
Algorithm 9xx, FACTORIZE: an object-oriented
linear system solver for MATLAB

TIMOTHY A. DAVIS

University of Florida

The MATLABTMbackslash (x=A\b) is an elegant and powerful interface to a suite of high-
performance factorization methods for the direct solution of the linear system Ax = b and the least-

squares problem minx ||b−Ax||. It is a meta-algorithm that selects the best factorization method

for a particular matrix, whether sparse or dense. However, the simplicity and elegance of its
single-character interface prohibits the reuse of its factorization for subsequent systems. Requiring

MATLAB users to find the best factorization method on their own can lead to sub-optimal choices;

even MATLAB experts can make the wrong choice. Furthermore, naive MATLAB users have a
tendency to translate mathematical expressions from linear algebra directly into MATLAB, so

that x = A−1b becomes the inferior yet all-to-prevalent x=inv(A)*b. To address these issues, an

object-oriented FACTORIZE method is presented. Via simple-to-use operator overloading, solving
two linear systems can be written as F=factorize(A); x=F\b; y=F\c, where A is factorized only

once. The selection of the best factorization method (LU, Cholesky, LDLT , QR, or a complete
orthogonal decomposition for rank-deficient matrices) is hidden from the user. The mathematical

expression x = A−1b directly translates into the MATLAB expression x=inverse(A)*b, which

does not compute the inverse at all, but does the right thing by factorizing A and solving the
corresponding triangular systems.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—

linear systems (direct methods), sparse and very large systems; G.4 [Mathematics of Comput-

ing]: Mathematical Software—algorithm analysis, efficiency

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: linear systems, least-square problems, matrix factorization,

object-oriented methods

1. INTRODUCTION

MATLAB provides many ways to solve linear systems and least-squares prob-
lems, the most obvious one being x=A\b. This method is powerful and simple
to use, but its factorization cannot be reused to solve multiple linear systems. An
object-oriented programming approach is presented that makes solving systems and

Dept. of Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, USA. email: davis@cise.ufl.edu or DrTimothyAldenDavis@gmail.com.

http://www.cise.ufl.edu/∼davis. Portions of this work were supported by the National
Science Foundation, under grants 0620286 and 1115297.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY, Pages 1–20.

2 · T. A. Davis

reusing a factorization in MATLAB very easy to do, even for the naive MATLAB
user. Section 2 provides a motivation for the FACTORIZE package presented in Sec-
tion 3. Code availability and concluding remarks are given in Section 4.

2. MOTIVATION

The MATLAB backslash is a powerful method, but it has its weaknesses. These
are discussed in Section 2.1 below. The factorization methods in MATLAB provide
an alternative, but using them efficiently is not trivial. This is illustrated by a
sequence of experiments in Section 2.2 that demonstrate the performance of the
diverse factorization methods in MATLAB. The section concludes with a list of
best-of-breed methods for sparse and dense LU, Cholesky, and QR factorizations.
Even MATLAB experts (at The MathWorks, Inc.) find it difficult to select the
right method, as illustrated by how built-in MATLAB functions use these methods
(Section 2.3). The unfortunate prevalence of “inv-abuse” (x=inv(A)*b) illustrates
yet another motivation for the object-oriented FACTORIZE package, as highlighted
in Section 2.4. This gap in MATLAB functionality is summarized in Section 2.5,
which motivates the FACTORIZE package presented in Section 3.

2.1 The strengths and weaknesses of the MATLAB backslash

The backslash operator (or mldivide, to use its precise name) is a meta-algorithm
that automatically selects an appropriate solver for the matrix A [Gilbert et al.
1992]. If the matrix is diagonal, upper triangular, lower triangular, or a permuta-
tion of a triangular matrix, then it is not factorized at all. If the matrix requires
factorization, backslash selects an LU, Cholesky, LDLT , or QR factorization, de-
pending on the matrix. It sometimes attempts multiple factorizations. For example,
if the matrix is square and symmetric with a zero-free real diagonal, a Cholesky
factorization is attempted. If this fails, an LDLT factorization is used, and if
this fails, backslash falls back to an LU factorization. For rectangular matrices,
QR factorization of A is always performed, resulting in a least-squares solution for
over-determined systems, and a basic solution when A is under-determined.

Backslash is a powerful function but it has three minor drawbacks and a fourth
that is more serious:

(1) There is no way to request a minimum 2-norm solution to an under-determined
system.

(2) There is no special handling for square rank-deficient problems. These should
be solved with a QR factorization, a complete orthogonal decomposition, or
perhaps even a singular value decomposition, so that a least-squares or mini-
mum 2-norm solution could be obtained, depending on the matrix.

(3) Textbook equations from linear algebra often rely on the explicit inverse, A−1.
These expressions do not directly translate into a MATLAB expression using
backslash.

(4) The factorization computed by backslash cannot be reused. All of the ele-
gant power of backslash’s automatic selection of an appropriate solver must be
discarded if the user wishes to reuse the factorization of A.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 3

In spite of these drawbacks, backslash remains a powerful and general-purpose
operator that works well for most users’ systems of equations. However, if a MAT-
LAB code needs to reuse a factorization, it must either duplicate the intricacies of
the backslash selection, or it must resort to using a potentially sub-optimal factor-
ization technique. Significant expertise on the part of the MATLAB user is required
to obtain the fastest and most memory-efficient technique.

2.2 The many factorization methods in MATLAB and their performance profiles

For dense matrices, MATLAB relies on the LU, Cholesky, QR, LDLT , and SVD fac-
torizations provided by LAPACK [Anderson et al. 1999]. For sparse matrices, MAT-
LAB uses the sparse LU, Cholesky, and QR factorizations in SuiteSparse (UMF-
PACK, CHOLMOD, and SuiteSparseQR, respectively), a sparse LU by Gilbert and
Peierls, MA57 for its sparse LDLT factorization [Duff 2004], and various specialized
solvers (for triangular, tridiagonal, and other special cases), some of which are not
available to the MATLAB user except through x=A\b.

Selecting between these methods is a daunting task for the basic MATLAB user.
Care must be taken in the design of the FACTORIZE package to use the best tech-
nique for each matrix, considering reliability, speed, and memory requirements.
The first step in determining the best methods is to consider how permutations
should be handled (Section 2.2.1), since permutations are used by many factor-
izations, both sparse and dense. Next, the performance characteristics of alterna-
tive sparse and dense LU, Cholesky, and QR factorizations are considered (Sec-
tions 2.2.2 through 2.2.8). Section 2.2.9 summarizes the best-of-breed methods.

2.2.1 Permutations. Both sparse and dense factorization methods return per-
mutations to represent partial pivoting and/or fill-reducing orderings. During the
solve phase, these permutations must be applied to the right-hand side and/or the
solution vector. Since permutations can be returned as either index vectors or per-
mutation matrices, the decision on which to use should be based on performance,
both time and memory.
Dense case: A dense factorization method in MATLAB can return a dense

permutation matrix P or a dense vector index p. The matrix P requires O(n2)
memory in contrast to O(n) memory for the index vector p. Likewise, applying
the matrix P to a right-hand side vector takes O(n2) time as opposed to O(n) time
for the vector p. Permutation vectors are thus preferable. Alternatively, a dense
permutation vector p can be converted into a sparse permutation matrix P, via the
MATLAB statement P=sparse(1:n,p,1).
Sparse case: Sparse factorization methods return either permutation vectors

(requiring 8n bytes) or sparse permutation matrices (requiring 24n + 8 bytes).
In MATLAB, a sparse matrix with n columns and s nonzero entries is stored in
compressed sparse column form, with a set of column pointers (n+ 1 integers), an
integer array of row indices (s integers) and a real array of values (s doubles). A
sparse permutation matrix has s = n entries, and thus it requires 24n+ 8 bytes on
a 64-bit computer. The difference in memory is slight, since the factorization itself
is typically much larger, so the method providing the fastest solve time should be
selected.

Table I lists the run time in seconds for the two permutation operations y=P*x and

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

4 · T. A. Davis

x is dense

n y=x(p,:) y=P*x relative y(p,:)=x y=P’*x relative

100 3.6× 10−6 1.3× 10−5 0.26 5.2× 10−6 1.4× 10−5 0.38

1000 1.7× 10−5 2.8× 10−5 0.62 2.4× 10−5 2.3× 10−5 1.04
10000 1.6× 10−4 1.7× 10−4 0.92 2.3× 10−4 1.1× 10−4 1.98

100000 2.0× 10−3 2.2× 10−3 0.92 2.7× 10−3 1.7× 10−3 1.61

1000000 4.0× 10−2 5.1× 10−2 0.77 6.0× 10−2 6.9× 10−2 0.87

x is sparse, but with no zero entries

n y=x(p,:) y=P*x relative y(p,:)=x y=P’*x relative

100 1.7× 10−5 2.1× 10−5 0.84 4.0× 10−5 2.5× 10−5 1.60

1000 9.3× 10−5 9.7× 10−5 0.96 1.9× 10−3 1.1× 10−4 17.17
10000 1.2× 10−3 1.1× 10−3 1.03 1.7× 10−1 1.4× 10−3 123.15

100000 1.6× 10−2 1.5× 10−2 1.04 1.8× 101 2.1× 10−2 876.97

1000000 2.3× 10−1 2.5× 10−1 0.90 2.0× 103 4.0× 10−1 4995.93

x is sparse, with 1% nonzero entries

n y=x(p,:) y=P*x relative y(p,:)=x y=P’*x relative

100 1.4× 10−5 1.7× 10−5 0.93 3.6× 10−5 1.9× 10−5 1.95

1000 3.8× 10−5 2.6× 10−5 1.55 1.9× 10−3 4.3× 10−5 44.35
10000 2.8× 10−4 1.1× 10−4 2.51 1.9× 10−1 4.0× 10−4 459.49

100000 3.3× 10−3 1.7× 10−3 1.90 1.8× 101 9.5× 10−3 1933.66

1000000 5.4× 10−2 4.6× 10−2 1.18 2.0× 103 2.7× 10−1 7584.81

Table I. Run time in seconds for sparse permutation matrices and permutation vectors in MAT-

LAB. The matrix P is sparse, and is related to p via P=sparse(1:n,p,1). These results demonstrate
that P*x and P’*x tend to be faster than the equivalent operation with permutation vectors for

large sparse vectors. The difference is extreme for P’*x.

y=P’*x (where P is sparse) and their index-vector equivalents, for various lengths of
a dense or sparse vector x. The relative run time is the time for the index operation
divided by the time for the matrix operation. Unless otherwise specified, all results
in this paper were obtained from a 24-core AMD Opteron 6168 CPU system with
128GB of RAM, running MATLAB R2011b and Ubuntu Linux 12.04.

A permutation vector p is far too slow for computing y(p)=x when x and y

are sparse. One alternative is to exploit an inverse permutation vector invp via
invp=1:n; invp(p)=1:n. With this vector, y(p)=x and y=x(invp) are equivalent.
The latter is much faster when x is sparse.

Not all solve phases for the various sparse factorization methods require the
computation of P’*x or y(p)=x for a sparse vector x. However, rather than con-
structing inverse permutation vectors to handle this case, the sparse factorizations
in the FACTORIZE package rely on sparse permutation matrices instead of vectors.
Sparse permutation matrices are faster in MATLAB 2011b for large vectors, even
though they do require a modest amount of additional storage.1

The results in this section confirm that the FACTORIZE package should use per-
mutation vectors for its dense factorizations, and sparse permutation matrices for
its sparse factorizations. The next section on dense LU considers alternative op-
tions to confirm this selection (including a permuted lower triangular matrix L),
but subsequent sections will present only one option for handling permutations.

1The code behind the built-in A*B operation in MATLAB, for the case when either A or B or both

are sparse, can be found in the SuiteSparse meta-package.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 5

2.2.2 Dense LU factorization. There are three alternatives for dense LU fac-
torization that can be used to solve a linear system. Each can be coupled with
two methods for backslash (x=A\b) and three for slash (y=c/A), listed below. The
linsolve function acts just like x=A\b, except that linsolve function can be given
the properties of A (lower triangular, upper triangular, transposed, etc.).

(1) The first option returns triangular matrices L and U, and represents the partial-
pivoting decisions as a permutation vector. The syntax is the most complicated
of the three: [L,U,p]=lu(A,’vector’) where p is a permutation vector p, and
where L*U=A(p,:). The five alternative solves are listed below, where the op*

parameters are struct’s that describe the properties of L and U for linsolve:

(a) x = linsolve (U, linsolve (L, b (p,:), opL), opU)

(b) x = U \ (L \ b (p,:))

(c) y = (linsolve (L, linsolve (U, c’, opUT), opLT))’ ; y (:,p) = y

(d) y = ((c / U) / L) ; y (:,p) = y

(e) y = (L’ \ (U’ \ c’))’ ; y (:,p) = y

(2) The second method represents the permutations as a matrix, not a vector.
The syntax of [L,U,P]=lu(A) is the most natural, but it returns P as a dense
matrix. The factorization is L*U=P*A. The five alternatives for the solve are:

(a) x = linsolve (U, linsolve (L, P*b, opL), opU)

(b) x = U \ (L \ (P*b))

(c) y = (linsolve (L, linsolve (U, c’, opUT), opLT))’ * P

(d) y = ((c / U) / L) * P

(e) y = (L’ \ (U’ \ c’))’ * P

(3) The third method combines the permutation with the matrix L, so that L is
no longer lower triangular but a permuted lower triangular matrix. Its syntax
is simple: [L,U]=lu(A), where L*U=A. The permutation is multiplied into L

so that it does not require a separate representation, but linsolve cannot be
used for L. The solves are:

(a) x = linsolve (U, L \ b, opU)

(b) x = U \ (L \ b)

(c) y = (linsolve (U, c’, opUT)’) / L

(d) y = ((c / U) / L)

(e) y = (L’ \ (U’ \ c’))’

The performance of these three LU factorization methods and their solve phases
is illustrated in Figures 1 and 2. Method 1 ([L,U,p]=lu(A,’vector’)) is slightly
faster than the other two alternatives. Its factors also take nearly 50% less memory
to store as compared with method 2. For the solves, methods 1a for x=A\b and 1c
for y=A/c are far faster than the alternatives.

To compute x=L\b, MATLAB can detect when L is lower triangular or a permuted
lower triangular matrix, and use a forward solve that does not require L to be
factorized. However, the time to compute y=c/A and y=c/L is identical when L is a
dense permuted lower triangular matrix. MATLAB 2011b does not detect this case
and refactorizes L instead. As a result, [L,U]=lu(A) is not a useful factorization
for the subsequent solution of yA = c.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

6 · T. A. Davis

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80
Dense LU factorization

matrix dimension

G
flo

p/
se

c

1
2
3

Fig. 1. Performance of three factorization methods for dense matrices.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Solve (x=A\b) using dense LU

matrix dimension

G
flo

p/
se

c

1a
1b
2a
2b
3a

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Solve (x=b/A) using dense LU

matrix dimension

G
flo

p/
se

c

1c
1d
2c
2d
3c

Fig. 2. Performance of solve methods for dense matrices. Solve methods 3a and 3b have nearly
identical performance, so 3b is not shown. Likewise, 1e and 2e have nearly identical performance as

1d and 2d, respectively, and are not shown. Methods 3c, 3d, 3e have nearly identical performance,

and thus only 3c is shown.

The two statements y=c/L and y=(L’\c’)’ have identical performance because
the MATLAB interpreter immediately translates the first expression into the sec-
ond. Thus, subsequent sections present results for only one of the two methods.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 7

2.2.3 Sparse LU factorization. MATLAB includes two sparse LU factorization
methods: GP [Gilbert and Peierls 1988] and UMFPACK [Davis and Duff 1999;
Davis 2002; 2004]. GP provides the two- and three-output syntaxes. With three
outputs, [L,U,P]=lu(A), the factorization is L*U=P*A where L is unit lower trian-
gular and P arises from partial pivoting. No fill-reducing ordering is used. With
two outputs, [L2,U]=lu(A), the factorization is L2*U=A where L2 is a permutation
of a lower triangular matrix (L2=P’*L for the P and L from the 3-output syntax).

UMFPACK provides the four- and five-output syntax [L,U,P,Q,R]=lu(A), where
P and Q are fill-reducing orderings and P also includes partial pivoting permutations.
The diagonal matrix R=diag(sum(abs(A),2)) is a simple row-scaling that can often
reduce fill-in due to threshold partial pivoting. The factorization is L*U=P*(R\A)*Q.
With four outputs, no scaling is used, and the factorization is L*U=P*A*Q.

The GP algorithm can be faster than UMFPACK for some matrices (circuit
simulation matrices and other very sparse matrices in particular [Davis and Pala-
madai Natarajan 2010]), but UMFPACK tends to be faster in the general case.
UMFPACK requires a fourth output argument since its fill-reducing ordering can-
not be disabled. UMFPACK is used by default when x=A\b requires a general
sparse LU factorization. Four alternatives are considered below:

(1) [L,U,P,Q,R]=lu(A) is the method used internally by x=A\b when a general
sparse LU factorization is required. The diagonal matrix R provides row-scaling,
which tends to improve accuracy and reduce fill-in in the factorization. The fac-
torization is L*U=P*(R\A)*Q. UMFPACK automatically selects between AMD
[Amestoy et al. 1996; 2004] and COLAMD [Davis et al. 2004a; 2004b], based on
the pattern of the matrix. This gives an initial P and Q, which are then modified
during numerical factorization to account for threshold partial pivoting. The
solves are:
(a) x = Q * (U \ (L \ (P * (R \ b)))) for x=A\b.
(b) y = ((((c * Q) / U) / L) * P) / R for y=c/A.

(2) [L,U,P,Q]=lu(A) also uses UMFPACK, but skips the diagonal scaling. The
factorization is L*U=P*A*Q, and thus the solves are:
(a) x = Q * (U \ (L \ (P * b))) for x=A\b.
(b) y = (((c * Q) / U) / L) * P for y=c/A.

(3) Q=sparse(colamd(A),1:n,1) ; [L,U,P]=lu(A*Q) produces the factorization
L*U=P*A*Q, but P and Q differ from method 2, above. An explicit fill-reducing
ordering is required since GP does not provide its own, and this is followed by
regular partial pivoting rather than threshold partial pivoting. This method
attempts to mimic method 2 for matrices with unsymmetric nonzero pattern,
but using GP instead of UMFPACK.

(4) Q=sparse(amd(A),1:n,1); [L,U,P]=lu(Q’*A*Q,0.1); P=P*Q’ produces the
factorization L*U=P*A*Q, but with a fill-reducing ordering suitable for matrices
with symmetric nonzero pattern (or mostly symmetric). The threshold par-
tial pivoting parameter (0.1) attempts to preserve symmetry by giving pref-
erence to diagonal entries. This strategy uses GP but attempts to mimic the
UMFPACK pivoting strategy (method 2, above), for matrices with symmetric
nonzero pattern. Although the factors differ, the solve phases for methods 3
and 4 are the same as method 2.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

8 · T. A. Davis

Fig. 3. The left plot shows the relative performance of GP and UMFPACK as a function of the

relative number of flops per entry in the factors. The right plot is the performance profile for each

method. A matrix is defined as “large” in the plots if the best factorization time was greater than
5 seconds, “medium” if between 0.1 and 5 seconds, and “small” otherwise. Results are from nearly

all real non-singular square unsymmetric matrices in the UF Sparse Matrix Collection. The ten

largest matrices were excluded because of the excessive run time and/or memory to required to
factorize them with all four methods.

The MATLAB linsolve function does not work for sparse matrices, so opera-
tions such as x=L\b must be used instead. The MATLAB backslash quickly deter-
mines that L is lower triangular in this case, although better performance could be
obtained if linsolve worked for sparse matrices. This can be seen by the simple
function cs_lsolve in the CSparse package, for example [Davis 2006].

The hope that a future linsolve could handle sparse matrices is yet another
motivation for the FACTORIZE package, since exploiting a sparse linsolve would
require a simple one or two-line change to each of the six sparse factorization meth-
ods in the package. Other codes that do not attempt to use the MATLAB factor-
ization methods themselves but rely on the FACTORIZE package would not have be
modified to exploit this possible future upgrade. All that would be needed would
be to upgrade to the next version of FACTORIZE.

The performance UMFPACK and GP is shown in Figure 3 (methods 1 to 4 from
the list above) using test matrices from [Davis and Hu 2011]. In the left plot, each
point in the figure is a single matrix. The x-axis is the best flop count found by any
method for that particular matrix, divided by the best number of nonzeros in the
LU factors (as found by either method). The y-axis is the relative time: the best
run time of GP (methods 3 and 4) divided by the best run time for UMFPACK
(method 1). GP and KLU [Davis and Palamadai Natarajan 2010] are faster than
UMFPACK for sparse matrices arising from circuit simulation; these are the large
outliers in the figure. For many matrices, scaling has little effect at all. For those
matrices for which scaling has an effect, it almost always improves the accuracy,
fill-in, and run time. Thus, method 2 (UMFPACK without scaling) is not shown

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 9

in the left plot of Figure 3.
GP is faster than UMFPACK for small matrices and for some circuit matrices,

but in general the results in Figure 3 show that UMFPACK ([L,U,P,Q,R]=lu(A))
is the best choice for most sparse unsymmetric matrices. UMFPACK does poorly
for some circuit matrices because its automatic ordering method selection makes
the wrong choice (it selects COLAMD, but AMD works much better for those
matrices).

2.2.4 Dense Cholesky factorization. There are two options for the dense Cholesky
factorization: R=chol(A) or L=chol(A,’lower’), which return the result as an up-
per or lower triangular matrix, respectively. The performance of the two methods
is comparable, but only R=chol(A) can be used for a rank-1 update/downdate via
the MATLAB cholupdate function. The FACTORIZE package provides an interface
to cholupdate, and thus it relies on R=chol(A).

2.2.5 Sparse Cholesky factorization. For sparse symmetric positive definite ma-
trices, x=A\b relies on CHOLMOD [Chen et al. 2008], which computes an up-looking
non-supernodal sparse Cholesky factorization when A is very sparse, and a left-
looking supernodal sparse Cholesky factorization otherwise. CHOLMOD returns a
lower triangular factor L, and thus [L,g,P]=chol(A,’lower’) takes less memory
and is slightly faster than [R,g,P]=chol(A) since the latter must compute R=L’.

2.2.6 Dense QR factorization. The decision for which dense QR factorization
to use is based on a tradeoff between reliability and performance, with the default
being reliability.

For dense rectangular matrices, x=A\b relies on QR factorization with column
pivoting. The FACTORIZE package does the same, but uses a more reliable technique
for rank-deficient problems. If the matrix is found to be rank-deficient, the first
factorization (QR with column pivoting) is followed by a second RQ factorization
to obtain the complete orthogonal decomposition (COD) URV T = A, where R
is r-by-r and upper triangular, U and V have orthonormal columns, and r is the
estimated rank of A [Golub and Van Loan 1989].

The COD algorithm for dense matrices is shown below, assuming thatm ≥ n. For
the dense case, if A has full rank, V is a permutation matrix arising from column
2-norm pivoting; for the sparse case (not shown), V represents the fill-reducing
column ordering. If A has more columns than rows (m < n), this algorithm is
applied to AT , and the results are transposed and permuted to obtain URV T = A
with R upper triangular.

function [U, R, V, r] = cod (A, tol)

[m, n] = size (A) ;

[U, R, V] = qr (A, 0) ; % economy U*R = A(V,:) with column pivoting

V = sparse (V, 1:n, 1) ; % R n-by-n and triu, U m-by-n, V n-by-n

r = sum (abs (diag (R)) > tol) ; % estimated rank of R

if (r < n)

[R, Q] = rq (R, r, n) ; % RQ factorization, R now upper triangular

U = U (:, 1:r) ; % discard all but the first r columns of U

V = V * Q’ ; % merge Q and V

end

function [R, Q] = rq (A, r, n)

[Q, R] = qr (A (r:-1:1, n:-1:1)’, 0) ;

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

10 · T. A. Davis

R = R (end:-1:1, end:-1:1)’ ;

Q = Q (end:-1:1, end:-1:1)’ ;

The RQ factorization can exploit the initial upper trapezoidal r-by-n structure
of the matrix R, and thus it takes very little time if r is nearly equal to n.

If the rank is well-defined and accurately detected, the solve phase (not shown) re-
turns the pseudo-inverse solution x=pinv(A)*b without computing the more-costly
singular value decomposition. The MATLAB x=A\b does not use the complete or-
thogonal decomposition. In the full-rank case, this extra check adds essentially no
extra work as compared to x=A\b, which uses QR with column pivoting.

Thus, to match the reliability of x=A\b the FACTORIZE package uses QR with
column pivoting for the full-rank case, and exceeds the reliability of x=A\b for the
rank-deficient case via the COD.

In MATLAB 2012a, QR with column pivoting is based on the DGEQP3 LAPACK
function, which uses the level-3 BLAS [Anderson et al. 1999]. It is about 3 to 4 times
slower than QR factorization with no column pivoting (DGEQRF), but the increase
in reliability is worth the extra work for the default case. The two methods are
shown below. On a quad-core Intel i5-2400 CPU with 16GB of RAM and MATLAB
R2012a, with a full-rank matrix of size 6000-by-3000, method 1 takes 14.8 seconds
whereas method 2 takes 3.5 seconds.

(1) [Q, R, p] = qr (A,0) ;

(a) x = linsolve (R, Q’ * b, opU) ; x (p,:) = x ;

(b) y = (Q * linsolve (R, c (:,p)’, opUT))’ ;

(2) [Q, R] = qr (A,0) ;

(a) x = linsolve (R, Q’ * b, opU) ;

(b) y = (Q * linsolve (R, c’, opUT))’ ;

For better performance in full-rank case, the user of the FACTORIZE package
can request a QR factorization without column pivoting (method 2, above), via
F=factorize(A,’qr’). This option is not available when using x=A\b.

For matrices with more columns than rows, x=A\b returns a basic solution, but
the FACTORIZE package returns a better solution via QR factorization of the trans-
posed matrix A’. This gives the unique minimum 2-norm solution if A has full rank.

2.2.7 Sparse QR factorization. The sparse QR factorization in MATLAB relies
on SuiteSparseQR [Davis 2011a], which is based on a sparse multifrontal method
and uses Heath’s method for handling rank-deficient sparse matrices [Heath 1982].
Ten different syntax options are listed in doc qr in MATLAB R2012a, while the
spqr mexFunction in SuiteSparse has 15. Selecting the right syntax depends on
what the user requires, but different syntaxes have very different performance pro-
files. This makes for a daunting choice for the basic MATLAB user.

Both qr and spqr can return Q as a sparse matrix, but this is not practical for
large problems since Q can have many nonzero entries. The spqr function can
return a representation of Q as a set of sparse Householder vectors. This can be as
sparse as L from a sparse LU factorization, since the pattern of the Householder
vectors for a non-multifrontal code is bounded below by the pattern of L from an
LU factorization [Davis 2006]. This is much more efficient in time and memory, but
this feature is not available to MATLAB users (as of R2012a). If Q is not needed,

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 11

method time (sec)

1 [~, R, p] = qr (A, sparse (size (A,1), 0), 0) ; 0.8

2 [~, R, p] = qr (A, 0) ; 6057.2

3 p = amd (A’*A) ; R = qr (A (:,p), 0) ; 1.0

4 p = colamd (A) ; R = qr (A (:,p), 0) ; 7.6

Table II. Sparse QR factorization and results with the Pereyra/landmark matrix of size 71,952-
by-2704, on a 24-core AMD Opteron 6168 system with 128GB of RAM. This experiment required

a system with a large amount of RAM, since MATLAB required 47GB of space for method 2.

the sparse Householder vectors can also be discarded as they are computed, which
saves a substantial amount of time and memory.

Thus, the best strategy for the QR factorization is to discard Q and use the
corrected semi-normal equations [Golub and Van Loan 1989], with one step of
iterative refinement. This option is suggested by doc qr in MATLAB, except that
a fill-reducing ordering should also be used (this is not suggested by doc qr).

While spqr can return just R and the fill-reducing column ordering p at the
same time as discarding Q, MATLAB does not provide this option. However, qr in
MATLAB does have an option to discard Q as it is computed, while at the same time
applying it to a second vector or matrix b, with the syntax [C,R,p]=qr(A,b,0).
This option returns C=Q’*b, which is used internally by x=A\b.

However, C is not useful if the QR factorization needs to be reused with a different
right-hand side, b. Thus, the best MATLAB syntax for returning R and p while
discarding Q is method 1 in Table II, which is very non-obvious. The table also lists
the run time for the Pereyra/landmark matrix from [Davis and Hu 2011].

In method 1, C=Q’*sparse(m,0) is computed and then discarded. This adds very
little time and memory to the computation in SuiteSparseQR. A MATLAB user
might be tempted to use method 2, which seems to do the right thing by discarding
the first output argument Q for the computation [Q,R,p]=qr(A,0), but it is very
costly. The tilde argument (~) for [~,R,p]=qr(A,0), tells MATLAB to discard the
first output argument. However, what happens internally is that SuiteSparseQR
is told to compute this argument Q, and then MATLAB discards it at the very
end, just before return its results to the MATLAB user. As shown in Table II,
the performance difference between method 2 and the other methods is extreme,
because the other three methods never construct Q at all.

2.2.8 Other factorization methods. The FACTORIZE package also relies on LDLT

factorization for matrices that are symmetric indefinite. The sparse ldl in MAT-
LAB relies on MA57 [Duff 2004].

MATLAB does not provide a complete orthogonal decomposition (COD), but
one can be written that relies on either the dense or sparse QR factorization meth-
ods in MATLAB. The former is straight-forward (see Section 2.2.6). The latter
requires a QR factorization with an efficient representation of the matrix Q. MAT-
LAB uses SuiteSparseQR for its sparse QR factorization, but MATLAB does not
provide access to the sparse Householder-vector representation for Q, which can
easily be an order of magnitude sparser than the explicit matrix Q, or even sparser.
To access this feature, the FACTORIZE package uses the mexFunction interface to
SuiteSparseQR (spqr) rather than the built-in SuiteSparseQR. The sparse COD

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

12 · T. A. Davis

in the FACTORIZE package is optional, and the package gracefully skips the sparse
COD if spqr is not available. For best results with sparse rank-deficient matrices,
the user is encouraged to install all of SuiteSparse.

2.2.9 Best-of-breed methods for LU, Cholesky, and QR. Table III lists the best
techniques for the three primary factorizations for both the dense and sparse cases.
Not listed are the LDLT , SVD, COD factorization methods. None of the methods
listed in the table are trivial or obvious, even to the MATLAB expert.

2.3 Factorization methods used by built-in MATLAB functions

A sub-optimal but commonly-used method that uses dense LU factorization is
[L,U,P]=lu(A); x=U\(L\(P*b)). In Figure 1, this is method 2 for the factoriza-
tion and method 2b for the solve step.

This sub-optimal technique does not exploit the Cholesky or LDLT factoriza-
tions, which cut the time roughly in half for symmetric matrices. Its solve step
relies on a dense permutation matrix, which is very slow to use and takes a lot
of memory. In spite of these drawbacks, this sub-optimal method can be found in
built-in MATLAB functions (md2c and @idss/ss2ss in the System Identification
Toolbox, and @umat/inv in the Robust Control Toolbox, for example).

A better method is used in four of the eight MATLAB ODE solvers, where
a permutation vector is used instead ([L,U,p]=lu(A,’vector’); x=U\(L\b(p)),
when A is dense). This is method 1 for the factorization (the best LU) coupled
with method 1b, a sub-optimal solve step. These four functions correctly use lu for
sparse matrices, allowing for a fill-reducing permutation and a row-scaling matrix
R. However, they do not use the full power of backslash, such as using chol or ldl,
which are much faster than lu for symmetric matrices.

The condest function also uses method 1, and a method with similar performance
as method 1b (x=U\(L\b), since condest can ignore the permutation p). Like the
ODE functions, condest does not exploit symmetry via chol or ldl, and thus
computing condest(A) for a sparse symmetric positive definite matrix A is many
times slower than it could be.

The sptarn function in the MATLAB PDE toolbox is slightly more sophisticated,
but still limited. It relies on its own backslash mimic, which uses either chol or lu,
depending on the matrix. However, it constrains lu with an inferior fill-reducing
permutation, and restricts it to use GP, which can be slower than the one relied
upon by backslash (UMFPACK). This performance hint appears in help lu. This
same problem occurs in fzmult in the Optimization toolbox.

The ODE solvers bvp4c and bvp5c use lu for a sparse matrix in a way that
prohibits lu from exploiting any fill-reducing ordering at all. This can be very
inefficient if fill-in is excessive. Like sptarn, these two methods use lu in a style
that prohibits the use of UMFPACK.

The eigs function comes closest to the efficiency of backslash, but it requires a
great deal of code to get it right even though eigs only needs to consider the case
when the matrix is square.

These built-in MATLAB functions use very different factorization techniques.
Some are better than others, but none are as fast or as flexible as backslash. What
these functions really need is a backslash whose factorization can be easily reused.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 13

method sparse? most efficient code for x=A\b and y=c/A

LU no Assuming b and c are dense vectors or matrices. If sparse, they must be
converted to dense matrices since linsolve only operates on dense matrices.

[L, U, p] = lu (A, ’vector’) ;

opL.LT = true ;

opU.UT = true ;

opUT.UT = true ;

opUT.TRANSA = true ;

opLT.LT = true ;

opLT.TRANSA = true ;

x = linsolve (U, linsolve (L, b (p,:), opL), opU) ;

y = (linsolve (L, linsolve (U, c’, opUT), opLT))’ ; y (:,p) = y ;

LU yes b and c can be sparse or dense.

[L, U, P, Q, R] = lu (A) ; % R is a diagonal scaling matrix

x = Q * (U \ (L \ (P * (R \ b)))) ;

y = ((((c * Q) / U) / L) * P) / R ;

Cholesky no Assuming b and c are dense.

[R, g] = chol (A) ; % R is upper triangular

opU.UT = true ;

opUT.UT = true ;

opUT.TRANSA = true ;

x = linsolve (R, linsolve (R, b, opUT), opU) ;

y = linsolve (R, linsolve (R, c’, opUT), opU)’ ;

Cholesky yes b and c can be sparse or dense.

[L, g, P] = chol (A, ’lower’) ; % L is lower triangular

x = P * (L’ \ (L \ (P’ * b))) ;

y = (P * (L’ \ (L \ (P’ * c’))))’ ;

QR no Assuming A has more rows than columns, and both b and c are dense. This

is the faster optional method for full-rank methods; the default is QR with

column pivoting via the COD listed in Section 2.2.6.

[Q, R] = qr (A,0) ;

opU.UT = true ;

opUT.UT = true ;

opUT.TRANSA = true ;

x = linsolve (R, Q’*b, opU) ;

y = (Q * linsolve (R, c’, opUT))’ ;

QR yes Assuming A has more rows than columns. b and c can be sparse or dense. Uses

the corrected semi-normal equations with one step of iterative refinement.

[m, n] = size (A) :

[~, R, p] = qr (A, sparse (m,0), 0) ;

P = sparse (p, 1:n, 1) ;

x = P * (R \ (R’ \ (P’ * (A’ * b)))) ;

e = P * (R \ (R’ \ (P’ * (A’ * (b - A * x))))) ;

x = x + e ; % computing y to minimize norm (y*A-c) is analogous

Table III. The most efficient MATLAB code for the three primary factorization methods.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

14 · T. A. Davis

Code duplication is also a concern, since the same functionality is duplicated in
many places with differing degrees of success.

2.4 Abusing the MATLAB INV

Even the sub-optimal factorizations discussed in the previous section can be difficult
for the naive MATLAB user to master or use, which contributes to the prevalent
misuse of the MATLAB inv function. Using inv is trivial in MATLAB: S=inv(A)
computes the inverse of A, and x=S*b is a very simple way to use (or reuse) S to
compute x=A\b.

Textbooks refer to the inverse of A in many formulas: x = A−1b is the solution to
Ax = b, and S = D−BA−1C is a common way to express the Schur complement S,
for example. Although textbook authors do not intend for the reader to compute
the explicit inverse (or they shouldn’t!) the naive user often simply translates these
formulas directly into MATLAB expressions with the inv function.

There are many problems with this naive use of inv, of course. It can be hope-
lessly inaccurate, and for sparse matrices it can be impossible to compute since
inv(A) is typically completely nonzero. MATLAB provides a warning in its M-file
editor that flags the use of x=inv(A)*b, directing the user to use backslash in-
stead. However, the MATLAB editor does not tell the user how to efficiently reuse
a factorization.

Misuse of x=inv(A)*b is very common. This author recently conducted a study
to determine the 500 most frequently used functions in MATLAB [Davis 2011b].
Every user-contributed submission on MATLAB Central as of March 2010 was
downloaded and parsed to determine which built-in functions were used, and how
often they were used in each submission. The inv function was found in 554 of
the 9,498 submissions (about 6%), and appeared in a total of 2,407 times in those
554 submissions. This places inv as the 160th most frequently-used function in
MATLAB. There are a few cases where inv can be properly used, such as when
specific entries of the inverse are required. However, a spot check of about a dozen
of the 554 submissions that use inv showed that none fell into that category. They
were all misuses of inv.

For comparison, sparse is the 172nd most-used function, and lu is merely the
383rd. The qr function is slightly more common (ranked 355th), whereas chol is
ranked 409th. The inv function is used more frequently than any of these other
functions. Clearly, inv-abuse is a serious and common problem for MATLAB users.

2.5 A gap in MATLAB functionality

To summarize, no method is clearly the best for MATLAB users:

(1) backslash: simple to use, fast, and accurate, but very slow if you have multiple
linear systems to solve. Its syntax is not as as clear as inv. Consider the Schur
complement, where D − BA−1C translates directly into D-B*inv(A)*C or the
more esoteric but numerically superior expressions D-B*(A\C) or D-(B/A)*C.

(2) LU, QR, Cholesky, and LDLT : fast and accurate, but very difficult to use.
You will need to pull out your linear algebra textbook and be prepared to do
some benchmarking to find the most efficient method. This author wrote the
sparse versions of three of these functions (LU, QR, and Cholesky [Chen et al.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 15

2008; Davis 2004; 2011a]) and even he has trouble remembering the best way to
use them via MATLAB. What is worse is that new versions of MATLAB often
result in different optimal methods for using these factorizations, as new factor-
ization methods appear. This occurred most recently with the introduction of
the sparse LDLT in 2008 (MA57 [Duff 2004]) and the new sparse multifrontal
QR factorization [Davis 2011a] in 2009.

(3) inv: The statement x=inv(A)*b is easy to write, but should always be avoided.
It is commonly misused by MATLAB users, probably because the syntax is very
simple and matches the mathematics, and because it is easy to reuse (misuse,
to be more precise) for multiple right-hand sides.

3. FACTORIZE: AN OBJECT-ORIENTED LINEAR SYSTEM SOLVER

The solution to this problem is to encapsulate the full suite of linear system solvers
in MATLAB into a single object-oriented solver called FACTORIZE. This object also
extends backslash by improving how rank-deficient systems are handled, incorpo-
rating a complete orthogonal decomposition, and the singular value decomposition.

3.1 An overview of the FACTORIZE method

Operator overloading in the object-oriented design of the FACTORIZE package makes
it extremely easy to use for the MATLAB end-user. Below are a few examples of
its use.

F = factorize (A) ; % returns a factorization object

x = F\b ; % same as x=A\b, but only doing the forward/backsolve

y = F\c ; % same as y=A\c, reusing the factorization of A

x = b/F ; % same as x=b/A, but only doing the forward/backsolve

z = F’\d ; % reuses the factors to solve the transposed system

S = inverse (F) ; % factorized representation of the inverse (requires no work)

x = S*b ; % same as x=F\b

c = S (1:3,2:3) ; % returns entries from inv(A), doesn’t compute all of inv(A)

c = condest (F) ; % same as condest(A), but reuses the factorization

Consider the complexity of the best dense LU factorization in the first row of
Table III, and the sub-optimal method used in ode15i ([L,U,p]=lu(A,’vector’);
x=U\(L\b(p))). The method F=factorize(A); x=F\b is just as fast as the best
method in Table III, yet far easier to use than either of these alternatives.

The inverse function allows for a direct translation of the many textbook math-
ematical expressions that use A−1. For example, x = A−1b can be elegantly written
as x=inverse(A)*b. This statement does not compute the inverse, but does the
right thing by factorizing A and solving the linear system using that factoriza-
tion. Likewise, the mathematical equation D −BA−1C for the Schur complement
translates directly into D-B*inverse(A)*C, which is both easy to read and compu-
tationally efficient.

3.2 Implementation of the FACTORIZE method

The factorization object F is constructed via an M-file that mimics the back-
slash operator, using all of Table III and several other techniques. If the matrix is
rectangular, a QR factorization of A or A’ is computed, whichever is tall and thin.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

16 · T. A. Davis

This allows F\b to return a minimum 2-norm solution for under-determined sys-
tems, rather than the basic solution found by x=A\b. Both result in a low residual,
but a minimum 2-norm is solution unique if A has full rank and this is sometimes
preferable to a non-unique basic solution.

The next step is the same as backslash. Namely, if the matrix is square, sym-
metric, with an all-real nonzero diagonal, chol is attempted. If this fails, or if the
condition on the diagonal does not hold, ldl is used. If these conditions do not
hold, or if chol and ldl fail, lu is used.

If any of these solvers report that A is rank-deficient (or nearly so), backslash
simply reports a warning and returns whatever result it found. Backslash uses qr

factorization with approximate rank-detection for rectangular matrices, and thus
it can find a basic solution to under-determined systems. However, backslash does
not attempt this if the matrix is square. The FACTORIZE method uses a more reli-
able technique for rank-deficient matrices (both square and rectangular, sparse and
dense): a complete orthogonal decomposition (COD). This enables the FACTORIZE

package to find better solutions to singular problems.
If A is a matrix, S=inverse(A) is the same as F=factorize(A) followed by

S=inverse(F). A factorization F is computed, and then S is merely flagged as
being a factorization of the inverse, swapping the roles of the \ and * operators.
The factorizations F and S are otherwise identical. When S*b is to be computed in
a user’s code, the FACTORIZE package computes A\b using the previously computed
factorization of A.

3.3 The advantages of operator overloading

Operator overloading is a very useful technique for extending a previous code to
handle new kinds of computations. For example, selecting a good factorization
should be done in one place, and then reused in other codes that need a factoriza-
tion. These other codes should not care how it is done or even which factorization
is used. A prime example is the MATLAB normest1 function, which condest re-
lies upon to compute an estimate of the 1-norm condition number, ||A||1||A−1||1
[Hager 1984; Higham and Tisseur 2000]. The statement c=normest1(A) estimates
||A||1 by relying only on two computations with the matrix A: y=A*x and y=A’*x.
If isa(A,’double’) is true, then normest1 simply performs y=A*x and y=A’*x,
treating A as a matrix. Otherwise, it treats A as an operator and calls it as a
function handle. condest uses this to compute an estimate of ||A−1||1.

However, consider the computation S=inverse(A); z=normest1(S). The com-
putation in normest1 uses S*x and S’*x rather than calling S as a function handle,
since isa(S,’double’) is true for the factorization object S. Since operator over-
loading for S*b computes A\b by reusing the factorization, and since S’*b becomes
A’\b, these computations do the right thing, without computing the inverse. The
normest1 function treats S just like a matrix, “unaware” that is it being adapted
for use by an object-oriented approach to compute ||A−1||1. If condest were to
be rewritten to use the FACTORIZE package, the complicated code in normest1 for
working with a function handle could be discarded, and normest1 would be simpler
and faster. It would also automatically adapt to future updates to the factorization
methods in MATLAB with no changes to its code.

The MATLAB expression norm(A,1)*normest1(inverse(A)) uses the FACTORIZE

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 17

package to computes an estimate of κ1(A) = ||A||1||A−1||1 without any changes to
the built-in normest1. The expression is faster than condest(A) and yet it looks
just like the mathematical definition, a strong indication that an object-oriented
style of handling factorizations and implicit inverses is a powerful technique for
writing code that is fast, accurate, and easy to read.

The new method is yet more efficient if the factorization needs to be reused out-
side the condest computation. Suppose the user wants to compute x=A\b followed
by s=condest(A) (the built-in functions ode15s and ode23t in MATLAB are two
examples). The matrix is factorized twice, which is wasteful. Instead, this can be
written as F=factorize(A); x=F\b; s=condest(F), which computes the factor-
ization only once. For large square unsymmetric matrices, the total time is cut in
half. If A is a dense symmetric positive definite matrix, the time is cut by nearly
a factor of 3, because condest(A) uses an LU factorization, whereas condest(F)

reuses the Cholesky factorization computed by F=factorize(A).

3.4 Using alternative factorizations

A second string argument to the FACTORIZE function tells it to use a specific method
or strategy rather than the default, which is to mimic backslash. The options are
’lu’, ’qr’, ’chol’, ’cod’, ’ldl’, and ’svd’, or a modification of the default
backslash strategy (’symmetric’ and ’unsymmetric’, which speed up the back-
slash tests by skipping the test for symmetry). There is no mechanism for providing
these hints to backslash.

3.5 Using the singular value decomposition

The built-in functions norm, cond, rank, null, orth, and pinv all rely upon the
SVD. They each compute the SVD, use it, and then discard it. The SVD is ex-
tremely costly to compute and should not be so lightly discarded. Suppose a user
wishes to compute the following. The SVD is computed seven times.

[U,S,V] = svd (A) ;

nrm = norm (A) ;

c = cond (A) ;

r = rank (A) ;

Z = null (A) ;

Q = orth (A) ;

C = pinv (A) ;

x = C*b ;

Code that relies upon the FACTORIZE package is listed below. It is nearly identical
and remarkably simple, but it computes the SVD just once. For large matrices, it
is close to 6 times faster than the non-object-oriented code listed above.

F = factorize (A, ’svd’) ;

[U,S,V] = svd (F) ; % retrieve the factorization from F

nrm = norm (F) ;

c = cond (F) ;

r = rank (F) ;

Z = null (F) ;

Q = orth (F) ;

C = pinv (F) ;

x = C*b ;

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

18 · T. A. Davis

4. SUMMARY

The FACTORIZE package allows the MATLAB user to write simple code that is
more elegant than the code it replaces (consider the normest1 example, or the
Schur complement). Code that relies on the FACTORIZE package can be faster for
large matrices even if the factorization is not reused, since (like backslash) it selects
among a wide range of factorization methods, rather than choosing among a few
(consider condest). Code performance also increases if the factorization can be
reused. The inverse method based on the FACTORIZE package is far superior to
the much-abused inv, while being just as simple to use.

Judging from how MATLAB experts exploit the many factorization methods in
MATLAB (in built-in functions written by The MathWorks), wrapping the best
methods into an easy-to-use factorization object is a powerful way to encourage
the use of most efficient factorization methods in MATLAB.

The FACTORIZE package has already been used extensively and was selected as a
“Pick of the Week” by The MathWorks [Doke 2009]. The code includes a thorough
demo that illustrates how to use the object and some of the theory behind solving
different kinds of linear systems and least-squares problems via direct factorizations.

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

Object-oriented linear system solver for MATLAB · 19

5. APPENDIX: FUNCTIONS IN THE FACTORIZE PACKAGE

Upper-case letters are MATLAB matrices, except for F, G, and S, which are factorization objects

(S is a factorization of A−1). All lower-case letters are scalars. U, V, and Q are orthogonal matrices,

either MATLAB matrices or sets of Householder vectors. R is upper triangular, P is a permutation
vector or matrix, and I and J are index vectors.

F = factorize(A) factorize a matrix, sparse or dense

F = factorize(A,method) method is ’default’, ’symmetric’, ’unsymmetric’, or:

’svd’: A=U*S*V’

’cod’: A=U*R*V’

’qr’: A=Q*R or (A*P)’*(A*P)=R’*R, or transposed

’lu’: A(P:)=L*U or P*(R\A)*Q=L*U

’ldl’: A(P,P)=L*D*L’ or P’*A*P=L*D*L’

’chol’: A=R’*R or P’*A*P=L*L’

X = F\B A\B, or A−1B without computing A−1

X = B/F B/A, or BA−1 without computing A−1

X = F*B A*B

X = B*F B*A

X = double(F) X=A

[m,n] = size(F) [m,n]=size(A)

X = S(I,J) A(I,J)

G = F’ factorization of AT

G = -F factorization of −A
G = alpha*F factorization of αA

struct(F) return the components of F as a struct

r = rankest(F) estimated rank of A

c = condest(F) condest(A), 1-norm condition estimate of A

S = inverse(A) factorized inverse
S = inverse(F) factorized inverse (requires no numerical work)

X = S\B A*B

X = B/S B*A

X = S*B A\B, or A−1B without computing A−1

X = B*S B/A, or BA−1 without computing A−1

X = double(S) X=inv(A) or X=pinv(A)

[m,n] = size(S) [n,m]=size(A)

X = S(I,J) C(I,J) where C=double(S)

G = S’ factorization of A−T

G = -S factorization of −A−1

G = alpha*S factorization of αA−1

struct(S) return the components of S as a struct

r = rankest(S) estimated rank of A
c = condest(S) condest(A), 1-norm condition estimate of A

functions for SVD factorization only:

c = cond(F,p) cond(A,p), the p-norm condition number of A
a = norm(F,p) norm(A,p), the p-norm of A

r = rank(F) rank(A), the rank of A
Z = null(F) null(A), orthonormal basis for the null space of A
Q = orth(F) orth(A), orthonormal basis for the range A

C = pinv(F) pinv(A), pseudo-inverse of A
[U,S,V] = svd(F) the singular value decomposition of A

specialized and supporting functions:

G = cholupdate (F,w,updown) rank-1 update/downdate of dense Cholesky factorization
[U,R,V,r] = cod (A) complete orthogonal decomposition (A dense)
[U,R,V,r] = cod_sparse (A) complete orthogonal decomposition (A sparse)

Y = cod_qmult (Q,X,method) multiply X by U or V from cod_sparse

[R,Q] = rq (A) R*Q=A factorization (A dense)

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

20 · T. A. Davis

REFERENCES

Amestoy, P. R., Davis, T. A., and Duff, I. S. 1996. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl. 17, 4, 886–905.

Amestoy, P. R., Davis, T. A., and Duff, I. S. 2004. Algorithm 837: AMD, an approximate

minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3, 381–388.

Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J. W., Dongarra, J. J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. C. 1999.

LAPACK Users’ Guide, 3rd ed. SIAM, Philadelphia, PA.

Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887:

CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans.
Math. Softw. 35, 3, 1–14.

Davis, T. A. 2002. Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal

method. ACM Trans. Math. Softw. 30, 2, 196–199.

Davis, T. A. 2004. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw. 30, 2, 165–195.

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA.

Davis, T. A. 2011a. Algorithm 915: SuiteSparseQR, a multifrontal multithreaded sparse QR

factorization package. ACM Trans. Math. Softw. 38, 1.

Davis, T. A. 2011b. MATLAB Primer , 8th ed. Chapman & Hall/CRC Press, Boca Raton.

Davis, T. A. and Duff, I. S. 1999. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Trans. Math. Softw. 25, 1, 1–19.

Davis, T. A., Gilbert, J. R., Larimore, S. I., and Ng, E. G. 2004a. Algorithm 836: COLAMD,

a column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3,
377–380.

Davis, T. A., Gilbert, J. R., Larimore, S. I., and Ng, E. G. 2004b. A column approximate

minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3, 353–376.

Davis, T. A. and Hu, Y. 2011. The University of Florida sparse matrix collection. ACM Trans.

Math. Softw. 28, 1.

Davis, T. A. and Palamadai Natarajan, E. 2010. Algorithm 907: KLU, a direct sparse solver

for circuit simulation problems. ACM Trans. Math. Softw. 37, 36:1–36:17.

Doke, J. 2009. Pick of the week: Don’t let that INV go past your eyes; to solve that system

FACTORIZE. http://blogs.mathworks.com/pick/2009/06/26/dont-let-that-inv-go-past-your-
eyes-to-solve-that-system-factorize/.

Duff, I. S. 2004. MA57—a code for the solution of sparse symmetric definite and indefinite

systems. ACM Trans. Math. Softw. 30, 2, 118–144.

Gilbert, J. R., Moler, C., and Schreiber, R. 1992. Sparse matrices in MATLAB: design and
implementation. SIAM J. Matrix Anal. Appl. 13, 1, 333–356.

Gilbert, J. R. and Peierls, T. 1988. Sparse partial pivoting in time proportional to arithmetic

operations. SIAM J. Sci. Statist. Comput. 9, 862–874.

Golub, G. H. and Van Loan, C. 1989. Matrix Computations, 2nd ed. Baltimore, Maryland:
Johns Hopkins Press.

Hager, W. W. 1984. Condition estimates. SIAM J. Sci. Statist. Comput. 5, 2, 311–316.

Heath, M. T. 1982. Some extensions of an algorithm for sparse linear least squares problems.

SIAM J. Sci. Statist. Comput. 3, 2, 223–237.

Higham, N. J. and Tisseur, F. 2000. A block algorithm for matrix 1-norm estimation with an
application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21, 4, 1185–1201.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, M 20YY.

