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CHAPTER 1
INTRODUCTION

1.1 MANUAL SCOPE

This document provides a technical description of the CI750
computer interconnect hardware. It does not treat the CI750 port
architecture or other software applications such as the CI750 port
driver, command queues, or the VAX/VMS operating system.

A basic description of the CI750 computer interconnect is given in
this chapter.  The CI750 contains four extended hex "L" series
modules. Chapters 2, 3, 5 and 6 provide a detailed description of
each of the four modules. Chapter 4 describes the microcode
control store and associated control logic. By describing the
control store, its addressing logic, and its branching logic in a
separate chapter it can be treated as a single cohesive function
although the hardware 1is distributed over two modules (packet
buffer and data path).

Three appendixes supplement the information contained in this
manual. Appendix A defines the mnemonics found within this
document. Appendix B explains the symbology used in the flow
diagrams. Appendix C is a description of hardware registers used
for maintenance purposes.

1.2 THE COMPUTER INTERCONNECT (CI)

The computer interconnect (CI) (Figure 1-1) 1is a high-speed,
serial data bus that is used to link computer subsystems (nodes)
to form a CI cluster. Typically, the cluster is confined to a
computer room environment. Nodes may consist of CPUs and memory.
Nodes may also include intelligent mass storage, communication, or
data acquisition subsystems.

Features of the CI include:

o Dual signal paths capable of simultaneous operation

o 70-megabit-per-second bandwidth and transfer rate

o 32-bit CRC generation and checking

o Low error rate

o Packet-oriented data transfers

o Immediate acknowledgement of the reception of a packet

o Contention arbitration at light loading and round-robin

arbitration at heavy loading.

o Internal and external data 1looping for diagnostic
purposes.
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Each node within a cluster connects to the computer interconnect
via a CI750 interface that provides two separate signal paths.
Dual paths provide a high degree of data availability between
nodes. One pair of nodes can communicate over one path (path A)
while another pair of nodes communicates over the second path
(path B).

Each path contains a central star coupler (SC008) that receives
the data transmitted by a node and distributes it to the other
nodes within the cluster. A single CI path consists of a pair of
bus cables (one for transmit, one for receive). These cables
provide the connection between a node and the signal distribution
coupler (star coupler) for that path.

1.3 RELATED DOCUMENTS
Table 1-1 is a list of documents providing additional information
related to the CI750.

Table 1-1 CI750 Related Documents

Document
Item Title Number Contents

1 CI750 User's Guide EK-CI750-UG Contains instructions
for unpacking,
installing, and
acceptance testing
the CI750. A physical
description of the
C1750 is also pro-
vided. Information
is also provided on
the CI750 backplane
jumpers.

2 SC008 Star Coupler EK-SC008-UG Contains a descrip-
User's Guide tion of the SC008
Star Coupler. Also
provides instructions
for unpacking and
installing the
various Star Coupler
configurations.




Table 1-1 CI750 Related Documents (Cont)

Item

Document
Title Number

Contents

VAX-11/750 Central EK-KA750-TD
Processor Unit
Technical Description

H7202D Power Supply SP-H7202-D
Specification

H7202B Power System EK-PS730-TD
Technical
Description

VAX Architecture EB-19580-20
Handbook

VAX Hardware Handbook EB-21710-20

Contains a general
overall description
of the VAX-11/750
plus a detailed
discussion of the
central processor
unit. Included in
this discussion is a
complete description
of the CMI bus
including bus sig-
nals, timing, CMI
protocol, and the
VAX-11/750 modules
that interface with
the CMI.

Contains complete
mechanical and
electrical specifi-
cations for the
H72020 power supply.
Also included is a
general description
of the H7202D.

Contains a physical
and functional
description of the
H7202B power supply.

Contains a descrip-
tion of the VAX
family architecture,
including data
representations,
instructions,
registers, and
operational modes.

Provides a hardware
overview of the VAX
family. Hardware
descriptions include
the 11/780, the
11/750, and 11/730.




1.4 THE CI750 INTERFACE

The CI750 is the interface used to connect a VAX-11/750 system to
the CI cluster. It connects between the CPU memory interconnect
(CMI) of the host system and the CI cluster. Figure 1-2
illustrates the CI750 connection.

The CI750 is an intelligent interface that performs the function
of a buffered communications port. It utilizes the gqueue structure
provided under the VAX/VMS operating system to transfer messages
and blocks of data between the host's memory system and other
nodes within the CI cluster. By providing data buffering, address
translation, and serial encoding and decoding, the CI750 reduces
the amount of overhead software processing required to complete
high-level intercomputer communications.

The four modules containing the CI750 logic are listed below.

Link Interface Module (ILI) LO10O
Packet Buffer Module (IPB) L0101

. Data Path Module (CDP) L0400

. CMI CIPA Interface Module (CCI) L0009

B W N

Figure 1-3 illustrates the configuration of the CI750 modules.
The CCI module is installed into one of the three MBA option slots
in the VAX-11/750 backplane. The other three modules are housed
in a CI750-C Computer Interconnect Port Adapter (CIPA) expander
cabinet. The CI750-C expander cabinet is commonly referred to as
the CIPA cabinet and will be so referenced throughout this meanual.
The CIPA cabinet is connected to the host CPU cabinet by a 40-pin
CIPA bus cable. As shown in Figure 1-3, the cable actually
interconnects the CCI module (in the host CPU cabinet) with the DP
module (in the CIPA cabinet).

Figure 1-4 is a block diagram of the CI750. Refer to it in the
following discussion of the CI750 modules.

l1.4.1 Link Module

The link module provides the interface to the CI bus and has the
capability of servicing both CI paths. The module is functionally
divided into a transmit path and a receive path with a Cyclic
Redundancy Check (CRC) function shared between the two channels.
The link can transmit or receive over only one CI path at a time
due to the common CRC logic being used by both channels.

Data packets are received from the packet buffer (PB) module over
the XMIT DATA BUS, and are appended with header information and a
trailer. The header functions to 1identify the source and
destination of the packet. Node address switches provide the node
with an address on the CI cluster. The packet header contains this
address as a source identification. The trailer serves to keep the
node receiver locked up while the last data bytes in the packet
are being processed.
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The CRC logic uses the packet data bytes to generate four CRC
check bytes that are appended to the data packet. The CRC bytes
are unique for the specific data bytes in the packet. The bytes
are used for error checking at the packet destination.

The link transmitter converts the data packet from a byte format
to a 70-megabit-per-second serial format and then applies it to a
Manchester encoder.

The Manchester encoder combines the serial data with the bit rate
clock to produce a modulated (phase encoded) carrier for the CI
bus.

The path selection logic selects the CI path (A or B) for the
transmission. The path selection is under microcode control.

Carrier detection logic monitors the two CI paths and connects the
receiver channel to whichever path is active.

The serial data from the CI is applied to a Manchester decoder
which separates the signal into its clock and data components. The
clock and data signal components are applied to the link receiver.

The link receiver converts the packet data from a 70 megabit per
second serial format to a byte format.

The link receiver then supplies the packet data to the CRC logic.
The CRC logic validates the packet by checking the packet data
against the packet CRC bytes. If a CRC error is detected, no
response is returned to the transmitting node.

If there is no CRC error, the packet is sent to the PB module over
the RCVR DATA bus. If the PB module can accept the packet, the
link returns a positive acknowledgement (ACK) to the transmitting
node, If the buffers on the PB module are full and cannot accept
the packet, the link returns a NACK to the transmitting node which
will then retransmit the packet.

1.4.2 Packet Buffer Module (PB)

The PB module provides buffering for the data packets transferring
through the CI750. Two transmit and two receive buffers (A and B)
are provided. Each buffer has a capacity of 1K. When data packets
are being transmitted, transmit buffer A is filled from the data
path (DP) module over the PORT DATA bus. The next data packet is
loaded into buffer B while the link is unloading the data from
buffer A.

Likewise, received data packets are loaded into receive buffer A
from the link module over the RCVR DATA bus. The following data
packets are loaded into receive buffer B while the DP is unloading
the data from receive buffer A.



The CI750 microcode resides in a 3K RAM/PROM control store located
on the PB module. The control store RAM/PROM outputs a 47-bit
microword that controls and regulates operations throughout the
CI750. Stepping of the microcode is controlled by a microsequencer
which samples the next address field of the microword. The
microcode is also subject to branching conditions via branching
logic located in the DP module. The branching logic tests various
conditions throughout the CI750. The test results are CRed with
the microsequencer output to provide branching of the microcode
sequences.

The CI750 control microword can be read by the host system via the
MD bus in the DP module.

Under certain conditions (system initialization or detection of an
error) the host system can force a routine by inputting the
starting address via the DP IB IN bus and the maintenance address
register.

1.4.3 Data Path Module (DP)

Data flow within the LCP is under microcode control. The microcode
implements this control by selecting the source and destination
for the data on the main LCP internal bus (IB). There are several
possible data sources and destinations for the IB bus. These are:

1. PB IN and PB OUT registers

2. XBIR (external bus input register) and XBOR (external bus
output register)

3. LS (local store)

4. VCDT (virtual circuit descriptor table)

5. ALU (arithmetic logic unit)

6. CS (control store)

7. MD (miscellaneous data)
The PB IN and PB OUT registers interface the DP to the PB via the
PORT DATA bus. The PB OUT register can be an IB bus destination
(via the IB IN bus) while the PB IN register can be a source for
the IP bus (via the MD bus). The three DP buses (IB, IB IN, MD)
are 32 bits wide. The PB IN and PB OUT registers accomplish the

format conversions necessary to interface with the 8-bit PORT DATA
bus.



The XBIR and XBOR registers interface the DP to the CCI module via
the CIPA bus. The XBIR register can be a source for the IB bus
while the XBOR register can be an IB bus destination. The data on
the CIPA bus 1is in a 16-bit word format. The XBIR and XBOR
registers accomplish the format conversions necessary to interface
with the 32-bit IB bus.

LS is 256 x 32 of RAM space used to store software status blocks
and software registers associated with the Cl1750 port
architecture. LS can be either a destination (via the IB IN bus)
or a source for the IR bus.

The VCDT 1is 256 x 16 of RAM space used to store CI node
parameters. The VCDT can be either a destination (via the IB IN
bus) or a source for the IB bus.

The ALU is used to perform general purpose arithmetic and logical
operations. It interfaces directly with the IB bus where it may
serve as either a source or a destination.

The CS in the PP can be read or written from the DP IP bus. The
CS can be a data source via the MD bus, or a data destination via
the IB bus.

The MD bus can access other miscellaneous data (e.g., selected
registers, microword field) which then becomes the data source for
the IB bus.

1.4.4 CMI CIPA Interface Module (CCI)

The basic function of the CCI module is to interface the CI750
with the VAX-11/750 CMI bus. All CMI protocol and timing must be
followed while transferring data to and from the CMI.

XMIT (transmit) and RCV (receive) files act as isolation buffers
for data transferring through the CI750. The CMI side of the
files are loaded and unloaded under CMI timing and control while
the DP side of the files are loaded and unloaded under CI750
microcode control.

In a port initiated operation (CI750 is CMI bus master), the
microcode 1loads command-address data from the the DP into the
CMC/ADR register. The command-address data routes from the CIPA
bus to the CMD/ADR register via the LTCHD CIPA D bus.



If the command-address data specified a write operation, the
microcode also loads CI write data from the LCP into the XMIT file
via the same path. Up to four data longwords can be stored in the
XMIT file. The microcode then signals the CCI that write data is
ready in the XMIT file. Upon being signaled by the microcode, the
CCI arbitrates for the CMI bus. When the CCI has won control of
the CMI bus, the command-address data is unloaded from the CMD/ADR
register onto the CMDADDR bus. The command-address data 1is
selected by a mux and coupled to the CMI DATA lines on the CMI.
The XMIT file is then unloaded onto the CCI XMIT DATA bus where it
is mux selected for the CMI [LATA lines. The data from the XMIT
file 1is written at the CMI address specified in the
command-address data. The transfer of data from the CMD/ADR
register and the XMIT file to the CMI is controlled and timed from
the CMI bus.

If this is a port initiated read operation, the CMD/ALCR register
is loaded, the microcode signals the CCI that the command-address
data 1is ready, the CCI arbitrates for the CMI bus, and the
command-address data is placed onto the CMI. The CCI then takes
the read data off the CMI DATA lines and loads it into a Receive
Write Data Register and then into the RCV file. Up to four data
longwords can be stored in the RCV file. The transfer of the read
data from the CMI to the RCV file is controlled and timed from the
CMI bus. The microcode is notified that read data 1is in the RCV
file whereupon it proceeds to unload the RCV file onto the CCI RCV
DATA bus. The data is then coupled to the DP via the CIPA bus.

Note the reversal in orientation of the "transmit" and "receive"
terms from how they were wused 1in the other CI750 modules.
Previously, "transmit" had been used in the sense of transmitting
data out to the CI bus, and "receive" in the sense of receiving
data from the CI bus. In the CCI, "transmit" is used to indicate
the transmission of data to the CMI bus, and "receive" 1is used to
indicate the reception of data from the CMI. Hence, the file used
to hold data received from the CI is the XMIT file because this
data is to be transmitted to the CMI. Likewise, the file used to
hold the data to be transmitted to the CI is the RCV file because
this data was received from the CMI.

The CCI module provides for CPU access of many CCI and DP
registers via unsolicited CMI transfers (CI750 is CMI bus slave).
Both reads and writes of the registers can be performed. Dur ing
unsolicited operations, the Return Read Data Register and the
Receive Write Data Register are used instead of the XMIT and RCV
files, to transfer the data.

When a CP register is being read, the read data is taken from the
CIPA bus and loaded into the Return Read Data Register via the
LTCHD CIPA D bus. The read data is then unloaded onto the CCI
XMIT DATA bus and then mux selected for transfer to the CMI DATA
lines on the CMI bus.



When a DP register is being written, the write data is taken from
the CMI DATA lines on the CMI bus and loaded into the Receive
Write LCata Register. The write data is then unloaded and passed
to the CCI RCV DATA bus. From here the write data is coupled to
the DP vie the CIPA bus.

Another function performed by the CCI module is requesting
interrupts of the host CPU when service routines must be run on
the CI750.

1.4.5 CI75¢0 Power (Figure 1-5)

Power for the CCI module is obtained from the power system in the
host CPU cabinet. The +5.0 V operating voltage and the ground
return are obtained from the card cage backplane as is the UBS
ACLC and UBS DCLO (see VAX-11/750 documentation listed in Table
1-1). UBS ACLO and UBS DCLO signal a power-up or power—down
condition within the CPU cabinet according to power systemn
protocol.

Power within the CIPA cabinet (CI750-C) is supplied from an H7202D
Power Supply containing an H7200 +4+5.0 V Regulator and an H7216
-5.3 V Regulator. The supply receives 120 VvV, 60 Hz from a
switched outlet on a power controller located in the cabinet. The
supply provides +5.0 V to the three CI750 modules located in the
CIPA cabinet (DP, PB, 1link) and -5.3 V to the link mcdule. A
ground return is provided from each module back to the supply.
The supply also provides ACLO and DCLO to the DP module to signal
a power-up or a power-down condition within the CIPA cabinet.

Power signals and voltages pass from the powér supply to the three
CIPA modules via the CIPA card cage backplane. Figure 1-5
illustrates the routing of the power signals and voltages.

A description of the H7202D power supply is contained 1in the
engineering specification listed in the table of related documents
(Table 1-1). Also listed as a related document is the technical
description manual for the H7202B power supply. This document is
applicable to the H7202D supply when it 1is considered that the
H7202D is an H7202B with the H7211 communications module removed
and the H7213 regulator replaced with the H7216 regulator (the
basic difference between the two regulators being their current
ratings).
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CHAPTER 2
LINK MODULE

NOTE

The functional block diagrams in Chapter
2 use 1logical AND and OR symbols. It
does not necessarily follow that a
corresponding gate exists on the 1link
logic prints. The assertion of inputs A
and B causing the assertion of output C
may be represented on a block diagram by
a single AND gate, yet the engineering
drawing may show that several circuit
stages are 1involved in the ANDing
operation.

The functional block diagrams in this
chapter are keyed to the link
engineering <circuit schematics (CS
prints) by letter designations in
parentheses. The letters specify the
link CS sheet that contains the detailed
logic associated with the functional
blocks in the diagram.

The signal names used in the functional
block diagrams are the names used on the
engineering CS prints. Where other
signal names or notes are used, they are
enclosed in parentheses.

2.1 PACKET FORMATS
Formats of the two types of packets, information and ACK/NACK
(acknowledge/negative acknowledge), are described below.

2.,1.1 Information Packet

Figure 2-1A illustrates the format of an information packet. The
information packet is used to transmit both messages and data
across the CI. Parts of the packet are generated by the link and
inserted into the packet as it passes through the 1link to be
transmitted.

2.1.1.1 Bit Synchronization -- The first five bytes of the
packet are for bit synchronization within the link. The bytes are
55 hexadecimal which is an alternating pattern of 1's and 0's used
to turn on the carrier detect circuits and to synchronize the
Manchester decoder prior to the receipt of useful data. The 1link
inserts the bit sync bytes into the packet.

2-1
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2.1.1.2 Character Synchronization -- The character
synchronization byte (96 hexadecimal) is used to indicate the
start of useful data in the packet. When the sync character is
recognized during packet reception, it starts the framing of the
serial data into eight-bit bytes. The 1link inserts the sync
character into the packet.

2.1.1.3 Packet Type/Length (High) -- The packet type and length
(high) byte specifies the type of packet (information or
acknowledge) and contains the upper four bits of a 12-bit packet
length word. Bits <7:4> are the packet type bits. For an
information packet bit 7 is a 0 (1 for an ACK/NACK packet) and
bits <6:4> are 0's.

Bits <3:0> are the wupper four bits of the 12-bit word that
specifies the packet length. Information packets are of variable
length in one-byte increments up to 1K bytes* with the minimum
packet length being seven bytes. The packet length specified by
the 12-bit packet length word includes all data from the packet
type and length (high) byte up to and including the last byte of
the body.

* Limited by the capacity of the buffers in the PB. The link is
capable of processing packets up to 4K bytes.

The port processor supplies the packet type and length (high) byte
as part of the packet.

2.1.1.4 Packet Length (Low) -- This byte contains the low eight
bits of the 12-bit packet length word. The port processor supplies
this byte as part of the packet.

2.1.1.5 Destination (True and Complement) -- The destination is
the eight-bit address of the CI node to which the packet 1is
transmitted. There are two destination bytes; the first being the
true node address value and the second being the complement of the
true value. The port processor supplies the destination bytes as
part of the packet.

Redundant destination addresses are used to preclude a single
logic failure bringing down both paths on the CI bus. With a
single address decode circuit, a failure which caused a node to
decode another node's address might result in both nodes
transmitting an acknowledge packet at the same time. This would
result in a collision on the CI bus and would be seen as a "no
response" by the transmitting node.



2.1.1.6 Source -- The source is the eight-bit address of the
sending node and is provided by the port processor as part of the
packet.

2.1.1.7 Body -- The body contains the data and port-processed
protocol information. The body is supplied by the port as part of
the packet.

2.1.1.8 Cyclical Redundancy Check (CRC) Bytes -- Following the
body are four CRC bytes generated by the CRC logic in the link.
During a packet transmission, the packet (starting with the packct
type and 1length (high) byte), is input into the CRC logic which
generates the coefficients of a CRC polynomial. The coefficients
are expressed as a 32-bit longword that is a function of the
packet data. Each CRC word is unique for the specific packet that
generated it.

During packet reception, the CRC 1longword 1is regenerated and
compared to the four CRC bytes generated during the transmission.
An error-free packet results in a match between the two longwords.

2.1.1.9 Trailer -- The trailer consists of six bytes of all @'s.
It is used to insure that all bits of a received packet have been
shifted through the link front end before the carrier detect logic
senses the end of packet reception. The link inserts the trailer
into the packet.

2.1.2 Acknowledge/Negative Acknowledge (ACK/NACK) Packet
Figure 2-1B 1illustrates the format of ACK and NACK packets. ACK
and NACK packets are sent by the receiving node to inform the
transmitting node that the packet arrived without data loss or bus
collision (CRC checked OK).

If the receiving node successfully accepted the packet into the
buffers on the PB, an ACK packet 1is returned indicating a
successful bus transaction and storage in the PB. If the receiver
buffers in the PB were full and, therefore, unable to accept the
packet, a negative acknowledge (NACK) packet is sent to inform the
transmitting node that the packet was successfully received but
could not be accepted. The transmitting node must then retransmit
the packet.



The entire ACK (or NACK) packet is generated and transmitted by
the link.

An ACK/NACK packet differs from an information packet 1in the
following three ways:

A. It has no body. An ACK/NACK packet only acknowledges
reception of an information packet. It does not transfer

messages or data as such.

B. It has no packet length word. All ACK and NACK packets
are the same 1length. Consequently bits <3:0> of the
packet type and length (high) byte are 0's and there is
no packet length (low) byte.

C. The packet type bits (bits <7:4> of the packet type and
length (high) byte specifies the type of packet as
follows:

Bit 7 = 1 1indicating an ACK/NACK packet (0 for an
information packet)

Bit 6 = 1 for an ACK packet
0 for an NACK packet.

2.2 LINK OVERVIEW

The 1link (Figure 2-2) 1is functionally divided into a receive
channel and a transmit channel with a CRC function shared between
the two. The overview briefly describes the following four 1link
operations with the transmit and receive channels functioning as
they would for the specific type of packet being processed. The
operations are described as they would occur with B following A
and D following C.

A. The reception of an information packet
B. The transmission of an ACK/NACK packet
C. The transmission of an information packet

D. The reception of an ACK/NACK packet

Link control logic receives commands from the port to select and
start link operations, and senses signal conditions to control the
transfer of data packets through the link. A receive clock (RCVR
CLK) and a transmit clock (XMIT CLK) are generated on the link to
time operations in their respective channels.
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2.2.1 Information Packet Reception
Data packets on the CI bus are in serial format at a serial bit

rate of 70 MHz. The data is Manchester encoded (phase encoded)
wherein the clock is incorporated into the modulated signal.

CI paths A and B are input to a RCVR select multiplexer (mux) in
the link front end. Carrier detect logic monitors both CI paths.
When the logic senses the initial presence of a carrier on one of
the paths and if that path has been enabled by the port, it
switches the mux to the active path, selecting CIA RCVR or CIB
RCVR for the Manchester decoder. The port may also select the
internal loop path wherein the mux selects the output from the
transmit channel and loops it. back into the port. This feature is
used for maintenance operations.

The mux output is applied to a Manchester decoder where the signal
clock 1is extracted from the modulated signal. The Manchester
decoder outputs the data (RCVR SERIAL DATA) and the clock
(MDECODER CLOCK) to the byte framer. The byte framer contains the
sync character detector.

The byte framer performs serial to parallel conversion of the
signal data. The framer is enabled by the sync character detector
which activates the framer when it recognizes the sync character.

When enabled, the byte framer ouputs a data byte (RDAT <7:0>) for
every eight serial bits received from the Manchester decoder. A

RCVR CLK generator develops RCVR CLK which times the transfer of
data through the link receive channel. SYNC from the byte framer
synchronizes RCVR CLK with the data bytes so as to occur
approximately centered on the asserted time period of RDAT <7:0>.

The RDAT <7:0> data bytes are coupled to the RCVR output register
and then to the PB as RCVR DATA <7:0>.

The 1link verifies that the packet is meant for this node by
comparing the packet destination bytes to the node address set
into the node address switches. The comparision is made in the
destination compare logic. If a match is not obtained, the
receiver is cleared and reception is terminated.

The packet source byte is extracted from the incoming packet and
placed into the ACK destination register. When the link transmits
an ACK packet in response to the information packet now being
received, it will use the address in the register (the source of
the information packet) as the ACK destination.



The packet bytes extending from the packet type and length (high)
byte up to and including the last byte of the body, are applied to
the CRC checker. The bytes are acted on by the CRC algorithm which
generates the 32-bit CRC longword. The four CRC bytes in the
packet are compared to the generated longword and if the packet is
free of error, CRC STATUS is asserted to message receive logic.

After the packet trailer has passed through the link front end,
the carrier detect logic senses the end of the packet and informs
the ACK transmit logic. The ACK transmit logic then initiates the
transmission of an ACK packet.

2.2.2 ACK/NACK Packet Transmission
An ACK/NACK packet is generated and transmitted entirely by the
link. No packet data is received from the PB as XMIT DATA <7:0>.

The link ACK transmit logic initiates the transmit operation by
enabling the sync/trailer PROM which outputs five bit-sync bytes
and a sync character byte onto the XMIT DATA bus (XMIT DATA BUS
<7:0>).

The ACK type logic is then enabled and outputs the packet type
byte onto the XMIT DATA bus. The logic sampled the state of PB
signal RCVR BUFFERS FULL at the start of the information packet
reception. If RCVR BUFFERS FULL was true, the PB was not able to
accept the information packet just received. In this case, the
ACK type logic outputs the code for a NACK packet. If RCVR BUFFERS
FULL was false, the logic outputs the code for an ACK type packet.

The 1link control logic then enables the output of the ACK
destination register which outputs the two destination bytes onto
the XMIT DATA bus. The destination value used 1is the source
address taken from the information packet just received.

The ACK source 1logic 1is then enabled and transfers the node
address from the node address switches to the XMIT DATA bus as the
source byte.

The ACK/NACK packet is transferred to the BUS TDATA bus via the
XMIT data register. The packet, starting with the packet type
byte, has also been input into the CRC generator where a 32-bit
CRC longword is generated. After the source byte has been input to
the CRC generator, the link control gates the CRC longword onto
the BUS TDAT2 bus a byte at a time. The four CRC bytes are thus
inserted into the ACK/NACK packet.

Finally, the ACK transmit logic re-enables the sync/trailer PROM
which outputs six trailer bytes onto the XMIT DATA bus to complete
the ACK/NACK packet.



The ACK/NACK packet on the BUS TDATA bus is applied to the XMIT
serial shift register which performs parallel to serial conversion
of the signal data. Data bytes are input to the register and then
shifted out serially to the Manchester encoder as XMIT SERIAL
DATA. The bit rate of the serial data is 70 MHz. The register
logic also generates XMIT CLK which times the transfer of data
through the 1link transmit channel. XMIT CLK is synchronized with
the serial data within the shift register.

The XMIT SERIAL DATA is applied to the Manchester encoder where
the bit rate clock is combined with the serial data to produce a
phase-encoded carrier. The Manchester encoder outputs the
modulated carrier (ME DATA) to the CI bus. The ACK transmit logic
selects the same CI path used by the information packet Jjust
received. The ME DATA can also follow an internal loop path into
the receive channel if the link is in internal loop mode and the
receiver inputs from the CI bus are disabled. This feature is used
for maintenance testing.

2.2.3 Information Packet Transmission

An information packet is mostly generated by the port and input to
the link transmit channel from the PB. The information packet
bytes that are inserted by the link are:

A. The five bit-sync bytes
B. The character sync byte
cC. The four CRC bytes

D. The six trailer bytes.

Transfer of an information packet utilizes only some of the
functions described in Paragraph 2.2.2. The functions that are
used operate as previously described.

The port initiates the transmit operation via the message transmit
logic. When the transmit operation is initiated, the link enables
the sync/trailer PROM which outputs five bit-sync bytes and a sync
character byte onto the XMIT DATA bus.

The packet type and length (high) byte and the packet length (low)
byte are provided by the port.

The destination bytes are also provided by the port. When the
destination bytes are on the XMIT DATA bus the link enters the
destination address into the ACK source compare logic. When the
ACK/NACK response packet is received from the target node, the
packet source byte is compared with the contents of the compare
logic. If the correct node responded, a match will be obtained.



The source byte 1is inserted by the PB, not by the 1link. The
address source 1is the 1link node switches which output the node
address to the PB. The source byte, then, is an input to the XMIT
DATA bus from the PB.

The CRC generator functions to produce the four CRC bytes just as
for an ACK/ NACK transmission. However, the information packet
has a body which 1is also input to the CRC generator and
contributes to the generation of the CRC longword.

Finally, the 1link message transmit logic re-enables the
sync/trailer PROM which outputs the six trailer bytes onto the
XMIT DATA bus to complete the information packet.

2.2.4 ACK/NACK Packet Reception

Transfer of an ACK/NACK through the receive channel utilizes most
of the functions described in Paragraph 2.2.1, Information Packet
Reception. The functions also operate as previously described.

With regard to the 1link receive channel, the basic difference
between the reception of an ACK/NACK packet and an information
packet is in the handling of the packet source byte. The source
byte 1is not entered into the ACK destination register but is
applied to the ACK/NACK source compare logic. The source compare
logic presently contains the destination address of the
information packet just transmitted. The source byte is compared
to the destination address. The address will match if the correct
nodes are involved in the data transfer.

2.3 LINK OPERATING STATES

Paragraphs 2.4 and 2.5 provide a detailed description of the
operation of the receive channel and transmit channel hardware.
Control of the hardware is a function of commands from the port,
the type of operation being executed, and conditions sensed by the
logic (e.g. errors) during the operation. Hardware control is
implemented via programmable array logic (PALs) which define
various hardware states during each operation. The states are
represented in four diagrams contained in the engineering drawing
set. The operations described by the diagrams are shown in Table
2-1 and described in Paragraph 2.10.



Table 2-1 Link State Diagrams

Operation Number of States
Information Packet Reception 13
ACK Packet Transmission 8
Information Packet Transmission 13
ACK Packet Reception 8




2.4 RECEIVE CHANNEL
Figure 2-3 is a block diagram of the receive channel and should be
referred to throughout Section 2.4.

The receive channel hardware contains both transistor-transistor
(TTL) logic and open collector emitter coupled logic (ECL). The
carrier detection/path selection logic, Manchester decoder, byte
framer, and sync character detector all use ECL logic. ECL has an
active high and non-active low state on common lines resulting in
a different interpretation of circuit 1logic than with TTL. A
description of the receive path select mux is given Paragraph
2.4.1.2 as an example for those unfamiliar with ECL logic.

2.4.1 CI Carrier Detection and Path Selection

The carrier detect and path select logic monitors activity on the
CI bus and, when activity is detected, selects the active path as
an input to the link receive channel. The port uses port and link
control PALs to specify which receive channel(s) are allowed to
receive signal inputs from the CI bus. The PALs enable the receive
channel(s) by asserting RCVR A ENABLE or RCVR B ENABLE.

2.4.1.1 Carrier Detect Logic =-- 1Identical and parallel logic
monitors paths A and B, If a carrier is present on CI path A, the
carrier detect A logic sets the carrier detect A flip-flop. If the
port has enabled channel A (RCVR A ENABLE true), ICCS PATH A CDET
asserts and causes CARRIER DET A to be asserted by a flip-flop on
the next RCVR CLK. The flip-flop outputs CARRIER DET A to the
carrier select state PAL. If the existing state of the port is
such that a receive channel may be opened, the carrier state
select PAL outputs an asserted ICCS PATH SELECTED and a negated
ICCS PATH B. RCVR PATH SEL A asserts to the receive path select
mux to select CI path A for the mux input.

Note that the receiver carrier detect flip-flop is clocked by RCVR
CLK which resets the flip-flop as soon as the carrier detect A
output negates. Thus, the CI input path to the receive channel is
closed once the carrier presence is no longer sensed.

Had activity been sensed on CI path B, similar logic would have
selected CI path B for the mux input.

FORCE PATH A and FORCE PATH B from the link control logic force a
corresponding path selection from the carrier select state PAL.
When the port commands a message transmission, the path selected
for the transmission 1is reserved in the receive channel 1in
preparation to receive the ACK response.

The port and 1link control PALs can also select the internal
maintenance loop (INT MLOOP) wherein ME DATA from the transmit
channel is selected for the mux input. The true state of INT MLOOP
inhibits both RCVR PATH A and RCVR PATH B which causes the mux to
select the ME DATA input signal.
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Figure 2-3 Receive Channel Block Diagram






2.4.1.2 Receive Path Select Mux -- ECL Logic -- The receive path
select mux is on sheet S of the engineering drawing set. The
detailed operation of circuit logic is not usually described in a
functional description manual, however, the operation of the mux
is described here as an example of the ECL logic referred to in
Paragraph 2.4.

Refer to Figure 2-4, If RCVR PATH SEL A is true, the output of OR
gate A can follow the CIA RCVR signal input. The signal RCVR PATH
B is false which holds the output of OR gate B low. In ECL logic,
a signal low is the non-active state and a high is the active
state. Any gate connected to a common line can pull the line up to
the active state. Thus, OR gate B is held inactive (low) while OR
gate A transfers the CIA RCVR signal to the Manchester decoder.
The true state of RCVR PATH SEL A also holds the LOOP OR gate in
the inactive state.

If RCVR PATH SEL B were true (RCVR PATH SEL A false), OR gate A
and the LOOP OR gate would be held inactive and OR gate B would
function to transfer CIB RCVR to the Manchester decoder.

If the internal maintenance loop is selected, both RCVR PATH SEL
signals are false holding OR gates A and B in the inactive state.
However, the LOOP OR gate is now active and transfers ME DATA to
the Manchester decoder.

2.4.2 Manchester Decoder

2.4.2.1 Phase Encoding -- Phase encoding (Figure 2-5) 1is a
modulation technique in which a signal phase reversal occurs for
each bit of information. A "1" is defined as a positive level
followed by a negative transition, while a "0" is defined as a
negative level followed by a positive transition. Phase reversals
are at the data rate or at twice the data rate. Consecutive 1l's or
consecutive 0's will cause phase reversals to occur at twice the
data rate (Figure 2-5A). Alternate 1's and 0's cause flux
reversals to occur at the data rate (Figure 2-5B).
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2.4.2.2 Decoder Logic -- The Manchester decoder decodes the
encoded signal data by separating out the 70 MHz bit rate clock
(MDECODER CLOCK) leaving the serial data (RCVR SERIAL DATA). The
decoder consists of a flip-flop with the signal data from the
receive path select mux as the D input. The flip-flop clock input
is derived from XORing the delayed output of the receive path
select mux (delayed 10.7 ns) with the output of the decoder
flip-flop. '

Figure 2-6 illustrates the action of the decoder logic. The signal
data from the receive path select mux 1is shown with 1 or 0
transitions at the center of each bit cell. With a 70 MHz bit
rate, the width of the bit cells is 14.28 ns. The output of the
delay line is seen as the signal data delayed 10.7 ns. XORing the
delayed data with the flip-flop output (RCVR SERIAL DATA)
generates the MDECODER CLOCK waveform. Note that in the case of
alternating 1's and 0's, the width of the MDECODER CLOCK pulse is
the set and reset times of the decoder flip-flop. In the case of
consecutive 1's or 0's, the clock is identical to the inverse of
the delayed data.

The MDECODER CLOCK is at 70 MHz with a 14.28 ns period. The XOR
action serves to generate the clock's rising edge 1/4 into each
bit cell. This centers the rising edge in the valid strobe area
(first half of the bit cell).

2.4.3 Sync Character Detect Enable PAL

The purpose of the sync character detect enable PAL is to assert
ENA SYNC DET to the byte framer when a packet is expected. The PAL
monitors CARRIER DET A and CARRIER DET B and asserts ENA SYNC DET
when it senses that a signal carrier is being received. The PAL
negates ENA SYNC DET during node transmissions (FORCE PATH A,
FORCE PATH B) so the 1link will not respond to its own
transmissions. The PAL asserts ENA SYNC DET immediately after
information packet transmissions in anticipation of the ACK (or
NACK) response.

The byte framer contains a sync detector which is enabled by ENA
SYNC DET. The sync detector looks for the packet sync character as
a means of recognizing that a packet is being received. When the
detector recognizes the sync character, it enables the byte framer
to start processing the packet bytes. By Kkeeping the detector
disabled except when a packet 1is expected, the sync character
detect PAL prevents the detector from erroneously recognizing
noise as a sync character.

The sync character detect enable PAL is discussed in more detail
in Paragraph 2.10.2.2.
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2.4.4 Byte Framer

The byte framer is enabled when it receives the sync character
byte. Once the framer recognizes the sync character, it then
functions to convert the serial signal data from the Manchester
decoder into eight-bit data bytes for the RDAT bus.

As shown in Figure 2-7, RCVR SERIAL DATA 1is input to the RCVR
serial shift register. The register is held in the load state by
the negated state of E197-R2 (Figure 2-8), thus no data is shifted
into the register. When a carrier presence is sensed at the front
end of the receive channel, the sync character detect enable PAL
also senses the carrier presence. If the PAL deems that this is a
valid time to receive a packet,it asserts ENA SYNC DET to the SYNC
ENA flip-flop. On the next RCVR CLK, the flip-flop outputs SYNC
ENA to another flip-flop which asserts E197-R2 to the RCVR serial
shift register. The true state of E197-R2 enables the register by
changing its state from load to shift. RCVR SERIAL DATA 1is now
shifted into the register at the 70 MHz bit rate by MDECODER
CLOCK. Figure 2-8 illustrates the timing of the enabling of the
RCVR serial shift register.

The RCVR serial shift register outputs eight-bit bytes onto a data
bus. The data bytes are then applied to the RCVR input register.
The sync detector monitors the data on the bus 1looking for the
sync character byte. When the detector recognizes the sync
character, it asserts E198-3 to the sync flip-flop. The next
MDECODER CLOCK sets the flip-flop and asserts SYNC to the external
data framer.

Note that only seven of the eight bits on the data bus are fed
into the sync detector. The eighth bit is taken from the RCVR
SERIAL DATA being fed into the RCVR serial shift register. Thus,
the sync detector recognizes the sync character before the last
character bit 1is shifted into the shift register. The next
MDECODER CLOCK that clocks the last bit into the register, also
sets the sync flip-flop. Hence, SYNC asserts when the sync
character is in the shift register and not one clock pulse later
(Figure 2-9).

When SYNC asserts, the external framer shift register functions to
switch the RCVR input register from the hold state to the 1load
state (for one clock pulse) every eight MDECODER CLOCK pulses.
RCVR SERIAL DATA continues to be shifted into the RCVR serial
shift register. Every eight clock pulses a data byte is present in
the shift register and on the data bus. At this time the external
framer shift register switches the RCVR input register from hold
to load. The next MDECODER CLOCK pulse then loads the data byte
into the register.
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The D7 input to the external framer shift register is tied high.
Before the assertion of SYNC, the framer register is in the 1load
state, hence the R7 output is true. The true state of the R7
output keeps the RCVR input register in the load state. When SYNC
asserts, the framer shift register starts to shift. The 1 at R7 is
shifted in and through the framer shift register.

Every eight MDECODER CLOCK pulses, the 1 is shifted through to the
R7 output, switching the RCVR input register to the load state for
one clock pulse. As seen in Figure 2-9, the timing is such that a
data byte is on the data bus when the RCVR input register 1is
loaded. The timing for the first three bytes of a packet is shown
in Figure 2-9.

2.4.5 RCVR CLK Generator

Figure 2-10 is a block diagram of the RCVR CLK generator. The
RCVR CLK is derived from a crystal-controlled 70 MHz oscillator.
The RCVR CLK pulses function to time and control the operation of
the receive channel logic. When a signal packet is received, the
RCVR CLK is synchronized to the packet bytes by SYNC received from
the byte framer.

The output from the 70 MHz crystal-controlled oscillator is
doubled to 140 MHz by a frequency doubler. (The 140 MHz is used in
the Manchester encoder in the transmit channel.) The 140 MHz is
divided down to 35 MHz and then applied to a shift register
consisting of four flip-flops. The shift register divides the 35
MHz by four, outputing RCVR CLK at a frequency of 8.75 MHz (period
= 114.28 ns).

Table 2-2 1lists the frequency and period of the link clocks. The
XMIT CLK (discussed in Paragraph 2.5.7) is included in the table.
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Figure 2-10 RCVR CLK Generator

Table 2-2

Link Clocks

Frequency (MHz)

Period (ns)

Clock

70

14,28
28.57
114,28

114,28

MDECODER CLOCK

RCVR CLK

XMIT CLK




The register functions to shift a logic low through the flip-flop
chain. When the low is in the rightmost flip-flop, the other
three flip-flops are set. Outputs from the three set flip-flops
are ANDed together to condition the first flip-flop to reset on
the next clock pulse thus re-inserting the low into the flip-flop
chain. The cycle is then repeated.

The left and right portions of Figure 2-11 illustrate the
operation cycle of the shift register. (The center portion
illustrates the synchronization function.) Waveforms 1, 2, 3, and
4 relate to the corresponding points in Figure 2-10. Also shown is
the MDECODER CLOCK and SYNC from the byte framer, and the time
periods that the RDAT <7:0> bytes are in the RCVR input register.
These three signals are time related to each other and are shown
as they appear in the byte framer timing diagram (Figure 2-9). The
35 MHz clock and the shift register waveforms are time related to
each other but are independent of the byte framer timing. The SYNC
signal is used to synchronize the action of the shift register
with the data bytes from the byte framer.

As shown in Figure 2-10, when SYNC asserts, two sync flip-flops
are set by the 35 MHz clock which in turn assert E151-3. The next
35 MHz clock sets a pulse width (Pw) flip-flop which negates
E151-3, thus forming an E151-3 pulse to the shift register. The
E151-3 pulse synchronizes the register by forcing a reset
condition on the first flip-flop and a set condition on the other
three flip-flops. The next 35 MHz clock pulse places the register
into the conditioned state which is to introduce a logic low into
the first flip-flop. Thus, regardless of where the register was in
its cycle, it is restarted at the beginning of the cycle.

The assertion of SYNC followed by the assertion of E151-3 is seen
in Figure 2-11. Note that the conditions forced onto the shift
register by the E151-3 pulse are clocked in by the next 35 MHz
clock pulse (the first flip-flop is reset and the other three are
set). As seen in Figure 2-11, the logic low had reached the second
flip-flop when the register cycle was interrupted and reset back
to its starting point. The register cycles from this point on are
in synchronization with the byte frame. This results in the
generation of RCVR CLK pulses approximately centered in the time
period when the packet bytes (RDAT <7:0>) are in the RCVR input
register,

2.4.6 CRC Check

The packet bytes on the RDAT bus, up to and including the four CRC
bytes, are input to the CRC checker. If no errcrs are detected by
the checker, the checker asserts CRC STATUS to the message receive
state 1logic, indicating the reception of a valid, error-free
packet.



0
00

MDECODER
CLOCK (70 MHZ)

35 MHZ

SYNC /
/

E1539

EXT SYNC

|

|

|

|
E151.3

|

|

i — 1 /I S

L] J S N

OXOXO,

]
® — I
Grsman 1 1

]EE

RDAT .7:0> « RDAT <7.0>**
IN RCVR INPUT REG. IN RCVR INPUT REG
FOR THIS PERIOD. FOR THIS PERIOD.

o LAST BIT OF SYNC CHARACTER BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER

o SYNC CHARACTER BYTE IN RCVR SERIAL SHIFT REGISTER.

o FIRST BIT OF PACKET LENGTH/TYPE BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER
o LAST BIT OF PACKET LENGTH/TYPE BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER
° PACKET LENGTH/TYPE BYTE IN RCVR SERIAL SHIFT REGISTER

° FIRST BIT OF PACKET LENGTH BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER

° LAST BIT OF PACKET LENGTH BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER

° PACKET LENGTH BYTE IN RCVR SERIAL SHIFT REGISTER.

o FIRST BIT OF TRUE DESTINATION BYTE CLOCKED INTO RCVR SERIAL SHIFT REGISTER.

Figure 2-11 RCVR CLK Synchronization

2-27

* PACKET TYPE/LENGTHBYTE
** PACKET LENGTHBYTE

1K-8610



2.4.7 Destination Compare

The node address and the complement of the node address are set
into two sets of eight-contact node address switches. The
eight-bit output of the complement node address switch is applied
to the true destination compare logic as CNODE ADDRESS <7:0>. The
eight-bit output of the true node address switch is applied to the
complement destination compare logic as NODE ADDRESS <7:0>.

The true destination byte and complement destination byte are
applied from the RDAT bus to both destination compare 1logic
circuits. The state PALs enable the compare logic outputs such
that when the true destination byte is on the RDAT bus, the output
of the true destination compare logic 1is enabled. If the true
destination byte matches CNODE ADDRESS <7:0> from the complement
node address switch, TDST CMP asserts indicating that a true
address match was obtained. Likewise, when the complement
destination byte is on the RDAT bus, the output of the complement
destination compare logic 1is enabled. If the complement
destination byte matches NODE ADDRESS <7:0> from the true node
address switch, CDST CMP asserts indicating that a complementary
address match was obtained.

True and complement destination matches assert DST CMP to the
message receive and ACK receive state logic.

A polarity reversal in the compare logic results in the output of
the true node address switch being applied to the complement
destination compare logic and the output of the complement node
address switch being applied to the true destination compare
logic.

The output of the node address switches is coupled to the compare
logic wvia XOR gates. This allows the true address and the
complement address to be swapped for maintenance testing.



2.4.8 ACK Source Comparison

The ACK source compare logic is used only during the reception of
an ACK packet. The ACK packet was transmitted from its source to
acknowledge an information packet that was transmitted from this
node. When the information packet was in the transmit channel, the
destination address was saved and applied into the ACK source
compare logic.

The ACK source compare logic receives inputs from the transmit
channel and from the RPAT bus. When the source byte of the ACK
packet is on the RDAT bus, the output of the compare logic is
sampled. If a match is obtained, ACK SOURCE CMP 1is asserted
indicating that the source address of the ACK packet matches the
destination address of the preceding information packet.

2.4.9 Receive Data Parity And Channel Output

Cata bytes are transferred from the RDAT bus to the PB via the
receiver output data register. The bytes are output from the
register as RCVR DATA <7:0>.

The data bytes are also applied from the RDAT bus into a receiver
data parity generator where odd parity is generated on each byte.
A ninth input to the parity generator (VALID RCVR PARITY) provides
a means of introducing parity errors for maintenance testing. The
output from the parity generator is applied to a parity flip-flop
which outputs RCVR DATA PARITY to the PE.



2.5 TRANSMIT CHANNEL
Figure 2-12 is a block diagram of the transmit channel and should
be referred to throughout Section 2.5.

2.5.1 Transmit Data Input

Transmit data from the PB (XMIT DATA <7:0>) 1is input into the
transmit channel via the XMIT data input latch and then
transferred to the XMIT data bus as XMIT DATA BUS <7:0>. The input
latch is transparent in that the data on the XMIT data bus will
follow the XMIT DATA <7:0> input so long as the latch is enabled
by ENA XMIT DATA LATCH from the transmit control logic and by the
high state of XMIT CLK. When XMIT CLK is 1low, the 1latch is
disabled (closed).

2.5.2 Bit Sync, Sync Character, and Trailer Bytes

The bit synchronization bytes, the sync character byte, and the
trailer bytes reside in a 32 x 8 PROM. The PROM output is enabled
by ENA SYNC/TR from the transmit control 1logic. A five-bit
address input to the PROM (<A4:A0>) selects the output bytes which
are placed onto the XMIT data bus.

Figure 2-13 1illustrates the 32 eight-bit 1locations in the
sync/trailer PROM. The five bit-sync bytes and the sync character
byte are located in the upper area of PROM space. They are spaced
at every other location starting at address 10101. The six trailer
bytes are located in between the sync bytes starting at address
10100. The 1lower area of the PROM 1is reserved for possible
extension of the header to 16 bytes (15 bytes of bit
synchronization and one byte for the sync character).

PROM address bits <A4:Al> are obtained from a binary counter which
is enabled by ENA SYNC/TR CNT from the transmit control logic.
When ENA SYNC/TR CNT is false, the counter is loaded with starting
address 1010. When ENA SYNC/TR CNT asserts, the counter counts up
from 1010 addressing every other PROM location. The PROM's least
significant address bit (A0O) is SEL TRAILER from the transmit
control logic. When SET TRAILER is false, the PROM sync bytes are
addressed. When SEL TRAILER 1is true, the PROM trailer bytes are
addressed.

Address bits <A4:A2> are mnonitored and cause LAST SYNC to be
asserted to the transmit control logic when all three bits are
true. As 1is shown in Figure 2-13, this occurs when the last sync
byte (sync byte 5) is being addressed.

When the binary counter has counted up past the last trailer byte
(or past the sync character byte) it overflows and asserts SYNC/TR
GONE to the PAL state logic.
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2.5.3 ACK Packet Inserts

The packet type, source, and destination bytes are inserted into
ACK packets by the 1link. When information packets are being
transmitted, these bytes are inserted by the port and do not
involve the link hardware.

2.5.3.1 Packet Type Byte -- The packet type byte 1is obtained
from the ACK type logic. The logic outputs a 1 in bit position 7
signifying an ACK (or NACK) packet. Bit position 6 is a function
of BUSY which is derived from RCVR BUFFERS FULL from the PB, If
the receive buffers in the PB are full, the information packet
just received could not be accepted by the node causing BUSY to
assert, This causes a 1 in bit position 6 signifying that a NACK
packet is being transmitted. If BUSY is false, bit position 6 is 0
indicating that an ACK packet is being transmitted.

Bits <5:0> from the ACK type logic are always O.

2.5.3.2 Source Byte -- The ACK source byte is the complement
node address (CNODE ADDRESS <7:0>) obtained from the complement
node address switch. The source byte is gated onto the XMIT data
bus by ENA ACK SRC from the PAL state logic.

2.5.3.3 Destination Bytes -- The ACK destination bytes are
derived from the source byte of the associated information packet.
The source byte is taken from the RDAT bus in the receive channel
and clocked into the destination address registers by CLK ACK DST
REG. RDAT REG <7:0> 1is entered directly into the true ACK
destination register while the inverse (complement) is entered
into the complement ACK destination register. The true destination
byte and the complement destination byte are gated to the XMIT
data bus by ENA ACK TDST and ENA ACK CDST, respectively. The
gating signals are asserted by the PAL state logic to insert the
bytes into the ACK packet at the appropriate insertion times.

2.5.4 Destination Address Register

The destination address register saves the destination address of
an information packet that is being transmitted. CLK DST ADR REG
asserts at the correct time to clock the true destination byte
into the register. The destination byte 1is used when the
associated ACK packet is received. It is compared to the source of
the ACK packet 1in the receive channel where a match will be
obtained if the <correct node responded to the message
transmission.



2.5.5 Transmit Data Parity Check

Data on the XMIT data bus is transferred to the BUS TDATA bus via
the XMIT data register. The register output is gated to the BUS
TDATA bus by ENA XMIT DATA REG from the PAL state logic.

Cata from the BUS TDATA bus is applied to the XMIT data parity
checker where a parity check is made on the packet bytes. The
parity bits (XMIT L[CATA PARITY) are received from the PB and
applied to a latch flip-flop as TDATA PARITY LATCH. An OR feedback
network holds TDATA PARITY LATCH true for both alternations of
XMIT CLK to allow the latch flip-flop to set (if parity is a 1).
The latch flip-flop outputs the parity bit (TDATA PARITY) to the
parity checker. Parity 1is checked when ENA XMIT DATA PARITY
asserts and enables the parity checker output. If a parity error
occurred, TDATA PARITY ERROR 1is asserted to the message state
logic.

2.5.6 CRC Generation

The packet bytes on the XMIT data bus, starting with the packet
type byte and ending with the last byte of the body, are input
into the CRC generator. The generator functions to produce a
32-bit CRC longword unique to the packet being transmitted. The
longword is inserted into the packet, a byte at a time, after the
packet body.

2.5.7 XMIT CLK Generator

Figure 2-14 is a block diagram of the XMIT CLK generator. The
transmit clock (XMIT CLK) is derived from a 70 MHz input received
from a crystal oscillator network in the RCVR CLK generator. The
transmit clock generator functions to produce XMIT CLK pulses at
8.75 MHz (period = 114.28 ns). The generator also outputs an RO
pulse to load the XMIT serial shift register from the TDATA bus.

The XMIT framer shift register is clocked at 70 MHz and has an
eight-bit parallel output (<KR7:R@>). The inverse of bits <R6:R@>
are ANDed such that when all seven bits are false, a 1 is input to
the framer shift register. The 1 is clocked up to the R7 output at
which time another 1 is generated for the shift register input.
This action is illustrated in Figure 2-15.

R6 and R7 from the framer shift register are applied to the D
input of the XMIT CLK flip-flop causing the flip-flop to set for
two 70 MHz clocks. The output of the flip-flop is XMIT CLK. Figure
2-15 illustrates the time relationship of XMIT CLK relative to the
outputs of the framer shift register.

For maintenance testing, the output of the XMIT CLK flip-flop can
be disabled and an XMIT TEST CLK substituted.
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2.5.8 Parallel To Serial Data Conversion

Eight-bit data bytes from the TDATA bus are input to the XMIT
serial shift register. RO from the XMIT CLK generator asserts
every eighth 70 MHz clock to load the shift register with a data
byte from the TDATA bus. After being loaded, the register returns
to the shift state and shifts out the data byte a bit at a time as
XMIT SERIAL DATA. As the last bit is shifted out, RO asserts again
to load the next packet byte into the serial shift register.
Figure 2-15 illustrates the load and shift time periods of the
serial shift register.

The XMIT SERIAL DATA is applied to a serial data flip-flop clocked
by 70 MHz. The flip-flop output (E183-11) is then applied to the
Manchester encoder.

2.5.9 Manchester Encoder

The Manchester encoder modulates the serial data with the data bit
rate clock to produce the signal format that is placed onto the CI
bus.

The encoder logic consists of XORing the E183-11 output of the
serial data flip-flop with the 70 MHz clock. The output of the XOR
gate is inverted and applied to the Manchester encoder flip-flop.
The encoder flip-flop is clocked at 140 MHz (twice the data rate)
as required for phase encoded (PE) data (see Paragraph 2.4.2.1).
The output of the Manchester encoder flip-flop (ME DATA) is the
packet data ready to be transmitted onto the CI bus.

The action of the Manchester decoder can be seen from the timing
diagram of Figure 2-16. The E183-11 output of the serial data
flip-flop is shown for the given data bits. The result of XORing
E183-11 with the 70 MHz is seen. Using the inverse of the XOR
output for the encoder flip-flop D input, and the 140 MHz for the
clock, the resultant ME DATA waveform is derived. The ME DATA
signal format 1is identical to the format of the serial data
received from the CI bus as shown in Figure 2-6.
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2.5.10 XMIT ECL Drivers

The ME DATA from the Manchester encoder is transferred to the CI
bus via XMIT ECL drivers (Figure 2-17). The XMIT drivers are
divided into two channels feeding the A and B paths on the CI bus.
Path selection is made by the port via the transmit control logic
which enables the driver in the selected channel.

The ME DATA is routed to drivers in both channels and then through
coupling transformers to the CI bus as CIA XMIT and CIB XMIT. The
XMIT drivers are enabled by redundant XOR gates. When the transmit
control logic selects channel A, A DRIVER ENA asserts (P DRIVER
ENA false) and in turn asserts E151-1 from the channel A AND gate.
The assertion of E151-1 causes outputs from both channel A XOR
gates which in turn enables the channel A driver.

Likewise, the assertion of B DRIVER ENA from the transmit control
logic causes the assertion of the E151-2 output of the channel B
AND gate and thus enables the channel B driver.

Redundancy exists in the driver enabling 1logic to prevent the
possibility of a single component failure causing the A and B
channels to be enabled simultaneously. If through a logic
component failure, the outputs of both the channel A and channel B
AND gates were asserted (E151-1 and 2 both true), one of the
channel A XOR gates and one of the channel B XOR gates would be
inhibited. This would hold the enabling inputs to the channel
drivers*high to inhibit the drivers and isolate the node from the
CI bus.

The port can also select internal maintenance loop operation where
the ME DATA from the transmit channel is looped back into the
receive channel. To do this, the port control logic asserts INT
MLOOP which inhibits both E151 AND gates, shutting off both output
drivers. In addition, the signal 1lines into both the A and B
channel drivers are held high by INT MLOOP to inhibit any signal
data variations into the drivers.

* The operation of ECL logic is described in Paragraph 2.4.1.2.
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2.6 CRC GENERATOR AND CHECKER
Figure 2-18 is a block diagram of the CRC generator and checker.

2.6.1 CRC Generator

Packet bytes from the XMIT data bus in the transmit channel are
input to the CRC input mux as XMIT DATA BUS <7:0>. The transmit
control logic asserts XMIT CRC ENA to the mux to select the bytes
from the transmit channel. The mux output is applied to the CRC
input register which outputs the bytes as NEW DATA <7:0>.

NEW DATA <7:0> is applied to a CRC lookup table via an XOR gate.
The lookup table logic generates the CRC longword for the packet
being transmitted. CRC TABLE <31:00> from the lookup table logic
is applied to a CRC register which outputs CRC <31:00>.% CRC
<31:00> is looped back into the lookup table logic in two parts.
The first three bytes (CRC <23:00>) are applied directly into the
table logic while the upper byte (CRC (31:24)) is XORed with the
new input byte from the CRC input register. Thus, the new data
bytes are continuously integrated into the compilation of the
previous data bytes such that the CRC-generated longword is always
a function of the packet bytes received from the transmit channel.

The CRC longword from the CRC register is also coupled to the BUS
TDATA bus in the transmit channel via four drivers. When enabled,
each driver places a byte onto the BUS TDATA bus to insert a CRC
byte into the packet being transmitted.

The drivers are enabled from a CRC byte counter. The counter
receives a SHIFT IN input (E29-5) when the last byte of the packet
body is on the BUS TDATA bus. The input is shifted through the
counter by CRC CLOCK asserting RO through R3 in sequence. RO
through R3 are applied to four AND gates which are enabled at the
appropriate time from the PAL state logic.

In addition, ENA XMIT DATA REG must be false before the RO AND
gate is enabled to place the first CRC byte (CRC (7:0) onto the
TDATA bus. This insures that the TDATA bus is isolated from the
XMIT data register before the CRC logic is connected to the bus
(see Figure 2-12). Likewise, each AND gate must be disabled in
sequence before the next AND gate can be enabled. This ensures
that only one source is driving the TDATA bus at any one time.

The CRC generator logic is clocked by CRC CLOCK which is seen to
be XMIT CLK during the transmit states.

* The CRC register is initially preset to all 1's.
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2.6.2 CRC Checker

Packet bytes from the RDAT register bus in the receive channel are
input to the CRC input mux as RDAT REG <7:0>. The transmit control
logic negates the XMIT CRC ENA input to the mux selecting the
bytes from the receive channel. The mux output is applied to the
CRC input register which outputs the bytes as NEW DATA <7:0>,

The CRC logic functions to generate the CRC longword (CRC <31:00>)
from the packet bytes as described in Paragraph 2.6.1. The last
four bytes input to the CRC logic is the CRC longword generated
for the packet. When the CRC longword 1is entered into the CRC
lookup table, an output of DEBB 28E3 (hexadecimal) will be
obtained if the packet transfer was error free.

The longword is applied to a CRC comparator which checks the value
of the longword and asserts CRC STATUS if the proper value was
obtained.

2.7 ARBITRATION

2.7.1 General

To prevent collisions on the bus, only one node should be
transmitting at a time. When the port commands a node to transmit
an information packet, the 1link goes through an arbitration
process in order to "gain control" of the bus.* For a node to
"gain control" of the bus means that it is the node's turn to have
the bus within the arbitration process that is being executed by
all the nodes competing for the bus. There is no hardware or
software control by which a node may seize the bus and exclude
other nodes.

The arbitration process consists of counting down a specific
number of "quiet slots" on the bus. A guiet slot is a time period
of approximately 800 ns during which there is no activity on the
bus. Eight hundred ns is sufficient time for a one-way trip on the
bus and to detect a carrier presence. Thus, a quiet slot is a time
period allocated for an arbitrating node to detect another node's
transmission,

If a node completes its quiet slot countdown (reaches 0), the node
wins the bus and may transmit. If the node detects activity on the
bus (another node is transmitting) before the countdown is
complete, the arbitration process is interrupted and started over
once the bus is quiet again. If several nodes are competing for
the bus, all but the winner will have their arbitration countdowns
interrupted. When the bus goes quiet again, the losing nodes will
restart their countdowns simultaneously, thus, placing them in
sync with each other. This synchronism occurs only on a busy bus
where the competing nodes will sense a "loss of carrier" to
synchronize their countdowns.

* There is no arbitration process when transmitting an ACK packet
as it 1is assumed the bus has already been acquired for the
information and ACK packet transfers.



The arbitration countdown is a round robin dual countdown
algorithm such that, if more than one node is trying to transmit,
the lower numbered node will be given the bus first. The other
nodes, however, can each gain the bus before the lower node can
gain the bus again. This is implemented by the number of quiet
slots each node must count.

The number of quiet slots to be counted down is determined by the
number of the node attempting to transmit and the number of the
node that last had the bus. A node may count N + I + 1 slots or I
+ 1 slots where:

16 (the maximum number of allowable nodes)
the node number

N
I

When a node starts to arbitrate, it counts N + I + 1 slots. If the
countdown 1is interrupted, the node determines the number of the
winning node. If the winning node was a lower number, the node
restarts an I + 1 countdown. If the winning node was a higher
number, the node restarts an N + I + 1 countdown. Thus, when
several nodes are competing for the bus, the lowest number node
wins the bus first but must count down the N + I + 1 slots to gain
the bus again. The higher nodes will restart their arbitration
with the I + 1 countdown and all will win the bus before the first
winner can gain the bus again. As each node wins the bus, the N
term is added to its countdown value and the next higher numbered
node wins the bus. Thus, each competing node will have a turn at
the bus, starting with the lowest numbered node and working up to
the highest.

The arbitration algorithm is illustrated in Figure 2-19. Note that
whenever a node completes its countdown (reaches 0), it checks
that the receiver 1is free (ALT PATH BUSY false) before
transmitting. Transmission should not occur from a node unless the
node receiver is free to accept the ACK response. Although the
node may have completed its countdown and gained one path of the
bus, the node receiver could be busy receiving a packet on the
other path. When this happens, the transmission is delayed by
loading 16 into the node's counter and continuing the countdown.

The 1 term is included in the two countdown expressions because
the lowest node number is 0. When node 0 is executing an I + 1
countdown, then it will be looking for 1 slot -- not 0 slots.



YES

LOAD N+ 1+ 1INTO
COUNTDOWN
COUNTER

LOAD COUNTER
W

ITH [+ 1

]

L

YES

CARRIER

WINNING

NODE NUMBER >YES
N

LOAD COUNTER
WITHN+ 141

]

]

DETECTED

DECREMENT
COUNTER

NO

RECEIVER
CHANNEL
BUSY

YES

LOAD 16 INTO
COUNTER

J

TAKE OVER
RECEIVER CHANNEL

[ TRaNSmIT PACKET |

TRANSMISSION
DONE

L

Figure 2-19  Arbitration Flow Diagram

TK-8616



2.7.2 Arbitration Logic

Figure 2-20 is a block diagram of the arbitration logic. Prior to
receiving a transmit command from the port, the link is in the
idle state (MX state A). In MX state A, the true state of LOAD ARB
COUNT 1loads the arbitrator in preparation for the quiet slot
countdown. The basic slot counter is loaded with 1001 (binary) and
the down counter is loaded with N + I + 1,

The down counter is in two sections: the lower four bits and the
fifth bit. The four-bit section is loaded with the node address
(NODE ADDRESS <3:0>). The fifth-bit section is loaded from an N
load mux that supplies the N term in the arbitration countdown
expression. The mux select inputs are shown in Table 2-3.

While the 1link is idling in MX STATE A, the mux selects the +V
input to load a 1 into the fifth bit section of the down counter.
The 1 represents the N term in the N + I + 1 countdown expression.

When the link shifts to MX STATE B, LOAD ARB COUNT negates and the
arbitrator starts its countdown. The slot counter is clocked from
1001 by XMIT CLK and outputs BASIC SLOT after seven clock pulses.
BASIC SLOT is looped back to reload the counter with 1001 and the
cycle 1is repeated. The time period of XMIT CLK 1is 114.28 ns;
hence, BASIC SLOT asserts every 800 ns (7 x 114.,28).

Each time BASIC SLOT asserts it enables the four-bit section of
the down counter which is decremented by XMIT CLK. When this
section of the down counter reaches 0, the next assertion of BASIC
SLOT asserts the carry (CRY) output which enables the fifth bit
section to decrement. If the fifth bit section contains a 1 (N + I
+ 1 count), the 1 becomes a 0, the four-bit section becomes all
l's, and the countdown continues. If the fifth bit section
contains a 0 (I + 1 count), the CRY output goes true asserting
ARBC = 0 (arbitration counter = 0) which conditions the ARB
flip-flop to set on the next XMIT CLK. If the alternate bus path
is not busy (ALT PATH BUSY false) ARB and ARB OK assert signifying
a successful countdown and causing the link to shift to MX state
C.

Note that after the counter has reached 0 count, one more
assertion of BASIC SLOT is required to assert the CRY output and
cause ARB to go true. The additional assertion of BASIC SLOT
represents the 1 term in the two countdown expressions.

2-46
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Table 2-

3

N Load Mux Selection

Select Code

Input Selected

MX STATE A SEL PATH CARRIER
True X +V
True X +V
False True (load arb.) N Load FF
False False Latch FF

X = don't care



If a carrier from another node is detected during the arbitration
countdown, the arbitrator is reloaded and the countdown starts
over. The node address comparator determines whether the
interrupting (winning) node is above or below this node in order
to determine the new countdown value. (see Paragraph 2.7.1 for a
general discussion of the arbitrator.) The comparator compares
the node address with ARB CMP ADD <3:0> from the four-bit section
of the down counter and asserts, LT <I PLUS 1>* if this node
number is less than the winning node number. For example, assume
this to be node 5 and the winner to be node 2. ARB CMP ADD <3:0>
is down counted to 3, the comparator A input is greater than the B
input; therefore, LT <I PLUS 1> is false. This node is not less
than the winning node. If the winner were node 7, ARB CMP ADD
<3:0> would be 14 (the fifth bit having been decremented), the
comparator A input is less than the B input; therefore, LT <I PLUS
1> is true. This node is less than the winning node. The LT <I
PLUS 1> signal is used to determine which count down value is to
be reloaded into the down counter for the next countdown.

When a carrier is detected (interrupting the countdown), CARRIER
DET A or CARRIER DET B asserts. If the carrier is detected on the
SEL TPATH selected by the link control PAL, SEL PATH CARRIER is
asserted. The assertion of SEL PATH CARRIER causes LOALC ARB COUNT
to assert and reload the basic slot counter and both sections of
the down counter. The fifth bit section of the down counter is
again loaded from the N load mux; however, now the mux is
selecting its input from the N load flip-flop (see Table 2-3).

During the countdown, the false state of SEL PATH CARRIER holds
the N load flip-flop reset. When SEL PATH CARRIER asserts, it
allows the J input to the flip-flop to look at LT <I PLUS 1> from
the node comparator. If LT <I PLUS 1> is true (this node is less
than the winning node), the flip-flop is set and a 1 is loaded
into the fifth bit section. If LT <I PLUS 1> is false (this node
is higher than the winning node), the flip-flop remains reset and
a 0 is loaded into the fifth bit section.

The output from the N load mux is latched up in a latch flip-flop.
When SEL PATH CARRIER negates, the N load mux selects the output
of the latch flip-flop thus maintaining the fifth bit selection
after SEL PATH CARRIER negates.

* LT = less than



As described in Paragraph 2.7.1, a round robin arbitration
algorithm is used in which the lowest-numbered node wins the bus
first, then the next higher, and so forth in a continuous 1loop.
For the loop to be continuous, node 0 must follow node 15 in the
same way that any node follows the node preceding it. When node X
is beaten by the preceding node (X-1), it restarts its countdown
as I + 1. Node X is not 1less than the winner, therefore, LT (I
PLUS 1> 1is false and the fifth bit section of the counter is
loaded with a 0. Likewise, when node 0 is beaten by node 15 it
must appear that it was beaten by a lower node and restart its
countdown as I + 1; however, in this case, LT <I PLUS 1> is true.
Logic has been added to the input of the N load flip-flop to force
a 0 into the fifth bit section of the counter when node 0 1is
beaten by node 15. Thus, when this is node 0 (CNODE ADDRESS <3:0>
= all 1's) and it has just been beaten by node 15 (ARB CMP ADD
<3:0> = all 1's), the AND gate transferring LT <I + 1> into the N
load flip-flop 1is 1inhibited and the flip-flop remains reset.
Hence, a 0 1is reloaded into the fifth bit section of the down
counter and node 0 does an I + 1 countdown.

If the link receive channel 1is busy on the alternate bus path,
RCVR ACTIVE will be true, causing ALT PATH BUSY to also be true.
This condition inhibits the assertion of ARB and loads 16 into the
down counter. ALT PATH BUSY loads only the fifth bit section of
the down counter. The four-bit section remains enabled in count
mode. ALT PATH BUSY generates the 16 by disabling the N load mux
causing it to output a 0 into the fifth bit section. The four-bit
section is at all 0 s (countdown successfully completed), hence,
as the fifth bit section is loaded with a 0, the four-bit section
is decremented to all 1's. Thus, when the entire counter 1is
enabled again, it contains a count of 16.

The true state of RCVR ACTIVE inhibits a successful arbitration by
asserting ALT PATH BUSY. RCVR ACTIVE negates after the message on
the alternate path has been received. The transmission that 1is
arbitrating for the bus, however, still cannot be allowed because
the transmit channel must be used to transmit an ACK response.
This point in the message receive state sequence is state 1I.
Hence, MR STATE I is used to keep ALT PATH BUSY true to inhibit
the assertion of ARB.

The false state of CLYD HDR TO also asserts ALT PATH BUSY and
inhibits a successful arbitration. DLYD HDR TO is false if a
transmission is occurring from this node (A DRIVER ENA or B DRIVER
ENA true) as shown in Figure 2-30. The transmission in this case
would be the transmission of an ACK packet on the alternate path.



2.8 LINK FUNCTIONS

Link functions (Figure 2-21) are commanded from the port via four
link control lines (LINK CONTROL <3:0>) and eight port data lines
(PORT DATA <7:0>). The port asserts SELECT when a valid function
exists on the link control lines.

A function decoder decodes the link control lines and outputs the
specific function commanded by the port. The function commands are
described below:

A. XMIT FCN - This function initiates
arbitration and transmission on
one of the CI paths. The CI
path used is selected by port
data bit 7 (0 = path a; 1 =
path B).

B. RESET XMIT STATUS - This function resets
transmission status bits at the
end of a transmission
operation.,.

C. ABORT XMIT FCN - This function aborts a
currently active transmit
operation.

The link mode control, PAL, receives the 1link control lines and
the port data lines from the port. The port data lines carry
control information relating to the commanded function, and
specify various maintenance functions for the link.
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The control information and maintenance functions are described
below:

A. XMIT PATH B SEL - This signal selects the CI path
associated with the XMIT FCN
command.

B. RCVR A ENABLE - This signal enables path A in

the 1link receiver making the
node accessible on CI path A.

C. RCVR B ENABLE - This signal enables path B in
the 1link receiver making the
node accessible on CI path B.

C. EXT MLOOP - This is a maintenance function
that allows the link to receive
its own transmission by looping
on the selected CI path.

E. INT MLOOP - This is a maintenance function
that allows the link to receive
its own transmission by looping
inside the transmit drivers and
input receiver detectors. This
operation will not interfere
with the CI operation of other
nodes,

F. FORCE CARRIER - This is a maintenance function
that causes the link to see a
detected carrier.

G. FORCE ARB - This is a maintenance function
that causes the link to force a
successful arbitration.

H. VALID RCVR PARITY - This is a maintenance function
that is used to generate parity
errors in the receive channel.

I. SWAP TRUE/COMP ADR - This is a maintenance function
that causes the true and
complementary address sources
to be swapped resulting in an
address mismatch.

The transmission path select signal (SEL PATH A or SEL PATH B)
asserts a corresponding FORCE PATH signal after the node has
successfully arbitrated for the bus (ARB OK true). The FORCE PATH
signal enables the corresponding path in the receive channel in
preparation to receive the ACK response.



2.9 LINK INTERFACE SIGNALS

Figure 2-22 illustrates the link interface signals. Most of the
link interfacing is with the PB. Figures 2-23 and 2-24 are flow
diagrams of a typical transmit and receive operation. The flow
diagrams highlight the interface signals to illustrate their basic
functions. Some other major signals, internal to the 1link, are
included for completeness. The two flow diagrams utilize most of
the interface signals and explain their basic functions. Interface
signals not included in the flow diagrams are the three clocks
(PORT CLK, XMIT CLK, RCVR CLK), the node address (NODE ADDRESS

<7:8>), and INITIALIZE.

PORT CLK is received from the PB while XMIT CLK and RCVR CLK are
generated within the link. All three clocks are used in both the
PB and the 1link.

NODE ADDRESS <7:0> is sent to the port (via the PB) and inserted
into the transmitted packet as the source byte.

INITIALIZE is used for system initialization.

The flow diagrams illustrate a typical error-free sequence of a
transmit and a receive operation. They can be used in conjunction
with the receive channel block diagram (Figure 2-3) and the
transmit channel block diagram (Figure 2-12), or with the more
detailed state diagrams discussed in Paragraph 2.10.
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2.190 OPERATING STATES

The following description of the four link operations utilizes the
state diagrams contained in the engineering drawing set. The
various states are shown 1in the diagrams as circles. A path
looping back into a circle holds the link in that state so long as
the signal condition shown in the loopback path is true. The 1link
goes to its next state if the signal's condition shown in the
connecting path to the next state is true. Where no loopback paths
are shown, the link stays in that state for one clock pulse to
perform the indicated task(s) and then advances to the next state.

Also included in the drawing set is a XMIT/RCVR MSG State Flow
Diagram. The diagram shows the normal state flows for a message
transmission and ACK reception operation and for a message
reception and ACK transmission operation. The diagram illustrates
what PALs are used and how the sequence shifts from one PAL to
another as the operation is executed. The diagram illustrates a
basic point in link operations; that an ACK receive sequence is a
part of the message transmit sequence in that the message transmit
sequence is not complete until the ACK receive sequence is done.
Likewise, the ACK transmit sequence is part of the message receive
sequence and that the message receive sequence is not complete
until the ACK transmit sequence is done.

2.10.1 Message Transmit

Figure 2-25 illustrates the message transmit state logic and is
used in conjunction with the MESSAGE XMIT STATE diagram in the
engineering drawing set. Two PALs are used for the message XMIT
state sequence.

INITIALIZE from the port asserts TINIT which initializes the 1link
and asserts MX STATE A from PAL No. 1. MX State A is the transmit
idle state. When the port commands a transmit function, XMIT FCN
asserts from the 1link control PAL causing TXMIT to assert and
transfer the link to state B.

The link arbitrates for the bus in state B. When the arbitration
is successful, ARB asserts and the link transfers to state C.

In state C the link transmits the bit synchronization bytes and
the sync character byte. After the sync character byte has been
transmitted, SYNC/TR GONE asserts and sends the link to state D.

In state D the CRC generator is enabled (except for maintenance
loop operations), the second MSG XMIT State PAL is enabled, and
the 1link goes to state E.

PAL no. 1 stays in state E for the rest of the transmission so
long as there is no parity error. If a parity error occurs, PE
asserts and transfers the link to state F.
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If the link is placed in state F, PAL no. 2 is reset and XMIT
ATTENTION is asserted to the port which will then abort the
transmission. The link then returns to state A.

PAL no. 2 moved from its idle state (state G) to state H when PAL
no.l asserted MX STATE D.

From state H the link goes to state I where the destination byte
is clocked into the destination address register.

The link then transfers to state J where it waits for the body of
the packet to be transmitted. When the last byte of the body is
transmitted, XMIT BUFFER EMPTY 1is received from the PB and
transfers the 1link to state K [if this is not a maintenance
operation; if this is a maintenance operation (LOOP true), the
link goes directly to state L].

In state K the CRC bytes are transmitted. MAX CRC 3 asserts when
the last CRC byte is transmitted. MAX CRC 3 causes the 1link to
transfer to state L.

In state L the packet trailer bytes are transmitted. After the
trailer bytes are transmitted, SYNC/TR GONE asserts and transfers
the link to state M.

In state M the link has completed its transmission and is waiting
for the ACK receive sequence to complete. The end of the ACK
receive sequence is indicated by the assertion of AR STATE D or AR
STATE H from the ACK receive state logic. Either of these signals
asserts ACK RCVD to both PALs causing them to return to their idle
states. ACK RCVD also negates TXMIT to complete the message XMIT
sequence.

When the link enters state M, WACK (wait for ACK) is asserted to
the ACK receive state logic enabling the ACK RCVR PAL to start the
ACK receive sequence. When the ACK response is received, ACK RCVD
asserts and negates WACK.

The port can abort the transmission by asserting ABORT XMIT FCN
via the LINK CONTROL lines. ABORT XMIT FCN asserts XMIT STATUS 4
and then TABORT via two flip-flops. TABORT is applied to both
message XMIT PALs resetting them to their idle states.

The MSG XMIT sequence is also reset by HEADER TIME OUT which
asserts ABORT RCVR to PAL no. 1. HEADER TIME OUT is asserted by
the MSG RCVR state 1logic when a carrier is detected but sync
character recognition does not occur.



2,10.1.1 Transmit Control Logic -- Figure 2-26 illustrates the
logic that controls the flow of data through the transmit channel
shown in Figure 2-12. The control signals are regulated by the
state signals generated by the XMIT state PALs. The assertion and
negation of the control signals can be related to the task(s)
performed in the various states as shown in the XMIT state
diagrams.

ENA SYNC/TR CNT is asserted by the appropriate STATE signals and
enables the sync/trailer counter to start counting.

ENA SYNC/TR gates the bit sync bytes and the trailer bytes onto
the XMIT DATA bus. ENA SYNC/TR is negated by ENA XMIT DATA LATCH
which gates the packet bytes from the PB onto the XMIT DATA bus.
ENA XMIT DATA LATCH also asserts ENA XMIT DATA PARITY.

ENA XMIT DATA REG isolates the BUS TDATA bus from the XMIT DATA
bus while the CRC bytes are being placed onto the TDATA bus.
TINIT initially asserts ENA XMIT DATA REG which passes the packet
bytes onto the BUS TDATA bus until XMIT BUFFER EMPTY is recived
from the PB. XMIT BUFFER EMPTY negates ENA XMIT DATA REG which
remains negated until all the CRC bytes are placed onto the BUS
TDATA bus. When this occurs, MX STATE L asserts thereby
re-asserting ENA XMIT DATA REG for the trailer bytes. MX STATE L
also asserts SEL TRAILER to gate the trailer bytes out of the
sync/trailer PROM onto the XMIT DATA bus.

A DRIVER ENA and B DRIVER ENA enable the drivers that output the
transmitted packet onto the selected CI path,. During a message
XMIT operation, the selected CRIVER ENA signal is asserted by the
SEL TPATH signal selected by the port via the LINK CONTROL lines,
and by MX STATE C. The DRIVER ENA signal is negated during MX
state L when SYNC/TR GONE asserts. During an ACK XMIT operation,
the selected DRIVER ENA signal is asserted by AX STATE B and LAST
RCVR = B. LAST RCVR = B is true if the last message was received
on CI path B (ICCS PATH B true). In this case, B DRIVER ENA
asserts to transmit the ACK over the same path on which the
message was received. Conversely, if the message was received on
CI path A, A DRIVER ENA would assert, transmitting the ACK over CI
path A, The DRIVER ENA signal is negated during AX state H when
SYNC/TR GONE asserts.
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2,10.1.2 Transmit Status -- Eight transmit status bits (XMIT
STATUS <7:0>) are used to indicate the status of a transmit
operation (see Figure 2-27). The bits are available to the port
along with XMIT ATTENTION.

XMIT ATTENTION is asserted when a response is received from the
destination node (ACK or NACK), when no response is received from
the destination node (ACK packet timeout occurs), when a transmit
parity error occurs, or when an abort transmission command 1is
issued (ABORT XMIT FCN is asserted).

The XMIT STATUS bits are asserted as described below:

XMIT STATUS 7 -- This bit 1is set if a parity error is
detected on the data on the BUS TDATA bus
in the transmit channel during a
transmission. A parity error will cause
XMIT ATTENTION to be asserted to the port
which will then abort the transmission.

XMIT STATUS 6 -—- When set, this bit indicates the presence
of a carrier on CI bus A.

XMIT STATUS 5 -- When set, this bit indicates the presence
of a carrier on CI bus B.

XMIT STATUS 4 -- This bit is set when a transmission 1is
aborted by the abort function (ABORT XMIT
FCN) commanded by the port via the LINK
CONTROL 1lines.

XMIT STATUS 3 -- This bit 1is set when an arbitration
countdown has reached 0. It does not
necessarily mean that a transmission will
occur (see Paragraph 2.7).

XMIT STATUS 2 -- This bit is set when a NACK is received
from the destination node. A NACK response
causes XMIT ATTENTION to assert to the
port.

XMIT STATUS 1 -- This bit is set when an ACK is received
from the destination node. An ACK response
causes XMIT ATTENTION to assert to the
port.

XMIT STATUS O -- This bit is set when a transmit operation
is in progress or whenever XMIT ATTENTION
is asserted.
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2.10.2 ACK Receive

Figure 2-28 illustrates the ACK receive state logic and is used in
conjunction with the the ACK RCVR STATE diagrem in the engineering
drawing set. Two PALs are used for the ACK RCVR state sequence.

2.10.2.1 ACK Receive PAL States -- INITIALIZE from the port
initializes the receive channel and asserts RINIT to both ACK RCVR
PALs placing them into their idle states (state A for PAL no.l;
state E for PAL no. 2). The link is transferred to AR state B
when PAL no. 1 senses that a valid packet is being received (CHAR
SYNC true), that the receiver is waiting for an ACK response (WACK
true), and that the packet is an ACK (RDAT REG 7 = 1) rather than
a message packet.

In state B the packet true destination byte is checked. If a match
is obtained (DST CMP true), the link transfers to state C.

In state C, ACK RCVR state PAL no. 2 1is enabled (AR STATE E
asserts) and the complement destination byte 1is checked. If a
destination match is obtained (DST CMP true) PAL no. 2 moves to
state F. PAL no. 1 remains in state C until the ACK RCVR state
sequence is completed.

State © of PAL no. 1 is a "receiver clear" state which is entered
if an improper response is obtained in states A, B, or C. State D
is entered from state A if CHAR SYNC and WACK are true but RDAT
REG 7 = 0 (this is a message packet, not an ACK response). State D
is entered from state B if a true destination mismatch occurred.
State D is entered from state C if a complementary destination
mismatch occurred. After clearing the various receiver functions,
PAL no. 1 returns to the idle state (state A).

In state F the packet source byte is checked. The link then passes
to state G provided this is not a maintenance operation (INT MLOOP
false). If this is a maintenance operation (INT MLOOP true), the
link goes to state H.

In state G the CRC bytes are input to the CRC checker which checks
for any CRC error. When MAX CRC 3 asserts (last CRC byte into the
CRC checker) the link moves to state H.

State H is the last state in the ACK RCVR sequence. In this state
the various receive functions are cleared and then both PALs are
returned to their idle states.

The last state in a MESSAGE XMIT state sequence is state M. When
MX STATE M asserts, an ACK timeout counter is enabled and starts
counting. If, after 3.66 microseconds, the ACK RCVR sequence 1is
not completed, the counter asserts ACK TO which terminates the
sequence and returns both ACK RCVR PALs to their idle states. The
port then reads status bits to determine the trouble.
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2.10.2.2 Sync Character Detect Enable PAL -- The purpose of the
sync character detect enable PAL (Figure 2-3) 1is to enable the
sync character detector when a packet is expected and to inhibit
the detector when transmitting from this node. The sync character
detector should be enabled during the following times:

A, During an internal maintenance loop operation.
B. After a transmission when an ACK packet is expected.
C. To receive a message packet from another node taking care

not to respond to transmissions from this node
(transmission of an ACK packet).

Figure 2-29 functionally illustrates the sync character detect
enable PAL. ENA SYNC DET 1is asserted by any of five signals
applied to an output OR gate.

When in maintenance loop operation, INT MLOOP is true and enables
the sync detector.

The next two signals enable the sync detector when an ACK packet
is received. One 1is generated by ANPing CARRIER DET A with the
negated state of ICCS PATH B while the other 1is generated by
ANDing CARRIER DET B and the asserted state of ICCS PATH B. Thus,
the two gates look for a carrier presence in both CI paths.
Enabling of the two gates is restricted to ACK packets by ACK ENA
which asserts while waiting for an ACK packet (WACK true) and
after a loss of carrier has been sensed. The carrier lost would be
the message transmit carrier from this node. ICCS PATH B (true or
false) enables one of the AND gates in the ACK ENA logic. When
that gate senses a loss of carrier (CARRIER DET negates), ACK ENA
asserts and is latched. The next time a carrier is sensed (the ACK
response), the output AND gate is enabled and asserts ENA SYNC DET
via the output OR gate.

The last two signals enable the sync detector when a message
packet is received. The signals are generated by AND gates which
are enabled when the node is not transmitting a message packet
(both FORCE PATH signals false), and a carrier is detected on one
of the CI paths. The gates are inhibited by trailer delay (TR DLY)
which is true at the end of an ACK transmission when the packet
trailer is being transmitted.
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2.10.3 Message Receive

Figure 2-30 illustrates the message receive state logic. Tt is
used in conjunction with the MSG RCVR STATF diagram in the
engineering drawing set. Two PALs are used for the message RVI'R
state sequence.

INITIALIZE from the port asserts ABORT + INIT FCN which in turn
asserts RINIT. RINIT initializes the logic in the receive channe]
and places the two MSG RCVR state PAIs into their idle statos
(state A for PAL no. 1l; state M for PAI no. 2). When the receivoer
is not disabled due to transmission from the transmit channel
(RXMIT false), a valid packet is in the receive channel (CHAR SYNC
true), and the packet is recognized as a message (RDAT REG 7 = 0)
and not an ACK; PAL no. 1 transfers Lo MR state P,

In MR state R, VALID RCVR DATA is asserled to the PB indicating
that a valid packet 1is being received, and PACKKET LENGTH is
asserted to the PB indicating that the byte being transferr«d
contains packet length information. Also, the CRC checker is
enabled and starts receiving the packet bytes. The link moves to
MR state C on the next clock pulse,

In MR state C the true destination byte is checked. If a match is
obtained (DST CMP true), the link wmoves to state D. PACKET LENGTH
remains asserted in state C as the byte being transferred to the
PB contains packet length information.

In MR state D the complement destination byte 1is checked. If a
match is obtained (DST CMP true), the link moves to MR state E.

In MR state E the packet source byte is clocked into the true and
complement ACK destination registers to serve as the destination
for the ACK response. The next RCVR CLK pulse moves the link to MR
state G.

PAL no. 1 remains in MR state G for the rest of the MSG RCVR state
sequence. The assertion of MR STATE G enables PAL no. 2 in that it
allows it to move from its idle state (state M) to state H when

its condition signal (RCVR PACKET END) is asserted.
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If any of the three condition tests made by PAL no. 1 fails, the
link is transferred to MR state F. Failing any of the three tests
would be:

1. While in state A with RXMIT false, CHAR SYNC asserts but
RDAT REG = 1 (this is an ACK packet)

2. A true destination mismatch occurred in state C
3. A complement destination mismatch occurred in state D.

In MR state F the receive logic is cleared, and PAL no. 1 returns
to the idle state (state A) on the next RCVR CLK pulse.

PAL no. 2 remains in its idle state (state M) while the packet
body is being transferred to the PB. After the last byte of the
body has been sent to the PB, the PB asserts RCVR PACKET END and
PAL no. 2 goes to MR state H.

In state H the packet CRC bytes are input to the CRC checker. When
the last byte is in the checker, MR CRC 3 asserts. If there is no
CRC error, CRC OK is true when MR CRC 3 asserts. In this case, the
link moves to state I. If there is a CRC error, CRC OK is false
and the link goes to state L.

In state L the MSG RCVR state sequence is aborted. The receive
channel is cleared, PAL no. 1 is moved to its idle state (state
A), and PAL No. 2 moves to its idle state (state M).

The message receive state sequence remains in state I while the
link transmits the ACK response. The assertion of MR STATE I
asserts TACK (transmit ACK) to the ACK transmit state PAL
initiating the ACK transmit sequence. When the ACK transmission is
done AX STATE H negates to assert ACK DONE to MSG RCVR PAL no, 2.
The assertion of ACK DONE moves the link to MR state K.

In MR state K the receive channel 1is cleared and PAL no. 1 is
returned to its idle state (MR state A). The next RCVR CLK pulse

return PAL no. 2 to its idle state (state M).

The message receive state logic contains a header timeout counter
to prevent receive channel hangups. The counter is turned on by
ICCS PATH SELECTED (removes the counter LOAD signal) and cleared
by CHAR SYNC. It thus starts counting when a carrier is detected
and is cleared when the carrier is recognized as being a valid
packet. If SYNC CHAR fails to assert, the counter times out (in
3.66 microseconds) and outputs HEADER TIME OUT. The assertion of
HEADER TIME OUT causes MSG END + HTO to assert, thereby asserting
CLEAR RCVR to reset the receive logic.

2-71



The header timeout counter is enabled and disabled at the RCVR CLK
rate via a flip-flop. Thus, the four-bit counter is extended tc
five bits, producing the 3.66 microsecond timeout period (32 x
114.28 ns = 3.66 microseconds). Note that the counter is disabled
by WACK. WACK asserts in MX state M when the transmit channel is
transmitting a message packet. Thus, WACK prevents the detection
of the transmitted carrier from starting the header timeout
period.

Other signals besides MSG END + HTO assert CLEAR RCVR. One of
these is RCAR DROP (receive carrier dropped) which asserts if a
carrier is lost during a message reception. ICCS PATH SELECTED
asserts before CHAR SYNC asserts and negates after CHAR SYNC
negates. If a receive carrier 1is prematurely 1lost, ICCS PATH
SELECTED will negate while CHAR SYNC is still true, causing RCAR
DROP to assert. Note that CHAR SYNC is not applied to the ANDing
operation until MR STATE E sets a flip-flop which gates CHAR SYNC
to the RCAR DROP AND gate. Delaying CHAR SYNC until MR state E
allows the header portion of the packet to pass before the node
looks for carrier drop-out.

2.10.4 ACK Transmit
Figure 2-31 illustrates the ACK transmit state logic and is used
in conjunction with the ACK XMIT STATE diagram in the engineering

drawing set.

INITIALIZE from the port asserts TINIT which initializes the 1link
and asserts AX STATE A from the ACK XMIT PAL. AX state A is the
ACK transmit idle state. When TACK (transmit ACK) is received from
the MSG RCVR state PAL, the link goes into AX state B.

In state B the sync/trailer PROM logic is enabled and outputs the
bit synchronization bytes and the sync character byte onto the
XMIT DATA BUS. The selected transmit driver is also enabled. When
SYNC/TR GONE asserts, the link transfers to state C.
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The link is in AX state C for one clock pulse. While in state C,
the ACK type byte is placed onto the XMIT DATA BUS and the CRC
generator is enabled. The next XMIT CLK pulse moves the link to AX
state D.

In AX state D the ACK true destination byte 1is placed onto the
XMIT DATA BUS. The link then advances to AX state E.

In AX state E the ACK complement destination byte is placed onto
the XMIT DATA BUS. The link then advances to AX state F.

In AX state F the ACK source byte is placed onto the XMIT DATA
BUS. The link then moves to state GC.

In AX state G the CRC bytes generated by the CRC generator are
output onto the BUS TDATA bus. When the last CRC byte has been
placed onto the bus, MAX CRC 3 asserts and moves the link to AX
state H.

In AX state H the sync/trailer PROM 1is enabled again and the
packet trailer bytes are output from the PROM onto the XMIT LCATA
BUS. After the trailer bytes have been placed onto the bus,
SYNC/TR GONE asserts and returns the ACK XMIT PAL to its idle
state (state A).

Note in Figure 2-31 that the assertion of each gate coupling a
byte to the XMIT DATA BUS depends on the negation of the gate that
coupled the preceding byte to the bus. This insures that only one
source is driving the XMIT DATA BUS at any one time.



CHAPTER 3
PACKET BUFFER MODULE

NOTE

The functional block diagrams in Chapter
3 use logical AND and OR symbols. It
does not necessarily follow that a
corresponding gate exists on the packet
buffer 1logic prints. The assertion of
inputs A and B causing the assertion of
output C may be represented on a block
diagram by a single AND gate, yet the
engineering drawing may show that
several circuit stages are involved in
the ANDing operation.

The functional block diagrams in this
chapter are keyed to the packet buffer
module (PB) engineering circuit
schematics (CS prints) by 1letter
designations in parentheses. The letters
specify the PB CS sheet that contains
the detailed logic associated with the
functional blocks in the diagram.

The signal names used in the functional
block diagrams are the names used on the

engineering CS prints. Where other
signal names or notes are used, they are

enclosed in parentheses.

3.1 DATA FLOW; GENERAL DISCUSSION
Figure 3-1 is a block diagram of data flow through the packet
buffer. Information in the form of messages and data, flows

through the packet buffer module (PB) in packets of various size.
Data going to the CI bus flows from the data path module (DP) to
the link while data received from the CI bus flows from the link
to the DP.

A transmit buffer (TBUF) is in the data path to the CI bus and a
receive buffer (RBUF) is in the data path from the CI bus. The
buffers are loaded and read under control of the port microcode.
Six operations are used in transferring data in and out of the
buffers. Four are used for normal transfer of data. The other two
are used for maintenance and self-directed commands. The six
operations are listed below:

TBUF LOAD
TRANSMIT

TBUF READ

VALID RCVR DATA
RBUF MLOAD

RBUF READ

AU WN
. .
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3.1.1 TBUF LOAD
Data from the DP is loaded into the TBUF via the TBUF in register.
The TBUF LOAD operation is controlled from the PB.

3.1.2 TRANSMIT
Data is read out of the TBUF into the 1link via the TBUF out
register. The TRANSMIT operation is controlled by the link.

3.1.3 TBUF READ

Data is read out of the TBUF back into the LP via the loopback
register. The loopback data is muxed with the received data on the
RBUF DATA <7:0> data lines and returned to the port bus via the PB
read mux. This operation is controlled by the PB and is used for
maintenance and self-directed commands.

3.1.4 VALID RCVR DATA
Received data (RCVR DATA <7:0>) from the link is loaded into the

RBUF via the RBUF in mux and the RBUF in register. The VALID RCVR
DATA operation is controlled from the link.

3.1.5 RBUF MLOAD (Maintenance Load)

Data from the DP (PORT DATA <7:0>) is loaded into the RBUF via the
RBUF in mux and the RBUF in register. The RBUF MLOADL operation is
controlled by the PB and is used for maintenance purposes.

3.1.6 RBUF READ

Data is read out of the RBUF to the DP via the RBUF out register
and the PB read mux. The data from the RBUF out register is muxed
with the loopback data on the RBUF DATA <7:0> data lines. The RBUF
READ operation is controlled by the PB.

3.1.7 PB Read Mux

Other data is provided to the CP over the PORT DATA <7:0> bus via
the PB read mux. This data is NODE ADDRESS <7:0> and XMIT STATUS
<7:0> from the 1link, and receive status from the receive status
logic in the PB.

3.1.8 Control Logic

The PB operations are controlled by decoding and sequencing logic.
A function decoder issues commands that specify the operation to
be executed. Buffer select logic selects the buffer for the
operation specified by the function decoder. If a TBUF is selected
(there are two), the TBUF sequencing logic generates the control
signals for the operation. Corresponding sequencing logic exists
for the RBUFs which generate the control signals for an RBUF
operation.

The function decoder and buffer select logic are controlled by the
port microcode.



3.2 TBUF DATA FLOW OPERATIONS

The TBUF (Figure 3-2) is divided into two parts (TBUF A and TBUF
B) with each TBUF having a separate, parallel data path. Thus,
throughput is increased in that TBUF A can be loaded from the LCP
while TBUF B is being transmitted to the link. Each TBUF has 1K of
storage. The following discussion will describe TBUF A and its
data path. TBUF B and its data path are identical to TBUF A.

3.2.1 TBUF LOAD

SEL TBUF A enables TBUF A, selecting it for a TBUF A operation. WR
TBUF A enables the TBUF A input and disables the output thereby
setting up TBUF A for a write. (TBUF A has a common I/O.) A data
byte (PORT DATA <7:0> is clocked into the TBUF A in register by
PORT CLK. PORT CLK also clocks a parity bit (PB PAR) from the [P
into the TBUF parity in register. TBUF A REG ENA then asserts to
enable the data byte (TBUF A DATA <7:0>) and the parity bit (TBUF
PAR A) to be written into TBUF A.

The TBUF A address (TBUF A ADDR <9:0>) is obtained from the TBUF A
address counter. The counter is cleared by CLR TBUF A ADDR prior
to loading a data packet into TBUF A. As each byte is written, the
counter is incremented by CLK TBUF A ADDR to the next location in
the buffer.

When the last byte of the data packet is on the port data bus, a
LOAD LAST DATA BYTE flag is asserted and clocked into a "last byte
in" register by PORT CLOCK. The flag is written into TBUF A along
with the last data byte and its parity bit. The flag is used to
indicate the end of the data packet to the link during a TRANSMIT
operation,
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3.2.2 TRANSMIT

SEL TBUF A enables TBUF A, selecting it for a TBUF A operation. WR
TBUF A is false to inhibit the TBUF A input and enable the output
for a read. The TBUF A address counter 1is cleared by CLR TBUF A
ADDR to address location 0 in TBUF A.

The first data byte is read out of TBUF A from address 0. The byte
. (TBUF A DATA <7:0>) is clocked into the TBUF A output register by
XMIT CLK from the link. "TBUF A OUT ENA" is true and gates the
data byte out of the register as XMIT DATA <7:0>. The parity bit
from TBUF A (TBUF PAR A) is gated to the TBUF parity out register
where it is clocked in by XMIT CLK. The data byte is clocked into
the TBUF A out register at the same time the parity bit is clocked
into the TBUF parity out register.

The data byte is now availble to the link as XMIT DATA <7:0> and
to a parity checker. The parity bit (XMIT DATA PARITY) from the
TBUF parity out register is also applied to the parity checker. If
a parity error is detected, XBUF PE is asserted to the DP where it
sets an error bit in the port maintenance control and status

register (PMCSR).

XMIT DATA PARITY is also applied to the link as the parity bit for
the XMIT DATA <7:0> data byte.

CLK TBUF A ADDR increments the TBUF A address counter to the next
location 1in the buffer. The address counter is a 1K counter
capable of addressing the 1K locations of TBUF A. In practice, a
packet will be less than 1K bytes of data; thus, the address
counter should never reach a full count. If the counter is not
cleared prior to a TRANSMIT operation, a full count may be
reached. In this event, TBUF A OVFL comes true and asserts XMIT

BUFFER EMPTY to the link.

When the last data byte is read from TBUF A, the BUS LAST TBUF bit
is also read out and clocked into the "last byte out" register by
XMIT CLK. This in turn asserts XMIT BUFFER EMPTY to the link as an
indication that it has received the entire data packet.

3.2.3 TBUF READ (Loopback)

SEL TBUF A enables TBUF A, selecting it for a TBUF A operation. WR
TBUF A is false to inhibit the TBUF A input and enable the TBUF A
output for a read. The TBUF A address counter is cleared by CLR
TBUF A ADDR to address location 0 in TBUF A.

The first data byte at address 0 (TBUF A DATA <7:0>) and its
parity bit (TBUF PAR A) is clocked into loopback register A by CLK
TBUF A ADDR. Signals "LOOPBACK REG A ENA" and TBUF A READ ENA are
true and respectively couple the data byte (RBUF DATA <7:0>) to
the PB read mux and the parity bit (RBUF PAR) to the DP.



CLK TBUF A ADDR increments the TBUF A address counter to the next
location in the buffer.

3.3 RBUF DATA FLOW OPERATIONS
The RBUF (Figure 3-3) is divided into two parts (RBUF A and RBUF

B) with each RBUF having a separate, parallel data path. RBUF A
can be loaded from the link while RBUF B is being read by the DP,
thus allowing greater throughput. Each RBUF has 1K of storage.
The following discussion will describe RBUF A and its data path.
RBUF B and its data path is identical to RBUF A.

3.3.1 VALID RCVR DATA
A VALID RCVR DATA operation is an RBUF load of received data from
the link. The operation is initiated and controlled from the link.

SEL RBUF A enables RBUF A, selecting it for an RBUF A operation.,
WR RBUF A enables the RBUF A input and disables the output,
setting up RBUF A for a write. (RBUF A has a common I/O.)

The data byte and parity bit from the link are input to the PB
through an RBUF in mux. The mux uses two select signals; one for
the data byte and one for the parity bit. When mux select signal
RBUF INPUT MUX SEL is false, the data byte from the 1link (RCVR
DATA <7:0>) is applied to the RBUF A in register as RBUF IMUX DATA
<7:0>. The byte is clocked into the register by RBUF REG CLK and
then gated to RBUF A by the true state of RBUF A REG ENA.

RBUF REG CLK also clocks the parity bit (RCVR DATA PARITY) into
the RCVR parity in register. When mux select signal RBUF MLOAD is
false, the parity bit from the register is applied to RBUF A as R
PARITY.

The RBUF A address (RBUF A ADDR <9:0>) is obtained from the RBUF A
address counter. The counter is cleared by "CLR RBUF A ADDR" prior
to loading in a data packet. As each byte is written, the counter
is incremented by CLK RBUF A ADDR to the next 1location in the
buffer. The address counter is a 1K counter capable of addressing
the 1K locations of RBUF A. In practice, a packet will be less
than 1K bytes of data; thus, the address counter should never
reach a full count. If the counter is not cleared prior to a VALID
RCVR DATA operation, a full count may be reached. In this event,
RBUF A OVFL asserts and terminates the VALID RCVR DATA operation.

The link uses a RCVR byte counter to indicate when the data packet
has been loaded into RBUF A. The first two bytes of a data packet
specify how many data bytes are in the packet (packet 1length).
PACKET LENGTH from the link asserts and loads the first two packet
length bytes into the RCVR byte counter. The counter is a down
counter which is decremented by RCVR CLK each time a byte is
loaded into RBUF A. RCVR PACKET END asserts when the packet 1is
completely loaded.
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3.3.2 RBUF MLOAD (Maintenance Load)

Sel RBUF A enables RBUF A, selecting it for an RBUF A operation.
WR RBUF A enables the RBUF A input and disables the output,
setting up RBUF A for a write.

The data packet is obtained from the DP via the port data bus and
input to the PB through the RBUF in mux. When mux select signal
RBUF INPUT MUX SEL is true, data bytes from the port bus (PORT
DATA <7:0) are applied to the RBUF A in register as RBUF IMUX DATA
<7:0>. The bytes are clocked into the register by RBUF REG CLK and
then gated to RBUF A by the true state of RBUF A REG ENA.

The parity bit from the port bus (PB PAR) is clocked into the TBUF
parity in register (Figure 3-2) and then applied to the RBUF in
mux as TBUF PARITY. With mux select signal RBUF MLOAD true, TBUF
PARITY is coupled to RBUF A as R PARITY.

The RBUF A address (RBUF A ADDR <9:0>) is obtained from the RBUF A
address counter. The counter is cleared by "CLR RBUF A ADDR"
before loading in a data packet. As each byte 1is written, the
counter is incremented by CLK RBUF A ADDR to the next location in
the buffer.

3.3.3 RBUF Read

SEL RBUF A enables RBUF A, selecting it for an RBUF A operation.
WR RBUF A is false to inhibit the RBUF A input and enable the
output for a read. The RBUF A address counter is cleared by "CLR
RBUF A ADDR" to address location 0 in RBUF A.

A data byte ("RBUF A DATA <7:0>) and parity bit (RBUF A PAR) read
out of RBUF A are clocked into the RBUF A out register by CLK RBUF
A ADDR. EN RB A is true, gating out the data byte and parity bit
as RBUF DATA <7:0> and RBUF PAR, respectively. (READ RBUF B in the
RBUF B data path corresponds to EN RB A.) RBUF PAR is applied to
the DP while RBUF DATA <7:0> is placed on the port data bus via
the PB read mux.

When reading RBUF A out to the DP, EN RB A asserts and couples the
data in the RBUF A out register to the BUS RBUF DATA <7:0> bus
before CLK RBUF A ADDR asserts. The data in the RBUF A out
register is undetermined until CLK RBUF A ADDR asserts and clocks
the first data byte from RBUF A into the register. Thus, when
reading RBUF A, the DP discards the first byte as invalid data.

The reading of a data packet from RBUF A does not have to be done
in consecutive cycles. The packet can be partially read and the
remainder of the packet read at a later time. If a read operation
is interrupted, the first data byte read when the read operation
is continued, is valid data.



3.3.4 PB Read Mux

The PB read mux muxes four signal groups of eight bits each onto
the port data bus as PORT DATA <7:0>. When READ BUF 1is asserted,
the RBUF DATA <7:0> lines are selected. READ NODE ADR, READ XMIT
STATUS, and READ RCVR STATUS respectively select NODE ADDRESS
<7:0>, XMIT STATUS <7:0>, and "RCVR status". NODE ADLDDRESS <7:0>
and XMIT STATUS <7:0> come directly from the link and do not
pertain to the PB. "RCVR status" 1is comprised of eight status
signals relating to received data from the link (Paragraph 3.8).

The PB read mux is enabled by PB MUX ENA whenever any of the four
select signals is asserted.

3.4 CLOCKS
Three clocks are used within the PB and these are obtained from
the DP and the link (Figure 3-4). The three clocks used are:

1. PORT CLK¥*
2. XMIT CLK
3. RCVR CLK

PORT CLK is obtained from the DP and synchronizes all operations
that involve data flow to or from the DP. PORT CLK has a 200 ns

period.

XMIT CLK is obtained from the link and synchronizes the TRANSMIT
operation in which data flows from the PB to the link. XMIT CLK
has a 114 ns period.

RCVR CLK is obtained from the link and synchronizes the VALID RCVR
DATA operation in which data flows from the link to the PB. RCVR
CLK has a 114 ns period.

Figure 3-4 illustrates the six PB operations and the clocks that
synchronize them. Note that the two operations that load the RBUF,
(RBUF MLOAD and VALID RCVR DATA) are synchronized by RBUF REG CLK.
RBUF REG CLK is PORT CLK when the RBUF is being loaded from the DP
(RBUF MLOAD operation), and is RCVR CLK when the RBUF is being
loaded from the link (VALID RCVR DATA operation).

The TBUF and RBUF address counters are clocked by whichever clock
is synchronizing the particular operation.

* PORT CLK T3 also appears on the PB logic prints but is identical
to PORT CLK. The two signals fan out from different drivers,
hence the different mnemonics.



I1-¢€

(FIG. 4-12)

TBUF

TRANSMIT
PORT CLK ol L 0AD SMIT la XMITCLK  (r16 514
OPERATION
OPERATION
TBUF
READ
OPERATION
PORT CLK
RBUF CLK MUX 1
RBUF !
MLOAD
L. ggﬁg OPERATION ‘—) RBUF I
OPERATION REG CLK o<} RBUF MLOAD (¢, 3.8)
VALID l J:‘J lrcvr ik
RCVR DATA . (FIG. 2:10)
PERAT
OPERATION I _l
NOTE: -

LETTER DESIGNATIONS IN PARENTHESES REFER TO
ENGINEERING DRAWINGS CONTAINING CORRESPONDING

LOGIC.

Figure 3-4 Packet Buffer Clocks

TK-7788



3.5 FUNCTION DECODER AND BUFFER SELECT LOGIC

The SELECT bit from the microword asserts for one microcycle and
enables the function decoder and the buffer select 1logic (see
Figure 3-5). Four 1link control bits from the microword (LINK
CONTROL <3:0>) carry the PB function command to the function
decoder which outputs one of thirteen possible commands for one
microcycle. The function commands and their associated 1link
control codes are shown in Table 3-1.

The following paragraphs describe each of the function commands.

3.5.1 SEL LOAD BUF _

Prior to issuing a load buffer command (LOAD BUF or LOAD LAST DATA
BYTE), or a RESET TBUF command, the microcode selects the buffer
with the SEL LOAD BUF command. The selection is made by the buffer
select logic during the microcycle in which the microword SELECT
bit is true. The selected output is latched and remains true until
SELECT asserts again and another buffer is selected.

SEL LOAD BUF enables the "load" section of the buffer select logic
which outputs one of four "buffer load enable" signals according
to port data bits PORT DATA <7:6> (Table 3-2).

3.5.2 SEL READ BUF

Before issuing a read buffer command (READ BUF) or a RELEASE RBUF
command, the microcode selects the buffer with the SEL READ BUF
command. The selection is made by the buffer select logic during
the microcycle in which the microword SELECT bit is true. The
selected output is latched and remains true until SELECT asserts
again and another buffer is selected.

SEL READ BUF enables the "read" section of the buffer select logic
which outputs one of four "buffer read enable" signals according
to port data bits PORT DATA <7:6> (Table 3-3).

3.5.3 LOAD BUF

The LOAD BUF command loads port data into the buffer selected by
the SEL LOAD BUF command. The load operations are TBUF LOAD and
RBUF MLOAD. The VALID RCVR DATA operation (loading of the RBUF
from the link) is not a function of the PB microword.

A data packet does not have to be loaded in consecutive cycles. A
packet can be partially loaded and the remainder of the packet
loaded at a later time.

When loading a TBUF, the last byte of data must be loaded with a
LOAD LAST DATA BYTE command.

w
I

12
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Table 3-1 Link Control Codes Vs PB Function Commands

LINK CONTROL Function Command
3 2 1 @

g 0 0 0 READ NODE ADR

g 0 6 1 LOAD LAST DATA BYTE
g 2 1 0 —_—

g 0 1 1 TRANSMIT

g 1 090 @ -—

g 1 2 1 -——-

g 1 1 90 "Enable link"

g 1 1 1 "Disable 1link"

1 9 0 ¢ READ RCVR STATUS
1 ¢ 9 1 READ XMIT STATUS
1 2 1 0o READ BUF

1 9 1 1 LOAD BUF

1 1 0 @ RELEASE RBUF

1 1 ¢ 1 RESET TBUF

1 1 1 @ SEL READ BUF

1 1 1 1 SEL LOAD BUF




Table 3-2 Load Buffer Select Code

PORT DATA Buffer Selected
7 6

) 2 TBUF A LOAD ENA
0 1 TBUF B LOAD ENA
1 ) RBUF A MLOAD ENA

1 1 RBUF B MLOAD ENA

Table 3-3 Read Buffer Select Code

PORT DATA Buffer Selected
7 6

@ 0 RBUF A READ ENA
@ 1 RBUF B READ ENA
1 0 TBUF A READ ENA
1 1 TBUF B READ ENA
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3.5.4 LOAD LAST DATA BYTE

The LOAD LAST DATA BYTE command is the load command for the last
byte of data loaded into one of the TBUFs. It performs the same
function as a LOAD BUF command and in addition, loads a "last data
byte" bit into the TBUF along with the data byte.

3.5.5 READ BUF

The READ BUF command reads data from the buffer selected by the
SEL READ BUF command. The data is read out to the port data bus
via the PB read mux. The read operations are TBUF READ and RBUF
READ. The TRANSMIT operation (reading of the TBUF to the link) is
initiated by the PB microword but is a separate command.

3.5.6 TRANSMIT

The TRANSMIT command reads data from the selected TBUF to the
link. After the command is issued, the 1link controls the read
operation. The link continues reading the selected TBUF until the
"last data byte" flag is read out.

During the microcycle that TRANSMIT is true, one of the port data
bits (PORT DATA 1) is sampled to determine which TBUF will be

transmitted. A TBUF XMIT flip-flop asserts TBUF A XMIT ENA if the
port data bit is false, and TBUF B XMIT ENA if the bit is true.

Oonly one TRANSMIT operation can be executed at a time. (Only one
TBUF can be read at a time by the link.) A TBUF must be completely
read, or the operation aborted and the transmit status cleared,
before another TRANSMIT command can be issued.

3.5.7 RESET TBUF
The RESET TBUF command resets the address counter associated with
the selected TBUF.

3.5.8 RELEASE RBUF

The RELEASE RBUF command resets the address counter associated
with the selected RBUF. It also clears the "full" flag (negates
RBUF FULL; Figure 3-9) for the selected buffer making it available
to the link for a VALID RCVR DATA operation.

3.5.9 READ NODE ADR
The READ NODE ADR command selects the node address (NODE ADDRESS

<7:0>) from the link to be muxed onto the port data bus by the PB
read mux.

3.5.10 READ XMIT STATUS

The READ XMIT STATUS command selects the transmit status (XMIT
STATUS <7:0>) from the link to be muxed onto the port data bus by
the PB read mux.



3.5.11 READ RCVR STATUS
The READ RCVR STATUS command selects the eight "receive status"

bits to be muxed onto the port data bus by the PB read mux. The
"receive status" bits are discussed in Paragraph 3.8.

3.5.12 Link Enable and Link Disable
The "link enable" and "link disable" commands are used in the link
module and perform no function on the PB other than to assert PB
LOAD. PB LOAD must be true to enable the path to the link for the
commands. (See PB LOAD; Paragraph 3.6.)

3.6 PB LOAD

Data placed on the port data bus from the DP is obtained from a
32-bit PB OUT register. The register output is enabled by PB LOAD
from the PB. PB LOAD is asserted for all commands that require
data to be transferred from the PB OUT register to the port data
bus. (See Figure 3-6.)

An eight-bit enable and an eight-bit disable command function for
the link is transferred to the link from the DP via the port data
bus (Figure 3-1), Although these commands do not pertain to the
PB, it is required that PB LOAD be true in order to transfer the
commands from the PB OUT register to the port data bus.

Referring to Figure 3-6:

1. SEL LOAD BUF and SEL READ BUF commands require port data
bits PORT DATA (7:6) to select which buffer to load or
read.

2. LOAD BUF and LOAD LAST DATA BYTE commands obtain the byte
to be loaded from the port data bus.

3. The TRANSMIT command requires PORT DATA 1 to select which
TBUF to transmit to the link.

4. "Link enable" and "link disable" commands require a path
from the PB OUT register on the DP to the port data bus.

3.7 SEQUENCING LOGIC

The PB function decoder and buffer select logic generates the
necessary signals to enable the TBUF and RBUF load/read
operations. The signals pertinent to each of the six operations
are discussed in Paragraphs 3.7.1 through 3.7.6. The A buffer is
used in all the discussions. Corresponding logic exists for the B
buffer. Figure 3-7 illustrates the sequencing 1logic associated
with the three TBUF operations. Figure 3-8 illustrates the
sequencing logic associated with the three RBUF operations.
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3.7.1 TBUF LOAD

The TBUF LOAD sequencing logic 1is illustrated in Figure 3-7.
Before a TBUF LOAD operation is initiated, a RESET TBUF command is
issued to clear the selected TBUF address counter. The RESET TBUF
command is ANDed with TBUF A LOAD ENA to assert CLR TBUF A ADDR.
The next PORT CLK pulse asserts CLK TBUF A ADDR which clears the
counter. (The address counter is an asynchronous counter which
requires a clock pulse while the clear input is true in order to
reset.)

The TBUF LOAD operation is initiated by the LOAD BUF command. The
LOAD BUF command (or LOAD LAST DATA BYTE if this is the last byte)
is ANDed with TBUF A LOAD ENA (or TBUF B LOAD ENA) to enable the
pulse width flip-flop to be set by the next PORT CLK pulse. The
flip-flop output is ANDed with TBUF A LOAD ENA to assert WR TBUF A
and SEL TBUF A. SEL TBUF A enables TBUF A and WR TBUF A enables it
for a load.

The output of the pulse width flip-flop is delayed 80 ns, and then
used to clear the flip-flop. Thus, SEL TBUF A and WR TBUF A become

80 ns pulses.

Another output of the pulse width flip-flop is delayed 20 ns and
ANDed with TBUF A LOAD ENA to assert TBUF A REG ENA and CLK TBUF A
ADDR. These two signals are also 80 ns wide and are delayed 20 ns
with respect to SEL TBUF A and WR TBUF A.

TBUF A REG ENA gates the output of the TBUF A in register to TBUF
A. Delaying TBUF A REG ENA allows time for the tri-state output of

TBUF A to be disabled by WR TBUF A before the write data is gated
into TBUF A from the TBUF A in register.

The TBUF A address counter is incremented on the trailing edge of
CLK TBUF A ADDR. Delaying CLK TBUF A ADDR assures that TBUF A is
disabled (SEL TBUF A is negated) before the address is incremented

to the next location.
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3.7.2 TRANSMIT

The TRANSMIT sequencing logic is illustrated in Figure 3-7. A
TRANSMIT operation requires both a TRANSMIT command from the
function decoder and the XMIT DATA ENA signal from the link. XMIT
DATA ENA is true when the link is ready to receive transmitted
data from the PB.

Before a TRANSMIT operation can be executed, the selected TBUF
address counter must be cleared. In a TRANSMIT operation the
counter is cleared by the assertion of TRANSMIT instead of by a
RESET TBUF command. TRANSMIT is ANDed with TBUF A XMIT ENA to
assert CLR TBUF A ADDR. The next PORT CLK pulse asserts CLK TBUF A
ADDR. Clocking the counter with the clear input asserted resets it
to zero.,

XMIT DATA ENA is ANDed with TBUF A XMIT ENA to assert "TBUF A OUT
ENA" and SEL TBUF A. SEL TBUF A enables TBUF A. "TBUF A OUT ENA"
gates the data byte out of the TBUF A register to the link.

CLK TBUF A ADDR increments the TBUF A address counter during the
TRANSMIT operation. The clock is asserted by the ANDing of XMIT
DATA ENA, TBUF A ENA, and XMIT CLK. Thus, the link synchronizes
the address counter with XMIT CIK.

3.7.3 TBUF READ (Loopback)

The TBUF READ (loopback) sequencing logic is shown in Figure 3-7.
The TBUF A address counter must bk reset to zero before the TBUF
READ operation can be executed. The microcode resets the address
counter by selecting TBUF A with a SEL LOAD BUF command (asserting
TBUF A LOAD ENA from the buffer select logic) and then asserting
the RESET TBUF command. The ANDing of RESET TBUF and TBUF A LOAD
ENA asserts CLR TBUF A ADDR. The next PORT CLK pulse asserts CLK

TBUF A ADDR thereby resetting the counter.

With the address counter reset to zero, READ BUF and TBUF A READ
ENA are ANDed to assert "LOOPBACK REG A ENA" and SEL TBUF A. SEL
TBUF A enables TBUF A. "LOOPBACK REG A ENA" gates the data from
loopback register A onto the RBUF data lines.

The ANDing of READ BUF,; TBUF A READ ENA, and PORT CLK asserts CLK
TBUF A ADDR. Thus, the address counter is synchronized by PORT CLK
from the DP.



3.7.4 VALID RCVR DATA

The VALID RCVR DATA logic is illustrated in Figure 3-8. The RBUF
address counter is cleared at the end of all RBUF operations.
Thus, the VALID RCVR DATA operation will start with the address
counter already set to zero.

The VALID RCVR DATA operation is initiated and executed entirely
under link control. Consequently, the selection of the receive
buffer (RBUF A or RBUF B) is not made by the buffer select logic
but by the "RBUF load selection" logic shown in Figure 3-8.

When both RBUFs are empty, RBUF A is selected to receive the data
packet as described below. The RBUF A LOAD ENA and the RBUF B
LOAD ENA flip-flops are initially in the reset state. Signals RBUF
A FULL ENA and RBUF B FULL ENA are false (both RBUFs are empty).
When VALID RCVR DATA asserts, the VRD and the RBUF A LOAD ENA
flip-flops are enabled and become set by the next RCVR CLK pulse.
The corresponding RBUF B LOAD ENA flip-flop does not set due to
the negated state of RBUF A FULL ENA. VALID RCVR DATA stays true
while the entire data packet is being loaded, holding "VRD" true
and keeping the RBUF A LOAD ENA flip-flop set via a feedback gate.

After the packet 1is 1loaded into RBUF A, RBUF A FULL ENA is
asserted by the receive status logic. When VALID RCVR DATA asserts
to load another packet, the true state of RBUF A FULL ENA inhibits
the setting of the RBUF A LOAD ENA flip-flop but allows the RBUF B

LOAD ENA flip-flop to be set. Thus, RBUF B is selected to receive
the next data packet.

Selection will continue to alternate to the empty RBUF. If both
RBUFs are full, neither RBUF A LOAD ENA nor RBUF B LOAD ENA will
assert and the load operation will not be executed. This condition
causes the receive status logic to raise a flag to both the 1link
and the DP (see Paragraph 3.8).

The load operation is initiated by the assertion of VALID RCVR
DATA. If neither address counter has overflowed (both RBUF A OVFL
and RBUF B OVFL are false), "VALDAT" asserts and is ANDed with
RBUF A LOAD ENA to assert RBUF A REG ENA. RBUF A REG ENA gates the
output of the RBUF A in register to RBUF A.

"VALDAT" 1is synchronized by RCVR CLK and sets the pulse-width
flip-flop. The flip-flop output is ANDed with RBUF A LOAD ENA to
assert WR RBUF A and SEL RBUF A. SEL RBUF A enables RBUF A. WR
RBUF A enables RBUF A for a load operation. The output of the
pulse width flip-flop is delayed 50 ns and then fed back to reset
the flip-flop, converting the SEL RBUF A and the WR RBUF A signals
into 50 ns pulses.
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Another output from the pulse-width flip-flop is delayed 20 ns and
ANDed with RBUF A LOAD ENA to assert CLK RBUF A ALDR. The setting
of the pulse-width flip-flop is synchronized by RCVR CLK, hence
the incrementation of the RBUF A address counter 1is also
synchronized by RCVR CLK. '

The RBUF A address counter is incremented on the trailing edge of
CLK RBUF A ADDR. By shifting CLK RBUF A ADDR 20 ns, it is assured
that RBUF A is disabled (SEL RBUF A negated) before the address is
changed to the next location.

After the data packet has been loaded into RBUF A, the RBUF A
address counter must be reset to zero. At the end of the load
operation, VALID RCVR DATA negates. One cycle later RBUF A FULL
ENA asserts indicating that RBUF A is full and ready to be read
out to the port. During this cycle, the negated state of both of
these signals asserts CLR RBUF A ADDR and, on the next RCVR CLK
pulse, asserts CLK RBUF A ADDR. This clears the RBUF A address
counter, preparing it to clock an RBUF A READ operation.

3.7.5 RBUF MLOAD

Refer to the RBUF 1load selection 1logic in Figure 3-8. The
assertion of RBUF A MLOAD ENA directly sets the RBUF A LOAD ENA
flip-flop and directly resets the RBUF B LOAD ENA flip-flop. Thus,
RBUF A LOAD ENA is true during the RBUF MLOAD operation.

The RBUF MLOAD operation is initiated by the assertion of LOAD
BUF. The LOAD BUF command is ANDed with RBUF MLOAD (asserted by
either RBUF A MLOAD ENA or RBUF B MLOAL ENA) to assert RBUF INPUT
MUX SEL. RBUF MLOAD and RBUF INPUT MUX SEL switch the RBUF in mux
to select the parity bit and the data byte from the DP. RBUF INPUT
MUX SEIL also enables the MLOALD flip-flop to be set by the next
PORT CLK pulse. The flip-flop output ("MLOAD") is ANDED with RBUF
A MLOAD ENA to assert RBUF A REG ENA. RBUF A REG ENA gates the
output of the RBUF A in register to RBUF A.

"MLOAD" also sets the pulse width flip-flop. The flip-flop output
is ANDed with RBUF A LOAD ENA to assert WR RBUF A and SEL RBUF A.
SEL RBUF A enables RBUF A and WR RBUF A enables it for a load. The
output of the pulse width flip-flop is delayed 50 ns and then fed
back to reset the flip-flop, converting SEL RBUF A and the WR RBUF

A signals into 50 ns pulses.

Another output from the pulse width flip-flop is delayed 20 ns and
ANDed with RBUF A LOAD ENA to assert CLK RBUF A ADDR. The setting
of the pulse-width flip-flop is synchronized by PORT CLK (via the
MLOAD flip-flop), hence the incrementation of the RBUF A address
counter is also synchronized by PORT CLK.

w
|
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The RBUF A address counter is incremented on the trailing edge of
CLK RBUF A ADDR. By shifting CLK RBUF A ADDR 20 ns, it is assured
that RBUF A is disabled (SEL RBUF A false) before the address is
changed to the next location.

After the MLOAD operation is completed, the RBUF A address counter
must be reset to zero. The microcode accomplishes the reset by
selecting RBUF A with the SEL READ BUF command (asserting RBUF A
READ ENA from the buffer select logic) and then asserting the
RELEASE RBUF command. The ANDing of RELEASE RBUF and RBUF A READ
ENA asserts CLR RBUF A ADDR. The next RCVR CLK pulse asserts CLK
RBUF A ADDR, thereby resetting the counter.

3.7.6 RBUF READ

The RBUF READ logic is illustrated in Figure 3-8. The RBUF REALC
operation is initiated by the assertion of READ BUF. The READ BUF
command is ANDed with RBUF A READ ENA to assert EN RB A and SEL
RBUF A. SEL RBUF A enables RBUF A and EN RB A gates the data from
the RBUF A out register onto the RBUF data lines. (The signal in
the RBUF B data path corresponding to EN RB A is READ RBUF B.)

The ANDing of READ BUF, RBUF A READ ENA, and PORT CLK asserts CIK
RBUF A ADDR. Thus, the RBUF A address counter is synchronized by

PORT CLK from the LCP.

After the READ RBUF operation is completed, the RBUF A address
counter must be reset to zero. The microcode does this by
selecting RBUF A with the SEL READ BUF command (asserting RBUF A
READ ENA from the buffer select logic) and then asserting the
RELEASE RBUF command. The ANDing of RELEASE RBUF and RBUF A READ
ENA asserts CLR RBUF A ADDR. The next PORT CLK pulse asserts CLK
RBUF A ADDR thereby resetting the counter.



3.8 RCVR STATUS
"RCVR status" is placed on the port data bus from the PB read mux

when the READ RCVR STATUS command is asserted. "RCVR status"”
consists of eight signals. The signals, described in Paragraphs
3.8.1 through 3.8.7, are listed below:

1. CRC ERR

2. RBUF A FULL
3. RBUF B FULL
4. RBUF B FIRST
5. RBUF A BUS

6. RBUF B BUS

7. RCVR A ENABLE
8. RCVR B ENABLE

Figure 3-9 illustrates the RCVR status logic.

3.8.1 CRC ERR
The link does a CRC check on received data packets. The receive
status CRC ERR bit is asserted if a CRC error is detected. The CRC
ERR bit is used only in maintenance loop modes. It is not used in
normal operation.

The CRC ERR bit asserts after the associated data packet has been
loaded into the RBUF. Thus, if a CRC error is flagged, the packet
containing the error is in the RBUF.

VALID RCVR STATUS asserts after a data packet has been loaded into
the RBUF with a VALID RCVR DATA operation. If no CRC error
occurred, CRC STATUS is true when VALID RCVR STATUS is asserted.
This causes CRC OK to assert. CRC OK enables the CRC OK flip-flop
to set on the next RCVR CLK pulse. The asserted output from the
flip-flop results in a negated CRC ERR bit for RCVR STATUS.
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3.8.2 RBUF A FULL, RBUF B FULL

If RBUF A had just been loaded with a data packet having no CRC
error, CRC OK is asserted and ANPed with RBUF A LOAD ENA to enable
the RBUF A FULL ENA flip-flop to set. RCVR CLK sets the flip-flop
asserting RBUF A FULL ENA. The flip-flop is held set via a
feedback gate holding RBUF A FULL ENA true. The next PORT CLK
pulse asserts RBUF A FULL via the RBUF A FULL flip-flop. When RBUF
A FULL is true it asserts REC ATTN to the DP.

RBUF A is emptied (read out to the DP) by a READ RBUF operation.
After a READ RBUF operation, a RELEASE RBUF command is issued to
reset the RBUF A address counter and to release RBUF A back to the
link. The RELEASE RBUF command releases RBUF A to the 1link by
asserting CLR RBUF A via two flip-flops. RELEASE RBUF 1is ANDed
with the negated state of RBUF B READ ENA to enable the first CLR
RBUF A flip-flop to be set by PORT CLK. (RBUF A has just been read
out; therefore, RBUF B READ ENA will be false.) The output from
the first flip-flop enables the second CLR RBUF A flip-flop which
is set by RCVR CLK. Thus, CLR RBUF A is synchronized by RCVR CILK.

CLR RBUF A breaks the feedback latch holding the RBUF A FULL ENA
flip-flop set. This negates both RBUF A FULL ENA and RBUF A FULL,
indicating that RBUF A is ready for another load from the link.

Identical "RBUF FULL" logic exists for RBUF B. If the data packet
had been 1loaded into RBUF B instead of RBUF A, an identical
sequence would have occurred in the corresponding RBUF B 1logic
causing "RCVR status" bit RBUF B FULL to assert,

Should both RBUF A FULL and RBUF B FULL be true, RCVR BUFFERS FULL
is asserted to the 1link preventing it from initiating another
VALID RCVR DATA operation.

3.8.3 RBUF B FIRST

If both RBUFs are full (RBUF FULL true), the RBUF B FIRST status
bit indicates which RBUF was filled first. The RBUF B FIRST status
bit is invalid (not sampled) until both RBUFs are filled.

RBUF B FULL ENA is ANPed with CRC OK and the negated state of RBUF
FULL to enable the first RBUF B FIRST flip-flop to be set by RCVR
CLK. The flip-flop is set if RBUF B is full but not RBUF A. The
second RBUF B FIRST flip-flop is set by PORT CLK asserting RBUF B
FIRST.

If RBUF A is loaded while RBUF B is still full, RBUF FULL asserts
holding the first RBUF B FIRST flip-flop set via a feedback gate.
With both RBUFs full, the RBUF B FIRST bit is sampled and found to
be true.



3.8.4 RBUF A BUS
This bit indicates which CI bus received the last data packet

loaded into RBUF A. If the bit is negated, the pack was received
on CI bus A. If the bit is asserted, the pack was received on CI
bus B.

While RBUF A is being loaded, RBUF A LOAD ENA is true. RBUF A LOAD
ENA is ANDed with VALID RCVR STATUS and ICCS PATH B. Thus, when
VALID RCVR STATUS asserts, the ICCS PATH B signal is sampled. If
the signal is true, the data packet just loaded into RBUF A was
received on CI bus B. In this case, the RBUF A BUS flip-flop is
enabled and sets on the next RCVR CLK. When the flip-flop sets,
the RBUF A BUS bit is asserted as part of "RCVR status."

3.8.5 RBUF B BUS

This bit indicates which CI bus received the 1last data packet
loaded into RBUF B. If the bit is negated, the pack was received
on CI bus A. If the bit is asserted, the pack was received on CI
bus B.

The RBUF B BUS logic is identical to the RBUF A BUS logic with
RBUF B replacing RBUF A.

3.8.6 RCVR A ENABLE

This bit is set if the RCVR A ENB bit (bit<00>) of a "link enable"
command byte is set. The RCVR A ENB bit must be set for the link
to respond to traffic on CI bus A.

3.8.7 RCVR B ENABLE

This bit is set if the RCVR B ENB bit (bit <07>) of a "link
enable" command byte is set. The RCVR B ENB bit must be set for
the link to respond to traffic on CI bus B.






CHAPTER 4
CONTROL STORE

NOTE

The functional block diagrams in Chapter
4 use logical AND and OR symbols. It
does not necessarily follow that a
corresponding gate exists on the
engineering logic prints. The assertion
of inputs A and B causing the assertion
of output C may be represented on a
block diagram by a single AND gate, yet
the engineering drawing may show that
several circuit stages are involved in
the ANDing operation.

The block diagrams are keyed to the
engineering circuit schematics (CS
prints) by 1letter designations 1in
parentheses. The letters specify the CS
sheet that contains the logic associated
with the functional blocks in the
diagram. The logic for the CS function
discussed in this chapter, is divided
between the DP and the PB modules. A
note on each block diagram specifies
which module contains the logic used in
the diagram.

The signal names used in the functional
block diagrams are the names used on the
engineering CS prints. Where other
signal names or notes are used, they are
enclosed in parentheses.

4.1 SIMPLIFIED BLOCK DIAGRAM

The control store (Figure 4-1) consists of 3K bytes of storage
used to store the port microcode. The microcode uses 48-bit
microwords. Each microword consists of 47 contrcl bits (BUS

U<46:00>) and a sync bit used for maintenance purposes. The 3K of
storage consists of 2K of RAM and 1K of PROM.

The RAM area of the CS is written during the uninitialized state.
IB IN <31:00> from the DP 1is placed on the CS I/0 bus (BUS
U<46:00>) and then written into the CS. The lower 32 bits are
written first and then the upper bits.

Bit 46 1is the parity bit for the microword (excluding the sync
bit). A parity check is performed on each microword read out of
the CS during the initialized state when the microcode is running.
If a parity error is detected, CSPE is asserted to the DP as an
error flag.
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Most of the microword read from the CS 1is latched into the
microword register. The register outputs control signals to all
of the port modules.

The CS is addressed via 12 address bits (CSA <11:00>) obtained
from either the microsequencer or the maintenance address
register. In the uninitialized state (e.g. during power up) the
maintenance address register provides the address (MADR <11:00>).
The register input is IB IN <12:00> from the LDP. The microcode
start-up logic enables the maintenance address register by
asserting EN MADR.

In the initialized state (while the microcode 1is running) the
address 1is provided by the microseqguencer. The microsequencer is
enabled by EN SEQ from the microcode start-up 1logic. The
microsequencer uses bits BUS U<K11:00> from the microword as the
base address. Branching logic is used to specify the lower four
address bits. The branching conditions are selected by sequential
control bits SEQ CNTL <4:0> which are actually bits BUS U<16:12>
of the microword. The microseguencer contains a memory stack and
a PC counter for address control.

The CS microword and the contents of the maintenance address
register can be read by the DP via the maintenance mux. The mux
selects the lower 32 bits of the microword, the upper bits of the
microword, or the 13 bits from the maintenance register as an
input to the DP (31:00).

Figure 4-2 -is a detailed block diagram of the control store area
and should be referred to throughout the rest of this chapter.
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4.2 MICROWORD PARITY

A parity check is made on each microword as it is read out of CS.
BUS U<46:00> is input to a microword parity checker which outputs
CSPE to the DP if a parity error is detected. Bit 46 1is the
parity bit generating odd parity for each microword. Also, note
that a CS parity error resets the microword register containing
the microword with the error.

The SYNC bit (U47) is not included in the parity check as it is a
programmable bit that can be used with any of the CS microwords,
even the microwords in the PROM area whose parity bits cannot be
changed.

Figure 4-3 is a block diagram of the parity checker. Each byte of
the microword is checked for odd parity in parity generators.
Those bytes with an odd number of bits asserted will assert the
output of their respective generator. The generator outputs are
themselves input into a summation parity generator where again an
asserted output means an odd number of asserted inputs. This is a
"no error" state which would condition the parity error flip-flop
to reset.

If the number of asserted inputs to the summation parity generator
is even, the generator output 1is false and the parity error
flip-flop sets on the next SEQ CLK T3 pulse. When the flip-flop
sets, CSPE is asserted.

4.3 CS MICROWORD

4.3.1 Microword Fields

The 48 bits of the CS microword are shown in Figure 4-4, grouped
by fields. Table 4-1 describes each of the fields shown in the
figure.

4.3.2 Microword Register

When a microword is read out of CS, most of the bits are latched
into the microword register by SEQ CLK T3. The remaining bit
fields are the next address field and the SEQ CNTL field used to
select the next microaddress, and the IB SRC and IB DST fields.
The IB SRC and IB DST fields must be present in the DP at the
start of the microcycle, hence, they cannot wait for SEQ CLK T3 to
clock the microword register.

The register is reset in the uninitialized state and whenever the
current microword produces a parity error.
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Table 4-1 Microword Fields

Bit Name Description

47 SYNC A programmable bit that is used
during port debugging to
indicate the execution of a
specific microword. The SYNC
bit 1is not 1included 1in the
parity check of the microword.
The SYNC bit can be written in
both the RAM and PROM areas of
the CS. The bit is available on
the port backplane.

46 PAR The odd parity bit on bits
<45:00> of the CS microword.

<45:43> ALU FCN <2:0> Function code for the 2901 ALU
on the DP.

<42:40> ALU SRC <2:0> Operand source code for the
2901 ALU on the DP.

<39:37> ALU DST <2:0> Cestination code for the 2901
ALU on the DP.

<36:33> ALU 2/B <3:0> The A and B address lines for
the 2901 scratch pads on the
DP.

32 TYPE Selects the definition of bits
<31:24> as shown below.

<31:24> LITERAL <7:0> Valid when TYPE = 0. Used 1in
the DP as a number or as an
address.

<31:24> -—- Link and PB control bits. Valid
when TYPE = 1. The bit fields
are defined below.

31 —— Not used.

30 SELECT Indicates that the LINK CONTROL
lines (<27:24>) are valid.

<29:28> PMUX <1:0> Selects a byte in the packet
buffer input and output
registers on the DP.

<27:24> LINK CONTROL <3:0> Specifies operations on the

link and PB. This field is
valid when SELECT = 1.




Table 4-1

Microword Fields (Cont)

Bit

Name

Description

<23:21>*

<20:17>*

<16:12>

<11:00>

<11:00>

11
10

09

08

07

IB SRC <2:0>

IB DST (3:0)

SEQ CNTL (4:0)

Next microaddress

MISC CNTL

'MCLR

INTR

INITIALIZE

CLR REG WRT

PF VLD

Selects the source of BUS 1IB
data in the CP.

Selects the destination for BUS
IB data in the DP.

Specifies the operation of the
2911 microsequencer, selects
the branch conditions that
alter the microaddress, and
selects the definition of bits
<11:00>.

This field is the base address
that is modified by the branch
bits to form the address of the
next microword. It allows the
microcode to jump to any
address in the CS. This field
is wvalid so 1long as the SEQ
CNTL field is not all 1ls.

This field (miscellaneous
control) allows the microcode
to control miscellaneous flags
and functions in the port. The
field 1is wvalid when the SEQ
CNTL field is all 1s. The MISC
CNTL bits are described below.

Not used.

Sets the interrupt request flag
that initiates an interrupt
sequence to the host CPU.

Generates an initialize signal
to the 1link.

Clears the REG WRT flag in the
DP.

When the power-fail wvalid bit
is set, the ASRT DEAD and ASRT
FAIL bits are valid.

* These bits bypass the microword register and go directly to the

DP.



Table 4-1

Microword Fields (Cont)

Bit

Name

Description

06

05

04

03

02

01

00

ASRT DEAD

ASRT FAIL

SET A GO

SET B GO

UP PDN

INH RBPE

Facilitates processor
initialization and booting.

Facilitates processor
initialization and booting.

Starts an external bus transfer
with the host wusing the A
parameters.

Starts an external bus transfer
with the host wusing the B
parameters.

Allows the microcode to set the

PDN (power down) bit in the
port configuration register.

This bit 1is set during a DP
read of the first byte from a
packet buffer. The first byte
read is always undefined data.
INH RBPE prevents a parity
error from asserting on the
undefined data.

Not used.
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4.4 MAINTENACE MUX

During the uninitialized state the CS can be read by the LP for
maintenance purposes. The CS microword is input to the DP via a
maintenance mux and a 32-bit bus (31:00). The microword is
applied to the maintenance mux where the mux first selects the
lower 32 bits (BUS U<31:00>) and then the upper 16 bits (RUS
U<46:32>; U47).

The DP can also read the 13 bits from the maintenance address
register (MADR <12:00>) via the maintenance mux.

MUX selection is accomplished using one of the local store address
bits from the DP (XBUS LSA 00) and MADR 12 from the maintenance
address register. XBUS LSA 00 selects either the microword or the
maintenance address. MADR 12 is used here and throughout the CS
logic to select the upper or lower portion of the microword. MALR
12 false selects the lower portion (BUS U<31:00>). MADR 12 true
selects the upper portion (BUS U<46:32>; U47). Table 4-2 lists
the mux selection code.

4.5 CONTROL STORE SPACE AND LOGIC

4.5.1 Control Store Space

The control store space (Figure 4-5) has a microword store area
and a flag store area. The microword store area consists of 1K x
47 of PROM and 2K x 47 of RAM. The area is addressed by 12 control
store address bits CSA <11:00>. The two most significant address
bits (CSA <11:10>) divide the store area into three banks and are
used as the bank select bits. Bits CSA <09:00> address the 1024
(1K) word locations within each bank.

The flag store area 1is 3K x 1 of RAM used to store the
programmable SYNC bit (U47). CSA <11:00> also addresses the 3K of
flag storage thus giving a SYNC bit location in the flag store
area for each word location in the microword store area. The SYNC
bit can be written anywhere across the address spectrum; thus,
even the microwords in the PROM area (bank 0) could have a SYNC
bit written in as bit 47.



Table 4-2 Maintenance Mux Selection Code

don't care

XBUS LSA 60 MADR 12 32-Bit Bus (31:00)
] ) BUS U<31:00>
%) 1 BUS U<46:32>; U047
1 X MADR <12:00>
@ = negated
1l = asserted
X =
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4.5.2 control Store Logic

Figure 4-6 is a block diagram of the control store logic. Bank 0
is comprised of six 1K x 8 PROMs. Each PROM outputs eight bits
onto the microword I/O bus (BUS U<46:00>). The high-order PROM
outputs only seven bits (BUS U<46:40>). Banks 1 and 2 are each
made up of twelve 1K x 4 RAMs. Each RAM has a four-bit I/0 to the
microword bus. The high-order RAM in each bank uses only three of
its four I/0 lines (BUS U<46:44>).

Bits MADR <11:10> (identical to CSA <11:10> shown in Figure 4-5)
are the bank select bits. They are applied to bank select logic
where they are decoded to output one of three SEL BANK enabling
signals. When true, each SEL BANK signal enables all the RAMs (or
PROMs) 1in 1its respective bank. Address bits CSA <09:00> are
applied to all the RAMs and PROMs; however, only the RAMs (or
PROMs) in the enabled bank will respond to the address. The
address bits select a location in each of the RAMs (or PROMs) of
the selected bank.

All 47 bits from the addressed location in the selected bank are
available on the microword bus for reading except during a CS
write operation. All 47 bits are read simultaneously.

The two writable CS banks are divided into three parts of four
RAMs each. The parts are 16 bits each and are designated as LO
(BUS UK15:00>), MID (BUS U<31:16>), and HI (BUS U<46:32>). Each
part receives a separate write enable signal.

To write the CS RAMs, the signal CS WE is asserted from the DP and
then ANDed with MALCR 12. MADR false asserts WR CS LO and WR CS MID
thus enabling the LO and MID parts for a write. MADR 12 true
asserts WR CS HI, enabling the HI part for a write.

Write data (IB IN<31:00>) and a data in enabling signal (EN CS
DATA IN) is received from the DP. MADR 12 is ANDed with EN CS DATA
IN to again select the high or low portion of the microword. When
MADR 12 is false, IB IN<31:00> is coupled to BUS U<31:00> and
written into the LO and MID parts of the selected RAM bank. When
MADR 12 is true, IB 1IN<14:00> is coupled to BUS U<K46:32> and
written into the HI part of the selected RAM bank.

The flag store RAM is addressed by CSA<K11:00> to select bit 47 of
the microword being addressed in the microword store area. The
flag store output (U47) is available on the microword bus for
reading except during a CS write operation. Bit U47 is read out
along with its associated microword.

The flag store is written as bit 47 of the input microword. The
input to the flag store RAM is IB IN 15. The flag store is enabled
by WR CS HI. Thus, the flag is written when IB IN <14:00> is being
coupled to BUS U <46:00> and the upper portion of the microword is
being written.



EN CS DATA IN

(1) )
IB IN <31:00> IB IN <31:00> m BUS U<31:00>
_
IB IN <14:00> TN BUS U<46:32> f
FLAG
IBIN1
> STORE
CSA <11:00> csa<it:00> | RAM
_ w »{ ADDR FIG
C WR CS HI (W) :
BUS U<46:00>
| BUS BUS BUS BUS BUS BUS BUS BUS BUS
U<46:44> | U<43:40> | U< 39:36>| U<35:32> |U<31:28>|U<27:24>|U<23:20>|U<19:16> | U<15:12>|U<11:08>| U<07:04>|U<03:00>
CSA <09:00> ' '
#{ ADDR ADDR ADDR
—
MADR <11:10> SEL BANK 2 RAM | RAM RAM RAM RAM RAM RAM RAM RAM | RAM RAM RAM
BANK > -
> SELECT SEL BANK 1 "IEN ik x a)| (1K x 4) | (1K X 4) | (1K X 4) EN ik x a)| (1K x 4) [ (1K X 4) | (1K X 4) EN 1k x4y (1K X 4) | (1K X 4) | (1K X 4)
\—
LOGIC WR EN
SEL BANK 0 WR EN —> -+ WR EN
(R) ™ (N) (N) (N) (N) (N) (N) (M) (M) (M) (M) (M) (M)
BUS BUS BUS BUS BUS BUS BUS BUS BUS BUS BUS
U<46:44> | U<43:40> |U<39:36>}U<35:[32>  [U<31:28>|U<27:24>| U<23:20>| y<19:[16> |u<15:12>]U<11:08>] U<07:04>| U<03:00>
»| ADDR | ADDR »{ ADDR
e £n RAM RAM RAM RAM ey RAM RAM RAM RAM |1y RAM RAM RAM RAM
P15 1k X 4)] (IK X 4) | (1K X 4) | (1K X 4) (IK X 4)] (1K X 4) | 1K X 4)| (1K X 4) EN 1k x 4)| (1K X 4) | (1K X 4) | (1K X 4)
CS WE o WR EN L o{ WR EN L] WR EN
(R)\ WR CS HI (N) (N) (N) (N) (N) (N) (M) (M) (M) (M) (M) (M)
|/ WRCSMID
H
(R)
WR CS LO re ‘
MADR 12 {>C ﬂ (R) BUS BUS BUS BUS BUS BUS
U<46:40> U<39:32> U<31:24> U<23:16> U<15:08> U<07:00>
@ ! ADDR
PROM PROM PROM PROM PROM PROM
(1K X 8) (1K X 8) (1K X 8) (1K X 8) (1K X 8) (1K X 8)
NOTE:
LETTER DESIGNATIONS IN PARENTHESES REFER ———> EN (N) (N) (N) (M) (M)’ (M)
TO THE PB ENGINEERING DRAWINGS CONTAINING' :
THE CORRESPONDING LOGIC.
TK-8726
Figure 4-6 Control Store Logic 4-15



4.6 CONTROL STORE ADDRESS SOURCE

The CS& addressing bits (CSA <11:00>) are obtained from either the
meaintenance address register or the microsequencer logic. The
selection is made by the microcode start-up logic which asserts EN
MADR to enable the output from the maintenance address register,
or EN SEQ to enable the 2911 microsequencer.

4.6.1 Maintenance Address Register

The maintenance address register has 13 bits and receives IB IN
<12:00> from the TIrP. When enabled the register outputs MADR
<12:00>. All 13 bits are applied to the maintenance mux for read
back into the P over the 32-kit bus. MALCR 12 is used in the mux
select logic to select the high or low portion of the microword
for the bus. MADR 12 is also used in the CS logic to select the
high or low portion of the microword to be written from the IB IN
bus. MADPR <11:10> is used in the CS logic for CS bank selection.

MADR <11:00> is muxed onto common lines with the 12-bit output
from the 2911 wicrosequencer.

4.6.2 Microsequencer Logic

The microsequencer logic consists of the 2911 microsequencer, the
microsequencer control 1logic which regulates and controls the
various microsequencing functions, and the branch logic.

4,6.2.1 2911 Microsequencer -- The 2911 microsequencer outputs a
12-tit address onto common address lines MAPDR <11:00> where it is
muxed with the 12-bit output from the maintenance address
register. Figure 4-7 illustrates the muxing function. Also note
that the microsegquencer comprises three 2911 chips, each
outputting four bits onto the MADR lines. The upper eight bits on
the MALCR lines (MALDR <11:04> become address bits CSA <11:04>,
respectively. The lower four bits (MADR <03:00>) are CRed with
branch bits BR <03:00> from the branch logic in the DP to produce
address bits CSA <03:00>.

The lower 12 bits of the CS microword (BUS U<11:00>) are used by
the microsequencer to formulate the next address. Each chip
receives the four bits from the microword that correspond to its
four outputs onto the MADR lines.
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Figure 4-8 is a functional block diagram of a 2911 microsequencer
chip. The source of the four-bit chip output could be an address
register (which would be the four next address bits from the
microword), a 4 x 4 memory stack, or a PC counter/incrementer. A
mux selects the address source according to select code <S1:S50>
from the microsequencer control logic.

The memory stack is enabled by file enable (FE) received from the
CS microword via the microword register. The stack push/pop
control (PUP) 1is also obtained from the microword via the
microword register.

FORCE ZERO from the microcode start-up 1logic negates the
microsequencer output causing the output to be all zeros.

4.6.2.2 Microsequencer Control Logic -- Figure 4-9 is a block
diagram of the microsequencer control logic. BUS U <16:12> is the
microsequencer control field in the CS microword. The field
specifies how the next CS address is formulated.

BUS U <16:12> becomes SEQ CNTL <4:0> respectively within the
control logic.

If SEQ CNTL 4, SEQ CNTL 3, or SEQ CNTL 2 is false, control bits
SEQ CNTL <1:0> are inhibited from the mux select logic and the
stack enable logic. In this case, the mux select logic output
defaults to S1 false (0) and SO true (1), and decoded file enable
(DFE) from the stack enable logic is negated. The push/pop stack
control 1logic responds to SEQ CNTL <1:0>; however, decoded
push/pop (DPUP) has no effect, while the stack file enable signal
(DFE) is false.

SEQ CNTL <4:0> also goes to the branch 1logic to control the
branching function.

Table 4-3 1lists the five SEQ CNTL bits in binary sequence and
shows how the bits control the various sequencing functions. All
32 bit counts (or bit states) are listed.

The first 28 counts (bit states) operate the branch logic. During
the first four bit states, branches 3, 2, 1, and the A portion of
branch 0 are enabled. During the next four bit states, only branch
1 and the A portion of branch 0 are enabled. For the next eight
states, the B portion of branch 0 is enabled. The next eight
states find the C portion of branch 0 enabled. The last four bit
states of branch logic operation has select condition code (SEL
CC) asserted. SEL CC is actually the D portion of branch 0. The
branch logic is described in Paragraph 4.6.2.3.
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Table 4-3 Microsequencer Control Functions
Bit SEQ CNTL EN EN EN EN SEL Microsequencer Stack Push/
State| 4 3 2 1 BR BR BR BR [of 0] Mux Address Enable Pop
2/3 0a/1 0B ocC Select Source (DFE) (DPUP)
Code
<S1:S80>
1 0 0 0 0 O 0 1 Address 0 X
2 0 0 0 0 1 Register
3 0 0 0 1 0 4 A A 0
4 0O 0 0 1 1
5 0 0 1 0 O
6 0 0 1 0 1
7 0 0 1 1 0
8 0 0 1 1 1
———————————————————————— e - - - -]
9 01 0 0 o
10 0 1 0 0 1
11 01 0 1 O
12 0 1 0 1 1
13 0 1 1 0 O
14 01 1 0 1
15 o 1 1 1 0
16 o 1 1 1 1
_________________ U PR U I S R S ——
17 1 0 0 0 O
18 1 0 0 0 1
19 1 0 0 1 O
20 1 0 0 1 1
21 1 01 0 O
22 1 0 1 o0 1
23 1 0 1 1 0
24 1 0 1 1 1
————————————————— b e e o e e o e e er e e - e e e o - —————— - o]
25 1 1 0 0 O
26 1 1 0 0 1
27 1 1 01 0 vy \ \] y
28 1 1 0 1 1 0 1 Address 0 X
Register
__________________ e o o e e e e - o G e - e o - e ] e —— = - . G - g ——— — - o -
29 1 1 1 0 0 0 1 Address 1 1
Register
30 1 1 1 0 1 1 0 Stack 1 0
31 1 1 1 1 o 0 0 PC Counter/ 1 0
Incrementer
32 1 1 1 1 1 0 0 PC Counter/ 0 1
Incrementer
1 = Asserted
0 = Negated
x:

Don't care



Note that during the 28 bit states of branch logic operation,
either SEQ CNTL 4, SEQ CNTL 3, or SEQ CNTL 2 is false, hence the
S1 and S@ control bits from the mux select logic are in the
default state 51 = @; SO0 = 1) and the DFE signal from the stack
enable 1logic is false. With the control bits in the default
state, the microsequencer mux selects the address register and the
microsequencer serves only to couple the microword next address
field (BUS U <K11:00>) to the MADR <11:00> common address lines as
the base address for branching operations. The stack is disabled
by the negated state of DFE during branching operations, hence,
the state of DPUP is meaningless.

During the last four bit states, the SEQ CNTL <4:2> bits are true,
disabling the branch logic and causing the microsequencer to be
used as the addressing control. As shown in Figure 4-9, SEQ CNTL
<1:9> are now input to the mux select logic and the stack enable
logic. Table 4-3 .,thows the state of the S1,S0 control bits and the
stack enabling signal #DFE) for the last four bit states.

The first of the four bit states is a jump to subroutine (JSR)
function. In this state SEQ CNTL <1l:0> are both 6 hence S1 and S@
remain in their default state and the address register is still
selected; however, now the stack is enabled and DPUP is asserted.
DPUP true causes the output of the PC counter/incrementer (PC + 1)
to be pushed onto the stack. The microcode jumps to the address of
a subroutine but saves the next address (PC + 1) to return to the
main flow after the subroutine is finished.

The second state is a return from subroutine (RTS) function. In
this state the mux selects the stack for the next address. The
stack is enabled and DPUP is false which pops the stored address
from the stack to the mux. The microcode, returning from a
subroutine, uses the address stored on the stack to return to the
main flow.

The third state is a "pop the stack"™ housecleaning function. In
this state the mux selects the PC counter/incrementer for the next
address, hence the microcode simply advances to the next address
in the main flow. The stack is enabled and DPUP is false which
pops the stack of an unwanted address. Clearing the stack in this
manner is necessary when the microcode jumps to a subroutine and
continues on from the subroutine without returning to the main
flow via an RTS.



The fourth state is the MISC CNTL function. In this state the mux
again selects the PC counter/incrementer for the next address and
the microcode advances to the next address in the main flow. The
stack is disabled by the negated state of DFE. The MISC CNTL
function 1is the utilization of the next address field of the
microword (BUS U <11:00>) for one microcycle for miscellaneous
flags and control functions. In this state, the sequential control
bits (SEQ CNTL <4:0>) are all ls, hence BUS U <K16:12> are all 1s
and MISC CNTL 1is asserted (Figure 4-9). MISC CNTL gates the
microword next address field (now carrying the miscellaneous flags
and controls) into the microword register (Paragraph 4.3).%*

* Bits 5 and 6 of the next address field (ASRT FAIL and ASRT DEAD)
are not gated directly by MISC CNTL. However, they are
indirectly gated by MISC CNTL because they are subsequently
gated by PF VLD.

In describing the 32 states of sequential control bits SECQ CNTL
<4:0>, four special microsequencer states and 28 branch states
were discussed. It may have been noticed that there appeared to
be no state that used the next address field of the microword
unchanged. As will be seen in the section on branching, (Paragraph
4.6.2.3), one of the branching states is a null wherein no
conditions are checked. This allows the next address field to

pass to the CS unchanged.

4.6.2.3 Branch Logic - Figure 4-10 is a block diagram of the
branch logic. Four branch bits (BR <3:9>) are generated by the
branch 1logic to modify the base address from the 2911
microsequencer. Branch bits BR <3:1> each have a mux for selecting
the various conditions affecting that branch. Branch bit BR @ has
four muxes to select its branch conditions.

The branch muxes are controlled by sequential control bits SEQ
CNTL <4:@>. The muxes function during 28 of the 32 bit states of
SEQ CNTL <4:8> as shown in Table 4-3; however, not all the muxes
are enabled during all of these states. When a branch mux is not
enabled, the associated addressing bit 1is determined by the
corresponding bit from the microsequencer.

Control bits SEQ CNTL <4:3> are applied to the branch # mux select
logic. The control bits are decoded to assert one of four outputs
to enable one of the branch 0 muxes. The control bits divide the
32 bit states into groups of eight. Table 4-3 illustrates this
and also shows the state of the four outputs from the branch @ mux
select logic for the eight-bit groups.
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EN BR 0A/1 enables the branch 1 mux and the A mux of branch 0. It
is asserted for the eight bit states that SEQ CNTL <4:3> are
false.

EN BR 0OA/1 is ANDed with the negated state of SEQ CNTL 2 to assert
EN BR 2/3. EN BR 2/3 enables the branch 2 mux and the branch 3
mux. Making EN BR 2/3 a function of SEQ CNTL 2 limits the enabled
state of the branch 2 mux and the branch 3 mux to only four bit
states.

EN BR OB enables the B mux of branch 0 for the eight bit states
that SEQ CNTL <4:3> are 0 and 1, respectively.

EN BR 0C enables the C mux of branch 0 for the eight bit states
that SEQ CNTL <4:3> are 1 and 0, respectively.

The fourth output from the branch 0 mux select logic is asserted
by the 1:1 state of SEQ CNTL <4:3>. It is ANDed with the negated
state of SEQ CNTL 2 to produce SEL CC. SEL CC selects the branch
conditions of the branch 0 "D" mux. Making SEL CC a function of
SEQ CNTL 2 limits the asserted state of SEL CC to only four bit
states. _

Table 4-4 lists the branching conditions for the 32 bit states of
SEQ CNTL <4:0>. Refer to it during the following discussion of the
branch muxes. When a condition is sampled by the branch logic, the
corresponding bit from the microsequencer is always O.

The branch 3 mux is enabled for the first four bit states. The mux
selects IB IN 19 when SEQ CNTL <1:0> are in the 1:1 state. The mux
selects 0 (ground) for the other three states of SEQ CNTL <1:0>.
The mux output routes to the branch output register and then to
the BR 3 cutput line.

The branch 2 mux is also enabled for the first four bit states.
The mux selects one of four condition inputs as determined by SEQ
CNTL <1:0>. The SET MSE SYNC condition (negated) is selected for
both the 0:0 and the 0:1 states of SEQ CNTL <1:0>, The mux output
is placed on the BR 2 output line via the branch output register.

The branch 1 mux is enabled for the first eight bit states. The
mux selects one of eight condition inputs as determined by SEQ
CNTL <2:0>. The mux output is placed on the BR 1 output line via
the branch output register.



Table 4-4 Branch Conditions

Bit SEQ CNTL

State <4:0> Function Branch 3 Branch 2 Branch 1 Branch 0
1 00000 Branch 0 , SET MSE SYNC A DN ALU C

2 00001 . 0 SET MSE SYNC B DN ALU C

3 00010 " 0 PWR FAIL TICK <1> MTD

4 00011 . IB IN 19 IB IN 18 IB IN 26 IB IN 16
5 00100 " 0 (] IB IN 26 IB IN 25
6 00101 " 0 0 IB IN 14 IB IN 13
7 00110 " 0 0 IB IN 10 IB IN 09
8 00111 . 0 0 IB IN 26 IB IN 22
9 01000 " 0 0 0 . IB IN 31
10 01001 " 0 0 0 IB IN 15
11 01010 " 0 0 0 IB IN 12
12 01011 . (i} 0 0 IB IN 24
13 01100 " 0 0 0 IB IN 00
14 01101 " 0 0 0 IB IN 20
15 01110 " ()} 0 0 RSVD JMPR
16 01111 . " 0 0 0 RSVD

17 10000 " 0 0 0 REG WRT
18 10001 » 0 0 0 DISABLE ARB
19 10010 " 0 0 0 BTO

20 10011 . 0 0 0 REC ATTN
21 10100 " 0 0 0 XMIT ATTENTIO!
22 10101 . 0 ()} 0 IB IN 21
23 10110 " 0 ()} 0 IB IN 08
24 10111 . 0 ()} 0 0

25 11000 . 0 (] ( ALU N
26 11001 " 0 0 0 ALU C
27 11010 " 0 0 0 ALU V
28 11011 " 0 0 0 ALU 2
29 11100 JSR 0 0 ()} 0

30 11101 RTS 0 0 0 0

31 11110 POP STACK 0 0 0 0

32 11111 MISC CNTL 0 ()} 0 0




The A, B, and C mux of branch 0 have their outputs connected to a
common output line. Mux A is enabled for the first group of eight
bit states, mux B for the second group, and mux C for the third
group. The enabled mux selects one of eight condition inputs as
determined by SEQ CNTL <2:0>, Thus, the common mux output line
receives a branch condition for the first 24 bit states.

Note that one of the branch condition inputs of mux C is 0
(ground). When this condition is selected (bit state 24), there
are no branch conditions and the next address from the 2911
microsequencer is applied to the CS unchanged.

The branch condition on the common output line is applied to the
four low order inputs of the branch 0 "D" mux. The three select
bits for the D mux are SEL CC and SEQ <1:0> with SEL CC being the
most significant bit. SEL CC is false for the first 24 bit states
(Table 4-3) hence, the mux selects only from the four low order
inputs. Thus, for the first 24 bit states, the D mux simply
couples the selected branch condition from the common line to the
BR 0 output line via the branch output register. SEL CC is true
for the next four bit states (states 25 through 28), causing SEQ
CNTL <1:0> to select from the four high order inputs (ALU
functions).

Branch 0 is active for all 28 bit states of branch operations,
Also it can be seen that the branch D mux is enabled for all 28
states. It is disabled during states 29 through 32 (SEQ CNTL
<4:2> all 1s) when the microsequencer special functions are
enabled.

4.7 MICROCODE START-UP

The two CS address sources (the maintenance address register and
the microsequencer) are enabled from the microcode start-up logic.
EN MADR enables the maintenance address register during the
uninitialized state. When the initialization process is complete,
EN MADR negates and EN SEQ asserts. EN SEQ enables the
microsequencer which supplies the CCS address during the
initialized state.

Figure 4-11 is a flow diagram of the microcode start-up process.
The following discussion follows the sequence illustrated in the
diagram. Figure 4-12 is a block diagram of the logic involved in
the start-up process.

Upon system power-up, UNINIT and UNINIT DLY asserts simultaneously
in the DP and places the port into the uninitialized state. The
assertion of UNINIT (or UNINIT DLY) causes EN MADR to assert to
the maintenance address register. Also FORCE ZERO is asserted to
the microsequencer in preparation for when the microsequencer will
take over the addressing function. In addition, SEQ CLK T3 from
the DP is inhibited thereby disabling the microsequencer.
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When initialization is completed, the DP negates UNINIT (UNINIT
DLY is not negated until the next clock cycle) and the port goes
from the wuninitialized to the initialized state. Once in the
initialized state, the DP enables SEQ CLK T3 therby enabling the
microsequencer.

The CS address source for the first microcycle of the initialized
state may not be the microsequencer depending on the state of the
PSA (programmable starting address) bit in the PMCSR (port
maintenance control/status register). During a normal start-up,
PSA = 0. 1In this case, the negation of UNINIT directly negates EN
MADR which in turn directly asserts EN SEQ. The enabled
microsequencer then responds to the true state of FORCE ZERO and
outputs a starting address of 0 to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>