

r
I
i

I

I

January 1981 GIGI BASIC Manual

Order No. AA-K335A-TK

This manual provides information on how to run GIGI BASIC; also it provides
descriptions of the features of the GIGI BASIC language.

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION

First Printing, January, 1981

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license, and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

This document includes material from Microsoft BASIC manuals. Copyright©
1980 by Microsoft. All rights reserved.

Copyright© January 1981 Digital Equipment Corporation. All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future docu­
mentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECnet
DECsystem-10
DECtape
DECUS
DIBOL
DIGITAL

FOCAL
lAS
PDP
RSX
UNIBUS
VAX
VMS

CONTENTS

Preface

Chapter 1: General Information About GIGI BASIC
LOCAL BASIC VS. HOST BASIC

STARTING GIGI BASIC

MODES OF OPERATION

LIN E FORMAT

CHARACTER SET

CONSTANTS

VARIABLES

EXPRESSIONS AND OPERATORS

INPUT ED ITING

ERROR M ESSAG ES

GRAPHICS CONTROL

Chapter 2: GIGI BASIC Commands and Statements
AUTO

CLEAR

CO NT

<CTRL>C <CTRL>O <RCTRL> C<RCTRL>O

DATA

DEF FN

DELETE

DIM

ECHO/NOECHO

EDIT

END

ERASE

ERR AND ERL VARIABLES

ERROR

FOR .. . NEXT

GOSUB . .. RETURN

GOTO

HOST

IF . .. THEN[.. . ELSE) and IF ... GOTO

INPUT

LET

L1NPUT

LIST

MID$

NEW

OLD

ON ERROR GOTO

ON ... GOSUB and ON ... GOTO

iii

vii

1-1
1-1

1 -1
1-2

1-2

1-2

1-4

1-5
1-5

1-10
1 -11
1 -11

2-1
2-2

2-2
2-2

2-3

2-3

2-4
2-4
2-5

2-5

2-6

2-7
2-7
2-7
2-8

2-9

2- 10
2-11

2-11
2- 12
2-13

2-14
2-15

2-16

2-16

2- 17

2-17
2-18

2-18

Contents

OPTION BASE 2-19
OUT 2-19
PRINT 2-19
RANDOMIZE 2-21
READ 2-22
REM 2-23
RESTORE 2-23
RESUME 2-24
RUN 2-24
SAVE 2-25
STOP 2-26
SWAP 2-26
TRON/TROFF 2-27
WAIT 2-27
WHILE . .. WEND 2-28
WIDTH 2-28

Chapter 3: GIGI BASIC Functions 3-1
ABS 3-1
ASC 3-1
ATN 3-2
CHR$ 3-2
COS 3-2
ESC$ 3-2
EXP 3-3
FRE 3-3
GOFF$ 3-3
GON$ 3-4
HEX$ 3-4
INP 3-4
INKEY$ 3-5
INSTR 3-5
INT 3-5
LEFT$ 3-6
LEN 3-6
LOG 3-6
MID$ 3-6
OCT$ 3-7
POS 3-7
RIGHT$ 3-7
RND 3-7
SGN 3-8
SIN 3-8
SPACE$ 3-8
SPC 3-8

iv

Contents

SQR

STR$

STRING$

TAB

TAN

VAL

Appendixes
Appendix A: Summary of Error Codes
Appendix B: Mathematical Functions
Appendix C: ASCII Character Codes

Index

v

3-9

3-9

3-9

3-10

3-10

3-10

A-1
B-1
C-1

Index-1

PREFACE

The manual is divided into three large chapters plus a number of appendices.
Chapter 1 covers a variety of topics, largely pertaining to information representa­
tion when using GIGI BASIC. Chapter 2 contains the syntax and semantics of
every command and statement in GIGI BASIC, ordered alphabetically. Chapter
3 describes all of GIGI BASIC's intrinsic functions, also ordered alphabetically.
The appendices contain lists of error messages, ASCII codes, and mathmatical
functions.

This manual is a companion to the GIGII ReGIS Handbook, Order Number AA­
K336A-TK.The GIGI ReGIS/ Handbook should be consulted concerning nor­
mal terminal operation and graphics programming.

GIGI BASIC does not implement certain BASIC language functions in the same
way that DEC BASIC implements these functions. Where GIGI BASIC and
DEC BASIC differ in implementation, those differences are indicated by grey
type, as shown in this paragraph.

vii

1 GENERAL INFORMATION
ABOUT GIGI BASIC

This BASIC is a tailored version of Microsoft BASIC. It is specifically designed
for the GIGI terminal. BASIC is provided as a tool to be used in making GIGI an
intelligent terminal. For this reason, only a limited amount of user memory is
provided with GIGI. It is therefore recommended that applications and instruc­
tional programming be done on the host computer as there is no guarantee of
source language transportability between the BASIC in this version of GIGI and
that provided in the future.

LOCAL BASIC VS. HOST BASIC

GIGI BASIC can be run in either of two modes. One mode is called local BASIC.
In local BASIC mode, the terminal user is in control of the GIGI BASIC system;
it will take commands and programs from the user, and program input and out­
put default to the keyboard and display. The other mode is host BASIC. In host
BASIC mode, the host computer is in control of the GIGI BASIC system; com­
mands and programs come from the host computer, and all input and output
default to the host computer.

Most likely the terminal user will want to be in local BASIC mode. Host BASIC
mode is normally used only when a host program needs to operate or control the
GIGI BASIC system.

STARTING GIGI BASIC

GIG I BASIC can be started either by entering SET-UP mode from the keyboard
or by transmission of one of the appropriate control sequences from the host
computer.

From SET-UP
Press the SET-UP key to enter SET-UP mode on the terminal (consult the GIGI/
ReGIS Handbook,,if needed). Then type BAI to enter local BASIC mode, or
BA2 to enter host BASIC mode. Pressing SET-UP again will leave SET-UP
mode and start GIGI BASIC.

From a host program
The SET-UP mode DCS sequence can be sent from the host to directly specify
BAI (for local BASIC) or BA2 (for host BASIC). The Set Mode ANSI control
sequence can also be used to select either local or host BASIC; they have the
additional effect of terminating any running BASI C program, whereas the other
methods will resume a program that may have been running before. (See the
GIGIIReGIS Handbook for more information on control sequences.)

GIGI BASIC can be suspended and GIGI returned to normal terminal opera­
tion, either by setting SET-UP BAO (from either SET-UP mode or the host), or
by sending either Reset Mode ANSI sequence corresponding to the Set Mode
sequences.

1-1

General Information About GIGI

MODES OF OPERATION

When GIGI BASIC is initialized, it types the prompt "Ok.""Ok" means GIGI
BASIC is at command level, that is, it is ready to accept commands. At this point,
GIGI BASIC may be used in either of two modes: the direct mode or the indirect
mode.

In the direct mode, BASIC statements and commands are not preceded by line
numbers. They are executed as they are entered. Results of arithmetic and logical
operations may be displayed immediately and stored for later use, but the instruc­
tions themselves are lost after execution. This mode is useful for debugging and
for using BASIC as a calculator for quick computations that do not require a
complete program.

The indirect mode is the mode used for entering programs. Program lines are
preceded by line numbers and are stored in memory. The program stored in mem­
ory is executed by entering the RUN command.

LINE FORMAT

Program lines in a BASIC program have the following format (square brackets
indicate optional):

nnnnn BASIC statement[:BASIC statement ... 1 carriage return

At the programmer's option, more than one BASIC statement may be placed on
a line, but each statement on a line must be separated from the last by a colon.

A BASIC program line always begins with a line number, ends with a carriage
return, and may contain a maximum of 255 characters.

Line Numbers

Every BASIC program line begins with a line number. Line numbers indicate the
order in which the program lines are stored in memory and are also used as refer­
ences when branching and editing. Line numbers must be in the range 0 to 65529.
A period C.) may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

CHARACTER SET

The GIGI BASIC character set is comprised of alphabetic characters, numeric
characters and special characters.

The alphabetic characters in GIGI BASIC are the upper case and lower case let­
ters of the alphabet.

The numeric characters in GIGI BASIC are the digits 0 through 9.

1-2

General Information About GIGI

The following special characters and terminal keys are recognized by GIGI
BASIC:

Character

=
+

*
/

"

%

$

&
?
<
>
@

<ESC>
<TAB>

<LF>
<CR>

Name

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol

Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent

Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket

Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon

Ampersand
Question mark
Less than
Greater than
At-sign

Underscore
Deletes last character typed.
Escapes Edit Mode Insert command.
Moves print position to next tab stop. Tab stops are
every eight columns.
Moves to next physical line.
Terminates input of a line.

Control Characters

The following control characters are in GIGI BASIC:

< CTRL> C Interrupts program execution and returns to GIGI
BASIC command level.

< CTRL> G Rings the bell at the terminal.

< CTRL> a Halts program output while execution continues. A
second < CTRL > a restarts output.

< CTRL> R Retypes the line that is currently being typed.

< CTRL> U Deletes the line that is currently being typed.

1-3

General Information About GIGI

CONSTANTS

Constants are the actual values BASIC uses during execution. There are two
types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters enclosed in
double quotation marks.

Examples of string constants:

" HELLO"
" $25,000.00"
" Number of Employees"

Numeric constants are positive or negative numbers . Numeric constants in
BASIC cannot contain commas. There are five types of numeric constants:

Integer Constants: Whole numbers between - 32768 and + 32767. Integer
constants do not have decimal points.

Fixed Point Constants: Positive or negative real numbers, i.e., numbers that
contain decimal points.

Floating Point Constants: Positive or negative numbers represented in expo­
nential form (similar to scientific notation). A floating point constant consists of
an optionally signed integer or fixed point number (the mantissa) followed by the
letter E and an optionally signed integer (the exponent). The allowable range for
floating point constants is 10 - 38 to 10 + 38.
Examples:

235.988E - 7 = .0000235988
2359E6 = 2359000000

Hex Constants: Hexadecimal numbers with the prefix &H.

Examples:

&H76
&H32F

Octal constants: Octal numbers with the prefix &0 or &.

Examples:

&0347
&1234

Although there are five forms of external constants , all internal numeric values in
GIG I BASIC are floating point constants with 24 bits of precision.

1-4

General Information About GIGI

VARIABLES

Variables are names used to represent values that are used in a BASIC program.

The value of a variable may be assigned explicitly by the programmer, or it may be
assigned as the result of calculations in the program. Before a variable is assigned
a value, its value is assumed to be zero.

Variable Names and Declaration Characters

GIGI BASIC variable names may be any length, however, only the first two char­
acters are significant. The characters allowed in a variable name are letters and
numbers. The first character must be a letter.

A variable name may not be a reserved word. A reserved word may not be
embedded in a variable name. If a variable begins with FN, it is assumed to be a
call to a user-defined function. Reserved words include all GIGI BASIC com­
mands, statements, function names and operator names.

Variables may represent either a numeric value or a string. String variable names
are written with a dollar sign ($) as the last character. For example: A$ =
"SALES REPORT". The dollar sign is a variable type declaration character, that
is, it declares that the variable will represent a string.

Examples of GIGI BASIC variable names:

N $ declares a string value
ABC represents a single precision value

Array Variables

An array is a group or table of values referenced by the same variable name. Each
element in an array is referenced by an array variable that is subscripted with
integers or integer expressions. An array variable name has as many sUbscripts as
there are dimensions in the array.

For example, V(10) would reference a value in a one-dimensional array, T(1,4)
would reference a value in a two-dimensional array, and so on. The maximum
number of dimensions for an array is 255. The maximum number of elements per
dimension is 32767.

EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may
combine constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators
provided by GIGI BASIC may be divided into four categories:

• Arithmetic
• Relational
• Logical
• Functional

1-5

General Information About GIGI

Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator

"

*,/

+,-

Operation

Exponentiation

Negation

Multiplication, Floating
Point Division

Addition, Subtraction

Sample
Expression

X"Y

-X
X * y
X/V

X+Y

To change the order in which the operations are performed, use parentheses.
Operations within parentheses are performed first. Inside parentheses, the usual
order of operations is maintained.

Here are some sample algebraic expressions and their BASIC counterparts.

Algebraic BASIC Expression
Expression

X+2Y X+Y*2

X-~ X- Y/Z
Z

(X

X

Xl-V)

X*y/z

(X+ y)/z

(X"2)"Y

X" (Y"Z)

X * (- Y) Two consecutive operators must
be separated by parentheses.

Overflow and Division by Zero
If, during the evaluation of an expression, a division by zero is encountered, the
"? / 0" error message is displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution continues. If the evaluation
of an exponentiation results in zero being raised to a negative power, the "? / 0"
error message is displayed, positive machine infinity is supplied as the result of
the exponentiation, and execution continues .

If overflow occurs, the "?OV" error message is displayed, machine infinity with
the algebraically correct sign is supplied as the result, and execution continues.

1-6

General Information About GIGI

Relational Operators

Relational operators are used to compare two values. The result of the compari­
son is either true (-1) or false (O).This result may then used to make a decision
regarding program flow. (See IF, Chapter 2.)

Operator Relation Tested Expression

Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X< =y

>= Greater than or equal to X> =y

(The equal sign is also used to assign a value to a variable. See LET, Chapter 2.)

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed first. For example, the expression

X + Y < (T - 1)/Z

is true if the value of X plus Y is less than the value of T - 1 divided by Z. More
examples:

IF SIN(X) < a GOTO 1000
IF I MOD J < > a THEN K = K + 1

1-7

General Information About GIGI

Logical Operators

Logical operators perform tests on mUltiple relations, bit manipulation, or
Boolean operations. The logical operator returns a bitwise result which is either
true (not zero) or false (zero).

In an expression, logical operations are performed after arithmetic and relational
operations. The outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of precedence.

NOT
X NOTX
1 0
0 1

AND
X Y XANDY
1 1 1
1 0 0
0 1 0
0 0 0

OR
X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0

XOR
X Y XXORY
1 1 0
1 0 1
0 1 1
0 0 0

IMP
X Y XIMPY
1 1 1
1 0 0
0 1 1
0 0 1

EOV
X Y XEOVY
1 1 1
1 0 0
0 1 0
0 0 1

1·8

General Information About GIGI

Just as the relational operators can be used. to make decisions regarding program
flow, logical operators can connect two or more relations and return a true or
false value to be used in a decision (see IF, Chapter 2). For example:

IF D< 200 AND F<4 THEN 80
IF I> 10 OR K < 0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to sixteen bit, signed, two's
complement integers in the range - 32768 to + 32767. (If the operands are not in
this range, an error results.) If both operands are supplied as 0 or - 1, logical
operators return 0 or - 1. The given operation is performed on these integers in
bitwise fashion, i.e., each bit of the result is determined by the corresponding bits
in the two operands.

Thus, it is possible to use logical operators to test bytes for a particular bit pat­
tern. For instance, the AND operator may be used to mask all but one of the bits
of a status byte at a machine 110 port. The OR operator may be used to merge
two bytes to create a particular binary value. The following examples will help
demonstrate how the logical operators work.

63 AND 16= 16 63 = binary 111111 and 16 = binary 10000,
s063AND16=16

15 AND 14 = 14 15 = binary 1111 and 14 = binary 1110, so 15
AND 14 = 14 (binary 1110)

- 1 AND 8 = 8 - 1 = binary 1111111111111111 and 8 =
binary 1000, so - 1 AND 8 = 8

4 OR 2 = 6 4 = binary 100 and 2 = binary 10, so 4 OR 2 =
6 (binary 110)

100R 10=10 10 = binary 1010,so 10100R 1010 = 1010
(10)

- 1 OR - 2 = - 1 - 1 = binary 1111111111111111 and - 2 =
binary 1111111111111110, so - 1 OR - 2 =
- 1 . The bit complement of sixteen zeros is
sixteen ones, which is the two 's complement
representation of - 1 .

NOT X = - (X + 1) The two's complement of any integer is the bit
complement plus one.

Functional Operators

A function is used in an expression to call a predetermined operation that is to be
performed on an operand. GIGI BASIC has intrinsic functions that reside in the
system, such as SQR (square root) or SIN (sine). All of GIGI BASIC's intrinsic
functions are described in Chapter 3.

GIGI BASIC also allows user-defined functions that are written by the
programmer.

See DEF FN, Chapter 2.

1-9

General Information About GIG I

String Operations

Strings may be concatenated using +. For example:

10 A$ =" FilE" B$ =" NAME"
20 PRINT A$ + B$
30 PRINT "NEW " + A$ + B$
RUN
FilENAME
NEW FilENAME

Strings may be compared using the same relational operators that are used with
numbers:

<> <> <= >=

String comparisons are made by taking one character at a time from each string
and comparing the ASCII codes. If all the ASCII codes are the same, the strings
are equal. If the ASCII codes differ, the lower code number precedes the higher.
If, during string comparison, the end of one string is reached, the shorter string is
said to be smaller. Leading and trailing blanks are significant. Examples:

"AA" < "AB"
"FllENAME" = " FilENAME"
"X&" > "X#"
"Cl" > "Cl"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$ 8/12/78"

Thus, string comparisons can be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be enclosed in
quotation marks.

INPUT EDITING

If an incorrect character is entered as a line is being typed, it can be deleted with
the DELETE key. The DELETE key has the effect of backspacing over a charac­
ter and erasing it. Once a character(s) has been deleted, simply continue typing
the line as desired.

To delete a line that is in the process of being typed, type < CTRL > U. A carriage
return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory, simply retype
the line using the same line number. GIGI BASIC will automatically replace the
old line with the new line.

See EDIT, Chapter 2.

To delete the entire program that is currently residing in memory, enter the NEW
command. (See Chapter 2.)NEW is usually used to clear memory prior to enter­
ing a new program.

1-10

General Information About GIGI

ERROR MESSAGES

If GIGI BASIC detects an error that causes program execution to terminate, an
error code is printed. For a complete list of GIGI BASIC error codes and their
meanings, see Appendix A.

GRAPHICS CONTROL

GIGI BASIC causes the terminal to leave graphics mode and return to normal
text terminal operation when any of the following occur:

• a BASIC program terminates due to an END or STOP statement.
• an error message is displayed .
• a < CTRL > C stop is detected .
• the "Ok" message is displayed.

This prevents error messages from being lost if they are issued while the terminal
is in graphics mode. It also means that it is not necessary to turn off graphics
mode at the end of a graphics program, although it would be a poor program­
ming practice to rely on this since other programming systems do not automati­
cally turn off graphics.

GIGI BASIC provides built-in control strings to allow the BASIC program to
enter and exit graphics mode. See the GON$ and GOFF$ functions in Chapter 3.

1-11

2 -GIGI BASIC COMMANDS
AND STATEMENTS

All of the GIGI BASIC commands and statements are described in this chapter.
Each description is formatted as follows:

Format: Shows the correct format for the instruction. See below for format notation.

Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction is used.

Example: Shows sample programs or program segments that demonstrate the use of the
instruction.

Format Notation
Wherever the format for a statement or command is given, the following rules
apply:

• Items in capital letters must be input as shown .
• Items in lower case italic letters are to be supplied by the user.
• Items in square brackets ([]) are optional.
• All punctuation except square brackets (i.e., commas, parentheses, semicolons,

hyphens, equal signs) must be included where shown.
• Items followed by an ellipsis (...) may be repeated any number of times (up to

the length of the line).

2- 1

GIGI BASIC Commands and Statements

AUTO

Format: AUTO [line number[,increment]]

Purpose: To generate a line number automatically after every carriage return.

Remarks: AUTO begins numbering at line number and increments each subsequent line
number by increment. The default for both values is 10. If line number is fol­
lowed by a comma but increment is not specified, the last increment specified in
an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed
after the number to warn the user that any input will replace the existing line.
However, typing a carriage return immediately after the asterisk will save the line
and generate the next line number.

AUTO is terminated by typing < CTRL > C. The line in which < CTRL > C is
typed is not saved. After <CTRL>C is typed, BASIC returns to command
level.

Example: AUTO 100,50 Generates line numbers 100, 150,200 .. .
AUTO Generates line numbers 10,20,30,40 .. .
Note: This statement is named SEQUENCE or SEQ in DEC BASIC.

CLEAR

Format: CLEAR [" expression]

Purpose: To set all numeric variables to zero and all string variables to null; and, optionally,
to set the amount of stack space.

Remarks: expression sets aside stack space for BASIC. The default is 256 bytes or one­
eighth of the available memory, whichever is smaller.

Examples: CLEAR
CLEAR ,,2000
Note: This statement has an effect similar to the DEC BASIC SCRATCH
statement.

CONT

Format: CO NT

Purpose: To continue program execution after a < CTRL > C has been typed, or a STOP
or END statement has been executed.

Remarks: Execution resumes at the point where the break occurred. If the break occurred
after a prompt from an INPUT statement, execution continues with the reprint­
ing of the prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debugging. When execution
is stopped, intermediate values may be examined and changed using direct mode
statements. Execution may be resumed with CO NT or a direct mode GOTO,
which resumes execution at a specified line number.

CONT is invalid if the program has been edited during the break.

Example: See example of STOP command.

2-2

Format:

Purpose:

GIGI BASIC Commands and Statements

<CTRL>C <CTRL>O <RCTRL>C <RCTRL>O

[R]CTRLchar
where char is either C or 0

< CTRL > C and < CTRL > 0 disable the checking for < CTRL > C and
< CTRL > 0, respectively, for the running program. < RCTRL > C and
< RCTRL > 0 re-enable the checking for < CTRL > C and < CTRL > 0,
respectively.

When checking for a character is disabled, that character may be read as data.
When GIG I BASIC is first accessed, or whenever a NEW command is given,
checking for both < CTRL> C and < CTRL> 0 is enabled.

Checking for these control characters can be re-established individually by the
use of the < RCTRL > C and < RCTRL > 0 commands.

Remarks: If both < CTRL > C and < CTRL > 0 are in effect, it is possible to type-ahead
well over 200 characters of input to the program; but if the checking for either is
in effect, only the most recent typed-ahead character is retained for input to the
program.

When < CTRL > C is in effect, the running program cannot be stopped by the
< CTRL > C combination (unless the program itself is checking for it). In every
case, however, the SHIFT-RESET combination will stop the GIG I BASIC
program.

Note: These are functions in DEC BASIC.

DATA

Format: DATA list of constants

Purpose: To store the numeric and string constants that are accessed by the program's
READ statement(s). (See READ, below.)

Remarks: DATA statements are nonexecutable and may be placed anywhere in the pro­
gram. A DATA statement may contain as many constants as will fit on a line
(separated by commas), and any number of DATA statements may be lJsed in a
program. The READ statements access the DATA statements in order (by line
number) and the data contained therein may be thought of as one continuous list
of items, regardless of how many items are on a line or where the lines are placed
in the program.

list of constants may contain numeric constants in any format, i.e., fixed point,
floating point or integer. (No numeric expressions are allowed in the list.) String
constants in DATA statements must be surrounded by double quotation marks
only if they contain commas, colons or significant leading or trailing spaces. Oth­
erwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must agree
with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the RESTORE
statement (see RESTORE, below).

Example: See examples of READ command.

2-3

GIGI BASIC Commands and St at ements

DEFFN

Format: DEF FNname[(parameter)] = function definition

Purpose: To define and name a function that is written by the user.

Remarks: name must be a legal variable name. This name, preceded by FN, becomes the
name of the function. parameter is the variable name in the function definition
that is to be replaced when the function is called. function definition is an expres­
sion that performs the operation of the function. It is limited to one line. The
parameter name that appears in this expression serves only to define the function;
it does not affect a program variable having the same name. A variable name used
in a function definition mayor may not appear as the parameter. If it does, the
value of the parameter is supplied when the function is called. Otherwise, the
current value of the variable is used.

Example:

User-defined string functions are not allowed.

A DEF FN statement must be executed before the function it defines may be
called. If a function is called before it has been defined, an UNDEFINED USER
FUNCTION error occurs . DEF FN is illegal in the direct mode.

410 DEF FNAB(X) = X" 3/A" 2
420 T = FNAB(I)

Line 410 defines the function FNAB. The function is called in line 420.

DELETE

Format: DELETE [line number] [- line number]

Purpose: To delete program lines.

Remarks: GIGI BASIC always returns to command level after a DELETE is executed. If
line number does not exist, an ILLEGAL FUNCTION CALL error occurs .

Examples: DELETE 40

DELETE 40 - 100

DELETE -40

2-4

Deletes line 40

Deletes lines 40 through 100, inclusive

Deletes al l lines up to and including line 40

GIGI BASIC Commands and Statements

DIM

Format: DIM list of subscripted variables

Purpose: To specify the maximum values for array variable subscripts and allocate storage
accordingly.

Remarks: If an array variable name is used without a DIM statement, the maximum value
of its subscript(s) is assumed to be 10. If a subscript is used that is greater than the
maximum specified, a SUBSCRIPT OUT OF RANGE error occurs. The mini­
mum value for a subscript is always 0, unless otherwise specified with the
OPTION BASE statement (see below.)

Example:

Format:

Purpose:

The DIM statement sets all the elements of the specified arrays to an initial value
of zero.

10
20
30
40

DIM A(20)
FOR I =OTO 20
READ A(I)
NEXT I

ECHO/NOECHO

[NO]ECHO [#n]where n is a channel number (see INPUT statement)

NOECHO disables echoing of input to the implied or expressed data channel.

ECHO enables echoing of input to the specified or implied channel.

Remarks: If the channel number is not specified, it defaults to ° (zero) - which is the
interpreter input channel and likewise the default for the INPUT and LINPUT
commands.

Normally, input from channels not connected to the host is immediately echoed,
or sent back, as output over that same channel. This allows a typist supplying
input to be able to see what is being typed. When echo is disabled for a channel,
the characters sent to that channel are not immediately displayed to that channel,
and a typist would get no feedback in that case.

Echoing can be harmful when done to a non-human sender, such as the host, if
that sender is not expecting it (which is usually the case). That is why input
received from the host is never echoed back to the host by GIGI (there is no way
to turn on such echo). For the same reason, when transmitting to the host from a
GIGI BASIC program, it is often desirable to turn off echoing by the host. Such a
function depends on the host being used, however, and cannot be covered in this
manual.

It is sometimes necessary to turn off echo to the terminal if it is desired to read the
keyboard or a ReGIS report while the terminal is in graphics mode (see the GON$
and GOFF$ functions). The echoing of input in such cases may be misinterpreted
as commands by the ReGIS processor, and they wouldn't be readable by the
terminal user, anyway.

For information on channel numbers, see also the INPUT statement.

2-5

GIGI BASIC Commands and Statements

EDIT

Format: EDIT line number

Purpose: To enter Edit Mode at the specified line.

Remarks: In Edit Mode, it is possible to edit portions of a line without retyping the entire
line. Upon entering Edit Mode, GIGI BASIC types the line number of the line to
be edited, then it types a space and waits for an Edit Mode subcommand.

Edit Mode Subcommands
Edit Mode subcommands are used to move the cursor or to insert, delete, or
replace text within a line. The subcommands are not echoed.

Edit Mode subcommands may be categorized according to the following
functions:

• Moving the cursor
• Inserting text
• Deleting text
• Ending and restarting Edit Mode

Note: In the descriptions that follow, ch represents any character, text represents
a string of characters of arbitrary length, and $ represents the Escape key.

M oving the Cursor
Space: Use the space bar to move the cursor to the right. Characters are printed
as you space over them.

BackSpace in Edit Mode: BackSpace moves the cursor i spaces to the left.
Characters are printed as you backspace over them.

Inserting Text
I: I text$ inserts text at the current cursor position. The inserted characters are
printed on the terminal. To terminate insertion, type Escape. If Carriage Return
is typed during an Insert command, the effect is the same as typing Escape and
then Carriage Return. During an Insert command, the Delete key on the terminal
may be used to delete characters to the left of the cursor. If an attempt is made to
insert a character that will make the line longer than 255 characters, a bell
(< CTRL > G) is typed and the character is not printed.

Deleting Text
Delete: The Delete key deletes i characters to the left of the cursor. The deleted
characters disappear from the screen, and the cursor is positioned to the left of
the last character deleted.

Ending and Restarting Edit Mode
< CR >: Typing Carriage Return prints the remainder of the line, saves the
changes you made and exits Edit Mode.

< CTRL > C: The <CTRL > C subcommand returns to GIGI BASIC com­
mand level, without saving any of the changes that were made to the line during
Edit Mode.

L: The L subcommand lists the remainder of the line (saving any changes made so
far) and repositions the cursor at the beginning of the line, still in Edit Mode. Lis
usually used to list the line when you first enter Edit Mode.

Note: If GIGI BASIC receives an unrecognizable command or illegal character
while in Edit Mode, it prints a bell (< CTRL > G) and the command or character
is ignored.

2-6

GIGI BASIC Commands and Statements

END

Format: END

Purpose: To terminate program execution and return to command level.

Remarks: END statements may be placed anywhere in the program to terminate execution.
Unlike the STOP statement, END does not cause a BREAK message to be
printed. An END statement at the end of a program is optional. GIGI BASIC
always returns to command level after an END is executed.

Example: 520 IF K> 1000 THEN END ELSE GOTO 20

Note: An END may occur only as the last statement on the highest numbered
line in a program under DEC BASIC.

ERASE

Format: ERASE list of array variables

Purpose: To eliminate arrays from a program.

Remarks: Arrays may be redimensioned after they are ERASEd, or the previously alloca­
ted array space in memory may be used for other purpose.lf an attempt is made
to redimension an array without first ERASEing it, a REDIMENSIONED
ARRAY error occurs.

Example:

450 ERASE A,B
460 DIM B(99)

ERR AND ERL VARIABLES

When an error handling subroutine is entered, the variable ERR contains the
error code for the variable and the variable ERL contains the line number of the
line in which the error was detected. The ERR and ERL variables are usually used
in IF .. . THEN statements to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode statement, ERL will
contain 65535. To test if an error occurred in a direct statement, use

IF 65535 = ERL THEN

Otherwise, use

IF ERR = error code THEN
IF ERL = line number THEN .. .

Because ERL and ERR are reserved variables, neither may appear to the left of
the equal sign in a LET (assignment) statement. GIGI BASIC's error codes are
listed in Appendix A.

2-7

GIGI BASIC Commands and St atements

ERROR

Format: ERROR integer expression

Purpose: 1) To simulate the occurrence of a GIGI BASIC error; or 2) to allow error codes to
be defined by the user.

Remarks: The value of integer expression must be greater than 0 and less than 255. If the
value of integer expression equals an error code already in use by GIGI BASIC
(see Appendix A), the ERROR statement will simulate the occurrence of that
error, and the corresponding error message will be printed. (See Example 1.)

To define your own error code, use a value that is greater than any used by GIGI
BASIC I S error codes. (It is preferable to use the highest available values.) This
user-defined error code may then be conveniently handled in an error trap rou­
tine. (See Example 2.)

If an ERROR statement specifies a code for which no error message has been
defined, GIGI BASIC responds with the message ?UE ERROR. Execution of an
ERROR statement for which there is no error trap routine causes an error mes­
sage to be printed and execution to halt.

Example 1: LIST

Example 2:

10 S=10
20 T = 5
30 ERROR S + T
40 END
Ok
RUN
?LS Error in line 30

Or, in direct mode:

Ok ERROR 15
?LS Error
Ok

(you type this line)
(GIG I BASIC types this line)

110 ON ERROR GOTO 400
120 INPUT WHAT IS YOUR BET;B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT" HOUSE LIMIT IS $ 5000"
410 IF ERL = 130 THEN RESUME 120

2-8

GIGI BASIC Commands and Statements

FOR ... NEXT

Format: FOR variable = x TO y [STEP zJ

NEXT [variableJ[, variable . .. J

where x, y and z are numeric expressions.

Purpose: To allow a series of instructions to be performed in a loop a given number of
times.

Remarks: variable is used as a counter. The first numeric expression (x) is the initial value of
the counter. The second numeric expression (y) is the final value of the counter.
The program lines following the FOR statement are executed until the NEXT
statement is encountered. Then the counter is incremented by the amount speci­
fied by STEP. A check is performed to see if the value of the counter is now
greater than the final value (y). If it is not greater, GIG I BASIC branches back to
the statement after the FOR statement and the process is repeated. If it is greater,
execution continues with the statement following the NEXT statement. This is a
FOR ... NEXT loop. If STEP is not specified, the increment is assumed to be
one. If STEP is negative, the final value of the counter is set to be less than the
initial value. The counter is decremented each time through the loop, and the
loop is executed until the counter is less than the final value.

The body of the loop is skipped if the initial value of the loop times the sign of the
step exceeds the final value times the sign of the step.

Nested Loops
FOR ... NEXT loops may be nested, that is, a FOR ... NEXT loop may be
placed within the context of another FOR . .. NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The NEXT
statement for the inside loop must appear before that for the outside loop .

If nested loops have the same end point, a single NEXT statement may be used
for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the NEXT
statement will match the most recent FOR statement. If a NEXT statement is
encountered before its corresponding FOR statement, a ?NF error message is
issued and execution is terminated.

Example 1: 1 0
20
30
40
50
60
RUN

1
3
5
7
9

Ok

2-9

K=10
FOR 1= 1 TO K STEP 2
PRINTI;
K=K+10
PRINT K
NEXT

20
30
40
50
60

GIGI BASIC Commands and Statements

Example 2: 10
20
30
40

J=O
FOR 1=1 TO J
PRINTI
NEXTI

Example 3:

Format:

In this example, the loop does not execute because the initial value of the loop
exceeds the final value.

10 1=5
20 FOR 1= 1 TO 1+ 5
30 PRINT I;
40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes ten times. The final value for the loop variable
is always set before the initial value is set.

GOSUB . .. RETURN

GOSUB line number

RETURN

Purpose: To branch to and return from a subroutine.

Remarks: line number is the first line of the subroutine. A subroutine may be called any
number of times in a program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is limited only by available
memory.

The RETURN statement(s) in a subroutine cause GIGI BASIC to branch back to
the statement following the most recent GOSUB statement. A subroutine may
contain more than one RETURN statement, should logic dictate a return at dif­
ferent points in the subroutine. Subroutines may appear anywhere in the pro­
gram, but it is recommended that the subroutine be readily distinguishable from
the main program. To prevent inadvertant entry into the subroutine, it may be
preceded by a STOp, END, or GOTO statement that directs program control
around the subroutine.

Example: 10 GOSUB 40
20 PRINT" BACK FROM SUBROUTINE"
30 END
40 PRINT" SUBROUTINE";
50 PRINT" IN";
60 PRINT" PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

2- 10

GIGI BASIC Commands and Statements

GOTO

Format: GOTO line number

Purpose: To branch unconditionally out of the normal program sequence to a specified line
number.

Remarks: If line number is an executable statement, that statement and those following are
executed . If it is a nonexecutable statement, execution proceeds at the first
executable statement encountered after line numbe/:

Example:

Format:

Purpose:

LIST
10
20
30
40
50
60
Ok
RUN
R
R

READ R
PRINT R =;R,
A = 3.14*Rt' 2
PRINT AREA =;A
GOTO 10
DATA 5,7,12

5

R 12

AREA
AREA
AREA

?OD Error in 10
Ok

HOST

HOST

78.5
153.86
452.16

To terminate interaction with GIGI BASIC and restore interaction with the host
computer.

Remarks: This command allows the user to return to communicating directly with the host
computer without having to change the BASIC set-up mode to BAO. It also trans­
mits the line REM HOST to the host computer.

2-11

GIGI BASIC Commands and Statements

IF . .. THEN[. .. ELSE] and IF . .. GOTO

Format 1: IF expression THEN statement(s) I line number

[ELSE statement(s) I line number]

Format 2: IF expression GOTO line number

[ELSE statement(s) I line number]

Purpose: To make a decision regarding program flow based on the result returned by an
expression.

Remarks: If the result of expression is not zero, the THEN or GOTO clause is executed.
THEN may be followed by either a line number for branching or one or more
statements to be executed. GOTO is always followed by a line number. If the
result of expression is zero, the THEN or GOTO clause is ignored and the ELSE
clause, if present, is executed. Execution continues with the next executable
statement.

Nesting of I F Statements
IF ... THEN ... ELSE statements may be nested. Nesting is limited only by the
length of the line. For example:

IF X > Y THEN PRINT" GREATER ELSE" IF Y > X
THEN PRINT" LESS THAN" ELSE PRINT" EQUAL"

is a legal statement. If the statement does not contain the same number of ELSE
and THEN clauses, each ELSE is matched with the closest unmatched THEN.
For example:

IFA=STHEN IF S=CTHEN PRINT" A = C"
ELSE PRINT" A < >C"

will not print A < > C when A < > B.

If an IF ... THEN statement is followed by a line number in the direct mode, an
"?UL" error results unless a statement with the specified line number had previ­
ously been entered in the indirect mode.

Note: When using IF to test equality for a value that is the result of a floating
point computation, remember that the internal representation of the value may
not be exact. Therefore, the test should be against the range over which the accu­
racy of the value may vary. For example, to test a computed variable A against the
value 1.0, use:

IF ASS (A - 1 .0) < 1 .OE - 6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less than
1.0E-6.

2- 1 2

GIGI BASIC Commands and Statements

Example 2: 100
110

IF(I < 20) * (I > 10) THEN DB = 1979 - 1 :GOTO 300
PRINT" OUT OF RANGE"

In this example, a test determines if I is greater than 10 and less than 20. If I is in
this range, DB is calculated and execution branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF IOFLAG THEN PRINT A$ ELSE PRINT #3, A$

This statement causes printed output to go either to the terminal or the line
printer, depending on the value of a variable (lOFLAG). If IOFLAG is zero,
output goes to the line printer, otherwise output goes to the terminal.

INPUT

Format: INPUT [#N ,] [;] ["prompt string";] list of variables
where N is a channel number

Purpose: To allow input from the terminal or specified channel during program execution.

Remarks: When an INPUT statement is encountered, program execution pauses and a
question mark is printed to indicate the program is waiting for data. If ''prompt
string" is included, the string is printed before the question mark. The required
data is then entered at the terminal or specified channel.

If INPUT is immediately fo llowed by a semicolon, then the carriage return typed
by the user to input data does not echo a carriage return/line feed sequence.

If echoing is turned off on the implied or specified channel by means of the
NOECHO statement; the prompt, if any, is issued, but none of the input charac­
ters is echoed.

The data that is entered is assigned to the variable(s) given in variable list. The
number of data items supplied must be the same as the number of variables in the
list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names (including
subscripted variables). The type of each data item that is input must agree with
the type specified by the variable name. (Strings input to an INPUT statement
need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items, or with the wrong type of
value (numeric instead of string, etc.) causes the message "?Redo from start" to
be printed. No assignment of input values is made until an acceptable response is
gIven.

INPUT is illegal in the direct mode.

2-13

GIGI BASIC Commands and Statements

1/0 Channels
INPUT normally receives data from the same 110 channel used by the interpreter
for receiving command and program lines. This is called channel 0 (zero), and is
connected to the keyboard when in "local BASIC mode" (SET-UP BA1) or to
the host communication line when in "host BASIC mode" (SET-UP BA2). The
channel number to use can be stated by "#N", where N is a channel number from
o (zero) to 3, after the word INPUT. Channel #1 is always the terminal; channel
#2 is always the host communication line; and channel #3 is always the auxiliary
(hardcopy Itablet) port.

Examples: 10 INPUT X
20 PRINT X" SQUARED IS" Xfl 2
30 END
RUN
? 5 (The 5 was typed in by the user
8 in response to the question mark.)

5 SQUARED IS 25
Ok

LIST
10
20
30
40
50
60
Ok
RUN

PI=3.14
INPUT" WHAT IS THE RADIUS";R
A= PI*Rfl 2
PRINT" THE AREA OF THE CIRCLE IS " ;A
PRINT
GOTO 20

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE is 171.946

WHAT IS THE RADIUS?

LET

Format: [LET] variable = expression

Purpose: To assign the value of an expression to a variable.

Remarks: Notice the word LET is optional, i.e., the equal sign is sufficient when assigning
an expression to a variable name.

Example: 11 0
120
130
140

LET D = 12
LET E= 121'1 2
LET F= 121'14
LET SUM = D + E + F

or

110 D=12
120 E=12f12
130 F = 121'14
140 SUM = D + E + F

2-14

GIGI BASIC Commands and Statements

LlNPUT

Format: LINPUT[#N ,] [;] [PROMPT STRING;]string variable
where N is a channel number (see INPUT statement).

Purpose: To input an entire line (up to 254 characters) to a string variable, without the use
of delimiters.

Remarks: The prompt string is a string literal that is printed at the terminal before input is
accepted.

A question mark is not printed unless it is part of the prompt string. All input
from the end of the prompt to the carriage return is assigned to string variable.

If LINPUT is immediately followed by a semicolon, then the carriage return
typed by the user to end the input line does not echo a carriage return/line feed
sequence at the terminal.

If the NOECHO statement has been issued for the specified or implied channel,
then none of the characters typed by the user is echoed.

A LINPUT may be escaped by typing < CTRL > C. GIGI BASIC will return to
command level and type Ok. Typing CONTresumes execution at the LINPUT.

Example: 20 LlNPUT CUSTOMER INFORMATION? ;C$
30 PRINT C$
60 LlNPUT #2, C$
70 PRINT C$
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

2-15

GIGI BASIC Commands and Stat ements

LIST

Format: LIST [#n,] [line number[- [line number]]]
where n is a channel number (see INPUT statement).

Purpose: To list all or part of the program currently in memory at the terminal.

Remarks: GIG I BASIC always returns to command level after a LIST is executed.

If line number is omitted, the program is listed beginning at the lowest line num­
ber. (Listing is terminated either by the end of the program or by typing
< CTRL > C.) If only line number is included, only the specified line is listed .

• If only the first number is specified, that line and all higher-numbered
lines are listed .

• If only the second number is specified, all lines from the beginning of the
program through that line are listed.

• If both numbers are specified, the entire range is listed.

Examples: LIST Lists the program currently in memory.

Lists line 500.

Format:

LIST 500

LIST 150 - Lists all lines from 150 to the end .

LIST - 1000 Lists all lines from the lowest number through
1000.

LIST 150 - 1000 Lists lines 150 through 1000, inclusive.

LIST #3 Lists the program currently in memory on the
hardcopy unit.

LIST #2,200 - Sends program lines from 200 through the end of
the program to the host (in general, if the host is
echoing input, a deadlock situation can result).

MIO$

MID$(string expJ ,n[,m]) = string exp2

where nand m are integer expressions and string expJ and string exp2 are string
expressions.

Purpose: To replace a portion of one string with another string.

Remarks: The characters in string expJ, beginning at position n, are replaced by the charac­
ters in string exp2. The optional m refers to the number of characters from string
exp2 that will be used in the replacement. If m is omitted, all of string exp2 is used.
However, regardless of whether m is omitted or included, the replacement of
characters never goes beyond the original length of string expJ.

Example: 10 A$ = " KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINTA$
RUN
KANSAS CITY, KS

MID$ may also be used as a function that returns a substring of a given string. See
Chapter 3.

Note: DEC BASIC allows MID$ only on the right hand side of an assignment.

2- 16

L

GIGI BASIC Commands and Statements

NEW

Format: NEW

Purpose: To delete the program currently in memory and clear all variables.

Remarks: NEW is entered at command level to clear memory before entering a new pro­
gram. GIGI BASIC always returns to command level after a NEW is executed.

OLD

Format: OLD string constant or expression

Purpose: To request a copy of a BASIC program from the host computer.

Remarks: The functioning of this command depends upon the program running at the host
computer. The string constant or expression specifies the file name of the GIGI
BASIC program.

See also the companion SAVE statement, for storing a GIGI BASIC program on
the host.

Note: The following describes the terminal-host interaction initiated by the OLD
command.

Upon receipt of the OLD command, a NEW command is simulated so that the
current program and variables are deleted, and then GIGI BASIC sends the line:

REM OLD character data

to the host, where character data is the evaluation of the argument of the OLD
command (without quotes). GIG I BASIC then enters a mode similar to normal
direct mode, but where it is reading input from the host rather than from the
terminal. It is then expected that the host will transmit program lines (lines start­
ing with line numbers) to GIGI. Upon receipt of the first line not starting with a
line number, it is executed as a direct mode command. When the execution of that
direct mode line is completed, GIGI BASIC returns normal command to the
terminal.

The OLD command is intended to be used only in LOCAL BASIC mode (BAl).
The host computer must not echo lines sent to it.

2- 17

GIGI BASIC Commands and Statements

ON ERROR GOTO

Format: ON ERROR GOTO line number

Purpose: To enable error trapping and specify the first line of the error handling
subroutine.

Remarks: Once error trapping has been enabled all errors detected, including direct mode
errors (e.g., Syntax errors), will cause a jump to the specified error handling
subroutine.

Example:

Format:

If line number does not exist, an UNDEFINED LINE error results. To disable
error trapping, execute an ON ERROR GOTO o. Subsequent errors will print an
error message and halt execution. An ON ERROR GOTO 0 statement that
appears in an error trapping subroutine causes GIG I BASIC to stop and print the
error message for the error that caused the trap. It is recommended that all error
trapping subroutines execute an ON ERROR GOTO 0 if an error is encountered
for which there is no recovery action.

Note: If an error occurs during execution of an error handling subroutine, the
BASIC error message is printed and execution terminates. Error trapping does
not occur within the error handling subroutine.

10 ON ERROR GOTO 1000

ON . .. GOSUB and ON . .. GOTO

ON expression GOTO list of line numbers

ON expression GOSUB list of line numbers

Purpose: To branch to one of several specified line numbers, depending on the value
returned when an expression is evaluated .

Remarks: The value of expression determines which line number in the list will be used for
branching. For example, if the value is three, the third line number in the list will
be the destination of the branch. (If the value is a non-integer, the fractional
portion is rounded.)

Example:

In the ON . . . GOSUB statement, each line number in the list must be the first
line number of a subroutine.

If the value of expression is zero or greater than the number of items in the list
(but less than or equal to 255), BASIC continues with the next executable state­
ment. If the value of expression is negative or greater than 255, an ?FC error
occurs .

100 ON L- 1 GOTO 150,300,320,390

2-18

Format:

GIGI BASIC Commands and Statements

OPTION BASE

OPTION BASE n
where n is 1 or 0

Purpose: To declare the minimum value for array subscripts.

Remarks: The default base is O. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

OUT

Format: OUT I,J
where I and J are integer expressions in the range 0 to 255.

Purpose: To send a byte to a machine output port.

Remarks: The integer expression I is the port number, and the integer expression J is the
data to be transmitted.

Example: 100 OUT 32,100

PRINT

Format: PRINT [#N,] [list of expressions]
where N is a channel number (see INPUT statement.)

Purpose: To output data at the terminal or specified channel.

Remarks: If list of expressions is omitted, a blank line is printed. If list of expressions is
included, the values of the expressions are printed at the terminal. The expres­
sions in the list may be numeric and/or string expressions. (Strings must be
enclosed in quotation marks.)

Print Positions
The position of each printed item is determined by the punctuation used to sepa­
rate the items in the list. GIGI BASIC divides the line into print zones of 14 spaces
each. In the list of expressions, a comma causes the next value to be printed at the
beginning of the next zone. A semicolon causes the next value to be printed imme­
diately after the last value.

Typing one or more spaces between expressions has the same effect as typing a
semicolon .

If a comma or a semicolon terminates the list of expressions, the next PRINT
statement begins printing on the same line, spacing accordingly. If the list of
expressions terminates without a comma or a semicolon, a carriage return is
printed at the end of the line. If the printed line is longer than the terminal width,
GIGI BASIC goes to the next physical line and continues printing.

2- 19

GIGI BASIC Commands and Statements

Printed numbers are always followed by a space. Positive numbers are preceded
by a space. Negative numbers are preceded by a minus sign. Numbers that can be
represented with 6 or fewer digits in the unsealed format no less accurately than
they can be represented in the scaled format, are output using the unsealed for­
mat. For example, 10"(- 6) is output as .000001 and 10"(-7) is output as
lE - 7. Also, 10"(-16) is output as .0000000000000001 and 10"(- 17) is output
as IE - 17.

A question mark may be used in place of the word PRINT in a PRINT statement.

Example 1: 1 0
20
30
RUN
10
Ok

X=5
PRINT X + 5, X - 5, X * (- 5), X" 5
END

o -25 3125

In this example, the commas in the PRINT statement cause each value to be
printed at the beginning of the next print zone.

Example 2: LIST

Example 3:

10 INPUTX
20 PRINT X SQUARED IS X" 2 AND;
30 PRINT X CUBED IS X" 3
40 PRINT
50 GOTO 10
Ok
RUN
79

9 SQUARED IS 81 AND 9 CUBED IS 729

7 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

7

In this example, the semicolon at the end of line 20 causes both PRINT state­
ments to be printed on the same line, and line 40 causes a blank line to be printed
before the next prompt.

10 FOR X = 1 TO 5
20 J=J+5
30 K=K+10
40 7J;K;
50 NEXTX
Ok
RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT statement cause each value to be
printed immediately after the preceding value. (Don't forget, a number is always
followed by a space and positive numbers are preceded by a space.) In line 40, a
question mark is used instead of the word PRINT.

2-20

GIGI BASIC Commands and Statements

RANDOMIZE

Format: RANDOMIZE [expression]

Purpose: To reseed the random number generator.

Remarks: If expression is omitted, GIGI BASIC uses an internally-generated 16-bit value,
incremented every 1I60th of a second, as the new random number generator
seed.

Example:

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is RUN. To change the
sequence of random numbers every time the program is RUN, place a RAN­
DOMIZE statement at the beginning of the program and change the argument
with each RUN.

10
20
30
40

RANDOM IZE
FOR 1=1 TO 5
PRINT RND;
NEXTI

RUN
.88598 .484668.586328.119426 .709225
Ok
RUN
.803506.162462.929364.292443 .322921
Ok

2-21

GIGI BASIC Commands and Statements

READ

Format: READ list of variables

Purpose: To read values from a DATA statement and assign them to variables. (See DATA,
above.)

Remarks: A READ statement must always be used in conjunction with a DATA statement.

Example 1:

READ statements assign variables to DATA statement values on a one-to-one
basis. READ statement variables may be numeric or string, and the values read
must agree with the variable types specified. If they do not agree, a SYNTAX
ERROR will result.

A single READ statement may access one or more DATA statements (they will be
accessed in order), or several READ statements may access the same DATA stat­
ment. If the number of variables in list of variables exceeds the number of ele­
ments in the DATA statement(s), an OUT OF DATA message is printed. If the
number of variables specified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements will begin reading data at the first
unread element. If there are no subsequent READ statements, the extra data is
ignored.

To reread DATA statements from the start, use the RESTORE statement (see
RESTORE, below.)

80 FOR 1= 1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3 .98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from the DATA statements into the
array A. After execution, the value of A(1) will be 3.08, and so on.

Example 2: LIST
10 PRINT" CITY" , "STATE" , " ZIP"
20 READ C$,S$,Z
30 DATA LITTLETON" COLORADO, 80123
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
LITTLETON, COLORADO 80123
Ok

This program READs string and numeric data from the DATA statement in
line 30.

2-22

GIGI BASIC Commands and Statements

REM

Format: REM remark

Purpose: To allow explanatory remarks to be inserted in a program.

Remarks: REM statements are not executed but are output exactly as entered when the
program is listed.

Example:

REM statements may be branched into (from a GOTO or GOSUB statement),
and execution will continue with the first executable statement after the REM
statement.

Remarks may be added to the end of a line by preceding the remark with a single
quotation mark instead of :REM.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1= 1 TO 20
140 SUM = SUM + V(I)

120
130
140

FOR 1=1 TO 20
SUM = SUM + V(I)
NEXT I

'CALCULATE AVERAGE VELOCITY

Note: DEC BASIC uses the exclamation point character in the same manner
GIGI BASIC uses the single quote (apostrophe).

RESTORE

Format: RESTORE [line number]

Purpose: To allow DATA statements to be reread from a specified point.

Remarks: After a RESTORE statement is executed, the next READ statement accesses the
first item in the first DATA statement in the program.

If line number is specified, the next READ statement accesses the first item in the
specified DATA statement.

Example: 10
20
30
40

2-23

READ A,B,C
RESTORE
READ D,E,F
DATA 57, 68, 79

Format:

GIGI BASIC Commands and Statements

RESUME

RESUME

RESUME 0

RESUME NEXT

RESUME line number

Purpose: To continue program execution after an error recovery procedure has been
performed.

Remarks: Anyone of the four formats shown above may be used, depending upon where
execution is to resume:

Example:

RESUME Execution resumes at the
or statement which caused the
RESUME a error.

RESUME NEXT

RESUME line number

Execution resumes at the statement immediately
fo llowing the one which caused the error.

Execution resumes at line number.

A RESUME statement that is not in an error trap routine causes a ?RW ERROR
message to be printed.

10 ON ERROR GOTO 900

900
IF (ERR = 230)AND(ERL = 90) THEN PRINT" TRY AGAIN" :RESUME 80

RUN

Format: RUN [line number]

Purpose: To execute the program currently in memory.

Remarks: If line number is specified, execution begins on that line. Otherwise, execution
begins at the lowest line number. GIGI BASIC always returns to command level
after a RUN is executed.

Example: RUN

2-2 4

GIG I BASIC Commands and Statements

SAVE

Format: SAVE string constant or expression

Purpose: To send a copy of the GIGI BASIC program to the host computer.

Remarks: The functioning of this command depends upon the program running at the host
computer. The string constant or expression specifies the file name of the GIGI
BASIC program.

See also the companion OLD statement.

Note: The following describes the terminal-host interaction initiated by the
SAVE command.

Upon receipt of the SAVE command, GIGI BASIC sends the line:

REM SAVE character data

to the host, where character data is the evaluation of the argument of the SAVE
command. GIGI BASIC then transmits the program in memory to the host, as if
a LIST 2 command were issued. The program list is then followed by the follow­
ing line:

REM END SAVE

also sent to the host. GIGI BASIC then enters a mode similar to normal direct
mode, but where it is reading input from the host rather than from the terminal.
Upon receipt of the first line not starting with a line number, it is executed as a
direct mode command (warning: lines starting with line numbers will be stored in
memory). That command can be a print statement which reports on the success
or failure of the SAVE operation. When the execution of that direct mode line is
completed, GIG I BASIC returns normal command to the terminal.

The SAVE command is intended to be used only in LOCAL BASIC mode (BAl).
The host computer must not echo lines sent to it.

2-25

GIGI BASIC Commands and Statements

STOP

Format: STOP

Purpose: To terminate program execution and return to command level.

Remarks: STOP statements may be used anywhere in a program to terminate execution.

Example:

When a STOP is encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not close files.

GIGI BASIC always returns to command level after a STOP is executed. Execu­
tion is resumed by issuing a CONT command (see above.)

10
20
30
40
RUN

INPUTA,B,C
K = A"·2 * 5.3:L= BII3/.26
STOP
M=C* K+ 100:PRINT M

? 1,2,3
BREAK IN 30
Ok
PRINT L
30.7692
Ok
CONT
115.9
Ok

SWAP

Format: SWAP variable, variable

Purpose: To exchange the values of two variables.

Remarks: Any type variable may be SWAPped (numeric or string), but the two variables
must be of the same type or a ?TM error results.

Example: LIST
10 A$=" ONE" :B$=" ALL" :C$="FOR"
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

2-26

Format:

GIGI BASIC Commands and Statements

TRON/TROFF

TRON

TROFF

Purpose: To trace the execution of program statements.

Remarks: As an aid in debugging, the TRON statement (executed in either the direct or
indirect mode) enables a trace flag that prints each line number of the program as
it is executed.

The numbers appear enclosed in square brackets. The trace flag is disabled with
the TROFF statement (or when a NEW command is executed) .

Example: TRON
Ok
LIST
10 K=10
20 FOR J = 1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+ 10
60 NEXT
70 END
Ok
RUN
[10][20][30][40)1 1020
[50][60][30][40) 2 2030
[50][60][70)
Ok
TROFF
Ok

WAIT

Format: WAIT port numbel; I[,J]
where I and J are integer expressions.

Purpose: To suspend program execution while monitoring the status of a machine input
port.

Remarks: The WAIT statement causes execution to be suspended until a specified machine
input port develops a specified bit pattern. The data read at the port is exclusive
OR'ed with the integer expression J, and then AND'ed with 1. If the result is zero,
GIG I BASIC loops back and reads the data at the port again. If the result is
nonzero, execution continues with the next statement. If J is omitted, it is
assumed to be zero.

Example:

CAUTION: It is possible to enter an infinite loop with the WAIT statement, in
which case a hard RESET will be necessary.

100 WAIT 32,2

Note: The WAIT statement in DEC BASIC is totally different from the GIG!
BASIC WAIT.

2-27

GIGI BASIC Commands and Statements

WHILE ... WEND

Format: WHILE expression

[loop statements]

WEND

Purpose: To execute a series of statements in a loop as long as a given condition is true.

Remarks: If expression is not zero (i.e., true), /oopstatements are executed until the WEND
statement is encountered. BASIC then returns to the WHILE statement and
checks expression. If it is still true, the process is repeated. If it is not true, execu­
tion resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the
most recent WHILE. An unmatched WHILE statement causes a ?WH error, and
an unmatched WEND statement causes a ?WE error.

Example: 90 BUBBLE SORT ARRAY A$

Format:

Purpose:

100
110
115
120
130

140

FLIPS = 1 'FORCE ONE PASS THRU LOOP
WHILE FLIPS

FLIPS = 0
FOR 1= 1 TO J - 1

IF A$(I»A$(1+1) THEN
SWAP A$(I),A$(I + 1):FLlPS = 1

NEXT I
150 WEND

Note: DEC BASIC uses NEXT instead of WEND.

WIDTH

WIDTH integer expression

To set the printed line width in number of characters for the terminal or printer.

integer expression must have a value in the range 15 to 255. The default width is
255 characters.

If integer expression is 255, the line width is infinite, that is, BASIC never inserts a
carriage return. However, the position of the cursor or the print head, as give n by
the POS function, returns to zero after position 255.

Example: 10 PRINT" ABCDEFGHIJKLMNOPORSTUVWXYZ"
RUN
ABCDEFGHIJKLMNOPORSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPOR
STUVWXYZ
Ok

Note: See MARGIN in DEC BASIC.

2-28

3 GIGI BASIC FUNCTIONS

The intrinsic functions provided by GIGI BASIC are presented in this chapter.
The functions may be called from any program without further definition.

Arguments to functions are always enclosed in parentheses. In the formats given
for the functions in this chapter, the arguments have been abbreviated as follows:

Xand Y Represent any numeric expressions

I and J Represent integer expressions

X$ and Y$ Represent string expressions

If a non-integer value is supplied where an integer is required, GIGI BASIC will
round the fractional portion and use the resulting integer.

ABS

Format: ABS(X)

Action: Returns the absolute value of the expression X.

Example: PRINT ABS(7 * (- 5))
35

Format:

Action:

Example:

Ok

Ase
ASqX$)

Returns a numerical value that is the ASCII code of the first character of the
string X$. (See Appendix C for ASCII codes.) If X$ is null, a ?FC error is
returned.

10
20
RUN
84
Ok

X$ = "TEST"
PRINTASC(X$)

See the CHR$ function for ASCII-to-string conversion.

Note: This function is named ASCII in DEC BASIC. A null value for X$ results
in 0 in DEC BASIC.

3-1

GIG I BASIC Functions

ATN

Format: ATN(X)

Action: Returns the arctangent of X in radians. Result is in the range - pi12 to pi/2. The
expression X must be numeric; the evaluation of ATN is performed with 24 bits
of precision.

Example: 10 INPUT X
20 PRINT ATN(X)
RUN
?3
1.24905
Ok

CHR$

Format: CHR$(I)

Action: Returns a string whose one element has ASCII code I. (ASCII codes are listed in
Appendix C.) CHR$ is commonly used to send a special character to the termi­
nal. For instance, the BEL character could be sent (CHR$(7)) as a preface to an
error message, or a form feed could be sent (CHR$(12)) to clear a CRT screen
and return the cursor to the home position.

Example: PRINT CHR$ (66)
B
Ok

See the ASC function for ASCII-to-numeric conversion.

cos

format: COS (X)

Action: Returns the cosine of X in radians. The evaluation of COS is performed with 24
bits of precision.

Example: 10 X = 2 *COS(.4)

Format:

Action:

20 PRINT X
RUN
1.84212
Ok

ESC$

ESC$

Returns a string of length one containing the ESCAPE character. This is the same
character as is generated by CHR$(27).

3-2

GIGI BASIC Functions

EXP

Format: EXP(X)

Action: Returns e to the power of X. X must be < = 87.3365. If EXP overflows, the ?OV
error message is displayed, machine infinity with the appropriate sign is supplied
as the result, and execution continues.

Example: 1 0 X = 5

Format:

Action:

20 PRINT EXP (X - 1)
RUN
54.5982
Ok

FRE

FRE(O)
FRE(X$)

Arguments to FRE are dummy arguments. FRE returns the number of bytes in
memory not being used by GIGI BASIC.

FRE("") forces a garbage collection before returning the number of free bytes.
BE PATIENT: garbage collection may take 1 to 1-1/2 minutes. BASIC will not
initiate garbage collection until all free memory has been used up. Therefore,
using FRE("") periodically will result in shorter delays for each garbage collec­
tion.

Example: PRINT FRE(O)
14542

Format:

Action:

Ok

GOFF$

GOFF$

Generates a string of length 2 that contains the graphics off sequence, an escape
sequence that causes GIGI to leave graphics mode. This sequence must be sent to
GIGI with a PRINT statement to take effect.

The graphics off sequence consists of the characters ESCAPE and " (backslash)
in that order. This is also called the ANSI STRING TERMINATOR (ST)
sequence; it can also be used to terminate the special strings used to change set-up
settings and program the programmable keypad.

To enter graphics mode, use the GON$ string in a PRINT statement to send the
special GRAPHICS ON control string to GIG!.

3-3

Format:

Action:

GIGI BASIC Functions

GON$

GON$

Returns the special GRAPHICS ON control string which, if sent to GIGI with a
PRINT statement, will put GIGI into graphics mode (i.e., direct the ReGIS inter­
preter to parse any following data as ReGIS command string).

This function generates the 3-character string consisting of the ESCAPE code
followed by Pp. When GIGI receives this code, it enters graphics mode and
remains in graphics mode until the GRAPHICS OFF sequence is received.

This form of graphics mode is known as DCS (DEVICE CONTROL string).
There is another graphics mode, called GRAPHICS PREFIX MODE, available
to the GIGI user. This mode does not use the GON$ or GOFF$ codes.

HEX$

Format: HEX$(X)

Action: Returns a string which represents the hexadecimal value of the decimal argument.
X is rounded to an integer before HEX$(X) is evaluated.

Example: 10 INPUT X
20 A$ = HEX$(X)
30 PRINT X" DECIMAL IS" A$ " HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion.

INP

Format: INP(I)

Action: Returns the byte read from port I. I must be in the range 0 to 255. INP is the
complementary function to the OUT statement, Chapter 2.

Example: 100A=INP(255)

3-4

Format:

Action:

Example:

Format:

Action:

Example:

GIGI BASIC Functions

INKEY$

INKEY$[#N] [W]

Returns a string of 1 character, read from the terminal or from channel number
N. No characters will be echoed and all control characters are passed through
except < CTRL > C, if < CTRL > C checking is enabled (See the < CTRL > C
statement) If the W is specified, the program halts until a character is available; if
the W is not specified, INKEY$ always returns immediately to the program,
either with the character, if available, or a null string.

100 PRINT" TYPE P TO PROCEED OR S TO STOP"
110 X$ = INKEY$W
120 IFX$ = PTHEN500
130 IF X$ = S THEN 700 ELSE 100

Note: This function is named ONECHR in DEC BASIC.

INSTR

INSTR([I,]X$, Y$)

Searches for the first occurrence of string Y$ in X$ and returns the position at
which the match is found. Optional offset I sets the position for starting the
search. I must be in the range 0 to 255.

Ifl> LEN(X$) or ifX$ is null or ifY$ cannot be found, INSTR returns O. IfY$ is
null, INSTR returns I or 1. X$ and Y$ may be string variables, string expressions
or string literals.

10
20
30
RUN
26
Ok

INT

X$ = "ABCDEB"
Y$ = "B"
PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)

Format: INT(X)

Action: Returns the largest integer < = X.

Examples: PRINT INT(99.89)
99
Ok

PRINT INT(- 12.11)
- 13
Ok

See the FIX and CINT functions which also return integer values.

3-5

Format:

Action:

GIGI BASIC Functions

LEFT$

LEFf$(X$,I)

Returns a string comprised of the leftmost I characters of X$. I must be in the
range ° to 255. If I is greater than LEN(X$), the entire string (X$) will be
returned. If I = 0, the null string (length zero) is returned.

Example: 10 A$ = "GIGI BASIC"
B$ = LEFT$(A$,4)
PRINT B$

Format:

Action:

20
30
GIGI
Ok

Also see the MID$ and RIGHT$ functions.

LEN

LEN(X$)

Returns the number of characters in X$. Non-printing characters and blanks are
counted.

Example: 10 X$ = " PORTLAND, OREGON"
PRINT LEN(X$) 20

16
Ok

LOG

Format: LOG(X)

Action: Returns the natural logarithm of X. X must be greater than zero.

Example: PRINT LOG(45!7)
1.86075
Ok

MID$

Format: MID$(X$,I[,JD

Action: Returns a string of length J characters from X$ beginning with the Ith character. I
and J must be in the range ° to 255. If J is omitted or if there are fewer than J
characters to the right of the Ith character, all rightmost characters beginning with
the Ith character are returned. If I> LEN(X$), MID$ returns a null string.

Example: LIST
10 A$="GOOD"
20 B$ =" MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9, 7)
Ok
RUN
GOOD EVEN ING
Ok

Also see the LEFf$ and RIGHT$ functions.

3-6

GIG I BASIC Functions

OCT$

Format: OCT$(X)

Action: Returns a string which represents the octal value of the decimal argument. X is
rounded to an integer before OCT$(X) is evaluated.

Example: PRINT OCT$(24)
30
Ok

See the HEX$ function for hexadecimal conversion.

POS

Format: POS(I)

Action: Returns the current cursor position. The leftmost position is 1. X is a dummy
argument.

Example: IF POS(X) > 60 THEN PRINT CHR$ (13)

Also see the LPOS function.

Note: This function is named CCPOS in DEC BASIC.

RIGHT$

Format: RIGHT$(X$,I)

Action: Returns the rightmost I characters of string X$. If I = LEN(X$), returns X$. If
1= 0, the null string (length zero) is returned.

Example: 10 A$ = "This is GIGI BASIC"

Format:

Action:

20 PRINT RIGHT$ (A$, 1 0)
RUN
GIGI BASIC
Ok

Also see the MID$ and LEFT$ functions.

RND

RND[(X)]

Returns a random number between 0 and 1. The same sequence of random num­
bers is generated each time the program is RUN unless the random number gener-
ator is reseeded (see RANDOMIZE, Chapter 2).

However, X < 0 always restarts the same sequence for any given X.

X> 0 or X omitted generates the next random number in the sequence X = 0
repeats the last number generated.

Example: 10 FOR I = 1 TO 5
20 PRINT INT(RND * 1 00);
30 NEXT
RUN
243031 51 5
Ok

3-7

GIGI BASIC Functions

SGN

Format: SGN(X)

Action: If X> 0, SGN(X) returns 1. If X = 0, SGN(X) returns 0. If X < 0, SGN(X)
returns -1.

Example: ON SGN(X) + 2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is ° and 300 if X is positive.

SIN

Format: SIN(X)

Action: Returns the sine of X in radians. The evaluation of SIN is performed with 24 bits
of precision. COS(X) = SIN(X + 3.14159/2).

Example: PRINT SIN(1.5)
.997495

Format:

Action:

Example:

Format:

Action:

Ok

SPACE$

SPACE$(X)

Returns a string of spaces of length X. The expression X is rounded to an integer
and must be in the range ° to 255.

10
20
30
40
RUN

Ok

1
2

FOR 1 = 1 TO 5
X$ = SPACE$(I)
PRINT X$;I
NEXT I

3
4

5

Also see the SPC function.

SPC

SPC(I)

Prints I blanks on the terminal. SPC may only be used with PRINT and LPRINT
statements. I must be in the range ° to 255.

Example: PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok

Also see the SPACE$ function.

Note: Refer to TAB and SPACE functions in DEC BASIC.

3-8

Format:

Action:

Example:

Format:

Action:

GIGI BASIC Functions

SQR

SQR(X)

Returns the square root of X. X must be > = o.
10
20
30
RUN

10
15
20
25

Ok

STR$

FOR X = 10 TO 25 STEP 5
PRINT X, SQR(X)
NEXT

3.16228
3.87298
4.47214
5

STR$(X)

Returns a string representation of the value of X.

Example: 5 REM ARITHMETIC FOR KIDS
INPUT "TYPE A NUMBER";N 10

20 ON LEN(STR$ (N)) GOSUB 30,100,200,300,400,500

Also see the VAL function.

STRING$

Formats: STRING$(I,J)

STRING$(I,X$)

Action: Returns a string of length I whose characters all have ASCII code J or the first
character of X$.

Example: 10 X$ = STRING$(10,45)
20 PRINT X$ MONTHLY REPORT X$
RUN
- - - - - - - - - - MONTHLY REPORT - - - - - - - - - -
Ok

3-9

Format:

Action:

GIGI BASIC Functions

TAB

TAB(I)

Spaces to position I on the terminal.If the current print position is already beyond
space I, TAB goes to that position on the next line.

Space 1 is the leftmost position, and the rightmost position is the width minus
one. I must be in the range 1 to 255.

TAB may only be used in PRINT statements.

Example: 10 PRINT" NAME" TAB(25) "AMOUNT" : PRINT

Format:

Action:

20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES"," $25.00"
RUN
NAME AMOUNT

G. T. JONES $25.00
Ok

TAN

TAN(X)

Returns the tangent of X in radians. The evaluation of TAN is performed with 24
bits of precision. If TAN overflows, the ?OVerror message is displayed, machine
infinity with the appropriate sign is supplied as the result, and execution con­
tinues.

Example: 10 Y = Q *TAN(X)/2

VAL

Format: VAL(X$)

Action: Returns the numerical value of string X$.If the first character of X$ is not +, - ,
&, or a digit, VAL(X$) = O.

Example: 10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$) < 90000 OR VAL(ZIP$» 96699 THEN PRINT
NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$) > = 90801 AND VAL(ZIP$) < = 90815 THEN PRINT
NAME$ TAB(25) "LONG BEACH"

See the STR$ function for numeric-to-string conversion.

3-10

APPENDIXA
Summary of Error Codes

Code N umber Meaning

NF 1 NEXT w ithout FOR
A variable in a NEXT statement does not correspond
to any previously executed, unmatched FOR
stat ement variable.

SN 2 Syntax error
A line is encountered that contains some incorrect
sequence of characters (such as unmatched
parenthesis, misspelled command or statement,
incorrect punctuation, etc.) .

RG 3 Return w ithout GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB statement.

00 4 Out of data
A READ statement is executed when there are no
DATA statements with unread data remaining in the
program.

FC 5 Illegal function call
A parameter that is out of range is passed to a math
or string function. An FC error may also occur as the
result of:

• a negative or unreasonably large subscript
• a negative or zero argument with LOG
• a negative argument to SQR
• a negative mantissa with a non-integer exponent
• a call to a USR function for which the starting

address has not yet been given
• an improper argument to MID$, LEFT$, RIGHT$,

INP, OUT, WAIT, TAB, SPC, STRING$, SPACES,
INSTR, or ON .. . GOTO ...

OV 6 Overflow
The result of a calculation is too large to be
represented in GIGI BASIC's number format . If
underflow occurs, the result is zero and execution
continues without an error.

OM 7 Out of memory
A program is too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that
are too complicated.

A- l

Appendices

Code Number Meaning

UL 8 Undefined line
A line reference in a GOTO, GOSUB, IF . .. THEN
... ELSE or DELETE is to a nonexistent line.

BS 9 Subscript out of range
An array element is referenced either with a
subscript that is outside the dimensions of the array,
or with the wrong number of subscripts.

DD 10 Redimensioned array
Two DIM statements are given for the same array, or
a DIM statement is given for an array after the
default dimension of 10 has been established for
that array.

10 11 Division by zero
A division by zero is encountered in an expression ,
or the operation of involution results in zero being
raised to a negative power. Machine infinity w ith the
sign of the numerator is supplied as the result of the
division, or positive machine infinity is supplied as
the result of the involution, and execution continues .

ID 12 Illegal direct
A statement that is illegal in direct mode is entered
as a direct mode command.

TM 13 Type mismatch
A string variable name is assigned a numeric value or
vice versa; a function that expects a numeric
argument is given a string argument or vice versa.

OS 14 Out of string space
String variables have caused BASIC to exceed the
amount of free memory remaining. BASIC will
allocate string space dynamically, until it runs out of
memory.

LS 15 String too long
An attempt is made to create a string more than 255
characters long.

ST 16 String formula too complex
A string expression is too long or too complex . The
expression should be broken into smaller
expressions.

CN 17 Can't continue
An attempt is made to continue a program that :

• has halted due to an error,
• has been modified during a break in execution , or
• does not exist.

A-2

Appendices

Code Number Meaning

UF 18 Undefined user function
A USR function is called before the function
definition (DEF statement) is given.

NR 19 No RESUME
An error trapping routine is entered but contains no
RESUME statement.

RW 20 RESUME without error
A RESUME statement is .encountered before an error
trapping routine is entered.

UE 21 Unprintable error
An error message is not available fo r the error
condition which ex ists. This is usually caused by an
ERROR with an undefined error code .

MO 22 M issing operand
An expression contains an operator with no operand
following it.

FN 23 FOR w ithout NEXT
A FOR was encountered without a matching
NEXT . . .

?? 24 Internal GIGI BASIC error.

WH 25 WHILE without WEND
A WHILE statement does not have a matching
WEND.

WE 26 WEND without WHILE
A WEND was encountered without a mat ching
WHILE .

A-3

APPENDIXB
Mathematical Functions

Derived Functions
Functions that are not intrinsic to GIGI BASIC may be calculated as follows:

8-1

Function

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

GIGI BASIC Equivalent

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SOR(- X * X + 1))

ARCCOS(X) = ATN
(X/SOR(- x .. x + 1)) + 1 .5708

ARCSEC(X) = ATN(X/SOR(X * X - 1))
+ SGN(SGN(X) - 1) " 1 . 5 708

INVERSE COSECANT ARCCSC(X) = ATN(X/SOR(X " X - 1))
+ (SGN(X) -1) " 1.5708

INVERSE COTANGENT ARCCOT(X) = ATN(X) + 1.5708

HYPERBOLIC SINE SINH(X) = (EXP(X) - EXP(- X)) /2

HYPERBOLIC COSINE COSH(X) = (EXP(X) + EXP(- X)) /2

HYPERBOLIC
TANGENT

TANH(X) = EXP(- X) /EXP(X) + EXP(- X)) " 2 + 1

HYPERBOLIC SECANT SECH(X) = 2/ (EXP(X) + EXP(- X))

HYPERBOLIC CSCH(X) = 2 / (EXP(X) - EXP(- X))
COSECANT

HYPERBOLIC
COTANGENT

COTH(X) = EXP(-X) /(EXP(X) - EXP(- X)) * 2 + 1

INVERSE HYPERBOLIC ARCSINH(X) = LOG(X + SOR(X " X + 1))
SINE

INVERSE ARCCOSH(X) = LOG(X + SOR(X * X - 1)
HYPERBOLIC COSINE

INVERSE HYPERBOLIC ARCTANH(X) = LOG((1 + X) /(1 - X)) /2
TANGENT

INVERSE HYPERBOLIC ARCSECH(X) = LOG((SOR(- X " X + 1) + 1)/X)
SECANT

INVERSE HYPERBOLIC ARCCSCH(X) = LOG((SGN(X) " SOR(X " X + 1) + 1)/X
COSECANT

INVERSE HYPERBOLIC ARCCOTH(X) = LOG((X + 1)/ (X - 1)) / 2
COTANGENT

APPENDIXC
ASCII Character Codes

ASCII Character ASCII Character ASCII Character
Code Code Code

000 NUL 043 + 086 V
001 SOH 044 087 W
002 STX 045 088 X
003 ETX 046 089 Y
004 EOT 047 090 Z

005 ENQ 048 0 091
006 ACK 049 092 "-
007 BEL 050 2 093
008 BS 051 3 094 /I

009 HT 052 4 095 <
010 LF 053 5 096
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d

015 SI 058 101 e
016 DLE 059 102 f
017 DC1 060 < 103 9
018 DC2 061 104 h
019 DC3 062 > 105

020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 I
023 ETB 066 B 109 m
024 CAN 067 C 110 n

025 EM 068 D 111 0

026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114
029 GS 072 H 115 s

030 RS 073 116 t

031 US 074 J 117 u
032 SPACE 075 K 118 v
033 076 L 119 w
034 077 M 120 x

035 # 078 N 121 y
036 $ 079 0 122 z
037 % 080 P 123
038 & 081 Q 124

039 082 R 125
040 083 S 126
041 084 T 127 DEL
042 * 085 U

ASCII codes are in decimal. LF = Line Feed, FF = Form Feed, CR = Carriage
Return, DEL = Delete BS = BackSpace

C-1

INDEX

A E
ABS 3-1 ECHO 2-5

Addition 1-6 EDIT 1-2, 2-6

Arctangent 3-2 Edit mode 2-6

Array variables 1-5, 2-5 END 2-2,2-7,2-10

Arrays 1-5, 2-7 ERASE 2-7

ASC 3-1 ERL 2-7

ASCII codes 3-1 to 3-2 ERR 2-7

ATN 3-2 ERROR 2-8

AUTO 1-2, 2-2 Error codes 1-10,2-7 to 2-8, A-1

Error messages 1-10, A-1

B Error trapping 2-7 to 2-8,
2-18, 2-24

Backspace 2-6 ESC$ 3-2
Boolean operators 1-8 Escape 1-3, 2-6

ESCAPE character 3-2

C EXP 3-3

Carriage return 1-3, 2-13,
Exponentiation I -6 to 1 -7, 3-3

2-15, 2-28 Expressions 1-5

Channel 2-14

Channel number 2-14 F
Character set 1-2

FOR ... NEXT 2-9
CHR$ 3-2

FRE 3-3
CLEAR 2-2

Functions 1-9, 2-4, 3-1, B-1
Command level 1-2

Concatenation 1-10

Constants 1-4 G
CaNT 2-2, 2-15 GOFF$ 1-10,3-3

Control characters 1-3 GON$ 3-4

Control-C 2-3 GOSUB 2-10

Control-O 2-3 GOTO 2-10 to 2-11

COS 3-2 Graphics control 1-10,3-3

CTRLC 2-3 Graphics mode, entering 3-4

CTRLO 2-3

H
D HEX$ 3-4

DATA 2-3,2-23 Hexadecimal 1-4, 3-4

DEF FN 2-4 HOST 2-11

DELETE 1-2, 2-4 Host BASIC 1-1

Delete key 1-10 Host communication 2-11

Delete key/character 1-3

Device control string (DCS) 3-4

DIM 2-5

Direct mode 1-2 , 2-12, 2-18

Division 1-6

Index-1

Index

I 0
I/O channel 2-14 OCT$ 3-7

IF. .. GOTO 2-12 Octal 1-4, 3-7

IF. .. THEN 2-7,2-12 OLD 2-17

IF. .. THEN ... ELSE 2-12 ON ERROR GOTO 2-18

Indirect mode 1-2 ON .. . GOSUB 2-18

INP 3-4 ON ... GOTO 2-18

INPUT 2-2, 2-13 Operators 1 -5, 1 -7 to 1 -10

INPUT$ 3-5 OPTION BASE 2-19

INSTR 3-5 OUT 2-19

INT 3-5 Overflow 1-7,3-3,3-10

Integer 3-5

p
L pas 2-28,3-7

LEFT$ 3-6 PRINT 2-19

LEN 3-6

LET 2-14 R
Line feed 2-13, 2-15

line input 2-15
Random numbers 2-21,3-7

Line numbers 1-2, 2-2
RANDOMIZE 2-21. 3-7

Line printer 2-28
RCTRLC 2-3

Lines 1-2
RCTRLO 2-3

LlNPUT 2-15
READ 2-22 to 2-23

LIST 1-2, 2-16
REGIS 3-4

Local BASIC 1 -1
Relational operators 1-7

LOG 3-6
REM 2-23

Logical operators 1-8
RENUM 2-7

Loops 2-9, 2-28
RESTORE 2-23

RESUME 2-24

RETURN 2-10

M RIGHT$ 3-7

MID$ 2-16, 3-6 RND 2-21,3-7

Multiplication 1-6 RUN 2-24

N
Negation 1-6

NEW 2-17

NOECHO 2-5

Numeric constants 1-4

Index-2

Index

S T
SAVE 2-25 TAB 3-10

SET-UP, for starting BASIC 1-1 Tab 1-3

SGN 3-8 TAN 3-10

SIN 3-8 TROFF 2-27

Single precision 2-20 TRON 2-27

SPACE$ 3-8

SPC 3-8 V
SQR 3-9

VAL 3-10
Starting GIGI BASIC 1-1

Variables 1-5
STOP 2-2,2-7,2-10,2-26

STR$ 3-9

String constants 1-4 W
String functions 3-5 to 3-7, WAIT 2-27

3-9 to 3-10
WEND 2-28

String operators 1-10
WHILE 2-28

String space 2-2, 3-3
WIDTH 2-28

String terminator (ST) 3-3

String variables 1-5,2-15

STRING$ 3-9

Subroutines 2-10,2-18

Subscripts 1-5,2-5,2-19

Subtraction 1-6

SWAP 2-26

Index-3

ai
,§
(/J

E ...
Cl
C
0
(ij ...
~
u
Q)
(/J

"' Q)

Cl:

GIGI BASIC Manual
(AA-K33 5A-TK)

READER'S COMMENTS

Note: This form is for document comments only. DIGITAL will use comments sub­
mitted on this form at the company's discretion. Problems with software should be
reported on a Software Performance Report (SPR) form. If you require a written re­
ply and are eligible to receive one under SPR service, submit your comments on an
SPR form.

• Did you find errors in this manual? If so, specify by page.

• Did you find this manual understandable, usable, and well-organized? Please make
suggestions for improvement.

• Is there sufficient documentation on associated system programs required for use of
the software described in this manual? If not, what material is missing and where
should it be placed?

• Please indicate the type of user/reader that you most nearly represent.

D
D
D
D

D Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D Non-programmer interested in computer concepts and capabilities

Name

Organization

Street

City

Date

State
Zip Code
or Country

Fold Here--- -- --------------------------------------- ----

Do Not Tear - Fold Here and Staple--------------------------------------·---

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 152 MARLBOROUGH, MA 01752

Postage will be paid by :

Education Computer Systems
200 Forest Street MR1-1 /E47
Marlborough, Massachusetts 01752

IIIIII No Postage
Necessary
If Mailed In The
United States

---v------~~-.-------~~----------------~--~------~~~----------------------------~------~---------

