microcomputers
and memories

DIGITAL facility, Marlboro, Massachusetts

CORPORATE PROFILE

Digital Equipment Corporation designs, manufactures, sells and ser-
vices computers and associated peripheral equipment, and related
software and supplies. The Company’s products are used world-wide
in a wide variety of applications and programs, including scientific
research, computation, communications, education, data analysis, in-
dustrial control, timesharing, commercial data processing, word proc-
essing, health care, instrumentation, engineering and simulation.

section |
commonalities

section |

board-level
components

section ||
systems

section |V
appendices

microcomputers
and memories

dlilgliltlall

Copyright© 1982 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in-
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip-
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi-
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS
PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of
Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL's New Products Marketing Group
using an in-house text-processing system.

CONTENTS
SECTION | - COMMONALITIES

CHAPTER 1 INTRODUCTION, 1
LSl 1
LSI-11/2 2
LSI-11/23 2
FALCONSBC-11/21. ... 2
PDP-11/23-PLUS 2
THEFAMILY CONCEPT 3
CENTRAL PROCESSORFEATURESccoiiiinnnn. 3
PERIPHERALS 5
SOFTWARE DEVELOPMENTTOOLSot 5
RT-11 5
ROX-11M . 5
RSX-11M-PLUS 6
RSTS/E o e 6
RSX-118 L e 7
R e 8
SIMRT L e 8
APPLICATIONS e 8
DOCUMENTATION. e 10
EDUCATIONAL SERVICES i 11
DECUS ... e 13
MAINTENANCE e 13
CHAPTER 2 ARCHITECTURAL OVERVIEW 29
SYSTEMARCHITECTURE 29
PROCESSORSTATUSWORD. ...t 33
INSTRUCTIONSET i 35
FALCON SBC-11/21 ARCHITECTURAL

AND OPERATIONALFEATUREScciiiiiiinannn, 36
LSI-11/23 ARCHITECTURAL

AND OPERATIONALFEATURES ... 36
LSI-11/2 ARCHITECTURAL

AND OPERATIONALFEATURESciiiiiiiiinnn. 37
LEVELS OF INTEGRATION i 38

CHAPTER 3 ADDRESSINGMODES 43

REGISTERMODE 46
REGISTERDEFFERREDMODEottt 47
AUTOINCREMENTMODE it 48
AUTOINCREMENT DEFERREDMODE 49
AUTODECREMENTMODEttt 49
AUTODECREMENT DEFERREDMODE. 50
INDEXMODE 51
INDEXDEFERREDMODE. 52
USE OF THE PC AS A GENERAL REGISTER 52
PCIMMEDIATEMODE 53
PC ABSOLUTEMODE i 54
PCRELATIVEMODE54
PC RELATIVEDEFERREDMODE, 55
GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES 59
CHAPTER 4 INSTRUCTIONSET 65
SINGLE-OPERAND INSTRUCTIONS, 66
DOUBLE-OPERAND INSTRUCTIONScco... 67
PROGRAM CONTROL INSTRUCTIONS c..n. 68
JUMP AND SUBROUTINE INSTRUCTIONS 69
RTS FORMAT L e 70
TRAPS ANDINTERRUPTS e 70
MISCELLANEOUS INSTRUCTIONSociiiiiiiinnn.. 70
CONDITION-CODEOPERATIONS ... 71
EXAMPLES e 73
SPECIALSYMBOLS e 75
INSTRUCTION SET ... i e 77
EXTENDED INSTRUCTIONSETot 110

CHAPTER 5 FLOATING POINT INSTRUCTION SET (FP-11)

(LSI-11/23, PDP-11/23, AND PDP-11/23-PLUS) 115
INTRODUCTION ... e 115
FLOATING POINT DATAFORMATS ...ttt 116
FLOATING POINT STATUS REGISTER(FPS) 118
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS. 122
FLOATING POINT OPTION INSTRUCTION ADDRESSING....... ... 123
ACCURACY L 123
FLOATING POINTINSTRUCTIONSciiiiiiiiiene. 125

iv

CHAPTER 6 FLOATING POINT INSTRUCTION SET (FIS)

(LSI-11,LSI-11/2,and PDP-11/03) 153
INTRODUCTION ... e 153
KEVITOPTION 153

CHAPTER 7 OCTAL DEBUGGING TECHNIQUE

(MICROCODE ODT). ...\t 161
CONSOLEODT . ..ot 161
CONSOLE ODT COMMANDS ...\ 161
CONSOLE ODT OPERATION....... .. o .165
HARDWARE REQUIREMENTS@uteeeee e 179
CHAPTER 8 PROGRAMMING TECHNIQUES 185
POSITION-INDEPENDENT CODE..\ eeeeeeeeeenn 185
EXAMPLES ..ottt e et 187
STACKS ..ot e 189
DELETING ITEMS FROMASTACK ..., 195
SUBROUTINE LINKAGEttt 195
INTERRUPTS . . . oottt e e et 196
RE-ENTRANCYttt 200
COROUTINES ...t e, 203
RECURSION ...ttt et e 208
PROCESSOR TRAPSot 210
TRAPINSTRUCTIONS ...ttt e 211
CONVERSION ROUTINES v et 213
ASCICONVERSIONSot 217
CHAPTER 9 LSI11BUSocoooiinniaaanneannn.. 219
DATA TRANSFER CYCLES vveeneee e 223
DIRECT MEMORY ACCESSouuneaeeeaeeeenns. 234
INTERRUPTSttt 236
CONTROL FUNCTIONSoue e 242
LSI-11 BUS ELECTRICAL CHARACTERISTICS 244
SYSTEM CONFIGURATIONS ovoeeneieeieeaaaann, 248
MODULE CONTACT FINGER IDENTIFICATION 250

v

CHAPTER 10 MEMORY MANAGEMENT.................... 265

MEMORY RELOCATION. ... 267
PROTECTION e 271
PAGE ADDRESS REGISTER(PAR)oiiiii 276
PAGE DESCRIPTION REGISTER(PDR) 276
VIRTUAL AND PHYSICALADDRESSES 279
STATUSREGISTERS s 282
MEMORY MANAGEMENT INSTRUCTIONS 284
CHAPTER 11 FPF11 FLOATING POINT PROCESSOR 287
FEATURES-BENEFITS 287
SPECIFICATIONS s 287
CONFIGURATION ... e 288
DESCRIPTION e 291

SECTION 1I-BOARD LEVEL COMPONENTS

CHAPTER 12 FALCON SBC-11/21 MICROCOMPUTER 299
INTRODUCTION ... i 299
FEATURES-BENEFITS, 299
SPECIFICATIONS s 300
CONFIGURATION ... e e 302
DESCRIPTION e 314
CHAPTER 13 LSI-11/23 MICROCOMPUTER 321
INTRODUCTION ... e 321
FEATURES-BENEFITS i 321
SPECIFICATIONS e s 323
ADDITIONAL SOURCES OF LSI-11/23 DOCUMENTATION 323
CONFIGURATION DATA-JUMPER SELECTION 323
DESCRIPTION ... it 331
LSI-11/23 PROCESSOR OPTIONS (KEF11-AA) 350
FPF 1T i e 351

vi

CHAPTER 14 LSI-11/2MICROCOMPUTER.................. 353

INTRODUCTION ... e 353
FEATURES-BENEFITSo 3563
SPECIFICATIONS. 354
ADDITIONAL SOURCES OF LSI-11/2 DOCUMENTATION 355
CONFIGURATIONDATA 355
JUMPERSELECTION 356
DESCRIPTION ... 360
LSI-11/2 PROCESSOROPTIONS (KEV11)...................... 374
CHAPTER 15 LSI-11 MICROCOMPUTER 377
INTRODUCTION 377
FEATURES-BENEFITS i, 377
SPECIFICATIONS. 378
ADDITIONAL SOURCES OF LSI-11 DOCUMENTATION 379
CONFIGURATION DATA-JUMPER SELECTION 379
LSI-11 PROCESSOR OPTIONS (KEV11) ... 386
CHAPTER 16 LSI-11 SYSTEM TROUBLESHOOTING 389
INTRODUCTION ... e 389
CONDITIONONE e 391
CONDITIONTWO . .. 393
NOPPROGRAM e 398
LTCPROGRAM. ... e e 398
INTERRUPT TEST e 400
RELATED MICROCOMPUTERAIDES 401
CHAPTER 17 ROMMEMORIES 405
MRVI1-AA 405
MRVI1-BA . 416
MRV11-C 432

PROGRAMMING NOTESt 461
USING PROMS ... e 462
PB11 UNIVERSAL PROMPROGRAMMER. 470
CHAPTER 19 RAMMEMORIES 475
MSV11-B 475
MSVI1-CD ... 479
MSV11-D.E 485
MSVI1-L. . 506
MCV 11D e 530

CHAPTER 20 MULTIFUNCTION MODULES
MXV11-A MEMORY AND SYNCHRONOUS

SERIALLINEINTERFACE...............ciiiiiiiaiannnn. 541
INTRODUCTION ... e i 541
FEATURES-BENEFITS i 541
SPECIFICATIONS e e 542
CONFIGURATION ... e 543
MXV11TUS8 BOOTSTRAP ... i 563
MXV11DISKBOOTSTRAP.t 564
BAUDRATEJUMPERS i 565
CABLEDEFINITIONS e 567
DESCRIPTION e e 569

SECTION IlI-SYSTEMS

CHAPTER 21 SYSTEMS, 583
FUNCTIONING AND PERFORMANCEol 584
PDP-11/23 PLUS PACKAGED SYSTEMS 589
PDP-11/23 AND PDP-11/03-L PACKAGED SYSTEMS 595
SYSTEMEXPANSION 601
PROCESSOR SELF-DIAGNOSIS, 603

Viii

CHAPTER 22 PDP-11/23-PLUS MICROCOMPUTER. 605

INTRODUCTION e 605
FEATURES-BENEFITS i, 605
SPECIFICATIONS 606
DESCRIPTION ... e 607
CONFIGURATION 622
CHAPTER 23 MSVi1-PMEMORY 641
FEATURES-BENEFITS 641
SPECIFICATIONS 642
CONFIGURATION ... 644
DESCRIPTION e 649

APPENDIX A ASSIGNMENT OF ADDRESSES

ANDVECTORS 663
APPENDIX B LSI-11/23 INSTRUCTIONTIMING 681
APPENDIX C LSI-11,/2INSTRUCTIONTIMING 695
APPENDIX D PDP-11 FAMILY DIFFERENCES 701
APPENDIX E INTEGRATEDCIRCUITS 723

APPENDIX F FALCON SBC-11/21 INSTRUCTION TIMING .. .727

APPENDIX G LSI-11 DOCUMENTATION 733
APPENDIX H PDP-11/23-PLUS INSTRUCTION TIMING 741
INDEX . .. 749

PREFACE

Today is the advent of the Microcomputer age.

DIGITAL maintains and continues to expand its strong leadership in
the 16-bit, board-level microcomputer marketplace. With its introduc-
tion in November 1981 of the FALCON. SBC-11/21, and succeeding
announcement of the systems-oriented PDP-11/23- PLUS, DIGITAL is
determined to provide the computer user, whose system design is
stretching the capabilities of 8-bit performance, advanced 16-bit ca-
pability.

This Handbook, having undergone extensive revision from its prede-
cessor, serves a dual role in addressing both the needs of the board-
level customer and the systems-oriented user. It offers solutions to a
very wide range of user application requirements which can be met by
both DIGITAL stand-alone microcomputer systems, as well as board-
level component microcomputer products. We have designed this
Handbook to assist those customers desiring a descriptive, detailed
tutorial on the benefits, specifications, design, configuration and func-
tionality of DIGITAL’s maturing family of board-level and systems-level
LSI-11 microcomputers. Although primarily aimed at experienced
computer users, first-time microcomputer users will find some of the
Handbook tutorial information helpful.

The 1982 Micrcomputers and Memories Handbook is divided into
three major sections. The first section, called the 'Commonalities’ sec-
tion, encompasses information pertaining to both systems and
boards. The second section, or Section Il, deals strictly with board-
level component subject matter, while the third section, Section lll,
presents material related solely to stand-alone systems.

The Commonalities section is uniquely constructed to provide a step-
by- step guide to lead the user through the introductory passages
such as the Introduction, Architectural Overview, and Addressing
Modes to the more complex Instruction Set chapters, which have been
divided conveniently into three separate chapters. These include: The
basic PDP-11 instruction set chapter, which is common to all DIGITAL
microcomputers; the Floating Point (Option) Instruction Set (FP-11),
available for use with the LSI-11/23, PDP-11/23, and the PDP-11/23-
PLUS; and the Floating Point Instruction Set (FIS) to be used with the
LSI-11,LSI-11/2, and the PDP-11/03.

Xi

Highly technical, detailed configuration information on specific micro-
computers and memories follows in Section Il. The individual LSI-11
microcomputer chapters have been reconstructed, with the configura-
tion information positioned towards the beginning of each chapter, to
provide immediately accessible reference information on the configu-
ration of the microcomputer. An upgraded features and benefits sec-
tion illustrates the most current information on the individual
capabilities of these microcomputers. Likewise, the chapters on mem-
ories have been divided into two separate sections: Random Access
Memories (RAM) and Read-Only Memories (ROM). DIGITAL'’s newest
memory, the MSV11-L, is a single-board memory with byte parity and
64 KB MOS RAM memory technology. The MCV11-D, DIGITAL'’S new
CMOS read/write battery backup memory offering, is also featured.
Another new system-related memory, the MSV11-P, is featured in the
Memories chapter in Section Ill. These memory chapters have been
redesigned to reflect the same effective outline as the microcomputer
chapters.

Section lll also presents for the first time in a DIGITAL Microcomputer
Handbook a specific chapter on a systems-based PDP-11 microcom-
puter--the PDP-11/23-PLUS. A significantly expanded chapter on
DIGITAL’s systems offerings is also featured in this section.

Among this Handbook’s more intermediary- level chapters, chapters
that require an advanced knowledge of microcomputer concepts due
to their highly sophisticated, technically detailed contents, are the
Memory Management, Programming Techniques, Octal Debugging
Techniques, and the LSI-11 Bus chapters. These chapters appear in
Section I. The Memory Management and LSI-11 Bus chapters high-
light one of DIGITAL'’s newest technological achievements- Q-bus 22-
bit addressing. This feature provides the LSI-11/23 with the means to
address up to four megabytes of memory. The Octal Debugging Tech-
nique (ODT) chapter introduces the ODT as a significant tool which
facilitates the running and debugging of programs.

Additional material in this Handbook include helpful new chapters
covering system procedural troubleshooting for general LSI-11-based
microcomputer systems and the floating point processor, which
speeds execution of the floating-point arithmetic instructions.

Lastly, the Appendices in the back of this Handbook contain the most
current, accurate and complete support data and timing available at
the time of publication.

In late 1982 DIGITAL will publish a document that will assist technical-
ly-oriented readers familiar with fundamental computer concepts.
Written in easily understood, clear, and very simple narrative, this

Xii

Handbook describes in detail the process of designing a microcompu-
ter-based product, using DIGITAL board-level microcomputers as pri-
mary examples. Also, general information will be provided to teach
readers how to use our microcomputers and describe the benefits
derived from their usage. In addition, this Handbook will cover such
topics as designing application software, specifying application re-
quirements, interfacing DIGITAL hardware, and programming in the
development system.

Xiii

Xiv

section | .
commonadalities

Chapter 1 — Introduction

LSI-11/2

DIGITAL announced the LSI-11/2 microcomputer in 1977. The LSI-
11/2 retained the same processor features as its predecessor—the
LSI-11. However, the board dimensions were reduced from 10" X 8.5"
(26 cm X 22 cm) to the double-height size of 5.2” X 8.5” (13 cm X 22
cm). The result was a microcomputer board that was even easier to
handle, stock, and package into a wider range of hardware environ-
ments. The address range of the LSI-11/2 is 64 KB.

LSI-11/23

The LSI-11/23 microcomputer, introduced in 1979, utilized state-of-
the-art Large Scale Integration (LSI) technology. Developments in N-
MOS technology made this possible. This LSI-11/23, while retaining
the LSI-11/2 microcomputer form factor, increased CPU performance
to 2.5 times faster than speeds of the LSI-11 and the LSI-11/2, thereby
approaching execution speeds of mid-range minicomputers.

In 1981, further functionality was added to the LSI-11/23 microcompu-
ter. An extended 22-bit addressing range capability was introduced,
making it possible for the LSI-11/23 microcomputer to address four
megabytes of main memory. The comprehensive memory manage-
ment feature provides memory relocation, segmentation, and protec-
tion for this extended address range. Together, these features are not
found in any other microcomputer today. The LSI-11/23
microcomputer supports RSX-11M, the operating system that has set
a worldwide standard for real-time minicomputer performance.

FALCON SBC-11/21

November 1981 marked a very significant milestone for DIGITAL. The
FALCON SBC-11/21, DIGITAL's first single-board, lowest- cost micro-
computer was announced. This 16-bit, low-end microcomputer, de-
signed exclusively for dedicated, ROM-based, real-time applications
offers more on-board RAM and ROM memory capability than any
DIGITAL microcomputer. It also features two asynchronous serial 1/0
ports with eight programmable baud rates, 24 parallel 1/0 lines, and a
crystal-controlled real-time clock. In addition, the FALCON offers a
very compact packaging area. Its double-height, 44 square inch board
size is the smallest in the microcomputer industry.

PDP-11/23-PLUS

Shortly after the announcement of the FALCON in November 1981,
DIGITAL introduced another new microcomputer—the PDP-11/23-
PLUS. The PDP-11/23-PLUS, while providing full PDP-11 functionali-
ty, is offered in systems supporting up to one megabyte of parity MOS

2

Chapter 1 — Introduction

memory. The PDP-11/23-PLUS’s compact packaging density offers
more functionality using the same volume space in the processor box
as the PDP-11/23.

THE FAMILY CONCEPT

The LSI-11/2, LSI-11/23, and FALCON SBC-11/21 offer a wide range
of solutions to meet the ever-changing needs of the board-level user.
Similarly, the PDP-11/03, PDP-11/23, and PDP-11/23-PLUS provide
complete box-and systems-level solutions to meet the requirements of
end-users and OEMs. Collectively, LSI-11 and PDP-11 microcomputer
16-bit architecture allows easier programming, greater 1/0 through-
put, and more flexibility than the older 8-bit microcomputers.

In keeping with the DIGITAL philosophy of PDP-11 compatibility,
DIGITAL’s microcomputers have many common features that repre-
sent years of experience in computer technology.

These design features were kept consistent to protect your hardware
and software investments by making growth and migration easier for
your product.

CENTRAL PROCESSOR FEATURES
CPU features common to all DIGITAL LSI-11 and PDP-11 microcom-
puters include:

® The PDP-11 Instruction Set—87 standard PDP-11 instructions
comprise the basic instruction set of the LSI-11 microcomputer fam-
ily. These instructions process bits, bytes, and words, as well as
sub-routines, interrupts, single-operands, and double-operands.

e Six General-Purpose Registers, Two Special Purpose Regis-
ters—For further versatility, the LSI-11s contain six general-purpose
registers for use as accumulators, address pointers, index registers,
and other specialized functions. The two special purpose registers
are utilized for the Stack Pointer (SP) and the Program Counter
(PC).

® Twelve Addressing Modes—The addressing modes, common to all

LSI-11s and PDP-11s, allow the extension of the basic PDP-11 In-
struction Set to create over 400 powerful instruction combinations,
as well as byte and word addressing. This allows user programs to
be structured around bytes, words, or mixed, according to the
user’'s needs.
The programmer can access and manipulate data from memory
directly or indirectly. The addressing modes consist of register ad-
dressing, autoincrement or autodecrement, and indexed address-
ing. All addressing modes can be direct or deferred.

3

Chapter 1 — Introduction

In addition, four of these modes can be used with the program
counter to provide immediate, absolute, relative, and relative de-
ferred addressing. The addressing modes provide flexible and effi-
cient programming.

The Extended Instruction Set (EIS)—Optional on the LSI-11 and
LSI-11/2, standard on the LSI-11/23, the EIS contains four
instructions that perform signed integer multiply and divide and
direct implementation of multiple shifting. (The EIS is not available
on the FALCON SBC-11/21 microcomputer).

The LSI-11 Bus—Common to all LSI-11 processors and peripherals,
this bus provides vectored priority interrupts, programmed 1/0
transfers, and DMA /O data transfers. All modules operate asyn-
chronously at their highest possible speed.

Power-fail/Auto Restart Logic—This feature initiates an automatic
orderly system shutdown by generating a microcode power-fail se-
quence when power sequencing signals from the power sequence
module or system power supply indicate a possible AC power loss.

When power is restored, a complementary sequence in microcode
permits the processor to begin operating in one of four modes. This
procedure allows the program to continue at either the point of
interruption or, in some cases, reboots the system.

ODT/ASCII Console Routine—OQOptional on the FALCON microcom-
puter, standard on the LSI-11, LSI-11/2, and LSI-11/23, the octal
debugging function allows the conventional front panel to be re-
placed by any terminal device generating ASCIl code. The Octal
Debugging Technique feature can also be used to implement
remote control and/or loading of an LSI-11 without requiring the use
of a separate ROM program.

A Real-Time Clock Input—This feature provides synchronization of
the CPU with real-time events such as power-line frequencies.

Optional Microcoded Floating Point—Floating point operations can
be performed on LSI-11 microcrocomputers via a Floating Point
Instruction Set (KEV11) for the LSI-11 and LSI-11/2 and a more
comprehensive Floating Point Option (KEF11) for the LSI-11/23. (A
floating point option is not available for the FALCON microcompu-
ter).

Optional Floating Point Processor—A floating point processor
(FPF11) is also available for the LSI-11/23 to increase the execution
speeds of floating point instructions. These instructions are the
same instructions implemented in the floating point option (KEF11).

Chapter 1 — Introduction

PERIPHERALS

DIGITAL manufactures a wide range of peripheral equipment to
meet specific customer needs in business, education, industry, lab-
oratory, and medicine. I/0 storage devices range from tape car-
tridges to high-volume disk packs, and from the DECwriter to intelli-
gent terminals that provide both hard copy and video display.

The Microcomputer Interfaces Handbook describes in detail the op-
tional equipment available for use with LSI-11 microcomputers.

SOFTWARE DEVELOPMENT TOOLS

RT-11

The LSI-11/2 and LSI-11/23 systems both run the RT-11 floppy- or
hard-disk-based, real-time, foreground/background or single-job
operating system. The RT-11 operating system is designed for the
single interactive user, and offers a wide range of industry standard
high-level and assembly languages for program development.

RT-11’s easy-to-use command language and straightforward status
messages provide a “friendly” user interface. The compactness and
efficiency of the RT-11 real-time software system allow it to run on
the lowest-cost hardware configurations. RT-11 can supporta
single-job monitor where one program resides in memory at one
time and runs until it is completed or interrupted with a keyboard
command. Or, RT-11 can support real-time job execution in the
foreground, while simultaneously performing an interactive or batch
program development job in the background.

In 1981, DIGITAL introduced MicroPower/Pascal, a new software
product developed to address the needs of programmers seeking to
write technical microcomputer applications. MicroPower/Pascal is
comprised of a new language processor, a modular operating sys-
tem for the target application, and powerful debugging tools for use
in the program development environment. Program development
for MicroPower/Pascal is implemented under RT-11.

RSX-11M

RSX-11M, the hard-disk-based, multiuser, multitasking, real-time
operating system, is available for use on the LSI-11/23. The LSI-
11/23's greater memory capacity and memory management hard-
ware complement features present in RSX-11M. The benefits of
these extra hardware features provide larger, more sophisticated
development programs for system users.

RSX-11M also allows programs to be partitioned and segmented in
main memory for fast and efficient access by the high- performance

5

Chapter 1 — Introduction

LSI-11/23 CPU, and provides complete protection from any unau-
thorized user. Additionally, code and data sharing reduce memory
requirements, allowing for more programs in memory.

RSX-11M also offers task checkpointing; a program or task current-
ly running memory can be interrupted and swapped out of memory
to a disk when a higher-priority task requests the partition in which it
is resident. After the priority task completes execution, the
checkpointed task is automatically returned to memory and re-
stored at the point where it was interrupted.

RSX-11M-PLUS

The RSX-11M-PLUS, a superset of the RSX-11M operating system,
expands the capability of the RSX-11M to provide ease-of-use while
optimizing large memory systems. RSX-11M-PLUS is now available
for use with the PDP-11/23-PLUS.

RSTS/E

RSTS/E, Resource Sharing Timesharing System/Extended, is a
highly interactive, multiuser, multitasking, general-purpose operat-
ing system. RSTS/E dynamically allocates system resources such
as processor time, memory space, file space, and peripherals on a
best fit/best throughput basis to continually keep processing effi-
cient. RSTS/E is now available on the PDP-11/23 and the PDP-
11/23-PLUS microcomputer systems.

Layered Products
DIGITAL offers a wide variety of layered products such as DECnet,
DECnet/E, and DECword.

Languages
Fully supported languages available for use with RSX-11M and RT-
11 include:

e MACRO-11—A symbolic assembly language that features powerful
macro capabilities. Program readability and maintainability are en-
hanced through symbolic namesrepresenting relocatable ad-
dresses, constants, or a series of machine instructions.

® FORTRAN IV—A superset of the ANSI standard, FORTRAN IV has
extra features that allow easier debugging of existing FORTRAN
programs. Further extensions to ANSI standard FORTRAN IV allow
shorter development time for new software.

The FORTRAN IV compiler produces binary code segmented into
read-only and read/write sections, and is suitable for placing in
ROM.

Chapter 1 — Introduction

e BASIC-11—An extension of the popular Dartmouth-developed
BASIC language, its interpretive nature allows for quick software
development and debugging. Sophisticated programs can take ad-
vantage of a set of language extensions that permit advanced mani-
pulation of mass storage and terminal devices.

Additional Languages Supported Under RT-11

® APL-11—A mathematically structured programming language that
features muitiple statement lines, standard file-naming formats and
the ability to fully evaluate character strings and write user-defined
functions.

e MicroPower/Pascal—Applications utilizing MicroPower/Pascal are
developed under RT-11 in Pascal, a superset of the Jensen and
Wirth definition of Pascal. The Pascal compiler is highly efficient and
produces optimized code as well as ROM/RAM separation of code.

® Multi-user BASIC—A multi-user environment which supports up to
eight users performing interactive software development and de-
bugging in BASIC-11.

Additional Languages Supported Under RSX-11M

® FORTRAN IV-PLUS—A FORTRAN IV superset that features highly
optimized compiler-generated code that fully utilizes the power of
the LSI-11/23's optional Floating Point Unit. This hardware/software
combination boosts performance in floating point intensive applica-
tions.

® BASIC-PLUS-2—A superset of the BASIC-11 language that
contains compiled code, call statements, record 1/0, and interactive
debugging.

Run-Time Application Support
MicroPower/Pascal, RSX-11S, RT?, and SIMRT provide various levels
of run-time applications support as summarized below.

MicroPower/Pascal — The MicroPower/Pascal operating system
which runs in the target application is modular, ROM(able), and sup-
ports the entire range of microcomputer hardware products, including
the LSI-11/23 and FALCON SBC-11/21. Due to its modularity, the
minimum MicroPower/Pascal operating system is significantly smaller
than traditional operating systems.

RSX-11S — A memory-resident, execute-only subset of the RSX-11M
operating system that can handle up to 256 independent tasks
through multiprogramming priority scheduling. Because it is memory
based, RSX-11S is not dependent on any mass storage device for

7

Chapter 1 — Introduction

execution. System generation and program development must take
place in a RSX-11M development system.

System generation produces a system/task image that can be booted
on the target system, or down-line loaded via DECnet, DIGITAL’s net-
working software. Further additional tasks can be transported to a
running RSX-118S system via storage media or DECnet.

RT? — is a license to copy a subset of RT-11 that supports an execu-
tion-only mass storage based target system. In addition to fore-
ground/background processing, RT, includes a license to use stan-
dard RT-11 utility programs for file creation, deletion, transfer, and
renaming. Program development occurs on an RT-11 host system and
produces a self-starting application system based on a mass storage
medium.

SIMRT — is available as part of the RT-11 FORTRAN IV package and
provides stand-alone support for FORTRAN programs. SIMRT can be
linked with a FORTRAN program that has been developed on an RT-
11 host system to provide a bootable image. This image can be
transferred to the target system in one of three ways:

1. Theimage can be placed in ROMs on the target system.
2. Theimage can be down-line loaded into the target system.

3. The image can be booted from a mass storage device on the
target system.

APPLICATIONS

Over 100,000 LSI-11 family microcomputers and their associated
products are in worldwide use today in a variety of applications. Many
users are reaping the benefits of low initial investment costs that gen-
erate early revenue flows, because their packaged products are ready
for market sooner.

The LSI-11 products can evolve and expand without major design
changes. The easy system integration and maintenance afforded by
the LSI-11 family provide the necessary tools that easily accept extra
custom-designed enhancements and added value for specific appli-
cation areas. Industrial process control, OEM hardware, and turnkey
commercial and end-user systems are just a few of many general
application areas ideal for LSI-11 microcomputers.

Industrial Process Control
In this application area, users have packaged LSI-11s to meet a variety
of process control requirements. Manually operated process control

8

Chapter 1 — Introduction

Table 1-1 Summary/Comparison Chart of Specifications
FEATURE LSI-1/2 LSI-11/23 SBC-11/21 PDP-11/23-PLUS
52"x89" 10.5"x89"
FORM FACTOR 132cmx228cm 266cmx228cm
1LEVEL 4 LEVELS 4 LEVELS 4 LEVELS
INTERRUPTS (LEVEL 4) (LEVELS4.5.6.7) | (LEVELS4.5.6.7) | (LEVELS4.5.6.7)
16-BIT ADDRESS 22-BIT ADDRESS 16-BIT ADDRESS 22-BIT ADDRESS
16-BIT DATA 16-BIT DATA 16-BIT DATA 16-BIT DATA
LSI-11BUS 1LEVEL INTERRUPT | 4 LEVEL INTERRUPT | 4 LEVEL INTERRUPT | 4 LEVEL INTERRUPT
STRUCTURE DMA DMA DMA DMA
ASYNCHRONOUS | ASYNCHRONOUS | ASYNCHRONOUS | ASYNCHRONOUS
PARALLEL PARALLEL PARALLEL PARALLEL
ADDRESSING RANGE 64KB amB* 64KB 1MB
BASIC INSTRUCTIONS ~400
FULL FEATURE. FULL FEATURE,
RELOCATION RELOCATION
MEMORY NOT) NOT
: SEGMENTATION SEGMENTATION,
MANAGEMENT APPLICABLE PROTECTION APPLICABLE PROTECTION
(OPTIONAL) (STANDARD)
MOS
MEMORY TYPES PROM/ROM/RAM
OPTIONAL OPTIONAL NOT OPTIONAL
FLOATING POINT (FIS) KEV11 FPF11 or KEF11 APPLICABLE FPF11 or KEF11
EXTENDED INSTRUC- Nor
TION SET (EIS) OPTIONAL STANDARD APPLICABLE STANDARD
(MUL, DIV,ASH, ASHC)
NOT KERNEL AND USER NOT
OPERATING MODES APPLICABLE WITH (MMU) APPLICABLE KERNEL AND USER
POWER +5V 124 5V 20A 5V 28A 5V 4.5A
CONSUMPTION +12V 022A 12V 02A +12V 1.10A +12V 03A
5US LOADS AC 17UNITLOADS | AC 2UNITLOADS | AC 2UNITLOADS | AC 2 UNITLOADS
DC 1UNITLOAD | DC 1UNITLOAD | DC 1UNITLOAD | DC 1UNITLOAD
OPERATING OPERATING OPERATING OPERATING
5°10 60°C 5°10 60°C 5°t0 60°C 5910 60°C
ENVIRONMENTAL (41°10 140°F) (41°10 140°F) (41°t0 140°F) (41°10 140°F)
TEMPERATURE STORAGE STORAGE STORAGE: STORAGE:
~40°10 66°C -40°10 65°C -40°10 65°C -40°10 65°C
(-40°t0 151°F) (-40°10 149°F) (~40° 10 149°F) (-40°10 149°F)
MICRO CYCLE TIME 380ns 290 ns 610 ns 300 ns
RELATIVE SPEED 10 25 20" 25
DEVELOPMENT NOT RT-11, RSX-11M
SOFTWARE RT-11 RT-11, RSX-11M APPLICABLE | RSX-11IM-PLUS, RSTS/E

RUN-TIME SERVICES

RSX-11S, RT2, SIMRT, MicroPower/Pascal (only under SBC-11/11/21)

*When executing on-board memory.
**Depends upon backplane.

systems have been replaced with cost-effective LSI-11s to improve the
quality of materials produced.

Table 1-1 summarizes and compares the features of the LSI-11/2 with
those of the LSI-11/23, FALCON SBC-11/21, and the PDP-11/23-

PLUS.

LSI-11s, with PDP-11s in some instances, are solving data acquisition
and control problems through remote control and by monitoring com-
munications via radio links. LSI-11 users in other process control
areas, such as automatic system testing, are experiencing reduced
test times, improved repetition of test measurements, and the au-
tomatic documentation of test sheet procedures.

9

Chapter 1 — Introduction

OEM Hardware/Software

LSI-11s are found in many application areas through OEM custom-
designed hardware and software packages. In X-ray analysis they are
used with scanning electron microscopes, transmission scopes or mi-
croprobes for rapid non-destructive determination of sample compo-
sition. They are automating the collection and analysis of generated X-
rays to identify elements present with the use of special computer
programs that provide accurate weight percentage readouts.

In voice data-entry systems, LSI-11s are packaged with OEM voice
data-entry terminals and DIGITAL floppy disks for wholesale cash-
and-carry warehouses. The warehouse checker calls out a customer’s
account number and the product codes of the goods as they move
through the checkout area. He inputs the data via a microphone to a
voice recognition system controlled by an LSi-11 microcomputer.

The LSI-11 recognizes the speech patterns through signals from the
voice terminal as being valid command words and initiates a DECwri-
ter, stationed at a central cashier’s collecting point, to print out an
invoice, providing up-to-date inventory status and accurate billing.

Data Systems

Data Systems offer hardware and software configurations to address
application needs and are optimized for small businesses, distributed
processing, and commercial environments. A large amount of
commercial software is available from DIGITAL and OEMs to end-
users to provide solutions to their application problems.

DOCUMENTATION

DIGITAL offers several levels of technical documentation describing
LSI-11 family software and hardware. The Microcomputer Handbook
Series presents user-level technical documentation for the LSI-11
family. Hardware technical manuals offer the most detailed levels of
information. There are also several good books put out by commercial
publishers which discuss the LSI-11 family. Specific topics, such as

10

Chapter 1 — Introduction

microprogramming, are also covered in commercially available
books. If you have a specific documentation need, discuss the issue
with a DIGITAL salesperson, who can recommend the appropriate
literature.

EDUCATIONAL SERVICES

Like DIGITAL’s computer systems, training facilities span the
globe—Japan, Australia, Great Britain, Germany, France, the Nether-
lands, Sweden, Italy, Canada, and throughout the United States. Ser-
vices are centered around 14 fully equipped Regional Education Cen-
ters and a staff of seasoned educators dedicated to providing all as-
pects of education and training needed to support all DIGITAL
systems.

Catalog courses are regularly scheduled classes offered at training
centers that cover the range from first-time user to highly specialized
training on theory of operation. Most catalog courses include exten-
sive hands-on laboratory time, and all incorporate the use of a broad
assembly of student workbooks, reference manuals, and other in-
structional materials.

Specialized training is available for users with unique applications or
training situations. This approach is designed to give the student the
maximum relevant material for specific applications, while minimizing
extraneous information. The custom courses are tailored to the indi-
vidual customer’s schedule and typically comprise a series of courses.
These can be modified from existing courses or can be entirely new
programs based on mutually agreed-upon objectives.

Customers with a group of individuals to train may find it more eco-
nomical to have Educational Services conduct courses at the user's
home site. Onsite instruction of both catalog and custom courses
eliminates travel and other expenses incurred by students attending
classes at training centers. This method of instruction further en-
hances training by allowing DIGITAL instructors to emphasize points
of particular value to the students’ applications and operations.

By taking advantage of the latest in audio-visual techniques, Educa-
tional Services has developed a series of courses that offers indepen-
dent learning. Audio-visual courses are convenient, self-contained,
and modular in topic. The self-instructional format allows students to
progress at their own rates, study when and where they wish, and play
back modules for review. Audio-visual course material is available in
several forms—videotape, videocassette, or audio/filmstrip cas-
sette—all supported by student workbooks.

11

Chapter 1 — Introduction

LSI-11 Related Courses

DIGITAL's Educational Services group offers a series of courses on
the hardware and software of your LSI-11 system. For complete infor-
mation on course content, prerequisites, pricing, and scheduling,
consult the DIGITAL Education Courses Catalog.

Boston area:

Digital Equipment Corporation
Educational Services Department
12 Crosby Drive

Bedford, Massachusetts 01730
Telephone: (617)-275-5000

Canada area:

Digital Equipment France
Boulevard de France
France Evry-Tour Lorraine
F-91000 Evry

France

Telephone: 1/077-9000

West Germany area:

Digital Equipment GmbH
Wallensteinplatz 2

D-8000 Munich 40

West Germany

Telephone: 089/3503-1

Japan area:

Digital Equipment Corporation
International-Japan

Kowa Building No. 25 (3rd Floor)
8-7, San bancho, Chiyoda-KU
Tokyo 102

Japan

Telephone: (813) 164-7107

Netherlands area:

Digital Equipment B.V.

Kaap Hoorndreef 38
NL-3563 AV Utrecht, Holland
Telephone: 030/63-12-12

12

San Francisco area:

Digital Equipment Corporation
Educational Services Department
2525 Augustine Drive

Santa Clara, California 95051
Telephone:

(408) 727-0200 Ext. 2142

Australia And
New Zealand:

DECUS

P.O. Box 491

Crows Nest, N.S.W. 2065
Australia

Canada:

DECUS

P.O.Box 11500

Ottawa, Ontario K2H 8K8
Canada

Europe and
Middle East:

DECUS

Case Postale 340
1211 Geneva 26
Switzerland

All Others:

DECUS

146 Main Street

Maynard, Massachusetts 01754
US.A

Chapter 1 — Introduction

DECUS

Additional programs and applications packages may be obtained
from DECUS, the Digital Equipment Computer Users Society. DECUS
is a not-for-profit computer users group (the largest such group,
worldwide) that sponsors technical symposia, publishes a periodic
newsletter and symposia proceedings, and maintains a large library of
programs for the various DIGITAL computers. Every customer who
has purchased or ordered a computer manufactured by DIGITAL is
eligible for an installation membership in DECUS. Associate member-
ship is also available to any person with a bona fide interest in DIGITAL
computers. Membership in DECUS is strictly voluntary, and does not
require payment of dues. Programs from the DECUS library are avail-
able to all members for nominal reproduction and handling charges. A
complete catalog of available programs may be obtained from the
society.

Further information on the DECUS Library, publications, and other
DECUS activities is available from the DECUS offices listed below:

MAINTENANCE

DIGITAL offers a wide range of maintenance services to LSI-11 and
PDP-11 customers. These services are provided through DIGITAL’s
Customer Services Organization and have been designed to meet our
customers’ complete maintenance needs, either onsite or offsite.
These service plans provide complete DIGITAL maintenance onsite by
our factory-trained engineers, or provide module and unit repairs off-
site for those customers desiring to perform their own maintenance.

Onsite Service

DIGITAL'’s service organization provides onsite maintenance service
with a staff of over 5,800 factory-trained engineers in 360 locations
worldwide. Each service office maintains adequate inventory to sup-
port its customers and is fully supported by our logistics operation in
Maynard, Massachusetts.

® Service Agreement — Onsite contract service is available for all LSI-
11-based systems, subject to minimum hardware configurations.
This service provides corrective maintenance, preventive mainte-
nance, and all applicable engineering changes to ensure your prod-
ucts are operational and kept completely up to date. In addition to
priority service, contractual maintenance allows DIGITAL customers
to budget for their annual maintenance needs. The monthly contract
charge covers all travel, labor, and materials. Users have a choice of
tailored service agreements offered by DIGITAL. In addition to basic
coverage, extended hours are available to customers with the most
critical applications that require special attention. Please refer to

13

Chapter 1 — Introduction

DIGITAL’s International Directory of Services for more information.
The order number is EJ01333-94 05.

® Per Call — DIGITAL offers onsite per call service. DIGITAL will
respond to maintenance needs on a billable travel, time, and materi-
als basis.

® Installation and Warranty — Onsite installation and warranty service
is available for LSI-11 based systems, subject to minimum hardware
configurations. This service must be purchased at the time of origi-
nal order.
DIGITAL Software Services
DIGITAL’s Software Services specialists help customers determine
the right computer system for their application. Software support con-
tinues, through installation, warranty services, and post-warranty con-
tractual services, to assist customers with every phase of their
systems’ analysis, design, and implementation. For products that re-
quire it, a DIGITAL software specialist installs the software and verifies
that the system is complete. The specialist also familiarizes the staff
with the system’s operation and explains its capabilities and docu-
mentation. DIGITAL'’s professional expertise is available through both
resident and per call arrangements. Software specialists provide ad-
vice on system analysis, application design review, optimization, and
system/application integration. Further manpower resources are
available to perform specific project tasks or supplement a customer’s
programming staff.

Offsite Service

DIGITAL offers complete unit and module repair services to custom-
ers capable of performing their own maintenance. The Customers
Returns Area (CRA) has been established in Woburn, Massachusetts,
to offer single-point interfacing for all offsite repairs for North Ameri-
can customers. The CRA assures the customer of complete “one-stop
shopping” for all factory-level warranty and post-warranty services. All
repairs are made at our Module Repair Facility in Woburn.

For European, Australian, and Japanese customers, we have esta-
blished Product Repair Centers (PRCs) in eleven countries. Custom-
ers can return defective materials to the PRC in their country without
the burden of customs, duties, and licensing requirements. The PRCs
offer the same services to these customers as the CRA in Woburn.

For information on services in Latin and South America, contact the
CRA in Woburn.

® Warranty Service—All products are warranted against defects in
workmanship and materials under normal proper use in their
unmodified condition for a period of ninety (90) days from date of

14

Chapter 1 — Introduction

initial shipment. As a condition of this warranty, customers must
obtain a DIGITAL Repair Authorization (RA) number and return the
products prepaid, together with a written description of the claimed
defect, to the nearest authorized DIGITAL Repair Center as listed
here.

RA numbers may be obtained by contacting the CRA in Woburn
(PRC if non-U.S.) and providing the following information:

1.
2.
3.

4.

Customer name and location
Part number/serial number of failing item

Part number/serial number of next higher assembly if a module
or subassembly

Product line and date purchased

® Post-Warranty Service—DIGITAL offers its post-warranty services
in several forms:

1.
2.
3.

Loose piece subassembly repair, for a minimum order
Prepaid module mailers, available on specific module types

Firm quote product and option repair, for the smaller customer
with only occasional service needs, and those who do not have
any in-house troubleshooting capability

For more complete information and pricing on any of the services
listed, contact the repair center nearest you.

The following repair centers have been established to provide com-
plete offsite repair services. These centers should be contacted for all
offsite warranty and post-warranty services and prices. All defective
material should be sent to the address indicated with your RA number
appearing on the shipping label.

North America Europe

Digital Equipment Corporation
Customer Returns Area

36 Cabot Road

Woburn, Massachusetts 01801

Belgium

Product Repair Center Manager
Digital Equipment Sa/Nv

Brand Whitlock Boulevard 87

RA Number B-1040 Bruxelles, Belgium
Telephone Number: 617-933-8710 Telephone: (02) 733-9650
Canada France

Digital Equipment of Canada, Ltd. p squct Repair Center Manager
100 Herzberg Road Digital Equipment France
Kanata, Ontario, Canada 7, Rue de L’Esterel Silic 225

RA Number 94528 Rungis, Cedex, France

Telephone Number: 613-592-5111 Telephone: (01) 687-2333

15

Chapter 1 — Introduction

West Germany

Product Repair Center Manager
Digital Equipment GmbH
Ingoldstaedterstrasse 62

Euro Industrie Park 2

D-8000 Munich 45

West Germany

Telephone: (89) 31780

Netherlands

Product Repair Center Manager
Digital Equipment Bv
Coloradodreef 26-28

P.O. Box 9064

NI-3563 AV Utrecht, Holland
Telephone: (030) 61 1814

Italy

Product Repair Center Manager
Digital Equipment S.P.A.

Viale Fulvio Testi 117

Cinisello Balsamo

20092 Milan, ltaly

Telephone: (02) 61797

Sweden

Product Repair Center Manager
Digital Equipment AB

Box 1250

S$-17124 Solna 1

Sweden

Telephone: (08) 730-08-000

Switzerland

Product Repair Center Manager
Digital Equipment Corp. AG/SA
Schaffhauserstrasse 144
CH-8352 Kloten/24

Switzerland

Telephone: (01) 816-9111

16

Chapter 1 — Introduction

United Kingdom

Product Repair Center Manager
Digital Equipment Corp., Ltd.
Gasworks Road

Building V.7.A.B.L. Site
Reading RGI-3EF

England

Telephone: (734) 58 35 55

General International Area

At this time, the only services offered in the GIA are firm-quote prod-
uct/option and loose-piece subassembly repairs through the Tokyo
and Sydney repair centers.

GIA Product Repair Centers

Australia

Product Repair Center Manager
Digital Equip. Australia Pty. Ltd.
132-125 Willoughby Road

P.O. Box 491

Crows Nest

New South Wales, 2065 Australia
Telephone: (02) 439-3598

Latin America
South America
Contact the CRA, Woburn

Japan

Product Repair Center
Digital Equipment Corp. Int.
#1, Taiso Shinjuku Bldg.
1-26-12, Shinjuku-K U
Tokyo 160, Japan
Telephone: (3) 341-5481

17

8l

Table 1-2 Module Specifications

Option Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size

AAV11-A A6001 4-channel, 12-bit 15A 04A 1.9 1 Quad
D/A converter

AAV11-C A6006 4-channel, 12-bit 20A - 0.9 1.0 Double
D/A converter

ADV11-A A012 16-channel, 12-bit 20A 0.45A 3.25 1 Quad
A/D converter

ADV11-C A8000 16 single-ended or 8 156A - 13 1.0 Double
differential A/D channels,
12-bit

AXV11-C A0026 Analog 1/0 board 15A - 1.3 1.0 Double

16 single-ended analog
input channels, 12-bits
2 D/A output, 12-bit
channels

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
(factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uofonponul — | ieydeyd

6l

Table 1-2 (con’t) Module Specifications

Option Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size

BDV11 M8012 Bootstrap, 16A 0.07 A 20 1 Quad
terminator,
diagnostic

DDV11-B 6 X 9 backplane 6.4 0

DLV11 M7940 Asynchronous serial 10A 0.18 A 25 1 Double
line interface

DLV11-E M8017 Asynchronous line 10A 0.18 A 1.6 1 Double
interface

DLV11-F M8028 Asynchronous line 10A 0.18 A 22 1 Double
interface

DLV11-J M8043 4 asynchronous 10A 0.25A 1 1 Double
serial interfaces

DPV11 M8020 Synchronous 1.2A 0.30 A 1.0 1.0 Double

serial line interface

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uononponu] — | 18)deyd

114

Table 1-2 (con’t) Module Specifications

Option Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size

DRV11 M7941 Parallel line unit 09A - 14 1 Double
interface

DRV11-B M7950 DMA interface 19A - 33 1 Quad

DRV11-J M8049 64-line parallel /O 16 A 1.8A 20 1 Double

DRV11-P M7948 Foundation 10A - 21 1 Quad
module +user logic

DUV M7951 Synchronous serial 0.86 A 0.32A 1.00 1 Quad
line interface

DZV11 M7957 Asynchronous 115A 039 A 3.95 1 Quad
line interface

FPF11 M8188 Floating point 55A - Quad
processor

H9270 4 X 4 backplane 5.1 0

H9273 4 X 9 backplane 2.6

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uononposu| — | J8ydeyd

(%4

Table 1-2 (con’t) Module Specifications

Option Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size

H9275-A 4 X 9 backplane - - 10.0 0

H9281A 2 X 4 backplane 1.3 0

H9276 4 X 9 backplane 2.6 0

H9281B 2 X 8 backplane 24 0

H9281C 2 X 12 backplane 3.6 0

IBV11-A M7954 Instrument bus 08A - 19 1 Double
interface

KD11-F M7264 LSI-11 CPU with 18A 08A 24 1 Quad
4K RAM

KD11-H M7264-YA LSI-11 CPU 16A 0.25A 24 1 Quad
without RAM

KD11-HA M7270 LSI-11/2 CPU 10A 022 A 1.7 1 Double

KDF-11 M8186 LSI-11/23 CPU 20A 0.2A 20 1 Double

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uononposju| — | 18ydeyd

ec

Table 1-2 (con’t)

Module Specifications

Option

Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size
KDF-11B M8189 PDP-11/23-PLUS 45A 3A 2.0 1.0 Quad
CPU with bootstrap,
LTC, and two SLUs
KUV-11 M8018 WCS module 3.0A 1 Quad
KPV11-A M8016 Power-fail/line- 0.56 A - 1.63 1 Double
time clock
KPV11-B M8016-YB Power-fail/line- .56 A - 1.63 1 Double
time clock/120 (2
bus terminator
KPV11-C M8016-YC Power-fail/line- 0.56 A - 1.63 1 Double
time clock/220 ()
bus terminator
KWV11-A M7952 Programmable 1.75A 0.01A 3.4 1 Quad

real-time clock

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uononposul — | Je)deyd

€e

Table 1-2 (con’t) Module Specifications

Option Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size

KWV11-C A4002 Programmable 1.75A 01A 1.0 1.0 Double
real-time clock

KXT11-AA M8063-AA Single board 28A 110 A 1.7 1 Double
computer

LAV11 M7949 LA180 line printer 08A - 18 1 Double
interface

LPV11 M8027 LA180/LP0O5 0.8A - 14 1 Double
printer interface

MCV11-D M8631 8K X 32KB CMOS 1.20 A 20 1.0 Dual
read/write memory

MRV11-AA M7942 4K X 16 read-only 0.4 AA - 1.8 1 Double

memory (less
PROM integrated
circuits)

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uononposul — [18)deyd

9¢

Table 1-2 (con’t) Module Specifications
Option Module Power Requirements Bus Loads*
Desig. No(s). Description + 5V +12v
+5% +3% AC(Max) DC Size

RKV11-D M7269 LSI-11 Bus control 18A - 1.9 1 Double

for RKV11-D
RLV11 M8013 RLO1 disk 6.5A 1.0A 3.2 1 2 Quads

M8014 drive _

RLV12 M8061 Disk controlier 50A 01A 3.0 1.0 Quad
RXV11 M7946 RXO01 interface 15A - 1.8 1 Double
RXV21 N8029 Double density 11A 20 1 Double

floppy interface
TEVH M9400-YB 120 2 terminator 05A - 0 0 Double
TUS8 Serial/cartridge 0.75A 1.2 A max

cassette Appr.
VK170 CAM7142 Serial video module 12A 0.15 Double

* These ac load figures were measured using standard TDR (time domain reflectometry) techniques. The conversion
factor is 9.35 pF/ac load. These numbers are nominal values which will tend to vary from module to module due to
normal tolerances of components used in the manufacturing of the product.

uononposnu] — | 19ydeyd

27

CHAPTER 2
ARCHITECTURAL OVERVIEW

SYSTEM ARCHITECTURE

A complete and powerful microcomputer system can be configured
using an LSI-11 microcomputer, appropriate memory, 1/0 devices,
and interconnection hardware. DIGITAL'’s industry standard LSI-11
Bus provides communication between system components. A typical
system configuration is shown in Figure 2-1.

All modules connected to this common LSI-11 Bus structure receive
the same interface signals. LSI-11 Bus control and data lines are
open-collector lines which are asserted when low. All data and most
control lines are bidirectional. All transactions on the bus are asyn-
chronous. The LSI-11 processors use the following LSI-11 Bus sig-
nals: 16 multiplexed data/address lines, 2 multiplexed address/parity
lines, 4 extended address lines, 6 data transfer control lines, 6 system
control lines, and 10 interrupt and Direct Memory Access (DMA) con-
trol lines.

With bidirectional and asynchronous communications on the LSI-11
Bus, devices can send, receive, and exchange data at their own rates.
The bidirectional nature of the bus allows use of common bus inter-
faces for different devices and simplifies the interface design.

Communication between two devices on the bus is accomplished by a
master-slave relationship. At any pointin time, there is one device that
has control of the bus. This controlling device is termed the “bus
master.” The master device controls the bus when communicating
with another device on the bus, the “slave.” A typical example of the
relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is a DMA device
interface, as master, transferring data to memory, as slave. Bus
master control is dynamic. The bus arbitrator is the processor module.

29

o€

POWER
SUPPLY
(+6V, +12V)

—4L<

CONSCLE
TERMINAL

LSt-11 READ/WRITE READ-ONLY
MICROCOMPUTER MEMORY MEMORY REAL TIME
MODULE MODULE MODULE cLocK
— e o — ——— — — — w— e |— —— ——— - c— —
{GAckpLANE —l
LSI-11 BUS |
—_— e]
SERIAL LINE MISC DISK OR PRINTER
INTERFACE INTERFACE FLOPPY DISK SYSTEM
MODULE MODULE SYSTEM
(CONSOLE) OPTIONS
A/D CONVERTERS,
D/A CONVERTERS,
PARALLEL LINE INTERFACES,
SERIAL LINE INTERFACES,
DMA INTERFACES,
BUS ACCESSORIES, ETC.
Figure 2-1 Typical LSI-11 System Configuration

O [einjo8yIyd.y — g 181deyd

M8IAIBA

Chapter 2 — Architectural Overview

The microcomputer module controls the time allocation of the LSI-11
Bus for peripherals, and performs arithmetic and logic operations, as
well as instruction decoding.

Interrupt and DMA are implemented with two daisy-chained grant sig-
nals which provide a priority-structured 1/0 system. The highest-pri-
ority device is the module located electrically closest to the microcom-
puter module. A device passes grant signals to lower priority devices
only when it is not requesting service.

The LSI-11 Bus provides a vectored interrupt interface for any 1/0
device, and permits DMA transfers directly between 1/0 devices and
memory without disturbing the processor registers. Device polling is
not required in processing interrupt requests. When an interrupting
device receives a grant, the device passes an interrupt vector to the
processor, which points to a new processor status word and the start-
ing address of an interrupt service routine for the device.

LSI-11 backplane options contain all LSI-11 Bus wiring, plus power
distribution wiring to all device locations.

General-Purpose Registers

The LSI-11 central processor module contains eight 16-bit general-
purpose registers that perform a variety of functions. These registers
serve as accumulators, index registers, autoincrement registers,
autodecrement registers, or as stack pointers for temporary storage of
data. Arithmetic operations can transfer from one general-purpose
register to another, from one memory location or device register to
another, or between memory locations, or a device register and a
general-purpose register. The eight 16-bit general-purpose registers,
RO through R7, are identified in Figure 2-2.

Registers R6 and R7 in the LSI-11 are dedicated. R6 serves as the
stack pointer (SP) and contains the location (address) of the last entry
in the stack. Register R7 serves as the processor program counter
(PC) and contains the address of the next instruction to be executed. It
is normally used for addressing purposes only and not as an accumu-
lator.

Register operations are internal to the processor and do not require
bus cycles (except for instruction fetch); all memory and peripheral
device data transfers require bus cycles and longer execution time.
Thus, general-purpose registers used for processor operations result
in faster execution times. The bus cycles required for memory and
device references are listed below.

31

Chapter 2 — Architectural Overview

GENERAL
REGISTERS RO

——

STACK POINTER

[___®r _ Jra

PROGRAM COUNTER

Figure 2-2 General Register Identification

Bus Cycles

The processor bus cycles are:

DATI Data word transfer Equivalent to Read operation
input

DATIO Data word transfer Equivalent to Read/Modify/
input followed by Write
word transfer output

DATIOB Data word transfer Equivalent to Read/Modify/
input followed by Write
byte transfer output

DATO(B) Data word (Byte) Equivalent to a Write/Word
transfer output (Byte) operation

Addressing Memory and Peripherals

The maximum direct address space of the FALCON SBC-11/21 and
LSI-11/2 is 64 KB. For the LSI-11/23, the maximum direct address
space is 4 megabytes. LSI-11 memory locations and peripheral device
registers are addressed in the same manner. The upper 8 KB of ad-
dress space are reserved (by PDP-11 convention) for peripheral de-
vice addressing.

An LSI-11 word is divided into a high byte and a low byte, as illustrated
in Figure 2-3.

T T T
HIGH BYTE

Figure 2-3 High and Low Byte
32

Chapter 2 — Architectural Overview

Word addresses are always even-numbered. Byte addresses can be
either even- or odd-numbered. Low bytes are stored at even-num-
bered memory locations and high bytes at odd-numbered memory
locations. Thus, it is convenient to view the memory as shown in Figure
2-4.

16-BIT WORD

BYTE BYTE 8-BIT BYTE

HIGH Low 000000 LOW 000000

HIGH LOW 000002 HIGH 000001

HIGH LOW 000004 LOW 000002
HIGH 000003
LOW 000004

,——/—, OR

HIGH Low 017772 HIGH 017775

HIGH Low 017774 Low 017776

HIGH LOW 017776 HIGH 017777

WORD ORGANIZATION BYTE ORGANIZATION

Figure 2-4 Word and Byte Addresses for First 4K Bank

Certain memory locations have been reserved by convention for inter-
rupt and trap handling and for peripheral device registers. Addresses
from 0 to 376, are reserved for trap and device interrupt vector
locations. Several of these are reserved in particular for system (proc-
essor initiated) traps.

LSI-11 Memory Organization
LSI-11 memory organization is shown in Figure 2-5.

PROCESSOR STATUS WORD

The Processor Status Word (PSW or PS) contains information on the
current processor status. This information includes the current proc-
essor priority, the condition codes describing the arithmetic or logic
results of the last instruction, and an indicator for detecting the execu-
tion of an instruction to be trapped during program debugging. The
PSW word format is shown in Figure 2-6. Certain instructions allow
programmed manipulation of condition code bits and loading or stor-
ing (moving) the PSW.

33

Chapter 2 — Architectural Overview

0
DEVICE INTERRUPT
AND SYSTEM
TRAP VECTORS
376
400
USER AND SYSTEM
PROGRAMS AND
MEMORY STACK(S)
ADDRESS
(28K LOCATIONS)
32K MAXIMUM
WORD LOCATIONS
157776
160000
DEVICE & REGISTER
— ¥ \ociwmme

MEMORY ORGANIZATION

RESERVED VECTOR LOCATIONS
BUS ERROR, TIME OUT
RESERVED

BPT TRAP INSTRUCTION, T BIT
10T EXECUTED

POWER FAIL/RESTART

EMT EXECUTED

TRAP EXECUTED

CONSOLE INPUT DEVICE
CONSOLE OQUTPUT DEVICE
EXTERNAL EVENT

LINE INTERRUPT

FIS TRAP

»

10
14
20
24
30
34
60
64
100

244

NOTE
DEVICE VECTORS AND DEVICE
ADDRESSES ARE SELECTED BY
JUMPERS LOCATED ON THE DEVICE
INTERFACE MODULES

NOTE
THERE IS 32K OF USERS MEMORY SPACE

AVAILABLE; HOWEVER 0-28K IS REC-
OMMENDED FOR MEMORY ADDRESS

LOCATIONS, AND 28K—32K FOR PERIPH-

ERALS I/0 DEVICE ADDRESSES, ETC.

RECOMMENDED FOR
PERIPHERALS I/0
DEVICE ADDR., ETC.

Figure 2-5 Memory Organization

L CARRY
OVERFLOW
ZERO
NEGATIVE
TRACE TRAP

Figure 2-6 Processor Status Word (PSW)

34

Chapter 2 — Architectural Overview

Interrupt Priority Bit

The processor operates with PSW bits <5:7> determining the
effective processor priority, from 0 to 7. To be recognized, the external
interrupt must have a higher priority than the processor. As compared
to other PDP-11s, the LSI-11/2 services interrupts at one priority level,
level 4. The LSI-11/23 and FALCON SBC-11/21 are capable of servic-
ing interrupts at four levels of priority. The functions contained in the
high byte pertain only to the LSI-11/23.

Condition Codes
The condition codes contain information on the result of the last CPU

operation. The bits are set as follows (the bits are set after execution of
arithmetic or logical, single-operand or double-operand instructions):

Z=1 If the result was zero
N=1 If the result was negative
C=1 If the operation resulted in a carry from the MSB

(most significant bit) or a 1 was shifted from the
MSB or LSB (least significant bit)

V=1 If the operation resuilted in an arithmetic overflow

Trap (T Bit)

The program can set or clear the trap (T bit) only by popping a new PS
off the stack. When set, a processor trap will occur through location 14
at completion of the current instruction execution, and a new proces-
sor status word will be loaded from location 16. This T bit is especially
useful in debugging programs since it allows programs to single-step
instructions.

INSTRUCTION SET

DIGITAL’'s PDP-11 instruction set offers you the opportunity to take
advantage of more than a decade of PDP-11 family development and
experience.

This instruction set uses the flexibility of the general-purpose registers
to provide more than 87 PDP-11 standard instruction operations—the
most comprehensive and powerful instruction set of any 16-bit com-
puter. Unlike 16-bit computers which have three classes of instruc-
tions (memory reference instructions, operator or accumulator control
instructions, and 1/0 instructions), all LSI-11 data manipulation
operations are accomplished with one set of instructions. Instructions
that manipulate memory locations can be used with peripheral device
registers. For example, data in an external device register can be
tested or modified directly without bringing it into memory or disturb-

35

Chapter 2 — Architectural Overview

ing the general registers. Programs can add or compare data either
logically or arithmetically in a device register.

Addressing Modes

Much of the power of the LSI-11 is derived from its wide range of
addressing capabilities. LSI-11 addressing modes include sequential
forward or backward addressing, address indexing, indirect address-
ing, 16-bit word addressing, 8-bit byte addressing, and stack address-
ing. Variable-length instruction formatting allows a minimum number
of words to be used for each addressing mode. The result is efficient
use of program storage space.

THE FALCON SBC-11/21 ARCHITECTURAL AND OPERATIONAL
FEATURES

The MPU

The FALCON SBC-11/21 is based on a new 40-pin PDP-11 microproc-
essor. This newly developed single chip executes the PDP-11 base-
level instruction set and is capable of addressing 64 KB of memory.
Since the MPU has a bounded microcode design, it does not support
any optional PDP-11 instructions. This one chip preserves the
architecture and instruction set of the LSI-11 and LSI-11/2 while allow-
ing the FALCON to operate at twice the speed of the LSI-11/2.

Optional Features

The FALCON SBC-11/21 does not support optional PDP-11 instruc-
tions, but does have functionality never before offered on a double-
height board, such as: 4 KB of RAM memory, four 28- pin sockets for
RAM/ROM memory, two asynchronous serial 1/0 ports, 16-line bidi-
rectional paraliel I/0 port, and a real-time clock.

THE LSI-11/23 ARCHITECTURAL AND OPERATIONAL FEATURES

DIGITAL’s LSI-11/23 offers peak performance at the board level. The
LSI-11/23 retains the same architectural features as its predecessor,
the LSI-11/2, and has design enhancements which permit greater
execution speeds, multilevel interrupts, full memory management,
and the PDP-11/34 floating point instruction set. The LSI-11/23 repre-
sents state-of-the-art N-MOS technology and printed circuit design.

The Chip Set

The major architectural and functional differences between the LSI-
11/2 and the LSI-11/23 are inherent in the latter’s basic chip set de-
sign. lts data and control chips are mounted on one dual carrier pack-

36

Chapter 2 — Architectural Overview

age. A 16-bit Microinstruction Bus and a 16-bit Data Address Bus
provide the communication between chips, and between chips and the
LSI-11 Bus.

The data chip maintains the same basic features as the earlier LSI-
11/2. It contains the arithmetic logic unit, the register file, the data
access ports, and the processor status word. The major difference in
the structure of the LSI-11/23 data chip is the wider data path that
supports a more powerful microcode for greater overall performance.

The LSI-11/23 control chip is functionally similar to the LSI-11/2 con-
trol and MICROM units. The combined functions of these units have
been implemented in one silicon gate MOS chip. The LSI-11/23
control chip contains microprogram storage, contained in both ROM
and programmable logic arrays.

Two chips on one carrier provide an efficient way to transfer the LSI-
11/23 powerful microcode to and from the internal logic circuits of the
data and control chips. This innovation in Large Scale Integration not
only shortens the interconnected path between the chips, but conse-
quently provides efficient utilization of CPU cycle time by shortening
internal microcoded logical sequences which result in increased exe-
cution speeds. This unique chip set organization also allows room for
EIS as standard.

Optional Features

Memory Management Unit — The Memory Management Unit (MMU)
allows memory addressing beyond 64 KB up to 4 megabytes. As part
of the LSI-11/23 chip set, the MMU enables the processor to operate
in either kernel or user mode. In kernel mode, the operating system
and programs have complete control and execute all instructions. in
user mode, programs are prohibited from performing instructions that
could modify the kernel program, halt the computer, or access memo-
ry space reserved for the kernel or other users.

The Memory Management Unit provides address relocation to extend
the physical address range to 22 bits and incorporates unique features
of (1) segmentation, e.g., dividing large segments of program memory
into smaller, more efficient segments and (2) protection, the ability to
control and restrict access to a memory segment by an unauthorized
user. These features are not available in other microcomputers.

Floating Point Option — optional Floating Point units are available for
the LSI-11/23. These units implement 46 microcoded instructions that
perform arithmetic, logical, and conversion operations, and operate
five to ten times faster than equivalent software routines. The KEF11
and FPF11 Floating Point Option instructions are completely compati-

37

Chapter 2 — Architectural Overview

ble with the PDP-11/34 (FP11-A) Floating Point Processor Instruction
Set.

The Memory Management Unit is required when using the KEF11,
because it contains eight 64-bit floating point registers. Instructions
operate with 32-bit single-precision and 64-bit double-precision data,
equivalent to 7 and 17 decimal digit accuracy, respectively.

THE LSI-11/2 ARCHITECTURAL AND OPERATIONAL FEATURES

The Chip Set

The heart of the double-height LSI-11/2 is a set of N-channel MOS
chips containing thousands of logical circuits. Interchip communica-
tion is accomplished by a 22-bit internal Microinstruction Bus and 16-
bit Data Address Lines. These features permit internal control of the
logical circuits of the board, transmission of data between the MOS
chips, and communication between the processor and the LSI-11 Bus.

Four 40-pin packages house a data chip, a control chip, and two ROM
(MICROM) chips containing microcode. The data chip contains the
register file, the arithmetic logic unit, the processor status word, and
the data access ports. The control chip decodes instructions, handles
interrupts, and directs the flow of information.

The two MICROM chips contain microcode to implement the basic
PDP-11 instruction set as well as the ODT/ASCII console routine. An
optional third MICROM chip contains microcode to implement the
EIS/FIS integer and floating point instructions.

Optional Features

For number-crunching FORTRAN computations, the LSI-11/2 offers
both fixed and floating point instructions implemented with one chip
mounted on a 40-pin carrier. The chip implements four floating point
instructions called the Floating Point Instruction Set (FIS). These in-
structions offer floating addition, subtraction, multiplication, and
division, with the added capability of enabling direct operations on
single-precision 32-bit operands. Also resident on the chip is the Ex-
tended Instruction Set (EIS) that offers hardware integer multiply and
divide as well as allowing the direct implementation of multiple shifts.

LEVELS OF INTEGRATION

The LSI-11 family of microcomputers is available in three levels of
integration: boards, boxes, and systems. This choice of three integra-
tion levels allows customers to purchase any optimal level of
integration to suit their specific need or requirement.

38

Chapter 2 — Architectural Overview

Boards

The LSI-11 Bus concept permits modules to be chosen and assem-
bled into a system that fills the specific needs of any customer. Boards
may be assembled in a DIGITAL-supplied mounting chassis or in a
backplane powered and cooled by the user. This latter alternative
offers wide packaging flexibility for the user. Table 1-2 (in Chapter 1 of
this Handbook) summarizes available modules and their operational
specifications.

All card guide and backplane assemblies contain the LSI-11 Busin a
convenient package. These card guide assemblies support the
broadest choice of high-performance options in the industry.

There are six versions of the card guide mounting chassis. Three
versions, the H9281 series, available in sizes 2 X 4,2 X 8, and 2 X 12,
support double-height boards, and accommodate 4, 8, or 12 modules
in a variety of configurations. The H9281 card cages that support 8 and
12 double-height family modules also include built-in bus termination.

Three card cages are available in the H9270 series in sizes of 4 X 4
and 4 X 9. These card cages support both quad andgdouble-height
modules.

The newest card cages in the H9270 series are the H9275-A and the
H9276-A. The H9275-A is a 4 X 9 inch backplane that supports 22
address lines, and will accept up to 18 doubie-height or quad-height
modules. Bus termination is built into this backplane. The H9276-A is a
4 X 9 backplane that will accept 9 double-or quad-height modules.
This backplane may be cabled or expanded to other H9276 back-
planes to allow for larger configurations.

In order to address the broadest customer need, a seventh backplane,
the DDV11-B (without card guides) is available. This backplane ac-
commodates 18 double-height or 9 quad-height modules, and pro-
vides two unbussed slots, E and F, for customer-designed modules.

Mounting Boxes

For ultimate design flexibility and faster time to market, DIGITAL offers
three mounting enclosures, including power supply, cooling fans, and
backplane.

For compact, low-cost systems, DIGITAL offers the BA11-VA mount-
ing box. This chassis houses a 2 X 4 LSI-11 backplane, as well as a
power supply and cooling fan.

The BA11-ME expansion enclosure houses a 4X 4 backplane and
utilizes the H780 power supply.

39

Chapter 2 — Architectural Overview

The third expansion enclosure is the BA11-NE. This chassis houses a
4 x 9 backplane which accepts up to 9 double-height or 9 quad-height
modules.

Microcomputer Boxes

Microcomputer boxes offer an intermediate level of integration that
consists of a properly matched combination of mounting box, CPU,
memory, and I/0 controllers. These boxes provide an engine for cus-
tomer hardware tailored for industrial, technical, and scientific
laboratories.

Systems

Systems, being the highest level of integration, provide the most com-
plete solution. Systems products include the basic computer plus
mass storage, console terminal, and operating system software.

A special case is the packaged development system used for develop-
ment of board-level target systems, described below.

Packaged Development Systems

Packaged development systems can be obtained from DIGITAL, offer-
ing complete hardware and software products that provide everything
you need to develop a computerized solution for your microcomputer
application. The LSI-11 MDS development system family provides
software debugging and development tools which are tailored to mi-
crocomputer applications. These development systems can be in-
stalled by the customer and are designed for ease of installation. The
user documentation is designed to simplify the development process
for the first-time user.

The PB11 PROM Programmer

To complete the necessary tools to develope your PROM-based appli-
cation, Digital offers the PB11. This option supports a variety of both
PROM and EPROM chips. It consists of a software utility which runs on
any RT-11-based system and a programmable PROM burner which is
connected to your development system via a serial link. The software
utility allows the user to program PROMs using easy-to-understand
commands from a terminal.

40

41

42

CHAPTER 3
ADDRESSING MODES

In the LSI-11 and PDP-11 families, memory reference addressing is
accomplished using the eight general-purpose registers. To specify
the location of data (operand address), one of the eight registers is
selected with an accompanying addressing mode. Each memory
reference instruction specifies the:

e Function to be performed (operation code)

® General-purpose register to be used when locating the source oper-
and and/or destination operand

® Addressing mode, which specifies how the selected registers are to
be used

Together, the instruction set format and addressing modes available

to the programmer are of particular importance. This combination

allows the user to take advantage of LSI-11 family benefits and capa-

bilities. The LSI-11 and the PDP-11 are designed to handle structured

data efficiently and with flexibility. The general-purpose registers im-

plement these functions in the following ways, by acting:

® As accumulators: holding the data to be manipulated.

® As pointers: the contents of the register are the address of the oper-
and, rather than the operand itself, allowing automatic stepping
through memory locations.

® As index registers: the contents of the register are added to the
second word of the instruction to produce the address of the oper-
and. This capability allows easy access to variable entries in a list.

Using registers for both data manipulation and address calculation
result in a variable length instruction format. If registers alone are used
to specify the data source, only one memory word is required to hold
the instruction. In certain modes, two or three words may be utilized to
hold the basic instruction components. Special addressing mode
combinations enable temporary data storage for convenient dynamic
handling of frequently accessed data. This is known as stack address-
ing. See the Programming Techniques Chapter for a discussion about
using the stack. Register 6 is always used as the hardware stack point-
er (SP). Register 7 is used by the processor as its program counter
(PC). Thus, the register arrangement to be considered in conjunction
with instructions and with addressing modes is: registers 0-5 are gen-
eral-purpose registers, register 6 is the hardware stack pointer, and
register 7 is the program counter. See the Instruction Set Chapter for
an explanation of the full instruction set and instruction formats.

43

Chapter 3 — Addressing Modes

Table 3-1 contains a listing and description of the instructions used in
the examples (within this chapter) to illustrate the power and flexibility
of the PDP-11 addressing modes.

Table 3-1 Example Instructions

Mnemonic Description Octal Code

CLR Clear (Zero the specified desti- 0050DD
nation.)

CLRB Clear Byte (Zero the byte inthe 1050DD
specified destination.)

INC Increment (Add 1 to contents of 0052DD
destination.)

INCB Increment Byte (Add 1 to the 1052DD

contents of destination byte.)

COM Complement (Replace the con- 0051DD
tents of the destination by their
logical 1’s complements; each 0
bit is set and each 1 bitis
cleared.)

COMB Complement Byte (Replace the 1051DD
contents of the destination byte
by their logical 1’'s comple-
ments; each 0 bit is set and
each 1 bitis cleared.)

ADD Add (Add source operand to 06SSDD
destination operand and store
the resuit at destination ad-
dress.)

DD = destination field (6 bits)
SS = source field (6 bits)
() = contents of

Single-and double-operand instructions utilize the following formats.
The instruction format for all single-operand instructions (such as
Clear, Increment, Test) is:

44

Chapter 3 — Addressing Modes

(XX

se .
J MODE;@J R]
:
3

15 6 5 4 2 0
. J\ J

OP CODE 4 I
DESTINATION ADDRESS

* SPECIFIES DIRECT OR INDIRECT ADDRESS
** SPECIFIES HOW REGISTER WILL BE USED
*** SPECIFIES ONE OF 8 GENERAL-PURPOSE REGISTERS

Single-Operand Instruction Format

Bits 3-5 specify the binary code of the addressing mode chosen.
The instruction format of the double-operand instruction is:

. . . cee .

[OP CODE MODE | @ Rn MODE
L . .

.
@ l Rn J
15 12 1" 10 9 8 ’

N AN 9

SOURCE ADDRESS j T
DESTINATION ADDRESS

* DIRECT DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
** SPECIFIES HOW SELECTED REGISTERS 4RE TO BE USED
*** SPECIFIES A GENERAL REGISTER

Double-Operand Instruction Format

Bits 3-5 and 9-11 specify the binary code of the addressing modes
chosen.

The four direct addressing modes are:

® register

® autoincrement

® autodecrement

® index

When bit 3 of the instruction is set, indirect addressing is specified and
the four basic modes become deferred modes. In a register deferred
mode, the content of the selected register is taken as the address of
the operand. In the other deferred modes, the content.of the register
specifies the address of the operand, rather than the operand itself.
Prefacing the register operand(s) with an @ sign or placing the regis-
ter in parentheses indicates to the MACRO-11 assembler that de-
ferred addressing mode is being used.

45

Chapter 3 — Addressing Modes

The indirect addressing modes are:

® register deferred

e autoincrement deferred

e autodecrement deferred

® index deferred

Program counter (register 7) addressing modes are:
® immediate

® absolute

® relative

o relative deferred

The addressing modes are explained and shown in examples in the

following pages. They are summarized, in text and in graphic repre-
sentation, at the end of the chapter.

REGISTER MODE MODE 0 Rn

Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general-pur-
pose registers can be used as simple accumulators. The operand is
contained in the selected register. Assembler syntax requires that a
general-purpose register be defined as follows:

RO = %0
R1 = %1
R2 = %2

% sign indicates register definition.

Register Mode Example

Symbolic Instruction Description
Octal Code
INC R3 005203 Add 1 to the contents
of R3.

46

Chapter 3 — Addressing Modes

Represented as:

RO
——————
. T R2)
F o o 0 1 0o 1 0o 1 olo o;o]o 1 ‘ggé;%ﬁ;m__ﬁ_—
NE S a3 2 F T T Ra 1
OF COLE (INC(COS?)‘/‘—J‘ } - 55_ S
[ESTINATION FIELD — R6 (SP)
R7T (PC)
Register Mode Example
Symbolic Instruction Description
Octal Code
ADD R2,R4 060204 Add the contents of
R2 to the contents of

R4, replacing the ori-
ginal contents of R4
with the sum.

Represented as:

BEFORE AFTER

re [000002] re [oooooz]
ra [ooooos] ra [000006 |

REGISTER DEFERRED MODE MODE 1 (Rn)

In register deferred mode, the address of the operand is stored in a
general-purpose register. The address contained in the general-
purpose register directs the CPU to the operand. The operand is locat-
ed outside the CPU, either in memory, or in an |/0 register.

This mode is used for: sequential lists, indirect pointers in data struc-
tures, top of stack manipulations, and jump tables.

47

Chapter 3 — Addressing Modes

Register Deferred Mode Example

Symbolic Instruction Octal Description
Code
CLR (R5) 005015 The contents of the

location specified in
R5 are cleared.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADORESS SPACE REGISTER
1676] ms [o000] s rs [ootroo |
700 00010C 1700 200000
AUTOINCREMENT MODE MODE 2 (Rn)+

In autoincrement mode, the register contains the address of the oper-
and; the address is automatically incremented after the operand is
retrieved. The address then references the next sequential operand.
This mode allows automatic stepping through a list or series of oper-
ands stored in consecutive locations. When an instruction calis for
mode 2, the address stored in the register is autoincremented each
time the instruction is executed. It is autoincremented by 1 if you are
using byte instructions, by 2 if you are using word instructions.

Autoincrement Mode Example

Symbolic Instruction Description
Octal Code
CLR (R5)+ 005025 Contents of R5 are

used as the address
of the operand. Clear
selected operand and
then increment the

contents of R5 by 2.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [ooso2zs] ms[030000 20000 [oosoes] ®s | 030002 |

48

Chapter 3 — Addressing Modes

AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+

In autoincrement deferred mode, the register contains a pointer to an
address. The + indicates that the pointer in R2 is incremented by 2
after the address is located. Mode 2, autoincrement, is used only to
access operands that are stored in consecutive locations. Mode 3,
autoincrement deferred, is used to access lists of operands stored
anywhere in the system; i.e., the operands do not have to reside in
adjoining locations. Mode 2 is used to step through a table of data,
mode 3 is used to step through a table of addresses.

Autoincrement Deferred Example

Symbolic Instruction Description
Octal Code
INC @(R2)+ 005232 Contents of R2 are
used as the address
of the address of the

operand. The oper-
and is increased by 1,
contents of R2 are in-
cremented by 2.

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
ne [ot0300] R2 010302 |
1010 000025 7 1010 000026
~

1012 e 1012

.
10300 001010 10500 001010

AUTODECREMENT MODE MODE 4 - (Rn)

In autodecrement mode, the register contains an address that is auto-
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step-
ping through a list of words or bytes in reverse order. The address is
autodecremented by 1 for bytes, by 2 for words.

49

Chapter 3 — Addressing Modes

Autodecrement Mode Example

Symbolic Instruction Description
Octal Code
INCB —(R0) 105240 The contents of RO

are decremented by
1, then used as the
address of the oper-
and. The operand
byte is increased by
1.

Represented as:

BEFORE AFTER

REnneas 2ESISTERS ADDRFSS SPACF REGISTER
1woo [oos2a0] e [o17776 | 1o000[oosea0] me [o1777s]
L T) R
AUTODECREMENT DEFERRED MODE MODE 5 @—(Rn)

In autodecrement deferred mode, the register contains a pointer. The
pointer is first decremented by 2, then the new pointer is used to
retrieve an address stored outside the CPU. This mode is similar to
autoincrement deferred, but allows stepping through a table of ad-
dresses in reverse order. Each address then redirects the CPU to an
operand. Note that the operands do not have to reside in consecutive
locations.

Autodecrement Deferred Mode Example

Symbolic Instruction Description
Octal Code
COM @—(R0) 005150 The contents of RO

are decremented by 2
and then used as the
address of the ad-
dress of the operand.
The operandis 1's
complemented.

50

Chapter 3 — Addressing Modes

Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 re [otor76] o100 165432 ro [otor7a]
10102 10102
10774 010100 10774 010100
10776 10776
INDEX MODE MODE 6 X(Rn)

In index mode, a base address is added to an index word to produce
the effective address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the
register, base address following the current instruction).

Index Mode Example

Sym

CLR

bolic

200(R4)

Instruction
Octal Code

005064
000200

Represented as:

1020
1022
1024

2
1200

1202

BEFORE
ADDRESS SPACE

REGISTER

Description

The address of the
operand is deter-
mined by adding 200
to the contents of R4.
The location is then
cleared.

AFTER
ADDRESS SPACE

REGISTER

005064

R4 L 001000 J

1020

005064

Ra [oot000]

000200

177777

51

1022
1024

1200

000200

000000

Chapter 3 — Addressing Modes

INDEX DEFERRED MODE MODE 7 @X(Rn)

In index deferred mode, a base address is added to an index word.
The result is a pointer to an address, rather than the actual address.
This mode is similar to mode 6, except that it produces a pointer to an
address. The content of that address then redirects the CPU to the
desired operand. Mode 7 provides for the random access of operands
using a table of operand addresses.

Index Deferred Mode Example

Symbolic Instruction Description
Octal Code
ADD @ 1000(R2),R1 067201 1000 and the con-
001000 tents of R2 are
summed to produce
the address of the ad-
dress of the source

operand, the contents
of which are added to

the contents of R1.
The result is stored in
R1.
Represented as:
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 Rt [oo1234] 1020 067201 R [oo1236 |
ore |20 R2 g e r2
1024 1024
1050 000002 1050 000002
1100 001050 1000 1100 001050
+100
1100

USE OF THE PC AS A GENERAL REGISTER

Register 7 is both a general-purpose register and the program counter
on the LSI-11 and the PDP-11. When the CPU uses the PC to access a
word from memory, the PC is automatically incremented by two to
contain the address of the next word of the instruction being executed
or the address of the next instruction to be executed. When the pro-
gram uses the PC to access byte data, the PC is still incremented by
two.

52

Chapter 3 — Addressing Modes

The PC can be used with all the 11 addressing modes. There are four
modes in which the PC can provide advantages for handling position-
independent code and for handling unstructured data. These modes
refer to the PC and are termed immediate, absolute (or immediate
deferred), relative, and relative deferred.

PC IMMEDIATE MODE MODE 2 #n

Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant oper-
ands by including the constant in the memory location immediately
following the instruction word.

PC Immediate Mode Example

Symbolic Instruction Description
Octal Code

ADD #10,R0 062700 The value 10 is locat-
000010 ed in the second word

of the instruction and
is added to the con-
tents of RO. Just
before this instruction
is fetched and exe-
cuted, the PC points
to the first word of the
instruction. The pro-
cessor fetches the
first word and incre-
ments the PC by two.
The source operand
mode is 27 (autoin-
crement the PC).
Thus, the PC is used
as a pointer to fetch
the operand (the sec-
ond word of the in-
struction) before be-
ing incremented by
two to point to the
next instruction.

53

Chapter 3 — Addressing Modes

Represented as:

1020
1022
1024

PC ABSOLUTE MODE

BEEORE

ADDRESS SPACE

REGISTER

AFTER
ADDRESS SPACE REGISTER

062700

1020

062700 ro [ooooz0]

000010

\RG [ooooe0]
PC

1022
1024

000010
PC
/

MODE 3 @#A

This mode is the equivalent of immediate deferred or autoincrement

deferred mode using the PC. The contents of the location following the
instruction are taken as the address of the operand. Immediate data is
interpreted as an absolute address (i.e., an address that remains con-
stant no matter where in memory the assembled instruction is execut-

ed).

PC Absolute Mode Example
Symbolic

CLR @#1100

Represented as:

BEFORE

PC RELATIVE MODE

ADDRESS SPACE

20

005037

22

001100

s

1100

177777

1102

Instruction
Octal Code

005037
001100

PC

Description

Clears the contents of
location 1100.

AFTER
ADDRESS SPACE

20 005037
22 001100 /PC
24
1100 000000
1102
MODE 6

This mode is index mode 6 using the PC. The operand’s address is
calculated by adding the word that follows the instruction (called an
“offset”) to the updated contents of the PC.

PC+2 directs the CPU to the offset that follows the instruction. PC+4
is summed with this offset to produce the effective address of the
operand. PC+4 also represents the address of the next instruction in

the program.
With the relative addressing mode, the address of the operand is

54

Chapter 3 — Addressing Modes

always determined with respect to the updated PC. Therefore, when
the instruction is relocated, the operand remains the same relative
distance away.

The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for writ-
ing position-independent code.

PC Relative Mode Example

Symbolic Instruction Description
Octal Code

INC A 005267 To increment location
000054 A, contents of memo-

ry location in the
second word of the
instruction are added
to PC to produce ad-
dress A. Contents of
A areincreased by 1.

Represented as:

BEFORE AFTER
ADDRESS SPACE ADORESS SPACE
1020 005267 1020 0005267
1022 000054 \ 1022 000054
1024 PC 1024 +-——PC
1026 1026

1024
+54
H@/ / oo e =

PC RELATIVE DEFERRED MODE MODE 7 Q@A

This mode is index deferred (mode 7), using the PC. A pointer to an
operand'’s address is calculated by adding an offset (that follows the
instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves one
additional level of addressing to obtain the operand. The sum of the
offset and updated PC (PC+4) serves as a pointer to an address.
When the address is retrieved, it can be used to locate the operand.

55

PC Relative Deferred Mode Example

Chapter 3 — Addressing Modes

Symbolic Instruction
Octal Code
CLR @A 005077
000020
Represented as:
BEFORE
ADDRESS SPACE
1020 005077 “~

1022
1024

000020

1044

|

010100 ‘\,'Ogg

/ 1044
10100 100001

1620

1022

1024

1044

10100

Description

Adds the second
word of the instruc-
tion to PC to produce
the address of the ad-
dress of the operand.
Clears operand.

AFTER
ADDRESS SPACE

005077
000020

010100
000000

PC

e

Table 3-2 summarizes the direct addressing modes.

Binary
Code
000

010

100

Table 3-2 Direct Addressing Modes

Mode Name
0 Register
2 Autoincre-
ment
4 Autodecre-
ment

56

Symbolic

Rn

(Rn)+

—(Rn)

Function

Register contains
operand.

Register is used
as a pointer to
sequential data,
then increment-
ed.

Register is de-
cremented and
thenused as a
pointer to se-
quential data.

Binary
Code

110

Chapter 3 — Addressing Modes

Table 3-2 (con’d) Direct Addressing Modes

Mode Name Symbolic

6 Index X(Rn)

Function

Value X is added
to (Rn) to pro-
duce address of
operand. Neither
X nor (Rn)is
modified.

Table 3-3 summarizes the indirect addressing modes.

Binary
Code

001

011

101

Table 3-3 Indirect Addressing Modes

Mode Name Symbolic

1 Register De- @Rnor
ferred (Rn)

3 Autoincre- @(Rn)+
ment Deferred

5 Autodecre- @—(Rn)
ment Deferred

57

Function

Register contains
the address of
the operand.

Register is first
used as a pointer
to a word con-
taining the ad-
dress of the op-
erand, then in-
cremented
(always by 2,
even for byte in-
structions).

Register is de-
cremented (al-
ways by 2, even
for byte
instructions) and
then used as a
pointer to a word
containing the
address of the
operand.

Chapter 3 — Addressing Modes

Table 3-3 (con’d) Indirect Addressing Modes

Binary Mode Name Symbolic Function

Code

111 7 Index De- @X(Rn) Value X (located
ferred in a word con-

tained in the in-
struction) and
(Rn) are added
and the sum is
used as a pointer
to a word con-
taining the ad-
dress of the op-
erand. Neither X
nor (Rn) is modi-
fied.

When used with the PC, these modes are termed inmmediate, abso-
lute (or immediate deferred), relative, and relative deferred.

Table 3-4 summarizes the PC register addressing modes.

Table 3-4 PC Register Addressing Modes

Binary Mode Name Symbolic Function

Code

010 2 Immediate #n Operand is con-
tained in the in-
struction.

011 3 Absolute Q#A Absolute

address is con-
tained in the in-
struction.

110 6 Relative A Address of A, re-
lative to the in-
struction, is
contained in the
instruction.

58

Chapter 3 — Addressing Modes

Table 3-4 (con’d) PC Register Addressing Modes

Binary Mode Name Symbolic Function

Code

11 7 Relative De- @A Address of A, re-
ferred lative to the in-

struction, is con-
tained in the in-

struction.
Operand

address is con-
tained in A,

GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES

General Register Addressing Modes
R is a general register, 0 to 7.
(R) is the contents of that register.

Mode 0 Register OPRR R contains
operand.
[wsTRucTION }————-DPEEAND]
Mode 1 Register deferred OPR (R) R contains ad-
dress.

R
[nstrucTion | —of “apomess | operand]

Mode 2 Autoincrement OPR (R)+ R contains ad-
dress, then incre-
ment (R).
R
INSTRUCM——-L ADDRESS OPERAND |
T

| +2 FOR WORD,
; 41FOR BYTE
|

59

Chapter 3 — Addressing Modes

Mode 3 Autoincrement de- OPR R contains ad-
ferred @(R)+ dress of address,
then increment
(R) by 2.

R

INSTRUCTION ADDRESS] aooress | operano |

Mode 4 Autodecrement OPR —(R) Decrement (R),
then R contains
address.

R
[wstruction | ——~f avoress 12 FOR WoRD, OPERAND
i
Mode 5 Autodecrementde- OPR@- Decrement (R) by
ferred (R) 2, then R con-
tains address of
address.

R
[nstrucrion |——~ " avoress |—— -2 '——T—-| apoRess |———f operano |
t

Mode 6 Index OPR X(R) (R)+Xis ad-
dress, second

word of instruc-
tion.

R
pc [nstrucrion }——f " aooress
o
pC+2 I X 'L

60

Chapter 3 — Addressing Modes

Mode 7 Index deferred OPR (R)+Xis address
@X(R) (second word) of
address.

R
pc [INSTRUCTION ADDRESS -
L on | L }j_—_:O,.{ADDRESS }A_.ropznmo |

Program Counter Addressing Modes

Register = 7
Mode 2 Immediate OPR#n Literal operand n
is contained in
the instruction.
G
]

Mode 3 Absolute OPR @#A AddressAis
contained in the
instruction.

"

pcez [A J-- — o{ operano]

Mode 6 Relative OPRA PC+4 + Xis ad-
dress. PC+4is
updated PC.

PC | NSTRUCTION

PC+4 NEXT INSTR J’

61

Chapter 3 — Addressing Modes

Mode 7 Relative deferred OPR @A PC+4 + Xis ad-
dress of address.
PC+4 is updated
PC.

PC | INSTRUCTION

PC+2

PC+4 NEXT INSTR
L

aooress |—={ operano]

62

63

64

CHAPTER 4
INSTRUCTION SET

The LSI-11 instruction set offers a wide choice of operations and ad-
dressing modes. To save memory space and to simplify the im-
plementation of control and communications applications, the instruc-
tions allow byte and word addressing in both single- and double-
operand formats. Using double-operand instructions, you can per-
form several operations with a single instruction. For example, ADD
A.B adds the contents of location A to location B, storing the result in
location B. Traditional computers would implement this instruction in
the following way:

LOAD A
ADDB
STORE B

The instruction set also contains a full set of conditional branches to
eliminate excessive use of jump instructions.

Functionally, the instructions fall into the following categories:

® Single-Operand — The first part of the word, called the “op code,”
specifies the operation; the second part provides information for
locating the operand. Figure 4-1illustrates the single-operand
instruction format.

® Double-Operand — The first part of the word specifies the operation
to be performed; the remaining two parts provide information for
locating two operands. Figure 4-2 illustrates the double-operand
instruction format.

® Branch — The first part of the word specifies the operation to be
performed; the second part indicates where the action is to take
place in the program. Figure 4-3 illustrates the branch instruction
format.

e Jump and Subroutine — These instructions have both op code and
address parts, and, in the case of JSR, a register for linkage. Figure
4-4 illustrates the JSR instruction format and Figure 4-5 illustrates
the RTS instruction format.

® Trap — These instructions contain an op code only. In TRAP and
EMT, the low-order byte may be used for function dispatching.

® Miscellaneous — HALT, WAIT, and Memory Management.

® Condition Code — These instructions set or clear the condition
codes. Figure 4-6 illustrates the condition code format.

65

Chapter 4 — Instruction Set

SINGLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
CLR(B) clear destination
COM(B) 1’'s complement dst
INC(B) increment dst
DEC(B) decrement dst
NEG(B) 2's complement negate dst
TST(B) test dst
NOP no operation

Shift & Rotate
ASR(B) arithmetic shift right
ASL(B) arithmetic shift left
ROR(B) rotate right
ROL(B) rotate left
SWAB swap bytes

Multiple Precision
ADC(B) add carry

SBC(B) subtract carry

SXT sign extend

MFPS move byte from processor status
MTPS move byte to processor status

Instruction Format

Figure 4-1 Single-Operand Instruction Format

The instruction format for single-operand instructions is:

® Bit 15 indicates word or byte operation.

® Bits 14-6 indicate the operation code, which specifies the operation
to be performed.

® Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

66

Chapter 4 — Instruction Set

DOUBLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
MOV(B) move source to destination
ADD add src to dst
SuB subtract src from dst
ASH shift arithmetically
ASHC arithmetic shift combined
CMP(B) compare src to dst
Logical
BIT(B) bit test
BIC(B) bit clear
BIS(B) bit set
XOR exclusive OR

Instruction Format

15 12 1 6 5 0
T T —T T T T —— T T T
OP CODE SS 1 o10] J
i A A s s A) L L

1 It 1

Figure 4-2 Double-Operand Instruction Format

The format of most double-operand instructions, though similar to that

of single-operand instructions, has two fields for locating operands.

One field is called the source field, the other is called the destination

field. Each field is further divided into addressing mode and selected

register. Each field is completely independent. The mode and register

used by one field may be completely different from the mode and

register used by another field.

® Bit 15 indicates word or byte operation except when used with op
code 6, in which case it indicates an ADD or SUBtract instruction.

® Bits 14-12 indicate the op code, which specifies the operation to be
done.

® Bits 11-6 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the source
field.

¢ Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener-
al register field. These two fields are referred to as the destination
field.

67

Chapter 4 — Instruction Set

e Some double-operand instructions (ASH, ASHC, MUL, DIV) must
have the destination operand only in a register. Bits 15-9 specify the
op code. Bits 8-6 specify the destination register. Bits 5-0 contain
the source field. XOR has a similar format, except that the source is
in a register specified by bits 8-6, and the destination field is speci-
fied by bits 5-0. As part of the EIS option, these instructions are
standard on the LSI-11/23, PDP-11/23, and the PDP-11/23-PLUS,
and optional on the LSI-11, LSI-11/2, and the PDP-11/03.

Byte Instructions

Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e.,, no ADDB
or SUBB.

PROGRAM CONTROL INSTRUCTIONS

Branch Instructions
Mnemonic Instruction

Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPL branch if plus
BMI branch if minus
BvVC branch if overflow is clear
BVS branch if overflow is set
BCC branch if carry is clear
BCS branch if carry is set
Signed Conditional Branch
BGE branch if greater than or
equal (to zero)
BLT branch if less than (zero)
BGT branch if greater than (zero)
BLE branch if less than or
equal (to zero)
soB subtract one and branch (if not = 0)
Unsigned Conditional Branch
BHI branch if higher
BLOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

68

Chapter 4 — Instruction Set

Instruction Format

T T T T T T T T T T T T T
OP CODE OFFSET 1
L L L " L y) L n n P

Figure 4-3 Branch Instruction Format

® The high byte (bits 15-8) of the instruction is an op code specifying
the conditions to be tested.

® The low byte (bits 7-0) of the instruction is the offset value in words
that determines the new program location if the branch is taken.

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic Instruction

JMP jump
JSR jump to subroutine
RTS return from subroutine

Instruction Format
JSR Format

15 9 8 6 S
T T T T T T T T T T T T T
L 0 0 4 J R L oD
1 1 1 1 - 1 1 - L i 1 1 1

Figure 4-4 JSR Instruction Format

® Bits 15-9 are always octal 004, the op code for JSR.

® Bits 8-6 specify the link register. Any general-purpose register may
be used in the link, except R6.

® Bits 5-0 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

® Register R7 (the Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the
link is R5, any register except R5 can be used for one destination
field.

69

Chapter 4 — Instruction Set

RTS Format

Figure 4-5 RTS Instruction Format

The RTS (return from subroutine) instruction uses the link to return
control to the main program once the subroutine is finished.

e Bits 15-3 always contain octal 00020, which is the op code for RTS.

e Bits 2-0 specify any one of the general-purpose registers.

® The register specified by bits 2-0 must be the same register used as
the link between the JSR causing the jump and the RTS returning
control.

TRAPS AND INTERRUPTS
Mnemonic Instruction

EMT emulator trap

TRAP trap

BPT breakpoint trap

10T input/output trap
RTI return from interrupt
RTT return from interrupt

The three ways to leave a main program are:

1. Software exit — the program specifies a jump to some subroutine.

2. Trap exit — internal hardware on a special instruction forces a
jump to an error handling routine.

3. Interrupt exit — external hardware forces a jump to an interrupt
service routine.

In each case, a jump to another program takes place. Once the latter

program has been executed, control is returned to the proper pointin

the main program.

MISCELLANEOUS INSTRUCTIONS
Mnemonic Instruction

HALT halt

WAIT wait for interrupt

RESET reset.bus

MTPD move to previous data space

70

Chapter 4 — Instruction Set

Mnemonic Instruction

MTPI move to previous instruction space
MFPD move from previous data space
MFPI move from previous instruction space
MTPS move byte to processor status word
MFPS move byte from processor status word
MFPT move from processor type
CONDITION-CODE OPERATION

Mnemonic Instruction

CLC, CLV,CLZ,CLN, CCC clear

SEC, SEV, SEZ, SEN, SCC set

The four condition-code bits are:

e N, indicating a negative condition when set to 1
® Z, indicating a zero condition when set to 1

® V, indicating an overflow condition when set to 1
e C, indicating a carry condition when set to 1

These four bits are part of the processor status word (PS). The result
of any single-operand or double-operand instruction affects one or
more of the four condition-code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition
codes are not affected by the execution of certain instructions. The
CPU may be asked to check the condition codes after execution of an
instruction. The condition codes are used by the various instructions
to check software conditions.

Z bit — Whenever the CPU sees that the result of an instruction is zero,
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a
number of ways of obtaining a zero resulit:

® Adding two numbers equal in magnitude but different in sign

® Comparing two numbers of equal value

® Using the CLR instruction

N bit — The CPU looks only at the sign bit of the result. If the sign bit is

set, indicating a negative value, the CPU sets the N bit. If the sign bit is
clear, indicating a positive value, then the CPU clears the N bit.

C bit — The CPU sets the C bit automatically when the result of an
instruction has caused a carry out of the most significant bit of the
result. When the instruction results in a carry out of the most
significant bit of the result, the carry itself is usually moved into the C
bit. Otherwise, the C bit is cleared. During rotate instructions (ROL and
ROR), the C bit forms a buffer between the most significant bit and the

71

Chapter 4 — Instruction Set

least significant bit of the word. A carry of 1 sets the C bit while a carry
of 0 clears the C bit. However, there are exceptions. For example:

® SUB and CMP set the C bit when there is no carry

e INC and DEC do not affect the C bit

o COM always sets the C bit, TST always clears the C bit

V bit — The V bit is set to indicate that an overflow condition exists. An
overflow means that the result of an instruction is too large to be
placed in the destination. The hardware uses one of two methods to
check for an overflow condition:

1. Oneway is for the CPU to test for a change of sign:

- When using single-operand instructions, such as INC, DEC,
or NEG, a change of sign indicates an overflow condition.

- When using double-operand instructions, such as ADD, SUB,
or CMP, in which both the source and destination have like
signs, a change of sign in the result indicates an overflow
condition.

2. Another method used by the CPU is to test the N bit and C bit
when dealing with shift and rotate instructions:

- Ifonly the N bit is set, an overflow exists.

- Ifonly the C bit is set, an overflow exists.

- Ifboth the N and C bits are set, there is no overflow condition.
More than one condition code can be set by a particular instruction.
For example, both a carry and an overflow condition may exist after
instruction execution.

15 [] 5 4 3 2 1 0
T T T T T T

LO 0 0 2 [4]0/1]N|Z|V C
1 1 1 1 1 1 1 1 1

Figure 4-6 Condition-Code Operators’ Format

Instruction Format
The format of the condition code operators is:

o Bits 15-5 — the “op” code

e Bit 4 — the “operator” which indicates set or clear with the values 1
and 0 respectively. If set, any selected bit is set; if clear, any selected
bit is cleared.

72

Chapter 4 — Instruction Set

e Bits 3-0 — the “select” field. Each of these bits corresponds to one
of the four condition-code bits. When one of these bits is set, then
the corresponding condition-code bit is set or cleared depending on
the state of the “operator” (bit 4).

EXAMPLES
The following examples and explanations illustrate the use of the vari-
ous types of instructions in a program.

Single-Operand Instruction Example

This routine uses a tally to control a loop, which clears out a specific
block of memory. The routine has been set up to clear 30, byte loca-
tions beginning at memory address 600.

RO = 600

R1 =230

LOOP: CLRB(RO0)+
DEC R1
BNE LOOP
HALT

Program Description

® The CLRB (R0)+ instruction clears the content of the location speci-
fied by RO and increments RO.

® RO is the pointer.

® Because the autoincrement addressing mode is used, the pointer
automatically moves to the next memory location after execution of
the CLRB instruction.

® Register R1 indicates the number of locations to be cleared and is,
therefore, a counter. Counting is performed by the DEC R1 instruc-
tion. Each time a location is cleared, it is counted by decrementing
R1.

e The Branch if Not Zero, BNE, instruction checks for done. If the
counter is not zero, the program branches back to start to clear
another location. If the counter is zero, indicating done, then the
program executes the next instruction, HALT.

Double-Operand Instruction Example

This routine prints out a portion of a payroll program for review by the
supervisor. It is known that 76 locations are to be printed and the
locations start at address 600.

INIT: MOV #600, RO
MOV #76, R1

73

Chapter 4 — Instruction Set

START: MOVB (R0)+, I/0
DEC R1
BNE START
HALT

Program Description

o MOV is the instruction normally used to set up the initial conditions.
Here, the first MOV places the starting address (600) into RO, which
will be used as a pointer. The second MOV sets up R1 as a counter
by loading the desired number of locations (76) to be printed.

e The MOVB instruction moves a byte of data to the printer (I/0) for
printing. The data come from the location specified by RO. The
pointer RO is then incremented to point to the next sequential loca-
tion.

e The counter R1 is then decremented to indicate one byte has been
transferred.

® The program then checks the loops for done with the BNE instruc-
tion. If the counter has not reached zero, indicating more transfers
must take place, then the BNE causes a branch back to START and
the program continues.

e When the counter R1 reaches zero, indicating all data have been
transferred, the branch does not occur and the program executes
the next instruction, HALT.

Branch Instruction Example
NOTE
Branch instructions are limited from +177, to —200,
words.

A payroll program has set up a series of words to identify each em-
ployee by his badge number. The high byte of the word contains the
employee’s badge number, the low byte contains an octal number
ranging from 0 to 13 which represents his salary. These numbers
represent steps within three wage classes to identify which employees
get paid weekly, monthly, or quarterly. It is time to make out weekly
paychecks. Unfortunately, employee information has been stored in
random order. The problem is to extract the names of only those
employees who receive a weekly paycheck. Employee payroll num-
bers are assigned as follows: 0 to 3 — Wage Class | (weekly), 4to 7 —
Wage Class Il (monthly), 10 to 13 — Wage Class Il (quarterly).

600 is the starting address of the memory block containing the
employee payroll information. 1264 is the final address of this data
area. The following program searches through the data area and finds

74

Chapter 4 — Instruction Set

all numbers representing Wage Class |, and, each time an appropriate
number is found, stores the employee’s badge number (just the high
byte) on a “last-in/first-out” stack which begins at location 400.

INIT: MOV #600, RO
MOV #400, R1
START: CMPB(RO0)+,#3
BHICONT
STACK: MOVB (R0),—(R1)
CONT: INC RO

CMP #1264, RO
BHIS START

HALT

Program Description

® RO becomes the address pointer, R1 the stack pointer.

e Compare the contents of the first low byte with the number 3 and go
to the first high byte.

e |f the number is more than 3, branch to continue.

e If no branch occurs, it indicates that the number is 3 or less. There-
fore, move the high byte containing the employee’s number onto the
stack as indicated by stack pointer R1.

® RO is advanced to the next low byte.

e |f the last address has not been examined (1264), this instruction
produces a result equal to or greater than zero.

o |f the result is equal to or greater than zero, examine the next memo-
ry location.

SPECIAL SYMBOLS

You will find that a number of special symbols are used to describe
certain features of individual instructions. The commonly used sym-
bols are explained below.

75

SYMBOL
MN
SO
DO
PC
MS
CcC
X)

src
dst
tmp

(SP)+
—(SP)

Regor R

MPI

MNI

Chapter 4 — Instruction Set

MEANING

Maintenance Instruction
Single-Operand Instruction
Double-Operand Instruction
Program Control Instruction
Miscellaneous Instruction
Condition Code

Contents of memory location whose address is X.
For example, (R5) means the contents of the
memory location whose address is contained in
R5.

Source Address
Destination Address
Contents of temporary internal register

Becomes, or moves into. For example, (dst) <«
(src) means that the source becomes the destina-
tion or that the source moves into the destination
location.

Popped or removed from the hardware stack
Pushed or added to the hardware stack
Logical AND

Logical inclusive OR (either one or both)
Logical exclusive OR (either one, but not both)
Logical NOT

Contents of Register

Byte

Most Postitive integer—077777 (word) or 177
(byte)

Most Negative Integer—100000 (word) or 200
(byte)

76

Chapter 4 — Instruction Set

Summary of Basic Instruction Set

INSTRUCTION SET
The basic PDP-11 instruction set is presented in the following section.
For ease of reference, the instructions are listed aiphabetically.

The Extended Instruction Set (EIS) is standard on the LSI-11/23, PDP-
11/28, and the PDP-11/23-PLUS. It is available as an option on the
LSI-11, LSI-11/2, and the PDP-11/03, and can be referenced at the
end of this chapter. Some members of the PDP-11 family have slight
differences in the way instructions are executed. Refer to Appendix D
for detailed family differences.

ADC COM
ADCB COMB
ADD DEC
ASL DECB
ASLB EMT
ASR HALT
ASRB INC
BCC INCB
BCS 10T
BEQ JMP
BGT JSR
BHI MARK
BHIS MOV
BIC MovB
BICB NEG
BIS NEGB
BISB NOP
BIT RESET
BITB ROL
BLE ROLB
BLO ROR
BLOS RORB
BLT RTI
BMI RTS
BNE RTT
BPL SBC
BPT SBCB
BR SCC, SEN, SEZ, SEV, SEC
BvVC SOB
BvVS SUB, SXT
CLR SWAB

77

Chapter 4 — Instruction Set

CLRB TRAP
CCC,CLN,CLZ,CLV,CLC TST
CMP TSTB
CMPR XOR
WAIT

These basic instructions are standard on:

LSI-11

LSI-11/2

LSI-11/23

FALCON SBC-11/21 (except for MARK instruction which is not im-
plemented on FALCON SBC-11/21))

PDP-11/03

PDP-11/23

PDP-11/23-PLUS

MFPD, MTPD, MTPI, MFPI
Available on the LSI-11/23, PDP-11/23, and PDP-11/23-PLUS only.

MFPS, MTPS
Available on the LSI-11, LSI-11/2, LSI-11/23, FALCON SBC-11/21,

PDP-11/03, PDP-11/23, and PDP-11/23-PLUS.

MFPT
Available on the FALCON SBC-11/21, LSI-11/23, PDP-11/23, and the

PDP-11/23-PLUS.

ADC
ADCB
Add Carry SO 0055DD
1055DD
Operation: (dst) < (dst)+C
Condition N: setifresult<O0
Codes: Z: setifresult=0

V: setif (dst)isM.P.l.andC = 1
C: setif(dst)is—1andC =1

Description: Adds the contents of the C bit into the destination.
This permits the carry from the addition of the
low-order words/bytes to be carried into the high-
order result, such as in performing double-preci-
sion arithmetic.

78

Add
Operation:

Condition
Codes:

Description:

Arithmetic Shift Left

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set
ADD

DO 06SSDD
(dst) < (src) +(dst)

N: setifresult<0

Z: setifresult=0

V: setif there is arithmetic overflow as a
result of the operation; that is, both operands
were of the same sign and the result is of the
opposite sign

C: setifthereis acarry from the most
significant bit of the result

Adds the source operand to the destination oper-
and and stores the result at the destination ad-
dress. The original contents of the destination are
lost. The contents of the source are not affected.
Two's complement addition is performed.

ASL
ASLB

SO 0063DD
SO 1063DD

(dst) < (dst) shifted one place to the left

N: setif high-order bit of the result is
set (result < 0)

Z: setiftheresult=0

V: loaded with the exclusive OR of the N
bit and C bit (as set by the completion of the
shift operation)

C: loaded with the high-order bit of the
destination

Shifts all bits of the destination left one place. The
low-order bit is loaded with a 0. The C bit of the
status word is loaded from the high-order bit of
the destination. ASL performs a signed multipli-
cation of the destination by 2 with overflow indica-
tion. For example, —1 shifted left yields —2, +2
shifted left yields +4, and —3 shifted left yields —
6.

79

Arithmetic Shift
Right

Operation:

Condition
Codes:

Description:

Branch if Carry
Clear

Operation:

Condition
Codes:

Description:

Branch if Carry Set

Chapter 4 — Instruction Set

ASR
ASRB

SO 0062DD
SO 1062DD

(dst) <« (dst) shifted one place to the right

N: setif the high-order bit of the result
is set (result < 0)

Z: setiftheresult=0

V: loaded from the exclusive OR of the N
bit and C bit (as set by the completion of the
shift operation)

C: loaded from low-order bit of the
destination

Shifts all bits of the destination right one place.
The high-order bit is replicated. The C bit is load-
ed from the low-order bit of the destination. ASR
performs signed division by 2, rounded to minus
infinity. —1 shifted right remains —1, +5 shifted
right yields +2, —5 shifted right yields —3.

BCC

PC 103000
Plus 8-bit
offset

PC « PC+ (2 X offset)ifC =0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the C bit and causes a branch if
Cisclear.

BCS
PC 1034000
Plus 8-bit
offset

80

Operation:

Condition
Codes:

Description:

Branch if Equal
(to zero)

Operation:

Condition
Codes:

Description:

Branch if Greater
Than or Equal

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

PC < PC+ (2 X offset) if C = 1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the C bit and causes a branch if
C is set. Used to test for a carry in the result of a
previous operation.

BEQ

PC 001400
Plus 8-bit
offset

PC < PC+ (2 X offset) if Z = 1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the Z bit and causes a branch if
Zis set. As an example, it is used to test equality
following a CMP operation, to test that no bits set
in the destination were also set in the source fol-
lowing a BIT operation, and, generally, to test that
the result of the previous operation was 0.

BGE

PC 002000
Plus 8-bit
offset

PC «PC+ (2 X offset) if N¥V =0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Causes a branch if N and V are either both clear
or both set. BGE is the complementary operation

81

Branch if Greater
Than

Operation:

Condition
Codes:

Description:

Branch if Higher

Operation:

Condition
Codes:

Chapter 4 — Instruction Set

to BLT. Thus, BGE always causes a branch when

it follows an operation that caused addition of two
positive numbers. BGE also causes a branch in a
0 result.

BGT

PC 003000
Plus 8-bit
offset

PC « PC+ (2 X offset)if Zv (N¥V) =0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Causes a branch if Z is clear (result of previous
operation # 0) and N = V. Thus, BGT always
branches following an operation that added two
negative numbers, even if overflow occurred. In
particular, BGT always causes a branch if it fol-
lows a CMP instruction operating on a negative
source and a positive destination (even if overflow
occurred). Further, BGT never causes a branch
when it follows a CMP instruction operating on a
positive source and negative destination. BGT
does not cause a branch if the result of the previ-
ous operation was 0 (without overflow).

BHI
PC 101000

Plus 8-bit

offset
PC «<PC + (2 X offset)if C=0andZ=0
N: unaffected
Z:. unaffected
V: unaffected
C: unaffected

82

Description:

Branch if Higher
Than or the Same

Operation:

Condition
Codes:

Description:

Bit Clear
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

Causes a branch if the previous operation causes
neither a carry nor a 0 result. This will happen in
comparison (CMP) operations as long as the
source has a higher unsigned value than the des-

tination.

BHIS

PC 103000
Plus 8-bit
offset

PC < PC + (2 X offset)if C=0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the C bit and causes a branch if
C is cleared.

BIC
BICB

04SSDD
14SSDD

DO

(dst) < ~(src)A (dst)

N: setif high-order bit of result set
Z: setifresult=0

V: cleared

C: notcleared

Clears each bit in the destination that corre-
sponds to a set bit in the source. The original
contents of the destination are lost. The contents
of the source are unaffected.

83

Bit Set
Operation:

Condition
Codes:

Description:

Bit Test

Operation:

Condition
Codes:

Description:

Branch if Less Than
or Equal To

Operation:

Condition
Codes:

Chapter 4 — Instruction Set

BIS

DO 05SSDD BISB

158SDD
(dst) <« (src) v (dst)

N: setif high-order bit of result set
Z: setifresult=0

V: cleared

C: unaffected

Performs inclusive OR operation between the
source and destination operands and leaves the
result at the destination address; i.e., correspond-
ing bits set in the source are set in the destination.
The original contents of the destination are lost.

BIT
BITB

DO 03SSDD
13SSDD

(dst) A(src)

N: setif high-order bit of result set
Z: setifresult=20

V: cleared

C: unaffected

Performs logical AND comparison of the source
and destination operands and modifies condition
codes accordingly. Neither the source nor desti-
nation operands are affected. The BIT instruction
may be used to test whether any of the corre-
sponding bits that are set in the destination are
clear in the source.

BLE

PC 003400
Plus 8-bit
offset

PC<« PC + (2 X offset) if Zv (N V)=1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

84

Description:

Branch if Lower
Operation:

Condition
Codes:

Description:

Branch if Lower or
Same

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

Causes a branch if Z is set or if N does not equal
V. Thus, BLE always branches following an oper-
ation that added two negative numbers, even if
overflow occurred. In particular, BLE always
causes a branch if it follows a CMP instruction
operating on a negative source and a positive
destination (even if overflow occurred). Further,
BLE never causes a branch when it follows a CMP
instruction operating on a positive source and ne-
gative destination. BLE always causes a branch if
the result of the previous operation was 0.

BLO

PC 1034000
PC<« PC+ (2 X offset) if C = 1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the C bit and causes a branch if
C is set. Used to test for a carry in the result of a
previous operation.

BLOS

PC 101400
Plus 8-bit
offset

PC<« PC + (2 X offset) if CvZ = 1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Causes a branch if the previous operation caused
either a carry or a 0 result. BLOS is the com-
plementary operation to BHI. The branch occurs
in comparison operations as long as the source is
equal to or has a lower unassigned value than the
destination.

85

Branch if Less Than

Operation:

Condition
Codes:

Description:

Branch if Minus

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

BLT

PC 002400
Plus 8-bit
offset

PC«PC + (2 X offset) if N¥V = 1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Causes a branch if the exclusive OR of the N and
V bitsis 1. Thus, BLT always branches following
an operation that added two negative numbers,
even if overflow occurred. In particular, BLT al-
ways causes a branch if it follows a CMP instruc-
tion operating on a negative source and a positive
destination (even if overflow occurred). Further,
BLT never causes a branch when it follows a CMP
instruction operating on a positive source and ne-
gative destination. BLT does not cause a branch if
the result of the previous operation was 0 (without
overflow).

PC 100400
Plus 8-bit
offset

PC<« PC + (2 X offset) if N = 1

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the N bit and causes a branch if
N is set. Used to test the sign (most significant bit)
of the result of the previous operation.

86

Branch if Not Equal

Operation:

Condition
Codes:

Description:

Branch if Plus

Operation:

Condition
Codes:

Description:

Breakpoint Trap
Operation:

Chapter 4 — Instruction Set

BNE

PC 001000
Plus 8-bit
offset

PC<+PC + (2 X offset)ifZ=0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the Z bit and causes a branch if
the Z bit is clear. BNE is the complementary oper-
ation to BEQ. It is used to test inequality following
a CMP, to test that some bits set in the destination
were also in the source, following a BIT, and, gen-
erally, to test that the resuit of the previous opera-
tion was not 0.

BPL

PC 100000
Plus 8-bit
offset

PC«PC + (2 X offset)if N =0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the N bit and causes a branch if
N is clear. BPL is the complementary operation of
BMI.

BPT

PC 000003

—(SP)«PS
—(SP)«PC
PC<(14)
PS<(16)

87

Condition
Codes:

Description:

Branch
(Unconditional)

Operation:

Condition
Codes:

Description:

Branch if V Bit Clear

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Performs a trap sequence with a trap vector ad-
dress of 14. Used to call debugging aids. The user
is cautioned against employing code 000003 in
programs run under these debugging aids. In-
struction has no operand.

PC 000400
Plus 8-bit
offset

PC<« PC + (2 X offset)

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Provides a way of transferring program control
within a range of —128 to + 127 words with a one-
word instruction. An unconditional branch.

BVC

PC 102000
Plus 8-bit
offset

PC<+PC + (2 X offset) if V=0

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Tests the state of the V bit and causes a branch if
the V bit is clear. BVC is the complementary oper-
ation to BVS.

88

Branch if V Bit Set

Operation:

Condition
Codes:

Description:

Clear
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

BVS
PC 102400
Plus 8-bit
offset
PC<«PC + (2 X offset) if V = 1
N: unaffected

Z: unaffected
V: unaffected
C: unaffected

Tests the state of V bit and causes a branch if the
V bit is set. BVS is used to detect arithmetic over-
flow in the previous operation.

CLR
CLRB
SO 0050DD
1050DD
(dst)«0
N: cleared
Z: set
V: cleared
C:. cleared

Contents of specified destination are replaced
with zeros.

NOTE

As a performance optimization, on the LSI-11/23,
the last bus cycle of a CLR (or CLRB) is a DATO (or
DATOB). LSI-11 and LSI-11/2 processors perform a
DATIO cycle for the last bus cycle as a “don’t care”
for hardware minimization.

Clear Selected Con- CC 000240
dition Code Bits Plus 4-
bit mask

89

Chapter 4 — Instruction Set

Operation: PSW <3:0> < PSW <3:0>[~mask <3:0>]

Description: Clear condition code bits. Selectable combina-
tions of these bits may be cleared together. Con-
dition code bits corresponding to bits in the con-
dition code operator (bits 0-3) are modified.
Clears the bit specified by the mask; i.e., bit 0, 1,
2,0r3.Bit4isa0.

CCC
Clear all Condition cC 000257
Code Bits
Operation: N: 0
Z: 0
V: 0
C: 0
CLC
ClearC CC 000241
Operation: N: unaffected
Z: unaffected
V: unaffected
C: 0
CLN
Clear N CC 000250
Operation: N: O
Z: unaffected
V: unaffected
C: unaffected
CLV
Clear V CcC 000242

90

Operation:

ClearZ
Operation:

Compare

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

N: unaffected
Z: unaffected
V: 0

C: unaffected

cLz

CC 000244

unaffected
0

unaffected
unaffected

O<SNZ

CMP
CMPB

DO 02SSDD
12SSDD

(src) — (dst) [in detail (src) + ~(dst) +1]

N: setifresult<0

Z: setifresult=0

V: setif there is arithmetic overflow;
i.e., operands of opposite signs and the sign
of the destination is the same as the sign of
the result

C: setifthereis a borrow into the most
significant bit, i.e., if (src) + ~(dst) + 1is less
than 216,

Compares the source and destinaton operands
and sets the condition codes, which may then be
used for arithmetic and logical conditional
branches. Both operands are unaffected. The on-
ly action is to set the condition codes. The com-
pare is customarily followed by a conditional
branch instruction. Note that unlike the subtract
instruction, the order of operation is (src)—(dst),
not (dst)—(src).

91

Complement

Operation:

Condition
Codes:

Description:

Decrement
Operation:

Condition
Codes:

Description:

Emulator Trap

Operation:

Chapter 4 — Instruction Set

COoM
cOomMB

SO 0051DD
1051DD

(dst) < ~(dst)

N: setif most significant bit of result =1
Z: setifresult=0

V: cleared

C: set

Replaces the contents of the destination address
py their logical complements (each bit equal to 0
set and each bit equal to 1 cleared).

DEC
DECB

SO 0053DD
1053DD
(dst)«(dst) — 1

N: setifresult<O0

Z: setifresult=0

V: setif (dst) was M.N.I.
C: unaffected

Subtract 1 from the contents of the destination.

EMT
PC 104000

to

104377
—(SP)«<PS
—(SP)«<PC
PC<(30)
PS<«(32)

92

Condition
Codes:

Description:

HALT

Halt
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are
EMT instructions and may be used to transmit
information to the emulating routine (e.g., func-
tion to be performed). The trap vector for EMT is
at address 30. The new PC is taken from the word
at address 30; the new central processor status
word (PS) is taken from the word at address 32.

Caution: EMT is used frequently by DIGITAL
system software and is therefore not recommend-
ed for general use.

MS 000000
N: unaffected
Z:. unaffected
V: unaffected
C: unaffected

Causes program execution to cease and enters
console ODT (if memary management is present,
program execution ceases only if in kernel mode;
atrap to location 10 occurs if in user mode). Addi-
tionally if jumper W7 on the KD11F module is in-
serted, a trap to 10 will occur unconditionally.

NOTE

Execution of a HALT instruction causes the FALCON SBC-11/21 to
stack PSW and PC, and set PC to restart address while setting PSW to

340,.

93

Increment

Operation:

Condition
Codes:

Description:

1/0 trap
Operation:

Condition
Codes:

Description:

Jump
Operation:

Condition
Codes:

Chapter 4 — Instruction Set

INC
INCB

SO 0052DD
1052DD

(dst) < (dst) + 1

N: setifresult<0

Z: setifresult=0

V: setifdstwas 077777
C: not affected

Adds 1 to the contents of the destination.

10T

PC 000004

—(SP)«PS
—(SP)«PC
PC< (20)
PS<(22)

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Performs a trap sequence with a trap vector ad-
dress of 20. Used to call the I/0O executive routine |
10X in the paper tape software system and for
error reporting in the disk operating system. No
information is transmitted in the low byte.

JMP
PC 0001DD
PC «dst
N: unaffected
Z: unaffected
V: unaffected
C: unaffected

94

Description:

Chapter 4 — Instruction Set

JMP provides more flexible program branching
than provided with the branch instruction. 1t is not
limited to +177, and —200, words as are branch
instructions. JMP does generate a second word,
which makes it slower than branch instructions.
Control may be transferred to any location in
memory (no range limitation) and can be accom-
plished with the full flexibility of the addressing
modes with the exception of register mode 0. Ex-
ecution of a jump with mode 0 will cause an illegal
instruction condition and a trap to location 4.
(Program control cannot be transferred to a
register.) Register deferred mode is legal and will
cause program control to be transferred to the
address held in the specified register.

NOTE

Instructions are word data and therefore must be
fetched from an even-numbered address.

Jump to Subroutine

Operation:

Condition
Codes:

Description:

JSR

PC 004RDD

(tmp) < dst (tmp is an internal processor register)
—(SP) «reg (push reg contents onto processor
stack)

reg < PC (PC holds location following JSR; this
address now putin reg)

PC <« (tmp) (PC now points to subroutine ad-
dress)

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

In execution of the JSR, the old contents of the
specified register (the linkage pointer) are auto-
matically pushed onto the processor stack and
new linkage information placed in the register.
Thus, subroutines nested within subroutines to
any depth may all be called with the same linkage
register. There is no need either to plan the maxi-

95

Mark
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

mum depth at which any particular subroutine will
be called or to include instructions in each routine
to save and restore the linkage pointer. Further,
since all linkages are saved in a re-entrant man-
ner on the processor stack, execution of a sub-
routine may be interrupted, and the same subrou-
tine re-entered and executed by an interrupt
service routine. Execution of the initial subroutine
can then be resumed when other requests are
satisfied. This process (called nesting) can
proceed to any level.

JSR PC, dstis a special case of the subroutine
call suitable for subroutine calls that transmit par-
ameters. JSR, PC saves the use of an extra regis-
ter.

In both JSR and JMP the address is used to load
the program counter, R7. Thus, for example, a
JSR is destination mode 1 for general register R1
(where (R1) = 100) will access a subroutine at
location 100. This is effectively one level of defer-
ral less than operate instructions such as add.

A JSR with mode 0 will result in an illegal instruc-
tion and a trap through the trap vector address 4.

MARK

PC 0064NN

SP< PC+2Xnn nn = number of parameters
PC<R5
R5<« (SP)+

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Used as part of the standard subroutine return
convention. MARK facilitates the stack clean-up
procedures involved in subroutine exit. Assem-
bler format is: MARK N. This instruction is not
available on FALCON SBC-11/21.

96

Chapter 4 — Instruction Set

MFPD
MFPI
Move from Previous MS 1065SS
Data Space 0065SS
Move from Previous
Instruction Space
Operation: tmp <« (src)
—(SP) < tmp
Condition N: setifthe source <0
Codes: Z: setifthesource =0
V: cleared
C: unaffected
Description: Pushes a word onto the current stack from an
address in previous space. The source address is
computed using the current registers and memo-
ry map. Since data space does not exist in the
KDF11, MFPD executes the same as a MFPI. (LSI-
11/23 only).
MFPS
Move Byte from MS 1067DD
Processor
Status Word
Operation: (dst) < PS dst lower 8 bits
Condition N: setif PSbit7 =1
Codes: Z: setif PS<7:0> =0
V: cleared
C: unaffected
Description: The 8-bit contents of the PS are moved to the

effective destination. If destination mode is 0, PS
bit 7 is sign-extended through upper byte of the
register. The destination operand is treated as a
byte address.

The KDF11 implements the PS address, 777776,
which can be used as another method of access-
ing the PS. This method can be used only on the
LSI-11/23.

97

Move from
Processor

Operation:

Condition
Codes:

Description:

Move

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

MFPT
MS 000007

R0<7:0> <« processor model code
R0<15:8> <« processor subcode

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

No source operands are used. The MFPT instruc-
tion returns in the low byte of RO a processor mo-
del code. The high byte of RO is loaded with a
processor-specific subcode. The condition codes
are not affected. The previous contents of RO are
lost.

Note: Standard for the LSI-/23 and FALCON
SBC-11/21 only. On processors where this in-
struction is not implemented, a reserved instruc-
tion trap through vector 10, is taken.

MOV
MOVB

DO 01SSDD
11SSDD

(dst) <« (src)

N: setif(src) <0
Z: setif(src)=0
V: cleared

C: unaffected

Moves the source operand to the destination lo-
cation. The previous contents of the destination
are lost. The source operand is not affected.

The MOVB to a register (mode 0), unique among
byte instructions, extends the most significant bit
of the lowsorder byte (sign extension)into the high
byte of the selected register. Otherwise MOVB
operates on bytes exactly as MOV operates on
words.

98

Chapter 4 — Instruction Set

NOTE
As a performance optimization, on the LSI-11/23 the
last bus cycle of a MOV (or MOVB) is a DATO (or
DATOB). LSI-11 and LSI-11/2 processors perform a
DATIO cycle for MOVB as a “don’t care” for hard-
ware minimization.

MTPD
MTPI
Move to Previous MS 1066SS
Data Space 0066SS
Move to Previous
Instruction Space
Operation: tmp < (SP) +
(dst) «tmp
Condition N: setifthe source <0
Codes: Z: setifthe source =0
V: cleared
C: unaffected
Description: This instruction pops a word off the current stack

determined by PS <15:14> and stores that word
into an address in previous space PS <13:12>.
The destination address is computed using the
current registers and memory map.

Since data space does not exist in the KDF11,
MTPD executes the same as MTPI. (LSI-11/23
only).

NOTE
As a performance optimization, on the LSI-11/23 the
last bus cycle of a MTPD and MTPI is a DATO. This
instruction was not implemented on LSI-11 and LSI-
11/2 processors.

99

Move Byte to
Processor
Status Word

Operation:

Condition
Codes:

Description:

Negate

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

MTPS

MS 1064SS

PS <« (src)

N: setaccording to effective src operand 0-3
Z: setaccording to effective src operand 0-3
V: setaccording to effective src operand 0-3
C: setaccording to effective src operand 0-3

The 8 bits of the effective operand replace the
current low byte contents of the PS, if in kernel
mode. Only PS bits 0 through 3 are affected if in
user mode. The source operand address is treat-
ed as a byte address. Note that PS bit 4 (T bit)
cannot be seen with this instruction in either ker-
nel or user mode. The src operand remains un-
changed.

The KDF11 implements the PS address, 777776,
which can be used as another method of access-
ing the PS. This method can be used only on the
LSI-11/23.

NEG
NEGB

SO 0054DD
1054DD

(dst) « ~(dst) +1

N: setifresult<O0

Z: setifresult=0

V: setifresult = 100000
C: clearedifresult=0

Replaces the contents of the destination address
by its 2's complement. Note that 100000 is re-
placed by itself.

100

No Operation

Operation:

Condition
Codes:

Description:

Reset External Bus
Operation:

Condition
Codes:

Description:

Rotate Left

Operation:

Condition
Codes:

Chapter 4 — Instruction Set

NOP
CcC 000240
000260
none
N: unaffected
Z: unaffected
V: unaffected
C: unaffected
No operation is performed.
RESET
MS 000005
N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Causes bus signal BINIT L to be asserted for 10
us and then unasserted for 90 us. Used to initial-
ize 1/0 devices attached to the bus. In addition,
memory management status registers SR0O and
SR3 are cleared.

ROL
ROLB

SO 0061DD
1061DD

(dst) <« (dst) rotate left one place

N: setif the high order bit of the result word is
set (result > 0)

Z: setif all bits of the result word = 0

V: loaded with the exclusive OR of the N bit
and C bit (as set by the completion of the
rotate operation)

C: loaded with the high-order bit of the
destination

101

Description:

Rotate Right
Operation:

Condition
Codes:

Description:

Return from Inter-
rupt

Operation:

Condition
Cades:

Description:

Chapter 4 — Instruction Set

Rotates all bits of the destination left one place.
The high- order bit is loaded into the C bit of the
status word and the previous contents of the C bit
are loaded into the low-order bit of the destina-
tion.

ROR
RORB

SO 0060DD
(dst) < (dst) rotate right one place

N: setif high-order bit of the result is set

Z: setif all bits of resultare 0

V: loaded with the exclusive OR of the N bit
and the C bit as set by ROR

C: loaded with the low-order bit of the
destination

Rotates all bits of the destination right one place.
The low- order bit is loaded into the C bit and the
previous contents of the C bit are loaded into the
high-order bit of the destination.

RTI

MS 000002

PC< (SP)+
PS< (SP)+

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Used to exit from an interrupt or trap service rou-
tine. The PC and PS are restored (popped) from
the processor stack. If the RTI sets the T bitin the
PS, a trace trap will occur prior to executing the
nextinstruction.

102

Return from
Subroutine

Operation:

Condition
Codes:

Description:

Return from Inter-
rupt

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

RTS

PC 00020R

PC<«(reg)
(reg)< (SP)+

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Loads contents of register into PC and pops the
top element of the processor stack into the speci-
fied register.

Return from a nonre-entrant subroutine is typical-
ly made through the same register that was used
in its call. Thus, a subroutine called with a JSR
PC, dst exits with an RTS PC, and a subroutine
called with a JSR R5, dst may pick up parameters
with addressing modes (R5)+, X(R5), or @X(R5)
and finally exit, with an RTS RS.

RTT

MS 000006

PC< (SP)+
PS< (SP)+

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Used to exit from a trace trap (T bit) service rou-
tine. Executes the same as the RT instruction with
one exception. If RTT sets the T bitin the PS, the
next instruction will be executed and then the
trace trap will be processed. However, if an RTI
sets the T bitin the PS, a trace trap will occur
before the next instruction is executed.

103

Subtract Carry
Operation:

Condition
Codes:

Description:

Setall Cs
Description:

SetC
Description:

Chapter 4 — Instruction Set

SBC
SBCB

SO 0056DD
1056DD

(dst) < (dst)-C

N: setifresult<0

Z: setifresult=0

V: setif(dst) = 100000and C = 1
C: clearedif(dst) =0andC =1

Subtracts the contents of the C bit from the desti-
nation. This permits the carry from the subtrac-
tion of the low-order words/bytes to be subtract-
ed from the high-order part of the result in order
to perform double-precision subtraction.

SCC

CcC 000277

Sets and clears condition code bits. Selectable
combinations of these bits may be cleared or set
together. Condition code bits corresponding to
bits in the condition code operator (bits 0-3) are
modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., sets the bit spec-
ified by bit 0, 1, 2, or 3, if bit4 isa 1. Clears
corresponding bits if bit 4 = 0.

SEC

CcC 000261

Sets and clears condition code bits. Selectable
combinations of these bits may be cleared or set
together. Condition code bits corresponding to
bits in the condition code operator (bits 0-3) are
modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., sets the bit spec-
ified by bit 0, 1, 2, or 3, if bit4 isa 1. Clears
corresponding bits if bit4 = 0.

104

SetN

Description:

SetV

Description:

SetZ

Description:

Chapter 4 — Instruction Set

SEN

cC 000270

Sets and clears condition code bits. Selectable
combinations of these bits may be cleared or set
together. Condition code bits corresponding to
bits in the condition code operator (bits 0-3) are
modified according to the sense of bit 4, the
set/clear bit of the operator, i e, sets the bit spec-
ified by bit0, 1, 2, or 3, if bit4 isa 1. Clears
corresponding bits if bit4 = 0.

SEV

CcC 000262

Sets and clears condition code bits. Selectable
combinations of these bits may be cleared or set
together. Condition code bits corresponding to
bits in the condition code operator (bits 0-3) are
modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., sets the bit spec-
ified by bit 0, 1, 2, or 3, if bit4 is a 1. Clears
corresponding bits if bit4 = 0.

SEZ

cC 000264

Sets and clears condition code bits. Selectable
combinations of these bits may be cleared or set
together. Condition code bits corresponding to
bits in the condition code operator (bits 0-3) are
modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., sets the bit spec-
ified by bit 0, 1, 2, 3, if bit 4 is a 1. Clears corre-
sponding bits if 4 = 0.

105

Subtract One and
Branch if not
Equalto 0

Operation:

Condition
Codes:

Description:

Subtract
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

SOB

PC 077R00 plus offset

R« R—1if this result does not = 0 then PC«
PC—(2 X offset)

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

The register is decremented. If it is not equal to 0,
twice the offset is subtracted from the PC (now
pointing to the following word). The offset is in-
terpreted as a 6-bit positive number. This instruc-
tion provides a fast, efficient method of loop con-
trol. Assembler syntax is:

SOBR,A

where A is the address to which transfer is to be
made if the decremented R is not equal to 0. Note
that the SOB instruction cannot be used to trans-
fer control in the forward direction.

SuB

DO 16SSDD
(dst) < (dst) — (src)

N: setifresult<O

Z: setifresult=10

V: setif there is arithmetic overflow as a
result of the operation, i.e., if the operands
were of opposite signs and the sign of the
source is the same as the sign of the result

C: cleared if there is a carry from the most
significant bit of the result

Subtracts the source operand from the destina-
tion operand and leaves the result at the destina-
tion address, The original contents of the destina-
tion are lost. The contents of the source are not
affected. For double-precision arithmetic, the C
bit, when set, indicates a borrow.

106

Swap Byte
Operation:

Condition
Codes:

Description:

Sign Extend

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

SWAB

SO 0003DD

tmp < (dst)<7:0>
(dst)<7:0> < (dst)<15:8>
(dst)<15:8> «tmp

N: setif high order bit of low order byte (bit 7)
of result is set

Z: setif low order byte of result = 0

V: cleared

C: cleared

Exchanges high-order byte and low-order byte of
the destination (which must be a word address).

SXT

SO 0067DD

(dst)«0if N is clear
(dst)« —1if N bit is set

N: unaffected

Z: setif Nbitclear
V: cleared

C: unaffected

If the condition code bit N is set, thena —1 is
placed in the destination operand; if N bit is clear,
then a 0 is placed in the destination operand. This
instruction is particularly useful in multiple-preci-
sion arithmetic because it permits the sign to be
extended through multiple words.

NOTE

As a performance optimization, on the LSI-11/23 the
last bus cycle of a SXT is a DATO. LSI-11 and LSI-
11/2 processors perform a DATIO cycle for the last
bus cycle as a “don’t care” for hardware minimiza-

tion.

107

Trap

Operation:

Condition
Codes:

Description:

Since DIGITAL software makes frequent use of EMT,
the TRAP instruction is recommended for general

use.

Test

Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

PC 104400

to
104777

—(SP) < PS
—(SP)«<PC
PC<(34)
PS<(36)

N:

Z:
V:

C:

loaded from trap vector

loaded from trap vector
loaded from trap vector

loaded from trap vector

TRAP

Operation codes from 104400 to 104777 are
TRAP instructions. TRAPs and EMTs are identical
in operation, except that the trap vector for TRAP
is at address 34.

NOTE

SO 0047DD
1057DD
(dst) <« (dst)
N: setifresult<O0
Z: setifresult=0
V: cleared
C: cleared

TST
TSTB

Sets the condition codes N and Z according to the

contents of the destination address.

108

Wait for Interrupt
Operation:

Condition
Codes:

Description:

Exclusive OR
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

WAIT
MS 000001
N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Provides a way for the processor to relinquish use
of the bus while it waits for an external interrupt.
Having been given a WAIT command, the proces-
sor will not compete for the instructions or oper-
ands from memory. This permits higher transfer
rates between device and memory, since no proc-
essor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all
instructions, the PC points to the next instruction
following the WAIT operation. Thus, when an in-
terrupt causes the PC and PS to be pushed onto
the stack, the address of the next instruction
following the WAIT is saved. The exit from the
interrupt routine (i.e., execution of an RTl instruc-
tion) will cause resumption of the interrupted
process at the instruction following the WAIT.

XOR

DO 074RDD
(dst) < R+ (dst)

N: setiftheresult <0
Z: setifresult=0

V: cleared

C: unaffected

The exclusive OR of the register and destination
operand is stored in the destination address.
Contents of register are unaffected. Assembler -
formatis XORR, D.

109

Chapter 4 — Instruction Set

EXTENDED INSTRUCTION SET (EIS)

Summary of Extended Instruction Set
ASH
ASHC
DIV
MUL

EIS instructions are standard on the LSI-11/23, PDP-11/23, and PDP-
11/23-PLUS, and are available as an option on the:

LSI-11
LSI-11/2
PDP-11/03 ASH
Arithmetic Shift DO 072RSS
Operation: R <« R shifted arithmetically NN places to the right
or left where NN = (src)<5:0>
Condition N: setifresult<0
Codes: setif result =0

shift
loaded from last bit shifted out of
register. Cleared if NN=0.

Description: Standard on LSI-11/23. Optional on LSI-11 and
LSI-11/2. The contents of the register are shifted
right or left the number of times specified by the
source operand. The shift count is taken as the
low-order 6 bits of the source operand. This num-
ber ranges from —32 to +31. Negative is a right
shift and positive is a left shift.

Z:
V: setif sign of register changed during
C:

ASHC
Arithmetic Shift DO 073RSS
Combined
Operation: tmp <R, Rv1
tmp <« tmp shifted
NN bits

R «<tmp<31:16>

RV1 «<tmp<15:0>

The double word R,Rv1 is shifted NN places to the
right or left, where NN = (src) <5:0>

110

Condition
Codes:

Description:

Note:

Divide
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

setifresult <0

setifresult =0

set if sign bit changes during the shift
loaded with high-order bit when left shift;
loaded with low-order bit when right shift
(loaded with the last bit shifted out of the 32-
bit operand)

Optional on LSI-11 and LSI-11/2. The contents of
the specified register R, and the register Rv1 are
treated as a single 32-bit operand and are shifted
by the number of bits specified by the count field
(bits <5:0> of the source operand) and the regis-
ters are replaced by the result. First, bits <31:16>
of the result are stored in register R. Then, bits
<15:0> of the result are stored in register R1. The
count ranges from —32 to +31. A negative count
signifies a right shift. A positive count signifies a
left shift. A zero count implies no shift, but condi-
tion codes are affected. Condition codes are al-
ways set on the 32-bit result.

1) The sign bit of the register R is replicated in
shifts to the right. The least significant bit is filled
with zero in shifts to the left. The C bit stores the
last bit shifted out. 2) Integer overflow occurs on a
left shift if any bit shifted into the sign position
differs from the initial sign of the register. The
register R is replicated in shifts to the right.

DIV
DO 071RSS
R,Rvi<« R,Rv1/(src)

N: setif quotient < 0 (unspecified if V=1)

Z: setif quotient = 0 (unspecified if V=1)

V: setif source = 0 or if quotient cannot be
represented as a 16-bit 2’'s complement
number. R, Rv1 are unpredictable if V is set.

C: setif divide by 0 attempted

Standard for LSI-11/23. Optional for LSI-11/2
and LSI-11. The 32-bit 2's complement integer in
R and Rv1 is divided by the source operand. The
quotient is left in R; the remainder in Rv1 is of the
same sign as the dividend. R must be even.

111

Multiply
Operation:

Condition
Codes:

Description:

Chapter 4 — Instruction Set

MUL

DO 070RSS
R,Rvi<« RX(src)

set if product < 0

set if product =0

cleared

set if the result is less than —2'% or greater
than or equal to 2'5—1.

The contents of the destination register and
source taken as 2's complement integers are mul-
tiplied and stored in the destination register and
the succeeding register; if R is even. If R is odd,
only the low-order product is stored. Assembler
syntax is MUL S,R. (Note that the actual destina-
tionis R, Rv1, which reduces to just Rwhen R is
odd.)

112

113

KEF11-AA Floating Point Option

114

CHAPTER 5

FLOATING POINT INSTRUCTION SET FP-11
(LSI-11/23, PDP-11/23, AND PDP-11/23-PLUS)

INTRODUCTION

The LSI-11 microcomputer family has two sets of floating point in-
structions- the Floating Point Option Instruction Set (FP-11) and the
Floating Point Instruction Set (FIS). For a discussion on the Floating
Point Instruction Set available with the LSI-11, LSI-11/2, and PDP-
11/03, please refer to Chapter six.

The FP-11 Instruction Set, available for the LSI-11/23, PDP-11/23, and
PDP-11/23-PLUS as the microcode option KEF11-AA or in the FPF11
option, supports both single- and double-precision floating point
arithmetic. The FP-11 instruction set does not include FIS instructions.
The floating point option functions as an integral part of the central
processor. It uses similar address modes and uses the memory man-
agement facilities provided by the memory management option. FP-
11 instructions can reference the floating point accumulators, the cen-
tral processor’s general registers, or any location in memory. Figure 5-
1 illustrates the conceptual structure of the floating point option.

r 64 BIT 1
| ACCUMULATOR |
Y
| 3287 — |
Al ATOR
| o RO o oTlTs 1 10 s
| T REGISTER REGISTER I
ACO !
I ac ! |
| ace | CENTRAL Dno‘(::';lsjson
| acs| P ORTMENC | | ,JPROCESSOR _sTaTus
] AND Amrmgenc
AN —_
| aca conzﬁf;sxon | LOGICAL T
i acs | UNIT GENERAL
| L | REGISTER
PROGRAM POINTER
I TO LAST | memory
| INSTRUCTION |
| CAUSING ERROR |

. FLOATING POINT PROCESSOR

Figure 5-1 Conceptual Structure of the Floating Point Option

115

Chapter 5 — Floating Point Instruction Set

NOTE
The KEF11-AA option requires the MMU to be in-
stalled on the LSI-11/23 since it utilizes registers
present on the MMU chip in executing instructions.
The FPF11 option contains all the necessary floating
point accumulators, and therefore does not require
the MMU unit to be installed.

FLOATING POINT DATA FORMATS

Mathematically, a floating point number may be defined as having the
form (2**K)*f, where K is an integer and f is a fraction. For a nonvan-
ishing number, K and f are uniquely determined by imposing the con-
dition 2 < f < 1. The fractional part, f, of the number is then said to be
normalized. For the number 0, f must be assigned the value 0, and the
value of K is indeterminate.

The FP-11 floating point data formats are derived from this mathe-
matical representation for floating point numbers. Two types of float-
ing point data are provided. In single-precision, or floating mode, the
data are 32 bits long. In double-precision, or double mode, the data
are 64 bits long. Sign magnitude notation is used.

Nonvanishing Floating Point Numbers

The fractional part, f, is assumed to be normalized, so that its most
significant bit must be 1. This 1 is the hidden bit; it is not stored
explicitly in the data word, but the microcode restores it before
carrying out arithmetic operations. The floating and double modes
respectively reserve 23 and 55 bits for f. These bits, with the hidden
bit, imply effective fractions of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 128
(200,) notation (i.e., K + 200,), giving a biased exponent. Thus, expo-
nents from —128 to +127 are represented by 0 to 377, , or 0 to 255,,.
For reasons listed below, a biased exponent of 0 (true exponent of
—200,), is reserved for floating point 0. Thus, exponents are restricted
to the range —127 to +127 inclusive (—1774 to +177,) or, in excess
200, notation, 1to 377,.

The remaining bit of the floating point word is the sign bit. The number
is negative if the sign bitisa 1.

Floating Point Zero

Because of the hidden bit, the fractional part is not available to distin-
guish between 0 and nonvanishing numbers whose fractional part is
exactly 2. Therefore, the floating point option reserves a biased expo-

116

Chapter 5 — Floating Point Instruction Set

nent of O for this purpose, and any floating point number with a biased
exponent of 0 either traps or is treated as if it were an exact 0 in
arithmetic operations. An exact or clean 0 is represented by a word
whose bits are all 0s. A dirty 0 is a floating point number with a biased
exponent of 0 and a nonzero fractional part. An arithmetic operation
for which the resulting true exponent exceeds 277, is regarded as
producing a floating overflow; if the true exponent is less than —177,,
the operation is regarded as producing a floating underflow. A biased
exponent of 0 can thus arise from arithmetic operations as a special
case of overflow (true exponent = —200,). Only eight bits are reserved
for the biased exponent. The fractional part of results obtained from
such overflow and underflow is correct.

The Undefined Variable

The undefined variable is defined as any bit pattern with a sign bit of 1
and a biased exponent of 0. The term undefined variable is used, for
historical reasons, to indicate that these bit patterns are not assigned a
corresponding fioating point arithmetic value. Note that the undefined
variable is frequently referred to as —0 elsewhere in this specification.

A design objective of the floating point option was to assure that the
undefined variable would not be stored as the result of any floating
point operation in a program run with the overflow and underflow
interrupts disabled. This objective is achieved by storing an exact 0 on
overflow and underflow, if the corresponding interrupt is disabled.
This feature, together with an ability to detect reference to the unde-
fined variable implemented by the FIUV bit mentioned later, is
intended to provide the user with a debugging aid. If —0 occurs, it did
not result from a previous floating point arithmetic instruction.

Floating Point Data
Floating point data are stored in words of memory as illustrated in
Figures 5-2 and 5-3.

F FORMAT, FLOATING POINT SINGLE PRECISION

15 00
+2 l FRACTION - 15:0>+ I
n L s L i L i s " L L | " !)
15 14 07 06 00
MEMORY <0 LS l EXP L FRACT «22:16> l
L " e . I i o - L L L L -

Figure 5-2 Single-Precision Format

117

Chapter 5 — Floating Point Instruction Set

D FORMAT, FLOATING POINT DOUBLE PRECISION
15 00

FRACTION <15:0> J
i L L L L n L I i I L L L 1 I

00
FRACTION <31:16> l
s L s ! L L 1 1 i L i 1 L 1

“l [FRACTION - 47 32 J
1 L L L L I 1 L 1 i 1 1 L L

15 0/ 06 00

-
[T B £ xp L FRACT - 54 48 J
1 1 1 1 1 1 1 4 1 i 1 I 1 1

5 SILN OF FRACTION

EXP EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON VANISHING NUMBERS

FRACTION 23 BITSINF FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

Figure 5-3 Double-Precision Format

The floating point option provides for conversion of floating point to
integer format and vice versa. The processor recognizes single-preci-
sion integer () and double-precision integer long (L) numbers, which
are stored in standard 2’s complement form. The 2's complement
format is illustrated in Figure 5-4.

FLOATING POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the floating point

unit and conditions resulting from the execution of the previous in-

struction. The floating point status register is illustrated in Figure 5-5.

For the purposes of discussion a set bit = 1 and a reset bit = 0. Three

bits of the FPS register control the modes of operation.

e Single/Double: floating point numbers can be either single- or dou-
ble-precision.

® Short/Long: integer numbers can be 16 bits or 32 bits.

e Chop/Round: the result of a floating point operation can be either
chopped or rounded. The term “chop” is used instead of “truncate”
in order to avoid confusion with truncation of series used in approxi-
mations for function subroutines.

e Normal/Maintenance: A special maintenance mode is available on
the FP11-C and FP11-E.

118

Chapter 5 — Floating Point Instruction Set

I FORMAT, INTEGER SINGLE PRECISION

15 14 00
S I NUMBER - 150 -]
1 " " 1 It s i 1 L I n PR 1
L FORMAT, DOUBLE PRECISION INTEGER LONG
15 14 00
MEMORY +0 [S NUMBER -"30:16 + l
I L 1 1 s ot I 1 1 L L I L i
15 00

+2 I NUMBER < 15.0. J
1 1 1 1 i i 1 1 L n 1 1 i 1 I

WHERE 5 SIGN OF NUMBER

NUMBER 15 BITSIN | FORMAT, 31 8BI1S IN L FORMAT

Figure 5-4 2's Complement Format

15 14 13 12 11 10 09 08 0/ 06 05 04 0O

T B oL To L T o]]

—— |
RESERVED RESERVED

FIUI FIV] FIC

Figure 5-5 Floating Point Status Register

The FPS register contains an error flag and four condition codes (five
bits): carry, overflow, zero, and negative, which are equivalent to the
CPU condition codes.

The floating point processor recognizes seven floating point
exceptions:

® Detection of the presence of the undefined variable in memory

® Floating overflow

e Floating underflow

® Failure of floating to integer conversion

e Maintenance trap (FP11-C, FP11-E only)

e Attempt to divide by zero

® lllegal floating opcode

119

Chapter 5 — Floating Point Instruction Set

For the first five of these exceptions, bits in the FPS register are avail-
able to enable or disable interrupts individually. An interrupt on the
occurrence of either of the last two exceptions can be disabled only by
setting a bit which disables interrupts on all seven of the exceptions as
agroup.

Of the fourteen bits described above, five, the error flag and condition
codes, are set by the FPP as part of the output of a floating point
instruction. Any of the mode and interrupt control bits (except the
FP11-C and FP11-E, FMM bit) may be set by the user; the LDFS
instruction is available for this purpose. These 14 bits are stored in the
FPS register as follows:

FPS Register Bits

Bit: 15 Name: Floating Error (FER)

Function: The FER bit is set by a floating point instruction if:

® Division by zero occurs

® lllegal opcode occurs

e Any of the remaining occurs and the corresponding interrupt is
enabled

This action is independent of the FID bit status.

Also note that the FPP never resets the FER bit. Once the FER bit is set
by the FPP, it can be cleared only by an LDFPS instruction (the RESET
instruction does not clear the FER bit). This means that the FER bit is
up-to-date only if the most recent floating point instruction produced a
floating point exception.

Bit: 14 Name: Interrupt Disable (FID)
Function: Ifthe FID is set, all floating point interrupts are disabled.
The FID bit is primarily a maintenance feature. It should normally be

clear. In particular, it must be clear if one wishes to assure that storage
of —0 by the FPP is always accompanied by an interrupt.

Throughout the rest of this chapter, it is assumed that the FID bit is
clear in all discussions involving overflow, underflow, occurrence of
—0, and integer conversion errors.

Bit: 13

Function: Reserved for future DIGITAL use.

Bit: 12
Function: Reserved for future DIGITAL use.

Bit: 11 Name: Interrupt on Undefined Variable (FIUV)

Function: An interrupt occursif FIUV is set and a —0 is obtained from
memory as an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG,
ABS, TST, or any LOAD instruction. The interrupt occurs before exe-

120

Chapter 5 — Floating Point Instruction Set

cution on the floating point option except on NEG, ABS, and TST1, for
which it occurs after execution. When FIUV is reset, —0 can be loaded
and used in any floating point option operation. Note that the interrupt
is not activated by the presence of —0 in an AC operand of an arithme-
tic instruction; in particular, trap on —0 never occurs in mode 0.

The FPP will not store a result of —0 without a simultaneous interrupt.

Bit: 10 Name: Interrupt on Underflow (FIU)

Function: When the FIU bit is set, floating underflow will cause an
interrupt. The fractional part of the result of the operation causing the
interrupt will be correct. The biased exponent will be too large by 4004,
except for the special case of 0, which is correct. An exception is
discussed later in the detailed description of the LDEXP instruction.

If the FIU bit is reset and if underflow occurs, no interrupt occurs and
the result is set to exact 0.

Bit: 9 Name: interrupt on Overflow (FIV)

Function: When the FIV bit is set, floating overflow will cause an
interrupt. The fractional part of the result of the operation causing the
overflow will be correct. The biased exponent will be too small by 400,.

If the FIV is reset and overflow occurs, there is no interrupt. The FPP
returns exact 0.

Special cases of overflow are discussed in the detailed descriptions of
the MOD and LDEXP instructions.

Bit: 8 Name: Interrupt on Integer Conversion Error (FIC)
Function: When the FIC bit is set and conversion to integer instruc-
tion fails, an interrupt will occur. If the interrupt occurs, the destination
is set to 0, and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as
detailed above, but no interrupt will occur. :

The conversion instruction fails if it generates an integer with more bits
than can fit in the short or long integer word specified by the FL bit (bit
6).

Bit: 7 Name: Floating Double-Precision Mode (FD)

Function: The FD bit determines the precision that is used for
floating point calculations. When set, double-precision is assumed;
when reset, single-precision is used.

Bit: 6 Name: Floating Long Integer Mode (FL)

Function: The FL bit is active in conversion between integer and
floating point format. When set, the integer format assumed is double-
precision 2's complement (i.e., 32 bits). When reset, the integer format
is assumed to be single-precision 2’'s complement (i.e., 16 bits).

121

Chapter 5 — Floating Point Instruction Set

Bit: 5 Name: Floating Chop Mode (FT)
Function: When the FT bit is set, the result of any arithmetic opera-
tion is chopped (or truncated). When reset, the result is rounded.

Bit: 4 Name: Floating Maintenance Mode (FMM)
Function: FP11-C and FP11-E only. When set, the FPP is in mainte-
nance mode. The FMM bit can be set only in kernel mode.

Bit: 3 Name: Floating Negative (FN)
Function: FN is set if the result of the last floating point operation was
negative, otherwise it is reset.

Bit: 2 Name: Floating Zero (FZ)
Function: FZ is set if the result of the last floating point operation was
0, otherwise it is reset.

Bit: 1 Name: Floating Overflow (FV)
Function: FV is set if the last floating poipt operation resulted in an
exponent overflow, otherwise it is reset.

Bit: 0 Name: Floating Carry (FC)

Function: FC is set if the last operation resulted in a carry of the most
significant bit. This can only occur in floating or double to integer
conversion.

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One interrupt vector is assigned to take care of all floating point ex-
ceptions (location 244). The six possible errors are coded in the 4-bit
floating exception code (FEC) register as follows:

2 Floating op code error

4 Floating divide by zero

6 Floating or double to integer conversion error
8 Floating overflow

10 Floating underflow

12 Floating undefined variable

14 Maintenance trap (FP11-C, and FP11-E only)

The address of the instruction producing the exception is stored in the

FEA (Floating Exception Address) register.

The FEC and FEA registers are updated when one of the following

occeurs:

e Divide by zero

e lllegal op code

e Any of the other five exceptions with the corresponding interrupt
enabled

If one of the five exceptions occurs with the corresponding interrupt

122

Chapter 5 — Floating Point Instruction Set

disabled, the FEC and FEA are not updated. Inhibition of interrupts by
the FID bit does not inhibit updating of the FEC and FEA, if an excep-
tion occurs. The FEC and FEA are not updated if no exception occurs.
This means that the STST (Store Status) instruction will return current
information only if the most recent floating point instruction produced
an exception. Unlike the FPS register, no instructions are provided for
storage into the FEC and FEA registers.

FLOATING POINT OPTION INSTRUCTION ADDRESSING

Floating point option instructions use the same type of addressing as
the central processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except mode 0. In mode 0 the operand is located in the
designated floating point accumulator, rather than in a central
processor general register. The modes of addressing are as follows:

0 = FP11 accumulator

1 = Deferred

2 = Autoincrement

3 = Autoincrement deferred
4 = Autodecrement

5 = Autodecrement deferred
6 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F format and 10, for D format.

In mode 0, the user can make use of all six floating point accumulators
(ACO0-ACS5) as source or destination. Specifying floating point option
accumulators AC6 or AC7 will result in an illegal opcode trap. In all
other modes, which involve transfer of data to or from memory or the
general registers, the user is restricted to the first four floating point
accumulators (AC0-AC3). When reading or writing a floating point
number from or to memory, the low memory word contains the most
significant word of the floating point number and the high memory
word the least significant word.

ACCURACY

The descriptions of the individual instructions include the accuracy at
which they operate. An instruction or operation is regarded as “exact”
if the result is identical to an infinite precision calculation involving the
same operands. The a priori accuracy of the operands is thus ignored.
All arithmetic instructions treat an operand whose biased exponent is

123

Chapter 5 — Floating Point Instruction Set

0 as an exact 0 (unless FIUV is enabled and the operand is —0, in
which case an interrupt occurs). For all arithmetic operations, except
DIV, a 0 operand implies that the instruction is exact. The same holds
for DIV if the 0 operand is the dividend. But if the divisor is 0, division is
undefined and an interrupt occurs.

For nonvanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for floating mode or double
mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case to guarantee return of a
chopped or rounded result identical to the corresponding infinite-pre-
cision operation chopped or rounded to the specified word length.
With two guard bits, a chopped result has an error bound of 1 least
significant bit (LSB). A rounded result has an error bound of 2 LSB.
These error bounds are realized by the LSI-11/23 for all instructions.
The FP11-A, the FP11-E, and the FP11-F have an error bound greater
than 2 LSB for ADD and SUB. For the addition of operands of oppo-
site sign or for the subtraction of operands of the same sign in round-
ed double-precision, the error bound is % LSB (FP11-C and FP11-E),
or 33/64 LSB (FP11-A and FP11-F) which is slightly larger than the 2
LSB error bound for all other rounded operations.

The error bound for the FP11-C differs from the FP11-A, since the
FP11-C and FP11-E carry three guard bits while the FP11-A and FP11-
F carry seven guard bits.

In this Handbook, an arithmetic result is called exact if no
nonvanishing bits would be lost by chopping. The first bit lost in chop-
ping is referred to as the rounding bit. The value of a rounded result is
related to the chopped result as follows:

e If the rounding bit is 1, the rounded result is the chopped result
incremented by one LSB.
o |f the rounding bit is 0, the rounded and chopped results are identi-
cal.
It follows that:
o |f the result is exact, rounded value = chopped value = exact value
o [f the result is not exact, its magnitude
— is always decreased by chopping
— isdecreased by rounding if the rounding bitis 0
— isincreased by rounding if the rounding bit is 1
Occurrence of floating point overflow and underflow is an error condi-
tion: the result of the calculation cannot be stored correctly because

the exponent is too large to fit into the eight bits reserved for it. How-
ever, the internal hardware has produced the correct answer. For the

124

Chapter 5 — Floating Point Instruction Set

case of underflow, replacement of the correct answer.by 0 is a
reasonable resolution of the problem for many applications. This is
done by the floating point option if the underflow interrupt is disabled.
The error incurred by this action is an absolute rather than a relative
error; it is bounded (in absolute value) by 27'?%, There is no such
simple resolution for the case of overflow. The action taken, if the
overflow interrupt is disabled, is described under FIV (bit 9).

The FIV and FIU bits provide you with an opportunity to implement
your own correction of an overflow or underflow condition. If such a
condition occurs and the corresponding interrupt is enabled, the mi-
crocode stores the fractional part and the low eight bits of the biased
exponent. The interrupt will take place, and you can identify the cause
by examination of the FIV (floating overflow) bit or the FEC (floating
exception) register. For the standard arithmetic operations ADD, SUB,
MUL, and DIV, the biased exponent returned by the instruction bears
the following relation to the correct exponent generated by the micro-
code:

e On overflow, it is too small by 400,.
e On underflow, if the biased exponent is 0, it is correct. If itis not 0, it
is too large by 400,.

Thus, with the interrupt enabled, enough information is available to
determine the correct answer. You may, for example, rescale your
variables (via STEXP and LDEXP) to continue a calculation. The accu-
racy of the fractional part is unaffected by the occurrence of underflow
or overflow.

FLOATING POINT INSTRUCTIONS

Each instruction that manipulates a floating point number can operate
on either single- or double-precision numbers, depending on the state
of FD mode bit. Similarly, there is a mode bit FL that determines
whether 32-bit integers or 16-bit integers are used in conversion
between integer and floating point representation. FSRC and FDST
use floating point addressing modes; SRC and DST use CPU address-
ing modes. Figure 5-6 illustrates single- and double-floating point op-
erand addressing.

In the descriptions of the floating point instructions, the operations of
the KEF11-AA, FPF11,FP11-A, FP11-E, FP11-F, and FP11-C are iden-
tical, except where explicitly stated otherwise. Table 5-1 describes the
floating point conventions used in the PDP-11 instruction set.

125

Chapter 5 — Floating Point Instruction Set

DOUBLE OPERAND ADDRESSING

00
| AC | FSRC,FDST.SRC,DST J
J L i i I L A I

FOC I FSRC, FDST. SRC, DST l
i i — i L I i i

OC = OPCODE = 17
FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3)
FSRC AND FDST USE FPP ADDRESSING MODES
SPC AND DST USE CPU ADDRESSING MODES

Figure 5-6 Single- and Double-Operand Addressing

Table 5-1

Mnemonic
(o]

FOC

AC

FSRC
FDST

XL

XLL

XUL

JL

ABS|(x)]

Floating Point Conventions

Description
Opcode = 17
Floating Opcode

Contents of accumulator, as specified by
AC field of instruction

Address of floating point source operand.

Address of floating point destination oper-
and

Fraction

Largest fraction that can be represented:

1 -2**(—24), FD=0, single-precision
1-2**(—56), FD=1; double-precision
Smallest number that is not identically zero
= 2**(—128)

Largest number that can be represented =
2**(127)*XL

Largest integer that can be represented:
2**(15)—1if FL=0,2**(31)—1if FL=1

Absolute value of contents of memory
location X

126

EXP[(x)]

A A

v Vv

H

LSB

Chapter 5 — Floating Point Instruction Set

Biased exponent of contents of memory
location X

Less than

Less than or equal to
Greater than

Greater than or equal to
Not equal to

Least significant bit

FP-11 Floating Point Instructions

ABSF
ABSD

Make Absolute Floating/Double 1706 FDST

Format:

Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

Special
Comment:

ABSF FDST

If (fdst) < 0, (fdst) < —(fdst).

If EXP[(fdst)] = 0, (fdst) «<—exact 0.
For all other cases, (fdst) « (fdst).

FC<«0

FV <0

FZ < 1if (fdst) = 0, else FZ <0
FN <0

Set the contents of fdst to its absolute value.

If FIUV is enabled, trap on —0 occurs after execu-
tion.

Overflow and underflow cannot occur.
These instructions are exact.

If a —0is present in memory and the FIUV bit is
enabled, then an exact 0 is stored in memory. The
condition codes reflect an exact 0 (FZ <« 1).

127

Chapter 5 — Floating Point Instruction Set

ADDF
ADDD
Add Floating/Doubie 172(AC)FSRC
15 12 11 08 07 06 05 00
[1 1 1 1 4] 1) 0 AC l FSRC
Format: ADDF FSRC,AC
Operation: Let SUM = AC + (fsrc). If underflow occurs and

FIU is not enabled, AC <« exact 0.
If overflow occurs and FIV is not enabled, AC «

exact 0.

For all other cases, AC < SUM.
Condition FC <0
Codes: FV <« 1 if overflow occurs, else FV <0

FZ<1ifAC=0,elseFZ<«0
FN «<1if AC <0,else FN <0

Description: Add the contents of fsrc to the contents of AC.
The addition is carried out in single- or double-
precision and is rounded or chopped according
to the values of the FD and FT bits in the FPS
register. The result is stored in AC except for:

1. Overflow with interrupt disabled
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 9 is stored
in AC.

Interrupts: If FIUV is enabled, trap on —0in fsrc occurs be-
fore execution.

If overflow or underflow occurs and if the corre-
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400, for overflow. It is too large by 400,
for underflow, except for the special case of 0,
which is correct.

128

Chapter 5 — Floating Point Instruction Set

Accuracy: Errors due to overflow and underflow are de-
scribed above. If neither occurs, then for oppo-
sitely signed operands with an exponent differ-
ence of 0 or 1, the answer returned is exact if a
loss of significance of one or more bits can occur.
Note that these are the only cases for which loss
of significance of more than one bit can occur.
For all other cases the result is inexact with error
bounds of:

1. 1LSBin truncated mode with either single-
or double-precision.

2. % LSBin rounding mode with either single
(all FP-11s, KEF11-AA and FPF11) or double-
precision (for LSI-11/23 floating point op-
tions); % LSB (FP11-C and FP11-E) or 33/64
LSB (FP11-A, FP11-F and FPF11)in
rounding mode with double-precision.

Special The undefined variable —0 can occur only in con-
Comment: junction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.
CFCC
Copy Floating Condition Codes 170000
15 12 11 00

Format: CFCC
Operation: C<FC
V<«<FV
Z<FZ
N < FN
Description: Copy the floating point condition codes into the

CPU’s condition codes.

129

Chapter 5 — Floating Point Instruction Set

For these exceptional cases, an exact 0 is stored
in AC.

Interrupts: If FIUV is enabled, trap on —0 in (fsrc) occurs
before execution.

If (fsrc) = 0, interrupt traps on attempt to divide by
0.

If overflow or underflow occurs and if the corre-
sponding interrupt is enabled, the trap occurs
with the faulty resultin AC. The fractional parts
are correctly stored. The exponent part is too
small by 400, for overflow. It is too large by 400,
for underflow, except for the special case of 0,
which is correct.

Accuracy: Errors due to overflow and underflow are de-
scribed above. If none of these occur, the error in
the quotient will be bounded by 1 LSB in chop-
ping mode and by 2 LSB in rounding mode.

Special The undefined variable —0 can occur only in con-

Comment: junction with overflow and underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

LDCDF

LDCFD

Load and Convert from Double to Floating

and from Floating to Double 177(AC+4)FSRC

15 12 11 08 07 06 05 00
Ll 1 1 1 1 1 1 1 | AC I FSRC
Format: LDCDF FSRC,AC
Operation: If EXP[(fsrc)] = 0, AC < exact0.

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, AC <« exact 0.
In all other cases, AC <« Cxy|[(fsrc)], where Cxy
specifies conversion from floating mode x to flo-
ating modeyy.
x =D,y = Fif FD = 0 (single) LDCDF
x=F,y=Dif FD = 1 (double) LDCFD

132

Chapter 5 — Floatjng Point Instruction Set

Condition FC <0
Codes: FV <« 1 if conversion produces overflow, else FV
«0

FZ<1ifAC=0,elseFZ<«0
FN<«1ifAC <0,else FN <0

Description: If the current mode is floating mode (FD = 0), the
source is assumed to be a double-precision num-
ber and is converted to single-precision. If the
floating chop bit (FT) is set, the number is
chopped, otherwise the number is rounded.

If the current mode is double mode (FD = 1), the
source is assumed to be a single-precision num-
ber and is loaded left-justified into AC. The lower
half of AC is cleared.

Interrupts: If FIUV is enabled, the trap on —0 occurs before
execution. However, the condition codes will re-
flect a fetch of —0 regardless of the FIUV bit.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overfiow. AC <« overflowed
result. This result must be +0 or —0.

Underflow cannot occur.

Accuracy: LDCFD is an exact instruction. Except for over-
flow, described above, LDCDF incurs an error
bounded by 1 LSB in chopping mode and by 2
LSB in rounding mode.

LDCIF LDCLF

LDCID LDCLD

Load and Convert Integer or Long Integer

to Floating or Double Precision 177(AC)SRC

Format: LDCIF SRC,AC

Operation: AC <« Cjx|[(src)], where Cjx specifies conversion
from integer mode j to floating modey.

133

Chapter 5 — Floating Point Instruction Set

Condition
Codes:

Description:

Interrupts:

Accuracy:

LDEXP
Load Exponent

j=|ifFL=0,j¥LifFL=1
x=FifFD=0,x=DifFD =1

FC <0
FV <0
FZ<1ifAC=0,elseFZ<0
FN<1ifAC <0,elseFN <0

Conversion is performed on the contents of src
from a 2's complement integer with precision j to
a floating point number of precision x. Note that j
and x are determined by the state of the mode
bits FL and FD.

If a 32-bit integer is specified (L mode) and SRC
has an addressing mode of 0 or immediate ad-
dressing mode is specified, the 16 bits of the
source register are left-justified and the remain-
ing 16 bits loaded with Os before conversion.

in the case of LDCLF, the fractional part of the
floating point representation is chopped or
rounded to 24 bits according to the state of FT (1
= chop, 0 = round).

None; (src) is not floating point, so trap on —0
cannot occur.

LDCIF, LDCID, and LDCLD are exact instructions.
The error incurred by LDCLF is bounded by 1
LSB in chopping mode and by 2 LSB in rounding
mode.

176(AC+4)SRC

Format:

Operation:

LDEXP SRC,AR

If —200,4 < (src) < 200, , EXP[AC] < SRC +200,
and the rest of AC is unchanged.

If (src) > 177, and FIV is enabled,
EXP[AC] <«[(src) + 200,]<7:0> on the FP11-A,

134

Condition
Codes:

Description:

Interrupts:

Accuracy:

Chapter 5 — Floating Point Instruction Set

FP11-E,
FP11-F, KEF11-AA, and FPF11.

EXP[AC] < (src)<6:0> on the FP11-C.
If (src) > 177gand FIV is disabled, AC « exact 0.

If (src) < —177g and FIU is enabled,

EXP[AC] < [(src) + 2004] <7:0> on the FP11-A,
FP11-E,

FP11-F, KEF11-AA, and FPF11.

EXP[AC] < (src)<6:0> on the FP11-C.

If (src) < —177g and FIU is disabled, AC <« exact
0.

FC <0
FV < 1if (SRC) > 177,, else FV <0
FZ < 1if(AC) = 0, else FZ <0
FN < 1if (AC) < 0, else FN < 0

Change AC so that its unbiased exponent = (src).
That is, convert (src) from 2's complement to ex-
cess 200, notation and insert it in the EXP field of
AC. This is a meaningful operation only if
ABS|(src)] < 177,.

If (src) > 1774, the result is treated as overflow. If
(src) < —177,, the result is treated as underflow.
Note that the KEF11-AA does not treat these ab-
normal conditions as the FP11-C and FP11-B do,
but it does treat them as the FP11-A, FP11-E,
FP11-F, and FPF11 do.

No trap on —0in AC occurs, even if FIUV is en-
abled.

If (src) > 17745 and FIV is enabled, trap on over-
flow will occur.

If (src) < —177g and FIU is enabled, trap on un-
derflow will occur.

Errors due to overflow and underflow are de-
scribed above. If EXP[AC] = 0 and (src) # —200,
AC changes from a floating point number treated
as 0 by all floating arithmetic operations to a
nonzero number. This is because the insertion of
the “hidden” bit in the microcode implementation

135

LDF
LDD

Chapter 5 — Floating Point Instruction Set

of arithmetic instructions is triggered by a non-
vanishing value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating point number (2**
K) * finto (2**(src)) * f where 2 < ABS(f) < 1.

Load Floating/Double 172 (AC+4)FSRC

Format: LDF FSRC,AC

Operation: AC < (fsrc)

Condition FC <0

Codes: FV <0
FZ<1ifAC=0,else FZ<«0
FN < 1ifAC <0,else FN <0

Description: Load single- or double-precision number into AC.

Interrupts: If FIUV is enabled, trap on —0 occurs before AC is
loaded. However, the condition codes will reflect
a fetch —0 regardless of the FIUV bit.
Overflow and underflow cannot occur.

Accuracy: These instructions are exact.

Special These instructions permit use of —0 in a subse-

Comment: quent floating point instruction if FIUV is not en-
abled and (fsrc) = —0.

LDFPS

Load FPP Program Status 1701 SRC

Format:
Operation:
Description:

Special
Comment:

MODF
MODD

Chapter 5 — Floating Point Instruction Set

LDFPS SRC

FPS «(src)

Load KEF11-AA’s status register from (src).

Bits 13, 12, and 4 should not be used for the
user’'s own purposes, since these bits are not re-
coverable by the STFPS instruction. Bit 4 may be

set in kernel mode if the KEF11-AA implements
maintenance mode.

Multiply and Separate Integer
and Fraction Floating/Double 171(AC+4)FSRC

Format:

Description
and
Operation:

MODF FSRC,AC

This instruction generates the product of its two
floating point operands, separates the product in-
to integer and fractional parts, and then stores
one or both parts as floating point numbers.

Let PROD = AC * (fsrc) so thatin
Floating point: ABS [PROD] = (2**K) * f
* where
2 <f<1and
EXP[PROD] = (200 + K) octal
Fixed point binary: PROD = N + g with
N = INT[PROD)] = the integer part of PROD
and
g = PROD — INT[PROD] = the fractional
partof PRODwith0 <g < 1.

Both N and f have the same sign as PROD. They
are returned as follows:

If AC is an even-numbered accumulator (0
or 2), Nisstoredin AC+1(1o0r3),andfis
stored in AC.

If AC is an odd-numbered accumulator, N is
not stored and g is stored in AC.

137

Chapter 5 — Floating Point Instruction Set

The two statements above can be combined as
follows:

N is returned to ACv1 and g is returned to
AC, where v means OR.

Five special cases occur, as indicated in the fol-
lowing formal description with L = 24 for floating
mode and L = 56 for double mode.

If PROD overflows and FIV is enabled, ACv1

- <« N, chopped to L bits, AC < exact 0.

Note that EXP[N] is too small by 400, and that
—0 can get stored in ACv1.

If FIV is not enabled, ACv1 <« exact 0, AC «
exact 0, and —0 will never be stored.

If 2**L < ABS[PROD] and no overflow, ACv1
<« N, chopped to L bits, AC <« exact0.

The sign and EXP of N are correct, but low-
order bit information is lost.

if 1 < ABS[PROD] < 2**L, ACvli <~ N, AC «g

The integer part N is exact. The fractional
part g is normalized, and chopped or round-
ed in accordance with FT. Rounding may
cause a return of + unity for the fractional
part. For L = 24, the error in g is bounded by
1LSBin chopping mode and by 2 LSB in
rounding mode. For L = 56, the erroring
increases from the above limits as ABS[N]
increases above 2**L because only 59 bits
(64 bits for KEF11-AA) of PROD are generat-
ed.

If 2**p < ABS[N] < 2**(p**1), with p > 2 (7 for
KEF11-AA) the low-order p—2 (p-7 for
KEF11-AA) bits of g may be in error.

If ABS[PROD)] < 1 and no underflow, ACv1 «
exact 0 and AC «g.

There is no error in the integer part. The error
in the fractional part is bounded by 1 LSB in
chopping mode and 2 LSB in rounding
mode. Rounding may cause a return of +
unity for the fractional part.

138

Condition
Codes:

Interrupts:

Accuracy:

Applications:

Chapter 5 — Floating Point Instruction Set

If PROD underflows and FIU is enabled, ACv1
<« exact0and AC «g.

Errors are as in case 4, except that EXP[AC]
will be too large by 400, (if EXP = 0, itis
correct). Interrupt will occur and —0 can be
stored in AC.

If FIU is not enabled, ACv1 < exact 0 and AC
<« exact 0.

For this case the error in the fractional part is
less than 2**(—128).

FC <0

FV <« 1if PROD overflows, else FV <0
FZ<— 1fAC=0,elseFZ<«0
FN<1ifAC <0,else FN «0

If FIUV is enabled, trap on —0 in FSRC occurs
before execution.

Overflow and underflow are discussed above.

Discussed above.

1.

Binary to decimal conversion of a proper
fraction. The following algorithm, using MOD,
will generate decimal digits D(1), D(2)... from
left to right.

Initialize: | <0;
X < number
to
be converted;
ABS[X] < 1;
While X # 0 do
Begin PROD « X * 10;
l<—I|+1;

D (l) < INT(PROD);
X < PROD—INT(PROD);
End;

This algorithm is exact. It is case 3 in the de-
scription because the number of nonvanish-
ing bits in the fractional part of PROD never

exceeds L, and hence neither chopping nor

rounding can introduce error.

139

2.

3.
MULF
MULD
Multiply Floating/Double

Chapter 5 — Floating Point Instruction Set

To reduce the argument of a trigonometic
function.

ARG * 2/Pl = N + g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy
of N+g is limited to L bits because of the
factor 2/PI. The accuracy of the reduced ar-
gument thus depends on the size of N.

To evaluate the exponential function e**x,
obtain x * (log e base 2) = N + g, thene**x =
(2**N) * (e**(g*1n 2)).

The reduced argumentisg * 1n2 < 1 and the
factor 2**N is an exact power of 2, which may
be scaled in at the end via STEXP, ADD N to
EXP and LDEXP. The accuracy of N + g is
limited to L bits because of the factor (log e
base 2). The accuracy of the reduced argu-
ment thus depends on the size of N.

171(AC)FSRC

Format:
Operation:

Condition
Codes:

MULF FSRC,AC

Let PROD = AC * (fsrc).

If underflow occurs and FIU is not enabled, AC <«
exact 0.

If overflow occurs and FIV is not enabled, AC <«
exact 0.

For all other cases, AC «<- PROD.

FC <0

FV <« 1 if overflow occurs, else FV <0
FZ<1ifAC=0,elseFZ<«0
FN<«<1ifAC <0,else FN <0

140

Description:

Interrupts:

Accuracy:

Special
Comment:

NEGF
NEGD

Chapter 5 — Floating Point Instruction Set

If the biased exponent of either operand is 0, (AC)
<«exact 0. For all other cases, PROD is generated
to 48 (32 for KEF11-AA) bits for floating mode and
59 (64 for KEF11-AA) bits for double mode. The
product is rounded or chopped according to the
value of the FT bit, and is stored in AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is stored
in AC.

If FIUV is enabled, trap on —0in (fsrc) occurs
before execution.

If overflow or underflow occurs and if the corre-
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400, for overflow. It is too large by 400,
for underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underfiow are de-
scribed above. If neither occurs, the error in-
curred is bounded by 1 LSB in chopping mode
and "2 LSB in rounding mode.

The undefined variable —0 can occur only in con-
junction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

Negate Floating/Double 1707 FDST

Format:
Operation:

NEGF —(fdst)

(fdst) < —(fdst) if EXP [(fdst)] # 0, else (fdst) «
exact 0.

141

Chapter 5 — Floating Point Instruction Set

Condition FC<«0

Codes: FV <0
FZ «1if (fdst) = 0, else FZ <0
FN <« 1if (fdst) < 0, else FN « 0

Description: Negate single- or double-precision number, store
result in same location (fdst).

Interrupts: If FIUV is enabled, trap on —0 occurs after execu-
tion.

Overflow and underflow cannot occur.

Accuracy: These instructions are exact.
Special If a —0is present in memory and the FIUV bitis
Comment: enabled, then the KEF11-AA stores an exact zero

in memory. If a negative number is present, then
the FPF11 stores the actual negative result in
memory. The condition codes reflect an exact 0
(FZ «<1).

SETF
Set Floating Mode 170001

Format: SETF
Operation: FD <0
Description: Set the floating point option in single-precision
mode.
SETD
Set Floating Double Mode 170011
15 12 11 00
[1 1 1 1 0 0 0 0 0 4 0 0 1 0 1] 1

Chapter 5 — Floating Point Instruction Set

Format: SETD

Operation: FD « 1

Description: Set the floating point option in double-precision
mode.

SETI

Set Integer Mode 177002

Format: SETI
Operation: FL<0
Description: Set the floating point option for short integer data.
SETL
Set Long Integer Mode 177012
15 12 11 00
1 1 1 1 0 0 0 [\ 0 0 0 0 1 0 1 0 —I
Format: SETL
Operation: FL <1
Description: Set the floating point option for long integer data.
STCFD
STCDF
Store and Convert from Floating to Double
and from Double to Floating 176(AC)FDST

15 12 11 08 07 06 05 00
L 1 1 1 IJ 1 1 0 0 AC J FDST ‘]
R L i L L L L S Rt | I\ !

143

Format:
Operation:

Condition
Codes:

Description:

Interrupts:

Accuracy:

Chapter 5 — Floating Point Instruction Set

STCFD AC,FDST
If AC = 0, (fdst) < exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, (fdst) <« exact 0.

In ali other cases, (fdst) «- Cxy[AC], where Cxy
specifies conversion from floating mode x to flo-
ating modey.

x=F,y=Dif FD = 0 (single) STCFD

x =D,y =Fif FD = 1 (double) STCDF

FC <0

FV <« 1if conversion produces overflow,
else FV <0

FZ<«1ifAC =0,else FZ<«0
FN<1ifAC <0,else FN <0

If the current mode is single-precision, the accu-
mulator is stored left-justified in FDST and the
lower half is cleared.

If the current mode is double-precision, the con-
tents of the accumulator are converted to single-
precision, chopped or rounded depending on the
state of FT, and stored in FDST.

Trap on —0 will not occur even if FIUV is enabled
because FSRC is an accumulator.

Underflow cannot occur.
Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overflow. (fdst) < overflowed
result. This must be +0 or —0.

STCFD is an exact instruction. Except for over-
flow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and by %
LSB in rounding mode.

144

Chapter 5 — Floating Point Instruction Set

STF

STD

Store Floating/Double 174(AC)FDST
15 12 11 07 06 05 00

Format: STF AC,FDST

Operation: (fdst) < AC

Condition FC < FC

Codes: FV < FV
FZ <« F2Z
FN <FN

Description: Store single- or double-precision number from
AC.

Interrupts: These instructions do not interrupt if FIUV is en-
abled, because the —0, if present, is in AC, notin
memory.

Overflow and underflow cannot occur.

Accuracy: These instructions are exact.
Special These instructions permit storage of a —0in
Comment: memory from AC. There are two conditions in

which —0 can be stored in AC of the KEF11-AA.
One occurs when underflow or overflow is pre-
sent and the corresponding interrupt is enabled.
A second occurs when an LDF, LDD, LDCDF, or
LDCFD instruction is executed and the FIUV bit is
disabled.

STCFI STCDI

STCFL STCDL

Store and Convert from Floating or Double

to Integer or Long Integer 175(AC+4)DST

08 07 06 05 00
[1 1 1 1 1 o 1 1 [AC L DST 1
4 1 i i 1 1 s 1 1 1 " 1

145

Format:
Operation:

Condition
Codes:

Description:

Interrupts:

Special
Comment:

Chapter 5§ — Floating Point Instruction Set

STCFI AC,DST

(dst) <= Cxj[AC] if —JL—1 < Cxj[AC] < JL+1, else

(dst) < 0, where Cjx specifies conversion from

floating mode x to integer mode j.
j=lifFL=0,j=LifFL=1
x=FifFD=0,x=DifFD =1

JL is the largest integer

2"5—1forFL=0
2%2—1forFL =1

C,FC <« 0if -JL—1 < Cxj[AC] < JL+1,
else C, FC <1

V,FV <0

Z,FZ < 1if(dst)=0,elseZ,FZ <0

N, FN « 1 if (dst) < 0, else N, FN <0

Conversion is performed from a floating point re-
presentation of the data in the accumulator to an
integer representation.

If the conversion is to a 32-bit word (L mode) and
an addressing mode of 0 or immediate address-
ing mode is specified, only the most significant 16
bits are stored in the destination register.

If the operation is out of the integer range select-
ed by FL, FC is set to 1 and the contents of the dst
aresetto 0.

Numbers to be converted are always chopped
(rather than rounded) before conversion. This is
true even when the chop mode bit FT is cleared in
the FPS register.

These instructions do not interrupt if FIUV is en-
abled, because the —0, if present, isin AC, notin
memory.

If FIC is enabled, trap on conversion failure will
occur.

These instructions store the integer part of the
floating point operand, which may not be the in-
teger most closely approximating the operand.
They are exact if the integer part is within the
range implied by FL.

146

Chapter 5 — Floating Point Instruction Set

STEXP

Store Exponent 175(AC)DST
15 11 08 07 06 05 00
1 1 1 4] 1 0 AC l DST

Format: STEXP AC,DST

Operation: (dst) < EXP[AC] —200,

Condition C,FC <0

Codes: V,FV<«0

Description:

Interrupts:

Accuracy:

STFPS

Store KEF11AA’s Program Status

Z,FZ<1if(dst) =0, elseZ, FZ <0
N, FN < 1if (dst) < 0, else N, FN <0

Convert AC’s exponent from excess 200, notation
to 2's complement and store the result in dst.

This instruction will not trap on —0.
Overflow and underflow cannot occur.

This instruction is always exact.

1702 DST

Format:
Operation:

Description:

Special
Comment:

STFPS DST
(dst) < FPS
Store floating point status register in dst.

Bits 13, 12, and 4 (if maintenance mode is not
implemented) are loaded with 0. All other bits are
the corresponding bits in the FPS.

147

Chapter 5 — Floating Point Instruction Set

STST
Store KEF11-AA’s Status 1703 DST

15 12 1 06 05 00

1 1 1 1 0 0 0 0 1 1 DST 1
Format: STSTDST
Operation: (dst) < FEC

(dst + 2) < FEA
Description: Store the FEC and FEA in dst and dst+2.
NOTE

1. If the destination mode specifies a general
register or immediate addressing, only the
FEC is saved.

2. Theinformation in these registers is current
only if the most recently executed floating
point instruction caused a floating point ex-
ception.

SUBF
SUBD
Subtract Floating/Double 173(AC)FSRC

Format: SUBF FSRC,AC

Operation: Let DIFF = AC — (fsrc).

If underflow occurs and FIU is not enabled, AC «
exact 0.

If overflow occurs and FIV is not enabled, AC <«
exact 0.

For all cases, AC <« DIFF.

148

Condition
Codes:

Description:

Interrupts:

Accuracy:

Chapter 5 — Floating Point Instruction Set

FC <0

FV <« 1 if overflow occurs, else FV <0
FZ<1ifAC=0,else FZ<0

FN < 1ifAC <0,else FN <0

Subtract the contents of fsrc from the contents of
AC. The subtraction is carried out in single- or
double-precision and is rounded or chopped ac-
cording to the values of the FD and FT bits in the
FPS register. The result is stored in AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is stored
in AC.

If FIUV is enabled, trap on —0 in fsrc occurs be-
fore execution.

If overflow or underflow occurs and if the corre-
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400, for overflow. It is too large by 400,
for underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, then for like
signed operands with an exponent difference of 0
or 1, the answer returned is exact if a loss of sig-
nificance of one or more bits can occur. Note that
these are the only cases for which loss of signifi-
cance of more than one bit can occur. For all oth-
er cases, the result is inexact with error bounds
of:
1. 1LSBintruncated mode with either single-
or double-precision
2. % LSBinrounding mode with either single-
(all FP-11s, KEF11-AA and FPF11) or double-
precision (KEF11-AA only); % LSB (FP11-C
and FP11-E) and 33/64 LSB (FP11-A, FP11-F
and FPF11) in rounding mode with double-
precision.

149

Chapter 5 — Floating Point Instruction Set

Special The undefined variable —0 can occur only in con-

Comment: junction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

TSTF

TSTD

Test Floating/Double 1705 FDST

12 1 06 05 00
T T
N RS Lo

Format: TSTF FDST

Operation: (fdst)

Condition FC<«0

Codes: FV <0

FZ < 1if (fdst) = 0, else FZ <0
FN <« 1if (fdst) < 0, else FN <0

Description: Set the FP11 condition codes according to the
contents of fdst.
Interrupts: If FIUV is set, trap on —0 occurs after execution.

Overflow and underflow cannot occur.

Accuracy: These instructions are exact.

150

151

CHAPTER 6

FLOATING POINT INSTRUCTION SET FIS
(LSI-11, LSI-11/2, AND PDP-11/03)

INTRODUCTION

The Floating Point Instruction Set (FIS) option consists of four instruc-
tions: Floating Add (FADD), Floating Subtract (FSUB), Floating Multi-
ply (FMUL), and Floating Divide (FDIV). These instructions operate on
single-precision floating formats, and are available on the LSI-11, LSI-
11/2, and PDP-11/03 only. The KEV11 is the EIS/FIS option for the
LSI-11, LSI-11/2, and PDP-11/03.

KEV11 OPTION

FIS Instruction Set

The following floating point instruction opcodes do not conflict with
any other instructions and are not compatible with the FP-11 Instruc-
tion Set.

Mnemonic Instruction Op code
FADD Floating Add 07500R
FSUB Floating Subtract 07501R
FMUL Floating Multiply 07502R
FDIV Floating Divide 07503R

The operand format is:

15 7 6 0o
I S l EXPOMENT I FRACTION (HIGH PART) _J
1 1 1 1
HIGH ARGUMENT
15 o

FRACTION TiLow PART) |]

LOW ARGUMENT

S = sign of fraction; 0 for positive, 1 for negative

Exponent = 8 bits for the exponent, in excess 200, notation

Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be
normalized)

The number format is essentially a sign and magnitude representa-
tion.

The format is identical with the FP-11 for single-precision numbers.

153

Chapter 6 — Floating Point Option Instruction Set

Fraction

The binary radix point is to the left (in front of bit 6 of the high
argument), so that the value of the fraction is always less than 1 in
magnitude. Normalization would always cause the first bit after the
radix point to be a 1, so that the fractional value would be between 2
and 1. This bit can be understood and not be represented directly, to
achieve an extra 1 bit of resolution.

The first bit to the right of the radix point (hidden bit) is always a 1. The
next bit for the fraction is taken from bit 6 of the high argument. The
result of a floating point operation is always rounded away from zero,
increasing the absolute value of the number.

Exponent

The 8-bit exponent field (bits 14 to 7) allow exponent values between
—128 and +127. Since an excess 200, or 128,, number system is
used, the correspondence between actual values and coded repre-
sentation is as follows:

Actual Value Representation
Decimal Octal Binary
+127 377 11111111
+1 201 10 000 001
0 200 10 000 000
-1 177 01111111
—-128 000 00 000 000

If the actual value of the exponent is equal to —128, meaning a total
value (including the fraction) or less than 27128 | a trap will occur (refer
to Trap section).

Example of a Number

+(12) 0 = +4(1100).
= +(29 10 X (.11)2 [16 X (V2 + 14) = 12]

S Exponent Fraction

-

representation: 0 10 000 100 1000000 0000000000000000
[—hidden bit is a 1

radix point is understood

Registers
There are no preassigned registers for the floating point option. A

154

Chapter 6 — Floating Point Option Instruction Set

general-purpose register is used as a pointer to specify a stack ad-
dress. The contents of the register are used to locate the operands
and answer for the floating point operations as follows:

R = high B argument address
R+2 = low B argument address
R+4 = high A argument address
R+6 = low A argument address

After the floating point operation, the answer is stored on the stack as
follows:

R+4 = address for high part of answer
R+6 = address for low part of answer

where R is the original contents of the general register used.

After execution of the instruction, the general registers will point to the
high answer, i.e., R is incremented by 4.

Condition Codes

Condition codes are set or cleared as shown in the instruction descrip-
tions, in the next part of this section. If a trap occurs as a function of a
floating point instruction, the condition codes are reinterpreted as fol-

lows:
V =1, if an error occurs
N = 1, if underflow or divide by zero
C = 1, if divide by zero

Z=0
\" N C V4
Overflow 1 0 0 0
Underflow 1 1 0 0
Divide by 0 1 1 1 0
Traps

Traps will occur through vector address 244. Traps will occur because
of overflow, underflow, or divide by zero conditions.

Following a trap, the general register will be unaltered, as will (R), (R +
2), (R + 4),and (R + 6).

The condition codes in the PS that caused a trap to 244 will be set in
the PS that was used while the FIS instruction was being executed.
Following the trap, this PS will be pushed onto the stack. The stack
must be examined following a trap to retrieve the PS and determine
the reason for the trap.

155

Chapter 6 — Floating Point Option Instruction Set

Interrupts

A floating point instruction will be aborted if an interrupt request is
issued before the instruction is near completion. The program counter
will point to the aborted floating point instruction so that the interrupt
will look transparent.

FIS Instructions
Assembler format is: OPRR

(R) denotes contents of memory location whose address is in R.

FADD
Floating Add 07500R
[OLl 1 |l1 o 110r0 O|OO OLI] r]
15 3 2 o

Operation: [(R+4), (R+6)] < [(R+4), (R+6)]+[(R), (R+2)]

Condition N: setif result < 0; cleared otherwise

Codes: Z: setifresult = 0; cleared otherwise
V: cleared
C: cleared

Description: Adds the A argument to the B argument and
stores the resultin the A argument position on the
stack. General register R is used as the stack
pointer for the operation.
A<A+B

FDIV

Floating Divide 07503R

Chapter 6 — Floating Point Option Instruction Set

Operation:

Condition
Codes:

Description:

Note:

FMUL

Floating Multiply

((R+4), (R+6)]«[(R+4), (R+6)] / [(R), (R+2)]

N: setif result < 0; cleared otherwise
Z: setif result = 0; cleared otherwise
V: cleared
C:. cleared

Divides the A argument by the B argument and
stores the result in the A argument position on the
stack. If the divisor (B argument) is equal to zero,
the stack is left untouched.

A<A/B

The LSI-11 processors push one word onto the
stack during execution of the FMUL and FDIV in-
structions and pop the word from the stack when
completed. Thus, the SP (R6) must pointto a
read/write memory location; otherwise, a bus er-
ror (time-out) will occur.

07502R

Operation:

Condition
Codes:

Description:

[(R+4), (R+6)1«{(R+4), (R+6)] X [(R), (R+2)]

N: setifresult < 0; cleared otherwise
Z: setifresult = 0; cleared otherwise
V: cleared
C: cleared

Multiplies the A argument by the B argument and
stores the result in the A argument position on the
stack.

A< AXB
(refer to note in FDIV)

157

Chapter 6 — Floating Point Option Instruction Set

FSuB
Floating Subtract

Operation:

Condition
Codes:

Description:

07501R

[(R+4), (R+6)]<«[(R+4), (R+6)]-[(R), (R+2)]

N:
Z:
V:
C:

set if result < 0; cleared otherwise
set if result = 0; cleared otherwise
cleared
cleared

Subtracts the B argument from the A argument
and stores the result in the A argument position
on the stack.

A<A-B

158

159

160

CHAPTER 7

OCTAL DEBUGGING TECHNIQUE
(MICROCODE ODT)

CONSOLE ODT

The console emulator Octal Debugging Technique (ODT) is a portion
of the processor microcode that is very useful for debugging and
running programs. Console emulator ODT allows the processor to
respond to commands and information entered via the computer con-
sole or from a local or remote terminal. Communication between the
user and processor is generated via a stream of ASCIl characters
interpreted by the processor as console commands. These com-
mands are a subset of ODT-11. (Please refer to Table 7-1 below).

Terminal addresses utilized by console emulator ODT are 177560,
through 177566, (777560, through 777566, for 18-bit systems and
177775604 through 17777566, for 22-bit systems). These addresses
are generated in microcode and cannot be altered.

To determine the hardware requirements necessary to run console
emulator ODT, please refer to the Hardware Requirement section at
the end of this chapter. If you are currently using DIGITAL standard
DLV11 serial line interfaces configured at the console address, these
hardware requirements have been met and there is no need to access
this information.

The console ODT implemented on the LSI-11/23, PDP-11/23, and
PDP-11/23-PLUS is identical. For chapter readability and clarity, only
the LSI-11/23 is referenced. The reader may assume that all refer-
ences to the LSI-11/23, also apply to the PDP-11/23 and PDP-11/23-
PLUS.

CONSOLE ODT COMMANDS

The console ODT terminal command set, listed in Table 7-1, is de-
scribed in the following paragraphs. These commands are a subset of
ODT-11 and use the same command characters. Console ODT has ten
internal states, which are listed in Table 7-2. For each state, only spe-
cific characters are recognized as valid inputs; other inputs invoke a
“?” response.

161

Chapter 7 — Octal Debugging Technique (Microcode ODT)

T

Command

Slash

Carriage Return

Line Feed

Internal Register
Designator

Processor Status
Word Designator
Go

Proceed

Binary Dump

able 7-1

Symbol

/

<CR>

<LF>

$orR

G

]

Control-Shift-S

H

Console ODT Commands

Use

Prints the contents
of a specified loca-
tion.

Closes an open
location.

Closes an open lo-
cation and then
opens the next con-
tiguous location.

Opens a specific
processor register.

Opens the
PS—must follow $
or R command.

Starts program
execution.

Resumes execution
of a program.

Manufacturing use
only.

Reserved for
DIGITAL use.

Table 7-2 Console ODT States and Valid Input Characters

State

Example of

Terminal

Output

Q@ 0-7
R,S
G
P

Valid Input

Comment

Control-Shift-

S

162

Chapter 7 — Octal Debugging Technique (Microcode ODT)

2 @Ror 0-7
@$ S
3 @ 1000/ 0-7
123456 <CR>
<LF>
4 @R1/123456 0-7
<CR>
<LF>
5 @1000 0-7
/
G
6 @Rlor @RS 0-7
S
/
7 @1000/ 0-7
123456 1000 <CR>
<LF>
8 @R1/ 0-7
123456 1000 <CR>
<LF>
9 Q@ / Previous
location was
opened
10 @ Control- 2 binary bytes
Shift-S

The parity bit, bit 7, on all input characters is ignored (i.e., not
stripped) by console ODT, and if the input character is echoed, the
state of the parity bit is copied to the output buffer (XBUF). Output
characters internally generated by ODT (e.g., <CR>) have the parity
bit equal to 0. All commands are echoed except for <LF>. Where
applicable, uppercase and lowercase command characters are recog-
nized.

In order to describe the use of a command, other commands are
mentioned before they have been defined. For the novice user, these
paragraphs should be scanned first for familiarization and then reread

163

Chapter 7 — Octal Debugging Technique (Microcode ODT)

for detail. The word “location,” as used in this paragraph, refers to a
bus address, processor register, or processor status word (PS).

Console ODT Entry Conditions

1. Execution of a HALT instruction in kernel mode, provided the
HALT TRAP jumper is not installed.

2. Assertion of the BHALT L signal on the LSI-11 Bus. BHALT Lis a
level, not edge-triggered. The signal must be asserted long
enough so that it is seen at the end of a macroinstruction by the
service state in the processor.

3. Ifoption 1 has been selected, ODT is entered upon power-up.

NOTE

Unlike the LSI-11 and LSI-11/2, the LSI-11/23 does
not enter console ODT upon occurrence of a double
bus error (i.e., R6 points to nonexistent memory dur-
ing a bus time-out trap). The LSI-11/23 creates a
new stack at location 2 and continues to trap to 4.
Since the LSI-11/23 does not perform memory re-
fresh, a bus time-out during refresh cannot take
place. This differs from the LSI-11, which enters con-
sole ODT upon such an occurrence. If a bus time-out
occurs while getting an interrupt vector, the LSI-
11/23 ignores it and continues execution of the pro-
gram, whereas the LSI-11 and LSI-11/2 enter con-
sole ODT.

Console ODT Input Sequence

Upon entry to console ODT, the RBUF register is read using a DATI

and the character present in the buffer is ignored. This is done so that

erroneous characters or user program characters are not interpreted

by console ODT as commands, especially when a program is haited.

The input sequence for console ODT is as follows:

1. Read and ignore character in RBUF.

2. Outputa <CR><LF> to terminal.

3. Output contents of PC (program counter R7) in six digits to termi-
nal.

4. Outputa <CR><LF> to terminal.

Output the prompt character, @, to terminal.

6. Enter a wait loop for terminal input. The Done flag, bit 7 in RCSR,
is tested using a DATI. If itis 0, the test continues.

7. IfRCSRbit7isa1, then low byte of RBUF is read using a DATI.

o

164

Chapter 7 — Octal Debugging Technique (Microcode ODT)

Console ODT Output Sequence

The output sequence for ODT is as follows:

1. Test XCSR byte 7 (Done flag) using a DATI and if a 0, continue
testing.

2. If XCSR bit 7 is 1, write character to low byte of XBUF using a
DATO (high byte is ignored by interface).

CONSOLE ODT OPERATION

The processor’'s microcode operates the serial line interface in half-
duplex mode. Programmed I/0 techniques are used rather than inter-
rupts. When the console ODT microcode is busy printing characters
using the transmit side of the interface, the microcode is not
monitoring the receive side for incoming characters. Any characters
coming in at this time are lost. The interface may post overrun errors,
but the microcode does not check for any error bit in the interface.
Therefore users should not type ahead to ODT because those charac-
ters are not recognized. In addition, if another processor is at the other
end of the interface, it must obey half-duplex operation. No input
characters should be sent until console ODT has finished outputting.

LSI-11/23 ODT Commands

/(ASCII 057) Slash

This command is used to open an LSI-11 Bus address, processor
register, or processor status word and is normally preceded by other
characters which specify a location. In response to /, console ODT
prints the contents of the location (i.e., six characters) and then a
space (ASCII 40). After printing is complete, console ODT waits for
either new data for that location or a valid close command. The space
character is issued so that the location’s contents and possible new
contents entered by the user are legible on the terminal.

Example: @001000/012525<SPACE>

where:
@ = console ODT prompt character
001000 = octal location in the LSI-11 Bus
address space desired by the user
(leading Os are not required)
= command to open and print contents of
location
012525 = contents of octal location 1000
<SPACE> = space character generated by console
oDT

165

Chapter 7 — Octal Debugging Technique (Microcode ODT)

The / command can be used without a location specifier to verify the
data just entered into a previously opened location. The / is recog-
nized only if it is entered immediately after a prompt character. A /
issued immediately after the processor enters ODT mode causes a
?<CR><LF> to be printed because a location has not yet been
opened.

Example: @1000/012525<SPACE> 1234 <CR><CR><LF>

_@/001234<SPACE>
where:
firstline = new data of 1234 entered into location

1000 and location closed with <CR>

second line = a / was entered without a location
specifier and the previous location was
opened to reveal that the new contents
were correctly entered into memory.

<CR>(ASCII 15) Carriage Return

This command is used to close an open location. If a location’s con-
tents are to be changed, the user should precede the <CR> with the
new data. If no change is desired, <CR> closes the location without
altering its contents.

Example: @R1/004321<SPACE> <CR> <CR><LF>
@

Processor register R1 was opened and no change was desired so the
user issued <CR>. In response to the <CR>, console ODT printed
<CR> <LF>@.

Example: @R1/004321<SPACE> 1234 <CR> <CR><LF>
@

In this case the user desired to change R1, so new data, 1234, was
entered before issuing the <CR>. Console ODT deposited the new
data in the open location and then printed <CR><LF>@.

Console ODT echoes the <CR> entéred by the user and then prints
an additional <CR>, followed by a <LF>, and @.

<LF> (ASCIlI 12) Line Feed

This command is used to close an open location and then open the
next contiguous location. LSI-11 Bus addresses and processor regis-
ters are incremented by 2 and 1 respectively. If the PS is open when a
<LF> is issued, it is closed and a <CR><LF>@ is printed; no new
location is opened. If the open location’s contents are to be changed,

166

Chapter 7 — Octal Debugging Technique (Microcode ODT)

the new data should precede the <LF>. If no data is entered, the
location is closed without being altered.

Example: @R2/123456<SPACE> <LF> <CR><LF>
@R3/054321<SPACE>

In this case, the user entered <LF> with no data preceding it. In
response, console ODT closed R2 and then opened R3. When a user
has the last register, R7, open, and issues <LF>, console ODT opens
the beginning register, R0. When the user has the last LSI-11 Bus
address open of a 64 KB segment and issues <LF>, console ODT
opens the first location of that same segment. If the user wishes to
cross the 64 KB boundary, he must re-enter the address for the de-
sired 64 KB segment (i.e., console ODT is modulo 64 KB). This opera-
tion is the same as that found on all other PDP-11 consoles.

Example: @R7/000000<SPACE> <LF> <CR><LF>
@R0/123456 <SPACE>

or

@577776/000001 <SPACE> <LF> <CR><LF>
@477776/125252<SPACE>

Unlike other commands, console ODT does not echo the <LF>.
Instead it prints <CR>, then <LF> so that terminal printers operate
properly. In order to make this easier to decode, console ODT does
not echo ASCII 0, 2, or 10, but responds to these three characters with
?<CR><LF>@.

${ASCII 044) or R (ASCII 122) Internal Register Designator
Either character when followed by a register number, 0 to 7, or PS
designator, S, will open that specific processor register.

The $ character is recognized to be compatible with ODT-11. The R

character was introduced for the convenience of one key stroke and
because it is representative of what it does.

Example: @©$0/054321<SPACE>
or
@R7/000123<SPACE> <LF>
@R0/054321 <SPACE>

If more than one character is typed (digit or S) after the R or $, console
ODT uses the last character as the register designator. There is an
exception, however: if the last three digits equal 077 or 477, ODT
interprets it to mean the PS rather than R7.

167

Chapter 7 — Octal Debugging Technique (Microcode ODT)

S (ASCI1 123) Processor Status Word

This designator is for opening the PS (processor status word) and
must be employed after the user has entered an R or $ register desig-
nator.

Example: @RS/100377<SPACE> 0 <CR> <CR><LF>
@/000010<SPACE>

Note the trace bit (bit 4) of the PS cannot be modified by the user. This
is done so that PDP-11 program debug utilities (e.g., ODT-11), which
use the T bit for single-stepping, are not accidentally harmed by the
user.

If the user issues a <LF> while the PS is open, the PS is closed and
ODT prints a <CR><LF>@. No new location is opened in this case.

G (ASCI1107) Go

This command is used to start program execution at a location en-
tered immediately before the G. This function is equivalent to the
LOAD ADDRESS and START switch sequence on other PDP-11 con-
soles.

Example: @200G<NULL><NULL>

The console ODT sequence for a G, after echoing the command char-

acter, is as follows:

1. Printtwo nulls (ASCII 0) so the LSI-11 Bus initialization that follows
does not flush the G character from the double-buffered UART
chip in the DLV11 serial line interface.

2. Load R7 (PC) with the entered data. If no data is entered, 0 is
used. (In the above example, R7 is equal to 200 and that is where
program execution begins.)

3. The PS, and floating point status register if the MMU is present,
are cleared to 0.

4. The LSI-11 Bus is initialized by the processor’s asserting BINIT L
for 12.6 microseconds (at 300 ns microcycle), negating BINIT L,
and then waiting for 110 microseconds (at 399 ns microcycle).

5. The service state is entered by the processor. If there is anything
to be serviced, it is processed. If the BHALT L bus signal is
asserted, the processor re-enters the console ODT state. This
feature is used to initialize a system without starting a program
(R7 is altered). If the user wants to single-step his program, he
issues a G and then successive P commands, all done with the
BHALT L bus signal asserted.

168

Chapter 7 — Octal Debugging Technique (Microcode ODT)

P (ASCII 120) Proceed

This command is used to resume execution of a program and corre-
sponds to the CONTINUE switch on other PDP-11 consoles. No pro-
grammer-visible machine state is altered using this command.

Example: @P

Program execution resumes at the address pointed to by R7. After the
P is echoed, the console ODT state is left and the processor immedi-
ately enters the service state to fetch the next instruction. If the BHALT
L bus signal is asserted, it is recognized at the end of the instruction
(during the service state) and the processor enters the console ODT
state. Upon entry, the content of the PC (R7) is printed. In this fashion,
a user can single-instruction step through a program and get a PC
“trace” displayed on his terminal.

Control-Shift-S (ASCII 23) Binary Dump

This command is used for manufacturing test purposes and is not a
normal user command. It is described here to explain the machine’s
response if it is accidentally invoked. It is intended to display a portion
of memory more efficiently than using the / and <LF> commands.
The protocol is as follows:

1. After a prompt character, console ODT receives a control-shift-S
command and echoes it.

2. The host system at the other end of the serial line must send two
8-bit bytes which console ODT interprets as a starting address.
These two bytes are not echoed.

The first byte specifies starting address <15:8> and the second
byte specifies starting address <7:0>. Bus address bits <17:16>
are always forced to be 0; the dump command is restricted to the
first 64 KB of address space.

3. After the second address byte has been received, console ODT
outputs 12 octal bytes to the serial line starting at the address
previously specified. When the output is finished, console ODT
prints <CR><LF>@.

If a user accidentally enters this command, it is recommended, in
order to exit from the command, that two @ characters (ASCII 100) be
entered as a starting address. After the binary dump, an @ prompt
character is printed.

Reserved Commands
An ASCII H is reserved for future DIGITAL use. If it is accidentally
typed, console ODT will echo the H and print a prompt character
rather than a ?, which is the invalid character response. No other
operation is performed.

169

Chapter 7 — Octal Debugging Technique (Microcode ODT)

Address Specification

All I/0 addresses (248KB to 256 KB) must be entered by users with all
18 bits specified, regardiess of whether the MMU is present or not. For
example, if a user desires to open the RCSR of the DLV11, he must
enter 777560, not 177560. With an MMU present, 18-bit addresses
must be used to access memory greater than 64 KB. In 22-bit systems,
console ODT allows access to physical memory 000000 through
757776 and the 1/0 page (17760000 through 17777776) only. The 1/0
page is accessed by entering addresses 760000 to 777776.

Processor I/O Addresses

Certain processor and MMU registers have 1/0 addresses assigned to
them for programming purposes. If referenced in console ODT, the PS
responds to its bus address, 777776. Processor registers RO through
R7 do not respond to bus addresses 777700 through 777707 if refer-
enced in console ODT (i.e., time-out occurs).

The MMU contains status registers and PAR/PDR pairs. Any of these
registers can be accessed from console ODT by entering its bus ad-
dress.

Example: @777572/000001 <SPACE>

In this case, memory management status register 0 is opened and the
memory management enable is set.

Stack Pointer Selection

Whenever R6 is referenced in ODT, it accesses the stack pointer spec-
ified by the PS current mode bits (PS<15:14>). This is done for con-
venience. If a program operating in kernel mode (PS<15:14> = 00) is
halted and R6 is opened, the kernel stack pointer is accessed.
Similarly, if a program is operating in user mode, R6 accesses the user
stack pointer. If a specific stack pointer is desired, PS<15:14> must
be set by the user to the appropriate value and then the R6 command
can be used. If an operating program has been halted, the original
value of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000
@R6/123456 <SPACE>

The user mode stack pointer has been opened.

@RS/140000<SPACE> 0 <CR> <CR><LF>
@R6/123456 <SPACE> <CR> <CR><LF>

@RS/000000<SPACE> 140000<CR> <CR><LF>
QP

170

Chapter 7 — Octal Debugging Technique (Microcode ODT)

In this case, the kernel mode stack pointer was desired. The PS was
opened and PS<15:14> was set to 00 (kernel mode). Then R6 was
examined and closed. The original value of PS<15:14> was restored
and then the program was continued using the P command.

If PS<15:14> is set to 01, another unique register exists in the proces-
sor, but it is reserved for future DIGITAL use.

The floating point accumulators, which are also in the MMU chip,
cannot be accessed from console ODT. Only floating point instructions
can access these registers.

Entering Octal Digits

When the user is specifying an address of data, console ODT will use
the last six octal digits if more than six have been entered. The user
need not enter leading Os for either address or data; console ODT
forces Os as the default. If an odd address is entered, the low-order bit
is ignored and full 16-bit words are displayed.

ODT Time-Out
If the user specifies a nonexistent address or causes a parity error,
console ODT responds to the error by printing ?<CR><LF>@.

Invalid Characters

Console ODT will recognize uppercase and lowercase characters as
commands. Any character that console ODT does not recognize dur-
ing a particular sequence is echoed (with the exception of ASCII 0, 2,
10, or 12 as noted earlier) and console ODT prints a ?<CR><LF>@.
Console ODT has ten internal states, each of which has its own set of
valid input characters. When in a particular state, only commands
specific to that state are valid. This was done to lower the probability of
a user’s unintentionally destroying a program by pressing the wrong
key.

LSI-11 and LSI-11/2 ODT Commands

The following is a list of ODT commands and how they are used with
the console terminal. Note that in the examples provided, characters
output by the processor are shown underlined. Characters input by
the operator are not underlined.

The commands described in this chapter are a subset of the ODT-11
utility program. Only the commands necessary for implementing the
required console functions are retained.

Note also that all commands and characters are echoed by the
processor and that illegal commands will be echoed and followed by
?, (ASCIl 077) followed by <CR> (ASCIl 015) followed by <LF>

171

Chapter 7 — Octal Debugging Technique (Microcode ODT)

(ASCII 012) followed by @ (ASCII 100). If a valid command character is
received when no location is open (e.g., when having just entered the
HALT state), the valid command character will be echoed and followed
by a 2<CR><LF>@. Opening nonexistent locations will have the
same response. The console always prints six numeric characters as
addresses or data; however, the user is not required to type leading
zeros for either address or data. If a bus error (time-out) occurs during
memory refresh while in the console ODT mode, a ?<CR><LF>@
will be typed.

/Slash (ASCII 057)
This command is used to open a memory location, general-purpose
register, or the processor status word.

The / command is normally preceded by a location identifier. Before
the contents of a location are typed, the console prints a space (ASCII
40) character.

Example: @ 001000/012525

where: @ = ODT prompt character (ASCII 100)
001000 = octal location in address
space to be opened / = command to open and exhibit
contents of location 012525 = contents of
octal location 1000

NOTE
If / is used without a preceding location identifier, the
address of the last opened location is used. This
feature can be used to verify data just entered in a
location.

<CR> Carriage Return (ASCII 015)

This command is used to close an open location. If the contents of the
open location are to be changed, <CR> should be preceded by the
new value. If no change to the location is necessary, <CR> will not
alter its contents.

Example: @001000/12525 <CR><LF>
@/012525
or

172

Chapter 7 — Octal Debugging Technique (Microcode ODT)

Example: @001000/012525 15126421 <CR><LF>
@/126421

where: <CR> = (ASCII 015) is used to close location 1000 in
both examples. Note that in the second example, the contents of loca-
tion 1000 were changed and that only the last six digits entered were
placed in location 1000.

<LF> Line Feed (ASCII 012)

This command is used to close an open location or GPR (general-
purpose register). If entered after a location has been opened, it will
close the open location or GPR and open location+2 or GPR+1. If the
contents of the open location or GPR are to be modified, the new
-contents should precede the <LF> operator.

Example: @1000/012525<LF><CR>
001002/005252<CR><LF>

Q@
where: <LF> = (ASCIl 012) used to close location 1000 and
open location 1002, if used on the PS. <LF> will modify the PS if new
data have been typed and close it; then, a <CR> <LF> @ is issued. If
<LF> is used to advance beyond R7, the register name printed is
meaningless, but the contents printed are those of RO.

4 Up Arrow (ASCII 135)

The “4” command is also used to close an open location or GPR. If
entered after a location or GPR has been opened, it will close the open
location or GPR and open location—2, or GPR—1. If the contents of the
open location or GPR are to be modified, the new contents shouid
precede the } operator.

Example: @ 1000/012525¢ <CR><LF>
000776/010101 <CR><LF>
Q@

where: 4 = (ASCII 135) used to close location 1000 and open
location 776.

173

Chapter 7 — Octal Debugging Technique (Microcode ODT)

If used on the PS, the % will modify the PS if new data has been typed
and close it; then <CR> <LF> @ is issued. If } is used to decrement
below RO, the register name printed is meaningless but the content is
that of R7.

@ At Sign (ASCII 100)

Once a location has been opened, the @ command is used to close
that location and open a second location, using the contents of the first
location as an indirect address to the second location. That is, the
contents of the first location point to the second location to be opened.
The contents of the first location can be modified before the @ com-
mand is used. This command is useful for stack operations.

Example: @ 1000/000200 @ <CR><LF>
000200/000137 <CR><LF>

@
where: @ = (ASCII 100) used to close location 1000 and open
location 200.

Note that the @ command may be used with either GPRs or memory
contents.

If used on the PS, the command will modify the PS if new data are
typed, and close it; however, the last GPR or memory location content
will be used as a pointer.

< Back Arrow (ASCII 137)

This command is used once a location has been opened. ODT inter-
prets the contents of the currently open word as an address indexed
by the PC and opens the addressed location. This is useful for relative
instructions where it is desired to determine the effective address.

Example: @ 1000/00200<« <CR><LF>
001202/002525 <CR><LF>

@
where: <« = (ASCH 137) used to close location 1000 and open
location 1202 (sum of contents of location 1000, which is 200, 1000,
and 2). Note that this command cannot be used if a GPR or the PS is
the open location and, if attempted, the command will modify the GPR
or PS if data have been typed, and close the GPR or PS; then a
<CR><LF>@ will be issued.

174

Chapter 7 — Octal Debugging Technique (Microcode ODT)

$ Dollar Sign (ASCIl 044) or R (ASCIi 122) Internal Register Desig-
nator

Either command, if followed by a register value 0-7 (ASCIl 060-067),
will allow that specific general-purpose register to be opened if fol-
lowed by the / (ASCII 057) command.

Example: @$n/012345 <CR><LF>
@

where: $ = register designator. This could also be R.
n = octal register 0-7.
012345 = contents of GPR n.

Note that the GPRs, once opened, can be closed with either the
<CR>, <LF>, 4, or @ commands. The «<- command will also close a
GPR but will not perform the relative mode operation.

$S (ASCII 123) Processor Status Word

By replacing n in the above example with the letter S (ASCIl 123) the
processor status word will be opened. Again, either $ or R (ASCII 122)
is a legal command.

Example: @$S/000200 <CR><LF>
@

where: $ = GPR or processor status word designator
S = specifies processor status register and
differentiates it from GPRS.

000200 = 8-bit contents of PS; bit7 = 1, all
other bits = 0.

Note that the contents of the PS can be changed using the <CR>
command, but bit 4 (the T bit) cannot be modified using any of the
commands.

G (ASCI1107) Go
The G command is used to start execution of a program at the memo-
ry location typed immediately before the G.

Example: @ 100G or 100;G

The LSI-11 PC (R7) will be loaded with 100, the PS is cleared, and
execution will begin at that location. Immediately after echoing the G,
two null (000) characters are sent to the console terminal serial line
unit to act as fill characters in case the BINIT L signal clears the SLU.
Before starting execution, a BUS INIT is issued for 10 us idle time.
Note that a semicolon character (ASCIl 073) can be used to separate
the address from the G. This is done for PDP-11 ODT compatibility.

175

Chapter 7 — Octal Debugging Technique (Microcode ODT)

Since the console is a character-by-character processor, as soon as
the G is typed, the command is processed and a RUBOUT cannot be
issued to cancel the command. If the BHALT L line is asserted, execu-
tion does not take place and only the BUS INIT sequence is done. The
machine returns to console mode and prints the PC followed by
<CR><LF>@.

NOTE
When the program execution begins, the serial line
unit is still busy processing the two null characters.
Thus, the program should not assume the Done bit
(bit 7) is set in the output status register at 177564.

P (ASCIl1 120) Proceed
The P command is used to continue or resume execution at the loca-
tion pointed to by the current contents of the PC (R7).

Example: @Por;P

If the BHALT L line is asserted, a single instruction will be executed,
and the machine will return to console mode. It will print the contents
of the PC followed by a <CR><LF>@. In this fashion, it is possible to
single-instruction step through a user program. However, since the
BHALT L line has higher priority than device interrupts, device inter-
rupts will not be recognized in the single step mode.

The semicolon is accepted for PDP-11 ODT compatibility. If the semi-
colon character is received during any character sequence, the con-
sole ignores it.

M (ASCII 115) Maintenance

The M command is used for maintenance purposes and prints the
contents of an internal CPU register. This data reflect how the machine
got to the console mode.

Example: @M 00213 <CR><LF>
@

The console prints six characters and then returns to command mode
by printing <CR><LF>@.

176

Chapter 7 — Octal Debugging Technique (Microcode ODT)

The last octal digit is the only number of significance and is encoded
as follows. The value specifies how the machine got to the console
mode.

Last Octal

Digital Value Function

Oor4 HALT instruction or BHALT L.

ior5 Bus error occurred while getting device interrupt
vector. This error probably indicates that the
priority chain (BIAKI/O L signal) is broken in the
system and that an open slot exists between mod-
ules, or a device asserting BIRQ L did not latch its
request. Modules must be inserted in a contigu-
ous fashion according to the priority daisy chain.

3 Double bus error occurred (stack contains no-
nexistent address).

4 Reserved instruction trap occurred (nonexistent
Micro-PD address occurred on internal CPU
bus).

7 A combination of 1, 2, and 4, which implies that all

three conditions occurred.

In the above example, the last octal digit is a 3, which indicates a
double bus error occurred.

The codes listed above are valid only when the console mode is en-
tered, and the code is immediately displayed. This information is lost
when a G command is issued; the code reflects what happened in the
program since the last G command was issued.

RO (ASCI1177) RUBOUT

While RUBOUT is not truly a command, the console does support this
character. When typing in either address or data, the user can type
RUBOUT to erase the previously typed character and the console will
respond with a \ (Backslash—ASCII 134) for every typed RUBOUT.

Example: @ 000100/ 077777 123457 RUBOUT\6<CR><LF>
@000100/123456

In the above example, the user typed a 7 while entering new data and
then typed RUBOUT. The console responded with a \ and then the
user typed a 6 and <CR>. Then the user opened the same location

177

Chapter 7 — Octal Debugging Technique (Microcode ODT)

and the new data reflect the RUBOUT. Note that if RUBOUT is issued
repeatedly, only numerical characters are erased. It is not possible to
terminate the present mode the console is in. If more than six RUB-
OUTs are consecutively typed, and then a valid location closing com-
mand is typed, the open location will be modified with all zeros.

The RUBOUT command cannot be used while entering a register
number. R2 = / 012345 will not open register R4; however, the RUB-
OUT command will cause ODT to revert to memory mode and open
location 4.

L (ASCIl 114) Bootstrap Loader

The L command will cause the processor to self-size memory and then
load a program that is in bootstrap loader format (e.g., the Absolute
Loader program) from the specified device. The device is specified by
typing the address of its input control and status register (RCSR) im-
mediately before the L. No bus initialize (BINIT L signal) is issued.

Example: @ 177560L

First memory is sized, starting at 56K bytes (157776), and the address
is decremented by 2 until the highest read/write memory location is
found. In small systems (e.g., 8K bytes memory), a discernible pause
of about 1 second will occur before type motion is observed. Then,
the device RCSR address (177560 in the above example) is placed in
the last location in memory (XXX776) for Absolute Loader compatibili-
ty. The program is then loaded by setting the Go bit (bit 0) in the device
address and reading a byte of data from the device address plus 2
(177562); this address is the device’s receiver data buffer. PDP-11
bootstrap loader format requires that the first data byte read from the
tape be 352,. The Absolute Loader program tape, for example, has
several inches of frames all punched with 351,. The first byte following
the 351, bytes contains the low byte of the starting address minus 1.
(For Absolute Loader, this byte is 075;.) All bytes which follow are data
bytes. Loading continues until address XXX752 has been loaded. The
data at that location are then treated as the low byte of a new load
address. Loading continues until byte location XXX774 has been load-
ed. (Address detection is done via pointers contained in the LSI-11
processor’s microcode.) The processor then loads a 1 into byte
location XXX775 so that word location XXX774 contains a PDP-11
branch instruction (000765). The processor does not modify the PS
nor issue a BINIT L signal; it starts program execution at location
XXX774. The program being loaded must halt the processor, if that is
desired. For example, when loading the Absolute Loader program, the

178

Chapter 7 — Octal Debugging Technique (Microcode ODT)

processor will halt, and the console terminal will display XXX500 (the
current PC contents), followed by <CR><LF>@. When loading a
program using the L command, the BHALT L signal line is ignored. If a
time-out error occurs, such as would occur if a nonexistent device was
entered by the user preceding the L command, the console will termi-
nate the load and print ?<CR><LF>@. Any device CSR address may
be used that references an actual address configured on the reader
device’s bus interface controller module. For example, the console
device address (RCSR = 177560) can be configured on a serial line
unit which interfaces with an LT33 Teletype low-speed reader.

NOTE
If no address is entered for the reader device, ad-
dress 0 will be used, and the system will likely
“hang.” The console ODT mode can be restored by
momentarily asserting the BDCOK H signal low, or
by cycling the power off and then on; BHALT L will
have no effect on the hung condition.

Control-Shift-S (ASCII 23)

This command is used for manufacturing test purposes and is not a
normal user command. It is briefly described here to explain the ma-
chine’s response in case a user accidentally types this character. If this
character is typed, ODT expects two more characters, where the first
character is treated as the high byte of an address, and the second
character as the low byte of an address. It uses these two characters
as a 16-bit binary address, and starting at that address, dumps five
locations (or ten bytes) in binary format to the serial line.

It is recommended that if this mode is inadvertently entered, two char-
acters such as a Null (0) and @ (ASCII 100) be typed to specify an
address in order to terminate this mode. Once complete, ODT will
issuea <CR><LF>@.

HARDWARE REQUIREMENTS

The minimum hardware requirements for a serial line interface to per-
mit a terminal to communicate with console ODT are contained in the
following paragraphs. The intent is to describe the minimum hardware
for users who design their own serial line interface. The necessary
console ODT hardware is a subset of that needed to operate system
software. For system software/hardware requirements refer to the
DLV11 section in the Microcomputer Interface Handbook of the Micro-
computer Handbook Series.

179

Chapter 7 — Octal Debugging Technique (Microcode ODT)

Receiver Control and Status Register (RCSR)

The RCSR must exist at address 777560, for character input to con-
sole ODT. Console ODT does not execute DATO bus cycles to this
address; therefore, the RCSR only needs to respond to DATI bus
cycles. However, system software causes DATO cycles in order to
affect certain bits, such as Interrupt Enable (bit 6), which console ODT
does not use. The receiver status register is illustrated in Figure 7-1.

15 08 07 0F 00

I NOT USED] D
1 1 1 1 1 1 1

Figure 7-1 Receiver Status Register

NOT USED 1175608
1 1 1 1 1 1

Bit: 7 Name: Done flag

Function: After a character is assembled and exists in the receiver
buffer register (RBUF), the Done flag must be set to a 1. When a DATI
is performed to the RBUF (i.e., to pick up the character), the Done flag
must be cleared by hardware. Also bus signal BINITL must clear this
bit.

Bit: 6:0, 15:8 Name: Unused

Function: These bits are “don’t care bits” and can be in any state,
since console ODT mode does not use them. In DIGITAL interfaces,
these bits may be defined.

Receiver Buffer Register (RBUF)

The RBUF must exist at address 777562, for character input to con-
sole ODT. This register needs to respond to DATI bus cycles only,
since console ODT does not execute DATO bus cycles to this address.
System software interfaces similarly, but DIGITAL diagnostics may
cause a DATO cycle and not operate properly. The receiver buffer
register is illustrated in Figure 7-2.

00
NOT USED DATA I 7775628
1 1 1 1

1 1 ! 1 1 1 1 1 1 1

Figure 7-2 Recegiver Buffer Register

Bit: 7:0 Name: ASCIlcharacter
Function: These eight bits are read by the processor and interpreted
as a console ODT command. When bit 7 of RCSRis a 1, the processor

180

Chapter 7 — Octal Debugging Technique (Microcode ODT)

does a DATI to the RBUF. After the DATI, the hardware must clear bit 7
of RCSR to 0.

Bit: 15:8 Name: Unused

Function: These bits are “don’t care bits” and can be in any state,
since console ODT does not use them. In DIGITAL interfaces, these
bits may be defined.

Transmitter Control and Status Register (XCSR)

The XCSR must exist at address 777564, for character output from
console ODT. ODT does not execute DATO bus cycles to this address;
therefore, the XCSR only needs to respond to DATI! bus cycles. How-
ever, system software causes DATO cycles to affect certain bits (e.g.,
Interrupt Enable). The transmitter control and status register is illu-
strated in Figure 7-3.

D [NOT USED 7775648
1 . 1 1 1 |

f NOT USED
Il Il 1 Il 1 1 1

Figure 7-3 Transmitter Control and Status Register

Bit: 7 Name: Done flag

Function: In the idle state, this bit is a 1, indicating that the hardware
is ready to print a character. After a DATO to the transmitter buffer
register by the processor (i.e., a character loaded), this bit must be
cleared to 0 by the hardware. After the character is printed, the hard-
ware sets this bit to 1. During power-up this bit is set to 1. Bus signal
BINIT L must set this bitto 1.

Bit: 6:0

15:8Name: Unused

Function: These bits are “don’t care bits” and can be in any state,
since console ODT mode does not use them. In DIGITAL interfaces,
these bits may be defined.

Transmitter Buffer Register (XBUF)

The XBUF must exist at address 777566, for character output from
console ODT. This register needs to respond to DATO bus cycles only,
since console ODT does not execute DATI bus cycles to this address.
System software interfaces similarly but DIGITAL diagnostics may
cause a DATI cycle and not operate properly. The transmitter buffer
register is illustrated in Figure 7-4.

181

Chapter 7 — Octal Debugging Technique (Microcode ODT)

NOT USED DATA 7775668
1 1 1 1 1 1 Il 1 -l -) 1]

Figure 7-4 Transmitter Buffer Register

Bit: 7.0 Name: ASCIlcharacter

Function: These eight bits are written by the processor with the
ASCII character to be printed. When bit 7 of XCSR is a 1, the processor
does a DATO to the XBUF. After the DATO, the hardware must clear
bit 7 of XCSR to 0.

Bit: 15:8 Name: Unused

Function: These bits are “don’t care bits” and can be in any state,
since console ODT does not use them. In DIGITAL interfaces, these
bits may be defined.

182

183

184

CHAPTER 8
PROGRAMMING TECHNIQUES

The LSI-11 and PDP-11 microcomputers offer you a great deal of
programming flexibility and power. With the combination of the in-
struction set, addressing modes, and programming techniques, new
software can be developed and old programs utilized effectively. This
chapter provides programming techniques examples which illustrate
the unique capabilities of PDP-11 processors. The techniques specifi-
cally discussed are: position-independent coding (PIC), stacks, sub-
routines, interrupts, re-entrancy, coroutines, recursion, processor
traps, and conversion.

POSITION-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module.
The task builder or linker binds one or more modules together to
create an executable task image. Once built, a task can generally be
loaded and executed only at the address specified at link time. This is
because the linker has had to modify some instructions to reflect the
memory locations in which the program is to run. Such a body of code
is considered position-dependent (i.e., dependent on the virtual ad-
dresses to which it was bound).

All PDP-11 processors offer addressing modes that make it possible
to write instructions that are not dependent on the virtual addresses to
which they are bound. A body of such code is termed position-inde-
pendent and can be loaded and executed at any virtual address. Posi-
tion-independent code can improve system efficiency, both in the use
of virtual address space and in the conservation of physical memory.

In multiprogramming systems like RSX-11M, it is important that many
tasks be able to share a single physical copy of common code; for
example, a library routine. To make the optimum use of a task’s virtual
address space, shared code should be position-independent. Code
that is not position-independent can also be shared, but it must ap-
pear in the same locations in every task using it. This restricts the
placement of such code by the task builder and can result in the loss
of virtual addressing space.

The construction of position-independent code is closely linked to the
proper use of PDP-11 addressing modes. The remainder of this
explanation assumes that you are familiar with the addressing modes
described in Chapter 3.

185

Chapter 8 — Programming Techniques

All addressing modes involving only register references are position-
independent. These modes are:

R register mode

(R) register deferred mode

(R)+ autoincrement mode

@(R)+ autoincrement deferred mode
—(R) autodecrement mode

@-(R) autodecrement deferred mode
When using these addressing modes, you are guaranteed position
independence, providing that the contents of the registers have been
supplied independent of a particular memory location.
The relative addressing modes are position-independent when a relo-
catable address is referenced from a relocatable instruction. These
modes are as follows:

A PC relative mode
@A PC relative deferred mode

Relative modes are not position-independent when an absolute ad-
dress (that is, a nonrelocatable address) is referenced from a relocata-
ble instruction. In this case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-depen-
dent, according to their use in the program. These modes are as
follows:

X(R) index mode
@X(R) index deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the
reference is position-independent. For example:

MoV 2(SP),RO ;POSITION INDEPENDENT
N=4

MoV N(SP),RO ;POSITION INDEPENDENT
If, however, X is a relocatable address, the reference is position
dependent. For example:

CLR ADDR(R1) ;POSITION DEPENDENT

Immediate mode can be either position-independent or not, according
to its use. Immediate mode references are formatted as follows:

#N immediate mode

186

Chapter 8 — Programming Techniques

When an absolute expression defines the value of N, the code is posi-
tion-independent. When a relocatable expression defines N, the code
may be position-dependent. Therefore, immediate mode references
are position-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cas-
es where an absolute virtual location is being referenced. Absoiute
mode addressing references are formatted as follows:

Q#A absolute mode

An example of a position-independent absolute reference is a refer-
ence to the directive status word ($DSW) from a relocatable instruc-
tion. For example:

MOV @#$DSW,R0 ;RETRIEVE DIRECTIVE
;STATUS

EXAMPLES

The RSX-11 library routine, PWRUP, is a FORTRAN-callable
subroutine to establish or remove a user power failure AST (Asynchro-
nous System Trap) entry point address. Imbedded within the routine is
the actual AST entry point, which saves all registers, effects a call to
the user-specified entry point, restores all registers on return, and
executes an AST exit directive. The following examples are excerpts
from this routine. The first exampie has been modified to illustrate
position-dependent references. The second example is the position-
independent version.

Position-Dependent Code

PWRUP:
CLR —(SP) ;ASSUME SUCCESS
CALL X.PAA ;PUSH (SAVE)
;ARGUMENT ADDRESSES
;ONTO STACK
WORD 1.,$DSW ;CLEAR DSW, AND
;SET R1=R2=SP
MOV $OTSV,R4 ;GET OTS IMPURE
;AREA POINTER
MOV (SP)+,R2 ;GET AST ENTRY
;POINT ADDRESS
BNE 10% ;IF NONE SPECIFIED,
;SPECIFY NO POWER
CLR —(SP) ;RECOVERY AST SERVICE
BR 20% ;

187

Chapter 8 — Programming Techniques

10$:
MOV
MOV

208%:
CALL
.BYTE

BA: MOV
MoV
MOV

R2,F.PF(R4)
#BA,—(SP)

X.EXT
109.,2.

RO,—(SP)
R1,—(SP)
R2,—(SP)

Position-independent Code

PWRUP:
CLR
CALL

.WORD
MOV
MoV
BNE

CLR

BR
10$:

MOV

MOV

ADD

20%:
CALL
.BYTE

—(SP)
X.PAA
1.,$DSW
@#$0TSV,R4
(SP)+,R2

108

—(SP)
20%

R2,F.PF(R4)
PC,—(SP)
#BA—.,(SP)

X.EXT
109.,2.

188

;SET AST ENTRY POINT
;PUSH AST SERVICE
;ADDRESS

;ISSUE DIRECTIVE, EXIT.

;PUSH (SAVE) RO
;PUSH (SAVE) R1
;PUSH (SAVE) R2

;ASSUME SUCCESS
;PUSH ARGUMENT
;ADDRESSES ONTO
;STACK

;CLEAR DSW, AND
;SET R1=R2=SP.
;GET OTS IMPURE
;AREA POINTER
;GET AST ENTRY
;POINT ADDRESS

;IF NONE SPECIFIED,
;SPECIFY NO POWER
;RECOVERY AST SERVICE

;SET AST ENTRY POINT
;PUSH CURRENT LOCATION
;COMPUTE ACTUAL
;LOCATION

;OF AST

;ISSUE DIRECTIVE, EXIT.

Chapter 8 — Programming Techniques

;ACTUAL AST SERVICE ROUTINE:

: 1)SAVE REGISTERS

: 2)EFFECT A CALL TO SPECIFIED SUBROUTINE

: 3)RESTORE REGISTERS

: 4)ISSUE AST EXIT DIRECTIVE

BA: MOV RO,—(SP) ;PUSH (SAVE) RO
MOV R1,—(SP) :PUSH (SAVE) R1
MOV R2,—(SP) :PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative
reference to an absolute symbol ($OTSV) and a literal reference to a
relocatable symbol (BA). Both references are bound by thetask build-
er to fixed memory locations. Therefore, the routine will not execute
properly as part of a resident library if its location in virtual memory is
not the same as the location specified at link time.

In the position-independent version, the reference to $OTSV has been
changed to an absolute reference. In addition, the necessary code has
been added to compute the virtual location of BA based upon the
value of the program counter. In this case, the value is obtained by
adding the value of the program counter to the fixed displacement
between the current location and the specified symbol. Thus, execu-
tion of the modified routine is not affected by its location in the image’s
virtual address space.

STACKS

The stack is part of the basic design architecture of the LSI-11 and
PDP-11 processors. It is an area of memory set aside by the program-
mer or by the operating system for temporary storage and linkage. It is
handled on a LIFO (last-in/first-out) basis, where items are retrieved in
the reverse of the order in which they were stored. On a PDP-11
processor, a stack starts at the highest location reserved for it and
expands linearly downward to a lower address as items are added to
the stack.

You do not need to keep track of the actual locations into which data is
being stacked. This is done automatically through a stack pointer. To
keep track of the last item added to the stack, a general register
always contains the memory address when the last item is stored in
the stack. Any register except register 7 (the PC) may be used as a
stack pointer under program control; however, instructions associated
with subroutine linkage and interrupt service automatically use

189

Chapter 8 — Programming Techniques

with the entry address of the subroutine. The content of this linkage
register is stored on the stack, so as not to be lost, and the return
address is moved from the PC to the linkage register. This provides
a pointer back to the calling program so that successive arguments
may be transmitted easily to the subroutine.

e |f no arguments need be passed by stacking them after the JSR
instruction, the PC may be used as the linkage register. In this case,
the result of the JSR is to move the return address in the calling
program from the PC onto the stack and replace it with the entry
address of the called subroutine.

® |n many cases, the operations performed by the subroutine can be
applied directly to the data located on or pointed to by a stack
without the need ever actually to move the data into the subroutine
area.

;CALLING PROGRAM

MOV SP,R1 ;R11S USED AS THE STACK
JSR PC,SUBR ;POINTER HERE
;SUBROUTINE
ADD (R1)+,(R1) ;ADD ITEM #1 to #2,PLACE
;RESULT INITEM #2,
;R1POINTS TO
JITEM #2 NOW

Because the hardware already uses general-purpose register R6 to
point to a stack for saving and restoring PC and processor status word
(PS) information, it is convenient to use this same stack to save and
restore immediate results and to transmit arguments to and from sub-
routines. Using R6 in this manner permits extreme flexibility in nesting
subroutines and interrupt service routines.

Since arguments may be obtained from the stack by using some form
of register indexed addressing, it is sometimes useful to save a
temporary copy of R6 in some other register which has been saved at
the beginning of a subroutine. If R6 is saved in R5 at the beginning of
the subroutine, R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used
as a stack pointer. If R6 had been used directly as the base for index-
ing and not “copied,” it might be difficult to keep track of the position
in the argument list, since the base of the stack would change with
every autoincrement/decrement which occurs.

However, if the contents of R6 (SP) are saved in R5 before any argu-

192

Chapter 8 — Programming Techniques

ments are pushed onto the stack, the position relative to R5 would
remain constant.

Return from a subroutine also involves the stack, as the return instruc-
tion, RTS, must retrieve information stored there by the JSR.

When a subroutine returns, it is necessary to “clean up” the stack by
eliminating or skipping over the subroutine arguments. One way this
can be done is by insisting that the subroutine keep the number of
arguments as its first stack item. Returns from subroutines then in-
volve calculating the amount by which to reset the stack pointer,
resetting the stack pointer, then storing the original contents of the
register used as the copy of the stack pointer.

e Stack storage is used in trap and interrupt linkage. The program
counter and the processor status word of the executing program are
pushed on the stack.

® When using the system stack, nesting of subroutines, interrupts,
and traps to any level can occur until the stack overflows its legal
limits.

e The stack method is also available for temporary storage of any kind
of data. It may be used as a LIFO list for storing inputs, intermediate
results, etc.

As an example of stack use, consider this situation: a subroutine
(SUBR) wants to use registers 1 and 2, but these registers must be
returned to the calling program with their contents unchanged. The
subroutine could be written as follows:

Assembler
Address Octal Code Syntax Comments
076322 010167 SUBR: MOV R1,TEMP1 ;save R1
076324 000074 *
076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *
076410 016701 MOV TEMP1,R1 ;restore R1
076412 000006 *)
076414 016702 MOV TEMP2,R2 ;restore R2
076416 000004 *
076420 000207 RTS PC
076422 000000 TEMP1:0
076424 000000 TEMP2: 0

* Index Constants

193

Chapter 8 — Programming Techniques

OR: Using the Stack
R3 has been previously set to point to the end of an unused block of
memory.

Assembler
Address Octal Code Syntax Comments
010020 010143 SUBR: MOV R1,—(R3) ;push R1
010022 010243 MOV R2,—-(R3) ;push R2
610130 612302 MOV (R3)+,R2 ;pop R2
010132 012301 MOV (R3)+,R1 ;pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a stack pointer.

The second routine uses four fewer words of instruction code and two
words of temporary stack storage. Another routine could use the same
stack space at some later point. Thus, the ability to share temporary
storage in the form of a stack is a way to save on memory use.

As another example of stack use, consider the task of managing an
input buffer from a terminal. As characters come in, you may wish to
delete characters from the line; this is accomplished very easily by
maintaining a byte stack containing the input characters. Whenever a
backspace is received, a character is popped off the stack and elimi-
nated from consideration. In this example, you have the choice of
popping characters to be eliminated by using either the MOVB (MOVE
BYTE) or INC (INCREMENT) instruction. This example is illustrated in
Figure 8-3.

001011

001010
001007
G01006

INC R3

001005

0G1004
201003
001002
001001 z <r3 [ooto]

D|Imlz|lol«4|lu|lc|o
DIMIETIO| ||

-r3y [oowoz]

Figure 8-3 Byte Stack Used as a Character Buffer

194

Chapter 8 — Programming Techniques

Note that in this case the increment instruction (INC) is preferable to
MOVB, since it accomplishes the task of eliminating the unwanted
character from the stack by readjusting the stack pointer without the
need for a destination location. Also, the stack pointer (SP) used in this
example cannot be the system stack pointer (R6) because R6 may
point only to word (even) locations.

DELETING ITEMS FROM A STACK
To delete one item:

INC SP or TSTB(SP)+ for a byte stack
To delete two items:

ADD#2,SP or TST(SP)+ for a word stack
To delete fifty items from a word stack:

ADD #100.,SP
SUBROUTINE LINKAGE
The contents of the linkage register are saved on the system stack
when a JSR is executed. The effect is the same as if a MOV reg,—(R6)
had been performed. Following the JSR instruction, the same register

is loaded with the memory address (the contents of the current PC),
and a jump is made to the entry location specified.

Figure 8-4 illustrates the before and after conditions when executing
the subroutine instructions JSR R5,1064.

BEFORE AFTER

(R5)= 000132 (R5): 001004
(R6)=001776 (R6):001774
(PC):(R7}: 001000 (PC)=(R7): 00106 4
002000 annnnn 002000 nnnnnn
001776 mmmmmm |+sp oo1776] oot776 mmmmmm
001774 001774 000132 - SP L 001774]

001772 001772

Figure 8-4 JSR Instruction

Because the PDP-11 hardware already uses general-purpose register
R6 to point to a stack for saving and restoring PC and PS (processor
status word) information, it is convenient to use this same stack to
save and restore intermediate results and to transmit arguments to
and from subroutines. Using R6 this way permits nesting subroutines
and interrupt service routines.

195

Chapter 8 — Programming Techniques

Return from a Subroutine

An RTS instruction provides for a return from the subroutine to the
calling program. The RTS instruction must specify the same register
as the one the JSR instruction used in the subroutine call. When the
RTS is executed, the register specified is moved to the PC, and the top
of the stack to be placed in the register specified. Thus, an RTS PC has
the effect of returning to the address specified on the top of the stack.

Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling pro-
cedure, effected by the JSR instruction.

e Arguments can be passed quickly between the calling program and
the subroutine.

o |f there are no arguments, or the arguments are in a general register
or on the stack, the JSR PC,DST mode can be used so that none of
the general-purpose registers are used for linkage.

e Many JSRs can be executed without the need to provide any saving
procedure for the linkage information, since all linkage information
is automatically pushed onto the stack in sequential order. Returns
can be made by automatically popping this information from the
stack in the order opposite to the JSRs.

Such linkage address bookkeeping is called automatic “nesting” of
subroutine calls. This feature enables you to construct fast, efficient
linkages in a simple, flexible manner. It also permits a routine to call
itself in those cases where this is meaningful.

INTERRUPTS

An interrupt is similar to a subroutine call, except that it is initiated by
the hardware rather than by the software. An interrupt can occur after
the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time. In
direct program data transfer, the CPU loops to check the state of the
Done/ready flag (bit 7) in the peripheral interface. Using interrupts, the
system actually ignores the peripheral, running its own low-priority
program until the peripheral initiates service by setting the Done bit.
The Interrupt Enable bit in the control status register must have been
set at some prior point. The CPU completes the instruction being
executed and then is interrupted and vectors to an interrupt service
routine. The service routine will transfer the data and may perform
calculations with it. After the interrupt service routine has been com-
pleted, the computer resumes the program that was interrupted by the
peripheral’s high-priority request.

196

Chapter 8 — Programming Techniques

With interrupt service routines, linkage information is passed so thata
return to the main program can be made. More information is neces-
sary for an interrupt sequence than for a subroutine call because of
the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be
preserved in order to return to the program without any noticeable
effects. This information is stored in the processor status word (PS).
Upon interrupt, the contents of the program counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6
system stack. The effect is the same as if:

MOV PS,—-(SP) ;Push PS
MOV PC,—(SP) ;Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned
consecutive memory locations which are called “vector addresses.”
The first word contains the interrupt service routine entry address (the
address of the service routine program sequence), and the second
word contains the new PS, which will determine the machine status,
including the operational mode and register set to be used by the
interrupt service routine. The contents of the vector address are set
under program control.

After the interrupt service routine has been completed, an RTI (return
from interrupt) is performed. The top two words of the stack are
automatically popped and placed in the PC and PS respectively, thus
resuming the interrupted program.

Caution When Clearing Device Interrrupt Enable Bits

Clearing device Interrupt Enable bits while the device is still active can
lead to a bus time-out error when the processor attempts to receive
the interrupt vector from that device. Consider the example:

PSW =10
CLR @ #177564

As a result, the DLV-11 Serial Line Unit Interrupt Enable bit is being
cleared. Now, assume that the transmitter is still active and sending
characters, and further assume that the Done bit in the status register
becomes set shortly after the CLR instruction is fetched, but before the
Interrupt Enable bit can be cleared. The device will now post an inter-
rupt request because the Done bit has been set and the Interrupt
Enable bit is still set. The CLR instruction will complete execution and
the processor will recognize the interrupt request since there was not
enough time for the device to disable the interrupt request. The proc-

197

Chapter 8 — Programming Techniques

essor will then attempt to obtain a vector from the interrupting device.
However, a bus time-out error will occur because the device now has
had enough time to remove the interrupt request and will not respond.
The processor ireats this time-out as a fatal condition and halts by
entering Micro-ODT. If multiple interrupt requests were pending at this
time, a time-out would not occur since the next device would respond
with an interrupt vector.

One method of avoiding this problem is to disable interrupts immedi-
ately before the Interrupt Enable bit is cleared. For example:

MTPS #200
CLR @#177564
MTPS #0

In this situation, enough time has been allowed for the interrupt re-
quest to be removed by the device. This feature was included to detect
faulty interrupt operation; specifically when an interrupting device
does not properly respond within the required time period.

Nesting

Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of sub-
routines and interrupts without any confusion. By using the RTl and
RTS instructions, respectively, the proper returns are automatic. Nest-
ed interrupt service routines and subroutines are illustrated in Figure
8-5.

SP—=PO

1. Process0isrunning; SP is
pointing to location PO.

PO

2. Interrupt stops process 0
with PC = PCQO, and status

PSO

SP—» PCO
= PSQ; starts process 1.

(¢

3. Process 1 uses stack for Fo
temporary storage (TEO, :2
TE1). e
SP— TEY

[o]

198

Chapter 8 — Programming Techniques

4. Process 1 interrupted with PO

PC = PC1 and status = Fso

PS1; process 2 is started. o

TEO

TEY

PSH

SP —» PC
o]

5. Process 2is running and
does a JSR R7,A to subrou- Pso
tine A with PC = PC2. :;o

TE!

PS1

PC1t

SP—— PC2
0

6. Subroutine A is running PO

and uses stack for tempo- Pso
PCO

rary storage. —
TE?

PS1

PC1t

PC2

TA1

SP—-» TA2

[¢]

7. Subroutine A releases the E
temporary storage holding 5o
TA1and TA2. TEO

TEY

PSH

PCH

SP — PC2
[¢]

199

Chapter 8 — Programming Techniques

8. Subroutine A returns con- PO
trol to process 2 with an P50
RTS R7; PCisreset to PC2. Pco
TEO
TE!
PSt
SP—e PCHY

o

9. Process 2 completes with
an RTl instruction
(dismisses interrupt); PC is 5co
reset to PC(1) and status is TEo
reset to PS1; process 1 re- sP—e TE!
sumes.

PO

10. Process 1releases the tem- PO
porary storage holding TEO
and TEA1.

PSO
SP—» PCO

11. Process 1 completes its op- SP—ePO
eration with an RTI, PC is
reset to PCO, and status is o
reset to PSO.

Figure 8-5 Nested Interrupt Service Routines and Subroutines
Note that the area of interrupt service programming is intimately in-

volved with the concept of CPU and device priority levels.

RE-ENTRANCY
Other advantages of the PDP-11 stack organization are evidenced in
programming systems that are engaged in concurrent handling of

200

Chapter 8 — Programming Techniques

several tasks. Multitask program environments range from simple sin-
gle-user applications which manage a mixture of 1/0 interrupt service
and background data processing, as in RT-11, to large complex mul-
tiprogramming systems that manage an intricate mixture of executive
and multiuser programming situations, as in RSX-11. In all cases,
using the stack as a programming technique provides flexibility and
time/memory economy by allowing many tasks to use a single copy of
the same routine with a simple straightforward way of keeping track of
complex program linkages.

The ability to share a single copy of a program among users or among
tasks is called re-entrancy. Re-entrant program routines differ from
ordinary subroutines in that it is not necessary for re-entrant routines
to finish processing a given task before they can be used by another
task. Multiple tasks can exist at any time in varying stages of comple-
tion in the same routine. Figure 8-6 illustrates this situation.

Approach Conventional Approach
Programs 1, 2, and 3 can share A separate copy of Subroutine
Subroutine A. A must be provided for each
program.
MEMORY MEMORY
PROGRAM 1 PROGRAM 1 EZSUBROUTINE 4 4

PROGRAM 2 | SUBROUTINE A
PROGRAM 3

PROGRAM 2

SUBROGTINE. A
b

PROGRAM 3

Figure 8-6 Re-entrant Routines

Re-entrant Code
Re-entrant routines must be written in pure code, code that is not self-
modifying and consists entirely of instructions and constants.

Pure code (any code that consists exclusively of instructions and con-
stants) may be used when writing any routine, éven if the completed
routine is not to be re-enterable. The value of using pure code when-
ever possible is that the resulting code:

® js generally considered easier to debug

® can be kept in read-only memory

201

Chapter 8 — Programming Techniques

Using re-entrant code, control of a routine can be shared as illustrated
in Figure 8-7.

T T ™ REENTRANT
ROUTINE Q

Figure 8-7 Sharing Control of a Routine

® Task A requests processing by Re-entrant Routine Q.

® Task A temporarily relinquishes control of Re-entrant Routine Q
before it completes processing.

® Task B starts processing the same copy of Re-entrant Routine Q.

e Task B completes processing by Re-entrant Routine Q.

e Task A regains use of Re-entrant Routine Q and resumes where it
stopped.

Writing Re-entrant Code

In an operating system environment, when one task is executing and is
interrupted to allow another task to run, a context switch occurs which
causes the processor status word and current contents of the general-
purpose registers (GPRs) to be saved and replaced by the appropriate
values for the task being entered. Therefore, re-entrant code should
use the GPRs and the stack for any counters, pointers, or data that
must be modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute.
It causes all of the GPRs, the PS, and often other task-related informa-
tion to be saved in an impure area, then reloads these registers and
locations with the appropriate data for the task being entered. Notice
that one consequence of this is that a new stack pointer value is load-
ed into R6, thereby causing a new area to be used as the stack when
the second task is entered.

202

Chapter 8 — Programming Techniques

The following should be observed when writing re-entrant code:

e All data should be in or pointed to by one of the general-purpose
registers.

® A stack can be used for temporary storage of data or pointers to
impure areas within the task space. The pointer to such a stack
would be stored in a GPR.

e Parameter addresses should be used by indexing and indirect
reference rather than by putting them into instructions within the
code.

e When temporary storage is accessed within the progam, it should
be by indexed addresses, which can be set by the calling task in
order to handle any possible recursion.

Use of Re-entrant Code

Re-entrant code is used whenever more than one task may reference
the same code without requiring that each task complete processing
with the code before the next may use it.

COROUTINES

In some programming situations, it happens that several program
segments or routines are highly interactive. Control is passed back
and forth between the routines, each going through a period of sus-
pension before being resumed. Since the routines maintain a symme-
tric relationship with each other, they are called coroutines.

Coroutines are two program sections, either subordinate to the other,
which can call each other. The nature of the call is “l have processed
all I can for now, so you can execute until you are ready to stop, then |
will continue.”

The coroutine call and return are identical, each being a jump to
subroutine instruction with the destination address being on top of the
stack and the PC serving as the linkage register, i.e.,

JSR PC,@(R6)+

Coroutine Calis

The coding of coroutine calls is made simple by the PDP-11 stack
feature. Initially, the entry address of the coroutine is placed on the
stack and from that point the

JSR PC,@(R6)+

instruction is used for both the call and the return statements. The
result of this JSR instruction is to exchange the contents of the PC and

203

Chapter 8 — Programming Techniques

the top element of the stack, and so permit the two routines to swap
control and resume operation where each was terminated by the
previous swap. Figure 8-8 illustrates a coroutine example.

For example:
Routine A

.MOV #LOC,—(SP)

JSR PC,@(SP)+
(PCO)

Stack

LOC <SP

PCO <SP

PC1«SP

Routine B

LOC:

JSR PC,@(SP)+
(PC1)

Figure 8-8 Coroutine Example

204

Comments
LOC is pushed
onto the stack
to prepare for
the coroutine
call.

When the call
is executed,
the PC from
routine A is
pushed on the
stack and exe-
cution contin-
ues at LOC.
Routine B can
return control
to routine A
by another
coroutine call.
PCO is popped
from the stack
and execution
resumes in
routine A just
after the call
to Routine B,
i.e., at PCO.
PC1is saved
on the stack
for a later
return to
Routine B.

Chapter 8 — Programming Techniques

Notice that the coroutine linkage cleans up the stack with each transfer

of control.

Coroutines Versus Subroutines

® A subroutine can be considered to be subordinate to the main or
calling routine, but a coroutine is considered to be on the same
level, as each coroutine calls the other when it has completed cur-
rent processing.

A subroutine executes, when called, to the end of its code. When
called again, the same code will execute before returning. A corou-
tine executes from the point after the last call of the other coroutine.
Therefore, the same code will not be executed each time the corou-
tine is called.

The call and return statements for coroutines are the same:

JSRPC,@(SP)+

This one instruction also cleans up the stack with each call.
The last coroutine call will leave an address on the stack that must
be popped if no further calls are to be made.

Each coroutine call returns to the coroutine code at the point after
the last exit with no need for a specific entry point label, as would be
required with subroutines.

Figure 8-9 illustrates the structure of subroutines and coroutines.

CORQUTINES MAIN PROGRAMS SUBROUTINES
A B lsv LOC:
JSR PC.@0 (SP)+ ————=| JSR Rn, LOC

\JSR PC.@ (SP)+ \
/ RTS
SR PC,@® (SP)*

JSR Rn, LOC

JSR PC,@ (SP}+

Figure 8-9 Coroutines vs. Subroutines

205

Chapter 8 — Programming Techniques

Using Coroutines

® Coroutines should be used whenever two tasks must be coordinat-
ed in their execution without obscuring the basic structure of the
program. For example, in decoding a line of assembly language
code, the results at any one position might indicate the next process
to be entered. Where a label is detected, it must be processed. If no
label is present, the operator must be located, etc.

e Coroutines should be employed to add clarity to the process being
performed, to make debugging easier.

Examples

An assembler must perform a lexicographic scan of each assembly
language statement during pass one of the assembly process. The
various steps in such a scan should be separated from the main
program flow to add to the program clarity and to aid in debugging by
isolating many details. Subroutines would not be satisfactory here, as
too much information would have to be passed to the subroutine each
time it was called. This subroutine would be too isolated. Coroutines
could be used effectively here with one routine being the assembly-
pass-one routine and the other extracting one item at a time from the
current input line. This situation is illustrated in Figure 8-10.

ROUTINE A ROUTINE 8

START AND SKIP
BLANKS

NONBLANK
PEAD NAME } ﬁJLPRocess NAME —I
[sm BLANKS J
PROCESS MNEMONICS | [ReaD MnEMONICS]

I N L

READ ADDRESSES
LINE

SEMI-COLON TERMINATOR

[SKIP COMMENT }~ =" END]

Figure 8-10 Coroutine Path
206

Chapter 8 — Programming Techniques

Coroutines can be utilized in 1/0 processing. The example shows co-
routines used in double-buffered 1/0 using I0X. This example is illu-
strated in Figure 8-11. The flow of events might be described as:

Write 01
Read 1 concurrently
Process I2

then
Write 02
Read 12 concurrently
Process |1

Routine #1 is operating; it then
executes:

MOV #PC2,—(R6)

JSR PC,@(R6)+
with the following results:

1. PC2is popped from the

stack and the SP autoincre- Sp—e ez
mented.

2. SPis autodecremented and . l pc2
the old PC (i.e., PC1) is —
pushed.

3. Control is transferred to the |
location PC2 (i.e., Routine #
2).

sp—e PC 1 ¢

Routine #2 is operating; it then
executes:

JSR PC,@(R6)+ with the result
that PC2 is exchanged for PC1
on the stack and control is
transferred back to Routine #1.

Figure 8-11 Coroutine Interaction

207

Chapter 8 — Programming Techniques

RECURSION

An interesting aspect of a stack facility, other than its providing for
automatic handling of nested subroutines and interrupts, is that a
program may call on itself as a subroutine just as it can call on any
other routine. Each new call causes the return linkage to be placed on
the stack, which, as it is a last-in/first-out queue, sets up a natural
unraveling to each routine just after the point of departure.

Typical flow for a recursive routine is illustrated in Figure 8-12.

MAIN
PROGRAM

Figure 8-12 Recursive Routine Flow

The main program calls function one, SUB 1, which calls function two,
SUB 2, which recurses once before returning.

Example:

DNCF: !
BEQ 1% ;TO EXIT RECURSIVE LOOP
JSR R5,DNCF ;RECURSE

1$ ’
RTS R5 ;RETURN TO 1$ FOR

;EACH CALL, THENTO
;MAIN PROGRAM

208

Chapter 8 — Programming Techniques

The routine DNCF calls itself until the variable tested becomes equal
to zero, then it exits to 1$ where the RTS instruction is executed,
returning to the 1$ once for each recursive call and one final time to
return to the main program.

In general, recursion techniques will lead to slower programs than the
corresponding interactive techniques, but the recursion will give pro-
grams shorter in memory space used. Both the brevity and clarity
produced by recursion are important in assembly language programs.

Uses of Recursion

Recursion can be used in any routine in which the same process is
required several times. For example, a function to be integrated may
contain another function to be integrated, i.e., to solve for XM

where:
XM=1+ F(X)

and:
FX)= G(X)

Another use for a recursive function could be in calculating a factorial
function because

FACT(N) = FACT(N—-1)*N

Recursion should terminate when N = 1.

The macro processor within MACRO-11, for example, is itself recur-
sive, as it can process nested macro definitions and calls. When a
macro call is encountered within a definition, the processor must work
recursively, i.e., to process one macro before it is finished with anoth-
er, then to continue with the previous one. The stack is used for a
separate storage area for the variables associated with each call to the
procedure.

As long as nested definitions of macros are available, it is possible for
a macro to call itself. However, unless conditionals are used to termi-
nate this expansion, an infinite loop could be generated.

209

Chapter 8 — Programming Techniques

PROCESSOR TRAPS

There is a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include power failure, odd addressing errors, stack errors, time-out
errors, memory parity errors, memory management violations,
floating point processor exception traps, use of reserved instructions,
use of the T bit in the processor status word, and use of the IOT, EMT,
and TRAP instructions.

Power Failure

Whenever AC power drops below 95 volts for 115V power (190 volts
for 230V) or outside a limit of 47 to 73 Hz, as measured by DC voltage,
the power-fail sequence is initiated. The central processor automati-
cally traps to location 24 and the power-fail program has 2 msec to
save all volatile information (data in registers), and to condition peri-
pherals for power-fail.

When power is restored, the processor traps to location 24 and exe-
cutes the power-up routine to restore the machine to its state prior to
power failure.

0Odd Addressing Errors

This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

Time-out Errors

These errors occur when a master synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address nonexistent memory
or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal and reserved instructions which cause the
processor to trap through location 10.

210

Chapter 8 — Programming Techniques

Vector Address and Trap Errors

000 (reserved)

004 CPU errors

010 lllegal and reserved instructions
014 BPT, breakpoint trap

020 10T, input/output trap

024 Power-fail

030 EMT, emulator trap

034 TRAP instruction

TRAP INSTRUCTIONS

Trap instructions provide for calls to emulators, 1/0 monitors, debug-
ging packages, and user-defined interpreters. A trap is effectively an
interrupt generated by software. When a trap occurs, the contents of
the current program counter (PC) and program status word (PS) are
pushed onto the processor stack and replaced by the contents of a 2-
word trap vector containing a new PC and new PS. The return se-
quence from a trap involves executing an RTI or RTT instruction,
which restores the old PC and old PS by popping them from the stack.
Trap vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-
order byte of the word in their machine language representation. This
allows user information to be transferred in the low-order byte. The
new value of the PC loaded from the vector address of the TRAP or
EMT instructions is typically the starting address of a routine to access
and interpret this information. Such a routine is called a trap handler.

The trap handler must accomplish several tasks. It must save and
restore all necessary GPRs, interpret the low byte of the trap instruc-
tion and call the indicated routine, serve as an interface between the
calling program and this routine by handling any data that needs to be
passed between them, and, finally, cause the return to the main rou-
tine.

Uses of Trap Handlers

The trap handler can be useful as a patching technique. Jumping out
to a patch area is often difficult because a 2-word jump must be
performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the trap handler. The
jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

211

Chapter 8 — Programming Techniques

The trap handler can be used in a program to dispatch execution to
any one of several routines. Macros may be defined to cause the
proper expansion of a call to one of these routines. For example,

.MACRO SUB2 ARG
MOV ARG, RO
TRAP +1

.ENDM

When expanded, this macro sets up the one argument required by the
routine in RO and then causes the trap instruction with the number 1 in
the lower byte. The trap handler should be written so that it recognizes
a 1 as a call to SUB2. Notice that ARG here is being transmitted to
SUB2 from the calling program. It may be data required by the routine
or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is
used to call system or monitor routines from a user program. The
monitor of an operating system necessarily contains coding for many
functions, i.e., 1/0, file manipulation, etc. This coding is made accessi-
ble to the program through a series of macro calls, which expand into
EMT instructions with low bytes indicating the desired routine, or
group of routines to which the desired routine belongs. Often a GPR is
designated to be used to pass an identification code to further indicate
to the trap handler which routine is desired. For example, the macro
expansion for a resume execution command in RT-11 is as follows:

.MACRO .RSUM
CMs, 2.
.ENDM

and CM3 is defined as

.MACRO CM3 CHAN, CODE

MOV #CODE *400,R0
IIFNB CHAN,BISB CHAN,RO

EMT 374

.ENDM

Notice the EMT low byte is 374. This is interpreted by the EMT handler
to indicate a group of routines. Then the contents of RO (high byte) are
tested by the handler to identify exactly which routine within the group
is being requested, in this case routine number 2. (The CM3 call of the
.RSUM is set up to pass the identification code.)

212

Chapter 8 — Programming Techniques

Summary of PDP-11 Processor Trap Vectors:

VECTOR ADDRESS FUNCTION SERVED

4 lllegal instructions (JSR,
JMP for mode 0)

Bus errors (odd address er-
ror, time-out)

Stack limit (Red Zone, Yel-
low Zone)

Illegal internal address
Microbreak

10 Reserved instruction
XFC with UCS disabled
SPL, MTPS, MFPS
FADD, FSUB, FMUL, FDIV
HALT in user mode

14 Trace (T bit)
20 10T
24 Power-fail
30 EMT
34 TRAP
114 Cache parity error

UNIBUS memory parity er-
ror UCS parity error

244 Floating point exception

250 Memory management (KT)
abort

CONVERSION ROUTINES

Nearly all assembly language programs require the translation of data
or results from one form to another. Coding that performs such a
transformation will be called a conversion routine in this Handbook.
Several commonly used conversion routines are included in the fol-
lowing pages.

Nearly all assembly language programs involve some type of
conversion routines, octal to ASCII, octal to decimal, and decimal to
ASCII being a few of the most widely used.

213

Chapter 8 — Programming Techniques

Arithmetic multiply and divide routines are fundamental to many con-
version routines.

Division is typically approached in one of two ways.

1. The division can be accomplished through a combination of ro-
tates and subtractions.

Examples:
Assume the following code and register data; to make the exam-
ple easier, also assume a 3-bit word.

DIV: MOV #3,—(SP) :SET UP DIGIT COUNTER
CLR —(SP) ;CLEAR RESULT
1$: ASL (SP)
ASL R1
ROL RO
CMP RO,R3
BLT2$
SUB R3,R0 ;RO CONTAINS REMAINDER
INC (SP) ;INCREMENT RESULT
2%: DEC 2 (SP) ;DECREMENT COUNTER
BNE 1$
Therefore, to divide 7 by 2:
R0=000 remainder
R1=111 seven-multiplicand
R3=010 two-multiplier
C bit=0
STACK
011 counter
000 quotient

Following through the coding, the quotient, remainder, and div-
idend all shift left, manipulating the most significant digit first, etc.

At the conclusion of the routine:

RO=001 remainder
R1=000

R3=010

STACK

000 counter
011 quotient

214

Chapter 8 — Programming Techniques

2. A second method of division occurs by repeated subtraction of
the powers of the divisor, keeping a count of the number of
subtractions at each level.

Example:
To divide 221,, by 10, first try to subtract powers of 10 until a non-
negative value is obtained, counting the number of subtractions of

each power.
221
—1000
Negative, so go to next lower power, count for 103=0.
221
-100

121 countfor 10%=1.
-100

21 count=2
-100

Negative, so reduce power.
Count for 102=2

21
-10
11 countfor 10'=1.

11
-10

1 count=2
-10

Negative, so count for 10'=2.

No lower power, so remainder is 1.
Answer = 022, remainder 1.

Multiplication can be done through a combination of rotates and addi-
tions or through repetitive additions.

215

Chapter 8 — Programming Techniques

Example:
Assume the following code and a 3-bit word.
CLRRO ;HIGH HALF OF ANSWER
MOV #3,CNT ;SET UP COUNTER
MOV R1,MULT; ;MULTIPLICAND
MORE: ROR R2
BCC NOW
ADD MULT,RO ;IF INDICATED,
ADD
iMULTIPLICAND
NOW: ROR RO
ROR R1
DEC CNT
BNE MORE
MULT: 0
CNT: 0

The following conditions exist for 6 times 3:

RO = 000 — high-order half of result
R1 = 110 — multiplicand
R3 = 011 — mulitiplier

After the routine is executed:

RO = 010 — high-order half of result
R1 = 010 — low-order half of resuit

R2 = 100

CNT =0

MULT = 110

Example:

Multiplication of RO by 50,4 (101000).

MULS50: MOV R0,—(SP)

ASL RO
ASL RO
ADD (SP)+,R0
ASL RO
ASL RO
ASL RO
RETURN

If RO contains 7:
RO = 111

216

Chapter 8 — Programming Techniques

After execution;

RO = 100011000
(7*504 = 430,).

ASCII CONVERSIONS
The conversion of ASCIlI characters to the internal representation of a
number as well as the conversion of an internal number to ASCIlin I/0
operations presents a challenge. The following routine takes the 16-bit
word in R1 and stores the corresponding six ASCII characters in the
buffer addressed by R2.

OUT: MOV #5R0 :LOOP COUNT
LOOP. MOV R1,—(SP) :COPY WORD INTO STACK
BIC #177770,@SP :ONE OCTAL VALUE
ADD #60,@SP ;CONVERT TO ASCI
MOVB (SP)+,—(R2) :STORE IN BUFFER
ASR R1 :SHIFT
ASR Rf : RIGHT
ASR Ri1 : THREE
DEC RO ;TEST IF DONE
BNE LOOP :NO, DO IT AGAIN
BIC #177776,R1 :GET LASTBIT
ADD #60,R1 :CONVERT TO ASCII
MOVB R1,—(R2) :STORE IN BUFFER
RTS PC :DONE,RETURN

217

i
]

CHAPTER 9
LSI-11 BUS

The LSI-11 Bus is the low-end member of DIGITAL’s bus family. All
DIGITAL microcomputers use the LSI-11 Bus. However, in order to
use the 22-bit addressing capabilities of the LSI-11/23, PDP-11/23,
and the PDP-11/23-PLUS, the extended LSI-11 Bus is required.

The LSI-11 Bus consists of 42 bidirectional and 2 unidirectional signal
lines. These form the lines along which the processor, memory, and
1/0 devices communicate with each other.

Addresses, data, and control information are sent along these signal
lines, some of which contain time-multiplexed information. The lines
are divided as follows:

® Sixteen multiplexed data/address lines — BDAL<15:00>

e Two multiplexed address/parity lines — BDAL<17:16>

e Four extended address lines — BDAL<21:18>

e Six data transfer control lines — BBS7, BDIN, BDOUT, BRPLY,
BSYNC, BWTBT

® Six system control lines — BHALT, BREF, BEVNT, BINIT, BDCOK,
BPOK

e Ten interrupt control and direct memory access control lines —
BIAKO, BIAKI, BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGO, BDMR,
BSACK, BDMGI

In addition, a number of power, ground, and spare lines have been
defined for the bus. For a detailed description of these lines, please
refer to Table 9-1.

The discussion in this chapter applies to the general 22-bit physical
address capability. In cases where modules utilize 16- or 18-bit physi-
cal address space, this discussion applies to the lines that are utilized
by those modules.

219

Chapter 9 — LSI-11 Bus

Most LSI-11 Bus signals are bidirectional and use terminations for a
negated (high) signal level. Devices connect to these lines via high-
impedance bus receivers and open collector drivers. The asserted
state is produced when a bus driver asserts the line low. Although
bidirectional lines are electrically bidirectional (any point along the line
can be driven or received), certain lines are functionally unidirectional.
These lines communicate to or from a bus master (or signal source),
but not both. Interrupt acknowledge (BIACK) and direct memory ac-
cess grant (BDMG) signals are physically unidirectional in a daisy-
chain fashion. These signals originate at the processor output signal
pins. Each is received on device input pins (BIAKI or BDMGI) and
conditionally retransmitted via device output pins (BIAKO or BDMGO).
These signals are received from higher-priority devices and are re-
transmitted to lower-priority devices along the bus.

Master/Slave Relationship

Communication between devices on the bus is asynchronous. A mas-
ter/slave relationship exists throughout each bus transaction. At any
time, there is one device that has control of the bus. This controlling
device is termed the bus master. The master device controls the bus
when communicating with another device on the bus, termed the
slave. The bus master (typically the processor or a DMA device) initi-
ates a bus transaction. The slave device responds by acknowledging
the transaction in progress and by receiving data from, or transmitting
data to, the bus master. LSI-11 Bus control signals transmitted or
received by the bus master or bus slave device must complete the
sequence according to bus protocol.

The processor controls bus arbitration, i.e., which becomes bus mas-
ter at any given time. A typical example of this relationship is the
processor, as master, fetching an instruction from memory, which is
always a slave. Another example is a disk, as master, transferring data
to memory as slave. Communication on the LSI-11 Bus is interlocked
so that for certain control signals issued by the master device, there
must be a response from the slave in order to complete the transfer. It
is the master/slave signal protocol that makes the LSI-11 Bus asyn-
chronous. The asynchronous operation precludes the need for syn-
chronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response from
the slave device, each bus master must include a time-out error circuit
that will abort the bus cycle if the slave device does not respond to the
bus transaction within 10 microseconds.

The actual time before a time-out error occurs must be longer than the
reply time of the slowest peripheral or memory device on the bus. The
signal assignments are shown in Table 9-1.

220

Chapter 9 — LSI-11 Bus

Table 9-1 Signal Assignments

DATA AND ADDRESS

Nomenclature Pin Assignment

BDALO AU2

BDALT1 AV2

BDAL2 BE2

BDAL3 BF2

BDAL4 BH2

BDALS5S BJ2

BDAL6 BK2

BDAL7 BL2

BDALS BM2

BDALS BN2

BDAL10 BP2

BDAL11 BR2

BDAL12 BS2

BDAL13 BT2

BDAL14 BU2

BDAL15 BvV2

BDAL16 AC1

BDAL17 AD1

BDAL18 BC1

BDAL19 BD1

BDAL20 BE1

BDAL21 BF1

CONTROL

Nomenclature Pin Assignment
Data Control

BDOUT AE2

BRPLY AF2

BDIN AH2

BSYNC AJ2

BWTBT AK2

BBS7 AP2
Interrupt Control

BIRQ7 BP1

BIRQ6 AB1

BIRQ5 AA1

221

Chapter 9 — LSI-11 Bus

BIRQ4 AL2
BIAKO AN2
BIAK1 AM2
DMA Control
BDMR AN1
BSACK BN1
BDMGO AS2
BDMGH1 AR2
System Control
BHALT AP1
BREF AR1
BEVNT BR1
BINIT AT2
BDCOK BA1
BPOK BB1
POWER AND GROUND
Nomenclature Pin Assignment
+5B AS1
+12B(or battery) -
+12B BS1
+5B AV1
+5 AA2
+5 BA2
+5 BV1
+12 AD2
+12 BD2
-12 AB2
-12 BB2
GND AC2
BSYNCL AJ1
GND AM1
GND AT1
GND BC2
GND BJ1
GND BM1
GND BT1

222

Chapter 9 — LSI-11 Bus

SPARES

Nomenclature Pin Assignment
SSparei AE1
SSpare3d AH1
SSpare8 BH1
SSpare2 AF1
MSpareA AK1
MSpareB AL1
MSpareB BK1
MSpareB BL1
PSparei AU1
ASpare2 BU1

DATA TRANSFER BUS CYCLES
Data transfer bus cycles are listed and defined in Table 9-2.

Table 9-2 Data Transfer Operations

Function (with

Bus Cycle Respect to the

Mnemonic Description Bus Master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write byte

DATIO Data word Read-modify-write
input/output

DATIOB Data word Read-modify-write

input/byte output byte

These bus cycles, executed by bus master devices, transfer 16-bit
words or 8-bit bytes to or from slave devices. The bus signals listed in
Table 9-3 are used in the data transfer operations described in Table
9-2.

223

Chapter 9 — LSI-11 Bus,

Table 9-3 Bus Signals For Data Transfers

Mnemonic
BDAL<21:00> L

BSYNC L
BDINL
BDOUT L

BRPLY L

BWTBT L
BBS7

Data transfer bus cycles can be reduced to three basic types: DATI,
DATO(B), and DATIO(B). These transactions occur between the bus
master and one slave device selected during the addressing portion of

the bus cycle.

Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have
been completed (BSYNC L negated) and the device must become bus
master. The bus cycle can be divided into two parts, an addressing
portion, and a data transfer portion. During the addressing portion,
the bus master outputs the -address for the desired slave device,
memory location or device register. The selected slave device re-

Description

22 Data/address
lines

Bus Cycle Control
Data input indicator

Data output indi-
cator

Slave’s acknowi-
edge of bus cycle

Write/byte control

1/0 device select
indicates address is
inthe I/0 page

224

Function

BDAL<15:00> L
are used for word
and byte transfers.
BDAL<17:16> L
are used for extend-
ed addressing,
memory parity error
(16), and memory
parity error enable
(17) functions.
BDAL<21:18> L
are used for extend-
ed addressing be-
yond 256 KB.

Strobe signals.

Control signals.

Chapter 9 — LSI-11 Bus

sponds by latching the address bits and holding this condition for the
duration of the bus cycle until BSYNC L becomes negated. During the
data transfer portion, the actual data transfer occurs.

Device Addressing — The device addressing portion of a data trans-
fer bus cycle comprises an address setup and deskew time and an
address hold and deskew time. During the address setup and deskew
time, the bus master does the following:

® Asserts BDAL<21:00> L with the desired slave device address bits
® Asserts BBS7 L if a device in the I/0 page is being addressed

e Asserts BWTBT L if the cycle is a DATO(B) bus cycle

During this time the address, BBS7 L, and BWTBT L signals are as-
serted at the slave bus receiver for at least 75 ns before BSYNC goes
active. Devices in the I/0 page ignore the nine high-order address bits
BDAL<21:13> and instead decode BBS7 L along with the thirteen
low-order address bits. An active BWTBT L signal indicates that a
DATO(B) operation follows, while an inactive BWTBT L indicates a
DATI or DATIO(B) operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus receiver output to clock
BDAL address bits, BBS7 L, and BWTBT L into its internal logic.
BDAL<21:00> L, BBS7 L, and BWTBT L will remain active for 25 ns
(minimum) after BSYNC L bus receiver goes active. BSYNC L remains
active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly except for the
way the slave device responds to BBS7 L. Addressed peripheral de-
vices must not decode address bits on BDAL<21:13> L. Addressed
peripheral devices may respond to a bus cycle when BBS7 L is assert-
ed (low) during the addressing portion of the cycle. When asserted,
BBS7 L indicates that the device address resides in the 1/0 page (the
upper 4K address space). Memory devices generally do not respond
to addresses in the 1/0 page; however, some system applications may
permit memory to reside in the 1/0 page for use as DMA buffers, read-
only memory bootstraps or diagnostics, etc.

DATI — The DATI bus cycle, illustrated in Figure 9-1, is a read opera-
tion. During DATI, data are input to the bus master. Data consist of 16-
bit word transfers over the bus. During the data transfer portion of the
DATI bus cycle, the bus master asserts BDIN L 100 ns minimum after
BSYNC L is asserted. The slave device responds to BDIN L active as
follows:

® Asserts BRPLY L after receiving BDIN L and 125 ns (maximum)

before BDAL bus driver data bits are valid

225

Chapter 9 — LSI-11 Bus

e Asserts BDAL<21:00> L with the addressed data and error infor-
mation

When the bus master receives BRPLY L, it does the following:

® Waits at least 200 ns deskew time and then accepts input data at
BDAL<17:00> L bus receivers. BDAL<17:16> L are used for
transmitting parity errors to the master

o Negates BDIN L 200 ns (minimum) to 2 microseconds (maximum)
after BRPLY L goes active

The slave device responds to BDIN L negation by negating BRPLY L
and removing read data from BDAL bus drivers. BRPLY L must be
negated 100 ns (maximum) prior to removal of read data. The bus
master responds to the negated BRPLY L by negating BSYNC L

Conditions for the next BSYNC L assertion are as follows:
® BSYNC L must remain negated for 200 ns (minimum)

e BSYNC L must not become asserted within 300 ns of previous
BRPLY L negation

Figure 9-2 illustrates DATI bus cycle timing.

NOTE

Continuous assertion of BSYNC L retains control of
the bus by the bus master, and the previously ad-
dressed slave device remains selected. This is done
for DATIO(B) bus cycles where DATO or DATOB fol-
lows a DATI! without BSYNC L negation and a second
device addressing operation. Also, a slow slave de-
vice can hold off data transfers to itself by keeping
BRPLY L asserted, which will cause the master to
keep BSYNC L asserted.

226

Chapter 9 — LSI-11 Bus

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE MEMORY

* ASSERT BUAL - 1500 - LWITH
ADDRESS AND

* ASSERT BBS7 IT THE ADDRESS
IS IN THE 124 128K WORD RANGE

s ASSERT BSYNC t
—

— .
T
DECODE ADDRESS
+ STORE“DEVICE SELECTED"
OPERATION
/’
——
REQUEST DATA -
« REMOVE THE ADDRESS FROM
BDAL - 15:00 > L AND NEGATE BBS7
L
« ASSERT BDIN L
T —
_
-
INPUT DATA
» PLACE DATA ON BDAL = 15:00: L
-+ ASSERT BRPLY L
— -
—_—
-
TERMINATE INPUT TRANSFER
+ ACCEPT DATA AND RESPOND
BY NEGATING BDIN L _
—_—
——
-
TERMINATE BUS CYCLE OPERATION COMPLETED
+ NEGATE BSYNC L -— « NEGATE BRPLY L

Figure 9-1 DATI Bus Cycle

227

Chapter 9 — LSI-11 Bus

T/R DAL (4) x TADDR (4) R DATA K (4)

100ns

150m. MIN 200 ns MAX
MIN —
N
T SYNC Sk‘%i"
—= 100ns MIN fo——— %:m"
8us MAX 20008 MIN —f
T DIN /
fo- 30008 MIN ————

R RPLY \V

-.l 15008 MIN_jo— I._|oom MIN
® X

T WTBT (4) /(@

TIMING AT MASTER DEVICE

R/T DAL (4) XRADDR X @) L T DATA X (@)
— f":‘,‘:L— —f le— 125 ns MAX Io‘oomux.o»sm
R SYNC 4 \ /_
L?Nm *— G—ZOOMI‘IN—k 150ns MIN |
R DIN
X 300 ns MIN—————]
T RPLY
—0' le— 75m MIN
R BS7 (4) X }E— (@)
- 25ns MIN

R WTBT (4) K 4)

TIMING AT SLAVE DEVICE

NOTES:
1. Timing shown ot Master and Slave Device
Bus Driver inputs and Bus Receiver Outputs .

2. Signal name prefixes are defined below:

T = Bus Driver Input
R = Bus Receiver Output

3. Bus Driver Output and Bus Receiver Input
signal names include ¢ “B"' prefix

4. Don't core condition

Figure 9-2 DATI Bus Cycle Timing

228

Chapter 9 — LSI-11 Bus

DATO(B) — DATO(B), illustrated in Figure 9-3, is a write operation.
Data are transferred in 16-bit words (DATO) or 8-bit bytes (DATOB)
from the bus master to the slave device. The data transfer output can
occur after the addressing portion of a bus cycle when BWTBT L has
been asserted by the bus master, or immediately following an input
transfer part of a DATIO(B) bus cycle.

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

* ASSERT BDAL - 1500~ LWITH
ADDRESS AND

* ASSERT BBS7 L IF ADDRESS IS
IN THE 124 - 128K WORD RANGE

e ASSERT BWTBT L (WRITE
CYCLE)

* ASSERT BSYNC L —_—

N
DECODE ADDRESS
* STORE“DEVICE SELECTED"
_— OPERATION

/

OUTPUT DATA -~

* REMOVE THE ADDRESS FROM
BDAL <15:00> L AND NEGATE BBS7 L
AND BWTBT L
* PLACE DATA ON BDAL < 15:00> L
* ASSERT BDOUT L — —_—
-~
TAKE DATA
* RECEIVE DATA FROM BDAL
LINES
—— * ASSERT BRPLY L

-
TERMINATE OUTPUT TRANSFER
* NEGATE BDOUT L (AND BWTBT L
IF A DATOB BUS CYCLE)
« REMOVE DATA FROM BDAL <15:00> L___

~
OPERATION COMPLETED
__—* NEGATEBRPLY L

TERMINATE BUS CYCLE
* NEGATE BSYNC L

Figure 9-3 DATO or DATOB Bus Cycle

229

Chapter 9 — LSI-11 Bus

The data transfer portion of a DATO(B) bus cycle comprises a data
setup and deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the
data on BDAL<15:00> L at least 100 ns after BSYNC L is asserted if
the transfer is a word transfer. If it is a word transfer, the bus master
negates BWTBT L at least 100 ns after BSYNC L assertion. BWTBT L
remains negated for the length of the bus cycle. If the transfer is a byte
transfer, BWTBT L remains asserted. If it is the output of a DATIOB,
BTWBT L becomes asserted and lasts the duration of the bus cycle.
During a byte transfer, BDAL <00> L selects the high or low byte.

This occurs while in the addressing portion of the cycle. If asserted,
the high byte (BDAL<15:08> L) is selected; otherwise, the low byte
(BDAL<07:00> L) is selected. An asserted BDAL16 L at this time will
force a parity error to be written into memory if the memory is a parity-
type memory. BDAL17 L is not used for write operations. The bus
master asserts BDOUT L at least 100 ns after BDAL and BWTBT L bus
drivers are stable. The slave device responds by asserting BRPLY L
within 10 microseconds to avoid bus time-out. This completes the data
setup and deskew time.

During the data hold and deskew time the bus master receives BRPLY
L and negates BDOUT L. BDOUT L must remain asserted for at least
150 ns from the receipt of BRPLY L before being negated by the bus
master. BDAL<17:00> L bus drivers remain asserted for at least 100
ns after BDOUT L negation. The bus master then negates BDAL in-
puts.

During this time, the slave device senses BDOUT L negation. The data
are accepted and the slave device negates BRPLY L. The bus master
responds by negating BSYNC L. However, the processor will not
negate BSYNC L for at least 175 ns after negating BDOUT L. This
completes the DATO(B) bus cycle. Before the next cycle BSYNC L
must remain unasserted for at least 200 ns. Figure 9-4 illustrates DA-
TI(B) bus cycle timing.

DATIO(B) — The protocol for a DATIO(B) bus cycle is identical to the
addressing and data transfer portions of the DATI and DATO(B) bus
cycles, and is illustrated in Figure 9-5. After addressing the device, a
DATI cycle is performed as explained earlier; however, BSYNC L is not
negated. BSYNC L remains active for an output word or byte transfer
[DATO(B)]. The bus master maintains at least 200 ns between BRPLY
L negation during the DATI cycle and BDOUT L assertion. The cycle is
terminated when the bus master negates BSYNC L, as described for
DATO(B). Figure 9-6 illustrates DATIO(B) bus cycle timing.

230

T OAL

T SYNC

T DOUT

R RPLY

T B8s7

T wTBT

R DAL

R SYNC

R DOUT

T RPLY

R BS7

R wTBT

Chapter 9 — LSI-11 Bus

-‘]On; MIN[‘—

@) T ADDR X T DATA X (a)
l..uso:-s 100ns |, 100ns |,
MIN "] MIN MIN
L 8us 175 ns MIN 20008 MIN -
™ max
f
| 30005 MIN -
| |
.‘l Fe 100NS MIN
} —
X ! X (4)
——-., 150 nsMIN je—
(a) \ ASSERTION = BYTE —X @)
Lvso»mm-l 1900 L~ o 1000s MIN L—
TIMING AT MASTER DEVICE
(4) X RADOR X R DATA)((4)
|
’ - 25ns MIN —25ns MIN
{ 4 _—/
25ns
750 MIN ns MIN —-150 ns MIN —{
MIN [

25ns
MIN]

100
b—\ r-—- 300ns MIN —————

(4)

X

fo—

—--] 75 ns MIN

25nsMIN of

=

@)

\/ ASSERTION =

25ns MIN

— 25ns MIN

BYTE

75"3 ——
TIMING AT SLAVE DEVICE
NOTES

Timing shown at Master ond Slave Device
Bus Driver Inputs and Bus Recewver Outputs

Signa! name prefixes are defined beiow

T -
R =

~

Bus Driver input
Bus Receiver Output

Bus Driver Output and Bus Receiver Input
signal names include a "B " prefix

w

4 Don't core condition

Figure 9-4 DATO or DATOB Bus Cycle Timing

231

Chapter 9 — LSI-11 Bus

SLAVE

BUS MASTER
(MEMORY OR DEVICE)

(PROCESSOR OR DEVICE)

ADDRESS DEVICE/MEMORY
® ASSERT BDAL - 15:00> L WITH
ADDRESS
® ASSERT BBS7 L AND IF THE
ADDRESS IS IN THE 124 128K WORD RANGE
® ASSERT BSYNC L

B DECODE ADDRESS
e STORE "DEVICE SELECTED:

OPERATION
—_— -
-
REQUEST DATA
o RCMOVE THF ADDRESS FROM
BDAL 15.00 - L
e ASSERT BDIN L —
=% INPUT DATA
e PLACE DATAON BDAL - 15:00 L
e ASSERT BRPLY L
—_——
TERMINATE INPUT TRANSFER -
® ACCEPT DATA AND RESPOND BY
TERMINATING BDIN L
—~— -~ -
COMPLETE INPUT TRANSFER
e REMOVE DATA
e NEGATE BRPLY L
4// -
OUTPUT DATA
® PLACE OUTPUT DATA ON BDAL < 15:00 > L
® (ASSERT BWTBT L IF AN OUTPUT
BYTE TRANSFER)
® ASSERT BDOUT L
\\\
TAKE DATA
® RECEIVE DATA FROM BDAL LINES
e ASSERT BRPLY L
-
/’ -
-
TERMINATE OUTPUT TRANSFER
e REMOVE DATA FROM BDAL LINES
e NEGATE BDOUT L
-
i -— ‘
OPERATION COMPLETED
® NEGATE BRPLY L
—_ -
— -

TERMINATE BUS CYCLE
e NEGATEBSYNCL
(AND BWTBT L IF IN
A DATIOB BUS CYCLE)

Figure 9-5 DATIO or DATIOB Bus Cycle

232

Chapter 9 — LSI-11 Bus

150 ns MIN —-—' ’G—Ou MIN
R/TDAL (4)X TADDR ((4) Xn DATA X (4) T DATA X (4)
«;\‘om_, e —o 200;-'._ — L——qoﬁnmm
T SYNC J
100ns MIN .r—
le— 200ns MIN
T DOUT 7
~200nsM|N~o‘
T DIN /)\
-
R RPLY
o
T 857)(
—{ |&—100 ns MIN —={ 100 ns MIN r—
T wTBT (¢>\‘ () X ASSERTION = BYTE [(4)
—.‘ Fe— 150 ns MIN
TIMING AT MASTER DEVICE
R/T DAL @) X T DATA X (4) X R DATA X @)
-+ IO—Z&MMIN | l ! > L—zsns MIN
R SYNC - —»| L—loo»; unxJ \ /
5o 25ns MIN fe— —{ 100 ns MIN
R DOUT 1 MAX / \ 1500s MIN fe-
h—4200ns MIN —
R DIN \
fe—1500s MIN— f#— 300 ns MIN —{
T RPLY
—oI fe—75ns MIN
R BS7 D(X
—-‘ le—75ns MIN be— 25ns MIN — r—zsnsum
R WTBT (4>\ (4) f ASSERTION = BYTE x (4)
—»] 25ns MIN

NOTES
Timing shown at Requesting Device
Bus Driver Inputs and Bus Receiver Outputs

~

w

TIMING AT SLAVE DEVICE

Signal name prefixes are defined below

T = Bus Driver input
R = Bus Receiver Output

Bus Driver Output and Bus Receiver input

signal names include o "B" prefix

Don't care condition

Figure 9-6 DATIO or DATIOB Bus Cycle Timing

233

Chapter 9 — LSI-11 Bus

DIRECT MEMORY ACCESS

The direct memory access (DMA) capability allows direct data transfer
between I/0 devices and memory. This is useful when using mass
storage devices (e.g., disks) that move large blocks of data to and
from memory. A DMA device needs to know only the starting address
in memory, the starting address in mass storage, the length of the
transfer, and whether the operation is read or write. When this infor-
mation is available, the DMA device can transfer data directly to or
from memory. Since most DMA devices must perform data transfers
in rapid succession or lose data, DMA devices are provided the
highest priority.

DMA is accomplished after the processor (normaily bus master) has
passed bus mastership to the highest-priority DMA device that is re-
questing the bus. The processor arbitrates all requests and grants the
bus to the DMA device located electrically closest to it. A DMA device
remains bus master indefinitely until it relinquishes its mastership. The
following control signals are used during bus arbitration.

BDMGI L DMA Grant Input
BDMGO L DMA Grant Output
BDMRL DMA Request Line
BSACK L Bus Grant Acknowledge
DMA Protocol

A DMA transaction can be divided into three phases:
e Bus mastership acquisition phase

e Data transfer phase

e Bus mastership relinquish phase

During the bus mastership acquisition phase, a DMA device requests
the bus by asserting BDMR L. The processor arbitrates the request
and initiates the transfer of bus mastership by asserting BDMGO L.
The maximum time between BDMR L assertion and BDMGO L asser-
tion is DMA latency. This time is processor-dependent. BDMGO
L/BDMGI L is one signal that is daisy-chained through each module in
the backplane. It is driven out of the processor on the BDMGO L pin,
enters each module on the BDMGI L pin, and exits on the BDMGO L
pin. This signal passes through the modules in descending order of
priority until it is stopped by the requesting device. The requesting
device blocks the output of BMDGO L and asserts BSACK L. If BDMR
L is continuously asserted, the bus will be hung.

During the data transfer phase, the DMA device continues asserting
BSACK L. The actual data transfer is performed as described earlier.

234

Chapter 9 — LSI-11 Bus

The DMA device can assert BSYNC L for a data transfer 250 ns (mini-
mum) after it receives BDMGI L and its BSYNC L bus receiver be-
comes negated.

During the bus mastership relinquish phase, the DMA device relin-
quishes the bus by negating BSACK L. This occurs after completing
(or aborting) the last data transfer cycle (BRPLY L negated). BSACK L
may be negated up to a maximum of 300 ns before negating BSYNC L.
Figure 9-7 illustrates the DMA protocol and Figure 9-8 illustrates DMA
request/grant timing.

PROCESSOR BUS MASTER
(MEMORY IS SLAVE) (CONTROLLER)

REQUEST BUS
—— ~ ® ASSERT BDMR L

_
GRANT BUS CONTROL -
o NEAR THE END OF THE o —
CURRENT BUS CYCLE
(BRPLY L IS NEGATED),
ASSERT BDOMGO L AND — ___
INHIBIT NEW PROCESSOR ~
GENERATED BYSNC L FOR ~ ACKNOWLEDGE BUS
THE DURATION OF THE —=~ MASTERSHIP
DMA OPERATION. * RECEIVE BDMG
—— * WAIT FOR NEGATION OF
P BSYNC L AND BRPLY L
- o ASSERT BSACK L
TERMINATE GRANT - * NEGATE BDMR L
SEQUENCE
* NEGATE BDMGO L AND
WAIT FOR DMA OPERATION ™ __
TO BE COMPLETED — —
~—~ . EXECUTE A DMA DATA
TRANSFER
« ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI. OR DATO BUS
CYCLES
—— « RELEASE THE BUS BY
_ TERMINATING BSACK L
_— (NO SOONER THAN
— NEGATION OF LAST BRPLY
gii:mg:ocssson - L) AND BSYNC L.
« ENABLE PROCESSOR-
GENERATED BSYNC L
(PROCESSOR IS BUS WAIT 4 us OR UNTIL
MASTER) OR ISSUE ANOTHER FIFO TRANSFER
ANOTHER GRANT IF BDMR IS PENDING BEFORE
L IS ASSERTED REQUESTING BUS AGAIN.

Figure 9-7 DMA Protocol

235

Chapter 9 — LSI-11 Bus

NOTE
If multiple data transfers are performed during this
phase, consideration must be given to the use of the
bus for other system functions, such as memory re-
fresh (if required).

COND
QUEST

—-' [e— DMA LATENCY

e r T 7T 777777, o aayd
T DMR ///////////1///1/

~N

T SACK \
250 ns MIN.—&) r—

'

fe— 300 ns MAX

R/T SYNC \L\ \ \
250ns MIN Ons IAIN—.I re—
R/T RPLY \ \ \ /—_—L_
I B -
T DAL A ADDR Xi DATA \

(ALSO BS7,
WTBT, REF) NOTES :
1. Timing shown aof requesting device bus driver inpufs and bus receiver outputs .

2. Signal name prefixes are defined below :
T = Bus Driver Input
R = Bus Receiver Output

3. Bus Driver Output and Bus Receiver Input signol names include o “B" prefix.

Figure 9-8 DMA Request/Grant Timing

INTERRUPTS

The interrupt capability of the LSI-11 Bus allows any 1/0 device to
temporarily suspend (interrupt) current program execution and divert
processor operation to service the requesting device. The processor
inputs a vector from the device to start the service routine (handler).
Like the device register address, hardware fixes the device vector at
locations within a designated range below location 001000. The vector
indicates the first of a pair of addresses. The content of the first ad-
dress is read by the processor and is the starting address of the
interrupt handler. The content of the second address is a new proces-
sor status word (PS). The new PS can raise the interrupt priority level,
thereby preventing lower- level interrupts from breaking into the cur-
rent interrupt service routine. Control is returned to the interrupted

236

Chapter 9 — LSI-11 Bus

program when the interrupt handler is ended. The original interrupted
program'’s address (PC) and its associated PS are stored on a stack.
The original PC and PS are restored by a return from interrupt (RTl or
RTT) instruction at the end of the handler. The use of the stack and the
LSI-11 Bus interrupt scheme can allow interrupts to occur within inter-
rupts (nested interrupts), depending on the PS.

Interrupts can be caused by LSI-11 Bus options or the CPU. Those
interrupts that originate from within the processor are called traps.
Traps are caused by programming errors, hardware errors, special
instructions, and maintenance features.

The LSI-11 Bus signals used in interrupt transactions are:

BIRQ4 L Interrupt request priority level 4
BIRQ5 L Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIiRQ7 L Interrupt request priority level 7
BIAKI L Interrupt acknowledge input
BIAKO L Interrupt acknowledge output
BDAL<21:00> L Data/address lines

BDIN L Data input strobe

BRPLY L Reply

Device Priority

The LSI-11 Bus supports the following two methods of device priority:

e Distributed Arbitration—priority levels are implemented on the
hardware. When devices of equal priority level request an interrupt,
priority is given to the device electrically closest to the processor.

e Position-Defined Arbitration—priority is determined solely by
electrical position on the bus. The closer a device is to the proces-
sor, the higher its priority is.

Interrupt Protocol

Interrupt protocol on the LSI-11/23 has three phases: interrupt re-
quest phase, interrupt acknowledge and priority arbitration phase,
and interrupt vector transfer phase. Figure 9-9 illustrates the interrupt
request/acknowledge sequence.

237

Chapter 9 — LSI-11 Bus

PROCESSOR DEVICE

INITIATE REQUEST
——+* ASSERTBIRQ L

/ _—
—
STROBE INTERRUPTS -—
« ASSERT BDIN L —
_
—_
T
| RECEIVE BDIN L
« STORE "INTERRUPT SENDING
IN DEVICE
GRANT REQUEST
E AND ASSERT BIAKO L
¢ PAUS —_ -
_
—
T
RECEIVE BIAKI L
o RECEIVE BIAK | L AND INHIBIT
BIAKO L
e PLACE VECTORONBDALO 15L
o ASSERT BRPLY L
__+ NEGATE BIRQ L
—_— -
—_—
_
RECEIVE VECTOR & TERMINATE
REQUEST
» INPUT VECTOR ADDRESS
« NEGATE BDIN L AND BIAKO L
—~—
—_
—_
-
COMPLETE VECTOR TRANSFER
e REMOVE VECTOR FROM BDAL BUS
— —+ NEGATE BRPLY L
—_— -
-

PROCESS THE INTERRUPT

SAVE INTERRUPTED PROGRAM
PC AND PS ON STACK

LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION
EXECUTE INTERRUPT SERVICE
ROUTINE FOR THE DEVICE

Figure 9-9 Interrupt Request/Acknowledge Sequence

The interrupt request phase begins when a device meets its specific
conditions for interrupt requests. For example, the device is ready,
done, or an error has occurred. The interrupt enable bit in a device
status register must be set. The device then initiates the interrupt by
asserting the interrupt request line(s). BIRQ4 L is the lowest hardware
priority level and is asserted for all interrupt requests for compatibility
with previous LSI-11 processors. The level a device is configured at
must also be asserted. A special case exists for level 7 devices which

238

Chapter 9 — LSI-11 Bus

INTERRUPT LATENCY
MINUS SERVICE TIME

[P—
T IRQ /
D

—-1 150 ns MIN
R DIN / / /\
R IAKI]
e

T RPLY ~

-—ol 125 ns MAX je— ,-!OOns Max
T DAL (@) X VECTOR X @
R SYNC (UNASSERTED)
R AS7 (UNASSERT LU}

NOTES
1 Timing shown at Requesting Device Bus Driver Inputs and Bus Receiver Outpuls

2 Signal Name Prefixes are defined below
T = Bus Driver Input
R : Bus Receiver Output
3 Bus Driver Output and Bus Receiver Input signal names inciude a “B" prefix

4. Don't care cordition

Figure 9-10 Interrupt Protocol Timing

must also assert level 6. See the arbitration discussion below involving
the 4-level scheme for an explanation.

Interrupt Level Lines Asserted by Device
4 BIRQ4 L

5 BIRQ4 L, BIRQ5S L

6 BIRQ4 L, BIRQ6 L

7 BIRQ4 L, BIRQ6 L, BIRQ7 L

The interrupt request line remains asserted until the request is ac-

knowledged.

During the interrupt acknowledge and priority arbitration phase the

LSI-11/23 processor will acknowledge interrupts under the following

conditions:

1. The device interrupt priority is higher than the current PS<7:5>.

2. The processor has completed instruction execution and no addi-
tional bus cycles are pending.

239

Chapter 9 — LSI-11 Bus

The processor acknowledges the interrupt request by asserting BDIN
L, and 150 ns (minimum) later asserting BIAKO L. The device
electrically closest to the processor receives the acknowledge on its
BIAKI L bus receiver.

At this point the two types of arbitration must be discussed separately.
If the device that receives the acknowledge uses the 4-level interrupt
scheme, it reacts as described below:

1.

If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

If the device is requesting an interrupt, it must check to see that no
higher-level device is currently requesting an interrupt. This is
done by monitoring higher-level request lines. The table below
lists the lines that need to be monitored by devices at each priority
level.

In addition to asserting levels 7 and 4, level 7 devices must drive
level 6. This is done to simplify the monitoring and arbitration by
level 4 and 5 devices. In this protocol, level 4 and 5 devices need
not monitor level 7 since level 7 devices assert level 6. Level 4 and
5 devices will become aware of a level 7 request since they
monitor the level 6 request. This protocol has been optimized for
level 4, 5, and 6 devices, since level 7 devices very seldom are
necessary.

Device Priority Level Line(s) Monitored
4 BIRQ5, BIRQ6

5 BIRQ6

6 BIRQ7

7 —

If no higher-level device is requesting an interrupt, the acknowl-
edge is blocked by the device. (BIAKO L is not asserted.) Arbitra-
tion logic within the device uses the leading edge of BDIN L to
clock a flip-flop that blocks BIAKO L. Arbitration is won, and the
interrupt vector transfer phase begins.

If a higher-level request line is active, the device disqualifies itself
and asserts BIAKO L to propagate the acknowledge to the next
device along the bus.

Signal timing must be carefully considered when implementing 4-level
interrupts. Note Figure 9-10.

If a single-level interrupt device receives the acknowledge, it reacts as

follows:

240

Chapter 9 — LSI-11 Bus

e |f not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

e |f the device was requesting an interrupt, the acknowledge is
blocked using the leading edge of BDIN L and arbitration is won.
The interrupt vector transfer phase begins.

The interrupt vector transfer phase is enabled by BDIN L and BIAKI L.
The device responds by asserting BRPLY L and its BDAL<15:00> L
bus driver inputs with the vector address bits. The BDAL bus driver
inputs must be stable within 125 ns (maximum) after BRPLY L is as-
serted. The processor then inputs the vector address and negates
BDIN L and BIAKO L. The device then negates BRPLY L and 100 ns
(maximum) later removes the vector address bits. The processor then
enters the device’s service routine.

NOTE
Propagation delay from BIAKI L to BIAKO L must not
be greater than 500 ns per LSI-11 Bus slot.

The device must assert BRPLY L within 10 micro-
seconds (maximum) after the processor asserts
BIAKI L.

LSI-11/23 Four-Level Interrupt Configurations

If you have high-speed peripherals and desire better software per-
formance, you can use the 4-level interrupt scheme. Both position-
independent and position-dependent configurations can be used with
the 4-level interrupt scheme.

The position-independent configuration is illustrated in Figure 9-11.
This allows peripheral devices that use the 4-level interrupt scheme to
be placed in the backplane in any order. These devices must send out
interrupt requests and monitor higher-level requestlines as de-
scribed. The level 4 request is always asserted by a requesting device
regardless of priority, to allow compatibility if an LSI-11 or LSI-11/2
processor is in the same system. If two or more devices of equally high
priority request an interrupt, the device physically closest to the
processor will win arbitration. Devices that use the single-level inter-
rupt scheme must be modified or placed at the end of the bus for
arbitration to function properly.

241

KDF11

Chapter 9 — LSI-11 Bus

BIAK (INTERRUPT ACKNOWLEDGE)

LEVEL 4

BIAK

LEVEL 6

BIAK

LEVELS

BIAK

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

DEVICE

DEVICE

DEVICE

LEVEL7
DEVICE

I

!

]

]

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure 9-11 Position-Independent Configuration

The position-dependent configuration is illustrated in Figure 9-12. This
configuration is simpler to implement. A constraint is that peripheral
devices must be inserted with the highest-priority device located clo-
sest to the processor and the remaining devices placed in the back-
plane in decreasing order of priority, with the lowest-priority devices
farthest from the processor. With this configuration each device has to
assert only its own level and level 4 (for compatibility with an LSI-11 or
LSI-11/2). Monitoring higher level request lines is unnecessary. Arbi-
tration is achieved through the physical positioning of each device on
the bus. Single-level interrupt devices on level 4 should be positioned
last on the bus.

KDF11

BIAK (INTERRUPT ACKNOWLEDGE)

LEVEL7

BIAK

LEVEL6

BIAK

LEVELS

BIAK

DEVICE

DEVICE

DEVICE

LEVEL 4
DEVICE

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

!

!

}

!

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure 9-12 Position-Dependent Configuration

CONTROL FUNCTIONS
The following LSI-11 Bus signals provide control functions.

BREFL Memory refresh
BHALTL Processor halt
BINITL Initialize
BPOKH Power OK
BDCOKH DC power OK

242

Chapter 9 — LSI-11 Bus

Memory Refresh

If BREF is asserted during the address portion of a bus data transter
cycle, it causes all dynamic MOS memories to be addressed simulta-
neously. The sequence of addresses required for refreshing the
memories is determined by the specific requirements for each memo-
ry. The complete memory refresh cycle consists of a series of refresh
bus transactions. A new address is used for each transaction. A com-
plete memory refresh cycle must be completed within 1 or 2 ms. Multi-
ple data transfers by DMA devices must be avoided since they could
delay memory refresh cycles.

Halt

Assertion of BHALT L for at least 25 us interrupts the processor, which
stops program execution and forces the processor unconditionally
into console ODT mode.

Initialization

Devices along the bus are initialized when BINIT L is asserted. The
processor can assert BINIT L as a result of executing a RESET instruc-
tion or as part of a power-up sequence. BINIT L is asserted for
approximately 10 microseconds when RESET is executed.

Power Status

Power status protocol is controlled by two signals, BPOK H and
BDCOK H. These signals are driven by some external device (usually
the power supply).

BDCOK H — When asserted, this indicates that dc power has been
stable for at least 3 ms. Once asserted, this line remains asserted until
the power fails. It indicates that only 5§ microseconds of dc power
reserve remains.

BPOK H — When asserted, this indicates that there is at least an 8 ms
reserve of dc power and that BDCOK H has been asserted for at least
70 ms. Once BPOK H has been asserted, it must remain asserted for
at least 3 ms. The negation of this line, the first event in the power-fail
sequence, indicates that power is failing and that only 4 ms of dc
power reserve remains.

Power-Up/Down Protocol

Power-up protocol begins when the power supply applies power with
BDCOK H negated. This forces the processor to assert BINIT L. When
the dc voltages are stable, the power supply or other external device
asserts BDCOK H. The processor responds by clearing the PS, float-
ing point status register (FPS), and floating point exception register
(FEC). BINIT L is asserted for 12.6 microseconds and then negated for

243

Chapter 9 — LSI-11 Bus

110 microseconds. The processor continues to test for BPOK H until it
is asserted. The power supply asserts BPOK H 70 ms (minimum) after
BDCOK H is asserted. The processor then performs its power-up se-
quence. Normal power must be maintained at least 3.0 ms before a
power-down sequence can begin. The LSI-11/23 has four power-up
jumper options.

A power-down sequence begins when the power supply negates
BPOK H. When the current instruction is completed, the processor
traps to a power-down routine at location 24,. The end of the routine is
terminated with a HALT instruction to avoid any possible memory
corruption as the dc voltages decay.

When the processor executes the HALT instruction, it tests the BPOK
H signal. If BPOK H is negated, the processor enters the power-up
sequence. It clears internal registers, generates BINIT L, and contin-
ues to check for the assertion of BPOK H. If it is asserted and dc
voltages are still stable. the processor will perform the rest of the
power-up sequence. Figure 9-13 illustrates power-up/power-down
timing.

-01 r—4~20ps
BINIT L) ’ /
ax & ~ Lﬁk

fe—3 ms MIN —»

BPOK H ‘ j

= 70msMIN fe le— 4 ms MIN —of —-1 7Oms MIN I-—

BDCOK H 7
~.I z','": le— 8 ms MIN 5 =3 MIN r—

DC POWER]
—
POWER UP NORMAL POWER DOWN POWER UP NORMAL
SEQUENCE - POWER "1 SEQUENCE SEQUENCE I power ™

NOTE
Once a power down sequence 15 storted
11 must be completed before a power-up
sequence 15 storted

Figure 9-13 Power-Up/Power-Down Timing

LSI-11 BUS ELECTRICAL CHARACTERISTICS
Signal Level Specification

Input Logic Levels
TTL Logical Low: 0.8 Vdc maximum
TTL Logical High: 2.0 Vdc minimum

244

Chapter 9 — LSI-11 Bus

Output Logic Levels
TTL Logical Low: 0.4 Vdc maximum
TTL Logical High: 2.4 Vdc minimum

Load Definition

AC loads comprise the maximum capacitance allowed per signal line
to ground. A unit load is defined as 9.35 pF of capacitance. DC loads
are defined as maximum current allowed with a signal line driver as-
serted or unasserted. A unit load is defined as 105 uA in the unassert-
ed state.

120 Ohm LSI-11 Bus

The electrical conductors interconnecting the bus device slots are
treated as transmission lines. A uniform transmission line, terminated
in its characteristic impedance, will propagate an electrical signal
without reflections. Since bus drivers, receivers, and wiring connected
to the bus have finite resistance and nonzero reactance, the transmis-
sion line impedance is not uniform, and introduces distortions into
pulses propagated along it. Passive components of the LSI-11 Bus
(such as wiring, cabling, and etched signal conductors) are designed
to have a nominal characteristic impedance of 120 ohms.

The maximum length of interconnecting cable excluding wiring within
the backplane is limited to 4.88 m (16 ft.).

Bus Drivers
Devices driving the 120 ohm LSI-11 Bus must have open collector
outputs and meet the following specifications.

DC Specifications Output low voltage when sinking 70 mA of
current: 0.7V maximum.

Output high leakage current when connect-
ed to 3.8 Vdc: 25 uA (even if no power is
applied, except for BDCOK H and BPOK H).

These conditions must be met at worst-case
supply voltage, temperature, and input sig-
nal levels.

AC Specifications Bus driver output pin capacitive load: Not to
exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Skew (difference in propagation time
between slowest and fastest gate): Not to
exceed 25 ns.

245

Bus Receivers

Chapter 9 — LSI-11 Bus

Rise/Fall Times: Transition time (from 10%
to 90% for positive transition, and from 90%
to 10% for negative transition) must be no
faster than 10 ns.

Devices that receive signals from the 120 ohm LSI-11 Bus must meet
the following requirements.

DC Specifications

AC Specitications

Bus Termination

Input low voltage (maximum): 1.3V.
Input high voltage (minimum): 1.7V.

Maximum input current when connected to
3.8 Vdc: 80 uA even if no power is applied.

These specifications must be met at worst-
case supply voltage, temperature, and out-
put signal conditions

Bus receiver input pin capacitance load:
Not to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Skew (difference in propagation time
between slowest and fastest gate): Not to
exceed 25 ns.

The 120 ohm LSI-11 Bus must be terminated at each end by an appro-
priate terminator, as illustrated in Figure 9-14. This is to be done as a
voltage divider with its Thevenin equivalent equal to 120 ohms and
3.4V nominal. This type of termination is provided by an REV11-A
refresh/boot/terminator, BDV11-AA, KPU11-B, TEV11, or in the case
of 22-bit systems, by the H9275 backplane, itself.

+5V

330Q

6800

+5Vv
1780
1%
220 Q 1209
BUS LINE BUS LINE
TERMINATION TERMINATION
3830

1%

Figure 9-14 Bus Line Terminations

246

Chapter 9 — LSI-11 Bus

Each of the several LSI-11 Bus lines (all signals whose mnemonics
start with the letter B) must see an equivalent network with the follow-
ing characteristics at each end of the bus:

Input impedance (with respect 120 ohm +5%, —15%

to ground)
Open circuit voltage 3.4Vdc +5%
Capacitance Load Not to exceed 30 pF

NOTE
The resistive termination may be provided by the
combination of two modules (i.e., the processor
module supplies 220 ohms to ground). Both of these
terminators must be physically resident within the
same backplane.

Bus Interconnecting Wiring
Backplane Wiring — The wiring that connects all device interface
slots on the LSI-11 must meet the following specifications:

1.

The conductors must be arranged such that each line exhibits a
characteristic impedance of 120 ohms (measured with respect to
the bus common return).

Crosstalk between any two lines must be no greater than 5%. Note
that worst-case crosstalk is manifested by simultaneously driving
all but one signal line and measuring the effect on the undriven
line.

DC resistance of the signal path, as measured between the near-
end terminator and the far-end terminator module (including all
intervening connectors, cables, backplane wiring, connector-
module etch, etc.) must not exceed 2 ohms.

DC resistance of common return path, as measured between the
near-end terminator and the far-end terminator module (including
all intervening connectors, cables, backplane wiring, connector-
module. etch, etc.) must not exceed an equivalent of 2 ohms per
signal path. Thus, the composite signal return path dc resistance
must not exceed 2 ohms divided by 40 bus lines, or 50 milliohms.
Note that although this common return path is nominally at
ground potential, the conductance must be part of the bus wiring.
The specified low-impedance return path must be provided by the
bus wiring as distinguished from the common system or power
ground path.

247

Chapter 9 — LSI-11 Bus

Intra-Backplane Bus Wiring — The wiring that connects the bus con-
nector slots within one contiguous backplane is part of the overall bus
transmission line. Owing to implementation constraints, the nominal
characteristic impedance of 120 ohms may not be achievable. Distrib-
uted wiring capacitance in excess of the amount required to achieve
the nominal 120 ohm impedance may not exceed 60 pF per signal line
per backplane.

Power and Ground — Each bus interface slot has connector pins
assigned for the following dc voltages. The maximum allowable cur-
rent per pin is 1.5 A. +5 Vdc must be regulated to +5% with a maxi-
mum ripple of 100 mV pp. +12 Vdc must be regulated to +£3% with a
maximum ripple of 200 mV pp.

e +5Vdc—Three pins (4.5 A maximum per bus device slot)

® +12 Vdc—Two pins (3.0 A maximum per bus device slot)

¢ Ground—Eight pins (shared by power return and signal return)

NOTE
Power is not bused between backplanes on any
interconnecting bus cables.

SYSTEM CONFIGURATIONS
LSI-11 Bus systems can be divided into two types:
1. Systems containing one backplane
2. Systems containing multiple backplanes
Before configuring any system, three characteristics for each module
in the system must be known. These characteristics are:
® Power consumption—+5 Vdc and +12 Vdc current requirements.
® AC bus loading—the amount of capacitance a module presents to a
bus signal line. AC loading is expressed in terms of ac loads where
one ac load equals 9.35 pF of capacitance.
® DC bus loading—the amount of dc leakage current a module pre-
sents to a bus signal when the line is high (undriven). DC loading is
expressed in terms of dc loads where one dc load equals 210 micro-
amperes (nominal).
Power consumption, ac loading, and dc loading specifications for
each module are included in the Microcomputer Interface Handbook.
NOTE
The ac and dc loads and the power consumption of
the processor module, terminator module, and
backplane must be included in determining the total
loading of a backplane.

248

Chapter 9 — LSI-11 Bus

Rules for Configuring Single Backplane Systems

As illustrated in Figure 9-15, the bus can accommodate modules
that have up to 20 ac loads (total) before an additional termination is
required. The processor has on-board termination for one end of
the bus. If more than 20 ac loads are included, the other end of the
bus must be terminated with 120 ohms.

A single backplane terminated bus can accommodate modules of
up to 35 ac loads (total).

e The bus can accommodate modules up to 20 dc loads (total).

e The bus signal lines on the backplane can be up to 35.6 cm (14 in.)

long.
BACKPLANE wWiRC
o 356cm (ammax——1
ONE ONE ONE
UNIT UNIT UNI
2208 LOAD LOAD LOAD
+
3.4v N -)
. 20 AC LOADS
= 20DC LOADS
PROCESSOR

Figure 9-15 Single Backplane Configuration

Rules for Configuring Multiple Backplane Systems

As illustrated in Figure 9-16, up to three backplanes may make up
the system.

The signal lines on each backplane can be up to 25.4 cm (10 in.)
long.

Each backplane can accommodate modules that have up to 20 ac
loads (total). Unused ac loads from one backplane may not be add-
ed to another backplane if the second backplane loading will
exceed 20 ac loads. It is desirable to load backplanes equally, or
with the highest ac loads in the first and second backplanes.

DC loading of all modules in all backplanes cannot exceed 20 loads
(total).

249

Chapter 9 — LSI-11 Bus

e Both ends of the bus must be terminated with 120 ohms. This means
that the first backplane must have an impedance of 120 ohms (ob-
tained via the processor 220 ohm terminations and a separate 220
ohm terminator), and the last backplane must have a termination of
120 ohms.

o The cable(s) connecting the first two backplanes are 61 cm (2 ft) or
greater in length.

e The cable(s) connecting the second backplane to the third back-
plane are 122 cm (4 ft) longer or shorter than the cable(s) connect-
ing the first and second backplanes.

e The combined length of both cables cannot exceed 4.88 m (16 ft).
e The cables used must have a characteristic impedance of 120 ohms.

Power Supply Loading

Total power requirements for each backplane can be determined by
obtaining the total power requirements for each module in the back-
plane. Obtain separate totals for +5V and +12V power. Power
requirements for each module are specified in the Microcomputer
Interface Handbook.

When distributing power in multiple backplane systems, do not at-
tempt to distribute power via the LSI-11 Bus cables. Provide separate,
appropriate power wiring from each power supply to each backplane.
Each power supply should be capable of asserting BPOK H and
BDCOK H signals according to bus protocol; this is required if au-
tomatic power-fail/restart programs are implemented, or if specific
peripherals require an orderly power-down halt sequence. The proper
use of BPOK H and BDCOK H signals is strongly recommended.

The chart that follows shows the bus pins, mnemonics and descrip-
tions. It is defined by processor so that differences, when they occur,
can be seen easily.

MODULE CONTACT FINGER IDENTIFICATION

DIGITAL plug-in modules, including the KDF11-AC, all use the same
contact finger (pin) identification system. The LSI-11 Bus is based on
the use of double-height modules that plug into a 2-slot bus connec-
tor. Each slot contains 36 lines (18 each on component and solder
sides of circuit board).

Slots, shown as row A and row B in Figure 9-17, include a numeric
identifier for the side of the module. The component side is designated
side 1 and the solder side is desngnated snde 2. Letters ranging from A
rticular 9-‘!’- on a side

N D
Chapteir 5= LSi-11 Bus

BACKPLANE WIRE
25.4cm (10in) MAX 'I

{(
|

[

I

ONE ONE
Q UNIT UNIT 2200
220 LOAD LOAD
+ +
3.4V N y 3.4v
B 20 AC LOADS MAX
PROCESSOR CABLE/TERM
BACKPLANE WIRE
F T 25 4cm(10in) MAX >
[]
ONE ONE
UNIT UNIT
LOAD LOAD
CABLE - v _ CABLE
ADDITIONAL 20 AC LOADS MAX
CABLES
8 BACKPLANE I BACKPLANE WIRE '
25.4 cm (10in) MAX
{
[7]
ONE ONE
UNIT UNIT 1200
LOAD LOAD
+
CABLE N 3.4V

Y

20 AC LOADS MAX

NOTES : -

1. TWO CABLES (MAX.) 4.88m (16 ft) (MAX)
TOTAL LENGTH.

2. 20 DC LOADS TOTAL (MAX)

TERM

Figure 9-16 Multiple Backplane Configuration

of a slot. Table 9-4 lists and identifies the bus pins of the double-height
module. The bus pin identifier ending with a 1 is found on the compo-
nent side of the board, while a bus pin identifier ending with a 2 is
found on the solder side of the board. A typical pin is designated as
follows.

251

Chapter 9 — LSI-11 Bus

BE2
Slot (Row) Identifier Module Side
“Slot B” Identifier
“Side 2” (solder
side)
Pin Identifier
“Pin E”

Q
~ z
N |ZZ
= Z
b ROW A ; ;
PIN AVI PIN AV2 / y
- -
~ ~
A 4
~] / 2
PIN BA! PINBA2 |2

SIDE 2
Row B SOLDER SIDE

PIN BV1
PIN BV2

Figure 9-17 Double-Height Module Contact Finger Identification

The positioning notch between the two rows of pins mates with a
protrusion on the connector block for correct module positioning.

Table 9-4 Bus Pin Identifiers

BUS MNEMONICS DESCRIPTION

PIN

AA1 BIRQS5 L Interrupt Request Priority Level
5

AB1 BIRQ6 L Interrupt Request Priority Level
6

252

BUS
PIN

AC1

AD1

AE1

AF1

AH1

AJ1

Chapter 9 — LSI-11 Bus

MNEMONICS

BDAL16L

BDAL17 L

SSPARE1
(Alternate +5B)

SSPARE2

SSPARE 3
SRUN
simultaneously

GND

253

DESCRIPTION

Extended address bit during
addressing protocol; memory
error data line during data
transfer protocol.

Extended address bit during
addressing protocol; memory
error logic enable during data
transfer protocol.

Special Spare—not assigned or
bused in DIGITAL cable or
backplane assemblies; avail-
able for user connection. Op-
tionally, this pin may be used for
+5V battery (+5B) backup
power to keep critical circuits
alive during power failures. A
jumper is required on LSI-11
Bus options to open (discon-
nect) the +5B circuit in systems
that use this line as SSPARE1.

Special Spare—not assigned or
bused in DIGITAL cable or
backplane assemblies; avail-
able for user interconnection. In
the highest-priority device slot,
the processor may use this pin
for a signal to indicate its RUN
state.

Special Spare—not assigned or
bused in DIGITAL cable or
backplane assemblies; avail-
able for user interconnection.
An alternate SRUN signal may
be connected in the highest-pri-
ority set.

Ground—System signal ground
and dc return.

BUS
PIN

AK1

AL1

AM1

AN1

AP1

Chapter 9 — LSI-11 Bus

MNEMONICS

MSPAREA

MSPAREB

GND

BDMR L

BHALT L

254

DESCRIPTION

Maintenance Spare—Normally
connected together on the
backplane at each option loca-
tion (not bused connection).

Maintenance Spare—Normally
connected together on the
backplane at each option loca-
tion (not bused connection).

Ground—System signal ground
and dc return.

Direct Memory Access (DMA)
Request—A device asserts this
ship. The processor arbitrates
bus mastership between itself
and all DMA devices on the bus.

If the processor is not bus mas-

ter (it has completed a bus cycle
and BSYNC L is not being as-
serted by the processor), it
grants bus mastership to the re-
questing device by asserting
BDMGO L. The device re-
sponds by negating BDMR L
and asserting BSACK L.

Processor Halt—When BHALT
L is asserted for at least 25 us,
the processor services the halt
interrupt and responds by halt-
ing normal program execution.
External interrupts are ignored
but memory refresh interrupts
in LSI-11 are enabled if W4 on
M7264 and M7264-YA proces-
sor modules is removed and
DMA request/grant sequences
are enabled. The processor ex-
ecutes the ODT microcode and
the console device operation is
invoked.

BUS

PIN
AR1

AS1

AT1

AU1

AV1

BA1

Chapter 9 — LSI-11 Bus

MNEMONICS

BREF L

+12B
or
+ 5B

GND

PSPARE 1

+5B

BDCOKH

255

DESCRIPTION

Memory Refresh—Asserted by
a DMA device. This signal
forces all dynamic MOS memo-
ry units requiring bus refresh
signals to be activated for each
BSYNC L/BDIN L bus transac-
tion.

CAUTION
The user must avoid multiple
DMA data transfers (burst or
“hog” mode) that could delay
refresh operation. Complete re-
fresh cycles must occur once
every 1.6 msec if required.

* +12 Vdc or +5V battery backup
power to keep critical circuits
alive during power failures. This
signal is not bused to BS1 in all
DIGITAL backplanes. A jumper
is required on all LSI-11 Bus op-
tions to open (disconnect) the
backup circuit from the bus in
systems that use this line at the
alternate voltage.

Ground—System signal ground
and dc return.

Spare (Not assigned. Customer
usage not recommended.) Pre-
vents damage when modules
are inserted upside down.

*+5V Battery Power—
Secondary +5V power connec-
tion. Battery power can be used
with certain devices.

DC Power OK—Power supply-
generated signal that is assert-
ed when there is sufficient dc
voltage available to sustain reli-
able system operation.

BUS
PIN

BB1

BC1

BD1

BE1

BF1

BH1

BJ1

BK1
BL1

BM1

Chapter 9 — LSI-11 Bus

MNEMONICS

BPOKH

SSPARE4
BDAL 18L
(on Q22
only)

SSPARES
BDAL 19L
(on Q22
only)

SSPARE6
BDAL 20L

SSPARE7
BDAL 21L

SSPARES

GND

MSPAREB

MSPAREB

GND

256

DESCRIPTION

Power OK—Asserted by the
power supply 70 ms after
BDCOK negated when ac power
drop below the value required
to sustain power (approximately
75% of nominal). When negated
during processor operation, a
power-fail trap sequence is initi-
ated.

Special Spare in Q bus—Not as-
signed. Bussed in H9275 and
H9276. Cable and backplane
assemblies; available for use in-
terconnection.

Caution. These pins may be
used as test points by DIGITAL
in some options.

In Q22 these bussed address
lines are Address Lines <21:
18> currently not used during
data time.

In Q22 these bussed address.
lines are Address Lines <21:
18> currently not used during
data time.

Special Spare—Not assigned or
bused in DIGITAL cable and
backplane assemblies; avail-
able for user interconnection.

Ground—System signal ground
and dc return.

Maintenance Spare—Normally
connected together on the
backplane at each option loca-
tion (not a bused connection).

Ground—System signal ground
and dcreturn.

BUS
PIN

BN1

BP1
BR1

BS1

BT1

BU1

BV1

AA2

AB2

Chapter 9 — LSI-11 Bus

MNEMONICS

BSACKL

BIRQ7 L
BEVNTL

+12B

GND

PSPARE2

+5

+5

-12

DESCRIPTION

This signal is asserted by a
DMA device in response to the
processor’'s BDMGO L signal,
indicating that the DMA device
is bus master.

Interrupt request priority level 7

External Event Interrupt Re-
quest—When asserted, the
processor responds (if PS bit 7
is 0) by entering a service rou-
tine via vector address 100,. A
typical use of this signal is a line
time clock interrupt.

*+12 Vdc battery backup power
(not bused to AS1 in all DIGITAL
backplanes).

Ground—System signal ground
and dc return.

Power Spare 2 (not assigned a
function, not recommended for
use). If a module is using —12V
(on pin AB2) and if the module
is accidentally inserted upside
down in the backplane, —12
Vdc appears on pin BU1.

+5V Power—Normal +5 Vdc
system power.

+5V Power—Normal +5 Vdc
system power.

+ —12V Power——12 Vdc (option-
al) power for devices requiring
this voltage.

257

BUS

PIN

AC2

AD2

AE2

AF2

AH2

Chapter 9 — LSI-11 Bus

MNEMONICS

GND

+12

BDOUT L

‘BRPLY L

BDIN L

258

DESCRIPTION

NOTE
LSI-11 modules which require
negative voltages contain an
inverter circuit (on each mod-
ule) which generates the re-
quired voltage(s). Hence, —12V
power is not required with
DIGITAL-supplied options.

Ground—System signal ground
and dc return.

+12V Power—12 Vdc system
power.

Data Output—BDOUT, when as-
serted, implies that valid data is
available on BDAL <0:15> L
and that an output transfer, with
respect to the bus master de-
vice, is taking place. BDOUT L is
deskewed with respect to data
on the bus. The slave device re-
sponding to the BDOUT L signal
must assert BRPLY L to com-
plete the transfer.

Reply—BRPLY L is asserted in
response to BDIN L or BDOUTL
and during IAK transactions. It
is generated by a slave device
to indicate that it has placed its
data on the BDAL bus or that it
has accepted output data from
the bus.

Data Input—BDIN L is used for
two types of bus operation:

When asserted during BSYNC L
time, BDIN L implies an input
transfer with respect to the cur-
rent bus master, and requires a
response (BRPLY L). BDIN L is
asserted when the master de-

BUS
PIN

AJ2

AK2

AL2

AM2
AN2

Chapter 9 — LSI-11 Bus

MNEMONICS

BSYNCL

BWTBTL

BIRQ4 L

BIAKI L
BIAKO L

259

DESCRIPTION

vice is ready to accept data
from a slave device.

When asserted without BSYNC
L, itindicates that an interrrupt
operation is occurring.

The master device must deskew
input data from BRPLY L.

Synchronize—BSYNC L is as-
serted by the bus master device
to indicate that it has placed an
address on BDAL<0:17> L.
The transfer is in process until
BSYNC L is negated.

Write/Byte—BWTBT L is used
in two ways to control a bus cy-
cle:

Itis asserted at the leading edge
of BSYNC L to indicate that an
output sequence is to follow
(DATO or DATOB), rather than
an input sequence.

Itis asserted during BDOUT L,
in a DATOB bus cycle, for byte
addressing.

Interrupt Request Priority Level
4— A level 4 device asserts this
signal when its interrupt enable
and interrupt request flips-flops
are set. If the PS word bit 7 is 0,
the processor responds by ac-
knowledging the request by as-
serting BDIN L and BIAKO L.

Interrupt Acknowledge—In ac-
cordance with interrupt proto-
col, the processor asserts
BIAKO L to acknowledge re-
ceipt of an interrupt. The bus
transmits this to BIAKI L of the

BUS
PIN

AP2

AR2
AS2

Chapter 9 — LSI-11 Bus

MNEMONICS

BBS7 L

BDMGI L
BDMGO L

260

DESCRIPTION

device electrically closest to the
processor. This device accepts
the interrupt acknowledge un-
der two conditions:

1) The device requested the bus
by asserting BIRQXL, and 2) the
device has the highest-priority
interrupt request on the bus at
that time.

If these conditions are not met,
the device asserts BIAKO L to
the next device on the bus. This
process continues in a daisy-
chain fashion until the device
with the highest-interrupt priori-
ty receives the interrupt ac-
knowledge signal.

Bank 7 Select—The bus master
asserts this signal to reference
the I/0 page (including that por-
tion of the I/0 page reserved for
nonexistent memory). The ad-
dress in BDAL<0:12> L when
BBS7 L is asserted is the
address within the 1/0 page.

Direct Memory Access
Grant—The bus arbitrator as-
serts this signal to grant bus
mastership to a requesting de-
vice, according to bus master-
ship protocol. The signal is
passed in a daisy-chain from
the arbitrator (as BDMGO L)
through the bus to BDMGI L of
the next priority device (electri-
cally closest device on the bus).
This device accepts the grant
only if it requested to be bus
master (by a BDMRL). If not,

BUS
PIN

AT2

AU2
AV2

BA2

BB2

BC2

Chapter 9 — LSI-11 Bus

MNEMONICS

BINITL

BDALOL
BDAL1L

+5

-12

GND

261

DESCRIPTION

the device passes the grant (as-
serts BDMGO L) to the next de-
vice on the bus. This process
continues until the requesting
device acknowledges the grant.

CAUTION
DMA device transfers must not
interfere with the memory re-
fresh cycle.

Initialize—This signal is used for
system reset. All devices on the
bus are to return to a known, ini-
tial state; i.e., registers are reset
to zero, and logic is reset to
state 0. Exceptions should be
completely documented in pro-
graming and engineering speci-
fications for the device.

Data/Address lines—These two
lines are part of the 16-line da-
ta/address bus over which ad-
dress and data information are
communicated. Address
information is first placed on the
bus by the bus master device.
The same device then either re-
ceives input data from, or out-
puts data to the addressed
slave device or memory over
the same bus lines.

+5V Power—Normal +5 Vdc
system power.

*—12V Power——12 Vdc (option-
al) power for devices requiring
this voltage.

Ground—System signal ground
and dc return.

BUS
PIN

BD2

BE2
BF2
BH2
BJ2
BK2
BL2
BM2
BN2
BP2
BR2
BS2
BT2
BU2
Bv2

Chapter 9 — LSI-11 Bus

MNEMONICS

+12

BDAL2 L
BDAL3 L
BDAL4 L
BDALS L
BDAL6 L
BDAL7 L
BDALSL
BDAL9L
BDAL10OL
BDAL11L
BDAL12L
BDAL13L
BDAL14 L
BDAL15L

DESCRIPTION

+12V Power—+12V system
power.

Data/Address Lines—These 14
lines are part of the 16-line da-
ta/address bus previously de-
scribed.

* Voltages normally not supplied by DIGITAL.

262

263

FLOATING DATA/CONTROL UNIT
POINT (BASIC PROCESSOR)

OPTION

MEMORY
MANAGEMENT
UNIT (MMU)

264

CHAPTER 10
MEMORY MANAGEMENT

The LSI-11/23 processor implements a 256 KB or a 4 megabyte physi-
cal address space. This improves the 64 KB maximum physical ad-
dress space previously available in LSI-11 processors. The mapping
or translation of 16-bit virtual addresses to 18-bit or 22-bit physical
addresses is implemented in one MOS/LSI integrated circuit. This
chip is called the memory management unit, MMU. The memory man-
agement functionality is software-compatible with the PDP-11/34,
PDP-11/60, and PDP-11/70. Sixteen programmable relocation regis-
ters (eight for kernel mode and eight for user mode) are used to
accomplish the mapping function. The contents of these registers are
combined with the 16-bit virtual address to form an 18-bit or 22-bit
physical address. The actual transformation occurs transparently to
an executing program.

The memory management chip is designed for use in a single or
multiprogramming environment. The processor can operate in two
modes: kernel and user.

In kernel mode, the software has complete control and can execute ail
instructions. Monitors and supervisory programs are executed in ker-
nel mode.

In a multiprogramming environment, several user programs are resi-
dent in memory at any given time. Then the kernel software normally
accomplishes the following:

e Control of execution of the various user programs
e Allocation of memory and peripheral device resources

e Safeguard of the integrity of the system as a whole by careful controi
of each user program

In user mode, the software is executed in a restricted environment
and is prevented from executing certain instructions that could be
destructive to the software system, for example: modification of the
kernel program, halting the computer, or using memory space as-
signed to the kernel or other users.

In a multiprogramming system, the kernel software using the memory
management unit assigns pages (relocatable memory segments) to a
user’s program and prevents the user from making any unauthorized
access to those pages outside the assigned area. A user can thus
effectively be prevented from accidental or willful destruction of any
other user program or of the system executive program.

265

Chapter 10 — Memory Management

Basic Addressing

The PDP-11 family word length is 16 bits; however, the LSI-11 Bus and
the LSI-11/23 addressing logic are 22 bits wide. While a 16-bit word
can generate virtual address references up to 32K words (64 KB),the
LSI-11/23 and the LSI-11 Bus can reference 22-bit physical addresses
up to 4096 KB (2048 K Words). The extra bits of addressing logic
provide the basic framework for expanding memory references.

NOTE
In the case of the LSI-11/23and PDP-11/23-PLUS 22-bit
addresses are generated and presented directly on the
LSI-11 Bus directly by the processor.

8 KB of address space are reserved for the 1/0 device registers. Thus
4088 KB remain for the main memory.

Active Page Registers

The memory management unit uses two sets of eight 32-bit active
page registers (APRs). An APR is actually a pair of 16-bit registers: a
page address register (PAR) and a page descriptor register (PDR).
These registers are always used as a pair and contain all the
information needed to describe and relocate the currently active
memory pages.

One set of APRs is used in kernel mode, and the other in user mode.
The set to be used is determined by the current CPU mode contained
in the processor status word, bits 15 and 14. The active page registers
are illustrated in Figure 10-1.

Multiple Address Space

A user mode program is relocated by its own PAR/PDR set, as is a
kernel program. This makes it impossible for a program running in
one mode to accidentally reference space allocated to another mode
when the active page registers are set correctly. For example, a user
cannot transfer to kernel space. The kernel mode address space may
be reserved for resident system monitor functions, such as the basic
input/output control routines, memory management trap handlers,
and timesharing scheduling modules. By dividing the types of time-
sharing systems functionally between the kernel and user modes, a
minimum of space control housekeeping is required as the multitask-
ing operating system sequences from one user program to the next.
For example, only the user PAR/PDR set needs to be updated as each
new user program is serviced.

266

Chapter 10 — Memory Management

Capabilities Provided by Memory Management

Memory Size: 4096 KB (4 megabytes plus
4088 KB for the I/0 Page)
Address Space: Virtual 64 KB (16 bits)

Physical 256 KB (18 bits),
or 4096 KB (22-bits)

Modes of Operation: Kernel and User
Stack Pointers: Two, one for each mode
Number of Pages: 16 (eight for each mode)
Page Length: 3210 4,096 words,

64 to 8,192 bytes
Memory Page Protection: No access

Read-only

Read/write

[I I PROCESSOR STATUS WORD
1 2 1 1 il

KERNEL (00) USER (11)
APR O APR 0
APR 1 APR |
APR 2 APR 2 ACTIVE
PAGE
APR 3 APR 3 REGISTERS
APR 4 APR 4
APR 5 APR S
APR & APR &
APR 7 APR 7
s 0 s 0
r PAR I—— ——,7 POR]
PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

Figure 10-1 Active Page Registers-

MEMORY RELOCATION

When the memory management unit is operating, the normal 16-bit
address within a program is no longer interpreted as a direct physical
address (PA) but as a virtual address (VA) containing information to

267

Chapter 10 — Memory Management

be used in constructing a new 18-bit or 22-bit physical address. The
information contained in the virtual address is combined with reloca-
tion and description information contained in an active page register
to yield an 18-bit or 22-bit physical address.

Because addresses are relocated automatically, the computer may be
considered to be operating in virtual address space. This means that
regardless of where a program is loaded into physical memory, it will
not have to be relinked; it always appears to be at the same virtual
location in memory.

The virtual address space is divided into eight 8 KB pages. Each page
is relocated separately. This feature is useful in multitasking systems
as it permits programs to be loaded into discontinous blocks of physi-
cal memory.

A basic function of the MMU is to perform memory relocation and to
provide extended memory addressing capability for systems with
more than 64 KB of physical memory. Two sets of page address regis-
ters are used to relocate virtual addresses to physical addresses in
memory. These sets are used as hardware relocation registers that
permit several users’ programs, each starting at virtual address 0, to
reside simultaneously in physical memory.

g
ADDRESS PP
(va) = 0 8 = 100000
PHYSICAL MEMORY l
PROGRAM B
100000
PHYSICAL ADDRESS PROGRAM A
006400
000000

Figure 10-2 Simplified Memory Relocation

268

Chapter 10 — Memory Management

Program Relocation

The page address registers are used to determine the starting physi-
cal address of each relocated program in physical memory. Figure 10-
2 illustrates a simplified example of the relocation concept.

Program A, starting at virtual address 0, is relocated by a constant to
provide physical address 6400,.

If the program’s next virtual address is 2, the relocation constant will
then cause physical address 6402, which is the second item of pro-
gram A, to be accessed. When program B is running, the relocation
constant is changed to 100000,. The program B virtual addresses
starting at 0 are relocated to access physical addresses starting at
100000,. Using the active page address registers to provide relocation
eliminates the need to relink a program each time it is loaded into a
different physical memory location. The program always appears to
start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks.
Each block is 64 bytes in length. Thus, the maximum length of a page
is 8,192 (128 X 64) bytes. Using all of the eight available active page
registers in a set, a maximum program length of 65,536 bytes can be
accommodated. Each of the eight pages can be relocated anywhere in
the physical memory, as long as each relocated page begins on a
boundary that is a multiple of 64 bytes. However, for pages that are
smaller than 8 KB, only the memory actually allocated to the page may
be accessed.

The relocation example in Figure 10-3 illustrates several points about
memory relocation.

Although the user program appears to the processor to be in contigu-
ous address space, the 64 KB virtual address space has been
scattered throughout the physical memory space. It has been seg-
mented, split into 8 KB pages. And it has been relocated, each of the
pages assigned various positions in physical memory.

Pages may be relocated to higher, lower, or the same physical ad-
dress with respect to their virtual address range. User pages 1, 2, 5, 6,
and 7 have been relocated to a higher range of physical addresses.
User page 4 has been relocated to a lower range, and user pages 0
and 3 have not been relocated.

For simplicity, all pages except user page 2 have been relocated on an
8 KB boundary. User page 2 has been relocated on a 4 KB boundary.
Pages may be relocated to any 64 byte boundary.

Each page is relocated independently. There is no reason two or more

269

0l¢

RELOCATION OF 64K BYTE PROGRAMS

INTO 256K BYTE PHYSICAL MEMORY

B User

USER VIRTUAL G RELOCATION
64K ADDRESS SPACE E CONSTANTS
oK 160000 -177776 7 620000
3 140000-157776 6 = 220000
:g: 120000- 137776 |5 |-+ 220000
1210000017776 |4 |-»{ 020000
24K 060000-077776 3 |-= 060000
0¢|040000-037776 |2 |-+ 310000
8Kk 020000-037776 1= 040000
oK 000000-017776 (O |- 000000

Figure 10-3

1/0 (256&
PAGE

224K

740000 - 757776

720000 - 737776

700000 - 717776

660000 - 677776

640000 - 657776

620000 - 637776

600000 - 617776

560000 - 577776

540000 - 557776

520000 - 537776

500000 - 517776

460000 - 477776

440000 -457776

420000 - 437776

400000 - 417776

360000 - 377776

340000 -357776

320000 -337776

310000-317776

300000- 307776

260000-277776

240000 -257776

220000-237776

200000- 217776

160000-177776

140000-157776

120000-137776

760000 - 777776 \\

100000-117776

32

060000077776

040000- 057776

020000- 037776

000000-017776

KERNE L A
ey §meoma
760000 | [7]160000-177776
260000 6 |140000-157776 |
240000 5 [120000-137776 ';';
220000 4 [100000- 117776 |
200000 3 [060000-077776
160000 2 [040000-057776]2::
140000 1 |0z0000- 037776 |,
120000 0Jo00000-017776 | |

Relocation of a 64 KB Program into 256 KB Physical
Memory

Juswoebeuey Arowew — 0L 193deyd

Chapter 10 — Memory Management

pages could not be relocated to the same physical memory space.
Using more than one page address register in the set to access the
same space would be one way of providing different memory access
rights to the same data, depending on which part of the program was
referencing that data. User page 6 of program A is relocated to the
same physical memory as user page 2 of program B. This might pro-
vide two programs access to a shared data or instructions.

The kernel virtual address space has simply been shifted up 20K
words and still remains contiguous in physical memory.

The uppermost 8 KB page of physical memory is designated as the
1/0 page. The uppermost 8 KB of the kernel address space have been
relocated to the 1/0 page. Therefore, only the kernel and not the user
program has access to the peripheral devices located in the I/0 page.

The Relocation Constant used in the preceding discussion is derived
from the contents of the appropriate PAR register.

Memory Units

Block 64 bytes

Page 1to 128 blocks (64 to 8,192
bytes)

Number of Pages 8 per mode

Size of Relocatable 65,536 bytes,

Memory max. (8 X 8,192)

PROTECTION

A multiprogramming system allows several programs to reside in

memory simultaneously and to execute sequentially. Access to these

programs, and the memory space they occupy, must be strictly de-

fined and controlled. A multiprogramming system, therefore, requires

several types of memory protection.

® User programs must not be allowed to expand beyond their allocat-
ed space unless authorized by the operating system.

® Users must be prevented from modifying common subroutines and
algorithms that are resident for all users.

e Users must be prevented from gaining control of, or modifying, the
operating system software.

® Users must be prevented from accessing or modifying memory oc-
cupied by other users.

Memory management provides the hardware facilities to implement
all the above types of memory protection.

271

Chapter 10 — Memory Management

Inaccessible Memory

Each page has a 2-bit access control key associated with it. The key is
part of the page descriptor register (PDR). The key is assigned under
operating system control. When the key is set to 0, the page is defined
as nonresident. Any attempt by a user program to access a nonresi-
dent page is prevented by an immediate abort of the offending
instruction. Abort means that execution of the instruction ceases im-
mediately instead of waiting for the end of the instruction to report the

pages associated with the current program are set to legal access
keys. The access control keys of all other program pages are set to 0,
which prevents illegal memory references.

Read-Only Memory

The access control key for a page can be set to 2, which allows read
(fetch) memory references to the page, but immediately halts any
attempt to write into that page. This read-only type of memory protec-
tion can be afforded to pages that contain common data or subrou-
tines. This type of memory protection allows the access rights to a
given memory area to be user-dependent. That is, the access rightto a
memory area may be varied for different users by altering the access
control key.

A page address register in each of the sets (kernel and user modes)
may be set up to reference the same physical page in memory and
each may be keyed for different access rights. For example, the user
access control key might be 2 (read-only access for user programs),
and the kernel access control key might be 3 (allowing complete
read/write access for the operating system).

Mode Specification in Processor Status Word — PS<15:14> speci-
fy the current memory management mode. These bits are used to
select the corresponding PAR/PDR set to be used for the currently
executing program. PS<13:12> specify the previous memory man-
agement mode. These bits are used by the memory management
instructions to communicate between kernel and user address
spaces. When an implicit mode change occurs, the previous mode
bits (PS<13:12>) are loaded by hardware with the contents of the
current mode bits (PS<15:14>). This change can occur whenever an
interrupt or trap is processed. PS<15:14> are cleared when power is
applied. Clearing these bits selects kernel mode. PS<15:12> are en-
coded as shown below.

272

Chapter 10 — Memory Management

PS<15:14> or PAR/PDR Set Stack Pointer

PS<13:12> Enable Selected

00 Kernel Kernel (KSP)

01 Reserved for future Supervisor (SSP).
DIGITAL use. Speci- Reserved for future
fies supervisor DIGITAL use.

mode on some
PDP-11s. Does not
cause an abort.

10 lllegal. Does not Reserved for future
cause an abort. DIGITAL use.
11 User User (USP)

Each mode selects its own corresponding stack pointer. Thus, all pro-
gram references to register R6 use the stack pointer register as speci-
fied by PS<15:14>. Stack pointer selection occurs whether the mem-
ory management unit is enabled or not (SRO bit 0 is a 1). The different
stack pointers are initialized by first loading the appropriate mode
value in PS<15:14>, and can be examined by console ODT.

Processor Status Word Protection — There are various software
methods of affecting PS<15:00>. Since kernel mode is defined to
allow software access to all hardware features, free access to the PS is
allowed. Since user mode is defined for operating user programs and
thus protecting the operating system software, certain PS bits, such as
the mode and priority level fields, are protected. Table 10-1 lists the
PSW protection fields.

User Mode Restrictions — User mode is intended for executing user

programs. While in user mode, the program is restricted from using

those hardware features that could disrupt system integrity. The fol-

lowing hardware features are protected in user mode.

® HALT Instruction—Instead of entering console ODT, a HALT In-
struction causes a trap to kernel location 10,. The intent is not to
allow a user program to halt the operating system.

® RESET Instruction—Instead of causing a bus initialize, a RESET
instruction is executed as an NOP instruction. The intent is to pre-
vent the user program from initializing 1/0 devices.

® The MTPS Instruction—When executed in user mode, MTPS allows
access to PS<03:00> only. All other PS bits are vital to system
operations and cannot be affected. Explicit access to the PS in user
mode allows full access to the PS (except T bit), however the kernel

273

vie

RTI,RTT Traps & Explicit MTPS Power Up
Interrupts PS Access

PS Bits User Kernel | User Kernel | User Kernel User Kernel

Condition Loaded Loaded | Loaded | Loaded | Loaded Loaded Loaded Loaded

Code From From From From From From From From Cleared

PS<3:0> Stack Stack Vector | Vector [Source Source Source Source

Trap Bit Loaded Loaded | Loaded | Loaded

PS4 From From From From Unchanged | Unchanged Unchanged | Unchanged Cleared

Stack Stack Vector | Vector

Interrupt Loaded | Loaded | Loaded | Loaded Loaded Loaded SET when

Priority Unchanged From From From From From Unchanged From powered

PS<7:5> Stack Vector | Vector | Source Source Source up to
bootstrap
Cleared when
powered up
to ODT,
loc 24, or
microcode

SI Loaded Loaded | Loaded | Loaded | Loaded Loaded Non- Cleared

PS8 From From From From From From Non- Accessible

Stack Stack Vector | Vector | Source Source Accessible

Previous Loaded | Copied | Copied |Loaded Loaded Non- Non-

Mode Unchanged From From From From From accessible Accessible Cleared

PS<13:12> Stack PS PS Source Source

<15:14 <15:14>]

Current Loaded | Loaded | Loaded |Loaded Loaded Non- Non-

Mode Unchanged | From From From From From accessible accessible Cleared

PS<15:14> Stack Vector | Vector | Source Source

Table 10-1 Processor Status Word Protection

Juswoebeuep Alowew — 01 191deyD

Chapter 10 — Memory Management

program has control via the mapping registers over the mapping of
a user program into the PS address.

Interrupt and Trap Processing — All interrupt and trap vectors are
always accessed in kernel mode when the new PC and PS are
fetched. The processor’s first step in processing the interrupt or trap
is to fetch the new PS value from the interrupt or trap location plus
two. This determines which mode, and consequently which stack
pointer, to use for pushing the old PC and PS. The LSI-11/23 copies
the old PS into a temporary register and then loads the new PS
value. PS<15:14> are loaded from the vector to select the new
current mode. PS<13:12> (previous mode) are loaded with the old
value in PS<15:14>, to keep a record of what the previous mode
was. This is the only place where the PS previous mode bits copy
the current mode bits.

This process allows communication between mode address spaces
using the memory management instructions. The remaining PS bits
are loaded from the memory location. Thus, interrupt and trap ser-
vice routines can be executed in either kernel or user mode, de-
pending on the content of the vector plus two locations.

Table 10-2 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 772340 772300 0 777640 777600
1 772342 772302 1 777642 777602
2 772344 772304 2 777644 777604
3 772346 772306 3 777646 777606
4 772350 772310 4 777650 777610
5 772352 772312 5 777652 777612
6 772354 772314 6 777654 777614
7 772356 772316 7 777656 777616

PAGE ADDRESS REGISTER (PAR)
The page address register (PAR) contains the 16-bit page address
field (PAF) that specifies the base address of the page.

The page address register can be considered a relocation constant,
or a base register containing a base address. Either interpretation
indicates the basic function of the page address register (PAR) in
the relocation scheme.

275

Chapter 10 — Memory Management

PAR POR
0 000000 001 111 000| JO 0101001 0000 0 110
— J [—— b —
PAF =0170 }
PLF = Sly =410 =NUMBER OF BLOCKS

ED =0 UPWARD EXPANSION
ACF = 6 = READ / WRITE

Figure 10-4 PAR, PDR

PAGE DESCRIPTOR REGISTER (PDR)

The page descriptor register (PDR) contains information pertinent
to page expansion, page length, and access control. Figure 10-4
illustrates the layout of the PAR and PDR registers. Table 10-2 lists
the PAR/PDR address assignments.

Access Control Field (ACF)

This 2-bit field, bits 2 and 1 of the PDR, describes the access rights
to this particular page. The access bits specify the manner in which
a page may be accessed and whether or not a given access should
result in an abort of the current operation. A memory reference that
causes an abort is not completed and is terminated immediately.
Aborts are caused by attempts to access nonresident pages, by
page length errors, or by access violations such as attempts to write
into a read-only page.

In the context of access control, the term “write” indicates the action
of any instruction that modifies the contents of any addressable
word. The accompanying table lists the ACF keys and their func-
tions. The ACF is written into the PDR under program control.

Access Control Field Keys

ACF Key Description Function

00 0 Nonresident Abort any
attempt to
access this
nonresident
page

01 2 Resident Abort any
read-only attempt to

write into

this page

10 4 Unused Abort all
accesses

276

ACF

11

Expansion Direction (ED)
The ED bit located in PDR bit position 3 indicates the authorized
direction in which the page can expand. A logic 0 in the bit (ED = 0)

Chapter 10 — Memory Management

Key

Description Function

Resident Read or

read/write write al-
lowed; no
abort oc-
curs

indicates the page can expand upward from relative zero. A logic 1
in this bit (ED = 1) indicates the page can expand downward toward

relative zero. The ED bit is written into the PDR under program
control. When the expansion direction is upward (ED = 0), the page

length is increased by adding blocks with higher relative addresses.

Upward expansion is usually specified for program or data pages to

add more program or table space. An example of page expansion
upward is shown in Figure 10-5.

LNy
BLOCK 77y .
BLOCK 176y -
ADDRESS RANGE
OF POTENTIAL PAGE -
EXPANSION BY
CHANGING THE PLF 7
woxs
024176
BLOCK 51y
024100
017276
AUTHORIZE PAGE
LENGTH =429 BLOCKS BLOCK 2
OR O THRU 513 = 017200
BLOCKS
S 017176
BLOCK 1
017100
017076
BLOCK 0
017000
Figure 10-5

277

ANY BLOCK NUMBER
GREATER THAN 41)(51g)
(VA<12:06> 51g)
WILL CAUSE A PAGE
LENGTH ABORT.

~+——BASE ADDRESS OF PAGE

Example of an Upward-Expandable Page

Chapter 10 — Memory Management

When the expansion direction is downward (ED = 1), the page
length is increased by adding blocks with lower relative addresses.
Downward expansion is specified for stack pages so that more stack
space can be added. An example of page expansion downward is
shown in Figure 10-6.

036776

BLOCK 1774
036700
036676
BLOCK 1764
6600
AUTHORIZED PAGE 036576
LENGTH - 42y, BLOCKS BLOCK 1754
36500
0311676
BLOCK 1264
0311600
N
G
sLocx |zs. //
0 ’//
’“9“ 24 A BLOCK NUMBER
AT, REFERENCE LESS
ADDRESS RANGE OSSR PSS THAN 1264
A TENTIAL PAGE ; 2 [VA<12:06 > LESS THAN 126y)
XPANSION ST A
BIRLERE B e A | s
017176 :
BLOCK) ‘7//////
01, 017100 ¢
i 017976'
/8l0C
//// onooo, J

BASE ADDRESS OF PAGE

Figure 10-6 Example of a Downward-Expandable Page

Written Into (W)

The W bit located in PDR bit position 6 indicates whether the page
has been written into since it was loaded into memory. W = 1 is
affirmative. The W bit is automatically cleared when the PAR or PDR
of that page is written into. It can be set only by the control logic.

In disk swapping and memory overlay applications, the W bit (bit 6)
can be used to determine which pages in memory have been modi-
fied by a user. Those that have been written into must be saved in
their current form. Those that have not been written into (W = 0)
need not be saved and can be overlayed with new pages, if necessa-

ry.
278

Chapter 10 — Memory Management

Page Length Field (PLF)

The 7-bit PLF located in PDR<14:08> specifies the authorized
length of the page in 32-word blocks. The PLF holds block humbers
from 0 to 177, thus allowing any page length from 1 to 128,, blocks.
The PLF is written into the PDR under program control. The PLF
contains the block number of the last accessible block in the virtual
page.

PLF for an Upward-Expandable Page — When the page expands
upward, the PLF must be set to one less than the intended number
of blocks authorized for that page. This is the block number of the
highest block authorized for the virtual page. For example, if 52,
(42,,) blocks are authorized, the PLF is set to 514 (41,,). The hard-
ware compares the virtual address block number, VA<12:06> with
the PLF to determine if the virtual address is within the authorized
page length.

When the virtual address block number is less than or equal to the
PLF, the virtual address is within the authorized page length. If the
virtual address is greater than the PLF, a page length fault (address
too high) is detected by the hardware and a fault occurs. In this case,
the virtual address space legal to the program is noncontiguous
because the three most significant bits of the virtual address are
used to select the PAR/PDR set.

PLF for a Downward-Expandable Page — The capability of provid-
ing downward expansion for a page is intended specifically for those
pages that are to be used as stacks. A stack starts at the highest
location reserved for it and expands downward toward the lowest
address as items are added to the stack.

When the page is to be downward expandable, the PLF must con-
tain the block number of the lowest authorized block for the virtual
page. This number is the 2’s complement of the number of blocks
required.

If a 42-block page is required, the PLF is derived as follows:
42,, = 524; 2’s complement = 126,

The same PAF is used in both examples shown here. This is done to
emphasize that the PAF, as the base address, always determines
the lowest address of the page, whether it is upward- or downward-
expandable.

VIRTUAL AND PHYSICAL ADDRESSES

Construction of a Physical Address
The basic information needed for the construction of a physical

279

Chapter 10 — Memory Management

address (PA) comes from the virtual address (VA), and the appro-
priate APR set. Figure 10-7 illustrates the interpretation of a virtual
address.

[APF l OF J
e A " "

ACTIVE PAGE FIELD OISPLACEMENT FIELD

Figure 10-7 Interpretation of a Virtual Address

The virtual address consists of the following:

® The active page field (APF) — This 3-bit field determines which of
the eight active page registers (APR0O-APR7) will be used to form the
physical address.

e The displacement field (DF) — This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2'® = 8 KB). The DF is further subdivided into two fields.
The displacement field of the virtual address is illustrated in Figure
10-8.

12 [5 0

1w]

BLOCK NUMBER DISPt ACEMENT IN BLOCKS

Figure 10-8 Displacement Field of Virtual Address

The displacement field (DF) consists of the following:

® The block number (BN). This 7-bit field is interpreted as the block
number within the current page.

® The displacement in block (DIB). This 6-bit field contains the
displacement within the block referred to by the block number.

The remainder of the information needed to construct the physical
address comes from the 16-bit page address field (PAF), part of the
active page register, and specifies the starting address of the memory
which that APR describes. The PAF is actually a block number in the
physical memory; PAF = 3 indicates a starting address of word 96 (3 X
32 = 96) in physical memory.

280

Chapter 10 — Memory Management

The logical sequence involved in constructing a physical address is as

follows:

® Select a set of active page registers depending on current mode
specified by PS<15:14>. The active page field of the virtual address
is used to select an active page register (APRO-APR7).

® The page address field of the selected APR contains the starting
address of the currently active page as a block number in physical
memory.

® The block number from the virtual address is added to the block
number from the page address field to yield the number of the block
in physical memory which will contain the physical address being
constructed.

® The displacement in blocks from the displacement field of the virtual
address is joined to the physical block number to yield an 18-bit or
22-bit physical address.

Determining the Program Physical Address

A 16-bit virtual address can specify up to 64 KB in the range from
000000 to 177776, (word boundaries are even numbers). The three
most significant virtual address bits designate the PAR/PDR pair to be
referenced during page address relocation. Table 10-3 iists the virtual
address ranges that specify each of the PAR/PDR sets. Figure 10-9
illustrates the construction of a physical address.

Table 10-3 Relating Virtual Address to PAR/PDR Set

Virtual Address Range PAR/PDR Set

000000-17776
020000-37776
040000-57776
060000-77776
100000-117776
120000-137776
140000-157776
160000-177776

NOAaAdWN-—-+O

NOTE
Any use of page lengths of less than 8 KB causes
unaddressable holes in the virtual address space.

281

Chapter 10 — Memory Management

0
L A | 80CK NO I o8 J‘ﬂ;&}’é’g

PAGE ADDRESS FIELD l‘fglvsgﬂ':st

i 5 o
PHYSICAL

| PAYSICAL BLOCK NO -----{ o1e ADDRESS
(DISPLACEMENT IN_ 8LOCKS)

17

Figure 10-9 Construction of a Physical Address

STATUS REGISTERS

Aborts generated by protection hardware are vectored through kernel
virtual address 250,. Status registers are used to determine why the
abort occurred. Note that an abort to a location which is itself an
invalid address will cause another abort. Thus, the kernel program
must ensure that kernel virtual address 250, is mapped into a valid
physical address, otherwise an infinite loop requiring operator inter-
vention will occur.

Status Register 0 (SR0)

SRO contains abort error flags, memory management enable, and
other essential information required by an operating system to recover
from an abort. The SRO format, illustrated in Figure 10-10, has as its
address 777572,. This register is cleared by application of power or a
RESET instruction.

14 312

LJLTL T VL 1]

ACCESS VIOlA"ON
MAINTENANCE

PAGE
ENA!LE MANAGEMENT

Figure 10-10 Format of Status Register 0 (SR0)

Bits 15-13 are the abort flags. They may be considered to be in priority
order in that flags to the right are less significant and should be ig-
nored. For example, a nonresident abort service routine would ignore
page length and access control flags. A page length abort service
routine would ignore an access control fault.

282

Chapter 10 — Memory Management

Bit 15, 14, or 13 when set (abort conditions) causes the logic to freeze
status register SR2. This is done to facilitate recovery from the abort.

Note that only SRO bit 0 can be set under program control to provide
memory management control information. Only that information which
is automatically written into the remaining bits as a result of hardware
actions is useful as a monitor of the status of the memory management
unit. Setting bits 15-13 under program control will not cause traps to
occur. These bits, however, must be reset to 0 by software after an
abort has occurred in order to resume monitoring memory manage-
ment.

Bit: 15 Name: Abort Nonresident
Function: Bit 15 is the abort nonresident bit. It is set by attempting to
access a page with an access control field (ACF) key equal to 0 or 4.

Bit: 14 Name: Abort Page Length

Function: Bit 14 is the abort page-length bit. It is set by attempting to
access a location in a page with a block number (virtual address bits
12-6) that is outside the area authorized by the page length field (PLF)
of the PDR for that page.

Bit: 13 Name: Abort Read-Only
Function: Bit 13 is the abort read-only bit. It is set by attempting to
write in a read-only page, access key 2.

There are no restrictions against abort bits being set simultaneously
by the same access attempt.

Bit: 5-6 Name: Mode of Operation
Function: Bits 5 and 6 indicate the CPU mode (user or kernel) asso-
ciated with the page causing the abort (kernel = 00, user = 11).

Bit: 1-3 Name: Page Number

Function: Bits 1-3 contain the virtual page number referenced.
Pages, like blocks, are numbered from 0 upwards. The page number
field is used by the error recovery routine to identify the page being
accessed if an abort occurs.

Bit: 0 Name: Enable Relocation and Protection

Function: Bit 0 is the enable bit. When it is 1, all addresses are
relocated and protected by the memory management unit. When bit 0
is set to 0, the memory management unit is disabled and addresses
are neither relocated nor protected.

Status Register 1 (SR1)

SR1 is implemented on some PDP-11 computers to provide additional
capability. The LSI-11/23 does not implement this register but does
respond to its bus address, 777574, and reads it as all 0s. This infor-
mation is provided here for clarity only.

283

Chapter 10 — Memory Management

Status Register 2 (SR2)

SR2 is loaded with the 16-bit virtual address (VA) at the beginning of
each instruction fetch, but is not updated if the instruction fetch fails.
SR2 is read-only; a write attempt will not modify its contents. SR2 is
the virtual address program counter. Upon abort, the resuit of SRO0 bits
15, 14, or 13 being set will freeze SR2 until the SRO abort flags are
cleared. The address of SR2 is 777576, and is illustrated in Figure 10-
11.

15 Q

L 16 BIT VIRTUAL ADDRESS J‘,‘?%“f:s

Figure 10-11 Format of Status Register 2 (SR2)

Status Register 3 (SR3)

SR3 is implemented on some PDP-11 computers to provide additional
capability. The LSI-11/23 implements a portion of SR3 which is re-
served for future DIGITAL use. SR3 bit 4 enables 22-bit mapping, and
SR3 bit 5 enables I/0 mapping. The address of SR3 is 772516,. The
format of status register 3 is shown below in Figure 10-12.

15 6 5 4 3 [¢]

ADDRESS
| N |5588%
81T:15-6 RESERVED FOR FUTURE DIGITAL USE |
BIT: 5 ENABLES I/O MAPPING
BIT: 4 ENABLES 22-BIT MAPPING
BIT:3-0 RESERVED FOR FUTURE DIGITAL USE

Figure 10-12 Format of Status Register 3 (SR3)

MEMORY MANAGEMENT INSTRUCTIONS

Memory management provides communication between two spaces,
as determined by the current and previous modes of the processor
status word (PSW). The following instructions are directly applicable
to memory management.

284

Chapter 10 — Memory Management

Mnemonic Instruction Op Code
MFPI move from previous instruction space 0065SS
MTPI move to previous instruction space 0066DD
MFPD move from previous data space 1065SS
MTPD move to previous data space 1066DD

In the LSI-11/23, there is no distinction between instruction space and
data space. The two instructions, MFPD and MTPD, execute identical-
ly to MFPI and MTPI.

285

CHAPTER 11
FPF11 FLOATING POINT PROCESSOR

The FPF11 floating point processor is a hardware option designed to
operate with the LSI-11/23, PDP-11/23, or the PDP-11/23-PLUS cen-
tral processor units to execute all 46 arithmetic operations of the PDP-
11 floating point instruction set. Its dedicated high-speed data path
and unique internal clock speed the execution of the PDP-11 floating
point instruction set, and enhance the performance of the LSI-11/23 in
high computation-oriented environments. The FPF11 is contained in
one quad-height module, the M8188.

The FPF11’s 64-bit wide data path is designed to avoid the use of
complex arithmetic coding routines that would be required if a 16-bit
CPU were to operate on the 32-bit or 64-bit operands. Its internal
clock, controlled by the FPF11 microcode, generates variable-length
microcycles so that each microword can be executed in a minimum
amount of time. The FPF11 does not depend on the Memory Manage-
ment Unit (MMU) for its scratched pad registers. It complements the
KEF11-AA microcoded (chip) implementation with up to six times the
improvement in floating point performance over the KEF11-AA.

Featuring both single- and double-precision (32- or 64-bit) capability,
the FPF11 uses the same addressing modes and memory manage-
ment (when present) as the CPU. Floating point processor instructions
can reference the floating point accumulators, the CPU’s general
registers, or any location in memory.

For a complete list of the 46 floating point instructions implemented by
the floating point processor, refer to Chapter 5.

FEATURES — BENEFITS
® Performance increased five to six times that of KEF11 without FPF11

— satisfies applications that require high computational speed.

® FP11 instruction set — current KEF11 software is completely
migratable to FPF11.

e KEF11 interface socket — no special hardware needed to add
FPF11toaLSI-11/23 system.

SPECIFICATIONS

Indentification M8188
Type Quad-size
Dimensions 26.5cm X 28.8cm X 1.27cm

(10.5in X 8.9in X 0.5in)

287

Chapter 11—Floating Point Processor

Bus Loads None

Operating Tempera- 5° Cto50° C (41° to 122°F)
ture:

Relative Humidity 10% to 95%, (no condensation)
Power Consumption +5.0Vdc,7.5A
CONFIGURATION

The following is a general installation procedure for adding an FPF11
to a LSI-11/23 processor system. The FPF11 is installed in the back-
plane slot as illustrated in Figures 11-1 and 11-2. The M8188 (quad-
height module) becomes an integral part of the CPU when it is in-
stalled in the backplane slot adjacent to the LSI-11/23 CPU. The
FPF11 module connects to the CPU by a ribbon cable that plugs into
the socket normally designated for the optional KEF11-AA floating-
point processor chip. The FPF11 receives only power, not signals,
from the backplane. The module operates from a single +5.0V DC
source. The FPF11 also receives +12V over the ribbon cable that
plugs into the floating point chip socket on the processor. This option
is independent of the type of bus used by the processor. The FPF11
does not connect to the system bus, and has no effect on bus loading.

Before installing the FPF11, run system diagnostics to verify that the

system receiving the option is working properly, then follow the steps

listed below:

1. Turn the power off and reconfigure the system. Refer to Figures
11-1and 11-2.

WARNING

To prevent damage to components, use the special handling
procedures for MOS devices when performing the following
steps.

2. If present, remove the floating point processor chip from the CPU
module. Refer to Figure 11-1 and 11-2 for its location.

3. To ensure proper bus grant continuity, configure the jumpers as
indicated in Table 11-1. Refer to Figure 11-3 for the locations of
the jumpers on the FPF11.

4. Insert the Berg connector on the ribbon cable into J1 of the FPF11
module.

5. Install the M8188 module in the vacant slot. For the LSI-11/23
system, this is slot 2, adjacent to the CPU (see Figure 11-1).

6. Fold the ribbon cable as shown in Figure 11-2.

288

Chapter 11—Floating Point Processor

Insert the 40-pin DIP plug of the ribbon cable into the floating
point socket on the CPU. Note the position of pin 1in Figure 11-2.

NOTE
Check for possible power supply overload before
restoring power. The FPF11 module typically draws
7.5Aat5Vdc.

Turn the power on and run the FPF11 diagnostics to verify the
proper operation. Refer to Diagnostics section in this chapter for
diagnostic information.

Run DEC-X11 to verify that the entire system (including FPF11) is
operating properly.

SLOTA i SLOTB ! SLOTC | SLOTD
ROW 1 cPU
ROW 2 FPF11 mM8188
ROW 3 OPTION 3 OPTION 4
ROW 4 OPTION 6 OPTION 5

VIEW IS FROM MODULE SIDE OF CONNECTORS

Figure 11-1 FPF11 Module in LSI-11/23 System

PDP11/23 SYSTEM

Figure 11-2 FPF11 Cable Layout in LSI-11/23 System

289

Chapter 11—Floating Point Processor

o0——o0
MAINTENANCE ONLY — JUMPER ALWAYS INSTALLED

W12 w8

VAR
O——©0 0—=0

L

o——oW10 SPARE
o——oW9
CLOCK JUMPER ALWAYS INSTALLED

41

w6

o0—o0
W/

Wh w4

W3

Figure 11-3 FPF11 Jumper Locations

Table 11-1 FPF11 Jumper Configurations

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12

Unibus

R R I R R I 1 1 1 R | |

Q-Bus

I I R I 1T I R R I | R R

NOTE: R = Jumper removed, | = Jumper installed.

FPF11 Diagnostics

Two diagnostics are available to validate and diagnose the FPF11
option. The CPU tests should be run prior to running floating point
diagnostics if there is any doubt about the CPU. Successful running of
CPU tests does not rule out the possibility that a failure may cause only
floating point instructions to fail. The two FPF11 diagnostics are listed
below. These diagnostics must be run in the order listed because each
test requires that the one preceding it was faultless. Otherwise, you
may not identify correctly a failed microstep and location of its cause.

290

Chapter 11—Floating Point Processor

MAINDEC CJFPAA (FPF11, No. 1)
This diagnostic tests the following floating point instructions:

e LDFPS

e STFPS

e CFCC

e SETF, SETD, SETI, and SETL

® STST

® LDF and LDD (all source modes)
e STD (modeOand 1)

e ADDF, ADDD, and SUBD (most conditions)
e CMPD and CMPF

e DIVD and DIVF

® MULD and MULF

e MODD and MODF

MAINDEC CFFPBA (FPF11, No. 2)
This diagnostic tests the following floating point instructions:

e STF and STD (all modes)

® STCFD and STCDF

® CLRD and CLRF

® NEGF and NEGD

® ABSF and ABSD

e TSTFand TSTD

o NEGF, ABSF, and TSTF (all source modes)
e LDFBS (all source modes)

e LDCIF, LDCLF, LDCID, and LDCLD
e LDEXP

e STFPS (all destination modes)

® STCFL, STCFI, STCDL, and STCD!
® STEXP

e STST

DESCRIPTION

This description consists of two parts. The first part describes the
interface between the CPU and the FPF11. The second part describes
the internal operation of the FPF11.

291

Chapter 11—Floating Point Processor

CPU Interface

The CPU contains two internal busses, the Microinstruction Bus (MIB)
and the Data/Address Lines (DALs) as illustrated in Figure 11-4. The
MIB <15:00> is the control bus. It is used to carry the 16-bit CPU
microinstructions. The DAL <15:00> is the data bus, which is used to
carry data, addresses, and PDP-11 instructions. The FPF11 is con-
nected to these busses by a ribbon cable.

MAIN MEMORY

2 SYSTEM BUS 2

TCPU CLK

cPU RESET H FPF11
CSEL L

Figure 11-4 FPF11/CPU Interface

The CPU executes PDP-11 code by fetching an instruction and its
operands from memory, performing the operation, and storing the
result. It accomplishes this by executing CPU microinstructions. The
FPF11 monitors the CPU microinstruction flow at its MIB interface.
When the FPF11 decodes the microinstructions to be an instruction
fetch (IFETCH), it knows the next piece of information on the DAL is a
PDP-11 instruction, and it inputs this instruction into its floating point
register (FPIR) in parallel with the CPU. The CPU uses the next two
microcycles to examine the instruction. During this interval, the FPF11
sets up to process the instruction in case it turns out to be in the
floating point class (i.e. it has an op code of 17XXXX).

At the end of the microcycles, the CPU microinstruction on the MIB
tells the FPF11 whether or notitis in the floating point class. If it is not,

292

Chapter 11—Floating Point Processor

the FPF11 goes back to monitoring the CPU and awaits the next IF-
ETCH. If it is a floating point instruction, the CPU passes control to the
FPF11, which then becomes the microinstruction source on the MIB.
At this point, the FPF11 has control over the CPU.

The FPF11 issues CPU microinstructions to move operands between
main memory and the FPF11 as dictated by the PDP-11 floating point
instruction on the FPIR. The operands are passed on the DAL data
bus.

During the times when no CPU actions are required, the CPU receives
a no operation (NOP) microinstruction. This occurs while the FPF11
operates on floating point data. The FPF11 may run at its own clock
rate while the CPU receives NOPs at the CPU’s clock rate. Resyn-
chronization occurs prior to the return of control to the CPU, that is,
upon successful completion of a PDP-11 floating point instruction.
Control is passed back to the CPU by entering the CPU’s service
routine. This causes the FPF11 to return to its monitoring of CPU
microinstructions. If the completion of a floating point instruction is
unsuccessful, control is passed back to the CPU by entering the CPU’s
TRAP HANDLER microroutine. The trap vector associated with the
floating point processor errors (244;) is sent to the CPU on the MIB.
The FPF11 then returns to monitoring CPU microinstructions. The
CPU handles the trap as directed by the interrupt service routine at
244,. The FPF11 stores the error code and address associated with
the failing PDP-11 floating point instruction in its floating error code
(FEC) and floating error address (FEA) registers, respectively. Soft-
ware may use this information to recover from the error.

Internal Operation

Figure 11-5 is a functional block diagram of the FPF11. Similar to the
CPU, the FPF11 has both a control path and a data path. The control
store outputs from a control path that is 104 bits wide.

Data, addresses, and PDP-11 floating point instructions are passed
on the TBus <15:00>, which is the FPF11 internal bus.

Control functions are performed by the sequencer, the control store,
the MIB interface, and the interface control logic. Data handling func-
tions are performed by the DAL interface, TBus resources, and the
microprocessor data path.

Microcontroller: Sequencer and Control Store — The sequencer
and the control store together form the FPF11 microcontroller. The
microcontroller directs all FPF11 activity by conditionally sequencing
through the microcode in the control store.

293

v6¢

TO/FROM
CPU

[MICROCONTROLLER |
f FPP I |
MIB~15:00> cLK CONTROL
mig
INTERFACE | STORE MICROPROG 104, |
CONTROLS v
EEE $ mpc<os 00> 9, l 9 I
MIB INTERFACE DECODED 2 I |
]
1} MICROINSTRUCTION
e CROINSTRUCTIO w
3 MPC08:00>
RESET H I l
SECTOR CLKS 4
TCPU CLK I INTERFACE CONTROL — MICROPROCESSOR
AND JAM MPC ZERO H | 2 DATA PATH
cseL L |cLock Losic 1 ¢——/—‘<I~
FPP CLK SEQUENCER
] | | 1c, 0ATAPATHBUT CONDITIONS
1
-
2 TBUS RESOURCE
DAL INTERFACE 26 /0ATA
CONTROL cop
CLK 16
TBUS RESOURCES
FPIR 07 06> <02 00> 6
DAL
TCPU CLK INTERFACE
—_—
TBUS<15-00>

Figure 11-5 FPF11 Floating Point Processor Functional Block

Diagram

108889014 juiod Buneoj4— | 193deyd

Chapter 11—Floating Point Processor

The sequencer makes the decisions that control microprogram execu-
tion. It consists of branch and IR decode programmable logic
arrays (PLAs) and the microprogram counter (MPC) logic. Information
received from the TBus resources, MIB interface, microprocessor da-
ta path, interface control and clock logic, and bits of the previous
control word cause the sequencer to output microaddresses on MPC
<08:00> . These microaddresses are sent to the control store to se-
lect microinstructions for FPF11 control and to the MIB interface to
select CPU microinstructions.

The control store logic is comprised of 13 512 x 8-bit ROMs which
make up the control word. In addition, two more ROMs are used to
hold CPU microinstructions. Hence, the microcontroller directs the
execution of the current PDP-11 floating pointinstruction.

MIB Interface — The FPF11 uses the MIB interface to either monitor
or control the CPU. While the CPU is executing PDP-11 instructions,
this logic monitors the MIB, waiting to decode the CPU
microinstruction associated with IFETCH. This decoded microinstruc-
tion is sent to the sequencer. This logic also decodes the CPU microin-
struction, which indicates the start of a PDP-11 floating point instruc-
tion. While the FPF11 is executing PDP-11 floating point instructions,
the microinstruction ROMs located here are addressed by MPC <08:
00>, from the sequencer. This causes the microinstruction ROMs to
output CPU microinstructions on the MIB <15:00>, and makes the
CPU available to the FPF11 for use in accessing main memory. The
direction of information flow out of the MIB interface is controlled by
the microcontroller, and timed by the interface and control logic.

Interface and Control Logic — The interface control and clock logic is
responsible for maintaining proper timing between the FPF11 and the
CPU, for both data (DAL) and control (MIB). This logic provides the
CPU with the signal that allows the FPF11 to be the CPU microinstruc-
tion source on the CSEL line (MIB), and also receives the RESET line
from the CPU. In addition, internal FPF11 processing is timed here.

The interface and control logic receives decoded microinstructions
from the MIB. When these instructions indicate a floating point
instruction has been received by the CPU, the signal CSEI L is sent to
the CPU to inform it that the FPF11 is taking control. This logic times
control and data signals entering or leaving the FPF11 at the MIB
interface or DAL interface. When the CPU issues a RESET, or when
the test for a floating point instruction decode from the CPU fails, the
FPF11 microcode is reset to the CPU monitoring sequence. This is
accomplished by the signal JAM MPC ZERO H from this logic to the
sequencer.

295

Chapter 11—Floating Point Processor

The logic clock controls the speed at which the FPF11 runs. Normally,
the FPF11 runs at the speed of the CPU. However, during certain
arithmetic operations, the clock logic generates a faster clock for tim-
ing FPF11 operations, while the MIB interface runs at the speed of the
CPU. The clock is controlled by the microcontroller, and is used to run
each FPF11 microcycle at its fastest possible rate. The clock logic also
synchronizes the FPF11 with the CPU prior to returning control to it.

DAL Interface — The DAL interface buffers the information received
from the CPU’s DAL and transfers the information from the TBus onto
the DAL for use by the COU or storage in main memory. Information
returned to the CPU consists of processed operands and associat-
ed addresses and error codes. The direction of the information flow is
controlled by the microcontroller, and timed by the interface control
and clock logic.

TBus Resources — The TBus resources supply the sequencer and
the microprocessor data path with information necesssary for data
and control processing. The TBus resources are five registers, a coun-
ter, and a pair of constant ROMs. TBus resource data is passed to and
from the TBus under the direction of the microcontroller.

The counter is used as a loop counter for microcode iterations, such
as the multiply microroutine. Data is loaded into the counter from the
TBus. The sequencer uses an output of the counter, CNTR BORROW
L, to control microprogram flow. The counter outputs are also avail-
able on the TBus for use in the microprocessor data path.

The two constant ROMs contain fixed-value numbers required for
certain floating point operations.

The five TBus registers are as follows:

FPIR The floating point instruction register
(FPIR) contains the op code, accumulator,
source/destination, and floating
source/floating destination information.

FD/FL This register specifies whether the mode is
single-or double-precision floating point
format (FD), or single- or double-precision
integer format (FL).

FPS The floating point status (FPS) register con-
sists of two segments, FPS1 and FPS2. The
microcontroller tests the bits in FPS1 in or-
der to control microprogram flow. Floating
point condition codes are loaded into the 4-
bit FPS2. These codes reflect the condition

296

Chapter 11—Floating Point Processor

of the last arithmetic operation (that affect-
ed condition codes) performed in the mi-
croprocessor data path.

SFR The status flags register (SFR) is where the
microcode stores special microcode
conditions as status bits. The microcontroll-
er uses these bits to control microprogram
flow. They allow a limited amount of micro-
code sharing to occur, similar to subroutin-
ing.

Microprocessor Data Path Logic — This logic performs the floating

point arithmetic and data manipulations. The logic consists of 16

AM2901 bipolar microprocessors and support circuitry. The support

circuitry consists of fast carry logic, shift linkage logic, and address

multiplexers for scratch-pad registers.

Operands are moved to and from an AM2901 bipolar microprocessor
in 16-bit words by way of the TBus. The microcontroller directs the
placement of the operands at their specified locations within a
scratch-pad register. Once the operands are loaded, they are manipu-
lated by the microcontroller to arrive at resuitant operands. These
operands are then stored in the scratch-pad register until they are
moved onto the TBus.

297

section || I

board-level
components

CHAPTER 12
FALCON SBC-11/21 MICROCOMPUTER

INTRODUCTION

The FALCON SBC-11/21, KXT11-AA, is DIGITAL's first single- board
microcomputer. Designed for use in low-cost, dedicated, PROM-
based control applications, the FALCON executes software out of
ROM, PROM, or EPROM memory. The stand-alone FALCON offers
the DIGITAL-designed 16-bit Micro/T-11 Microprocessor Unit (MPU),
4 KB of RAM, up to 32 KB of ROM, two asynchronous serial line units
with programmable baud rates, and 24 lines of programmable parallel
1/0-- all of which are packaged on one dual-height board module.

While retaining full PDP-11 hardware and software compatibility, the
very compact SBC-11/21 extends the low-end of DIGITAL's PDP-11
family of computers. The Micro/T-11 MPU executes the PDP-11 base-
level instruction set, (minus the MARK instruction) which consists of
over 400 instructions and 12 powerful addressing modes.

FALCON microcomputer design has been optimized to support the
execution of ROM, PROM, or EPROM-based application software. The
MicroPower/Pascal runtime operating system is the only operating
system software that supports the FALCON. MicroPower/Pascal is
comprised of a new language compiler, a modular operating system
for the target application, and powerful debugging tools for use in the
program development environment. Program development for Micro-
Power/Pascal is implemented under RT-11.

FEATURES — BENEFITS
® 0-64 KB of address space — allows flexibility of expanding to LSI-11

Bus memory if necessary.

e Compact size — allows versatile packaging.

® Stack processing — simplifies handling of strucwured data, subrou-
tines, and interrupts.

® PDP-11 instruction set — provides power and flexibility of world’s
most popular computer architecture.

® Two asynchronous serial I/0 ports — allows downline program
loading, simultaneous debugging and monitoring of programs, as
well as communication with terminal.

299

Chapter 12 — FALCON SBC-11/21 Microcomputer

e Two bidirectional parallel ports — provide high-speed parallel inter-
face to external logic.

e LSI-11 Bus interface — allows communication with all LSI-11 Bus
compatible products.

® Four memory maps — allow user to design memory application
requirements.

e Memory battery backup hooks — allow user to protect data in RAM
memory from power outages.

® Real-time clock — can precisely synchronize real-time events with
on-board clock.

® Four interrupt levels — allow user to assign priorities of device inter-
rupts; simplify exception handling.

e 4 KB of static RAM (standard) — provides application program
scratch pad.

® 4 28-pin memory sockets — support up to 32 KB of EPROM with 4
KB RAM memory; or 16 KB of EPROM with 8 KB of RAM.

® On-board LED — provides program-controlled visual indicator.

® Power-up self-test diagnostics — provides assurance of proper
module operation.

® On-board charge pump for negative voitage — providesa —12 V for
ElA interface.

e Wake-up circuit — allows operation with off-the-shelf (non-
DIGITAL) power supplies. Gives a valid initialization at power-up.

® Programmable baud rate — dynamic baud rate selection under pro-
gram control.

SPECIFICATIONS
Power Requirements

Operational Power +5V +£5%; 2.8 A max.
(measured at module +12V £5%; 0.1 Amax. (or, 1.1
fingerpins BV1 and BT1) A max.
with DLV11-KA options
installed)
Battery Backup +5 VB +£5%; 260 mA max.
Bus Loads AC 2.4 unit loads

DC .5 unit loads

300

Chapter 12 — FALCON SBC-11/21 Microcomputer

Physical Characteristics

Height
Width
Length
Weight
Size

Operating Environment

Temperature

Airflow

Relative Humidity

Altitude

Storage Environment

Temperature
Relative Humidity

Altitude

13.2cm (5.19in)
1.27cm (0.5in)
22.7cm(8.94in)
.34 kg (12 oz) max.
Double-height

5°C to 60°C

Adequate airflow must be pro-
vided to limit the temperature
rise across the module to:
<5°C for 60°C inlet
temperature

<10°C for inlet

temperature below 55°C
10%—90%

noncondensing

up to 26.2 km

note: Derate the maximum op-
erating temperature by 1.8°C
for each 1000 m of altitude
above sea level

—40°Cto 65°C

10%—95%
noncondensing

up t0 98.4 km

301

Chapter 12 — FALCON SBC-11/21 Microcomputer

CONFIGURATION

The FALCON SBC-11/21 microcomputer can reside either in a back-
plane or operate as a stand-alone module, depending on the specific
application and requirement of its user.

The FALCON SBC-11/21 microprocessor module contains wire-wrap
pins which must be configured to meet the requirements of specific
modes of operation. Jumper wires connecting the wire-wrap pins can
either be removed or installed, depending on the configuration need-
ed. The numerical identifications and locations of the wire-wrap pins
are illustrated in Figure 12-1. The wire-wrap pins and their functions
are listed in Table 12-1 in order of the features they support. The
configured features discussed in this chapter will include Power-up,
starting address, a few examples of parallel 1/0 buffering and memory
maps, and serial line unit specifications. For information on configur-
ing battery backup, interrupts, and all types and sizes of parallel I/0
and memory examples, please consult the FALCON SBC-11/21 User
Guide.

Table 12-1 Configuration Pin Definitions

Pin Function Description

Nonmaskable Interrupt
and Trap to the Restart

Address
M5 +5 Vdc voltage level
M6 -CTMER interrupt request input (edge sen-
sitive)
M7 Timeout error (TMER) output
M8 -CTMER interrupt enable/disable
M9 Interrupt Acknowledge (-1IAK) output (active
low)
M10 System GND
M11 High logic level (+3 Vdc)
Serial Line Unit #1
M12 System GND
M13 Transmit side of BHALT line transceiver

302

Chapter 12 — FALCON SBC-11/21 Microcomputer

me4 1162
gl oo
|_oopomss [3] g [
Mes |~ 4 om31 —3
me3] S Eeo { s |owmp R6
M6 oMm29
E67 M230M28
PROGRAMMABLE M22 gmzs m27
PERIPHERAL m21] | o—— M2
INTERFACE oooam24
M20
B——M19
aM18
o——M17
SERIAL LINE UNIT NO. 2
Jee
am1e
E65
SERIAL LINE UNIT NO. 1 D1
DMI5
R
MICROPROCESSOR
am4
o o M2
Mi3
€62 E48
HIGH BYTE LOW BYTE
SOCKET SET B SOCKET SET B
M11
E61 E47 a
HIGH BYTE LOW BYTE a——— M10
SOCKET SET A SOCKET SET A o00oMS
M490.a M48 TMBTMG
a
M47 ——D0—— M46 M8 M7
amsg M4s———O00 —————M44
M4300M42
M57—00-M56 M41—————D0————M40
M55 00— ——00——M38
M53— g0 MS52 M3700M36
MSIW—S SMIM M35 <
O ————
ey M33 ofjo
mao
v
M3000M1
[8 — A
Figure 12-1 FALCON SBC-11/21 Module Map

303

Pin

M14

M15
M16
M17
M18
M19
M20

M21
M22
M23
M24

M25
M26
M27
M28

M32
M33
M34
M35
M36
M37
M38
M39
M40

‘Chapter 12 — FALCON SBC-11/21 Microcomputer

Function Description
Serial Line unit #1 Break Detect Interrupt
request output

Power-Up
Sytem +5 V power (wake up circuit diode)
Wake up circuit diode disable (anode side)
Transmit side of BEVNT line transceiver
50 Hz real-time clock output
60 Hz real-time clock output
800 Hz real-time clock output

Memory map Decoder
High logic level (+3 Vdc)
Memory map select (LSB)
Memory map select (MSB)
System GND

Start Address
(Mode Register)

Mode register bit 13
Mode register bit 14
Mode register bit 15
High logic level (+3 Vdc)
Memory
Address line 11
High logic level for Vpp input
Socket set A high byte pin 23
Socket set B high and low byte pin 27
Socket set A high and low byte pin 20
Socket set B high byte pin 23
Socket set B high and low byte pin 20
Socket set B high byte pin 22
Socket set B low byte pin 22

304

Pin

M41
M42
M43
M44
M45
M46
M47
M48
M49
M50
M51
M52
M53
M54
M55
M56
M57
M58

M59
Me60
Mé61
Me62
Me3
M64
M65
Mé66

Chapter 12 — FALCON SBC-11/21 Microcomputer

Function

Description

Socket set A low byte pin 22

Socket set B low byte pin 23

Socket set A low byte pin 23

Socket set A high and low byte pin 2
Socket Set B high and low byte pin 2
Address line 13

Socket Set B Chip Select (-CSKTB)
Socket Set A high and low byte pin 27
Address line 12

System GND

Read Strobe (-Read)

Write low byte strobe (-WLB)

Static RAM high byte Output Enable (OE)
Static RAM low byte Output Enable (OE)
High byte write strobe (-WHB)

Socket set A Chip Select (-CSKTA)
Socket set A high byte pin 22

Socket set A and B high and low byte pin 21

Parallel Input/Output

Port B Buffer direction control

System GND

Port C buffer output from J3 pin 5 input
Port C buffer output from J3 pin 7 input
Port C PC4 output (8255A-5 pin 13)
Port C PC6 output (8255A-5 pin 11)
High logic level (+3 Vdc)

Port A buffer direction control

305

Chapter 12 — FALCON SBC-11/21 Microcomputer

The standard factory configurations are described in Table 12-2.
Jumpers are installed only on designated pins. No wire-wrap jumpers
are installed to the pins listed under no connections.

Table 12-2 Standard Factory Configurations

Function Install Jumpers
Between
Standard LSI-11 Bus Power M1 and M2
(No Battery Backup) M1 and M4
Power-UpCircuit Enabled No jumpers
Start Address (Mode Register) M25 and M26
Start address 1000 M26 and M24
Restart address 10004 M27 and M28
Memories: M22 and M23
Memory Map 1 M23 and M24
2K X 8 INTEL EPROM M33 and M43
M33 and M34
M41 and M57
M56 and M36
M51 and M57
M32 and M58
M33 and M42
M33 and M37
M41 and M39
M47 and M38
M51 and M40
Interrupté:
Time out traps to restart address M9 and M8
except during LSI-11 Bus IAK. M7 and M6
SLU#1 Break asserts BHALT and BHALT M13 and M14
is received as level 7 interrupt M30 and M31
(vector 140) M19 and M17

SLU#2 60 Hz Real-Time Clock
asserts LSI-11 BEVNT

Parallel I/0 M59 and M60
Port A Receive data M65 and M66
Port B Transmit data PC4 input M61 and M63

No Connection to pins
M3, M5, M10, M11, M12, M15, M16, M18,
M20, M21, M35, M44, M45, M46, M48,

306

Chapter 12 — FALCON SBC-11/21 Microcomputer

M49, M50, M52, M53, M54, M55,
M62, M64

Power-Up

The FALCON SBC-11/21 contains a wake up circuit to provide a
power-up sequencing routine whenever power is applied. When using
the KXT11-AA in a DIGITAL-supplied box (except the BA11-VA), the
KXT11-AA wake up circuit must be disabled. To do this, a jumper wire
must be installed between M15 and M16. This jumper wire should be
removed when power supplies which do not provide power-up se-
quencing are used. The KXT11-AA module requires that the +5 Vdc
and +12 Vdc power supplies have a rise time of less than 50 ms.
DIGITAL boxes provide both power-up and power-down sequencing
signals. If battery backup is desired, a power supply with both power-
up and power-down sequencing signals is required, or a KPV11 can
be used.

Starting Address

The FALCON SBC-11/21 start and restart addresses are selected by
the user via the mode register. After the FALCON SBC-11/21 has been
powered up, the mode register loads the start address into the micro-
processor. The microprocessor then loads this value into R7, the pro-
gram counter, as the first fetch address. Wire-wrap pins M24, M25,
M26, M27, and M28 are used to configure the mode register. These
wire-wrap pin locations are shown in Figure 12-1. The user can then
select any one of eight available start addresses. Table 12-3, the Mode
Register Configuration table, lists the available addresses and jumper
connections required for each address. The restart address is always
the start address incremented by four.

Table 12-3 Mode Register Configurations

Start Restart Connect Connect Connect
Address Address M27 to M26 to M25 to
000000 000004 m28 M24 M28
010G00 010004 M28 M24 M24
020000 020004 M24 m28 M28
040000 040004 M24 M28 M24
100000 100004 M24 M24 M28
140000 140004 M24 M24 M24
172000 172004 M28 Ma8 M28
173000 173004 M28 M28 M24

307

Chapter 12 — FALCON SBC-11/21 Microcomputer

Parallel I/O

The parallel 1/0 is controlled by the programmable peripheral Inter-
face (PPIl) and connects to the user’s interface through the J3
connector. For locations and functions of these wire-wrap pins, refer
to Table 12-1. The factory configuration jumpers required for configu-
ration are M59, M60, M61, M63, M65, and M66. The direction of port A
and port B transceivers are dependent upon the logic level connected
to M59 and M66. Wire-wrap pin 66 connects to port A through a 200 ns
minimum rising edge time delay circuit. When M65 (+3 Vdc) is jum-
pered to pins M59 and M66, port A and port B buffers are input to the
PPI from the J3 connectors. When M60 (Ground) is jumpered to pins
M59 and M66, port A and port B buffers are output from the PPI to the
J3 connector. The direction of port A and port B can also be controlled
by the user program.

The user can control the direction of the transceivers. Wire-wrap pins
M63 and M64, when not jumpered to M61 or M62, can be jumpered to
M59 and M66 to allow the user’s program to control the direction of
the transceivers via PPI port C outputs. In cases when not using wire-
wrap pins M63 and M61 or M64 and M62 to control the direction of
ports A and B, then a jumper connected between M63 and M61, plus a
jumper connected between M64 and M62 allows port C lines to be
used as inputs to the PPl from the J3 connector.

NOTE
If pins M61, M62, M63, or M64 are used for program
control of ports A and B, then ensure that the PPI
and the buffer do not contend as driver output to
driver output.

The Programmable Peripheral Interface (PPIl) functions in combina-
tions of either Mode 0, Mode 1,or Mode 2. The jumper configurations
and the handshake signals for each of these modes are listed in Ta-
bles 12-4, 12-5, and 12-6. For more detailed information for the
Programmable Peripheral Interface refer to the KXT11-AA User
Guide.

Table 12-4 Mode 0 Buffer Configuration and Handshake

Mode 0 Configuration

PPI Input Output PortC

1/0 Status Status Controlled

Port A M66 to M65 M66 to M60 M66 to M64 or
M63

308

PPI
1O

PortB

PC7
PCé

PC5
PC4

PC3
PC2
PC1
PCO

Input
Status

M59 to M65

N/A
Mé64 to M62

N/A
M62 to M61

N/A
Input
N/A
N/A

Output
Status

M59 to M60

Output

M64NC,
M62NC

Output

M63NC,
M61NC

Interrupt A
N/A
Output
Interrupt B

Chapter 12 — FALCON SBC-11/21 Microcomputer

PortC
Controlled

M59 to M64 or
M63

M62NC

M61NC

Table 12-5 Mode 1 Buffer Configuration and Handshake

PPI
I/0

PortA
PortB

PC7

PCé6

PC5

PC4

PC3

PC2

Input
Status

M66 to M65
M59 to M65

Output

Input

Input Buffer A
Filled

Strobe A

Interrupt
A/Out

Strobe B

Output
Status

M66 to M60
M59 to M60

Output Buffer
A

Filled

Acknowledge
A

Output
M63NC

Interrupt
A/Out

Acknowledge
B

309

Mode 1 Configuration and Handshake

PortC
Controlled

N/A

M59 to M64 or
Mé63

M62NC

Output

M61NC

Chapter 12 — FALCON SBC-11/21 Microcomputer

PortC
Controlled

PPI input Output
1/0 Status Status
PC1 Input Buffer B Output Buffer
Filled B
Filled
PCO Interrupt Interrupt
B/Out B/Out

Table 12-6 Mode 2 Buffer Configuration and Handshake

Mode 2 Configuration and Handshake

PPI /O
Port A
Port B
PC7

PC6
PC5
PC4
PC3
PC2
PC1
PCO

Memory Address

The memory system for the KXT11-AA module consists of the LSI-11
Bus, 4 KB of local RAM and four 28-pin sockets that will accept either
24-pin or 28-pin industry standard +5 V memory chips. These chips
are provided by the user and can be EPROMs, PROMs, ROMSs,or static
RAM. The sockets will accept 1K X 8, 2K X 8, 4K X 8, and 8K X 8
PROMs/EPROM or 2K X 8 static RAM. The wire-wrap pins used to
configure memory are described in Table 12-1. Four examples of con-
figuring the memory address are illustrated in the Figure 12-2, below.

Input Status

Bidirectional bus

N/A
N/A

Acknowledge A
N/A

Strobe A

N/A

Input

N/A

N/A

310

Output Status
M66 to M64 to M62
N/A

Output Buffer A
filled

N/A

Input Buffer A filled
N/A

Interrupt A/Out
N/A

N/A

N/A

Chapter 12 — FALCON SBC-11/21 Microcomputer

32 kW M22 TO M23 TO M24 M22 TO M21,M23TOM24 M22 TO M24, M23 TO M21 M22 TO M23 TO M21
LSI-11 BUS LSi-11 BUS LSi-11 BUS LSi-11 BUS
AND AND AND AND
LOCAL 1/0 LOCAL 1/0 LOCAL 1/0 LOCAL 1/0
31 KW
1 KW SOCKET A
MAPPED OVER LSI-11 BUS LSI-11 BUS Lsi-11 BUS
1 KW SOCKET B
30 KW
LOCAL RAM LOCAL RAM LOCAL RAM LOCAL RAM
28 KW 4-WORD NXM 4-WORD NXM 4-WORD NXM 4-WORD NXM
LSl-11 8US LSt-11 8US LSI-11 8US LSI-11 BUS
16 KW
LSI- 11 BUS 8 KW SOCKET A
LSI-11 BUS
8 KW
LSI-11 BUS
4 KWSOCKET A
8 KW SOCKET B
2 KW SOCKET A
> KW SOCKET B 4 KW SOCKET B
oKW

NOTE: NXM REFERS TO AN UNASSIGNED LSI-11 BUS{ADDRESS.

Figure 12-2 Memory Address

Tables 12-7 and 12-8, below, show the jumper configurations for some
of the common ROMs, PROMs, and EPROMs that can be used in
socket A and socket B. If the ROM, PROM,or EPROM you are trying to
configure is not listed here, refer to the KXT11-AA User Guide. This
guide provides all the configurations for the sockets you wish to con-
figure for your chips.

Table 12-7 Socket A Configurations for Read-Only Memories

Device Package Jumper Connection
Vendor Size Size M43 M48 M44 M34 M57 M38 M41 M58

INTEL 1Kx8 24 PROM M56 NC NC M56 M51 M33 M51 M33
INTEL 1Kx8 24 EPROM M5 NC NC M5 M51 M56 M51 M50

INTEL 2Kx8 24 EPROM M5 NC NC M5 M51 M56 M51 M32
INTEL 4Kx8 24 EPROM M49 NC NC M49 M51 M56 M51 M32

INTEL 8Kx8 28 EPROM M49 M33 M46 M49 M51 M56 M51 M32

311

Chapter 12 — FALCON SBC-11/21 Microcomputer

Device Package Jumper Connection

Vendor Size Size

M43 M48 M44 M34 M57 M38 M41 M58

Tl 1Kx8 24EPROM M5 NC NC M5 M51 M56 M51 M33

Signetics 1K x8 24 PROM
Tl 2Kx8 24 EPROM

M56 NC NC M56 M51 M33 M51 M33
M5 NC NC M5 M51 M56 M51 M32

Tl 8Kx8 28 EPROM M46 M50 M56 M46 M51 M49 M51 M32

MOSTEK 2K x8 24 EPROM M5 NC NC M5 M51 M56 M51 M32

MOSTEK 8K x8 28 EPROM M49 NC M46 M49 M51 M56 M51 M32

Table 12-8 Socket B Configurations for Read-Only Memories

Device Package Jumper Connection

Vendor Size Size
INTEL 1Kx8 24 PROM

M42 M35 M45 M37 M39 M38 M40 M58
M47 NC NC M57 M51 M33 M51 M33

INTEL 1Kx8 24 EPROM M5 NC NC M5 M51 M47 M51 M50

INTEL 2Kx8 24 EPROM
INTEL 2Kx8 24 EPROM
Signetics 2K x8 24 EPROM
INTEL 4Kx8 24 EPROM
INTEL 8Kx8 28 EPROM
Tl 1Kx8 24 EPROM
Signetics 1K x8 24 EPROM

Tl 2Kx8 24 EPROM

M5 NC NC M5 M51 M47 M51 M32

M32NC NC M32 M51 M47 M51 M33

M32 NC NC M32 M51 M47 M51 M33

M49 NC NC M49 M51 M47 M51 M32

M49 M33 M46 M49 M51 M47 M51 M32

M5 NC NC M5 M51 M47 M51 M33

M47 NC NC M47 M51 M33 M51 M33

M5 NC NC M5 M51 M47 M51 M32

312

Chapter 12 — FALCON SBC-11/21 Microcomputer

Device Package Jumper Connection
Vendor Size Size M42 M35 M45 M37 M39 M38 M40 M58

Tl 8Kx 8 28 EPROM M46 M50 M47 M46 M51 M49 M51 M32
MOSTEK 2K x 8 24 EPROM M5 NC NC M5 M51 M47 M51 M32
MOSTEK 8K x8 28 EPROM M49 NC M46 M49 M51 M47 M51 M32

The following Tables 12-9 and 12-10 are partial lists of static Random
AccessRead/Write Memories(RAM) which can be configured into the
KXT11-AA memory sockets A and B.

Table 12-9 Socket A Configurations for RAM Memo:“es

Device Package Jumper Connection
Vendor Size Size M43 M48 M44 M34 M57 M36 M41 M58

MOSTEK 2Kx8 24 M52 NC NC M55 M53 M56 M54 M32
Hitachi 2Kx8 24 M52 NC NC M55 M53 M56 M54 M32

Table 12-10 Socket B Configurations for RAM Memories

Device Package Jumper Connection
Vendor Size Size M43 M48 M44 M34 M57 M36 M41 M58

MOSTEK 2Kx8 24 M52 NC NC M55 M53 M47 M54 M32
Hitachi 2Kx8 24 M52 NC NC M55 M53 M47 M54 M32

Serial Line Addresses and Paraliel Port Addresses

The parallel port and serial line unit addresses are determined by a
Field Programmable Logic Array (FPLA), which is the decoding device
for applied address bits, and cannot be altered. The FPLA allows a
choice of four starting addresses for the four 28-pin sockets. The
vectors and priorities for all on-board interrupts are determined by a
PROM that cannot be altered. The interrupt priority for all LSI-11 Bus
devices is subject to the daisy-chain priority, however the vector is
read in from the interrupt device. Tables 12-11 and 12-12 below list the
SLU and parallel port addresses and device interrupt vector and prior-
ities.

313

Chapter 12 — FALCON SBC-11/21 Microcomputer

Table 12-11 SLU and Parallel Port Addresses

SLU 1 transmitter 177560
SLU 1 transmit buffer 177562
SLU 1 receiver 177564
SLU 1 receive buffer 177566
SLU 2 transmitter 176540
SLU 2 transmit buffer 176542
SLU 2 receiver 176544
SLU 2 receive buffer 176546
Paratlel port 1 176200
Parallel port 2 176202
Parallel port 3 or STATUS 176204

Parallel Control Word Register 176206

Table 12-12 Device Interrupt Vector and Priorities

Device Priority Vector

Power-fail 24

BHALT, SLU1 BREAK or Time out 7.1 140

BEVNT 6.1 100

SLU2 receiver 5.4 120

SLU2 transmitter 5.3 124

Parallel request B (PCO0) 5.2 130

Parallel request A (PC3) 5.1 134

SLU1 receiver 4.3 60

SLU1 transmitter 4.2 64

LSI-11 Bus device 4.1 read from
LSI-11 Bus

DESCRIPTION

The KXT11-AA contains a 16-bit microprocessor that controls the
read/write, fetch, direct memory access,and interrupt transactions.
The microprocessor operates as the central processing and control
unit, and is contained within a 40-pin LS| chip. The module provides
the necessary control circuits to interface with the LSI-11 Bus. The
microprocessor functions as a bus master, a bus slave, a bus arbitra-
tor, and allows a DMA master to access the on-board functions. The
KXT11-AA functional block diagram, Figure 12-3, below, provides an
overview of the module functions and how they are related.

314

Sie

LSI-11 8US

BDALO, 1,2

8U:
BDAL 00-15 CONTROL

o7
L

QS DAL 00-15 R

BDIN L

BRPLY L

C004
PROTOCOL
E24

BRPLY n

-8CLR

MODE
REGISTER [TDALS, 11, 13,14, 15
CONTROL

Figure 12-3

THALT BCLR BCLR THALT
TEVNT OCcLo TEVNT
NAoLt) DLCLK ROL!
XDL1 RBS? AD1 AD1 | SERIAL LINE | xDL1
RDL2 FROM A2 | INTERFACE 005
SHEET 2 AD2 UNITS 182 2t 4
XDL2 -csoct_| e6s XDL2
PCO INTERRUPT MICRO -CspL2) E66
PC3 CONTROL PROCESSOR ADDRESS tno
D E64 LATCH
WLB
€53 18 o
BIRQ4 L €63
BHALT L
BEVNT L A1
A02
- -CsLIP
1AK MEMORY BULR PAORALLEL
TO SHEET 2 ADDRESS |-CSPL CSPL INTERF,
DECODE [~ “READ eb:sv Act
DATA ADDRESS BUS TDAL 8-TDAL 12 E40
CSKTA Usits

CSRaM

SWLB

RAM
MEMORY

ROM/RAM
MEMORY
SOCKETS

KXT11-AA Functional Block Diagram

18indwod0.0IW 1 2/LL-08S NODTV4 — gL 1e1deyD

Chapter 12 — FALCON SBC-11/21 Microcomputer

The FALCON SBC-11/21 microcomputer consists of a microproces-
sor connected to serial line units, RAM memory, ROM memory, and a
parallel 1/0 interface via on-board TDAL bus. The KXT11-AA TDAL
bus is a 16-bit internal multiplexed data and address bus which is
common to all local memory and I/0, and to the LSI-11 Bus transceiv-
ers. The TDAL bus can access the LSI-11 Bus BDAL bus--the LSI-11
Bus (backplane) multiplexed data and address lines--by the bus con-
trol function illustrated by the dashed lines in Figure 12-3. An internal
and external vectored interrupt structure will relinquish the bus for
Direct Memory Access (DMA). For a more thoroughly detailed
description of the functional theory of KXT11-AA microprocessor
functional and operational inputs, signals, interrupts, transceivers,
and logic, refer to the KXT11-AA User Guide.

The FALCON'’s microprocessor contains eight 16-bit general- purpose
registers (R0-R7). R6 operates as the stack pointer (SP), and the R7
operates as the microprocessor program counter (PC). The micro-
processor can address up to 64 KB of physical memory. A special
purpose status register contains the current Processor Status Word
(PSW). The operating characteristics of the microprocessor are pre-
determined by the mode register. The user can select a start and
restart address from eight possible selections by setting bits 13, 14,
and 15 of the mode register.

Serial Line Interface Units

The FALCON SBC-11/21 contains two asynchronous Serial Line Units
(SLU) to provide serial I/0 interface. The serial I/0 interface allows the
microprocessor memory to be loaded with data either down-line from
a host or locally from serial mass storage devices such as DIGITAL'’s
TUS8 tape cartridge system. The ports also provide direct communi-
cation with terminals, lineprinters, and other asynchronous serial de-
vices. These ports are DL-11 software-compatible and have eight
programmable line speeds from 300 to 38.4K bits per second. The
ports are compatible with EIA RS-423 and RS-232C electrical stan-
dards. For local communications, each portsupports DIGITAL'’s
DLV11-KA 20 mA communications option.

The SLUs transmit or receive 8-bit, byte-oriented data with no parity
and only one stop bit. The transmitter and receiver must operate at the
same baud rate.

SLU 1 provides the XDL1 and RDL2 interrupts for transmit and re-
ceive, and the BREAK output which is wired to pin M14. The user can
jumper the BREAK output to the HALT interrupt (pin M13), and use
SLU 1 as a system console.

316

Chapter 12 — FALCON SBC-11/21 Microcomputer

SLU 2 provides the XDL2 and RDL2 interrupts for transmit and re-
ceive, and three real-time clock interrupts at 50 Hz, 60 Hz, and 800 Hz.
These interrupts are wired to pins M18, M19, and M20 for use with the
BEVNT interrupt (pin M17).

Parallel 1/O Interface

In addition to two serial interface ports, the FALCON SBC-11/21 also
provides a 24-line parallel I/0 port. This port provides the data paths
and control signals to transmit information between the microcompu-
ter and control panels, data multiplexers, or custom logic integrated
circuits.

The parallel port is divided into three 8-line ports. Ports A and B
provide a 16 line data path. Port A can operate as either an 8-bit input
or output port, or as an 8-bit bidirectional data bus. Port B functions as
either an 8-bit input or output bus. Port C is dedicated to control
signals, handshaking, and interrupt requests (there is one interrupt
available for each data port). Port C also controls the onboard LED
(light emitting diode), a programmable visual indicator that can be
useful in debugging software, as a failure indicator or as a power-up
diagnostic indicator.

The port provides excellent noise immunity and signal quality on the
lines because it is buffered with P-N-P hysteresis input receivers and
with high-current drivers. Connections to the port are made through a
30-pin shrouded header.

LSI-11 Bus Interface

The FALCON SBC-11/21 provides extensive 1/0 expansion capabili-
ties through the LSI-11 Bus interface. A/D (analog to digital) and D/A
(digital to analog) converters, complex parallel 1/0 structures,
modem-controlled communications, and data concentration lines may
be easily configured through this interface. The LSI-11 Bus interface
supports DIGITAL’s LSI-11 16-bit multiplexed address/data bus and
all of DIGITAL’s LSI-11 Bus-compatible hardwars Ths Gus inierrupt
priority is established by the physical position of each device on the
bus. The device closest to the processor has the highest priority.

The LSI-11 Bus interface arbitrates DMA (direct memory access) re-
quests to allow DMA transfers between devices on the bus, and
between devices on the bus and the FALCON’s onboard memory.

RAM Memory

The FALCON SBC-11/21 includes 4 KB of static RAM organized as
2,048 16-bit words. This RAM consists of a 2K X 8-bit high byte chip
and a 2K X 8-bit low byte chip. Battery backup hooks are included for

317

Chapter 12 — FALCON SBC-11/21 Microcomputer

battery backup voltages which protect data in the onboard RAM from
power outages.

ROM Memory Sockets

Four 28-pin memory sockets provide the user with a choice of accept-
ing either 28-pin or 24-pin industry-standard +5 V memory chips for
read-only memory (ROM, PROM, or EPROM) and/or additional RAM
memory. These sockets can accommodate up to 32 KB of ROM, and
up to 8 KB of static RAM. The two socket sets designated A and B, and
each has a high byte socket as well as a low byte socket.

NOTE
If 1K X 8 PROMSs are configured into a 4 KB memory
and used in 8 KB, 16 KB, or 32 KB memory mapped
configurations, addresses above the 4 KB boundary
will wrap around into the 4 KB boundary.

When using 4K X 8 or 8K X 8 devices, the device
pattern must be programmed into the device relative
to address bits AD12 and AD13 when the device is
addressed into a memory map. That is, the highest
address portion of the program may have to reside
in the lower physical half of the PROM.

318

GARARARgD

* & @

320

CHAPTER 13
LSI-11/23 MICROCOMPUTER

INTRODUCTION

The LSI-11/23 microcomputer (KDF11-AA) offers the power and per-
formance of a mid-range minicomputer, but at a lower price. Capable
of addressing up to four megabytes of main memory, this 16-bit, high-
performance microcomputer, contained on one dual-height multilayer
module (M8186), utilizes the latest MOS/LSI technology, and
communications between the CPU, memory, and peripherals is
passed along through DIGITAL’s industry- standard LSI-11 Bus.

The LSI-11/23 also offers memory management, the FP-11 instruction
set, and a new floating point accelerator module, the FPF11, as op-
tions.

The LSI-11/23 microcomputer is compatible with other LSI-11 micro-
computers and software-compatible with the PDP-11 family. A wide
range of software is available, including programming languages,
diagnostic software, and operating systems. Table 13-1 illustrates the
available LSI-11/23 configurations.

FEATURES — BENEFITS
® No on-board memory — flexibility to match RAM/ROM size to re-

quirements.

o Compact, double-height module size — allows for versatile packag-
ing.

e ODT console emulator — ease of program debugging.

e Direct addressing of 2 million 16-bit words or 4 million 8-bit bytes —
provides flexibility in defining data structures.

e 87 PDP-11 standard instructions — provide powerful and conven-
ient programming.

® 8 addressing modes for specifying operands — allow for absolute,
deferred, autoincrement, autodecrement, and index register refer-
ences.

e 8internal general-purpose registers for use as accumulators and for
operand addressing — provide flexible programming techniques.

® Stack processing — creates convenient handling of structured data,
sub-routines, and interrupts.

® Byte-oriented instructions — provide efficient processing of 8-bit
characters without the need to rotate, swap, or mask.

321

Chapter 13 — LSI-11/23 Microcomputer

® Vectored interrupts — provide fastinterruptresponse without
device polling.

® Four-level interrupt bus structure — allows the priority of bus op-
tions for each level to be conveniently determined by their physical
locations on the bus.

e Direct Memory Access (DMA) — allows peripherals to access mem-
ory without interrupting processor operation.

Asynchronous bus operation — allows processor and system com-
ponents (memory and peripherals) to run at their highest possible
speeds.

Memory parity errors are recognized during every data-in bus cycle
— provides for overall system integrity.

Power-fail and automatic restart hardware — detects and protects
against ac power fluctuations.

Modular component design — allows systems to be easily upgraded
and configured.

The FP-11 option provides 46 floating point instructions — to make
available high-speed floating point math.

The optional memory management unit provides protection and
segmentation for up to 4 megabytes of memory — for efficient use
of memory and overall system integrity.

Table 13-1 LSI-11/23 Configurations

Model No. Description
KDF11-AC LSI-11/23 CPU without memory
management, one dual
KDF11-AA KDF11-AC+ LSI-11/23 CPU with memory
KTF11-AA management, one dual
KDF11-HK KDF11-AA, (4) LSI-11/23 CPU, 256 KB RAM
MSV11-DD memory, five duals
KDF11-LK KDF11-AA, MSV11- LSI-11/23 CPU, 256 KB of parity
LK memory, 2 duals
KEF11-AA KEF11-AA Floating-point option for a
KDF11-AA, one forty pin pack-
age for installation on a KDF11-
AA
KTF11-AA Memory management option

322

for LSI-11/23 CPU, one forty-pin
package

Chapter 13 — LSI-11/23 Microcomputer

SPECIFICATIONS

Identification M8186

Size Double

Dimensions 13.34cm X 21.59¢cm

(5.25in X 8.51in)

Power Requirements +5V +£5%,20A
+12V +£5%,0.2A

Bus Loads ac 2 unit loads
dc 1 unit loads

Environmental Storage —40° C to 65° C (—40° F to 149° F) 10% to
90% relative humidity, noncondensing

Operating Tempera- 5°Cto60°C, (41° Fto 140° F)

ture Maximum outlet temperature rise of 5° C
(9° F) above 60° C (140° F)

Altitude Derate maximum temperature by 1° C (1.8°
F) for each 305 m (1000 ft) above 2440 m
(8000 ft).

Timing (Based on 300 ns CPU microcycle time)

Interrupt Latency (based on MSV11-D without parity, add 500 ns worst

case with parity)

Worst Case 55.7 microseconds (for infrequently used
instructions) 10.8 microseconds (for more
frequently used group)

Typical 6.0 microseconds
Interrupt Service Time 8.2 microseconds
DMA Latency 3.49 microseconds (worst case)

ADDITIONAL SOURCES OF LSI-11/23 DOCUMENTATION
AppendixG of this Handbook lists additional documentation available
for the LSI-11/23. Appendix B lists LSI-11/23 timing.

CONFIGURATION DATA

JUMPER SELECTION

Several jumpers on the processor module provide user-selectable
features. Table 13-2 lists the jumper configurations. Figure 13-1 illu-
strates the Rev A board jumper locations and Figure 13-2 illustrates
the Rev C board jumper locations. Jumpers not discussed are re-
served for use by DIGITAL and should not be used.

323

Jumper
W1

W2

W4

W5,wé

W7

w8

W9-W15

W16

W17

w18

Chapter 13 — LSI-11/23 Microcomputer

Table 13-2 Jumper Configurations

Name
Master clock

Reserved for
DIGITAL use

Event line
enable

Power-up
mode selector

Halt/trap
option

Conventional
bootstrap
start address,
enable if
power-up
mode 2 is
selected

User-selecta-
ble bootstrap
starting
address for
power-up
mode 2

Reserved for
DIGITAL use

Reserved for
DIGITAL use

Wake-up
Circuit

Master Clock — W1

The internal 13.8 MHz oscillator is disconnected from the clock circuit-
ry if W1 is removed. This jumper is used by DIGITAL manufacturing

Enable
internal
master clock

Factory-
installed

Disabled

See text

Trap to 10,4
on halt

Power-up to
bootstrap ad-
dress 173000,

See text

Must be
installed

Must be
installed

Disabled

and is not to be removed by the user.

324

Out

Do not
remove.
Manufactur-
ing use only

Do not
remove

Enabled

See text

Enter console
ODT on halt

Power-up to
bootstrap
address se-
lected by jum-
pers W9-W15

See text

Do not
remove

Do not
remove

Enabled

Chapter 13 — LSI-11/23 Microcomputer

Event Line — W4

The bus signal BEVENT L causes the event line flip-flop to be set.
When the processor enters the service state the request will be hon-
ored if the PS <07:05> is 5 or less. (BEVENT is a level 6 interrupt.)
This causes the microcode to clear the request flip-flop and trap to the
line clock vector (location 100,). If W4 is inserted, the request flip-flop
is disabled and therefore the BEVENT signal is disabled. Users would
disable BEVENT, which is normally used as a 60 Hz real-time clock, if
they have a programmable clock on the LSI-11 Bus.

NOTE
The LSI-11 and LSI-11/2 processors treat a BEVENT
interrupt at a different priority level than the LSI-
11/23.

Power-Up Mode Selection — W5 and W6

Four power-up modes are available for user selection. Selection is
made by removal or insertion of jumpers W5 and W6 as shown in the
following listing.

Mode Name w6* w5*
0 PC@24, PS@26 R R

1 Console ODT R |

2 Bootstrap | R

3 Extended microcode | |

*R = jumper removed; | = jumper installed.

Only the power-up mode is affected, not the power-down sequence.
The following paragraphs describe the sequence of events after exe-
cuting common power-up, when selecting each of the four modes. The
state of bus signal BHALT L is significant in power-up mode operation.
Table 13-3 lists power-up mode console print out.

Power-Up Mode 0 (PC @24, PS@26)

This mode causes the microcode to fetch the contents of memory
locations 24, and 26, and loads their contents into the PC and PS,
respectively. The microcode then examines BHALT L. If BHALT L is
asserted, the processor enters console ODT mode. If BHALT L is not
asserted, the processor begins program execution by fetching an in-
struction from the location pointed to by the PC. This mode is useful
when power-fail/auto restart capability is desired.

325

Chapter 13 — LSI-11/23 Microcomputer

SI? S

o—o W8

o—oO0 W17

Im

A
o
DATA
CONTROL

Oa
s wi6

w8 o—o W2

w6 0—0 w4 -
o0—0 o—0

E2

El

REV A

Figure 13-1 LSI-11/23 Jumper Locations (Rev. A)

326

Chapter 13 — LSI-11/23 Microcomputer

N N

wis
ERED WIRE

— W1

MMU
SPARE
FLOATING POINT
DATA/CONTROL

—_—W7 —wa W3 e
w2 —

—— Wi6
-_— W17

REVC

Figure 13-2 LSI-11/23 Jumper Locations (Rev. C)

327

8ce

Conditions

BHALTL
(unasserted)

BHALT L (asserted)

Table 13-3 Console Power-Up Printout (or Display)

Mode 0

Processor will exe-
cute program using
contents of location
24 as the PC value.

Terminal will print
out contents of
memory location
024.

Mode 1

Terminal will print
out arandom 6-
digit number, which
is the contents of
the program count-
er.

Terminal will print
out a random 6-
digit number, which
is the contents of
the program count-
er.

NOTES

Mode 2

Processor will exe-

cute program at lo-

cation 173000. (See
Note 2.)

Terminal will print
out “173000.”
(See Note 2.)

If mode 3 is selected, and user microcode is not implemented, the
processor will trap to memory location 10 and start program exe-
cution using the contents of location 10 as the PC value and loca-
tion 12 as the PS value.

Normal mode for use with the BDV11, MXV11-A2 options. If jum-
pers W15 through W9 are used, that address will be printed.
The terminal printout will consist of 6 octal digits as specifed in the

table, followed by a carriage return, line feed, and “@"” prompt
character in all cases.

Mode 3

No printout at ter-
minal. (See Note 1.)

No printout at ter-
minal. (See Note 1.)

18indwi000IoIN €2/1L L-IST — €L J81deyD

Chapter 13 — LSI-11/23 Microcomputer

Power-Up Mode 1 (Console ODT)

This mode causes the processor to enter console ODT mode
immediately after power-up regardless of the state of any service sig-
nals. This mode is useful in a program development or hardware de-
bug environment, giving the user immediate control over the system
after power-up.

Power-Up Mode 2 (User Bootstrap Starting Address Shown by
W8-W15)

This mode causes the processor to internally generate a bootstrap
starting address by looking at jumpers W8 through W15. This address
is loaded into the PC. The processor sets the PS to 340, (PS <07:05>
= 7,) to inhibit interrupts before the processor is ready for them. If
BHALT L is asserted, the processor enters console ODT mode. If not,
the processor begins execution by fetching an instruction from the
location pointed to by the PC. This mode is useful for turnkey applica-
tions where the system automatically begins operation without opera-
tor intervention.

Power-Up Mode 3 (User Microcode — For Future Use)

This mode causes the microcode to jump to optional control chip 37,,
location 764, and begin microcode execution. This mode is reserved
for future DIGITAL use and is not recommended for customer usage. If
it is erroneously selected, the processor will treat it as a reserved
instruction trap to location 10,.

Halt/Trap Option — W7

If the processor is in kernel mode and decodes a HALT instruction,
BPOK H is tested. If BPOK H is negated, the processor will continue to
test for BPOK H. The processor will perform a normal power-up
sequence if BPOK H becomes asserted sometime later. if BPOK H is
asserted after the HALT instruction decode, the halt/trap jumper (W7)
is tested. If the jumper is removed, the processor enters console ODT
mode. If the jumper is installed, a trap to location 10, will occur.

NOTE
In user mode a HALT instruction execution will al-
ways result in a trap to location 10, .

This feature is intended for situations, such as unattended operation,
where recovery from erroneous HALT instructions is desirable.

Starting Address 173000, —W8
When power-up mode 2 is selected, the processor examines jumper
W8 to determine the starting address for program execution. If W8

329

Chapter 13 — LSI-11/23 Microcomputer

and a compatible bootstrap module such as BDV-11 are installed in
the system, the microcode will begin execution at 173000, (conven-
tional starting address for DIGITAL systems). If W8 is removed, a trap
to 4, (nonexistent address) will occur. If W8 is removed, the processor
looks at jumpers W9 through W15 for the starting address.

Selectable Starting Address — W9 through W15

If the user wishes to start execution from an address other than
1730004, jumpers W9 through W15 can be used to specify the high
byte <15:09> of the starting address. Jumpers W15 through W9 cor-
respond to address bits <15:09>, respectively. Bits <08:00> of the
starting address are set to 0 by the processor. Jumpers are installed
for logic 1, removed for logic 0. The starting address can reside on any
256-word boundary in the lower 32K of memory address space.

Memory Modules

Several memory modules are available for use with the PDP-11/23
systems. However, modules such as MSV11-C or MSV11-D that per-
form memory refresh locally are required, since the LSI-11/23 does
not perform memory refresh itself. MSV11-C memories will work if
provision is made for refresh with some other bus option however.
This will degrade system performance and is not recommended.

Peripheral Options

All LSI-11 Bus-compatible peripheral devices may be used in PDP-
11/23 systems except the RKV11 option. DMA peripherals should be
installed with the faster throughput devices physically closest to the
processor and slower ones farthar away. You must insure that faster
devices have adequate access to the bus; otherwise, data drop errors
may occur.

Interrupt-driven peripherals can be installed in one of the following
ways. If all peripherals use the single-level scheme, they must be
installed with faster interrupting devices physically closest to the proc-
essor. All current DIGITAL LSI-11 Bus peripheral devices must use
this method. Future peripheral devices, or customer-designed de-
vices, can take advantage of the new 4-level interrupt scheme. With
this scheme, peripherals that are designed to perform distributed in-
terrupt arbitration, and that are on different interrupt levels, can be
installed in any order. Multiple peripherals on the same request level
and peripherals that do not perform distributed arbitration must be
installed with the highest priority, or faster, devices closest to the proc-
essor.

330

Chapter 13 — LSI-11/23 Microcomputer

DESCRIPTION

Introduction

The LSI-11/23 processor is implemented using two MOS/LSI chips,
data and control. The memory management unit (MMU), an optional
chip, provides a PDP-11/34 software-compatible memory manage-
ment scheme. Also available for the LSI-11/23 are two options provid-
ing the PDP-11/34 software-compatible FP-11 instruction set.

Data Chip

The data chip (DC302) performs all arithmetic and logical functions,
handles data and address transfers with the LSI-11 Bus (except relo-
cation, which is handled by the MMU) to the external world, and coor-
dinates and generates most of the signals used for interchip commun-
ication and external system control. The data chip contains the PDP-
11 general registers, the processor status word (PS), several working
registers, the arithmetic and logic unit (ALU), and conditional branch-
ing logic.

Control Chip

The control chip (DC303) implements microprogram sequencing for
PDP-11 instruction decoding and contains the control store ROM. The
data and control chips are both contained in one 40-pin package.
Figure 13-3 contains the processor functional block diagram.

The control chip contains the microprogram sequence logic and 552
words of microprogram storage in programmable logic arrays (PLA)
and read-only memory (ROM) arrays.

During the course of a normal microinstruction cycle, the control chip
accesses the appropriate microinstruction in the PLA or ROM, sends it
along the MIB to the data and MMU chips for execution, and then
generates the address for the next microinstruction to be accessed.
The next address is constructed from either a next address field
associated with the current microinstruction or, if a microprogrammed
branch is to be executed, the target address contained within the
microinstruction itself. The control chip operation is pipelined for bet-
ter performance so that the next microinstruction is being accessed
while the current one is being executed. This next address is then
used in conjunction with various internal status and external service
inputs to determine the microprogram sequence. The control chip
accesses only its local storage. However, multiple chips (up to 32) can
be cascaded with external buffering to provide additional microstore.
Figure 13-4 shows the pictorial layout of the data and control chip.

Chip Select (CSEL) — CSEL is an open collector line which is routed
to all MOS chips on the board except the MMU. The active control chip

331

Chapter 13 — LSI-11/23 Microcomputer

holds the line low. If a nonexistent control chip is selected by the
microcode, the line is pulled high. This causes a control chip error and
atrap to location 10,.

aP2

8857 L

R 0
= au;
PWR UP OPTIONS FOIN ENA 2% . Feoatoc
. av

FAST
USEC SEL. DATA w007 a5, LJ BoALI
SooT<1508- A N 15 00> 8SI0 e eoaze
DRIVERS LoGic ——————{J 8oa3t
HALT TRAP OPTION POK L 0423 gouiat

22 Jeoawst
a2
(] scaie

Sebeven RS b

17 00~ v

2 soman
LLZE o PR

| soaLiod

B8R
| z BDALII L

[82 Haoann
e o 12 aoacts
I e av2 :

| Reser 892 goatia
i L0 fe 8
N ;D RDAL 14

8US b——————{) soaL17¢
ERR .
<15 00:- F——————{] swreT 1

wy - oA 19
5 oac s
A
S M2 o) mmu STR W
22 o asvnc L

An2

T
gg
°
z
3

MREPLY L [——

aus [a5
CONTROL 800UT L

LoGic
> ANZ) miako L
AH1_AF1
f——————={] sRun L
AN
'] soma L
OMA BN
CONTROL asy L BSACK L
{] somco
svC L a2
enal | f fe——————{] 8iRa L

ABORT ¢ BIROS ¢

MIB BUS <1500~

DAL BUS <17.00>
CSELL
RESET

‘I
-

DATA
cHip

SERVICE art
<12.00> LATCH \-——1“‘ BHALT L
[o881 M sewnTL

[BUS ERR
<15.00>

MIBI4/INITE

o
L8

CONTROL
cHIP

POWER
UP'DOWN {] socok K
LoGic) st L

T

CLK HLD/RESTART| 8H1

3 INT CLK DISABL
R _I MOsCLK CONTROL 281 7 man CLK INPUT

r=

Figure 13-3 Processor Functional Block Diagram

Processor Status Word (PS)

The processor status word (PS) is in the data chip and contains infor-
mation on the current processor status. On the LSI-11/23, the high
byte contains additional information not required by the LSI-11, LSI-
11/2,and SBC-11/21. As Figure 13-5 shows, this includes: the condi-
tion codes describing the arithmetic or logical resuits of the last in-
struction, a trace bit that forces a trap at the end of instruction
execution (used during program debug), the current processor priori-

332

Chapter 13 — LSI-11/23 Microcomputer

CHIP CARRIER
PIN | LOCATOR

DATA CHIP

CHIP CARRIER CARRIER

PIN 1 LOCATOR

CONTROL CHIP
' CARRIER

BOTTOM VIEW MOTHERBOARD
(CHIP CARRIER)

PAD 1 LOCATORS
FOR MOTHERBOARD

— A

CAPACITORS

PAD | LOCATORS
FOR MOTHERBOARD

PIN 1
DATA AND CONTROL CHIP

Figure 13-4 LSI-11/23 Data and Control Chip

ty, an indicator of the previous memory management mode, and an
indicator of the current memory management mode. Figure 13-5 illu-
strates the processor status word.

Condition Codes (PS bits 3:0) — The condition codes contain infor-
mation on the result of the last CPU operation. The bits are set after
execution of all arithmetic or logical single-operand or double-oper-
and instructions. The bits are set as follows:

N=1 if the result was negative.

Z2=1 if the result was 0.

V=1 if the operation resulted in an arithmetic
overflow.

C=1 if the operand resulted in a carry from the

MSB (most significant bit) or a 1 was shifted
from MSB or LSB (least significant bit).

Trace Bit (PS bit 4) — The trace bit is used in debugging program
since it allows programs to be single-instruction stepped.

333

Chapter 13 — LSI-11/23 Microcomputer

15 14 13 12 1 09 08 07 06 04 03 02 01 00
PRIORTY
CcM PM Sl LEVEL T N z v Cc
1 A 1 il 1 J
;__qr____J
RESERVED TRACE
PREVIOUS MEMORY NEGATIVE
MANAGEMENT MODE 2ERO
CURRENT MEMORY OVERFLOW
MANAGEMENT MODE CARRY

SUSPENDED
INSTRUCTION

Figure 13-5 Processor Status Word (PS)

Priority Level (PS bits 7:5) — These bits are used by software to
determine which interrupts will be processed.

Octal Value of PS<7:5> Interrupt Level Acknowledged*
none

7,

7,6,

7.6,5,

7,6,5,4

7,6,5,4

7,6,5,4

7,654

o = N W » 00 O N

* Higher levels acknowledged first.

Suspended Instruction (SlI) (PS bit 8) — This bit is reserved for
DIGITAL use and is intended for future optional instruction sets. This
bit is read/write and has no protection mechanism.

Previous Mode (PS bits 13:12) — These bits are used with memory
management to indicate what the last memory management mode
was. They are read/write bits and are present even without the memo-
ry management option.

Current Mode (PS bits 15:14) — These bits indicate what the present
memory management mode is. They are read/write and are present
even without the memory management option.

Data/Address Lines (DAL)
The DAL bus is routed between all the MOS chips, along the processor
board, and to the LSI-11 Bus transceivers. The 16-bit DAL bus is time-

334

Chapter 13 — LSI-11/23 Microcomputer

multiplexed. During clock-high time, the DAL bus transfers data from
the data chip to the other MOS chips or between the processor board
and the MOS chips. During clock-low time, the DAL bus transfers
service data (external and internal interrupt requests) from the board
to the control chip. (The coritrol chip receives service information and
determines whether to interrupt or fetch the next instruction.)

Microinstruction Bus (MIB)

The 16-bit microinstruction bus is common to all data and control
chips. A subset of the MIB is routed to the MMU because it does not
need access to all MIB control signals. A different subset of the MIB
controls the processor board logic.

The MIB is time-multiplexed and is used for different functions during
clock high-and-low times. During clock-high time, the MIB transfers
control information from the data chip to all control chips, the MMU,
and the board logic. During clock-low time, the MIB transfers microin-
structions from the active conrol chip to other control chips and the
data chip.

MIB 15/Memory Management Enable (MME) — During clock-high
time, MIB 15 carries MME from the MMU chip. MME is an active low
signal. After being pulled low by the MMU chip, MME indicates to the
processor board logic that a relocated-address micro-cycle should be
performed. MME is also asserted low by the processor board during
console ODT to allow access to greater than 32K words of memory
without using the MMU chip.

MIB 14/Initialize (INIT F) — During clock-high time, MIB14 contains
an active low initialize signal (INIT F) used by the board logic to gener-
ate BINIT L. At the end of every clock-high time, the processor moni-
tors INIT F. If INIT F is asserted low, the processor generates BINIT L
onto the LSI-11 Bus. DINIT L holds the INIT F flip-flop in the O state
during power-up so that BINIT L is constantly driven onto the LSI-11
Bus until DCOK H from the power supply goes high.

MIB 13/Interrupt Acknowledge (IAK) — MIB13 contains IAK during
clock-high time and is used to generate BIAK L onto the LSI-11 Bus.
The highest priority device that is requesting an interrupt uses BIAK L
and BDIN L as a signal to assert its interrupt vector on the LSI-11 Bus.
IAK occurs only during an input vector microcycle.

MIiB12,9,8/Address-Input-Output (AlO) Codes — These three control
lines along with two other signals, BUS CYC H and SYNC/DMA ENA H,
are fed into the bus control PROM as shown in Figure 13-6. The PROM
decodes them to determine the type of microcycle currently executing
within the MOS chips. The PROM outputs various control signals
which perform the following functions.

335

Chapter 13 — LSI-11/23 Microcomputer

1. CLK HOLD H stops the clock generator in the high state for asyn-
chronous data transfers. This signal stops the clock while waiting
for BRPLY and during address cycles if a previous bus cycle is not
complete or if some other device is Bus Master.

2. BUS ENA H enables LSI-11 Bus drivers during address and data-
out bus cycles only.

3. DINCYC H drives the BDIN L bus driver.

4. OUT CYC H drives the BDOUT L bus driver.

5. WTBT H drives BWTBT L bus signal whenever an address micro-
cycle is followed by a data-out microcycle and whenever a byte
data transfer is in progress.

6. CLK STUT H, for clock control, is used to extend the clock-high
time of address microcycles and nonbus data-in and data-out
microcycles.

AI02 CLK HOLD H
AI01 BUS ENA H
oo | BYS DIN CYC H
, | OINCYCHR
CONTROL [00T cven
PROM -
BUSCYC H WTBT H
SYNC DMA ENA H CLK STUT H

Figure 13-6 Bus Control PROM

BUS CYC H — This signal is a function of the sync signal from the data
chip (SYNCF). If a data transfer to or from the data chip is internal to
the MOS chip set, then BUS CYC H is low. If it is an external bus
transfer, then BUS CYC H is high. In the case of internal data transfers,
the clock is lengthened one clock tick to allow the chip set more time
to complete its internal transfer. In the case of bus-type data transfers,
the bus drivers (DOUT transfers) or receivers (DIN transfers) are en-
abled, and the master clock is halted in the high state, waiting for
BRPLY L from the bus.

SYNC/DMA ENA H — SYNC/DMA ENA H indicates that another peri-
pheral is still bus master or that the last bus cycle is not yet complete.
Its function is to prevent the MOS chip set from attempting to use the
LSI-11 Bus when the bus is still being used.

The master clock is halted during LSI-11 Bus data transfers while
transferring data to the peripheral or receiving data from the
peripheral. Once this is accomplished, the master clock starts up
again and microinstructions are again executed. Concurrently, the

336

Chapter 13 — LSI-11/23 Microcomputer

processor is terminating the previous bus cycle. Because the proces-
sor cannot terminate the cycle until BRPLY has been deasserted by
the peripheral (there is no time limit on this action taking place accord-
ing to LSI-11 Bus protocol), it is possible for the previous bus cycle to
still be active when the chip set is ready for the next bus cycle.
SYNC/DMA ENA H causes the clock to stop in the address cycle in this
case and halts the chip set in the address microcycle until the previous
bus cycle is properly completed (BSYNC L negated).

MIB03/GPO 3 — Control code GPO 3, driven by the data chip, is
detected by the GPO decode logic and properly timed to produce
FDIN ENA L. This signal is used to gate power-up information from the
jumpers on the processor board.

M1B02/GPO2 7 DGPO7 L

MIB0O1/GPO1 slo DGPO6 L
MIB00/GPOO 510 DGPO5 L
E130H
MCLK L
1o SRUN L

MIBO3 GPO3
E130H FDIN ENA L
E33 H

Figure 13-7 GPO Decode Logic

MIB02, 01, 00/GPO 2, 1, 0 — GPO 2, 1, and 0 are driven by the data
chip during clock-high time and perform control functions on the
processor board. These signals are decoded by the logic illustrated in
Figure 13-7. The decoded output is shown in Table 13-4, General-

Purpose Output Signals.

Table 13-4 General-Purpose Output Signais

GP02 GPO1 GP0OO0 Output Function
Name
1 1 1 DGPO7 L Loads the
two highest
order ad-
dress bits in-
to alatch

337

Chapter 13 — LSI-11/23 Microcomputer

GP02 GPO1 GP00 Output
Name

1 1 0 DPGO6 L

1 0 1 DPGO5 L

0 0 1 SRUNL

338

Function

while in mi-
cro-ODT.
This allows
18-bit ad-
dressing to
be accom-
plished with-
out using the
memory
manage-
ment unit
while in
ODT.

Clears the
power-fail
flip-flop after
the power-
fail se-
quence has
been execut-
ed in micro-
code.

Clears the
event flip-
flop after the
event inter-
rupt has
been ser-
viced in mi-
crocode.

Generates a
low-going
pulse that is
routed
directly to
edge fingers
AF1, AH1
whenever a
character is
received
from the se-
rial line unit
while in mi-
cro-ODT.

Chapter 13 — LSI-11/23 Microcomputer

GP02 GPO1 GPO0 Output Function
Name

This signal
can be used
to causea
steady RUN
indication
while the
processor is
executing
micro-
instructions
and a flash-
ing indica-
tion when
typing char-
acters in
console-
ODT.

BSYNC Logic

Figure 13-8, Bus Sync Logic, controls the assertion of BSYNC L onto
the LSI-11 Bus. The start of all bus cycles <(DATI, DATO(B), DA-
TIO(B))> is signaled by SYNCF L going low on MIBO7 of the data chip
during clock-high time, SYNCF L is clocked into both the BUS CYC
flip-flop, and the SYNCEF flip-flop at the end of the clock-high time. A
set BUS CYC flip-flop indicates to the DMA logic that the processor is
going to use the bus, and therefore a DMA request cannot be granted.

The SYNC flip-flop feeds the BSYNC flip-flop. This flip-flop is strobed
every microcycle, 33 ns after the start of clock-high time. Thus, the
BSYNC flip-flop will be set 33 ns into clock-high time of the microcycle
after the address microcycle. This delay is necessary to allow suffi-
cient address set-up time on the bus. Once the BSYNC flip-flop is set,
it drives the bus transceiver and asserts BSYNC L onto the LSI-11 Bus.

Once the BSYNC flip-flop is set, it remains set until the LSI-11 Bus
completes the bus cycle. The SYNCF signal from the data chip clears
on a data-in or data-out microcycle. The BSYNC Reset logic uses
SYNC REP L and RESTARTEND, both functions of BRPLY L, to clear
BSYNC L after the rising edge of BRPLY L. BUS CYC L and DOUT
BLOCK L block the BSYNC flip-flop from being cleared after the DATI
portion of a DATIO cycle.

339

Chapter 13 — LSI-11/23 Microcomputer

These signals also prevent the BSYNC flip-flop from being cleared for
at least 175 ns after BDOUT L is cleared (as per bus specifications).
SYNC RESET L clears the BSYNC flip-flop on power-up if a bus time-
out occurs, and prevents it from setting when an MMU abort occurs.

PS Access Logic

The PS (processor status word) access logic feeds the K input of the
BSYNC flip-flop and is used only when the PS is accessed. The PS is
contained in the data chip. When 7777764(the address of the PS in the
data chip) appears on the DAL during an address microcycle, the data
chip decodes the address and access to the PS is allowed. The bus
cycle is terminated by deasserting the SYNCF line without allowing a
DATI or DATO AIO code.

The PS access flip-flop stores this condition until the start of the next
clock-high time. This signal is fed to the K input of the BSYNC flip-flop
and resets BSYNC at the start of the next microcycle.

Direct Memory Access (DMA)

DMA on the LSI-11/23 board allows peripherals to gain control of the
LSI-11 Bus from the processor and transfer data directly between a
peripheral and memory. In this way, data transfers can occur at the full
memory speed rather than having the processor transfer data words
one at a time between the peripheral and memory. A speed gain of
about 12 to 1 over regular programmed transfers is gained by this
technique.

The signals required for the DMA logic are the following.

BDMR L This is the DMA request signal.
A peripheral device asserts this
line when it is ready to use the
bus for a DMA transfer. This line
is common to all peripheral de-
vices.

BDMGO L This DMA grant signal is issued
by the processor in response to
a DMA request. By asserting
this line, the processor indicates
that it will halt processing as
soon as the current bus cycle is
completed. The processor will
also disable all bus control lines
and data/address lines (BDAL)
so that the peripheral device
can use them to control the bus.

340

(84>

SYNC (1) H

-
COMREP L l
[

MIBO7/SYNCF L
MIB12/A102 ’ >

DOUT L

65 CLK H

65 CLK L

N
SYNCF
FIF
— CLK
J o]
BSYNC
— —— — c— E33 L . F/F
-1 CLK
B oH »
_—/ PS R
ACCESS |
FIF
ek _—— — — -
PS ACCESS | BSYNC RESET
LOGIC 3 | LOGIC l
BUS RESTART END
CYCH W |
Q 1}
BUS
CYC F/F
MCLK L — — o c—
CcL CLK - -~
SYNC REP L SYNC RESET L
|| - DOUT BLOCK L
CLK “ CLK CLK CLK

Figure 13-8 BSYNC Logic

BSYNC L

RSYNC H

181ndwod0oIN £2/1 L-1ST— €L 191deyD

Chapter 13 — LSI-11/23 Microcomputer

BUSCYC L

J DMA [ENA (1) H BDMGO L
[.
DMA omA [)o *

ENABLE CLK GRANT
BOMR I VNCHRO (DELAYED | £f
i 5 NS
ck | MziNG 65 NS)
———— LOGIC
DMA ENA (1) L
1 DMA
TO CLOCK L TimEoUT }—
STOP LOGIC LOGIC
| .)
BUS DISABL {1} L
. ;L—l BSACK L
BuUS
DISABLE TO BUS
CLK FF LOGIC

(DELAYED 65 NS)

DMA

RESTART
FF INIT L [

BSYNC L RSYNC H
BSACK H REARB D

CLK | LOGIC

REARB

Figure 13-9 DMA Logic

DMA Latency

DMA latency is the time from when the DMA request arrives at the
processor until BDMGO is put on the bus. The maximum DMA latency
is important because of data loss problems. For example once the
heads of a disk drive are over the proper sector, the disk controller
must become bus master within a certain period of time. If it does not,
information will overflow the temporary data buffers in the disk drive
interface and cause data-late errors. Since the LSI-11/23 does not
grant bus mastership during ongoing bus cycles, worst-case DMA
latency occurs when the DMA request arrives just before the start of
the longest bus cycle (DATIO). In this case the grant will be issued
after the cycle has completed.

344

Chapter 13 — LSI-11/23 Microcomputer

Clock Generator Circuitry

The KDF11 chip set clock can be suspended in the high state indefin-
itely, but can only remain in the clock-low state for a limited period of
time to avoid loss of internal chip data. A twisted ring oscillator, shown
in Figure 13-10 is used with a high-frequency crystal clock input to
generate the required clock signals that control the MOS/LSI chips.
The TTL level output of the ring oscillator (MCLK H) is driven through a
high-voltage clock buffer/driver to produce the high-voltage CHIP
CLK that drives the MOS chips.

Initialization

When the processor receives +5 Vdc and +12 Vdc, the ring oscillator
is initialized and held in the state until BDCOK H is asserted by the
power supply (or the wake-up circuit). The initialization circuitry is
shown in Figure 13-11. The output of the second stage of the DCOK H
synchronizer circuit holds START H low. The processor board initial-
izes with MCLK H = 1 and all three stages of the ring oscillator also
equal 1 (E65H, E130H, E195H). When DCOK H goes high, it is first
synchronized with the high-frequency clock (65CLK H) and then re-
leases the ring oscillator from its initialized state. The synchronizer is
necessary because DCOK H is asynchronous to any circuitry on the
processor board and feeding DCOK H directly into the ring oscillator
could lead to a truncated first cycle of the processor. Once the oscilla-
tor is freed,it immediately causes MCLK H to go low and enters the
clock-low state.

3v DC

MME HOLD

RESET H

CLK STUT H

CLK STOP
STARTH — 1

MCLK H

CHIP
CLK

E65 H E130H

MCLK H l E195H

DOIDO

CLK CLK CLK
XTAL
6

osc 5CLK H

Figure 13-10 Clock Generator

345

Chapter 13 — LSI-11/23 Microcomputer

Wake-Up Circuit

The “wake-up” circuit on the LSI-11/23 (KDF11-AC) module consists
of a diode, a resistor, a capacitator, and a Schmitt trigger inverter, also
shown in Figure 13-11. This circuit provides automatic generation of
BDCOK H 50 ms after the +5 V supply is turned on. For the circuit to
function, the +12 V must be applied before or at the same time the +5
V is applied, and the rise time of the +5 V supply must be no greater
than 50 ms.

Single-Step Circuit

The single-step circuit is shown in the lower portion of the figure. This
circuit can be used in conjunction with an external circuit to stop the
processor (i.e., hold the clock high indefinitely) in the bus data-in or
data-out part of the cycle at a selected address. The external circuit
must monitor the BDAL line and compare the address issued by the
processor at BSYNC L time with a desired stop address or addresses.
If a valid compare occurs, the external circuit should pull SINGLE
STEP to a logic low level as soon as BDIN L or BDOUT L appears on
the bus. The processor will then stop in the bus data-in or data-out
microcycle, and the data driven from the processor (in the case of
data-out, data-in transfers) can be observed on the BDAL lines and
any other internal points of the system can be probed manually. The
processor can be released from this state by releasing the single-step
line and will resume executing instructions.

BDCOK H

65CLK H -
FrE e e

| e l
Q D Q

D
l SINGLE STEP l

I 65CLK H G G I

l SINGLE STEP CIRCUIT l

Figure 13-11 Clock Generator Initialization Circuitry

346

Chapter 13 — LSI-11/23 Microcomputer

Clock Generator Cycles
The clock generator is capable of producing a normal cycle and four
variations of the normal cycle used for special functions.

Normal Cycle

The normal cycle consists of two cycles of the high-frequency clock in
the high state and two cycles in the low state. For this type of cycle,
START H is constantly high, RESET H is low, and CLK STOP is low.
Figure 13-12 illustrates this cycle.

Clock Stutter Cycle

The clock stutter cycle is generated on all address microcycles and for
all internal data transfers among the MOS chips. It is the same as the
normal cycle discussed above except that the clock-high time is ex-
tended from two cycles of the high-frequency clock to three. This
stretched or “stuttered” clock time allows the DAL lines to settle before
the address is driven out onto the bus. The cycle also allows extra time
for data transfers between MOS chips.

MCLK H J———[__]'—

Figure 13-12 Normal Clock Cycle

The cycle is generated by the CLK STUT H signal from the bus control
PROM being fed through a transparent latch that is enabled during
phase time. The output of the latch inhibits the E130 H input to the
feedback loop from causing MCLK H to go low. Instead, the ring
oscillator output drops when E195 H goes high, one cycle of the high-
frequency clock later. The stutter cycle is shown in Figure 13-13.

Clock Stop Cycle

The clock stop cycle is generated during bus data-in and bus data-out
transfers when the chip set must wait for a REPLY from the LSI-11 Bus
before it can continue. It is also used to prevent the chip set from
continuing past the address microcycle portion of a bus cycle when a
DMA device has bus “mastership”. For a clock stop cycle, the bus

347

Chapter 13 — LSI-11/23 Microcomputer

MCLK H J_——_—L__J_
CLK STUT H l I_
T s
E130H —I———]__
T e

Figure 13-13 Clock Stutter Cycle

control PROM generates CLK STUT H and CLK HOLD H. The CLK

STUT H signal stretches the clock-high time from two to three high-
frequency clock cycles. The CLK HOLD H signal is clocked into a flip-

flop (the CLK STOP flip-flop) every cycle after two cycles of the high-
frequency clock. The output of this flip-flop, CLK STOP, goes low and

holds MCLK H in the high state until the CLK STOP flip-flop is cleared.

In the case of a bus data-in or data-out cycle, the flip-flop is cleared

200 ns after REPLY has been received from the addressed device, or,

in the DMA case, 130 ns after the DMA device has given bus master-

ship back to the processor. The cycle is shown in Figure 13-14.

GSCLKH|||l||||||||l|||||]
{C
MCLKHJ L I
{(
E65 H l 7 |
(¢
E130 H] M L
((
1T
E195 H |
A
CLK STUT H | M
CLK STOP] |

Figure 13-14 Clock Stop Cycle

Memory Management Cycle

This cycle occurs during address microcycles when the memory man-
agement chip is present and is enabled to do address relocation (en-

348

Chapter 13 — LSI-11/23 Microcomputer

abling of the MMU is under software control). The MMU chip signals to
the processor board that it wants to do address relocation by asserting
the MIB line MME L at the end of clock-high time of an address micro-
cycle. The relocation circuit, shown in Figure 13-15 detects the MME L
signal and causes MME HOLD to be asserted high 65 ns into clock-low
time of the address microcycle. MME HOLD holds MCLK in the clock-
low state for a total of five high-frequency clock periods or 325 ns. A
pulse is produced 195 ns into clock-low time which passes through the
OR gate and causes DALFF CLK to latch the relocated address, driven
out of the MMU chip onto the DAL bus at this time, into the DAL driver
flip-flops. Since the BDAL bus is continuously enabled during this
time, the relocated address is immediately driven onto the BDAL lines.
The relocation timing circuitry and automatically clears itself after five
high-frequency clock periods and releases MME HOLD which
immediately allows MCLK H to go high, ending clock-low time.

Reset Cycle

The final variation of the basic cycle is when a CHIP RESET occurs.
CHIP RESET is generated by the circuit shown in Figure 13-16 and
occurs for any one of five error conditions that warrant immediate
attention by the chip set. RESET H is enabled 65 ns into clock-low time
and causes the ring oscillator to stretch clock-low time from two peri-
ods of the high-frequency clock to three. This extended clock-low time
allows CHIP RESET to initialize the MOS/LSI chips.

MME HOLD

MiB15
MME L

Ol

MCLK L

I

O
——Ol ~
o

Figure 13-15 Relocation Timing Circuit

Chip Reset

RESET is routed to all MOS chips except the MMU. If an interrupt
requiring immediate attention occurs, the line is asserted high. The
following five interrupts require immediate attention.

349

Chapter 13 — LSI-11/23 Microcomputer

CTLERRH > 0

PAR ERR H
BUS ERR H

DCLOH

ABORT H

VYYY

9 RESET H
) 565_57_4

Figure 13-16 Reset Circuit

Control error — Nonexistent control chip selected by the micro-

code. A trap to location 10, occurs.

Bus error — Nonexistent memory location accessed. A trap to

location 4, occurs.

Parity error — A parity error detected on a current read from

memory. A trap to location 114, occurs.

MMU abort — The MMU has aborted a mapped reference. A trap

to location 250, occurs for any of the following reasons:

— The memory location referenced is not present in the current
user’s protected address space.

— An attempt is made to modify a write-protected location.

— The user is exceeding his allotted page boundary.

DC Power-Up — Upon power-up the processor forces two se-

quential RESETS to the chip set to initialize all internal chip regis-

ters.

LSI-11/23 PROCESSOR OPTIONS

KEF11-AA

Forty-six floating point instructions are available as a microcode
option (KEF11-AA) on the LSI-11/23 processor. (The MMU option
must also be present). These instructions supplement the integer
arithmetic instructions (e.g., MUL, DIV, etc.) in the basic instruc-
tion set. The floating point option allows floating point operations
to be executed 5 to 10 times faster than equivalent software rou-

350

Chapter 13 — LSI-11/23 Microcomputer

tines and provides for both single-precision (32-bit) and double-
precision (64-bit) operands. It also conserves memory space,

since floating point routines are executed in microcode instead of

software. This option implements the same floating point instruc-

tion set found on the PDP-11/34A, PDP-11/60, and PDP-11/70.

For a complete description refer to Chapter 5.

FPF11

The FPF11 is a hardware implementation of the full PDP-11/34
floating point instruction set. It complements the KEF11-AA, but
has six times the improvement in floating-point performance as
the KEF11-AA. The FPF11 is a single quad-height module. The
MMU is not necessary when utilizing the FPF11.

MMU Chip

The MMU chip serves two purposes: it provides the memory man-
agement function, and it provides storage for the FP11 floating
point accumulators and status registers for the KEF11 option. This
chip provides dual mode (user and kernel) address relocation of
22 bits. Sixteen-bit virtual addresses are received from the data
chip via the data/address lines (DAL), relocated to the appropri-
ate 22-bit physical address, and then sent on the DAL to replace
the original virtual address for transmission to the external system
bus. The MMU chip contains the status registers and active page
registers (PAR/PDR register pairs), as well as access protection
and error detection capability. The MMU chip also provides the
thirty-six 16-bit registers needed for operand storage, scratchpad
areds, and status information storage during floating point opera-
tions of the KEF11 option.

The MMU chip is controlled by information received on the
microinstruction bus (MIB) from both the data chip and the con-
trol chip, and by several discrete control inputs.

The LSI-11/23 can operate without the MMU chip; however, the
memory would be limited to 64 KB and the floating point registers
would not be available for the KEF11 option.

351

a2
£
(8)
-
hy
7
-

CHAPTER 14
LSI-11/2 MICROCOMPUTER

INTRODUCTION

The LSI-11/2 is a 16-bit microcomputer with the speed and instruction
set of a minicomputer. Because of its small size (only 5.2 in X 8.5 in, or
13 cm X 22 cm) and unique capabilities, it can fit into almost any
instrumentation, data processing, or controller configuration.

The LSI-11 Bus handles all communication between modules and
connects the memory and 1/0 interface elements to the central proc-
essor. It contains multiple high-speed, general-purpose registers
which can be used as accumulators, address pointers, index registers,
and for other specialized functions. The processor does both single-
and double-operand addressing and handlies both 16-bit word and 8-
bit byte data. The bus permits DMA data transfers directly between
1/0 and memory without disturbing the processor registers.

FEATURES — BENEFITS
® No on-board memory — flexibility to match RAM/ROM size to re-

quirements.

e Compact, double-height module size — allows for versatile packag-
ing.

e ODT console emulator — ease of program debugging.

® Direct addressing of 32K 16-bit words or 64K 8-bit bytes (K = 1024)
— provides flexibility in defining data structures.

e Over 70 operation codes — provide powerful and convenient pro-
gramming.

e 8 addressing modes for specifying operands — allow for ahsolute,
deferred, autoincrement, autodecrement, and index register refer-
ences.

e 8 internal general-purpose registers for use as accumulators and for
operand addressing — provide flexible programming techniques.

® Stack processing — creates convenient handling of structured data,
subroutines, and interrupts.

® Byte-oriented instructions — provide efficient processing of 8-bit
characters without the need to rotate, swap, or mask.

® LSI-11 Bus structure — provides position-dependent priority as
peripheral device interfaces are connected to the I/0 bus.

® Asynchronous bus operation — allows processor and system com-
ponents (memory and peripherals) to run at their highest possible
speeds.

353

Chapter 14 — LSI-11/2 Microcomputer

® Direct memory access (DMA) — allows peripherals to access mem-
ory without interrupting processor operation.

® Vectored interrupts — provide fast interrupt response without de-
vice polling.

e Power-fail and automatic restart hardware — detects and protects
against ac power fluctuations.

® Modular component design — allows systems to be configured and
upgraded easily.

e Extended Instruction Set (EIS) and Floating Point Instruction Set
(FIS) available as an option — provide fixed and floating point
hardware arithmetic.

SPECIFICATIONS

ldentification M7270

Size Double
Dimensions 13.34cmXx 22.8cm

(5.25in X 8.9in)

Power Requirements +5V + 5%, 1.0A
+12V + 5%, 0.22 A

Bus Loads ac 1.7 unit loads
dc 1 unit loads

Instruction Timing (See Appendix H)

Interrupt Latency 35.05 microseconds +£20% (worst case if
: KEV11 option not present)

44.1 microseconds +20% (worst case if
KEV11 option is present)

DMA Latency 6.45 microseconds +20% (worst case)

Operating Tempera- 5°Ct060° C (41°to 140° F)

ture: Derate the maximum temperature by one
degree Celsius for each 1000 feet of altitude
above 8000 feet.

Relative Humidity 10% to 90%, noncondensing

Altitude Up to 50,000 feet (Note temperature derat-
ing above 8000 feet.)

Airflow Sufficient air flow must be provided to limit

the temperature rise across the moduie to
5°C for an inlet temperature of 60°C. For
inlet air temperature below 55°C, air flow

354

Chapter 14 — LSI-11/2 Microcomputer

must be provided to limit temperature rise
across the module to 10°C.

NOTE
These are the design limits. Lower temperature lim-
its will serve to increase the life of the module.

Storage

Temperature —40°C to 65°C (—40°F to 149°F)
Relative Humidity 10% to 90%, noncondensing
Altitude Up to 50,000 feet

NOTE
When stored outside the operating range, the mod-
ule should be allowed to stabilize in the operating
range for a minimum of 5 minutes before operating.

ADDITIONAL SOURCES OF LSI-11/2 DOCUMENTATION
AppendixG of this Handbook lists additional documentation available
for the LSI-11/2.

CONFIGURATION DATA

The LSI-11/2 processor (KD11-HA) is a double-height module, 5 2" X
8 2" (18.3 cm X 22.8 cm). Table 14-1 includes current LSI-11/2
configurations.

Table 14-1 LSI-11/2 Configurations

Model No. Board No. Description
KD11-HA M7270 LSI-11/2 processor module on-
ly (no memory)
KD11-GF M7270 LSI-11/2 CPU plus 8 KB muliti-
M8047-AA function board
KD11-GC M7270 LSI-11/2 CPU plus 32 KB multi-
M8047-CA function board
KD11-HF M7270 LSI-11/2 processor module
M8044-A plus double-height MSV11-DA
4K X 16-bit read/write memory
module

355

Chapter 14 — LSI-11/2 Microcomputer

JUMPER SELECTION

Every LSI-11/2 processor module is factory configured to perform
specific functions. For many applications the module can be used as
received. Wirewrap posts are provided on each module for configur-
ing jumper-selectable functions. The factory-configured functions se-
lected are listed in Table 14-2 and illustrated in Figure 14-1. Processor
functions may be altered by installing or removing these jumpers.

Processor module etch revisions can be determined by examining the
printed circuit board part number on side 2 (solder side) of the proc-
essor module.

Table 14-2 LSI-11/2 M7270 Processor Module Factory-instalied

Jumpers
Jumper Status Function
w1 | Master clock enable
(always in-
stalled—do not
remove)
W2 N/A
W3 R Event line (LTC) in-
terrupt enabled
w4 N/A
w5 R Power-up mode
w6 R 0 selected
NOTES
1. Do not change W1 on the LSI-11/2 M7270 module. It is always
installed.

2. M7270 modules do not include jumpers W2 and W4.

Power-Up Mode Selection — Four power-up modes are available for
user selection. These are selected (or changed) by wirewrap jumpers
W5 and W6 on the processor module. Note that the jumpers affect
only the power-up mode (after BDCOK H and BPOK H have been
asserted); they do not affect the power-down sequence.

356

Chapter 14 — LSI-11/2 Microcomputer

SC . - T

EVENT INTERRUPT

L~ INSTALLED = DISABLE
w3 / REMOVED = ENABLE
.o MASTER CLOCK

w1
ENABLE
-«
- (ALWAYS INSTALLED)

E34
(KEV11 OPTION SOCKET)

E394

] \ POWER-UP MODE
— SELECT

(SEE TEXT)

Figure 14-1 M7270 Processor Moduie Jumper Locations

The state of the BHALT L signal is significant during the power-up
sequence. When this signal is asserted, it invokes the processor’s ODT
console microcode after the power-up sequence. The console device
must be properly installed for correct use of the BHALT L signal.

357

Chapter 14 — LSI-11/2 Microcomputer

Power-up modes are listed in Table 14-3. Detailed descriptions of
each mode are provided in the paragraphs that follow.

Table 14-3 Power-up Jumpers

Mode
Mode w6 W5 Selected

0 R R PC at 24 and
PS at 26, or
Halt mode

1 R | ODT micro-
code

2 | R PC at 173000
for user boot-
strap

3 | | Special proc-
essor micro-
code (notim-
plemented)

R = Jumper Removed; | = Jumper Installed.

Power-Up Mode 0

This option places the processor in a microcode sequence that
fetches the contents of memory locations 24 and 26 and loads their
contents into the PC (R7) and the PS, respectively. A microcode ser-
vice transiation at this point interrogates the state of the BHALT L
signal. Depending on the state of this signal, the processor either
enters ODT microcode (BHALT L asserted low) or begins program
execution with the current contents of R7 as the starting address
(BHALT L not asserted).

Note that the T bit (PS bit 4) is loaded with the contents of PS bit 4 in
location 26. Mode 0 should be used only with nonvolatile memory (or
volatile memory with battery backup) for locations 24 and 26, or with
BHALT L asserted. This power-up sequence is shown in Figure 14-2.

Power-Up Mode 1

This mode immediately places the processor in the console micro-
code regardless of the state of the BHALT L signal. This mode as-
sumes a console interface device at bus address 177560.

358

Chapter 14 — LSI-11/2 Microcomputer

BHALT L
ASSERTED

BEGIN PROGRAM
EXECUTION

GET
PC FROM 24
PS FROM 26

EXECUTE
CONSOLE
ODT uCODE

USE ANOTHER
POWER UP
MODE

Figure 14-2 Mode 0 Power-Up Sequence

Power-Up Mode 2

This mode places the processor in a microcode sequence that loads a
starting address of 173000 into R7 and begins program execution at
this location if the BHALT L signal is not asserted.

Note that before 173000 is loaded into R7, PS bit 4 (T bit) is cleared
and bit 7 (interrupt disable) is set. The user’s program must set these
bits, as desired, and set up a valid stack pointer (R6). This option
should be used with nonvolatile memory (ROM, PROM, or core) at
address 173000. A time-out trap through location 4 will occur if no
device exists at location 173000. This mode is particularly useful when
a bootstrap option is present in the system.

If BHALT L is asserted, the processor will not execute the instruction at
location 173000 and will immediately execute the console microcode.
This power-up mode sequence is illustrated in Figure 14-3.

EXECUTE CONTINUE
YES - NO FIRST
POWER UP MOoE 2 : (mlr7:°°o LT WSTRUCTION |, PROGRAM
- ASSERTED
SELECTED PS (BIT 7) — 1 173000 EXECUTION
NO YES
USE ANOTHER EXECUTE
POWER UP OPTION CONSOLE

00T uCODE
Figure 14-3 Mode 2 Power-Up Sequence

Power-Up Mode 3

This microcode sequence allows access to future microcode expan-
sion in the fourth MICROM page (microlocations 3000 to 3777). After
BDCOK H and BPOK H are asserted and the internal flags are cleared,
a microjump is made to microlocation 3002. If this option is selected

359

Chapter 14 — LSI-11/2 Microcomputer

and no MICROM responds to the fourth page microaddress, a micro-
trap will occur through microlocation 0 which will, in turn, cause a
reserved user instruction trap through location 10.

Note that the state of BHALT L is not checked before control is
transferred to the fourth MICROM page.

LTC interrupt

Line time clock (LTC) or external event (EVNT) interrupts are enabled
when jumper W3 is removed and the processor is running. The jumper
can be inserted to disable this feature. The LTC interrupt is initiated by
an external device when it asserts the BEVNT L signal. This is the
highest priority external interrupt request; processor interrupts have
higher priorities. If external interrupts are enabled (PS bit 7 = 0), the
processor PC (R7) and PS word are pushed onto the processor stack.
The LTC (or external event device) service routine is entered by vector
address 100; the usual interrupt vector address input operation by the
processor is not required since vector 100 is generated by the proces-
sor.

The first instruction of the service routine typically will be fetched
within 16 us from the time BEVNT L is asserted; however, if optional
EIS/FIS instructions are being executed, this time could extend to 44.1
us maximum. This time could also be extended by processor trap
execution (T bit, power-fail, etc.), or by asserting the BHALT L signal.

DESCRIPTION

Introduction

The main functions of the processor module are performed by the

microprocessor chip set. The LSI-11/2 chip set includes:

® one control chip

® one data chip

e two microinstruction ROM chips, MICROMS

e one optional KEV11 MICROM with EIS/FIS (Extended Instruction
Set/Floating Instruction Set)

The microprocessor chips communicate with each other over a 22-bit
microinstruction bus. All address and data communication between
the microprocessor chips and other processor module functional
blocks is via the data chip and the 16-bit data/address lines, WDAL
<0:15> H (from the data chip).

Processor module control signals interface with the microprocessor
chips via the control chip. Eight input and five output microprocessor
control signals provide this function.

360

Chapter 14 — LSI-11/2 Microcomputer

Timing and synchronization of all microprocessor chips (and all proc-
essor module functions) are controlled by four nonoverlapping clock
pulses. Typical operating speed is 380 ns (95 ns each phase).

Data Chip

The data chip contains the data paths, logic, arithmetic logic unit
(ALU), processor status bits, and registers. Registers include the eight
general registers (R0-R7) and an instruction register. The user’s pro-
gram has access to all general registers and processor status (PS)
bits. All PDP-11 instructions enter this chip via the WDAL bus. Data
and addresses to and from the microprocessor are also transferred to
and from the processor over this 16-bit bus.

Control Chip

The control chip generates a sequence of microinstruction addresses
that access the microinstruction MICROM chips. The addressed mi-
croinstruction is then transferred to the data and control chips. Most of
the microinstructions are executed by the data chip; however, various
jumps, branches, and 1/0 operations are executed in the control chip.
(These functional units are illustrated in Figure 14-4.)

CAUTION
Do not remove processor chips from their sockets. Improper handling
will permanently damage the chips.

Bus Interface and Data/Address Distribution

All LSI-11/2 processor module communication to and from external
170 devices and memories is accomplished using the LSI-11 Bus 16-
bit data/address lines (BDAL <0:15> L) and bus control signals. The
processor module interfaces to the bus using bus driver/receiver
chips, as shown in Figure 14-5. Each bus driver/receiver chip con-
tains four open-collector drivers and four high-impedance receivers.
Each driver output is common to a receiver input. Either processor
output data (from the driver outputs) or input data (from the bus) can
stimulate bus receiver inputs.

All four drivers in a chip are enabled or disabled by a pair of DRIVER
ENABLE L inputs. A high input will inhibit all four drivers. When both
enable inputs are low, the drivers are enabled and output data is gated
onto the bus.

DMGCY H and INIT (1) H are processor module logic control signals
that inhibit certain bus drivers during an Initialize or DMA operation.
Bus drivers are enabled when these signals are in the false (low) state.

361

L0-15L

Chapter 14 — LSI-11/2 Microcomputer

PROCESSOR
DATA

BANK 7
DECODER

AP2 of5) ees7 L
22 5leoap L
BDAL! L
8DAL2 L
572 (&) 80AL3 L

BH2 18] soaLa L

BJ
BDALS L

8k2_ &) soaL6 L

8us
DRIVERS

CHIP

0-21L

0-17 L

WMIBO-21 L

—_—

=

WDAL@-15 H

AN|
RECEIVERS

-

FAST
DIN
MUX

w5
W6

INTERNAL
TIMING 8
CONTROL
SIGNALS

PROCESSOR
MICRO-
INSTRUCTION
ROM

CHIPS
)

ﬂWDALG-BH

BUS
/0
CONTROL
LOGIC

PROCESSOR
CONTROL
CHIP

BL2) s0AL7 L
i
BM2_ (5] soaLs L

BN2 B0ALY L

BUS
TERMNATION
RESISTORS

BDALIO L
80ALY1 L
BDAL1Z L
BDALI3 L

o -BY2_B]eaLra
BDALIS L
241 8] B1ROs L
AB! 5] sIRa6 L
BP1_15] erRO7 L
AC!_ IB] BDALI6 L
AD1_ (5} mpaLi7 L

A2 18] BSYNC L

AK2 /5] BwTeT L

AH2
+{8] BDIN L

AE2
B8DOUT L

r——""

KEV-11

INTERRUPT
CONTROL
AND
RESET

LOGIC

! opTiONAL
EIS/FIS
MICROCODE |
CHIP |

WAKE-UP
e

AF
2 {8] BRPLY L

4

{8)
{e]

BPOK H
BDCOK H

{B] BHALT L
BR1

{8] BEVNT L

ALZ r5] BIRa L

[VLL_J

AN2 15] e1ako L

AN 5] somMR L

|

BN BSACK L

BuUs
ARBITRATION
LOGIC

AS2 78] soMGO L

SPECIAL
CONTROL

18-211L

FUNCTIONS

+12v

cLoCK
PULSE
GENERATOR

F—=PHI-4 L

— PH1-4H -VBB(-3.9V)

2.6 MHZ CLOCK

)

AR

IFCLR L /SRUN L

»{8) BREF L
AF1,AH1

(] SRUNL

CHARGE
PUMP

0!2v<——l

AT2 5] BiNIT L

AD2,
802" 1oy

5V

AA2,BA2 — .

[L

VDVR (13.4V)

']

AC2 AILAMILATIECZ 801 .BM1.BTI (= ¢\

Figure 14-4 M7270 LSI-11/2 Processor Module—Basic Functions

362

Chapter 14 — LSI-11/2 Microcomputer

+V2. 25040
LOGICAL:
Bue 33003 1:0.4V TYR
OUTPUT DATA/ ORIVER 0:33v TYR
CONTROL BIT (H) 1/0 BUS
DRIVER { 1 DATA / CONTROL
ENABLE L DRIVER ENABLE H 4% BIT (L
6800
BUS k4
RECEIVER [—
BUS TERMINATION
INPUT DATA/ RESISTORS

CONTROL BIT (H)
Figure 14-5 LSI-11 Bus Loading and Driver/Receiver Interface

Bus driver output signals and their respective enable signals are listed
below:

Bus Driver (Signal) Enable Signal(s) (Low = Enable)
BSYNC L

BBS7L INIT (1) H, DMGCY H

BIAKO L

BWTBTL

BRPLY L

BDINL INIT (1)H

BDOUTL

BINITL Always enabled

BDMGOL

The near-end bus termination resistors are contained on the proces-
sor module. Each bus driver output is terminated by a pair of resistors,
as shown in the figure,establishing the nominal 250Q bus impedance
and the 3.4 V nominal voltage level.

Address and data information is distributed on the processor module
via the WDAL <0:15> H and DAL <0:15> H 16-bit busses. WDAL <0:
15> H interface directly with the microprocessor data chip, the
DIGITAL 8641 bus drivers. All processor input data from the I/0 bus is
via the bus receivers, the DAL <0:15> H bus, the data multiplexer, the
WDAL <0:15> H bus, and the microprocessor data chip.

Bus 1/0 Control Signal Logic — Bus I/0 control signals include
BSYNC L, BWTBT L, BDIN L, BDOUT L, and BRPLY L. In addition,
BIAKO L can be considered a bus I/0 control signal; however, since it
is used only during the interrupt sequence, it is discussed later. Logic
circuits which produce and/or distribute these signals are shown in

363

Chapter 14 — LSI-11/2 Microcomputer

Figure 14-6. Each signal is generated or received as described in the
following paragraphs.

BSYNC L—The control chip initiates the BSYNC L signal sequence by
raising WSYNC H during PH2. Inverters apply the high SYNC H signal
to the sync flip-flop sets, producing an active (high) SYNC (1) H input
to the BSYNC L bus driver. SYNC (1) H is gated with REPLY (1) H
(when active) to produce a direct preset input to the sync flip-flop. This
ensures that BSYNC L will remain active until after the bus slave de-
vice terminates its BRPLY L signal and the reply flip-flop is reset.
[REPLY (1) H is low.] The sync flip-flop then clocks to the reset
(BSYNC L passive) state on the trailing edge of PH3 L.

BWTBT L—BWTBT L is the buffered/inverted control chip WWB H
output signal. This signal asserts during PH1 of the addressing portion
of a bus cycle to indicate that a write (output) operation follows. It
remains active during the output data transfer if a DATOB bus cycle is
to be executed.

BDIN L—BDIN L is the inverted, buffered control chip WDIN H signal.
This signal goes active during PH2 following an active RPLY H signal.

BDOUT L—The control chip initiates the BDOUT L signal sequence by
raising WDOUT H during PH2. This signal is gated with the passive
REPLY (1) L (high) signal to produce an active (low) D input to the
DOUT flip-flop. The flip-flop sets on the leading edge of PH3 H, pro-
ducing an active BDOUT L signal. It clocks to the reset state on PH3
foiiowing the REPLY (1) active (low) signai.

BRPLY L—BRPLY L is a required response from a bus slave device
during input or output operations. DIN L and DOUT (1) L are ORed to
produce an active I/0 signal whenever a programmed transfer occurs.

I/0 L enables the time-out counter in the bus error detection portion of
the interrupt logic. 1/0 is inverted to produce 1/0 H, which enables the
reply gate REPLY H signal input to the control chip.

BRPLY L is received from the LSI-11 Bus and inverted to produce a
high input to the reply flip-flop. PH1 H clocks the flip-flop to set state,
producing active REPLY (1) H and REPLY (1) L signals. REPLY (1) L is
ORed with DMR (1) L to produce an active BUSY H signal. The control
chip responds by entering a wait state, inhibiting completion of the
processor-generated bus transfer for the duration of REPLY (1) L.
REPLY (1) H is gated with 1/0 H to produce an active REPLY H signal,
informing the processor that the output data has been taken or that
input data is available on the bus. REPLY H goes passive when I/0 H
goes passive. The bus slave device will then terminate the BRPLY L

364

Chapter 14 — LSI-11/2 Microcomputer

PROCESSOR
CONTROL
Ic

SYNC (1) H

DMG CYH

BSYNC L

PN

!NITH)H
SYNC (1) L
SYNCR H
SYNCR L

WWB H
BWTBT L

WTBTR nvj

l—’ DIN L (— DIN H
WDIN H ‘{> BLIN &
e s D e gl
INIT (1) H

DOUTD [

DC LO L —J
REPLY (D L
DOUT (1) L

WDOUT H

BDOUT L

DOUT (N H

INIT (D) H

DOUT (1) H
DOUTR H

LSI-11 BUS

REPLY
REPLY H MH
L RPLYR H _~]. BRPLY L
~N

REPLY

REPLY (1) L F/F
BUSY H PHI H
DMR (1) L INIT (1) L

Figure 14-6 Bus 1/0 Control Signal Logic

V

1-3146

signal, indicating that it has completed its portion of the data transfer.
On the next PH1 H clock pulse, the reply flip-flop resets and REPLY (1)
H and L and BUSY H go passive.

Bank 7 Decoder — The bank 7 decode circuit is illustrated in Figure
14-7. Buffers receive WDAL <0:15> H bits and distribute them to the
bank 7 decoder and BDAL bus drivers. Bank 7 is decoded during the
addressing portion of the bus cycle. If a peripheral device address is
referenced, an address in bank 7 (28-32K address space) is used, and
WDAL <13:15> H are all active (high). This address is decoded and

365

Chapter 14 — LSI-11/2 Microcomputer

BBS7 L is asserted. When active, BBS7 L enables addressing of non-
memory devices along the bus. During interrupt vector bus transac-
tions, IAK L becomes asserted. IAK L inhibits BS7 H and BBS7 L
generation, which could result in an invalid input data transfer.

AN

PROCESSOR BDAL BUS
DATA CHIP < WDAL <0:15> H BUS i { > DRIVERS

INIT (1) H

LSI-11 BUS

BBS7 L

13114{15 DMGCY H

13
BS7 H
14 BANK 7

DCDR

BUFFERS

f IAK L
IAK L

Figure 14-7 Bank 7 Decoder

Interrupt Control and Reset Logic

Interrupt control and reset logic functions are illustrated in Figure 14-
8. Reset functions include bus error and power-fail (BDCOK H negat-
ed). Interrupt functions include power-fail (impending), Halt mode
(console microcode control), event (or line time clock) interrupt, and
external BIRQ interrupts.

Power-Fail/Restart Sequence

A power-fail sequence is initiated when BPOK H goes low, clocking the
power-fail flip-flop to the set state. PFAIL (1) L is ORed with HALT L to
produce a high signal. This signal is latched during PH2 H, producing
- -an-active IPIRQ H (interrupt 1) inputto the control chip. The processor
then interrupts program execution. The processor pushes the PC and
PS onto the stack and enters a power-fail routine via vector location
24,. The end of this routine must be terminated by a HALT instruction
to avoid possible memory corruption. Note that the low (passive)
BPOK H signal is inverted to produce an active PFAIL H input to the
fast DIN multiplexer; the signal status is checked by the microcode to
ensure that BPOK H is asserted.

Upon entry to this microcode routine, the processor requests a fast
DIN cycle. This request is decoded as ROM CODE 15 L, presetting the
fast DIN flip-flop. FDIN (0) H goes low, enabling the fast DIN multiplex-
er to place power-up mode option jumper data, the passive time-out

366

Chapter 14 — LSI-11/2 Microcomputer

or power-fail microcode execution and enter a “no operation” state.
The processor remains in this condition until BDCOK H returns to the
active state.

Once initiated, the power-fail sequence must be completed before the
power-up sequence is started, otherwise the processor will “hang.”

The power-up restart condition occurs when DC LO L goes false;
RESET L goes passive (high) on the next PH2 H clock pulse. The
processor responds by executing a fast DIN cycle to determine the
start-up microcode option jumper configuration. Once the fast DIN
cycle has been completed, the processor executes the power-up op-
tion selected, and normal operation resumes when BPOK H is assert-
ed.

Halt Mode

The LSI-11/2 microcomputer can operate in either a Run or Halt
mode. When in the Halt mode, normal program execution is not per-
formed and the processor executes ODT console microcode. How-
ever, the processor will arbitrate DMA requests, and ignore all exter-
nal interrupts.

The Halt mode can be entered in one of five ways:

1. When the BHALT L signal is asserted

2. When a HALT instruction has been executed

3. By apower-up sequence

4. When a double bus error has occurred (a bus error trap with SP
(R6) pointing to nonexistent memory)

5. No Reply received from a device (bus time-out error) when the
processor attempts to input a vector during an interrupt transac-
tion .

The processor halts program execution and enters microcode

execution as described for a power-fail operation. However, when the

processor executes the fast DIN cycle, the PFAIL H bit (WDAL3 H) is

not active and console microcode (not a power-fail sequence) is exe-

cuted. Negation of BHALT L will allow the processor to resume PDP-

11 program execution. On the next PH2 H clock puilse, IPIRQ H goes

false (low) and the processor Run mode is enabled.

Bus Errors

A bus error results in aborting program execution and entry into a trap
service routine via vector location 004. A bus error occurs when a
device fails to respond to the processor DBIN L or DBOUT L signal by
not returning a BRPLY L signal within 10 us (approximately). An active
I1/0 signal inhibits the reset input of the 5-stage time-out counter,

368

Chapter 14 — LSI-11/2 Microcomputer

enabling counter operation. [When not in a processor-controlled bus
1/0 cycle, 1/0 L is passive (high), clearing the counter.] The counter
proceeds with counting PH3 H clock pulse signals. Normally BRPLY L
would be asserted, producing an active REPLY (1) H signal which
inhibits the counter; the count would remain stable until cleared by a
passive I/0 L signal. However, if BRPLY L is not received within 10 us,
the full count (32,,) is attained. This is the error condition; TERR L goes
low and TERR (1) H goes high. The next PH2 H clock pulse clocks the
reset latch to the reset (active) state, producing an active RESET L
signal. The processor responds by executing the reset microcode.
After entering the microcode, the processor executes a fast DIN cycle
and determines that a time-out (bus) error TERR (1) H, rather than a
power-fail condition, has occurred. It then responds by executing the
bus error trap service routine. TFCLR L (ROM code 2) is generated by
the processor to clear the TERR latch.

Interrupt and Trap Priority

Interrupts and traps are similar in their operation. Interrupts are ser-
vice requests from devices external to the processor; traps are inter-
rupts that are generated within the processor. Their main operational
difference, however, is that external interrupts can be recognized only
when PS priority (bit 7) is zero; traps can be executed at any time,
regardless of the PS priority bit status.

Traps, including BMT, BPT, IOT, and TRAP instructions, and hard-
ware-generated trace trap, bus error, power-fail, etc., are described in
Chapter 8.

Normal I/O Interrupts

“Normal” 1/0 interrupts are those interrupt requests that are
generated by external devices using bus interrupt request BIRQ L. The
request is initiated by asserting BIRQ L. This signal is inverted to
produce a high signal, which is stored in the interrupt request latch on
the next PH2 H pulse. The stored request produces I0IRQ (1) H, which
informs the processor of the request. If processor status word priority
is 0, the processor responds by producing an active WIAK H (interrupt
acknowledge) and WDIN H signals. WDIN H is buffered onto the BDIN
L signal line to signal devices to stabilize their priority arbitration.
WIAK H is inverted, producing IAK L, setting the interrupt acknowl-
edge flip-flop on the trailing edge of PH1 L one cycle after BDIN L is
asserted. The high (active) interrupt acknowledge signal is enabled
onto the BIAKO L signal line by passive (low) DMGCY H and INIT (1) H
signals. The highest priority device requesting interrupt service re-
sponds to the processor BDIN L and BIAK L signals by placing its
vector on the BDAL bus and asserting BRPLY L, inputting its vector to

369

Chapter 14 — LSI-11/2 Microcomputer

the processor of the request. Note that BSYNC L is not asserted during
this operation and that no device addressing occurs. The device also
clears its BIRQ L signal. The processor responds to BRPLY L by termi-
nating BDIN L and BIAK L.

Event Line Interrupt

The event line interrupt function can be used as a line time clock
interrupt, or as desired by the user. The LTC (external event) interrupt
has the highest priority of all external interrupts, when PS priority bit 7
= 0. This interrupt always uses vector address 100. It loads a new PC
from location 100 and a new PS from location 102. If PS bit 7 = 0, the
request is acknowledged and the processor inputs a user-assigned
vector address for the device service routine PC (starting address)
and PS. For example, when the requesting device is the console de-
vice, vectors 60 (console input) or 64 (console output) are used. These
vectors are reserved for the console device by most DIGITAL software
systems. The interrupt is initiated by the external device by asserting
BEVNT L. All other external interrupts are requested by a device's
asserting the BIRQ signal. This signal is inverted to produce a high
(active) signal, which clocks the Event flip-flop to the set state. (Note
that when W3 is installed, the flip-flop remains reset and the event
function is disabled.) On the next PH2 H clock pulse, the event
interrupt request latch stores the active EVNT (1) H signal. An active
EVIRQ (1) H signal is then applied to the control chip. If processor
status word priority is 0, the interrupt will be serviced. Service is
gained via vector 100, which is dedicated to the event interrupt.
Hence, a bus DIN operation does not occur when obtaining the vector.
The request is cleared by the microcode-generated EFCLR L signal.

Special Control Function

Special control functions include microcode-generated bus initialize
operations and five special control signals which are internal to the
processor module. Special control function logic circuits are illustrat-
ed in Figure 14-9. Microinstruction bus lines WMIB <18:21> L are
buffered to produce the four SROM <0:3> H signals. The actual
codes for the special functions are contained on SROM <0:2> H;
SROMS3 H is always active when a special function is to be decoded,
enabling the 1:8 ROM code decoder during PH3 H. The resulting de-
coded functions are described below.

ROM Code 10 — Not used.

ROM Code 11 [IFCLR and SRUN L] — This code is produced by the
processor to clear the initialize flip-flop and to assert the SRUN L
signal for an external RUN indicator circuit.

370

Chapter 14 — LSI-11/2 Microcomputer

ROM CODE 11 L
(IF CLR AND SRUN L)

ROM CODE 4
(INITIALIZE
SET)

INIT (1) L
INIT (1) H

F/F
/ o BINIT L ¢

DCLO L
ROM CODE 10 (NOT USED)

ROM CODE 11 (IFCLR 8 SRUN L)
————F—=ROM CODE 12 (TFCLR L)

1:8 ROM ROM CODE 13 (RFSET L)
SROM3 H CODE | ——+ROM CODE 14 L (INITIALIZE SET)
DECODER
|——————= ROM CODE 15 L (FAST DIN)
_—) f——=—+ ——® ROM CODE 16 (PFCLR L
PH3 H —
F— =

ROM CODE 17 (EFCLR L)

SROMO H
SROM! H [
WMIB(18:21> L |BUFFERS|srom2 H

LSI-11 BUS

A4

Figure 14-9 Special Control Functions

ROM Code 12 [TFCLR L] — This code is a trap function clear signal
which clears time-out error flip-flops.

ROM Code 13 [RFSET L] — Memory refresh is not provided by the
LSI-11/2.

ROM Code 14 [Programmed Initialize] — A programmed LSI-11 Bus
initialize operation can be performed by executing the RESET instruc-
tion. The processor responds by generating ROM Code 14 L (decod-
ed). On the positive-going trailing edge of this signal, the initialize flip-
flop clocks to the reset (active) state, producing the active initialize
signal. Approximately 10 us later, the processor produces a TFCLR L
signal, clearing the initialize signal.

During a power failure, the active DC LO L signal is distributed to the
initialize flip-flop clear input; when cleared, the flip-flop is in the active
state and INIT (1) H, INIT (1) L, and BINIT L initialize signals are used to
clear (or initialize) all LSI-11 system logic functions. When normal
power resumes, the processor microcode terminates the initialize cy-
cle by generating TFCLR L, presetting the initialize flip-flop; this is the
passive (noninitialize) or normal flip-flop state and all initialize signals
return to their passive states.

ROM Code 15 [Fast DIN Cycle] — The processor generates this code
when a fast DIN cycle is required. The fast DIN cycle allows the
processor to read (input) the selected start-up mode, time-out error,
and power-fail signal status.

ROM Code 16 [PFCLR L] — This code clears the power-fail flip-flop.

ROM Code 17 [EFCLR L] — This code clears the event flip-flop (or line
time clock interrupt request).

371

Chapter 14 — LSI-11/2 Microcomputer

Clock Pulse and Charge Pump Circuits

The clock pulse and charge pump circuits are illustrated in Figure 14-
10. The clock pulse generator produces 4-phase clock signals for
procgssor timing and synchronization and a 2.6 MHz clock pulse that
drives the charge pump circuit.

 PH-1:4 -

wi 4d CLOCK
XTAL MOS CLOCK
——O=———O——®{ GENERATOR ——A—8 RPH - 1.4 -H
K R
cLoc LOGIC DRIVERS
B
| VDVR (134 V)
2.6 MHz |
CLOCK —®PH - 1:4 H
CHARGE
PUMP
+12V ———————— » VBB
(-39vV)

Figure 14-10 M7270 Clock Pulse and Charge Pump Circuits

The 4-phase clock generator outputs PH <1:4> L and PH <1:4> H
synchronize TTL logic contained on the processor module. PH <1:
14> L signals are also applied to MOS-compatible clock drivers that
produce similarly timed +12 V RPH <1:4> H signals. These signals
are used for driving the 4-phase clock inputs on the processor data,
control, and microinstruction ROM integrated circuits. Each clock
pulse phase signal is 95 ns duration and pulses occur at 380 ns inter-
vals.

The charge pump provides on-board generation of the required ne-
gative dc voltages (—5 V and —3.9 V). Input dc power for the inverter
circuit is obtained directly from the +12 V input. The inverter switching
rate is clocked by the clock pulse generator’'s DIVB (0) H 2.8 MHz
output. Outputs include VDVR (+13.4 V) voltage source for the MOS
clock drivers and —V gg (—3.9V) voltage bias for the processor data,
control, and microinstruction ROM integrated circuits.

Wake-Up Circuit

The wake-up circuit causes the LSI-11 processor to self-initialize dur-
ing power-up. An RC circuit receives +5 V operating power when
power is turned on. When power is first applied, the low capacitor

372

Chapter 14 — LSI-11/2 Microcomputer

voltage causes the Schmitt trigger’s output to go high, and the bus
driver asserts the BDCOK H signal (low). After power has been applied
for approximately 1 second, the capacitor’s voltage rises above the
Schmitt trigger’s threshold voltage, and its output goes low. The low
voltage turns off the bus driver, enabling BDCOK H to become assert-
ed. The processor then starts its initialization sequence if no other
device is asserting BDCOK H. Proper initialization requires that +12 V
operating power be applied within 50 ms of +5 V operating power.

Normal operation of the wake-up circuit depends on the rise time of
the +5 V power supply being faster than 50 ms. The +12 V power
supply also must attain its specified operating voltage in the same 50
ms. The wake-up circuit does not provide power failure detection nor
power-down sequencing. These functions, if required, must be
generated externally. The wake-up circuit is illustrated in Figure 14-11.

SRR Ll o= I
BDCOKH
T [

Figure 14-11 M7270 Wake-Up Circuit

BDAL Bus Driver Enable Logic

The bus driver enable logic is illustrated in Figure 14-12. The four bus
driver portions in each of four DIGITAL DC005 bus transceiver integra-
ted circuits are enabled whenever DMGCY(0) H is high (DMG cycle not
in progress) and DIN H and FDIN(0) H are passive. The drivers are
disabled whenever a DMG cycle is in progress, or when the processor
is reading the bus [instruction fetch or data portion of DATI or DA-
TIO(B) bus cycles]. Bus receivers are enabled only when FDIN(0) H
and DIN H are both true (high).

DMA Arbitration Logic

The DMA arbitration logic circuit used on the M7270 processor is
shown in Figure 14-13. Logic functions are synchronized by the trailing
edge of the PH4 L clock signal. A typical DMA arbitration (DMA re-
quest/grant) sequence is illustrated there.

373

Chapter 14 — LSI-11/2 Microcomputer

—_—_———— e —— e —
r (PART OF DEC DC00S BUS TRANSCEIVER I.C.) I
:::cu WDALH ! I emeaL
LINE I BDAL L
| BUS LINE
XMIT H
DMGCY (0} H 4~i‘ I
OIN H]] I
RECH| RECH
FDIN (0) H-‘ / I I
e

Figure 14-12 M7270 BDAL Bus Driver Enable Logic

PROCESSOR OPTIONS

KEV11

The KEV11, an optional microinstruction ROM chip, contains the EIS
(Extended Instruction Set) and FIS (Floating Point Instruction Set) mi-
crocode on a 40-pin I.C.

The FIS instructions offer floating point addition, subtraction, mulitipli-
cation, and division, while the EIS instructions permit hardware integ-
er, multiply, and divide.

374

Chapter 14 — LSI-11/2 Microcomputer

DMGCY (1) H
SACK H

s [
>

DMGCY LAT L
sac
BSYNC L. KH Yo DMG H
SYNC H 0 BOMGO L
~a
o]
DMR H DMR RQST H

80oMR L—C)

oMR omG

FIF .J FIF GCY(1) H

A et] i

mn‘mL—j WSYNC LJ

DMR RQST L

WBUSY H
RPLY(1} L

DMR RQST H

WBUSY H ___I

PROC.CYCLE
| INHIBITTED .
(DMA DEVICE BECOMES
PROC.CYCLE BUSMATSER} |,_Proc.cvere
comPLETED | ENABLED
WSYNC L
omaCY(1 L

BSYNCL
OMA DEVICE —— . o]
BUS MASTER-
GENERATED [*~ DMA BUS CYCLE
SIGNALS
BDAL <0:15> L DATA

ADDRESS

Figure 14-13 M7270 DMA Arbitration Logic and Sequence

375

R

- Aeeuaags

CHAPTER 15
LSI-11 MICROCOMPUTER

INTRODUCTION

The LSI-11 is a 16-bit microcomputer with the speed and instruction
set of a minicomputer. Due to its size and unique capabilities, the LSI-
11 microcomputer can fit into almost any instrumentation, data proc-
essing, or controller configuration.

A complete and powerful microcomputer system can be configured
using the LSI-11, appropriate memory, /0 devices, and interconnec-
tion hardware. Communication between the system components is
provided by the LSI-11 Bus.

The LSI-11 microcomputer controls the time allocation of the LSI-11
Bus for peripherals, and performs arithmetic and logic operations and
instruction decoding. It contains multiple high-speed, general-pur-
pose registers which can be used as accumulators, address pointers,
index registers, and for other specialized functions. The processor
does both single-and double-operand addressing and handles both
16-bit word and 8-bit byte data. The bus permits DMA data transfers
directly between 1/0 and memory without disturbing the processor
registers.

FEATURES — BENEFITS
e Compact, double-height module size — allows for versatile packag-

ing.

® ODT console emulator — ease of program debugging.

® Direct addressing of 32K 16-bit words or 64K 8-bit bytes (K = 1024)
— provides flexibility in defining data structures.

® Over 70 operation codes — provide powerful and convenient
programming.

® 8 addressing modes for specifying operands — allow for absolute,
deferred, autoincrement, autodecrement, and index register refer-
ences.
e 8 internal general-purpose registers for use as accumulators and for
operand addressing — provide flexible programming techniques.
® Stack processing — creates convenient handling of structured data,
subroutines, and interrupts.

® Byte-oriented instructions — provide efficient processing of 8-bit
characters without the need to rotate, swap, or mask.

® | SI-11 Bus structure — provides position-dependent priority as
peripheral device interfaces are connected to the I/0 bus.

377

Chapter 15 — LSI-11 Microcomputer

e Asynchronous bus operation — allows processor and system com-
ponents (memory and peripherals) to run at their highest possible
speeds.

e Direct memory access (DMA) — allows peripherals to access mem-
ory without interrupting processor operation.

e Vectored interrupts — provide fast interrrupt response without de-
vice polling.

o Power-fail and automatic restart hardware — detect and protect
against ac power fluctuations.

o Modular component design — allows systems to be configured and
upgraded easily.

e Extended Instruction Set (EIS) and Floating Point Instruction Set
(FIS) available as an option — provides fixed and floating point
hardware arithmetic.

SPECIFICATIONS

Identification M7264

Size Quad

Dimensions 26.6cm X 22.8cm

(10.5in X 8.9in)

Power Requirements +5V + 5%, 1.8A
+12V +5%, 0.8A

Bus Loads ac 2.4 unit loads
dc 1 unitloads

Instruction Timing See Appendix C

Interrupt Latency 35.05 microseconds 120% (worst case if
KEV11 option not present) 44.1 micro-
seconds +20% (worst case if KEV11 option

is present)

DMA Latency 6.45 microseconds +20% (worst case)

Operating Tempera- 5°Cto60°C (41°to 140°F)

ture Derate the maximum temperature by one
degree Celsius for each 1000 feet of altitude
above 8000 feet.

Relative Humidity 10% to 90%, noncondensing

Altitude Up to 50,000 feet (Note temperature derat-
ing above 8000 feet.)

Airflow Sufficient air flow must be provided to limit

378

Chapter 15 — LSI-11 Microcomputer

the temperature rise across the module to
5°C for an inlet temperature of 60°C. For
inlet air temperature below 55°C, air flow
must be provided to limit temperature rise
across the module to 10°C.

NOTE
These are the design limits. Lower temperature lim-
its will serve to increase the life of the module.

Storage Temperature —40°C to0 65°C (—40°F to 149°F)
Relative Humidity 10% to 90%, noncondensing
Altitude Up to 50,000 feet

NOTE

When stored outside the operating range, the
module should be allowed to stabilize in the operat-
ing range for a minimum of 5 minutes before operat-

ing.

ADDITIONAL SOURCES OF LSI-11 DOCUMENTATION
Appendix Gof this Handbook lists additional documentation available
for the LSI-11.

CONFIGURATION DATA

JUMPER SELECTION

The LSI-11 processor module is factory-configured for specific func-
tions. In many applications the processor module can be used as
received. Wirewrap posts are provided on each module for configur-
ing jumper-selected functions. The factory-configured functions se-
lected are listed in Table 15-1. Install or remove jumpers to alter
processor functions as directed.

NOTES
1. Do not change the following factory-configured jumpers:
M7264 and M7264-YA modules (etch revision E and later):
W7 and W8
2. M7264 and M7264-YA etch revision C and D modules do not
include jumpers W7 through W11,

Processor module etch revisions can be determined by examining the
printed circuit board part number on side 2 (solder side) of the proc-
essor module. This number is located on M7264 and M7264-YA mod-

379

Chapter 15 — LSI-11 Microcomputer

ules as shown in Figure 15-1. Jumpers for M7264 and M7264-YA LSI-
11 processor-modules are illustrated in Figure 15-2.

Table 15-1

Jumper
W1

w2

W3

W4

W5

W6
w7

w8
w9

w10

L2SI1-11 Processor Module Factory-Installed Jumpers

Status
R

M7264

Function

Resident
memory
bank 1 not
selected

Resident
memory
bank 0 se-
lected

Event line
(LTC) inter-
rupt enabled

Processor-
controlled
memory
refresh
enabled

Power-up
mode

0 selected

Factory-con-
figured bias
voltage (do
not change)

Enable reply
from
resident
memory

Enable reply
from resi-
dent memo-
ry during
refresh

380

M7264-YA

Status Function

R Resident
memory
bank 1 not
selected

R Resident
memory
bank 0 not
selected

R Event line
(LTC) inter-
rupt enabled

| Processor-
controlled
memory
refresh
disabled

R Power-up
mode

R 0 selected

— Factory-con-
figured bias
voltage (do
not change)

| Disable reply
from
resident
memory

R N/A

Chapter 15 — LSI-11 Microcomputer

Jumper Status Function Status Function
W11 I Enable on- R Disable on-
board mem- board mem-
ory select ory select
NOTE

| = Installed; R = Removed; N/A = Not applicable

Se<— L 1|8 p—)

ol 607H

TYPICAL CIRCUIT SCHEMATIC
REVISION IDENTIFIER
(EG. CS-M7264 REV. H)

TYPICAL ETCH REVISION

IDENTIFIER (EG. ETCH REV. D)

LSIN1 CPU M7264 5011545D-P3 SIDE 2

1 I |

A B C)

’_J

Figure 15-1 Module Etch and Circuit Schematic Revision Identifiers
(Module Side 2 Shown)

381

Chapter 15 — LSI-11 Microcomputer

FACTORY CONFIGURED
DO NOT CHANGE

%1_4/ L
\ /
N
\}*1\' _ws
I ’
R FL\

M7264 ETCH REV E (AND LATER)

w5
ws\l\ w2

wi

f

wa -]

R

M7264 ETCH REV.C,D (W7 -W1INOT USED)

Figure 15-2 M7264 and M7264-YA Processor Module Jumper
Locations

382

Chapter 15 — LSI-11 Microcomputer

Power-Up Mode Selection

Four power-up modes are available for user selection. These are se-
lected (or changed) by wirewrap jumpers W5 and W6 on the processor
module. Note that the jumpers affect only the power-up mode (after
BDCOK H and BPOK H have been asserted); they do not affect the
power-down sequence.

The state of the BHALT L signal is significant during the power-up
sequence. When this signal is asserted, it invokes the processor’s ODT
console microcode after the power-up sequence. The console device
must be properly installed for correct use of the BHALT L signal.

Power-up modes are listed below. Detailed descriptions of each mode
are provided in the paragraphs that follow.

Jumpers*

Mode W6 W5 Mode
Selected

0 R R PC at 24 and
PS at 26, or
Halt mode

1 R | ODT micro-
code

2 | R PC at 173000
for user boot-
strap

3 | | Special proc-
essor micro-
code (not im-
plemented)

*R = Jumper Removed; | = Jumper Installed.

Power-Up Mode 0

This mode places the processor in a microcode sequence that fetches
the contents of memory locations 24 and 26 and loads their contents
into the PC (R7) and the PS, respectively. A microcode service
translation at this point interrogates the state of the BHALT L signal.
Depending on the state of this signal, the processor either enters ODT
microcode (BHALT L asserted low) or begins program execution with
the current contents of R7 as the starting address (BHALT L not as-
serted).

Note that the T bit (PS bit 4) is loaded with the contents of PS bit 4 in
location 26. Mode 0 should be used only with nonvolatile memory (or

383

Chapter 15 — LSI-11 Microcomputer

Power-Up Mode 3

This mode allows access to future microcode expansion in the fourth
MICROM page (microlocations 3000 to 3777). After BDCOK H and
BPOK H are asserted and the internal flags are cleared, a microjump
is made to microlocation 3002. If this option is selected and no MI-
CROM responds to the fourth page microaddress, a microtrap will
occur through microlocation 0 which will, in turn, cause a reserved
user instruction trap through location 10.

Note that the state of BHALT L is not checked before control is
transferred to the fourth MICROM page.

LTC Interrupt

Line time clock (LTC) or external event (EVNT) interrupts are enabled
when jumper W3 is removed and the processor is running. The jumper
can be inserted to disable this feature. The LTC interrupt is initiated by
an external device when it asserts the BEVNT L signal. This is the
highest priority external interrupt request; processor interrupts have
higher priorities. If external interrupts are enabled (PS bit 7 = 0), the
processor PC (R7) and PS word are pushed onto the processor stack.
The LTC (or external event device) service routine is entered by vector
address 100; the usual interrupt vector address input operation by the
processor is not required since vector 100 is generated by the proces-
sor.

The first instruction of the service routine typically will be fetched
within 16 us from the time BEVNT L is asserted; however, if optional
EIS/FIS instructions are being executed, this time could extend to 44.1
us maximum. This time could also be extended by processor trap
execution (memory refresh, T bit, power-fail, etc.), or by asserting the
BHALT L signal.

Memory Refresh (M7264 and M7264-YA)

The LSI-11 processor has the capability of controlling the refreshing of
dynamic MOS memories in a system when jumper W4 is removed.
Memory refresh is always required when the LSI-11 system includes
M7264 resident memory or MSV11-B 4K 16-bit read/write memory.
The refresh operation can be controlled by a device other than the
LSI-11 processor, if available, such as the REV11-A, REV11-C, and
REV11-H options. If such a device is used, or if no dynamic MOS
memory devices requiring “external” refresh are present in the sys-
tem, install W4. The refresh sequence is described below.

The processor memory refresh sequence is controlled by resident
microcode in the processor and is initiated by an internal interrupt that
occurs once every 1.6 ms. It is the highest priority processor interrupt,

385

Chapter 15 — LSI-11 Microcomputer

and cannot be disabled by software using PS bit 7. Once the sequence
is initiated, the processor will execute 64 BSYNC L/BDIN L bus trans-
actions while asserting BREF L. The BREF L signal overrides memory
bank address bits <13:15> and allows all memory units fo be simulta-
neously enabled. After each bus transaction, BDAL<1:6> L is
incremented by 1 until all 64 rows have been refreshed by the BSYNC
L/BDIN L transactions. This process takes approximately 130 us dur-
ing which external interrupts (BIRQ L and BEVNT L) are ignored. How-
ever, DMA requests can be granted between each of the 64 refresh
transactions.

PROCESSOR OPTIONS

KEV11

The KEV11, an optional microinstruction ROM chip, contains the EIS
(Extended Instruction Set) and FIS (Floating Point Instruction Set) mi-
crocode on a 40-pin I.C. The FIS instructions offer floating point addi-
tion, subtraction, multiplication, and division, while the EIS
instructions permit hardware integer muitiply and divide.

386

387

CHAPTER 16
LSI-11 SYSTEM TROUBLESHOOTING

INTRODUCTION

The LSI-11 System Troubleshooting Chapter is designed to address
troubleshooting procedures for general LSI-11 based microcomputer
systems. While this chapter does not attempt to cover problems at the
chip level, it does present board-swapping techniques. Before delving
into this chapter, it is recommended that you have already a funda-
mental understanding of the basic LSI-11 concepts, which should
have been acquired by reading this Handbook.

This chapter has been constructed to provide a logical sequence to
detect and isolate a problem in your system. Flowcharts appear quite
frequently to supplement the text, and serve as step-by-step visual
guides to help you isolate problems in your system, and determine the
proper procedures to correct them.

The hardware tools required to troubleshoot your system must include
a CPU (this spare CPU must prove to be in good operating order,
having undergone successful, repeated testing, and be immediately
available for use), a serial line interface unit, and memory. A volt me-
ter, if available, is very useful because it can be used to monitor power
supply voltages. A scope can also be very helpful, but for performing
board-swapping troubleshooting, it is not required.

General Troubleshooting Procedure

A flowchart depicting this procedure appears in Figure 16-1. To begin

the troubleshooting procedure, apply system power. The system will

respond in one of two ways:

1. System does not respond. An ODT PROMPT does not appear.
(Condition One)

2. System responds with an ODT PROMPT displayed on your termi-
nal. The ODT PROMPT appears as an "@" sign. (Condition Two)

389

Chapter 16 — LSI-11 System Troubleshooting

START TROUBLESHOOTING
PROCEDURE

l

APPLY SYSTEM
POWER

SEE l

SYSTEM .yes EXPECTED POWER-UP

CHECK-OUT MODE EXECUTED?
PROCEDURE
no
IS THE FAILURE
ODT PROMPT (@) Ye€s INTHE no
DISPLAYED? BOOTSTRAP REGION?
no yes
CONDITION 1 CONDITION 2
SEE SEE
CONSOLE BOOTSTRAP
CHECK-OUT CHECK-OUT
PROCEDURE PROCEDURE
v {
SEE SEE
FAILED oDT
SYSTEM TEST
PROCEDURE PROCEDURE

Figure 16-1 General Troubleshooting Procedure

If your system is comprised of new components, follow the Module
Installation Procedure prior to applying power. See example below:

Module Installation Procedure
1.

2.
3.

Insure that there is no dc power applied to the backplane.

Remove all modules from the backplane.

It is recommended that a single switch be used to apply +5 V and
+12 V to the backplane. Simuitaneous application of +5 V and
+12 Vis recommended.

Turn power on.

At the backplane, check for the following voltages with respect to
GND (pin C2 in any backplane slot):

Row 1, Slot A, Pin A2: +5V

Row 1, Slot A, PinD2: +12V

Row 1, Slot A, Pin V1: +5 BV

390

Chapter 16 — LSI-11 System Troubleshooting

CAUTION
Do not plug in modules with power applied to backplane.

6. Turn off power.
7. Install modules.

CONDITION ONE

Console Check-Out Procedure

In the first case, where the ODT PROMPT does not appear, the Con-
sole Check-Out Procedure should be implemented. (See Figure 16-2).
Since there was no response, this may mean that your console is not
operating. To determine whether the system is operating, test the
cursor action. If cursor action is evident, depress the BREAK key to
see if the system is "hung”.(BREAK must be configured to halt the
system in the SLU interface). If an ODT PROMPT does appear, the
system is not "hung” and you can continue with the ODT Test Pro-
cedure.

Should there be no response after depressing the BREAK key, the
terminal must be tested to check that it is sending characters to the
computer. This is accomplished by typing in LOCAL. If the terminal
does type in LOCAL, check the console cabling, console serial line unit
configuration, the baud rate, the number of stop and data bits---to
make sure they match those on the terminal. (The terminal should
match what you've configured your board for). In cases where the
terminal fails to type in LOCAL, it should be replaced and the Console
Check-Out Procedure restarted.

In cases where no cursor action occurs, the console should be
checked to determine if it's powered up and on-line. Also, the power
connections and cabling should be checked to to make sure the fuse
hasn’t blown. After having accomplished these examinations, and
your system still fails to boot/run, proceed immediately to the Failed
System Procedure.

391

Chapter 16 — LSI-11 System Troubleshooting

IF THE SYSTEM IS ON

AND THE ODT PROMPT
DOES NOT APPEAR
HIT BREAK
TO SEE
__ IFSYSTEM yes IS THERE CURSOR
ISHUNG ¢ ACTION?
DOES ODT PROMPT
APPEAR? l no
l yes CHECK
— CONSOLE ON/OFF
DO ODT TEST — CONSOLE ONLINE
PROCEDURE — POWER CONNECTIONS
— BLOWN FUSE
CORRECT AND
no DOES EVERYTHING in RESTART
CHECK OUT? TROUBLESHOOTING
l PROCEDURE
yes
l CHECK
— CONSOLE CABLING
CHECK TERMINALS ~ — CONSOLE SLU
ABILITY TO TYPE _YeS_ CONFIGURATION
IN LOCAL — BAUD RATE MATCH
DOES IT TYPE? FOR BOTH CONSOLE
AND SLU
no CORRECT
l DOES EVERYTHING "0. AND RESTART
REPLACE DEVICE CHECK OUT? TROUBLESHOOTING
_RESTART PROCEDURE
TROUBLESHOOTING ves
PROCEDURE

DO FAILED SYSTEM
PROCEDURE

Figure 16-2 Console Check-Out Procedure

Failed Systems Procedure

Under the Failed Systems Procedure, (Please refer to Figure 16-3.)
you should first determine that memory is configured starting in mem-
ory bank zero (0-4K words). Both the LSI-11/23 and the LSI-11/2
microcomputers will not power-up unless memory is configured in
bank zero.

If memory is residing in bank zero with no resulting action being gen-
erated on the terminal, check the power supply and the voltage levels
on the backplane. These voltages should be read as +5v and +12vin
accordance with the specifications. If these figures do not check out
according to specifications, it means that either the power supply or
the backplane is faulty. Should this be the case, perform a swap and
restart the Troubleshooting Procedure. If the voltage power levels

392

Chapter 16 — LSI-11 System Troubleshooting

agree with the specifications and the system still fails to power-up,
check to see if the processor is configured for a valid power-up mode.
If so, examine the processor to be sure that the WAKE UP circuit is
disabled for use in DIGITAL-supplied boxes and enabled for customer
power supplies (except for BA11-VA DIGITAL box).

At this point, if the system still fails to come up, determine whether the
memory is self-refreshing, or depending on the processor for refresh.
Neither the LSI-11/23 nor the LSI-11/2 provides refresh signals over
the bus. However, DIGITAL'’s earlier LSI-11 microcomputer does.

If the system continues to fail, reconfigure the system to a minimum
configuration, consisting of the CPU and console serial line unit, and
be sure that memory is in bank zero. Now, try to bring the system up
again. If it still doesn’t come up, swap the CPU, memory, and serial line
unit (one at a time) with tested operating units until the system be-
comes activated. Once the system is activated, you should perform the
ODT Test Procedure.

In most cases, by this time, your system should be operating success-
fully because the spare parts with which you've just reconfigured your
system should diagnose that part of the system that previously failed.

CONDITION TWO

The second failure mode, the case in which the "@" sign or PROMPT
is displayed on your terminal after applying system power, should be
accompanied by a number. If this number falls between the 173000-
173777 range (the bootstrap region), the Bootstrap Check-Out Pro-
cedure must be implemented because a failure has occured in the
bootstrap region. If another number prints out on the terminal, and is
not in the 173000-173777 range (IE: "@" sign or no number) this indi-
cates that a failure has occurred in another part of memory and you
must advance to the ODT Test Procedure to determine where the fault

occurred.

Bootstrap Check-Out Procedure
This procedure assumes that the system has halted in the designated
bootstrap region, between 173000-173777. (Please refer to Figure 16-

4)

First, determine whether code is residing in this region using ODT.
Then, identify the bootstrap device in your system by examining the
module numbers on the handle to determine if your bootstrap device
is aBDV11, MXV11, or REV11. BDV11is M8012; MXV11 is M8047; and
REV11 is M9400. (The BDV11 bootstrap device board contains very
helpful light emiting diodes, LEDs, which by being on or off, can tell
you what the failure mode was.) If you still encounter difficulty, note the

393

Chapter 16 — LSI-11 System Troubleshooting

IF THE SYSTEM IS ON AND THE ODT
PROMPT DOES NOT APPEAR OR SYSTEM

DOES NOT BOOT
l RECONFIGURE MEMORY
IS THE MEMORY CONFIGURED no AND RESTART
STARTING IN BANK ZERO? TROUBLESHOOTING
PROCEDURE
yes
CHECK +5V AND +12V ON BACKPLANE SUSPECT POWER SUPPLY

(PIN LOCATIONS CAN BE FOUND IN no ORBACKPLANE FAILURE.
THE MICROCOMPUTER AND MEMORIES —% SWAP AND RESTART

HANDBOOK 1982 (LSI-11 BUS CHAPTER) TROUBLESHOOTING
DO THE VOLTAGES CHECK OUT? PROCEDURE
l yes
RESTRAP FOR VALID
IS PROCESSOR STRAPPED FOR VALID no > POWER-UP MODE. RESTART
POWER-UP MODE? TROUBLESHOOTING
PROCEDURE
yes

CHECK THAT IT IS
IS THE PROCESSOR DEPENDING ON
_Yes , CONFIGURED PROPERLY.

SELF ‘WAKE-UP'?

RESTART TROUBLE-
(SEE u—NOTE 85) SHOOTING PROCEDURE
no
CHECK REFRESH GUIDE
IS THE SYSTEM MEMORY DEPENDING _¥eS _ LINES AND RESTART
ON BUS REFRESH? —® TROUBLESHOOTING
PROCEDURE
no
o _ DO ODT CHECKOUT
IS THE SYSTEM STILL FAILNG? ~ —— DO ODT CHE
yes

PUT SYSTEM IN MINIMUM
CONFIGURATION CPU, CONSOLE SLU,
AND MEMORY IN BANK ZERO. THESE
MODULES MUST BE CONTIGUOUS.
SWAP CPU, MEMORY, AND SLU ONE AT
A TIME UNTIL THE SYSTEM IS ACTIVE

|

DO ODT TEST PROCEDURE

Figure 16-3 Failed Systems Procedure

394

Chapter 16 — LSI-11 System Troubleshooting

region number that is printing out with the "@" sign on your terminal,
then proceed to the bootstrap listing to check the device you're using.
This will tell you where in the bootstrap region the failure occurred. At
this point, you can replace either the failing floppy disk or the faulty
interface. If the HALT address is not one of the standard bootstrap
HALT addresses advance to the ODT Test Procedure. (See Figure 16-

5.)

ODT Test Procedure
The ODT Test Procedure should be implemented when the HALT
address is not in the bootstrap area or the address is not a standard

bootstrap failing address.

To begin, check that the processor is strapped for the correct powe-
rup mode. If so, determine the nature of the failure. On the LSI-11 and
the LSI-11/2, the "M” command can provide helpful information to
determine how the processor got into the HALT mode. The "M"
command is explained in detail in Chapter 7, the ODT chapter of this
Handbook. The LSI-11/23 does not have the "M” command. Next,
ensure that the modules are contiguous in the backplane and check
refresh for the memory. If the memory is being refreshed and all your
modules are contiguous in the backplane, remove all the system com-
ponents except the processor, console SLU and memory in bank zero
and restart the system.

At this point in time, you should be able to run the NOP program.

No Operation (NOP) Program

The NOP program is a short program which tests whether the proces-
sor can run. Enter the NOP program using ODT starting at location
1000 and type "P” to start. If the program runs, then you can be sure
that the processor is at least executing instructions and is not stuck in
the HALT mode. To halt the program, depress the console BREAK key
or the HALT switch. To restart, type "P".

If your program does not run, then either the processor, the console
SLU or the power supply is at fault. To determine which one of these is
faulty, perform a module swap. The NOP program is shown below.

395

Chapter 16 — LSI-11 System Troubleshooting

THE SYSTEM HAS HALTED IN THE
DEFINED BOOTSTRAP AREA, CHECK
SYSTEM FOR DEFINED HALT

ERROR MESSAGES
BOOTSTRAP DEVICE
CONFIGURED INCORRECTLY 1o C*:Eggo;c_’sggggs
RECONFIGURE AND RESTART#— 172000 1730
TROUBLESHOOTING
gl IS THERE CODE IN THIS AREA?
yes
IDENTIFY THE BOOTSTRAP
DEVICE
BDV11 (M8012) MXV11-A2 (MBOAT7) REV11 (M2400-YA, YC)
NOTE HALT ADDRESS NOTE HALT ADDRESS NOTE HALT ADDRESS
OUTPUT TO THE CONSOLE ~ OUTPUT TO THE CONSOLE ~ OUTPUT TO THE CONSOLE
BEFORE ODT PROMPT BEFORE ODT PROMPT BEFORE ODT PROMPT
NOTE DIAGNOSTIC
LEDS ON BDV11 BOARD
ITSELF
v
USE THE MICROCOMPUTER USE THE MICROCOMPUTER
—NOTI
INTERFACES HANDBOOK TO A‘fg " TN: ;;:N?:v INTERFACES HANDBOOK TO
IDENTIFY THE REASON AEASON FOR FAILURE IDENTIFY THE REASON
FOR THE FAILURE FOR THE FAILURE
CORRECT FAILURE AND CORRECT FAILURE AND CORRECT FAILURE AND
RESTART TROUBLE- RESTART TROUBLE- RESTART TROUBLE-
SHOOTING PROCEDURE SHOOTING PROCEDURE SHOOTING PROCEDURE

!

IF HALT ADDRESS IS NOT
STANDARD BOOTSTRAP HALT, DO
THE ODT TEST PROCEDURE

BOOTSTRAP TEST PROCEDURE

Figure 16-4 Bootstrap Check-Out Procedure

396

Chapter 16 — LSI-11 System Troubleshooting

HALT ADDRESS IS NOT IN THE BOOTSTRAP AREA OR ADDRESS IS NOT A
STANDARD BOOTSTRAP FAILING ADDRESS FOR A GIVEN BOOT DEVICE

CORRECTLY RECONFIGURE

FOR POWER-UP MODE PROCESSOR STRAPPED

AND RESTART TROUBLE - -« X

AN AR [RQUBLE: FOR CORRECT POWER-UP MODE?
yes

DETERMINE THE NATURE OF THE FAILURE
LSI-11,
LSI-11/2 USERS
USE THE ODT M (MAINTENANCE) COM'\SAAND bglEuISZ?)

MICROCOMPUTER AND MEMO
HANDBOOK 1982 ODT CHAPTER

INSURE CONTIGUOUS S FAILURE DUE

MODULES IN THE BACK- _ yes 10 R GNFIaURANON?
PLANE, CHECK REFRESH €——
3 E)éTEDRNAL REFRESH (ERROR CODES

no

RESTAR TURN OFF SYSTEM POWER. REMOVE ALL
TROUBLESHUU IING bv‘STEM (,()MPONENTS EXCEPT PROCE§§OR
PROCEDU CONSOLE SLU AND BANK 0 MEMOR

INSURE THESE ARE CONTIGUO S
URN SYSTEM POWER O

RUN NOP PROGRAM OF ODT TEST PROCEDURE

HALT ASSER
— commu%kvguﬁggﬂ <+ PROGRAM RUNS?
SLU OR POWER SUPPLY i yes

RUN LTC PROGRAM OF ODT TEST PROCEDURE

LTC INTERRUPT NOT

FUNCTIONING SUSPECT no

— PROCESSOR, PROCES- <4—— PROGRAM RUNS?
SOR CONFIGURATION, ves

OR LTC SOURCE

RUN INTERRUPT TEST PROCEDURE

OF ODT TEST PROCEDURE
SLU INTERRUPT
FAILURE SUSPECT no
— PROCESSOR, SLU <+—— PROGRAM RUNS?
CONFIGURATION, ves
OR'SLU
| REPLACE MASS STORAGE AND BOOT DEVICE ONLY
1 '
SWAP EACH POSSIBLE TTEMPT TO
FAILING COMPONENT RESTART SYSTEM Mo, m%g"s'}'g‘&gé%‘g(}%go
ONE AT A TIME AND VIA BOQTSTRAR INTERFACE CONFIGURA'
RETHY 7287 DOES SYSTEM BOOT? R e GONEIGURA
yes AND
ADD IN OTHER SYSTEM CHECK INTERFACE

INTERFACES, ONE AT ATIME no = CONFIGURATION
AND CHECK TO SEE THAT —— REP LACE INTERFACE
THE SYSTEM WILL BOOT RETR
WILL IT BOOT?

l yes
FORCE SYSTEM INTO CHECK INTERFACE
no ODT CHECK THAT THE __’ CONFIGURATION

INTERFACE RESPONDS RETRY IN SYSTEM
TO ITS ADDRESS

yes

ARE ALL SYSTEM
INTERFACES IN PLACE?
yes

DO SYSTEM CHECKOUT PROCEDURE

Figure 16-5 ODT Test Procedure
397

Chapter 16 — LSI-11 System Troubleshooting

NOP PROGRAM

ENTERIN ODT

1000/ 240 (LF)
NOP
1002/ 240 (LF)

NOP
1004/ 240 (LF)
NOP
1006/ 137 (LF)
JUMP @ #1000; LOOP FOREVER
1010/1000 (CR)
R7/1000 (CR)
:SET-UP TO DISABLE INTERRUPTS
RS/ 340 (CR)
R6/1000 (CR)
:SET STACK
-TYPEP TO START
- HALT PROGRAM BY USING CONSOLE BREAK OR HALT
SWITCH
-TYPE P TO RESTART
- THIS SIMPLE PROGRAM TESTS TO INSURE THE SYSTEM IS
NOT “STUCK” IN HALT MODE

Line Time Clock (LTC) Program

If the NOP program runs successfully, the line time clock should be
tested as well to check that it is running correctly. The LTC program is
a short program that is entered under ODT and started by typing 1000
G". (See LTC program below.) The program should halt at location
"104" and your terminal will display "106". This indicates that you have
received a line time interrupt. If the system does not halt, the line time
interrupt is not occurring, meaning that it is not being produced by the
power supply or that it is not being recognized by the processor.

LTC PROGRAM
ENTER IN ODT
100/ 104 (LF)
: BEVNT SERVICE ADDRESS
102/ 340 (LF)
104/ 0(CR)

; BEVNT SERVICE ROUTINE HALT SYSTEM

398

Chapter 16 — LSI-11 System Troubleshooting

1000/ 137 (LF)
JMP @ #1000; LOOP ON ITSELF
1002/1000 (CR)
R6/1000 (CR)
: SET STACK

- TYPE 1000G

- SHOULD HALT AT 104 AND DISPLAY 106

- IF SYSTEM DOES NOT HALT BEVNT INTERRUPT IS NOT OC-
CURING

Interrupt Test Procedure

If the LTC program runs successfully, the general interrupt servicing
capability of the processor should then be tested. The Interrupt Test
Procedure is the third and longer of the three procedures (the others
are NOP and LTC) that are entered under ODT. To begin, set up the
processor stack so that it can receive interrupts, raise the processor
priority, while you enable the interrupt, and enable the interrupt enable
bit so that when the serial line unit receives a character, it will interrupt
the processor. The Interrupt Test Procedure program is shown below.

When an interrupt occurs, it will vector through locations 60, and 62,.
Location 60, contains 2000, and points to the receiver service routine.
Location 62, contains 340, which disables future interrupts. The rou-
tine resident at location "1000” checks to determine if the transmit
buffer is ready to receive a character. If it isn’t ready, it waits. If it is
ready to receive a character, it takes the character you've just entered
in the terminal, retrieves it from the receiver buffer, places it into the
transmit buffer, and types it back out onto the console. It then returns
from the interrupt. Typing "1000 G” and inputting a character should
cause the character to echo right back out to the terminal. You can
then hit the BREAK key to halt the test.

The Interrupt Test Procedure also tests the processor’s ability to moni-
tor the console serial line unit’'s capability of generating interrupts and
the configuration of the serial line unit.

If your program does not run successfully under the Interrupt Test
Procedure, either a SLU failure or a processor failure has occurred.

If your program does run and your system still does not boot, the mass
storage device may be causing the failure. You can attempt to restart
the system by entering a hand bootstrap found in Appendix A. Also,
the interface should be checked, as well as the cabling.

399

Chapter 16 — LSI-11 System Troubleshooting

Once your system comes up, is running, and boots, add the devices
you removed one at a time to determine which one caused the failure,
and make sure they all work.

If the system continues to boot, check under ODT that the device is
where you configured it to be by addressing the location of the control-
ling status register.

Once all system interfaces are back in place and your system is
running, perform the System Check-Out Procedure to be certain that
the system is running properly.

INTERRUPT TEST

ENTER IN ODT
060/002000 (LF); :RECEIVER SERVICE
ROUTINE
062/000340 (CR)

100/000102 (LF); ;Set LTC INTERRUPT TO
RETURN

102/000002 (CR)

1000/012706 (LF) MOV #1000, SP
: SET UP STACK
1002/001000 (LF)
1004/106427 (LF) MTPS #340
: RAISE PRIORITY
WHEN ENABLING
1006/000340 (LF)
: INTERRUPTS
1010/012737 (LF) MOV #100, @ #1777560
: SET INTERRUPT ENABLE IN
1012/000100 (LF)
: RECEIVER
1014/177560 (LF)
1016/106427 (LF) MTPS #0
: LOWER PRIORITY
1020/000000 (LF)
1022/000137 (LF) JMP @ #1022
: WAIT FOR AN INTERRUPT
1024/001022 (CR)
2000/010537 (LF) TSTB @ #177564
: 1S TRANSMIT READY?

400

Chapter 16 — LSI-11 System Troubleshooting

2002/177564 (LF)

2004/100375 (LF) BPL .—4
; NO, WAIT

2006/013737 (LF) MOV @ #177562, @ #
177566

; PUT-INPUT

2010/177562 (LF)

; CHARACTER INTO TRANS

2012/177566 (LF)

; MIT BUFFER

2014/000002 (CR) RTI

; RETURN FROM INTERRUPT

-TYPE 1000G, THEN INPUT A CHARACTER, IT SHOULD ECHO
RIGHT BACK,
THEN HIT BREAK TO HALT TEST.

-THIS PROGRAM TESTS THE PROCESSOR'’S ABILITY TO HANDLE
INTERRUPTS,

THE CONSOLE SLU’s ABILITY TO GENERATE INTERRUPTS,
AND THE CONFIGURATION OF THE SLU.

System Check-Out Procedure

This procedure (See Figure 16-6) should be implemented after the
system has been booted to test the complete functionality of each
system component. The most effective testing method is to run the
diagnostic under XXDP+ for each module individually in the system
and run a performance exerciser. You should allow these diagnostics
to run overnight so that the intermittent failures in your system can be
found. Also, if you're experiencing intermittent problems, running
diagnostics and performance exercisers assures that the problem can
be located in your system.

If each diagnostic passes, your system has proved that it is running
well. If not, replace the faulty component and run the diagnostics over-
night again.

RELATED MICROCOMPUTER AIDS

The 1982 Microcomputers and Memories Handbook is very useful and
provides informative technical detail, as well as reference material.
The Micronotes are also very helpful in solving any further problems
you may be experiencing that are not covered in this chapter. If you
feel you need to contact someone directly about a problem, call your
local sales office for referral.

401

Chapter 16 — LSI-11 System Troubleshooting

ONCE THE SYSTEM IS BOOTED
TEST THE COMPLETE FUNCTIONALITY
OF EACH COMPONENT

}

RUN THE DIAGNOSTIC UNDER XXDP+ FOR EACH
INDIVIDUAL MODULE IN THE SYSTEM
RUN DEVICE PERFORMANCE EXERCISERS
(PREFERABLY OVERNIGHT)

!

» DOES EACH DIAGNOSTIC FOR yes
EACH COMPONENT PASS

o

REPLACE COMPONENT
RECHECK THE SYSTEM

v

SYSTEM OK

Figure 16-6 System Check-Out Procedure

402

403

IERRN TN

404

CHAPTER 17
ROM MEMORIES

MRV11-AA 4K BY 16-BIT READ-ONLY MEMORY

The MRV11-AA is a basic read-only memory module on which the
user can install programmable read-only memory (PROM) or masked
read-only memory (ROM) chips.

FEATURES — BENEFITS

e Using 512 by 4-bit chips — yields 4096 by 16-bit capacity.

® Using 256 by 4-bit chips — yields 2048 by 16-bit capacity.

® Compatibility — uses chips available from multiple sources.
® User-configured 4K address — allows easy memory layout.

SPECIFICATIONS
Identification M7942

Size Double

Power
4K X 16 ROM less PROM +5V +5%at0.4 A
integrated circuits

32512 X 4 PROM integrated +5V +5%at2.8A
circuits

Bus Loads
AC 1.8
DC 1.0

CONFIGURATION

Depending on PROM type, the module’s capacity is either 4096 16-bit
words or 2048 16-bit words, using 512 by 4-bit or 256 by 4-bit PROMs,
respectively. Full address decoding is provided on the module. The
user can select the 4K address bank in which the module resides by
installing or removing jumpers on the module. Similarly, when using
256 by 4-bit PROMSs, the user can jumper-select the upper or lower 2K
segment within the selected 4K address bank. Note that 512 by 4-bit
and 256 by 4-bit PROMs cannot be mixed on an MRV11-AA module;
the user configures jumpers on the module for the PROM type being
used.

A partial listing of manufacturer's PROMs that will operate in the
MRV11-AAis givenin Table 17-1.

405

Chapter17 — ROM Memories
MRV11-AA

Table 17-1 MRV11-AA PROM Types

Manufacturer 512 by 4-Bit 256 by 4-Bit
or Source PROMs PROMs
Digital MRV11-AC —

Intersil IM5624 IM5623
Signetics 825131 825129
MMI 6306 6301

PROMs used must be tri-state output devices that conform to the
device pinning, data, and addressing described herein.

The user can install PROMs in increments of four each. When using
512 by 4-bit PROMs, memory expansion is in 512-word increments.
When using 256 by 4-bit PROMs, memory expansion is in 256-word
increments. Jumpers on the MRV11-AA can be cut by the user to
prevent an incorrect BRPLY L signal from being generated when un-
populated locations are addressed on the module.

The following information will enable the user to prepare the MRV11-
AA for use (jumper-selected addressing and PROM type selection)
and includes information required for correct PROM and ROM pro-
gramming.

PROM Type Jumpers

The module is supplied with jumpers W8, W9, W10 installed for use
with 512 by 4-bit PROMs. When using 256 by 4-bit PROMS, W8, W9,
and W10 must be cut or removed and jumpers W11 and W12 installed;
in addition, either W13 (lower 2K) or W14 (upper 2K) must be installed
to properly address the lower 2K or upper 2K address segment within
the 4K memory bank. Jumpers are located as shown in Figure 17-1.

Address and Reply Jumpers

The user must consider both 4-bank address selection and BRPLY L
signal generation when configuring a module for use. PROMs are
arranged in eight physical rows (CE0-CE7) of four each. Entire rows
can be unpopulated, allowing those addressed locations to be used by
read/write memory contained on another module. When this is done,
the BRPLY L jumpers (W0-W7) associated with the unused rows
should be cut or removed to prevent the MRV11-AA from returning a
BRPLY L signal when those rows are addressed. A listing of octal
addresses (within a 4K bank), physical rows, and BRPLY L jumpers is
provided in Table 17-2; use data listed for the PROM type being used.

406

Chapter 17 — ROM Memories .
P MRV11-AA

WMH

o o o o

-
e] e e e
C e e e
:
c

TTTHTT
_J__L__J

| B R

Je__Je | ces

I I I] ce2
(S I S - | e | e
e | © Je ___Je¢ Jexo

nnnnnnnn

mmmmmm

W15 eummmmm
W16 ammwm—"

&
Ed

M 7942 ETCH REV. D

Figure 17-1 MRV11-AA Jumper Locations

407

Chapter 17 — ROM Memories
P MRV11-AA

Table 17-2 PROM/ROM Addressing Data

4K Bank Selection
Word/Byte
W15* wW16* W17+ Bank Address Range
| | | 0 0-17777
| 1 R 1 20000-37777
I R | 2 40000-57777
| R R 3 60000-77777
R I 1 4 100000-117777
R | R 5 120000-137777
R R | 6 140000-157777
R R R 7 160000-177777
* R = jumper removed, | = jumper installed
Table 17-2b 512 by 4-Bit PROM Addressing Within a Bank
Reply Physical Prom Octal
Jumper* Row Address Range
WO CEO 0-1777
W1 CE1 2000-3777
w2 CE2 4000-5777
W3 CE3 6000-7777
w4 CE4 10000-11777
W5 CE5 12000-13777
W6 CE6 14000-15777
W7 CE7 16000-17777

* Jumper installed = BRPLY L enabled; jumper removed = BRPLY L not
enabled.
NOTE
Jumpers W8, W9, W10 are installed; W11, W12,
W13, W14 are removed.

408

Chapter 17 — ROM Memories
P MRV1i1-AA

Table 17-2c 256 by 4-Bit PROM addressing Within Lower 2K

Portion of Bank
Reply Physical PROM Octal
Jumper Row Address Range
WO CEO 0-777
w4 CE4 1000-1777
W1 CE1 2000-2777
W5 CE5 3000-3777
w2 CE2 4000-4777
W6 CE6 5000-5777
w3 CE3 6000-6777
w7 CE7 7000-7777

NOTE

Jumpers W11, W12, W13 are installed; W8, W9,
W10, W14 are removed.

Table 17-2d 256 by 4-Bit PROM Addressing Within Upper 2K

Portion of Bank
Reply Physical PROM Octal
Jumper Row Address Range
WO CEO 10000-10777
W4 CE4 11000-11777
w1 CE1 12000-12777
W5 CE5 13000-13777
w2 CE2 14000-14777
W6 CE6 15000-15777
W3 CE3 16000-16777
W7 CE7 17000-17777
NOTE

Jumpers W11, W12, W14 are installed; W8, W9,
W10, W13 are removed.

409

Chapter 177 — ROM Memories
P MRV11-AA

The 4K bank in which the MRV11-AA resides is programmed by con-
necting bank address jumpers W15-W17, as appropriate. The module
is supplied with all bank address jumpers installed (bank 0). Jumpers
installed represent logical Os; jumpers not installed represent logical
1s. Figure 17-2 illustrates addressing words used with the MRV11-AA.
Refer to the addressing format for the type of PROMs or ROMs being
used.

15 o

512X 4 T T T T T

PROM/ROM l ‘ I

CHIPS | | | | | |
L i i I L H i H S S S B i

)) - S~ T
l ‘ | 4096 - LOCATION ADDRESS BYTE
© o o~ (W8 - W10 INSTALLED; W11 - W14 REMOVED) POINTER
o £ 3
4K ADDRESS
SPACE JUMPERS
15 0
2564 1 l l —l
PROM/ ROM
CHIPS | [[| | L [
«
| 2048- LOCATION ADDRESS BYTE
° (W11 AND W12 INSTALLED; W8-WIO REMOVED) POINTER

WI5——
WI7 —

> HIGH/LOW 2K SELECT

W13 INSTALLED:

4K ADDRESS LOW 2K (0-7777)
Y
SPACE JUMPERS W14 INSTALLED:

HIGH 2K (1000-17777)

Figure 17-2 MRV11-AA Address Word Formats

PROM Integrated Circuits

The actual procedure for loading data into PROMs (or writing specifi-
cations for masked ROMs) will vary, depending on the manufacturer.
Those procedures are beyond the scope of this Handbook. (See
PROM/ROM manufacturers’ data sheets.) However, the user must be
aware of the PROM pins versus LSI-11 data bit relationship, and the
pins versus memory address bits. Address and data pins are de-
scribed below.

As previously discussed, PROMs are arranged in rows of four each.
Each PROM handles four bits at a time. Hence, four PROMs are used
to provide the 16-bit data word formats for each row. Rows are desig-
nated by their respective chip enable (CE0-CE?7) signals. Depending
on the PROM type used, a row of four PROMSs contains 512 or 256 16-
bit read-only memory locations. The actual PROM within a row is
designated by one additional digit (0, 1, 2, or 3). Hence, the data pins
are assigned to LSI-11 Bus bits as listed in Table 17-3.

410

Chapter 17 — ROM Memories
MRV11-AA

Table 17-3 Data Pin Assignments

PROMPin PROMO PROM 1 PROM 2 PROM3

9 BDAL3 BDAL7 BDAL11 BDAL15
10 BDAL2 BDAL6 BDAL10 BDAL14
1 BDAL1 BDALS BDALS BDAL13

12 BDALO BDAL4 BDALS8 BDAL12

PROM addressing is shown in Figure 17-3. All PROMs used on the
MRV11-AA must conform to this information. Observe that the only
difference between 512 by 4-bit and 256 by 4-bit PROM pins is pin 14.
The 512 by 4-bit part uses this pin for address bit DAL9; the 256 by 4-
bit part uses this pin for a chip enable when both bank address and 2K
segment address are true. Also note that bus address bits do not
follow in sequence with PROM manufacturers’ address designations.
The pinning arrangement shown allows for the use of commonly avail-
able PROMs and ROMs and optimum (compact) MRV11-AA module
layout.

LSI-11 CHIP PIN SIGNIFICANCE

—

DAL7 L — Ag [1] 16] Ve
DALE6 L — Ag [2] 15] A7 DALS L
512 x 4-BIT PART 256 x4-BIT PART
DALS L — A 14] Agor CE
e [14] Agor DALS L LOWER/ UPPER
DAL4 L — A3 [4] [13] cE CHIP ENABLE 2K SEGMENT
(ROW) (WITHIN BANK)
DALI L — A (5] [12] o CHIP ENABLE
DAL2 L — A 1] o
+ & 1] o ——DATA PINS
DAL3 L — A, [10] 03
GND [8] [9] 04
TOP VIEW
NOTE:
Designations immediately adjacent topins are typical
i ions used by chip fi s —not LSI-11
ions. LSI-11 ignations for correct

addressing are located away from the chip. Observe that
these signals are low — active, they are double - inverted
bus signals (low = logical “1").

Figure 17-3 PROM/ROM Pin Addressing
411

Chapter 17 — ROM Memories
MRV11-AA

Programming PROMs

See the PROMs chapter, Chapter 18, for information about program-
ming PROMs. Do not attempt to program PROMs until you are
thoroughly familiar with the information contained in that chapter.

DESCRIPTION

Major functions contained on the MRV11-AA module are shown in
Figure 17-4. ROM data stored on the module can be addressed and
read by the processor or other DMA devices by executing a DATI bus
cycle. Data/address lines BDALO-15 L and three bus interface control
signals (BSYNC L, BDIN L, and BRPLY L) constitute all interface sig-
nals required for accessing the read-only memory. BREF L inhibits
BRPLY L and BDAL bus drivers during memory refresh operations.

Addressing

A master device can address any 16-bit word in the 4K module by
placing appropriate address bits on BDAL1-15 L during the address-
ing portion of the DATI cycle. BDALO is not used on the MRV11-AA
since this address bit functions only as a byte pointer during DATOB
and the write portion of DATIOB bus cycles. Bus receivers route
DAL13-15 H to the bank select decoder and DAL1-12 H to the address
storage latch. Bank selection occurs when the 4K address encoded on
DAL13-15 H is equal to the user-configured value selected by jumpers
W17-W15. The resulting bank select (BS H) and address bits DAL 13-
15 H are then stored in the address storage latch on the leading edge
of BSYNC L. Stored address bits SA1-8 H are buffered to produce
BA1-9 L, which are applied to all ROM/PROM chips on the module.

When 512 by 4-bit chips are used, SA9 H is routed via jumper W10 to a
buffer, producing the inverted BA9 L address bit for all chips (pin 14).
However, when 256 by 4-bit chips are used, W10 is removed and W12
is connected, forcing a low (chip enable) signal to be applied to all
chips (pin 14). Note that 256 by 4-bit chips do not receive address bit
9.

Memory chip sockets are arranged in eight physical rows of four sock-
ets each. The memory is expanded by installing all four chips in each
desired row. Four chips provide the full 16-bit word storage for LSI-11
instructions and data. Only one row is enabled by a chip enable (CE)
signal, produced by chip row select logic and chip type jumpers.

When 512 by 4-bit chips are used, jumpers W8, W9, and W10 are
installed. The chip row select octal decoder receives stored address
bits SA10, SA11, and SA12 on its A, B, and C inputs, respectively, as
shown in Figure 17-5. Bank select stored (SBS H) is gated to produce
a low SEL L enable signal, which is applied to the D input of the

412

Chapter 17 — ROM Memories
MRV11-AA

CHIP TYPE
SELECT JUMPERS
3

soaL 15 L B2 ——d DALISH sos w :
eoat 10 L B2 —q oR ﬂ_1_.,wu

T BANK
eoaL 13 L B} 22 ——4 DAL ter [oSH wo Ush9/12 M

wir
8DAL 12 L DECODER sa12 L w3
we ADDRESS o e o—f—| e
BOAL 11 L wi1s STORAGE | sAtiH ROW
or T LaTCH ’*—”ﬁ 8 secect
e B ! ot — e

BN2 BANK SELECT
80AL 9 L[B}——a sus JUMPERS SA9H Wi | $BS H
o
80AL EL MA':ERS DALY - 12K SA1-8H |OP SELH T
8L RECEIVERS >
8DAL 7L _ﬂ
i
80aL 6 L [B}————q SYNC H |
soaL 51 [E-22 g JSA9H
SYNC L
M ADDRESS
soaL 4t [B}-2M2 o AooRESS]
BoAL 3
Bt
BOAL 2L

READ DATA @-15H
avz — .\ oo
[T [E—

8oL 0L [B} s

SEL L

3V

0O RPLY H (THRU)

B1aKk] L [B1AM42
s1ako L B2

BREF L 9
ar2

BrReLY L [6]
somer L [B}AR2
sz READ DATA 0-3
80MG0 L [g] o 3 _READ DATA 4-7
sv D AA2,BA2 +5vV DO RPLY H READ DATA 8-11
READ DATA12-15

AC2,AT1,BC2,BT1
G""D“—_—j,
o 1 2 3 4 5 6 7

-

PHYSICAL MEMORY ROWS

Figure 17-4 MRV11-AA Logic Block Diagram

decoder. (The decoder is actually a decimal decoder; whenever a high
signal is applied to its D input, outputs 0-7 are inhibited.) One decoder
output goes low, enabling the appropriate physical row addressed by
bits SA10-12 L.

When 256 by 4-bit chips are used, jumper W8, W9, and W10 are
removed and jumpers W11, W12, and either W13 or W14 are installed,
as shown in Figure 17-6. SA10 and SA11 are applied to octal decoder
A and B inputs, respectively. Bit SA9, which is not used to address the
256 by 4-bit chips directly, is then applied to input C of the octal
decoder.

SA12 H and SA12 L are available for jumper selection of the desired
2K segment within the 4K bank. W13, when installed, selects the lower
2K; W14 selects the upper 2K. When the selected segment is ad-
dressed, OP SEL goes high. This signai is gated with SBS H to pro-
duce the low (active) octal decoder enable signal.

413

Chapter 17 — ROM Memories

MRV11-AA
BA1-8L
SA1-8H
BUFFERS
w10 R T
sA9H JSA9 H BA9 L (ADDRESS BIT) l
CEOL
)
A P—cET L
SA1OH CE;L T
w A9/12 H PHYSICAL
SA12 H 3 c (égcT)glER o CE4L 3 MEMORY
W D ROWS
+3v 80P SEL K SEL L o g:" 5
0 o L 3
SBS H b CETL >

Figure 17-5 512 by 4-Bit Chip-Jumper Configuration

BA1-8L
SA1-8 H
e BUFFERS
HIP_ENA
v JSA9H BA9 L (CHIP ENABLE)
SA9 H —— ceoL .
SA10 H A CEfL 7
w1 ‘ PHYSICAL
SA9/12H ¢ ocTaL o 3] \PHvsica
sat2 H— %13 oP SEL H DECODER P~ CEgs5 L ; ROWS
saz L — %13 SEL L g::t 2
() b CE7L |
SBSH 7

WI3 AND WI4 ARE 2K
SEGMENT SELECT JUMPERS
(ONE INSTALLED)

W13 = LOWER 2K

W14 = UPPER 2K

Figure 17-6 256 by 4-Bit Chip-Jumper Configuration

Caution must be used when assigning memory to bank 7 to avoid
conflicts with preassigned device addresses. This 28-32K address
space is normally used for peripheral device addresses. Certain
DIGITAL-supplied system programs and operating systems determine
the presence or absence of some of these devices by accessing the
assigned locations; if a response is obtained (i.e., no bus time-out
occurs), the program assumes that the device is present. Thus, having
a memory respond to any of these preassigned locations will give the
erroneous indication that the corresponding device is installed in the
system.

414

Chapter 17 — ROM Memories
P MRV11-AA

Data Read Operation

Once the ROM/PROM chip sockets are addressed, the data can be
read by the bus master device. Data are available within 120 ns after
BSYNC L is received. One active CEO-7 L signal produces the active
DO RPLY H signal, which enables reply and BDAL bus driver gating.
Active DO RPLY H and SYNC H signals are gated, producing the
REPLIED L signal, which enables one of the two bus driver enable
inputs. The remaining enable input is MDIN L. The bus master device
asserts BDIN L to request the data. DIN H is ANDed with the passive
(high) SREF L signal, producing MDIN L, and read data are enabled
onto BDALO-15 L. Active MDIN L, SYNC L, and DO RPLY H signals
also enable the BRPLY L bus driver, producing the required reponse
to BDIN L.

When the system is in a memory refresh operation, the MRV11-AA
must not respond to the BSYNC/BDIN refresh bus transactions. BREF
L is asserted during the addressing portion of the bus cycle and the
refresh latch stores REF H on the leading edge of SYNC L. SREF L
goes low and inhibits the MDIN L signal. Hence, BDAL and BRPLY L
bus drivers are not enabled.

I/0 Timing and Bus Restrictions

Addressed memory read data are available within 120 ns after the
BSYNC L signal is received by the MRV11-AA. Logic on the module
responds to DATI bus cycles only. DATO or DATOB bus cycles will
result in a bus time-out error. Logic functions-on the module are not
affected by the bus initialize (BINIT L) signal.

415

Chapter 17 — ROM Memories

MRV1i1-BA

MRV11-BA LSI-11 UV PROM/RAM

The MRV11-BA is a memory option that contains eight sockets in
which MRV11-BC ultraviolet (UV), erasable, programmable read-only
memory (PROM) integrated circuits can be installed.

The MRV11-BA also contains 256 by 16-bit static random access
memory (RAM) that can be used as a “scratchpad” and “stack” by
system software. The RAM contents are volatile; that is, when operat-
ing power is removed, memory data are lost. PROM contents are not
volatile; programs and data stored in PROMs are available when oper-
ating power is restored.

Each MRV11-BA PROM option includes one 1024 (1K) by 8-bit unpro-
grammed UV PROM integrated circuit (Intel 2708 PROM). UV PROMs
can be erased by exposure to high-intensity ultraviolet light and then
reprogrammed with new programs and data. A clear quartz window
over the PROM chip allows the ultraviolet light to be directed onto the
chip. Optional QJV11 ROM/PROM formatter software is available for
conversion of absolute loader format programs into listings and paper
tapes in PROM content format.

FEATURES — BENEFITS
e 256K-word static on-board RAM— provides programs with

read/write memory.

e Chip sockets — provide for installation of up to 4K words (8 KB) of
PROM in 1K increments.

® Address jumpers — allow customized PROM and RAM memory
configurations.

e Charge pump circuit — only the normal +5 Vdc and +12 Vdc oper-
ating voltages available from the LSI-11 Bus are required.

SPECIFICATIONS

Identification M8021

Size Double

Power
LSI-11 UV PROM less +5V +5% at 0.58 A
PROM integrated circuits +12V +3% at 0.34 A
With eight 1K X 8 +5V +5% at 0.62 A
PROM integrated circuits +12V +3% at0.5 A

416

Chapter 177 — ROM Memories

MRV11-BA
Bus Loads
AC 2.8
DC 1.0

CONFIGURATION

Jumper locations are included on the MRV11-BA module as shown in
Figure 17-7. Jumpers allow independent selection of system memory
starting addresses for the RAM and PROM memory functions. In addi-
tion, four special jumper locations (W10, W18, W21, and W22) are
provided.

W10, when installed, disables the 256 RAM portion of the MRV11-BA
when the RAM function is not desired. W18, when installed, enables
PROM and/or RAM operation in bank 7 (the 4K memory addresses
ranging from 160000 through 177777). Bank 7, by PDP-11 convention,
is normally reserved for peripheral devices, and system memory
would normally be configured for addresses ranging from 0 through
157777. The MRV11-BA is factory-configured with W10 removed and
W18 installed.

W21 and W22 control the MRV11-BA response to attempts to write in
PROM locations. The module is factory-configured with W21 installed
and W22 removed. When configured in this manner, any attempt to
write in the PROM will result in a bus time-out error.

W21 can be removed and W22 can be installed to enable “pseudo-
write” operations in PROM locations. Note that this jumper configura-
tion only prevents bus time-out errors; it is not possible to actually
write into (output data to) PROM locations. This jumper configuration
is required to support the following instructions:

Mnemonic Octal Code Instruction

MTPS 1064SS Move byte to PS

MUL 070RSS Multiply

DIV 071RSS Divide

ASH 072RSS Shift arithmetically

ASHC 073RSS Arithmetic shift combined

All of the instructions listed require DATIO (read-modify-write) bus
cycles. If the source operand (SS) refers to a PROM location, the
MRV11-BA must be configured with W21 removed and W22 installed
in order to avoid bus time-out errors. See the PROMs chapter for
additional details.

Address selection jumpers allow PROM and RAM addressing through
a 128K address range. Bank 7 is the highest 4K portion of the address
range. RAM addresses can reside within a populated PROM bank

417

Chapter 17 — ROM Memories

MRV11-BA

1 1 11 1 1
(o] o [e]
1ST 1K 2ND 1K 3RD 1K 4TH 1K
PROMS PROMS PROMS PROMS
E29 E19 E14 €9 «— HIGH BYTE PROMS
€28 E18 E13 £8 «— LOW BYTE PROMS
e w22
oo W20 (1) = Wi
w 1 PROM ADDRESS w16 (1)
oo W19 (1) f RAM ADDRESS o WI5
o Jo W18 BANK 7 ENABLE DD wi4
w13
PROM ENABLE oo WiI2
oo Wi
RAM DISABLE e __Je¢ WIO(1)
oo W9
oo W8
oo W7(1)
RAM ADDRESS { o{_J¢ W6
oo W5
oTJe W4
oTe W3
oo W2
PROM ADDRESS {D wi
oTJe w21

NOTE:

(1) = JUMPERS NOT FACTORY INSTALLED.

Figure 17-7 MRV11-BA Jumper and Socket Locations

418

Chapter 17 — ROM Memories
MRV11-BA

address. When this is done, RAM data will be accessed properly and
PROM contents are not enabled. Detailed instructions for configuring
address jumpers are provided below.

NOTE
System memory must include memory location
000004. This location may be either read-only or
read-write memory. The processor executes a dum-
my read bus cycle during the power-up sequence
using this address and requires a reply to complete
the bus cycle. The actual memory contents read
from the location are not used and can be any value.

RAM Address Jumpers

RAM addresses can be located in any 256-word portion of system
memory, starting at 256-word segment boundaries. The relationship -
between bus address bits and jumpers 19, 20, and 3 through 9 is
shown in Figure 17-8. Configure the RAM starting address by remov-
ing and/or installing the appropriate jumpers.

BITS —b 4 ' 10 09 08 07

e] "u [TITIITTTITTT]
T] '

JUMPER —& W3 wa W w6 w1s w.

141
|

-

DECODED BY RAM INTEGRATED
CIRCUITS
(256, (37751 WORDS)

3

BYTE POINTER
(DATOB BUS CYCLES ONLY)
0=WRITE LOWBYTE (0:7)

1=WRITE HIGH
DECODED BY ADDRESSING
AND CONTROL LOGIC

FACTORY
CONFIGURATION

-
a2 stuEet {._]

NOTES:

1. Factory configured address range = 20000 — 20377
2. 1 = Jumper instalied; R = Jumper removed
3. W10 removed = RAM ENABLE

W10 installed = RAM DISABLE

Figure 17-8 MRV11-BA RAM Addressing

R

<—x<—§o-—~
<—_<—;-—1

!
l
j

- 17 @¢—

!
|

{

aK AND 1K 256 WORD
SELECT SELECT
=0 =1

R=1 R=0

PROM Address Jumpers

PROM addresses can be located in any 4K bank of system memory.
The relationship between bus address bits, PROM size, and jumpers
is shown in Figure 17-9. Configure the PROM starting address by
removing and/or installing the appropriate jumpers. Remove or install
PROM size jumpers W11 through W14 as shown; these jumpers must
be removed to conform to PROM size (in increments of 1K) to prevent
erroneous addressing of unpopulated sockets. The MRV11-BA is fac-
tory-configured with W11 through W14 installed.

419

Chapter 177 — ROM Memories
MRV11-BA

3
°
8
3
g
2
°
°
8

BITS — 17 16 15 14 13 122 1

1 09 08
ADDRESS TreT
FORMAT ‘ '
v
DECODED BY PROM

JUMPER — W1 W2 WI5 W17 W16 INTEGRATED CIRCUITS

l l l l PROM SIZE (1K WITHIN 4K BANK)

DECODED BY ADDRESSING AND

FACTORY 1
—> | ' | R CONTROL LOGIC. 1K SEGMENTS
CONFIGURATION 1 ARE ENABLED VIA W11W14.

32KSELECY <—] l l PROM |JUMPER CONFIGURATION
SIZE w1t [wiz [wiz | wia

4K SE LECT
o R R R R

uo 1K

3K
aK

R R
2K R 1
R 1
' 1

NOTES

Figure 17-9 MRV11-BA PROM Addressing

MRV11-BC Handling Precautions

MRV11-BC integrated circuit PROMs are metal oxide semiconductor
(MOS) devices that can be damaged through improper handling. MOS
devices can be damaged easily by static discharges because of their
high input/output impedance. Safe installation requires that the con-
ductive foam in which the chip is shipped be brought into physical and
electrical contact with the MRV11-BA module or PROM programming
equipment prior to removing the PROM from the foam. Unnecessary
handling of PROMs should be avoided once they are removed from
the foam. When programmed and installed in MRV11-BA sockets,
there is no danger of static discharge damaging the PROMs.

Each MRV11-BC PROM is implemented in a 24-pin integrated circuit
package. Mechanical damage to the PROMs can occur if they are
carelessly handled. When installing PROMSs, ensure that all pins are
properly started into the socket before pressing the PROM pins all the
way into the socket.

An instruction sheet illustrating proper handling procedures is includ-
ed with each purchase of MRV11-BC PROMs. Refer to that sheet for
PROM installation and removal instructions.

Installing the MRV11-BA Module

The MRV11-BA module can be installed in any LSI-11 Bus. It requires
only one option location and is not dependent on position (device
priority) along the bus. Hence the module can be installed in any
option location in single and multiple backplane systems. The module

requires no special power; all operating power -(+5V-and +12V) is- - -

supplied by the normal power present on the backplane. The MRV11-

420

Chapter 17 — ROM Memories
P MRV11-BA

Four chip enable signals [CE<0:3> L] select the addressed pair of
1024-location by 8-bit PROMs. Only one chip enable signal will go
active when the PROM array is addressed, selecting a 1K portion of
the 4K array. Addressing within the selected 1K portion is controlied
by buffered address signals BA<1:10> H. Addressing and control
logic functions control the chip enable and buffered address signals,
and place the PROM output data DAL<0:15> on the LSI-11 Bus where
it can be read by the bus master. When not addressed by a chip
enable signal, the PROM chip outputs go to a high-impedance state,
effectively disconnecting the PROM array from the DAL signal lines.

HIGH BYTE
8a (1:10) 8 —
K x8 1K x8 K x8 1K x8
PROM PROM PROM PROM — DAL (8:15) H
E29 €19 €14 €9
CEoL
CE1 L
- — 4 —] —— | — — EE——
CE2L
CE3L J)
1K x8 K x8 1K x8 1K x8
PROM PROM PROM PROM — DAL (0:D) H
€28 €18 €13 €8
LOW BYTE

Figure 17-11 PROM Array

RAM Array

Four factory-installed 256-location by 4-bit RAM integrated circuits
constitute the RAM array, as shown in Figure 17-12. SEL2 L is asserted
low by the addressing and control logic whenever the RAM array is
addressed. When the RAM array is not addressed, SEL2 L goes high
and the RAM input/output data pins [DAL<0:15> H] go to a high-
impedance state, effectively disconnecting the array from the DAL
lines.

422

Chapter 17 — ROM Memories
MRV11-BA

DAL (12:15) H -

256 x4
RAM

OUTHB L

il

256 x 4
Ram

DAL ‘811 ' H

DAL (47’ H

256 x 4
RAM

ouTLe L

256 x4
RAM

DAL (0:3) H =
8a (1:8) 4 —
SEL2L —tof

Figure 17-12 RAM Array

When addressed, OUT HB L and OUT LB L select a read or write
operation. When a read operation (DATI) is in progress, both OUT
signals are high (write inhibit). During a 16-bit (word) write (DATO)
operation, both signals are low. During an 8-bit (byte) write (DATOB)
operation, only the OUT signal will go low, selecting the addressed
byte.

Addressing and Control Logic

Addressing and control logic functions are shown in Figure 17-13.
Separate address decoding logic is included for PROM and RAM ar-
rays. A common PROM/ROM address latch stores buffered address
bits BA<1:12> H for both memory functions. Protocol logic contained
in one integrated circuit (type DC004) controls the MRV11-BA inter-
face according to a strict LSI-11 Bus protocol.

423

Chapter 177 — ROM Memories

A0 (161970 1
¢) of &S
a0 (16170 L o
X
8y
° ADDRESS
AAM 32K ADDRESS
JUMPERS
w3, we
= v

SELECT

DAL (1:12) 1 ——

SYNC L —ud

MRV11-BA

PROM/RAM
ADDRESS
LATCH

—e8aliiz)n

DECODER
SYNCH

RAM 256 ADDRESS

JUMPERS Al

DAL (11:15) H —o]
W1, W20 RAM 1K ADDRESS
1 JUMPERS
8DAL (9:10) L —af
W5 - wo

sank enat L —| X

onton —a
wourt oours
NP
| won o

™St gwrer i —e

(ENB H)

t8oAL2 L
(80ALO L)

18D0UT L1

1BDIN L)
BwIBT L

BSYNC L

PROTOCOL
LoGic
(ocooa

©ouT B L

©UTHA

b & sRrLYL

SELG L

Esuu

XMIT H

—— T T

f———————— out 8t

RSYNC | —
(@0ALY L
SYNCH sy

—w

-sv < wee
BANK BRPLY {RXCX) (INWD L) p—r———————————— REC H
oELAY
Bas7 L sus EnBLL
xcvas
80AL (0:15) L DAL(018) 1 =
REC H * 7
EnaBLE Wis
XMTH
= oM
B0AL (13:15) L enasLe
ax proM JUMPERS
ADDRESS wia
BANK ENBL L ——81 ¢\ ect MATCH 4K H N\ MATCH 4K L o
PROM 4K ADDRESS | DECODER L W13
JUMPERS (PIO BUS.
XCvR) A0 (1617 W —of SELECT w2 PROMS H
wis-wi7 sv PROM 32K DECODER
= * ADDRESS
= A W
iy AL (11:12) 1 —o
wiwz oecooen
PROM 32K ceoL
= ADDRESS PROM 1k D
SELECT ADDRESS CETL
ompens 8112y i—ef Serect
oecooen Jo—e ce2t
CE3L

Figure 17-13 MRV11-BA Addressing and Control Logic

The addressing and control logic also includes bus transceivers that
receive and transmit address and data bits to and from the LSI-11
Bus.

REC H, when high, inverts and gates BDAL<0:15> L bits onto the
DAL<0:15> H lines. These lines form an internal 16-bit bidirectional
data/address bus for the MRV11-BA module. When XMIT H is high
and REC H is low, inverted DA<0:15> H bits are placed on BDAL<O0:
15> L.

The PROM address can be configured via jumpers W15-W17 to reside
on any 4K bank of system memory. PROM 32K address select decod-
er and jumpers W1 and W2 permit addressing in 128K memory sys-
tems.

When a bus master device places a PROM address on the LSI-11 Bus,
MATCH 4K H goes high; this signal is inverted and applied to the

424

Chapter 177 — ROM Memories
MRV11-BA

PROM select decoder, enabling further address selection. The state of
DAL<11:12> H determines which PROM select decoder output will go
active (low). Jumpers W11 through W14 apply the active signal to the
PROM S H OR gate. Only one signal will go active during a PROM read
sequence, indicating the addressed 1K segment within the 4K bank.
The jumpers can be removed to disable PROM S H when PROM
sockets do not contain PROMs. PROM S H is ORed with RAM S H,
producing ENB H. When active, ENB H indicates a valid address is
present, enabling protocol logic operation. During the addressing
portion of the bus cycle, BSYNC L goes active, latching the buffered
address bits BA<1:12> H. BA<1:12> H are applied to the PROM 1K
address select decoder, producing one active chip enable signal (CEO
L through CE2 L) that enables the appropriate pair of 1K X 8 PROM
integrated circuits for the duration of the PROM read sequence.
BA<1:10> H select the addressed location within the selected pair of
1K PROMs.

RAM addressing is accomplished by first decoding the active 32K
portion of memory configured via W3 and W4, and the 256-word por-
tion within a 1K segment configured via W19 and W20. When a bus
master places an address on the bus that is within the configured 32K
and 256-word address space, MATCH 256 H goes active (high), en-
abling the RAM 1K address select decoder. On the leading edge of
SYNC H, the RAM 1K address select decoder latches the “match”
states of MATCH 256 H, the address space configured via jumpers
W5-W9, and 1K address bits on DAL<11:15> H. If the address is
within the configured range, RAM S H goes active (high), producing
active ENB H and RAM S H (BDAL2 L) input signals for protocol logic
operations. Word addressing within the 256-word address space is
controlled by buffered address bits BA<1:8> H. In addition, during a
write byte operation (DATOB), the protocol logic produces one active
(low) OUT HB L or OUT LB L signal that selects the appropriate RAM
integrated circuit to write (store) data; during a word write operation
(DATO), both signals go active, enabling both RAM integrated circuits
to write data. If RAM operation is not desired, RAM disable jumper
W10 can be installed. When installed, W10 prevents MATCH 256 H
from going active and RAM addressing cannot occur.

Bank 7 addressing is normally reserved for devices other than system
memory. By PDP-11 convention, the upper 4K address space contains .
peripheral device addresses that are compatible with system hard- -
ware and software options. W18 is factory-installed and BANK ENBL L
remains active, enabling all bank addresses, including bank 7. With
bank 7 enable jumper W18 removed, an active BBS7 L (bank 7) bus
signal causes BANK ENBL L to go high; at all other times (bank ad-

425

Chapter 17 — ROM Memories
MRV11-BA

dress other than bank 7), this signal remains low, enabling RAM and
PROM address decoders.

PROM Read Sequence The PROM read sequence is initiated when
the LSI-11 Bus master device places a valid address on the BDAL<O0:
15> H lines (Figure 17-14). A bank address falling within the user-
configured 4K address space enables an active (high) MATCH 4K H
signal. Similarly, the PROM 32K address select decoder enables
MATCH 4K H when the LSI-11 Bus address is within the configured
32K space. When both conditions are true, MATCH 4K H goes high.
This signal is inverted, producing MATCH 4K L, enabling the PROM
select decoder. The decoder decodes DAL<11:12> H address bits
and produces one active (low) output that represents a 1K segment of
the addressed 4K bank. The active signal is routed via an appropriate
jumper (W11 through W14) to the PROM S H OR gate. Thus, the
resulting active PROM S H signal signifies that a populated portion of
PROM is being addressed.

The active PROM S H is ORed with the passive RAM S H signal,
producting an active ENB H signal input to the protocol logic. The
leading edge of BSYNC L then stores buffered address bits BA<1:12>
H and causes protocol logic generation of an active (low) SEL6 L
signal. SEL6 L produces an active XMIT H signal that enables the bus
drivers in the bus transceivers; however, data are not actually placed
on the bus until REC H goes low. SEL6 L also enables the PROM 1K
address select decoder. Only one decoder chip enable output (CEO
through CE3) goes low, enabling the addressed pair of 1K by 8
PROMSs to place read data on DAL<0:15> H lines. The active chip
enable signal and buffered address bits BA<1:10> H thus complete
the addressing portion of the PROM read sequence.

The bus master then asserts BDIN L to initiate the data portion of the
sequence. The protocol logic responds by negating REC Hand PROM
data are placed on BDAL<0:15> L where they can be read by the bus
master device. After a 600 ns delay from the leading edge of BDIN L,
the protocol logic produces an active BRPLY L signal, indicating that
the MRV11-BA has placed valid data on the bus. The bus master then
reads the data and negates BDIN L. The protocol logic responds by
terminating BRPLY L. Finally, the bus master terminates the bus cycle
by negating BSYNC L. The protocol logic responds by producing an
active (high) REC H signal, inhibiting bus transmitter portions and
enabling bus receiver portions of the bus transceivers, and negating
SEL6 L. The passive SEL6 L signal inhibits PROM chip enable signal
decoding and produces a passive XMIT H signal, and the PROM read
sequence is completed.

426

Chapter 17 — ROM Memories
MRV11-BA

asyneL —I'\} //{\——

BDAL (0:15) L ADDRESS READ DATA

BDIN L

)N)
S a

BA (1120 H BUFFERED ADDRESS

T
A
movsn (] / 1 /o

ENBH

RECH

SEL6 L (‘\

ce (0:3) L

XMITH

Figure 17-14 PROM Read Sequence (DAT!)

PROM Reply to DATIO(B) Bus Cycles The MRV11-BA module is
factory-configured to reply only to DATI (read) cycles when PROM is
addressed. However, in certain applications, the reply to the PROM
“pseudo-write” sequence may be required to prevent bus time-out
errors. The module is factory-configured with W21 installed and W22
removed. This enables the DOUT L signal input to the protocol logic
(Figure 17-15) only when the 256 RAM is addressed (SEL2 is asserted
low). When PROM is addressed, SEL2 L goes high and inhibits DOUT.
Thus, attempting to write in PROM will result in bus time-out, since
DOUT is not received by the protocol logic.

When reply to DOUT is required, W21 is removed and W22 is installed.
Thus, the protocol logic receives DOUT during PROM “pseudo-write”
sequences. Note that no useful function is performed by the protocol
logic other than asserting BRPLY L to complete the bus cycle; thus,
bus time-out errors are prevented.

427

Chapter 177 — ROM Memories
P MRV11-BA

BSYNC L h
BDAL (0:15) L ADDRESS l READ DATA ('I

I

)
BDIN L Z \ \
BRPLY L (/(M

BA (112)H [BUFFERED ADDRESS /

Y M A I
S q/

RECH
SEL2L

s

XMITH

[

Figure 17-15 RAM Read Sequence (DATI)

RAM Read Sequence A- RAM read sequence is initiated when a bus
master device places an address on the LSI-11 Bus (Figure 17-15).
The RAM 32K and 256 (word) address select decoders produce a high
(active) MATCH 256 H signal if the address is within the user-config-
ured 32K and 256 address space. MATCH 256 H enables the RAM 1K
address select decoder. If the bus address bits [BDAL<11:16> L] are
equal to the user-configured 1K address segment, RAM S H goes high
(active), producing an active ENB H signal that enables protocol logic
operation. The bus master then asserts BSYNC L, latching the state of
RAM S H and buffered address bits BA<1:12> H; the protocol logic
responds to BSYNC L by producing an active SEL2 L signal, and the
addressing portion of the sequence is completed.

The active SEL2 L signal is applied to RAM integrated circuit chip
enable inputs, enabling data to be read. Buffered address bits BA<11:
8> H select the addressed word within the 256-word memory array.
SEL2 L also produces an active XMIT H signal, enabling the transmit
function in the bus transceivers; however, data are not placed on the
BDAL<0:15> L bus until REC H goes low.

428

Chapter 17 — ROM Memories
P MRV11-BA

The bus master enters the data portion of the bus cycle by asserting
BDIN L. MRV11-BA protocol logic responds to BDIN L by negating
REC H and asserting BRPLY L 600 ns after the leading edge of BDIN L,
indicating the presence of valid RAM data. The bus master reads the
RAM data and negates BDIN L. MRV11-BA protocol logic then re-
sponds by producing an active REC H signal, removing data from the
bus, and negating BRPLY L. The bus master then responds to the
passive BRPLY L signal by negating BSYNC L, terminating the bus
cycle. The MRV11-BA then responds to the passive BSYNC L signal by
negating RAM S H and SEL2 L signals. The passive RAM S H signal
inhibits ENB H. SEL2 L (high) produces a passive (low) XMIT H signal
and the RAM read sequence is completed.

RAM Write Sequence A RAM write sequence is initiated by the ad
dressing portion of the bus cycle as described for the RAM read se-
quence. However, REC H remains high for the duration of the
sequence (Figure 17-16), enabling the receiver portions of the bus
transceivers. The data portion of the sequence is initiated when the
bus master device places the write data word on BDAL<0:15> L for a
DATO operation, or a data byte on BDAL<O0:7> L (low byte) or
BDAL<8:15> L (high byte). The bus master then asserts BDOUT L,
indicating that valid write data are on the bus. The MRV 11-BA protocol
logic responds to BDOUT L by asserting both OUT HB L and OUT LB L
if BWTBT L is not asserted (high) by the bus master (DATO bus cycle),
or only the OUT HB/LB L signal if BWTBT L is asserted (low). The
logical state of BDALO during the addressing portion of the sequence
determines which OUT signal becomes active. In this manner, BDALO
L serves as a byte pointer. If it was not asserted (high) during the
addressing portion of the sequence, OUT LB L goes active (low), en-
abling writing into the low byte only of the addressed RAM location;
similarly, if BDALO L was asserted (low), OUT HB L goes low, enabling
writing into the high byte only of the addressed RAM location.

The protocol logic also responds to BDOUT L by asserting BRPLY L
600 ns after receiving BDOUT L, indicating that the write operation has
been completed. The bus master responds to BRPLY L by negating
BDOUT L. The protocol logic then responds to the high BDOUT L
signal by negating the OUT HB L and/or OUT LB L signal(s) and
terminating BRPLY L.

Finally, the bus master responds to the passive (high) BRPLY L signal
by negating BSYNC L and terminating the bus cycle. The MRV11-BA
then responds to the passive BSYNC L signal by terminating the RAM
S H, ENB H, and SEL2 L signals and the RAM write sequence is
completed.

429

Chapter 177 — ROM Memories
MRV11-BA

BWTBT L I I H=DATO
L=DATOB
BSYNC L I\

80AL (0:15) L 1 ADDRESS I WRITE DATA]
/

BDOUT L / / /
BRPLY L / /
BA(1:12) H BUFFERED ADDRESS

/
MATCH 256 H F :I / 1
| +
/ /

RAM S H /
g /
ENBH
SEL2L / \‘—
T
RECH \ (BUS RCVRS ENABLED)

Figure 17-16 RAM Write Sequence (DATO or DATOB)

Charge Pump Circuit

The charge pump circuit produces the —5V operating power for the
PROM array integrated circuits. The basic components comprising
the charge pump circuit are shown in Figure 17-17. Input power is
obtained from the +12V present on the LSI-11 Bus. Hence, the
MRV11-BA module does not require external power other than the
usual +5V and +12V present on the backplane.

The oscillator provides the basic rectangular pulse that drives current
switch Q3. When the oscillator turns Q3 on, +12V is applied to L1 for
approximately 25 ms and an increasing current is produced. When the
oscillator turns off, the energy stored in L1 produces a negative volt-
age (at the top of L1 as shown above), charging C41 via diode D3.
Thus, stored energy in L1 is transferred to C41 as a negative voltage.
Successive oscillator pulses cause C41’s voltage to build up to ap-
proximately 10V. At this point, the zener voltage of D2 is exceeded and
Q1 conducts. Q1 then produces a threshold control voltage that re-

430

Chapter 17 — ROM Memories

MRV11-BA
R CURRENT | _ 03 10V (APPROX) sv
+12V ——f SWITCH g 3T L —» -5V
@3 \L REGULATOR
L1 3 cHareing R22 ca
INDUCTOR ’I
b = =
b
OSCILLATOR
THRESHOLD | voLTAGE 02
20 kHz VOLTAGE UMt € 1
OSCILLATOR c | DETECTOR <
1 = orv

Figure 17-17 -5V Charge Pump Circuit (Simplified)

duces the duty cycle of the oscillator drive voitage applied to Q3 (“on”
time is deceased and “off’ time is increased). The feedback circuit
thus produced automatically adjusts the duty cycle of the 20 kHz oscil-
lator to control the energy stored in L1 and maintain C41’s voltage at —
10V under any normal load conditions.

The actual regulated —5V output is produced by a 3-terminal, —5V
regulator. The regulator also contains overcurrent and thermal
overload protection circuits.

431

Chapter 17 — ROM Memories
MRV11-C

MRV11-C ROM MODULE

The MRV11-C is a flexible, high-density ROM module used with the
LSI-11 Bus. The module contains sixteen 24-pin sockets which accept
a variety of user-supplied ROM chips. It will accept masked ROMs,
fusible link PROMs, and ultraviolet erasable PROMs. It accepts sever-
al densities of ROM chips up to and including 4K X 8 chips. Using
these high-density chips gives the module a total capacity of 64 KB.

The contents of the module can be accessed in one of two
ways—either directly or window-mapped. Direct access provides total
random access to all ROM locations on the module. Window-mapping
provides two 2 KB windows in memory address space to access 2 KB
segments of the ROM array. The segments that are viewed through
each window can be varied under program control. A bootstrap capa-
bility allows the top 256 words of any 2K word page to contain a
bootstrap program.

FEATURES — BENEFITS
e 16K, 32K, or 64 KB of ROM — provide flexibility of memory size.

e Choice of EPROM, fusible link PROM,or masked ROM — provides
flexibility of memory function.

® 18-bit addressing — allows the module to be configured in a system
having up to 128K words of address space.

® Window-mapping — allows adjacent addresses to be located in
non-adjacent physical address space.

® Bootstrap capability — no additional board is required to provide a
bootstrap.

SPECIFICATIONS
Identification M8048
Size Double
Power +5Vdc,0.8A
Bus Loads
AC 2.0
DC 1.0
ROM Specifications
Power +5V +£5%
Pins 24 Pin Spacing
Access Time up to 450 ns
Size 1K X 8, 2K X 8, or 4K X 8 bits

432

Chapter 177 — ROM Memories

MRV11-C
Type See accompanying tables for a
partial listing
UV PROMs

Chip Max.

Array Memory
UV PROMs Size Size
Intel 2758 1K X 8 16 KB
Intel 2716 2K X 8 32KB
Intel 2732 4K X 8 64 KB
Mostek MK2716 2K X 8 32 KB
TITMS 2516 2K X 8 32 KB
TI TMS 2532 4K X 8 64 KB

PROMs

Chip Max.

Array Memory
PROM Size Size
Intel 3628 1K X 8 16 KB
Signetics 82S 2708 1K X 8 16 KB
Signetics 82S 181 1K X 8 16 KB
Signetics 82S 191 2K X 8 32KB

CONFIGURATION

The MRV11-C Read-Only Memory (ROM) contains 129 wire-wrap pins
and 16 ROM chip sockets. The user configures module features by
installing jumper wires between the wire-wrap pins. The user can con-
figure the following items:

® Memory size

® Direct addressing mode

® Window mapping mode

® Bootstrap

e Use of multiple MRV11 boards

® ROM chips

® Chip access time

® DATIO bus cycle inhibit

The size of the memory array is determined by the size of the ROM
chips installed. The user provides these chips and inserts them into

433

Chapter 17 — ROM Memories
i MRV11-C

the sockets. All the ROM chips must be the same array size; that is,
either 1K by 8, 2K by 8, or 4K by 8 bits. The pin configuration of the
chips must also be the same. The user can populate the MRV11-C for
any of the three maximum memory sizes: 16 KB, 32 KB, or 64 KB.
Subsets of these sizes can also be chosen as shown in Table 17-4. In
addition, the user can configure the MRV11-C to be part of a system
with more than one MRV11-C module.

Tahle 17-4 Storage Canacity ner Board as a Function of Chip
Array Size and Number of Chips

Number Chip Array Size

of Chips 2758 (Typ.) 2716 (Typ.) 2732 (Typ.)
Installed 1024 X8 2048 x8 4096 %8
2 2Kb 4 Kb 8 Kb

4 4 Kb 8 Kb 16 Kb

6 6 Kb 12Kb 24 Kb

8 8 Kb 16 Kb 32Kb
10 10 Kb 20Kb 40Kb
12 12Kb 24 Kb 48 Kb
14 14 Kb 28 Kb 56 Kb
16 16 Kb 32Kb 64 Kb

The MRV11-C ROM module operates in either the direct addressing
mode or the window mapping mode. In the direct addressing mode,
the user’s program addresses physical memory directly. In the window
mapping mode, the user's program addresses a continuous virtual
address space which the MRV11-C breaks up into 2K segments of
physical address space. The 2K segrments may not be next to each
other in physical memory.

The user can also select the starting address of a bootstrap on the
module (within the bootstrap address region: 17300, to 173776,). The
bootstrap option can be used in either mode or disabled.

The chip access time must be selected to accommodate the chips with
the slowest access time. The user should also inhibit DATIO bus cycles
to prevent attempted writes to read-only memory.

To configure this module, the user should follow the flowchart shown
in Figure 17-18. The physical locations of the pins are detailed in
Figure 17-19. The module is shipped from the factory with no jumper
wires installed.

434

Chapter 17 — ROM Memories
P MRV11-C

WINDOW- MAPPED

DIRECT

MEMORY MEMORY

ARRAY

SIZE
?
16K BYTES

32K BYTES 64K BYTES
{1k x 8) (2K x 8} (4K x 8)

6K BYTES | 32K BYTES 64K BYTES
(1K x 8) {2K x 8) (4K x 8)

[CsR ADDRESS | [T ASSIGN _MEMORY |
l | {_CTARTING ADDRESS |

ASSIGN WINDOW .

|_STARTING ADDRESS | |
Sdailllcati s |
i

- ~.
< BOOTSTRAP T YES

e ? P T
~
O .
~" MEMORY
I — T (\ SIZE S
CHIP ENABLE ?

)
Y

CHIP ACCESS TIME

l 16K BYTES 32K BYTES 64K BYTES

ASSIGN BOOTSTRAP

DATIO BUS CYCLES STARTING ADDRESS

END
5 A

Figure 17-18 Configuration Guide

Direct Addressing Mode

When in direct mode, the MRV 11-C serves as a high-density replace-
ment for the MRV11-AA or MRV11-BA ROM modules. The base ad-
dress of the direct mode ROM area is assignable on any 8 KB bound-
ary from 0 to 248 KB (addresses 000000, to 760000,). When operated
in this mode, the application program executes directly from the
MRV11-C physical memory.

In direct mode, address bits AD11 through AD15 are used to access
data in the ROM. Bits AD14 and AD15 are decoded to enable the
memory chips. Bits AD11 and AD12 are used to determine which
portion of the chip is being accessed. Only address bits AD13, AD14,
and AD15 are used in 64 KB systems, but all five address bits (AD13
through AD17) are used for 256 KB systems. The starting address
must be configured to start on 8 KB boundaries as determined by the
user.

435

Chapter 17 — ROM Memories
P MRV11-C

YK Y E

| 1 [1
. diilglilt]all]
i
1128 A -) ‘) Jgg = , 186
n2zr oA ‘ g7 %% %} 8a
126 X e L) e | 185 .82
| Xtaa XE38 i XE37 Xt 26 | A AL 180
J125 J i) cHip l 1 cub U G | cHip | J83 A AT
n2a- 4y SET O Ser it | osero | SET3 J81 i i/ 478
123 RTRCIYIN B BS v Ul e | 1779 X & J76
T A I | |
n22 Lo Do bbevie v 1 BYTE | ur LR 74
Jnn 4 ! ! 375 L L J72
1120 . L oL e S . - 373 Jn
A
J119 N e e e . i 470
s g ! § I [A 69
T L | S | 166 J6B A AI6T g
Qe N sl ¥EATo e i 164) 182
J115 N crop | CHIP CHIP CHIP 162 ~AA 161
a4 A SETo || oseT SET 2 SET 3 AN
N 160 - A - 159
3 T2 LOW LOW LOW LOW 58 “AA _
2 N BYTE BYTE BYTE BYTE J 57
2 A—t— 56
am . 155 AX—— J54
J1o i 152 N 153
J109 A o bl I 50— AN J51
J108 X 148 ‘\ii~kug
J107 N XE42 XE36 XE30 XE24 146 ———AK—] 447
J106 A CHIP CHIP CHIP CHIP Ja4 — AN s
3105 71" & SET4 SETS SET6 SET 7 J42/’**\ a3
1104 X HIGH HIGH HIGH HIGH A 141
1103 A BYTE BYTE BYTE BYTE 138 AL
J102 10
A X
J35 A 439
101 A L NN Y
J100 J32*i 436
— —
4997 129 A4 134
198 \
XE41 XE35 XE29 XE23 124 JZGXi\ 33
CHIP CHIP CHIP CHIP 123 a3
SET 4 SETS SET 6 SET 7 YA J30
Low Low Low LowW N 428
BYTE BYTE BYTE BYTE 2 ﬁ J21
420~ 125
J‘9/A 116
118 =
A A4
317 A *//“2
Ns-ZA A
97§ ‘3/A A—+—J10
J%\——t 37 N A——u8
95— my 4w
J94 ——2 s A—e
93— X 55—y
el J4—X
A It 13
A— 1
J90 A——J2
A—t—n

Figure 17-19 MRV11-C Wire-wrap Pin Locations

436

Chapter 177 — ROM Memories
MRV11-C

The range of the direct addresses required depends on the amount of
memory installed on the module. The minimum is 2 KB and the maxi-
mum is 64 KB. Once the address space is determined, the starting
address is configured by installing jumper wires. All the jumper wire
configurations for the 8 KB (4K word) boundaries are listed in Table
17-5.

The starting address and the bank of addresses assigned determine
the addressing sequence of the ROM chips. Figure 17-20 shows ex-
amples of 32 KB and 64 KB memories and how the starting address
determines which chip is accessed. The user must insert the ROM
chips according to the starting address if the data is to be accessed in
correct sequential order.

toet
128K8 - i CIREN '

IVOREE (ERERE
120k8 - W — - ——
CHIP SET Y
T = ¢ N R S 8 R N |
CHIP SET 3
nzks 4. - - - - 34 F - - - — =F— 0 1 11 oo
CHIP SET 3
______ — 0 1 (T30 |
CHIP SET
104k8—f - - — - — — _ 32 F— — — — —pF— 0 1 1o 10
CHIP SET 1
______ F— 0 1 o0
CHIP SET O
96KB—4— — — — — — -— — [3U F == Z> = —F— 0 1 1]ooo
CHIP 5E1 7
- = - - — }— 0 1 1 1
CHIP SET 6
88KB—f — — — — — — — 26 — - —— — o1 o] 10
32KB MEMORY &C:\:':H“
K Lo 04 MRV11-C
80Kk8 — BITS
17 1615 14 13 [12
78— — — — — — _ _ b ¥ S
CHIP SET 0
64KB—1— — — — — — — — 20 F - - - - - F— 0 1l0 0 ofo
CHIP SET 7
56KB-—— — — — — — — — 16 - - —— —}F— 0 o1 1 1 {o
CHIP SET 6
akg —— — — — — — — — 14 - —— — — — F— 0 0|1 1 01}0
CHIP SET 5
oB—F+ — — — — — — — 12 - — — — — — }—— 0 0|1 0 1]0
CHIP SET 4
KB —F — — — — — — — 10 - — — — —|—— 0 0f1 0 0}o0
CHIP SET 3
KB —- — — — — — — — 06 - — - — -} o oflo 1 1]o
CHIP SET 2
16K —— — — — — — — — (77 W NS, t—— 0 ojo 1 ofo
CHIP SET |
8KB — 4 — — — — — _— _ 02— — — 0o ojl0 o 1o
64KB MEMORY
oxe 00 MRV11-C

LSI 11 MEMORY

Figure 17-20 Typical MRV11-C Memory Mapping

437

Chapter 177 — ROM Memories
P MRV11-C

Table 17-5 Jumper Wire Configurations for 8 KB Boundaries

Starting Bit17 Bit16 Bit15 Bit14 Bit13
Address Bank 57t060 59to58 61to62 63to64 65to66

0 0
20000 1
40000 2
60000 3
100000 4
5
6
7

120000
140000
160000

DVDVID~™ — — —
oo Js « e « B ¢ Bt
DD TV T D

200000 10
220000 11
240000 12
260000 13
300000 14
320000 15
340000 16
360000 17

VIVIVIVIDIVIDD
DDV~ — T~
DIV T "DV T
DTV T/ DT

400000 20
420000 21
440000 22
460000 23
500000 24
520000 25
540000 26
560000 27

DDVDIVIVDIVDDD
o« s + immiie « B ¢« B
DT D T DT DT

VDVDIDVID~ — — —

600000 30
620000 31
640000 32
660000 33
700000 34
720000 35
740000 36
760000 37

D IVIVDIDIVIODD
DDDIDVDIVTIVD
DDV — — T T
o s s s « B Bl
o s il « Bl ¢ Bais « B

R = Jumper Removed
| = Jumper Installed

438

Chapter 17 — ROM Memories
MRV11-C

For a 64 KB memory the desired starting address is 20000,, at the 8
KB boundary. For this size memory, address bits 13, 14,.and 15 are
decoded to select one of the eight pairs of ROM sockets. Expanding
address 20000, in binary (i.e. 000 010 000 000 000 000) shows that with
this starting address, the first chip set selected is chip set 1.

The starting chip set can be determined similarly for a 32 KB memory.
In this case, address bits 12, 13, and 14 are the chip enable bits, with a
starting address at the 88 KB boundary (address 2600004, or 010 110
000 000 000 000). Chip set 6 is the first set to be accessed. Likewise, a
16 KB memory uses address bit 11, 12, and 13 as the chip select bits.

Tables 17-6, 17-7, and 17-8 respectively summarize the proper jum-
per locations for 16 KB, 32 KB, and 64 KB direct addressing modes.

Table 17-6 16 KB Direct Addressing Jumpers

Function Jumpers Installed
Enable low-byte MUX J70to J71

Disable window mode J6to J7

Enable 16K direct mode J55 to J56
Address bit AD11 J25to J32
Address bit AD12 J28 to J35
Address bit AD13 J31to J38

Table 17-7 32 KB Direct Addressing Jumpers

Function Jumpers Installed
Enable low-byte MUX J70to J71

Disable window mode J6 to J7

Enable 32K direct mode J54 to J55

Chip enable input, address bit AD11 J112to J113
Address bit AD11 J25 to J26
Address bit AD12 J28 to J32
Address bit AD13 J31to J35
Address bit AD14 J34 to J38

439

Chapter 17 — ROM Memories
i MRV11-C

Table 17-8 64 KB Direct Addressing Jumpers

Function Jumpers Installed
Enable low-byte MUX J70to J71

Disable window mode J6 to J7

Enable 64K direct mode J53 to J55

Chip enable input, address bit AD11 J112t0 J113
Chip enable input, address bit AD12 J115t0 J116

Address bit AD11 J25to J26
Address bit AD12 J28 to J29
Address bit AD13 J31to0J32
Address bit AD14 J34 to J35
Address bit AD15 J37 to J38
Window Mapping Mode

When window mapping mode is selected, the entire ROM is not visible
to the LSI-11 address space at any particular point in time. Instead,
any two 2 KB segments of the ROM can be addressed through two
independent windows defined by the system’s address space. The
association of segments of the ROM board with windows is controlled
by a Control and Status Register (CSR).

The window address function uses a comparator to monitor address
bits A16 and A17, and address bits DAL 12 and DAL 15. The user wires
the desired address to the comparator and when the bus selects one
of these addresses, the window function is enabled.

Window Definition — Each MRV11-C board provides a pair of 2 KB
windows. These windows are always contiguous with each other, and
the base address of the window pair may be set to any 4 KB boundary
in the LSI-11 address space from 000000, to 770000,. To maximize
the amount of space left for system RAM, a default window base of
160000, (760000, for LSI-11/23 systems) is suggested.

Each MRV11-C uses one 16-bit CSR located in the system I/0 page to
determine mapping of ROM segments into windows. The default ad-
dress for this CSR is 177000, (777000, in the LSI-11/23 system). The
valid address range for CSRs is 177000, to 177036, (777000, to
7770364 on LSI-11/23s). Figure 17-21 shows the bit assignments for
the MRV11-C control and status register. Table 17-9 lists the control
and status register addresses.

440

Chapter 17 — ROM Memories
MRV11-C

Table 17-9 Control and Status Register Addresses

CSR Bit4 Bit3 Bit2 Bit1
Address J90 to J91 J96t0J97 J94toJ95 J92to J93

177000
177002
177004
177006
177010
177012
177014
177016
177020
177022
177024
177026
177030
177032
177034
177036

-t T T T T T TIIIIIIID

TTTTI3IIIIDIDT T T TIIDID
TTIIIDI T TIIT T T T T DD
TIITIITI T T D TDZD DT D

R = Jumper Removed
| = Jumper Installed

NOTE
Install J67 to J68 to allow the use of bit 15 of the CSR

WINDOW 1 WINDOW 0
bs | 0 0 PAGE # o o o PAGE #

Figure 17-21 MRV11-C Control and Status Register Format

441

Chapter 17 — ROM Memories
i MRV11-C

The CSR contains a 5-bit read/write field for each window. The num-
ber stored in this field (0 to 31,,) selects the desired 2 KB region from
the MRV11-C board to be associated with the window in question.
CSR bits 0 through 4 control the mapping of the low address window,
window 0. The low five bits of the upper byte (bits 8 through 12) control
the mapping of window 1.

The MRV11-C optionally provides a window enable/disable capability.
When this option is selected, bit 15 of the CSR is used to enable or
disable window response under program control. When bit 15 is a 0,
the board will respond to references to the CSR or DATI or DATIO
references to either of the windows. When bit 15 is a 1, only the CSR
will respond. If the enable/disable option is not selected,bit 15 of the
CSR will read-only and will always be 0. The enable/disable bit has no
effect on direct mode addressing or the bootstrap window capability.

The remaining bits in the CSR (bits 5-7 and bits 13-14) are reserved
and must always be zero.

Tables 17-10, 17-11, and 17-12 respectively summarize the proper
jumper connections for 16 KB, 32 KB, and 64 KB window mapping
modes.

Table 17-10 16 KB Window Mode Jumpers

CSR Output Jumpers Installed
Low Byte
CSRbit0 J27 to J32
CSR bit 1 J30to J35
CSRbit2 J33 to J38
High Byte
CSRbit 8 Joto J12
CSRbit9 Ji1to J14
CSR bit 10 J13to J16
Enable low-byte MUX J69 to J71

442

Chapter 17 — ROM Memories
MRV11-C

Table 17-11 32 KB Window Mode Jumpers

CSR Output Jumpers Installed
Low Byte
CSRbit0 J27 to J26
CSRbit 1 J30 to J32
CSRbit 2 J33 to J35
CSRbit3 J36 to J38
High Byte
CSRDbit8 J9to J8
CSRbit9 J11to J12
CSRbit 10 J13toJ14
CSRbit 11 J15t0 J16
Enable low-byte MUX J69to J71
Address bit AD11 J112t0J113

Table 17-12 64 KB Window Mode Jumpers

CSR Output Jumpers Installed
Low Byte
CSRbit0 J27 to J26
CSR bit 1 J30to J29
CSR bit2 J33 to J32
CSRbit3 J36 to J35
CSRbit4 J39 to J38
High Byte
CSRbit8 J9to J8
CSRbit9 J11toJ10
CSRbit 10 J13toJi12
CSRbit 11 J15to J14
CSRbit 12 J17t0 J16
Enable low-byte MUX J69 to J71
Address bit AD11 J112t0J113
Address bit AD12 J115toJ116

Starting Address of Windows — Wire-wrap pins J41 through J52 are
used to configure the starting address of windows. The user selects an
address and installs the jumper wires as directed in Figure 17-22. The
recommended value of the window starting is 160000, (or 760000, for
18-bit systems). This places the window at the bottom of the I/0 page.

443

Chapter 17 — ROM Memories
P MRV11-C

17 1514 12 N 10 9 7 6 4 3 0

lllllqll o] - l;l
1T

-—ne— —
-

R M R 1 1= R = JUMPER REMOVED
‘ ‘ 0= 1= JUMPER INSERTED
t l RANGE : 000000 TO 770000
J49 147 145 143 4 51 SHOWN: 760000

TO 10O 1O 1O TO TO
J50)48)46 44)42)52

Figure 17-22 Selecting Window Starting Address

NOTE

The MRV11-C does not select the I/0 page on the
BBS7 (bank select 7) signal for windows placed in
the 1/0 page. Therefore, the entire address for the
window must be asserted by the processor and de-
coded by the MRV11-C. An 11/23 processor will
only assert an address of 760000, in 18-bit mode
(i.e., when the memory management unit is enabled)
and bank 7 is mapped to the I/0 page.

Bootstrap

The MRV11-C allows the user to install a bootstrap program of up to
512 bytes. The bootstrap starting address is hardwired for 16-bit sys-
tems at 173000, and for 18-bit systems at 773000,. The bootstrap
program is normally enabled and must be disabled if it is not being
used. To disable the bootstrap, install a jumper wire between wire-
wrap pins J88 and J89. The bootstrap program is inserted as the top
512 bytes of any 2 KB page of ROM. The user installs jumper wires for
the boot multiplexer to select the starting address for the particular
page in which the bootstrap resides. The number of pages vary by the
array size of the ROM chips.

Refer to Tables 17-13, 17-14, and 17-15 respectively to jumper the
bootstrap starting address of 16 KB, 32 KB, and 64 KB ROM memory
systems.

Use of Multiple MRV11-C Boards

Up to 16 MRV11-C boards may be configured in a single system.
When multiple boards are present, each board has a unique control
and status register address assigned in increasingorder from 177000,
(7770004 in LSI-11/23 systems). Refer to Table 17-9 to configure CSR
addresses. Each board can have a unique 4 KB area of the physical
address space set aside for its windows, but it is also possible to share
one 4 KB area of the address space among all MRV11-C boards in-
stalled in the system.

444

Chapter 17 — ROM Memories

MRV11-C
Table 17-13 Bootstrap Starting Address: Jumper Configurations
for 16 KB ROM Memory
Starting Install Jumper Wire From
Address J22to J21to J20 to
003000 J24 J24 J24
007000 J24 J24 Ja3
013000 J24 Ja3 J24
017000 J24 Ja3 Ja3
023000 J23 J24 J24
027000 J23 J24 Ja3
033000 J23 Ja3 Ja4
037000 Ja3 J23 J23
Logic 1 =J23
Logic 0 = J24

Bootstrap starting address is normalized to memory location 000000.

Table 17-14 Bootstrap Starting Address: Jumper Configurations

for 32 KB ROM Memory
Starting Install Jumper Wire From
Address J22 to J21to J20 to J18to
003000 J24 J24 J24 J24
007000 J24 J24 J24 J23
013000 J24 J24 J23 J24
017000 J24 J24 J23 J23
023000 J24 J23 J24 J24
027000 J24 J23 J24 J23
033000 J24 J23 J23 J24
037000 J24 J23 J23 J23
043000 J23 J24 J24 J24
047000 J23 J24 J24 J23
053000 J23 J24 J23 J24
057000 J23 J24 J23 J23
063000 J23 J23 J24 J24
067000 J23 J23 J24 J23
073000 J23 J23 J23 J24
077000 J23 J23 Ja23 Ja3
Logic 1 = J23
Logic 0 = J24

Bootstrap starting address is normalized to memory location 000000.

445

Chapter 177 — ROM Memories

MRV11-C
Table 17-15 Bootstrap Starting Address: Jumper Configurations
for 64 KB ROM Memory
Starting Install Jumper Wire From
Address
J22to J21to J20 to J19to Ji8to
003000 J24 J24 J24 J24 J24
007000 J24 J24 J24 J24 J23
013000 J24 J24 J24 J23 J24
017000 J24 J24 J24 J23 J23
023000 J24 J24 J23 J24 J24
027000 J24 J24 Ja3 J24 J23
033000 J24 J24 J23 J23 J24
037000 J24 J24 Ja3 Ja3 Ja3
043000 J24 Ja3 J24 J24 J24
047000 J24 J23 J24 J24 J23
053000 J24 J23 J24 J23 J24
057000 J24 J23 J24 Ja23 J23
063000 J24 Ja3 J23 J24 J24
067000 J24 Ja23 Ja3 J24 J23
073000 J24 J23 Ja23 J23 J24
077000 J24 J23 J23 J23 J23
103000 J23 J24 J24 J24 J24
107000 J23 J24 J24 J24 J23
113000 Ja3 J24 J24 J23 J24
117000 J23 J24 J24 J23 J23
123000 J23 J24 J23 J24 J24
127000 J23 J24 J23 J24 J23
133000 Ja23 J24 J23 Ja23 J24
137000 Ja23 J24 J23 Ja3 Ja23
143000 J23 Ja23 J24 J24 J24
147000 J23 Ja23 J24 J24 J23
153000 J23 J23 J24 J23 J24
157000 J23 Ja23 J24 J23 J23
163000 J23 J23 J23 J24 J24
167000 J23 Ja3 J23 J24 J23
173000 J23 J23 Ja3 J23 J24
177000 J23 J23 J23 J23 J23
Logic 1 = J23
Logic 0 = J24

446

Chapter 177 — ROM Memories
P MRV11-C

The window enable bit of the CSR (bit 15) is used to provide the user
software control over the windows. Setting bit 15 to 1 disables both
windows on the respective MRV11-C. In order to use bit 15 of the CSR,
a jumper must be installed between pins J67 and J68 on all MRV11-C
modules that are required to be disabled under software control, such
as modules configured with the same window starting addresses. With
the jumper installed, bit 15 will also be set upon system initialization so
that module will be disabled on power-up.

When enable/disable is implemented, the disabled bit in the CSR will
be set automatically by BINIT on the bus or by execution of the RESET
instruction. Therefore, the initial state of the system will have all
boards disabled. To access a particular segment of ROM in this muiti-
board configuration, the programmer first enables the desired board
and maps the segment. When access to that segment is completed,
the board is again disabled to allow another board to be selected at a
future time.

ROM Chips

There are 16 sockets on the MRV11-C module available for ROM
chips. If the module is not fully populated, then the chip-enable signals
for the sockets without ROMs should not be jumpered. This prevents -
the program from accidently addressing the sockets in which there are
no ROMs. It is recommended that the ROMs be installed in pairs of
high and low bytes. When a complete set of ROMs is installed, then all
the chip enable jumper wires are installed as listed in Table 17-16
below.

Table 17-16 Chip-Enable Jumpers

Sockets Enabled Chip-Enable Signal Wire-wrap Pins

Jumpered
XE43, XE44 CEO J86 to 87
XE37, XE38 CE1 J84 to J85
XE31, XE32 CE2 J82to J83
XE25, XE26 CE3 J80 to J81
XE41, XE42 CE4 J78to J79
XE35, XE36 CES J76 to J77
XE29, XE30 CE6 J74 to J75
XE23, XE24 CE7 J721t0 J73

447

Chapter 177 — ROM Memories
P MRV11-C

The ROM is provided by the user and consists of up to 16 chips that
are inserted into prewired sockets. The chips will be either 1K X 8 bit,
2K X 8 bit, or 4K X 8 bit ROMs. When the MRV11-C is fully populated,
the result will be either 16K, 32K, or 64 KB of memory. These ROMs
can be supplied by a variety of vendors and the basic configuration for
many of the ROMs is standardized except for pins 18, 19, 20, and 21.
The configuration of these pins will vary depending upon the size of
the ROM and the vendor who supplies them. Therefore the user
should verify the vendor’'s specifications in order to determine if a
particular ROM can be used on the MRV11-C.

The MRV11-C module is configured so that the user can select the
signals that are applicable to pins 18, 19, and 21. The board provides
wire-wrap pins for the user to select A11, A12, 5 Vdc or ground. There
are three individual loops that interconnect all chips and three wire-
wrap pins available for each individual chip. Wire-wrap pin J112 inter-
connects pin 19 of all the chips and pin J116 interconnects pin 21 of all
the chips; these are normally designated as the A10 or A11 inputs to
the chips. Wire-wrap pin J114 interconnects wire-wrap pins that are
individually associated with each chip. Pin 18 of each chip is individu-
ally wired to a wire-wrap pin and chip pin 20 is wired to the chip-
enable signal. Chip pin 20 is also individually wired to a wire-wrap pin.
The user must determine from the vendor’s specifications which sig-
nals apply to which pins and must install jumper wires as needed to
configure an operational module.

For example, in Figure 17-23 below, there are pin configurations for
two types of chips, a 2K X 8 ROM that is used for 32 KB memories and
a 4K X 8 ROM that is used for 64 KB memories. To configure the 32
KB ROM memory, pin 19 is designated as A10 and, by inserting a
jumper wire between pins J112 and J113, pin 19 of all the chips is
connected to A11 which is used as the A10 input. The Vpp input,
designated by pin 21, is specified that it must be connected to a +5
Vdc source. This is accomplished by inserting a jumper wire between
pins J116 and J117, which will connect pin 21 of all the chips to +5
Vdc. The OE (pin 20) and CE (pin 18) should be connected together to
the Chip Enable. Therefore each chip must be connected individually
and jumper wires are installed between the following pins to operate
as a 32 KB memory:

J118 to J120
Ji21 to Ji23
J124 to J126
J127 to J129
J101 to J103

448

Chapter 17 — ROM Memories

MRV11-C
Jo8 to J100
J104 to J106
J107 to J109

Using the 4K X 8 ROM to configure a 64 KB memory, pin 19 is desig-
nated as A10 and by inserting a jumper wire between pins J112 and
J113, pin 19 of all the chips is connected to A11 which is used as the
A10 input. However, pin 21 is now designated as A11 and this must be
connected to A12. This is accomplished by inserting a jumper wire
between pins J116 and J115, which will connect pin 21 of all the chips
to A12. The OE/V pp (pin 20) and CE (pin 18) should be connected
together to the Chip Enable. Therefore each chip must be connected
individually and jumper wires are installed between the following pins
to operate as a 64 KB memory:

J118 to J120
J121 to J123
J124 to J126
J127 to J129
J101 to J103
Jo8 to J100
J104 to J106
J107 to J109
INTEL 2716 INTEL 2732
PIN CONFIGURATION PIN CONFIGURATION
A7 hd 243 vee a7 ~ 24 [Vec
As] 2 23[] A8 As] 2 23[] Ag
as 3 22[7 A9 As [3 22[7 A9
el 21:’VPP/T06VDC M= Z'DA”/Toi)H
a3s mpﬁ/mc—s a3l ZOD&NPP/TOCE
A6 |9’;|A,0/T0AHH A d s 195 ajg— TOATH
a7 181 ce — TOOE adr IB:IE/TOEE
A0 8 1P or A Q8 o
oooe 16 |1 06 009 16 |1 O6
o1 o 15 05 mduo 15[05
02 On 14{1 04 02 On 14[3 04
GnD 12 13703 ano 12 13 b 03
2K X 8 ROM 4K X 8 ROM

Figure 17-23 Pin Configuration
449

Chapter 17 — ROM Memories
i MRV11-C

Chip Access Time

The MRV11-C can normally interface with chips that have an access
time of less than 50 ns. The chip access time is determined by the
slowest access time of any individual chip installed on the MRV11-C. If
the chip access time is greater than 50 ns and less than 200 ns, then an
RC delay can be incorporated into the circuits. This is done by
installing jumper wires between wire-wrap pins J1 and J3 and pins J2
and J3. If the chip access time is greater than 200 ns and less than or
equal to 450 ns, the jumper wire between wire-wrap pins J1 and J3 is
removed and the jumper wire between wire-wrap pins J2 and J3 re-
mains inserted.

DATIO Bus Cycle Inhibit

The processor may attempt to perform DATIO bus cycles to the
MRV11-C. These bus cycles are attempts to write the data into the
memory (which is read-only memory). This condition is allowed unless
a jumper wire is installed between wire-wrap pins J4 and J5. With this
jumper installed, the BDOUT is inhibited except when the bus is ad-
dressing the CSR. This eliminates any writing attempts from the bus
except those for the Control/Status Register. The MRV11-C normally
responds to DATIO bus cycles and installing the jumper will cause a
timeout for a DATIO bus cycle to the ROM.

Wire-wrap Pin Identification

The MRV11-C module provides the user with 129 wire-wrap pins to
configure the module for many types of applications. These wire-wrap
pins are identified and located on the module in Figure 17-19. In Table
17-17 below, the wire-wrap pins are numerically listed with descrip-
tions of their functional use.

Table 17-17 Wire-wrap Pin Identification

Wire-wrap Pin Function

Designation

J1 RXCX pull-up resistor

J2 RXCX optional capacitor

J3 RXCX signal

J4 LMATCH input for BDOUT control
J5 LMATCH for BDOUT control

450

Chapter 17 — ROM Memories

MRV11-C
Wire-wrap Pin Function
Designation
Jé Window address enable ground
J7 Window address enable
J8 High byte chip enable bit A11
J9 CSR high byte bit 8 chip enable output
J10 High byte chip enable bit A12
J11 CSR high byte bit 9 chip enable output
Ji12 High byte chip enable least significant bit
J13 CSR high byte bit 10 chip enable output
J14 High byte chip enable intermediate bit
J15 CSR high byte bit 11 chip enable output
J16 High byte chip enable most significant bit
J17 CSR high byte bit 12 chip enable output
J18 Boot address chip enable bit A11
J19 Boot address chip enable bit A12
J20 Boot address chip enable least significant bit
J21 Boot address chip enable intermediate bit
J22 Boot address chip enable most significant bit
J23 Boot address chip enable logic 1
J24 Boot address chip enable logic 0
J25 Direct address bit 11 chip enable output
J26 Low byte chip enable A11 H bit
J27 CSR low byte bit 0 chip enable output
J28 Direct address bit 12 chip enable output
J29 Low byte chip enable A12 bit
J30 CSR low byte bit 1 chip enable output
J31 Direct address bit 13 chip enable output
J32 Low byte chip enable least significant bit
J33 CSR low byte bit 2 chip enable output

451

Chapter 17 — ROM Memories

MRV11-C
Wire-wrap Pin Function
Designation
J34 Direct address bit 14 chip enable output
J35 Low byte chip enable intermediate bit
J36 CSR low byte bit 3 chip enable output
J37 Direct address bit 15 chip enable output
J38 Low byte chip enable most significant bit output
J39 CSR low byte bit 4 chip enable output
J40 Not used (Reserved for future DIGITAL use)
Ja1 Window address bit 15 compare ground
J42 Window address bit 13 compare input
J43 Window address bit 12 compare ground
J44 Window address bit 14 compare input
J45 Window address bit 14 compare ground
J46 Window address bit 15 compare input
J47 Window address bit 16 compare ground
J48 Window address bit 16 compare input
J49 Window address bit 13 compare ground
J50 Window address bit 17 compare input
J51 Window address bit 17 compare ground
J52 Window address bit 12 compare input
J53 Direct address 32K memory limit output
J54 Direct address 16K memory limit output
J55 Direct address memory limit input
J56 Direct address 8K memory limit output
J57 Direct address bit 17 compare ground
J58 Direct address bit 16 compare input
J59 Direct address bit 16 compare ground
J60 Direct address bit 17 compare input
J61 Direct address bit 15 compare ground

452

Chapter 17 — ROM Memories
P MRV11-C

Wire-wrap Pin Function

Designation

J62 Direct address bit 15 compare input

J63 Direct address bit 14 compare ground

J64 Direct address bit 14 compare input

J65 Direct address bit 13 compare ground

J66 Direct address bit 13 compare input

J67 CSR high byte bit 15 enable ground

J68 CSR high byte bit 15 enable input

J69 High byte chip enable window address function
J70 High byte chip enable direct address function
J71 High byte chip enable function select drivers
J72 Bit 7 chip select enable input

J73 Bit 7 chip enable decoder output

J74 Bit 6 chip select enable input

J75 Bit 6 chip enable decoder input

J76 Bit 5 chip select enable input

J77 Bit 5 chip enable decoder output

J78 Bit 4 chip select enable input

J79 - Bit 4 chip enable decoder output

J8o Bit 3 chip select enable input

J81 Bit 3 chip enable decoder output

J82 Bit 2 chip select enable input

J83 Bit 2 chip enabie decoder output

J84 Bit 1 chip select enable input

J85s Bit 1 chip enable decoder output

J86 Bit 0 chip select enable input

J87 Bit 0 chip enable decoder output

J8s Boot address enable ground

J8g Boot address enable

453

Chapter 177 — ROM Memories

MRV11-C
Wire-wrap Pin Function
Designation
J90 DAL 4 CSR address select signal
Jo1 DAL 4 CSR address select ground
J92 DAL 1 CSR address select signal
Jo3 DAL 1 CSR address select ground
J94 DAL 2 CSR address select signal
J95 DAL 2 CSR address select ground
J96 DAL 3 CSR address select signal
J97 DAL 3 CSR address select ground
Jo98 Pin 18 input for chip set 5
J99 Chip wire-wrap interconnection for chip set 5
J100 Pin 20 input for chip set 5 (Chip Enable 5)
J101 Pin 18 input for chip set 4
J102 Chip wire-wrap interconnection for chip set 4
J103 Pin 20 input for chip set 4 (Chip Enable 4)
J104 Pin 18 input for chip set 6
J105 Chip wire-wrap interconnection for chip set 6
J106 Pin 20 input for chip set 6 (Chip Enable 6)
J107 Pin 18 input for chip set 7
J108 Chip wire-wrap interconnection for chip set 7
J109 Pin 20 input for chip set 7 (Chip Enable 7)
J110 Not used (Reserved for future DIGITAL use)
J111 ROM interconnection, ground reference
J112 Chip enable bit bus input
J113 Address bit A11, used as chip input A10
J114 Chip interconnection loop (to wire-wrap pins)
J115 Address bit A12, used as chip input A11
J116 Chip interconnection loop for chip pin 21
J117 ROM interconnection for chip set 0

454

Chapter 17 — ROM Memories

MRV11-C
Wire-wrap Pin Function
Designation
J118 Pin 18 input for chip set 0
J119 Chip wire-wrap interconnection for chip set 0
J120 Pin 20 input for chip set 0 (Chip Enable 0)
J121 Pin 18 input for chip set 1
J122 Chip wire-wrap interconnection for chip set 1
J123 Pin 20 input for chip set 1 (Chip Enable 1)
J124 Pin 18 input for chip set 2
J125 Chip wire-wrap interconnection for chip set 2
J126 Pin 20 input for chip set 2 (Chip Enable 2)
J127 Pin 18 input for chip set 3
J128 Chip wire-wrap interconnection for chip set 3
J129 Pin 20 input for chip set 3 (Chip Enable 3)

PROGRAMMING

The window-mapped mode may be used in two different ways in LSI-
11 application programs. The application can be coded in such a way
as to execute directly from the windows, or the window-mapped board
may be used as a program load device to transfer a stand-alone appli-
cation program from ROM into RAM memory at system start-up.

Executing Windowed Programs — Executing directly from MRV11-C
windows allows very large program sizes, up to 56 KB of RAM on LSI-
11/2 systems. However, software to be executed in this mode must be
custom-designed and must be written in assembly language.

An application designed for windowed execution must have a mecha-
nism for calling a subroutine or transferring control to another routine
which is physically located in a presently unmapped section of the
windowed ROM board. To accomplish this, we must use a technique
different from the standard JSR or JMP instructions. A method for
doing this is illustrated in Figure 17-24. The routine which processes
subroutine calls and jumps to other pages must, of course, be located
in a section of memory which is not window mapped. To call a
subroutine using these capabilities, one would write CALLWO, label,
rather than JSR PC, label. This would cause the subroutine desired to

455

17 — ROM Memories
Chapter MRV11-C

be mapped into window 0 and the call to be executed. Upon subrou-
tine return, which is done with a normal RTS PC instruction, the origi-
nal mapping would be restored and control would be returned to the
calling program unit. Likewise, to invoke a subroutine but have it
mapped in window 1, the programmer codes CALLW1, label. Note
that the mechanism shown below preserves condition codes from the
called routine back to the caller (i.e., routines can return status in the
condition codes). Instead of the unconditional jump instruction, the
programmer codes JMPWO, label, to jump to a routine, mapping it into
window 0. Similarly, one can code JMPW1, label, to transfer control to
a routine which should be mapped into window 1.

To make use of this, the program should be assembled with .ENABL
AMA to force absolute addressing in the assembly. At start-up time, a
boot routine must be executed (from the MRV11-C boot window or
elsewhere) which copies the trap handler routine to RAM memory, if
necessary, and initializes the trap vector to contain the address of the
trap handling routine and a new status word of all 0’s.

WOBASE = 160000
W1BASE = 164000

JMPW =1
JSRW =0
Wi=2
Wo=20
.MACRO CALLWO ADRS
TRAP JSRW + W0 + <<ADRS/1000> & 174>
.WORD WOBASE + <ADRS & 3777>
.ENDM CALLWO
.MACRO JMPWO ADRS
TRAP JMPW + W0 + <<ADRS/1000> & 174>
.WORD WOBASE + <ADRS & 3777>
.ENDM JMPWO
.MACRO CALLW1 ADRS
TRAP JSRW + W1 <<ADDRS/1000> & 174>
.W