
EK-CI750-TO-PRE

el750 Hardware
Technical

Description

Preliminary

EK-CI750-TD-PRE

el750 Hardware
Technical

Description

Prepared by Educational Services
of

Digital Equipment Corporation

Preliminary

First Edition, July 1984

Copyright © 1984 by Digital Equipment Corporation

All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited.
For copy information, contact the Educational Services Department.
Digital Equipment Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The Information in this document IS subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may not be used or copied except in accordance with the terms of
such license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by Digital.

This book was produced on a DIGITAL Word Processing System.
Book production was done by Educational Services Development
and Publishing in Nashua, NH.

The follOWing are trademarks of Digital EqUipment Corporation:

~D~DD~D ™ DECtape Rainbow
DATATRIEVE DECUS RSTS
DEC DECwrlter RSX
DECmate DIBOL UNIBUS
DECnet MASSBUS VAX
DECset PDP VMS
DECsystem-10 P/OS VT
DECSYSTEM-20 ProfeSSional Work Processor

CHAPTER 1

1.1
1.2
1.3
1.4
1. 4.1
1. 4.2
1. 4.3
1. 4.'4
1. 4.5

CHAPTER 2

2.1
2.1.1

. 2.1.1.1
2.1.1.2
2.1.1.3
2.1.1.4
2.1.1.5
2.1.1.6
2.1.1.7
2.1.1.8
2.1.1.9
2.1. 2

2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2
2.4.2.1
2.4.2.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9

CONTENTS

INTRODUCTION

MANUAL SCOPE.
THE COMPUTER INTERCONNECT (CI).
RELATED DOCUMENTS •••
THE CI750 INTERFACE ••••••••

Link Module••.•.

Page

.•... 1-1
· 1-1
· 1- 3

.1-5
· 1-5

Packet Buffer Module (PB) •••••••
Da taP a t h Mod u 1 e (D P) • • • • • • • • • • •
CMI CIPA Interface Module (CCI)

. ••• 1-9
. • . . 1-101-11

CI750 Powe r ••••••••••••••• · 1-13

LINK MODULE

PACKET FORMATS.
Information Packet ••••

Bit Synchronization •

.•... 2-1
............... . 2-1

Character Synchronization •••••••••
Packet Type/Length (High) ••••••••••

.2-1
••• 2- 2

· 2- 2
Packet Length (Low) ••••••••••••••••
Destinations (True and Complement)

•••••••••• 2- 2
....... . 2- 2

Source •••••••• 2-3
Body ••••••••••••••••••••••••••••••••••• .2-3
Cyclical Redundancy Check (CRC) Bytes ••• · 2-3
Trailer •••• 2- 3

Acknowledge/Negative Acknowledge
(ACK/NACK) Packet •••••••••••••••• ..••..........• . 2- 3

LINK OVERVIEW.................... • •••••
Information Packet Reception ••••••••••••
ACK/NACK Packet Transmission •••••••
Information Packet Transmission ••
ACK/NACK Packet Reception ••

LINK OPERATING STATES •••••••••••••••••••
RECEIVE CHANNE L •••••••••••••••••

CI Carrier Detection and Path Selection.

• •••••••• 2- 5
· 2-7

.•..• . 2-8
.2-9

•• 2-10
.2-10

• ••• 2-12
• .2-12

Carrier Detect Logic ••••••••••••••••••
Receive Path Select Mux -- ECL Logic •••

••••• 2-12
•••• 2-15

•••••• 2-15 Manchester Decoder ••
.......... . 2-15 Phase Encoding •••••••••••••••••••

Decoder Logic ••••••••••••••••••••••• .2-18
Sync Character Detect Enable PAL •••••••••••••••• 2-l8
Byte Framer ••••••••
RCVR CLK Generator.
CRC Check •••••••••• ...

.2-20
· 2-24

• •••••••••••• 2- 2 6
Destination Compare.... ••••• • •••••••• 2-28
ACK Source Comparison ••••••••••••••••••••••••••• 2-29
Receive Data Parity and Channel Output •••••••••• 2-29

iii

2.5
2.5.1
2.5.2
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.6
2.6. 1
2.6.2
2. 7
2.7.1
2.7. 2
2.8
2.9
2.10
2.10.1
2.10.1.1
2.10.1.2
2.10.2
2.10.2.1
2.10.2.2
2.10.3
2.10.4

CHAPTER 3

3. 1
3.1.1
3.1. 2
3.1. 3
3.1.4
3.1. 5
3.1. 6
3.1. 7
3.1. 8
3.2
3.2.1
3.2.2
3.2.3

CONTENTS

Page

TRANSMIT CHANNE L ••••••••••••••••••••••••••••••• .2-30
.2-30

Trailer Bytes ••..• 2-30
Transmit Data Input ••••••
Bit Sync, Sync Character,
ACK Packet Inserts.

.
Packet Type Byte.
Source Byte ••••••••
Destination Bytes ••

and

Destination Address Register.
Transmit Data Parity Check.
CRC Generation
XMIT CLK
Parallel

Generator ••••••
to Serial Data Conversion ••

Manchester Encoder ••••••
XMIT ECL Drivers ••••••••

CRC GENERATOR AND CHECKER ••
CRC Ge nera tor.
CRC Checker •••

ARBITRATION ••••
General •••••
Arbitration Logic.

LINK FUNCTIONS •••••••••••••••••
LINK INTERFACE SIGNALS ••••••••
OPERATING STATES •••••• ..

...... . 2- 33
.2-33

. .•.... . 2- 33
.2-33

........... . 2- 33
.2-34
.2-34

• •.•• 2-34
•• 2-37

• •••• 2- 37
.2-39

••• 2-41
• ••••• 2-41
• ••••• 2-43

....... 2 -43
• •• 2-43

•• 2-46
.2-51

.•.•.. . 2- 5 4
• •••••••••• 2 - 54

Message Transmit ••••••
Transmit Control Logic ••

. 2- 58

Transmit Status. • •••••
ACK Receive ••••••••••••••••••••••

ACK Receive PAL
Sync Character

Message Receive ••

States.
Detect Enable PAL. •

ACK Transmit

PACKET BUFFER MODULE

DATA FLOW; GENERAL DISCUSSION.
TSUF Load ••
Transmit ••••
TBUF Read •••
Valid RCVR Data.
RBUF MLOAD (Maintenance Load).
RBUF READ •••
PB Read
Control

TBUF DATA

Mux ••
Logic.
FLOW OPERATIONS.

. . . .

TBUF Load.
Transmi t ••
TBUF Read (Loopback)

iv

.2-62
....... . 2-63

• ••••• 2-65
· ..•...... . 2-65

• •• 2-67
• •••• 2-69

•••••• 2-72

••• 3-1
• .3- 3

• ••••• 3 - 3
.3-3

· 3- 3
.3-3

•• 3-3
.3-3

...••....• . 3- 3
.3-4

••• 3-4
.3-6
.3-6

3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.5
3.5.1
3.5.2
3.5. 3
3.5.4
3.5. 5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.4
4.5
4.5.1
4.5.2

CONTENTS

RBUF DATA FLOW OPERATIONS •••••••••
Valid RCVR Da ta •••••••••••••••
RBUF MLOAD (Maintenance Load).
RBUF Re ad •••••
PB Read Mux •••

CLOCKS •••••••••
FUNCTION DECODER AND BUFFER SELECT

SEL
SEL

Load Buf ••
Read Buf.

Load Buf. ••••
Load
Read

Last Data
Bu f •••

Transmit •••
RSET TBUF ••

RBUF •• Release
Read Node ADR •.

Byte ••

Read
Read

Xmit
RCVR

Status ••
Status.

Link Enable and Link
PB LOAD •••••••••••
SEQUENCING LOGIC.

TBUF Load ••••••
Transmit •••••••••••••
TBUF Read (Loopback)
Valid RCVR rata ••• . . .

Disable.

.. ·

Page

.3-7 · 3-7

.3-9
.••••.•.•. . 3-9

• ••• 3-10
• ••• 3-10

LOGIC •• • ••• 3-12
........... . 3-12

.......•• . 3-12
•••• 3-12

• •••••••• 3--16
.3-16

. 3-16

. . .

• •••• 3-16
.3-16

• ••• 3-16
.3-16

• •• 3-17
• ••• 3-17

.3-17
• ••••• 3-17

.3-19
• ••• 3-21
• ••• 3-21

.3-22
•••• 3-24 RBUF ML:lad.

RBUF Read •••• ·3-25
RCVR STATUS ••

CRC ERR ••• ·
RBUF A Full, RBUF B Full •••• . ..

B Fi rst. •• ...
A Bus •••• RBUF

RBUF
RBUF B Bus ••• · . . .
RCVR
RCVR

A
B

Enable.
Enable.

CONTROL STORE

.

SIMPLIFIED BLOCK DIAGRAM.
MICROWORD PARITY •••
CS MICROWORD •••••••

Microword
Microword

MAINTENANCE

Fields ••
Register.
MUX ••••••

· .. · ..

CONTROL STORE
Control
Control

SPACE AND LOGIC.
Store
Store

Space ••
Log ic ••••

v

.

. . .

•••• 3-26
• •• 3-26
..3-28

• •• 3-28
.3-29
.3-29

•••• 3-29
.3-29

•• 4-1
. 4-5

..4-5
.4-5

• .4-5
••• 4-11

• •••• 4-11
••• 4-11
••• 4-14

4.6
4.6.1
4.6.2
4.6.2.1
4.6.2.2
4.6.2.3
4.7

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.2
5. 3.3
5. 3.4
5.4
5.4.1
5.4.2
5.5
5. 5.1
5.5.2
5.5.3
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3

5.7.4
5.7.4.1
5.7.4.2
5.7.5
5.7.6
5.7.7
5.8
5.8.1
5.8.2
5.8.2.1
5.8.2.2
5.8.3
5.8.3.1
5.8.3.2

CONTENTS

Page

CONTROL STORE ADDRESS SOURCE •••••••••••••••••••••• 4-16
Maintenance Address Register •••••••••••••••••••• 4-16
Microsequencer Logic •••••••••••••••••••••••••••• 4-16

2911 Microsequencer •.••••••••••••••••••••••••• 4-16
Microsequencer Control Logic •••••••••••••••••• 4-18
Branch Logic 4-22

MICROCODE START-UP •••••••••••••••••••••••••••••••• 4-27

DATA PATH MODULE

GENERAL •• 5-1
CIPA BUS •••••••••••••••• •• 5 - 5
DP BUSES AND INTERFACE ••••••••••••••••••••••••••••• 5-5

PB OUT Register...... • •••••••••••••••••••••••• 5-5
PB IN Register •••••••••••••••••••••••••••••••••• 5-10
XBOR Register.... • •••••••••••••••••••••• 5-10
XBIR Register.............. • •••••••••• 5-11

LS AND VC DT. •. • ••••••• 5 -11
LS/VCDT Address Selection..... • •••••••• 5-13
LS/VCDT write Strobe Logic •••••••••••••••••••••• 5-16

MD BUS ••••••••••••••••• 5-1 7
PB IN Register ••••••••••••••••••••• • •••• 5-19
MADR and
PMCSR And

MDA'TR •••••••••••••••••••••••••••••••••• 5-19
Microword LITERAL Field •• •••• 5-20

DP ALD •• 5-23
2901A Microprocessor •••••••••••••••••••••••••••• 5-23
Data Manipulation ••••••••••••••••••••••••••••••• 5-26
Carry Look-Ahead Logic................ • ••••••• 5-27

DP PARITY GENERATION AND CHECKING........ • •• 5-27
Parity Generation and Checking Logic •••••••••••• 5-27
Receive Buffer Parity Error (RBPE) •••••••••••••• 5-29
PB IN Register Parity Error (PBIR PE)
[Output Parity Error (OPE)]. •••••••••••••••••••• 5-29

CIPA Error•......•..•..•.••.•...•... 5-32
DP To CCI Parity Check •••••••••••••••••••••• 5-32
CCI To DP Parity Check (IPE) •••••••••••••••••• 5-33

Packet Buffer Parity (PB PAR) ••••••••••••••••••• 5-34
Local Store Parity Error (LSPE) ••••••••••••••••• 5-35
Parity Error (PE) ••••••••••••••••••••••••••••••• 5-36

UNSOLICITED CMI REQUESTS.................. • •• 5-36
Starting An Unsolicited Sequence •••••••••••••••• 5-38
Unsolicited Write Sequence •••••••••••••••••••••• 5-41

Obtaining The Write Data •••••••••••••••••••••• 5-41
Register Selection •••••••••••••••••••••••••••• 5-47

Unsolicited Read Sequence ••••••••••••••••••••••• 5-48
Register Selection •••••••••••••••••••••••••••• 5-49
Transferring The Read Data To The CCI ••••••••• 5-50

vi

5.9
5.9.1
5.9.2
5.9.3
5.10
5.10.1
5.10.2
5.10.3
5.11
5.11.1
5.11.2
5.11.2.1
5.11.2.2
5.11.2.3
5.11.2.4
5.11.2.5
5.12

5.12.1
5.12.2
5.12.2.1
5.12.2.2
5.12.2.3
5.12.3
5.12.3.1
5.12.3.2
5.12.3.3

CHAPTER 6

6. 1
6.1.1
6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.4
6.1. 2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.2.5
6.1.2.6
6.1.2.7
6.1.2.8
6.1.2.9
6.1.2.10
6.1.2.11
6.1.2.12

CONTENTS

Page

DP CONTROL LOGIC......... • ••••••
IB Bus Destination......... • ••••
IB Bus Source................. . .••••••

••• 5-51
• •• 5-51
••• 5-53
• •• 5-54 Control Signals............... • •••••••

CCI/DP
Port

INTERFACE CONTROL
Initiated Write Of

LOG IC •••••••••••••••••••• 5 - 56
eel ••••••••••••••••••••• 5-57

Port Initiatted Read Of CCI •••••
Unsolicited Request Operations ••

PORT CLOCKS AND OPERATING MODES •••

• ••••••••• 5 - 57
••••••• 5- 6 0
•••••• 5-62

Part C1 ocks ••••••••••••••••••••••••••••••••••••• 5-62
Operating Modes ••••••••••••••••••••••••••••••••• 5-64

Run Mode........... •• ••••••• • •• 5-64
Uninitialized Mode.. • ••••••••••••••• 5-64
Stall Mode......... •••••••• • •••••• 5-64
Suspend Mode •••••••••••••••••••••••••••••••• 5-65
Differences Between Stall and Suspend Mode •••• 5-69

INTERRUPT, INITIALIZE, AND POWER
CONTROL FUNCTIONS •••••••••••••••••••••••••••••••• .5-69

Interrupt Function •••••••••••••••••••
Initialize Function •••••••••••••••••

• • • • • • • • • 5-72
•••• 5-75
•••• 5-75 CCI Initialize Logic ••••••••••••••••••••••

DP Initialize Logic.............. ••••• ..5-75
Boot Timer And Maintenance Timer •••••••••••••• 5-77

Power Control Function. • •••••••••••••••••••• 5-79
Power-up Sequence..................... • •••• 5-79
Power Fail Sequence.................... • •• 5-85
Remote Reset Function. ••••• ••••••• ..5-87

CCI MODULE

OVE RVI EW ••••••••••••••••••••••••
CMI Protocol.. • •••••••••••

Bus Signals.. • ••••••••
Wr i te Tim i ng • • • • • ••••••••
Read Timing ••••••••••••••
Write Vector Timing ••••••••

Major Components ••••••••••••••
Command/Address Hi Register.
Address Lo Register.
Byte Mask Register ••••••••••
XMIT Fi Ie ••••••••••••••••••

· •• 6-1
•• 6- 2
..6-2

· ·
• • • • • • • • • • 6-8

•••••••••••••• 6-8
• ••••••••••••• 6-11

·
...

• .6-11
• .6-11

.6-11
..6-14
• .6-14

Return Read Data Register ••••••••••••••••••••• 6-14
Interrupt Vector •••••••••••••••••••••••••• 6-14

Register •••••••••••••••••••••• CNFGR
CMI M"uX •••••••••••••••••••••••••••••
Address Decode Logic ••••••••••

• ••••••••• 6-14
• ••••••••• 6-14 ... • ••• 6-15

Command/Address Hold Register ••••••••••••••••• 6-15
Address Offset Register. •••••••••• • ••• 6-15
Function Register ••••••••••••••••••••••••••••• 6-15

vii

6.1.2.13
6.1.2.14
6.1.3
6.1.3.1
6.1.3.2
6.1.3.3
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.2.5
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.3.5
6.2.4
6.2.4.1
6.2.4.2
6.2.4.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8

CONTENTS

Receive write Data Register •••
Rev File

Simplified Flow Diagrams •••••••••••••
Port Initiated Transfers •••••••••••
Write Vector Function ••••••••••••••
Unsolicited CMI Transfers ••••••••••

Page

.6-15

.6-15

.6-16

.6-16
....... . 6 -19
....... . 6- 21

PORT-INITIATED TRANSFERS •••••••••••••••••••••••••• 6-24
Load Command/Address And Byte Mask Registers •••• 6-24
write Function...... • •••••••••••••••••••••• 6-29

Load XMIT File ••• •••• 6-29
Issue GO •• •••••••••••••••••••••• 6 - 31
Arbitration6-34

.6-37

.6-41
Command/Address Cycle •••••••••••••••
Unload XMIT File And Status Cycle ••••

Read Function ••
Is sue GO.........
Arbitration

..6-44
• ••••• 6-44

.6-44
Command/Address Cycle ••••••••••••••••••••••••• 6-44
Status Cycle And Load RCV File •••••••••••••••• 6-45
Unload RCV File...... ••• •••••• .6-48

Write Vector Function........ ••••• • ••••••• 6-50
Issue Interrupt ••••••••••••••••••••••••••••••• 6-50
Arbitration............6-52
Write Interrupt Vector............ • ••• 6-52

UNSOLICITED CMI OPERATIONS................ .6-58
Command/Address Cycle ••••••••••••••••••••••• 6-58

Address Space Decoder........ • ••• 6-60
Register Decoder............. • •••••••••••• 6-60
Command/Address Sequence •••••••••••••••••••••• 6-63

Read/Write Cel........... 6-65
Maintenance
~\lriting The
Reading The

Function ••••••••••
CNFGR Register ••••
CNFGR Register •••••••

Read/Write DP ••••••••••••
CIPA Transfer Request ••
Write DP •••••••••••••••
Maintenance Initialize
Re ad DP ••••••

CNFGR REGISTER ••••••••
Adapter Code ••••••••

(MIN)

.

•• 6-65
••••• 6-65

• ••••• 6-68
....... . 6-68

• ••••• 6- 6 9
• ••••• 6-72
• ••••• 6-74

...... . 6-74
. 6 -77

PDN, PUP,
T ACLO, T

NO CIPA ••• .6-77
.6-77
.6-79
.6-79
.6-80

NXM, UCE,
DIAGNOSE.
CTO ••••
RLTO.

DCLO,
CRD ••

PFD.

.
. 6 -80

......................... . 6-80
CBPE •.•••••.••••.••••••••••.•••••••••••••.••••.• 6-81

viii

CONTENTS

Page

6.5 PARITY GENERATION AND CHECKING •••••••••••••••••••• 6-81
6.6 INITIALIZE AND POWER CONTROL FUNCTIONS •••••••••••• 6-81

APPENDIX A CI750 MNEMONIC GLOSSARY

APPENDIX B FLOW DIAGRAM SYMBOLS

APPENDIX C HARDWARE REGISTERS

C.l
C.2
C.3
C.4

1-1
1-2
1-3
1-4
1-5

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23

MADR -- Maintenance Address Register ••••••••••••••
MDATR Maintenance Data Register ••••••••••••••••
PMCSR PDrt Maintenance Control/Status Register.
CNFGR Configuration Register •••••••••••••••••••

FIGURES

C-1
C-2
C-3
C-4

FOur-Node CI Cluster ••••••••••••••••••••••••••••••• 1-2
CI750 CDnnection ••••••••••••••••••••••••••••••••••• 1-6
CI750 Configuration •••••••••••••••••••••••••••••••• 1-7
CI750 Block Diagram •••••••••••••••••••••••••••••••• 1-8
CI750 PDwer Distribution •••••••••••••••••••••••••• 1-14

Pac k e t Form a t s • • • • • • • • • • • • • • • • • • ••••••••••••••••••• 2 - 4
Link Simplified Block Diagram •••••••••••••••••••••• 2-6
Receive Channel Block Diagram ••••••••••••••••••••• 2-13
Receive Path Select MUX ECL Logic ••••••••••••••••• 2-16
PE (Phase Encoded) Data ••••••••••••••••••••••••••• 2-17
Manchester Decoder Timing Diagram ••••••••••••••••• 2-19
Byte Framer Block Diagram ••••••••••••••••••••••••• 2-21
Enabling the RCVR Serial Shift Register ••••••••••• 2-22
Byte Framer Timing Diagram •••••••••••••••••••••••• 2-23
RCVR CLK Generator •••••••••••••••••••••••••••••••• 2-25
RCVR CLK Synchronization •••••••••••••••••••••••••• 2-27
Transmit Channel Block Diagram •••••••••••••••••••• 2-31
Sync/Trailer PROM Space ••••••••••••••••••••••••••• 2-32
XMIT CLK Generator Block Diagram •••••••••••••••••• 2-35
XMIT CLK Generator Timing Diagram ••••••••••••••••• 2-36
Manchester Encoder Timing Diagram ••••••••••••••••• 2-38
XMIT ECL Drivers •••••••••••••••••••••••••••••••••• 2-40
CRC Generator/Checker ••••••••••••••••••••••••••••• 2-42
Arbitration Flow Diagram •••••••••••••••••••••••••• 2-45
Arbitration Block Diagram ••••••••••••••••••••••••• 2-47
Link Functions •••••••••••••••••••••••••••••••••••• 2-52
Link Interface Signals •••••••••••••••••••••••••••• 2-55
Interface FIDw Diagram -- Transmit Operation •••••• 2-56

ix

2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13

5-1
5-2
5-3
5-4
5-5

5-6
5-7
5-8
5-9
5-10
5-11

5-12
5-13
5-14

CONTENTS

Page

Interface Flow Diagram -- Receive Operation ••••••• 2-57
Message Transmit State Logic •••••••••••••••••••••• 2-59
Transmi t Control Log ic •••••••••••••••••••••••••••• 2-61
Transmit Status ••••••••••••••••••••••••••••••••••• 2-64
ACK Receive State Logic ••••••••••••••••••••••••••• 2-66
Sync Character Detect Enable PAL •••••••••••••••••• 2-68
Message Receive State Logic ••••••••••••••••••••••• 2-70
ACK Transmit State Logic •••••••••••••••••••••••••• 2-73

Packet Buffer Data Flow •••••••••••••••••••••••••••• 3-2
TBUF Operations •••••••••••••••••••••••••••••••••••• 3-5
RBUF Operations •••••••••••••••••••••••••••••••••••• 3-8
Packet Buffer C1ocks •••••••••••••••••••••••••••••• 3-11
Function Decoder and Buffer Select Logic •••••••••• 3-l3
PB Load Logic ••••••••••••••••••••••••••••••••••••• 3-18
TBUF Sequencing Logic ••••••••••••••••••••••••••••• 3-20
RBUF Sequencing Logic ••••••••••••••••••••••••••••• 3-23
RCVR Status Logic ••••••••••••••••••••••••••••••••• 3-27

Control Store Simplified Block Diagram ••••••••••••• 4-2
Control Store Block Diagram •••••••••••••••••••••••• 4-4
Microword Parity Checker ••••••••••••••••••••••••••• 4-6
Microword Fields ••••••••••••••••••••••••••••••••••• 4-7
Control Store Space ••••••••••••••••••••••••••••••• 4-13
Control Store Logic ••••••••••••••••••••••••••••••• 4-15
Control Store Address Multiplexing •••••••••••••••• 4-l7
2911 Microsequencer ••••••••••••••••••••••••••••••• 4-19
Microsequencer Control Logic •••••••••••••••••••••• 4-23
Branch Logic•............................ 4-24
Microcode Start-up Flow Diagram ••••••••••••••••••• 4-28
Microcode Start-up Logic •••••••••••••••••••••••••• 4-30
Microcode Start-Up Timing Diagram ••••••••••••••••• 4-32

Data Path Module Block Diagram ••••••••••••••••••••• 5-2
CIPA Bus With DP And CCI Interfaces •••••••••••••••• 5-6
DP Buses and Interfaces •••••••••••••••••••••••••••• 5-7
LS/VCDT Block Diagram ••••••••••••••••••••••••••••• 5-l2
LS/VCDT Address Selection Simplified Block
Di agram•............•....................••.• 5-14
LS/VCDT Address Selection Block Diagram ••••••••••• 5-l5
Write RAM Timing Diagram •••••••••••••••••••••••••• 5-l8
ALU Block Diagram ••••••••••••••••••••••••••••••••• 5-24
Carry Look-Ahead Logic •••••••••••••••••••••••••••• 5-28
Parity Generation And Checking •••••••••••••••••••• 5-30
Unsolicited CMI Operations - Simplified
Flow Diagram •••••••••••••••••••••••••••••••••••••• 5-37
Starting An Unsolicited Operation ••••••••••••••••• 5-39
Unsolicited CMI Request Logic ••••••••••••••••••••• 5-40
Unsolicited CMI Write Operation Flow Diagram •••••• 5-42

x

5-15
5-16
5-17
5-18

5-19

5-20

5-21
5-21A
5-21B
5-22

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

6-11
6-12
6-13
6-14
6-15
6-16
6-17

6-18
6-19
6-20
6-21
6-22
6-23
6-24

CONTENTS

Page

Unsolicited CMI Read Operation Flow Diagram ••••••• 5-44
DP Control L~gic •••••••••••••••••••••••••••••••••• 5-45
CCI/DP Interface Control Logic •••••••••••••••••••• 5-47
CCI/DP Interface Control Logic - Port Initiated
Wr i tea f CC I •••••••••••••••••••••••••••••••••••••• 5 - 58
CCI/DP Interface Control L~gic - Port Initiated
Read Of CCI ••••••••••••••••••••••••••• •• 5-59
CCI/DP Interface Control Logic - Unsolicited
Request Operations. • ••••••••••••••••••••••••••• 5-61
Port Clocks 5-66
Stall Mode Timing 5-67
Suspend Mode Timing ••••••••••••••••••••••••••••••• 5-68
Interrupt, Initialize, And Power Control
Block Diagram 5-70
Interrupt Logic....... 5-73
Interrupt Sequence •••••••••••••••••••••••••••••••• 5-74
Initialize Logic 5-76
Initialize Sequence ••••••••••••••••••••••••••••••• 5-78
Power Control Logic ••••••••••••••••••••••••••••••• 5-80
Powerup sequence •••••••••••••••••••••••••••••••••• 5-81
Power Fail Sequence ••••••••••••••••••••••••••••••• 5-82
Power-Fail And Power-Up Interrupt Signals ••••••••• 5-88

CMI Bus Signals....................... • •• 6-5
CMI Data And Command/Address Formats ••••••••••••••• 6-6
CMI Write Timing ••••••••••••••••••••••••••••••••••• 6-9
eMI Read Timing ..•.....••.....•••••......•..•.•... 6-10
CMI Write Vector Timing ••••••••••••••••••••••••••• 6-l2
CCI Block Diagram........................ • •• 6-13
Flow Diagram of Port Initiated Transfers •••••••••• 6-l7
Write Vector Function Flow Diagram •••••••••••••••• 6-20
Flow Diagram Of Unsolicited CMI Transfers ••••••••• 6-22
Load Flow Ciagram for CMD/ADDR HI,
ADDR LO, and Byte Mask Registers •••••••••••••••••• 6-25
CCI Register Control L~gic •••••••••••••••••••••••• 6-27
Load XMIT File Flow Diagram ••••••••••••••••••••.•• 6-30
Issue GO Flow Diagram ••••••••••••••••••••••••••••• 6-32
GO/DONE Log ic ••••••••••••••••••••••••••••••••••••• 6-33
Arbitration Flow Diagram •••••••••••••••••••••••••• 6-35
Arbitration Logic 6-36
Flow Diagram Of Port Initiated
Command/Address Cycle ••••••••••••••••••••••••••••• 6-38
CCI Control L~gic ••••••••••••••••••••••••••••••••• 6-40
Unload XMIT File And Status Cycle Flow Diagram •••• 6-42
Status Cycle And Load RCV File Flow Diagram ••••••• 6-46
Unload RCV File Flow Diagram •••••••••••••••••••••• 6-49
Issue Interrupt Flow Diagram •••••••••••••••••••••• 6-5l
Issue Interrupt Logic ••••••••••••••••••••••••••••• 6-53
Write Interrupt Vector Flow Diagram ••••••••••••••• 6-54

xi

6-25
6-26
6-27
6-28

6-29

6-30
6-31
6-32
6-33
6-34

B-1

C-l
C-2
C-3

C-4

CONTENTS

Page

Interrupt Vector •••••••••••••••••••••••••••••••••• 6-56
Unsolicited Decode And Register Logic ••••••••••••• 6-59
CI750 Address Responses ••••••••.•••••••••••••••••• 6-61
CI750 CMI Address Space vs Register
Decoder Outputs ••••••••••••••••••••••••••••••••••• 6-62
Flow Diagram Of Unsolicited
Command/Address Sequence •••••••••••••••••••••••••• 6-64
Read/Write CCI Flow Diagram ••••••••••••••••••••••• 6-67
Flow Diagram Of CIPA Transfer Request ••••••••••••• 6-70
write DP Flow Diagram ••••••••••••••••••••••••••••• 6-73
Read DP Flow Diagram •••••••••••••••••••••••••••••• 6-75
CNFGR Register L~gic •••••••••••••••••••••••••••••• 6-78

Flow Diagram Symbols ••••••••••••••••••••••••••••••• B-l

Maintenance Address Register (MADR) Bit Fields ••••• C-2
Maintenance Data Register (MDATR) Bit Field •••••••• C-4
P~rt Maintenance C~ntrol/Status Register
(PMCSR) Bit Fields ••••••••••••••••••••••••••••••••• C-6
Configuration Register (CNFGR) Bit Fields •••••••••• C-8

xii

1-1

2-1
2-2
2-3

3-1
3-2
3-3

4-1
4-2
4-3
4-4

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11

6-1
6-2
6-3
6-4
6-5

C-1

CONTENTS

Page

TABLES

CI750 Related Documents •• . •• 1-3

Link state Diagrams •••
Link Clocks •••••••••••
N Load Mux Selection ••

• •• 2-11
•• 2-25
.2-48

Link
Load
Read

Control Codes
Buffer Select
Buffer Select

Vs PB Function Commands. .3-14
Code ••
Code ••

Microword Fields ••••••••••••••••••
Maintenance Mux Selection Code ••••
Microsequencer Control Functions ••
Branch Conditions •••••••••••••••••

CIPA
LSA

Bus signals •••••••
Mux Selection Code.

MD Bus
PMCSR

Data Sources ••
Bi ts

ALU Source Code •••
ALU Function Code.

.
ALU Destination Code •••
IB DST Code ••••
IB SRC Code ••••••••••••
REG SEL Code •••••••••••
Port Clocks •••

CMI Bus Signals.
Functionn Code ••
MUXA/MUXB SEL <B:A> Code ••
Interrupt Vector Values ••
CI750 I/O Slots •••••••••

.

•••••• 3-15
• •• 3-16

• ••• 4-8
•• 4-12

•••. 4-20
• •• 4-26

••• 5-8
.5-13

••••• 5-17
.5-21

••• 5-25
•••• 5-25

••••••••••• 5 - 26
••• 5-52
• •• 5-53

• ••• 5-56
• •• 5-63

••• 6-2
. 6-7

•••• 6-39
••••••••••••• 6 - 57

•••• 6-60

CNFGR Bi ts •••••• . • • C-9

xiii

CHAPTER 1
INTRODUCTION

1.1 MANUAL SCOPE
This document provides a technical description of the CI750
computer interconnect hardware. It does not treat the CI750 port
architecture or other software applications such as the CI750 port
driver, command queues, or the VAX/VMS operating system.

A basic description of the CI750 computer interconnect is given in
this chapter.· The CI750 contains four extended hex "L" series
modules. Chapters 2, 3, 5 and 6 provide a detailed description of
each of the four modules. Chapter 4 describes the microcode
control store and associated control log ic. By describing the
control store, its addressing logic, and its branching logic in a
separate chapter it can be treated as a single cohesive function
although the hardware is distributed over two modules (packet
buffer and data path).

Three appendixes supplement the information contained in
manual. Appendix A defines the mnemonics found within
document. Appendix E explains the symbology used in the
diagrams. Append ix C is a descr iption of hardware reg i s ters
for maintenance purposes.

1.2 THE COMPUTER INTERCONNECT (CI)

this
this
flow
used

The computer interconnect (CI) (Figure I-I) is a high-speed,
serial data bus that is used to link computer subsystems (nodes)
to form a CI cluster. Typically, the cluster is confined to a
computer room environment. Nodes may consist of CPUs and memory.
Nodes may also include intelligent mass storage, communication, or
data acquisition subsystems.

Features of the CI include:

o Dual signal paths capable of simultaneous operation

o 70-megabit-per-second bandwidth and transfer rate

o 32-bit CRC generation and checking

o Low error rate

o Packet-oriented data transfers

o Immediate acknowledgement of the reception of a packet

o Contention arbi tration at 1 ig ht load ing and round- robin
arbitration at heavy loading.

o Internal and external data looping for diagnostic
purposes.

1-1

T . T

R
STAR

R

COUPLER A
VAX CI

.
CI VAX

11/750 750 ~ - 750 11/750

T T

R ~ R

STAR
COUPLER B

T T

R R

VAX CI CI VAX
11/750 750 750 11/750

T T

R~ R

MKV84'()127

Figure 1-1 Four-Node CI Cluster

1-2

Each node within a cluster connects to the computer interconnect
via a CI750 interface that provides two separate signal paths.
Dual paths provide a high degree of data availability between
nodes. One pair of nodes can communicate over one path (path A)
while another pair of nodes communicates over the second path
(path B).

Each path contains a central star coupler (SC008) that receives
the data transmitted by a node and distributes it to the other
nodes within the cluster. A single CI path consists of a pair of
bus cables (one for transmit, one for receive). These cables
provide the connection between a node and the signal distribution
coupler (star coupler) for that path.

1.3 RELATED DOCUMENTS'
Table 1-1 is a list of documents providing additional information
related to the CI750.

Table 1-1 CI750 Related Documents

Item Title

1 CI750 User's Guide

2 SC008 star Coupler
User's Guide

Document
Number

EK-C I750-UG

EK-SC008-UG

1-3

Contents

Contains instructions
for unpacking,
installing, and
acceptance testing
the CI750. A physical
description of the
CI750 is also pro­
vided. Information
is also provided on
the CI750 backplane
jumpers.

Contains a descrip­
tion of the SC008
star Coupler. Also
provides instructions
for unpacking and
installing the
various Star Coupler'
configurations.

Table 1-1 CI750 Related Documents (Cont)

Document
Item Title Number

3 VAX-ll/750 Central EK-KA750-TD
Processor unit

4

5

6

7

Technical Description

H7202D Power Supply
Specification

H7202B Power System
Technical
Description

VAX Architecture
Handbook

SP-H7202-D

EK-PS730-TD

EB-19580-20

VAX Hardware Handbook EB-2l7l0-20

1-4

Contents

Contains a general
overall description
of the VAX-ll/750
plus a detailed
discussion of the
central processor
unit. Included in
this discussion is a
complete description
of the CMI bus
including bus sig­
nals, timing, CMI
protocol, and the
VAX-ll/750 modules
that interface with
the CMI.

Contains complete
mechanical and
electrical specifi­
cations for the
H7202D power supply.
Also included is a
general description
of the H7202D.

Contains a physical
and functional
description of the
H7202B power supply.

Contains a descrip­
tion of the VAX
family architecture,
including data
representations,
instructions,
reg isters, and
operational modes.

Provides a hardware
overview of the VAX
family. Hardware
descriptions include
the 11/780, the
11/750, and 11/730.

1.4 THE CI750 INTERFACE
The CI750 is the interface used to connect a VAX-ll/750 system to
the CI cluster. It connects between the CPU memory interconnect
(CMI) of the host system and the CI cluster. Figure 1-2
illustrates the CI750 connection.

The CI750 is an intelligent interface that performs the function
of a buffered communications port. It utilizes the queue structure
provided under the VAX/VMS operating system to transfer messages
and blocks of data between the hos t' s memory system and other
nodes within the CI cluster. By providing data buffering, address
translation, and serial encoding and decoding, the CI750 reduces
the amount of overhead software processing required to complete
high-level intercomputer communications.

The four modules containing the CI750 logic are listed below.

1. Link Interface Module (ILl) LOIOO
2. Packet Buffer Module (IPB) LOIOl
3. Data Path Module (CDP) L0400
4. CMI CIPA Interface Module (CCI) L0009

Figure 1-3 illustrates the configuration of the CI750 modules.
The CCI module is installed into one of the three MBA option slots
in the VAX-ll/750 backplane. The other three modules are housed
in a CI750-C Computer In terconnect Port Adapter (CIPA) expander
cabinet. The CI750-C expander cabinet is commonly referred to as
the CIPA cabinet and will be so referenced throughout this manual.
The CIPA cabinet is connected to the host CPU cabinet by a 40-pin
C IPA bus cable. As shown in Figure 1-3, the cable actually
interconnects the CCI module (in the host CPU cabinet) with the DP
module (in the CIPA cabinet).

Figure 1-4 is a block diagram of the CI750.
following discussion of the CI750 modules.

1.4.1 Link Module

Refer to it in the

The link module provides the interface to the CI bus and has the
capability of servicing both CI paths. The module is functionally
divided into a transmit path and a receive path with a Cyclic
Redundancy Check (CRC) function shared between the two channels.
The link can transmit or receive over only one CI path at a time
due to the common CRC logic being used by both channels.

Data packets are received from the packet buffer (PB) module over
the XMIT DATA BUS, and are appended with header information and a
trailer. The header functions to identify the source and
destination of the packet. Node address switches provide the node
with an address on the CI cluster. The packet header contains this
address as a source identification. The trailer serves to keep the
node receiver locked up while the last data bytes in the packet
are being processed.

1-5

VAX-11/750

L MEMORY
~ ADAPTER

"""'- UNIBUS
j~ ADAPTER
u

- MASSBUS - ADAPTER

TX/RX A STAR

- ~ COUPLER A
CI750 TX/RX B {{ -, , STAR

COUPLER B

MKVB4.o128

Figure 1-2 CI750 Connection

1-6

I--'
I
~

r- ~A;:-;;/;;;;- - -,
I I
I I
I I
I CCI

MODULE I LOO09

I U I
I I
L _____ J

r---
I
I
I

I
I

DATA
PATH
MODULE
L0400

C1750-C (CIPA CABINET)

PACKET
BUFFER
MODULE
L010l

-- ---,
I
I
I

LINK
MODULE
L0100

ffi TXPATHA
RX PATH A
TX PATH B
RX PATH B

L __ --------

I
I

-...I
MKV84-0129

Figure 1-3 CI750 Configuration

HOST c.pu CA~INET

(VAX- II/7S"O)
r- - - --------- ---- --- -- - - - - ----------
I
I
I
I

r-____ ~RECEIVE~----_,--~
WRITE

PATA
REG I

C I

M :
I lo.IJ..Io....j-IJo<Q..LQ,...~

B
U
S

eel:
HODULE

CIPA
BuS

uS IS

cr. 7--rC-C.

BRANCH
CONDITIONS

DATA PATH

"ODl/Lt

(CIPA CABINEr)

---f------r---------------
I I
I XMIT I

BUFFERS

I I
I
I

PORT DATA

BUSMD

RCVR
BUFFERS

CI750 CONTROL
IIICI\.OWORD

MICROCODE
CONTROL
STORE

PACKET BUFFER

NODUL.£

figure 1-4

1-8

LINK

MOOl/LE

CI7S0 Block DIagram

The CRC log ic uses the packet data bytes to generate four CRC
check bytes that are appended to the data packet. The CRC bytes
are unique for the specific data bytes in the packet. The bytes
are used for error checking at the packet destination.

The link transmitter converts the data packet from a byte format
to a 70-megabit-per-second serial format and then applies it to a
Manchester encoder.

The Manchester encoder combines the serial data with the bit rate
clock to produce a modulated (phase encoded) carrier for the C I
bus.

The path selection log ic selects the CI path (A or B) for the
transmission. The path selection is under microcode control.

Carrier detection logic monitors the two CI paths and connects the
receiver channel to whichever path is active.

The serial data from the CI is applied to a Manchester decoder
which separates the signal into its clock and data components. The
clock and data signal components are applied to the link receiver.

The link receiver converts the packet data from a 70 megabit per
second serial format to a byte format.

The link receiver then supplies the packet data to the CRC logic.
The CRC logic validates the packet by checking the packet data
against the packet CRC bytes. If a CRC error is detected, no
response is returned to the transmitting node.

If there is no CRC error, the packet is sent to the PB module over
the RCVR DATA bus. If the PB module can accept the packet, the
link returns a positive acknowledgement (ACK) to the transmitting
node. If the buffers on the PB module are full and cannot accept
the packet, the link returns a NACK to the transmitting node which
will then retransmit the packet.

1.4.2 Packet Buffer Module (PB)
The PB module provides buffering for the data packets transferring
through the CI750. Two transmit and two receive buffers (A and B)
are provided. Each buffer has a capacity of lK. When data packets
are being transmitted, transmit buffer A is fi lIed from the data
path (DP) module over the PORT DATA bus. The next data packet is
loaded into buffer B whi Ie the 1 ink is unload ing the data from
buffer A.

Likewise, received data packets are loaded into receive buffer A
from the link module over the RCVR DATA bus. The following data
packets are loaded into receive buffer B while the DP is unloading
the data from receive buffer A.

1-9

The CI750 microcode resides in a 3K RAM/PROM control store located
on the PB module. The control store RAM/PROM outputs a 4 7-bi t
microword that controls and regulates operations throughout the
CI750. Stepping of the microcode is controlled by a microsequencer
which samples the next address field of the microword. The
microcode is also subject to branching conditions via branching
logic located in the DP module. The branching logic tests various
conditions throughout the CI750. The test results are ORed with
the microsequencer output to provide branching of the microcode
sequences.

The CI750 control microword can be read by the host system via the
MD bus in the DP module.

Under certain conditions
error) the host system
starting address via the
register.

(system initialization or detection of an
can force a routine by inputting the

DP IB IN bus and the maintenance address

1.4.3 Data Path Module (DP)
Data flow within the DP is under microcode control. The microcode
implements this control by selecting the source and destination
for the data on the main CP internal bus (IB). There are several
possible data sources and destinations for the IB bus. These are:

1. PB IN and PB OUT registers

2. XBIR (external bus input register) and XBOR (external bus
output register)

3. LS (local store)

4. VCDT (virtual circuit descriptor table)

5. ALU (arithmetic logic unit)

6. CS (control store)

7. MD (miscellaneous data)

The PB IN and PB OUT registers interface the DP to the PB via the
PORT DATA bus. The PB OUT reg ister can be an IB bus destination
(via the IB IN bus) while the PB IN register can be a source for
the IE bus (via the MD bus). The three DP buses (IB, IB IN, MD)
are 32 bits wide. The PB IN and PB OUT registers accomplish the
format conversions necessary to interface with the 8-bit PORT DATA
bus.

1-10

The XBIR and XBOR registers interface the DP to the CCI module via
the CIPA bus. The XB IR reg ister can be a source for the IB bus
while the XBOR register can be an IB bus destination. The data on
the CIPA bus is in a 16-bit word format. The XBIR and XBOR
registers accomplish the format conversions necessary to interface
with the 32-bit IB bus.

LS is 256 x 32 of RAM space used to store software status blocks
and software registers associated with the C1750 port
architecture. LS can be either a destination (via the IB IN bus)
or a source for the IB bus.

The VCDT is 256 x 16 of RAM space used to store CI node
parameters. The VCDT can be ei ther a destination (via the IB IN
bus) or a source for the IB bus.

The ALU is used to perform general purpose arithmetic and logical
operations. It interfaces directly with the IE bus where it may
serve as either a source or a destination.

The CS in the PE can be read or written from the DP IE bus. The
CS can be a data source via the MD bus, or a data destination via
the IB bus.

The MD bus can access other miscellaneous data (e.g., selected
registers, microword field) which then becomes the data source for
the IB bus.

1.4.4 CMI CIPA Interface Module (CCI)
The basic function of the CCI module is to interface the CI750
with the VAX-ll/750 CMI bus. All CMI protocol and timing must be
followed while transferring data to and from the CMI.

XMIT (transmit) and RCV (receive) files act as isolation buffers
for data transferr ing through the C I 750. The cr.n s ide of the
files are loaded and unloaded under CMI timing and control while
the DP side of the files are loaded and unloaded under CI750
microcode control.

In a port initiated operation (CI750 is CMI bus master), the
microcode loads command-address data from the the DP into the
CMD/ADR reg ister. The command-address data routes from the CIPA
bus to the CMD/ADR register via the LTCHD CIPA D bus.

1-11

If the command-address data specified a write operation, the
microcode also loads CI write data from the DP into the XMIT file
via the same path. Up to four data longwords can be stored in the
XMIT file. The microcode then signals the CCI that write data is
ready in the XMIT file. Upon being signaled by the microcode, the
CCI arbitrates for the CMI bus. When the CCI has won control of
the CMI bus, the command-address data is unloaded from the CMD/ADR
register onto the CMDADDR bus. The command-address data is
selected by a mux and coupled to the CMI DATA lines on the CMI.
The XMIT file is then unloaded onto the CCI XMIT DATA bus where it
is mux selected for the CMI DATA 1 ines. The data from the XMIT
file is written at the CMI address specified in the
command-address data. The transfer of data from the CMD/ADR
register and the XMIT file to the CMI is controlled and timed from
the CMI bus.

If this is a port initiated read operation, the CMD/ACR register
is loaded, the microcode signals the CCI that the command-address
data is ready, the CCI arbitrates for the CMI bus, and the
command-address data is placed onto the CMI. The CC I then takes
the read data off the CMI DATA lines and loads it into a Receive
Write Data Register and then into the RCV file. Up to four data
longwords can be stored in the RCV file. The transfer of the read
data from the CMI to the RCV file is controlled and timed from the
eMI bus. The microcode is notified that read data is in the RCV
file whereupon it proceeds to unload the RCV file onto the CCI RCV
DATA bus. The data is then coupled to the DP via the CIPA bus.

Note the reversal in orientation of the "transmi t" and "rece ive"
terms from how they were used in the other Cl750 modules.
Prev iously, "transrni t" had been used in the sense of tran smi t ting
data out to the CI bus, and "receive" in the sense of receiving
data from the CI bus. In the CCI, "transmit" is used to indicate
the transmission of data to the CMI bus, and "receive" is used to
indicate the reception of data from the CMI. Hence, the file used
to hold data received from the CI is the XMIT file because this
data is to be transmitted to the CM!. Likewise, the file used to
hold the data to be transmitted to the CI is the RCV file because
this data was received from the CMI.

The CCI module provides for CPU access of many CCI
registers via unsolicited CMI transfers (C1750 is CMI bus
Both reads and writes of the registers can be performed.
unsolicited operations, the Return Read Data Register
Receive Write Data Register are used instead of the XMIT
files, to transfer the data.

and DP
slave) •
During

and the
and RCV

When a DP register is being read, the read data is taken from the
CIPA bus and loaded into the Return Read Data Register via the
LTCHD CIPA D bus. The read data is then unloaded onto the CCI
XMIT DATA bus and then mux selected for transfer to the CMI DATA
lines on the CMI bus.

1-12

When a DP register is being written, the write data is taken from
the CMI DATA lines on the CMI bus and loaded into the Receive
Write Data Register. The write data is then unloaded and passed
to the CCI RCV DATA bus. From here the wr i te data is coupled to
the DP via the CIPA bus.

Another function performed by
interrupts of the host CPU when
,the CI750.

1.4.5 CI750 Power (Figure 1-5)

the CCI module is requesting
service routines must be run on

Power for the CCI module is obtained from the power system in the
host CPU cabinet. The +5.0 V operating voltage and the ground
return are obtained from the card cage backplane as is the UBS
ACLO and UBS DCLO (see VAX-ll/750 documentation listed in Table
1-1). UBS ACLO and UBS DCLO signal a power-up or power-down
condition within the CPU cabinet according to power system
protocol.

Power within the CIPA cabinet (CI750-C) is supplied from an H7202D
Power Supply containing an H7200 +5.0 V Regulator and an H7216
-5.3 V Regulator. The supply receives 120 V, 60 Hz from a
switched outlet on a power controller located in the cabinet. The
supply provides +5.0 V to the three CI750 modules located in the
CIPA cabinet (DP, PB, link) and -5.3 V to the link module. A
ground return is provided from each module back to the supply.
The supply also provides ACLO and DCLO to the DP module to signal
a power-up or a power-down condition within the CIPA cabinet.

Power signals and voltages pass from the power supply to the three
CIPA modules via the CIPA card cage backplane. Figure 1-5
illustrates the routing of the power signals and voltages.

A description of the H7202D power supply is contained in the
engineering specification listed in the table of related documents
(Table 1-1). Also listed as a related document is the technical
description manual for the H7202B power supply. This document is
applicable to the H7202D supply when it is considered that the
H7202D is an H7202B with the H7211 communications module removed
and the H7213 regulator replaced with the H7216 regulator (the
basic difference between the two regulators being their current
ratings).

l-13

HOST cPU
CABINET

(VAX- JI/'ls-I)

eCl MODUL E

FROM CPIi
(bwER SU'fLY

Figure 1-5

CIPA CA 'BIN ET

34
32.

PB MODUL E

RTH +.r.¢v ..
II II I< MODULE

~TH +.r.¢ II -S.3Y

H72lfaD pO'toIER SUPPLY

(WITH H72;~ +SY REGULATOR)
AND H'Zlh -.),3Y RE<;ULATDR

CI750 Power Distribution

1-14

NOTE
The functional block diagrams in Chapter
2 use logical AND and OR symbols. It
does not necessarily follow that a
corresponding gate exists on the link
logic prints. The assertion of inputs A
and B causing the assertion of output C
may be represented on a block diagram by
a single AND gate, yet the engineering
drawing may show that several circuit
stages are involved in the ANDing
operation.

The functional block diagrams in this
chapter are keyed to the link
engineering circuit schematics (CS
prints) by letter designations in
parentheses. The letters specify the
link CS sheet that contains the detailed
logic associated with the functional
blocks in the diagram.

The signal names used in the functional
block diagrams are the names used on the
engineering CS prints. Where other
signal names or notes are used, they are
enclosed in parentheses.

2.1 PACKET FORMATS

CHAPTER 2
LINK MODULE

Formats of the two types of packets, information and ACK/NACK
(acknowledge/negative acknowledge), are described below.

2.1.1 Information Packet
Figure 2-1A illustrates the format of an information packet. The
i nformat ion packet is used to tran smi t both messages and data
across the CI. Parts of the packet are generated by the link and
inserted into the packet as it passes through the 1 ink to be
transmitted.

2.1.1.1 Bit Synchronization The first five bytes of the
packet are for bit synchronization within the link. The bytes are
55 hexadecimal which is an alternating pattern of l's and a's used
to turn on the carrier detect circuits and to synchronize the
Manchester decoder prior to the receipt of useful data. The link
inserts the bit sync bytes into the packet.

2-1

(GENERATED
OR USED
BY LINK)

(LOADED OR
READ BY PORT
PROCESSOR)

(GENERATED
OR USED
BY LINK)

<

<

<

\.

7 a
31T SYNC (55 HEX)

BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

CHAR SYNC (96 HEX)

PACKET TYPE/LENGTH (HIGH)

PACKET LENGTH (LOW)

DESTINATION (TRUE)

DESTINATION (COMPLEMENT)

SOURCE

BODY

CRC·O

CRC·'

CRC·2

CRC·3

TRAILER (00 HEX)

TRAI LER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

A. INFORMATION PACKET

FIRST BYTE
TRANSMITTED

7 a
BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

BIT SYNC (55 HEX)

CHAR SYNC (96 HEX)

PACKET TYPE/LENGTH (HIGH)

PACKET LENGTH (LOW)

DESTINATION (TRUE)

DESTINATION (COMPLEMENT)

SOURCE

CRC·O

CRC·'

CRC·2

CRC·3

TRAILER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

TRAILER (00 HEX)

B. ACK/NACK PACKET

MKV84-1871

Figure 2-1 Packet Formats

2-2

FIRST BYTE
TRANSMITTED

2.1.1.2 Character Synchronization The character
synchronization byte (96 hexadecimal) is used to indicate the
start of useful data in the packet. When the sync character is
recognized during packet reception, it starts the framing of the
serial data into eight-bit bytes. The link inserts the sync
character into the packet.

2.1.1.3 Packet Type/Length (High) -- The packet type and length
(h i g h) by t e s p e c i fie s the t y p e 0 f pac k e t (i n form a t ion 0 r
acknowledge) and contains the upper four bits of a l2-bit packet
length word. Bits <7:4> are the packet type bits. For an
information packet bit 7 is a a (l for an ACK/NACK packet) and
bits <6:4> are a's.

Bits <3:0> are the upper four bits of the l2-bit word that
specifies the packet length. Information packets are of variable
length in one-byte increments up to lK bytes* wi th the minimum
packet length being seven bytes. The packet length specified by
the l2-bit packet length word includes all data from the packet
type and length (high) byte up to and including the last byte of
the body.

* Limi ted by the capaci ty of the buffers in the PB. The link is
capable of processing packets up to 4K bytes.

The port processor supplies the packet type and length (high) byte
as part of the packet.

2.1.1.4 Packet Length (Low) -- This byte contains the low eight
bits of the l2-bit packet length word. The port processor supplies
this byte as part of the packet.

2.1.1.5 Destination (True and Complement) --The destination is
the e igh t-bi t address of the C I node to which the packet is
transmitted. There are two destination bytes; the first being the
true node address value and the second being the complement of the
true value. The port processor suppl ies the destination bytes as
part of the packet.

Redundant destination addresses are used to preclude a single
logic failure bringing down both paths on the CI bus. with a
single address decode circuit, a failure which caused a node to
decode another node's address might result in both nodes
transmitting an acknowledge packet at the same time. This would
result in a collision on the CI bus and would be seen as a "no
response" by the transmitting node.

2-3

2.1.1.6 Source
sending node and
packe t.

The source is the eight-bit address of tile
is provided by the port processor as part of the

2.1.1.7 Body -- The body contains the data and port-processl?d
protocol information. The body is supplied by the port as part of
the packet.

2.1.1.8 Cycl ical Redundancy Check (CRC) Bytes -- Fo llowi ng the
body are four CRC bytes generated by the CRC log ic in the 1 ink..
During a packet transmission, the packet (starting with the packet
type and length (high) byte), is input into the CRC logic which
generates the coefficients of a CRC polynomial. The coefficient s
are expressed as a 32-bi t longword that is a function of tIle
packet data. Each CRC word is unique for the specific packet that
generated it.

During packet reception, the CRe longword is regenerated and
compared to the four CRC bytes generated during the transmission.
An error-free packet results in a match between the two longwordb.

2.1.1.9 Trailer -- The trailer consists of six bytes of all 0's.
It is used to insure that all bits of a received packet have been
shifted through the link front end before the carrier detect logic
senses the end of packet reception. The link inserts the trailer
into the packet.

2.1.2 Acknowledge/Negative Acknowledge (ACK/NACK) Packet
Figure 2-lB illustrates the format of ACK and NACK packets. ACK
and NACK packets are sent by the receiv ing node to inform the
transmitting node that the packet arrived without data loss or bus
collision (CRC checked OK).

If the receiv ing node successfully accepted the packet into the
buffers on the PB, an ACK packet IS returned indicating a
successful bus transaction and storage in the PB. If the receiver
buffers in the PB were full and, therefore, unable to accept the
packet, a negative acknowledge (NACK) packet is sent to inform the
transmitting node that the packet was successfully received but
could not be accepted. The transmitting node must then retransmit
the packet.

2-4

The entire ACK (or NACK) packet is generated and transmi tted by
the link.

An ACK/NACK packet differs froIn an information packet in the
following three ways:

A. It has no body. An ACK/NACK packet only acknowledges
reception of an information packet. It does not transfer
messages or data as such.

B. It has no packet length word. All ACK and NACK packets
are the same length. Consequently bits <3:0> of the
packet type and length (high) byte are O's and there is
no packet length (low) byte.

C. The packet type bits (bits <7:4> of the packet type and
length (high) byte specifies the type of packet as
follows:

Bit 7 = I indicating an ACK/NACK packet (0 for an
information packet)

Bit 6 = 1 for an ACK packet
o for an NACK packet.

2.2 LINK OVERVIEW
The link (Figure 2-2) is functionally divided into a receive
channel and a transmit channel with a CRC function shared between
the two. The overview briefly describes the following four link
operations wi th the transmi t and rece ive channels functioning as
they would for the specific type of packet being processed. The
operations are described as they would occur wi th B following A
and D following C.

A. The reception of an information packet
B. The transmission of an ACK/NACK packet
C. The transmission of an information packet
D. The reception of an ACK/NACK packet

Li nk control log ic rece i ves commands from the port to select and
start link operations, and senses signal conditions to control the
transfer of data packets through the link. A receive clock (RCVR
CLK) and a transmit clock (XMIT eLK) are generated on the link to
time operations in their respective channels.

2-5

IV
I

0'1

(FROM PBI XMIT DATA <'70>
XMIT
DATA
INPUT
LATCH

(FROM PBI RCVR BUFFERS FULL -I

SYNC!
TRAI LER
PROM

XMIT DATA BUS <7:0"·

ACK
TYPE
LOGIC

ACK
SOURCE
LOGIC

ACK
DESTI­
NATION
LOGIC

BUS
TDATA

XMIT
DATA

. :7:0.'

REG

XMIT SERIAL

XMIT
DATA

XMIT "".n } SERIAL PATH

CI8 XMIT (~~BUS) SHIFT XMIT CLK SELECT
REG LOGIC

L.jCRC L ERANSMIT CHANNll

GENERATOR IFIG. 7 171 --- - - ----
(

TO MESSAGE) (TOPBI~.~------------------------------~

(TO PBI

r-
r-

ACK
SOURCE
COMPARE

NODE tjESTINATION
ADDRESS OMPARE
SWITCHES

RCVR DATA <7:0> I RCVR I RDAT <7:0>
--------1. OUTPUT •

REG.

RCVR CLK

. ..J CRC I CRC STATUS
,., CHECKER RECEIVE STATE

LOGIC AND P8

RECEIVE CHANNEL
tFIG '231

.ME
DATA

...... ---......" RCVR SERIAL DATA .. '----....,

8YTE
FRAMER

1 SYNC

RCVR
CLK
GEN.

MDECODE R CLOCK
MANCHESTER CIA RCVR }

DECODER (FROM)
CI8 RCVR CI BUS

11(Afi]{l

Figure 2-2 Link Simplified Block Diagram

2.2.1 Information Packet Reception
Data packets on the CI bus are in serial format at a serial bit
rate of 70 MHz. The data is Manchester encoded (phase encoded)
wherein the clock is incorporated into the modulated signal.

CI paths A and B are input to a RCVR select multiplexer (mux) in
the link front end. Carrier detect logic monitors both CI paths.
When the logic senses the initial presence of a carrier on one of
the paths and if that path has been enabled by the port, it
switches the mux to the active path, selecting CIA RCVR or CIB
RCVR for the Manchester decoder. The port may also select the
internal loop path wherein the mux selects the output from the
transmit channel and loops it back into the port. This feature is
used for maintenance operations.

The mux output is applied to a Manchester decoder where the signal
clock is extracted from the modulated signal. The Manchester
decoder outputs the data (RCVR SERIAL DATA) and the clock
(MDECODER CLOCK) to the byte framer. The byte framer contains the
sync character detector.

The byte framer performs serial to parallel conversion of the
signal data. The framer is enabled by the sync character detector
which activates the framer when it recognizes the sync character.
When enabled, the byte framer ouputs a data byte (RDAT <7:0» for
every eight serial bits received from the Manchester decoder. A
RCVR CLK generator develops RCVR CLK which times the transfer of
data through the link receive channel. SYNC from the byte framer
synchroni zes RCVR CLK wi th the da ta bytes so as to occ u r
approximately centered on the asserted time period of RDAT <7:0>.

The RDAT <7:0> data bytes are coupled to the RCVR output register
and then to the PB as RCVR DATA <7:0>.

The link verifies that the packet is meant for this node by
comparing the packet destination bytes to the node address set
into the node address swi tches. The comparision is made in the
destination compare logic. If a match is not obtained, the
receiver is cleared and reception is terminated.

The packet source byte is extracted from the incoming packet and
placed into the ACK destination register. When the link transmits
an ACK packet in response to the information packet now being
received, it will use the address in the register (the source of
the information packet) as the ACK destination.

2-7

The packet bytes extending from the packet type and length (high)
byte up to and including the last byte of the body, are applied to
the CRC checker. The bytes are acted on by the CRC algorithm which
generates the 32-bit CRC longword. The four CRC bytes in the
packet are compared to the generated longword and if the packet is
free of error, CRC STATUS is asserted to message receive logic.

After the packet trailer has passed through the link front end,
the carrier detect logic senses the end of the packet and informs
the ACK transmit logic. The ACK transmit logic then initiates the
transmission of an ACK packet.

2.2.2 ACK/NACK Packet Transmission
An ACK/NACK packet is generated and transmitted entirely by the
link. No packet data is received from the PB as XMIT DATA <7:0>.

The 1 ink A C K t ran sm i t log i c i nit i ate s the t ran sm ito per a t ion by
enabl i ng the sync/tra i ler PROM wh ich outputs five bi t- sync bytes
and a sync character byte onto the XMIT DATA bus (XMIT DATA BUS
<7:0».

The ACK type logic is then enabled and outputs the packet type
byte onto the XMIT DATA bus. The log ic sampled the state of PB
signal RCVR BUFFERS FULL at the start of the information packet
reception. If RCVR BUFFERS FULL was true, the PB was not able to
accept the information packet just received. In this case, the
ACK type logic outputs the code for a NACK packet. If RCVR BUFFERS
FULL was false, the logic outputs the code for an ACK type packet.

The link control logic then enables the output of the ACK
destination register which outputs the two destination bytes onto
the XMIT DATA bus. The destination value used is the source
address taken from the information packet just received.

The ACK source logic is then enabled and transfers the node
address from the node address switches to the XMIT DATA bus as the
source byte.

The ACK/NACK packet is transferred to the BUS TDATA bus via the
XMI T data reg ister. The packet, start ing wi th the packet type
byte, has also been input into the CRC generator where a 32-bit
CRC longword is generated. After the source byte has been input to
the CRC generator, the link control gates the CRC longword onto
the BUS TDATA bus a byte at a time. The four CRC bytes are thus
inserted into the ACK/NACK packet.

Finally, the ACK transmit logic re-enables the sync/trailer PROM
which outputs six trailer bytes onto the XMIT DATA bus to complete
the ACK/NACK packet.

2-8

The ACK/NACK packet on the BUS TDATA bus is applied to the XMIT
serial shift register which performs parallel to serial conversion
of the signal data. Data bytes are input to the register and then
shifted out serially to the Manchester encoder as XMIT SERIAL
DATA. The bit rate of the serial data is 70 MHz. The register
logic also generates XMIT CLK which times the transfer of data
through the link transmit channel. XMIT eLK is synchronized with
the serial data within the shift register.

The XM IT S ERIAL DATA is appl ied to the Manchester encoder where
the bit rate clock is combined with the serial data to produce a
phase-encoded carr ier. The Manchester encoder outputs the
modulated carrier (ME DATA) to the CI bus. The ACK transmit logic
selects the same CI path used by the information packet just
received. The ME DATA can also follow an internal loop path into
the receive channel if the link is in internal loop mode and the
receiver inputs from the CI bus are disabled. This feature is used
for maintenance testing.

2.2.3 Information Packet Transmission
An information packet is mostly generated
the I ink transm it channel from the PB.
bytes that are inserted by the link are:

A. The five bi t-sync bytes
B. The character sync byte
C. The four eRC bytes
D. The six trailer bytes.

by the port and input to
The information packet

Transfer of an information packet utilizes only some of the
functions described in Paragraph 2.2.2. The functions that are
used operate as previously described.

The port initiates the transmit operation via the message transmit
logic. When the transmit operation is initiated, the link enables
the sync/trailer PROM which outputs five bit-sync bytes and a sync
character byte onto the XMIT DATA bus.

The packet type and length (high) byte and the packet length (low)
byte are provided by the port.

The destination bytes are also provided by the port. When the
destination bytes are on the XMIT DATA bus the link enters the
destination address into the ACK source compare log ic. When the
ACK/NACK response packet is received from the target node, the
packet source byte is compared wi th the contents of the compare
logic. If the correct node responded, a match will be obtained.

2-9

The source byte is inserted by the PB, not by the link. The
address source is the link node swi tches which output the node
address to the PB. The source byte, then, is an input to the XMIT
DATA bus from the PB.

The CRC generator functions to produce the four CRC bytes just as
for an ACK/ NACK transmission. However, the information packet
has a body which is also input to the CRC generator and
contributes to the generation of the CRC longword.

Finally, the link message transmit logic re-enables the
sync/trailer PROM which outputs the six trailer bytes onto the
XMIT DATA bus to complete the information packet.

2.2.4 ACK/NACK Packet Reception
Transfer of an ACK/NACK through the receive channel utilizes most
of the functions described in Paragraph 2.2.1, Information Packet
Reception. The functions also operate as previously described.

with regard to the link receive channel, the basic difference
between the reception of an ACK/NACK packet and an information
packet. is in the handling of the packet source byte. The source
byte IS not entered into the ACK destination register but is
applied to the ACK/NACK source compare logic. The source compare
logic presently contains the destination address of the
information packet just transmitted. The source byte is compared
to the destination address. The address will match if the correct
nodes are involved in the data transfer.

2.3 LINK OPERATING STATES
Pa rag raphs 2.4 and 2.5 prov ide a deta i led descript ion of the
opera t ion of the rece i ve channe 1 and tran smi t channel hardware.
Control of the hardware is a function of commands from the port,
the type of operation being executed, and conditions sensed by the
logic (e.g. errors) during the operation. Hardware control is
implemented via programmable array logic (PALs) which define
various hardware states during each operation. The states are
represented in four diagrams contained in the engineering drawing
set. The operations described by the diagrams are shown in Table
2-1 and described in Paragraph 2.10.

2-10

Table 2-1 Link State Diagrams

Operation Number of States

'Information Packet Reception

ACK Packet Transmission

Information Packet Transmission

ACK Packet Reception

2-11

13

8

13

8

2.4 RECEIVE CHANNEL
Figure 2-3 is a block diagram of the receive channel and should be
referred to throughout Section 2.4.

The receive channel hardware contains both transistor-transistor
(TTL) log ic and open collector emi t ter coupled log ic (ECL). The
carrier detect ion/path selection log ic, Manchester decoder, byte
framer, and sync character detector all use ECL logic. ECL has an
active high and non-active low state on common lines resulting in
a different interpretation of circuit logic than with TTL. A
description of the receive path select mux is given Paragraph
2.4.1.2 as an example for those unfamiliar with ECL logic.

2.4.1 CI Carrier Detection and Path Selection
The carrier detect and path select logic monitors activity on the
CI bus and, when activity is detected, selects the active path as
an input to the link receive channel. The port uses port and link
control PALs to specify which receive channel(s) are allowed to
receive signal inputs frOID the CI bus. The PALs enable the receive
channel(s) by asserting RCVR A ENABLE or RCVR B ENABLE.

2.4.1.1 Carrier Detect Logic Identical and parallel logic
monitors paths A and E. If a carrier is present on CI path A, the
carrier detect A logic sets the carrier detect A flip-flop. If the
port has enabled channel A (RCVR A ENABLE true), ICCS PATH A CDET
asserts and causes CARRIER DET A to be asserted by a flip-flop on
the next RCVR CLK. The fl ip- flop outputs CARRIER DET A to the
carrier select state PAL. If the existing state of the port is
such that a receive channel may be opened, the carrier state
select PAL outputs an asserted ICCS PATH SELECTED and a negated
ICCS PATH B. RCVR PATH SEL A asserts to the receive path select
mux to select CI path A for the mux input.

Note that the receiver carrier detect flip-flop is clocked by RCVR
CLK which resets the flip-flop as soon as the carrier detect A
output negates. Thus, the CI input path to the receive channel is
closed once the carrier presence is no longer sensed.

Had activity been sensed on CI path B, similar logic would have
selected CI path B for the mux input.

FORCE PATH A and FORCE PATH B from the link control logic force a
corresponding path selection from the carrier select state PAL.
When the port commands a message transmission, the path selected
for the transmission is reserved in the receive channel in
preparation to receive the ACK response.

The port and link control PALs can also select the internal
maintenance loop (INT MLOOP) wherein ME DATA from the transmit
channel is selected for the mux input. The true state of INT MLOOP
inhibits both RCVR PATH A and RCVR PATH B which causes the mux to
select the ME DATA input signal.

2-12

{fiG. 2 12)

CNODE
,

eNODE ADDRESS· 3 0 ~ ADDRESS
(tiC) L lLJ) <70> 1 ACI< ACK SlJUhCl CMf.>

} leiG 1,1, SUUHU::

I COMPAH, r~:--l f--I 10)

-' CHECKER I CRC STATuS
[IfiG ~ JUI r ,"WCC"'" ~ NuDE ADH SW (FIG) MR STATE C L":':'~2~ -.J ,,,,

TOSTCMP ~ ,r (t IG '2 .!ti, 2·JO)
230 . ~ D iJ::,1' eM,..

. FIG.) AR STATE B D IJI/
1228

SWAP THUE, COST CMP

COMP ADR K
TRUE

I 2111 q DESTINATIUN

<3
Mfi ~,iAn L}

COMPARE
,~ I l , .' j'ul

D

I
AR~TATfI

10) lJECUDER I It"ll, /ltil
NODE
ADDRESS FF

/ I
. 70 ' r CUMPlEMENT 8-

lSI ME DATA '""'~~: K

MUEeOllEA c~vJ
If IG 2·121

ADR SW ~ DESTINATION
COMPARE

ACvR CIA
IKI PATH

{D) RCVR

NODE ADDRESS' 3 0 __
(FILi\ MR STATE 0

<>1 iu 7 t\iS SE lECT

H~ 2201 MuX

230 1 AR STATE c1 0)-
(FILL '24)

, 33{
RCVR

RDAT HEG 7 I, ~ MDECODER

1 ~r-12BI

L
(F IG)

CLOCK HLvR eAT" Sf l B~
22B MSG END I HTO

RDAT
HCvR PATH SEl A IFIG 23D!

I~ATA6 211i REG ReVR
ENASYNl

. 70· SE RIAL SYNC UlAR FORCE PATH A}

I
CAHRllH II CARRIER

DATA DET FORCE PATH B (fiG L·il) DI::TlCl DUEeT
RCVR DETECT
DATA ENABll

A " RDAT lSI lSI
10 RCVR REG PA'

OUTPUT ,7 [), 4 BYTE ~NC
)FIG L 1:11 ~ + ,70 ICC~PAIH

DATA lJ RCvR 0 FRAMER CAHRIE H r--- Sf. T
REG {FIG 2 I) I fl<, 1 '"21e)~ DE T B (j CUt:: 1 0 il C_~CVR DATA lJ lSI CAR
(F) REG DET \ fiG 22B.230 FF DEl u

RCVR ClK {f I ICC~ PA Tt1 Ff IJ)
DATA SE l,CH 0 CARRIER

ltFROM)
fCI BUS

,,,!
'" ,,) 1 SYNC

RCVCR]

... CI-
PARITY

oi--
CHAR SYi'.C SELECT cf.--RCVR ~ RCVR (FIG 121::LL3UJ

1-(DATA
PARITY
FF
IFI ci--

L RCvR
DATA
PARITY
GEN VALID RCVR PARITY (FIG)
IF)

221

J~()H.

LETTER DESIGNATIONS IN PARENTHESES
RUEH TO ENGINEERING DRAWINGS
CONTAINING COAHESPONoEING lOGIC.

elK
GENERATOR I::XT$yI\lC
IF IG L 1O) (f-IG 22:.)

IC('S STATE

R NT PAL
flG227 ~1 r---

IJI CAHHltfi
0

DET A FF

1- I ~ j(J 226 J 91 IJI

~
C

L---

l
HC\lH A fNAI::ILC

AlVR B ENABLE

ENA INT Ml(JOP

Figure 2-3

2-13

JCCSPAIH
Sl T

ACOEr~ r- on, CAH
'''' DEl

A

til-VH U"

I
" 1>1 C

HCVIi A I:.NAHLE

HCVR 8 ENABLE

..----.. INT Ml DOP

\lMl~ MX STATE A

Rev
ClK

}lflG 2211

(FIG 225)

Receive Channel Block Diagram

2.4.1.2 Receive Path Select Mux -- EeL Logic -- The receive path
select mux is on sheet S of the eng ineering drawi ng set. The
detailed operation of circuit logic is not usually described in a
functional description manual, however, the operation of the rnux
is described here as an example of the ECL log ic referred to in
Paragraph 2.4.

Refer to Figure 2-4. If RCVR PATH SEL A is true, the output of OR
gate A can follow the CIA RCVR signal input. The signal RCVR PATH
B is false which holds the output of OR gate B low. In ECL logic,
a signal low is the non-active state and a high is the active
state. Any gate connected to a common line can pull the line up to
the active state. Thus, OR gate B is held inactive (low) while OR
gate A transfers the CIA RCVR signal to the Manchester decoder.
The true state of RCVR PATH SEL A also holds the LOOP OR gate in
the inactive state.

If RCVR PATH SEL B we re true (RCVR PATH SEL A fal se), OR g ate A
and the LOOP OR gate would be held inact ive and OR gate B would
function to transfer CIB RCVR to the Manchester decoder.

If the internal maintenance loop is selected, both RCVR PATH SEL
signals are false holding OR gates A and B in the inactive state.
However, the LOOP OR gate is now active and transfers ME DATA to
the Manchester decoder.

2.4.2 Manchester Decoder

2.4.2.1 Phase Encoding Phase encoding (Figure 2-5) is a
modulation technique in which a signal phase reversal occurs for
each bit of information. A "1" is defined as a posi t ive level
followed by a negative transition, while a "0" is defined as a
negative level followed by a positive transition. Phase reversals
are at the data rate or at twice the data rate. Consecutive l's or
consecutive O's will cause phase reversals to occur at twice the
data rate (Figure 2-5A). Alternate l's and O's cause flux
reversals to occur at the data rate (Figure 2-5B).

2-15

CIA RCVR A

RCVR PATH SEL A

(FIG.)
2-3

LOOP

ME DATA

RCVR PATH SEL S

CIS RCVR

NOTES:
1. THE LOGIC IN THIS FIGURE IS CONTAINED

ON SHEET S OF THE ENGINEERING DRAWINGS.

TK-8614

Figure 2-4 Receive Path Select Mux-ECL Logic

2-16

o o o o o

B. ALTERNATE 15 AND Os

A. CONSECUTIVE 15 AND Os
TK·8600

Figure 2-5 PE (Phase Encoded) Data

2-17

2.4.2.2 Decoder Logic The Manchester decoder decodes the
encoded signal data by separating out the 70 MHz bit rate clock
(MDECODER CLOCK) leaving the serial data (RCVR SERIAL DATA). The
decoder consists of a flip-flop with the signal data from the
receive path select mux as the D input. The flip-flop clock input
is derived from XORing the delayed output of the receive path
select mux (delayed 10.7 ns) with the output of the decoder
fl i p- flop.

Figure 2-6 illustrates the action of the decoder logic. The signal
data from the rece ive path select mux is shown wi th 1 or a
transitions at the center of each bit cell. With a 70 MHz bit
rate, the width of the bit cells is 14.28 ns. The output of the
delay line is seen as the signal data delayed 10.7 ns. XORing the
del aye d d a taw it h the f 1 i p- flo p 0 u t put (R C VR S E R I A L D A T A)
generates the MDECODER CLOCK waveform. Note that in the case of
alternating l's and a's, the width of the MDECODER CLOCK pulse is
the set and reset times of the decoder fl ip- flop. In the case of
consecutive l's or a's, the clock is identical to the inverse of
the delayed data.

The MDECODER CLOCK is at 70 MHz with a 14.28 ns period. The XOR
action serves to generate the clock's rising edge 1/4 into each
bit cell. This centers the rising edge in the valid strobe area
(first half of the bit cell).

2.4.3 Sync Character Detect Enable PAL
The purpose of the sync character detect enable PAL is to assert
ENA SYNC DET to the byte framer when a packet is expected. The PAL
monitors CARRIER DET A and CARRIER DET B and asserts ENA SYNC DET
when it senses that a sig nal carr ier is be ing rece i ved. The PAL
negates ENA SYNC DET during node transmissions (FORCE PATH A,
FORCE PATH B) so the link will not respond to its own
transmissions. The PAL asserts ENA SYNC DET immediately after
informat ion packe t transm iss ions in ant ic ipa t ion of the ACK (or
NACK) response.

The byte framer contains a sync detector which is enabled by ENA
SYNC DET. The sync detector looks for the packet sync character as
a means of recognizing that a packet is being received. When the
detector recognizes the sync character, it enables the byte framer
to start processing the packet bytes. By keeping the detector
disabled except when a packet is expected, the sync character
detect PAL prevents the detector from erroneously recognizing
noise as a sync character.

The sync character detect enable PAL is discussed in more detail
in Paragraph 2.10.2.2.

2-18

N
I
I-'
\0

OUTPUT FROM RECEIVER
PATH SELECT MUX

DELAY LINE OUTPUT

MDECODER CLOCK

BIT CELL =14.28 NS

o o

!-O

RCVR SERIAL DATA

o

o DELAY = 10.7 NS

o DECODER FLlP·FLOP SET TIME .

• DECODER FLlp·FLOP RESET TIME

o VALID STROBE AREA.

o

o o

Figure 2-6 Manchester Decoder Timing Diagram

TI(·8609

2.4.4 Byte Framer
The byte framer is enabled when it rece i ves the sync character
byte. Once the framer recognizes the sync character, it then
functions to convert the serial signal data from the Manchester
decoder into eight-bit data bytes for the RDAT bus.

As shown in Figure 2-7, RCVR SERIAL DATA is input to the RCVR
serial shift register. The register is held in the load state by
the negated state of E197-R2 (Figure 2-8), thus no data is shifted
into the register. When a carrier presence is sensed at the front
end of the receive channel, the sync character detect enable PAL
also senses the carrier presence. If the PAL deems that this is a
valid time to receive a packet,it asserts ENA SYNC DET to the SYNC
ENA flip-flop. On the next RCVR CLK, the flip-flop outputs SYNC
ENA to another flip-flop which asserts E197-R2 to the RCVR serial
shift register. The true state of El97-R2 enables the register by
changing its state from load to shift. RCVR SERIAL DATA is now
shifted into the register at the 70 MHz bit rate by MDECODER
CLOCK. Figure 2-8 illustrates the timing of the enabling of the
RCVR serial shift register.

The RCVR serial shift register outputs eight-bit bytes onto a data
bus. The data bytes are then applied to the RCVR input reg ister.
The sync detector monitors the data on the bus looking for the
s y n c c h a r act e r by t e • Wh e nth e de t e c tor r e cog n i z est h e s y n c
character, it asserts El98- 3 t a the sync fl ip- flop. The next
MDECODER CLOCK sets the flip-flop and asserts SYNC to the external
data framer.

Note that only seven of the eight bi ts on the data bus are fed
into the sync detector. The eighth bit is taken from the RCVR
SERIAL DATA being fed into the RCVR serial shift register. Thus,
the sync detector recogni zes the sync character before the last
character bit is shifted into the shift register. The next
MDECODER CLOCK that clocks the last bit into the register, also
sets the sync flip-flop. Hence, SYNC asserts when the sync
character is in the shift register and not one clock pulse later
(Figure 2-9).

When SYNC asserts, the external framer shift register functions to
swi tch the RCVR i npu t reg is te r from the hold s ta te to the load
state (for one clock pulse) every eight MDECODER CLOCK pulses.
RCVR SERIAL DATA continues to be shifted into the RCVR serial
shift register. Every eight clock pulses a data byte is present in
the shift register and on the data bus. At this time the external
framer shift reg ister swi tches the RCVR input reg ister from hold
to load. The next MDECODER CLOCK pulse then loads the data byte
into the register.

2-20

N
I

N
I-'

(F I G. 7 3) ...::E:..;.N:..;.A.:-._...-I
(DATA '70.·)

o

RCVR ClK (DATA' 7:1.·)

IFIG. 73) . :IClK

{ ,,~, ,~';,AC "I" I ::",,, " w'"~"''' 1-".'--1",",,,,"

rSYNC
D7 ~ETECTOR EXTERNAL -1-----,_ . F RAM r R

MrH-r'rlll~R CLOCK RCVR
INPUT
REG
(P)

NOTE
lETTER DESI(iNATIONS IN PARFNTltFSfS
REFER TO ENGINrERING DRAWINGS
CONTAINING COI!Rr"PONDIN(i L()(iIC.

(P) SHIFT REG
~ClK

(P)

ClK

SHIFT IN

MD[,COllf 11 ClOCK

Figure 2-7 Byte Framer Block Diagram

SYNC

IRDAT ..
,'7 n .

(FIG. 23)

TF. ""'3

N
I

N
N

RCVR CLK
(8.75 MHZ)

ENA SYNC DET

SYNC ENA

E197·R2

STATE OF RCVR
SERIAL SHIFT REG.

MDECODER CLOCK
(70 MHZ)

_________ --...:L:..:O:..;.A.;.:D:........J1 :-0 SH I FT

I

• RCVR SERIAL SHIFT REGISTER STARTS TO SHIFT. TK 8608

Figure 2-8 Enabling the RCVR Serial Shift Register

N
I

N
W

MDECODER
CLOCK· 70 MHZ

E19B·3

SYNC

STATE OF
EXTERNAL FRAMER

I I
I I
I}-O

O~O 4)~
I I

LOAD' I SHIFT I
I I

0--1 I I I ' I I 1
I I I I I I I

E199R7 ------.1 n n n lL-
I I I I I I

STATE OF RCVR
INPUT REGISTER LOAD HOLD r=t LOAD n n lL-

RDAT <7:0>

I I I I
0-1 0-1 0-1 0-1

I I I I
Iii i

• SYNC CHARACTER BYTE IN SYNC DETECTOR.

o LAST BIT OF SYNC CHARACTER BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER.

• SYNC CHARACTER BYTE IN RCVR SERIAL SHIFT REGISTER.

o FIRST BIT OF PACKET LENGTH/TYPE BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER.

4) LAST BIT OF PACKET LENGTH/TYPE BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER.

o PACKET LENGTH/TYPE BYTE IN RCVR SERIAL SHIFT REGISTER.

o EXTERNAL FRAMER SHIFT REGISTER STARTS TO SHIFT.

o (DATA <7:0» CLOCKED INTO RCVR INPUT REGISTER.

Figure 2-9 Byte Framer Timing Diagram

TK RSl?

The D7 input to the external framer shift register is tied high.
Before the assertion of SYNC, the framer register is in the load
state, hence the R7 output is true. The true state of the R7
output keeps the RCVR input register in the load state. When SYNC
asserts, the framer shift register starts to shift. The 1 at R7 is
shifted in and through the framer shift register.

Every eight MDECODER CLOCK pulses, the 1 is shifted through to the
R7 output, switching the RCVR input register to the load state for
one clock pulse. As seen in Figure 2-9, the timing is such that a
data byte is on the data bus when the RCVR input reg ister is
loaded. The timing for the first three bytes of a packet is shown
in Figure 2-9.

2.4.5 RCVR CLK Generator
Figure 2-10 is a block diagram of the RCVR CLK genera tor. The
RCVR CLK is derived from a crystal-controlled 70 MHz oscillator.
The RCVR CLK pulses function to time and control the operation of
the receive channel logic. When a signal packet is received, the
RCVR CLK is synchronized to the packet bytes by SYNC received from
the byte framer.

The output from the 70 MHz crystal-controlled oscillator is
doubled to 140 MHz by a frequency doubler. (The 140 MHz is used in
the Manchester encoder in the transmit channel.) The 140 MHz is
divided down to 35 MHz and then applied to a shift register
consisting of four flip-flops. The shift register divides the 35
MHz by four, outputing RCVR CLK at a frequency of 8.75 MHz (period
= 114.28 ns).

Table 2-2 lists the frequency and period of the link clocks. The
XMIT CLK (discussed in Paragraph 2.5.7) is included in the table.

2-24

RCVR ClK

A ~------------------------~~ClK

F RAM E R ----~--=------t D SY N C D SY NC 1---.----11' (
FROM BYTE) SY',C E1539

I--":"':"::~...--.J

FIG.27 FF FF

RCVR TEST ClK

(N) (N)

ClK

D PW
FF
(N)

'----.fClK

EXT SYNC}

(FIG

~---'CHAR

D FF SYNC

(AI

RCVR ClK C

2-3)

(TO MANCHESTER ENCO rr FIG.212

140 MHZ
DER)

70 MHZ 70 MHZ F REO. 140 MHZ ~2

XTAlOSC DOUBLER (T)
(T) (T)

NOTE
lETTER DESIGNATIONS IN PARENTHESES REFER TO
ENGINEERING DRAWINGS CONTAINING CORRESPONDING
lOGIC.

70 MHZc2 35 MHZ
(T)

Figure 2-10 RCYR ClK Generator

Table 2-2 Link Clocks

Frequency (MHz) Period (ns) Clock

70 14.28 MDECODER CLOCK

35 28.57

8.75 114.28 RCVR CLK

8.75 114.28 XMIT eLK

2-25

The register functions to shift a logic low through the flip-flop
chain. When the low is in the rightmost flip-flop, the other
three flip-flops are set. Outputs from the three set flip-flops
are ANDed together to condition the first flip-flop to reset on
the next clock pulse thus re-inserting the low into the flip-flop
chain. The cycle is then repeated.

The left and right portions of Figure 2-11 illustrate the
operation cycle of the shift register. (The center portion
illustrates the synchronization function.) Waveforms 1, 2, 3, and
4 relate to the corresponding points in Figure 2-10. Also shown is
the MDECODER CLOCK and SYNC from the byte framer, and the time
periods that the RDAT <7:0> bytes are in the RCVR input register.
These three signals are time related to each other and are shown
as they appear in the byte framer timing diagram (Figure 2-9). The
35 MHz clock and the shift register waveforms are time related to
each other but are independent of the byte framer timing. The SYNC
signal is used to synchronize the action of the shift reg ister
with the data bytes from the byte framer.

As shown in Figure 2-10, when SYNC asserts, two sync flip- flops
are set by the 35 MHz clock which in turn assert E151-3. The next
35 MHz clock sets a pulse width (PW) flip-flop which negates
El51-3, thus forming an E151-3 pul se to the shi ft reg ister. The
E151-3 pulse synchronizes the register by forcing a reset
condition on the first flip-flop and a set condition on the other
three flip-flops. The next 35 MHz clock pulse places the register
into the conditioned state which is to introduce a logic low into
the first flip-flop. Thus, regardless of where the register was in
its cycle, it is restarted at the beginning of the cycle.

The assertion of SYNC followed by the assertion of E15l-3 is seen
in Figure 2-11. Note that the conditions forced 0l1to the shift
register by the E15l-3 pulse are clocked in by the next 35 MHz
clock pulse (the first flip-flop is reset and the other three are
set). As seen in Figure 2-11, the logic low had reached the second
fl ip- flop when the reg ister cycle was interrupted and reset back
to its starting point. The register cycles from this point on are
in synchronization with the byte frame. This results in the
generation of RCVR CLK pulses approximately centered in the time
period when the packet bytes (RDAT <7:0» are in the RCVR input
register.

2.4.6 CRC Check
The packet bytes on the RDAT bus, up to and including the four CRC
bytes, are input to the CRC checker. If no errors are detected by
the checker, the checker asserts CRC STATUS to the message receive
state logic, indicating the reception of a valid, error-free
packet.

2-26

(0

CD
o

MDECODE R
CLOCK 170 MHZI

3S MHZ

SYNC

E 1539

EXT SYNC

E 151 3

LJ L.-J L-J
G)---l LJ LJ LJ

~~~~~~~ ---'~------------~r---l~ ____________________ ~r---l~ ____________ ~r---l~ ______ _ 
~RDAT '·.70>' }-+-(RDAT <7;0;'" )-4 

It, RCVR INPUT REG. IN RCVR INPUT RE. G 
FOR THIS PERIOD FOR THIS PERIOD 

o LAST BIT OF SYNC CHARACTER BY" CLOCKED INTO RCVR SERIAL SHIFT REGISTER o SYNC CHARACTER BYTE If'> RCVR SERIAL SHIFT REGISTER. 

e FIRST BIT OF PACKET LENGTH/TYPE BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER o LAST BIT OF PACKET LENGTH/TYPE BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER o PACKET LENGTH/TYPE BYTE IN RCVR SERIAL SHIFT REGISTER 

o FIRST BIT OF PACKET LENGTH BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER 

o LAST BIT OF PACKET LENGTH BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER 

o PACKET LENGTH BYTE IN RCVR SERIAL SHIFT REGISTER. 

o FIRST BIT OF TRUE DESTIt>ATIOt> BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER. 

Figure 2-11 RCVR ClK Synchronization 

2-27 

PACKET TYPE/LENGTH BYTE 
PACKET LENGTH BYTE 

1 K·8610 



2.4.7 Destination Compare 
The node address and the complement of the node address are set 
into two sets of eight-contact node address switches. The 
eight-bit output of the complement node address switch is applied 
to the true destination compare logic as CNODE ADDRESS <7:0>. The 
eight-bit output of the true node address switch is applied to the 
complement destination compare logic as NODE ADDRESS <7:0>. 

The true destination byte and complement destination byte are 
applied from the RDAT bus to both destination compare logic 
c ircui ts. The state PALs enable the compare log ic outputs such 
that when the true destination byte is on the RDAT bus, the output 
of the true dest ina t ion compare log ic is enabled. I f the true 
destination byte matches CNODE ADDRESS <7:0> from the complement 
node address switch, TDST CMP asserts indicating that a true 
address match was obtained. Likewise, when the complement 
destination byte is on the RDAT bus, the output of the complement 
destination compare logic is enabled. If the complement 
destination byte matches NODE ADDRESS <7: 0> from the true node 
address switch, CDST CMP asserts indicating that a complementary 
address match was obtained. 

True and complement destination matches assert DST CMP to the 
message receive and ACK receive state logic. 

A polarity reversal in the compare logic results in the output of 
the true node address switch being applied to the complement 
destination compare logic and the output of the complement node 
address switch being applied to the true destination compare 
logic. 

The output of the node address switches is coupled to the compare 
logic via XOR gates. This allows the true address and the 
complement address to be swapped for maintenance testing. 

2-28 



2.4.8 ACK Source Comparison 
The ACK source compare logic is used only during the reception of 
an ACK packet. The ACK packet was transmitted from its source to 
acknowledge an information packet that was transmitted from this 
node. When the information packet was in the transmit channel, the 
destination address was saved and appl ied into the ACK source 
compare logic. 

The ACK source compare logic receives inputs from the transmit 
channel and from the RDAT bus. When the source byte of the ACK 
packe t is on the RDAT bus, the output of the compare log ic is 
sampled. If a match is obtained, ACK SOURCE CMP is asserted 
indicating that the source address of the ACK packet matches the 
destination address of the preceding information packet. 

2.4.9 Receive Data Parity And Channel Output 
Data bytes are transferred from the RDAT bus to the PE via 
receiver output data register. The bytes are output from 
register as RCVR DATA <7:0>. 

the 
the 

The data bytes are also applied from the RDAT bus into a receiver 
data parity generator where odd parity is generated on each byte. 
A ninth input to the parity generator (VALID RCVR PARITY) provides 
a means of introducing parity errors for maintenance testing. The 
output from the parity generator is applied to a parity flip-flop 
which outputs RCVR DATA PARITY to the PB. 

2-29 



2.5 TRANSMIT CHANNEL 
Figure 2-12 is a block diagram of the transmit channel and should 
be referred to throughout Section 2.5. 

2.5.1 Transmit Data Input 
Transmit data from the PB (XMIT DATA <7: 0» is input into the 
transmit channel via the XMIT data input latch and then 
transferred to the XMIT data bus as XMIT DATA BUS <7:0>. The input 
latch is transparent in that the data on the XMIT data bus will 
follow the XMIT DATA <7:0> input so long as the latch is enabled 
by ENA XMIT DATA LATCH from the transmit control logic and by the 
high state of XMIT CLK. When XMIT CLK is low, the latch is 
disabled (closed). 

2.5.2 Bit Sync, Sync Character, and Trailer Bytes 
The bi t synchroni za tion bytes, the sync character byte, and the 
trailer bytes reside in a 32 x 8 PROM. The PROM output is enabled 
by ENA SYNC/TR from the transmit control logic. A five-bit 
address input to the PROM «A4:AO» selects the output bytes which 
are placed onto the XMIT data bus. 

Figure 2-13 illustrates the 32 eight-bit locations in the 
sync/trailer PROM. The five bit-sync bytes and the sync character 
byte are located in the upper area of PROM space. They are spaced 
at every other location starting at address 10101. The six trailer 
bytes are located in between the sync bytes starting at address 
10100. The lower area of the PROM is reserved for possible 
extension of the header to 16 bytes (15 bytes of bit 
synchronization and one byte for the sync character). 

PROM address bits <A4:Al> are obtained from a binary counter which 
is enabled by ENA SYNC/TR CNT from the tran smi t control log ic. 
When ENA SYNC/TR CNT is false, the counter is loaded with starting 
address 1010. When ENA SYNC/TR CNT asserts, the counter counts up 
from 1010 addressing every other PROM location. The PROM's least 
significant address bit (AO) is SEL TRAILER from the transmit 
control logic. When SET TRAILER is false, the PROM sync bytes are 
addressed. When SEL TRAI LER is true, the PROM tra i ler bytes are 
addressed. 

Address bi ts <A4: A2> are moni tored and cause LAST SYNC to be 
asserted to the tran smi t control log i c when all three bi ts are 
true. As is shown in Figure 2-13, this occurs when the last sync 
byte (sync byte 5) is being addressed. 

When the binary counter has counted up past the last trailer byte 
(or past the sync character byte) it overflows and asserts SYNC/TR 
GONE to the PAL state logic. 

2-30 



N 
I 

W 
t-' 

ENA SYNC/TR 

SEl TRAilER (AO) 

(FIG. 2·26) 

BINARY 
COUNTER 
(EI 

XMIT ClK .1 ClK 

ENA XMIT DATA lATCH 

(FIG.321 XMIT DATA <70> D 

XMIT 
DATA 
INPUT 
lATCH 
(EI 

XMIT ClK .IHolD 

(FIG. 2·31 C NODE ADDRESS <7,0> 

[

ENA ACK SRC 

(FIG.2.311 ENA ACK TYPE 

ENA ACK CDST 

RCVR 
BUFFERS 

(FIG. 391 FUll 

(FIG. 231 RDATA REG <70> 

(FIG. 2301 MR STATE E 

RCVRClK ~ 
ClK ACK DST REG 

(A4.AI)I,,(A4AOI 
\ 

SYNC/ 
TRAilER 
PROM 
(32X81 
IE I 

ADDR 

lAST 

1 SYNC I • (FIG 

IflG '] 26' ENA XMIT DATA PARIT~ TDATA 

XMIT ClK ~D 
/ I I lATCH 

XMIT CU( 

XMIT XMIT 

BUS SERIAL 
TDATA SHIFT 
<1:0> REG 

D (RI 

i( FIG.) SHIFT/lOIlD 

2 I 0 ....:;~+-.\-.l CL K 

CLK 

I~ 1 
GENERATOR 

L IFIG. 2 181 ___ ...1 

XMIT 
CLK 
GEN 
(FIG 2141 

RO 

XMIT CLK 

{
70MHZ 

IFlG.2 101 140 MHZ 

H 
IRI 

{ 
II DRIVER ENII 

IFIG 2]61 B DRiVER ENII 

IFIG 2211 INT MLOoP 

MANCHESTER 
ENCODER 

CIB 
XMIT 

FF 
IT! 

.Ic 

( FIG. 2 25 ) 
FIG 227 

.j( TOCI) 
BI)S 

'--------_. IFIG 231 

DESTINATION 
ADR REG 
IDI 

IFIG 231 

(FIG.2311 _ .. ~.w .. ,_", 

ClK DST 
ADR REG 

i ................... " 

XMIT Cl K 

MXSTATFI~ 
{FIG. '] :n",j 

Figure 2-12 Transmit Channel Block Diagram 

NOTE 
LETTER DESIGNATIONS IN PARrNTH(Sr~ ~,r r n Tr) 

ENGINEfRING DRAWINGS CO~T At~'~Jr; r:OPlH c;pr'"JOI"lG 
lOGIC. 



1 

1 

1 

1 1 

1 1 

START HERE 1 
FOR HEADER_ 1 

START HERE - 1 
FOR TRAILER 1 

1 

1 

o 
o 
o 

1 

1 

1 -
1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 -
0 

0 -
0 

0 

1 -

1 

0 

0 

0 

0 

o 1 1 

o 1 0 

o 0 

o 0 

010 

o 0 1 

o 0 1 

o 0 

o 0 1 

o 0 0 

o 0 0 

o 0 0 

o 0 

1 

1 0 

o 1 

o 0 

1 -
1 0 -
0 

0 0 

1 0 

0 

0 0 

1 0 -
0 1 -
0 0 

1 

1 0 -
0 

0 0 

1 0 

0 1 

0 0 

1 

1 0 -
0 

0 0 

1 

1 0 

0 

SYNC CHARACTE R 

TRAILER 

BIT SYNC BYTE 5 

TRAILER 

BIT SYNC BYTE 4 

TRAILER 

BIT SYNC BYTE 3 

TRAILER 

BIT SYNC BYTE 2 

TRAILER 

BIT SYNC BYTE 1 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAI LE R 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

BIT SYNC BYTE 

TRAILER 

'--------A3 
L-.. _______ A4 

Figure 2-13 Sync/Trailer PROM Space 

2-32 

(HEX) 

(96) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

(55) 

(00) 

TK-8598 



2.5.3 ACK Packet Inserts 
The packet type, source, and destination bytes are inserted into 
ACK packets by the link. When information packets are being 
transmitted, these bytes are inserted by the port and do not 
involve the link hardware. 

2.5.3.1 Packet Type Byte -- The packet type byte is obtained 
from the ACK type logic. The logic outputs a 1 in bit position 7 
signifying an ACK (or NACK) packet. Bit position 6 is a function 
of BUSY which is derived from RCVR BUFFERS FULL from the PB. If 
the receive buffers in the PB are full, the information packet 
just rece ived could not be accepted by the node causing BUS Y to 
assert. This causes a 1 in bit position 6 signifying that a NACK 
packet is being transmitted. If BUSY is false, bit position 6 is 0 
indicating that an ACK packet is being transmitted. 

Bits <5:0> from the ACK type logic are always O. 

2.5.3.2 Source Byte -- The ACK source byte is the complement 
node address (CNODE ADDRESS <7:0» obtained from the complement 
node address switch. The source byte is gated onto the XMIT data 
bus by ENA ACK SRC from the PAL state logic. 

2.5.3.3 Destination Bytes The ACK destination bytes are 
derived from the source byte of the associated information packet. 
The source byte is taken from the RDAT bus in the receive channel 
and clocked into the destination address registers by CLK ACK DST 
REG. RDAT REG <7:0> is entered directly into the true ACK 
destination register while the inverse (complement) is entered 
into the complement ACK destination register. The true destination 
byte and the complement destination byte are gated to the XMIT 
data bus by ENA ACK TDST and ENA ACK CDST, respectively. The 
gating signals are asserted by the PAL state logic to insert the 
bytes into the ACK packet at the appropriate insertion times. 

2.5.4 Destination Address Register 
The destination address register saves the destination address of 
an information packet that is being transmitted. CLK DST ADR REG 
asserts at the correct time to clock the true destination byte 
into the register. The destination byte is used when the 
associated ACK packet is received. It is compared to the source of 
the ACK packet in the receive channel where a match will be 
obtained if the correct node responded to the message 
transmission. 

2-33 



2.5.5 Transmit Data Parity Check 
Data on the XMIT data bus is transferred to the BUS TDATA bus via 
the XMI T data reg ister. The reg ister output is gated to the BUS 
TDATA bus by ENA XMIT DATA REG from the PAL state logic. 

Data from the BUS TDATA bus is applied to the XMIT data parity 
checker where a pari ty check is made on the packet bytes. The 
parity bits (XMIT CATA PARITY) are received from the PB and 
applied to a latch flip-flop as TDATA PARITY LATCH. An OR feedback 
network holds TDATA PARITY LATCH true for both al ternations of 
XMIT CLK to allow the latch flip-flop to set (if parity is a 1). 
The latch flip-flop outputs the parity bit (TDATA PARITY) to the 
parity checker. Parity is checked when ENA XMIT DATA PARITY 
asserts and enables the parity checker output. If a parity error 
occurred, TDATA PARITY ERROR is asserted to the message state 
logic. 

2.5.6 CRC Generation 
The packet bytes on the XHIT data bus, starting wi th the packet 
type byte and end ing wi th the last byte of the body, are inpu t 
into the CRC generator. The generator functions to produce a 
32-bit CRC longword unique to the packet being transmitted. The 
longword is inserted into the packet, a byte at a time, after the 
packet body. 

2.5.7 XMIT CLK Generator 
Figure 2-14 is a block diagram of the XMIT CLK generator. The 
transmit clock (XMIT CLK) is derived from a 70 MHz input received 
from a crystal oscillator network in the RCVR CLK generator. The 
transmit clock generator functions to produce XMIT CLK pulses at 
8.75 MHz (period = 114.28 ns). The generator also outputs an RO 
pulse to load the XMIT serial shift register from the TDATA bus. 

The XMIT framer shift register is clocked at 70 MHz and has an 
eight-bit parallel output «R7:R0». The inverse of bits <R6:R0> 
are ANDed such that when all seven bits are false, a 1 is input to 
the framer shift register. The 1 is clocked up to the R7 output at 
which time another 1 is generated for the shift register input. 
This action is illustrated in Figure 2-15. 

R6 and R7 f rom the framer shi ft reg ister are appl ied to the D 
input of the XMIT CLK flip-flop causing the flip-flop to set for 
two 70 MHz clocks. The output of the flip-flop is XMIT CLK. Figure 
2-15 illustrates the time relationship of XMIT CLK relative to the 
outputs of the framer shift register. 

For maintenance testing, the output of the XMIT CLK flip-flop can 
be disabled and an XMIT TEST CLK substituted. 

2-34 



IV 
I 

W 
Ul (FIG.2.10) 70 MHZ 

XMIT 
FRAMER 
SHIFT 
REG 

ClK 

SHIFT IN 

RO 

<R7:RO> 

(FIG.2·3) 

XMIT TEST ClK 

XMIT ClK DISABLE 

> ID 
XMIT 
ClK 
FF 

(FIG.2.10) 70 MHZ ~IClK 

<R6:RO> 

XMITClK 

NOTE: 
1. THE lOGIC IN THIS FIGURE IS CONTAINED 

ON SHEET R OF THE ENGINEERING DRAWINGS. 

TK 8603 

Figure 2-14 XMIT eLK Generator Block Diagram 



IV 
I 
w 
CI' 

MHZ 

XMIT 
FRAMER 
SHIFT 
REGISTER 

o IN SHIFT 
(E186·1) 

DO 
(E173·3) 

I I 

-1fiilL I I 

JRl} I 
JAiL 

I 
JAiL 

JR4L 
JR5L 

I I 

JRO}- I 

I JIi1L I 
I I JAiL 

I I 
I JR3L I 

I JR4L 
I I .J"'i'L 
I 
I 
I 
I 

114.28 NS .1 

I I 

SROl- I 
JIi1L 

I 
JR2 

XMITCLK ________________________________ ~~-nrNS==i : 

XMITSERIAL [lCii\Dl SHIFT flOADl SHIFT 
SHIFT REG. . . 

TI~.I!'f> 11 

Figure 2-15 XMIT eLK Generator Timing Diagram 



2.5.8 Parallel To Serial Data Conversion 
Eight-bit data bytes from the TDATA bus are input to the XMIT 
serial shift register. RO from the XMIT CLK generator asserts 
every eighth 70 MHz clock to load the shift register with a data 
byte from the TDATA bus. After being loaded, the register returns 
to the shift state and shifts out the data byte a bit at a time as 
XMIT SERIAL DATA. As the last bit is shifted out, RO asserts again 
to load the next packet byte into the serial shift register. 
Figure 2-15 illustrates the load and shift time periods of the 
serial shift register. 

The XMIT SERIAL DATA is applied to a serial data flip-flop clocked 
by 70 MHz. The flip-flop output (El83-ll) is then applied to the 
Manchester encoder. 

2.5.9 Manchester Encoder 
The Manchester encoder modulates the serial data with the data bit 
rate clock to produce the signal format that is placed onto the CI 
bus. 

The encoder log ic consists of XORing the E183-ll output of the 
serial data flip-flop with the 70 MHz clock. The output of the XOR 
gate is inverted and applied to the Manchester encoder flip-flop. 
The encoder flip-flop is clocked at 140 MHz (twice the data rate) 
as required for phase encoded (PE) data (see Paragraph 2.4.2.1). 
The output of the Manchester encoder flip- flop (ME DATA) is the 
packet data ready to be transmitted onto the CI bus. 

The action of the Manchester decoder can be seen from the timing 
d iag ram of Figure 2-16. The E18 3-11 output of the serial data 
flip-flop is shown for the given data bits. The result of XORing 
E183-ll with the 70 MHz is seen. Using the inverse of the XOR 
output for the encoder flip-flop D input, and the 140 MHz for the 
clock, the resul tant ME DATA waveform is derived. The ME DATA 
signal format is identical to the format of the serial data 
received from the CI bus as shown in Figure 2-6. 

2-37 



IV 
I 

W 
CO 

DATA BITS o o o o 

70 MHZ 

I 
E183-11 J I 

XOR 

140 MHZ 

ME DATA I 
I 

I. 1 .. I 0 I 
""BIT CELL = 14.28 NS 

I 
~ ,-----, 

o o o 

Figure 2-16 Manchester Encoder Timing Diagram 

TK 8fi17 



2.5.10 XMIT EeL Drivers 
The ME DATA from the Manchester encoder is transferred to the CI 
bus via XMIT ECL drivers (Figure 2-17). The XMIT drivers are 
divided into two channels feeding the A and B paths on the CI bus. 
Path selection is made by the port via the transmit control logic 
which enables the driver in the selected channel. 

The ME DATA is routed to drivers in both channels and then through 
coupling transformers to the CI bus as CIA XMIT and CIB XMIT. The 
XMIT drivers are enabled by redundant XOR gates. When the transmit 
control log ic selects channel A, A DRIVER ENA asserts (p DRIVER 
ENA false) and in turn asserts E15l-1 from the channel A AND gate. 
The assertion of E15l-l causes outputs from both channel A XOR 
gates which in turn enables the channel A driver. 

Likewise, the assertion of B DRIVER ENA from the transmit control 
logic causes the assertion of the E15l-2 output of the channel B 
AND gate and thus enables the channel B driver. 

Redundancy exists in the driver enabling logic to prevent the 
poss ibi 1 i ty of a single component fa i lure caus i ng the A and B 
channels to be enabled simultaneously. If through a logic 
component .failure, the outputs of both the channel A and channel B 
AN D gates were asserted (E15l-l and 2 both true), one of the 
channel A XOR gates and one of the channel B XOR gates would be 
inhibited. This would hold the enabling inputs to the channel 
drivers high to inhibit the drivers and isolate the node from the 
CI bus.* 

The port can also select internal maintenance loop operation where 
the ME DATA from the transmi t channel is looped back into the 
receive channel. To do this, the port control logic asserts INT 
MLOOP which inhibits both E15l AND gates, shutting off both output 
drivers. In addition, the signal lines into both the A and B 
channel drivers are held high by INT MLOOP to inhibit any signal 
data variations into the drivers. 

* The operation of ECL logic is described in Paragraph 2.4.1.2. 

2-39 



N 
I 
~ 

~ 

(FIG. 2·12) 

INT MLOOP 

ME DATA 

CIA XMIT 
~--~ 

(FIG. 2·12) 

CIB XMIT r---
E 151·2 

o 
NOTES: 
1. THE LOGIC IN THIS FIGURE IS CONTAINED 

ON SHEET T OF THE ENGINEERING DRAWINGS. 

TK·8618 

Figure 2-17 XMIT EeL Drivers 



2.6 CRC GENERATOR AND CHECKER 
Figure 2-18 is a block diagram of the CRC generator and checker. 

2.6.1 CRC Generator 
Packet bytes from the XMIT data bus in the transmit channel are 
input to the CRC input mux as XMIT DATA BUS <7:0>. The transmit 
control logic asserts XMIT CRC ENA to the mux to select the bytes 
from the transmi t channel. The mux ou tput is appl ied to the CRC 
input register which outputs the bytes as NEW DATA <7:0>. 

NEW DATA <7:0> is applied to a CRC lookup table via an XOR gate. 
The lookup table logic generates the CRC longword for the packet 
be i ng tran smi t ted. CRC TABLE <31: 00> from the lookup table log ic 
is applied to a CRC register which outputs CRC <31:00>.* CRC 
<31:00> is looped back into the lookup table logic in two parts. 
The first three bytes (CRC <23:00» are applied directly into the 
table logic while the upper byte (CRC (31:24)) is XORed with the 
new input byte from the CRC input reg ister. Thus, the new data 
bytes are continuously integrated into the compilation of the 
previous data bytes such that the CRe-generated longword is always 
a function of the packet bytes received from the transmit channel. 

The CRe longword from the CRC register is also coupled to the BUS 
TDATA bus in the transmit channel via four drivers. When enabled, 
each driver places a byte onto the BUS TDATA bus to insert a CRC 
byte into the packet being transmitted. 

The drivers are enabled from a CRC byte counter. The counter 
receives a SHIFT IN input (E29-5) when the last byte of the packet 
body is on the BUS TDATA bus. The input is shi fted throug h the 
counter by CRe CLOCK asserting RO through R3 in sequence. RO 
through R3 are applied to four AND gates which are enabled at the 
appropriate time from the PAL state logic. 

In addition, ENA XMIT DATA REG must be false before the RO AND 
gate is enabled to place the first CRC byte (CRC (7:0) onto the 
TDATA bus. This insures that the TDATA bus is isolated from the 
XMIT data register before the CRC logic is connected to the bus 
(see Figure 2-12). Likewise, each AND gate must be disabled in 
sequence before the next AND gate can be enabled. This ensures 
that only one source is driving the TDATA bus at anyone time. 

The CRC generator logic is clocked by CRC CLOCK which is seen to 
be XMIT CLK during the transmit states. 

* The CRC register is initially preset to alII's. 

2-41 



N 
I 
~ 
N 

XMIT DATA 

(FIG.2121 8US<70> 

(F I G. 2 31---"---'=-'.-"--1 

(F IG 2261 """ , ~,,~ L"~ 

(CRC CLKI 

(FIG 2211 lOOP 

(FIG. 2·251 
MX STATE 

AX STATE C 

(FIG. 2311{' XMIT ClK 
AX STATE G ----

(FIG. 2 251 MX STATE Kl ~}----
C 

FF 

(UI 

CRC 
LOI]KIJP 
TABLf 
(H) 

(CRC CLKI 

(FIG. 2 301 

CRCTARLF 

I' 3100 . -I[) 
CRC 
REG 
(UI 

C~K 

CRC '3100 ' 

ENA XMIT 

(FIG. 2261 DATA REG 

CRC'3124' 

CRC <23 16 . 

CRC '15 08" 

CRe ~1)7 00 ...... 

~:~ l 1CI ) 

(FIG. 2·281~ 

I--- cqc $T" rl'~ 
., Ir II', ,1 J ql 

BUS TO"TA . ~ c . ( "0, ) 
7 '7 

VALID RC\,R 
E~AC~~f~IG 3q1 

r'G~' -i 7 :y)) STAn" (F'G I 
7YJ 

rrH'j '] 'fl 

I I ~----+-tl 1======8 II I - ~ 
rNA CRC 3 DUT 

(FIG 2301 MR STATE 8 
ARSTATE 8 

(FIG 2.281 {' AR STATE D 

AR STATE H 

(FIG. 2301 MR STATE H 

0MRCRC3 

K 

FF 
(UI 

ClR 

(FI G. 2 31--'-'ICc::Cc::S-'-P"-A"'T'-Hc:S:.:Ec::lc::E.::C-'-T.:cE.:cD-------------' 

Figure 2-1 ~ 

2301 

L _____________________ .::M:: .. ::.:X-'-"-C_RC~3 ... IrlG ') 7~_ ") ~l 

CRC ()cner;1tor/Chcckcr 

NOTE 
LETTER DFSIG"'ATrQN$ IN PARFNTt-4ESr:s RF.rFR TO 
ENGINEERING DRAWINGS CONT AINING COr:! RfSPONOINr. 
LOGIC 



2.6.2 CRC Checker 
Packet bytes from the RDAT register bus in the receive channel are 
input to the CRe input mux as RDAT REG <7:0>. The transmit control 
logic negates the XMIT CRC ENA input to the mux selecting the 
bytes from the receive channel. The mux output is applied to the 
CRC input register which outputs the bytes as NEW DATA <7:0>. 

The CRC logic functions to generate the CRC longword (CRC <31:00» 
from the packet bytes as described in Paragraph 2.6.1. The last 
four bytes input to the CRC log ic is the CRC longword generated 
for the packet. When the CRC longword is entered into the CRC 
lookup table, an output of DEBB 28E3 (hexadecimal) will be 
obtained if the packet transfer was error free. 

The longword is applied to a CRC comparator which checks the value 
of the longword and asserts CRC STATUS if the proper value was 
obtained. 

2.7 ARBITRATION 

2.7.1 General 
To prevent collisions on the bus, only one node should be 
transmitting at a time. When the port commands a node to transmit 
an information packet, the link goes through an arbitration 
process in order to "gain control" of the bus. * For a node to 
"gain control" of the bus means that it is the node's turn to have 
the bus within the arbitration process that is being executed by 
all the nodes competing for the bus. There is no hardware or 
software control by which a node may seize the bus and exclude 
other nodes. 

The arbitration process consists of counting down a specific 
number of "quiet slots" on the bus. A quiet slot is a time period 
of approximately 800 ns during which there is no activity on the 
bus. Eight hundred ns is sufficient time for a one-way trip on the 
bus and to detect a carrier presence. Thus, a quiet slot is a time 
period allocated for an arbitrating node to detect another node's 
transmission. 

If a node completes its quiet slot countdown (reaches 0), the node 
wins the bus and may transmit. If the node detects activity on the 
bus (another node is transmitting) before the countdown is 
complete, the arbitration process is interrupted and started over 
once the bus is quiet again. If several nodes are competing for 
the bus, all but the winner will have their arbitration countdowns 
interrupted. When the bus goes quiet again, the losing nodes will 
restart their countdowns simultaneously, thus, placing them in 
sync with each other. This synchronism occurs only on a busy bus 
where the competing nodes will sense a "loss of carrier" to 
synchronize their countdowns. 

* There is no arbitration process when transmitting an ACK packet 
as it is assumed the bus has already been acquired for the 
information and ACK packet transfers. 

2-43 



The arbitration countdown is a round robin dual countdown 
algorithm such that, if more than one node is trying to transmit, 
the lower numbered node wi 11 be given the bus first. The other 
nodes, however, can each gain the bus before the lower node can 
gain the bus again. This is implemented by the number of quiet 
slots each node must count. 

The number of quiet slots to be counted down is determined by the 
number of the node attempting to transmit and the number of the 
node that last had the bus. A node may count N + I + 1 slots or I 
+ 1 slots where: 

N = 16 (the maximum number of allowable nodes) 
I = the node number 

When a node starts to arbitrate, it counts N + I + 1 slots. If the 
countdown is interrupted, the node determines the number of the 
winning node. If the winning node was a lower number, the node 
restarts an 1+ 1 countdown. If the winning node was a higher 
number, the node restarts an N + I + 1 coun tdown. Thus, when 
several nodes are competing for the bus, the lowest number node 
wins the bus first but must count down the N + I + 1 slots to gain 
the bus aga in. The higher nodes wi 11 restart the i r arbi tra t ion 
with the I + 1 countdown and all will win the bus before the first 
winner can gain the bus again. As each node wins the bus, the N 
term is added to its countdown value and the next higher numbered 
node wins the bus. Thus, each competing node will have a turn at 
the bus, starting with the lowest numbered node and working up to 
the highest. 

The arbitration algorithm is illustrated in Figure 2-19. Note that 
whenever a node completes its countdown (reaches 0), it checks 
that the receiver is free (ALT PATH BUSY false) before 
transmitting. Transmission should not occur from a node unless the 
node receiver is free to accept the ACK response. Although the 
node may have completed its countdown and gained one path of the 
bus, the node rece i ver could be busy rece i v ing a packet on the 
other path. When this happens, the transmission is delayed by 
loading 16 into the node's counter and continuing the countdown. 

The 1 term is incl uded in the two countdown expressions because 
the lowest node number is o. When node 0 is executing an I + 1 
countdown, then it will be looking for 1 slot -- not 0 slots. 

2-44 



STAf;, 

TK·8616 

Figure 2-19 Arbitration Flow Diagram 

2-45 



2.7.2 Arbitration Logic 
Figure 2-20 is a block diagram of the arbitration logic. Prior to 
receiving a transmit command from the port, the link is in the 
idle state (MX state A). In MX state A, the true state of LOAD ARB 
COUNT loads the arbitrator in preparation for the quiet slot 
countdown. The basic slot counter is loaded with 1001 (binary) and 
the down counter is loaded with N + I + 1. 

The down counter is in two sections: the lower four bi ts and the 
fifth bit. The fou r- bi t sect ion is loaded wi th the node address 
(NODE ADDRESS <3: 0> ). The f i fth- bi t sect ion is loaded from an N 
load mux that supplies the N term in the arbitration countdown 
expression. The mux select inputs are shown in Table 2-3. 

While the link is idling in MX STATE A, the mux selects the +V 
input to load a 1 into the fifth bit section of the down counter. 
The 1 represents the N term in the N + I + 1 countdown expression. 

When the link shifts to MX STATE B, LOAD ARB COUNT negates and the 
arbitrator starts its countdown. The slot counter is clocked from 
1001 by XMIT CLK and outputs BASIC SLOT after seven clock pulses. 
BASIC SLOT is looped back to reload the counter with 1001 and the 
cyc Ie is repeated. The time per iod of XMIT CLK is 114. 28 ns; 
hence, BASIC SLOT asserts every 800 ns (7 x 114.28). 

Each time BASIC SLOT asserts it enables the four-bit section of 
the down counter which is decremented by XMIT CLK. When this 
section of the down counter reaches 0, the next assertion of BASIC 
SLOT asserts the carry (CRY) output which enables the fifth bi t 
section to decrement. If the fifth bit section contains a 1 (N + I 
+ 1 coun t), the 1 becomes a 0, the fou r-b i t sect ion becomes all 
1 's, and the countdown continues. If the fifth bit section 
conta ins a 0 (I + 1 coun t), the CR Y ou tpu t goes true assert ing 
ARBC = a (arbitration counter = 0) which conditions the ARB 
flip-flop to set on the next XMIT CLK. If the alternate bus path 
is not busy (ALT PATH BUSY false) ARB and ARB OK assert signifying 
a successful countdown and causing the link to shift to MX state 
C. 

Note that after the counter has reached 0 count, one more 
assertion of BASIC SLOT is required to assert the CRY output and 
cause ARB to go true. The additional assertion of BASIC SLOT 
represents the 1 term in the two countdown expressions. 

2-46 



IFIG 
fORCE CAkRI£:h __ _ __ ~.=-____ . 

2211 {,NT MLOOP __ _ _____ _ a 

Sl L PATH CAHAll H 

~ K 1 

r-...UlJE A[;OkE.S~ . J U 

AL T PATH bUoY 

I 
I 

b 

IF IlJ 

1-- r" '-20 'lgU '" _ ArbitratIOn - Block Diagram 

2-47 



Table 2-3 N Load Mux Selection 

Select Code 

MX STATE A SEL PATH CARRIER 

True 

True 

False 

False 

x = don't care 

x 

x 

True (load arb.) 

False 

2-48 

Input Selected 

+v 

+V 

N Load FF 

La tch FF 



If a carrier from another node is detected during the arbitration 
countdown, the arbitrator is reloaded and the countdown starts 
over. The node address comparator determines whether the 
interrupting (winning) node is above or below this node in order 
to determine the new countdown value. (See Paragraph 2.7.1 for a 
general discussion of the arbi trator.) The comparator compares 
the node address with ARB CMP ADD <3:0> from the four-bit section 
of the down counter and asserts, LT <I PLUS 1>* if this node 
number is less than the winning node number. For example, assume 
this to be node 5 and the winner to be node 2. ARB CMP ADD <3:0> 
is down counted to 3, the comparator A input is greater than the B 
input; therefore, LT <1 PLUS 1> is false. This node is not less 
than the winning node. 1 f the winner were node 7, ARB CMP ADD 
<3:0> would be 14 (the fifth bit having been decremented), the 
comparator A input is less than the B input; therefore, LT <1 PLUS 
1> is true. This node is less than the winning node. The LT <1 
PLUS 1> signal is used to determine which count down value is to 
be reloaded into the down counter for the next countdown. 

When a carrier is detected (interrupting the countdown), CARRIER 
DET A or CARRIER DET B asserts. If the carrier is detected on the 
SEL TPATH selected by the link control PAL, SEL PATH CARRIER is 
asserted. The assertion of SEL PATH CARRIER causes LOAD ARB COUNT 
to assert and reload the basic slot counter and both sections of 
the down counter. The fifth bit section of the down counter is 
again loaded from the N load mux; however, now the mux is 
selecting its input from the N load flip-flop (see Table 2-3). 

During the countdown, the false state of SEL PATH CARRIER holds 
the N load fl ip- flop reset. When SEL PATH CARRIER asserts, it 
allows the J input to the flip-flop to look at LT <I PLUS 1> from 
the node comparator. If LT <I PLUS 1> is true (this node is less 
than the winning node), the fl i p- flop is set and a 1 is loaded 
into the fifth bit section. If LT <I PLUS 1> is false (this node 
is higher than the winning node), the flip-flop remains reset and 
a 0 is loaded into the fifth bit section. 

The output from the N load mux is latched up in a latch flip-flop. 
When SEL PATH CARRIER negates, the N load mux selects the output 
of the latch flip-flop thus maintaining the fifth bit selection 
after SEL PATH CARRIER negates. 

* LT = less than 

2-49 



As described in Paragraph 2.7.1, a round robin arbitration 
algorithm is used in which the lowest-numbered node wins the bus 
first, then the next higher, and so forth in a continuous loop. 
For the loop to be continuous, node 0 must follow node 15 in the 
same way that any node follows the node preceding it. When node X 
is beaten by the preceding node (X-I), it restarts its countdown 
as I + 1. Node X is not less than the winner, therefore, LT <I 
PLUS 1> is false and the fifth bit section of the counter is 
loaded with a O. Likewise, when node 0 is beaten by node 15 it 
must appear that it was beaten by a lowe r node and restart its 
countdown as I + 1; however, in this case, LT <I PLUS 1> is true. 
Logic has been added to the input of the N load flip-flop to force 
a 0 in to the fifth bi t sect ion of the counter when nod e 0 is 
beaten by node 15. Thus, when this is node 0 (CNODE ADDRESS <3:0> 
= alII' s) and it has just been beaten by node 15 (ARB CMP ADD 
<3:0> = alII's), the AND gate transferring LT <I + 1> into the N 
load flip-flop is inhibited and the flip-flop remains reset. 
He nce, a 0 is reloaded into the fifth bi t sect ion of the down 
counter and node 0 does an I + 1 countdown. 

I f the 1 ink rece i ve channel is busy on the al terna te bus path, 
RCVR ACTIVE will be true, causing ALT PATH BUSY to also be true. 
This condition inhibits the assertion of ARB and loads 16 into the 
down counter. ALT PATH BUSY loads only the fifth bit section of 
the down counter. The four- bi t sect ion rema i ns enabled in coun t 
mode. ALT PATH BUSY generates the 16 by disabling the N load mux 
causing it to output a 0 into the fifth bit section. The four-bit 
section is at all a ~ (countdown successfully completed), hence, 
as the fifth bit section is loaded with a 0, the four-bit section 
is decremented to alII's. Thus, when the entire counter is 
enabled again, it contains a count of 16. 

The true state of RCVR ACTIVE inhibits a successful arbitration by 
asserting ALT PATH BUSY. RCVR ACTIVE negates after the message on 
the al terna te path has been rece i ved. The tran smiss ion that is 
arbitrating for the bus, however, still cannot be allowed because 
the tran smi t channel mus t be used to tran smi t an ACK response. 
This point in the message receive state sequence is state 1. 
Hence, MR STATE I is used to keep ALT PATH BUS Y true to inhibi t 
the assertion of ARB. 

The false state of CLYD HDR TO also asserts ALT PATH BUSY and 
inhibits a successful arbitration. DLYD HDR TO is false if a 
transmission is occurring from this node (A DRIVER ENA or B DRIVER 
ENA true) as shown in Figure 2-30. The transmission in this case 
would be the transmission of an ACK packet on the alternate path. 

2-50 



2.8 LINK FUNCTIONS 
Link functions (Figure 2-21) are commanded from the port via four 
link control lines (LINK CONTROL <3:0» and eight port data lines 
(PORT DATA <7:0». The port asserts SELECT when a valid function 
exists on the link control lines. 

A function decoder decodes the link control lines and outputs the 
specific function commanded by the port. The function commands are 
described below: 

A. XMIT FCN 

B. RESET XMIT STATUS 

C. ABORT XMIT FeN 

- This function initiates 
arbitration and transmission on 
one of the CI paths. The CI 
path used is selected by port 
data bit 7 (0 = path Ai 1 = 
path B). 

- This function resets 
transmission status bits at the 
end 0 fat ran sm iss ion 
operation. 

- This function 
currently 
operation. 

active 
aborts a 

transmit 

The link mode control, PAL, receives the link control lines and 
the port data lines from the port. The port data lines carry 
control information relating to the commanded function, and 
specify various maintenance functions for the link. 

2-51 



l\J 
I 

VI 
l\J 

(FIG. 3·2) PORT DATA·.7 () . ..I 

{

LINK CONTROL' 20· 

(FIG 4·2) LINK CONTROL 3 

SELECT 

L. 

~ 

LINK 
MODE 
CONTROL 
PAL 
(M) 

FUNCTION 
DECODER 
(M) 

( RCVR ){_ 
\ STATUS 

FIG.33 -

FORCE CARRIER IFIG ? 7[11 

SWAP TRUE/COMP ADR .1 
RCVR A ENABLE 

IFIr; 731 
• RCVR B ENABLE 

VALID RCVR PARITY 

EXT MLOOP 

5-1 LOOP 2.18 
(

FIG.) 

-INT MLOOP 

FORCE ARB (FIG. 770) 

2·25 
2·26 

r--
XMITPATHBSEL OFF 

XMIT FCN 

1M) 
XMIT CLK C 

L--

RESET XMIT STATUS .."} (FIG 225) 

ABORT XMIT FCN " 

I ~} (FIG 2271 

Figure 2-21 !.ink Functions 

I '} IFIr, 770.7 7GI r-----------------------_to. 
SEL TPATH B 

~ 
(FIG 2201 ARB OK 

NOTE' 

---'I.lI~ 
~ 
~PATH!, 

~ 
}rlG 7 J) 

LETTER DESIGNATIONS IN PARENTHESES RHeR TO 
ENGINEERING DRAWINGS CONT AININC; (ORRI c/'O"JDINC 
LOGIC. 



The control information and maintenance functions are described 
below: 

A. XMIT PATH B SEL 

B. RCVR A ENABLE 

C. RCVR B ENABLE 

c. EXT MLOOP 

E. INT MLOOP 

F. FORCE CARRIER 

G. FORCE ARB 

H. VALID RCVR PARITY 

I. SWAP TRUE/COMP ADR 

- This signal selects the CI path 
associated with the XMIT FCN 
command. 

This signal enables path A in 
the link receiver making the 
node accessible on CI path A. 

- This signal enables path B in 
the link receiver making the 
node accessible on CI path B. 

- This is a maintenance function 
that allows the link to receive 
its own transmission by looping 
on the selected CI path. 

- This is a maintenance function 
that allows the link to receive 
its own transmission by looping 
inside the transmit drivers and 
input rece iver detectors. Thi s 
operation will not interfere 
with the CI operation of other 
nodes. 

- This is a maintenance function 
that causes the link to see a 
detected carrier. 

- This is a maintenance function 
that causes the link to force a 
successful arbitration. 

- This is a maintenance function 
that is used to generate parity 
errors in the receive channel. 

- This is a maintenance function 
that causes the true and 
complementary address sources 
to be swapped resul ting in an 
address mismatch. 

The transmission path select signal (SEL PATH A or SEL PATH B) 
asserts a corresponding FORCE PATH signal after the node has 
successfully arbitrated for the bus (ARB OK true). The FORCE PATH 
signal enables the corresponding path in the receive channel in 
preparation to receive the ACK response. 

2-53 



2.9 LINK INTERFACE SIGNALS 
Figure 2-22 illustrates the link interface siCjnals. Most of the 
link interfacing is wi th the PB. Figures 2-23 and 2-24 are flow 
diagrams of a typical transmit and receive operation. The flow 
diagrams highlight the interface signals to illustrate their basic 
functions. Some other major signals, internal to the link, are 
included for completeness. The two flow diagrams utilize most of 
the interface signals and explain their basic functions. Interface 
signals not included in the flow diagrams are the three clocks 
(PORT CLK, XMIT CLK, RCVR CLK), the node address (NODE ADDRESS 
<7:0», and INITIALIZE. 

PORT CLK is received from the PB while XMIT CLK and RCVR CLK are 
generated within the link. All three clocks are used in both the 
PB and the link. 

NODE ADDRESS <7: 0> is sent to the port (via the PB) and inserted 
into the transmitted packet as the source byte. 

INITIALIZE is used for system initialization. 

The flow diagrams illustrate a typical error-free 
transmit and a receive operation. They can be used 
with the receive channel block diagram (Figure 
transmit channel block diagram (Figure 2-12), or 
detailed state diagrams discussed in Paragraph 2.10. 

2-54 

sequence of a 
in conjunction 
2-3) and the 

wi th the more 



INITIALIZE 
~ 

SELECT r - RESET XMIT STATUS ~ 

LINK CONTROL <3:0> - _L _ XMIT FCN 
PORT DATA <7:0> 

..., - - -- XMIT PATH B SEl PACKET 
BUFFER - XMIT DATA ENABLE 

~ - -. RCVR A ENABLE 

- NODE ADDRESS <7:0> I 

(PB) XMIT DATA <7:0> I 
XMIT DATA PARITY ,- - • RCVR B ENABLE 

~ 

XMIT BUFFER EMPTY I 
XMIT ATTENTION I -
XMIT STATUS<7:0> I 

I 
RCVR A ENABLE ~ -1 LINK 

~ RCVR B ENABLE .J 

i-. VAlle RCVR DATA 

RCVR BUFFERS FUll 
~ 

RCVR DATA <7:0> -
RCVR DATA PARITY 

~ PACKET lENGTH 

RCVR PACKET END 

VALID RCVR STATUS -
CRC STATUS 

~ 

ICCS PATH B 

PORT ClK 
~ 

XMIT ClK -
l.- RCVR ClK 

, 

TK-8615 

Figure 2-22 Link Interface Signals 

2-55 



Start t 
CRC bytes are 

+ inserted into the 

·SE LECT 
packet. 

A valid function exists on t 
LINK CONTROL lines. Trailer bytes are 

'LINK CONTROL <3:0> inserted into the 
XMIT FCN packet. 
Port commands 

+ a transmit function via 
LINK CONTROL lines. SYNC/TR GONE 

"PORT DATA <7:0> 
Packet has been 

XMIT PATH B SEL 
transmitted. 

Port selects transmit path t 
via PORT DATA lines. WACK 

t 
Wait for ACK response. 

+ Link arbitrates for 
the selected bus. ACK RCVD 

t ACK response has been 
successfully received. 

Link transmits header (bit 
sync bytes and sync t 
character byte). "XMIT ATTENTION 

+ 
An AC K response has 
been detected. 

"XMIT DATA ENABLE 

+ Link is ready to receive 
data from the PB. "XMIT STATUS <7:0> 

t Transmit status 
available to the 

"XMIT DATA <7:0> port. 
"XMIT DATA PARITY t 
Packet bytes (with 

"LINK CONTROL <3:0> parity) are transferred 
from the PB to the link. RESET XMIT STATUS 

Command (via LINK 

t CONTROL lines) to 
reset most of XMIT 

"XMIT BUFFER EMPTY STATUS bits. 
All packet bytes have 
been received from the 

+ PB. 

I Done ) .. I nterface signal 

TK·8601 

Figure 2-23 Interface Flow Diagram - Transmit Operation 

2-56 



Start + 
'RCVR PACKET END 

~ Last byte of packet 

"PORT DATA <7:0> 
body has been 

"RCVR A ENABLE transferred to P 8. 

"RCVR B ENABLE • Port selects receiver path 
via PORT DATA lines. "VALID RCVR STATUS 

• 
Val id receiver status 
information is available 

ICCS PATH SELECTED to the port. 
Carrier is detected on bus. "CRC STATUS 

~ Indicates CRC status on 

CHAR SYNC 
received packet. 

Carrier is a valid packet. "ICCS PATH B 

• 
Indicates over which CI 
path the packet was 

"VALID RCVR DATA received. 
Valid packet data ready 

~ to be transferred 
to PB. TACK 

1 Transmit an ACK 

"RCVR BUFFERS FULL 
(or NACK) packet. 

True if PB receive 

• buffers are full. 

• ACK DONE 
ACK (or NACK) packet 

'RCVR DATA <7:0.> has been transmitted. 
*RCVR DATA PARITY 

+ Packet bytes (with 
parity) are transferred Done 
from link to PB. 

~ 
'PACKET LENGTH 

Data being transferred 
to PB specifies length 
of received packet. 

t 
* I nterface signa I 

TK-8602 

Figure 2-24 Interface Flow Diagram - Receive Operation 

2-57 



2.l~ OPERATING STATES 
The following description of the four link operations utilizes the 
state diagrams contained in the engineering drawing set. The 
various states are shown in the diagrams as circles. A path 
looping back into a circle holds the link in that state so long as 
the signal condition shown in the loopback path is true. The link 
goes to its next state if the signal's condition shown in the 
connecting path to the next state is true. Where no loopback paths 
are shown, the link stays in that state for one clock pulse to 
perform the indicated task(s) and then advances to the next state. 

Also included in the drawing set is a XMIT/RCVR MSG State Flow 
Diagram. The diagram shows the normal state flows for a message 
transmission and ACK reception operation and for a message 
reception and ACK transmission operation. The diagram illustrates 
what PALs are used and how the sequence shifts from one PAL to 
another as the operation is executed. The diagram illustrates a 
basic point in link operations; that an ACK receive sequence is a 
part of the message transmit sequence in that the message transmit 
sequence is not complete until the ACK receive sequence is done. 
Likewise, the ACK transmit sequence is part of the message receive 
sequence and that the message rece ive sequence is not complete 
until the ACK transmit sequence is done. 

2.l~.l Message Transmit 
Fig u r e 2 - 2 5 i 11 us t rat est h e me s sag e t ran sm its tat e log i can dis 
used in conjunction with the MESSAGE XMIT STATE diagram in the 
engineering drawing set. Two PALs are used for the message XMIT 
state sequence. 

INITIALIZE from the port asserts TINIT which initializes the link 
and asserts MX STATE A from PAL No.1. MX State A is the transmit 
idle state. When the port commands a transmit function, XMIT FCN 
asserts f rom the 1 in k cont rol PA L caus ing TXMIT to assert and 
transfer the link to state B. 

The link arbitrates for the bus in state B. When the arbitration 
is successful, ARB asserts and the link transfers to state C. 

In state C the link transmits the bit synchronization bytes and 
the sync character byte. After the sync character byte has been 
transmitted, SYNC/TR GONE asserts and sends the link to state D. 

In state D the CRC generator is enabled (except for maintenance 
loop operations), the second MSG XMIT State PAL is enabled, and 
the link goes to state E. 

PAL no. 1 stays in state E for the rest of the transmission so 
long as there is no parity error. If a parity error occurs, PE 
asserts and transfers the link to state F. 

2-58 



N 
I 
Ul 
\0 

{ARSTATE 0 

IFIG. 230) MR STATE M 
INITIALIZE) SET 

·1 IFIG 4·21 POAT ClK 
---. 

XMIT 
C FF 

IFIG. 2.211 XMIT FCN.IK IBI 
CI.A 

IFIG. 2201 

·10 FF 
::>0 IHI 

XMIT ClK Ic 

IFIG 2121 TOATA PAAITY ERROR 

IFIG 2261 XMIT DATA ENABLE 
PE 

IFIG 2301 

INITIALIZE 
IFIG.4·21 ·10 FF 

IBI 
XMIT ClK 

C 

NOTE 

TIN IT 

( FIG226) 
FIG 2 '}7 

LETTER DESIGNATIONS IN PARHHIlf:Sr::S RFrr R TO 
ENGINEERING DRAW1N(:;S CONTAINING COHRI'SP()NntNr; 
lOGIC 

(FIG 

XMIT ST ATUS 4 
IFIG 2271 ·to FF 

IBI 
XMIT ClK 

C 

TABORT 

F r 

ABORT 
neVA { MR STATE F 

HEADf:R TIME OUT E>-­
RCV~lSJc fRI 

SYNC-'TA 

IFIG 2121 GONE 

IFIG 2201 AAB 
TXMIT 

(FIG '221) LOOP MSG 
PE XMIT 

TABORT 
STATE 
PAL 

TINIT /Arj 

IHI 

0'.'" ~C" -lClK 

MX STATE 0 

MX STATE F 
MSG 

ACK ACVO XMIT 

IFIG 2181 MAX CRC 3 

IFIG.7121 SYNC'TA GONE :1 
STATE 
PAL 

G" 

IFIG '} 711 LOOP _I 
XMIT RUFFER rMPTY 

181 

IF IG ] 21 

XMIT ClK -ICLK 

MX STATE A 

MX STATE B 

MX STATE C 

MX STATE 0 

MX STATE E 

MX STATE F 

MXSTATEG 

MX STATE H 

Pw"XSTATE , 

'.1X STATE J 

MX STATE K 

IMXSTATE l 

"XSTATEM 

c 

·1 D FF 

181 
XMITCLK 

Figurc 2-25 Mcssage Transmit State Logic 

WACK (FIG) -----+ "} 78 
') Jfl 



2 is 
I,.i 11 

If the link is placed in state F, PAL no. 
ATTENTION is asserted to the port which 
transmission. The link then returns to state A. 

reset and XMIT 
then abo r t the 

PAL no. 2 moved from its idle state (state G) to state H when PAL 
no.l asserted MX STATE D. 

From state H the link goes to state I where the destination byte 
is clocked into the destination address register. 

The link then transfers to state J where it waits for the body of 
the packet to be transmitted. When the last byte of the body is 
transmitted, XMIT BUFFER EMPTY is received from the PB and 
transfers the link to state K [if this is not a maintenance 
operation; if this is a maintenance operation (LOOP true), the 
link goes directly to state L]. 

In state K the CRC bytes are transmitted. MAX CRC 3 asserts when 
the last CRC byte is transmi tted. JvJAX CRC 3 causes the 1 ink to 
transfer to state L. 

In state L the packet trailer bytes are transmitted. After the 
trailer bytes are transmitted, SYNC/TR GONE asserts and transfers 
the link to state M. 

In state M the link has completed its transmission and is waiting 
fo r the AC K r ece i ve sequence to com plete • The end 0 f the ACK 
receive sequence is indicated by the assertion of AR STATE D or AR 
STATE H from the ACK receive state logic. Either of these signals 
asserts ACK RCVD to both PALs causing them to return to their idle 
states. ACK RCVD also negates TXMIT to complete the message XMIT 
sequence. 

When the link enters state M, WACK (wait for ACK) is asserted to 
the ACK receive state logic enabling the ACK RCVR PAL to start the 
ACK receive sequence. When the ACK response is received, ACK RCVD 
asserts and negates WACK. 

The port can abort the transmission by asserting ABORT XIV1IT FCN 
v ia the LINK CONTRO L 1 ines. ABORT XMIT FCN asserts XIV1IT STATUS 4 
and then TABORT v ia two fl i p- fl ops • TABORT is appl i ed to both 
message XMIT PALs resetting them to their idle states. 

The MSG XMIT sequence is 
asserts ABORT RCVR to PAL 
the MSG RCVR state log ic 
character recognition does 

also reset by HEADER TIME OUT which 
no. 1. HEADER TIME OUT is asser ted by 
when a car r ie r is detected but sync 

not occur. 

2-60 



2.10.1.1 Transmit Control Logic -- Figure 2-26 illustrates the 
logic that controls the flow of data through the transmit channel 
shown in Figure 2-12. The control signals are regulated by the 
state signals generated by the XMIT state PALs. The assertion and 
negation of the control signals can be related to the task( s) 
performed in the various states as shown in the XMIT state 
diagrams. 

ENA SYNC/TR CNT is asserted by the appropriate STATE signals and 
enables the sync/trailer counter to start counting. 

ENA SYNC/TR gates the bit sync bytes and the trailer bytes onto 
the XMIT DATA bus. ENA SYNC/TR is negated by ENA XMIT DATA LATCH 
which gates the packet bytes from the PB onto the XMIT DATA bus. 
ENA XMIT DATA LATCH also asserts ENA XMIT DATA PARITY. 

ENA XMIT DATA REG isolates the BUS TDATA bus from the XMIT DATA 
bus while the CRC bytes are being placed onto the TDATA bus. 
TINIT initially asserts ENA XMIT DATA REG which passes the packet 
bytes onto the BUS TDATA bus unti 1 XMIT BUFFER EMPTY is rec ived 
from the PB. XMIT BUFFER EMPTY negates ENA XMIT DATA REG which 
remains negated until all the CRC bytes are placed onto the BUS 
TDATA bus. When this occurs, MX STATE L asserts thereby 
re-asserting ENA XMIT DATA REG for the trailer bytes. MX STATE L 
also asserts SEL TRAILER to gate the trailer bytes out of the 
sync/trailer PROM onto the XMIT DATA bus. 

A DRIVER ENA and B DRIVER ENA enable the drivers that output the 
transmitted packet onto the selected CI path. During a message 
XMIT operation, the selected DRIVER ENA signal is asserted by the 
SEL TPATH signal selected by the port via the LINK CONTROL lines, 
and by MX STATE C. The DRIVER ENA signal is negated during MX 
state L when SYNC/TR GONE asserts. During an ACK XMIT operation, 
the selected DRIVER ENA signal is asserted by AX STATE B and LAST 
RCVR = B. LAST RCVR = B is true if the last message was received 
on CI path B (ICCS PATH B true). In this case, B DRIVER ENA 
asserts to transmi t the ACK over the same path on which the 
message was received. Conversely, if the message was received on 
CI path A, A DRIVER ENA would assert, transmitting the ACK over CI 
path A. The DRIVER ENA signal is negated during AX state H when 
SYNC/TR GONE asserts. 

2-61 



I\J 
I 

0'1 
I\J 

(FIG.218) ENA CRC 3 OUT 

(FIG. 3.2) , XMIT BUFFER EMPTY 

1 
AXSTATEF ~ 

(FIG.231) 
AXSTATEH 

{FIG. 2·25) MX STATE l B 
{FIG. 2·30) RCAR DROP 

(FIG. 2·25) TINIT '4j 

{FIG. 2·311 { MX STATE C 

ENA ACK SRC 

{FIG. 2·12) 
lAST SYNC 

{FIG. 2·25) 
MX STATE C 

XMIT ClK FF 
C (C) 

(FIG.32) 
XMIT BUFFER EMPTY 

K 

{FIG. 3·7) 

{FIG. 2·21) 
lOOP 

(FIG. 2·25) 

ENA XMIT DATA REG 

~(rIG.2·Hll 

SEL TRAilER 

ENA SYNCfTR 

ENA XMIT DATA PARITY 

MX STATE C 

(FIG. 225){ MX STATE L 

{
AXSTATEBI r---... ENASYNCfTRCNT 

1------" (riG. 231) AX STATE H .f (A) ) 

XMIT ClK 
C 

FF 
(C) 

MX STATE L 

AX STATE H 

(FIG 212) 

MX STATE C ~--r-•• (FIG.2 18) 

A 
DRIVE R 
ENA 

{FIG. 225) 

(FIG. 2·31) ( 

AX STATE B 

AX STATE H 

(FIG.225) 
MX STATE l 

ICCS PATH B 
{FIG. 2·3) 

MRSTATEH 

(FIG. 230) { MR STATE M 

(FIG. 2·25) MX STATE C 10 

XMIT CLK _I C 

FF 
(B) 

( FIG 
2·31 

(FIG 212) -----=-:...:.~~ 

(FIG 221) SE l TPATH A 

XMITCRC ENA 

AX STATE B 

LAST RCVR: B 

( FIG.) INTMlOOP 
2·21 

DLYDMXC 

C FF 
(M) 

K 

FF 
':.::=--~--,I C (M) 

) I K 

} {FIG 2301 

B 
DRIVER 
ENA 

:}IFIG.2 12) 

NOTE 
(F I G. 2 21) --"--"------' 

Figure 2-26 Transmit Control Logic 

LETTER DESIGNATIONS IN PARENTHESES REFER TO 
ENGINEE RING DRAWINGS CONTAINING CORRESPONDING 
LOGIC 

TIC A6'~ 



2.10.1.2 Transmit Status 
STATUS <7:0» are used to 
operation (see Figure 2-27). 
along with XMIT ATTENTION. 

Eight transmit status bits (XMIT 
indicate the status of a transmit 
The bits are available to the port 

XMIT ATTENTION is asserted when a response is received from the 
destination node (ACK or NACK), when no response is received from 
the destination node (ACK packet timeout occurs), when a transmit 
parity error occurs, or when an abort transmission command is 
issued (ABORT XMIT FCN is asserted). 

The XMIT STATUS bits are asserted as described below: 

XMIT STATUS 7 

XMIT STATUS 6 

XMIT STATUS 5 

XMIT STATUS 4 

XMIT STATUS 3 

XMIT STATUS 2 

XMIT STATUS 1 

XMIT STATUS 0 

This bit is set if a parity error is 
detected on the data on the BUS TDATA bus 
in the transmit channel during a 
transmission. A parity error will cause 
XMIT ATTENTION to be asserted to the port 
which will then abort the transmission. 

When set, this bit indicates the presence 
of a carrier on CI bus A. 

When set, this bit indicates the presence 
of a carrier on CI bus B. 

Th is bi t is set when a transm iss ion is 
aborted by the abort function (ABORT XMIT 
FCN) commanded by the port via the LINK 
CONTROL lines. 

This bit is set when an arbitration 
countdown has reached O. It does not 
necessarily mean that a transmission will 
occur (see Paragraph 2.7). 

This bit is set when a NACK is received 
from the destination node. A NACK response 
causes XMIT ATTENTION to assert to the 
port. 

This bi t is set when an ACK is received 
from the destination node. An ACK response 
causes XMIT ATTENTION to assert to the 
port. 

This bit is set when a transmit operation 
is in progress or whenever XMIT ATTENTION 
is asserted. 

2-63 



IV 
I 

0'\ 
~ 

IFIG.2.121 TDATA PARITY ERROR"ID 

NOTE: 
LETTER DESIGNATIONS IN PARENTHESES REFER TO 
ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
LOGIC. 

A J ~-

XMIT CLK 

FF 
(Ll 

CLK 
CLR 

(FIG.2.31! CARRIER DET B 

CARRIER DET A _I 

ABORT XMIT FCN 

RESET XMIT STATUS 
(FIG.2.211{ 

(FIG. 2·251 

(FIG. 2·201 

----------.....,~ _ mA""'"'''''' 
TINIT ~ 

ARBC = 0 

(FIG. 2·30) MR STATE J 

(FIG. 2·121 BUSY r--"\ 

AR STATE B 
(FIG.2·2BI 

RCVR DATA 6 

RCVR CLK 
FF 

n\..v n IuL" -ICLK 

(Ll 
K 

CLR (FIG. 2·31 { ___ ..., 

CLEAR XMITSTATUS 

CRC STATUS. 

{ AR STATE H ACK RESPONSE 

FF { AR STATE D 
.. _ •.. -_ .• ~ (LI (FIG 2·281 

C . ARSTATEH 

XMIT STATUS 7 

XMIT STATUS 6 

XMITSTATUS5 

XMIT STATUS 4 

(FIG. 2·251 

XMIT STATUS 3 

XMIT STATUS 2 (NACKI 

XMIT STATUS 1 (ACKI 

(FIG. 2251 MX STATE A 
XMIT 
STATUS 0 

XMIT 

RCVR CLK 
K CLR RCVR CLK .. Ie ~~ 

1-__ -'-' ~ .. .-IID IL) I ATTENTION 

TWO 
CLOCK 

PORT CLK .. IPULSES: 
-IC 

CLR 

A ) CLEAR XMIT STATUS T CLEAR XMIT STATUS 

Figure '2-27 Transmit Status 

K 
CLR CCLR 

(FIG. 5·2: 5-111 

(FIG 3·31 

(FIG.4·101 

TI(·Rfi7"i 



2.10.2 ACK Receive 
Figure 2-28 illustrates the ACK receive state logic and is used in 
conjunction with the the ACK RCVR STATE diagram in the engineering 
drawing set. Two PALs are used for the ACK RCVR state sequence. 

2.10.2.1 ACK Receive PAL States INITIALIZE from the port 
initializes the receive channel and asserts RINIT to both ACK RCVR 
PALs placing them into their idle states (state A for PAL no.l: 
state E for PAL no. 2). The link is transferred to AR state B 
when PAL no. 1 senses that a valid packet is being received (CHAR 
SYNC true), that the receiver is waiting for an ACK response (WACK 
true), and that the packet is an ACK (RDAT REG 7 = 1) rather than 
a message packet. 

In state B the packet true destination byte is checked. If a match 
is obtained (DST CMP true), the link transfers to state C. 

In state C, ACK RCVR state PAL no. 2 is enabled (AR STATE E 
asserts) and the complement destination byte is checked. If a 
destination match is obtained (DST CMP true) PAL no. 2 moves to 
state F. PAL no. 1 remains in state C until the ACK RCVR state 
sequence is completed. 

State D of PAL no. 1 is a "receiver clear" state which is entered 
if an improper response is obtained in states A, B, or C. State D 
is entered from state A if CHAR SYNC and WACK are true but RDAT 
REG 7 = 0 (this is a message packet, not an ACK response). State D 
is entered from state B if a true destination mismatch occurred. 
State D is entered from state C if a complementary destination 
mismatch occurred. After clearing the various receiver functions, 
PAL no. 1 returns to the idle state (state A). 

In state F the packet source byte is checked. The link then passes 
to state G provided this is not a maintenance operation (INT MLOOP 
false). If this is a maintenance operation (INT MLOOP true), the 
link goes to state H. 

In state G the CRC bytes are input to the CRC checker which checks 
for any CRC error. When MAX CRC 3 asserts (last CRC byte into the 
CRC checker) the link moves to state H. 

State H is the last state in the ACK RCVR sequence. In this state 
the various receive functions are cleared and then both PALs are 
returned to their idle states. 

The last state in a MESSAGE XMIT state sequence is state M. When 
MX STATE M asserts, an ACK timeout counter is enabled and starts 
counting. If, after 3.66 microseconds, the ACK RCVR sequence is 
not completed, the counter asserts ACK TO which terminates the 
sequence and returns both ACK RCVR PALs to their idle states. The 
port then reads status bits to determine the trouble. 

2-65 



IV 
I 

0'1 
0'1 

WACK -(FIG. 2·25) 
CHAR SYNC -

(FIG. 2·3) { ICCS PATH SELECTED _ 

(FIG. 2·21) 

(FIG. 2·30) 

(FIG. 2·3) 

(FIG. 2·25) 

(FIG. 2·18 

NOTE: 
lETTER 

{ 

ACK 
TIMEOUT 
COUNTER 

(C) 
MX STATE M 

RCVRCL~ 
ENA 

ClR 

ClK 

DESIGNATIONS IN PARENTHESES REFER TO 
ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
lOGIC. 

RDAT REG 7 -
EXT MlOOP -
INT MlOOP -

RINIT -
DST CMP -
ACK TO -

-
-

RCVR ClK _ 

L......, 

-
-
-

MAX CRC 3 -
RCVR ClK 

Figure 2-28 ;\CK Receive State Logic 

AR STATE A 

AR STATE H 

AR STATE C 
---

AR STATE D 
ACK 
RCVR 
STATE 
PAL 
(A·D) 

(8) 

ClK 

ACK 
AR STATE E 

RCVR AR STATE F 
STATE 

AR STATE G 
PAL 
(E·H) AR STATE H_ 

(B) 

ClK 

TK·8624 



2.10.2.2 Sync Character Detect Enable PAL -- The purpose of the 
sync character detect enable PAL (Figure 2-3) is to enable the 
sync character detector when a packet is expected and to inhibit 
the detector when transmitting from this node. The sync character 
detector should be enabled during the following times: 

A. During an internal maintenance loop operation. 

B. After a transmission when an ACK packet is expected. 

C. To receive a message packet from another node taking care 
not to respond to transmissions from this node 
(transmission of an ACK packet). 

Figure 2-29 functionally illustrates the sync 
enable PAL. ENA SYNC DET is asserted by any 
applied to an output OR gate. 

character detect 
of five signals 

When in maintenance loop operation, INT MLOOP is true and enables 
the sync detector. 

The next two signals enable the sync detector when an ACK packet 
is received. One is generated by ANDing CARRIER DET A with the 
negated state of ICCS PATH B while the other is generated by 
ANDing CARRIER DET B and the asserted state of ICCS PATH B. Thus, 
the two gates look for a carrier presence in both CI paths. 
Enabling of the two gates is restricted to ACK packets by ACK ENA 
which asserts while waiting for an ACK packet (WACK true) and 
after a loss of carrier has been sensed. The carrier lost would be 
the message transmit carrier from this node. ICCS PATH B (true or 
false) enables one of the AN[, gates in the ACK ENA logic. When 
that gate senses a loss of carrier (CARRIER DET negates), ACK ENA 
asserts and is latched. The next time a carrier is sensed (the ACK 
response), the output AND gate is enabled and asserts ENA SYNC DET 
via the output OR gate. 

The last two signals enable the sync detector when a message 
packet is received. The signals are generated by AND gates which 
are enabled when the node is not transmitting a message packet 
(both FORCE PATH signals false), and a carrier is detected on one 
of the CI paths. The gates are inhibited by trailer delay (TR DLY) 
which is true at the end of an ACK transmission when the packet 
trailer is being transmitted. 

2-67 



I\J 
I 
~ 
00 

( FIG.) 
2·3 

ENA 
SYNC 

DET 

NOTES: 
1. THE LOGIC IN THiS FIGURE IS CONTAINED 

ON SHEET J OF THE ENGINEERING DRAWINGS. 

2. SIGNALS GENERATED INTERNALLY. 

INT MLOOP 
(FIG.221) 

WACK 
(FIG.225) 

CARRIER DET A 

(FIG. 2·3) 

ICCS PATH B 

CARRIER DET B 

MR STATE I I I (FIG.230) 

(LAST PATH A) 

~ } NOTE 
(LAST PATH B) 2 

FORCE PATH A } 

FORCE PATH B (FIG 23) 

TK·86'21 

Figure 2-29 Sync Charactcr Dctcct Enablc PAL 



2.10.3 Message Receive 
Figure 2-30 illustrates the message r.eceive sLate logic. tt is 
used in conjunction with the MSG HCVR S'fATF diagr.03m in 1 lie 
eng ineering drawing set. Two PALs are used for the message Rvr'R 
state sequence. 

tNITIALIZE from the port asserts ABOHT t UHT FeN whi.ch in tutti 
asserts RINtT. RINtT initializes the loqio.: in Ille r.eceive channnJ 
and places the two MSG RCVR state l'Af.r.:: inlo their idle stat·'s 
(state A for PAL no. 1; state M for PAJ. no. 2). When t.he r.eceiv"t" 
is not disabled due to transmirlsion (I-Uln the 1 ransmit-. chanrtpl 
(RXMtT false), a valid packet is in the r'endvE' dliH1I1pl (CHAR SytlC 
true), and the packet is recognizAd as ., mess.lf:1P (RnAT REG 7 == ()) 
and not an ACK; PAL no. I transfers to MH st.atn 1\. 

Tn 1\1R state P, VALID RCVR IJATA is rtSS(}I'L~Hl to t.hE> PB indicating 
that a vali.d packet is bl'd.n~-1 I~ecei.ved, and rAr.K~:T LENGTH IS 

asserted to the PB indicatin~l t:Iwt UH.~ hytp bf-dncJ transfnrll'c] 
cont.Ains packet length i.nformation. l\lso, the CRe checker is 
enabled and stat~ts I~eceiving the packet bytes. The link moves 1.0 

MR state C on the next clock pulse. 

In MR state C the true destination byte is checked. tf a match is 
obtained (DST CMP true), the I ink moves to state D. PACKET LENGTH 
remains asserted in state C as the byte being transferred to the 
PE contains packet length information. 

In MR state 0 the complement destinatioll byte 
match is obtained (DST CMP true), the link moves 

is checkerl. If 
to MR state E. 

a 

In MR state E the packet source byte is clocked into the true Dnd 
complement ACK destination reg isters to serve as the destination 
for the ACK response. The next RCVR CLK pulse moves the link to MR 
state G. 

PAL no. 1 remains in MR state G for the rest of the MSG RCVR state 
sequence. The assertion of MR STATE G enables PAL no. 2 in that it 
allows it to move from its idle state (state M) to state H when 
its condition signal (RCVR PACKET END) is asserted. 

2-69 



I'V 
I 

-..,J 

~ 

( FIG.)f 

2·3 l CHAR SYNC I 

(FIG. 2·301 ------, 

ICCS 

(FIG.231 "-1 

(FIG. 

(FlG.231 ,wo.~"'"cc •.•• ·cOJ 

ICCS PATH SELECTED 

VALID RCVR DATA 

HEADER 
IN TIME 

OUT 
COUNTER 
(JI 

LOAD 

IF IG 2.20} ARB OK 

( 

PE 

(FIG 2251 n, ... , ~,,,._~, 

(FIG 4 21 

MR STATE F 

MR STATE K 

MR STATE L~ 
ARSTATE D 

IFIG 2·281 { AR STATEIH IFIG. 2.251 MX STATE C 

RCVR Cl K 
------r 

IIRORT 
, INIT FeN 

PATH SEL TO 

I 

L-__ -'-_ . .:.-_ (F IG. 7 ]I 
A) I [) rr 

IJI 
C 

{rlCj 

(FIG. 2·2'1 LOOP ~ENA HDA T,Or 

( . { 
INT Ml.oor 

, ~'~,) LOOP 

MR CRC 3 
rI 1(; ~l 1 Rl 

POAT CLK 

DELAY 
TWO 
CLOCKS 
(L1 
C 

IFiG 7711 { 

AX-ss-rr-IIII-=~ n~;~: H::"; "'-. -~I ~ I IAI 
(r!e; ~l 11 \ ---1 ...x>-----L-.,. 

OL yo Hon Tn 
(FIG. ') :)Ql 

RCVR C' K 

NOTE. 

"I(; ;, :11_"':C:,' R,::C:,' :..ST...:A..:.T:..U:.S~-l 
ACK DONI' 

RCVR el.K 

LE TTE A DESIGNA nONS IN PAnT NTHFS" AeFF R TO 
ENGINF.ERING DRAWINGS CONl AIN1N{~ CORRI=.srONOING 
LOGIC. 

Figure 2-30 Message Receive State Logic 

MSG 
RCVR 
$TATE 
PJ\.l. 
IH MI 
1111 

elK 

MSG. END + HTO 

VALID RCVR STATUS 

RINIT 

RCAR DROP 

(.n 

PACKET LENGTH 

MR STATE D 

MR STATE E 

MR STATE F 

MR STATE G 
I 

C 

XM'T CLK 

U !fj 231) AX STATE A 

IFiG. 2211 EXT MLOOP r-:-. 
RESET RCVA 

D 

IFIG. 331 

~(FIG3·81 

(FIG. 2201 

TACK (FIG.) 
231 



If any of the three condi tion tests made by PAL no. 1 fails, the 
link is transferred to MR state F. Failing any of the three tests 
would be: 

1. While in state A with RXMIT false, CHAR SYNC asserts but 
RDAT REG = 1 (this is an ACK packet) 

2. A true destination mismatch occurred in state C 

3. A complement destination mismatch occurred in state D. 

In MR state F the receive logic is cleared, and PAL no. 1 returns 
to the idle state (state A) on the next RCVR CLK pulse. 

PAL no. 2 remains in its idle state (state M) while the packet 
body is being transferred to the PB. After the last byte of the 
body has been sent to the PB, the PB asserts RCVR PACKET END and 
PAL no. 2 goes to MR state H. 

In state H the packet CRC bytes are input to the CRC checker. When 
the last byte is in the checker, MR CRC 3 asserts. If there is no 
CRC error, CRC OK is true when MR CRC 3 asserts. In this case, the 
link moves to state 1. If there is a CRC error, CRC OK is false 
and the link goes to state L. 

In state L the MSG RCVR state sequence is aborted. The receive 
channel is cleared, PAL no. 1 is moved to its idle state (state 
A), and PAL No.2 moves to its idle state {state M}. 

The message receive state sequence remains in state I while the 
link transmi ts the ACK response. The assertion of MR STATE I 
asserts TACK {transmit ACK} to the ACK transmit state PAL 
initiating the ACK transmit sequence. When the ACK transmission is 
done AX STATE H negates to assert ACK DONE to MSG RCVR PAL no. 2. 
The assertion of ACK DONE moves the link to MR state K. 

In MR state K the rece ive channel is cleared and PAL no. 1 is 
returned to its idle state {MR state A}. The next RCVR CLK pulse 
return PAL no. 2 to its idle state {state M}. 

The message receive state logic contains a header timeout counter 
to prevent receive channel hangups. The counter is turned on by 
ICCS PATH SELECTED 'removes the counter LOAD signal) and cleared 
by CHAR SYNC. It thus starts counting when a carrier is detected 
and is cleared when the carrier is recognized as being a valid 
packet. If SYNC CHAR fails to assert, the counter times out (in 
3.66 microseconds) and outputs HEADER TIME OUT. The assertion of 
HEADER TIME OUT causes MSG END + HTO to assert, thereby asserting 
CLEAR RCVR to reset the receive logic. 

2-71 



The header timeout counter is enabled and disabled at the RCVR CLK 
rate via a flip-flop. Thus, the four-bit counter is extended t( 
five bits, producing the 3.66 microsecond timeout period (32 x 
114.28 ns = 3.66 microseconds). Note that the counter is disableci 
by WACK. WACK asserts in MX state M when the transmit channel is 
transmitting a message packet. Thus, WACK prevents the detection 
of the transmitted carrier from starting the header timeout 
period. 

Other signals besides MSG END + HTO assert CLEAR RCVR. One of 
these is RCAR DROP (rece i ve carr ier droppe d) which asserts if a 
carr ier is lost dur i ng a messag e recept ion. ICCS PATH SELECTED 
asserts before CHAR SYNC asserts and negates after CHAR SYNC 
negates. If a receive carrier is prematurely lost, ICCS PATH 
SELECTED will negate while CHAR SYNC is still true, causing RCAR 
DROP to assert. Note that CHAR SYNC is not applied to the ANDing 
operation until MR STATE E sets a flip-flop which gates CHAR SYNC 
to the RCAR DROP AND gate. Delaying CHAR SYNC until MR state E 
allows the header portion of the packet to pass before the node 
looks for carrier drop-out. 

2.10.4 ACK Transmit 
Figure 2-31 illustrates the ACK transmit state logic and is used 
in conjunction with the ACK XMIT STATE diagram in the engineering 
drawing set. 

INITIALIZE from the port asserts TINIT which initializes the link 
and asserts AX STATE A from the ACK XMIT PAL. AX state A is the 
ACK transmit idle state. When TACK (transmit ACK) is received from 
the MSG RCVR state PAL, the link goes into AX state B. 

In state B the sync/trailer PROM logic is enabled and outputs the 
bi t synchroni zation bytes and the sync character byte onto the 
XMIT DATA BUS. The selected transmit driver is also enabled. When 
SYNC/TR GONE asserts, the link transfers to state C. 

2-72 



N 
I 

-...J 
W 

(FIG. 2·30) 

(FIG. 2-21) 

(FIG. 2-25) 

(FIG. 2-12) 

(FIG. 2-18) 

(FIG. 2-26) ENA SYNC/TR 

AX STATE C 
A )~--------------~ 

AX STATE 0 

TACK 

INT MlOOP 

TABORT 

TINIT 

MX STATE M 

SYNC/TR GONE 

MAX CRC 3 

XMIT ClK 

B) ~ 

-

-

ClK 

AX STATE A 

AX STATE B 

-, 
AX STATE C I 

-, 

ACK I 

XMIT AX STATE 0 I \ 

STATE 
PAL , 
(A-H) AX STATE E I \ 

(A) 
• .1 

AX STATE F I . 
, 

AX STATE G 

AX STATE H 

ENA ACK TYPE 

ENA ACK TDST 

ENA ACK COST 
AX STATE E 

C }~--------------------------------------~ 

AX STATE F 
D)~----------------------------------------------~ 

NOTE: 
lETTER DESIGNATIONS IN PARENTHESES REFER TO 
ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
lOGIC. 

Figure 2-3\ ACK Transmit State Logic 

(FIG. 2-26) 

(FIG. 2-12) 

TK·8619 



The link is in AX state C for one clock pulse. While in state C, 
the ACK type byte is placed onto the XMIT DATA BUS and the CRC 
generator is enabled. The next XMIT CLK pulse moves the link to AX 
state D. 

In AX state D the ACK true destination byte is placed onto the 
XMIT DATA BUS. The link then advances to AX state E. 

In AX state E the ACK complement destination byte is placed ont·.o 
the XMIT DATA BUS. The link then advances to AX state F. 

In AX state F the ACK source byte is placed onto the XMIT DATA 
BUS. The link then moves to state G. 

In AX state G the CRC bytes generated by the CRC generator are 
output onto the BUS TDATA bus. When the last CRC byte has been 
placed onto the bus, MAX CRC 3 asserts and moves the link to AX 
state H. 

In AX state H the sync/trailer PROM is enabled again and the 
packet trailer bytes are output from the PROM onto the XMIT DATA 
BUS. After the trailer bytes have been placed onto the bus, 
SYNC/TR GONE asserts and returns the ACK XMIT PAL to its idle 
state (state A). 

Note in Figure 2-31 that the assertion of each gate coupl ing a 
byte to the XMIT DATA BUS depends on the negation of the gate that 
coupled the preceding byte to the bus. This insures that only one 
source is driving the XMIT DATA BUS at anyone time. 

2-74 



NOTE 

CHAPTER 3 
PACKET BUFFER MODULE 

The functional block diagrams in Chapter 
3 use logical AND and OR symbols. It 
does not necessarily follow that a 
corresponding gate exists on the packet 
buffer logic prints. The assertion of 
inputs A and B causing the assertion of 
output C may be represented on a block 
diagram by a single AND gate, yet the 
engineering drawing may show that 
several circuit stages are involved in 
the ANDing operation. 

The functional block diagrams in this 
chapter are keyed to the packet buffer 
module (PB) engineering circuit 
schematics (CS prints) by letter 
designations in parentheses. The letters 
specify the PB CS sheet that contains 
the detailed logic associated with the 
functional blocks in the diagram. 

The signal names used in the functional 
block diagrams are the names used on the 
engineering CS prints. Where other 
signal names or notes are used, they are 
enclosed in parentheses. 

3.1 DATA FLOW; GENERAL DISCUSSION 
Figure 3-1 is a block diagram of data flow through the packet 
buffer. Information in the form of messages and data, flows 
through the packet buffer module (PB) in packets of various size. 
Data going to the CI bus flows from the data path module (DP) to 
the link while data received from the CI bus flows from the link 
to the DP. 

A transmit buffer (TBUF) is in the data path to the CI bus and a 
rece i ve buffer (RBUF) is in the data path from the C I bus. The 
buffers are loaded and read under control of the port microcode. 
Six operations are used in transferring data in and out of the 
buffers. Four are used for normal transfer of data. The other two 
are used for maintenance and self-directed commands. The six 
operations are listed below: 

l. TBUF LOAD 
2. TRANSMIT 
3 TBUF READ 
4. VALID RCVR DATA 
5. RBUF MLOAD 
6. RBUF READ 

3-1 



w 
I 

IV 

(TO DATA PATH) 
PORT DATA <7:0> 

'--

~ 

(TO LINK) 

/ RBUF DATA <7:0> 

PB 
READ 
MUX 

"-

TBUF DATA <7:0> 

TBUF r ~ TBUF XMIT DATA <7:0> TBUF (TO LINK) IN . OUT 
REGISTER REGISTER 

LOOP 
BACK J--
REGISTER 

/ (RBUF DATA) 

RBUF 
RBUF I~ RBUF 

OUT IN . 
REGISTER REGISTER 

NODE ADDRESS <7:0> 

XMIT STATUS <7:0> 
} (FROM LINK) 

RECEIVER (RECEIVER STATUS) 
STATUS 
LOGIC 

• COMMON 110 

I 

RBUF 
SEQUENCING 
LOGIC 

TBUF 
SEQUENCING 
LOGIC 

Figure 3-1 Packet Buffer Data Flow 

/ 
RBUF IMUX 

RBUF I-DATA <7:0> 
IN 
MUX RCVR DATA <7:0> 

"-
jrMANOS) & BUFFER 

SELECTION 

1 FUNCTION 
DECODER 
& 
BUFFER 
SELFCT 

(FROM LINK) 



3.1.1 TBUF LOAD 
Data from the DP is loaded into the TBUF via the TBUF in register. 
The TBUF LOAD operation is controlled from the PB. 

3.1. 2 TRANSMIT 
Data is read out of the TBUF into the link via the TBUF out 
register. The TRANSMIT operation is controlled by the link. 

3.1.3 TBUF READ 
Da ta is read out of the TBUF back into the DP v ia the loopback 
register. The loopback data is muxed with the received data on the 
RBUF DATA <7:0> data lines and returned to the port bus via the PB 
read mux. This operation is controlled by the PB and is used for 
maintenance and self-directed commands. 

3.1.4 VALID RCVR DATA 
Received data (RCVR DATA <7:0» from the link is loaded into the 
RBUF via the RBUF in mux and the RBUF in register. The VALID RCVR 
DATA operation is controlled from the link. 

3.1.5 RBUF MLOAD (Maintenance Load) 
Data from the DP (PORT DATA <7:0» is loaded into the RBUF via the 
RBUF in mux and the RBUF in register. The RBUF MLOAD operation is 
controlled by the PB and is used for maintenance purposes. 

3.1.6 RBUF READ 
Data is read out of the RBUF to the DP via the RBUF out register 
and the PB read mux. The data from the RBUF out register is muxed 
with the loopback data on the RBUF DATA <7:0> data lines. The RBUF 
READ operation is controlled by the PB. 

3.1.7 PB Read Mux 
Other data is provided to the DP over the PORT DATA <7:0> bus via 
the PB read mux. This data is NODE ADDRESS <7:0> and XMIT STATUS 
<7: 0> from the link, and receive status from the receive status 
log ic in the PB. 

3.1.8 Control Logic 
The PB operations are controlled by decoding and sequencing logic. 
A function decoder issues commands that specify the operation to 
be executed. Buffer select logic selects the buffer for the 
operation specified by the function decoder. If a TBUF is selected 
(there are two), the TBUF sequenc ing log ic generates the control 
signals for the operation. Corresponding sequencing logic exists 
for the RBUFs which generate the control signals for an RBUF 
operation. 

The function decoder and buffer select logic are controlled by the 
port microcode. 

3-3 



3.2 TBUF DATA FLOW OPERATIONS 
The TBUF (Figure 3-2) is div ided into two parts (TBUF A and TBUF 
B) wi th each TBUF having a separate, parallel data path. Thus, 
throughput is increased in that TBUF A can be loaded from the CP 
while TBUF B is being transmitted to the link. Each TBUF has lK of 
storage. The following discussion will describe TBUF A and its 
data path. TBUF B and its data path are identical to TBUF A. 

3.2.1 TBUF LOAD 
SEL TBUF A enables TBUF A, selecting it for a TBUF A operation. WR 
TBUF A enables the TBUF A input and disables the output thereby 
setting up TBUF A for a write. (TBUF A has a common I/O.) A data 
byte (PORT DATA <7:0> is clocked into the TBUF A in register by 
PORT CLK. PORT CLK also clocks a parity bit (PB PAR) from the [P 
into the TBUF parity in register. TBUF A REG ENA then asserts to 
enable the data byte (TBUF A DATA <7:0» and the parity bit (TBUF 
PAR A) to be written into TBUF A. 

The TBUF A address (TBUF A ADDR <9:0» is obtained from the TBUF A 
address counter. The counter is cleared by CLR TBUF A ADDR prior 
to loading a data packet into TBUF A. As each byte is written, the 
counter is incremented by CLK TBUF A ADDR to the next location in 
the buffer. 

When the last byte of the data packet is on the port data bus, a 
LOAD LAST DATA BYTE flag is asserted and clocked into a "last byte 
in" register by PORT CLOCK. The flag is written into TBUF A along 
wi th the last data byte and its par i ty bit. The flag is used to 
indicate the end of the data packet to the link during a TRANSMIT 
operation. 

3-4 



w 
I 

(Jl 

,IFIG 3·51 

PORT 
DATA 
<7:0"'~ 

PORT DATA -::7,0> • (FIG. 2211 

, PORT DATA <7, 6,1> • (FIG. 351 

PORT DATA <70> 
r-(F1G 

) 7 

(LOOP RACK R~~~.~_++_ 

IFIG.5·21___.. --~-

t-CLK TRUE A IIDfJR - -~- -------- --_.-

RBUF PAR ~ 

BUS RBUF DATA <7,0> ~ _____________ C_L~BUFRA~ 

,-------,:..---.:.::..::.:J ILOOP AAC".RfG A EN_AI ____ _ 

TOUF PARITY 

I I PORTDIITII'T~}IFIG331 
~ 
(FIG.331 

(riG 371 

Figure 3-2 TBUF Operations 

NOTES' 
,. COMMON 1/0, 
2. LETTER DESIGNATIONS IN PARENTHESES REFERS TO 

ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
LOGIC. 



3.2.2 TRANSMIT 
SEL TBUF A enables TBUF A, selecting it for a TBUF A operation. WR 
TBUF A is false to inhibit the TBUF A input and enable the output 
for a read. The TBUF A address counter is cleared by CLR TBUF A 
ADDR to address location 0 in TBUF A. 

The first data byte is read out of TBUF A from address O. The byte 
(TBUF A DATA <7:0» is clocked into the TBUF A output register by 
XMIT CLK from the link. "TBUF A OUT ENA" is true and gates the 
data byte out of the register as XMIT DATA <7:0>. The parity bit 
from TBUF A (TBUF PAR A) is gated to the TBUF parity out register 
where it is clocked in by XMIT CLK. The data byte is clocked into 
the TBUF A out register at the same time the parity bit is clocked 
into the TBUF parity out register. 

The data byte is now availble to the link as XMIT DATA <7:0> and 
to a parity checker. The pari ty bi t (XMIT DATA PARITY) from the 
TBUF parity out register is also applied to the parity checker. If 
a parity error is det~cted, XBUF PE is asserted to the DP where it 
sets an error bi t in the port maintenance control and status 
register (PMCSR). 

XMIT DATA PARITY is also applied to the link as the parity bit for 
the XMIT DATA <7:0> data byte. 

CLK TBUF A ADDR increments the TBUF A address counter to the next 
location in the buffer. The address counter is a lK counter 
capable of addressing the lK locations of TBUF A. In practice, a 
packet will be less than 1 K bytes of data; thus, the address 
counter should never reach a full count. If the counter is not 
cleared prior to a TRANSMIT operation, a full count may be 
reached. In this event, TBUF A OVFL comes true and asserts XMIT 
BUFFER EMPTY to the link. 

When the last data byte is read from TBUF A, the BUS LAST TBUF bit 
is also read out and clocked into the "last byte out" register by 
XMIT CLK. This in turn asserts XMIT BUFFER EMPTY to the link as an 
indication that it has received the entire data packet. 

3.2.3 TBUF READ (Loopback) 
SEL TBUF A enables TBUF A, selecting it for a TBUF A operation. WR 
TBUF A is false to inhibit the TBUF A input and enable the TBUF A 
output for a read. The TBUF A address counter is cleared by CLR 
TBUF A ADDR to address location 0 in TBUF A. 

The first data byte at address 0 (TBUF A DATA <7: 0» and its 
parity bit (TBUF PAR A) is clocked into loopback register A by CLK 
TBUF A ADDR. Signals "LOOPBACK REG A ENA" and TBUF A READ ENA are 
true and respectively couple the data byte (RBUF DATA <7:0» to 
the PB read mux and the parity bit (RBUF PAR) to the DP. 

3-6 



CLK TBUF A ADDR increments the TBUF A address counter to the next 
location in the buffer. 

3.3 RBUF DATA FLOW OPERATIONS 
The RBUF (Figure 3-3) is divided into two parts (RBUF A and RBUF 
B) wi th each RBUF hav ing a separate, parallel data path. RBUF A 
can be loaded from the link while RBUF B is being read by the DP, 
thus allowing greater throughput. Each RBUF has lK of storage. 
The following discussion will describe RBUF A and its data path. 
RBUF B and its data path is identical to RBUF A. 

3.3.1 VALID RCVR DATA 
A VALID RCVR DATA operation is an RBUF load of received data from 
the link. The operation is initiated and controlled from the link. 

SEL RBUF A enables RBUF A, selecting it for an RBUF A operation. 
WR RBUF A enables the RBUF A input and disables the output, 
setting up RBUF A for a write. (RBUF A has a common I/O.) 

The data byte and parity bi t from the 1 ink are input to the PB 
throug h an RBUF in mux. The mux uses two select sig nal s; one for 
the data byte and one for the parity bit. When mux select signal 
RBUF INPUT MUX SEL is false, the data byte from the link (RCVR 
DATA <7:0» is applied to the RBUF A in register as RBUF IMUX DATA 
<7: 0>. The byte is clocked into the reg ister by RBUF REG CLK and 
then gated to RBUF A by the true state of RBUF A REG ENA. 

RBUF REG CLK also clocks the pari ty bi t (RCVR DATA PARITY) into 
the RCVR parity in register. When mux select signal RBUF MLOAD is 
false, the parity bit from the register is applied to RBUF A as R 
PARITY. 

The RBUF A address (RBUF A ADDR <9:0» is obtained from the RBUF A 
address counter. The counter is cleared by "CLR RBUF A ADDR" prior 
to loading in a data packet. As each byte is written, the counter 
is incremented by CLK RBUF A ADDR to the next location in the 
buffer. The address counter is a lK counter capable of addressing 
the 1 K locat ions of RBUF A. In pract ice, a packet wi 11 be less 
than lK bytes of data; thus, the address counter should never 
reach a full count. If the counter is not cleared prior to a VALID 
RCVR DATA operation, a full count may be reached. In this event, 
RBUF A OVFL asserts and terminates the VALID RCVR DATA operation. 

The link uses a RCVR byte counter to indicate when the data packet 
has been loaded into RBUF A. The first two bytes of a data packet 
specify how many data bytes are in the packet (packet length). 
PACKET LENGTH from the link asserts and loads the first two packet 
length bytes into the RCVR byte counter. The counter is a down 
counter which is decremented by RCVR CLK each time a byte is 
loaded into RBUF A. RCVR PACKET END asserts when the packet is 
completely loaded. 

3-7 



w 
I 

CO 

(F(G.5·21 

RBUF A OVFl :~~~:SS 
(FIG.3.81{ COUNTER 

---~I (JI 

(FIG. 3·21 RBUF A 

(RBUF A ADDR <9:0> 
EN RB A 

{
PORT DATA -.7:0 ' 

IFIr..3·21 TBUF PARITY 

ClK RBUF A ADDR 

IClR RBUF A ADDR '} (FIG. 3.81 
RBUF A REG ENA 

RBUF A RBUF A DATA <7:0> I (RBUF A 

OUT RBUF A PAR RBUF A DATA <7:0>1 

REGISTER (NOTE 11 

PORT DATA <7:0> 
IN 
REGISTER 
(Fl 

t- IRBlFlN MUx' -1 
RBUF I iF/X) I 
REG ClK I 

,-~--I (FIG.5.111 RBUF PAR (F/EI (FI 

./"1 BUS RBUF SEL RBUF A 

t"'" I DATA <7:0> WR'RBUF A 

NODE 

PB (FIG. 2·31 
ADDRESS <7:0> 
XMIT 

Y ~~~D STATUS <7:0> (FIG. 2·271 

(FIG.3-BI-

I I L-~~-+---'-i 

I I 
I I 

RCVR 
DATA 

PARITY (FIG. 7]1 
RCVR 
PARITY IN 
REGISTER 
(FI 

(KI (RCVR STATUS 
<7:0>1 -}J I 

WR RBUF B RBUF IMliX I II RBUF MlOAD} 

SEl RBUF B DATA <7:0> RBUF INPUT MUX SEl (FIG. 3·81 

r::::-:-:'-:-l. __ R!!B!!:U~F~B..':P:!:A~R~-I I RCVR DATA <7:0> (FIG 731 RBUF B 7'0>1 RBUF B 

READ RBUF B 

OUT (RBUF B DATA < . (NOTE 11 (RBUF B 

REGISTER UF B ADDR (XI DATA <7:0>1 } 

(X/El ClK RB PACKET lENGTH (FIG 7301 

.---
PB MUX MUX READ NODE ADR 

READ BUF] 

SEl <1:0> SELECT READ XMIT STATUS (FIG. 3·51 
lOGIC I-+-.L!!="'-"=:....:.== 
(AI READ RCVR STATUS 

L.--
NOTES: 

1. COMMON 110. 
2. lETTER DESIGNATIONS IN PARENTHESES REFER TO 

ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
lOGIC. 

~ __ --.RCVR ....... 
RBUF B REG ENA } RCVR PACKET END 

ClK RBUF B ADDR (FIG.3.BI BYTE 

(ClR RBUF B ADDRI COUNTER 

(ll 
RCVR ClK 

Figure 3-3 RBUF Operations 



3.3.2 RBUF MLOAD (Maintenance Load) 
Sel RBUF A enables RBUF A, selecting it for an RBUF 
WR RBUF A enables the RBUF A input and disables 
setting up RBUF A for a write. 

A operation. 
the output, 

The data packet is obtained from the DP via the port data bus and 
input to the PB through the RBUF in mux. when mux select signal 
RBUF INPUT MUX SEL is true, data bytes from the port bus (PORT 
DATA <7:0) are applied to the RBUF A in register as RBUF IMUX DATA 
<7:0>. The bytes are clocked into the register by RBUF REG CLK and 
then gated to RBUF A by the true state of RBUF A REG ENA. 

The parity bit from the port bus (PB PAR) is clocked into the TBUF 
parity in register (Figure 3-2) and then applied to the RBUF in 
mux as TBUF PARITY. with mux select signal RBUF MLOAD true, TBUF 
PARITY is coupled to RBUF A as R PARITY. 

The RBUF A address (RBUF A ADDR <9:0» is obtained from the RBUF A 
address counter. The counter is cleared by "CLR RBUF A ADDR" 
before loading in a data packet. As each byte is written, the 
counter is incremented by CLK RBUF A ADDR to the next location in 
the buffer. 

3.3.3 RBUF Read 
SEL RBUF A enables RBUF A, selecting it for an RBUF A operation. 
WR RBUF A is false to inhibit the RBUF A input and enable the 
output for a read. The RBUF A address counter is cleared by "CLR 
RBUF A ADDR" to address location 0 in RBUF A. 

A data byte ("RBUF A DATA <7:0» and parity bit (RBUF A PAR) read 
out of RBUF A are clocked into the RBUF A out register by CLK RBUF 
A ADDR. EN RB A is true, gating out the data byte and parity bit 
as RBUF DATA <7:0> and RBUF PAR, respectively. (READ RBUF B in the 
RBUF B data path corresponds to EN RB A.) RBUF PAR is applied to 
the DP while RBUF DATA <7:0> is placed on the port data bus via 
the PB read mux. 

When reading RBUF A out to the DP, EN RB A asserts and couples the 
data in the RBUF A out register to the BUS RBUF DATA <7:0> bus 
before CLK RBUF A ADDR asserts. The data in the RBUF A out 
register is undetermined until CLK RBUF A ADDR asserts and clocks 
the first data byte from RBUF A into the reg ister. Thus, when 
reading RBUF A, the DP discards the first byte as invalid data. 

The reading of a data packet from RBUF A does not have to be done 
in consecut ive cycles. The packet can be partially read and the 
remainder of the packet read at a later time. If a read operation 
is interrupted, the first data byte read when the read operation 
is continued, is valid data. 

3-9 



3.3.4 PB Read Mux 
The PB read mux muxes four signal groups of eight bits each onto 
the port data bus as PORT DATA <7:0>. When READ BUF is asserted, 
the RBUF DATA <7:0> lines are selected. READ NODE ADR, READ XMIT 
STATUS, and READ RCVR STATUS respect ively select NODE ADDRESS 
<7:0>, XMIT STATUS <7:0>, and "RCVR status". NODE ADDRESS <7:0> 
and XMIT STATUS <7:0> come directly from the link and do not 
pertain to the PB. "RCVR status" is comprised of eight status 
signals relating to received data from the link (Paragraph 3.8). 

The PB read mux is enabled by PB MUX ENA whenever any of the four 
select signals is asserted. 

3.4 CLOCKS 
Three clocks are used wi thin the PB and these are obtained from 
the DP and the link (Figure 3-4). The three clocks used are: 

1. PORT CLK* 
2. XMIT CLK 
3. RCVR CLK 

PORT CLK is obtained from the DP and synchronizes all operations 
that involve data flow to or from the DP. PORT CLK has a 200 ns 
period. 

XMIT CLK is obtained from the link and synchronizes the TRANSMIT 
operation in which data flows from the PB to the link. XMIT CLK 
has a 114 ns period. 

RCVR CLK is obtained from the link and synchronizes the VALID RCVR 
DATA operation in which data flows from the link to the PB. RCVR 
CLK has a 114 ns period. 

Figure 3-4 illustrates the six PB operations and the clocks that 
synchronize them. Note that the two operations that load the RBUF, 
(RBUF MLOAD and VALID RCVR DATA) are synchronized by RBUF REG CLK. 
RBUF REG CLK is PORT CLK when the RBUF is being loaded from the DP 
(RBUF MLOAD operation), and is RCVR CLK when the RBUF is being 
loaded from the link (VALID RCVR DATA operation). 

The TBUF and RBUF address counters are clocked by whichever clock 
is synchronizing the particular operation. 

* PORT CLK T3 also appears on the PB logic prints but is identical 
to PORT CLK. The two signals fan out from different drivers, 
hence the different mnemonics. 

3-10 



w 
I 

...... 

...... 

(FIG. 4·12) 
TBUF TRANSMIT XMIT ClK PORT ClK_ 
lOAD OPERATION 
OPERATION 

TBUF 

-- READ 
OPERATION 

RBUF 
MlOAD I+: RBUF 
OPERATION RBUF 4 READ 

REG ClK LOPERATION 

VALID 
RCVR DATA f4-
OPERATION 

NOTE: 
lETTER DESIGNATIONS IN PARENTHESES REFER TO 
ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
lOGIC. 

(FIG. 2-14) 

PORT ClK .---, 
I R~LK MUX ~ 

I ~ j IRBUF MlOAD 

I L},. - ~ J'lCVR ClK 

L~x) __ J 

Figure 3-4 Packet Buffer Clocks 

(FIG. 3-8) 

(FIG. 2-10) 

TK-1788 



3.5 FUNCTION DECODER AND BUFFER SELECT LOGIC 
The SELECT bit from the microword asserts for one microcycle and 
enables the function decoder and the buffer select log ic (see 
Figure 3-5). Four link control bits from the microword (LINK 
CONTROL <3:0» carry the PB function command to the function 
decoder which outputs one of thirteen possible commands for one 
microcycle. The function commands and their associated link 
control codes are shown in Table 3-1. 

The following paragraphs describe each of the function commands. 

3.5.1 SEL LOAD BUF 
Prior to issuing a load buffer command (LOAD BUF or LOAD LAST DATA 
BYTE), or a RESET TBUF command, the microcode selects the buffer 
wi th the SEL LOAD BUF command. The selection is made by the buffer 
select logic during the microcycle in which the microword SELECT 
bit is true. The selected output is latched and remains true until 
SELECT asserts again and another buffer is selected. 

SEL LOAD BUF enables the "load" section of the buffer select logic 
which outputs one of four "buffer load enable" signals according 
to port data bits PORT DATA <7:6> (Table 3-2). 

3.5.2 SEL READ BUF 
Before issuing a read buffer command (READ BUF) or a RELEASE RBUF 
command, the microcode selects the buffer wi th the SEL READ BUF 
command. The selection is made by the buffer select logic during 
the microcycle in which the microword SELECT bit is true. The 
selected output is latched and remains true until SELECT asserts 
again and another buffer is selected. 

SEL READ BUF enables the "read" section of the buffer select logic 
which outputs one of four "buffer read enable" signals according 
to port data bits PORT DATA <7:6> (Table 3-3). 

3.5.3 LOAD BUF 
The LOAD BUF command loads port data into the buffer selected by 
the SEL LOAD BUF command. The load operat ions are TBUF LOAD and 
RBUF MLOAD. The VALID RCVR DATA operation (loading of the RBUF 
from the link) is not a function of the PB microword. 

A data packet does not have to be loaded in consecutive cycles. A 
packet can be partially loaded and the remainder of the packet 
loaded at a later time. 

When loading a TBUF, the last byte of data must be loaded with a 
LOAD LAST DATA BYTE command. 

3-12 



w 
I 

...... 
w 

(FIG. 3-2) 

(FIG. ~21 { 

(FIG. 

{ 
PORT DATA <7:6> 

PORT DATA 1 

SELECT 
ENABLE 

LINK CONTROL <3:0> 

FUNCTION 
DECODER 

3-3; 3-7; 3-B) 
READ BUF 

BUFFER 
SELECT 
LOGIC 

SELECT 

PORT CLK 

INITIALIZE 

SEL LOAD BUF 

SEL READ BUF 

LOAD BUF 

LOAD LAST DATA BYTE 

TRANSMIT 

TBUF A LOAD ENA 

TBUF B LOAD ENA 

RBUF A MLOAD ENA 

RBUF B MLOAD ENA 

TBUF A READ ENA 

TBUF BREAD ENA 

RBUF A READ ENA 

RBUF BREAD ENA 

}FIG.3.6) 

(FIG. 3·8) 

,.. (FIG. 3-2) 

}FIG. 3-6; 3-7) 

D 

}FIG.3.7) 

} (FIG. 3·8; 3·9) 

(FIG. 3·7) 

}(FIG. 3·8; 3·9) 

TBUF B XMIT ENA 
'} TBUF 8 

SEOUENCING 
. LOGIC D ~TBUF A XMIT ENA L (FIG. 3-6; 3·7) 

TBUF 
XMIT (FIG. 3-7) 
SELECT 
FF 

PORTCLK 

RESET TBUF 
(FIG. 3-7) 

CLK 

RELEASE RBUF 
(FIG. 3-8; 3-9) 

READ NODE ADR 

}FIG.3-3) 
READ XMIT STATUS 

READ RCVR STATUS 

(LINK ENABLE) 

}FIG.3-6) (LINK DISABLE) 
NOTES: 
1. THE LOGIC IN THIS FIGURE IS C 

ON SHEET A OF THE ENGINEER 
ONTAINED 
NG DRAWINGS. 

TK08895 

Figure 3-5 Function Decoder And Buffer Select Logic 



Table 3-1 Link Control Codes Vs PB Function Commands 

LINK CONTROL Function Command 

3 2 1 9 

" " " " READ NODE ADR 

" " " 1 LOAD LAST DATA BYTE 

" " 1 " 
" " 1 1 TRANSMIT 

0 1 " " 
" 1 0 1 

" 1 1 " "Enable link" 

0 1 1 1 "Disable link" 

1 0 " " READ RCVR STATUS 

1 " 0 1 READ XMIT STATUS 

1 " 1 0 READ BUF 

1 " 1 1 LOAD aUF 

1 1 " " RELEASE RBUF 

1 1 0 1 RESET TSUF 

1 1 1 0 SEL READ BUF 

1 1 1 1 SEL LOAD BUF 

3-14 



Table 3-2 Load Buffer Select Code 

PORT DATA Buffer Selected 
7 6 

0 0 TBUF A LOAD ENA 

0 1 TBUF B LOAD ENA 

1 0 RBUF A MLOAD ENA 

1 1 RBUF B MLOAD ENA 

Table 3-3 Read Buffer Select Code 

PORT DATA Buffer Selected 
7 6 

0 0 RBUF A READ ENA 

" 1 RBUF B READ ENA 

1 0 TBUF A READ ENA 

1 1 TBUF B READ ENA 

3-15 



3.5.4 LOAD LAST DATA BYTE 
The LOAD LAST DATA BYTE command is the load command for the last 
byte of data loaded into one of the TBUFs. It performs the same 
function as a LOAD BUF command and in addition, loads a "last data 
byte" bit into the TBUF along with the data byte. 

3.5.5 READ BUF 
The READ BUF command reads data from the buffer selected by the 
SEL READ BUF command. The data is read out to the port data bus 
v ia the PB read mux. The read operat ions are TBUF READ and RBUF 
READ. The TRANSMIT operation (reading of the TBUF to the link) is 
initiated by the PB microword but is a separate command. 

3.5.6 TRANSMIT 
The TRANSMIT command reads data from the selected TBUF to the 
link. After the command is issued, the link controls the read 
operation. The link continues reading the selected TBUF until the 
"last data byte" flag is read out. 

During the microcycle that TRANSMIT is true, one of the port data 
bits (PORT DATA 1) is sampled to determine which TBUF will be 
transmitted. A TBUF XMIT flip-flop asserts TBUFAXMIT ENA if the 
port data bit is false, and TBUF B XMIT ENA if the bit is true. 

Only one TRANSMIT operation can be executed at a time. (Only one 
TBUF can be read at a time by the link.) A TBUF must be completely 
read, or the operation aborted and the transmit status cleared, 
before another TRANSMIT command can be issued. 

3.5.7 RESET TBUF 
The RESET TBUF command resets the address counter associated with 
the selected TBUF. 

3.5.8 RELEASE RBUF 
The RELEASE RBUF command resets the address counter associated 
with the selected RBUF. It also clears the "full" flag (negates 
RBUF FULL; Figure 3-9) for the selected buffer making it available 
to the link for a VALID RCVR DATA operation. 

3.5.9 READ NODE ADR 
The READ NODE ADR command selects the node address (NODE ADDRESS 
<7:0» from the link to be muxed onto the port data bus by the PB 
read mux. 

3.5.10 READ XMIT STATUS 
The READ XMIT STATUS command selects the transmi t status (XMIT 
STATUS <7:0» from the link to be muxed onto the port data bus by 
the PB read mux. 

3-16 



3.5.11 READ RCVR STATUS 
The READ RCVR STATUS command selects the eight "receive status" 
bits to be muxed onto the port data bus by the PB read mux. The 
"receive status" bits are discussed in Paragraph 3.8. 

3.5.12 Link Enable and Link Disable 
The "link enable" and "link disable" commands are used in the link 
module and perform no function on the PB other than to assert PB 
LOAD. PB LOAD must be true to enable the path to the link for the 
commands. (See PB LOAD; Paragraph 3.6.) 

3.6 PB LOAD 
Data placed on the port data bus from the DP is obtained from a 
32-bit PB OUT register. The register output is enabled by PB LOAD 
from the PB. PB LOAD is asserted for all commands that require 
data to be transferred from the PB OUT reg isterto the port data 
bus. (See Figure 3-6.) 

An eight-bit enable and an eight-bit disable command function for 
the link is transferred to the link from the DP via the port data 
bus (Figure 3-1). Al though these commands do not pertain to the 
FB , it is required thatPB LOAD be true in order to transfer the 
commands from the PB OUT register to the port data bus. 

Referring to Figure 3-6: 

1. SEL LOAD BUF an'd SEL READ BUF commands require port data 
bits PORT DATA (7:6) to select which buffer to load or 
read. 

2. LOAD BUF and LOAD LAST DATA BYTE commands obtain the byte 
to be loaded from the port data bus. 

3. The TRANSMIT command requires PORT DATA 1 to select which 
TBUF to transmit to the link. 

4. "Link enable" and "link disable" commands require a path 
from the PB OUT register on the DP to the port data bus. 

3.7 SEQUENCING LOGIC 
The PB funct ion decoder and buffer select log ic generates the 
necessary signals to enable the TBUF and RBUF load/read 
operations. The signals pertinent to each of the six operations 
are discussed in Paragraphs 3.7.1 through 3.7.6. The A buffer is 
used in all the discussions. Corresponding logic exists for the B 
buffer. Figure 3..,7 illustrates the sequencing log ic associated 
with the three TBUF operations. Figure 3-8 illustrates the 
sequencing logic associated with the three RBUF operations. 

3-17 



SEL LOAD BUF 

SEL READ BUF 

LOAD BUF 

(FIG. 3·5) LOAD LAST DATA BYTE PB LOAD 
(FIG. 5-2) 

TRANSMIT 

(LINK ENABLE) 

(LINK DISABLE) 

NOTES: 
1. THE LOGIC IN THIS FIGURE IS CONTAINED 

ON SHEET A OF THE ENGINEERING DRAWINGS. 

TK-7789 

Figure 3-6 PB Load Logic 

3-18 



3.7.1 TBUF LOAD 
The TBUF LOAD sequencing logic is illustrated in Figure 3-7. 
Before a TBUF LOAD operation is initiated, a RESET TBUF command is 
issued to clear the selected TBUF address counter. The RESET TBUF 
command is ANDed with TBUF A LOAD ENA to assert CLR TBUF A ADDR. 
The next PORT CLK pulse asserts CLK TBUF A ADDR which clears the 
counter. (The address counter is an asynchronous counter which 
requires a clock pulse while the clear input is true in order to 
reset. ) 

The TBUF LOAD operation is initiated by the LOAD BUF command. The 
LOAD BUF command (or LOAD LAST DATA BYTE if this is the last byte) 
is ANDed with TBUF A LOAD ENA (or TBUF B LOAD ENA) to enable the 
pulse width flip-flop to be set by the next PORT CLK pulse. The 
flip-flop output is ANDed with TBUF A LOAD ENA to assert WR TBUF A 
and SEL TBUF A. SEL TBUF A enables TBUF A and WR TBUF A enables it 
for a load. 

The output of the pulse width flip-flop is delayed 80 ns, and then 
used to clear the flip-flop. Thus, SEL TBUF A and WR TBUF A become 
80 ns pulses. 

Another output of the pulse width flip-flop is delayed 20 ns and 
ANDed with TBUF A LOAD ENA to assert TBUF A REG ENA and CLK TBUF A 
ADDR. These two signals are also 80 ns wide and are delayed 20 ns 
with respect to SEL TBUF A and WR TBUF A. 

TBUF A REG ENA gates the output of the TBUF A in register to TBUF 
A. Delaying TBUF A REG ENA allows time for the tri-state output of 
TBUF A to be disabled by WR TBUF A before the write data is gated 
into TBUF A from the TBUF A in register. 

The TBUF A address counter is incremented on the trailing edge of 
CLK TBUF A ADDR. Delaying CLK TBUF A ADDR assures that TBUF A is 
disabled (SEL TBUF A is negated) before the address is incremented 
to the next location. 

3-19 



w 
I 

I\J 
0 

{ 

TBUF A LOAD ENA 

TBUF B LOAD ENA 

(FIG. 2·26) 
XMIT DATA ENA 

TBUFAXMIT ENA 
(TBUF A OUT ENA) 

READ BUF 

(FIG. 3-5) < TBUF A READ ENA (FIG. 3-2) 

SEL TBUF A 
TBUF A LOAD ENA 

PORT CLK 

TBUF A REG ENA 
TBUF A LOAD ENA 

(FIG. 3-5) 

(FIG. 2·14) 
XMIT CLK 

(FIG. 2·26) 
XMIT DATA ENA 

TBUF A XMIT ENA 

~ eLK TBU' A A~OR: }<FlG. 3.21 
IFiG. 3·51 { 

TBUF A READ ENA 

r=o READ BUF 

PORT CLK 

RESET TBUF 

CLR TBUF A ADDR 
{ 

TBUF A LOAD ENA 

(FIG. 3-5) TRANSMIT 

TBUFAXMIT ENA 

NOTE: 
THE LOGIC IN THIS FIGURE IS CONTAINED 
ON SHEET D OF THE ENGINEERING DRAWINGS. TK-7792 

Figure 3-7 TBUF Sequencing Logic 



3.7.2 TRANSMIT 
The TRANSMIT sequencing log ic is ill ustrated in Figure 3-7. A 
TRANSMIT operation requires both a TRANSMIT command from the 
function decoder and the XMIT DATA ENA signal from the link. XMIT 
DATA ENA is true when the link is ready to receive transmitted 
data from the PB. 

Before a TRANSMIT operation can be executed, the selected TBUF 
address counter must be cleared. In a TRANSMIT operation the 
counter is cleared by the assertion of TRANSMIT instead of by a 
RESET TBUF command. TRANSMIT is ANDed with TBUFAXMIT ENA to 
assert CLR TBUF A ADDR. The next PORT CLK pulse asserts CLK TBUF A 
ADDR. Clocking the counter with the clear input asserted resets it 
to zero. 

XMIT DATA ENA is Armed with TBUFAXMIT ENA to assert "TBUF A OUT 
EN A" and SEL TBUF A. SEL TBUF A enables TBUF A. "TBUF A OUT ENA" 
gates the data byte out of the TBUF A register to the link. 

CLK TBUF A ADDR increments the TBUF A address counter during the 
TRANSMIT operation. The clock is asserted by the ANDing of XMIT 
DATA ENA, TBUF A ENA, and XMIT CLK. Thus, the link synchronizes 
the address counter with XMIT CLK. 

3.7.3 TBUF READ (Loopback) 
The TBUF READ (loopback) sequencing logic is shown in Figure 3-7. 
The TBUF A address counter must be reset to zero before the TBUF 
READ operation can be executed. The microcode resets the address 
counter by selecting TBUF A with a SEL LOAD BUF command (asserting 
TBUF A LOAD ENA from the buffer select logic) and then asserting 
the RESET TBUF command. The ANDing of RESET TBUF and TBUF A LOAD 
ENA asserts CLR TBUF A ADDR. The next PORT CLK pulse asserts CLK 
TBUF A ADDR thereby resetting the counter. 

with the address counter reset to zero, READ BUF and TBUF A READ 
ENA are ANDed to assert "LOOPBACK REG A ENA" and SEL TBUF A. SEL 
TBUF A enables TBUF A. "LOOPBACK REG A ENA" gates the data from 
loopback register A onto the RBUF data lines. 

The ANDing of READ BUFf TBUF A READ ENA, and PORT CLK asserts CLK 
TBUF A ADDR. Thus, the address counter is synchronized by PORT eLK 
from the DP. 

3-21 



3.7.4 VALID RCVR DATA 
The VALID RCVR DATA logic is illustrated in Figure 3-8. The RBVF 
address counter is cleared at the end of all RBVF operations. 
Thus, the VALID RCVR DATA operation will start wi th the address 
counter already set to zero. 

The VALID RCVR DATA operation is ini tiated and executed entirely 
under link control. Consequently, the selection of the rece ive 
buffer (RBVF A or RBVF B) is not made by the buffer select log ic 
but by the "RBVF load selection" logic shown in Figure 3-8. 

When both RBVFs are empty, RBVF A is selected to receive the data 
packet as described below. The RBVF A LOAD ENA and the RBVF B 
LOAD ENA flip-flops are initially in the reset state. signals RBVF 
A FVLL ENA and RBVF B FVLL ENA are false (both RBVFs are empty). 
When VALID RCVR DATA asserts, the VRD and the RBVF A LOAD ENA 
flip-flops are enabled and become set by the next RCVR CLK pulse. 
The corresponding RBVF B LOAD ENA flip-flop does not set due to 
the negated state of RBVF A FVLL ENA. VALID RCVR DATA stays true 
while the entire data packet is being loaded, holding "VRD" true 
and keeping the RBVF A LOAD ENA flip-flop set via a feedback gate. 

After the packet is loaded into RBVF A, RBVF A FVLL ENA is 
asserted by the receive status logic. When VALID RCVR DATA asserts 
to load another packet, the true state of RBVF A FVLL ENA inhibits 
the setting of the RBVF A LOAD ENA flip-flop but allows the RBVF B 
LOAD ENA flip-flop to be set. Thus, RBVF B is selected to receive 
the next data packet. 

Selection will continue to alternate to the empty RBVF. If both 
RBVFs are full, neither RBVF A LOAD ENA nor RBVF B LOAD ENA will 
assert ~nd the load operation will not be executed. This condition 
causes the receive status log ic to raise a flag to both the link 
and the DP (see Paragraph 3.8). 

The load operation is ini tiated by the assertion of VALID RCVR 
DATA. If neither address counter has overflowed (both RBVF A OVFL 
and RBVF B OVFL are false), "VA LDAT " asserts and is ANDed with 
RBVF A LOAD ENA to assert RBVF A REG ENA. RBVF A REG ENA gates the 
output of the RBVF A in register to RBVF A. 

"VALDAT" is synchronized by RCVR CLK and sets the pulse-width 
flip-flop. The flip-flop output is ANDed with RBVF A LOAD ENA to 
assert WR RBVF A and SEL RBVF A. SEL RBVF A enables RBVF A. WR 
RBVF A enables RBVF A for a load operat ion. The output of the 
pulse width flip-flop is delayed 50 ns and then fed back to reset 
the flip-flop, converting the SEL RBVF A and the WR RBVF A signals 
into 50 ns pulses. 

3-22 



w 
I 

tv 
W 

IFROM LINK) .m._ .. ~ ... -~.~ I 

{ 

RBUF A OVFL 

RBUF B OVfL 

{

LOAD BUF 

(fiG. 3·5) RBUF B MLOAD ENA ,......, 

RBUF A MLOAD ENA MLOAD 
FF 

PORT CLK I CLK A 1 f RBUF A READ ENA 

IFIG.3.5)~ 

RBUF BREAD ENA 

HBUF A MI.OAO ~NA 

30NS ------------11 ~ ~BUF LOAD SELECTION LOGIC (V) SET RBUF A LOAD ENA 

II ~ RBUFA 
LOAD I I ENA 

VRD 
FF 

.. ~ ... ~"~I I II CLK 

o FF 

'} (F IG. 3·9) 

r---------------t---~-I~· 

SET 

B ) VALID RCVR DATA 
I 

RBUF B I I cu~u m~ (TO RBUF B ) 

{

RBUF A FULL ENA 0 LOAD • SEOUENCING 

IFIG.391 RBUF B FULL ENA ENA LOGIC 
FF 

L- _ _ _ __ IFIG.3.51 IIFIG.3.9) RBUF A FULL ENAI I __ J --------NOTE; 
LETTER DESIGNATIONS IN PARENTHESES REFER TO ENGINEERING DRAWINGS CONTAINING CORRESPONDING 
LOGIC. THE RBUF LOAD SELECTION LOGIC IS ON SHEET V. LOGIC NOT DESIGNATED IS ON SHEET H. 

Figure 3-8 RBUF Sequencing Logic 

(FIG. 3-3) 

READ RBUF B 

TK-'11IU 



Another output from the pulse-width flip-flop is delayed 20 ns and 
ANDed with RBUF A LOAD ENA to assert CLK RBUF A ADDR. The setting 
of the pulse-width flip-flop is synchronized by RCVR CLK, hence 
the incrementation of the RBUF A address counter is also 
synchronized by RCVR CLK. 

The RBUF A address counter is incremented on the trailing edge of 
CLK RBUF A ADDR. By shifting CLK RBUF A ADDR 20 ns, it is assured 
that RBUF A is disabled (SEL RBUF A negated) before the address is 
changed to the next location. 

Af ter the data packet has been loaded into RBUF A, the RBUF A 
address counter must be reset to zero. At the end of the IOcld 
operation, VALID RCVR DATA negates. One cycle later RBUF A FULL 
ENA asserts indicating that RBUF A is full and ready to be read 
out to the port. During this cycle, the negated state of both of 
these signals asserts CLR RBUF A ADDR and, on the next RCVR CLK 
pulse, asserts CLK RBUF A ADDR. This clears the RBUF A address 
counter, preparing it to clock an RBUF A READ operation. 

3.7.5 RBUF MLOAD 
Refer to the RBUF load selection logic 
assertion of RBUF A MLOAD ENA directly sets 
flip-flop and directly resets the RBUF B LOAD 
RBUF A LOAD ENA is true during the RBUF MLOAD 

in Figure 3-8. The 
the RBUF A LOAD ENA 
ENA flip-flop. Thus, 
operation. 

The RBUF MLOAD operation is ini tiated by the assertion of LOAD 
BUF. The LOAD BUF command is ANDed with RBUF MLOAD (asserted by 
either RBUF A MLOAD ENA or RBUF B MLOAD ENA) to assert RBUF INPUT 
MUX SEL. RBUF MLOAD and RBUF INPUT MUX SEL switch the RBUF in mux 
to select the parity bit and the data byte from the DP. RBUF INPUT 
MUX SEL also enables the MLOAD fli p- flop to be set by the nex t 
PORT CLK pulse. The flip-flop output ("MLOAD") is ANDED with RBUF 
A MLOAD ENA to assert RBUF A REG ENA. RBUF A REG ENA gates the 
output of the RBUF A in register to RBUF A. 

"MLOAD" also sets the pulse width flip-flop. The flip-flop output 
is ANDed with RBUF A LOAD ENA to assert WR RBUF A and SEL RBUF A. 
SEL RBUF A enables RBUF A and WR RBUF A enables it for a load. The 
output of the pulse width flip-flop is delayed 50 ns and then fed 
back to reset the flip-flop, converting SEL RBUF A and the WR RBUF 
A signals into 50 ns pulses. 

Another output from the pulse width flip-flop is delayed 20 ns and 
ANDed with RBUF A LOAD ENA to assert CLK RBUF A ADDR. The setting 
of the pulse-width flip-flop is synchronized by PORT CLK (via the 
MLOAD flip-flop), hence the incrementation of the RBUF A address 
counter is also synchronized by PORT CLK. 

3-24 



The RBUF A address counter is incremented on the trailing edge of 
CLK RBUF A ADDR. By shifting CLK RBUF A ADDR 20 ns, it is assured 
that RBUF A is disabled (SEL RBUF A false) before the address is 
changed to the next location. 

After the MLOAD operation is completed, the RBUF A address counter 
must be reset to zero. The microcode accomplishes the reset by 
selecting RBUF A wi th the SEL READ BUF command (asserting RBUF A 
READ ENA from the buffer select logic) and then asserting the 
RELEASE RBUF command. The ANDing of RELEASE RBUF and RBUF A READ 
ENA asserts CLR RBUF A ADDR. The next RCVR CLK pulse asserts CLK 
RBUF A ADDR, thereby resetting the counter. 

3.7.6 RBUF READ 
The RBUF READ log ic is illustrated in Figure 3-8. The RBUF RE/l.C 
operation is initiated by the assertion of READ BUF. The READ BUF 
command is ANDed with RBUF A READ ENA to assert EN RB A and SEL 
RBUF A. SEL RBUF A enables RBUF A and EN RB A gates the data from 
the RBUF A out register onto the RBUF data lines. (The signal in 
the RBUF B data path corresponding to EN RB A is READ RBUF B.) 

The ANDing of READ BUF, RBUF A REAC ENA, and PORT CLK asserts CI,K 
RBUF A ADDR. Thus, the RBUF A address counter is synchronized by 
PORT CLK from the DP. 

After the READ RBUF operation is completed, the RBUF A address 
counter must be reset to zero. The microcode does this by 
selecting RBUF A wi th the SEL READ BUF command (asserting RBUF A 
READ ENA from the buffer select log i c) and then asserting the 
RELEASE RBUF command. The ANDing of RELEASE RBUF and RBUF A READ 
ENA asserts CLR RBUF A ADDR. The next PORT CLK pulse asserts CLK 
RBUF A ADDR thereby resetting the counter. 

3-25 



3.8 RCVR STATUS 
"RCVR status" is placed on the port data 
when the READ RCVR STATUS command is 
consists of eight signals. The signals, 
3.8.1 through 3.8.7, are listed below: 

1. CRC ERR 
2. RBUF A FULL 
3. RBUF B FULL 
4. RBUF B FIRST 
5. RBUF A BUS 
6. RBUF B BUS 
7. RCVR A ENABLE 
8. RCVR B ENABLE 

bus from the PB read mux 
asserted. "RCVR status" 
described in Paragraphs 

Figure 3-9 illustrates the RCVR status logic. 

3.8.1 CRC ERR 
The link does a CRC check on received data packets. The receive 
status CRC ERR bit is asserted if a CRC error is detected. The CRC 
ERR bit is used only in maintenance loop modes. It is not used in 
normal operation. 

The CRC ERR bit asserts after the associated ~ata packet has been 
loaded into the RBUF. Thus, if a CRC error is flagged, the packet 
containing the error is in the RBUF. 

VALID RCVR STATUS asserts after a data packet has been loaded into 
the RBUF with a VALID RCVR DATA operation. If no CRC error 
occurred, CRC STATUS is true when VALID RCVR STATUS is asserted. 
This causes CRC OK to assert. CRC OK enables the CRC OK flip-flop 
to set on the next RCVR CLK pulse. The asserted output from the 
flip-flop results in a negated CRC ERR bit for RCVR STATUS. 

3-26 



w 
I 

N 
--.J 

(FIG 

(FIG. 351 R6UF A MLOAO ENA 

VALID 
RCVR 

{
STATUS 

2·161 --­
CRC STATUS 

FIG 
35 

R6UF 6 
READ ENA 

RBUF A 
READ ENA 

(FIG. 3-51 

~. 

o r:ll0 RBUF A R6UF A 
FULL FULL 
ENA FF 

FF (YI PORT CLK (YI 
CLK CLK 

aR aR 

o 
SET 

RBUF B 
FULL 
ENA 

.. _ ... -." ICL~F (VI 

CLR 

RBUF 6 
FULL ENA 

R6UF A MLOAO ENA 

CRC 
OK 
FF 

C 
"-

CRC ERR (RCVR STATUS) 
- FIG. 3-3 

""_ •• --- I 10 

') 

FF 
IV) 

RCVR C~CLK 
+V K RCv"R CLK I ClK 

CLR ABU. A 

CLR CLR 
R6UF A RBUF A o n0 

FF FF 
(V) (VI 

CLK ClK 

o 
ClR 

RBUF B 
FF 
(VI 

PORT CLK I ClK 

RCVR ClK 

o 
CLR 

RBUF B 
FF 
IVI 

CLK 

CLR RBUF 6 

Figure 3-9 

A 

o VALID RCVR STATUS 

IFIG2311CCSPATHB 

IFIG. 3'"1 RBUF B LOAD ENA L:..::,.) 

RCVR CLK 

RCYR Status Logic 

RBUF A FULL 
.} (RCVR STATUS) 
• FIG. 3·3 

REC ATTN • IFIG.4-101 

RBUF B FULL 

RBUF B ABUF B 
o ~O FIRST FIRST 

FF PORT FF 

RBUF B 
FIRST 

IVI CLK IV) 

CLK CL~LR 

RCVR BUFFERS FULL 

J RBUF 
B BUS 

CLK 
FF 

+V IK IA) 

CLR 

(FIG. 2·12) 

RBL" • n ... ' I-~~~~--------. }(~~~;US ) 
FIG. 3-3 

RBUF B BUS 

NOTE' 
LETTER DESIGNATIONS IN PARENTHESES 
REFER TO ENGINEERING DRAWINGS 
CONTAINING COHRESPONDING LOGIC, 



3.8.2 RBUF A FULL, RBUF B FULL 
If RBUF A had just been loaded wi th a data packet hav ing no CRC 
error, CRC OK is asserted and ANDed with RBUF A LOAD ENA to enable 
the RBUF A FULL ENA flip-flop to set. RCVR CLK sets the flip-flop 
asserting RBUF A FULL ENA. The flip-flop is held set via a 
feedback gate holding RBUF A FULL ENA true. The next PORT CLK 
pulse asserts RBUF A FULL via the RBUF A FULL flip-flop. When RBUF 
A FULL is true it asserts REC ATTN to the DP. 

RBUF A is emptied (read out to the DP) by a READ RBUF operation. 
After a READ RBUF operation, a RELEASE RBUF command is issued to 
reset the RBUF A address counter and to release RBUF A back to the 
1 ink. The RELEASE RBUF command releases RBUF A to the link by 
asserting CLR RBUF A via two flip-flops. RELEASE RBUF is ANDed 
with the negated state of RBUF BREAD ENA to enable the first CLR 
RBUF A flip-flop to be set by PORT CLK. (RBUF A has just been read 
out; therefore, RBUF BREAD ENA will be false.) The output from 
the first flip-flop enables the second CLR RBUF A flip-flop which 
is set by RCVR CLK. Thus, CLR RBUF A is synchronized by RCVR CLK. 

CLR RBUF A breaks the feedback latch holding the RBUF A FULL ENA 
flip-flop set. This negates both RBUF A FULL ENA and RBUF A FULL, 
indicating that RBUF A is ready for another load from the link. 

Identical "RBUF FULL" logic exists for RBUF B. If the data packet 
had been loaded into RBUF B instead of RBUF A, an identical 
sequence would have occurred in the corresponding RBUF B log ic 
causing "RCVR status" bit RBUF B FULL to assert. 

Should both RBUF A FULL and RBUF B FULL be true, RCVR BUFFERS FULL 
is asserted to the link preventing it from initiating another 
VALID RCVR DATA operation. 

3.8.3 RBUF B FIRST 
I f both RBUF s are full (RBUF FULL true), the RBUF B FIRST s ta t us 
bit indicates which RBUF was filled first. The RBUF B FIRST status 
bit is invalid (not sampled) until both RBUFs are filled. 

RBUF B FULL ENA is ANDed with CRC OK and the negated state of RBUF 
FULL to enable the first RBUF B FIRST flip-flop to be set by RCVR 
CLK. The flip-flop is set if RBUF B is full but not RBUF A. The 
second RBUF B FIRST flip-flop is set by PORT CLK asserting RBUF B 
FIRST. 

If RBUF A is loaded while RBUF B is still full, RBUF FULL asserts 
holding the first RBUF B FIRST flip-flop set via a feedback gate. 
With both RBUFs full, the RBUF B FIRST bit is sampled and found to 
be true. 

3-28 



3.8.4 RBUF A BUS 
This bit indicates which CI bus received the last data packet 
loaded into RBUF A. If the bit is negated, the pack was received 
on CI bus A. If the bit is asserted, the pack was received on CI 
bus B. 

While RBUF A is being loaded, RBUF A LOAD ENA is true. RBUF A LOAD 
ENA is ANDed with VALID RCVR STATUS and ICCS PATH B. Thus, when 
VALID RCVR STATUS asserts, the ICCS PATH B signal is sampled. If 
the signal is true, the data packet just loaded into RBUF A was 
received on CI bus B. In this case, the RBUF A BUS flip-flop is 
enabled and sets on the next RCVR CLK. When the flip-flop sets, 
the RBUF A BUS bit is asserted as part of "RCVR status." 

3.8.5 RBUF B BUS 
This bit indicates which CI bus received the last data packet 
loaded into RBUF B. If the bit is negated, the pack was received 
on CI bus A. If the bit is asserted, the pack was received on CI 
bus B. 

The RBUF B BUS log ic is identical to the RBUF A BUS log ic wi th 
RBUF B replacing RBUF A. 

3.8.6 RCVR A ENABLE 
This bit is set if the RCVR A ENB bit (bit<OO» of a "link enable" 
command byte is set. The RCVR A ENB bit must be set for the link 
to respond to traffic on CI bus A. 

3.8.7 RCVR B ENABLE 
This bit is set if the RCVR B ENB bit (bit <07» of a "link 
enable" command byte is set. The RCVR B ENB bi t must be set for 
the link to respond to traffic on CI bus B. 

3-29 





NOTE 
The functional block diagrams in Chapter 
4 use log ical AND and OR symbols. It 
does not necessarily follow that a 
corresponding gate exists on the 
engineering logic prints. The assertion 
of inputs A and B causing the assertion 
of output C may be represented on a 
block diagram by a single AND gate, yet 
the engineering drawing may show that 
several circuit stages are involved in 
the ANDing operation. 

The block diagrams are keyed to the 
engineering circuit schematics (CS 
prints) by letter designations in 
parentheses. The letters specify the CS 
sheet that contains the logic associated 
with the functional blocks in the 
diagram. The logic for the CS function 
discussed in this chapter, is divided 
between the DP and the PB modules. A 
note on each block diagram specifies 
which module contains the logic used in 
the diagram. 

The signal names used in the functional 
block diagrams are the names used on the 
engineering CS prints. Where other 
signal names or notes are used, they are 
enclosed in parentheses. 

4.1 SIMPLIFIED BLOCK DIAGRAM 

CHAPTER 4 
CONTROL STORE 

The control store (Figure 4-1) consists of 3K bytes of storage 
used to store the port microcode. The microcode uses 48-bi t 
microwords. Each microword consists of 47 control bi ts (BUS 
U<46:00>) and a sync bit used for maintenance purposes. The 3K of 
storage consists of 2K of RAM and lK of PROM. 

The RAM area of the CS is written during the uninitialized state. 
IB IN <31:00> from the DP is placed on the CS I/O bus (BUS 
U<46:00» and then written into the CS. The lower 32 bits are 
written first and then the upper bits. 

Bit 46 is the parity bit for the microword (excluding the sync 
bit). A parity check is performed on each microword read out of 
the CS during the initialized state when the microcode is running. 
If a parity error is detected, CSPE is asserted to the DP as an 
error flag. 

4-1 



~ 

I 
I'V 

(~~t~ES)I~4~------------------------------------------~ 

(TO DP) 4 CSPE 

(FROM DP) IB IN <31:00> 

PARITY 
CHECKER 

MICROWORD 
REGISTER 

14 BUS U <46:00> .J BUS U <45: 17>; BUS U <11 :00> 

BUS U <11 :00> 

BUS U <16:12> 

BUS U <46:00> 

SEQ CNTL <4:0> 

(TO DP) (31 :00) BUS U <46:00> 
CONTROL 
STORE 
(3K) 

FMo"orul 
r----+I~I BRANCH ~ 

_ LOGIC rr-

(FROM DP) iB IN <12:00> 

NOTE: 
THE LOGIC SHOWN IN THIS 
DIAGRAM IS LOCATED ON THE 
PB MODULE EXCEPT AS NOTED. 

.1 
MAINT. 
ADDRESS 
REGISTER 

L ___ --' 

8P1 <3:0> 

MADR <11:00> 

MICRO­
SEQUENCER 

i 

IDP;~-' 
EN MADR II MICROCODE I I EN SEa 

STARTUP I 
L __ --J 

Finllrp. 4-1 Control Store Simplified Block Diagram 
MKV84'{)I30 



Most of the microword read from the CS is latched into the 
microword register. The register outputs control signals to all 
of the port modules. 

The CS is addressed via 12 address bits (CSA <11:00» obtained 
from either the microsequencer or the maintenance address 
register. In the uninitialized state (e.g. during power up) the 
maintenance address register provides the address (MADR <11:00». 
The register input is IB IN <12:00> from the DP. The microcode 
start-up logic enables the maintenance address register by 
asserting EN MADR. 

In the initialized state (while the microcode is running) the 
address is provided by the microsequencer. The microsequencer is 
enabled by EN SEQ from the microcode start-up logic. The 
microsequencer uses bi ts BUS U <11: 00> from the microword as the 
base address. Branching log ic is used to specify the lower four 
address bits. The branching conditions are selected by sequential 
control bits SEQ CNTL <4:0> which are actually bits BUS U<16:12> 
of the microword. The microsequencer contains a memory stack and 
a PC counter for address control. 

The CS microword and the contents of the maintenance address 
register can be read by the DP via the maintenance mux. The mux 
selects the lower 32 bits of the microword, the upper bits of the 
microword, or the 13 bi ts from the rna intenance reg ister as an 
input to the DP 131:00). 

Figure 4 -2 -is a deta i led block d iag ram of the control store area 
and should be referred to throughout the rest of this chapter. 

4-3 



FIG. 
5-13 

EN CS DATA IN 

r IB IN <31:00> 

~_I~. 'L- ') CS WE 

l IB IN <12:00> 
~----~-+{C 

MICROWORD CSPE 

BUS U <46:00> ;r---,--,-::....:.-..:..c"::':":::::"'--+I CHECKER 
BUS U <46:00> PARITY 1------, cbr---+ (FIG 5-3; 5-10) 

~--~~~U~4~7~----------~~I--,IL-~B~U~S~U:.:.<~4.:.:5:.:.:0~0:.:.>-----(-F-IG-._4_-3_) _________ A ____________________________________________ ~------~------__ ----~~------, 
....... tr---"'T""" t.... BUS BUS BUS BUS BUS 

CSA<11:00> U<16:12> U<11:00> U<32:24> U<45:33> U<23:17> 

~_...;M=-:A.::D.:.:R_<..:.:1~2...;: 1~0::.>_+--+----... BUS U 23 

CONTROL 
STORE 
(NOTE 3) 
(FIG. 4-6) 

~~.::B.::US::....:.U_<...;3.:.:1...;:0.:.:0::.>_1 
/" BUS U <46:32> 

BUS U <2221> 

IB SRC 2 
-:} (FIG. 5-16) 

(31:001 MAINT. 
L-------~~~------~MUX 

(U) 

\ U47 
CSA<11:04> 

CSA<0300>1 

BUS U <20:17> 

IBSRC<1:0> } 

.>-_I_B_D_S_T_<_3=-:.::0> __ 4 (F I G. 5-6) 

(F I G. 5-13) --'X.:.:B::.;u:.:S:..L:::S:.:.A,;....::.OO=---_~ 

NOTES: 

1. THE LOGIC SHOWN IN 
THIS DIAGRAM IS LOCATED 
ON THE PB MODULE EXCEPT 
AS NOTED. 

2. LETTER DESIGNATIONS IN 
PARENTHESES REFER TO 
ENGINEERING DRAWINGS 
CONTAINING CORRESPONDING 
LOGIC. 

3_ COMMON 1/0. 

'f' 
MADR <12:00> 

~(R) MADR <1104> 

L-___________________ -t ___ -+ ____ -f ___ ~~U~4~7------.r-------,t_S~Y~N~C~ ____ _. 
BUS U <45:43> (BACKPLANE FLAG) 

MUX 
SELECT 
(U) 

MADR12 

MADR <11 :00> 

MADR 12 

MADR 
<0300> 

<Sl:S0> 
2911 

~ENMADR 

~I~fo:~--l 

MICRO- 1\ 
SEQUENCER FE --' V-
( FIG. 4 8) I+--p U'-P------l 

I+---'-------l MICROWORD DFE 

MICRO­
SEQUENCER 
CONTROL 

C MAINT. 
IB IN <12:00> ADDRESS 

CLK MADR REGISTER 
(FIG. ~-13)------~CLK :(P) 

REGISTER ~ 
(V) I.DPUP 

ClK ClR 
EN SEQt (FIG. 4-9) 

I _I (~!~5) ~~ 
BR <3:0> I v".i'lL!------:= 0::..-___ _ 

B I BRANCH ~ _I (BRANCH CONDITIONS) 

LOGIC I 'I 
(F IG. 4-1 D) t--t ____________________ + ____ .::SE:.:Q~C:.:NT.:..L:....::<::4::.:::0:::::> ______ .J 

~ __ J 
BUS U<ll :00> 

BUS U 
<16:12> 

r---::.:::.:....:::......:::::'-7:::"'----..j MICROWORD ALU FCN <2:0> } 
I'-..:B~U~S-=U:...<..:.4:.:2...;~4:..:0::.> __ _+I REGISTER AlU SRC <2:0> 

r---=B~U.::.S-=U:...<..:.3::9:.:.: 3:.:7:':'>_-1 (V) t-A_l_U,---DS...:T_<:..:2.::.: 0:..:>_. (F I G. 5- 8) 
BUS U <36:33> AlU AlB <3:0> 

BUS U <31:24> LITERAL <7:0> 
BUS U 32 _ (FIG. 5-3; 5-6) 

BUS U 301 (V) \.I--------<~ 
BUS U <29:28> 

BUS U <27:24> 

~V)~,...SElECT J--':..:::::::...:..c--'--.(FIG. 3-5; 2-21) 

SUSPEND DEL 
(FIG. 5-17) 

BUS U 06 

BUS U 05 
I-P_M_U_X_<_l-=: O_> ___ .,( FIG. 5- 3) 

LINK CONTROL <3:0> 
ASRT DEAD (FIG. 3-5; 2-21 

r-A_S_R_T_F_A_I_L ____ .) F I G_ 5-27) 

~~B~U.::S~U...;1..:.:1 ___ 4~~ _______ ~ 

BUS U 10 \.1' I~------~~>------~ 
MClR 

BUS U 09 
(NOT USED) 

(FIG. 5-23) 
BUS U 08 l-(' I~ ______ ~K>-____ ~ INTR 

BUS U 07 
--;:j (VI) INITIALIZE (FIG. 3-5; 2-25; 2-30) 

BUS U 04 
IL--~ ___ ...; lL.::.O~G:...IC::....:.C.::.L:.:.R ___ (FIG. 5-25) 

t_C-L-R-R-E""G-W-R..:.:T:-.-----(F IG. 5-13) 

BUS U 03 PF VlD 
(FIG. 5-27) 

BUS U 01 INH RBPE 

SET A GO 

SET B GO }FIG_ 6-14) 

UP PDN 
(FIG. 5-27) 

BUS U 02 

(NOT USED) BUS U 00 11 ~ ENRBPE 

--'\r-- READ BUF 

(FIG. 5-10) 

(FIG. 3-5) 
MISC CNTL I 

MKV84-0141 

Figure 4-2 Control store Plock Diagram 

4-4 



4.2 MICROWORD PARITY 
A parity check is made on each microword as it is read out of CS. 
BUS U<46:00> is input to a microword parity checker which outputs 
CSPE to the DP if a pari ty error is detected. Bi t 46 is the 
pari ty bi t genera ting odd pari ty for each microword. Also, note 
that a CS parity error resets the microword register containing 
the microword with the error. 

The SYNC bit (U47) is not included in the parity check as it is a 
programmable bit that can be used with any of the CS microwords, 
even the microwords in the PROM area whose parity bits cannot be 
changed. 

Figure 4-3 is a block diagram of the parity checker. Each byte of 
the microword is checked for odd parity in parity generators. 
Those bytes with an odd number of bits asserted will assert the 
output of their respective generator. The generator outputs are 
themselves input into a summation parity generator where again an 
asserted output means an odd number of asserted inputs. This is a 
"no error" state which would condition the parity error flip-flop 
to reset. 

If the number of asserted inputs to the summation parity generator 
is even, the generator output is false and the parity error 
flip-flop sets on the next SEQ CLK T3 pulse. When the flip-flop 
sets, CSPE is asserted. 

4.3 CS MICROWORD 

4.3.1 Microword Fields 
The 48 bits of the CS microword are shown in Figure 4-4, grouped 
by fields. Table 4-1 describes each of the fields shown in the 
figure. 

4.3.2 Microword Register 
When a microword is read out of CS, most of the bits are latched 
into the microword register by SEQ CLK T3. The remaining bit 
fields are the next address field and the SEQ CNTL field used to 
select the next microaddress, and the IB SRC and IB DST fields. 
The IB SRC and IB DST fields must be present in the DP a t the 
start of the microcycle, hence, they cannot wait for SEQ CLK T3 to 
clock the microword register. 

The register is reset in the uninitialized state and whenever the 
current microword produces a parity error. 

4-5 



"'" I 
0'\ 

( FIG.) 
4-2 

BUS U <46:00> BUS U <07:00> PARITY 
GEN. 

BUS U <15:08> PARITY 
GEN. 

BUS U <23:16> PARITY 
GEN. 

BUS U <31:24> PARITY 
GEN. 

BUS U <39:32> PARITY 
GEN. 

BUS U <46:40> PARITY 
GEN. 

NOT 
THE LOGIC IN THIS FIGURE IS CONTAINED ON 
SHEET S OF THE PB ENGINEERING DRAWINGS. 

~ 

[>-n SUMMATION 
PARITY 
GEN. 

U 
....... 

SEa ClK T3 

(FIG. 5-25) 
lOGIC ClR 

Figure 4-3 Microword Parity Check 

D 
CSPE 

PARITY 

( FIG.) 
4-2 

ERROR 
FF 

ClK 
ClR 

MKV84-0131 



47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 29 28 27 26 25 24 

ALU FCN ALU SRC ALU DST ALU AlB LITERAL 

LINK AND 
PAR BUFFER'CONTROL 

SYNC TYPE 
PMUX LINK 

NOT USED CONTROL 

23 22 21 20 19 18 17 16 15 14 13 12 

II~ + I :16 H I H +~ I 

NEXT MICRO ADDRESS 

MISCELLANEOUS 

INTR CLR ASRT SET UP 
MCLR REG DEAD A PDN 

(NOT USED) WRT PF GO SET 
ASRT 

INITIALIZE VLD FAIL B GO 

00 

NOT USED 

INH RBPE 

Figure 4-4 Microword Fields 

4-7 

SELECT 

MKV84'{)132 



Bit 

47 

46 

<45:43> 

<42:40> 

<39: 37> 

<36:33> 

32 

<31:24> 

<31:24> 

31 

30 

<29:28> 

<27:24> 

Table 4-1 Microword Fields 

Name 

SYNC 

PAR 

ALU FCN <2:0> 

ALU SRC <2:0 > 

ALU DST <2:0 > 

ALU AlB <3:0 > 

TYPE 

LITERAL <7: 0 > 

SELECT 

PMUX <1: 0 > 

LINK CONTROL <3:0> 

4-8 

Description 

A programmable bit that is used 
during port debugging to 
indicate the execution of a 
specific microword. The SYNC 
bit is not included in the 
pari ty check of the microword. 
The SYNC bit can be written in 
both the RAM and PROM areas of 
the CS. The bit is available on 
the port backplane. 

The odd parity bit on bits 
<45:00> of the CS microword. 

Function code for the 2901 ALU 
on the DP. 

Operand 
2901 ALU 

source code 
on the DP. 

for the 

Destination code for the 2901 
ALU on the DP. 

The A and B address lines for 
the 2901 scratch pads on the 
DP., 

Selects the definition of bits 
<31:24> as shown below. 

Val id when TYPE = o. Used in 
the DP as a number or as an 
address. 

Link and PB control bits. Valid 
when TYPE = 1. The bit fields 
are defined below. 

\ 

Not used. 

Indicates that the LINK CONTROL 
lines «27:24» are valid. 

Selects a byte in the 
buffer input and 
registers on the DP. 

packet 
output 

Specifies operations on the 
link and PB. This field is 
valid when SELECT = 1. 



Table 4-1 Microword Fields (Cont) 

Bit Name 

<23:21>* IB SRC <2:0> 

<20:17)* IB DST (3:0) 

<16:12> SEQ CNTL (4:0) 

<11:00> Next microaddress 

<11:00> MISC CNTL 

11 MCLR 

10 INTR 

09 INITIALIZE 

08 CLR REG WRT 

07 PF VLD 

Description 

Selects the source of BUS IB 
data in the CPo 

Selects the destination for BUS 
IB data in the DP. 

Specifies the operation of the 
2911 microsequencer, selects 
the branch conditions that 
alter the microaddress, and 
selects the definition of bits 
<11:00). 

This field is the base address 
that is modified by the branch 
bits to form the address of the 
next microword. It allows the 
m i c roc 0 de to j urn p to any 
address in the CS. This field 
is valid so long as the SEQ 
CNTL field is not all Is. 

This field (miscellaneous 
control) allows the microcode 
to control miscellaneous flags 
and functions in the port. The 
field is valid when the SEQ 
CNTL field is all Is. The MISC 
CNTL bits are described below. 

Not used. 

Sets the interrupt request flag 
that initiates an interrupt 
sequence to the host CPU. 

Generates an ini t ial i ze signa 1 
to the link. 

Clears the REG WRT flag in the 
DP. 

When the power-fail valid bit 
is set, the ASRT DEAD and ASRT 
FAIL bits are valid. 

* These bits bypass the microword register and go directly to the 
DP. 

4-9 



Bit 

06 

05 

04 

03 

02 

01 

00 

Table 4-1 Microword Fields (Cont) 

Name 

ASRT DEAD 

ASRT FAIL 

SET A GO 

SET B GO 

UP PDN 

INH RBPE 

4-10 

Description 

Facilitates processor 
initialization and booting. 

Facilitates processor 
initialization and booting. 

Starts an external bus transfer 
with the host using the A 
parameters. 

Starts an external bus transfer 
with the host using the B 
parameters. 

Allows the microcode to set the 
PDN (power down) bit in the 
port configuration register. 

This bit is set during a DP 
read of the first byte from a 
packet buffer. The first byte 
read is always undefined data. 
INH RBPE prevents a parity 
error from asserting on the 
undefined data. 

Not used. 



4.4 MAINTENACE MUX 
During the uninitialized state the CS can be read by the CP for 
maintenance purposes. The CS microword is input to the DP via a 
maintenance mux and a 32-bit bus (31:00). The microword is 
applied to the maintenance mux where the mux first selects the 
lower 32 bits (BUS U<3l: 00» and then the upper 16 bits (BUS 
U <4 6: 32>; U 4 7 ) • 

The DP can also read the 13 bits from the maintenance address 
register (MADR <12:00» via the maintenance mux. 

MUX selection is accomplished using one of the local store address 
bi ts from the DP (XBUS LSA 00) and MADR 12 from the maintenance 
address register. XBUS LSA 00 selects either the microword or the 
maintenance address. MADR 12 is used here and throughout the CS 
logic to select the upper or lower portion of the microword. MADR 
12 false selects the lower portion (BUS U<3l:00». MADR 12 true 
selects the upper portion (BUS U<46:32>; U47). Table 4-2 lists 
the mux selection code. 

4.5 CONTROL STORE SPACE AND LOGIC 

4.5.1 Control Store Space 
The control store space (Figure 4-5) has a microword store area 
and a flag store area. The microword store area consists of lK x 
47 of PROM and 2K x 47 of RAM. The area is addressed by 12 control 
store address bits CSA <11:00>. The two most significant address 
bits (CSA <11:10» divide the store area into three banks and are 
used as the bank select bits. Bits CSA <09:00> address the 1024 
(lK) word locations within each bank. 

The flag store area is 3K x 1 of RAM used to store the 
programmable SYNC bit (U47). CSA <11:00> also addresses the 3K of 
flag storage thus giving a SYNC bit location in the flag store 
area for each word location in the rnicroword store area. The SYNC 
bi t can be wri tten anywhere across the address spectrum; thus, 
even the microwords in the PROM area (bank 0) could have a SYNC 
bit written in as bit 47. 

4-11 



Table 4-2 Maintenance Mux Selection Code 

XBUS LSA 99 MADR 12 32-Bit Bus (31:99) 

0 0 BUS U<31:00> 

0 1 BUS U<46: 32>; U47 

1 X MADR <12:00> 

0 = negated 
1 = asserted 
X = doni t care 

4-12 



1 0 I 1 1 

0 
I 

1 
I 0 0 

a 1 1 1 
I a 1 I a a 

a a 1 1 
I 

a a I a a , 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
L_ 

1 1 1 1 1 

a a a a 0 
1 1 1 1 1 

a a a a a 
1 1 1 1 1 

0 a a 0 a 

1 1 

0 0 
1 1 

a a 
1 1 

a a 

1 

0 
1 

a 
1 

a 

14 

MICROWORD 
STORE 

RAM 
BANK 2 

RAM 
BANK 1 

PROM 
BANKO 

47 BITS 

'--CSA 00 

CSA01 

CSA02 

CSA03 

CSA04 

CSA05 

CSA06 

CSA07 

CSA08 

CSA09 

., 

--------
-;;-SA ~ (MADR 10) }sAN 

CSA 11 (MADR 11) 

Figure 4-5 Control store Space 

4-13 

3072 

2048 

1024 

a 

FLAG 
STORE 

RAM 

--i 1 BIT t--

K SELECT 

TK-8724 



4.5.2 Control Store Logic 
Figure 4-6 is a block diagram of the control store logic. Bank 0 
is comprised of six lK x 8 PROMs. Each PROM outputs eight bits 
onto the microword I/O bus (BUS U<46: 00». The high-order PROM 
outputs only seven bits (BUS U<46:40». Banks 1 and 2 are each 
made up of twelve lK x 4 RAMs. Each RAM has a four-bit I/O to the 
microword bus. The high-order RAM in each bank uses only three of 
its four I/O lines (BUS U<46:44». 

Bits MADR <11:10> (identical to CSA <11:10> shown in Figure 4-5) 
are the bank select bi ts. They are appl ied to bank select log ic 
where they are decoded to output one of three SEL BANK enabling 
signals. When true, each SEL BANK signal enables all the RAMs (or 
PROMs) in its respective bank. Address bits CSA <09:00> are 
appl ied to all the RAMs and PROMs; however, only the RAMs (or 
PROMs) in the enabled bank will respond to the address. The 
address bits select a loca~ion in each of the RAMs (or PROMs) of 
the selected bank. 

All 47 bits from the addressed location in the selected bank are 
available on the microword bus for reading except during a CS 
write operation. All 47 bits are read simultaneously. 

The two wri table CS banks are d iv ided into three parts of four 
RAMs each. The parts are 16 bits each and are designated as La 
(BUS U<15:00», MID (BUS U<31:16», and HI (BUS U<46:32». Each 
part receives a separate write enable signal. 

To write the CS RAMs, the signal CS WE is asserted from the DP and 
then ANDed with MADR 12. MADR false asserts WR CS La and WR CS MID 
thus enabling the La and MID parts for a wri te. MADR 12 true 
asserts WR CS HI, enabling the HI part for a write. 

Wri te data (IB IN <31: 00» and a data in enabl ing signal (EN CS 
DATA IN) is received from the DP. MADR 12 is ANDed with EN CS DATA 
IN to again select the high or low portion of the microword. When 
MADR 12 is false, IB IN<31:00> is coupled to BUS U<31:00> and 
written into the La and MID parts of the selected RAM bank. When 
MADR 12 is true, IB IN<14:00> is coupled to BUS U<46:32> and 
written into the HI part of the selected RAM bank. 

The flag store RAM is addressed by CSA<ll:OO> to select bit 47 of 
the microword being addressed in the microword store area. The 
flag store output (U 47) is available on the microword bus for 
reading except during a CS write operation. Bit U47 is read out 
along with its associated microword. 

The flag store is written as bit 47 of the input microword. The 
input to the flag store RAM is IB IN 15. The flag store is enabled 
by WR CS HI. Thus, the flag is written when IB IN <14:00> is being 
coupled to BUS U <46:00> and the upper portion of the microword is 
being written. 

4-14 



EN CS DATA IN 

(T) 

MADR12 t>o--=8-, A 

IB IN <31 :00> IB IN <31 :00> r-.... BUS U<31 :00> , 

CSA <11:00> 
-

(FIG. 4-2) ~ 

CSA <09:00> 

l~ADR <11,10> BANK SEL BANK 2 

SELECT SEL BANK 1 
LOGIC SEL BANK 0 ~ (R) 

I-~ 

B 

CSWE ~ 
(R) 
I' WRCSHI 

WR CS MID 

NOTE: 
LETTER 
TOTHE 

-~ 
WR CS LO 

MADR 12 

~ 
(R) 

A 

DESIGNATIONS IN PARENTHESES REFER 
PB ENGINEERING DRAWINGS CONTAINING' 

THE CORRESPONDING LOGIC. 

Figure 4-6 Control Store Logic 

~ 

IB IN <14:00> C/ r--... BUS U<46:32> 

~ FLAG IB IN 15 
STORE U47 

CSA <11 :00> 
RAM 

ADDR 
WR CS HI (W) 

B WREN 

BUS U<46:00> 

BUS BUS BUS BUS BUS BUS BUS BUS BUS BUS BUS BUS 
U<46:44> U<43:40> U<39:36> U<35:32> U<31:28> U<27:24> U<23:20> U<19:16> U<15:12> U<ll :08> U<07:04> U<03:00> 

ADDR ~ ADDR ~ ADDR 

RAM RAM RAM RAM 
~ 

RAM RAM RAM RAM 
~ 

RAM RAM RAM RAM 
EN(lKX4) (lK X 4) (lK X 4) (lK X 4) EN(lKX4) (lK X 4) (lK X 4) (lK X 4) EN(lKX.4) (1 K X 4) (1 K X 4) (lK X 4) 

WR EN .. WR EN r+ WR EN 
(N) (N) (N) (N) (N) (N) (M) (M) (M) (M) (M) (M) 

BUS BUS BUS BUS 13US BUS BUS BUS BUS BUS BUS BUS 
U<46:44> U<43:40> U<39:36> U<35: 32> U<31 :28> U<27:24> U<23:20> U<19: 16> U<15:12> U<ll :08> U<07:04> U<03:00> 

I 

ADDR I-~ ADDR I-r. ADDR 

ENRAM RAM RAM RAM 
f-. 

RAM RAM RAM RAM 
~ 

RAM RAM RAM RAM 
(1 K X 4) (lK X 4) (lK X 4) (lK X 4) - EN(lKX4) (lK X 4) (lK X 4) (lK X 4) ~ EN (lK X4) (lK X 4) (lK X 4) (lK X 4) 

WR EN f-+ WREN r+ WR EN 
(N) (N) (N) (N) (N) (N) (M) (M) (M) (M) (M) (M) 

BUS BUS BUS BUS BUS BUS 
U<46:40> U<39:32> U<31 :24> U<23:16> U<15:08> U<07:00> 

ADDR 

PROM PROM PROM PROM PROM PROM 
(lK X 8) (lK X 8) (lK X 8) (lK X 8) (lK X 8) (lK X 8) 

EN 
(N) (N) (N) (M) (M!: (M) 

4-15 

( FIG.) 
4-2 

TK-8726 



4.6 CONTROL STORE ADDRESS SOURCE 
The cs addressing bits (CSA <11:00» are obtained from either the 
maintenance address register or the microsequencer logic. The 
selection is made by the microcode start-up logic which asserts EN 
MAVR to enable the output from the rna in tenance address reg ister , 
or EN SEQ to enable the 2911 microsequencer. 

4.6.1 Maintenance Address Register 
The maintenance address register has 13 bits and receives IB IN 
<12:00> from the CPo When enabled the register outputs MADR 
<12:00>. All 13 bits are applied to the maintenance mux for read 
back into the DP over the 32-bit bus. MACR 12 is used in the mux 
select log ic to select the high or low port ion of the microword 
for the bus. MACR 12 is al so used in the cs log ic to select the 
high or low portion of the microword to be written from the IB IN 
bus. MADR <11:10> is used in the CS logic for CS bank selection. 

MADR <11:00> is muxed onto common lines with the 12-bit o_utput 
from the 2911 microsequencer. 

4.6.2 Microsequencer Logic 
The microsequencer logic consists of the 2911 rnicrosequencer, the 
microsequencer control logic which regulates and controls the 
various microsequencing functions, and the branch logic. 

4.6.2.1 2911 Microsequencer -- The 2911 microsequencer outputs a 
12-bit address onto common address lines MADR <11:00> where it is 
muxed with the 12-bi t outpu t from the rna in tenance add ress 
register. Figure 4-7 illustrates the muxing function. Also note 
that the microsequencer comprises three 2911 chips, each 
outputting four bits onto the MADR lines. The upper eight bits on 
the MADR lines (MADR <11:04> become address bits CSA <11:04>, 
respect i vely. The lower four bi ts (MAVR <03: 00» are ORed wi th 
branch bits BR <03:00> from the branch logic in the DP to produce 
address bits CSA <03:00>. 

The lower 12 bits of the CS microword (EUS U<11:00» are used by 
the microsequencer to formulate the next address. Each chip 
receives the four bits from the microword that correspond to its 
four outputs onto the MADR lines. 

4-16 



~ 

I 
I-' 
--.J 

EN MADR 

(FIG. 4-2) [BIN <12,00> 
MADR <03:00> 

MAINT. MADR <07:04> 

leLKMADA 

ADDRESS 
REGISTER 
(P) MADR <11 :08> 

MADR12 
ClK 

NOTE: 
lETTER DESIGNATIONS IN PARENTHESES REFER TO THE PB 
ENGINEERING DRAWINGS CONTAINING THE CORRESPONDING 
LOGIC. 

( ) I 
MADR <03:00> 1 (R) 

~ ~ -- ---

MADR <07:04> CSA<07:04> G 
MADR <11 :08> CSA <11:08> 

f 
(FROM MICI 

2911 
<Sl:S0> 

2911 
<Sl:S0> <Sl:S0> CONTROL 

r-- FE 
2911 

MICRO- FE MICRO- MICRO- FE 
SEQUENCER SEQUENCER rr SEQUENCER }eROM MICROV PUP PUP PUP (P) (P) r-- (P) REGISTER 

tBUS U<ll :08> BUS U<07:04> BUS U<03:0a> BUS U<ll :00> 

MADR <12:00> 
- ------

(CONTROL STORE ) 

Figure 4-7 Control Store Address Multiplexing 

~NTROl) 
TORE 

OSEQUENCER) 

ORD) 

( FROM ) 
MICROWORD 

MKV84-o133 

FIG. 
4-2 



Figure 4-8 is a functional block diagram of a 2911 microsequencer 
chip. The source of the four-bit chip output could be an address 
register (which would be the four next address bits from the 
microword), a 4 x 4 memory stack, or a PC counter/incrementer. A 
mux selects the address source accord ing to select code <S 1: SO > 
from the microsequencer control ,logic. 

The memory stack is enabled by file enable (FE) received from the 
CS microword via the microword register. The stack push/pop 
control (PUp) is also obtained from the microword via the 
microword register. 

FORCE ZERO from the microcode start-up logic negates the 
microsequencer output causing the output to be all zeros. 

4.6.2.2 Microsequencer Control Logic -- Figure 4-9 is a block 
diagram of the microsequencer control logic. BUS U <16:12> is the 
microsequencer control field in the CS microword. The field 
specifies how the next CS address is formulated. 

BUS U <16:12> becomes SEQ CNTL <4:0> respectively within the 
control logic. 

If SEQ CNTL 4, SEQ CNTL 3, or SEQ CNTL 2 is false, control bits 
SEQ CNTL <1: 0 > are inhibi ted from the mux select log ic and the 
stack enable log ic. In this case, the mux select log ic output 
defaults to Sl false (0) and SO true (1), and decoded file enable 
(DFE) from the stack enable logic is negated. The push/pop stack 
control logic responds to SEQ CNTL <1:0>; however, decoded 
push/pop (DPUP) has no effect, while the stack file enable signal 
(DFE) is false. 

SEQ CNTL <4: 0> also goes to the branch log ic to control the 
branching function. 

Table 4-3 lists the five SEQ CNTL bits in binary sequence and 
shows how the bits control the various sequencing functions. All 
32 bit counts (or bit states) are listed. 

The first 28 counts (bit states) operate the branch logic. During 
the first four bit states, branches 3, 2, 1, and the A portion of 
branch 0 are enabled. During the next four bit states, only branch 
1 and the A portion of branch 0 are enabled. For the next eight 
states, the B portion of branch 0 is enabled. The next eight 
states find the C portion of branch 0 enabled. The last four bit 
states of branch log ic operation has select condi tion code (SEL 
CC) asserted. SEL CC is actually the D portion of branch O. The 
branch logic is described in Paragraph 4.6.2.3. 

4-18 



~ 

I 
I-' 
1.0 

MADR 11 

MADR 10 

EN SEQ 
~I-

I 
I 
I 

«FIG. 4-2) {---' FORCE ZERO I 
~ I 

I 

I 

-

4 
, BUS U<ll :08> .. ADDRESS 

REGISTER 

MADR 09 

-
MADR 08 

- ----I 
I 

PC COUNTER/ I I 
~--~~--~~~INCREMENTER 

ClK I 
(PC + 1) 1 

MUX 
l<sl :SO> 

4 4 I 

. (FIG. 4-12) __ S;..;..E.;;;.Q';:';Cl=':'K~T~31_....L..[I _____ 1 ___ -y-__ ~j STACK I: I FE L-.:} (4 X 4) (F IG. 4-2) 

ClK PUP 
I 
L __ 

NOTE: 
.THE lOGIC IN THIS FIGURE IS CONTAINED ON 
'SHEET P OF THE PB ENGINEERING DRAWINGS. 

--- - --

Figure 4-8 2911 Microsequencer 

-1 

TK-B723 



~ 
I 
N' 
~ 

BUS 

(FIG. 4-2) U<16:12> 

MISC CNTL (TO MICROWORD) 
~ ~ • R_EGISTER 

FIG. 4-2 

SEQ CNTL <4:0> 

• (TO BRANCH LOGIC) 
FIG. 4-2 

SEQ CNTL 4 

SEQCNTL 3 

SEQ CNTL 2 

SEQ CNTL 1 

SEQCNTL 0 

MUX 
SELECT 
LOGIC 
(W) 

<S1 :SO> (TO MICROSEQUENCER) 
• FIG. 4-2 

STACK 

ENABLE ~FE } (TO MICROWORD) 
LOGIC REGISTER 
(W) ~ FIG. 4-2 

PUSH/POP 
STACK 

SEQ CNTL <1 :0> ~ CONTROL 
I... LOGIC 

DPUP 

NOTE: 

LETTER DESIGNATIONS IN PARENTHESES REFER TO THE PB ENGI­
NEERING DRAWINGS CONTAINING THE CORRESPONDING LOGIC. 

Figure 4-9 Microsequencer Control Logic 

(W) 

TK-8721 



~ 

I 

'" ~ 

Bit SBO CNTL 
State 4 3 2 I 0 

1 o 0 000 
2 o 0 0 0 1 
3 o 0 0 1 0 
4 00011 

1----------
5 0 0 1 0 0 
6 0 0 1 0 1 
7 0 0 1 1 0 
8 0 0 1 I I ._--- -- - --------
9 0 1 0 0 0 
10 0 1 0 0 1 
11 0 1 0 1 0 
12 0 I 0 1 1 
13 0 I 1 0 0 
14 0 1 1 0 1 
15 0 1 1 1 0 
16 0 1 1 1 1 
-----------------
17 1 0 0 0 0 
18 1 0 0 0 1 
19 1 0 0 1 0 
20 1 0 0 1 1 
21 1 0 1 0 0 
22 1 0 1 0 1 
23 1 0 1 1 0 
24 1 0 1 1 1 ----- -----------25 1 100 0 
26 1 1 001 
27 1 101 0 
28 1 1 0 1 1 

------------
29 1 1 1 0 0 

30 1 1 1 0 1 

31 1 1 1 1 0 

32 1 1 1 1 1 

- --- --- ----- ---------- --

1 .. Asserted 
o = Negated 
X Don't care 

Table 4-3 Microsequencer Control Functions 

EN EN EN EN SEL MicroseQuencer Stack Push/ 
BR BR BR BR CC' Mu][ Address Enable Pop 
2/3 OA/I OB OC Select . Source (DFE) (DPUP) 

Code 
<SI:S0> 

__ L_ 
0 I Address 0 X 

Register 

----- ------ ----

------ ------1----- ----

----- --- --- ----- ---- -------

1 -o 1 Address 0 X 
Register 1-.------------ ----- ----- --------------- ----------------- ~------

0 1 Address 1 1 
Register 

1 0 Stack 1 0 

0 0 PC Counter/ 1 0 
Incrementer 

0 0 PC Counter/ 0 1 
Incrementer 

'-----------



Note that during the 28 bit states of branch logic operation, 
either SEQ CNTL 4, SEQ CNTL 3, or SEQ CNTL 2 is false, hence the 
Sl and S0 control bi ts from the mux select log ic are in the 
default state 1S1 = 0; S0 = 1) and the DFE signal from the stack 
enable log ic is false. Wi th the control bi ts in the defaul t 
state, the microsequencer mux selects the address register and the 
microsequencer serves only to couple the microword next address 
field (BUS U <11:00» to the MADR <11:00> common address lines as 
the base address for branching operations. The stack is disabled 
by the negated state of DFE during branching operations, hence, 
the state of DPUP is meaningless. 

During the last four bit states, the SEQ CNTL <4:2> bits are true, 
disabling the branch log ic and causing the microsequencer to be 
used as the addressing control. As shown in Figure 4-9, SEQ CNTL 
<1:0> are now input to the mux select logic and the stack enable 
logic. Table 4-3 .thows the state of the Sl, SQJ control bits and the 
stack enabling signal .DFE) for the last four bit states. 

The first of the four bit states is a jump to subroutine (JSR) 
function. In this state SEQ CNTL <1:0> are both 0 hence Sl and S0 
remai n in thei r def aul t state and the address reg ister is sti 11 
selected; however, now the stack is enabled and DPUP is asserted. 
DPUP true causes the output of the PC counter/incrementer (PC + 1) 
to be pushed onto the stack. The microcode jumps to the address of 
a subroutine but saves the next address (PC + 1) to return to the 
main flow after the subroutine is finished. 

The second state is a return from subroutine (RTS) function. In 
this state the mux selects the stack for the next address. The 
stack is enabled and DPUP is false which pops the stored address 
from the stack to the mux. The microcode, returning from a 
subroutine, uses the address stored on the stack to return to the 
main flow. 

The third state is a "pop the stack" housecleaning function. In 
this state the mux selects the PC counter/incrementer for the next 
address, hence the microcode simply advances to the next address 
in the main flow. The stack is enabled and DPUP is false which 
pops the stack of an unwanted address. Clearing the stack in this 
manner is necessary when the microcode jumps to a subroutine and 
continues on from the subroutine wi thout returning to the main 
flow via an RTS. 

4-22 



The fourth state is the MIse CNTL function. In this state the mux 
ag a i n selects the PC c ounter/ i ncremente r for the nex t address and 
the microcode advances to the next address in the main flow. The 
s tack is disabled by the neg a ted sta te of DFE. The MI se CNTL 
function is the utilization of the next address field of the 
mi crowo rd (BUS U <11: 00» for one rnicrocyc Ie for miscellaneous 
flags and control functions. In this state, the sequential control 
bits (SEQ CNTL <4: 0» are all Is, hence BUS U <16: 12> are all Is 
and MISC CNTL is asserted (Figure 4-9). MISC CNTL gates the 
microword next address field (now carrying the miscellaneous flags 
and controls) into the microword register (Paragraph 4.3).* 

* Bits 5 and 6 of the next address field (ASRT FAIL and ASRT DEAD) 
are not gated directly by MISC CNTL. However, they are 
indirectly gated by MISe CNTL because they are subsequently 
gated by PF VLD. 

In describing the 32 states of sequential control bits SEQ CNTL 
<4: 13 >, four special microsequencer states and 28 branch states 
were discussed. It may have been noticed that there appeared to 
be no state that used the next address field of the microword 
unchanged. As will be seen in the section on branching, (Paragraph 
4.6.2.3), one of the branching states is a null wherein no 
conditions are checked. This allows the next address field to 
pass to the CS unchanged. 

4.6.2.3 Branch Logic - Figure 4-113 is a block diagram of the 
branch log i c. Four branch bi t s (BR <3: 13 » are genera ted by the 
branch logic to modify the base address from the 2911 
microsequencer. Branch bits BR <3:1> each have a mux for selecting 
the various conditions affecting that branch. Branch bit BR 0 has 
four muxes to select its branch conditions. 

The branch rnuxes are controlled by sequential control bi ts SEQ 
CNTL <4:13>. The muxes function during 28 of the 32 bit states of 
SEQ CNTL <4: 0> as shown in Table 4-3; however, not all the muxes 
are enabled during all of these states. When a branch mux is not 
enabled, the associated addressing bit is determined by the 
corresponding bit from the microsequencer. 

Control bits SEQ CNTL <4:3> are applied to the branch 0 mux select 
logic. The control bits are decoded to assert one of four outputs 
to enable one of the branch 10 rnuxes. The control bits divide the 
32 bit states into groups of eight. Table 4-3 illustrates this 
and also shows the state of the four outputs from the branch 0 rnux 
select logic for the eight-bit groups. 

4-23 



( 
FIG.)SEQ CNTL <4:0> 
4-2 

SEQ CNTL <1 :0> 

SEQ CNTL <2:0> 

SEQ CNTL 2 

SEQ CNTL <4:3> 

SEQ CNTL 2 

SEQ CNTL 3 

SEQ CNTL 4 

..... A 

...... B 

~ 
~---., 

BRANCH 
o 
MUX 
SELECT 

SEQ CNTL <1 :0> 

Figure 4-10 Branch Logic 

(FIG. 5-2) 

IBIN19 ~ 
--~~~l'-----------~BRANCH 

-= ~ 3 MUX o -SEL 

~--------------------~~ 
SET 

MSESYNC~ ~ 
PWR FAIL 

(FIG. 5-27) ----~--------..'1 BRANCH 
...,:.I::.B..:..:I N..:.......:...18=-____ ~ ___ ~ 2 M U X J-----, 

(FIG. 6-14) {----"1=+-4 ______ G)---._A __ ~V 
EN BR 2/3 ADN 

~ ) BON ~ 
EN BR OAll ~ (FIG. 5-25) TICK <1> 

EN BR OB 

EN BR OC 

SEL CC 

C 

(FIG. 5-3)-

(EN BR 00) 
~----~D 

(FIG. 5-13) 

BACKPLANE 

~1~B~IN~1~7-------r----~~BRANCH 
I BIN 26 .J 1 M U X 
IB IN 14 

IB IN 10 0----- SEL 
....:...1 B:::...:..:.I N..:....2::.;:6:.-..-____ B V 

IB IN 25 ..... BRANCH 
":":1 B::"':":'I N..:..=:13~-------+-----.. • OA M UX ~ 
IB IN 09 f8\-- SEL 

IB IN 22 ~I~I\I ./ 
L-____________________ ~~~ 

IB IN 31 

IBIN 15 ~ 
IB IN 12 

~IB~IN~24~-----_+-----~~8RANCH 
IB IN 00 OB MUX 
IB IN 20 r- ( 
RSVDJMPR f8\-- SEL 
RSVD ~ 
~.:..=..----...... ~~ 

REG WRT 

DISABLE ARB~ ~ 
BTO ~~ ~ BRANCH 

(FIG. 5-25) 
(FIG. 3-9) 
(FIG. 2-27) 

_________ ~----__ ~Ri.E~C~A~T~T~N~~nN_t----~ ...... OC MUX 
XMIT ATTENTION ~ r-
IB IN 21 

~SEL IB IN 08 

L--------i+-----------~~V 
-= 

(BRANCH 3) 
...... BRANCH 

(BRANCH 2) OUTPUT 
(BRANCH 1) REGISTER 

...... 
(BRANCH 0) ..... 

"" LOAD 

r-+" CLK 
CLR 

BR 3 "'\ 

BR 2 

( FIG) BR 1 4-2 

BR 0 

t UNINIT (FIG. 5-25) 

FIG. ) 
5-8 

L---...:..T_3_D_L_Y_T_4_0 ____ (F I G. 5-6) 

L __ --=S~U~S_P_EN_D_D_E_L _______ (F I G. 5-17) 

"" ALU N i ~ ALU Z 
BRANCH 

ALU V j ODMUX 

ALU C r--

Cb C SEL 

0 -V 
NOTE: 

THE LOGIC IN THIS FIGURE IS CONTAINED ON 
SHEET J OF THE DP ENGINEERING DRAWINGS. 

MKV84·0134 

4-24 



EN BR OA/1 enables the branch 1 mux and the A mux of branch O. It 
is asserted for the eight bi t states that SEQ CNTL <4: 3> are 
false. 

EN BR OA/1 is ANDed with the negated state of SEQ CNTL 2 to assert 
EN BR 2/3. EN BR 2/3 enables the branch 2 mux and the branch 3 
mux. Making EN BR 2/3 a function of SEQ CNTL 2 limits the enabled 
state of the branch 2 mux and the branch 3 mux to only four bi t 
states. 

EN BR OB enables the B mux of branch 0 for the eight bi t states 
that SEQ CNTL <4:3> are 0 and 1, respectively. 

EN BR OC enables the C mux of branch 0 for the eight bit states 
that SEQ CNTL <4:3> are 1 and 0, respectively. 

The fourth output from the branch 0 rnux select log ic is asserted 
by the 1: 1 state of SEQ CNTL <4:3>. It is ANDed with the negated 
state of SEQ CNTL 2 to produce SEL CC. SEL CC selects the branch 
cond i tions of the branch 0 "D" mux. Mak ing SEL CC a function 0 f 
SEQ CNTL 2 lim its the asserted state of SEL CC to only four bi t 
states. 

Table 4-4 lists the branching conditions for the 32 bit states of 
SEQ CNTL <4:0>. Refer to it during the following discussion of the 
branch muxes. When a condition is sampled by the branch logic, the 
corresponding bit from the microsequencer is always O. 

The branch 3 mux is enabled for the first four bit states. The mux 
selects IB IN 19 when SEQ CNTL <1:0> are in the 1:1 state. The mux 
selects 0 (ground) for the other three states of SEQ CNTL <1: 0>. 
The mux output routes to the branch output reg ister and then to 
the BR 3 output line. 

The branch 2 mux is also enabled for the first four bi t states. 
The mux selects one of four condition inputs as determined by SEQ 
CNTL <1:0>. The SET MSE SYNC condition (negated) is selected for 
both the 0:0 and the 0:1 states of SEQ CNTL <1:0>. The mux output 
is placed on the BR 2 output line via the branch output register. 

The branch 1 mux is enabled for the first eight bi t states. The 
mux selects one of eight condition inputs as determined by SEQ 
CNTL <2:0>. The mux output is placed on the BR 1 output line via 
the branch output register. 

4-25 



Table 4-4 Branch Conditions 

Bit SEQ CNTL 

State <4:0> Function Branch 3 Branch 2 Branch 1 Branch 0 

1 00000 Branch 0 SET MSE SYNC A ON ALU C 

2 00001 0 SET MSE SYNC B ON ALuC 
3 00010 0 PWR FAIL TICK <1 > MTD 

4 00011 IS IN 19 IS IN 18 IS IN 26 IB IN 16 

5 00100 0 0 IS IN 26 IS IN 25 

6 00101 0 0 IB IN 14 IB IN 13 

7 00110 0 0 IS IN 10 IB IN 09 

8 00111 0 0 IS IN 26 IS IN 22 

9 01000 0 0 0 IS IN 31 

10 01001 0 0 0 IS IN 15 

11 01010 • 0 0 0 IB IN 12 

12 01011 0 0 0 IS IN 24 

13 01100 0 0 0 IB IN 00 

14 01101 0 0 0 IS IN 20 

15 01110 0 0 0 RSVD JMPR 

16 01111 . • 0 0 0 RSVD 

17 10000 0 0 0 REG WRT 

18 10001 • 0 0 0 DISABLE ARS 

19 10010 0 0 0 STO 

20 10011 • 0 0 0 REC ATTN 

21 10100 0 0 0 XMIT ATTENTIOI 

22 10101 • 0 0 0 IS IN 21 

23 10110 • 0 0 0 IS IN 08 

24 10111 0 0 0 0 

25 11000 0 0 0 ALU N 

26 11001 0 0 0 ALU C 

27 11010 0 0 0 ALU V 

28 11011 0 0 0 ALU Z 

29 11100 JSR 0 0 0 0 

30 11101 RTS 0 0 0 0 

31 11110 POP STACK 0 0 0 0 

32 11111 MISC CNTL 0 0 0 0 

4-26 



The A, B, and C mux of branch 0 have their outputs connected to a 
common output line. Mux A is enabled for the first group of eight 
bi t states, mux B for the second group, and mux C for the third 
group. The enabled mux selects one of eight condition inputs as 
determined by SEQ CNTL <2: 0>. Thus, the common mux output line 
receives a branch condition for the first 24 bit states. 

Note that one 
(ground). When 
are no branch 
microsequencer 

of the branch condition inputs of mux C 
this condition is selected (bit state 24), 
conditions and the next address from the 

is 0 
there 

2911 
is applied to the CS unchanged. 

The branch condition on the common output line is applied to the 
four low order inputs of the branch 0 "D" mux. The three select 
bits for the D mux are SEL CC and SEQ <1:0> with SEL CC being the 
most significant bit. SEL CC is false for the first 24 bit states 
(Table A-3) hence, the mux selects only from the four low order 
inputs. Thus, for the first 24 bit states, the D mux simply 
couples the selected branch condition from the common line to the 
BR 0 output line via the branch output register. SEL CC is true 
for the next four bit states (states 25 through 28), causing SEQ 
CNTL <1:0> to select from the four high order inputs (ALU 
functions). 

Branch 0 is 
Also it can 
states. It 
<4:2> all 
enabled. 

active for all 28 bi t states 
be seen that the branch D mux 
is disabled during states 29 
Is) when the microsequencer 

4.7 MICROCODE START-UP 

of branch operations. 
is enabled for all 28 
through 32 (SEQ CNTL 

special functions are 

The two CS address sources (the maintenance address register and 
the microsequencer) are enabled from the microcode start-up logic. 
EN MADR enables the maintenance address register during the 
uninitialized state. When the initialization process is complete, 
EN MADR negates and EN SEQ asserts. EN SEQ enables the 
microsequencer which supplies the CS address during the 
initialized state. 

Figure 4-11 is a flow diagram of the microcode start-up process. 
The following discussion follows the sequence illustrated in the 
diagram. Figure 4-12 is a block diagram of the logic involved in 
the start-up process. 

Upon system power-up, UNINIT and UNINIT DLY asserts simultaneously 
in the DP and places the port into the unini t iali zed state. The 
assertion of UNINIT (or UNINIT DLY) causes EN MADR to assert to 
the maintenance address register. Also FORCE ZERO is asserted to 
the microsequencer in preparation for when the microsequencer will 
take over the addressing function. In addi tion, SEQ CLK T3 from 
the DP is inhibited thereby disabling the microsequencer. 

4-27 



t SEaCLK T3 
Microsequencer 
is disabled. 

+ U~INlT 
+ UNINIT DLY 

Port enters the 
uninitialized state. 

+ EN MADR 
Maintenance address 
register enabled. 
Register provides 
addresses to control 
store. 

+ FORCE ZERO 
Microsequencer gene­
rates zero address, 
however output is 
not enabled. 

NO 

MKV84-0151 

Figure 4-11 Microcode Start-up Flow Diagram 
(Sheet 1 of 2) 

4-28 



+ SEQ ClK T3 
Microsequencer is 
is enabled. 

+ UNINIT 
Port enters the 
initialized state. 

+ EN MADR 
Disable maintenance 
address register. 

t EN SEQ 

+ 

Enable microsequencer 
which outputs zero as 
first address in the 
initialized state. 

SEQ ClK T3 

FORCE ZERO 
Microsequencer gene-
rates addresses under 
control of microse-
quencer control logic. 

DONE 

NO 

First address in the 
initialized state ob­
tained from the main­
tenance address register. 

SEQCLK T3 

t UNINIT DLY 

+ EN MADR 
Disable maintenance 
address register. 

tEN SEQ 
Enable microsequencer. 

1 
+ FORCE ZERO 

Microsequencer gene-
rates addresses under 
control of microse-
quencer control logic. 

MKV 84'()152 

Figure 4-11 Microcode start-Up Flow Diagram 
(Sheet 2 of 2) 

4-29 



~ 
I 

w 
o 

(
FROM) PSA 
PMCSR ------------,-~ 
FIG. 5-3 (M) 

(FIG. 5-25) UNINIT i 

.(FIG.5-27) UNINIT DlY 
(M) 

SET 

(N02TE) 

SEa ClK T3 
(FIG. 5-21) -I ClK 

L...-____ .... -(FIG. 4-2,4-3,4-8) 

NOTES: 

1. lETTER DESIGNATIONS IN PARENTHESES REFER TO THE DP 
ENGINEERING DRAWINGS CONTAINING THE CORRESPONDING 
lOGIC. 

2. lOCATED ON SHEET W OF PB ENGINEERING DRAWINGS. 

EN MADR 

EN SEa 

FORCE ZERO 

Figure 4-12 Microcode Start-Up Logic 

(FIG. 4-2) 

MKV84'()137 



When initialization is completed, the DP negates UNINIT (UNINIT 
DLY is not negated until the next clock cycle) and the port goes 
from the unini tiali zed to the ini tiali zed state. Once in the 
initialized state, the DP enables SEQ CLK T3 therby enabling the 
microsequencer. 

The CS address source for the first microcycle of the initialized 
state may not be the microsequencer depending on the state of the 
PSA (programmable start i ng address) bi t in the PMCSR (port 
maintenance control/status register). During a normal start-up, 
PSA = O. In this case, the negation of UNINIT directly negates EN 
MADR which in turn directly asserts EN SEQ. The enabled 
microsequencer then responds to the true state of FORCE ZERO and 
outputs a starting address of 0 to the CS. The next SEQ CLK T3 
pulse resets the FORCE ZERO flip-flop allowing the microsequencer 
to respond to the microcode in the CS. 

If, while in the uninitialized state, it is determined that a 
diagnostic routine should be run, the PSA bit is set to 1. With 
PSA = 1, the negation of UNINIT DLY is required to cause EN MADR 
to negate and EN SEQ to assert. This does not occur until the 
next clock pulse. Thus, for the first microcycle of the 
initialized state, the maintenance address register still provides 
the CS address. The address provided would be the starting 
address of the desired diagnostic routine. 

When the next SEQ CLK T3 pulse occurs, UNINIT DLY negates causing 
EN MADR to negate and EN SEQ to assert. The negation of EN MADR 
and the assertion of EN SEQ causes the CS address source to shift 
from the maintenance address register to the microsequencer. The 
same SEQ CLK T3 pul se resets the FORCE ZERO fl ip- flop thereby 
allowing the microsequencer to respond to the next address field 
of the first microword of the diagnostic routine. 

Figure 4-13 is a timing diagram of the microcode start-up 
sequence. Figure 4-l3A illustrates the start-up timing when the 
PSA bi t = O. Figure 4-l3B illustrates the start-up timing when 
the PSA bit = 1. Note that the difference between the two timing 
sequences is the point at which EN MADR negates (and EN SEQ 
asserts) and what causes it to negate. 

4-31 



PSA ------------------------------~Jvrr------______________________ __ 

UNINIT ------------V 

FORCE ZERO ----------------~~ 

EN MADR -------------1 

ENSEQ ----------------------~------7~~-----~ 

SEQCLKT3 -~ 

A. PSA = 0 

• 
PSA ----~S5 

~---~~v~r----~I 
UN I N IT ---------------i -

UNINIT DLY -------------i 

FORCE ZERO -----------------~~ 

EN MADR ------------t 

EN SEQ --------------~----~Dr·~----------~ 

SEQCLK T3 

·SET DURING UNINITIALIZED STATE. 

B. PSA = 1 

MKV84'()124 

Figure 4-13 Microcode start-up Timing 

4-32 



NOTE 

CHAPTER 5 
DATA PATH MODULE 

The functional block diagrams in Chapter 
5 use logical AND' and OR symbols. It 
does not necessarily follow that a 
corresponding gate exists on the DP 
logic prints. The assertion of inputs A 
and B causing the assertion of output C 
may be represented on a block diagram by 
a single AND gate, yet the engineering 
drawing may show that several circuit 
stages are involved in the ANDing 
operation. 

The functional block diagrams in this 
chapter are keyed to the DP engineering 
circuit schematics (CS prints) by letter 
designations in parentheses. The 
letters specify the DP CS sheet that 
contains the detailed logic associated 
with the functional blocks in the 
diagram. 

The signal names used in the functional 
block diagrams are the names used on the 
engineering CS prints. Where other 
signal names or notes are used, they are 
enclosed in parentheses. 

5.1 GENERAL 
Both information data and control data flow within the CI750 Data 
Path Module (referred to as DP) (Figure 5-1). Data flow may be 
initiated by the port (port initiated transfer) or by the host CPU 
(unsolicited CMI transfer). Port initiated transfers are 
controlled by the port microcode located in the CS (control 
store). In an unsolicited CMI operation, the port microcode is 
suspended and the data transfer is controlled by the host CPU via 
the CCI module and the CIPA bus. 

There are three buses within the DP. These are: 

1. IB Bus (internal bus) 
2. MD Bus (miscellaneous data) 
3. IB In Bus 

is the IB bus (internal bus) over which all data 
three buses are 32-bits wide while the PORT DATA bus 

with the PB) is a-bits wide and the CIPA bus 
with the CCI) is 16-bits wide. Hence, data 

is required as data flows in and out of the DP. 

The main bus 
flows. All 
(interfaces 
(interfaces 
reformatting 

5-1 



(J1 

I 
IV 

.---.. IBIR .. I __ 
REG 

!,D/FRO .. ',.. CIPA 8UI I 
\ CCI 7 • 

1--1 ~~~R _1111-- • 

18 IN elllOO) 

f LITERAL <07.00) 

IISIIe: 

IFROM CSI IB DST 

XBUS LSA <07100) 

BUS IB <31:00> 

290U 
MICRO­
PROCESSOR 

r-------... ITO CSI 

PORT 
DATA 
<7:0> -

1 LITERAL <7:0> IFROM CSI 

TO/FROM) 
PB 

F1gure 5-1 

UNSOLICITED 
eMI 

REOUEST/CONrItCIL 
LOGIC 

BUS MD <31:00> 

lEN MD LDIHII 

UNSOL WRIT! 

UNSOL 

laus LSA <07100> 

Data Path Module Bloc~ DIagram 

ENPBIN 

DP 
CONTROL 
LOGIC 



Control of data transfers within the DP involves: 

1. Se lecting the data source for the IB bus 

2. Transferring data from the selected source to the IB bus 

3. Selecting the destination for the IB bus 

4. Transferring data from the IB bus to the selected 
destination 

5. Reformatting the data as it enters and leaves the DP 

Possible data sources for the IB bus are the: 

1. LS otlocal store) RAMs 
2. VCDT (virtual circuit descriptor table) RAMs 
3. 290lA microprocessor 
4. XBIR register (input from CCI) 
5. PB IN register (input from PB) * 
6. Microword from the CS (control store)*@ 
7. MADR (maintenance address register) from the CS*@ 
8. PMCSR (port maintenance control/status register)*@ 
9. Microword literal field* 

* Via the MD bus 
@ Only in an unsolicited CMI read operation 

possible destinations for the data on the IB bus are the: 

1. LS RAMs# 
2. VCOT RAMs# 
3. 290lA microprocessor 
4. XBOR register (output to the CCI) 
5. PB OUT register (output to the PB)# 
6. LS/VCDT Address selection logic# 
7. Microword CS logic#% 
8. MADR#% 
9. PMCSR#% 

# Via the IB IN bus 
% Only in an unsolicited CMI write operation 

Local store ,LS) is a 256 x 32 RAM containing software status 
blocks and many software registers associated with the port 
archi tecture. The VCDT is a 256 x 16 RAM used to store C I node 
parameters. The LS or VCDT can be selected as a BUS IB source 
(read the RAM) or a BUS IB destination (write the RAM). 

5-3 



The LS and VCDT are addressed in parallel from the address 
selection logic. During port initiated operations, the LS/VCDT 
address may be obtained from the IB bus (via the IB IN bus) or 
from the microword LITERAL field. If the LS or the VCDT is the IB 
bus source, the microword IB SRC field selects the LS/VCDT 
address. If the LS or the VCDT is the IB bus destination, the 
microword IB DST field selec'ts the LS/VCDT address. During an 
unsolicited CMI operation, XBUS LSA <07:00> is the LS/VCDT 
address. 

The DP contains a 290lA microprocessor which performs general 
purpose arithmetic and logical operations under control of the 
microword ALU control fields. The 290lA can be an IB bus source 
or an IB bus destination. The function performed by the 290lA is 
specified by the ALU FCN field from the microword. The 2901A is 
not accessed by an unsolicited CMI operation. 

The PB IN and PB OUT registers are the data interface between the 
DP and the PB. The PB IN register functions to convert the data 
bytes on the PORT DATA bus into longwords for the MD bus. The PB 
OUT register functions to convert the longwords on the IB IN bus 
into bytes for the PORT DATA bus. 

In a similar manner, the XBOR and XBIR registers are the data 
interface between the DP and the CCI. The XBOR register functions 
to convert longwords on the IB bus into 16-bit words for the CIPA 
bus. The XBIR register functions to convert words on the CIPA bus 
into longwords for the IB bus. 

When enabled, the MD bus carries miscellaneous data to the IB bus. 
Data carried over the MD bus is the: 

1. Output from the PB IN register 
2. Microword LITERAL field 
3. Output from the PMCSR register 
4. Output from the MADR register in the CS 
5. Microword from the CS 

DP Control Logic controls the flow of data through the DP. The 
logic enables the selected source and destination for the IB bus 
and controls the data flow to and from the IB bus. When the port 
is under microword control, the microword IB DST field and IB SRC 
field select the IB bus destination and source respectively. 

The Unsolicited CMI Request/Control Logic controls data flow 
between the CCI and the DP. When the port is executing an 
unsolicited C~I operation, the Unsolicited CMI Request/Control 
Logic receives commands and control information from the host CPU 
via the CIPA bus. The Request/Control Logic enables the selected 
source and destination for the IB bus and then asserts commands to 
the DP Control Logic to control the data flow to and from the IB 
bus. 

Parity is generated and checked on data flow throughout the DP. 

5-4 



5.2 CIPA BUS 
The CIPA (computer interconnect port adapter) bus connects the CCI 
module in the CPU cabinet with the DP module in the CIPA cabinet. 

The bus has 40 signal lines which are divided into groups as shown 
below. 

Da ta: 17 lines 
Control: 13 lines 
Status: 2 lines 

Power control: 6 lines 
Re served: 2 lines (not used) 

Figure 5-2 illustrates the CIPA bus and its interface with the CCI 
and the DP. The figure shows the direction of the signal lines 
and which lines are bidirectional. Also shown are the mnemonics 
for the bus signals within the CCI and the DP. This allows 
ide n t i f yin g w hat a g i v en CC I s i g n ali s call e d wit h i nth e D Pan d 
v ice-ver sa. 

Table 5-1 list the signals by group and gives the function of 
each. The signals are explained in more detail in the discussion 
of the functional area to which they pertain. 

5.3 DP BUSSES AND INTERFACE 
Da ta transfers throughout the DP undergo reformatting at the DP 
interfaces. The PB IN and PB OUT registers perform this function 
at the DP/PB interface. The XBIR and XBOR registers perform this 
function at the DP/CCI interface. 

Refer to Figure 5-3 throughout the following discussion. 

5.3.1 PB OUT Register 
When the PB OUT register is selected as the IB bus destination, 
the data on the IB bus (BUS IB <31:00» inputs into a transparent 
latch. The latch output follows the latch input so long as the 
latch HOLD input (LATCH IB) is true. The latch output (IB IN 
<31:00» is then applied in 8-bit bytes to four sections of the PB 
OUT register. The 32-bit 10ngword is clocked into the register by 
CLK PB OUT which is asserted by the LD PB OUT command from the DP 
Control Log ic. LD PB OUT is asserted when the PB OUT reg ister is 
selected as the destination for the IB bus. 

5-5 



-------------, 
eel: 

" 
.. NOSe. 

LO 

T 
T 
E 3: 

LO 

I." 

LT 

CIPA lSUS 

CIPA 
e,PA 
CIPA 
CIPA 
c,lPA 

C IPA bCLO 
e 0 

II GO 
11 GO 
PORT INT 

erRANT 
REI; UL (3 :fl) 

elM T lIel.O 
CIP'" T DCI.O 
C.IPA c.Lt 

ePA 

CIPA CPIJ ACLO 
CIPA ""N 

tlPA It DONE 
CIPA B DOJrrl~ 
tiP" REqUEST 
CI • 

IS: 

, 
" ) 

• -I ... 0 

" 
u 

C 0 

<Vfo/) 

C, ACLD 

L _______________ _ 

Notel 
Letter designations in parentheses 
reler to engineering drawings 
containing corresponding logic. 

Figure 5-2 CIPA Bus with DP and CCl Interfaces 

5-6 



Group 

Data 

Control 

Table 5-1 CIPA Bus Signals 

Mnemonic Direction 

CIPA DATA <15:00> Bidirectional 

CIPA PARITY Bidi'rectiona1 

CIPA REG SEL <3:0> DP to CCI 

CIPA A GO DP to CCI 

CIPA A DONE CC I to DP 

CI PA B GO DP to CCI 

CIPA BOONE CCI to DP 

C I PA REQUEST CC I to DP 

CIPA READ CCI to DP 

CIPA GRANT DP to CCI 

CI PA PORT INT DP to CCI 

CI PA CLK DP to CCI 

5-7 

Function 

Transfers data 

Odd parity for the 
data on the CIPA DATA 
lines 

Selects a CCI regis­
ter and specifies a 
write or a read of 
the register 

Initiates a CMI 
trans fer (s) 

Indicates CMI trans­
fer(s) initiated by A 
GO is (are) done 

Initiates a CMI 
trans fer (s) 

Indicates CMI trans­
fer(s) initiated by a 
B GO is (are) done 

Indicates to the DP 
that an unsolicited 
CM I function is 
pending 

Specifies an unso­
licited CMI opera­
tion as a write or a 
read 

Indicates the DP is 
servicing an unso­
licited CMI opera­
tion 

Initiates an inter­
rupt sequence to the 
host CPU 

Clocks DP data into 
CCI and increments 
read counter for CCI 
RCV End XMIT files 



Group 

Status 

Power 
Control 

Table 5-1 CIPA Bus Signals (Cont) 

Mnemonic Direction 

CIPA ERROR Bidirectional 

CI PA SET MSE CC I to DP 

CI PA CI PA UP DP to CCI 

CI PA CPU ACLO CC I to DP 

CIPA OCLO Bidirectional 

CI PA MIN CC I to DP 

CIPA T ACLO DP to CCI 

CI PA T OCLO DP to CCI 

5-8 

Function 

Indicates a parity 
error on a DP to CCI 
or CC Ito D P d a t a 
transfer 

Indicates either NXM, 
UCE, or RLTO error in 
CCI 

Indicates CI PA 
cabinet is present, 
powere d-up, and 
i nit i ali ze d 

Indicates power going 
down in CPU cabinet 

Indicates power is 
non-operational in 
either the CPU 
cabinet or the CIPA 
cabinet 

Initializes the CIPA 

Initiates a 
power-down of the 
host system while 
keeping the CI750 
powered-up 

Completes the host 
system power-down 
initiated by CIPA T 
ACLO 



,FlO. ~21"';";;';':';"'-----'''''''''': 

IFIO. HI--'"~---""r"", 
(FIG. 1-11) ....;;.~...,..L~ 

nUlA 
IIICIIU­

'ROCESSOR 
(FIG. 5-8) 

BUS II 
<1I100) 

II IN <1l100) 

La : YCD! 

I 
(riG., 5-4) 

JBJN 
<15100> 

(fIG. 5-1l),~~I'~IN~.~ ___ ~~~~t44 
II IN <02,00> 

BUSMD 

<15,00> 

( G ){ENMDlO ;~16 ENMDHI BUSMD 
<3101111> 

BUS IB <31: 111> .~IID 

<Jt:'" 

H 

EN PSIN IFIG. !I-IU 

(1l100) 

Ell IIAINt (fIG. 5-ll) 

IFIG.4-I21 ... --......, 

(fIG. 4-10, S-2~) 

IFIG. 5-10) 

H 

r----lfiG. 5-27) 

IIIN02 
..... ---r-1J 

IBIN 
<08:04> 

LlTERAL<DHIII> } 

CIPI! (FI8. 4-21 

CIPA lAliOR 

IBIN 
01. 

ClK 

........ I'MCII __ "_-I,' ... I_IU 

BUS "'D 31 

CLI! A 

Figure 5-3 

5- 9 

XMIT STATUS 7 

XBUF PE 

UII.OL RUD 
(rtG. 5-17) 

PSII (fIG. 5-111 
IIU (FIG. 5-2l) 

ENMISC 
IFIG.5-16) 

NOTE: 
lETTER DESIGNATIONS IN PARENTHESES 
REFER TO ENGINEERING DRAWINGS 
CONTAINING CORRESPONDING lOGIC. 

DP Buses and Interfaces 



The PB OUT register is unloaded under the control of the PB. A PB 
LOAD command and a PMUX <1:0> code from the PB control the data 
flow from the PB OUT register to the PORT DATA bus. The PB LOAD 
command enables the PB out byte select logic while the PMUX <1:0> 
code asserts one of the four EN PB BYTE output signals. The PMUX 
<1:0> code asserts the four EN PB BYTE <3:0> signals in sequence 
thereby unloading the PB OUT register onto the PORT DATA bus a 
byte at a time. After the last byte has been unloaded, LD PB OUT 
is again asserted by the DP Control Logic to load the next 
longword into the PB OUT register. 

5.3.2 PB IN Register 
Input data bytes from the PB (PORT DATA <7:0» are applied to a 
transparent latch. The latch output follows the latch input so 
long as the latch HOLD input (LATCH 18) is true. The latch output 
byte is applied to four sections of the 32-bit PB IN register. 

The PB IN register is loaded under the control of the PB. A PB 
MUX ENA command and a PMUX <1:0> code from the PB control the 
loading of data into the PB IN register. The PB MUX ENA command 
enables the PB IN byte select logic while the PMUX <1:0> code 
asserts one of the four CLK PB IN signals to clock a data byte 
into the PB IN register. The PMUX <1:0> code asserts the four CLK 
PB IN signals in sequence thereby loading up the PB IN register 
from the PORT DATA bus a byte at a time. After the last byte has 
been loaded, EN PB IN is asserted by the DP Control Logic to gate 
the 32-bit register output onto the MD BUS as BUS MD <31:00>. EN 
PB IN is asserted when the PB IN register is selected as the 
source for the IB bus. EN PB IN then negates while PB MUX ENA 
asserts to start loading new data bytes into the PB IN register. 

The MD 
bits are 
MD HI. 
Logic. 

bus is gated to the IB bus in two sections. The lower 16 
gated by EN MD LO while the upper 16 bits are gated by EN 

EN MD LO and EN MD HI are generated by the DP Control 

5.3.3 XBOR Register 
Data on the IB bus (BUS IB <31:00» is applied to two 16-bit 
sections of the XBOR register. The 32-bit longword is clocked 
into the register by CLK XBOR PAR from the CCI/DP Interface 
Control Logic. CLK XBOR PAR asserts when the XBOR register is 
selected as the destination for the IB bus. 

The XBOR register is unloaded a word at a time by REG SEL O. When 
false, REG SEL 0 selects the high word from the XBOR register (BUS 
IB <31:16» and outputs the word as CIPA D OUT <15:00>. REG SEL 0 
then asserts to select the low word from the XBOR register (BUS IB 
<15:00» and outputs it as CIPA D OUT <15:00>. The true state of 
REG SEL 3 asserts DRIVE CIPA thereby placing the data words from 
the XBOR register onto the CIPA bus as CIPA DATA <15:00> (Figure 
5-2). CLK XBOR PAR then asserts again to load the next longword 
into the XBOR register. 

5-10 



REG SEL 0 and REG SEL 3 are obtained from the CCI/DP Interface 
Control Logic. 

5.3.4 XSIR Register 
The XBIR register is also divided into two sections; a high 
section and a low section. Input data words from the CCI (CIPA 
DATA <15:00» are applied to both sections where they are clocked 
in by CLK XBIR HI and CLK XBIR LOW from the CCI/DP Interface 
Control Logic. Longwords transferred from the CCI are transmitted 
over the CIPA bus a word at a time with the high word being 
transmitted first. CLK XBIR HI asserts to load the high word on 
the CIPA bus into the high section of the XBIR register. CLK XBIR 
LOW then asserts to load the low word into the low word section of 
the register. The DP Control Logic then asserts EN XBIR IN to 
gate the longword in the XBIR register onto the IB bus as BUS IB 
<31:00>. EN XBIR IN then negates while CLK XBIR HI asserts to 
start loading the next longword into the XBIR register. 

5.4 LS AND veDT (Figure 5-4) 
LS (local sto re) cons i sts of e ig ht 256 x 4 RAMs add ressed in 
parallel to form a 32 bi t output. The total LS space (256 x 32) 
is enabled in two 16-bit segments forming a 256 x 16 LS HI section 
and a 256 x 16 LS LO section. 

The VCDT (virtual circuit descriptor table) consists of four 256 x 
4 RAMs addressed in parallel to form a 16-bit output. One signal 
enables the total VCDT space. 

Figure 5-4 illustrates the LS and VCDT sections and the addressing 
and enabling signals associated with each. All three sections (LS 
HI, LS La, VCDT) are addressed in parallel by LSA <07:00> from an 
LSA (local store address) mux. Thus access is to the same 
location in each section. 

Data placed into the LS and VCDT is from the IB IN bus. IB IN 
<31:16> is input into the LS HI section. IB IN <15:00> is input 
into the LS La section and the VCDT. 

Data out of the LS and VCDT is placed onto the IB bus. The LS HI 
section outputs onto BUS IB <31:16>. The LS La section and the 
VCDT output onto BUS IB <15:00>. When the LS is read out, 32 LS 
bits are placed onto the IB bus. When the VCDT is read out, the 
upper 16 bits of the IB bus (BUS IB <31:16» are zeros supplied 
from the MD bus (Paragraph 5.8.3.1). 

Sections LS HI, LS La, and the VCDT are enabled by EN LS HI, EN LS 
La, and EN VCDT respectively. The enabling signal for any section 
must be true before data can be written into or read out of that 
section. In addition, to write data into an enabled section, the 
LS/VCDT write strobe (WR RAM) must be true. To read data out of 
an enabled section, EN LS/VCDT OUT must be true and WR RAM must be 
false (assertion of the WR RAM write strobe inhibits the RAM 
output). 

5-11 



BUS IB <31:00> 

BUS IB <31:16> BUS IB <15:00> 

(rIG. 5-16) ____ ~~~~~~----~----------~------_+------------__, 

LS- HI ~- LO VCDT 
(256 X 161 (256 x 161 (256 x 161 
(01 (CI (CI 

(FIG. 5-6) ,..;;~;;.;A __ <O.;.7_:00 __ >+-____ + __ .. ADR - - +----------+--........ ADR - -+----------+--..... ADR 

(FIG. 5_16)~EN~~~H_I-+ ____ ~~~ FIG.\EN ~ LO 

-16' 
(;~~.~ EN VCDT 

(FIG. 5-6) ~W~R~R~A~M~ ____ ~ ______ _+-------------L-------r------------~ 
IBIN 
<31:16> 

(rIG. 5_1) ____ ~I~B~IN~<3~1~:OO~> ______ ~ _______ IB_I_N_<_15_:_00_> ______ ~ ____________________ ~ 

Figure 5-4 

NOTE: 
LETTER DESIGNATIONS IN PARENTHESES 
REFER TO ENGINEERING DRAWINGS 
CONTAINING CORRESPONDING LOGIC. 

LS/VCDT Block Diagram 

5-12 



5.4.1 LS/VCDT Address Selection 
Figure 5-5 is a simplified block diagram of the LS/VCDT address 
selection function. The LS and VCDT address (LSA <07:00» is 
obtained from an LSA mux which functions to select the address 
from four possible sources. Address source decode logic monitors 
the IS DST and IS SRC fields from the microword to determine if 
the LS/VCDT is to be an IS bus destination or a possible IB bus 
source. Accordingly the address source decode logic decodes the 
IS DST field or the IS SRC field to effect mux selection of the 
LS/VCDT address source. When the logic senses that the LS/VCDT has 
been selected as the IS bus destination, it asserts EN RAM WR to 
the write strobe logic. The write strobe logic generates the 
write strobe (WR RAM) for the LS/VCDT RAMs. 

Figure 5-6 is a detailed block diagram of the LS/VCDT address 
selection function. Refer to it during the following discussion. 

The LSA mux has two select inputs (SEL 2, SEL 1) that select the 
address source. Table 5-2 lists the address source selected by 
the mux for the four states of SEL 2 and SEL 1. 

Table 5-2 LSA Mux Selection Code 

SEL 2 SEL 1 Address Source 

0 0 Literal 
0 1 Index Register 
1 0 Translate Register 
1 1 XSUS LSA Register 

The SEL 2 and SEL 1 inputs are obtained from two flip-flops. Both 
flip-flops are set by SUSPEND SEQ when the port goes into the 
suspend mode (see Paragraph 5.11.2.4) thereby forcing SEL 2 and 
SEL 1 true. With SEL 2 and SEL 1 both true, the mux selects XSUS 
LSA <07:00> as the LS/VCDT address. SUSPEND SEQ asserts during an 
unsolicited CMI request when microcode control of the LS/VCDT 
address is suspended and the host CPU supplies the LS/VCDT address 
via the unsolicited CMI request/control logic (see Figure 5-1 and 
Paragraph 5.8). 

When not executing an unsolicited CMI request (SUSPEND SEQ false), 
the select decode logic controls the two SEL bits by conditioning 
the two SEL flip-flops to set or reset. The decode logic causes 
both the flip-flops to reset, or one or the other to be set, 
thereby causing the LSA mux to select the LITERAL, the index 
register, or the translate register as the LSA address source. 
The decode logic will not cause both flip-flops to set and hence 
will never select the XSUS LSA <07:00> input as the LSA address 
source. 

5-13 



(FIG. 5-6) 

LITERAL <07:00> LSA<07:00> 

IB IN <08:00'> 

INDEX r-
LDINDEX REG 

LSA 

IB IN <13:08> MUX 

- TRANSLATE r- 4 
LD XLATE REG 

XBUS LSA <07:00> ~ 

IB DST<3:O> 
ADDRESS - SELECT 
SOURCE 

IB SRC <1:0> DECODE 
LOGIC 

EN 
RAM WRITE WRRAM 

STROBE 
WR LOGIC 

Figure 5-5 LS/VCDT Address Selection 
Simplified Block Diagram 

5-14 



U'1 
I 

...... 
U'1 

r 
I 
I 
I 
I 
I. 
I 
I 
I 

-.-~~-

(FIG. 4-21 

II IN <08:00> 

lDINDEX 

D&1' eLK A 

(rIG. 5-1) J I ._ ... -... - -t 
(fIG. 5-111) { _______ ~ LSA~ MUX <OJ:OI> 

(PI (1'i9. 5-., 5-10) 

(fiG. 5-17) 
(fiG. I-U) X.US LSA <07:00> 

SUSPEND IEQ 
IIDST<l:O> 

II SRC <1:0> 
(FIG. 4-21 

Elf 
UII 
IIIR 

.... _-----
(FIG. 

EN RAM 

WR 

SID <1:0> 
..;;;.r.-~ ... -tSElECT t---+L......... 

DECDDE 
lOGIC 
(PI 

(FIG. 5 .. 16) 

1 (SEl21 _I SEl 2 

I (SEl11 _ISEl1 

(fIG. 5-31) -,.. •. , .1 

--~n ... ~--;;------, -(FIG 4-101 

DLYI I' ~T40...... WR 
. - ~(".(i. I-U 

~(FIG. 5-10) 

(FIG. 5-31) UIIIORD ClK ... 
(FIG. 5"- 25') v''', n • • 

(F I G. G'"- ~, ) DS T , c" • _. • .1 ~ I 
-------- - -- ___ .....,_~ ______ J 

'iQure 5-6 LS/VCDT Addres. Selection Block Di.Qr •• 

NOTE: 
lETTER DESIGNATIONS IN PARENTHEIU 
REFER TO ENGINEERING DRAWINGS 
CONTAINING CORRESPONDING lOGIC. 



The decode logic operates from a two-bit source/destination input 
(S/D <1:0» obtained from the SiD mux. The mux selects 
destination bits IB DST <1:0> or source bits IB SRC <1:0> for the 
SiD <1:0> output. The mux selection is made by ANDing IB DST bits 
3 and 2. If both bits are true (EN RAM WR asserts), the LS or the 
VCDT is selected as the IB bus destination (see Table 5-8) and the 
mux selects IB DST <1:0> for the SiD <1:0> bits. If either (or 
both) bits are false, another destination is being selected for 
the IB bus. In this case, the mux defaults to IB SRC <1:0> for 
the SiD <1:0> bits in the event the LS/VCDT is selected as the 
source for the IB bus. 

When the LSA mux SEL 
(LITERAL <07:00» from 
<07:00> address lines. 

bits 
the 

<2:1> are 0:0, the literal input 
microword is selected for the LSA 

When the LSA mux SEL bits <2:1> are 0:1, the output of the index 
register is selected for the LSA <07:00> address lines. The index 
register is loaded with IB IN <08:00> when LD INDEX asserts from 
the DP Control Logic. IB IN <07:00> provides the eight bit 
address input to the mux. IB IN 08 provides INDEX 08 which is 
used in the DP Control Logic to select the LS or the VCDT (INDEX 
08 negated = LS; INDEX 08 asserted = VCDT). Also note that the 
four least significant bits from the index register are ORed with 
the four least significant bits of the LITERAL input. This allows 
the literal bits to perform four-bit wide indexing into the LS or 
VCDT tables. 

When the ·LSA mux SEL bits <2:1> are 1:0, the output of the 
translate register is selected for the LSA <07:00> address lines. 
The translate register is loaded with five bits from the IB IN bus 
(IB IN <13:09» when LD XLATE asserts from the DP Control Logic. 
These five bits output from the register as address lines <05:01>. 
Address lines <07:06> are grounded. The least significant address 
line (00) is LITERAL 00 which allows one bit indexing of the 
translate LS or VCDT entries. 

5.4.2 LS/VCDT Write Strobe Logic 
As previously mentioned, when the LS or the VCDT is selected as 
the destination for the IB bus, IB DST <3:2> are both true thereby 
asserting EN RAM WR to the write strobe logic. The write strobe 
logic generates a write strobe for the LS/VCDT RAMs (WR RAM) 
(Paragraph 5.4) and a write strobe for the LS/VCDT parity RAMs (WR 
PAR) (Paragraph 5.7.6). 

5-16 



EN RAM WR is applied to a flip-flop. If this is not an 
unsolicited CMI request (DST INHIBIT false) and the port is not in 
the uninitialized state (UNINIT false), the flip-flop output is 
ORed with XBUS WR LS/VCDT from the unsolicited CMI request logic. 
The OR gate output is applied to delay logic where the LS/VCDT 
write strobe (WR RAM) and the parity write strobe (WR PAR) are 
generated. Delays are incorporated into the write strobe logic 
making the WR RAM strobe and the WR PAR strobe 40 ns wide. The WR 
PAR strobe begins on the trailing edge of the WR RAM strobe as 
shown in Figure 5-7. 

The delay logic consists of two flip-flops. The first flip-flop 
is enabled by the OR gate output and is set by DP CLK T3 A. The 
flip-flop output is applied to an AND gate which then asserts WR 
RAM. The clock pulse that set the flip-flop is applied to a delay 
line where it is delayed 40 ns to become T3 DLY T40. T3 DLY T40 
is inverted and applied to the WR RAM AND gate causing WR RAM to 
negate. 

The assertion of T3 DLY T40 clocks the second flip-flop. The 
second flip-flop output is applied to the WR PAR AND gate which 
then asserts WR PAR. T3 DLY T40 is delayed 40 ns, inverted, and 
then applied to the WR PAR AND gate causing WR PAR to negate. 

5.5 MD BUS 
The MD (miscellaneous data) bus carries data from miscellaneous 
sources to the IB bus. The sources are enabled onto the MD bus 
one at a time thereby isolating the bus from all sources except 
the one driving the bus. The enabling signals are supplied by the 
DP Control Logic and the unsolicited CMI request logic. The data 
sources and their enabling signals are shown in Table 5-3. 

Table 5-3 MD Bus Data Sources 

Data Source Enabling Signal 

PB IN register EN PB IN - from DP control logic 
MADR register EN MAINT - from unsolicited CMI 

request logic 
CS microword (MDATR) EN MAINT - from unsolicited CMI 

request logic 
PMCSR register EN MISC from DP control logic 
Microword LITERAL field EN MISC from DP control logic 

Selection between the MADR register and the CS microword (MDATR) 
is made by the maintenance mux in the CS. Selection between the 
PMCSR register and the microword LITERAL field is made by the 
PMCSR/LITERAL mux. 

5-17 



Figure 5-7 write RAM Timing Diagram 

5-18 



EN MD LO and EN MD HI respectively gate the low word and high word 
sections of the MD bus to the IB bus. EN MD LO and EN MD HI are 
supplied from the DP Control Logic. 

The data supplied to the IB bus from the MD bus must be in a 
32-bit longword format. When a source is read that is not 32 
bits, the unused bit locations must be zeros. The MD bus logic 
supplies the fill-in zeros when necessary. 

5.5.1 PB IN Register 
EN PB IN gates the 32-bit output of the PB IN register onto the MD 
bus as discussed in Paragraph 5.3.2. 

5.5.2 
EN MAINT 
onto the 
discussed 

MADR and MDATR 
gates the 32-bit output of the maintenance mux (31:00) 
MD bus. The maintenance mux is shown in Figure 4-2 and 

in Paragraph 4.4. 

The maintenance mux output is always 32-bits wide. The mux fills 
in zeros when the selected data source is less than 32 bits. 

The maintenance mux selects the maintenance address register 
(MADR) or the maintenance data register (MDATR)*. The mux 
selection is accomplished by XBUS LSA 00 from the unsolicited CMI 
request logic. (Accessing MADR or MDATR is only done via an 
unsolicited CMI operation.) MADR 12 is used to select the high or 
low portion of the 48-bit microword for the MD bus. 

* Accessing the CS 
maintenance data 
physical register. 

microword is a 
register (MDATR). 

read (or write) of the 
MDATR does not exist as a 

When the MADR or the MDATR register is the IB bus destination, the 
write data is input to the register via the IB IN bus. 

5-19 



5.5.3 PMCSR and Microword LITERAL Field 
EN MISC gates the 16-bit output of the PMCSR/LITERAL mux onto the 
lower half of the MD bus (BUS MD <15:00». Zeros are gated onto 
the upper half of the MD bus (BUS MD <31:16» for all read 
operations of the PMCSR or the microword LITERAL field. When 
executing an unsolicited CMI read of the PSR (UNSOL READ and PSR 
true), bit 31 becomes MTE*. 

* The PSR (port status register) is a 32-bit software register 
located in LS. Bits <30:16> of the register are all zeros. Bit 
31 is the MTE (maintenance error) bit. When the PSR is read by 
an unsolicited CMI operation, the lower 16 bits output from LS 
onto the lower half of the IB bus. The upper half of the IB bus 
is supplied from the MD bus by asserting EN MD HI and EN MISC. 
EN MISC enables the 15 zeros and the MTE bit onto BUS MD <31:16> 
and EN MD HI gates them to the upper half of the IB bus. 

When the port is not in the uninitialized state and not executihg 
an unsolicited CMI read operation (UNINIT and UNSOL READ false), 
the PMCSR/LITERAL mux selects LITERAL <7:0> for the lower eight 
bits of the MD BUS (BUS MD <07:00». The next eight bits (BUS MD 
<15:08» are grounded by the mux to supply zeros. 

When the port is in the uninitialized state (UNINIT true) or 
executing an unsolicited CMI read operation (UNSOL READ true), the 
PMCSR/LITERAL mux selects the 16-bit PMCSR register. 

Register bit 00 (MIN) is grounded and therefore always reads as a 
O. If the host CPU writes a 1 into PMCSR bit 00, the CCI 
initializes and asserts CIPA MIN on the CIPA bus. CIPA MIN then 
functions to initialize the DP (see Paragraph 5.12.2). 

An unsolicited CMI write of the PMCSR will assert CLK PMCSR from 
the unsolicited CMI request logic, to write five PMCSR bits (MIE, 
PSA, MTD, WP, RSVD). 

The PMCSR register bits are described in Table 5-4. 

5-20 



Bit Mnemonic 

15 PE 

14 CSPE 

13 LSPE 

12 RBPE 

Table 5-4 PMCSR Bits 

Description 

Parity Error: PE is the OR of all the port 
parity error bits. These are PMCSR bits 
<14:08>. PE is cleared when PMCSR <14:08> 
are cleared. 

Control Store Parity Error: CSPE sets when 
a parity error is detected in the CS in the 
PB. CSPE can only be set when the 
microcode is running. It will not set 
during an unsolicited CMI operation. 

Local Store Parity Error: LSPE sets when a 
parity error is detected while reading the 
LS or the VCDT. LSPE can only be set by a 
microcode read of LS or the VCDT. It will 
not set during an unsolicited CMI 
o per ation. 

Receive Buffer Parity Error: Set when a 
parity error is detected on a data transfer 
from the PB to the DP. 

11 XMIT STATUS 7 Transmit Data Parity Error: Set when a 

10 

09 

08 

07 

CIPA ERROR 

parity error is detected in the link 
transmit channel. 

CIPA Error: Set when a parity error is 
detected on a DP to CCI or CCI to DP data 
transfer. 

PBIR PE (OPE) PB IN Register Parity Error (Output Parity 
Error): Set when a parity error is 
detected on a data transfer through the PB 
IN register to the IB bus. 

XBUF PE 

UNINIT 

Transmit Buffer Parity Error: Set when a 
parity error is detected while the PB is 
unloading a transmit buffer. 

Uninitialized: When set the port is in the 
uninitialized state. The microcode is not 
running and the port will not respond to 
data packet traffic. UNINI'f is set by DCLO 
(during power-up), MIN, or MTE. The 
microcode is started when UNINIT is cleared 
by writing a 1 into the PICR or by a boot 
timeout. 

5-21 



Bit Mnemonic 

06 PSA 

05 RSVD 

04 WP 

03 MIF 

02 MIE 

01 MTD 

MIN 

Table 5-4 PMCSR Bits (Cont) 

Description 

Programmable Starting Address: When the PSA 
bit is set, the port microcode will start 
running at the address in the MADR register. 
When the PSA bit is reset the microcode 
starts at location 000. 

Not used. 

Wrong Parity: When set the DP parity 
generator/checker will generate and check 
even parity instead of odd. Used to 
generate parity errors for maintenance 
purposes. WP is cleared on Initialization. 

Maintenance Interrupt Flag: When set, this 
bit indicates that an interrupt causing 
condition (OCLO, INTR, MTE) has occurred. 

Maintenance Interrupt Enable: When set 
interrupts are enabled. This bit is set by 
DeLO during power-up or by writing MIE with 
a 1. It is cleared during DP initialization 
or by writing MIE with a 0. 

Maintenance Timer Disable: When set, the 
boot timer is disabled and cannot cause an 
interrupt. When reset, the timer is 
enabled. 

Maintenance Initialize: When set, an 
initialize signal is generated that clears 
all port errors and leaves the port in the 
uninitialized state. MIN is write only and 
always reads as 0. The MIN bit does not 
exist in the DP. MIN is written in the eel 
module (see Paragraph 5.12.2). 

5-22 



5.6 OP ALU 
The OP contains eight 2901A microprocessor chips which constitutes 
the DP ALU, shown in Figure 5-8. The ALU functions are controlled 
by the microword from the CS. The following paragraphs discuss 
the ALU 2901A microprocessor and its operations. 

5.6.1 2901A Microprocessor 
Eight 2901As are used in parallel to formulate a 32-bit longword 
input/output to the IB bus. The 2901A contains a 16 x 32 RAM, an 
ALU (arithmetic logic unit), a Q register, and control circuitry. 

The l6-word RAM has two output ports (A and B) and a single input 
port. The ALU A/B <3:0> address field is used to address the RAM. 
The A address selects RAM data to be output at port A. The B 
address selects RAM data to be output at port B. The B address 
also selects the write location for data input at the input port. 
The A and B address lines are tied together, hence for a given 
address, both port A and port B output the same data. 

Data is input to the RAM through a RAM shifter. The shifter has 
three input ports; F, 2F, and F/2. Port F applies the input to 
the RAM unchanged. Port 2F applies twice the input to the RAM 
while port F/2 applies 1/2 the input to the RAM. The input port 
is selected by the ALU DST <2:0> code. 

The RAM is used as a scratch pad where the results of arithmetic 
and logical operations are stored temporarily for future use. The 
contents of the RAM are muxed into the ALU by the source control 
signals supplied from the CS microword. 

The high speed ALU can perform three binary arithmetic and five 
logic operations on the two input words, Rand S. The R input 
field is driven from a two-input mux, while the S input field is 
driven from a three-input mux. Both muxes have an inhibit 
capability; that is, no data is passed. This is equivalent to a 
zero source operand. 

The ALU R-input mux has port A of the RAM and the IB bus connected 
as inputs A and D respectively. The ALU S-input mux has both 
output ports of the RAM and the Q register as inputs A, B, and Q 
respectively. 

The muxes can select various combinations of input pairs among the 
A, B, D, Q, and zero inputs as source operands to the ALU. ALU 
SRC <2:0> from the port microword is used to select the ALU source 
operands. The ALU source code is defined in Table 5-5. 

5-23 



U1 
I 

r-.J 
~ 

(~:) 

I~-'-

AlUIST r !E~ 
<2:0> I 0 

I 
AlU FCN <2:0> I 2 

MWfqt ®:t~ 
AlU SRC <2:0> • 2 

it~ 
I 
I 
I 
I 
I 
I 

:1 

(FIG. S-Ib) EN"~ .. -----

A 

A ADDR 

RAM 
12-1'ORTI 

( t: I III ~1"~:; 
I w 

I 
I 
I 
I 
I 
I 
L_ --_ .... 

2901A MICROPROC!550~ 

--- -----

Figure 5-8 ALU Block Diagram 

i~~".:s;"F':i' F ·~:u;r } (:I~) 
FoO) AlUZ: . 

NOTE: 
THE lOGIC IN THIS FIGURE IS CONTAINED 
ON SHEET All OF THE ENGINEERING 
DRAWINGS EXCEPT WHERE NOTED IN 
PARENTHESES. 



Table 5-5 ALU Source Code 

Mnemonic ALU SRC Source 
2 1 0 R s 

AQ 0 0 0 A Q 
AB 0 0 1 A B 
ZQ 0 1 0 0 Q 
ZB 0 1 1 0 B 
ZA 1 0 0 0 A 
DA 1 0 1 D A 
DQ 1 1 0 D Q 
DZ 1 1 1 D 0 

The D input to the mux is the direct data input from the IB bus. 
This port is used to insert all data into the working registers 
inside the 290lA data path. 

The Q input to the mux is from the Q register. The Q register is 
a separate file used as an accumulator or holding register. It is 
loaded from the ALU through a Q shifter (input F) or from its own 
output via feedback loops (inputs 2Q and Q/2). Input 2Q is 
enabled for multiplication while input Q/2 is enabled for 
division. Data in the Q shifter is shifted right or left to 
perform arithmetic operations. Operation of the Q shifter is 
controlled by the ALU DST <2:0> field. 

The ALU functions are selected by ALU FCN <2:0> from the 
microword. The ALU function code is defined in Table 5-6. 

Table 5-6 ALU Function Code 

Mnemonic ALU FCN Function 
2 1 0 

ADD 0 0 0 R plus S 
SUBR 0 0 1 S minus R 
SUBS 0 1 0 R minus S 
OR 0 1 1 R OR S 
AND 1 0 0 RAND S 
NOTRS 1 0 1 Not RAND S 
EXOR 1 1 0 R EXOR S 
EXNOR 1 1 1 R EXNOR S 

The output select mux selects the RAM port A (mux input A) or the 
ALU (mux input F) for the output bus. The selection is controlled 
by the ALU DST <2:0> code from the microword. 

5-25 



The ALU DST code also selects the ALU destination by enabling one 
(or none) of the three inputs to t~·'e RP.M shifter and the {' 
shifter. The ALU DST code is defined in Table 5-7. 

Table ~-7 ALU Destination Code 

ALU DST ALU Destination Output Bus 
2 1 riJ RAM I Q Register 

0 0 0 F F 
0 0 I F 
0 1 0 F A 
0 1 1 F F 
1 

"" 
0 F/2 Q/2 F 

1 0 1 F/2 F 
1 1 fl 2F 2Q F 
I I 1 2F F 

Note that although the ALU DST code selects mux inputs A or F for 
the output bus, data on the output bus is not gated to the IB bus 
until the UP Control Logic selects the ALU as a source for the IB 
bus by asserting EN ALU. 

The IB bus always inputs to the D input of the R input mux however 
the ALU is not an IB bus destination unless the D input is 
selected by the ALU SRC field. 

The ALU has four status outputs: carry out (ALU C), sign bit F3 
(ALU N), zero bi t F=0 (ALU Z), and over flow (ALU V). ALU Cis 
used as the carry flag. ALU N is the most significant digit of 
the ALU and is used to determine positive or negative results 
without enabling the tri-state outputs. ALU Z is used for a zero 
detect. ALU Z is asserted when all the F outputs are low. ALU V 
is used to flag arithmetic operations that exceed the available 
2's complement number range. 'l'he four status outputs are applied 
to the branching logic in the CS. 

5.6.2 Data Manipulation 
After data is loaded into the microprocessor, the Q register data 
can be rotated or shifted left or right by the Q shifter. 
Likewise, the RAM data can be rotated or shifted left or right by 
the RAM shifter. During a rotate, the bit transferred out one end 
is transferred in. on the other end. During a shift operation, the 
bit shifted out is lost and a new bit is generated and shifted in 
at the far end. To accomplish these shifts and rotations, the 
most significant bit (MSB) of each 4-bit 290lA is connected to the 
least significant bit (LSB) of the adjacent 290lA v ia a 
bidirectional transfer line. To complete the wraparound required 
to rotate data, the MSB of the entire 32-bit longword is connected 
to the LSB via a bidirectional transfer line. 

5-26 



5.6.3 Carry Look-Ahead Logic 
Circuitry associated with the 
look-ahead logic that speeds 
instructions and allows the DP to 
look-ahead generation. Figure 5-9 

2901As contains full carry 
the execution of arithmetic 
function with full 32-bit carry 
illustrates this logic. 

Each of the 2901A chips generates both a carry generate output 
(GEN or G) and a carry propagate output (PROP or P). 'l'he four 
pairs of GEN and PROP signals for bits <15:00> are combined in a 
carry skipper along with a C IN signal derived from ALU function 
codes ALU FCN <1: 0>. The sum of the outputs of the carry skipper 
are combined to output ALU C16. ALU C16 goes to another carry 
skipper and is combined with the GEN and PROP signals from the bit 
<31:16> 2901As. The outputs of the second carry skipper are 
combined to output ALU C (carry flag) to the CS branching logic. 

5.7 DP PARITY GENERATION AND CHECKING (Figure 5-11) 
The DP parity generation and checking logic receives data from the 
IB IN bus to perform various parity functions. A flow-thru latch 
links the IB IN bus to the IB bus thereby making IB bus data 
available to the parity logic. RBPE is the only DP parity signal 
not using the par i ty generation and checking log ic (see RBPEi 
Paragraph 5. 7.2). 

The only parity check made during an unsolicited CMI operation is 
on the data transferred over the CIPA bus (CIPA ERROR check). 
Even this check is not made when the offset address is transferred 
over the bus (see Paragraph 5.8.1). 

5.7.1 Parity Generation and Checking Logic 
Data on the IB IN bus (IB IN <31:00>) is divided into bytes and 
applied to four parity generators. Each generator outputs an odd 
parity bit (BYTE <3:0> PAR) generated on the associated input 
byte. BYTE 0 PAR is odd parity for IB IN <07:00>, BYTE 1 PAR is 
odd parity for IB IN <15:08>, etc. 

The parity bits for the two lower bytes (BYTE <1:0> PAR) are XORed 
to generate a parity bit (LO WD PARITY) for the low word on the IB 
IN bus (IB IN <15:00>). In a similar manner, the parity bits for 
the two upper bytes (BYTE <3: 2> PAR) are XORed to generate a 
parity bit (HI WD PARITY) for the high word on the IB IN bus (IB 
IN <31:16>). 

The byte parity bits and word parity bits generated on the IB IN 
data, are used to perform various parity generation and checking 
functions as discussed in paragraphs 5.7.3 through 5.7.6. 

A wrong par i ty (WP) bi t from the PMCSR is input to the low byte 
parity generator. The WP bit is used to insert a parity error 
into the parity logic for maintenance testing purposes. When WP 
is asserted, the low byte parity generator produces BYTE 0 PAR as 
an even parity bit instead of odd. The even parity carries 
through to the LO WD PARITY bit and therefore is effective in all 
parity word checks. 

5-27 



ALU FCN 0 

ALU FCN 1 };)\.. 
--/ L. C IN 

G <03:00> 

(
FROM) 
2901 A 
IAI 

~ 

P <03:00> 

G <07:04> 

P <07:04> 

G <11:08> 

P <11:08> 

G <15:12> 

P <15:12> 

CARRY 
SKIPPER 
IAI 

ALU C16 
A l----......oi~ C IN 

G <19:16> 

(
FROM) 
2901A 
IB) 

" 

P <19:16> 

G <23:20> 

P <23:20> 

G <27:24> 

P <27:24> 

G <31:28> 

P <31:28> 

CARRY 
SKIPPER 
(BI 

ALUCO 

I I } 

:~~: (~1A) 
ALU C12 ~ (AI 

-- C IN ~ (TO 2901A (BII 

ALU C16 J _J 
I----~"A 

~A,;.;;L;.;;;U_<.;.;1.;;.5:..;;00>~_G ________ ~ CARRY 

ALU <15:00> P SKIPPER 
~~.-;---------..... (B) 

ALUC20 } 
ALU C24" TO 

..... 2901A 
ALUC28 Cal) 

(ALU <31:00> GI 

(ALU <31 :00> P) 

ALUC 
1----.... (TO CSI 

NOTE: 
LETTER DESIGNATIONS IN PARENTHESES 
REFER TO ENGINEERING DRAWINGS 
CONTAINING CORRESPONDING LOGIC. 

Figure 5-9 Carry Look-Ahead Logic 

5-28 



For byte pari ty checks, LD PB OUT is asserted (to load the PB OUT 
register) and gates WP to the other three byte parity generators. 
This results in even parity being generated on each data byte 
transferred from the PB OUT register to the PB over the PORT DATA 
bus. 

5.7.2 Receive Buffer Parity Error (RBPE) 
RBPE indicates a parity error on data transferred from the PB into 
the DP. It is the only parity check that does not involve the 
parity generation and checking logic. 

Data bytes from the PB are received over the PORT DATA bus, 
coupled through a latch, and applied to the PB IN register. The 
data bytes are also applied to an even parity generator where an 
RB PAR parity bit is generated for each byte. 

An even parity bit (RBUF PAR) is received from the PB along with 
each input byte. The RBUF PAR bits are compared with the 
generated RB PAR bits in an XOR gate. If a match is not obtained, 
a parity error has occurred. 

If the data byte was valid data (not undefined residue left in the 
PB), EN RBPE from the CS will be true. with EN RBPE true, an 
error output from the XOR gate will assert RBPE. 

RBPE is applied to a PE OR gate and to the PMCSR register. 

5.7.3 PB IN Register Parity Error (PBIR PE) [Output Parity 
Error (OPE)] 

PBIR PE indicates a parity error on data transferred through the 
PB IN register to the IB bus. 

Data bytes from the PORT DATA bus are coupled through a latch and 
applied to the 32-bit PB IN register. The register is enabled by 
PB MUX ENA. The PMUX <1:0> code places the input bytes into their 
proper position within the register. 

The RB PAR parity bits (generated on the data bytes input to the 
PB IN register) are applied to a four-bit parity latch. The latch 
is enabled by PB MUX EN each time a data byte is input from the 
PB. The PMUX <1:0> code latches one of the parity bits in each of 
the four output positions. The four bits latched are the parity 
bits for the four bytes loaded into the PB IN register. The parity 
bits are applied from the parity latch to the A inputs of a parity 
comparator. 

5-29 



-----1 
ceI I 

-----------

PA~lr)' 
G E N 1---L:.1!1A.i1...L.L_ ..... 

(q) 

,----------, 
I I 

I 
I 
I 
I 
I 
I 
I (FIG. 6- 34) I 1 _______________ -' 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
t 
I 
I 
I 

---------- ---j 

NOTE: 
LEITER DESIGNATIONS 
IN PARENTHESES REFER 
TO ENGINEERING 
DRAWINGS CONTAINING 
CORRESPONDING LOGIC. 

Figure 5-10 Parity Generation and Checking 
(Sheet 1 of 2) 

5-30 



1---
I DP 
I 

tlPA I 
15US I 

I 
I 
I 
I 

C,I'A 
@)_....;;E;.;.;R;.;.;R..;;;O..;.;R~~_-t 

---- -

IPE 

----- -

---------------
fA It IT Y G ENE It AT ION AN\) C H e c kIN cr 

L 

I. IN <23: 18> 

PE. 

G~PM=UX.:...<;.:;I:=G>_--r ... 

BUS 1:' 'B 
~31 : .u> LATe H IB IN 

LOG-Ie 

t-'-"c.:..:..:;;;'-'lfIG.3-11 

PlllUX <':Il> 

rE;.:.:N~L "'-t.lIU:Lr--lpJ:.~u:B~. 'F Ie;. S' -/b) 

lSl'E 

RaPE 

IFIG. J.21 _..;;X;.:..;BU:..;...F .:...;:PE'---i 

IFIG. 4-21 _-=CSP=:..::...E _-{"-
IFIG.2.2 XMITSTATUS 7 

J l-____ .:;.;PB:..::I..:;.R....;P;..;;;I:'---4 
elPA UliOR 

EN MD HI 

A~---I 

PARITY 
CO/ICPAR. 

(FIG. S-3)-...-......~ ........... -( I----=.:.;.....!~---- (F' G-. 4 - 2 ) 

Figure 5-10 Parity Generation and Checking 
(Sheet 2 of 2) 

5-31 



If the PB IN register is selected as the source for the IB bus, EN 
PB IN asserts and gates the data from the PB IN register to the MD 
bus. From the MD bus, the data is transferred to the IB bus by EN 
MD LO and EN MD HI. For parity checking purposes, the data is 
passed from the IB bus to the IB IN bus (through the flow-thru 
latch) and then to the parity generation and checking logic where 
byte and word parity bits are generated on the data. The byte 
parity bits generated (BYTE <3:0> PAR) are applied to the B inputs 
of the parity comparator. 

If the comparator detects a mismatch between the A and the B 
inputs, the A* B output is asserted causing PBIR PE to assert (EN 
PB IN is true). 

PBIR PE is applied to the PE OR gate and the PMCSR register. 

5.7.4 CIPA ERROR 
CIPA ERROR 
CIPA bus. 
DP to the 
check made 

CIPA ERROR 

indicates a parity error on data transferred over the 
The data transfer can be in either direction; from the 

CCI or from the eCI to the DP. This is the only parity 
during an unsolicited CMI function. 

is applied to the PE OR gate and the PMCSR register. 

A CBPE (CIPA bus parity error) error bit in the CCI configuration 
register (CNFGR) is also set when a parity error is detected on a 
CIPA bus data transfer. Thus both modules are warned of a 
transfer error in either direction. 

Parity checking for both directions of data flow is discussed 
below. 

5.7.4.1 DP to CCI Parity Check 
The DP to CCI parity check is performed on data transferred from 
the IB bus, through the XBOR register, over the CIPA bus, and 
through the CCI input latch. The source of the data on the IB bus 
makes no difference. Parity will have already been checked on the 
data from its source to the IB bus. 

Data on the IB bus is applied to the parity generation and 
checking logic (via the latch and the IB IN bus) where high word 
parity and low word parity bits (HI WD PARITY, LO WD PARITY) are 
generated. This process is discussed in Paragraph 5.7.1. 

The high word and low word parity bits are clocked into high and 
low parity flip-flops by CLK XBOR PAR. The flip-flop outputs are 
gated out by REG SEL 0 to become XBOR PAR and then CIPA PARITY on 
the CIPA bus. REG SEL 0 is initially false to gate out the high 
word parity bit. It then asserts to gate out the low word parity 
bit. 

5-32 



The IB bus data (BUS IB <31:00» is clocked into the XBOR register 
by CLK XBOR PAR, and then gated out onto the CIPA bus by REG SEL 
O. The initially false state of REG SEL 0 gates the high word 
onto the CIPA bus. When REG SEL 0 asserts, the low word is gated 
out to the CIPA bus. 

Thus, the data high word and its associated high word parity bit 
input together into the CCI, followed by the data low word and its 
associated low word parity bit. The data words are passed through 
an input latch and applied to a parity generator where it is 
combined with its associated parity bit from the CIPA bus. An 
error free data transfer results in odd parity being generated. 
If a data error occurred, the generator produces even parity 
resulting in the assertion of E59-5 to a CIPA ERROR flip-flop. 
The CIPA ERROR flip-flop is clocked by WRT PARITY ENA which 
asserts for every DP to CCI data transfer. Thus the true state of 
E59-5 causes the assertion of CIPA ERROR. CIPA ERROR returns to 
the DP over the CIPA ERROR line of the CIPA bus where it sets a 
CIPA ERROR flip-flop in the DP. 

CIPA ERROR on the CIPA bus is also looped back into the CCI where 
it asserts SYNC CEo SYNC CE sets a CBPE flip-flop which asserts 
the CBPE bit in the CNFGR register. 

5.7.4.2 CCI to DP Parity Check (IPE) 
The CCI to DP parity check is performed on data transferred 
through the CCI output drivers, over the CIPA bus, through the 
XBIR register to the IB bus, and then through the flow-thru latch 
to the IB IN bus. 

Data on the CCI RCV DATA bus in the CCI is in word format (CCI RCV 
DATA <15:00». The data is transferred through the CCI output 
drivers, over the CIPA bus (CIPA DATA <15:00», and applied to the 
XBIR register as CIPA D IN <15:00». 

The data on the CCI RCV DATA bus is also epplied to a parity 
generator where odd parity is generated. The generated parity 
bits (EVEN PARITY*) are transferred to the DP over the CIPA bus 
(CIPA PARITY) and applied to high and low parity flip-flops in the 
DP. 

* Odd parity is used. The mnemonic relates to the output pin of 
the generator chip. 

In a data transfer, the first word applied to the XBIR register is 
a high word. Its associated parity bit is applied to the high word 
parity flip-flop. CLK XBIR HI loads the high word into the high 
portion of the XBIR register. CLK XBIR HI also loads the high 
word parity bit into the high word parity flip-flop asserting XBIR 
HI PARITY. 

5-33 



The next data transfer over the CIPA bus is the low word and its 
associated parity bit. CLK XBIR LOW asserts to clock the low word 
into the low portion of the XBIR register. CLK XBIR LOW also 
clocks the low word parity bit into the low word parity flip-flop 
asserting XBIR LO PARITY. 

The data longword in the XBIR register is gated out to the IB bus 
by EN XBIR IN. From the IB bus, the longword is transferred 
through the flow-thru latch to the IB IN bus and then to the 
parity generation and checking logic. In the parity generation 
and checking logic, high word and low word parity bits are 
generated (HI WO PARITY, LO WO PARITY) and compared (XORed) with 
the corresponding parity bits from the XBIR parity flip-flops. If 
the corresponding bits do not match, an error has occurred during 
the data transfer. In this case, IPE (input parity error) will 
assert when the CCI/OP Interface Control Logic checks XBIR parity 
(by asserting CHK XBIR PAR). 

IPE is coupled back to the CIPA bus where it asserts CIPA ERROR. 
CIPA ERROR loops back into the OP where it asserts CIPA ERROR to 
the PE OR gate and the PMCSR register. IPE is also applied to the 
PE OR gate, however it is not applied to the PMCSR register. 

CIPA ERROR (on the CIPA bus) also sets the CBPE error bit in the 
CCI configuration register as discussed in Paragraph 5.7.4.1. 

5.7.5 Packet Buffer Parity (PB PAR) 
PB PAR are parity bits generated on data bytes output from the PB 
OUT register to the PORT DATA bus. PB PAR is sent to the PB along 
with the its associated data byte. 

Data longwords on the IB IN bus are input to the parity generation 
and checking logic where byte parity bits are generated (four for 
each longword). The four parity bits (BYTE <3:0> PAR) are applied 
to a PB parity mux. The mux select code (PMUX <1:0» selects the 
output parity bit which is placed on the PB PAR line to the PB. 

PMUX <1:0> is the code that selects which byte of the longword is 
to be output from the PB OUT register onto the PORT DATA bus. 
Hence the parity bit on the PB PAR line is for the data byte on 
the PORT DATA bus. 

5-34 



5.7.6 Local Store Parity Error (LSPE) 
LSPE indicates a parity error on data written into LS or the VCDT 
from the IB IN bus, or read out of LS or the VCDT onto the IB bus. 

A data longword being written into LS or the vcur* from the IB IN 
bus, is also input into the parity generation and checking logic 
where high word and low word parity bits are generated. The high 
word and low word parity bits (HI WD PARITY, LO WD PARITY) are 
respectively written into a high word parity RAM and a low word 
parity RAM. The two RAMs are addressed by LSA <07:00> from the 
LS/VCDT address selection logic thereby writing the parity bits at 
the same address as the data being written into LS or the VCDT. 
EN VCDT is applied to the parity RAMs as the most significant 
address bit. If the VCDT is being written, EN VCDT is true 
thereby writing the VCDT parity bits in a location within the RAMs 
separate from the LS parity bits. The RAM write strobe (WR PAR) 
is obtained from the write strobe logic in the LS/VCDT address 
selection logic (Figure 5-6). 

* The VCDT is only 16 bits wide. It receives inputs from the low 
word half of the IB IN bus and outputs to the low word half of 
the IB bus. When writing the VCDT, the high word on the IB IN 
bus is all zeros. When reading out the VCDT, zeros are placed 
on the high word of the IB bus. Thus the high word parity 
function operates normally with parity being generated and 
checked on an all zero 16-bit word. 

When the LS or the VCDT is read, the data is output onto the IB 
bus. The flow-thru latch couples the data from the IB bus to the 
IB IN bus where it inputs into the parity generation and checking 
logic. The logic generates high word and low word parity bits on 
the input data. 

The LS/VCDT address (LSA <7:0» associated with the read 
operation, addresses the high word parity RAM and the low word 
parity RAM thereby accessing the parity bits stored when the 
LS/VCDT data (now being read) was written. Write strobe WR PAR is 
false thereby enabling parity RAM outputs LS/VCDT HI PAR and 
LS/VCDT LO PAR. 

The high word and low word parity bits (HI WD PARITY, LO WD 
PARITY) generated from the read data, are compared respectively 
with LS/VCDT HI PAR and LS/VCDT LO PAR from the parity RAMs. If 
the compared bits do not match, a data error occurred during the 
writing or reading of the LS/VCDT RAMs. In this case LSPE will 
assert when the DP Control Logic checks the LS/VCDT parity (by 
asserting EN LS/VCDT PAR). 

LSPE is applied to the PE OR gate and the PMCSR register. 

5-35 



5.7.7 Parity Error (PE) 
PE is an OR function of eight port parity error bits. The bits 
comprise the five parity error bits discussed in this section 
(RBPE, PBIR PE, CIPA ERROR, IPE, LSPE), two from the PB, and one 
from the link module. XBUF PE from the PB transmit channel and 
CSPE from the control store RAMs are received from the PB module. 
XMIT STATUS 7 (TDATA PARITY ERROR) is received from the link 
transmit channel. 

PE and seven of the eight parity error signals that assert PE are 
applied to the PMCSR register (see Figure 5-3 and Table 5-4). The 
eighth parity error signal (IPE) is not part of the PMCSR register 
as an IPE parity error sets the CIPA ERROR bit (Paragraph 
5.7.4.2). 

PE is also applied to the error/interrupt logic where it initiates 
an interrupt to the CPU. 

5.8 UNSOLICITED CMI REQUESTS 
An unsolicited CMI request is a read or a write of a port register 
that was initiated by the host CPU and not by the port microcode. 
The register may be located in the CCI or the DP. The 
configuration register (CNFGR) is the only CCI register accessed 
by an unsolicited request. All other registers accessed by 
unsolicited requests are located in the DP. 

The DP is in the suspend mode of operation while the unsolicited 
request is being executed (see Paragraph 5.11.2.4). In the 
suspend mode of operation, the microsequencer clock is stopped and 
the microcode branch flags and status information are saved. Thus 
the port can resume microcode operation after the unsolicited 
operation is completed. 

A brief overview of unsolicited CMI operations is shown in Figure 
5-11. The host CPU issues a request to the DP via the CCI. The 
host then loads the address of the target register into the 
address offset register in the CCI. If a write operation is being 
requested, the write data is loaded into the Receive Write Data 
Register. 

When the DP receives 
microcode operation. The 
address offset register 
register in the DP. 

the unsolicited request, it suspends 
DP then reads the target address from the 
in the CCI and loads it into the XBUS LSA 

If a write function was requested, the DP reads the XBUS LSA 
register, decodes the output to select the target register, and 
enables the selected register for a write operation. The DP then 
reads the write data from the Receive write Data Register in the 
CCI and loads the data into the selected register. Control of the 
port is then returned to the port microcode which resumes 
operation at the address frozen during the suspend mode. 

5-36 



U1 
I 

w 
-....J 

Wr I te operation I 

DP r •••• Write d.t. 
fro •• ecelve Write 
D.ta •• glater. 

• 

.,' 

OP loads write data ~nto 
selected re;lster. 

l start -. 
Host CPU sends unsolicited request to DP. 

Host plac •• addr ••• In Off •• t r.9i.t.r. 

If reque.tlft9 e write operetton, write data 
1. loaded Into aecelve Write p.t •• egi.ter. 

o~ suspend •• lcrocode. 

OP reads address fro~ offset re9lster 
and loads it Into XBUS LSA re91ster 

~ 

NO Rf'aA 

1 
Read XBUS LSA register 
.nd.deter~lne re91ster 
to &e written. 

t 
(bol\e 

1SS 

~ 
Read XBUS LSA re9lster 
and enable read data 
fro. selected re91ster 
to IB bUS • 

~ 
r--------------~ Read operation 

. i , 

~ 

OP transfers read data frOM 
18 bus to Return Read Pata 
RegUter In CCI. 

(eci tran~t~rs req~est.dJ 
data to host CPU. 

Figure 5-11 Unsolicited eMl Operations -- Sl_pllfled Flow Dlaqra. 



If a read function was requested, the DP reads the XBUS LSA 
register, decodes the output to select the target register, and 
gates the data from the selected register to the IB bus. The DP 
then transfers the read data from the IB bus to the CCI and loads 
the data into the Return Read Data Register. The host CPU takes 
the read data from the Return Read Data Register via the CMI. 
Control of the port is then returned to the port microcode which 
resumes operation at the address frozen during the suspend mode. 

5.8.1 Starting An Unsolicited Sequence (Figure 5-12) 
An unsolicited CMI operation is requested by the host CPU via the 
CMI bus and the CCI. CIPA REQUEST SYNC and CIPA READ SYNC are 
asserted to the CCI/DP Interface Control Logic from the CCI. CIPA 
REQUEST SYNC initiates the unsolicited sequence. CIPA READ SYNC 
specifies the read operation necessary to read the CCI offset 
register to determine which register is to be accessed. 

The CCI/DP Interface Control Logic asserts GRANT UNSOL causing 
CIPA GRANT to assert to the CCI. CIPA GRANT indicates to the CCI 
that the unsolicited request is being serviced. 

The CCI/DP Interface Control Logic also asserts SUSPEND SEQ to 
stop the port microcode from running and place the port into the 
suspend mode of operation. SUSPEND SEQ also forces the LSA mux to 
select XBUS LSA <07:00> for the LS/VCDT address (paragraph 5.4.1). 

In addition, the Control Logic asserts the REG SEL <3:0> code to 
the CCI specifying the address offset register as the register to 
be read. 

In the CCI, the REG SEL <3:0> code is decoded to assert RD ADDR 
OFFSET. RD ADDR OFFSET enables the data out of the address offset 
register. If the register to be accessed is in the DP, the 
contents of the offset register is returned to the DP over the 
CIPA DATA lines on the CIPA bus. 

Twelve bits (CIPA D IN <11:00» of the l6-bit data word received 
from the CCI specifies the address of the register to be accessed 
for the unsolicited operation. The address is clocked into the 
XBUS LSA register (see Figure 5-13) by LD XBUS LSA from the CCI/DP 
Interface Control Logic. 

In passing from the CCI to the XBUS LSA register in the DP, the 
offset address does not route through the XBIR register. Hence 
the offset address is not checked for parity. 

5-38 



"elU GRANT 

eel notified that 
DP il lervicinll 
the unlolicited 
eMI request. 

ieIPA REQUEST SYNC 

Unsolicited eMI requelt from eel. 

teIPA READ SYNC 

Specifiel a read operation. 

+ REG SEL <3:0> 

Selectl offset 
reQlIter in eel. 

1'eIPA REG SEL <3:0~ 

ReQilter lelection 
to eel. 

+ SUSPEND SEQ 

Microcode stops runninll. 

LSA mux lelectl XBUS LSA 
<07:00> for LS/veDT 
address. 

1----- - - - - - - --~ ... -, 
I 
I 
I 
I 
I 
I 
I 
I , 
-

t RD ADDR OFFSET 

Data enabled from 

+CIPA DATA (15:00> 

cc.l: 
addrels offset register. 

o 

Access eel eNFGk reQister 

---~--~ 

Address of rellilter to be accessed. 

+ LD XBUS LSA 

Load XBUS LSA regilter with address of re;ister to be accelsed. 

NO 

I 
I 
I 

I 
I 
I 
I 
I -

Figure 5-12 Starting an Unsolicited Operation 

5-39 



_..JUZ.~~::...u...I""'-'=~)...~il.ILS~c..LJ..U.u.J!.l:-_ ... ( FaG. r- ~) 

'--"I~I:........I.l&&.J.j--H- l-'--A.IiiI.X.ol-..gJC~IOoI£...I..a..M.I~ .. } ( F. G. ~ -If~) 

........ 11&11 ........ ....,;a...&.I __ ~ (rl •. 5'- ''') 

~U2.II.&-I..aI-& __ ,-" C F'" .. - 2) 

(fiG, r-l)--.....-..:.;.&.I~II 1--~......QJIUILIiIL....II.~~..,£.:..I~ .... (FIG. I'- (,) 
X8uS 

LSA 
Jt!cr 

XBUS UA (or:oo)J 
&.sA 000000 ')C lClC)(1 
LSA 'OOUO)()(lC)( 

~1lI..I..I"-:f).JUU:.L.Jt4UL..U!I.}(FIC'r. 4-Z.) 
~~~~~---~LJ 

NOTE:
THE LOGIC IN THIS FIGURE IS CONTAINED
ON SHEET L OF THE ENGINEERING
DRAWINGS EXCEPT WHERE NOTED IN
PARENTHESES.

Figure 5-13 Unsolicited eMI Request Logic

5-40

The CCI/DP Interface Control Logic now checks the CIPA READ SYNC
line from the CCI to determine if the unsolicited request is a
read or a write. If the request is for a write of a DP location
(C I PA READ SYNC fal s e), continue wi th Pa rag r aph 5.8. 2 and Fig ur e
5-14. If the request is for a read of a DP location (CIPA READ
SYNC true), continue with Paragraph 5.8.3 and Figure 5-15. Figure
5-13 illustrates the logic associated with the write and read
sequences and should be referenced throughout both discussions.

5.8.2 Unsolicited Write Sequence (Figures 5-13 and 5-14)
An unsol i cited wr i te sequence invo I ves obta ining the wr i te da ta
from the CCI, selecting the register to be written, and generating
the clock to load the write data into the selected register.

5.8.2.1 Obtaining the Write Data -- The CCI/DP Interface Control
Log ic asserts the REG SEL <3: 0> code to the CC I to access the
Receive Write Data Register. The code is coupled to the CCI over
the CIPA bus (CIPA REG SEL <3:0». In the CCI the REG SEL input
is decoded to assert RD RCV WD REG HI. RD RCV WD REG HI enables
the high word from the Receive Write Data Register onto the CCI
RCV DATA <15:00> bus and then onto the CIPA bus (CIPA DATA
<15:00». CLK XBIR HI is asserted by the CCI/DP Interface Control
Logic to load the data high word into the high word portion of the
XBIR reg ister. The high word portion is selected by the false
state of REG SEL 0 (see Paragraph 5.3.4).

The CCI/DP Interface Control Logic then asserts REG SEL 0. The
assertion of REG SEL 0 alters the REG SEL code so as to select the
low word from the Receive Write Data Register. The REG SEL <3:0>
code is again dispatched to the CCI where it asserts RD RCV WD REG
LO to retrieve the write data low word. The write data low word
is coupl ed from the Re ce ive Wr i te Da ta Reg i ste r, over the CIPA
bus, and clocked into the low word portion of the XBIR register by
C LK XB IR LOW.

The CCI/DP Interface Control Logic then asserts EN UNSOL WRITE to
apply the write data to the selected register and to generate the
register clock pulse.

EN UNSOL WRITE asserts EN XBIR IN (Figure 5-16) to gate the write
data from the XBIR register to the IB bus. The write data is
co upl ed from the IB bus, thro ug h the fl ow-thru la tch to the IB IN
bus where it is available to the selected register.

The next DP CLK T3 A after the assertion of EN UNSOL WRITE, causes
UNSOL WRITE to go true (Figur e 5-17). UNSOL WRITE enables the
register write clock if the selected register is the PMTCR, PSRCR,
PICR, REG WRT, or the LS/VCDT area. This is discussed below in the
register selection discussion.

The next CLK T2 pul se after the assertion of UNSOL WRITE, causes
CLK UNSOL WRITE to go true. CLK UNSOL WRITE enables the register
write clock if the selected register is the PMCSR or the MADR.
This is discussed below in the register selection discussion.

5-41

Figure 5-14

tREG SEL <3:0>

select ReceIve Write
Data Regilter in CCl.

tCIPA REG SEL <3:0>

Register selection to CCI.

,-----
I

--I
I I tAD RCV WD REG HL (LO)

HI0~ (low) word enaole1 from I
ReceIve ~rIte Data Register, I I

I
I
I
I
I ._---

tCIPA DATA <15:UO>

Data to ce written into
selected register.

t CLK XSlk HI (LOW)

I
I
I

CCz. I ---

Data ~ign (low) word
clocked into XBIR register.

~REG SEL 0

Selects data
low word.

Unsolicited eMI Write Operation Flow Diagram
(Sheet 1 of 2)

5-42

DP CLK T3 A

ClOCKS PMTCR, PSRCR, PICR, REG
WRT, or LS/VCDT wnen selected.

CLK T2

f eLK UMSOL '-'IiI TE

CloCkS PMCSR or MADR
when selected.

+ EN XBIR IN

EnaDles data long word
out of XBIR register.

tBUS 18 <31:00>

Data longword on 18 buS.

tIB IN <31:00>

Data long word on IB
IN bUS available to
selected register.

ell<; UNSOl WRITE

I It CU: lIMCS R J

ES

NO

,
UNSClL WRITE

+XBUS LSA <07:00>

To LS/VCDT via
LSA mux.

t XtWS EN LS/VCDT tWR RAM

.. WR PAR
txSUS LSA <03:00>,

LSA OOOOOOXXXX,
LSA 100100XXXX

Selects register
to be written.

ell< UNSOl

1+ tL~ MA1>R I CLIC r¢ C\..~ T~

I t-E-N,-C-s-l'-E>A-r-,..-,N-<I ~

UNSOL WRITE

~

NO

LS LO

tEN LS HI

ES

UNSOL. WRITE

t
I' PSRCR DP cUr:: T3 A

I [t REG- WRT

Figure 5-14 Unsolicited CMI Write Operation Flow Diagram
(Sheet 2 of 2)

5-43

5.8.2.2 Register Selection -- The XBUS LSA reg ister contains the
address of the selected register to be written (Paragraph 5.8.1).

If XBUS LSi>, 09 from the register is true, the LS/'vCOT is selected
as the area to be written.

In this case, XBUS LSA <137:e0> from the register is applied to the
L S/VCD T add ress se lect i on m ux vlhere it is se lected as the L S/'vCO T
address (Paragraph 5.4.1).

When UNSOL WRITE asserts, XBUS WR LS/VCOT asserts to the LS/VCOT
wr i te strobe log i c where the WR R;\M and the WR PAR wr i te strobes
are generated (Paragraph 5.4.2).

XBUS WR LS/VCOT also asserts XBUS EN LS/VCOT to the OP Control
Log i c where XBUS LSA 08 from the XBUS LSA reg ister is examined.
The true state of XBUS LSA 08 causes EN VCDT to assert thereby
specifying the VCOT as the selected area to be written. If XBUS
LSA 08 is false, the LS is the selected area to be written. In
this case EN LS HI and EN LS La assert to enable the LS low and LS
high sections respectively.

Note that if the LS access is to the PSR*, only EN LS La asserts.
The upper portion of the PSR is all zeros except bit 31 (MTE)
which is read only (see Paragraph 5.5.3).

* Port Status Register; a software register located in LS.

If XBUS LSA 0'9 is false, the LS/VCDT is not selected as the area
to be written. The selection is made by a 128 x 8 PROM which
outputs the enabling signal for the selected area. The PROM is
addressed by XBUS LSA <133:130>, LSA 000000XXXX, and LSA l1313l130XXXX
f rom the XB US LSA reg is ter • PROM outputs are av ai lable at
terminals 0M through 711 inclusive.

The state of write bit IB IN 013 determines which of the PROM
outputs are to be used. IF IB IN 00 is false, PROM outputs 13M,
1M, 2M, or 3M will designate the area to be written. If IB IN 130
is true, PR0I'1 output 4M, 5M, 6M, or 7M will designate the area.

The case of IB IN 0'0 false is considered first.

When CLK UNSOL vJRITE asserts ,Paragraph 5.8.2.1), it samples PROM
outputs 0M and 2M. If PROM output 01'1 (PMCSR) is true, the PMCSR
is selected for the write operation and eLK PMCSR asserts to load
data into the PMCSR from the IB IN bus (Figure 5-3).

If PROM output 2M (MADR) is true, the MAOR is selected for the
write operation and CLK MAOR asserts to the CS where write data is
loaded into the MAOR from the IB IN bus.

5-44

If PROM output 01 (MDATR) is true, the MDATR register is selected
for the write operation. In this case, EN CS DATA IN and CS WE
are asserted by CLK TO and CLK Tl respectively. EN CS DATA IN
gates the write data into the CS from the IB IN bus while CS WE
strobes the write data into the CS.

PROM output 3M is asserted when the PSR is selected. The PSR is
located in the LS area, therefore the LS/VCDT has actually been
selected as the destination for the write data (XBUS LSA 09 true).
The assertion of PSR from the PROM supplements the LS/VCDT
selection by specifying· the PSR. with PSR true, only the low
section of the LS is enabled as discussed earlier in this
paragraph.

If IB IN 00 is true, PROM outputs 4M, 5M, 6M, and 7M are sampled
by UNSOL WRITE. When UNSOL WRITE asserts it clocks the asserted
PROM output to perform the function described below.

If output 4M is true, PICR WRT (port initialize control register)
asserts thereby negating UNINIT and taking the port out of the
uninitialized state (Paragraph 5.12.2.2).

If output 5M is true, PMTCR CLR (port maintenance timer control
register) is asserted to reset the boot timer logic thereby
extending the boot timeout period (Paragraph 5.12.2.3).

If output 6M is true, PSRCR (port status release control register)
is asserted to the interrupt logic where it resets the maintenance
interrupt flag (MIF) in the PMCSR (Paragraph 5.12.1).

If output 7M is true, REG WRT asserts (after the next DP CLK T3 A
pulse) as a branch condition to the CS branching logic. REG WRT
is a flag to the microcode that a register has been written. The
microcode can then check. the registers for new data.

5.8.3 Unso1icitedRead Sequence (Figures 5-13 and 5-15)
An unsolicited read sequence involves selecting the register to be
read, reading the register out to the IB bus, and transferring the
read data from the IB bus to the CCI.

The CCI/DP Interface Control Logic asserts EN UNSOL READ which
enables the read data out of the selected register if the selected
register is the PMCSR, the MDATR, or the MADR. This is discussed
below in the register selection discussion.

The assertion of EN UNSOL READ causes UNSOL READ to assert (Figure
5-17). UNSOL READ enables the read data out of the selected
register if the selected register is in the LS/VC·DT area. This is
discussed below in the register selection discussion.

5-45

tEN UN SOL READ

Enables data from
P~CSR. MOATR. or
MADR wnen selected.

BUS IB <31:00>

Read data on IB bUS.

t CLK)lBOR PAR

.,. UNSOL READ

P~CSR/LITERAL ~ux
selecU PMCSR.

Enables data from
LS/VCOT when
selected.

BuS 16 <31:00> longword
loaded 1nto XBOR reg1ster.

tREG SEL 0

t REG SEL <3:0>

Selects a hiGh (low) word
write of Return Read Data
RI9hter In eCI.

t CIPA REG SEL <3:0>

Select data
low word.

I

Register select10n to CCI.

t~RT RTN RD HI (LO)

HIGh (low) word loaded
into Return Read Data
Regllter from LTCHD
CIPA D <15190> bUI.

YES

Tranlfer data 10nqword
to CMI.

Done)

tCIPA 0 OUT <15:00>

High (low) word gated
out of XBOR req1ster
to CIPA bus.

tC1PA UATA <15:00>

Return read data to eCI.
___ 4~ __

~LTCHO CIFA D <1~:OO>

Return read data to
Return Read Data
Reg1lter.

eel:

Figure 5-15

ES

t XBUS LSA <~3:_I>J
LSA e_f._f)('J~XJ
LSA I ~ ~ ,,~ "lC X)(

S.I~ets ~t!t-ist~."to
bt! ~t.cI.

LSA fl.
l'I.i.1-c l n et
... _. ul •• t. cs
~i&~o~.,~~.

EN UNSOL REAP

t Eli MD LO
+ EN MD HI

t 15" ~~
Mii~tn."cc
IIIU. nl •• t.
MA/)R d.ta.

~aJ clati n..uf.~~J t. Ii ~II'.

Unsolicited eM! Read Operation Flow Diagram

5-46

5.8.3.1 Register Selection -- The XBUS LSA register contains the
address of the selected register to be read (Paragraph 5.8.1).

If XBUS LSA 09 from the register is true, the LS/VCDT is selected
as the area to be read.

In this case, XBUS LSA <07:00> from the register is applied to the
LS/VCDT address selection mux where it is selected as the LS/VCDT
address (Paragraph 5.4.1).

When UNSOL READ asserts, XBUS RD LS/VCDT goes true causing EN
LS/VCDT OUT to assert. EN LS/VCDT OUT gates the output from the
VCDT and from both sections of the LS onto the IB bus when the
VCDT or the LS are enabled.

The assertion of XBUS RD LS/VCDT also causes XBUS EN LS/VCDT to
assert to the DP Control Logic where it enables either the VCDT or
the LS depending on the state of XBUS LSA 08 from the XBUS LSA
register.

If XBUS LSA 08 is true, EN VCDT asserts to enable the VCDT. The
VCDT RAM is only 16-bits wide and outputs onto the low word
portion of the IB bus. Hence, EN MD HI asserts (along with EN
VCDT) to enable all zeros onto the high word portion of the IB bus
via the MD bus (Paragraph 5.5).

If XBUS LSA 08 is false, EN LS HI and EN LS La assert to enable
both the high and low sections of LS onto the IB bus. Note that
if the LS access is to the PSR, EN MD HI asserts in place of EN LS
HI. As discussed in Paragraph 5.8.2.2, only the lower 16 bits of
the PSR are written into LS. When the PSR is read, the 16 bits
are read out of the low section of LS onto the low word portion of
the IB bus. The upper 16 bits (15 zeros and the MTE bit) are
supplied to the IB bus from the MD bus (Paragraph 5.5.3).

If XBUS LSA 09 is false, the LS/VCDT is not selected as the area
to be read. Instead, the selection is made by a 128 x 8 PROM whose
output enables the read data from the selected register. The PROM
is addressed by XBUS LSA <03: 00 >, LSA 000000XXXX, and LSA
100100XXXX f rom the XB US LSA reg ister. PROM outputs used in
accessing read locations are at PROM terminals 0M, 1M, 2M, and 3M.

If output OM is true, PMCSR asserts to the DP Control Logic. The
assertion of EN UNSOL READ causes PMCSR to assert EN MD HI and EN
MD La to gate the PMCSR data to the IB bus.

If output 1M is true, MDATR asserts indicating a read of the
maintenance data register. XBUS LSA 00 from the XBUS LSA register
is negated and applied to the maintenance mux in the CS causing it
to select the microword from the CS RAMs.

5-47

When EN UNSOL READ asserts, the true state of MDATR causes EN
MAINT to assert and EN MISC to negate. EN MAINT gates the output
from the maintenance mux onto the MD bus while the negation of EN
MISC isolates the output of the PMCSR/LITERAL mux from the MD bus
(Figure 5-3). EN MAINT also causes the DP Control Logic to assert
EN MD HI and EN MD LO to gate the MDATR data (the microword) from
the MD bus to the IB bus.

If output 2M is true, MADR asserts indicating a read of the
maintenance address register. XBUS LSA 00 from the XBUS LSA
register is asserted causing the maintenance mux in the CS to
select the data from the MADR register.

When EN UNSOL READ asserts, the true state of MADR causes EN MAINT
to assert and EN MISC to negate. EN MAINT gates the output from
the maintenance mux onto the MD bus while the negation of EN MISC
isolates the output of the PMCSR/LITERAL mux from the MD bus. EN
MAINT also causes the DP Control Logic to assert EN MD HI and EN
MD LO to gate the MADR data from the MD bus to the IB bus.

If output 3M is true, PSR asserts indicating a read of the PSR
register in the LS. In this case the LS/VCDT has actually been
selected as the area to be read (XBUS LSA 09 true). The assertion
of PSR from the PROM, supplements the LS/VCDT selection by
specifying the PSR. A read of the PSR was described earlier in
this paragraph when the LS/VCDT area was discussed.

5.8.3.2 Transferring the Read Data to the CCI -- The read data
taken from the selected register is now on the IB bus as BUS IB
<31:00». The CCI/DP Interface Control Logic will initiate a
transfer of the read data from the IB bus to the Return Read Data
Register in the CCI (and then to the CMI).

The CCI/DP Interface Control Logic asserts CLK XBOR PAR to load
the data longword from the IB bus into the XBOR register. The
negated state of REG SEL 0 gates the high word from the XBOR
register out to the CIPA BUS as CIPA DATA <15:00>. In the CCI the
data high word is applied to the Return Read Data Register as
LTCHD CIPA D <15:00>.

The
code
The
bus

CCI/DP Interface Control Logic also asserts the REG SEL <3:0>
for a high word write of the CCI Return Read Data Register.

register select code is transferred to the CCI over the CIPA
as CIPA REG SEL <3:0>.

The register select code is input to the CCI and applied to a
write decoder. In response to the input REG SEL code, the write
decoder outputs WRT RTN RD HI to load the read data (LTCHD CIPA D
<15:00» into the high word section of the Return Read Data
Register.

5-48

The CCI/DP Interface Control Logic then asserts REG SEL 0 which
gates the low word from the XBOR register onto the CIPA bus. The
low word is transferred to the CCI over the CIPA bus where it is
applied to the Return Read Data Register as LTCHD CIPA D <15:00>.

Asserting REG SEL 0 altered the REG SEL code to specify a low word
write of the Return Read Data Register. The REG SEL code is
transferred to the CCI where it is applied to the write decoder.
The write decoder responds to the altered REG SEL code by
outputing WRT RTN RD LO to the Return Read Data Register where it
loads the read data into the low word section of the register.

With the requested read data in the Return Read Data Register, the
CCI asserts RD RTN RD REG to initiate a data transfer of the
requested data to the CMI.

5.9 DP CONTROL LOGIC (Figure 5-16)
The DP Control Logic generates the commands and enabling signals
controlling the data flow within the DP. The control logic
receives its commands from the CS microword except during
unsolicited eMI operations when the microcode is suspended and
control shifts to the host cpu. The commands received from the
microword specify the source and destination for the IB bus.

5.9.1 IB Bus Destination
The IB DST <03:00> field from the
destination for the data on the IB bus.
DST code and the destinations it selects.

microword selects the
Table 5-8 lists the IB

A destination decoder decodes the IB DST field and outputs the
selected destination. The decoder is enabled when IB DST 03 = 0
(first eight codes in Table 5-8). The remaining three bits (IB
DST <02:00» are decoded to select the destinations shown in the
table. Note that if the port is in the uninitialized state
(UNINIT true), or an unsolicited CMI operation is in progress
(SUSPEND DEL true), the decoder is disabled and the destination of
the IB bus is selected by the host via the CCI module and the XBUS
LSA register (Paragraph 5.8).

Decoder outputs LD INDEX or LD XLATE are asserted when the LS or
the VCDT is to be the IB bus destination. The selection process
takes two cycles of microcode. During the first microcycle (when
IB DST 03 = 0), LD INDEX (or LD XLATE) loads the index register
(or the translate register) with the LS or VCDT address (Figure
5-6). The selection between the LS or the VCDT is made during the
second microcycle when IB DST 03 = 1.

5-49

eN UNSOL WUT~E EN XBIR IN
_~ ____ -:l"~ (Fiq. 5-1, 5-17, 5-21)

(';\ El-15

~---~

(FIG. 5-17)

{
IB DST<02:00>

(FIG. 4-2)" I B DST 03

(FIG. 5-n) UNINIT

(FIG. 5-17) SUSPEND DEL

SEL

(FIG. 4-21
____ I_B~S_R_C_<_02_:_00> ____ ~SEL

(F IG. 5-25) UNINIT

SUSPEND
(FIG. 5-17) SEQ

ENABLE

PMCSR (FIG. 5-11) ______________ ~--~
)----r+-LJ

(FIG. 5-17) EN UNSOL READ

(fIG. 5-13)~-B-U-S--R-D-:-:v-R-C-D-T----------------~--~
XBUS EN LSIVCDT

(FIG. 5-21) OST INHIBIT

(FI G • 5 _ 6) { ___ I...;NS;;..~:;;..X;;..o ~-----+----""T"---~
SID 1

XBUS LSA~

~
XBUSLSA~

(FIG. 5-13) X...;B~U~S...;E;;..N...;L~S;;../V...;C~D~T ________ ~ __ ~------~
PSR

(fIG. 5-21) OST INHIBIT

{

SID 0

(fIG. 5-6) _____ S_/D __ 1 ______ ~~o--------,

INDEX 08

MLDPB

CST XBUS

5-8)
Eft Ls/vcor

(FIG. '$-3)

>-....L.E_N_V_Cr-D_T _________ } (FIG. 5-10

NOTE:
THE LOGIC IN THIS FIGURE IS CONTAINED
ON SHEET S OF THE ENGINEERING
DRAWINGS.

Figure 5-16 DP Control Logic

5-50

Table 5-8 IB DST Code

IB DST Destination SID LS/VCDT
Address Source

3 2 1 " 1 "
0 0 0 0 No operation -------
0 " " 1 LO INDEX -------
" 0 1 0 LD XLATE -------
" " 1 1 DST XBUS (XMIT f i1 e) -------
0 1 0 0 DST XBUS (byte mask -------

reg i ste r)

" 1 " 1 DST XBUS (command/ -------
address reg.)

0 1 1 " LD PB OUT -------
0 1 1 1 MLD PB -------
1 0 0 " Not used -------
1 " 0 1 " " -------
1 0 1 0 " .. -------
1 0 1 1 " " -------
1 1 0 " LS 0 0 LITERAL
1 1 " 1 LS or VCDT* 0 1 Index Reg ister
1 1 1 0 LS 1 " Translate Reg ister
1 1 1 1 VCDT 1 1 LITERAL

*De pend ing on INDEX 08; INDEX 08 = 0, LS selected
INDEX 08 = 1, VCDT selected

The next three codes from the destination decoder assert DST XBUS.
This output is asserted when the CCI module is selected as the IB
bus destination. The three possible destinations wi thin the CCI
are the XMIT file, the byte mask register, and the command/address
registers. The DST XBUS output is applied to the CCI/DP Interface
Control Logic along with the DST <1 bits. The CCI/DP Interface
Control Logic responds to the DST <1:0> code by asserting the REG
SEL <3:0> code specifying the selected destination (Paragraph
5.10.1).

Decoder output LD PB OUT is asserted when the PB OUT register is
selected as the IB bus destination. LD PB OUT loads the PB OUT
reg ister (via the IB IN bus) for output onto the PORT DATA bus
(Figure 5-3).

Decoder output MLO PB is a maintenance function. When asserted it
enables the output of the PB OUT register onto the PORT DATA bus
and allows the data to loop back into the OP by enabling the PB IN
reg i ster •

5-51

When IB DST <03:02> = 1:1, the LS/VCDT area is selected as the IB
bus destination. The IB DST code is converted into an SiD
(source/destination) code generated to control the LS/VCDT address
selection in the LS/VCDT address selection logic (Paragraph
5.4.1). The SID code is listed in Table 5-8 along with the
address sources that it selects. The SID code also enables the LS
or VCDT as an IB bus destination as shown in Tabl e 5-8 and
described in Paragraph 5.9.3.

5.9.2 IS Sus Source
The IB SRC <02:00> field from the microword selects the data
source for the IB bus. Table 5-9 lists the IB SRC code and the
sources it selects.

Table 5-9 IS SRC Code

IS SRC IS Source SID LS/VCDT
Address So urce

2 1 0 1 0

0 0 0 LS 0 0 LITERAL
0 0 I LS or VCDT* 0 1 Index Register
0 1 0 LS 1 0 Translate Register
0 1 1 VCDT 1 1 LITERAL
1 0 0 EN PB IN
1 0 I E3-13 (LITERAL)
1 1 0 EN ALU
1 1 1 E3-15 (EN XBIR IN)

* De pend ing on INDEX 08; 0 = LS, 1 = VCDT

A source decoder decodes the IB SRC field and outputs the selected
source. Note that if the port is in the uninitialized state
(UNINIT true), or an unsolicited CMI operation is in progress
(SUSPEND SEQ true), the decoder is disabled and the source for the
IB bus is selected by the host via the CCI module and the XBUS LSA
register (Paragraph 5.8).

The first four codes listed in Table 5-9 assert SRC RD LS/VCDT
thereby selecting the LS or the VCDT as the IB bus source. The IB
SRC code is converted into a SID (source/destination) code
generated to control the LS/VCDT address selection in the LS/VCDT
address selection logic (Paragraph 5.4.1). The SID code is listed
in Tabl e 5-9 along wi th the add ress so urces tha tit sel ects . The
SID code also enables the LS or VCDT as a source for the IB bus as
shown in Table 5-9 and described in Paragraph 5.9.3.

SRC RD LS/VCDT asserts EN LS/VCDT PAR to the DP parity logic to
enable a parity check on the data read out of the LS or the VCDT.

5-52

SRC RD LS/VCDT also asserts EN LS/VCDT OUT to enable the output of
the LS/VCDT RAMs.

The
VCDT
word
word

true state of EN LS/VCDT OUT causes EN MD HI to assert if the
has been selected (EN VCDT true). Thus the all-zeros high
from the MD bus is placed onto the IB bus along with the low

from the VCDT (see Paragraphs 5.4 and 5.8.3.1).

Decoder output EN PB IN is asserted when the PB IN register is
selected as the source for the IB bus. As shown in Figure 5-3, EN
PB IN gates the data from the PB IN register onto the MD bus. The
data is then gated to the IB bus by EN MD HI and EN MD La. Note
in Figure 5-16 that EN PB IN asserts EN MD HI and EN MD La, and
negates EN MISC. The assertion of EN MD HI and EN MD La effects
the data transfer from the MD bus to the IB bus. The negation of
EN MISC isolates the PMCSR/LITERAL mux output from the MD bus
while the PB IN register data is being transferred.

Decoder output E3-I3 is asserted when the microword LITERAL field
is selected as the source for the IB bus. The true state of EN
MISC gates the LITERAL data from the PMCSR/LITERAL mux onto the MD
bus. The E3-13 decoder output asserts EN MD HI and EN MD La to
transfer the LITERAL data (and the all-zero high word) from the MD
bus to the IB bus.

Decoder output EN ALU is asserted when the ALU is selected as the
data source for the IB bus. EN ALU enables the ALU logic.

Decoder output E3-15 is asserted when the XBIR register is
selected as the source for the IB bus. E3-I5 asserts EN XBIR IN
via an OR gate. EN XBIR IN gates the data in the XBIR register
onto the IB bus.

EN XBIR IN is also applied to the CCI/DP Interface Control Logic
where it asserts CHK XBIR PAR. CHK XBIR PAR is applied to the DP
parity logic to enable an IPE parity check on data transferred
from the CCI to the IB bus via the XBIR register. An IPE parity
error results in the assertion of CIPA ERROR in the DP (PMCSR) and
in the assertion of CBPE in the CCI (CNFGR) (Paragraph 5.7.4.2).

5.9.3 Control Signals
This paragraph discusses the gating signals generated by the DP
Control Logic and under what conditions they are asserted.

EN MISC is used in the MD bus logic (Figure 5-3) to gate the
output of the PMCSR/LITERAL mux onto the MD bus. EN MISC is
always asserted except when the MD bus is being used to transfer
data from the PB IN register to the IB bus (EN PB IN true), or to
transfer data from the MDATR or the MADR registers (in the CS) to
the IB bus (EN MAINT true).

5-53

EN MD HI and EN MD LO gate the MD bus high word and the MD bus low
word respectively onto the IB bus. Both signals are asserted by
EN PB IN thus gating the assembled longword from the PB IN
register to the IB bus. Both signals are also asserted by EN
MAINT thus gating the MADR and MDATR data from the CS onto the IB
bus. Both signals are again asserted by the E3-13 (LITERAL)
output of the source decoder thus gating the LITERAL data to the
IB bus (via the PMCSR/LITERAL mux).

When executing an unsolicited CMI read operation (EN UNSOL READ
true), and if the PMCSR is specified (PMCSR true), both EN MD HI
and EN MD LO are again asserted. If the unsolicited read
operation specifies the PSR (PSR true), only EN MD HI asserts
(Paragraph 5.S.3.1).

EN MD HI is also asserted by the ANDing of EN LS/VCDT OUT and EN
VCDT. EN LS/VCDT OUT is asserted by an unsolicited CMI read
request of the LS or the VCDT (XBUS RD LS/VCDT true), or by a port
initiated read request of the LS or the VCDT (SRC RD LS/VCDT
asserted by the source decoder). When the VCDT is the selected
source (EN VCDT true), EN MD HI is asserted to supply the all-zero
high word onto the IB bus.

Control signals EN VCDT, EN LS LO, and EN LS HI enables the VCDT,
the low word section of LS, and the high word section of LS
respectively. Each of the three enabling signals are asserted
from an OR gate. Each OR gate is fed from three AND gates.

During an unsolicited CMI request, DST INHIBIT asserts and
disables two of the three AND gates in each signal area. The third
AND gate is used to enable the signal during the unsolicited
operation. XBUS EN LS/VCDT from the unsolicited CMI request logic
is applied to the three active AND gates along with XBUS LSA OS.
XBUX LSA OS selects between the LS and the VCDT. If XBUS LSA OS
is true, the VCDT is enabled (EN VCDT asserts). If XBUS LSA OS is
false, the high and low section of LS are enabled (EN LS HI and EN
LS LO assert). If the LS access is to the PSR, only EN LS LO
asserts. However, in this case EN MD HI asserts to gate the high
word portion of the PSR from the MD bus to the IB bus.

When the port is under microcode control (DST INHIBIT false),
enabling of the VCDT, the low section of LS , and the high section
of LS is done via the other two AND gates in the three signal
areas. The two-bit SiD code generated in the LS/VCDT address
selection logic is applied to the six AND gates to select the LS
or the VCDT. using the SiD code from Table 5-S or 5-9 and
following the logic of Figure 5-16, it can be seen that the LS or
the VCDT is enabled as shown in the tables. Note that INDEX OS is
used to select between the LS and the VCDT when necessary.

5-54

S.lS CCI/DP INTERFACE CONTROL LOGIC
The CCI/DP Interface Control Logic is shown in Figure 5-17. The
logic consists of a PAL (programmable array logic) and two PROMs.
The logic senses input commands from the CCI and the port
m i c r 0 wo r d, and 0 u t put s the r e qui red s i g n a 1 s toe x e cut e the
commanded operations.

Included in the output is a four-bit register select code (REG SEL
<3:0» which is sent to the CCI where it is decoded to select the
CCI register or file to be accessed. The register select code is
given in Table 5-10. Note that REG SEL 3 of the code specifies
whether the operation is a read or a write (false = read; true =
wri te) • Hence when REG SEL 3 is true, DRI VE CI PA asserts to the
interface logic (Figure 5-2) to enable write data out of the DP to
the CC 1.

Table 5-lS REG SEL Code

REG SEL Decoded Mnemonic REG SEL Decoded Mnemonic
(Read) (Wr i tel

3 2 1 0 3 2 1 "
0 0 0 " RD ADDR OFFSET 1 " " 0 LD CMD/ADDR HI

" " 0 1 " II " 1 0 0 1 LD ADDR LO

" 0 1 (3 No Op 1 0 1 0 No Op

" " 1 1 " " 1 0 1 1 LD BYTE MASK
0 1 " 0 RD RCV REG HI 1 1 0 0 LD XMI'r FILE HI
0 1 0 1 RD RCV REG LO 1 1 0 1 LD XMIT FILE LO

" 1 1 0 RD RCV FILE HI 1 1 1 0 LD RTN RD REG HI
0 1 1 1 RD RCV FILE LO 1 1 1 1 LD RTN RD REG LO

The functioning of the CCI/DP Interface Control Logic is explained
in terms of a port initiated read and write of the CCI (from the
DP), and an unsolicited read and write of the DP. These
operations have already been discussed in detail in other sections
of this chapter. Only the commands issued by the CCI/DP Interface
Control Logic are discussed here.

The PAL contained in the Interface Control Logic (E60) functions
as a sequencer. DP CLK T3 A clocks the PA L causing it to go
t h r 0 ug has e que n ceo f s tat e s ass h 0 wn 0 nth e C I 750 s tat e
drawings.* If a location is addressed in the Interface Control
Logic that does not correspond to a valid state, the logic asserts
ILLEGAL STATE to the port clock logic (Figure 5-21) to stop the DP
c 1 0 c k (D P C LK T 3) •

* The state drawings are part of the CI750 Engineering Drawing
Set.

INIT initializes PAL E60 placing it into the idle state.

5-55

U1
t

U1
0'\

II .. +0 V:? I ,., r< (Flc;., 4-2.)

d .. vw"'ov \,.k'" (F' G. &-2.1)

f;,~l t~1~~9 PO;: I Ii :~ ~~ ~ ::)(~~)
(FIG . .5"-2.5") INI I "I

(FIG. 5"-2.) £.~~ ~E~"...~ST SYNC
III1I ~

(Fler. -,"-25") LN.' I __ ... _ .. , .. I

~FIG.~ 5'- 3
S-I_
S"-2'

A~

(FIG, ..r-a) e'G.) '): II". Y E \sf ra $- 2.
5'-2.1

IY"¥Yk "1\"" ~ (FIG. S-13)

1 151;'" SfL w. 5'-3 ~FIG:~ 5"-1

'W"''''''''' DFnK .. (fIG-. 5"-3" S'-I!)

) l. "P'''' 10 ... ~ (FIe;.. 5"-3.S-I;)

I =?IQ r 1:111 H V&h ~ (Fiq. 4-2: 4-10, 5-16, 5-21)

Note:
letter designations in parentheses
reter to engineering drawings
containing corresponding logiC.

Flqure 5-11 CCI/DP Interface Control Logic

5.10.1 Port Initiated write of CCI
Figure 5-18 illustrates the CCI/DP Interface Control Logic signals
involved in a port initiated write operation.

When the DP has data to be transferred to the CCI, DST XBUS is
asserted by the DP Control Logic. The CCI/DP Interface Control
Logic responds by outputting LOAD XBOR to load the XBOR register
with the data to be transferred.

The DST <1:0> code from the microword specifies where in the CCI
the data is to be written. The destination for the data could be
the command/address registers, the byte mask register, or the XMIT
file. The Interface Control Logic outputs the appropriate REG SEL
code according to the DST <1:0> input.

CIPA eLK EN is output to the CCI to clock the data in from the DP.

If the CCI destination was the byte mask register, the operation
is complete as only one transfer is necessary. If the CCI
destination was the XMIT file or the command/address high
register, another transfer is required to write the low word into
the XMIT file or the low address into the low address register.

If another transfer is required, the DST <1:0> code specifies the
destination to the CCI/DP Interface Control Logic which outputs
the appropriate REG SEL code along with the CIPA CLK EN signal to
clock the data into the CCI.

NOTE
A write operation of the CCI always
takes 800 ns (two 400 ns cycles). When
writing the byte mask register only one
transfer is required, however the
microcode executes a no-op cycle
resulting in the transfer time for the
byte mask register also being 800 ns.

5.10.2 Port Initiated Read Of CCI
Figure 5-19 illustrates the CCI/DP Interface Control Logic signals
involved in a port initiated read operation.

When data is in the CCI Rev file ready to be transferred to the
DP, the DP Control Logic specifies a read of the CCI by asserting
EN XBIR IN. The CCI/DP Interface Control Logic outputs the REG
SEL code for a high word read of the CCI RCV file. The RCV file
is the only CCI location that can be read by the DP in a port
initiated transfer.

The logic then asserts LOAD XBIR HI to load the high word from the
CCI into the high section of the XBIR register.

The logic also outputs the REG SEL code for a low word read of the
Rev file. CIPA CLK EN is output to the CCI to increment the RCV
file read pointer.

5-57

Start

t
t OS! X8US -

OP nas dati to be transferred to,CCl.

~
t LOAD X80R

Load data Into X80R reQlster.

J
t OST (1:0>,-

Specifies re;lster to be written (CMD/ADDR
byte .ask, or h19h word of XMIT file).

~
t REG SEL (3:0>

speCifies register to be written.

t
, CIPA CLl< EN

ClOCKS data Into CCI.

YES
rite

byte maSK
reqlster

NO

ton (1:0> -

speeifiel register to be written
(low addrell regilter or low
word of XMIT file).

J_
t REG SEL (3:0>

SpecHies register to be written.

t
t CIPA CLK EN

Clocles data Into CCI.

.. -
C Done

hi,

* Input to Interface
Control Logic

Figure 5-18 CCI/DP Interface Control Logic
write of ceI

Port Initiated

5-58

(Start

r

It EN XBIR IN .J
r

l Rev fUe has date to be reed.J

r
t REG SEL <lie>

Selects h19h word fro. Cel RCV file.

,
t LOAD xeIR HI

Cloele high word Into XBIR reQlster.

.~

t REG SEL <3:0>

Selects low word fro. CCI ReV flle.

t
t CIPA CLK EN

Increments receive file pointer.

,
t CLK xeIR LOW

Cloele low word into XeIR register.

r
t CHK X8IR PAR

Check parity on 1nput lonQword.

~.
* (Done

Inp
Con

ut to Interfac:e
trol t.oglc:

Figure 5-19 CCI/DP Interface Control Logic -- Port Initiated
Read of CCI

5-59

The logic then asserts CLK XBIR LOW to load the low word from the
CCI into the low section of the XBIR register.

Finally CHK XBIR PAR asserts to enable a parity check on the data
longword transferred in from theCCI.

5.10.3 Unsolicited Request Operations
Figure 5-20 illustrates the CCI/DP Interface Control Logic signals
involved in an unsolicited request operation.

When an unsolicited request operation is initiated, CIPA REQUEST
SYNC and CIPA READ SYNC are asserted to the Interface Control
Logic from the CCI.

The logic responds to CIPA REQUEST SYNC by asserting GRANT UNSOL
and SUSPEND SEQ. GRANT UNSOL is sent to the CCI to indicate that
an unsolicited operation is in progress. SUSPEND SEQ is applied
to the clock logic to stop the port microcode from running
(Paragraph 5.11.2).

The logic responds to CIPA READ SYNC by asserting the REG SEL code
for a read of the CCI address offset register. All unsolicited
operations start by a read of the address offset register to
determine the address of the register to be accessed by the
operation. The address passes from the CCI, over the CIPA bus,
and then to the LSA address register in the DP. The address does
not pass through the XBIR register, hence does not undergo parity
checking.

The Interface Control Logic then outputs LD XBUS LSA to clock the
register address into the LSA address register.

At this point, the CIPA READ SYNC input is checked to determine if
the operation is a read or a write. If CIPA READ SYNC is true,
the Interface Control Logic outputs EN UNSOL READ indicating an
unsolicited read operation is in progress.

The logic then outputs LOAD XBOR to load the data read from the
selected register, into the XBOR register for transfer to the CCI.

The logic also outputs the REG SEL code for writing the data high
word into the Return Read Data Register. The Return Read Data
Register is the only CCI location that is written from the DP in
an unsolicited read operation.

The Interface Control Logic increments the REG SEL code to write
the data low word into the Return Read Data Register. This
completes the unsolicited read operation.

5-60

• Inoue to
Control L

atart)

~
+ CIPl REQUEST SYNC '1

I .. , t r + GRANT UNSOL 1 t CIPA READ SYNC ·1 t suSPEND SEQ

Port ,,1c:roc:odl 11 stopped. ,
t I{EG SEL <1:0)

Read address offset reQlster ln CCI.

t LD X8US LSA

Load unsoUc:Hed t.rQet .ddrn.
lnto LSA .ddre .. uQllur.

~ YES CIPA NO

t
READ SYNC

+ •
[t EN UNSOL READ I t EN UNSOL IIRITE 1

t
t LOAD xeOR t Ell XBIR. IN .. 1
Load read data lnto
XBOR reQlIur.

+ REG SEL <110> ,
Read hlQh word fro. ~ecelYI

t REG SEL <1111>
~rltl Dltl "IQllter.

Write hlQh lIord lnto Return
Read Oat. Reqlster.

+
t LOAD XBIA. HI

Clock 1'1191'1 word Into DP.

t REG SEL <1I1>

Write low word into Return
Ilead DatI ReQlster. t REG SEL cliO)

•••• low word fro_ ~lcllYI Write Dat. "Igl.tar.

~
Interface t CLK
091c

XIHR LOW

Clocle low word Into Of. -- T ...
t CHK lBIR PAR

(Done) Cl'leck parity on lnput lonllword.

Figure 5-20 CCCI/DP Interface Control Logic -- Unsolicited
Request Operations

5-61

If CIPA READ SYNC checked false when the type of operation was
being determined, the Interface Control Logic would output EN
UNSOL WRITE indicating an unsolicited write operation is in
progress.

The DP Control Logic specifies a read of the CCI by asserting EN
XBIR IN to the CCI/DP Interface Control Logic.

The CCI/DP Interface Control Logic responds by outputting the REG
SEL code for reading a high word from the Receive Write Data
Register in the CCI. The Receive Write Data Register is the only
CCI location that is read from the DP in an unsolicited write
operation.

The logic outputs LOAD XBIR HI to clock the high word into the DP.

The logic then increments the REG SEL code and outputs it to the
CCl to read the data low word from the Receive Write Data
Register.

CLK XBIR LOW asserts from the logic to clock the data low word
into the DP.

Finally, CHK XBIR PAR asserts to enable a parity check on the data
longword transferred in from the CCI.

5.11 Port clocks And Operating Modes

5.11.1 Port Clocks
The CMI has a bus cycle of 160 ns. The bus cycle is established
by the CMI bus clock (CM! B CLK) which is a 6.25 MHz clock with a
period of 160 ns. The CI750 port uses a 5 MHz clock with a time
period of 200 ns. Data transfers at the port-to-CMI interface use
the 160 ns bus clock. Timing throughout the rest of the port is
done with the 200 ns clock.

As seen in Figure 5-21, the output of a 20 MHz crystal oscillator
is applied to clock logic where the 20 MHz is divided down to 5
MHz (200 ns) and phase shifted to produce four 200 ns clocks 900

out of phase with each other. An external clock can be used in
place of the 20 MHz oscillator by asserting EXT CLK SEL and
inputting the external clock as EXT CLK. The four clocks output
from the clock logic are designated as CLK TO, CLK TI, CLK T2, and
CLK T3.

5-62

lJ1
I

0'1
W IFIG-.)

\S--I?

1

E~O:'~I ~~k ~j ;

(X)

: Iii i I' : T_~N' "
:c~~ TI1 .~ ,"''''t- i , : ' , r- I

! '" I I , ' ! Ii' ! , . . I ' . I I Ctk 'Tt 'i I' I I" ;,' , i
, : I '. I I , ! ' . " I
'C~ iT~11 I I II j ! I ;
'I' I I I 'f' • I ,; ; I I i

i ~ ! i ,

;CJ.k. i ~.J!
, I I I I ;

lLE <TAL

I)" 'Y' --- I ~ n~/) woo..., "'''n ,:it~ (FIG. 41-' Z)

Note:
letter designations in parentheses
refer to engineering drawings
containing corresponding logic.

F1gure 5-21 Port Cloc~s

CLK T3 is the base clock used to generate all the port critical
clocks. The clocks derived from CLK T3 are listed in Table 5-11.
The table also I ists where the clocks are used and the modes in
which they are enabled (indicated by an X).

Clock

DP CLK T3 A

SEQ CLK T3

UWORD CLK

DST CLK A

PORT CLK &

PORT CLK T3

Table 5-11 Port Clocks

Where
Used

DP

PB

DP

DP

PB@

Run

X

X

X

X

X

Modes

Uninitialized Stall

X X

X

X

X X

@ PORT CLK is also used in the link module.

Suspend

X

X

X

DP CLK T3 A is used to clock control signals and some destination
registers. It is running at all times except when ILLEGAL STATE is
asserted by the CC ~/DP Interface Control Log ic. ILLEGAL STATE
indicates a fatal error condition wherein the error hardware may
not be reliable. By gating off DP CLK T3 A, the port error
condition is preserved for maintenance testing.

SEQ CLK T3 is used to clock the CS microsequencer that runs the
po rt mic roc ode • It is used rna inly to control microsequenc ing and
to load microcode registers.

UWORD CLK is used to clock microwo rd log ic whose inputs are
functions of the port microword on the CS bus.

DST CLK A is used to load most of the destination reg isters
controlled by the microcode (e.g. the PB OUT and PB IN registers).

PORT CLK and PORT CLK T3 are used to control operations within the
PB and the link modules. The two clocks are functionally
identical to CLK T3 and are always running.

5-64

5.11.2 Operating Modes
The DP operates in one of the following four modes:

1. Run Mode

2. Un in i t i ali ze d Mo de

3. Stall Mode

4. Suspend Mode

5.11.2.1 Run Mode
Microinstructions are
operational.

Th is is the
executed every

normal
200 ns.

operating mode.
All clocks are

5.11.2.2 Uninitialized Mode -- This mode is entered when the port
is powered up or an error condition is detected. When UNINIT
comes true, STOP SEQ a sserts and gates off SEQ CLK T3 thereby
s toppi ng the po r t m i c rocode . The C S m i c rosequencer in the PB
stops at address zero.

5.11.2.3 Stall Mode There are occasions
microinstruction cannot be completed within the basic 200
cycle, for example when the data to be transferred is
available. Under such conditions, the microcode is
thereby stretching out the microcycle in multiples of 200

when a
ns clock
not yet
stalled

ns.

As seen in Figure 5-21, UCODE STALL may assert when data is being
transfer red over the CIPA b us in e i the r d i rec t i on. When data is
to be transferred in to the DP from the CCI (EN XBIR IN asserts)
but:

* the low word input cycle of the preceding input transfer is not
complete (CLK XBIR LOW still true)

or

* the preceding transfer from the DP to the CCI is still in
progress (DRIVE CIPA true),

then UCODE STALL asserts.

When data is to be transferred out of the DP to the CCI (DST XBUS
and DRIVE CIPA assert) but:

* the low word cycle of the preceding transfer (in either
direction) has not completed (EN RSEL 0 still true),

then UCODE STALL asserts.

5-65

The assertion of UCODE STALL gates off UWORD CLK to prevent
clocking of the microword logic. UCODE STALL also causes STOP SEQ
and DST INHIBIT to assert. STOP SEQ gates off SEQ CLK 'r3 which
stops the port microcode from running. DST INHIBIT gates off DST
CLK A to prevent loading of the destination registers. In
addition, UCODE STALL inhibits the assertion of GO in the CCI
thereby delaying the start of any new transfers.

Figure 5-2lA illustrates port action during the stall mode. In
time period 1, microword X is executed with all clocks
operational. In time period 2, microword X+l executes but cannot
finish resulting in the stall condition and the assertion of UCODE
STALL. UCODE STALL gates off clocks SEQ CLK T3, UWORD CLK, and
DST CLK A. In time period 3 and 4 the stall condition remains and
the three clocks remain gated off while microword X+l continues to
execute. In time period 5 the stall condition is removed, UCODE
S TA L L n eg ate s, and the t h r e e c 1 0 c k s are gat e don. Th e m i c r 0 wo r d
log ic and destination reg isters are clocked by UWORD CLK and DST
CLK A respectively, thereby completing the execution of microword
X+l. SEQ CLK T3 clocks the next microword (X+2) from the CS. In
time period 6 the port returns to the run mode and the X+2
microword executes.

5.11.2.4 Suspend Mode -- While the port is in the run mode, the
host CPU may want to access a port register via an unsolicited CMI
request. To make the port data paths available for the
unsolicited CMI access, the microcode is temporarily stopped
(suspended) until the unsolicited CMI access is compl~ted. In
this case the port is said to be in the suspend mode.

In the suspend mode SUS PE ND SEQ and SUSPE ND DEL are asse r ted by
the CCI/DP Interface Control Logic. SUSPEND SEQ asserts STOP SEQ
which gates off SEQ CLK T3 thereby stopping the port microcode.
The DP is now controlled by the host CPU.

SUSPEND DEL asserts DST INHIBIT which inhibits DST CLK A thereby
preventing the destination registers from being loaded. Note in
Figure 5-17 that SUSPEND DEL is asserted one cycle after STOP SEQ
asserts. Thus dur ing the cycle in which SUSPEND SE Q asserts, DST
CLK A is still active to load the destination registers. Hence,
execution of the current microword is completed (not stalled).
This makes the cycle in which SUSPEND SEQ asserts, the last cycle
of the run mode.

Figure 5-2lB illustrates port action during the suspend mode. In
time period I microword X is executed with all clocks operational.
In time period 2 microword X+l is executing when the unsolicited
CMI request appears and causes SUSPEND SEQ to assert. SUSPEND SEQ
gates off SEQ CLK T3 so that the microcode does not advance to the
next microword. UWORD CLK and DST CLK A respectively clock the
microword logic and the destination registers thereby completing
execution of microword X+l. SUSPEND DEL asserts on the next DP
CLK T3 A pulse and gates off DST CLK A.

5-66

I I I I I I I I I I I I I I I I I n n n n n n IL DP eLk T3 A I

I I I I I I I
Ti',.(> ~"iDJ I 1

I
~. I '3 I + S I b. I 7 I I I I I I

I I , I I
I I I f'IIlct'DWor J I X I .x+1. I ,X't1 I .Xt1 X+1 ! xta. I)Ct3 , I I I I I
I I n I

SEq cL-k T~ I n I I n n
1 I 1 I I I
I I

n I
,

I ~
! fl n UWDRO Cj.t- I I

I I I I I
I I

DST ~Lk' A I n I I n n n I I I I I
, I I

STAL.'- I I :1. I I' I ;
I I

UC.OPE I I I I I
I I. ; . _L : ;" .. I , I I

i-·· : I 1 I I RUN I I . '!STAtL I
r+"'DDE ~ 14' t1 0 1> E . "1-4 RUlli MODE~
, ' ; , I ' ! ., f .. , I • t-

, . ! ...
, I

,

Figure 5-2lA Stall Mode Timing

5-67

\J1
I

0"\
00

I I,
I "I I I I

l'P ell< T~ A ! n' n. n' n n n n n n n,"-_
li;",~ ~ .. ;oJ f : '1: t', ,I : 2 : ,I 't· . ,I , S . lb· :, . ". I' o· ; 0 i : I: I" .
.. "1 ["f! ',' "'J'.' , . ·~·I 7'j,)I'.

M".~D;"';~j :x , i ,X il~rdtDLicm~J>c7ll "Pl=~AT'Otl I .I)t~~ Ilxt~
,$l=q eu: To! I I I I ' : I : I : ! [: ~! ': rl n I
· .
· UWQRJ) ca..lc".

· DST ~"k: A:
I · ...,

,.suSPENO jlEIi I ,I ,I Ii: I '

T
t

; I I ~ I I I' " ., 1

! • ~ --f ' ; -! j - i. i 1-:--_1 ._: I I i I j!!' I ' i . , . I+.- : I, I. t ' SUS P '-'.'!"! . I
., , 1-._- I ~ _;M 0 i _, __ _ i f:ND MOD I; Ii. ~I~

r -, . t I i ·t-- -1- Ii ·-t-·ii--f· -f--i!-I- ·1:-- - .. ,i --i-·· -j'-- ~ -1·- - __ ji :: T : : : , : : : : It . I. I l : I ~
• _ ,1- 1 _, , . : , I, : . ~ I , • , I i

fi9ure 5-218 Suspend Mode Timing

f iii I 1 I i j
-, j ! ! '1 1

rUN ! MOOE:~ 1
-, ! 11 ; I . I _-; I I 1 : I ; l

During time periods 3 through 8 the unsolicited CMI function is
executing. UWORD CLK is active during the suspend mode because
portions of the microword logic are used for the unsolicited CMI
operation. In time period 8 the unsolicited operation is
completed and SUSPEND SEQ negates. The negation of SUSPEND SEQ
enables SEQ CLK T3 which clocks the next microword (X+2). DST CLK
A remains gated off (due to the one cycle delay of SUSPEND DEL)
thereby preventing data from the unsolicited CMI operation from
being clocked into the destination registers. In time period 9
the run mode is resumed with all clocks operational to execute
microword X+2.

5.11.2.5 Differences Between Stall Mode and Suspend Mode -- The
major difference between the stall mode and the suspend mode is
that in the stall mode, destination registers are inhibited from
loading until the final cycle of the stall condition. Whereas in
the suspend mode, destination registers are enabled in the first
suspend cycle and inhibited from loading throughout the remaining
suspend cycles. It is necessary to complete execution of the
microword in the first cycle of the suspend mode (as opposed to
deferring it until the final cycle as is the case in the stall
mode). The reason for this is that some microword logic registers
are used to service unsolicited CMI functions. By the time an
unsolicited CMI function is completed, these registers will no
longer contain the original microword contents.

Note in Figure 5-21A that microword X+l is stalled by being
stretched out over four DP CLK T3 A time periods. This is in
contrast to Figure 5-21B where microword X+l is completed in time
period 2. There is no microword execution in the next 6 time
periods while the unsolicited CMI function operates. Microword X+2
executes in the time period following the completion of the
unsolicited CMI function (time period 9).

5.12 INTERRUPT, INITIALIZE, AND POWER CONTROL FUNCTIONS
Figure 5-22 is a block diagram of the interrupt, initialize, and
power control functions.

The interrupt logic asserts INTR CPU to the CCI which in turn
generates an interrupt to the host CPU. Interrupts are generated
by:

1. SET MIF (maintenance interrupt flag) on a port power-up

2. SET PDN (power-down) during a power failure in the host
CPU cabinet or the CIPA cabinet

3. PE when a port parity error has occurred

4. INTR from the port microword

5-69

(JI

I
~
lSI

- --- - ----- ------. 1- - - - - - - - - - - - - - - - - - - -

(Y A bIZ I POWER I PW: ~L • (F' 4-ub)
A ... LO ~I cP ... A ".' ~ : CONTROL ~U PD (FIC;. 4- 2.)

LOG-IC

I
I

I .. " ... v I'FIG. &'-1'1) I _Uie' n I'

CNFGD I .. ,.,rn .. r I '- h,rD .. r 14 ~ .,,., I" - - 0<: tl-----r-----.J
REG.

~ ["D' 'P' I I ,,' I.... I~''''''' \elY I Il:NTt~:~lTI= JrE (FI(§..5-ICP)
(FIG. 5-2.3) IN R (FIG. 4- 2)

I
I
I
I

MTE

r -7c:X--"'t--.J I DP I----I.YUNLJ1.lJNu.I.L1 ___ -'-_+_
"'''!"In CCI INITIALIZE ~

1""TtALI'2-E I LOG-Ie

LOG-Ie I (FIG.G-2.S) I LOGIC. ell ~ (FiG. ~-2.)
(FIG. E"- 2.5") I I

NIT

C c.J: : I "]) 'P --------------- -------------.----- ----

Figure 5-22 Interrupt, Initialize, and Power Control
Block Diagram

Interrupts caused by port failures (PE or SET PDN) assert MTE
(maintenance error) to the initialize logic to place the port into
the uninitialized state.

The initialize logic is divided between the CCI and the DP. A
port initialize command may be issued by the host CPU to the CCI
initialize logic. The CCI initialize logic responds by asserting
INIT to the CCI logic and MIN (maintenance initialize) to the DP.
INIT clears the CCI logic to its reset state. MIN is applied to
the DP initialize logic as MIN INIT. MIN INIT causes the DP
initialize logic to output INIT to clear the DP logic, and LOGIC
CLR to clear the PB logic. The DP initialize logic also asserts
UNINIT to place the port into the uninitialized state.

During port power-up, DCLO asserts to the initialize logic to
reset the DP and CCI logic circuits and place the port into the
uninitialized state. MTE from the interrupt logic also places the
port into the uninitialized state but does not reset the DP.

The power control logic functions to initialize the port during a
power-up, and generate an interrupt as the power-up sequence is
completed. During power-up, DCLO in the DP asserts to the
initialize logic to initialize the CCI. As the power-up sequence
completes, the power control logic asserts SET MIF to the
interrupt logic where it generates an interrupt to the host CPU.

The power control logic also functipns to perform a power fail
sequence when a power failure occurs. During port operation, the
power control logic monitors ac and dc power in the CIPA cabinet
and in the host CPU cabinet. If power fails in either cabinet, an
ACLO signal is asserted to the power control logic which asserts
PWR FAIL to the microcode branching logic. If the port is in the
initialized state (UNINIT false), the microcode suspends operation
at a logical break point and returns UP PDN to the power control
logic. UP PDN causes the power control logic to assert SET PDN
indicating that the port is powering down. If the port is in the
uninitialized state (UNINIT true), PWR FAIL directly asserts SET
PDN via the power control hardware. SET PDN is inverted and
transferred to the CCI as a negated CIPA UP. The negated CIPA UP
is applied to the configuration register where it sets bits NO
CIPA and PDN, and resets the PUP bit. SET PDN is also applied to
the interrupt logic where it causes an interrupt to the host CPU.

When ac
assertion
NO CIPA
interrupt

power resumes, SET PDN negates and CIPA UP asserts. The
of CIPA UP causes the PUP bit to assert, and the PDN and
bits to negate. In addition, SET MIF is asserted to the
logic to generate an interrupt to the host CPU.

5-71

5.12.1 Interrupt Function
Figure 5-23 illustrates the
flow diagram of the interrupt
the following discussion.

interrupt logic. Figure 5-24 is a
sequence. Refer to them throughout

An interrupt to the host CPU can be initiated by:

1. a port power failure (SET PDN)
2. a port parity error (PE)
3. the port microcode (INTR)
4. the port powering up (SET MIF)

The assertion of SET PDN causes SET MTE to assert until the next
DP CLK T3 A clock pulse (the next DP CLK T3 A pulse resets the SET
MTE flip-flop negating SET MTE). The assertion of SET MTE causes
MTE to assert. The assertion of PE also causes MTE to assert.
MTE is applied to the initialization logic where it asserts SET
UNINIT thereby causing the port to enter the uninitialized state
(Paragraph 5.12.2.2).

MTE is a bit in the PSR register (Paragraph 5.5.3).

MTE is also applied to an AND gate where the maintenance interrupt
flag (MIF) is sampled. If MIF is true, another interrupt is being
serviced and the AND gate is disabled. The interrupt sequence
must be completed and MIF negated before the current error can
generate an interrupt. If MIF is false, the AND gate is enabled
resulting in flip-flop E32 being set on the next DP CLK T3 A clock
pulse and asserting E32-2.

The assertion of E32-2 sets another flip-flop whose inverted
output is fed back to the E32 input. The negative feedback path
results in the negation of E32 after two DP CLK T3 A pulses. Thus
the logic resets itself in preparation for another interrupt.

E32-2 is ORed with INTR from the CS microword. The assertion of
either E32-2 or INTR sets a MIF flip-flop on the next CLK T2
pulse, causing MIF to assert. MIF, in turn, asserts INTR CPU due
to the true state of MIE. (MIE is asserted on power-up by DCLO;
see Paragraph 5.12.3.1. It is negated only for maintenance
testing of the interrupt logic.)

During a system power-up, MIF is directly set by the assertion of
SET MIF from the power control logic.

MIF is a bit in the PMCSR register.

5-72

111
t
~
w

(FIC;. 5""-27) seT PPN I I~
TE

(F r G, S - 2 S")-:. • .u..1l .L.!.' '----r----'

(FIG-. 5"-I¢) PE ~ Ip SET

1-------------1
I ccr I

I I

I ISSUE : ,,,.. ,'I I.,.."' , _ (
I JNTERRUPTI4-L.;:;.r;:L.L.......I.U.-'-<
I LOGIC.

I (FIG. '-2J~ I
I I
1 ___ ----------

Note:
letter designations In parentheses
refer to engineering drawings
containing corresponding logic.

(Ftc;" 5-3) t . .-------'

(FIG. 4-'2.) 8~---.

11S2'= h'. ID FF

(M)
(~C

.sET HIE (FIG-. 5-2.7)

eel. r .. "'-.... (FIG- &-13)
c

IN (FtG-. 5-2.5)

~igure 5-23 Interrupt Logic

InterruDt
seauence 1&
completed.

r------
POl'1' IN!

DP CLK Tl A

DP CLK tJ A

DP eLK Tl Ii

-------...,
I

Initlatl' write victor fun~tion to ho.t CPU, I
I
I

I
I
I
I
I ----------.---.--~ I "rite vector function cOllpuud, C C I
L-

- ______ 1

port.

t UHINlT

Port enters
unln1 t1al1zed
state. Microcode
stops runn1n9.

Figure 5-24 Interrupt Sequence

5-74

INTR CPU is transferred over the CIPA bus (as CIPA PORT INT) to
the CCI where it asserts PORT INT to the CCI i?sue interrupt
logic. The issue interrupt logic initiates a write vector
function to the host cpu. When the write vector function is
complete, the host cpu resets the MIF flip-flop by asserting PSRCR
via an unsolicited CMI write sequence. The host cpu then
initializes the port by issuing a MIN command as described in
Paragraph 5.12.2.

5.12.2 Initialize Function
The initialize function is divided between the CCI module and the
DP module. Both the CCI and the DP have initialize logic which are
described in Paragraphs 5.12.2.1 and 5.12.2.2.

Figure 5-25 illustrates the initialize logic. Figure 5-26 is a
flow diagram of the initialize sequence. Refer to them throughout
the following discussion.

5.12.2.1 eCI
initialized by
host cpu.

Initialize Logic The CI750 port can be
a maintenance initialize (MIN) command from the

When the CCI decode logic senses an initialize command, it asserts
SET MIN to a MIN flip-flop causing it to set. When the MIN
flip-flop sets, it asserts MIN to the eCI initialize logic causing
INIT A, INIT AI, and INIT A2 to assert. INIT A, INIT AI, and INIT
A2 function to clear the error bits in the CNFGR register and
reset the CCI logic circuits except for the FPLA logic array
circuitry.

MIN is also applied to the CIPA bus as CIPA MIN and then to the
DP.

The output of the MIN flip-flop enables a four-bit binary counter
clocked by B CLK. After five B CLK cycles, the counter output
goes true and resets the MIN flip-flop negating MIN.

During power-up the CCI initialize logic receives DCLO and SYNC
DCLO from the power control logic. As DCLO and SYNC DCLO are
power control signals, the response of the CCI initialize logic to
these signals is covered in the description of the Power-Up
Sequence (Paragraph 5.12.3.l).

5.12.2.2 DP Initialize Logic -- CIPA MIN is received from the CCI
via the CIPA bus, and becomes MIN INIT in the DP. MIN INIT
asserts MIN which in turn resets the MIE and MIF bits in the PMCSR
register. In addition, MIN sets an INIT flip-flop causing INIT to
assert.

5-75

U'1
I

-...J
m

I
I
I
I
I
I
I
I
I
I

CCI-I
I
I
I

:V!,,~,
II •• IPh P&LR :]\6-'1'

I
I
I
I

l ___________ _

Not ..
Letter designations In parentheses
rei. 10 engineering drawings
contarrog corresponding logic.

MAl NT.
TIMER
osc
C400Jl$ECI

eNJ
cLA

an u"un
(FIG. ,_)) MTD "-,

(fIG. S-ll) PMTCRCLR ~

FIgure 5-25 In1 tIal1ze Log1c

.. ~~ • CFIG. 4-1111

I-C> .9 .. '\ liL eflr.. 4-Z; 4-.)

(Start)
,-- ------ T- -------------- - --....-..
I I t SET luAiI CtI
I
I
I ItMU/1 .

I + + I Five B CLKI + Illn ~

:~
..,. IJIIT ~l
tINIT A2

Clear. error bit. In CNrGR ragl.ter,
Relet. logiC tn CeI except FPLA l~otc array.

I '-------- ~----------------
I + CIPA /lfIti I

It MIN un I

f
It DCLO I t "IN

I
~ : +

t ItII 1+ INIT I I Clearl HIE and MIF bitt j
Inable. interrupts. In PMCSR reollter.

.

t +

-.
I
I
I
I
I
I
I
I

_1

1 . I t LOGIC CLRj I Clears DP errorl.
Ruetl CCI/D,
Interface Control
Logic to idle
Itat ••

~

I t SET II~INlT I
I

t
t ""IlIiT

Part enters unlnltlallzed
~lcrocode stops running.

liTO
or

PICR IIRT

1+ I1TEJ

+ 1+ BTO I
state.

Figure 5-26 Initialize Sequence

5-77

The assertion of INIT accomplishes the following functions:

1. Clears DP errors

2. Asserts LOGIC CLR to initialize the PB module

3. Resets the CCI/DP Interface Control Logic thereby placing
the DP into the idle state

4. Asserts SET UNINIT
uninitialized state

to place the port into the

5. Resets the boot timer via the assertion of SET UNINIT
(Paragraph 5.12.2.3)

6. Resets maintenance timer

The assertion of SET UNINIT sets the UNINIT flip-flop asserting
UNINIT and placing the port into the uninitialized state.

Note in the flow diagram of Figure 5-26 that the assertion of MTE
(maintenance error) from the interrupt logic also asserts SET
UNINIT and places the port into the uninitialized state.

A third
a system
directly
assert.*

way the port is placed into the uninitialized state is by
power-up. During system power-up, DCLO asserts and
sets the INIT flip-flop causing INIT and SET UNINIT to

* System power protocol requires that +5 V be up and operational
before ACLO and DCLO assert.

The UNINIT flip-flop holds the port in the uninitialized state
until it is reset by the assertion of BTO from the boot timer or
PICR WRT from the unsolicited CMI request logic.

PICR WRT asserts when the CPU performs an unsolicited CMI write to
the port initialization control register (PICR). Thus the host
can start up the microcode before the assertion of BTO (before the
boot timeout period has expired).

5.12.2.3 Boot Timer and Maintenance Timer -- The boot timer logic
is used to delay starting the CS microcode by temporarily holding
the port in the uninitialized state. Boot jumpers select the
delay which can be up to 1500 seconds in 100-second increments.
The delay is used to allow time for the cluster to boot and to
load the microcode.

5-78

A boot timer one second oscillator outputs into a decade counter
at a one cycle per second rate. The decade counter divides by 100
and outputs into a binary counter once every 100 seconds. A
comparator compares the binary counter output with the count set
into four boot jumpers. When the output from the binary counter
matches the count set into the boot jumpers (A=B), the BTO (boot
timeout) flip-flop sets and asserts BTO to the UNINIT flip-flop
via an OR gate. BTO causes the UNINIT flip-flop to reset and
negate UNINIT. The negation of UNINIT takes the port out of the
uninitialized state and starts the microcode running.

SET UNINIT clears the BTO decade counter and holds the BTO
flip-flop reset. Hence the BTO counter is not enabled until the
condition causing SET UNINIT to be true, is cleared.

Other signals that clear the BTO flip-flop and decade counter are
MTD (maintenance timer disable) from the PMCSR register, and PMTCR
CLR from the unsolicited CMI request logic. The BTO timeout
period can be extended by clearing the boot timer with PMTCR CLR
via an unsolicited CMI write sequence.

A maintenance timer 400 microsecond oscillator outputs a TICK
signal to the CS branching logic every 400 microseconds. TICK
forms a time base used by the port microcode.

5.12.3 Power Control Function
The power control function causes the CIPA cabinet and the CCI
module in the host CPU cabinet to be initialized on system
power-up, and shuts down the CI750 when a power failure occurs
within the CIPA or the host CPU cabinet. It also generates
interrupts to the interrupt logic for both system power-ups and
power failures.

Figure 5-27 illustrates the power control logic. Figures 5-28 and
5-29 show the power-up and power fail sequences respectively.
Refer to Figure 5-27 throughout Section 5.12.3.

Power system protocol requires that a power failure cause the
assertion of ACLO followed by the assertion of DCLO (Figure 1-5).
During power-up the reverse is true, that is DCLO negates and then
ACLO negates.

5.12.3.1 Power-up Sequence -- When system power is applied, both
the CCI in the host CPU cabinet and the DP in the CIPA cabinet
undergo a power-up sequence. Both sequences are illustrated in
Figure 5-28. The power-up sequence in the host CPU cabinet is
considered first.

5-79

--- - -- --- - - ------ - - --- -- --- ------ -- ---I - - - --- - - --- - -- -------_.
CLO

FF D~~~~~~L~ I
r-__ rL-~D~C~L~O~ __ _<~_+--~~~--~<~~~~~--~~~ADD ~~~)

FAIL J

r----­
I
I
I
I
I
I
I
I
I

! (FIG. (,-34)

(flt;,

SET

--------,
I
I
I
I
I

---------_. -----------
CCI I -- ______ 1

(w) c

~~.2....!-_ (FIG. . .r - 2. S)

I..-!<:~~ (FI CT. S- 3; s- 2.S)

,
I
I ,
I
I
f
I
I
I
1-

~!.!.J.._(FIG. S-Z.n DP
-------_ - --

Note:
Letter designations in parentheses
refer to engineering drawings
containing corresponding logic.

Figure S-27 Power Control Logic

5-80

r - ----"'------- -- - - - - - - - --~

+ I"lT (1
+t ItllT C2

IIiIT ('3

+ UBS DeLO

I" OeLD I

9 eLK

t tNIT
tIt/IT Cl
+ INIT C2
t INn C1

+ VBS AClO

L ____ _

+ P5 DCLO (In CIPAl

B CLIC

--1
I
I
1 __ -

PS AClO (In CIP~)

CCI

t SEr MIF

G~n~rat.s interrupt
Hqu.nc~ to host
CPU (rlgure 5-2~l.

pp eLIC Tl A

~

+ OCLO (1n CCIl

CLK TO

t crpA CPU ACLO (fro", cell

STO
or

PIC~ WRT I
I
1
I
I
I
I
I
I

L--_.;-...o_ 5~ T:...I

t IJN1NIT

Port enters unlnltlaltz-d
.tate (figure ~-26).

Figure 5-28 Power-up Sequence

5-81

The power-up sequence in the host CPU cabinet resets the CCI
hardware registers and logic circuits. When power is applied to
the CCI, the +5 V becomes operational after which UBS ACLO and UBS
DCLO come true.* UBS ACLO is obtained from terminal C45 while UBS
DCLO is obtained from terminal C93. UBS DCLO asserts DCLO which
in turn resets the INIT flip-flop in the CCI initialize logic
(Figure 5-25) thereby asserting INIT. The assertion of INIT
causes INIT Cl, INIT C2, INIT C3, and CLR PUP/PDN to assert. When
CLR PUP/PDN comes true, it causes INIT A, INIT AI, and INIT A2 to
assert. DCLO also asserts CIPA DCLO causing SYNC DCLO to come
true on the next DELAYED B CLK pulse. SYNC DCLO is applied to the
INIT flip-flop which is presently being held reset by DCLO.

* System power protocol requires that +5 V be up and operational
before ACLO and DCLO assert.

When UBS DCLO negates in the power-up sequence, DCLO also negates.
The negation of DCLO removes the clear signal from the INIT
flip-flop conditioning both halves of the flip-flop to set (SYNC
DCLO true). The next B CLK pulse sets the INIT flip-flop thereby
negating INIT, INIT Cl, INIT C2, and INIT C3.

The negation of DCLO also causes CIPA DCLO to negate when the the
corresponding signal in the CIPA cabinet (PS DCLO) negates.* When
this occurs, SYNC DCLO negates. With SYNC DCLO false, the next B
CLK pulse resets the lower half of the INIT flip-flop thereby
negating CLR PUP/PDN, INIT A, INIT AI, and INIT A2.

* The purpose of interactive DCLO signals between the CIPA and the
CPU cabinet will be seen in the power fail sequence described in
Paragraph 5.12.3.2.

UBS ACLO and ACLO negate to complete the CCI power-up. The
negation of ACLO negates CIPA CPU ACLO on the CIPA bus.

The power-up sequence in the CIPA cabinet resets the CIPA hardware
and logic circuits. When power is applied to the DP, the +5 V
becomes operational after which PS ACLO and PS DCLO come true.*
PS ACLO is obtained from terminal BlO while PS DCLO is obtained
from terminal B5. PS DCLO asserts CIPA DCLO and then DCLO. DCLO
sets the MIE bit (maintenance interrupt enable) in the PMCSR
thereby enabling interrupts to the host CPU.

* System power protocol requires that +5 V be up and operational
before ACLO and DCLO assert.

In addition, DCLO is applied to the DP initialize logic where it
asserts INIT and LOGIC CLR. INIT initializes the DP logic and
asserts SET UNINIT and UNINIT placing the port into the
uninitialized state (see Paragraph 5.12.2.2). LOGIC CLR
initializes the PB module.

5-82

As the sequence proceeds, PS DCLO negates and when the
corresponding signal in the CPU cabinet (DCLO) goes false, DCLO
will negate. With OCLO false, the next eLK TO pulse will reset
the INIT flip-flop (F'igure 5-25) causing INIT and SET UNINIT to
negate. The negation of SET UNINIT enables the BTO timer which
then begins counting down the boot time-out period.

The next step in the sequence is the negation of PS ACLO. If CI PA
CPU ACLO from the CCI is false (indicating that the host CPU
cabinet is plCwered-up and initialized), then the negation of PS
ACLO causes PWR FAIL and then SET PDN to negate.

The negation of SET PDN causes SET MIF to assert until the next UP
CLK T3 A clock pulse (the next DP CLK T3 A pulse resets the SET
MIF flip-flop negating SET MIF). The SET MIF pulse is applied to
the interrupt logic to generate an interrupt sequence to the host
CPU (Paragraph 5.12.1).

The negation of SET PDN also causes CIPA CIPA UP to assert on the
CIPA bus and then CIPA UP to assert in the CCI. The true state of
CIPA UP causes the NO CIPA bit in the configuration register to
reset and SET PU P to assert. SET PU P d i rec tl y sets the PU P
flip-flop thereby asserting the PUP bit in the configuration
register. The AND gate that generates SET PUP receives two input
signals. One is the R2 input to flip-flop E162; the other is the
inverse of the R3 output of E162. 'l'hus SET PUP is negated one B
CLK after it is asserted, forming a 200 ns pulse.

When the boot timer startup delay has timed out (BTO asserts) or
the host asserts PICR WRT via an unsolicited CMI write operation,
UNINIT negates and the port leaves the uninitialized state
(Paragraph 5.12.2.2).

Note in Figure 5-28 that the negation of PWR FAIL (and then SET
PDN) indicates the completion of a successful power-up sequence.
Only then is the PUP bit set and the CPU interrupted. For PWR
FAIL to negate, both the CPU cabinet and the CIPA must have
completed good power-ups as indicated by the false state of CIPA
CPU ACLO from the CPU cabinet and PS ACLO in the DP.

5.12.3.2 Power Fail Sequence (Figure 5-29) When a power
failure occurs within the CIPA cabinet, PS ACLO comes true on
terminal B10 in the DP and asserts PWR FAIL. PWR FAIL is also
asserted by a power failure within the host CPU cabinet. A power
failure in the CPU cabinet asserts UBS ACLO on terminal C45 in the
CCL with T ACLO false (discussed in Paragraph 5.12.3.3), ACLO
asserts thereby causing CIPA CPU ACLO to assert on the CIPA bus.

5-83

Microcode brancnes to po~er tall routine.

PO.@f fall routine saves current information.

Figure 5 -2 9 Power-Fail Sequence (Sheet 1 of 2)

5-84

A

, --..--_------
I
I
I
I
I
I
I
I
I
(
I
I
I

-+ U/ll' A
.. TIiIT At
t HIlT /12

cet reset to the
unlnltlallzed state.

cc:r.

t UI!S DCl.D

pow~r In CPU
caDln~t not
functlenal.

-------~

t"n:
G~n~r.t~. Int~rrupt to ~ost CPU (rl~. 5-24).
PI.c~. eort Into unlnltlallzed .tat~ (F1Q. 5-2bJ.

t UHINtT

CIPA resetl toeS the
untnttlallzed state.

o

t [lCL(l

CIPA l>ew~r not
functional.

t SET I'HF

Ctntr~tes interrupt
Stquence to host CPU
(rlQure 5"-24).

Host cpu takes CI7S"~ o~t
of unln'tiall~ed st~te
and rtsu~e5 operation.

r------------,
CCI I

I t CIPA UP I

: I
I I
1 I
I I
I I
1 B CLK I
I T I
I ~I
1--------____ 1

OP eLIC TJ A

~

Figure 5 -2 9 Power -Fa i 1 Sequt::-nce (Sheet 2 of 2)

5-85

PWR FAIL is applied to the microcode branching logic. If the port
is not in the uninitialized state (UNINIT false) the microcode is
running. PWR FAIL causes the microcode to branch to a power fail
routine. The power fail routine functions to save current
information so that operation may be resumed when power returns.
The power fail routine returns UP PDN to the power fail logic
resulting in the assertion of SET PONe

If the port is in the uninitialized state
FAIL asserts, SET PDN is asserted by
mic~ocode. Referring to Figure 5-27,
asse~tion of PWR FAIL directly asserts SET

(UNINIT true) when PWR
the hardware - not the

with UNINIT true, the
PONe

SET PDN is inverted and placed onto the CIPA bus as a negated CIPA
CIPA UP signal. The false state of CIPA CIPA UP causes CIPA UP in
the CCI to negate. The negation of CIPA UP is transferred through
two flip-flops causing R2 to negate and NO CIPA and SET PDN to
assert. SET PDN sets the PDN flip-flop asserting PDN, and resets
the PUP flip-flop negating PUP.

SET PDN is asserted by ANDing NO CIPA and the R3 output of
flip-flop E162. The next B CLK resets E162 thereby negating SET
PDN. Thus SET PDN is formed into a 200 ns pulse.

PDN, PUP, and NO CIPA are bits in the CCI configuration register.

Back in the DP, SET PDN is applied to the interrupt logic where it
asserts SET MTE and then MTE to generate an interrupt to the host
CPU (Paragraph 5.12.1).

MTE is coupled from the interrupt logic to the initialization
logic (Paragraph 5.12.2.2) where it asserts UNINIT to stop the
microcode and place the port into the uninitialized state.

If a genuine power interruption is occurring, PWR FAIL will still
be true and, if this is a CIPA power failure, PS DCLO will assert.
When PS DCLO comes true it asserts CIPA DCLO. CIPA DCLO asserts
DCLO indicating that power in the CIPA cabinet is no longer
functional.

CIPA DCLO is also transferred to the CCI where it asserts SYNC
DCLO, CLR PUP/PDN, and the nAn set of initialization signals (INIT
A, INIT AI, INIT A2). CLR PUP/PDN and the nAn set of
initialization signals clears the error bits in the CNFGR register
and resets the CCI logic (except the FPLA logic array circuitry).

If the power failure occurred in the CPU cabinet, UBS DCLO will be
asserted. UBS DCLO in turn asserts DCLO and CIPA DCLO. CIPA DCLO
indicates that power in the CPU cabinet is no longer functional.

5-86

CIPA DeLO is also transferred to the DP where it assert INIT, SET
UNINIT, UNINIT, and LOGIC CLR to reset the CIPA to the
uninitialized state. Thus, due to the DCLO signal being
interactive between the CPU cabinet and the CIPA, a power loss in
one cabinet will reset tile port module(s) in the other cabinet.

If only a transient AC power dip occurred, PWR FAIL may negate
be fore PS De LO asserts. In th i s case, the neg a t ion 0 f PWR FAI L
causes SET PDN to negate.

The negation of SET PDN asserts CIPA CIPA UP on
causing CIPA UP to assert in the CCI. The assertion
transferred through two flip-flops causing R2 to
assertion of R2 negates NO CIPA and asserts SEP PUP.
the PUP flip-flop asserting PUP, and resets the
negating PDN.

the CIPA bus
of CI PA UP is
assert. The

SET PU P sets
PDN flip-flop

SET PUP is asserted by ANDing the R2 input and the inverse of the
R3 output of flip-flop El62. The next S CLK sets E162 thereby
negating SET PUP. Thus SET PUP is formed into a 200 ns pulse.

The negation of SET PDN also causes SET MIF to assert until the
next DP CLK T3 A clock pulse (the next DP CLK T3 A pulse resets
the SET MIF flip-flop negating SET MIF). SET MIF is applied to
the interrupt logic where it generates an interrupt to the host
CPU just as during a normal power-up sequence. The CPU responds
to the interrupt by taking the CI750 out of the uninitialized
state (via an unsolicited CMI write sequence) and resuming normal
operation.

Figure 5-30 illustrates when interrupt signals SET MTE and SET MlF
occur wi th respect to SET PDN. When SET PDN assert s (due to a
power failure), SET MTE asserts to generate an interrupt and place
the port into the uninitialized state. When SET PDN negates (as a
power-up sequence completes), SET MlF asserts to generate an
interrupt.

5.12.3.3 Remote Reset Function -- In the maintenance mode the
CI750 port can be reset from another node by means of a reset
packet. The remote node sends the reset packet to the CI750
causing the port microcode to assert ASSERT FAIL and PF VLD (power
fail valid) (Figure 5-27). ASSERT FAIL conditions a fail
flip-flop to set while PF VLD gates the Tl clock to set the
flip-flop. Setting the flip-flop asserts E62-5 which in turn
asserts CIPA T ACLO on the ClPA bus. ClPA T ACLO is coupled to
the CCl where it is synced by DELAYED S CLK to produce SYNC T
ACLO. SYNC T ACLO then asserts T ACLO via flip-flop El64. SYNC T
ACLO and T ACLO are AI'Wed with the inverse of PFD (power fail
disable) and the inverse of PDN. When PFD and PDN are false
(discussed later), the AND gate is enabled and USUS ACLO is
asserted on terminal C45 and then out to the CPU cabinet. USUS
ACLO functions to initiate a simulated power-down sequence within
the host system.

5-87

--- --<--<--w----
--- Q -

- -----" -- - ~ ---- ~.~-- E
-S--

r:L,-- -

Q_-- -

llJ­
~--

1.1..

5-88

-....
IQ ...
I
a.. ., ..
o
a.

The microcode then asserts ASSERT DEAD and PF VLD which similarly
results in the assertion of SYNC T DCLO and T DCLO. The assertion
of SYNC T DCLO and T DCLO causes UBUS DCLO to assert on terminal
C93. The assertion of UBUS DCLO completes the simulated
power-down sequence within the host system.

Note that the true state of T ACLO and T DCLO inhibit ACLO and
DCLO from being asserted to the CCI and DP power down logic
thereby preventing the logic from shutting down the port. Thus
the port is still able to function while the host system is in the
simulated powered-down state.

The microcode then asserts PF VLD with ASSERT DEAD negated
resulting in the resetting of the dead flip-flop and the negation
of SYNC T DCLO, T DCLO and UBUS DCLO in the CCI. With UBUS DCLO
false, the host system attains a partial powered-up state.

When SYNC T DCLO negates, T DCLO is held true until the next B CLK
pulse resets flip-flop E164. This insures that UBUS DCLO has
negated before T DCLO goes false thereby preventing USUS DCLO from
possibly causing a spurious assertion of DCLO to the CCI and the
DP.

The host system remains in the partial powered-up state CUBS ACLO
still true) until the remote port sends a start packet. The start
packet causes the port microcode to assert PF VLD with ASSERT FAIL
negated thereby resetting the fail flip-flop and negating SYNC T
ACLO, T ACLO and UBUS ACLO in the CCI.

A delay of one B CLK between the negation of SYNC T ACLO and T
ACLO prevents a possible spurious assertion of ACLO to the CCI and
the DP.

with UBS ACLO false, the host system is now powered-up and the
simulated power- fail sequence is completed.

T ACLO and T DCLO are bits in the CCI configuration register.

When the PFD bit in the configuration register is true, the T
ACLO/T DCLO logic is inhibited from asserting UBUS ACLO and UBUS
DCLO. This allows maintenance diagnostics to test the microword
ASSERT FAIL and ASSERT DEAD bits without activating a power-fail
sequence in the host CPU.

The true state of PDN also inhibits the
from asserting UBS ACLO and UBS DCLO.
powered down (PDN true), inputs from the
do not disrupt the port power-up sequence.

5-89

T ACLO and T DCLO logic
Thus, when the port is

T ACLO and T DCLO logic

NmE
The functional block diagrams in Chapter
6 use logical AND and OR symbols. It
does not necessarily follow that a
corresponding gate exists on the
engineering logic prints. The assertion
of inputs A and B causing the assertion
of output C may be represented on a
block diagram by a single AND gate, yet
the engineering drawing may show that
several circuit stages are involved in
the ANDing operation.

The block diagrams in this chapter are
keyed to the engineering circuit
schematics (CS prints) by letter
designation in parentheses. The letters
specify the CS sheet that contains the
logic associated with the functional
blocks in the diagram.

The signal names used in the functional
block diagrams are the names used on the
engineering CS prints. Where other
signal names or notes are used, they are
enclosed in parentheses.

6.1 Overview

CHAPTER 6
eCI MODULE

The CMI CIPA interface
the CMI (CPU memory
CI750. The module
interfacing with the
signal formats when
cabinet.

(CCI) module serves as an interface between
interconnect) bus and the port logic of the
follows CMI protocol and timing while
CMI bus, and responds to port timing and

interfacing with the DP module in the CIPA

The overview begins with a description of the CMI bus, CMI bus
signals, and CMI bus timing. The overview then provides a block
diagram of the CCI with a brief description of the CCI major
components and their functions. Lastly, simplified flow diagrams
are used to illustrate functioning of the major components during
port initiated data transfers and unsolicited CMI transfers.*

* An unsolicited CMI transfer is a transfer wherein the CI750 is a
slave (transfer not initiated by CI750).

6-1

In addition to serving as an overview of CCI operation, the
simplified flow diagrams are related to flow diagrams found in
other sections of Chapter 6. These sections expand on each area of
the overview flows with more detailed diagrams and text as to how
each of the areas performs its function. Consequently the overview
flows are used, along with the CCI block diagram, throughout the
rest of the chapter.

6.1.1 CMI Protocol
The CMI is a 45 line synchronous, interlocked communication bus.
The bus is interlocked in that when a master and slave are
communicating, the bus is locked out to other nexus.

The CI750
(including
transfers.

port is a master for all port initiated bus transfers
interrupts). It is a slave for all unsolicited

6.1.1.1 Bus Signals The 45 bus lines are illustrated in
Figure 6-1 and described in Table 6-1.

Table 6-1 eMI Bus Signals

No. of
Lines

32

1

1

Name Mnemonic

Data/Address CMI DATA <31:00>

Busy CMI DBBZ

Hold CMI HOLD

6-2

Function

Thirty two multiplexed
lines that carry four
bytes of data or a
32-bit command/address
longword. The format of
the data longword and
the command/address
longword is illustrated
in Figure 6-2.

Indicates that the CMI
is busy doing a
master/slave transfer.

The CPU asserts CMI HOLD
to perform high priority
transaction with a
nexus. HOLD inhibits
all other nexus from
obtaining the CMI bus.

No. of
Lines

1

7

Table 6-1 CMI Bus Signals (Cont)

Name Mnemonic

Wait CMI WAIT

Arbitration CMI ARB <7:1>

6-3

Function

CMI WAIT is asserted by
a nexus that is issuing
an interrupt to the CPU.
WAIT informs the CPU
that an interrupt
transaction is about to
occur.

Arbitration for the CMI
bus follows a
distributive priority
scheme. Each nexus
(except the CPU) is
assigned a priority ARB
line (ARB 7 = highest
priority). Among
arbitrating nexus, the
one with the highest
arbitration priority
will obtain the bus.
Each nexus monitors all
higher priority ARB
lines. If a higher
priority nexus is not
arbitrating for the CMI
bus, and the bus is free
(CMI DBBZ and CMI HOLD
false), a nexus can
obtain the bus. The CPU
is not assigned a CMI
ARB line and thus
becomes the lowest
priority nexus on the
CMI (ARB 0).

No. of
Lines

2

1

Table 6-1 CM! Bus Signals (Cont)

Name Mnemonic

Status eMI STATUS <1:0>

Bus clock eMI B eLK

Function

Each slave that is
addressed by a master,
return a two-bit status
code to the master at
the end of the trans­
action. The code
indicates the success or
failure of the
transaction as shown
below.

eMI Meaning
STATUS
1 0

o 1

1 0

1 1

NXM (non­
existent
memory) (This is
equivalent to no
response.)

ueE (unco rrec t­
able error)

eRD (corrected
read data)

No error

B eLK is the bus clock
that synchronizes all
eMI bus activity. B CLK
i s a 6. 25M Hz c I 0 c k wit h
a period (bus cycle) of
160 ns.

Referring to the command/address format in Figure 6-2B, note that
bit 24 is always zero.

Also, that address bits <01:00> are not used because all eMI
addresses are longword aligned. If only a portion of the data
longword is of interest, the byte mask specifies which bytes are
valid.

6-4

NEXUS

DATA/ADDRESS

(35' 11nes)

ARBITRATION

(7 11nes)

32 DATA/ADDR.
1 WAIT
1 HOLD
1 BUSY

3 MBA
1 UBI
1 ROM
2 RESERVED

STATUS (2 11nes)

6.25 MHZ B CLOCK (1 11ne)

Figure 6-1 eM! Bus Signals

6-5

C1750
PORT

31 24 23 16 15 08 07 00

BYTE 3 BYTE 2 BYTE 1 BYTE 0

A. Data format

31 2827 252423 020100

(/> I J
r- --BYTE MASK PHYSICAL LONGWORD ADDRESS

FUNCTION CODE

8. Command/Address format

Figure 6-2 CM! Data and Command/Address Formats

6-6

The three-bit function code shown in Figure 6-28 is defined in
Table 6-2.

Function Function
Bits
27 26 25

o 0 Read

o 1 Read Lock

1 0 Read With
Modify
Intent

o 1 1 Undefined

1

1

1

o " Wri te

o 1 Wri te
Unlock

1 0 Wri te
Vector

III Undefined

Table 6-2 Function Code

Port Initiated
Operation
(CI758 is master)

A CMI device is read by
CI750.

Same as "read" plus all
other CMI devices are
locked off the CMI until
the CI750 executes a
"write unlock" function.

Cannot be initiated by
the CI 750.

A CMI device is written
by the CI750.

This function follows a
"read lock" function.
Same as a "write" plus
all other CMI devices
are unlocked so they
can access the CMI.

The CI750 writes an
interrupt vector to the
CPU.

6-7

Unsolicited
Operation
(CI758 is slave)

CI750 is read by
the CPU.

Treated as a
"read" by the
CI750.

Treated as a
"read" by the
CI750.

The CI750 is
written by the
CPU.

Treated as a
"write" by the
CI750.

Not appl icable.

6.1.1.2 Write Timing Timing for a eMI write transfer is
illustrated in Figure 6-3.

The command/address cycle is the first bus cycle that occurs after
the eMI master has won control of the bus. In the command/address
cycle, the master nexus asserts DBBZ and places the
command/address onto the eMI data/address lines.

In the nex t bus eyc Ie, the maste r neg ates DB BZ, removes the
command/address from the eM I, and places the wr i te data onto the
data/address lines. The slave nexus asserts DBBZ to hold the bus
until it is ready to take the data. As seen in Figure 6-3, this
could take more than one bus cycle.

When the slave is ready to take the write data, it negates DBBZ,
/takes the write data off the bus, and places status on the bus for
the eMI master. The bus cycle following the negation of DBBZ is
the I as t c yc leo f the wr i t e t ran s fer and i s des i g nat e d as the
status cycle. Note that the write data is still on the eMI during
the status cycle.

If the slave is immediately ready to take the write data from the
eMI, the transfer completes in only two bus cycles
(command/address and status). In this case the slave takes the
data and returns status, but does not assert DBBZ.

In a write transfer, only two of the four status states are used.
These are II no er ro r" and N XM (e i ther the sl ave responded or it
didn't). The two data error states are not applicable.

6.1.1.3 Read Timing Timing for a eMI read transfer is
illustrated in Figure 6-4.

The command/address cycle is the first bus cycle that occurs after
the eMI master has won control of the bus. In the command/address
cycle, the master nexus asserts DBBZ and places the
command/address onto the eMI data/address lines.

In the nex t bus cyc Ie, the master neg ates DB BZ, removes the
command/address from the eMI, and waits for the slave nexus to
return the read data. The slave asserts DBBZ to hold the bus
until it is ready to place the read data onto the bus. As seen in
Figure 6-4, this could take more than one bus cycle.

When the slave is ready to place the read data onto the
negates DBBZ and places the read data and status onto the
the eMI master. The bus cycle following the negation of
the last cycle of the read transfer and is designated
status cycle.

eM I, it
bus for
DBBZ is
as the

If the slave is immediately ready
eMI, the transfer completes
(command/ address and sta tus). In
read data and status onto the eMI,

to place the read data onto the

6-8

in only two bus cycles
this case the slave places the
but does not assert DBBZ.

0\
I

1.0

: • i _ L I I -1 --l-[-
cJM~~~pk~p~~ i I ., Sl"Al'U;S BU~

~vrl r:: ~
I ,

" -
I ' ' I

,I~ I I £: i~ I : - ~,.' .1
, I ' . I ; !: : t -I I I I ' I

I ~ I I' 0, ~ S' i~ ~ ,_ I I
! ! ! L ' , I I i, I i I _: fH ,r---I----".-........-
13 I c: ~ ,----I, ',. I. I' - I I I

!1>kB~ . ~.: W;.; '.1., iz:F:f~ ~I , '
I ' J , i ' I I ; , ' I I J

J>ATAj,.\DDRESS , -.U C~MM~Nr>/Al>PR:EIS ~ :ff bAiA -.(I '

_ : : ' I I I ,

: stAtus' I I ff I I -',-' ""'"'--_

I I I , t
I I , I I I

<D ,Asserted by master

@ Asserted by slave

Figure 6-3 eMI Wr1te Timing

c:t\
I

f-I
o

STAiU.s BUS

. C'ICl7,'
. ---I I~ -~I

I i, !. i ! \ j i I I! 'I I j I ,

I.... '1>0 NS, .~I I I
, ! " rh r------I , ! ' ! ' I :)J l I [

~
, I I " '!

'COMMA:NJ./J. DJR.sJ j

:B~S: 4Y :L fT! I
, , !

B C:L'k i

! ' I. :: i LI, i(? I

DiB'B2" '~~:!:Cb; l ~I~ ® ')})--' ---"~L ____ '--:'~~~
: , .: • . I I I· .", I .

DATA/~ D!pkE'SS -.J CbM~ANb~l>~RE$$ I rs DATA
~ I " I' ,
I , ! I , . .. ;",.,

S rAT U $ I t),f\---------'

i

I
I l-- r-'

I I I

CD
@

Asserted by master

Asserted by slave

Figure 6-4 eMl Read TIming

,

1

I
(
i
I
I

In a read transfer, all four of the status states are used. The
two data error states refer to the read data that is being
transferred to the master.

6.1.1.4 write Vector Timing Timing for a CMI write vector
function is illustrated in Figure 6-5.

The command/address cycle is the first bus cycle that occurs after
the interrupting nexus (master) has won control of the bus. In
the command/address cycle the master (CI750) asserts DBBZ and
places the interrupt vector onto the CMI data/address lines. CMI
WAIT is already true, having been asserted by the interrupting
nexus when the interrupt was initially generated.

During the next bus cycle (status cycle), the master negates DBBZ
while the slave (CPU) returns status to the master. In an
interrupt transaction, the CPU always returns a "no error" status.
Note that the interrupt vector is on the CMI during both the
command/address and status cycles.

6.1.2 Major Components
The major components of the CCI are shown in Figure 6-6 and listed
below. This is followed by a description of each component.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10
11.
12.
13.
14.

6.1.2.1
register
the DP.
address

Command/Address Hi Register
Address Lo Register
Byte Mask Register
XMIT File
Return Read Data Register
Interrupt Vector
CNFGR Register
CMI Mux
Address Decode Logic
Command/Address Hold Register
Address Offset Register
Function Register
Receive Write Data Register
RCV File

Command/Address Hi Register -- The command/address hi
receives the command and the high order address bits from
The register contains two function bits and the six upper

bits. The register outputs onto the CMDADDR bus.

6.1.2.2 Address Lo Register -- The address 10 register receives
the 16 low order address bits from the DP. The lower eight bits of
the register form a counter that is incremented to change the
address for each transfer without reloading. The register outputs
onto the CMDADDR bus.

6-11

~
I

rv

'"'l
10
c:
11
CD

~
I

U1

(1
3:
H

~
11
rt
CD

<:
CD
(1

rt
o
11 ..,
.....
S
::J
10

B! ;

,eLk

WAIT'

})13B~,

l>ATA/ADbRE~S:
; I : :

sTAr,u-s
ii" j :

1--1- I

~! I I-!
i I - - ~E ~I : dM _ ~ D: '

:C l.}~ i Y LE~_ : : ' I ~~ ,I 'r
I I ,_ ' 1 I !

r '

i -
, I r '

,stATUS BUS,
(tYc lE

j I ; - !; ! I
..... ! I~O' NS . ,.1 I , I ' I " ___________ ~.

'iJl, !!I r L....i_-,
- Ii'

L
i I

:JJ~-~~~~~~ I

, : I I

: lJ~: ,:rNtERRU.'P~ VEC"TOR~-I;:-1I ___ ~_
I I I

i I
I ; I

l l- t

Figure 6-5 eMI Write Vector Timing

C
M
r

'8
II
S

eMl'
DAtA

(31:00)

~-~~~---~---.."" rl> BUF CMI D < 3/:"'0)

r---- ----~------------,
I ,1--11 ,BUF BUF eM!"

, cMX D f) <,S-:ri;>
BUF eM!' 'I ADDRESS - I C/'/b)

I\. J) <2.1;·~2~ DI:CODE AhIlR.(/u.{,) 0, CMrtADD,"~--..~~~~~~~SI--"":""1 --. '

I LO~/C A""IJll'II:,'1II1. .\24 tt~LE~ .• 1-- REG. I RfcelVI!WlIlTE I "u ,. DArA ~EC;I STEil

, C.C.T RI;C; I HI I La

, CNFGP L...... FUNCTION I (lb') I (~')
-- #?EG.

I C'I ~PACr:: :
I _.- I

I (FIG. ~-2b) I L ____________ ~ _____ ~

(;AlGFR
REG.

(p,~. '-34)

XH/r FIl.l:

HI II LO I,.) 1111
C~~ It-el
lCMIT XMlr
MTA D4TA
~31:/"> <,s-:H)

~ ~

ReV F'I-e
HI I 1-0

(11<') l ('9)

LTCIfO
c,rA
,,<,:~

111 E
,..ASk

REG.
(11.)

ReV wD
(3, :,b)

CM&ADDR CMO'\Ollt
2'1.25'; (,'I: ;2)
(~Jlli>

urI

eC:I Rev
DATA <'S:Cll~> ~

Note:

CIPA
DAtA

<IS :c6(b) • (TO/FROM DP)

letter designations In parentheses
refer to engineering drawings
containing corresponding logiC.

Figure 6-6 eel Block Diagram

6-13

6.1.2.3 Byte Mask Register -- The byte mask register receives the
byte mask from the DP. The register is eight bits wide capable of
holding two 4-bit byte masks. This Gapability is used for
quadword data transfers. The register outputs onto the CMDADDR
bus.

6.1.2.4 XMIT File -- The XMIT file is used as a buffe~ during port
initiated write operations. The file stores the write data from
the DP that is to be transferred to the CMI. The CCI unloads the
XMIT file out to the CMI under CMI protocol.

The size of the XMIT file is 4 x 32; capable of holding four
longwords. Buffering is implemented by dividing the file into
halfs (A and B) with two longwords in each half. While one half
is being loaded with data from the DP, the other half can be
unloaded out to the CMI.

The file is loaded from a l6-bit LTCHD CIPA D bus hence, each
longword location requires two load cycles to be filled. The file
outputs onto the 32-bit eCI XMIT DATA bus.

6.1.2.5 Return Read Data Register -- The Return Read Data Register
is used during CMI unsolicited read operations. The register
receives data read from the DP that is to be transferred to the
CMI. The CCI unloads the register out to the CMI under CMI
protocol.

The Return Read Data Register is 32-bits wide. The register is
loaded from the l6-bit LTCHD CIPA D bus hence, two load cycles are
required. The register outputs onto the 32-bit CCI XMIT DATA bus.

6.1.2.6 Interrupt Vector -- The interrupt vector circuit supplies
the interrupt vector to the CMI mux during a write vector
function.

6.1.2.7 CNFGR Register -- The CNFGR register contains status,
error, and control bits associated with operation of the CCI and
the DP. The output of the CNFGR register is one of the selectable
inputs to the CMI mux.

6.1.2.8 CMI Mux -- The CMI mux selects one of four data sources
for the data/address lines on the CMI bus. The four data sources
are:

1. Command/address bus (CMDADDR <31:00»
2. Transmit data bus (CCI XMIT DATA <31:00»
3. CNFGR register
4. Interrupt vector

6-14

6.1.2.9 Address Decode Logic -- The address decode logic decodes
the command/address longword received during the command/address
cycle of an unsolicited CMI operation. Outputs from the address
decode logic indicate:

1. If the command/address longword is addressed to the
CI750.

2. If the reference is to the CCI or the DP.

3. If the reference is a diagnostic maintenance function.

The outputs of the address decode logic are applied to the
command/address hold register.

6.1.2.10 Command/Address Hold Register The command/address
hold register is used to latch all the data received during the
command/address cycle of an unsolicited CMI operation. The
latched data is used during the execution of the unsolicited
operation. The latched data includes all the outputs from the
address decode logic as well as address and function data from the
CMI. The data in the command/address hold register is transferred
to the address offset register and the function register.

6.1.2.11 Address Offset Register -- The address offset register
is used during an unsolicited CMI access to the DP. The register
holds the offset address (offset from the CI750 base address) of
the DP register to be accessed. The register receives the offset
address from the command/address hold register.

6.1.2.12 Function Register The function register is used
during an unsolicited CMI operation. The register holds function
data received from the command/address hold register.

6.1.2.13 Receive write Data Register -- The Receive Write Data
Register latches the data off the buffered CMI data lines during
the CMI status cycle. With the CMI data latched, the CMl bus can
be released to allow another nexus to make a bus transfer.

The Receive Write Data Register is 32-bits wide and is longword
loaded from the BUF CMI D bus. The full 32-bit register output is
available to the RCV file. The register high word and low word
outputs are coupled to the l6-bit eCl RCV DATA bus. Hence to
output the register onto the CCl RCV DATA bus, two unload cycles
are required.

6.1.2.14 RCV File -- The RCV file is used as a buffer during port
initiated read operations. The file stores the read data obtained
from the CMl (via the Receive Write Data Register) that is to be
transferred to the DP. The DP unloads the RCV file when the CCl
indicates that data is available in the file. Unloading of the
RCV file is done under DP control.

6-15

The size of the RCV file is 4 x 32; capable of holding four
longwords. Buffering is implemented by dividing the file into
halfs (A and B) with two longwords in each half. While one half
is being loaded with data from the CMI, the other half can be
unloaded out to the DP.

The RCV file is longword loaded from the Receive Write Data
Register. The RCV file high word and low word outputs are coupled
to the 16-bit CCI RCV DATA bus. Hence, each longword location
requires two unload cycles to be read out.

6.1.3 Simplified Flow Diagrams
Simplified flow diagrams are provided illustrating port initiated
transfers, write vector functions, and unsolicited CMI transfers.
The blocks of the flow diagram represent functions that occur in
the execution of the transfer. Each block (or block area enclosed
in dotted lines) includes a descriptive title and/or figure
number. The title and/or figure number key the block into a
section of Chapter 6 which describes in detail how the function
represented by the block is carried out. Thus the simplified
flows should be referenced throughout the rest of Chapter 6.

It can be seen that some of the flow diagram blocks appear more
than once. This indicates that the function represented by the
block repeats itself in the various types of transfers.

The CCI major components described in Paragraph 6.1.2 and
illustrated in Figure 6-6 are also included in the flow diagram
discussions. Therefore Figure 6-6 should also be referenced
throughout the rest of Chapter 6.

6.1.3.1 Port Initiated Transfers A port initiated transfer is
a CMI data transfer, initiated by the port in which the CI750 port
is the bus master. Figure 6-7 is a simplified flow diagram of a
port initiated transfer illustrating the major steps in the
sequence. The illustration includes both a write and a read
operation.

The port microcode initiates the transfer by loading the CMD/ADDR
HI, the ADDR LO, and the byte mask registers. The three registers
are loaded from the DP via the CIPA bus and the 16-bit LTCHD CIPA
D bus. A separate write cycle is required to load each of the
three registers.

At this point the flow sequence divides according to whether a
write or read operation is being executed.

6-16

,--­
I
I
I
I ,
I
I
I
I
I

Load CMD/ADDR HI re;llter.
Load ADDR LO re;llter.
Load Dyte .alk re;llter.

--- ----,
eF1;. 6-10) I

I
I
I
I
I
I
I-
I
I
I L ____________ _ ___ , ____ .J

Load XIIlT fUe.

(Fl;. 6-12)

Illue GO.

eFl;. 6-13)

ArDltrate for CMI.

(Fl;. 6-15)

Tranimlt com~and/addreil to CMI.

--,

Issue GO.

(Fl;. 6-13)

ArDltrate for CMI.

eFlO. 6-15)

Tranlmlt command/addrels to C"I.

~oad Recelve ~rlte Data ReOister.
Receive status trom slave.
Load RCV t11e.

(Fl;.\
6-20}

Unloaci RCV flle.

Figure 6-7 Flow Diagram of Port Initiated Transfers

6-17

A. write Operation

If a write operation is executing, the XMIT file is
loaded with write data from the DP. Two write cycles are
required to load a longword into the file from the l6-bit
LTCHD CIPA D bus. The XMIT file can hold up to four
longwords of data.

After the XMIT file is loaded, the port microcode issues
a GO command to initiate the transfer of write data over
the CMI bus.

GO starts the arbitration process wherein the port
attempts to gain control of the CMI.

When the arbitration is successful and the port has won
the bus, a command/address bus cycle is executed. In the
command/address bus cycle, the outputs of the CMD/ADDR
HI, ADDR LO, and byte mask registers are combined to form
a command/address longword on the CMDADDR bus (CMDADDR
<31:00». The command/address longword is selected by
the CMI mux and placed onto the data/address lines of the
CMI.

In the next bus cycle the data longword first loaded into
the XMIT file is unloaded, selected by the CMI mux, and
placed onto the CMI data/address lines. The transfer ends
with the status bus cycle wherein the port receives
status from the slave nexus.

If the transfer was to write a single longword of data, a
DONE signal is issued to the port microcode informing it
that the CMI transfer is completed. The flow diagram
then terminates.

If a data quadword was to be
returns to the "arbitrate for CMI"
sequence from that point. Note
longword can be transferred on
operation. If a quadword of data
the port must arbitrate for the CMI
transferred.

6-18

transferred, the ~low
block and repeats the
that only a single
the CMI per write

is to be transferred,
bus for each longword

B. Read Operation

If a read operation is executing, the port microcode
issues a GO command to initiate the transfer of read data
over the CMI bus.

GO starts the arbitration process wherein the port
attempts to gain control of the CMI.

When the arbitration is sucessfu1 and the port has won
the bus, a command/address cycle is executed. In the
command/address cycle, the outputs of the CMD/ADDR HI,
ADDR LO, and byte mask registers are combined to form a
command/address 10ngword on the CMDADDR bus (CMDADDR
<31:00». The command/address 10ngword is selected by
the CMI mux and placed onto the data/address lines of the
CMI.

When the slave nexus is ready with the requested read
data, it initiates the status bus cycle wherein it places
the data 10ngword onto the CMI data/address lines and
status onto the CMI status lines. During the status
cycle the port takes the data 10ngword off the CMI
data/address lines and loads it into the RCV file (via
the Receive Write Data Register). The port also takes
status from the CMI during the status cycle.

If the transfer was to read a single 10ngword of data, a
DONE signal is issued to the port microcode informing it
that the CMI transfer is completed. The sequence
proceeds to the next block to unload the read data out of
the RCV file.

If a data quadword was to be transferred, the flow
returns to the "arbitrate for CMI" block and repeats the
sequence from that point. Note that only a single
10ngword can be transferred on the CMI per read
operation. If a quadword of data is to be transferred,
the port must arbitrate for the CMI bus for each 10ngword
transferred.

Unloading the RCV file out to the DP completes the read
sequence.

6.1.3.2 Write Vector Function -- A write vector function is a
special "port initiated" write transfer in which the port
interrupts the CPU to send it an interrupt vector. Interrupt
requests result from port error conditions such as parity errors,
power-downs, etc. The interrupt vector transferred to the CPU
contains the CPU interrupt starting address for the CI750. Figure
6-8 is a simplified flow diagram of a write vector function.

6-19

(Start)

t
Issue interrupt comllland.

(Fig. 6-22)

"
Arbitrate for CHI.

(Fig. 6-15)

"
Translllit interrupt vector to CMI.
Receive status.

(Fig. 6-24)

,

(Done)

Figure 6-8 Write Vector Function Flow Diagram

6-20

Interrupt logic in the DP monitors those areas which could cause
an interrupt. When the logic senses an interrupt condition it
issues a command to the CCI which initiates the interrupt
sequence.

The interrupt command starts the arbitration process wherein the
port attempts to gain control of the CMI.

When the arbitration is sucessful and the port has won the bus, a
command/address cycle is executed. In the command/address cycle,
the CMI mux selects the interrupt vector and places it onto the
data/address lines of the CMI. This is followed by the status
cycle in which the the slave CPU sends status to the port. The
port keeps the interrupt vector on the CMI data/address lines
during the status cycle.

6.1.3.3 Unsolicited CMI Transfers -- An unsolicited CMI transfer
is a CMI transaction in which the CI750 port is the slave. The
port is addressed by the host CPU which commands either a write or
a read of a port register. Figure 6-9 is a simplified flow
diagram of unsolicited CMI transfers illustrating the major steps
in the sequence. The illustration includes both a write and a
read transfer.

The CCI contains address decode logic connected to the CMI
data/address lines. When the decode logic detects an address that
falls within the address range (I/O slot) of the CI750, it asserts
CI SPACE. Other outputs from the decode logic indicate what area
of the CI750 is being referenced.

The outputs from the decode logic, along with other
command/address data from the CMI, is clocked into a
command/address hold register. From the hold register, address
data is clocked into an address offset register and function data
is applied to a function register. If the command/address
reference is to the CI750 (CI SPACE true), DBBZ is asserted on the
CMI and the function data is clocked into the function register.

Note that most of the action described above occurs for every
command/address cycle. All command/address longwords get decoded,
checked for a CI750 reference (CI SPACE true), and latched into
the command/address hold register. The command/address is on the
bus for only one bus cycle during which it must be taken off the
bus, decoded, and latched. If the reference was not to the CI750
port, the latched data is not used.

Actions that require that the reference be to the CI750, are the
assertion of DBBZ and loading the function register. The
assertion of DBBZ in response to a command/address cycle is done
only by the slave that was referenced. Outputs from the function
register are command signals that initiate and control CCI
operations, hence these should only be asserted if the reference
was to the CI750.

6-21

0'1
I

IV
IV

I­
I
I
I

Write CNfGR register.
Issue status.
Release CHI.

(f IQ. 1>-30)

(t 1 ... I>-H)

1. Decode address oft C~l.
2. Latch decoded 5ignals and command/addresa data into

command/address hold register.
J. Clock address data Into address oftset register.
4. it reference Is to CI750 (CI SPACE true), assert O~6Z

on C~I and clock tunction data Into function register.

No

-----r ,
I
I
I

Read CNf~R register I
out to CMI via CM1 ~ux. I
Issue status.
Release CMi. I

s

CLOCK _rite data Into
Receive .rite Data Register.
ISiue 'tatus.
Release CHI.

.L __

NO

----1
(ri\l. 6-)1) I

I
I
I

I
I

___ .J
keQUest CIPA transter.

f"lL.lllrf> (,-4

Seiect register to be accessed.

I
I

rranster write data trom Receive
~rite Data keQister to U~.

(n ... b-J:t)

~ I n ~I II i ;::, 11 r:.o II, t I ~ II r-, r ,... 1 ~ ,. ... ~ -" " U 1

NO

_I

Transfer r~ad data trom O~ to .CMl
vie Return kead Data Register.
issue ,tatus.
"elease CMI.

(flq. b-J3)

At this point the flow sequence divides according to whether the
reference address is to the CCI or the DP.

A. CCI Access

The only CCI register
unsolicited operation
reference to the CCl
register.

referenced (in normal mode) by an
is the CNFGR register. Hence, a
is a reference to the CNFGR

If the commanded function is a write, bits BUF CMl D 31,
23, 22, 20, 19, 17, 16, 14, 13, and 08 from the CMI, are
written into the register during the status cycle. The
CCI then returns status to the host CPU and releases the
CMl.

If the commanded function is a read, the CMI mux selects
the output from the CNFGR register for the CMI
data/address lines. The CCl then returns status to the
host CPU and releases the CMI.

B. DP Access

When the unsolicited reference is to the DP and the
commanded operation is a write, the write data is taken
off the CMI data/address lines and latched into the
Receive Write Data Register. status is then returned to
the host CPU and the CMI is released. Thus the CMI bus
is not tied up while the CCI interfaces with the DP.

In both a write and a read operation, a request is issued
to the DP requesting access for a CIPA transfer. The DP
responds by reading the CCI address offset register to
determine which DP register is to be accessed.

If the commanded operation is a write, the DP transfers
the write data from the Receive Write Data Register to
the selected register in the DP via the CIPA bus. This
completes the unsolicited write sequence to the DP.

If the commanded operation is a read, the DP reads the
selected register and transfers the read data to the
Return Read Data Register in the CCI via the CIPA bus.
The read data is then unloaded from the Return Read Data
Register onto the CCl XMIT DATA bus. The CCI XMIT DATA
bus is selected by the CMI mux for output onto the
data/address lines of the CMI bus. The CCl then returns
status to the CPU and releases the CMI to complete the
unsolicited read sequence.

6-23

6.2 Port Initiated Transfers
Figures 5-18 and 5-19 illustrated the sequencing of the CCI/DP
Interface Control Logic (located in the DP) for port initiated
data transfers between the DP and the CCl. The Interface Control
Logic supplies a REG SEL <3:0> code that specifies the ceI
location that is to be read or written. The associated data (CIPA
DATA <15: 00» is transferred over the CIPA bus.

The flow diagrams and descriptions given in section 6.2 are a
detailed expansion of the general flow diagrams of port initiated
CMI transfers given in Figures 6-7 and 6-8. Refer to Figures 6-7
and 6-8 and to the CCI block diagram (Figure 6-6) in the following
discussion.

6.2.1 Load Command/Address And Byte Mask Registers
Figure 6-10 is a flow diagram of the "load command/address and
byte mask registers" function. Figure 6-11 is a block diagram of
the register control logic.

Th e command/ add ress hig h wo rd is taken from the da ta I ines of the
CIPA bus and applied to the CCI where it is buffered and becomes
BUF CIPA DATA <15: 00>. BUF CIPA DATA <15: 00> is latched up in a
latch which outputs LTCHD CIPA D <15:00>. The latched data is
applied to the CMD/ADDR HI register.

The CIPA REG SEL <3:0> code from the CIPA bus is applied to the
CCI write decoder. CIPA REG SEL 3 is asserted when a CCI register
is to be written (see Table 5-10). The true state of CIPA REG SEL
3 enables the decoder (DIAGNOSE false) which then decodes the CIPA
REG SEL <2:0> input to select the register to be written. In this
case, the WRT CMDADDR HI output is asserted.

WRT CMDADDR HI loads the two function bits (LTCHD CIPA D <14:11;»
and the six high address bits (LTCHD CIPA D <05:00» into the
CMD/ADDR HI register.

WRT CMDADDR HI also clears the read and write counters causing the
read and write pointers to address location 0 in the XMIT and RCV
files.

In addition, WRT CMDADDR HI clocks a quad flip-flop conditioned by
bit 15 of the CMD/ADDR HI data (LTCHD D 15). The bit is 0 for a
CMI longword transfer and a 1 for a CMI quadword transfer. When
the bit is a I (quadword transfer), the flip-flop sets and asserts
QUAD FLG indicating that a quadword transfer is in progress.

On the next DP to CCI transfer cycle, the address low word and its
associated REG SEL code are taken from the CIPA bus. The address
low wo rd isla tched and then appl i ed to the ADDR La reg i ster as
LTCHD CIPA D <15:00>. The REG SEL code is applied to the write
decoder which outputs WRT ADDR La. WRT ADDR La loads the 16-bit
low address into the ADDR LO register.

6-24

(Start)

t
t CIPA DATA <15:00>

Command/address nlQn data placed on CIPA bus by OP (F1Q. 5-18).

t BUF eI?A OArA <15:00>1

t LrCHO CIPA 0 <15:00>

Command/address nl~h data latcned up 1n CCI.

f
t wRT CMoAoOR HI

REG SEL code from OP sl)eclfies Cf04o/ACOR HI reqlster.

, + t
Functlon blts CLICHO CIPA Read and wrlte LTCHO CIPA 0 15
o <14: U>J and hlqn address counters cleared to ls clocKed 1nto
blts (LTCHO eIPA 0 <O~:OO» address 10cat10n 0 quad word fllp-
loaded Into CMOAOOR "I ln X,nT and"ReV flop.
reQ1ster. fUes •

~ t CIPA DATA <15:00> rLG

Address low data placed on It' r
CIPA bUS DY DP (flq. 5-111).

Quadword LonQword
CMI CMI
transfer. transfer.

t Bur CIPA DATA <15:001

t LTCHO CIPA 0 <15:00>

Address low data latcned up 1n CCI.

I

Figure 6-10 Load Flow Diagram for CMD/A~DR HI, ACDR LO,
and Byte Mask Registers (Sheet 1 of 2)

6-25

I

r

t WRT ADOIl LO

REG SEL COde froID OP slleCIUes AOOR LO reqlster.

L04 address b1ts (L'rCHO CIPA 0 <15:UO» loaded Into AOOR LO register.

t CIPA DATA <15:00>

Byte masl(data Illaced on CIPA bus by OP (Fig. 5-18).

r

It Bllf' CIPA UATA <15:00> J

t LTCHU CIPA 0 <15:00>

Byte masl(data latcned up 1n CCI.

~~

t WRT I!YrI:: "'ASK

REG SEL code from UP speclf1es byte mask reg1ster.

Byte masl((LTCHO CIPA D <07:00» loaded 1nto byte mask register.

YEsANO
funct10n , ,

I Wr 1 te operat10n I I Read operat10nl

~ 6-12 leJ 6-13

Figure 6-10 Load Flow Ciagram for CMC/ADDR HI, ADDR LO,
and Byte Mask Registers (Sheet 2 of 2)

6-26

(FIG. 6- ,,}.-~....AJi..IL.....J

Note:
Nu trI b e ~ designations in parentheses

refer to engineering drawings
containing corresponding logic.

{FI~.

(FIe;.· ~-/4)

___ ,--_~.!...L!J..:!/!...t---1 M)DR LO
R E CT. Pl+-"-"-~~'--.......

(12) CL hr------t--+----.JU!~dIlJl!.K......IJOL-___l

XMIT
FII-E

(14)

L.TcKI> CIPA

E:~I:~---------J
c

E:'~:t-------------1 WR IrE

HI
LO

RP COUNTER
)-D"'-''''-''U.a....:>o.l..!l!U-~AI>R ~~~ ___ -.lI!..IS...!..~.Ilil.~~'..L-_..l--l (14)

'-'--~.::..:..,

r"'''''-''-!:w''-:I/:..!:'B~'B!....!l!=--(FIG. 6 -/ b)

t-="--"u..J..L.L.....I:.&.Io,J;"'" (FI G. (, - I 8)

J-.--""~n.£..Il'-.i!..E~-_} (FIG. (,- 2 f,)

1---I!.lA~~....E-__ -.--I-_(1'1 G. 1,- 34)

WRITE
bECOD~

......... ""-''''''-'''-''>..........,'-''-!ft.L._ (FI G. 1.- 2b)

'----"~~~"----~ (FIG. t..-34)

l-""'-La....lo.k..II~Ii...I.....~!eL~}(FI 17. s- 2.)

1-""""'...1-..t:Jl!...u....-- (FIG. b-18)

'--'1lIJ1.L.....L..o.aJL.J...L.--!=.I!Ul~~ (FIG. 5 - I cfJ)

Figure 6-11 CCI Register Control Logic

6-27

The lower eiljht bits of the ADDR La register form an address
counter. The counter is incremented after each CMI transfer by
E134-8. 8134-8 asserts for each command/address transfer cycle to
the CMI (f.'lUXA/MUXB SEL Band MUXA/MUXB SEL A both fal se i see
Paragraph 6. 2.2.4 and Tabl e 6-3). Thus the CMD/ADDR and ADDR La
registers do not have to be reloaded for each trarisfer when
transferring large data blocks. The microcode reloads the
CMD/ADDR and ADDR LJ registers with a new page address whenever a
page boundary is crossed.

On the next DP to CCI transfer cycle, the byte mask and its
assoc ia ted REG SE L code are ta ken f rom the C I PA bus. The byte
mask is latched and then appl ied to the byte mask reg ister as
LTCHD CIPA D <15:00>. The REG SEL code is applied to the write
decoder which outputs WRT BYTE MASK. WRT BY'rE MASK loads the
eight- bit byte mask into the byte mask register.

Note that while an ei9ht-bit byte is loaded into the byte mask
rec]ister, the register output is only a four-bit nibble (CMDADDR
<31: 28». The two halves of the register are muxed onto the
output lines by E75-5 from flip-flop E75.

Flip-flop E75 is cleared by CLR BYTE MASK at the end of each CMI
transfer. This negates the E75-5 output thereby enabling the lower
four bits from the byte mask register onto the CMDADDR <31: 28>
output lines. The lower four bits of the register contain the
byte mask fo r a longwo rd trans fe r, and the byte mask 0 f the fi r st
10ngvlOrd transferred in a quadword transfer. The upper four bits
contain the byte mask of the second longword transferred in a
quadword transfer.

If a quadword transfer is to occur, the quad flip-flop is clocked
set by WRT CMDADDR HI asserting QUAD FLG. The true state of QUAD
FLG conditions E75 to set. After the first eMI transfer has
occurred, MUXA ~EL A and MUXA SEL B both negate for the
command/address cycle of the second transfer (Table 6-3) thereby
asserting E134-8 and setting 875. The true state of E75-5
swi tches the upper four bi ts of the byte mask reg ister onto the
four output lines thereby placing the byte mask of the second
longword onto the CMDADDR <31:28> output lines.

LAST XFER is asserted after each single longword transfer (QUAD
F LG and E7S-5 f al se) and a fte reach quadwo rd transfe r (QUAD FLG
and E75-5 true). LAST XFER is ANDed with ALLOW DONE from the CCl
control log ic to asser t CLR BYTE MASK. CLR BYTE MASK resets the
byte mask register and flip-flop t~75. Resetting E75 negates E75-5
thereby selecting the lower four bits from the byte mask register
as the next byte mask.

If the function commanded by the port
continue with Paragraph 6.2.2. If the
read, continue with Paragraph 6.2.3.

6-28

microcode is a write,
commanded function is a

6.2.2 Write Function
To execute a write function:

1. The XMIT file is loaded with the write data
2. The port arbitrates for the CMI bus
3. The command/address longword is placed on the CMI.
4. The XMIT file is unloaded out to the CMI

6.2.2.1 Load XMIT File -- Figure 6-12 is a flow diagram of the
"load XMIT file" function.

The data high word and its associated REG SEL code are taken from
the CIPA bus. The data high word is latched and then applied to
the high word section of the XMIT file as LTCHD CIPA D <15:00>.

A two-bit pointer (WRT CNTR <1:0» from a write counter, addresses
one of the four
is cleared by
written, hence
the file.

longword locations in the XMIT file. The counter
WRT CMDADDR HI when the CMD/ADDR HI register is
the pointer is initially addressing location 0 in

The REG SEL code from the CIPA bus is applied to the write decoder
which outputs WRT XMIT FILE HI. WRT XMIT FILE HI loads the
latched data high word into the high word section of location 0 in
the XMlT file.

Another DP to CCI cycle is required to write the data low word
into the XMlT file. The data low word and its associated REG SEL
code are taken from the ClPA bus. The data low word is latched
and then applied to the low word section of the XMIT file as LTCHD
ClPA D <15:00>.

The REG SEL code from the ClPA bus is applied to the write decoder
which outputs WRT XMIT FILE LO. WRT XMIT FILE LO loads the
latched data low word into the low word section of location 0 in
the XMlT file.

WRT XMlT FILE LO also increments the write counter causing pointer
WRT CNTR <1:0> to point to location 1 in the XMIT file.

If this is a quadword transfer, a second longword is transferred
from the DP to the CCl where it is written into location 1 of the
XMlT file. The REG SEL code will accompany both halves of the
longword selecting the high word section of the XMIT file for the
first half of the longword and the low word section of the file
for the second half. The write counter is again incremented by
WRT XMIT FILE LO to point to location 2 in the file.

Two more longwords could be written into locations 2 and 3 of the
XMIT file before the file has to be read out to the CMl.

6-29

t CIPA DATA <15,00)

Dete h1gh word pleced on CIPA bUI bY DP (f1Q. 5-18).

t LTCHU CIPA D <15,00)

Date h1gn word letcned up 1n CCI.

t WRT X~IT FIL~ HI

R~G S~L code tro~ DP Ipec1fles nlQn lectlon ot XMIT tl1e.

Hlgn word (LTCHU CIPA D <15:00» loeded lnto nigh lectlon of X~lT tl1e.

t CIPA DAtA <15:0U)

Dete low word pleced on CIPA bUI by UP (fig. 5-18).

f LtCMO CIPA U <15:00)

Dete low word letcned up ln CC1.

WRY X"It FILE LO

R~G S~L code fro. DP Ipeclflel lOW lectlon ot XMIT fl1e.

Low word (LICHO CIPA D <15,00» loeded into lOW lectlon of XMI1 tlle.

_rlte counter lncre~ented to next locetion in XMIT tl1e.

N

Figure 6-12 Load XMIT File Flow Diagram

6-30

6.2.2.2 Issue GO SET A GO is issued by the port microcode
when the port is ready to arbitrate for control of the CMI bus.
For a write operation, this is after the XMIT file has been loaded
with the write data. For a read operation, this is after the byte
mask register has been loaded.

Figure 6-13 is a flow diagram of the "issue GO" function. Figure
6-14 is a block diagram of the GO/DONE logic.

The port microcode asserts SET A GO to the DP. If the preceeding
microinstruction has not been stretched out (UCODE STALL false)
(Paragraph 5.11.2.3), GO flip-flop El is set and asserts EI-I0.
EI-I0 in turn asserts CIPA A GO on the CIPA bus. CIPA A GO is
received by the CCI where it becomes A GO and then SYNC A GO.
SYNC A GO is applied to GO/DONE PAL E121.

Had the microcode asserted SET B GO (instead of SET A GO), a
similar sequence would have occurred resulting in the assertion of
SYNC B GO to PAL E121.

In response to SYNC A GO (or SYNC B GO), PAL E121 outputs POSSIBLE
GO. If there is no CIPA transfer in progress to/from the DP (CIPA
XFER false) and the CMI is not "read locked" (READ LOCK false),
POSSIBLE GO will assert GO to the arbitration logic.

When a nexus
nexus (except
CMI is "read
function is the

executes a read lock function, it places all CMI
itself) into the "read lock" state. Thus when the
locked", the nexus that executed the read lock
only one that can arbitrate for the CMI.

The GO/DONE logic senses a "read lock" function by detecting a BUF
CMI D 27,25 function code of 0:1 (Table 6-2) during a
command/address cycle. When function bits BUF CMI D 27,25 specify
a "read lock" function, they condition a Read Lock flip-flop to be
set by CLK RDLCK FF. CLK RDLCK FF asserts every command/address
cycle (except port initiated command/address cycles) (Paragraph
6.3.1). If the function associated with the command/address cycle
is a read lock function, the Read Lock flip-flop sets asserting
READ LOCK.

If the GO/DONE logic attempts to issue a GO command while in the
"read lock" state, POSSIBLE GO asserts but the assertion of GO is
inhibited. The assertion of POSSIBLE GO enables a Read Lock
counter (clocked by B CLK) to start counting.

When function bits BUF CMI D 27, 25 specify a "write unlock"
function (1:1 code), the Read Lock flip-flop is conditioned to
reset. During the command/address' cycle of the "write unlock"
function, CLK RDLCK FF asserts and resets the Read Lock flip-flop
negating READ LOCK. The negation of READ LOCK clears the Read
Lock counter and enables the GO AND gate.

6-31

t SET A GO

from mlcroword.

Figure 6-13

walt for current
Instruction to complete.

Present CMI master nal issued a READ
LOCK function. Walt for wHITE UNLOCK.

t A DOHE .

At:ort operation.

Issue GO Flow Diagram

6-32

Set RLTO error
bl t In CWF'GR
reqister.

NO

NO

A hiqher priority device 15 requesting the CMI.

Host CPU has locked up the CMI.

Another dev1ce 1s us1nq the CMI.

* With CI750 at
ARB level 1

Figure 6-15 Arbitration Flow Diagram

6-35

C

M

I
I
ICC

0'\ I~ f
w
0'\

S

CM::r:.
t

RV (FIG. (,-/4)

- ~ -- (Fle;\ QQ;i>ARB IN 1 IN \ [>0 ~ DOl CMI MASTE1~(6) CHI XFER~ \6-/~

(FIG. b-li)

Flqure 6-16

)-10 1 \9 \"ILL-S;.,(FI<rS. ~-14) b-lgJ 6-2 b)

Note:
Nu Itt be .. designations in parentheses

refer to engineering drawings
containing corresponding logic.

Arbltrntlon LogIc

Similarly an arbitration level of 3 could be established by
connecting terminal A64 to terminal A62. The assertion of ARB OUT
[A] would assert CM! ARB 3 to inhibit arbitration by the CPU and
by the CMI devices at ARB levels 2 and 1. Terminals A63 and A66
are left open so that the state of the CMI ARB 2 and 1 lines do
not effect the CI750 arbitration process.

In addition to higher level arbitration lines, the ARB AND gate is
also inhibited by the true state of CMI HOLD or DBBZ. CMI HOLD is
asserted by the CPU to hold the CMI while an essential function is
executing. DBBZ indicates that the CMI is being used by some
other device.

If no higher arbitration levels are
are both false, the ARB AND gate
causing DO CMI MASTER to assert.
of the CMI bus.

pending, and CMI HOLD and DBBZ
will be enabled by ARB OUT [A]
The CI750 port now has control

A WAIT signal is received from the interrupt logic if the
arbitration resulted from an interrupt command. If WAIT is false
(arbitration due to "issue GO" function), the flow passes to the
command/address function shown in Figure 6-17. If WAIT is true
(arbitration due to interrupt command), the flow passes to the
write vector function shown in Figure 6-24.

The arbitration flow diagram shows DO CMI MASTER being asserted
from Figure 6-19 in the "write operation" sequence and Figure 6-20
in the "read operation" sequence. These inputs are used during
quadword data transfers after the first longword has been
transferred and the arbitration logic must regain control of the
CMI to transfer the second longword. This is discussed further in
the discussions associated with Figure 6-19 (Paragraph 6.2.2.5)
and Figure 6-20 (Paragraph 6.2.3.4).

6.2.2.4 Command/Address Cycle During the command/address
cycle, the port asserts DBBZ and places the command/address on the
CMI bus. Figure 6-17 is a flow diagram of a port initiated
command/address cycle.

The next B CLK after a successful arbitration (DO CMI MASTER
asserted) that was initiated by an "issue GO" function (WAIT
false), initiates the command/address cycle. B CLK sets a DBBZ
flip-flop (conditioned to set by DO CMI MASTER) asserting ASSERT
DBBZ and then CMI DBBZ on the CMI bus. CMI DBBZ indicates that
the CMI is busy. The true state of CMI DBBZ inhibits the
arbitration process in all other CMI devices.

CMI DBBZ asserts DBBZ which
conditioning the DBBZ flip-flop
CMI DBBZ is asserted by the
command/address cycle).

negates DO CMI MASTER thereby
to reset on the next B CLK. Thus
port for only one bus cycle (the

DBBZ is also applied to a PREV DBBZ flip-flop conditioning it to
set.

6-37

0'\
I
w
00

1:1 CLK

t DRIVE C~I HIILO 110

Enabl~ output of CMl
!nUX to CIH.

t HUXA/HUXB SEL <BIA)

~UXA/"UXB SEL cod~
s~l~cts CMOAOOR
<31:00) for CMI.

Cloc~ flIp-flop E75. It E75
1s cond1t1on~d to s~t, upper
n1bble of byte mas~ reg1ster
1s selected.

Increment AOOR LO register.

B eLK

o

POSSll:ILE GO, GO. GO ARB.
and AkB OUT [Al held
asserted to re-arcltrate
tor CMI aft~r f1rst
long~ord tranSferred.

F'i<;lure 6-11 flow Dlaqram Of Port Initiated Command/Address Cycle

fOSSIBLE GO

C1750 now has the CMI.'

B eLK

6.2.2.5 Unload XMIT File And Status Cycle -- The next B CLK in
the main flow initiates the period in which the port transfers the
data in the XMIT file to the CMI and negates CMI DBBZ. This
period is followed by the status cycle in which the port receives
status from the slavejevice. Figure 6-19 is a flow diagram
illustrating the unloading of the XMIT file and the status cycle.

NOTE
In the case of a two-cycle transfer, the
port places the data onto the CM! and
negates CMI DBBZ during the status cycle
(Paragraph 6.1.1.2).

with DO CMI MASTER false (Figure 6-16), B eLK resets the DBBZ
flip-flop negating ASSERT DBBZ and CMI DBBZ. If the slave is not
ready to accept the write data, it will assert CMI DBBZ until it
has taken the data from the bus. The flow diagram shows this to be
one bus cycle although it may be longer.

B CLK also sets the PREV DBBZ flip-flop asserting PREV DBBZ.

Logic array E26 in the eCl control logic (Figure 6-18), samples
function bit CMDADDR 27. The true state of CMDADDR 27 indicates
this to be a write operation. The array responds by asserting ENA
XM IT. ENA XM IT in tur n asse r ts RD X"'1 IT FILE wh i ch enabl es the
data out of location 0 of the XMIT file (read counter reset to 0
when CMD/ADDR HI register was loaded; see Figures 6-10 and 6-11).

Logic array E26 also outputs the MUXA/MUXB SEL code to select CCI
XMIT DATA <31: 00> from the XMIT file as the CMI mux input.

The data longword is placed on the CMI bus and transferred to the
slave device. The slave holds CMI DBBZ asserted until it has taken
the data.

The next B CLK initiates the status bus cycle. During the status
cycle the slave takes the write data off the CMI, negates CMI
DBBZ, and places the status bits (CMI STATUS <1:0» (Table 6-1) on
the CMI. The negation of CMI DBBZ negates DBBZ which in turn
asserts STATUS CYCLE.

The next assertion of B CLK to the logic array causes the array to
assert WRT ENABLE STATUS and negate DRIVE CM! HI/LO 1/0. WRT
ENABLE STATUS enables the status decoder which decodes the status
bits from the CMI and outputs any error condition to the
configuration register. The negation of DRIVE CMI HI/LO 1/0
inhibits the output of the 0.11 mux thereby removing the write data
from the CMI bus.

6-41

+ t NUXA/IIUn SEL <alA>

NUXA/~UXB SEL coa~

lel~cts eCI JHIT DATA
<31:00> tor C".J.

8 CL~

II"

It E"A XHI1 I

r

t RD X"IT FILE

Enable location 0
out of XliII file.

~

8 CLK

~ CHI 088Z

Slave t.~e. wr1te
dltl aU CHI.

It
+ +

PREY Dtl6Z1 + ASSE:R r O!5L'Z

~ r. CMJ D~I'\Z

T
t CMI 08bZ

Assertea oy
slave.

t eMI STATUS <1:0>

Slav~ returns status
to eI15u.

Figure 6-19 Unload XMIT File and Status Cycle Flow Diagram
(Sheet 1 of 2)

6-42

NO

Figure 6-19

II CLK

t A DONE

CMI write tranSfer
completed.

t A DN

To CS DranchlnQ loqlc.

t WRT ENABLE STATUS

Oecode status bIt ••
Apply any transfer
error to CNf'CR
reqlster.

t CLA IIYTE "AS~

Reset QUadword
flip-flop n5
~nd clear oyte
maSk reqlster.

+ DRIVE CHI HIILO 110

Write data removed
trom CIH.

Unload XMIT File and Status Cycle Flow Diagram
(Sheet 2 of 2)

6-43

If this is a quadword transfer and only the first longword has
been transferred, the flow diagram returns to the arbi tratic.(}
function (Figure 6-1~) to rearbitrate for the CMI and transfer the
second longword. When a quadword transfer was sensed during the
command/address cycle, the arbitration sequence was executed up to
the assertion of ARB OUT [AJ (Figure 6-17). Now wi th DBFZ
negated, the arbitration sequence can proceed. If in the interin,
the CPU has not asserted CMI HOLD or a higher priority nexus js
not requesting the CMI, the CI750 will regain the CMI for the
second half of the quadword transfer.

If this is the last transfer of the write function, the ccr
control logic asserts ALLOW DONE which in turn asserts CLR BYTE
MASK. CLR BYTE MASK clears the byte mask register and resets
quadword flip-flop E75 in the CCI register control logic.

In addition, GO/DONE PAL E121 sensing the true state of STATl~
CYCLE, outputs A DONE indicating that the write transfer functicn
is completed. A DONE is placed on the CIPA bus as CIPA A DONE and
then coupled to the DP as A DN SYNC. A DN SYNC then causes A DN to
be asserted to the CS branching logic. The port microcode is
thereby informed of the completion of the commanded write
function.

6.2.3 Read Function
To execute a read function:

1. GO is issued from the port microcode
2. The port arbitrates for the CMI bus
3. The command/address is placed on the CMI
4. The RCV file is written from the CMI
5. The RCV file is read out to the DP

6.2.3.1 Issue GO
resulting in the
Issue GO sequence
Paragraph 6.2.2.2.

SET A GO is issued by the port microcode
assertion of GO to the arbitration logic. The
is shown in Figure 6-13 and described in

6.2.3.2 Arbitration GO is received by the arbitration logic
which proceeds to arbitrate for control of the CMI bus. When the
port gains control of the bus, it asserts DO CMI MASTER. The
arbitration sequence is shown in Figure 6-15 and described in
Paragraph 6.2.2.3.

6.2.3.3 Command/Address Cycle -- The assertion of DO CMI MASTER
initiates the command/address bus cycle. During the
command/address cycle the port asserts CMI DBBZ and places the
command/address longword on the CMI bus for transmission to the
slave device. The command/address sequence is shown in Figure 6-17
and described in Paragraph 6.2.2.4.

6-44

6.2.3.4 Status Cycle And Load RCV File -- The next B CLK after
the command/address cycle initiates the period in which the port
negates CMI DBBZ. This period is followed by the status cycle in
which the port receives the read data and status from the slave
device. The read data is loaded into the RCV file via the Receive
write Data Register. Figure 6-20 is a flow diagram of the status
cycle and the loading of the RCV file.

NOTE
In the case of a two-cycle transfer, the
port negates CMI DBBZ during the status
cycle (Paragraph 6.1.1.3).

with DO CMI MASTER false (Figure 6-16), B CLK resets the DBPZ
flip-flop negating ASSERT DBBZ and CMI DBBZ. The slave will
assert CMI DBBZ while it obtains the requested data and places it
on the CMI. The flow diagram shows this to be one bus cycle
although it may be longer.

B CLK also sets the PREV DBBZ flip-flop asserting PREV DBBZ.

After the slave has obtained the requested data and placed it on
the CMI, it negates CMI DBBZ causing the negation of DBBZ in the
CCI. The port uses the negation of CMI DBBZ as an indication that
the read data and the status bits are on the CMI and the next bus
cycle is the status cycle.

The negation of DBBZ also causes STATUS CYCLE to assert (PREV DBBZ
true) •

On the
responds
WRT RCV
from the

next B CLK (start of status cycle), the CCI control logic
to the false state of DBBZ and outputs WRT RCV WD REG.

WD REG clocks the buffered write data (BUF CMI D <31:00»
CMI into the Receive write Data Register.

The control logic also outputs WRT ENABLE STATUS to enable the
status decoder. The status decoder decodes the CMI status bits
from the slave and outputs any error condition to the CNFGR
register.

A third output asserted by the CCI control logic is WRT ENA. On
the next B CLK, WRT ENA asserts WRT RCV FILE. WRT RCV FILE loads
the read data (RCV WD <31:00» from the Receive write Data
Register into location 0 of the RCV file. The RCV file write
pointer (WRT CNTR <1:0» is pointing to location 0 due to the
write counter being cleared by WRT CMDADDR HI during the
command/address cycle (Figure 6-11).

WRT RCV FILE also increments the write counter causing the write
pointer to address location 1 in the file. This would be the file
location of the next longword if this were a multi-longword
transfer.

6-45

8 eLK

t elll DI!BZ

_sserted by slave.

ES

Read data 1s on eMl.

Figure 6-20 Status Cycle and Laad RCV File Flaw Diagram
(Sheet 1 af 2)

6-46

B eLK

CMI read
trlnsflr
completed.

To CS branchlnq loqlc.

t WRT Rev WD REG

LOld rtld dlCI (BUr
eM! 0 (11111») InCo
Rtcllyt Writt Dltl
Iltqllur ••

t CLR e tT! I4A5K

Reslt qUldword
fl1P-tloP E75
Ind clear byte
mlSIC reqlster.

S CLK

t WRT !lCV fILE

l.old reid dltl
Into RCV ftle.

t WRT ENABLE STATUI

Decode StltUI blts.
APPly Iny trlnsfer
error to CNf'GR
reqlster.

Increment "'rlee
counter.

Figure 6-20 Status Cycle and Load RCV File Flow Diagram
(Sheet 2 of 2)

6-47

If this is a quadword transfer and only the first longword has
been transferred, the flow diagram returns to the arbitration
function (Figure 6-15) to re-arbitrate for the CMI and transfec
the second longword. When a quadword transfer was sensed during
the command/address cycle, the arbitration sequence was executed
up to the assertion of ARB OUT [AJ (Figure 6-17). Now with DBBZ
negated, the arbitration sequence can proceed. If in the interim,
the CPU has not asserted CMI HOLD or a higher priority nexus is
not requesting the CMI, the CI750 will regain the CMI for the
second half of the quadword transfer.

If this is the last transfer of the read function, the CCI control
logic asserts ALLOW DONE which in turn asserts CLR BYTE MASK. CLR
BYTE MASK clears the byte mask register and resets quadword
flip-flop E75 in the CCI register control logic.

In addition, GO/DONE PAL E121 sensing the true state of STATUS
CYCLE, outputs A DONE indicating that the read transfer function
is completed. A DONE is placed on the CIPA bus as CIPA A DONE and
then coupled to the DP as A DN SYNC. A DN SYNC then causes A DN to
be asserted to the CS branching logic. The port microcode is
thereby informed of the completion of the commanded read function.

6.2.3.5
"unload
5-19 in
requests
the data

Unload RCV File -- Figure 6-21 is a flow diagram of the
RCV file" sequence. Figure 6-21 interfaces with Figure
Chapter 5. Figure 5-19 illustrates the sequence that
an unload of the read data in the RCV file and receives

that is unloaded.

The port microcode requests that the read data in the RCV file be
transferred to the DP by asserting the REG SEL code for a read of
the RCV file. The REG SEL code is applied to the CCI read decoder
via the CIPA bus. REG SEL 3 is false for a register read function
(Table 5-10). A negated REG SEL 3 enables the read decoder which
then decodes REG SEL bits <2:0> (Figure E-1l). The decoder
outputs RD RCV FILE HI enabling the high section of the RCV file.
The high word (CCI RCV DATA <15:00» is transferred from location
o of the RCV file to the CIPA bus as CIPA DATA <15:00> and then
applied to the DP.

The microcode repeats the preceding sequence in order to retrieve
the low half of the data longword. The DP places the REG SEL code
for a read of the low word section of the RCV file, on the CIPA
bus. The CCI read decoder responds to the code by asserting RD
RCV FILE La. RD RCV FILE La enables the low section of the RCV
file. The low word (CCI RCV DATA <15:00» is transferred from
location 0 of the RCV file to the CIPA bus as CIPA DATA <15:00>
and then applied to the DP.

6-48

t WRT eel REG ENA

Incre~ents read pointer to
location 1 In Rev tile.

t CIP,- REG SEL <3:0>

REG SEL code fro~ DP ,elects hlqn
.ord ,ectlon of pev file (Flq. ~-19).

t RD ReV FILE HI

Hlqn word (eel Rev DATA <15:00» qated
out of location 0 of Rev file.

t eIPA DATA <15:00>

Hlqn word transferred to DP.

t CIPA flEG SEI. <3:0>

REG SEL code fro~ DP selects low
word fro~ Rev tile (flq. 5-19).

t RD ReV FILE LC

Low word (eel Rev DATA <15:00» qated
out of location 0 of ReV flle.

t eIPA DATA <15:00>

Low word tranlferred to Of.

Figure 6-21 Unload Rev File Flow diagram

6-49

If this is a quadword read of the RCV file and only the first
longword has been read out, the RCV file read pointer (RO CNTR
<1:0» is incremented to location 1 and the read sequence is
repeated. The read pointer is incremented by CIPA CLK from the
OP. CIPA CLK becomes WRT CCI REG ENA which then clocks the CCI
read counter.

If this is the last transfer from the RCV file, the port read
sequence of the CMI is completed.

6.2.4 Write vector Function
The write vector function consists of two CMI
command/address cycle and a status cycle. The
function is described in three sequences. These are:

1. Issue Interrupt
2. Arbitration
3. Write Interrupt Vector

cycles: a
write vector

6.2.4.1 Issue Interrupt -- Figure 6-22 is a flow diagram of the
"issue interrupt" function. Figure 6-23 is a block diagram of the
"issue interrupt" logic.

When an interrupt condition occurs in the CI750, the OP places
CIPA PORT INT on the CIPA bus which is then applied to the CCl
"issue interrupt" logic as PORT INT. This action is illustrated
in Figure 5-24 and described in Paragraph 5.12.1.

PORT INT is transferred through two flip-flops as 01 PORT INT and
SYNC PORT INT. SYNC PORT INT is used to clock a BR flip-flop
which then outputs an asserted BR.

BR is a bus request placed on the Unibus at the BR priority level
established by the 16-pin socket E31. BR is applied to four AKD
gates with the second input of each gate tied to an E31 pin. The
socket connects a + voltage from pin 12 to the pin at the
specified BR level. For the CI750, this is normally pin 13 for a
BR level of 4. This enables the BR4 AND gate resulting in the
assertion of UBS BR4 on the Unibus.

The CPU arbitrates the BR requests from all the CMI devices. When
it is ready to respond to the CI750's interrupt request, it
asserts a bus grant to the CI750 at the same priority level as the
BR request (level 4). Bus grants are daisy-chained on the Unibus
from one device to another. Connector socket E31 connects all the
bus grant inputs ([AJ) to their corresponding outputs ([A+IJ) for
all priority levels except level 4. The bus grant input at level
4 (UBS BG4 [AJ) is applied to the "issue interrupt" logic as BG
IN. There is no output at the corresponding BG OUT terminal.

6-50

t CIPA PORT !NT

(F'1Q. 5-24)

DELAYED IS CLK

8 CLI< Dt:LAYED 8 CLK

8 CLK

Figure 6-22 Issue Interrupt Flow diagram

6-51

m
I

U1
I\..)

C
M
1:

B
u
S

(FIGS, '-/6J &-11)

E~I

If IfJ II (,,) I

UBS uaS U8S
15Gb ali'J BG7
(Al [Atl] tAl

figure 6-23 Issue Interrupt Logic

Di
14 'VI< I IN , (f~~) r,~)DI rVD' ,n, I ~;)

bELAYE D
c C'" R \.hI<

C6 (FIG. {._ 25)
00> VECTOR ;7 ~}

I I ; lC61:> veCTOR 166 ..

~

Note:
Nu '" h~ .. designations In parentheses

refer to engineering drawings
containing corresponding logic.

If some other device also at BR level 4 had issued the bus
request, the interrupt logic would output the bus grant at the BG
OUT terminal and then to the Unibus as UBS BG4 [A+l] thereby
passing the bus grant along to the device that had issued the bus
request.

BG IN clocks a flip-flop (EI18) conditioned to set by BR from the
BR flip-flop. Ell8 sets and in so doing inhibits the assertion of
BG OUT. Had BR been false (no bus request from the CI750), El18
would not have set and BG OUT would have been asserted (after a 70
ns delay*). The assertion of BG OUT would have returned the bus
grant to the Unibus via the UBS BG4 [A+I] terminal.

* Time allowed for flip-flop El18 to set in the event the CI750 is
requesting an interrupt.

BG IN is also applied to a chain of three flip-flops. The output
of the first flip-flop resets the BR flip-flop thereby removing
the bus request (UBS BR4) from the Unibus. The output of the
second flip-flop (El20-5) is applied to the arbitration logic
where it asserts GO ARB in the arbitration sequence.

The output of the third flip-flop (WAIT) is applied to the
arbitration logic, the CCI control logic, and the CMI.

In the arbitration logic, WAIT inhibits the assertion of DO CMI
XFER to the GO/DONE logic. Thus the GO/DONE logic does not
re-assert GO if a quadword operation happened to be in progress
when the interrupt occurred.

In the CCI control logic, WAIT indicates to logic array E26 that
an interrupt transfer (not a data transfer) is executing. The
array can then output the proper MUXA/MUXB SEL code for the "write
vector" function (Paragraph 6.2.4.3).

On the CMI, CMI WAIT informs the host CPU of the pending "write
vector" function.

6.2.4.2 Arbitration E120-5 is received by the arbitration
logic which proceeds to arbitrate for control of the CMI bus.
When the port gains control of the bus, it asserts DO CMI MASTER.
The arbitration sequence is shown in Figure 6-15 and described in
Paragraph 6.2.2.3.

6.2.4.3 Write Interrupt Vector Upon completion of a
successful arbitration, the arbitration logic asserts DO CMI
MASTER. The next B CLK initiates the command/address cycle during
which the port asserts DBBZ and places the interrupt vector on the
CMI bus. This is followed by the status cycle in which the CPU
returns status to the port. Figure 6-24 is a flow diagram of the
"write interrupt vector" sequence.

6-53

B CLK

r + t DRIVE CMI 'H/LO 110 t ",UXA/MUXB SELo <BIA> It ASSERT DBBZ I
f:nable eMI mux outpat MUXA/MUXB SEL code
to C/1I. selects interrupt 1

vector tor CHI. I t CI4I oeaz I

l'
It 088Z I

~DO CHI MAST~~f

B eLK

tWRT ENA Sl'UUS ~DHIVE CPU HI/LO 110

Decode status Interrupt vector
olts. CPU removed tram C"I.
always returns
"no error"
status.

Figure 6-24 Write Interrupt Vector Flow Diagram

6-54

B CLK sets a DBBZ flip-flop (conditioned to set by DO CMI MASTER)
asserting ASSERT DBBZ and then CMI DBBZ on the CMI bus (Figure
6-16). The true state of CMI DBBZ inhibits the arbitration
process in all other CMI devices.

CMI DBBZ asserts DBBZ which
conditioning the DBBZ flip-flop
CMI DBBZ is asserted by the
command/address cycle).

negates DO CMI MASTER thereby
to reset on the next B CLK. Thus
port for only one bus cycle (the

DBBZ is also applied to a PREV DBBZ flip-flop conditioning it to
set.

Also occurring during the command/address cycle is the assertion
of DRIVE CMI HI/La 1/0 by logic array E26 in the CCI control logic
(Figure 6-18). When the array senses that the CMI bus has a
master (DBBZ true) and that the CI750 is that master (DO CMI
MASTER true), it asserts DRIVE CMI HI/La 1/0 to gate the output
from the CMI mux to the CMI bus.

Logic array E26 also senses the true state of WAIT from the
interrupt logic. WAIT indicates to the memory array that an
interrupt sequence is executing. Accordingly the memory array
outputs the MUXA/MUXB SEL code that selects the interrupt vector
for the CMI mux input (Table 6-3).

The next B CLK initiates the status cycle. With DO CMI MASTER
false, B CLK resets the DBBZ flip-flop negating ASSERT DBBZ, CMI
DBBZ, and DBBZ.

B CLK also sets the PREV DBBZ flip-flop asserting PREV DBBZ. with
PREV DBBZ true and DBBZ false, STATUS CYCLE asserts.

In addition, B CLK causes logic array E26 to assert WRT ENA STATUS
and negate DRIVE CMI HI/La 1/0. WRT ENA STATUS enables the status
decoder which decodes the status bits from the CMI. The CPU
always returns a "no error" status in response to a write vector
function. Hence there is no output from the status decoder.

The negation of DRIVE CMI HI/La 1/0 inhibits the output of the CMI
mux thereby removing the interrupt vector from the CMI bus.

The CPU now takes the appropriate action in response to the CI750
interrupt.

The interrupt vector (Figure 6-25) is a 32-bit command/address
longword. The byte mask field (bits <31:28» is all zeros and the
function code (bits <27:25» is 6. The address field (bits
<23:00» is determined by the CMI I/O "frequency slot" and the BR
level assigned to the CI750. This is discussed below.

6-55

0'\
I

U'1
0'\

{
VECTOR

(FIG,. 6-23) - VECTOI> r-

(FIG- b- 2b)
S,EL

Figure 6-2S Interrupt Vector

Most of the vector bits are supplied by the CMI mux by use of +
voltage pull-up and gro und connections. These incl ude the byte
mask bits, the function bits and 19 of the 24 address bits. Five
of the address bits are selectable. Tabl e 6-4 lists all possible
values of the interrupt vector.

Table 6-4 Interrupt Vector Values

I/O Slot BR Level Interrupt Vector Bits Interrupt
No. Vector <31:00>

07 06 05 04 03 02 01 08 (hex)

10 4 0 0 1 0 1 0 0 0 0C 00 0128
5 0 1 0 1 " 68
6 1 0 0 1 0 A8
7 1 1 0 1 " E8

11 4 0 0 " I 1 2C
5 0 1 0 1 1 6C
6 1 0 " 1 1 AC
7 1 1 0 1 1 EC

12 4 0 0 1 0 0 30
5 0 1 1 " 0 70
6 1 0 1 0 0 80
7 1 1 1 0 0 F0

13 4 0 0 1 0 1 34
5 0 1 1 0 1 74
6 1 0 1 0 1 84
7 1 1 1 0 1 F4

14 4 0 0 1 1 0 38
5 0 1 1 1 0 78
6 1 0 1 1 0 88
7 1 1 1 1 0 F8

15 4 0 0 1 1 I 3C
5 0 1 1 1 1 7C
6 1 0 1 1 1 BC
7 1 1 1 1 1 £o'C

6-57

The five selectable bits are 07, 06, 04, 03, and 02. Three of the
selectable bits (04, 03, 02) are established by the I/O "slot" in
which the CI750 is located. There are six I/O "slots" (numbered
10 through 15 inclusive) which could be assigned to the C1750.
Each slot has its own base address. Bits 04, 03, and 02 are
connected to terminals designated as CMI SLOT SEL <2:0>
respectively. By use of jumpers, the three SLOT SEL bits are made
l's or O's according to the I/O slot assigned to the C1750.

The three SLOT SEL bits are used in the address decode logic to
establish the I/O slot that the logic will recognize as being
CI750 addresses. The address decode logic and the use of the SLOT
SEL bits is described in Paragraph 6.3.1 (Command/Address Cycle)
and Figure 6-26. It is sufficient here to say that the value of
the SLOT SEL bits have already been established by the selection
of the CI750 I/O slot.

The remaining two selectable address bits (07 and 06) are
designated as VECTOR <07:06> respectively. The value of these
bits is established by the BR level selected by jumper socket E3l
(Figure 6-23). As seen in Table 6-4 and Figure 6-23, the binary
value of bits VECTOR <07:06> increases from 00 to 11 as the BR
level changes from BR4 to BR7.

Table 6-4 lists the binary values of vector bits <07:00>, and the
hex values of the entire vector longword, for all four BR levels
in each I/O slot. The normal selections for the CI750 is BR4 and
I/O slot 15, resulting in a normal interrupt vector value of OCOO
013C.

6.3 UNSOLICITED CMI OPERATIONS
The flow diagrams and descriptions given in section 6.3 are a
detailed expansion of the general flow diagram of unsolicited CMI
transfers given in Figure 6-9. Refer to Figure 6-9 and the CCI
block diagram (Figure 6-6) in the following discussion.

6.3.1 Command/Address Cycle
In the command/address cycle, the CPU addresses the CI750 port and
the register that is to be accessed. It places the address on the
CMI along with DBBZ and the requested function (read or write).
The CI750 takes the command/address longword off the CMI and
decodes the address and function fields. If the CI750 determines
that the command/address reference is for it, it asserts DBBZ on
the CMI while the operation executes.

Figure 6-26 illustrates the logic involved in decoding the address
field. The logic includes an address space decoder to determine
if the CI750 is being addressed, and a register decoder to
determine the register or register area that is being addressed.
The decoders are discussed in Paragraphs 6.3.1.1 and 6.3.1.2.

6-58

'" I
V1
\0

RP ADIIR
(FIG. (,-/1) xc Cd &, ,

N'.III.!!IlP' < '< pur ",... II '''''"'. (FIG. 6-{,) CF-",C;.6-6)"!,.Y • ., ~'·~·'I~ &'=* &),., "O'n ,_ ... _< "

.. lit .. -W>

~

Note:

(FIG. 6-25')

--------1 ,< ,'" 1'<''''1
--------II---~

'---.... +1 ---n-t-------,
COMMAND/

J\DDRESS
HOLD
REG

"> "''-&.- .. ,,,,,,. "'W '- ~ (FIG. (,-f:.)

InPHD ."II·P?' .. , .. I -- ____ I I I "I
l"r lfO " .. r WL1--------1 I I ~I

..... DEW ~I _______ _

I ... " CY " ... 1- - - - - n_

Lk (• .,) ;;!!i, mp .. (FIG. 5-25')

'---".-11 -------1 unllF 1")0 D~iK "1
luna ","n11.-. (RG. 5'-2)

-Il> FF 1 __
----- ... (4)

R ,.,D ."c.

FUNCTION
REG.
(4)

1---'---i ... ~1 _____ 1 '* nWllnE'ld II'

'-if----.~I- - -- - - -I ,.... DE\c

.. , cn DES" "J(FIG.6-/8)

(FIG. 6-/9) -[)-LO '* n " v

)ft"" G ""'til" '""' ... (FIG. 6-34)

(2'/) cr I ~A ~MIT EIL~ (FIG. b-/l)
)....) ~..\&Iol:--JRIU~o.lL...;R ~~~"""~-"'=-'-' "'""+1:1 D , A G NOS TI C Rev ~L; SE L .. (F IGo 6-11)

Nu /WI be .. designations in parentheses
refer to engineering drawings
containing corresponding logic.

® LOGIC

EN (4)

(FIG. 6-:14) ",021l1""§;

fiqure 6-26 Unsolicited Decod@ And Register Loqlc

The byte mask bits (BUF CMI D <31:28» are ignored by the CI750.
Function bits BUF CMI D <26:25> are also ignored. Function bit
BUF CMI D 27 is used to specify either a read or a write operation
(these are the only two unsolicited functions; see Table 6-2).

6.3.1.1 Address Space Decoder
Address bits BUF CMI D <23:12> are applied to an address space
decoder where they are compared with the base address of the CI750
(Figure 6-27). If a match is obtained, the logic asserts CI SPACE
indicating that the port is being addressed by the CPU and the
command/address data is for the CI750.

Bits 15, 14 and 13 in the address space decoder are designated as
SLOT SEL <2:0> respectively. The bits are connected to backplane
terminals and by use of jumpers, can take on values of one or
zero. The jumpers select the port base address from six possible
values thereby placing the 8K of CI750 address space in one of six
I/O "frequency slots" as shown in Table 6-5. The CI750 is
normally in I/O slot no. 15.

Table 6-5 CI750 I/O Slots

I/O Slot Base Bit 15 Bit 14 Bit 13
No. Address

SLOT SEL 2 SLOT SEL 1 SLOT SEL 0

10 F34000 0 1 0
11 F36000 0 1 1
12 F38000 1 0 0
13 F3AOOO 1 0 1
14 F3COOO 1 1 0
15 F3EOOO 1 1 1

6.3.1.2 Register Decoder Offset Address bits BUF CMI D
<11:02>* are applied to a register decoder where they are decoded
to specify the port register or register area that is to be
accessed. Figure 6-27 illustrates the response of the register
decoder to the address bits. Figure 6-28 illustrates CI750
address space relative to the signals asserted by the register
decoder. The total CI750 address space is 8K. As seen in Figure
6-28, all the CI750 registers (including the LS and VCDT) are
located within the first 4K of address space.

* The two lowest address bits (BUF CMI D <01:00» are ignored as
all unsolicited CMI transfers are longword aligned.

In the range from 000 to 03C (hex), ADDR <11:06> 0 is asserted.
In this range are all the port hardware registers.

At address 000 the reference is to the CNFGR register and the
decoder asserts CNFGR.

6-60

= er SPAcE

c SEL

SEL.

"* No a Hy E.

A. Addt-~ss Srace D~coder

Figure 6-27 CI750 Address Responses

6-61

000
00+.
OOB
ooe
010
014
OIS
o I c.
Oz.o
02
o 2.S.
02.C
030
034
038
o 3 C.

900
Q04
909
lIoe
Q I 0
q I 4
<1 I 8
'I I C.
q2,o
'12.4
QZS
Cf 2 C
'f 3 O.
Q3+
'138
Cf3C
'140

'1654 J'2[
~."

o 0 0 o~ 0000 .. OOL._.
o 0 oC) .O.O:O·O+OJ~ ..
0.0 OO! .O.O.O.O~. J .Ol. r------+
00.00'0 0.0:0' ~l.f L .
000.0' 00:0:' .. O~O; .
000 0 OO.Q~ I... .0-'.1. .. ~...r-.u~.....---+
000 O. 0 0,0 I I 01
o 00.0: .O~O:O:'~. ~t:(:
00.00: 001101 001
o 0 0 o. . 0: o~ .: o~ : 0:.1 I ~.: t--"-I.o&AoQ-:.I&!--+
0000: .O.O.f.OL .t .OL .. ~-:--___
0.000. 00' a: I I'
o O.O.o.:o·oif'· "o:o~ .
00000.0 .. ' .1 ~ .0.' ~ .. ~
00 00 001.1. J .o~ . ~L&;L",~~D&f

REG' sr E8

CNFGR.

. cel::
RE!G

0.0 0 0 0 . 0 I . I . . ;J ; ,! ~-=::;!.'iiioiii;:;;::$I""""'"- __ '"

1.00' 0000 00
100 I 00000.1,.
I 0 0 I 0 0 0 0: .1.0
1001 0000.1'
100.1 000 I. 00
, 0 0 I 0 0 0 10 I. L ~~""""':-=-:':3i.......f
'0.0.1 0001 '0
/00 I .000.1 : (I S ~....:..,...=:....=~--+
, 00,1. 00 I 0 .00
1001· 0010 01
100'" '00:' (j/~O~

• , _ -I..~ __ .4_._. ___ '._;: ! J.'.

I 0 0 I 0 0 J 0, .I; I ,
I 00,1. 00.11_ .. 0,0, '00., 0.0,1.1,.0.1,
I 0.0. I. 0 0 , .1 .. , o·
100.100 I.' .. 1.1.

.1 00.1. 0 I 0.0 .. 0.0olJ' "-""'-i:~ - ...

BFe .' o.I.I./~/:.((·:':/.
coo .'.10 o.ooo.o~ .o.o~_

• -1.._ ~-~.-. v. 1--____ - ,-._ .. --.
c . ~- ~. :-.• - e __ --+
. -" ----+ .. - .---.

: T ... - .-. . .. -- ... ;-"r-. -t-.-----+.. ... -
.. _ .. _ .•... - .. -~- ~-'~' . ..-..' ""--"------.-.. -. _ ..

F Fe' I : I '.1 : , .. :, :., : , :1': ~fJ ~_f,,-,-(_~ __ ~I '
. ... ~ . - .. - - ~---.~ ~ -. .:.- ---~-. -- .~ - .

Figure 6-28 CI750 CMI Address Space vs Register
Decoder Outputs

6-62

From address 020 to 03C, CCI REG is asserted indicating a
maintenance function. The reg isters in the "20 to 0 3C range
(CMD/ADDR HI, ADDR LO, byte mask, XMIT file, and RCV file) are not
accessed by the host CPU for normal unsolicited operations. They
are accessed only for diagnostic testing of the CCI hardware. The
CNFGR register is the only CCI register accessed by a normal
unsolicited operation. (Hence, the false state of CNFGR SEL
indicates access to the DP.)

The LS (local store) area in the DP extends from 800 to BFC. In
the range from 900 to 93C, ADDR <11:06> 24 is asserted. In this
range are most of the software registers associated with the port
architecture.

The range from C00 to FFC is for the VCDT (virtual circuit
descriptor table) in the DP.

6.3.1.3 Command/Address Sequence -- Figure 6-29 is a flow
diagram of the unsolicited command/address sequence.

The CPU asserts CMI DBBZ on the CMI and places the command/address
on the CM I da tal add ress 1 ine s (CMI DATA <31: 00» • As shown in
Fig ure 6 -16 (arbi tration log ic), CMI DBBZ asserts DBBZ which in
turn asserts CJ"1.DADDR CYCLE. The true state of CMDADDR CYCLE
indicates this to be a command/address cycle from some other nexus
on the CMI, not a CI750 initiated command/address cycle (ASSERT
DBBZ false).

The next B CLK (designated as B CLK [1]) ends the command/address
cycle. B CLK [1] asserts CLK RDLCK FF which loads the outputs from
the address space decoder and register decoder into a
command/address hold register. Address bits BUF CMI D <11:02> and
function bit BUF CMI D 27 are also loaded into the hold register.

In addition, B CLK [1] sets the PREV DBBZ flip-flop asserting PREV
DBBZ.

If CI SPACE is true, B CLK [1] sets the DBBZ flip-flop (CMDADDR
CYCLE true) asserting ASSERT DBBZ. ASSERT DBBZ asserts CMI DBBZ
on the CMI bus ther eby hold ing the bus un ti 1 the unsol ic i ted
function is completed. If CI SPACE were false, the CMI
command/address was not for the CI750 and the port would not
assert CMI DBBZ.

ASSERT DBBZ also negates CMDADDR CYCLE indicating the end of the
command/address cycle. Note that the false state of CMDADDR CYCLE
no longer conditions the DBBZ flip-flop to set. However NS BIT 3
is now asserted by log ic array E26 to hold the fli p-flop set
(thereby keeping CMI DBBZ asserted) until the unsolicited
operation is completed.

6-63

en
I
en
~

t CIIDADDR CYCLE

Thll 11 a co~ •• nd/.ddrell cycle
asserted by 10 •• other nexus.

B eLJ(OJ

CloCk cOIII.andl
addreSI Into
hold u911ter.

I eLI{ [21

tALLOW RUD

Offlet addrell clocked
into addresl offlet
register.

B CLK [1)

t ASSERT DBIl

CIII DIIZ helcl
aSlerted on
e/ll by C1750.

• CLk (2) t ~s BIT J

cel control logiC hOlds
C"I DBBZ asserted unt11
status cycle.

t SET MIN

In1tlallz. CCI and DP
(r19ures 5-25 and 5-2') •

... _. ___ Il~"''' • '_.J nf""" _ ,,~ lI r"" .. ,. A ,.",. __ n,4/lA'tlr,.~~ !"\pnupnr- ..

Still another ASSERT DBBZ branch exists possibly resulting in the
assertion of SET MIN. This is a special case of a "write DP"
function and is discussed in Paragraph 6.3.3.3.

If there is no CIPA transfer in progress to/from the DP (CIPA XFER
false), the next B CLK (B CLK [2]) will assert ALLOW RD which
clocks the offset address from the hold register into the address
offset register. The base offset address is address bits <11:02>,
ADDR <11:06> 24, and ADDR <11:06> O. ADDR <11:06> 24 and ADDR
<11:06> 0 output from the address offset register as CCI RCV DATA
<01:00> respectively.

B CLK [2] also clocks function data from the hold register into
the function register. If the CCI REG and CNFGR SEL outputs from
the function register are false, CIPA REG asserts indicating that
access is to a register in the DP. CIPA REG is applied to the CCI
control logic to indicate a CIPA transfer.

If CIPA REG is false, continue with Paragraph 6.3.2 for a CCI
access. If CIPA REG is true, continue with Paragraph 6.3.3 for a
DP access.

6.3.2 Read/Write CCI
Figure 6-30 is a flow diagram of all unsolicited read/write
operations of the CCI. An unsolicited access to the CCI is either
a maintenance function or a reference to the configuration
register.

6.3.2.1 Maintenance Function CCI maintenance functions are
capable of writing and reading all the CCI registers.

If a maintenance function is executing, CCI REG is asserted from
the function register to enable the CCI diagnostic logic (Figure
6-26). The CCI diagnostic logic samples the READ and WRITE
commands from the function register, and the CCI REG SEL code from
the command/address hold register, to generate enabling signals
for the RCV file and the XMIT file. The CCI REG SEL code is also
applied to the read and write decoders in the CCI register control
logic (Figure 6-11) for additional register and function
selection.

After the register and the function are selected, the diagnostic
maintenance routines are run.

6.3.2.2 Writing the CNFGR Register -- If a maintenance function
is not executing, CNFGR SEL is asserted from the hold register
indicating that the unsolicited reference is to the CNFGR
register.

6-65

CNrGR SEL t CCI R~G

Access is to CNrGR register. Enable CCI dIagnostic logic.

t WR 1 TE

funct10n 1s a
IoIrlte ocerat1on.

B CLK

,
ItwRT EHAI

•
It WRITE CNrC;R EHA

Wr ite CNfGR
rl'g1ster. .

..
t

NO

, WRITE

"unction 1s e
read operation.

B CLI<

CCI d1agnostic log1c
and CCI register control
logic samples READ and
WRITr corrmands and Cel
REG SEL code to select
register and funct1on.

Run CCI diagnostic
routine.

1

~
I~NS BIT 31 t DRIVE C"I HI/LO 110 MUXA/MUXB SEL <8:A>

•

I

Figure 6-30

Enable CMI mux output MUXA/MUXE SEL code
to CPH. selects CNfGR

register tor CNI.

Read/Write eel Flow Diagram
(Sheet 1 of 2)

6-66

B eLK

t C"1 STATUS

Status bits placed on eMI.

Oil DB8Z

CCl releases eM1 bus.

Figure 6-30 Read/Write CCI Flow Diagram
(Sheet 2 of 2)

6-67

When function bit 27 is true, a write operation is specified. In
this case the function register outputs an asserted WRIT8
resulting in a negateo READ. The false state of READ is sensed by
the CCI control logic (Figure 6-18) which responds by asserting
WRT ENA on the next B CLK. CNFGR SEL, WRITE, and WRT ENA are
ANDed to generate WRT CNFGR ENA. WRT CNFGR ENA clocks write data
bits BUF CMI D 31, 23, 22, 20, 19, 17, 16, 14, 13 and 08 into the
CNFGR register. Due to the relatively quick access to the CNFGR
register (as compared to having to access a register in the DP),
the ten write data bits are taken directly from the CMI. Latchir]
them up in a holding register is not necessary.

The B CLK that asserted WRT ENA also caused NS BIT 3 from the ccr
control logic to negate thereby conditioning the DBBZ flip-flop t)
reset.

The following B CLK resets the DBBZ flip-flop negating ASSEFC
DBBZ. The negation of ASSERT DBBZ negates CMI DBBZ and then DBBZ.
The negation of DBBZ causes STATUS CYCLE to assert (PREV DBB~
true) indicating that this is the status cycle and valid statu;
data is on the CMI.

The B CLK that reset the DBBZ flip-flop also caused the ccr
control logic to assert the CMI status bits on the CMI.

6.3.2.3 Reading the CNFGR Register -- If a maintenance functiol
is not executing (CNFGR SEL true) and function bit 27 is false, 1

read operation is specified. In this case the function registe~
outputs a negated WRITE resulting in an asserted READ. The true
state of READ is sensed by the CCI control logic which responds by
asserting DRIVE CMI HI/LO 1/0 and MUXA/MUXB SEL <B:A> on the next.
B CLK. DRIVE CMI HI/LO 1/0 enables the CMI mux output to the CMI
The asserted MUXA/MUXB SEL code selects the CNFGR register outpu .
for the CMI mux input. The register bits are thus transferred tl)
the data/address lines on the CMI.

The B CLK that asserted the DRIVE CMI HI/LO 1/0 enabling signal
and the MUXA/MUXB SEL code, also caused NS BIT 3 from the CCI
control logic to negate. The negation of NS BIT 3 conditions tht·
DBBZ flip-flop to reset.

The following B CLK completes the read sequence by negating CM'
DBBZ and asserting the status bits on the CMI bus just as for thl
"write CNFGR register" operation.

6.3.3 Read/Write DP
Read/write access to the DP involves three operations. These are:

1. CIPA Transfer Request The
transfer and provides the DP
register to be accessed. If this
operation includes taking the
loading it into the Receive
releasing the CMI bus.

6-68

CCI requests a CCI/DP
with the address of the

is a write function, the
write data off the CMI,

Write Data Register, and

2. write DP - Write data is transferred from the CCI to the
selected register in the DP.

3. Read DP - Read data is taken from the selected register
in the DP and transferred to the CMI via the CCI. The
CMI bus is then released.

Paragraph 5.10.3 (Unsolicited
corresponding actions occurring
operations are executing.

Request Operations)
in the DP while

describes
the three

6.3.3.1 CIPA Transfer Request -- Figure 6-31 is a flow diagram
of the "CIPA t~ansfer request" operation.

When function bit 27 is true, a write function is specified. In
this case the function register (Figure 6-26) outputs an asserted
WRITE indicating that a DP register is to be written. The
assertion of WRITE results in the negation of READ. The false
state of READ is sensed by the CCI control logic (Figure 6-18)
along with the true state of CIPA REG. In response to the
asserted CIPA REG and the negated READ, the CCI control logic
asserts WRT RCV WD REG on the next B CLK. WRT RCV WD REG is
applied to the Receive Write Data Register where it loads the
write data from the CMI bus into the register.

The CCI control logic also negates NS BIT 3. The negation of NS
BIT 3 conditions the DBBZ flip-flop to reset (Figure 6-16). On
the next B CLK the DBBZ flip-flop resets negating ASSERT DBBZ.
The negation of ASSERT DBBZ negates CMI DBBZ and then DBBZ. The
negation of CMI DBBZ releases the CMI bus.

The negation of DBBZ causes STATUS CYCLE to assert (PREV DBE·Z
true) indicating that this is the status cycle and valid status
data from the CCI control logic is now on the CMI.

In addition, the CCI control logic asserts SET REQUEST. SET
REQUEST asserts for both write and read functions. The assertion
of SET REQUEST asserts REQUEST which is placed onto the CIPA bus
as CIPA REQUEST. The DP responds to CIPA REQUEST by returning
CIPA GRANT and the REG SEL code that specifies a read of the
offset register (Paragraph 5.10.3). CIPA GRANT indicates to the
CCI that the DP is executing the requested function. CIPA GRANT
asserts GRANT and then SYNC GRANT which in turn negates REQUEST.

The REG SEL code is applied to the CCI read decoder which asserts
RD ADDR OFFSET. RD ADDR OFFSET enables the output of the offs~t
register (CCI RCV DATA <11:00» onto the CIPA. The 12-bit offset
address specifies the DP register to be accessed for the
unsolicited function.

6-69

t WRT RCV' it'D REG

DIU fro. C~I
loaded lntl Recllve
Write Oltl Rlql.ter.

tC141 STATUS <1:0>

Status Olts
p ucecl on c.n.

t WRITE

DP re\Jlster 11
to be written.

B CI.IC

8 CLIt

t STATUS CrCI.E

Figure 6-31 Flow Diagram of CIPA Transfer Request
(Sheet 1 of 2)

6-70

t tIP" REGIlEst

Request assertad to DP for
an unsolicited operation.
DP responds with tIPA
CRANT and .EC SE~ code
(rig'. ~-11, 5-20).

t CIP" REC 5E~ <3:0)

DP alserts REG SEL code
for a r •• d of the
address offset register.

IIJ) ADDR orr SET

Offset addrell (CCI RtV
DATA (11:00» read out
01 address offlet register.

t CIPA DArA <15:00>

Offset address of DP
register transferred to
op (Figs. 5-12 and 5-20).

t eIPA UER

era count.r an.bl.d.

t SEt eTO

s.t era bit In eNF'.
reol.ter.
AI.ert "no re.pon •• "
.t.tu. on e-s.

Figure 6-31 Flow Diagram of CIPA Transfer Request
(Sheet 2 of 2)

6-71

The address offset on the CIPA (CIPA DATA <15:00»* is applied to
the DP to enable the register that is to be accessed.

* Bits CIPA DATA <15:12> are added to the 12-bit offset address to
insure that these lines are not at a tri-state level. They
serve no function in the DP.

If the requested function is a write operation (negated READ from
function register), continue with Paragraph 6.3.3.2. If the
requested function is a read operation (asserted READ from
function register), continue with Paragraph 6.3.3.4.

It is seen in Figure 6-31 that when the unsolicited request was
sent to the DP (REQUEST asserted), CIPA XFER was asserted which
enabled aCTa (CIPA time-out) counter in the CCI control logic.
The return of CIPA GRANT from the DP asserted GRANT and then SYNC
GRANT which in turn negated REQUEST. With REQUEST false, SYNC
GRANT holds CIPA XFER asserted thereby keeping the CTa counter
enabled. The counter is incremented by B CLK and continues to run
until SYNC GRANT is negated by the DP. The DP negates SYNC GRANT
after it has completed the unsolicited operation. If the DP has
not completed its read or write of the selected register and
negated SYNC GRANT within 10 microseconds, the CTa counter asserts
CTa. CTa in turn asserts SET CTa which sets the CTa bit in the
CNFGR register.

In addition, if this is a read operation, the logic array (sensing
the true state of CTa) negates NS BIT 3. Negating NS BIT 3
releases the CMI bus on the next B CLK and places status on the
CMI as shown in Figure 6-31. In this case, the status bits placed
on the CMI bus will indicate a "no response".

If this is a write operation, the CMI bus would have been released
right after the write data was taken off the bus.

6.3.3.2 write DP
The write DP operation consists of transferring the write data
from the Receive Write Data Register to the DP. The CMI bus has
already been released.

Figure 6-32 is a flow diagram of the "write DP" operation.

READ from the function register is applied to the "0" input of
flip-flop E41 in the unsolicited decode and register logic (Figure
6-26). The flip-flop is clocked by REQUEST from the CCI control
logic. with READ false, the flip-flop output (UNS READ) remains
false resulting in a negated CIPA READ sent to the DP. The DP
interprets the negated CIPA READ as a write command. The DP then
returns the REG SEL code for a high word read of the Receive Write
Data Register.

6-72

t REG SEL 0 .

READ

DP register is to be written.

Write command to OP.

DP interprets negated ClPA READ as a write command.
DP places REG SEL code on CIPA bus to read data
fro. Receive Write Pata Register (rigs. S-14, S-20).

t ClPA REG SEL <3:0>

~EG SEL code to read high (low) word
from Receive Write Data Register.

+ RD RCV WD REG HI (LO)

t cel ReV DATA <15:00>

Hig~ (loV) word read out of
Receive Write Data Register.

Increment REG SEL code to DP writes data longword
read low word from Receive into selected register.
Write Data ReGister.

Figure 6-32 write DP Flow Diagram

6-73

The REG SEL code (CIPA REG SEL <3:0» is applied to the read
decoder in the CCI. The decoder outputs RD RCV WD REG HI to tht::
Receive Write Data Register. RD RCV WD REG HI enables bits <31:16>
from the register onto the CCI RCV DATA bus. From the CCI RCV
DATA bus, the high word is transferred to the DP via the CIPA bus
as CIPA DATA <15:00>.

The DP accepts
to read the low
increments the
from a 0 to a 1

the data high word and increments the REG SEL code
word from the Receive Write Data Register. The DP

REG SEL code by asserting REG SEL 0 changing it
(see Table 5-10).

The incremented REG SEL code is returned to the read decoder in
the CCI which outputs RD RCV WD REG LO. RD RCV WD REG LO is
applied to the Receive Write Data Register where it enables bits
<15:00> from the register onto the CCI RCV DATA bus. From the CCI
RCV DATA bus the low word is transferred to the DP via the CIPA
bus as CIPA DATA <15:00>.

The DP then proceeds to write the data longword into the selected
register to complete the unsolicited write operation.

6.3.3.3 Maintenance Initialize (MIN) -- A special case occurs
when the MIN bit in the PMCSR in the DP is to be written.

When ASSERT DBBZ asserts during the bus cycle following the
command/address bus cycle (Figure 6-29), the command/address in
the hold register is examined by a SET MIN AND gate (Figure 6-26).
Address bit <11:06> 0 and address bits <05:02> are examined. If
the address bits show the access is to the PMCSR (Figure 6-28),
and the commanded function is a write (CMI bit 27 true), and if
the PMCSR MIN bit (bit 00) is being referenced (BUF CMI D 00
true), then SET MIN asserts.

SET MIN
the DP.
described
5-26).

initiates an initialization sequence within the CCI and
The initialization sequence and the associated logic is
in Paragraph 5.12.2 and illustrated in Figures 5-25 and

6.3.3.4 Read
the read data
Data Register,
Register to the

DP -- The read DP operation consists of receiving
from the DP, loading the data into the Return Read
transferring the data from the Return Read Data

CMI, and releasing the CMI.

Figure 6-33 is a flow diagram of the "read DP" operation.

READ from the function register is applied to the "D" input of
flip-flop E41 in the unsolicited decode and register logic (Figure
6-26). The flip-flop is clocked by REQUEST from the CCI control
logic. with READ true, the flip-flop sets asserting UNS READ and
sending an asserted CIPA READ to the DP. The DP then reads the
selected register and places the high word of the read data on the
CIPA bus along with the REG SEL code for a high word write of the
Return Read Data Register.

6-74

6.4 CNFGR REGISTER
The CNFGR register contains
adaptor code. The remaining
zeros supplied by the CMI mux.

13 information bits and an 8-bit
11 bits of the CNFGR register are

The CNFGR register is written by the assertion of WRITE CNFGR ENA
from the function register logic (Paragraph 6.3.2.2). Only 10 of
the 13 information bits are writeable. The other three (NO CIPA,
T ACLO, T OCLO) are read only.

The CNFGR register is read by selecting it as the input to the CMI
mux and enabling the mux output to the CMI (Paragraph 6.3.2.3).

The CNFGR register bit fields are shown in Figure C-4 in Appendix
C (Hardware Registers). The CNFGR register logic is illustrated
in Figure 6-34. The information bits and the 8-bit adapter code
are described below.

6.4.1 Adapter Code
The adapter code is an 10 that identifies the CI750 on the CMI
bus. The code number is 38 (hex) and is supplied by the CMI mux
via +V pull-up and ground connections. The adapter code is read
only.

6.4.2 PON, PUP, NO CIPA
PON (power-down) is a flag indicating that the port is powering
down. PON is set by the assertion of SET PON which comes true
whenever ACLO asserts in the CIPA cabinet or in the host CPU
cabinet. PON can be cleared by writing the CNFGR register with
BUF CMI 0 23 asserted. PON is also cleared by SET PUP or by CLR
PUP/PON from the CCI initialize logic.

PUP (power-up) is a flag indicating that the system is powered up.
PUP is set by the assertion of SET PUP which comes true when ACLO
negates in both the CIPA cabinet and the host CPU cabinet. PUP
can be cleared by writing the CNFGR register with BUF CMI 0 22
asserted. PUP is also cleared by SET PON or by CLR PUP/PDN from
the CCI initialize logic.

NO CIPA is a flag indicating the ready state of the CIPA cabinet.
NO CIPA is false if the CIPA is present, powered-up, and
initialized. Otherwise NO CIPA is true. NO CIPA is read only.

A complete description of the PON, PUP, and NO CIPA functions is
given in Paragraph 5.12.3 (Power Control Function) and in Figures
5-27, 5-28, and 5-29.

6-77

,..--- --------------------- ----I

Figure 6-34

Note:

I
I
I

1
I

J

FIG.) '-6

The logic in this figure is contained
on sheet If> of the engineering
drawings.

CNFGR Register Logic

6-78

6.4.3 T ACLO, T DCLO, pro
T ACLO (transmitted ACLO) and T DCLO (transmitted OCLO) result
from a reset command issued by a remote node on the CI cluster. T
ACLO and T DCLO function to power down and power-up the host
system while leaving the CI750 port operational. T ACLO and T
OCLO are set and cleared by the port microcode. Both bits are read
only.

PFD (power fail disable) asserts to inhibit T ACLO and T DCLO from
powering down the host system during maintenance testing. Thus
diagnostics can check the T ACLO and T DCLO function without
affecting the host system. PFO is set by writing the CNFGR
register with BUF CMI 0 08 asserted. PFO is cleared by writing
the CNFGR register with BUF CMI 0 08 negated.

A complete description of the T ACLO, T DCLO, and PFO functions is
given in Paragraph 5.12.3 (Power Control Function) and in Figure
5-27.

6.4.4 NXM, UCE, CRD
NXM (non-existent memory), UCE (uncorrectab1e error), and CRO
(corrected read data) indicate status of a port initiated CM!
transfer. The CM! status bits are returned by the addressed nexus
and appl ied to a status decoder in the CC I control log ic (Figure
6-18). The decoder outputs SET NXM, SET UCE, or SET CRO if any of
these transfer errorS' occurred. No output is asserted by the
decoder for an error free transfer.

NXM indicates a "no response" by a nexus that was addressed by the
port. NXM is set by the assertion of SET NXM from the status
decoder. NXM can be cleared by writing the CNFGR register with
BUF CM! 0 20 asserted. NXM asserts SET MSE (memory system error)
to the CS branching logic (Figure 4-10) via the CIPA bus (Figure
5-2) •

UCE indicates an uncorrectab1e error is contained in the data
returned by a nexus that was addressed by the port for a read
operation. UCE is set by the assertion of SET UCE from the status
decoder. UCE can be cleared by writing the CNFGR register with
BUF CMI 0 17 asserted. UCE asserts SET MSE to the CS branching
logic (Figure 4-HJ) via the CIPA bus (Figure 5-2).

CRD indicates a correctable error occurred in the data returned by
a nexus that was addressed by the port for a read operation. CRO
is set by the assertion of SET CRO from the status decoder. CRO
can be cleared by wr i ting the CNFGR reg i ster wi th B UF CMI 0 16
asserted.

6-79

. I

6.4.5 DIAGNOSE
DIAGNOSE asserts to place the CCI into the diagnostic maintenance
mode of operation. DIAGNOSE enables test logic for reading and
writing the CCI registers so that diagnostic routines can check
out the CCI hardware.

DIAGNOSE is set by writing the CNFGR register with BUF CMI D 14
asserted. DIAGNOSE is cleared by writing the CNFGR register with
BUF CMI D 14 negated.

6.4.6 CTO
CTO (CIPA time-out) indicates an unsolicited read or write of the
DP did not complete within 10 microseconds. CTO is set by the
assertion of SET CTO from the CCI control logic.

During an unsolicited read of the DP, the port holds CMI DBBZ
asserted on the CMI bus until the read operation is completed. If
the read operation is not completed within 10 microseconds, the
CCI control logic places a NXM status code on the CMI bus,
releases the CMI bus, and asserts SET CTO to the CNFGR register.

During an unsolicited write of the DP, CTO indicates that the
write data taken off the CMI was not written into the DP.

CTO can be cleared by writing the CNFGR register with BUF CMI D 13
asserted.

A complete description of the CTO function is given in Paragraph
6.3.3.1 (CIPA Transfer Request).

6.4.7 RLTO
RLTO (read lock time-out) indicates that more than 1024 bus cycles
have occurred since a CMI nexus executed a read lock function
without executing a write unlock function. RLTO is set by the
assertion of ASSERT RLTO from the GO/DONE logic (Figure 6-14).

When a CMI nexus executes a read lock function, the CI750 GO/DONE
logic is inhibited from asserting GO until the nexus executes a
write unlock function. If a write unlock function has not occurred
after 1024 bus cycles (163.8 microseconds), ASSERT RLTO is
asserted to the CNFGR register.

RLTO can be cleared by writing the CNFGR register with BUF CMI D
19 asserted.

RLTO asserts SET MSE SYNC in the CS branching logic (Figure 4-10)
via the CIPA bus (Figure 5-2).

A complete description of the read lock function is given in
Paragraph 6.2.2.2 (Issue GO).

6-80

6.4.8 CBPE
CBPE (ClPA bus parity error) indicates a parity error has occurred
during a data transfer over the ClPA bus in either direction (DP
to CCl or CCl to DP). CBPE is set by the assertion of SYNC CE from
the CCl parity logic. CBPE can be cleared by a write to the CNFGR
register when BUF CMl D 31 is asserted.

A complete description of the CCl parity logic is given in
Paragraph 5.7.4 (ClPA ERROR) and Figure 5-10.

6.5 PARITY GENERATION AND CHECKING
Parity generation and checking
Chapter 5 along with the DP
(Paragraph 5.7 and Figure 5-10).

within
parity

the CCl is described in
and checking function

6.6 INITIALIZE AND POWER CONTROL FUNCTIONS
The power control functions of power-up, power-down, ACLO, DCLO,
and initialize are described in Chapter 5 along with the DP
initialize and power control functions (Paragraphs 5.12.2 and
5.12.3, and Figures 5-25 through 5-30 inclusive).

,

6-81

..

ACK
ACLO
ADD
ADDR
ADR
ALT
ALU
AR
ARB
ARBC
ASRT
ATTN
AX

B
BG
BR
BR
BTO
BUF
BUF

C
CBPE
CCI
CDEST
CDET
CE
CHAR
CHK
CI
CIPA
CLK
CLR
CMD
CMD/ADDR
CMDADDR
CMI
CMP
CNFGR
CNODE
CNT
CNTL
CNTR
COMP
CRC
CRD
CRY
CS

Acknowledge
AC low
Address
Address
Address
Alternate
Arithmetic logic unit
ACK receive (state)
Arbitration
Arbitration counter
Assert
Attention
ACK transmit (state)

Bus
Bus grant
Branch
Bus request
Boot timeout
Buffer
Buffered

Carry
CIPA bus parity error
CMI to CIPA interface
Complement destination
Carrier detect
CIPA error
Character
Check

APPENDIX A
CI750 MNEMONIC GLOSSARY

Computer interconnect (formerly ICCS and IPA)
Computer interconnect port adapter
Clock
Clear
Command
Command/address
Command/address
CPU memory interconnect
Compare
Configuration register
Complement node
Counter
Control
Counter
Complementary
Cyclic redundancy check
Corrected read data
Carry
Control store

A-I

CSA
CSPE
CTO

D
DBBZ
DCLO
DEL
DET
DFE
DLY
DLYD
ON
DP
DPUP
DST
DST CMP

ECL
EN
ENA
ENB
ERR
EXT

FCN
FE
FLG
FPLA

GEN

HDR
HI
HTO

IB
IB DST
IB SRC
ICCS
IMUX
INH
INIT
INT
INT
INTR
IPA
IPE

JMPR
JSR

LD
LO

Control store address
Control store parity error
CIPA time-out

Data
Data bus busy
DC low
Delay
Detector
Decoded file enable
Delay
Delayed
Done
Data path (module)
Decoded push/pop
Destination
Destination compare

Emitter coupled logic
Enable
Enable
Enable bit
Error
External

Function
File enable
Flag
Field programmable logic array

Generate

Header
High
Header time-out

Internal bus
IB destination
IB source
Intercomputer communications switch (see CI)
Input mux
Inhibit
Initialize
Internal
Interrupt
Interrupt
Interprocessor adapter (see CI)
Input parity error

Jumper
Jump to subroutine

Load
Low

A-2

LS
LSA
LSB
LSPE
LT
LTCHD

MADR
MAINT
MCLR
MD
MDATR
MDECODER
ME
MIE
MIF
MIN
MISC
MISC CNTL
MLD
MLOAD
MLOOP
MR
MSB
MSE
MSG
MTD
MTE
MX

NACK
NS
NXM

OP
OPE
OVFL

PAL
PAR
PB
PBIR
PC
PDN
PE
PE
PF VLD
PFD
PICR
PMCSR
PMTCR
PMUX
PREV
PROM

Local store
Local store address
Least significant bit
Local store parity error
Less than
Latched

Maintenance address register
Maintenance
Maintenance clear
Miscellaneous data
Maintenance data register
Manchester decoder
Manchester encoded
Maintenance interrupt enable
Maintenance interrupt flag
Maintenance initialize
Miscellaneous
Miscellaneous control
Maintenance load
Maintenance load
Maintenance loop
Message receive (state)
Most significant bit
Memory system error
Message
Maintenance timer disable
Maintenance error
Message transmit (state)

Negative acknowledge
Next state
Non-existent memory

Operation
Output parity error
Overflow

Programmable array logic
Parity
Packet buffer (module)
PB in register
Program counter
Power-down
Parity error
Phase encoded
Power fail valid
Power fail disable
Port initialize control register
Port maintenance control/status register
Port maintenance timer control register
Packet buffer mux
Previous
Programmable read-only memory

A-3

PROP
PSA
PSR
PSRCR
PUP
PUP
PW
PWR

QUAD

RAM
RB
RBPE
RBUF
RCAR
RCV
RCVD
RCVH
RD
RD
RDAT
RDLCK
REC
REG
RINIT
RL'fO
RSEL
RSVD
RTN
RTS
RXMIT

SID
SEL
SEL CC
SEQ
SRC

T
T ACLO
T DCLO
TABORT
TACK
TBUF
TDAT.\
TDEST
TINIT
TO
TPATH
TR
TTL
TXMIT

Propagate
Programmable starting address
Port status register
Port status release control register
Powe r-up
Push/pop
Pul se wid th
Power

Quad wo rd

Random access memory
Receive buffer
Receive buffer parity error
Receive buffer
Receiver carrier
Receive
Received
Receiver
Read
Read data
Receive data
Read lock
Receiver
Reg i ster
Receive (state) initialize
Read lock time-out
Register select
Reserved
Re turn
Return from subroutine
Receive (state) transmit

Source/destination
Select
Select condition code
Sequencer
Source

Time
Transmitted AC low
Transmitted DC low
Transmit (state) abort
Tr ansm it ACK
Transmit buffer
Transmit data
True destination
Transmit (state) initialize
Time-out
Transmit path
Trailer
Transistor-transistor logic
Transmit (state) transmit

A-4

UBS
UCE
UCODE
UNINIT
UNS
UNSOL
UWORD

VALDAT
VCDT
VRD

WACK
WD
WD
WE
WP
WR
h'RT

XBIR
XBOR
XBUF
XBUS
XFER
XLATE
XMIT
XTAL

UNIBUS
Un correctable error
Microcode
Uninitialized
Unsolicited
Unsolicited
Microword

Valid data
Virtual circuit descriptor table
Valid receive data

Wait for ACK
Word
Write data
Write enable
Wrong parity
Write
Write

External bus input register
External bus output register
Transmit buffer
External bus
Transfer
Translate
Transmit
Crystal

A-S

APPENDIX B
FLOW DIAGRAM SYMBOLS

The flow diagram symbols used in this manual are defined in Figure
B-1. Signal mnemonics are shown in upper case. All other flow
diagram text is in lower case.

x

I

tPWRFL

I

~
-l-PWRFL

I

6
V

x = DESCRIPTION OF AN EVENT OR ACTION (LOWER CASE).

THE SIGNAL PWRFL IS ASSERTED (UPPER CASE).

THE SIGNAL PWRFL IS NEGATED.

FLOW DELAYED
UNTI l ClK ASSERTS.

NO IF CONDITION OR SIGNAL IS TRUE FLOW
FOllOW) YES BRANCH, OTHERWISE FLOW
FOLLOWS NO BRANCH.

ON PAGE CONNECTOR.

OFF PAGE CONNECTOR.

c __) BEGINNING OR ENDING POINT OF A FLOW
DIAGRAM.

Figure B-1 Flow Diagram Symbols TK06071

B-1

APPENDIX C
HARDWARE REGISTERS

Appendix C is a description of four hardware registers that can be
accessed by the port software for maintenance purposes. The
registers described are:

1. MADR -- Maintenance Address Register
2. MDATR Maintenance Data Register
3. PMCSR Port Maintenance Control/Status Register
4. CNFGR Configuration Register

C.l MADR Maintenance Address Register

Figure C-l illustrates the function of the MADR bits. The
register address = XXXXX014 (hex). MADR contains the address of
the control store location to be accessed. It is read or written
only in the uninitialized state.

Refer to Figure 4-1 and Paragraphs 4.1, 4.6.1, and 4.7 for a
discussion of MADR operation.

C-l

(J
I

N

31 13 12 11 10 09 08 07 06 05 04 03 02 01 00

o ~ • 0

SELECTS THE MICROWORD
SEGMENT TO BE READ
FROM OR WRITTEN INTO CS.

0= <31:00>
1 = <47:32>

SELECTS 1 K BANK OF CS.

All Al0

o
o
1

o
1
o

BANK SELECTED

o (000-3FF PROM)
1 (400-7FF RAM)
2 (800-8FF RAM)

SELECTS MICROWORD
WITHIN lK BANK.

Figure C-l Maintenance Address Register (MADR) Bit Fields

TK.Q91 0

C.2 MDATR -- Maintenance Data Register

Figure C-2 illustrates the MDATR bi ts. The reg ister address =
XXXXX018 (hex). MDATR does not exist as a physical register. A
read or wr i te of MDATR wi 11 read or wr i te the microword in the
control store location specified by the address in the MADR. When
MADR 12 = 0, MDATR <31:00> contains microword bits <31:00>. When
MADR 12 = 1, MDATR <15:00> contains microword bits <47:32> (MDATR
<31:16> are alIOs). MDATR is read or written only in the
uninitialized state.

Figure 4-4 and Table 4-1
Figure 4-2 and Paragraph
writing the control store.

define the microword bits. Refer to
4.4 for a discussion of reading and

C-3

n
I
~

31 r--- ---- ----
DATA BITS <31-00>

Figure C-2 Maintenance Data Register (MDATR)

00

TK-9911

C.3 PMCSR -- Port Maintenance Control/Status Register

Figure C-3 illustrates the function of the PMCSR bits.

The register address = XXXXX004 or XXXXXOlO. PMCSR contains port
hardware error flags, interrupt bits, and initialization control
bits.

A description of the PMCSR bits is given in Paragraph 5.5.3 and
Table 5-4.

C-5

n
I

0'\

31 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

10 • 005 I I I I I I I I I I I I I I I I
PARITY I I I I I I I I I I I I I I I
ERROR

CONTROL STORE
PARITY ERROR

LOCAL STORE
PARITY ERROR

RECEIVE BUFFER
PARITY ERROR

TRANSMIT DATA
PARITY ERROR

CIPAERROR -

PB IN REGISTER PARITY
ERROR (OUTPUT PARITY -
ERROR)

TRANSMIT BUFFER _
PARITY ERROR

UNINITIALIZED -
"?,~~::-,!""," .• ,, •.•..

PROGRAMMABLE _
STARTING ADDR.

RESERVED -

WRONG _
PARITY

MAINTENANCE
INTERRUPT FLAG

MAINTENANCE
INTERRUPT ENABLE

MAINTENANCE
TIMER DISABLE

MAINTENANCE _
INITIALIZE

Figure C-3 Port Maintenance Control/Status Register
(PMCSR) Bit Fields

MKV84'()135

C.4 CNFGR -- Configuration Register

Figure C-4 illustrates the function of the CNFGR bits.

The register address = XXXXXOOO

The CNFGR register contains CI750 status and control bits and the
CI750 CMI adapter code.

Table C-l describes the CNFGR bit functions. Refer to Paragraph
6.4 for a more detailed discussion of the CNFGR register.

C-7

n
I

CO

CIPA BUS
PARITY ERROR

CORRECTED
READ DATA

UNCORRECTABlE
ERROR

READ lOCK
TIME-OUT

NON-EXISTENT
MEMORY

POWER-UP

POWER-DOWN

CI750 CMI ADAPTER CODE

POWER FAil
DISABLE

TRANSMIT DClO

TRANSMIT AClO

MKV84{)136

Figure C-4 Configuration Register (CNFGR) Bit Fields

Bit Mnemonic

31 CBPE

30:24 o

23 PDN

22 PUP

21 o

20 NXM

19 RLTO

18 o

17 UCE

Table C-l CNFGR Bits

Description

ClPA Bus Parity Error: set when a parity
error is detected on a DP to CCl or CCl to
DP data transfer.

Reserved. Read as Os.

Power-Down: Set if the port is powering
down. PDN is set by the assertion of ACLO
in the ClPA cabinet or host CPU cabinet.
The PDN bi t is cleared by wri ting a 1 to
it or by setting the PUP bit.

Power-Up: Set if the port is powered up.
PUP is set when ACLO negates in both the
CIPA cabinet and host CPU cabinet. The
PUP bit is cleared by writing a 1 to it or
by setting the PDN bit.

Reserved. Read as O.

Non-Ex istent Memory: Set when the port
initiates a CMI transfer and does not
receive any response from the slave nexus.
The NXM bi t is cleared by wri ting a 1 to
it.

Read Lock Time-out: Set when 1024 CMl bus
cycles have occurred (163.8 microsecond s)
since a CMl nexus (other than the Cl750)
executed a read lock function without
executing a wr i te unlock function. The
RLTO bit is cleared by writing a 1 to it.

Reserved. Read as O.

Uncorrectable Error: Set when the Cl750
receives a UCE status from a slave nexus
during a read operation. UCE indicates an
uncorrectable error is contained in the
read data returned by the slave. The ueE
bit is cleared by writing a 1 to it.

C-9

Bit Mnemonic

16 CRD

15

14 DIAGNOSE

13 CTO

12 NO CIPA

11 o

10 T ACLO

09 T DCLO

08 PFD

07:00

Table C-l CNFGR Bits (Cont)

Description

Corrected Read Data: Set when the CI750
rece ivcs a CRD status from a slave nexus
during a read operation. CRD indicates a
correctable error occurred in the read
data returned by the slave. The CRD bit
is cleareJ by writing a 1 to it.

Reserved. Read as 0.

Diagnose: DIAGNOSE is a control bit that
is set to place the CI750 into the
diagnostic maintenance mode of operation.

CIPA Time-Out: Set when an unsolicited
read or wr i te of the DP did not complete
within 10 microseconds.

NO CIPA: Cleared if the CIPA cabinet is
present, powered-up, and initialized.
Otherwise this bit is set.

Reserved. Read as 0.

Transmitted ACLO: Set and cleared by the
port microcode to effect a power-down and
power-up of the host system while keeping
the CI750 powered up.

Transmitted DeLO: Set and cleared by the
port microcode. Used in conjunction- with
T ACLO to effect a host system power-down
and power-up while keeping the CI750
powered up.

Power Fail Disable: PFD is a control bi t
that is set to inhibit T ACLO and T DeLO
from powering down the host system during
maintenance testing.

Adapter code: These bits contain the
CI750 CMI adapter code.

C-lO

Digital Equipment Corporation. Bedford , MA 01730

	A003.tif
	A004.tif
	A005.tif
	A006.tif
	A007.tif
	A008.tif
	A009.tif
	A010.tif
	A011.tif
	A012.tif
	A013.tif
	A014.tif
	A015.tif
	A016.tif
	A017.tif
	A018.tif
	A019.tif
	A020.tif
	A021.tif
	A022.tif
	A023.tif
	A024.tif
	A025.tif
	A026.tif
	A027.tif
	A028.tif
	A029.tif
	A030.tif
	A031.tif
	A032.tif
	A033.tif
	A034.tif
	A035.tif
	A036.tif
	A037.tif
	A038.tif
	A039.tif
	A040.tif
	A041.tif
	A042.tif
	A043.tif
	A044.tif
	A045.tif
	A046.tif
	A047.tif
	A048.tif
	A049.tif
	A050.tif
	A051.tif
	A052.tif
	A053.tif
	A054.tif
	A055.tif
	A056.tif
	A057.tif
	A058.tif
	A059.tif
	A060.tif
	A061.tif
	A062.tif
	A063.tif
	A064.tif
	A065.tif
	A066.tif
	A067.tif
	A068.tif
	A069.tif
	A070.tif
	A071.tif
	A072.tif
	A073.tif
	A074.tif
	A075.tif
	A076.tif
	A077.tif
	A078.tif
	A079.tif
	A080.tif
	A081.tif
	A082.tif
	A083.tif
	A084.tif
	A085.tif
	A086.tif
	A087.tif
	A088.tif
	A089.tif
	A090.tif
	A091.tif
	A092.tif
	A093.tif
	A094.tif
	A095.tif
	A096.tif
	A097.tif
	A098.tif
	A099.tif
	A100.tif
	A101.tif
	A102.tif
	A103.tif
	A104.tif
	A105.tif
	A106.tif
	A107.tif
	A108.tif
	A109.tif
	A110.tif
	A111.tif
	A112.tif
	A113.tif
	A114.tif
	A115.tif
	A116.tif
	A117.tif
	A118.tif
	A119.tif
	A120.tif
	A121.tif
	A122.tif
	A123.tif
	A124.tif
	A125.tif
	A126.tif
	A127.tif
	A128.tif
	A129.tif
	A130.tif
	A131.tif
	A132.tif
	A133.tif
	A134.tif
	A135.tif
	A136.tif
	A137.tif
	A138.tif
	A139.tif
	A140.tif
	A141.tif
	A142.tif
	A143.tif
	A144.tif
	A145.tif
	A146.tif
	A147.tif
	A148.tif
	A149.tif
	A150.tif
	A151.tif
	A152.tif
	A153.tif
	A154.tif
	A155.tif
	A156.tif
	A157.tif
	A158.tif
	A159.tif
	A160.tif
	A161.tif
	A162.tif
	A163.tif
	A164.tif
	A165.tif
	A166.tif
	A167.tif
	A168.tif
	A169.tif
	A170.tif
	A171.tif
	A172.tif
	A173.tif
	A174.tif
	A175.tif
	A176.tif
	A177.tif
	A178.tif
	A179.tif
	A180.tif
	A181.tif
	A182.tif
	A183.tif
	A184.tif
	A185.tif
	A186.tif
	A187.tif
	A188.tif
	A189.tif
	A190.tif
	A191.tif
	A192.tif
	A193.tif
	A194.tif
	A195.tif
	A196.tif
	A197.tif
	A198.tif
	A199.tif
	A200.tif
	A201.tif
	A202.tif
	A203.tif
	A204.tif
	A205.tif
	A206.tif
	A207.tif
	A208.tif
	A209.tif
	A210.tif
	A211.tif
	A212.tif
	A213.tif
	A214.tif
	A215.tif
	A216.tif
	A217.tif
	A218.tif
	A219.tif
	A220.tif
	A221.tif
	A222.tif
	A223.tif
	A224.tif
	A225.tif
	A226.tif
	A227.tif
	A228.tif
	A229.tif
	A230.tif
	A231.tif
	A232.tif
	A233.tif
	A234.tif
	A235.tif
	A236.tif
	A237.tif
	A238.tif
	A239.tif
	A240.tif
	A241.tif
	A242.tif
	A243.tif
	A244.tif
	A245.tif
	A246.tif
	A247.tif
	A248.tif
	A249.tif
	A250.tif
	A251.tif
	A252.tif
	A253.tif
	A254.tif
	A255.tif
	A256.tif
	A257.tif
	A258.tif
	A259.tif
	A260.tif
	A261.tif
	A262.tif
	A263.tif
	A264.tif
	A265.tif
	A266.tif
	A267.tif
	A268.tif
	A269.tif
	A270.tif
	A271.tif
	A272.tif
	A273.tif
	A274.tif
	A275.tif
	A276.tif
	A277.tif
	A278.tif
	A279.tif
	A280.tif
	A281.tif
	A282.tif
	A283.tif
	A284.tif
	A285.tif
	A286.tif
	A287.tif
	A288.tif
	A289.tif
	A290.tif
	A291.tif
	A292.tif
	A293.tif
	A294.tif
	A295.tif
	A296.tif
	A297.tif
	A298.tif
	A299.tif
	A300.tif
	A301.tif
	A302.tif
	A303.tif
	A304.tif
	A305.tif
	A306.tif
	A307.tif
	A308.tif
	A309.tif
	A310.tif
	A311.tif
	A312.tif
	A313.tif
	A314.tif
	A315.tif
	A316.tif
	A317.tif
	A318.tif
	A319.tif
	A320.tif
	A321.tif
	A322.tif
	A323.tif
	A324.tif
	A325.tif
	A326.tif
	A327.tif
	A328.tif
	A329.tif
	A330.tif
	A331.tif
	A332.tif
	A333.tif
	A334.tif
	A335.tif
	A336.tif
	A337.tif
	A338.tif
	A339.tif
	A340.tif
	A341.tif
	A342.tif
	A343.tif
	A344.tif
	A345.tif
	A346.tif
	A347.tif
	A348.tif
	A349.tif
	A350.tif
	A351.tif
	A352.tif

