semirings (1,040 of which are unique).

However, integer arithmetic differs in GraphBLAS and MATLAB. In MATLAB, integer values saturate
if they exceed their maximum value. In GraphBLAS, integer operators act in a modular fashion. The latter
is essential when computing C=A*B over a semiring. A saturating integer operator cannot be used as a
monoid since it is not associative.

The C API for GraphBLAS allows for the creation of arbitrary user-defined types, so it would be possible
to create different binary operators to allow element-wise integer operations to saturate, perhaps:

C = gb.eadd('+saturate',A,B)

This would require an extension to this MATLAB interface.

C = uint8 (magic (3)) ;
G = gb (C) ;
C1 = C * 40
C2 = G * 40
C3 = double (G) * 40 ;
S = double (C1 < 255) ;
assert (isequal (double (C1).*S, double (C2).*S))
assert (isequal (nonzeros (C2), double (mod (nonzeros (C3), 256))))

C1 =

 3x3 uint8 matrix

 255 40 240
 120 200 255
 160 255 80

C2 =

 3x3 GraphBLAS uint8_t matrix, standard CSC, 9 entries

 (1,1) 64
 (2,1) 120
 (3,1) 160
 (1,2) 40
 (2,2) 200
 (3,2) 104

26

GraphBLAS: graph algorithms
in the language of linear algebra

 (1,3) 240
 (2,3) 24
 (3,3) 80

An example graph algorithm: breadth-first
search

The breadth-first search of a graph finds all nodes reachable from the source node, and their level, v.
v=bfs_gb(A,s) or v=bfs_matlab(A,s) compute the same thing, but bfs_gb uses GraphBLAS matrices and
operations, while bfs_matlab uses pure MATLAB operations. v is defined as v(s) = 1 for the source node,
v(i) = 2 for nodes adjacent to the source, and so on.

clear all
rng ('default') ;
n = 1e5 ;
A = logical (sprandn (n, n, 1e-3)) ;

tic
v1 = bfs_gb (A, 1) ;
gb_time = toc ;

tic
v2 = bfs_matlab (A, 1) ;
matlab_time = toc ;

assert (isequal (full (double (v1)), v2))
fprintf ('\nnodes reached: %d of %d\n', nnz (v2), n) ;
fprintf ('GraphBLAS time: %g sec\n', gb_time) ;
fprintf ('MATLAB time: %g sec\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
 matlab_time / gb_time) ;

nodes reached: 100000 of 100000
GraphBLAS time: 0.358829 sec
MATLAB time: 1.09768 sec
Speedup of GraphBLAS over MATLAB: 3.05906

Example graph algorithm: Luby's method in
GraphBLAS

The mis_gb.m function is variant of Luby's randomized algorithm [Luby 1985]. It is a parallel method for
finding an maximal independent set of nodes, where no two nodes are adjacent. See the GraphBLAS/de-
mo/mis_gb.m function for details. The graph must be symmetric with a zero-free diagonal, so A is sym-
metrized first and any diagonal entries are removed.

A = gb (A) ;
A = A|A' ;
A = tril (A, -1) ;
A = A|A' ;

27

GraphBLAS: graph algorithms
in the language of linear algebra

tic
s = mis_gb (A) ;
toc
fprintf ('# nodes in the graph: %g\n', size (A,1)) ;
fprintf ('# edges: : %g\n', nnz (A) / 2) ;
fprintf ('size of maximal independent set found: %g\n', ...
 full (double (sum (s)))) ;

% make sure it's independent
p = find (s == 1) ;
S = A (p,p) ;
assert (nnz (S) == 0)

% make sure it's maximal
notp = find (s == 0) ;
S = A (notp, p) ;
deg = gb.vreduce ('+.int64', S) ;
assert (logical (all (deg > 0)))

Elapsed time is 0.291886 seconds.
nodes in the graph: 100000
edges: : 9.9899e+06
size of maximal independent set found: 2811

Sparse deep neural network
The 2019 MIT GraphChallenge (see http://graphchallenge.org) is to solve a set of large sparse deep neur-
al network problems. In this demo, the MATLAB reference solution is compared with a solution using
GraphBLAS, for a randomly constructed neural network. See the dnn_gb.m and dnn_matlab.m functions
for details.

clear all
rng ('default') ;
nlayers = 16 ;
nneurons = 4096 ;
nfeatures = 30000 ;
fprintf ('# layers: %d\n', nlayers) ;
fprintf ('# neurons: %d\n', nneurons) ;
fprintf ('# features: %d\n', nfeatures) ;

tic
Y0 = sprand (nfeatures, nneurons, 0.1) ;
for layer = 1:nlayers
 W {layer} = sprand (nneurons, nneurons, 0.01) * 0.2 ;
 bias {layer} = -0.2 * ones (1, nneurons) ;
end
t_setup = toc ;
fprintf ('construct problem time: %g sec\n', t_setup) ;

layers: 16
neurons: 4096
features: 30000
construct problem time: 7.80411 sec

28

http://graphchallenge.org

GraphBLAS: graph algorithms
in the language of linear algebra

Solving the sparse deep neural network prob-
lem with GraphbLAS

Please wait ...

tic
Y1 = dnn_gb (W, bias, Y0) ;
gb_time = toc ;
fprintf ('total time in GraphBLAS: %g sec\n', gb_time) ;

setup time: 0.21823 sec
layer: 1, nnz (Y) 52031839, time 1.68859 sec
layer: 2, nnz (Y) 56297437, time 4.49248 sec
layer: 3, nnz (Y) 18532210, time 4.48072 sec
layer: 4, nnz (Y) 6388296, time 1.5336 sec
layer: 5, nnz (Y) 4773907, time 0.31003 sec
layer: 6, nnz (Y) 4429486, time 0.173388 sec
layer: 7, nnz (Y) 4350722, time 0.139635 sec
layer: 8, nnz (Y) 4329698, time 0.132609 sec
layer: 9, nnz (Y) 4320222, time 0.136624 sec
layer: 10, nnz (Y) 4318770, time 0.137055 sec
layer: 11, nnz (Y) 4317184, time 0.136621 sec
layer: 12, nnz (Y) 4317184, time 0.132114 sec
layer: 13, nnz (Y) 4317184, time 0.138919 sec
layer: 14, nnz (Y) 4317184, time 0.134094 sec
layer: 15, nnz (Y) 4317184, time 0.201019 sec
layer: 16, nnz (Y) 4317184, time 0.140587 sec
total time in GraphBLAS: 14.3421 sec

Solving the sparse deep neural network prob-
lem with MATLAB

Please wait ...

tic
Y2 = dnn_matlab (W, bias, Y0) ;
matlab_time = toc ;
fprintf ('total time in MATLAB: %g sec\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
 matlab_time / gb_time) ;

err = norm (Y1-Y2,1)

layer: 1, nnz (Y) 52031843, time 23.398 sec
layer: 2, nnz (Y) 56297445, time 26.5699 sec
layer: 3, nnz (Y) 18532218, time 30.4702 sec
layer: 4, nnz (Y) 6388296, time 17.2698 sec
layer: 5, nnz (Y) 4773911, time 3.76852 sec
layer: 6, nnz (Y) 4429487, time 1.66506 sec
layer: 7, nnz (Y) 4350725, time 1.41032 sec
layer: 8, nnz (Y) 4329700, time 2.15447 sec

29

GraphBLAS: graph algorithms
in the language of linear algebra

layer: 9, nnz (Y) 4320224, time 2.60775 sec
layer: 10, nnz (Y) 4318775, time 2.74087 sec
layer: 11, nnz (Y) 4317184, time 2.75234 sec
layer: 12, nnz (Y) 4317184, time 2.66811 sec
layer: 13, nnz (Y) 4317184, time 2.92539 sec
layer: 14, nnz (Y) 4317184, time 2.89839 sec
layer: 15, nnz (Y) 4317184, time 2.84681 sec
layer: 16, nnz (Y) 4317184, time 3.01285 sec
total time in MATLAB: 129.166 sec
Speedup of GraphBLAS over MATLAB: 9.00606

err =

 0

Extreme performance differences between
GraphBLAS and MATLAB.

The GraphBLAS operations used so far are perhaps 2x to 50x faster than the corresponding MATLAB
operations, depending on how many cores your computer has. To run a demo illustrating a 500x or more
speedup versus MATLAB, run this demo:

 gbdemo2

It will illustrate an assignment C(I,J)=A that can take under a second in GraphBLAS but several minutes
in MATLAB. To make the comparsion even more dramatic, try:

 gbdemo2 (20000)

assuming you have enough memory. The gbdemo2 is not part of this demo since it can take a long time;
it tries a range of problem sizes, and each one takes several minutes in MATLAB,

Limitations and their future solutions
The MATLAB interface for SuiteSparse:GraphBLAS is a work-in-progress. It has some limitations, most
of which will be resolved over time.

(1) Nonblocking mode:

GraphBLAS has a 'non-blocking' mode, in which operations can be left pending and completed later.
SuiteSparse:GraphBLAS uses the non-blocking mode to speed up a sequence of assignment operations,
such as C(I,J)=A. However, in its MATLAB interface, this would require a MATLAB mexFunction to
modify its inputs. That breaks the MATLAB API standard, so it cannot be safely done. As a result, using
GraphBLAS via its MATLAB interface can be slower than when using its C API. This restriction would
not be a limitation if GraphBLAS were to be incorporated into MATLAB itself, but there is likely no way
to do this in a mexFunction interface to GraphBLAS.

(2) Complex matrices:

GraphBLAS can operate on matrices with arbitrary user-defined types and operators. The only constraint
is that the type be a fixed sized typedef that can be copied with the ANSI C memcpy; variable-sized types
are not yet supported. However, in this MATLAB interface, SuiteSparse:GraphBLAS has access to only

30

GraphBLAS: graph algorithms
in the language of linear algebra

predefined types, operators, and semirings. Complex types and operators will be added to this MATLAB
interface in the future. They already appear in the C version of GraphBLAS, with user-defined operators
in GraphBLAS/Demo/Source/usercomplex.c.

(3) Integer element-wise operations:

Integer operations in MATLAB saturate, so that uint8(255)+1 is 255. To allow for integer monoids, Graph-
BLAS uses modular arithmetic instead. This is the only way that C=A*B can be defined for integer semi-
rings. However, saturating integer operators could be added in the future, so that element- wise integer op-
erations on GraphBLAS sparse integer matrices could work just the same as their MATLAB counterparts.

So in the future, you could perhaps write this, for both sparse and dense integer matrices A and B:

 C = gb.eadd ('+saturate.int8', A, B)

to compute the same thing as C=A+B in MATLAB for its full int8 matrices. % Note that MATLAB can
do this only for dense integer matrices, since it doesn't support sparse integer matrices.

(4) Faster methods:

Most methods in this MATLAB interface are based on efficient parallel C functions in GraphBLAS itself,
and are typically as fast or faster than the equivalent built-in operators and functions in MATLAB.

There are few notable exceptions, the most important one being horzcat and vertcat, used for [A B] and
[A;B] when either A or B are GraphBLAS matrices.

Other methods that could be faster in the future include bandwidth, istriu, istril, eps, ceil, floor, round,
fix, isfinite, isinf, isnan, spfun, and A.^B. These methods are currently implemented in m-functions, not
in efficient parallel C functions.

clear
A = sparse (rand (2000)) ;
B = sparse (rand (2000)) ;
tic
C1 = [A B] ;
matlab_time = toc ;

A = gb (A) ;
B = gb (B) ;
tic
C2 = [A B] ;
gb_time = toc ;

err = norm (C1-C2,1)
fprintf ('\nMATLAB: %g sec, GraphBLAS: %g sec\n', ...
 matlab_time, gb_time) ;
if (gb_time > matlab_time)
 fprintf ('GraphBLAS is slower by a factor of %g\n', ...
 gb_time / matlab_time) ;
end

err =

 0

31

GraphBLAS: graph algorithms
in the language of linear algebra

MATLAB: 0.068433 sec, GraphBLAS: 0.21258 sec
GraphBLAS is slower by a factor of 3.1064

(5) Linear indexing:

If A is an m-by-n 2D MATLAB matrix, with n > 1, A(:) is a column vector of length m*n. The index
operation A(i) accesses the ith entry in the vector A(:). This is called linear indexing in MATLAB. It is not
yet available for GraphBLAS matrices in this MATLAB interface to GraphBLAS, but it could be added
in the future.

(6) Implicit binary expansion

In MATLAB C=A+B where A is m-by-n and B is a 1-by-n row vector implicitly expands B to a matrix,
computing C(i,j)=A(i,j)+B(j). This implicit expansion is not yet suported in GraphBLAS with C=A+B.
However, it can be done with C = gb.mxm ('+.+', A, diag(gb(B))). That's an nice example of the power
of semirings, but it's not immediately obvious, and not as clear a syntax as C=A+B. The GraphBLAS/de-
mo/dnn_gb.m function uses this 'plus.plus' semiring to apply the bias to each neuron.

A = magic (4)
B = 1000:1000:4000
C1 = A + B
C2 = gb.mxm ('+.+', A, diag (gb (B)))
err = norm (C1-C2,1)

A =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

B =

 1000 2000 3000 4000

C1 =

 1016 2002 3003 4013
 1005 2011 3010 4008
 1009 2007 3006 4012
 1004 2014 3015 4001

C2 =

 4x4 GraphBLAS double matrix, standard CSC, 16 entries

 (1,1) 1016
 (2,1) 1005
 (3,1) 1009
 (4,1) 1004

32

GraphBLAS: graph algorithms
in the language of linear algebra

 (1,2) 2002
 (2,2) 2011
 (3,2) 2007
 (4,2) 2014
 (1,3) 3003
 (2,3) 3010
 (3,3) 3006
 (4,3) 3015
 (1,4) 4013
 (2,4) 4008
 (3,4) 4012
 (4,4) 4001

err =

 0

(7) Logical indexing in subsindex and subsasgn:

The mask in GraphBLAS acts much like logical indexing in MATLAB, but it is not quite the same. MAT-
LAB logical indexing takes the form:

 C (M) = A (M)

which computes the same thing as the GraphBLAS statement:

 C = gb.assign (C, M, A)

The gb.assign statement computes C(M)=A(M), and it is vastly faster than C(M)=A(M), even if the time
to convert the gb matrix back to a MATLAB sparse matrix is included.

However, the syntax differs. The overloaded subsasgn operator for C(M)=A requires A(M) to be computed
first, which becomes a 1D vector of length equal to the number of entries in M. The gb.assign function
requires the original A, not the linear vector A(M). As a result, the C(M) = ... syntax is not yet supported
for GraphBLAS matrices. Until I resolve this syntax issue, use C = gb.assign (C,M,A) instead.

On my 4-core Dell XPS-13 laptop, C=gb.assign(C,M,A) is about 24,000x faster than C(M)=A(M) in MAT-
LAB R2019a, so the extra syntax is well worth it. First, in GraphBLAS:

clear
n = 4000 ;
tic
C = sprand (n, n, 0.1) ;
A = 100 * sprand (n, n, 0.1) ;
M = (C > 0.5) ;
t_setup = toc ;
fprintf ('nnz(C): %g, nnz(M): %g, nnz(A): %g\n', ...
 nnz(C), nnz(M), nnz(A)) ;
fprintf ('\nsetup time: %g sec\n', t_setup) ;

% even add in the time to convert C1 from a GraphBLAS
% matrix to a MATLAB sparse matrix
tic

33

GraphBLAS: graph algorithms
in the language of linear algebra

C1 = gb.assign (C, M, A) ;
C1 = double (C1) ;
gb_time = toc ;
fprintf ('\nGraphBLAS time: %g sec\n', gb_time) ;

nnz(C): 1.52283e+06, nnz(M): 760303, nnz(A): 1.5225e+06

setup time: 1.30472 sec

GraphBLAS time: 0.012123 sec

Please wait, this will take about 10 minutes or so ...

tic
C (M) = A (M) ;
matlab_time = toc ;

fprintf ('\nGraphBLAS time: %g sec\n', gb_time) ;
fprintf ('MATLAB time: %g sec\n', matlab_time) ;
fprintf ('Speedup of GraphBLAS over MATLAB: %g\n', ...
 matlab_time / gb_time) ;

% GraphBLAS computes the exact same result:
assert (isequal (C1, C))
C1 - C

GraphBLAS time: 0.012123 sec
MATLAB time: 1154.17 sec
Speedup of GraphBLAS over MATLAB: 95204.7

ans =

 All zero sparse: 4000x4000

(8) Other features are not yet in place, such as:

S = sparse (i,j,x) allows either i or j, and x, to be scalars, which are implicitly expanded. This is not yet
supported by gb.build.

Many built-in functions work with GraphBLAS matrices unmodified, but sometimes things can break in
odd ways. The gmres function is a built-in m-file, and works fine if given GraphBLAS matrices:

A = sparse (rand (4)) ;
b = sparse (rand (4,1)) ;
x = gmres (A,b)
resid = A*x-b
x = gmres (gb(A), gb(b))
resid = A*x-b

gmres converged at iteration 4 to a solution with relative residual 0.

x =

34

GraphBLAS: graph algorithms
in the language of linear algebra

 0.0262
 -0.2499
 1.5354
 -0.4965

resid =

 1.0e-15 *

 -0.5551
 -0.2776
 0.3331
 0.0555

gmres converged at iteration 4 to a solution with relative residual 0.

x =

 0.0262
 -0.2499
 1.5354
 -0.4965

resid =

 1.0e-15 *

 0.1110
 -0.0555
 0.6661
 0.1388

Both of the following uses of minres (A,b) fail to converge because A is not symmetric, as the method
requires. Both failures are correctly reported, and both the MATLAB version and the GraphBLAS version
return the same incorrect vector x. So far so good.

x = minres (A, b)
[x, flag] = minres (gb(A), gb(b))

minres stopped at iteration 4 without converging to the desired
 tolerance 1e-06
because the maximum number of iterations was reached.
The iterate returned (number 4) has relative residual 0.28.

x =

 0.8201
 0.0164
 0.4958
 -0.2511

35

GraphBLAS: graph algorithms
in the language of linear algebra

x =

 4x1 GraphBLAS double matrix, standard CSC, 4 entries

 (1,1) 0.820129
 (2,1) 0.0164381
 (3,1) 0.495776
 (4,1) -0.251055

flag =

 1

But leaving off the flag output argument causes minres to try to print an error using an internal MATLAB
error message utility (see 'help message'). The error message fails in an obscure way, perhaps because

sprintf ('%g', x)

fails if x is a GraphBLAS scalar. Overloading sprintf and fprintf might fix this.

x = minres (gb(A), gb(b))

 Array with 2 dimensions not compatible with shape of
 matrix::typed_array<double>

The error cannot be caught with 'try/catch' so it would terminate this demo, and thus is not attempted
here. The MATLAB interface to GraphBLAS is a work-in-progress. My goal is to enable all MATLAB
operations that work on MATLAB sparse matrices to also work on GraphBLAS sparse matrices, but not
all methods are available yet, such as x=minres(G,b) for a GraphBLAS matrix G.

GraphBLAS operations
In addition to the overloaded operators (such as C=A*B) and overloaded functions (such as L=tril(A)),
GraphBLAS also has methods of the form gb.method, listed on the next page. Most of them take an optional
input matrix Cin, which is the initial value of the matrix C for the expression below, an optional mask
matrix M, and an optional accumulator operator.

 C<#M,replace> = accum (C, T)

In the above expression, #M is either empty (no mask), M (with a mask matrix) or ~M (with a comple-
mented mask matrix), as determined by the descriptor. 'replace' can be used to clear C after it is used in
accum(C,T) but before it is assigned with C<...> = Z, where Z=accum(C,T). The matrix T is the result of
some operation, such as T=A*B for gb.mxm, or T=op(A,B) for gb.eadd.

A short summary of these gb.methods is on the next page.

List of gb.methods
gb.clear clear GraphBLAS workspace and settings
gb.descriptorinfo (d) list properties of a descriptor d
gb.unopinfo (op, type) list properties of a unary operator

36

GraphBLAS: graph algorithms
in the language of linear algebra

gb.binopinfo (op, type) list properties of a binary operator
gb.monoidinfo (op, type) list properties of a monoid
gb.semiringinfo (s, type) list properties of a semiring
t = gb.threads (t) set/get # of threads to use in GraphBLAS
c = gb.chunk (c) set/get chunk size to use in GraphBLAS
e = gb.nvals (A) number of entries in a matrix
G = gb.empty (m, n) return an empty GraphBLAS matrix
s = gb.type (X) get the type of a MATLAB or gb matrix X
f = gb.format (f) set/get matrix format to use in GraphBLAS
C = expand (scalar, S) expand a scalar (C = scalar*spones(S))

G = gb.build (I, J, X, m, n, dup, type, d) build a matrix
[I,J,X] = gb.extracttuples (A, d) extract all entries

C = gb.mxm (Cin, M, accum, semiring, A, B, d) matrix multiply
C = gb.select (Cin, M, accum, op, A, thunk, d) select entries
C = gb.assign (Cin, M, accum, A, I, J, d) assign, like C(I,J)=A
C = gb.subassign (Cin, M, accum, A, I, J, d) assign, different M
C = gb.vreduce (Cin, M, accum, op, A, d) reduce to vector
C = gb.reduce (Cin, accum, op, A, d) reduce to scalar
C = gb.gbkron (Cin, M, accum, op, A, B, d) Kronecker product
C = gb.gbtranspose (Cin, M, accum, A, d) transpose
C = gb.eadd (Cin, M, accum, op, A, B, d) element-wise addition
C = gb.emult (Cin, M, accum, op, A, B, d) element-wise mult.
C = gb.apply (Cin, M, accum, op, A, d) apply unary operator
C = gb.extract (Cin, M, accum, A, I, J, d) extract, like C=A(I,J)

For more details type 'help graphblas' or 'help gb'.

Tim Davis, Texas A&M University, http://faculty.cse.tamu.edu/davis See also sparse, doc sparse, and
https://twitter.com/DocSparse

Published with MATLAB® R2018a

37

http://faculty.cse.tamu.edu/davis

	Table of Contents
	GraphBLAS: faster and more general sparse matrices for MATLAB
	Sparse integer matrices
	Sparse single-precision matrices
	Mixing MATLAB and GraphBLAS matrices
	Faster matrix operations
	A wide range of semirings
	The max.plus tropical semiring
	A boolean semiring
	GraphBLAS operators, monoids, and semirings
	Element-wise operations
	Subtracting two matrices
	Element-wise 'multiplication'
	Overloaded operators
	Overloaded functions
	Zeros are handled differently
	Displaying contents of a GraphBLAS matrix
	Storing a matrix by row or by column
	Hypersparse matrices
	The mask and accumulator
	The descriptor
	Integer arithmetic is different in GraphBLAS
	An example graph algorithm: breadth-first search
	Example graph algorithm: Luby's method in GraphBLAS
	Sparse deep neural network
	Solving the sparse deep neural network problem with GraphbLAS
	Solving the sparse deep neural network problem with MATLAB
	Extreme performance differences between GraphBLAS and MATLAB.
	Limitations and their future solutions
	GraphBLAS operations
	List of gb.methods

