
RSX-11 M/M-PLUS
and Micro/RSX
Task Builder Manual
Order No. AA-AB46A-TC

(

c

(

RSX-11 M/M~PLUS
and Micro/RSX
Task Builder Manual
Order No. AA-AB46A-TC

RSX-11 M Version 4.1
RSX-11 M-PLUS Version 2.1
Micro/RSX Version 1.0

digital equipment corporation · maynard,massachusetts

First Printing, December 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (§) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

(

The postpaid USER'S COMMENTS form on the last page of this document (
requests the user's critical evaluation to assist in preparing future.
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSTS
DEC/CMS EduSystem RSX
DEC/MMS IAS UNIBUS
DECnet MASSBUS VAX
DECsystem-lO MICRO/PDP-ll VMS
DECSYSTEM-20 Micro/RSX VT
DECUS PDP

~DmDDmD DECwriter PDT

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

'Any prepaid order from puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1 G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

(
ZK2414

(

(

(

(

CONTENTS

Page

PREFACE xvii

SUMMARY OF TECHNICAL CHANGES xxi

CHAPTER 1 .

1.1
1.1 •. 1.
1.1.1.1
1.1.1.2

'1.1 • .2 .

INTRODUCTlON' AND '~OMMAND S'PECIFICATIONS

TASK, COMMAND LINE • • • • ., • • • • • • ;. 1-2
The MeR Commcllid Line' for the Task Builder •• • 1-2'

Printing the Map "File' •••• • • • 1-3
Om:i.t:ting Specific Output Files • • • • • • 1.;...3

The'bCL LINK Coriunand Line for the Tas~ Builder • 1-3
1.1..2.1
1.i.2:2
1.1.2.3
1.1.2.4 .

. The LINK Command Inp~t ,File .. • • 1-4
~he LiNK "Coriunand ,Task Fil.e •• • ~ • • 1-5
The LINK .command Map File • .• • • • • 1.,..5
The LINK Command Symbol Definition File ••• 1-6
printing the • MAP File When Using the LINK 1.1.2.5

1 ~ 2 .
1.2~1
1.2.2
1.2.2.1
1.3.
1.3 •. 1
,1.3.2
1.3.3 .
1.4
1.5'
1..6
1.7
1.8

CHAPTER 2

2.1
2.1.1
2.1.1.1
2.1.1. 2'
2.;1..2
2.2
.2.3
2.4.
2.4.1
2.4.2
2.4;;3
2.4.4
2.5

.5'.1 .

Cdminan-d T •••••• • .', e' • .,. • • • ". ., • 1-6
Mti~TILINE' INPUT • • •• • • •• '.. '. • • • • 1-7

MuitilineI,nput Using the TKB Coriunand • ' •••• 1-7
Multiline Input Using the LINI<:' Conimand • • 1-8

Abbreviated QUC!-lifiersin LINK • 1-8
TASK BUILDER OPTIONS ••••• ~ • • • • • • 1-9
EntertngTa~k Builder Opt,ions in TKB • • • •• 1-9
Entering Task Builder Options in LINK •• • 1-9
Entering' the Option Line. • • • 1-10.

MUJ;..TIPLE TAS~ SPECIFICATIQNS ••• • • • • 1-11
.INDIRECT COMMAND FILES • • • • • • • 1-11
COMMENTS IN INDIRECT COMMAND FI~E LINES • • 1-14
FILE SPECiFICATIONS • • •. ' 1-15
SUMMARY OF. SYNTAX RULES •• • •• • • ; • • • • 1-16

TASK BUlL-DEB, FUNCTIONS

. LINKING OBJECT MQDULES • • • • • • •. •
Alfocat-ing Program Seotions

Access-code andA11ocatiori-code
,Type,Code and Scope~Code.· .:.'. •

.' • • 2-1
• 2-2

2-5
• • .' 2-7

Resolving ,Global, Symbols • •• •.• • • • •
THE TASK STRUCTURE •• .'. • • • • • • • • •
:OVE~LAYS • • • ...• • • • • •. e" • •.• • • ."

ADDRESSING. CONCEPTS '. • •
Physica1,~irtlia1. and Logica1.Addresses •
Unmapped Syst.:ems :.
Mapped Systems • •• .' •
Regions

TASK MAPPING AND WINDOWS .'.,; •••• ; •
. Task, Windows, •

iii

'. .

· 2-7
2-8

• 2-9
2-12

CONTENTS

CHAPTER 3 OVERLAY CAPABILITY

3.1 OVERLAY STRUCTURES · · · · · · · · 3-1
(3.1.1 Disk-Resident Overlay Structures · 3-2

3.1. 2 Memory-Resident Overlay Structures (Not
Supported on RSX-llS) · · 3-5

3.2 OVERLAY TREE · · · · · · · · 3-15
3.2.1 Loading Mechanism · · · · · · · · 3-16
3.2.2 Resolution of Global Symbols in a Multisegment

Task . . · · · · · · · · · · · · · · · · · · · 3-16
3.2.3 Resolution of Global Symbols from the Default

Library · · · · · · · · · · · · · 3-18
3.2.4 Allocation of Program Sections in a

Multisegment Task · · · · · · · · · 3-18
3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES 3-19
3.3.1 Overlaid Conventional Task Structures 3-20

3.4.1 .ROOT and .END Directives 3-24
3.4.2 .FCTR Directive · · · · · 3-25
3.4.3 Arguments for the .FCTR and . ROOT Directives · 3-26
3.4.3.1 Named Input File · · · · · · · 3-26 (3.4.3.2 Specific Library Modules · · · · · · 3-26

" 3.4.3.3 A Library to Resolve References Not
Previously Resolved · · · · 3-26

3.4.3.4 A Section Name Used in a .PSECT Directive 3-26
3.4.3.5 A Segment Name Used in a . NAME Directive 3-27
3.4.4 Exclamation Point Operator · · · · · · · · · · 3-27
3.4.5 • NAME Directive · · · · · · · · · 3-28
3.4.5.1 Example of The Use of The . NAME Directive 3-29
3.4.6 .PSECT Directive · · · · 3-29
3.4.7 Indirect Command Files · · · · · · 3-30
3.5 MULTIPLE-TREE STRUCTURES · · · · · 3-30 (3.5.1 Defining a Multiple-Tree Structure 3-31
3.5.1.1 Defining Co-trees With a Null Root by Using

. NAME · · · · · · · · · · · · · · · · · 3-31
3.5.2 Multiple-Tree Example · · · · · · · · · · · 3-31
3.6 CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE

ALLOCATION DIAGRAM · · · · · · · · · · · · · 3-35
3.6.1 Creating a . ROOT Statement by Using a Virtual

Address Space Allocation Diagram · · · · · · · 3-37
3.6.2 Creating a .FCTR Statement by Using a Virtual

Address Space Allocation Diagram · · · · · 3-38
3.6.3 Creating an ODL Statement for a Co-Tree by (Using a Virtual Address Space Diagram 3-39
3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL

LANGUAGE · · · · · · · · · 3-40
3.8 EXAMPLE 3-1: BUILDING AN OVERLAY · · · · · 3-41
3.9 WINDOW BLOCKS IN OVERLAYS · · · · · · 3-48
3.10 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE 3-49

CHAPTER 4 OVERLAY LOADING METHODS

4.1 AUTOLOAD . · · · · · 4-1
4.1.1 Autoload Indicator · 4-2
4.1. 2 Path Loading · · · · 4-3
4.1. 3 Autoload Vectors · · 4-4
4.1.4 Autoloadable Data Segments · · · · 4-6
4.2 MANUAL LOAD · · · · · 4-7
4.2.1 MACRO-ll Manual Load Calli · · 4-7

(

iv

(

c

(

4.3
4.4
4.5

CHAPTER 5

5.1
5.1.1
5.1. 2
5.1.2.1
5.1. 2.2
5.1. 3
5.1.3.1
5.1.3.2
5.1.3.3
5.1. 4
5.1.4.1

5.1.4.2

5.1.4.3
5.1.4.4

5.1. 5
5.1. 6
5.1. 7
5.1. 8

5.1. 9
5.1.10

5.1.11

5.1.11.1

5.1.12

5.2
5.2.1
5.2.1.1
5.2.1.2

5.2.1.3

5.2.1.4

5.2.1.5

5.2.1.6

5.2.1.7

5.2.2
5.2.3
5.2.3.1

5.2.3.3

5.2.3.4
5.2.3.5

5.2.4

CONTENTS

ERROR HANDLING • . . • • • . •
GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK •
USE AND SIZE OF OVERLAY RUNTIME ROUTINES •

SHARED REGION CONCEPTS AND EXAMPLES

SHARED REGIONS DEFINED ..•.•
The Symbol Definition File
Position-Independent Shared Regions

Position-Independent Shared Region Mapping
Specifying a Position-Independent Region

Absolute Shared Regions •
Absolute Shared Region Mapping
Specifying an Absolute Shared Region . •
Absolute Shared Region .STB File • . . •

Shared Regions with Memory-Resident Overlays •
Considerations About Building an Overlaid
Shared Region . . • . . . • . • . . .
Example of Building a Memory-Resident
Overlaid Shared Region
Options for Use in Overlaid Shared Regions
Autoload Vectors and .STB Files for Overlaid
Shared Regions • . .

Run-Time Support for Overlaid Shared Regions •
Linking to a Shared Region . . • . •
Number and Size of Shared Regions
Example 5-1: Building and Linking to a Common
in MACRO-II • . • . .
Linking Shared Regions Together
Example 5-2: Building and Linking to a Device
Common in MACRO-II
Example 5-3: Building and Linking to a Resident
Library in MACRO-II.. . . .

Resolving Program Section Names in a
Shared Region • . • .

Example 5-4: Building a Task That Creates a
Dynamic Region . . • . •

CLUSTER LIBRARIES
Building the Libraries • . . . • . • .

Summary of Rules for Building the Libraries
Rule 1: All Libraries but the First Require
Resident Overlays .• •
Rule 2: User Task Vectors Indirectly Resolve
All Interlibrary References •.••..••
Rule 3: Revectored Entry Point Symbols Must
Not Appear in the "Upstream" .STB File •
Rule 4: A Called Library·Procedure Must Not
Require Parameters on the Stack
Rule 5: All the Libraries Must be PIC or
Built for the Same Address •
Rule 6: Trap or Asynchronous Entry Into a
Library is not Permitted

Building Your Task • •
Examples • . • . • . . .

F77CLS -- Build the Default Library for the
FORTRAN-77 OTS • . .
FDVRES -- Build an FMS-ll/RSX Vl.O Shareable
Library • • • . .
FDVRESBLD.ODL -- Overlay Description for
FMS-ll/RSX Vl.O Cluster Library
FCSRES Library Build . . • • . .
F77TST.CMD -- File to Build the FMS-ll/RSX
Vl.O FORDEM Test Task

Overlay Run-Time Support Requirements .. • •

v

4-11
4-12
4-14

5-1
• 5-4

5-6
• 5-6

5-7
• 5-8
• 5-8
5-10
5-10
5-10

5-10

5-11
5-12

5-13
5-14
5-15
5-18

5-18
5-26

5-28

5-33

5-39

5-40
5-44
5-45
5-45

5-45

5-46

5-47

5-48

5-48

5-48
5-49
5-49

5-49

5-51

5-52
5-53

5-53
5-53

5.3

5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.4
5.4.1

5.4.2

CHAPTER 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

CONTENTS

TASK-BUILDING AN F4PRES, FORRES, OR FMSRES
LIBRARY WITH OR WITHOUT. FCSRES . • • • . •

FCSRES -- The Types of FCS Resident Libraries
Building a Memory-Resident Overlaid FCSRES
Building a. Non-Memory-Resident FCSRES
Building F4PRES • • • •
Options and Tradeoffs

VIRTUAL PROGRAM SECTIONS •
FORTRAN Run-Time Support for Virtual Program
Sections • • . • . • .. ••••.•.•
Examp1e5-5: Building a Program that Uses a
Virtual Program Section • • . . •

PRIVILEGED TASKS

5-55
5-55
5-55
5-56
5-56
5-57
5-60

5-61

5-65

INTRODUCTION . • . . . • . • • • • . • . • . • • . 6-1
PRIVILEGED AND NONPRIVILEGED TASK DISTINCTION • • 6-1
PRIVILEGED TASK HAZARDS
SPECIFYING A TASK AS PRIVILEGED
PRIVILEGED TASK MAPPING
PRIVILEGE 0 TASK •
PRIVILEGE 4 TASK . . .
PRIVILEGE 5 TASK . . . •
EXAMPLE 6-1: BUILDING A PRIVILEGED TASK
EXAMINE UNIT CONTROL BLOCKS . . . • • •

vi

TO

· 6-1
6-2
6-2

· 6-4

· 6-5
6-5

. · 6-6

C

(

(

(

c

c

(

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15

10.17
10.18
10.19
10.20
10.21

10.24
10.25
10.26
10.2}
10.28
10.29
10.30

CONTENTS

TKB SWITCHES

TKB SWITCHES • • • . •
Filespec Syntax
Switch Designation •
Overriding Switches
Switch Summary Table • • •

10-1
10-1
10-1
10-1

IAC[:NJ -- ANCILLARY CONTROL PROCESSOR
• . • • 10-2

10-5
10-6 IAL ALLOCATE CHECKPOINT SPACE . • .

Icc CONCATENATED OBJECT MODULES • . •
ICM COMPATIBILITY MODE OVERLAY STRUCTURE
Ico BUILD A COMMON BLOCK SHARED REGION
I CP CHECKPOINTABLE • • • .
ICR CROSS-REFERENCE...... ••••
IDA DEBUGGING AID • • . • • • • •
IDL DEFAULT LIBRARY • . • . • • • •
lEA EXTENDED ARITHMETIC ELEMENT
IEL EXTEND LIBRARY • • . • •
IFP FLOATING POINT • • • • •
IFU FULL SEARCH

HEADER

10-7
10-8
10-9

10-10
10-11

• 10-14
• 10-15

10-16
• • 10-17

• 10-18
10-19

TASK MAPS I 0 PAGE
LIBRARY FILE
BUILD A LIBRARY SHARED REGION

• 10-22
• • • • • • 10-23

• 10-25
lMA MAP CONTENTS OF FILE • • • • • • 10-26
IMM[:NJ -- MEMORY MANAGEMENT •• • • • • . • 10-27

ION . 10-28

-- NO DIAGNOSTIC MESSAGES · 10-30
IPI -- POSITION INDEPENDENT · · · · · · 10-31
IPM -- POSTMORTEM PUMP · · 10-32
IPR[:NJ -- PRIVILEGED · . . . · · · · · · · 10-33
IRO RESIDENT OVERLAY · 10-34
ISE SEND . . . · . • . · · · · · · · 10-35
ISG -- SEGREGATE PROGRAM SECTIONS · · · · · · · 10-36

vii

CHAPTER

10.31
10.32
10.33
10.34
10.35
10.36
10.37

11

11.1
11.1.1
11.1. 2
11.1. 3
11.1. 4
11.2
11. 3
11.4
11.5
11.6

11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18

11.20
11. 21
11.22
11. 23
11.24
11. 25
11.26
11. 27
11.28
11.29
11.30
11. 31
11.32
11. 33
11.34
11. 35
11.36
11.37
11. 38
11. 39
11.40
11.41
11.4

CONTENTS

SHORT MAP • • • • ISH
/SL
/SP
/SQ
Iss
/TR

SLA.VE • • • • • • • •
SPOOL MAP OUTPUT
SEQUENTIAL • • • •
SELECTIVE SEARCH
TRACEABLE . • • • • •

LINK QUALIF~ERS

LINK QUALIFIERS · · · · · LINK Command tine Syntax · Qualifier Designation
Overriding Qualifiers
Qualifier Summary Table

QUALIFIER DESCRIPTIONS · /ANCILLARY_PROCESSOR[:n]
/BASIC · · · · · · · · /[NO]CHECKPOINT[:SYS] · · · [NO]CHECKPOINT[:TAS] · · ·
/CODE: [EAE] · · · · · /CODE:[FPP] · · · · · /CODE:[PIC] · · · · · · · · /CODE:[POSITION INDEPENDENT]
/COMPATIBLE -· · · · · · · /[NO]CONCATENATE · · · · · · /CROSS REFERENCE · /DEBUGI:filespec] · · · · · /DEFAULT LIBRARY • · · · · /ERROR LIMIT[:n] .••.•
/[NO]EXECUTABLE[:filesiec] · 'Hi 'i'! /FASry · · · · · · · /FULL SEARCH · · · · · · · /[NO]GLOBALS · · · · · · · /[NO]HEADER · · · · · · · ·

· · · · · · ·
· · · · ·

· ·
· · ·

· · · ·

· · .. · ·

10-37
• • • • •• • 10-45

· · · · · · · ·
· · · ·

· ,.

· ·

· · · ·
· · · · ·

· · · ·

• 10-46
• • • • • 10-47

• 10-48
• 10-51

• . 1

· · · · · 11-1

· · · · 11-1

· 11-3

· 11-3

· 11-3
11-10

· 11-11

· 11-12

· · · 11-13

· · · · 11-14

11-16

· · 11-17

· 11-18

· 11-19

· · 11-20

· · · 11-21

· 11-22

· 11-25

· · · 11-27
11-28

· · · 11-29
a [

· 11-32

· · · · 11-33 .

· · 11-34

· 11-35
/INCLUDE: (modulel[,module 2, ..• ,modulen]) · · 11-36
/[NO]IO PAGE · · · · · · · /LIBRARY · · · · · · · · · /LONG · · · · · · · · · · /MAP[:filespec] · · · · · /[NO]MEMORY MANAGEMENT[:n]
/OPTION[:filespec] · /OVERLAY DESCRIPTION · · · · /POSTMORTEM · · /[NO]PRINTER · · · · /PRIVILEGED[:n]
/[NO]RECEIVE · · · · · /[NO]RESIDENT OVERLAYS · /SAVE · · · · · · I
/[NO]SEGREGATE · · · · · /SELECTIVE SEARCH
/SEQUENTIAL · · · · /SHAREABLE[:COMMON] · SHAREABLE : LIBRARY

/SLOW • . . . • • • . . . •
/SYMBOL TABLE[:filespec] ••
/[NO]SYSTEM~LIBRARY_DISPLAY

viii

·

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

· ·

· · ·

· · · · ·

· 11-38

· 11-39

· · 11-41 ., 11-49
11-50
11-51

· · 11:"'53

· 11-54
11-55
11-56

· 11-57
11-58

· · 11-59

· · 11-60

· · 11-61
11-64

· 11-65

· 11-66

• 11-68
• • 11-69·

11-70
11-71

(

(

(

(

l

(

(

C

11.48
11.49
11.50
11.51
11. 52

CHAPTER 12

12.1
12.1.1
12.1. 2
12.1.3
12.1. 4
12.1.5

12.
12.1.10
12.1.11
12.1.12
12.1.13
12.1.14
12.1.15
12.1.16
12.1.17
12.1.18
12.1.19
12.1.20
12.1. 21
12.1.22
12.1.23

12.1.30
12.1.31
12.1.32
12.1.33

12.1.34
12.1.35

APPENDIX A

A.1
A.1.1
A.1.2
A.1. 3
A.1.4
A.1.5
A.1.6
A.1. 7
)\.. 1. 8

CONTENTS

/[NO]TASK[:fi1espec] •
/TKB . • • • •

11-72
11-74

/TRACE ...••
/[NO]WARNINGS
/[NO]WIDE

• • • •• • 11-75
• • • •• •• 11-76

• • • • •• 11-77

OPTIONS

OPTIONS - .
ABORT -- Abort the Task-B~i1d • • • • • •
ABSPAT -- Absolute Patch •
ACTFIL -- Number of Active Files
ASG -- Device Assignment • . • •
CLSTR -- System-OWned Cluster of Resident

braries or Commons . • . • • .

·ogram
EXTTSK Extend Task Memory
FMTBUF Format Buffer Size
GBLDEF Global Symbol Definition · GBLINC Include Global Symbols · · · GBLPAT Global Relative Patch
GBLREF Global Symbol Reference
GBLXCL Exclude Global Symbols · · IDENT -- Task Identification · · · LIBR -- System-OWned Library · · · · · · MAXBUF -- Maximum Record Buffer Size · ODTV -- ODT SST Vector · · · · · · PAR -- Partition . · · · · · .• · PRI -- Priority. . · · · · · · · RESCOM or RESLIB -- Resident Common or
Resident Library · · · . · · · · · RESLIB -- Resident Libr

-- Ta
TSKV -- Task SST Vector • • • •
UIC -- User Identification Code • • • •
UNITS -- Logical Unit Usage

·
·
·

·

VARRAY -- Virtual Array Specification and
Usage
VSECT
WNDWS

Virtual Program Section •
Number of Address Windows

TASK BUILDER INPUT DATA FORMATS

RECORD ' ..

.' .

· · · · · ·
· · · · · · · · · ·
· ·

12-1
12-5
12-6
12-7
12-8

12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12.,..25
12-26
12-27
12-29

• • 12-42
12-44

• • 12-45

A-2
A-4

• A-5
A-5

• • • A-6
• A-6

DECLARE GLOBAL SYMBOL DIRECTORY
Module Name (Type 0) ••.
Control Section Name (Type 1)
Internal Symbol Name (Type 2)
Transfer Address (Type 3)
Global Symbol Name (Type 4)
Program Section Name (Type 5)
Program Version Identification
Mapped Array Declaration (Type

· A-7

ix

(Type 6)
7)

A-10
A-10

A.lo9
A.2
A.3
A.4
A.4.l
A.4.2
A.4.3
A.4.4
A.4.5
A.4.6
A.4.7
A.4.8
A.4.9
A.4.l0
A.4.11
A.4.l2
A.4.13

A.4.l4
A.4.15
A.5
A.5.l
A.5.2
A.5.2.l
A.5.2.2
A. 5. 2.3.

A. 5.3
A.5.3.l
A.5.3.2
A.5.3.3
A.5.3.4
A.5.3.5
A.5.4
A.6

APPENDIX B

B.l
B.2
B.3
B.3.l
B.3.2
B.4
B.4.l

B.4.3
B.4.4
B.4.5

APPENDIX C

C.l
C.2

APPENQIX D

D.1
D.2
D.2.1
D.2.2
D.2.3

CONTENTS

Completion Routine Definition (Type 10}
END OF GLOBAL SYMBOL DIRECTORY RECORD
TEXT INFORMATION RECORD • • • • • • • •
RELOCATION DIRECTORY RECORD • • • • • • • •

Internal Relocation (Type I) •••••••
Global Relocation (Type 2) •
Internal Displaced Relocation (Type 3)
Global Displaced Relocation (Type 4)
Global Additive Relocation (Type 5)
Global Additive Displaced Relocation (Type 6)
Location Counter Definition (Type 7)
Location Counter Modification (Type 10)
Program Limits (Type 11) • • • • • • • • •
Program Sect,ion Relocation (Type l2) . •
Program Section Displaced Relocation (Type l4)
Program Section Additive Relocation (Type IS)
Program Section Additive Displaced Relocation
(Type l6) ••.••••••.•...
Complex Relocation (Type l7) ••••••
Resident Library Relocation (Type 20)

INTERNAL SYMBOL DIRECTORY RECORD •
Overall Record Format . • • • •
TKB Generated Records (Type I)

Start-of-Segment Item Type (I) .. .
Task Identification Item Type(2}
Autoloadable Library Entry Point Item Type
(3) ••••••••••••• • • •

Relocatable/Relocated Records· (Type 2) •
Module Name Item Type (I)
Global Symbol Item Type (2)
PSECT Item Type (3) ••••
Line-Number or PC Correlation Item Type (4)
Internal Symbol Name Item Type (5)

Literal Records (Type 4)
END OF MODULE RECORD • • • • • • •

.. DETAILED TASK IMAGE FILE STRUCTURE

A-ll
A-ll
A-ll
A-12
A-14
A-IS
A-IS
A-16
A-16
A-17
A-17
A-18
A-18
A-19
A-19
A-20

A-2l
A-22
A-23
A-24
A-24
A-25
A-25
A-26

A-26
A-27
A-27
A-28
A-29
A-29
A-30
A-30
A-30

LABEL BLOCK GROUP • • • • • •
CHECKPOINT AREA • • • •

• • • • . B-1

HEADER • • • • • • • • • • •
Low-Memory Context •
Logical Unit Table Entry •

TASK IMAGE • • • • • • • • •

. B-9

. B-IO
B-lO
B-14
B-14

Autoload Vectors for Conventional Tasks B-17

Segment Descriptor •
Window Descriptor
Region Descriptor

HOST AND TARGET SYSTEMS

B-18
B-20
B-2l

INTRODUCT:rON • • • • •• •••••••.•••• C-l
. EXAMPLE C-l: TRANSFERRING A TASK FROM A HOST TO A

TARGET SYSTEM • • • • • • • • • • • . • . • • • • C-2

MEMORY DUMPS

POSTMORTEM DUMPS • • • • •
SNAPSHOT DUMPS • • • • •

Format of the SNPBK$ Macro •
Format of the SNAP$ Macro
Example of a Snapshot Dump. •

x

• • • D-1
• D-2
• D-6

D-8
D-9

(

c

(

(

(

c

c

c

c

APPENDIX E

APPENDIX F

F.l
F.l.l
F.1.2
F.l. 3
F.2
F.3

APPENDIX G

APPENDIX H

GLOSSARY

INDEX

EXAMPLES

3-1
3-2
4-1
5-1
5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-3

5-3
5-3
5-3
5-4
5-4
5-5
5-5
6-1
6-1

10-2.
11-1
11-2
12-1

C-l

CONTENTS

RESERVED SYMBOLS

IMPROVING TASK BUILDER PERFORMANCE

EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT
Table Storage • • . • •

• F-l
• F-2

Input File Processing . • • • •
Summary

MODIFYING COMMAND SWITCH DEFAULTS
THE SLOW TASK BUILDER • • • • • •

THE. FAST .TASK BUILDER

ERROR MESSAGES

Map File for OVR.TSK . • • • • • • • • • • •
Map File for RESOVR.TSK • . • • • . • • •
Cross-Reference Listing of Overlaid Task • • • •
Part 1 Common Area Source File in MACRO-II
Part 2 Builder Map for MACCOM. TSK • • • •
Part 3 MACRO-II Source Listing for MCOMI
Part 4 MACRO-II Source Listing for MCOM2
Part 5 Task Builder Map for MCOMl.TSK
Part 1 Assembly Listing for TTCOM
Part 2 Task Builder Map for TTCOM
Part 3 Assembly Listing for TEST
Part 4 Memory Allocation Map for TEST
Part 1 Source Listing for Resident Library
LIB . MAC • • • • • • • • • • • • • •

• F-6
• F-6
• F-7
F-11

3-44
3-46
4-13
5-19
5-20
5-22
5-23
5-25
5...,28
5-30
5-31
5-32

5-33
5-35 Part 2 Task Builder Map for LIB.TSK

Part 3 Source Listing for MAIN.MAC
Part 4 Task Builder Map for MAIN.TSK
Part 1 Source Listing for DYNAMIC.MAC
Part 2 Task Builder Map for DYNAMIC.TSK
Part 1 Source Listing for VSECT.FTN
Part 2 Task Builder Map for VSECT.TSK
Part 1 Source Code for PRIVEX

• • • • 5-36
5-38
5-41
5-43
5-66
5-67

. 6-7
2 Task Builder

Cross-Re rence L st
Memory Allocation File (Map) Example • • • • •
Cross-Reference Listing for OVR.TSK
Memory Allocation File (Map) Example • • • • •
A Task Using a Virtual Array With the OVR

• 10-37
• 11-23
• 11-42

At tr ibtite
Part 1 Task Builder Map for LIB.TSK ••••

• • 12-42
. C-3

xi

FIGURES

C-l
D-l
D-2
D-3
D-4

2-1
2-2
2-3
2-4
2-5
2-6

2-7

2-8

2-9
2-10
2-11

2-12
2-13

3-2
3-3
3-4
3-5
3-6A

3-6B

3-7A

3-7B

3-8
3-9

3-14
3-15

3-16
3-17

3-18
3-19

3-20
1-21

CONTENTS

Task Builder Map for MAIN.TSK
Postmortem Dump (Truncated) .

Part 2
Sample
Sample
Sample
Sample

Program That Calls for Snapshot Dumps •
Snapshot Dump (in Word Octal and Radix-50)
Snapshot Dump (in Byte Octal and ASCII) .

Relocatable Object Modules . . • • . . • . . .
Modules Linked for Mapped and Unmapped Systems
Allocation of Task Memory
Disk Image of the Task . . • . • . • . . • • .
Memory Image • • • . . .
Simple 2-Segment, Disk-Resident Overlay Calling
Sequence •
Simple 2-Segment, Memory-Resident Overlay Call
Sequence • •
Virtual and Logical Address Space Coincidence
in an Unmapped System . • . . . •
Memory Layout for Unmapped System •••.
Task Relocation in a Mapped System • • . • .
Memory Management Unit's Division of Virtual
Address Space •• • • •
Mapping for 4K-Word and 6K-Word Tasks
Window Block 0 . .
Virtual to

e-Segment Ta
TKI As a Multisegment Task
TKI with Additional Overlay Defined
TK2 Built As a Single-Segment Task .. ••
TK2 Built As a Memory-Resident Overlay • .
Relationship Between Virtual Address Space and
Physical Memory -- Time 1
Relationship Between Virtual Address Space and
Physical Memory -- Time 2 •••.
Relationship Between Virtual Address Space and
Physical Memory -- Time 3 • •
Relationship Between Virtual Address Space and
Physical Memory -- Time 4
Overlay Tree for TKI • . .. •.••
Resolution of Global Symbols in a Multisegment
Task • . . •
Resolution of

rtua
Tree for · · · · · · Virtual Address Space and Physical Memory for

Modified TKI . . · . · · · · . · · · · · · · · ,Overlay Co-Tree for Modified TKI · · · , . · · · Virtual Address Space and Physical Memory for TKI
As a Co-Tree . . · · · . · · · · · · · · · Virtual Address Space Allocation Diagram · · · · Virtual Address Space Allocation for a Main Tree
and Its Co-Tree · . · · . · · . · · · · · · · · Overlay Tree of Virtual Address Space for OVR.TSK
Allocation of Virtual Address Space for OVR.TSK

xii

· C-4
· D-3
D-IO
D-11
D-13

2-2
• 2-3

2-6
2-8
2-9

2-10

2-11

2-14
2-15
2-16

3-5
3-7
3-8
3-9

3-11

3-12

3-13

3-14
3-15

3-33
3-34

3-35
3-36

3-40
3-43
3-45

(

(

(

(

(

(

(

c

(

L·

3-22

4-6
5-1
5-2
5-3
5-4

5-5

5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
6-1
6-2

A-I
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9

CONTENTS

Allocation of Virtual Address Space for
RESOVR. TSK • . • • • . • • • • •
Details of Segment C of TKl • . . . • • •
Path-Loading Example • ••••••••

t for Conventional Tasks

Code Sequence for a Conven

Autoload Overlay Tree Example • • • • •
Typical Resident Common • • • • •
Typical Resident Library • •• •• • • •

3-48
4-2

• • 4-4
4-4

• • 4-5
4-12

• • 5-2
• 5-3

• • 5-4 Interaction of the ILl, Ico, and IPI Switches
Interaction of the ISHAREABLE:LIBRARY,
ISHAREABLE:COMMON, and ICODE:PIC Qualifiers ••• 5-5
Specifying APRs for a Position-Independent Shared
Region . 5-7
Mapping for an Absolute Shared Region • . • • • • 5-9
Windows for Shared Region and Referencing Task. 5-17
Allocation Diagram for MACCOM.TSK • • • • . •• 5-21
Assigning Symbolic References within a Common 5-24
Allocation of Virtual Addre.ss Space for MAIN.TSK 5-39
Example Library and Task Structure •••.••• 5-44
Example of an Unbalanced Tree with Null Segment 5-46
Example of an Overlay Cluster Library Structure 5-46
Example of a Vectored Call Between Libraries 5-47
VSECT Option Usage • • • • • 5-62
Privileged Task Mapping •• • • • • • • • • • • • 6-3
Mapping for IPR:4 and IPR:5 ••••••••• 6-4
Allocation of Virtual Address S 6-11

General Ob ect Module Format •
Global Symbol Directory Record Format
Module Name Entry Format •
Control Section Name Entry Format • • • • •
Internal Symbol Name Entry Format ••••
Transfer Address Entry Format • •
Global Symbol Name Entry Form~t
Program Section Name Entry Format • • • •
Program Version Identification Entry Format

xiii

• • A
• A-4

• • A-4
• • • A-5

A-S
• A-6
• A-6
• A-8
A-lO

TABLES

'A-IO
A-11,
A-12
A-13
A-14
A-IS
A-16
A-17
A-IS
A-19
A-2,O
A-21
A-22
.\-23
A-24
A-2S
A-26
A-27

A-28
A-29
A-30
A-31
A-3~
A-33

A-34

A-3S
A-36
A,-37
A-38

A-39'
A-40

'A-41
B-1
B,-2

B,3

B-S
B-6
B-7
B-8
B-9
B-IO
B-11
B-;l.2

B-:17
B':'18
D-l

2";1
2";2
2-3

,,' '2-4

CONTENTS

Mapped Ar~aY:DeClarationEntry ,Format •••
Completion Rout,ine Entry Format • ',' " ' •• '
End of Global Symbol Directory Record Format
Text Information Record Format • ; • • • • , " •
Relocat:lonDirectory Record Format •. •
,Internal Relocation Entry Format ' .
Global Relocation Entry Format,'. • "
Internal Displ.aced Relocation Entry Format .'
Global Displaced Relocation Entry Format • •

,'Global Additive Relocation Entry F'ormat ••• '.
Global Additive Displaced Relocation Entry Format
Location Counter, Defini'tion Entry .Format •
Loca,tion Counter Modification Entry 'Format: •
Program Limi tsEntry Format., • • , • . , ,
Program Section, Relocation Entry Format
Program Section Displaced .Relocation Entry Format
Program Section Additive Relocation. Entry Format
Program Section Addit,ive, Displaced Relocation
En,try,' Format'. • " " • , " • .' . , ,; , , ;
Complex Relocation' Entry Format , •• ,
Resident Library Relocation Entry Forma,t
'General Format of All ISD Records , . "
,General Format of a TKB Generated Record ,
Format of TKB Generated:Start-of-Segment Item. (1)
Format of TKBGenerated Task Identification Item

. (2) ••••••••.••.••••••.• . .' • '. '. •
Format of an Autoloadable Library ,Ent'ry Point
Item (3.). •• ' ••..•..• e,.' ~ .. ' •• " •• '. ' •••

Format of a Module Naltle Item Type (1), • , , ,
FOrmat of, a Global symbol Item Type (2)
Format of a PSECT Item TYpe (3) •• ".,"

, Forltla't, of a Line-Number or PC Correlation Item
Type . (4) • ". • • • • '. e':'. '. • .' • ,_ :. • • • .• •

Format of, an Internal Symbo"lName, Item Type (S)
Format. of a. Literal Record Type
End-of-Module Record Format , .,' , " ,
Image ,on Disk of Non-Overl'aicl, Convent'ional Task
Imageon'D:tskofCoq,ventionalNon-Overlaid Task
Linked to Overlaid Library , , " " ",. , ,
Image on Disk of, Conventional Overlaid Task

Label BlockO-- Task, and. Resident LIbrary data
Label Blocks 1 and 2 ..:::" Table of LUN Assignments
Label Block 3, -..., Segment Load List •
Task Header, Fixed Part "

" '

Task Header, Variable, Part.. •
Vector' Extension A+,ea 'Format. • .
Logical Unit Tabie ¢ntry "

. . .' . .'

, 'Task-Resident Overlay Data, Base for a '
Ce,nventional Overlaid Task • . . • , , , , "

" '.

. .; .. Segment Descr '
Windo~' Descriptor " '
Region Descriptor • ,.. io .'.' .. • '. •

,Snapshot DUIrtp Control Block Forma:t • , ,'.

Program Section Attributes • , , ,

A-IO
"A-II

A...:11
A-12
A-14
A-IS
A-IS
A-16
A-16
A-17
A-17
A":18
A-18

, A-19
A-19
A-20
A-21

A-21
A..;.. 23
A-23
A::"2S
A-2S
A-26

A-26

A-27
A-28
A-28
A-29

A-30
A-31
A-31
A-31

• B-2

., B-2
, B-3

.B"';
• B-9
, B-9
B-11.
B-12
B-13'
B":'14

B-lS

B-21
B-21

, D-6

2-4
Program Section's for Modules. HiJl,. ,IN2 i and IN3 •
Individual Program Section Allocations
Resolution of, Global Symbols for, INl, 'IN2,

• 2-6
, 2-6

arld IN3 2-7

xiv

•

(

(

(

(

l

('
\,

(

(

TABLES

7-1
10-1
10-2
11-1
11-2
12-1
A-I
A-2
A-3

B-1
B-2
F-l
F-2
F-3
F-4

CONTENTS

Program Section Attributes • . • • • . . •
Program Sections for Modules INl, IN2, and IN3
Individual Program Section Allocations . •
Resolution of Global Symbols f.or INl, IN2, and
Comparison of Overlay Run-Time Module Sizes

. of Overl Run-Time Module Sizes

2-4
· • 2-6

2-6
IN3 2-7

4-16
5-54

Mapping Comparison Summary
TKB Switches . • • •
Files for SEL.TSK
LINK QUALIFIERS •..•

• 7-2
10-2

10-48
• • •• 11-4

Input Files for SEL.TSK
Task Builder Options . • • • • •

• 11-61
12-2

Symbol Declaration Flag Byte -- Bit Assignments
Program Section Name Flag Byte -- Bit Assignments
Relocation Directory Command Byte -- Bit

• A-7
A-a

Assignments
Task and Resident Library Data • •
Resident Library/Common Name Block Data
Task File Switch Defaults • . . • •
Map File Switch Defaults • • • • •
Symbol Table File Switch Defaults
Input File Switch Defaults . • • • •

xv

A-13
• • B-4
• • B-8
• • F-8

F-lO
F-ll
F-11

(.
"

('

(..

(

c

(

(

PREFACE

MANUAL OBJECTIVES

This manual describes the concepts
RSX-llM/M-PLUS Task Builder.

and capabilities of the

Working examples are used throughout this manual to introduce and
describe features of the Task Builder. Because RSX-llM systems
support a large number of programming languages, it is not practical
to illustrate the Task Builder features in all of the languages
supported. Instead, most of the examples in the main text of this
manual are written in MACRO-ll.

INTENDED AUDIENCE

Before reading this manual, you should be familiar with the
fundamental concepts of your operating system (RSX-llM or
RSX-llM-PLUS) and with the operating procedures described in the
RSX-llM/M-PLUS MCR Operations Manual and the RSX-llM/M-PLUS Command
Language Manual. In addition, you should be familiar with the
programming concepts described in the RSX-llM/M-PLUS Guide to Program
Development.

STRUCTURE OF THIS DOCUMENT

This manual has 12 chapters.
follows:

Their contents are summarized as

• Chapter 1 describes the Task Builder command sequences that
you use to interact with the Task Builder.

• Chapter 2 describes the basic Task Builder functions,
including the Task Builder's allocation of virtual address
space and the resolution of global symbols. It also contains
an introduction to supervisor-mode libraries, privileged
tasks, and multiuser tasks.

• Chapter 3 describes the Task Builder's overlay capability and
the language you use to define an overlay structure.

• Chapter 4 describes the two methods available to you to load
overlay segments.

• Chapter 5 describes some typical Task Builder features,
including tasks that access shared regions and device commons,
tasks that create dynamic regions, and virtual program
sections.

• Chapter 6 defines privileged tasks, describes their mapping,
and shows how to build a privileged task to examine unit
control blocks.

xvii

PREFACE

• Chapter 7 describes user-mode 1- and D-space, the mapping of
these spaces, and the advantages of using 1- and D-space in
user mode.

• Chapter 8 describes supervisor-mode
defines and shows how to build
libraries.

libraries. The chapter
and use supervisor-mode

• Chapter 9 describes and shows how to build multiuser tasks.

• Chapter 10 lists and describes the Task Builder switches. The
switches are listed in a~phabetical order.

• Chapter 11 lists and describes the qualifiers for the DCL LINK
command. The qua~ifiers are listed in alphabetical order.

• Chapter 12 lists and describ'rs the Task Builder options. The
options are listed in alphab~tical order.

This manual also contains eight appendices.
summarized as follows:

Their contents are

• Appendix A contains a detaited description of the Task Builder
input data structures.

• Appendix B contains a detailed description of the task image
file structure.

• Appendix C describes the considerations for building a task on
one system to run on a system with a different hardware

. configuration.

• Appendix D describes two memory dumps:
snapshot.

postmortem and

• Appendix E contains a list of the symbols and program section
names reserved for Task Builder use.

• Appendix F contains information on improving Task Builder
performance.

• Appendix G describes the fast Task Builder.

• Appendix H contains the Task Builder error messages.

A Task Builder glossary follows the appendices.

ASSOCIATED DOCUMENTS

Other manuals closely allied with this document are described in the
Information Directory and Master Index for your operating system.
This directory defines the intended audience of each manual in the
documentation set and provides a brief synopsis of each manual's
contents.

CONVENTIONS USED IN THIS DOCUMENT

In this manual, horizontal ellipses (...) indicate that additional,
optional arguments in a statement format have been omitted. For
example:

input-spec, ...

xviii

(

(

(

(

c

(

(

PREFACE

means that one or more input-spec items, separated by commas, can be
specified.

Vertical ellipses mean that lines in an example, command lines, or
lines in a Task Builder map file that are not pertinent to an example
have been omitted. For example:

TKB> input-line

means that one or more of the indicated TKB items have been omitted.

In the examples of Task Builder command sequences, the portion of the
command sequence that you type is printed in red. The Task Builder's
responses and prompts are printed in black.

The symbol ®] indicates the location in a command line or string
where you must press the RETURN key.

Brackets [] indicate an optional argument.

Parentheses () indicate a required argument.

The words "Task Builder" in this manual have been abbreviated to the
acronym TKB.

Unless otherwise stated, references to tasks, their mappihg, and their
structure imply a nonprivileged task in an RSX-llM mapped system.

Shading in the manual has the following meanings:

xix

(

(

(

(

SUMMARY OF TECHNICAL CHANGES

This manual contains the changes for RSX-IIM Version 4.1 and
RSX-IIM-PLUS Version 2.1. This manual has been extensively revised.
A study of the Table of Contents and this Summary of Technical Changes
is recommended before you look for information in the manual.

GENERAL CHANGES

Editorial changes were made throughout the manual
typographical errors.

to correct

Small technical changes were made throughout the manual as a result of
ongoing development, SPR responses, and readers' comments.

Each command, switch, and option is shown in both MCR format and DCL
format if there is a DCL equivalent.

A new chapter describing the qualifiers used in the Task Builder DCL
LINK command has been added.

The major technical changes to the manual are listed below.

TECHNICAL CHANGES

about building an F4PRES,
FCSRES has been

xxi

C_'

(

(

c

(

c

CHAPTER 1

INTRODUCTION AND COMMAND SPECIFICATIONS

The basic steps in developing a program are as follows:

1. You write one or more routines i~ an RSX-IIM/M-PLUS supported
source language and enter each routine as an ASCII text file,
through an editor.

2. You submit each text file to the appropriate language
translator (an assembler or co.mpiler), which converts it to a
relocatable object module.

3. You specify the object modules as input to the Task Builder
(TKB), which combines the object modules into a single task
image output file.

4. You install and run the task.

If you find errors in the task when you run it, you make corrections
to the text file using the editor, and then repeat steps 2 through 4.

The Task Builder's main function is to convert relocatable object
modules (.OBJ files) into a single task image (.TSK file) that you can
install and run on a RSX-IIM or RSX-IIM-PLUS system. The task is the
fundamental executable unit in both systems.

If your program consists of a single object module, using the Task
Builder (TKB) is appropriately simple. You specify as input only the
name of the file containing the object module produced from the
translation of the program, and specify as output the task image file.

Typically, however, programs consist of more than a single object
module. In this case, you name each of the object module files as
input. TKB links the object modules, resolves references between
them, resolves references to the system library, and produces a single
task image ready to be installed and executed.

TKB makes a set of assumptions (defaults) about
on typical usage and storage requirements.
assumptions by including switches and options
terminal sequence. Thus, you can build a task
own input/output and storage requirements.

the task image based
You can override these
in the task-building

that is tailored to its

-TKB also produces (upon request) a memory allocation (map) file that
contains information describing the allocation of address space, the
modules that make up the task image, and the value of all global
symbols. In addition, you can request that a list of global symbols,
accompanied by the name of each referencing module, be appended to the
file (global cross reference).

Note that the examples in this manual use both MCR and DCL as the
command line interpreters (CLIs).

1-1

INTRODUCTION AND COMMAND SPECIFICATIONS

The following example shows a simple'sequence for building a task:

MCR DCL

> MAC PROG,=PROG >MACRO PROG
>TKB PROG,,~PROG >LINK PROG
>INS PROG >INS PROG
>RUN PROG >RUN PROG

The first command (MAC or MACRO) causes the MACRO-II assembler to
translate the source code of the file PROG.MAC into a relocatable
object module in the file PROG.OBJ. The second command (TKB or LINK)
causes TKB to process the file PROG.OBJ and to produce the task image
file PROG.TSK. The third command (INS) causes the INSTALL processor
to add the task to the Executive's directory of executable tasks
(System Task Directory). The fourth command (RUN) causes the task to
execute.

The example just given includes the command

TKB LINK

>TKB PROG,,=PROG or >LINK PROG

This command illustrates the simplest use of TKB. A single file is
the output and a single file is the input.

The following sections describe basic Task Builder command forms and
sequences.

1.1 TASK COMMAND LINE

The Task Builder command lines for both MCR and DCL are discussed in
the following sections.

1.1.1 The MCR Command Line for the Task Builder

The task command line used in MCR contains the output file
specifications, followed by the input file specifications; they are
separated by an equal sign (=). You can specify up to three output
files and any number of input files.

The task command line has the following MCR form:

task-image-file,map-file,symbol-definition-file=input-file, .••

You must give the output files in a specific order: the first file
you name is the image (.TSK) file; the second is the memory allocation
(.MAP) file; and the third is the symbol definition (.STB) file. The
map file lists information about the size and location of components
within the task. The symbol definition file contains the global
symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for reprocessing by TKB. You specify
this fil.e when you are building a resident library or common.
(Resident libraries and commons are described in Chapter 3.) TKB
combines the input files to create a single task image that can be
installed and executed.

1-2

c

c

(

(

(

INTRODUCTION AND COMMAND SPECIFICATIONS

1.1.1.1 Printing the Map File - If you
specifying one in the TKB command line,
that you can print the file. The following
that you may print the map file.

create a map file by
there are a number of ways
examples show you ways

1. With the following two command lines, you can create a map
file and then print it later. The TKB command line tells TKB
to create a task file, a map file without printing it (by use
of the switch I-sp), and a symbol definition file. The PRINT
command line tells the system to print the map file.

>TKB INV.TSK,INV.MAP/-sP,INV.STB=INV.OBJ
>PRINT INV.MAP

2. With the next command line, you can print the map file
directly as it is created. In this case, TKB tells the
system to print the file by use of the switch Isp. However,
the system task QMGPRT.TSK must be installed as PRT ..• for
this method to work.

3. With

>TKB INV.TSK,INV.MAP/sP,INV.STB=INV.OBJ

command line, you can
that you specify.

>TKB INV.TSK,LPn:,SY:INV.STB=INV.OBJ

1. L 1. 2 Omitting Specific Output Files - You can omit any ~:>utput file
by replacing the file specification with the delimiting comma that
would normally follow it. The following commands illustrate the ways
in which TKB interprets the output file names.

Command

>TKB IMGl,IMGl,IMGl=INl

>TKB IMGl~INl

>TKB ,IMGl=INl

>TKB "IMGl=INl

>TKB IMGl"IMGl=INl

>TKB =INI

Output Files

The task image file is IMGl.TSK,
memory allocation (map) file
IMGl.MAP, and the symbol definition
is IMGl.STB.

The task image file is IMGl.TSK.

The map file is IMGl.MAP.

the
is

file

The symbol definition file is IMGl.STB.

The task image file is IMGl.TSK and the
symbol definition file is IMGl.STB.

This is a diagnostic run with no output
files.

1.1.2 The DCL LINK Command Line for the Task Builder

The LINK command for the TKB has the following DCL form:

LINK/[qual]/[NO]TASK[:fspee]/MAP[:fspee]/SYMBOLTABLE:[fspee] [,fspee[,s]]

1-3

INTRODUCTION AND COMMAND SPECIFICATIONS

This is the standard form of the LINK command for the Task Builder
used in this manual. Any DCL command line, including the LINK
command, has variations in the way it may be used. For possible
variations, see the RSX-IIM/M-PLUS Command Language Manual, both the
Introduction and the section on the LINK command.

The LINK command has many qualifiers and defaults. The qualifiers,
which will be discussed as they appear in the manual, are the TKB
switches and options listed in Chapters 10 and 11.

TKB can produce three different kinds of output files either at
separate times or at the same time. These files are the task file
(.TSK), the map file (.MAP), and the symbol definition file (.STB).
The input files for the LINK command are discussed next. The output
files -- task, map, and symbol definition -- are discussed after the
input files.

1.1.2.1 The LINK Command Input File - You may specify only the input
file when you build your task with the LINK command. The LINK command
then creates an output file with the same name as the input file, by
default. This way you need only specify the input file name, which
must be an object ('.OBJ) file. The default file type for the input
file is .OBJ. You separate the input file name from the rest of the
qualifiers, if any, by a space. Therefore, the following simple LINK
command iines

>LINK BUN and >LINK BUN.OBJ

each produce an output task file with the default name
file type .TSK (BUN.TSK). The LINK command expects the
have a .OBJ file type by default. Therefore, you need
.OBJ in the input filespec.

BUN and the
input file to
not specify

You may specify more than one input file in the LINK command as

>LINK ROLLl,ROLL2,ROLL3

This command produces one output task file, which is a combination of
the three input files. The output file has the default name ROLLI and
the file type .TSK (ROLLl.TSK). LINK uses the first input file name
that it encounters as the default output file name.

However, other files, such as library files, will have a different
file type that must be specified. To specify a library file as an
input file you can use the following command line:

>LINK COOKIEl,COOKIE2,COOKIE3,MIX4/LIBRARY

Here, MIX4 is a library file, and three .OBJ input files are combined
with the library file to produce one task file. A library file has
the .OLB file type, but this file type need not be specified in the
LINK command. However, the library file must be indicated with the
/LIBRARY qualifier. The library file should be specified last in the
input file string. If you use a library file, you must use it
together with the object file or files that you have coded and want to
build with the library. The separate input object files are named
here COOKIEl, COOKIE2, and COOKIE3. This example produces the output
task file with the default name of COOKIEI and the .TSK file type
(COOKIE!. TSK) .

1-4

(

(

(

(

(

(

c

INTRODUCTION AND COMMAND SPECIFICATIONS

Another way to specify a library file, but only use specific·· routines
contained in the library file, is to use the /INCLUDE qualifier. A
command line using this qualifier would appear as

>LINK COOKIEl,COOKIE2,COOKIE3,MIX4/INCLUDE:BATCHl,BATCH2

and would include routines named BATCHI and BATCH2 from the library
named MIX4. When you use /INCLUDE with an input file name you need
not use the /LIBRARY qualifier.

More information about the /LIBRARY and /INCLUDE qualifiers is
included in the description of qualifiers in Chapter 11.

1.1.2.2
command
default
file.

The LINK Command Task File - The output file of the LINK
is the task file. This file has the .TSK file type. The

name of the task file is the same name as that of the input
Therefore,

>LINK BUN

produces an output file called BUN.TSK. By the same process, LINK
produces one output file with a .TSK file type from multiple input
files and uses the first input file encountered in the command line as
the name of the output file. Therefore,

>LINK ROLL, BUN, CROISSANT

produces an output file called ROLL.TSK.

To name the output file any name you want, you must use the /TASK
qualifier on the LINK command. Thus,

>LINK/TASK:BREAD ROLL, BUN, CROISSANT

produces an output file named BREAD with the file type .TSK from the
three input files ROLL, BUN, and CROISSANT.

You mayor may not want a.TSK file as output. An example of not
wanting a task file would occur when you wanted to see only a .MAP
file for a task, or you wanted to see if TKB would actually build
without errors the files that you had specified. (.MAP file output is
discussed in the next section.) You can notify LINK that you do not
want a .TSK file by using the NOTASK qualifier specified as

>LINK/NOTASK ROLL, BUN, CROISSANT

Here, TKB goes through the building process but does not produce any
output.

1.1.2.3 The LINK Command Map File - In addition to the task file, you
can use the LINK command to produce a map file for the task. The map
file has a .MAP file type. The map file contains the .addresses and
symbols used by your task, and it describes their relationship. The
LINK command will produce this file only if you specify that it do so.
Thus, the command

>LINK/MAP CHIP,OAT,FLOUR

produces a task file with the default name of CHIP and a map file with
the default name of CHIP, which is that of the first input file.

1-5

INTRODUCTION AND COMMAND SPECIFICATIONS

However, you may name specifical~y the task file and let the map file
default to the name of the first input file, as before. You can do
this with the following two variations. of the LINK command:

>LINK/TASK:COOKIE/MAP CHIP,OAT,FLOUR

>LINK/MAP/TASK:COOKIE CHIP,OAT,FLOUR

To name specifically the map file, you must use a file name after the
/MAP qualifier. You cando this ·by either of the following two
variations of the LINK command:

>LINK/TASK:COOKIE/MAP:COOKIE CHIP,OAT,FLOUR

>LINK/MAP:COOKIE/TASK:COOKIE CHIP,OAT,FLOUR

These latter two variations produce a task file called COOKIE.TSK and
a map file called COOKIE.MAP.

There are other qualifiers that produce a .MAP file. These qualifiers
are /[NO]SYSTEM LIBRARY DISPLAY, /[NO]CROSS REFERENCE, /[NO]WIDE, and
/LONG. Chapter 11 explaTns the operation of-these qualifiers.

1.1.2.4 The LINK Command Symbol Definition File - Another file can be
produced by the LINK command. This file is called the symbol
definition file and it has the file type .STB. This file contains the
symbols used or referenced by the input files. TKB uses this file
when you use libraries, commons, and overlays as part of your task.
Libraries and commons are discussed in Chapter 5, and overlays are
discussed in Chapters 3 and 4.

To create a
specifically
the command

symbol definition file for your task, you
notify the LINK command that you want to do so.

>LINK/TASK:COOKT/MAP:COOKM/SYMBOL_TABLE:COOKS CHIP,OAT,FLOUR

produces three files: the task file COOKT.TSK, the map
COOKM.MAP, and the symbol definition file COOKS.STB.

must
Thus,

file

(

c

(

By default, the LINK command uses the name of the first input file to (_
create the name of the symbol definition file. Thus

>LINK/TASK:COOKT/MAP:COOKM/SYMBOL_TABLE CHIP,OAT,FLOUR

produces a symbol definition file called CHIP.STB.

1.1.2.5 Printing the • MAP File When Using the LINK Command
Automatic printing of your .MAP file may occur if your system has the
system task QMGPRT.TSK installed with the PRT... name. Otherwise,
the • MAP file is created in your directory or the directory you
specified in the LINK command line and is not immediately ·printed.
From there, you may print it later by methods specific to your own
system type or configuration.

If you use /MAP as a command qu~lifier, in the following way,

>LINK/MAP CHIP,OAT,FLOUR

1-6

(

(

c

(

c

INTRODUCTION AND COMMAND SPECIFICATIONS

without a filespec argument, TKB puts the map in your
the file name of the first input file encountered.
the name of the map file is CHIP.MAP. This file is
•.. PRT task is installed.

directory with
In this example,
printed if the

If you use /MAP with a filespec argument, either on an input file or
as the LINK command qualifier, as in the commands

>LINK/MAP:COOKIE/TASK:COOKIE CHIP,OAT,FLOUR

>LINK/TASK:COOKIE CHIP/MAP:COOKIE,OAT,FLOUR

TKB puts the map in your directory with the name you have specified in
the filespec argument. In these two examples, the map files are named
COOKIE.MAP.

If you use /MAP as an input filespec qualifier, without a filespec
argument on /MAP, as in the command

>LINK/TASK:COOKIE CHIP/MAP,OAT,FLOUR

TKB places the map file in your directory with the name of the file to
which /MAP is attached. In this example, the map file is named
CHIP.MAP.

TKB always tries to spool the map file to the printer. TKB will
succeed in doing this if the system task QMGPRT.TSK is installed with
the PRT .•. name. To prevent spooling, use the /NOPRINTER qualifier
with the /MAP qualifier.

1.2 MULTILINE INPUT

Although
specify
files, a
consists
when you
1.3) .

you can specify a maximum of three output files, you can
any number of input files. When you specify several input
more flexible format is sometimes necessary one that
of several lines. This multiline format is also necessary

want to include options in your command sequence (see Section

1.2.1 Multiline Input Using the TKB Command

If you type TKB, the Monitor Console Routine (MCR) activates the Task
Builder. TKB then prompts for input until it receives a line
consisting only of the terminating slash characters (//). For
example:

>TKB
TKB>IMG1,IMGl=INl
TKB> IN2, IN3
TKB>//
>

This sequence produces the same result as the single line command

>TKB IMG1,IMGl=IN1,IN2,IN3

Both command sequences produce the task image file IMGl.TSK and the
map file IMG1.MAP from the input files IN1.0BJ, IN2.0BJ, and IN3.0BJ.

1-7

INTRODUCTION AND COMMAND SPECIFICATIONS

You must specify the output file specifications and the equal sign (=)
on the first command line. You can begin or continue input file
specifications on subsequent lines.

When you type the terminating slash characters (//), TKB stops
accepting input, builds the task, and returns control to MCR.

1.2.2 Multiline Input Using the LINK Command

The LINK command can get very long when you use many qualifiers. One
way to shorten the command line is to ~se the hyphen (which is the
continuation character) at a logical point in the command, thus
terminating that individual line at that point. One way to do this is
the following:

>LINK
->/TASK:COOKIE/MAP:CRUNCH-
->/SYMBOL_TABLE:CRUMB CHIP,RAISIN,OAT,FLOUR
>

Or, you can do it this way:

>LINK-
->/TASK:COOKIE/MAP:CRUNCH/SYMBOL TABLE:CRUMB -
->CHIP, RAISIN, NUT, SUGAR, OAT, FLOUR, SALT, SODA
>

(

(

This is also a legitimate command line. Notice the space after CRUMB
and before the hyphen. This space is the separation between the
qualifiers and the input file specifications, and it must be present
whether or not you use the hyphen. (

1.2.2.1 Abbreviated Oualifiers in LINK - To shorten the length of a
command line, you can use an abbreviated qualifier such as SYM for
SYMBOL TABLE. The previous command could look like the following one
if you-use the hyphen and abbreviated qualifiers:

>LINK-
->TAS:COOKIE/MA:CRUNCH/SYM:CRUMB CHIP,RAISIN,OAT,FLOUR
>

All the qualifiers in the LINK command can be abbreviated somewhat.
The following is a sample list of abbreviations for frequently used
qualifiers:

LONG FORM

/ANCILLARY PROCESSOR
/NOCHECKPOINT:arg
/CHECKPOINT:arg
/CODE:arg
/NOHEADER
/HEADER
/MAP:filespec
/OPTIONS:option
/OVERLAY DESCRIPTION
/SHAREABLE:arg
/SYMBOL TABLE:filespec
/NOTASK:filespec
/TASK: filespec
/LIBRARY
/INCLUDE:modulename, ••• ,

SHORT FORM

/ANC
/NOCH:arg
/CHEC:arg
/COD:arg
/NOHE
/HEAD or/HEA
/MA:filespec
/OPT:option
lOVER
/SHARE:arg
/SYM:filespec
/NOT:filespec
/TAS:fi:lespec
/LIB
/INC:modulename, ••• ,

1-8

(

(

(

(

(

(

INTRODUCTION AND COMMAND SPECIFICATIONS

Hcwever, be careful that.ycu use abbreviaticns that DCL can reccgnize
as unique., Fcr example, the twO' qualifiers /SEQUENTIAL and lSEGREGATE
can be abbreviated /SEQ and /SEG, but nct /SE and /SE.

1. 3 TASK BUILDER OP.TIONS

The Task Builder uses many cpticns to' ccntrcl the way in which a tas.k
is built. Secticn 1.3.1 discusses entering these cpticns in TKB if
ycur system uses MCR as the ccmmand line interpreter. Secticn 1.3.2
discusses entering these cpticns in LINK if your system uses DCL a:s
the ccmmand line interpreter. Secticn 1.3.3 discusses specific
methcds that ycu may use cr circumstances that ycu may enccunter when
entering these cpticns.

1.3.1 Entering Task Builder Opticns in TKB

Ycu use cpticns to' specify the characteristics cf the task ycu are
building. TO' include cpticns in a tas.k, ycu must use thernul tiline
fcrmat. If ycu type a single slash (/) follcwing the inpqt file
specificaticn, TKB requests cpticn infcrmation by displaying ENTER
OPTIONS: and prcmpting fcr input. The TKB example fcr entering
cpticns fcllcws:

>TKB
TKB>IMG1,IMG1=INl
TKB>IN2,IN3
TKB/
Enter Opticns:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>//
>

In this sequence there are twO' cpticns: PRI=lOO and COMMON=JRNAL:RO.
The twO' slashes end cpticn input, initiate the task build, and return
ccntrcl to' MCR upcn ccmpleticn.

NOTE

When ycu are building an cverlaid task,
excepticns to' the use cf the single
Overlaid tasks are described in Chapter 4.

1.3.2 Entering Task Builder Options in LINK

there
slash

are
(/) .

If ycu want to' use Task Builder cpticns, ycu must use the LINK .ccmmand
qualifier /OPTIONS in the LINK ccmmand line. After DCL reads the
ccmmand line, it prcmpts ycu fcr the cpticn cr cpticns. Enter each
cpticn . after the prcmpt, and then press the RETURN key afte·r 'each
cpticn. TO' end cpticn input, ycu press cnly the RETURN key after the
cpticn prcmpt. An example fcllcws:

>LINK/TASK:COOKIE/MAP:COOKIEM/OPTIONS CHIP,OAT,~UGAR,f40VR
Opticn? PR~=lOO '
Opticn? COMMON=JRNAL:RO
Opticn? ~
>

1-9

INTRODUCTION AND COMMAND SPECIFICATIONS

In this command sequence there are two options, PRI and COMMON.
RETURN key is pressed after the third option prompt. You may use
hyphen in the LINK command line to provide line continuation.
hyphen does not interfere with option input.

Alternatively, you can use a filespec on the IOPTION qualifier
designate a file that contains the options that you want to use.
example follows:

The
the
The

to
An

>LINK/TASK:COOKIE/MAP:COOKIEM/oPTIONS:filespec CHIP,OAT,SUGAR,FLOUR
>

The file named in filespec can have any name you want but must have
the file type of .CMD. It must contain the options in a list, each
option on a single line. This file cannot contain any slash
characters (I). You can create this file with the EDT editor. The
file would look like the following:

PRI=lOO
COMMON=JRNAL:RO

1.3.3 Entering the Option Line

(I

C---
The RSX-llM/M-PLUS Task Builder provides numerous options, which are
described in Chapter 12. The general form of an option is a keyword
followed by an equal sign (~) and an argument list. The arguments in
the list are separated from one another by a colon (:). In the
examples in Sections 1.3.1 and 1.3.2, the first option consists of the.
keyword PRI and a single argument indicating that the task is to be
assigned the priority 100. The second option consists of the keyword
COMMON and an argument list, JRNAL:RO, indicating that the task
accesses a resident common region named JRNAL and that the access is (
read-only. You can specify more than one option on a line by using an
exclamation point (1) to separate the options.

For example, the TKB command

TKB.>PRI=lOO 1 COMMON=JRNAL: RO

is equivalent to. the two lines

TKB>PRI=lOO
TKB>COMMON=JRNAL:RO

In a similar way, the LINK command

Option? PRI=lOOlCOMMON=JRNAL:RO

is equivalent to the two lines

Option? PRI=lOO· ,
Option? COMMON=JRNAL:RO

Some options accept more than one argument list. You use a comma (,)
to separate the argument lists. For example, in the TKB command

TKB>COMMON=JRNAL:RO,RFIL:RW

1-10

(

(

(

(

(

INTRODUCTION AND COMMAND SPECIFICATIONS

or in the LINK command

Option? COMMON=JRNAL:RO,RFIL:RW

the first argument list indicates that the task
read-only access to the resident common JRNAL. The
list indicates that the task has requested read/write
resident common RFIL.

has requested
second argument
access to the

The following three sequences for TKB are equivalent:

TKB>COMMON=JRNAL:RO,RFIL:RW

TKB>COMMON=JRNAL:RO!COMMON=RFIL:RW

TKB>COMMON=JRNAL:RO
TKB>COMMON=RFIL:RW

Similarly, the following three sequences for LINK are equivalent:

Option? COMMON=JRNAL:RO,RFIL:RW

Option? COMMON=JRNAL:ROICOMMON=RFIL:RW

Option? COMMON=JRNAL:RO
Option? COMMON=RFIL:RW

1.4 MULTIPLE TASK SPECIFICATIONS

For MCR, if you intend to build more than one task, you can use
single slash (/) following option input. This directs TKB to
accepting input, build the task, and request information for the
task build. For example:

>'l'KB
TKB>IMG1=INl
TKB>IN2,IN3
TKB>/
Enter Options:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>/
TKB>IMG2=SUBl
TKB>//

the
stop
next

TKB accepts the output and input file specifications and the option
input; it then stops accepting input upon encountering the single
slash (/) during option input. TKB builds IMG1.TSK and then returns
to accept more input for building IMG2.TSK. .

For DCL, there is no way to enter multiple task specifications with a
single LINK command.

1.5 INDIRECT COMMAND FILES

You can enter commands to TKB directly from the keyboard, or
indirectly through the indirect command file facility. To use the
indirect command file facility, you prepare a file that contains the
TKB commands you want to be executed. Later, after you invoke TKB,
you type an at sign (@) followed by the name of the indirect command
file.

1-11

INTRODUCTION AND COMMAND SPECIFICATIONS

For example, suppose you create a file called AFIL.CMD containing the
following:

IMG1,IMG1=INl (
IN2,IN3
I
PRI=lOO
COMMON=JRNAL:RO
II "

Later, you can type:

TKB

>TKB
"TKB>@AFIL
TKB>

or simply:

TKB

>TKB @AFIL

LINK

>LINK
File(s)?@AFIL
>

LINK

>LINK @AFIL

If you use DCL, it passes the indirect command file to TKB. When TKB
encounters the at sign (@), it directs its search for commands to the
file named AFIL.CMD.

The preceding example is equivalent to the TKB sequence

>TKB
TKB>IMG1,IMG1=INl
TKB>IN2,IN3
T~B>I
Enter Options:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB>II
>

or the LINK sequence

>LINK/TASK:IMGl/MAP:IMGl/OPTION IN1,
->IN2, IN3
Option? PRI=lOO
Option? COMMON=JRNAL:RO
Option? CBm
>

When TKB encounters two terminating slash characters (II) in the
indirect command file, it terminates indirect command file processing~
builds the task, and exits to MCR.

When TKB encounters a single slash (I) in an indirect command file and
the slash is the last character in the file, TKB directs its search
for commands to the terminal. For example, suppose the file AFIL.CMD
in the last example is changed to read:

IMG1,IMG1=INl
IN2,IN3
I

1-12

C--

(

(

(

(~

(

INTRODUCTION AND COMMAND SPECIFICATIONS

Later, you can type:

>TKB
TKB>@AFIL

In this case, TKB goes to the terminal and prompts:

Enter Options:
TKB>

From this point, you input options to TKB directly from the keyboard.
If you then conclude option input from the keyboard with double
slashes (II), TKB suspends command processing, as described above, and
exits to MCR following the task build. If you conclude option input
with a single slash (I), TKB prompts for new command input following
the task build of IMGl.TSK, as follows: .

TKB>

Using the single slash (I) following option input in indirect command
files is a convenient way to return control to your terminal between
successive task builds. For example, suppose you create two indirect
command files. The first, AFIL.CMD, contains:

IMGl,IMGl=INl
IN2,IN3
I
PRI=lOO
COMMON=JRNAL
/

The second, AFILl.CMD, contains:

IMG2,IMG2=IN4
INS,IN6
I
PRI=lOO
II

Then, the terminal sequence to build these two tasks is:

>TKB
TKB>@AFIL
TKB>@AFILI
>

NOTE

For interaction with a TKB indirect command file as
described above, you must use the multiline format
when you specify the indirect command file.

TKB permits two levels of indirection in file references. That is,
the indirect command file referenced in a terminal sequence can
contain a reference to another indirect command file. For example, if
the file BFIL.CMD contains all the standard options that are used by a
particular group of users at an installation, you can modify AFIL to
include an indirect command file reference to BFIL.CMD as a separate
line in the option sequence.

1-13

INTRODUCTION AND COMMAND SPECIFICATIONS

The contents of AFIL.CMD would then be:

IMG1,IMG1=INl
IN2,IN3
I
PRI=lOO
COMMON=JRNAL:RO
@BFIL
II

To build these files, you type:

>TKB
TKB> @AFIL

Suppose the contents of BFIL.CMD are:

STACK=lOO
UNITS=51ASG=DT1:5

Then the terminal equivalent of building these files is:

>TKB
TKB>IMG1,IMG1=INl
TKB>IN2,IN3
TKB>I
Enter Options:
TKB>PRI=lOO
TKB>COMMON=JRNAL:RO
TKB > STACK=lOO
TKB>UNITS=51ASG=DT1:5
TKB>II
>

The indirect command file reference must appear on a separate line.
For example, if you modify AFIL.CMD by adding the @BFIL reference on
the same line as the COMMON=JRNAL:RO option, the substitution would
not take place and TKB would report an error.

1.6 COMMENTS IN INDIRECT COMMAND FILE LINES

For TKB or LINK,
command file
specifications.
terminate it
delimiters is a

you can include comments at any point in the indirect
sequence, except in lines that contain file

You begin a comment with a semicolon (i) and
with a carriage return. All text between these
comment.

For example, in the indirect command file AFIL.CMD, described in
Section 1.5, you can add comments to provide more information about
the purpose and the status of the task.

TASK 33A

DATA FROM GROUP E-46 WEEKLY

IMG1,IMG1=

i PR0CESSING ROUTINES

INI

1-14

c

(

(

(

(

(

INTRODUCTION AND COMMAND SPECIFICATIONS

STATISTICAL TABLES

IN2

7 ADDITIONAL CONTROLS
7
IN3
I
PRI=lOO

COMMON=JRNAL:RO 7 RATE TABLES

7 TASK STILL IN DEVELOPMENT
7
II

1.7 FILE SPECIFICATIONS

TKB adheres to the standard RSX-IIM/M-PLUS conventions for file
specifications. For any file, you can specify the device, the User
File Directory (UFD), the file name, the file type, the file version
number, and any number of switches.

The file specification has the form

device:[group,member]filename.type7versioplswljsw2 .•• 1swn

When you specify files by name only, TKB applies the default switch
settings for device, group, member, type, and version.

For example:

TKB

>TKB
TKB>IMGl,IMGl=INl
TKB>IN2,IN3
TKB>II
>

LINK

>LINK
File(s)?/TASK:IMGl/MAP:IMGl IN1,
File(s)?IN2,IN3 @]
>

If the default directory of the terminal from which TKB is running is
[200,200], the task image file specification of the example is assumed
to be:

SYO:[200,200]IMGl.TSK71

That is, TKB creates the task image
under UFD [200,200]. The default
and, if the name IMGl.TSK is new,
default settings for all the task
defaults are described in detail in

For example in TKB:

>TKB

file on the system device (SYO:)
type for a task image file is .TSK
the version number is 1. The
image switches also apply. Switch
Chapter 10.

TKB>[20, 23]IMGI/Cp/DA, IMGl/cR=INl
TKB>IN2;3,IN3
TKB>II
>

1-15

INTRODUc::TION AND COMMAND SPECIFICATIONS

And, for example, in LINK:

>LINK/TASK:[20,23JIMGl/CHECK:SYS/DEB/MAP:IMGl/CROSS INl,
->IN2;3,IN3
>

This sequence of commands instructs TKB to create a task image file
IMGl.TSK;l and a memory allocation (map) file IMGl.MAP;l (actually, it
produces IMGl.TSK and IMGl.MAP with versions one higher than the
current versions) under UFD [20,23J on the device SY:. The task image
is checkpointable and contains the standard debugging aid (ODT). TKB
outputs the map to the line printer with a global cross-reference
listing appended-to it. TKB builds the task from the latest versions
of INl.OBJ and IN3.0BJ, and the specific version of IN2.0BJ. The
input files are all found on the system device.

The system device (SY:) is always the default device unless you
specify otherwise. If you specify another device on either side of
the equal sign, (or space in LINK) that device becomes the default
device for the files on that side of the equal sign (or space in
LINK) •

For example in TKB:

>TKB
TKB>[20,23JIMGl,IMGl,IMGl=DBl:IMGl,INl,IN2

And, in LINK:

>LINK/TASK:[20,23JIMGl/MAP:IMGl/SYM:IMGl DBl:IMGl,INl,IN2
>

(

~i

This command line produces a task image file, map file, and listin9 (
file in UFD [20,23J on device SY:. All the object files are in UFD
[20,23J on device DBI. In case~ where files are scattered among
several devices, the devices must be specified in the command line.

For some files, a device specification is sufficient. In the example
above, the map file could be fully specified by the device LP:. The
map listing is produced on the line printer, but is not retained as a
file.

For TKB format in MCR, this example also uses switches Icp, /CR, and
/DA, and uses LINK command qualifiers /CHECKPOINT:SYSTEM, /DEBUG, (
/CROSS REFERENCE, and /SYMBOL TABLE. The syntax and meaninq for each
switch-and qualifier are given in Chapters 10 and 11. -

1.8 SUMMARY OF SYNTAX RULES

The syntax rules for issuing commands to TKB are as follows:

• A task-build command can take anyone of four forms. The
first form is a single line:

TKB LINK

>TKB task-command-line >LINK command-line

1-16

(

(

(

(

INTRODUCTION AND COMMAND SPECIFICATIONS

The second form has additional lines for input file names:

TKB

>TKB
TKB>task-command-line
TKB>input-line

TKB>terminating-symbol
>

LINK

>LINK
File(s)? ITASK: •.•.•
File(s)? INFILEl,INFILE2, •••

>

The third form allows you to specify options:

.TKB

>TKB
TKB>task-command-line
TKB>I
Enter Options:
TKB>option-line

TKB>terminating-symbol
>

LINK

>LINK
File(s)? ITAS: •• ~/oPT INFILEl, ...
Options?
Options? (BIT)
>

The fourth form has both input lines and option lines:

TKB

>TKB
TKB>task-command-line
TKB>input-line

TKB>I
Enter Options:
TKB>option-line

TKB>terminating-symbol
>

LINK

>LINK
File(s)? ITAS: •.• /MAP: •.• loPT -
File(s)? INFILEl, ••.
Option? option-line
Option? (BIT)
>

For TKB in MCR or in indirect command files, the terminating
symbol is:

I if you intend to build more than one task

II if you want TKB to return control to MeR

For LINK, the normal terminating symbol in command or option
input is the RETURN key. However, the CTRL/z combination ends
the command without any execution by TKB. If you have
specified an indirect command file for input to LINK, the
terminating symbol in the indirect command file is the
end-of~file if it has no options, or II if it has options.

1-17

..
INTRODUCTION AND COMMAND SPECIFICATIONS

• A Task Builder command line has one of the following forms:

TKB LINK

output-file-list=input-file, ..•

=input-file, ..•

output/qual input/qual

@ input-file

@indirect-command-file @indirect-command-file

The third form is an indirect command file specification, as
described in S~ction 1.5.

• A TKB output file list has one of the following three forms:

task-image-"file,map-file,symbol-definition-file

task-image-file,map-file

task-image-file

The task-image-file is the file specification for the task
image file; map-file is the file specification for the memory
allocation (map) file; and symbol-definition-file is the file
specification for the symbol definition file. Any of the
specifications can be omitted, so that, for example, the
following form is permitted:

task-image-file"symbol-definition-file

• An input line has one of two forms:

TKB LINK

=input"';file, ••• @ input-file, •.•

@indirect-command-file @indirect-command-line

Both input-file
specifications.

and indirect-command-file

• An option line has one of two forms:

TKB LINK

option! ..• Option?option-line

are file

@indirect-command-file Option?@indirect-command-file.

The indirect-command-file is a file specification.

• An option has the form:

keyword=argument-list, •••

The argu~ent-list is:

arg: •••

The syntax for each option is given in Chapter 12.

1-18

(

(

(

INTRODUCTION AND COMMAND SPECIFICATIONS

• A file specification conforms to standard RSX-llM/M-PLUS
conventions. It has the form:

device:[directoryname]filename.type:version/swl/sw2 •.. /swn

device:

The name of the physical device on which the volume
containing the desired file is mounted. The name consists
of two ASCII characters followed by an optional 1- or
2-digit octal unit number and a colon: for example, LP: or
DTl: .

directoryname

The directory name in RSX-llM is [group,member]. Where

group

is the group number, in the range of 1 through 377(8).

member

is the member number, in the range of 1 t.hrough 377(8).

filename

The name of the desired file.
to 9 alphanumeric characters.

type

T~e file name can contain up

The3-character file type identification. Files having the
same name but a different function are distinguished from
one another by the file type: for example, CALC.TSK and
CALC.OBJ.

version

The version number, in decimal.on Micro/RSX systems or in
octal on RSX-llM/M-PLUS systems, of the file. Various
versions of the same file are distinguished from one
another by this number: for example, CALC.OBJ:l and
CALC.OBJi2.

All components of a file specification are optional. The
combination of the group number and the member number is
the User File Directory (UFD) that contains the file name.

1-19

(

(

CHAPTER 2

TASK BUILDER FUNCTIONS

The process of building a task involves three distinct Task Builder
(TKB) functions:

1. Linking object modules

2. Assigning addresses to the task image

3. Building data structures into t~e task

First, TKB is a linker. It collects and links the relocatable object
modules that you specify to it into a single task image, and resolves
references to global symbols across the module boundaries.

Second, TKB assigns addresses to the task image. On mapped systems,
TKB assigns addresses for a task beginning at O. The Executive then
relocates the addresses at run time. On unmapped systems, TKB assigns
addresses for a task beginning at the base address of the partition in
which the task is to run. The addresses of tasks that run on unmapped
systems are not relocated at run time.

NOTE

Unless otherwise indicated, references to tasks that
run on mapped systems assume that the tasks are
nonprivileged and residing within system-controlled
partitions.

Third, TKB builds data structures
required by the INSTALL processor
Executive to run it.

This chapter describes the three
describes the concepts of
this chapter introduces r
privileged tasks, .1111 •••••
concepts necessary
Builder functions.

2.1 LINKING OBJECT MODULES

into
to

the task image that are
install the task and by the

in detail. It also
In addition,

••••••••• overlays,
mapping

and Task

TKB links object modules within the context of program sections and
resolves references to global symbols across module boundaries.

When the language translators convert symbolic source code within a
module to object code, they assign provisional 16-bit addresses to the
code. A single assembly or compilation produces a single object
module. In its simplest form, each module begins at 0 and extends

2-1

TASK BUILDER FUNCTIONS

upward to the highest address in the
produced at separate times might
Figure 2-1.

1000-

500-

MODULE #1

RELOCATABLE 0- L.-___ ..I RELOCATABLE 0

module. Three object modules
have the address limits shown in

750-

MODULE #3

MODULE #2

L.-___ ..I RELOCATABLE 0 '-L--___ -'

ZK-377-81

Figure 2-1 Re1ocatab1e Object Modules

If these modules represent the separate modules of a single program,
TKB links them together and modifies the provisional addresses to one
of the following:

• For a mapped system, a single sequence of addresses beginning
at 0 and extending upward to the sum of the lengths of all the
modules (-1 byte)

.• For an unmapped system, a single sequence of addresses
beginning at a base address assigned at task-build time and
extending upward to the sum of the lengths of all the modules
(-1 byte)

For example, Figure 2-2 shows the three modules linked for a mapped
system and the modules linked for an unmapped system.

2.1.1 Allocating Program Sections

The language translators process source code and TKB links object
modules within the context of program sections. A program section is
a block of code or data that consists of three elements:

• A name

• A set of attributes

• A length

A program
placement
maintain a
program.
length are

section is the basic unit used by TKB to determine the
of code and data in a task image. The language translators
separate location counter for each program section in a
The name of each program section, its attributes, and its
conveyed to TKB through the object module.

2-2

(

c--

(

(

(

(

(

2250 -

o -

TASK BUILDER FUNCTIONS

MODULE #3

MODULE #2

MODULE #1

MAPPED
SYSTEM

3250 -

BASE 1000)-

MODULE #3

MODULE #2

MODULE #1

UNMAPPED
SYSTEM

ZK-37B-B1

Figure 2-2 Modules Linked for Mapped and Unmapped Systems

You can create as many program sections within a module as you wish by
explicitly declaring them (with the COMMON statement in FORTRAN or the
.PSECT directive in MACRO-II, for example) or by allowing the language
translator to create them. If you do not explicitly create a program
section in your source code, the language translator you are working
with will create a "blank" program section within each module
translated. This program section will appear on your listings and
maps as • BLK .. For more information on explicitly declared program
sections, see your language reference manual.

A program section's name is the name by which the language translator
and TKB reference it. When processing files, both the language
translator and TKB create internal tables that contain program section
names, attributes, and lengths. A named r>rogram section can be
declared more than once. However, all occurrences of that named
program section must have identical attributes if the section oc~urs
more than once in the same module or if the section is a' global
program section. Identically named program sections within the same
module and global program sections with differing attributes cause TKB
to declare the program section as having multiple attributes, which is
an error. However, identically named program sections with differing
attributes may appear in different trees of an overlaid task if the
program sections have the local (LCL) attribute.

2-3

TASK BUILDER FUNCTIONS

Program section attributes define a program section's contents, its
placement in a task image, and, in some cases, the allowed mode of
access (read/write or read-only).

A program section's length determines how much address space TKB must
reserve for it.

When a program consists of more than one module, it is not unusual for
program . sections of the same name to exist in more than one of the
modules. Therefore, as TKB scans the object modules, it collects
scattered occurrences of program sections of the same name and
combines them into a single area of your task image file. The
attributes listed in Table 2-1 .control the way TKB collects and places
each program section in the task image.

Table 2-1
Program Section Attributes

Attribute Value

access-code RW

RO

allocation-code CON

OVR

relocation-code REL

ABS

save SAV

scope-code GBL

Meaning

Read/write: data can be read from,
written into, the program section.

and

Read-only:
cannot be
section.

data can be read from, but
written into, the program

Concatenate: all references to a given
program section name are concatenated:
the total allocation is the sum of the
individual allocations.

Overlay: all references to a
program section name overlay each
the total allocation is the length
longest individual allocation.

given
other:
of the

Relocatable: the base address of the
program section is relocated relative to
the base address of the task.

Absolute: the base address of the
program section is not relocated: it is
always O.

The program section has
attribute, and TKB forces
section into the root.

the SAVE
the program

Global: the program section
recognized across overlay
boundaries:TKB allocates storage
program section from references
the defining overlay segment.

name is
segment
for the
outside

(continued on next page)

2-4

(

c--

(

(

(

(

(

(

Attribute

scope-code
(Cont.)

type-code

TASK BUILDER FUNCTIONS

Table 2-1 (Cont.)
Program Section Attributes

Value Meaning

LCL

D

I

Local: the program section name is
recognized only within the defining
overlay segment: TKB allocates storage
for the program section from references
within the defining overlay segment only.

Data: the program section contains data.

Instruction: the program section
contains either instructions, or data and
instructions.

2.1.1.1 Access-code and Allocation-code - TKB uses a program
section's access-code and allocation-code to determine its ~lacement
and size in a task image. If you specify /SG (or /SEGREGATE ~n LINK)
in the command sequence, TKB divides address space into read/write and
read-only areas, and places the program sections in the appropriate
area according to access-code. However, the default is to order the
program sections alphabetically.

TKB uses a program section's allocation-code to determine its starting
address and length. If a program section's allocation-code indicates
that TKB is to overlay it (OVR), TKB places each allocation to the
program section from each module at the same address within the task
~mage. TKB determines the total size of the program section from the
length of the longest allocation to it.

If a program section's allocation-code indicates that TKB is to
concatenate it (CON), TKB places the allocation from the modules one
after the other in the task image, and determines the total allocation
from the sum of the lengths of each allocation.

TKB always allocates address space for a program section beginning on
a word boundary. If the program section has the D (data) and CON
(concatenate) attributes, TKB appends to the last byte of the previous
allocation all storage contributed by subsequent modules. It does
this regardless of whether that byte is on a word or nonword boundary.
For a program section with the I (instruction) and CON attributes,
however, TKB allocates address space contributed by subsequent modules
beginning with the nearest following word boundary.

For example, suppose three modules, INl, IN2, and IN3, are to be task
built. Table 2-2 lists these modules with the program sections that
each contains and their access codes and allocation codes.

In this example, the program section named B, with the attribute CON
(concatenate), occurs twice. Thus, the total allocation for B is the
sum of the lengths of each occurrence: that is, 100 + 120 = 220. The
program section named A also occurs twice. However, it has the OVR
(overlay) attribute: so its total allocation is the largest of the two
sizes, or 300. Table 2-3 lists the individual program section
allocations.

2-5

TASK BUILDER FUNCTIONS

Table 2-2
Program Sections for Modules INl, IN2, and IN3

Program
Section Access Allocation

File Name Name Code Code

INI B RW CON
A RW OVR
C RO CON

IN2 A RW OVR
B RW CON

IN3 C RO CON

Table 2-3
Individual Program Section Allocations,

Program Section
Name

B
A
C

Total
Allocation

220
300
220

Size
(Octal)

100
300
150

250
120

50

TKB then groups the program sections according to their access codes
and alphabetizes each group, as shown in Figure 2-3.

NOTE

The example shown in Figure 2-3 represents the Task
Build'er I s allocation of program sections if the /SG or III switch (or, for LINK, the /SEGREGATE or
/SHAREABLE:task qualifier) is used For more
information, see the description of the and
/SG switches in Chapter 10 and the
/SEQUENTIAL, and /SEGREGATE qualifiers in Chapter 11.

C (220)] READ-ONLY
ACCESS

B (220)

] READ!WRITE TASK MEMORY

A (300)
ACCESS

STACK

HEADER

ZK-379-81

Figure 2-3 Ai'location of Task Memory

The save attribute (SAV) is useful in cases where the information in a
program section must be kept available to all task segments. The SAV

2-6

(

,~--

(

(

c

(

TASK BUILDER FUNCTIONS

attribute of a program section causes TKB to force the program section
into the root of an overlaid task. Therefore, the named common block
in the FORTRAN SAVE statement or the named program section in the
MACRO-ll .PSECT directive specified with the SAV attribute are in the
root of the task.

2.1.1.2 Type-Code and Scope-Code - The scope-code is meaningful only
when you define an overlay structure for a task. The scope-code is
described in Ch and 4 withi t of the des

2.1.2 Resolving Global Symbols

TKB resolves references to global symbols across module boundaries and
any references (explicit or implicit) to the system library. When the
language translators process a text file, they assume that references
to global symbols within the file are defined in other, separately
assembled or compiled modules. As TKB links the relocatable Object
modules, it creates an internal table of the global symbols it
encounters within each module. If, after TKB examines and links all
the object modules, references remain to symbols that have not been
defined, TKB assumes that it will find the definition for the symbols
within the default system object module library (LB:[l,l]SYSLIB.OLB).
If undefined symbols still remain after SYSLIB is examined, TKB flags
the symbols as undefined. If you have not specified an output map in
your TKB command sequence, TKB reports the names of the undefined
symbols to you on your terminal. If you have specified an output map,
TKB outputs to your terminal only the fact that the task contains
undefined symbols. The names of the symbols appear on your map
listing.

When creating the task image file, TKB resolves global references, as
shown in the following example. Table 2-4 lists the three files IN1,
IN2, and IN3, showing the program sections within each file, the
global symbol definitions within each program section, and the
references to global symbols in each program section.

Table 2-4
Resolution of Global Symbols for IN1, IN2, and IN3

File
Name

INl

IN2

IN3

Program Section
Name

B

A

C

A
B

C

Global Global
Definition Reference

Bl A
B2 Ll

Cl
XXX

A
Bl B2

B1

In processing the first file, IN1, TKB finds definitions for.Bl and B2
and references to A, Ll, Cl, and XXX. Because no definition exists

2-7

TASK BUILDER FUNCTIONS

for these references, TKB defers the resolution of these global
symbols. In processing the next file, IN2, TKB finds a definition for
A, which resolves the previous reference, and a reference to B2, which
can be immediately resolved.

When all the object files have been processed, TKB has three
unresolved global reference: Cl, Ll, and XXX. Assume that a search
of the system library LB:[l,l]SYSLIB.OLB resolves Ll and XXX, and TKB
includes the defining modules in the task's image. Assume also that
TKB cannot resolve the global symbol Cl. TKB lists it as an undefined
global symbol.

The relocatable global symbol Bl is defined twice. TKB lists it as a
multiply defined global symbol. TKB uses the first definition of that
multiply defined symbol.

Finally, an absolute global symbol (for example, symbol=lOO) can be
defined more than once without being listed as multiply defined, as
long as each occurrence of the symbol has the same value.

2.2 THE TASK STRUCTURE

TKB builds the data structures required by other system programs and
incorporates them into the task image. The Executive (which is
responsible for the allocation of system resources) must have access
to the data for all tasks on the system. It must know, for example, a
task's size and priority, and it must have information about the way
each task expects to use the system. It is the Task Builder's
responsibility to allocate space in the task image for the data
structures required by the Executive. For example, TKB allocates
space for the task header and initializes it.

The disk image file created by TKB contains the linked task and all of
the information required by the system programs to install and run it.
In its simplest form, the disk image file consists of three physically
contiguous parts:

• The label block group

• The task header

• The task memory image

Figure 2-4 illustrates the basic simplified structure of this file.

o
: MEMORY·

HEADER

LABEL
BLOCK

0 ---....
ZK-380-81

Figure 2-4 Disk Image of the Task

2-8

(

(

(

(

(

TASK BUILDER FUNCTIONS

The label block group contains data produced by TKB and used by
INSTALL command processing. It contains information about the task,
such as the task's name, the partition in which it runs, its size and
priority, and the logical units assigned to it. When you install the
task, INSTALL command processing (hereinafter called INSTALL) uses
this information to create a Task Control Block (TCB) entry for the
task in the System Task Directory (STD) and to initialize the task's
header information.

The task's header contains information that the Executive uses when it
runs the task. The header also provides a storage area for saving the
task's essential data when the task is checkpointed. TKB creates and
partially initializes the header; INSTALL initializes the rest of the
header.

The t.ask memory contains the linked modules of the program and,
therefore, the code and data. It also contains the task's stack. The
stack is an area of task memory that a task can use for temporary
storage and subroutine linkage. It can be referenced through general
register 6, the stack pointer (Sp). The label block group, the task's
header, and the task memory are described in detail in Appendix B.

The task's memory image is the part of your task that the system reads
into physical memory at run time. The label block group is not
required in physical memory. Therefore, in its simplest form, the
task's memory image consists of only two parts: the task header and
task memory. Figure 2-5 shows the memory image.

2.3 OVERLAYS

[l
• TASK •
: MEMORY:

o~
ZK-381-81

Figure 2-5 Memory Image

This section is an introduction to overlaid tasks.
overlaid tasks can be found in Chapters 3 and 4.

Details about

Using overlays can save memory space by reducing the size of the
executing portion of the task or the physical memory required by the
task. Parts of an overlaid task reside on disk, thereby saving memory
space.

An overlaid task is a task designed to have discrete parts. The parts
of a task designed this way can execute relatively independently of
other parts. Parts of an overlaid task reside on disk until they are
needed for their required function. The common part of the task,
which stays in memory, is the root. The root calls the other parts of
the task, which are referred to as segments, from disk into memory.

2-9

TASK BUILDER FUNCTIONS

The RSX-IIM/M-PLUS systems have two types of overlaid tasks. One type
of overlaid task reads in segments from disk over other segments
already in memory. A task of this type is called a disk-resident
overlaid task. In this task, segments res-ide on disk until they are
needed. The segments in disk-resident overlays that share the same
memory address space of the task with other segments must be logically
independent of those segments. The independence is necessary because
the other segments are on disk and cannot be referenced. For example,
Task A, an overlaid task root, can call either of two
segments: segment B or segment C. The root of Task A initially calls
segment B. Segments Band C occupy the same memory space. Segment B
cannot call segment C and segment C cannot call segment B. However,
if segment B returns control of the task to the root of task A, the
root can then call segment C. Segment C would then be read into
memory over segment B. Figure 2-6 illustrates this sequence.

-Because segments of a disk-resident overlaid task can occupy the same
memory space, a disk-overlaid task can occupy less memory than it
would if it were not overlaid. However, more disk I/O transfers (and,
therefore, more time) are needed for this type of task.

MEMORY

TASK A
ROOT

MEMORY

MEMORY

LOAD TASK

ROOT CALLS
SEGMENT B

ROOT CALLS
SEGMENT C

ZK-382-81

Figure 2-6 Simple 2-Segment, Disk-Resident Overlay Calling Sequence

2-10

c

(

(

c

(

c

(

TASK BUILDER FUNCTIONS

Another type of overlaid task is the memory-resident overlaid task.
In this task, the segments reside on disk until they are needed. At
that time, the needed segment is read into a sequentially adjacent
area of memory and resides there until the task ends. For example, a
memory-resident overlaid Task A has two segments: segment Band
segment C. If the root of task A calls segment B, segment B is read
into memory adjacent to the root. When the root regains control and
then calls segment C, segment C is read into memory adjacent to
segment B. Figure 2-7 illustrates this sequence.

MEMORY

MEMORY

MEMORY

C

B

TASK A
ROOT

LOAD TASK

ROOT CALLS
SEGMENT B

ROOT CALLS
SEGMENT C

ZK-383-81

Figure 2-7 Simple 2-Segment, Memory-Resident Overlay
Calling Sequence

2-11

TASK BUILDER FUNCTIONS

Memory-resident overlaid tasks exe.cute faster than disk-resident
overlaid tasks. The increase in speed occurs because fewer disk I/O
transfers are needed during task execution.

2.4 ADDRESSING CONCEPTS

The primary addressing mechanism of the PDP-ll is the 16-bit computer
word. The maximum physical address space that the PDP-ll can
reference at anyone time is a function of the length of this word.
Because of the 16-bit word size, a task can have an address no larger
than 177777(octal) (32K words) within the task image for nonprivileged
tasks on an unmapped system. In practice, the task size may be
limited to a few words less than 32K because of system design.

2.4.1 Physical, Virtual, and Logical Addresses

Physical, virtual, and logical addresses, and virtual and logical
address space, are concepts that provide a basis for understanding the
functions of task addressing and the use of task windows.

• Physical addresses - A single, physical location in memory is
called the physical address.

Memory is divided into parts called bytes. They are numbered
according to their position in memory. Therefore, the lowest
byte is 0 and the highest byte is whatever the upper limit of
memory may be for a particular system;' for example, 32K, 64K,
and so forth. The assigned number is called the physical
address.

A task contains addresses (for example, 0 through 2200). TKB
relocates the task's addresses in an unmapped system by a
number represented by the base address of the partition in
which it is installed. After installation, the task's
addresses refer to physical addresses of memory, which always
correspond to the same physical memory in an unmapped system.

Therefore, the task addresses have an actual one-to-one
relationship to physical memory. The same relationship exists
any time the task is in memory., The memory (physical)
addresses will not be from 0 through 2200. For example, after
the task is installed in the partition, the task's address of
o may become physical address 17000 because the Task Builder
added in the offset, which is equal to the partition base
address.

,In a mapped system, the task's addresses remain the same but
the physical memory addresses may change due to Executive
processes (checkpointing, swapping, and so forth.).
Therefore, the task addresses do not always correspond to the
same physical memory. If the task uses memory management
directives, the memory addressing can be changed by the task
to include any part of physical memory that it is allowed to
access .

• Virtual addresses - A task's virtual addresses
addresses within the task.

2-12

are the

(

(

(

(

(--

(

(

c

•

TASK BUILDER FUNCTIONS

The PDP-II's 16-bit word length (a mapped system) imposes the
address range of 32K words on the virtual addresses.
Therefore, these task addresses could include addresses 0
through 177777(octal) depending on the length of the task.
These task addresses are not the same as the actual addresses
of the memory in which the task resides.

Virtual address space - A task's virtual address space is that
space encompassed by the range of virtual addresses that the
task uses.

memory management
address space into
By using address

With the Create Address Window (CRAW$)
directive, a task can divide its virtual
segments called virtual address windows.
windows, you can manipulate the mapping
to different areas of physical memory.

of virtual addresses

• Logical addresses - A task's logical addresses are the actual
physical memory addresses that the task can access.

• Logical address space - The task's logical address space is
the total amount of physical memory to which the task has
access rights.

The physical memory represented by the logical addresses may
or may not be continuous. The items in physical memory that
logical address space includes are the task itself, and static
and dynamic regions.

2.4.2 Unmapped Systems

In an unmapped system, the task's virtual address space and its
logical address space coincide exactly, as shown in Figure 2-8.

In an unmapped system, the task's address space is limited to 32K
words. All pf the machine's physical memory and all of its device
registers are accessible to all tasks running on the system. The top
4K words of address space are reserved for the UNIBUS addresses that
correspond to the peripheral device registers (the I/O page), and a
segment of low memory is occupied by the Executive. Therefore, in an
unmapped system, the largest task size is 32K words minus the I/O page
and the size of the Executive. Figure 2-9 shows the memory layout for
an unmapped system.

Unmapped systems contain only user-controlled partitions. When TKB
links the relocatable object modules of a task that is to run on an
unmapped system, it requires that you specify the partition in which
the task is to run, and the partition's base address and length. TKB
sets the base address of the task to the base address of the
partition. This means that the task's location in physical memory is
bound to the partition and does not change. Because all of physical
memory in an unmapped system is directly addressable, and the task's
location within memory does not change, the addresses that TKB assigns
coincide exactly with the physical addresses of the machine and,
therefore, do not need to be relocated at run time.

2-13

TASK BUILDER FUNCTIONS

32K TASK N+32K

PHYSICAL
MEMORY

32K------, -------.... ~ - - --

VIRTUAL N PARTITION
LOGICAL

ADDRESS BASE ADDRESS
ADDRESS

SPACE SPACE

BEFORE
ASSIGNING
ADDRESSES

0
N .. ----

ZK-384-81

Figure 2-8 Virtual and Logical Address Space Coincidence
in an Unmapped System

2.4.3 Mapped Systems

A mapped system is one in which the processor contains a KT-ll memory
management unit. The processor handbook for your machine contains a
complete description of the memory management unit.

Mapped processors have up to _. three modes of pperation: kernel,
and user (the PDP-ll/34 does not have supervisor mode).

The information in this section is relevant to user mode only.

In a mapped system, the relationship between virtual address space and
physical address space is different from that of an unmapped system.
The primary addressing mechanism for a mapped system is still· the
l6-bit word, and virtual address space is still 32K words. However, a
mapped system has a much greater physical memory capacity and,
therefore, physical memory and virtual address space do not coincide.

2-14

(

,=-

(

(

(

(

(

TASK BUILDER FUNCTIONS

32 K WORDS

110 PAGE

• EXECUTIVE'

o
ZK-385-81

Figure 2-9 Memory Layout for Unmapped System

To address all of physical memory in a mapped system, a machine must
have an effective word length of 18 or 22 bits, depending on the model
of the machine. When TKB links the relocatable object modules of a
task that is to run on a mapped system, it assigns 16-bit addresses to
the task image. The memory management unit's function (under control
of the Executive) is to convert the task's 16-bit addresses to
effective 18- or 22-bit physical addresses. The mechanical job of
task relocation is performed by the Executive and the memory
management unit at task run time. Figure 2-10 illustrat"es the
relationship between physical memory and virtual address space in a
mapped system.

The memory management unit divides a machine's 32K
address space into eight 4K-word segments or pages.
registers associated with it:

words of virtual
Each page has two

• A 16-bit Page Description Register (PDR), which contains
control and access information about the page with which it is
associated

• A 16-bit Page Address Register (PAR), which is an address
relocation register

The PDRs and PARs are always used as a pair. Each pair is called an
Active Page Register (APR). Figure 2-11 shows how the memory
management unit divides the 32K words of virtual address space.

The Executive allocates only as many APRs as are necessary to map a
given task into physical memory. Therefore, a 4K-word task requires
one APR; a 6K-word task requires two. Figure 2-12 illustrates this
mapping.

2-15

32 K -r-----.,....-/

TASK BUILDER FUNCTIONS

t
HIGHEST

PHYSICAL
ADDRESS

•
•
•

TASK
MEMORY

•
•
•

MEMORY
MANAGEMENT HEADER

TASK
MEMORY

HEADER V
O_~

VI RTUAL ADDRESS
SPACE

FOR 32 K WORD
TASK

UNIT V'll:: :·,·,11::::::

TASK
MEMORY

HEADER

".,,:, <?

TASK
MEMORY

HEADER

TASK
MEMORY

PARTITION _+-_H_E_A_D_E_R_-I
BOUNDARY

• EXECUTIVE •
• ETC. •
• •

0_,---1 ____ I
PHYSICAL
MEMORY

SYSTEM-CONTROLLED
PARTITION .

ZK-386-81

Figure 2-10 Task Relocation in a Mapped System

2-16

(-

(

(

(=--

C

TASK BUILDER FUNCTIONS

Finally, the layout of the virtual address space for a task that is to
run in a mapped system is different in most cases from that of a task
that is run in an unmapped system. Unless a task is privileged, the
I/O page and the Executive are not normally part of a task's virtual
address space and, unlike in an unmapped system, a task is inhibited
by the system from accessing any portion of physical memory that it
does not specifically own. Because the I/O page and the Executive are
not part of a task's virtual address space, a task can be
approximately 32,767 words long (32K minus 32 words needed by the
loader) on a mapped system. TKB can build a task of 32K minus 1. word
in size. However, overlaid tasks, and tasks that become extended, may
use the entire 32K-word space.

VIRTUAL 160000 APR7 -

VIRTUAL 140000 APR6 -

VIRTUAL 120000 - APR5 -

VIRTUAL 100000 APR4 -

VI RTUAL 60000 APR3-

VIRTUAL 40000 APR2 -

VI RTUAL 20000
APR I I

VIRTUALO APR 0

PAGE 7

PAGE 6

PAGE 5

PAGE 4

PAGE 3

PAGE 2

PAGE 1

PAGE 0

32K WORDS OF
VIRTUAL ADDRESS

SPACE

ZK-387-81

Figure 2-11 Memory Management Unit's Division of Virtual
Address Space

2.4.4 Regions

This section briefly describes regions and their relationship to and
use by tasks. Regions and their use are more thoroughly described in
Chapter 5.

A region is a defined area of memory that can contain code or data.
It can also be a blank area reserved for use by one or more tasks.
The region is named and built like a task except that the /HD header
switch (/HEADER in LINK) is negated (/-HD in TKB or /NOHEADER in LINK)
because the region is not a task and does not need a task header.
Tasks can also create regions dynamically as they execute. Dynamic
regions are useful because they increase the task's logical address
space while saving its virtual address space. Regions also allow
tasks to share code and data with other tasks.

2-17

160000 APR 7-

120000 APR 5-

100000 APR 4-

TASK BUILDER FUNCTIONS

.. . .

.: :

.... ', ',

.. .. .

. APR 7-

APR6-

APR 5-

APR4-

60000APR3- .. ',:':" APR3-

40000 APR 2-

20000 APR 1-

VIRTUAL 0 APR 0-

TASK
MEMORY f

4 K WORDS

oR & STACK I
L--------' --1

TASK A (4 K WORDS)

APR2-

APR 1-

APRO-

.....

......... . . .
', .. ::.:.',. "

TASK 1
MEMORY

I-H-IE-ADE--S-T'-I AC.K lORDS
TASK B (6 K WORDS)

ZK·38B·81

Figure 2-12 Mapping for 4K-Word and 6K-Word Tasks

Regions are named according to their use or the way in which they were
built. These regions are:

• Task Region -- A continuous block of memory in which the task
runs.

• Common Shared Region -- On unmapped systems, a shared region
defined by an operator at run time or built into the system
during system generation; for example, a global common area.

2-18

(

(

(

(

(

•

•

TASK BUILDER FUNCTIONS

Resident commons are usually called shared regions because
they are used as an area in which tasks share common data.
Shared regions can be absolute or position independent.
Shared regions and their use are described in Chapter 5.

Library Shared Region -- A shared region containing common
code or routines shared by tasks, and in this way saving
virtual address space in the tasks.

Dynamic Region -~ A region created dynamically at run time by
the Create Region (CRRG$) memory management directive in tbe
task. This directive and associated directives are described
in the RSX-IIM/M-PLUS Executive Reference Manuai.

By convention, a shared region that contains code is a library and a
shared region that contains data is a common.

Tasks must map to a region by using task windows which must be defined
and numbered in the task when the task is built. Usually, a ,task uses
one window for each region to which mapping must occur. Task windows
are described in the next section, Task Mapping and Windows.

Figure 2-14 shows a sample collection of regions that could make up a
task's logical address space. A task's logical address space can
expand and contract dynamically as the task issues the appropriate
memory management directives. The header and root segment are always
part of the region. Therefore, the task header and root segment
always use window 0 (UAPR 0) and region O. Because a region occupies
a continuous area of memory, each region is shown as a separate block.

2.5 TASK MAPPING AND WINDOWS

As mentioned earlier, tasks that run on mapped systems must be
relocated at run time. When you build a task that is to run on a
mapped system, TKB creates and places in the header of the task one or
more a-word data structures called window blocks. When you install a
task, INSTALL initializes the window block(s).Once initialized, a
window block describes a range of continuous virtual addresses called
a window.

2.5.1 Task Windows

A window can be as small as 32 words or as large as 32K words. When a
task consists of bne continuous range of addresses (a single region
task) only one window block is required to describe the entire task
from the beginning of its header to the highest virtual address in the
task. When a task consists of two or more regions (such as a task
that references a shared region as described in Chapter 5), each
region must have at least one window block associated with it that
describes all or a portion of the region.

When the Executive maps a task into physical memory, it extracts the
information it requires to set up the APRs of the memory management
unit from the task's window block.

2-19

TASK BUILDER FUNCTIONS

HIGHEST VIRTUAL
ADDRESS

WINDOW BLOCK
o

LOWEST VIRTUAL
ADDRESS

TASK
MEMORY

HEADER & STACK

Figure 2-13 Window Block 0

TASK REGION-

REGION 0

ZK-389-81

When you run your task, the Executive determines where in physical
memory the task is to reside. The Executive then loads the Page
Address Register portion of the APRs with a relocation constant that,
when combined with the addresses of the task, yields the 18- or 22-bit
physical address range of the task.

Referring to Figure 2-14, which illustrates a mapped system without l
and D-space, you can observe that a large 32K user task contains three
distinct areas of continuous space called "windows." The term "task
window" is a construct that maps a continuous portion of the task's
virtual address space to a continuous portion of a region in the
task's logical address space. Windows must have a specified size and
starting address. The window size can be from 32 words to 32K minus
32 words, and windows must start on a 4K address boundary. Figure
2-14 shows three windows that are not continuous in the task's virtual
address space. However, the space within each window is continuous.
In this task, the size of window 0 is 11K; the size of window 1 is
11K; and the size of window 2 is 8K. The concept of windows exists
for the following specific reason.

2-20

(

(

(

(

l

(

(

TASK BUILDER FUNCTIONS

By using the concept of windows and the memory management directives,
a nonprivileged task can access a larger logical memory space than
that implied by the 32K virtual addressing range and normally
accessible by the 16-bit address. A task can, in fact, only access
32K of memory at one time. However, a nonprivileged task can change
its access to logical addresses (real, physical memory). The area
that your program accesses can be changed by the program during
program execution. The process of accessing different logical areas
of memory is called "mapping."

By referring to Figure 2-14, you can see that window 1 in the task is
mapped to region 1 in physical memory. The task can change the window
1 mapping to region 0 in physical memory. In effect, then, though a
task is limited to a range of 32K virtual addresses, a task can access
all the physical memory available to it (determined by the way that
you set up the mapping) by changing the mapping of its windows to
different logical addresses. Figure 2-14 provides a visual
description of the concept of mapping to different logical addresses.

The discussion now proceeds to setting up the task's windows. This is
done by defining task window blocks to TKB.

To manipulate virtual address mapping to various logical areas, you
must first divide a task's 32K of virtual address space into segments.
These segments are task (virtual address) windows. Each window
encompasses a continuous range of virtual addresses. The first
address of the window address range must be a multiple of 4K (the
first address must begin on a 4K boundary) because of the way that the
KT-ll memory management unit uses APRs.

A task that includes directives that dynamically manipulate address
windows must have task window blocks set up in the task header as well
as Window Definition Blocks in the code for use by the Create Address
Window directive. The Executive uses task window blocks to identify
and describe each currently existing window. When linking the task,
the programmer specifies the number of extra window blocks needed by
the task. The number of blocks should equal the maximum number of
windows that will exist concurrently while the task is running.

In RSX-IIM or RSX-IIM-PLUS without I- and D-space, a window's
identification is a number from 0 to 7, which is an index to the
window's corresponding window block. The address window identified by
o is the window that always maps the task's header and root segment.
TKB creates window 0, which the Executive uses to map the task. No
directive may specify window 0; a directive that does so is rejected.

2-21

I\)

I
I\)
I\)

VIRTUAL ADDRESS SPACE
of 32K USER TASK

KT11 MEMORY MANAGEMENT UNIT

4K ----..I VA I APF DF

6 4K

4K

4 4K I II

4K I II

2 4K I II

WINDOW a 14K

a I 14K

OKI HEADER
-r--

CONTAINS
3 WINDOW BLOCKS

DIB

I USER KERNEL
ACTIVE PAGE REGS ACTIVE PAGE REGS

PAR PDR PAR PDR

7 PAF 7 PAF

6 PAF 6 PAF

5 PAF 5. PAF

4 PAF 4 PAF

3 PAF 3 PAF

PAF 2 PAF

PAF 1 PAF

a PAF

KAPR OR UAPR
11 USER

00 KERNEL
DETERMINED BY BITS 14-15 OF PSW

a

TASK
LOGICAL
ADDRESS

SPA,CE

~
{l

PHYSICAL MEMORY

REGION a

REGION 1
WINDOW 1

REGION 2
WINDOW 2

TASK REGION
WINDOW a

1 mco"" J
ZK-390-81

Figure 2-14 Virtual to Logical Address Space Translation

~ r-'\ .r-"\ (\ ,"\

r---------- ~----- .. ---- ------~----

~
~

!XI
C
1-1

~
~

.~
~
1-1

~ en

(

~-

(,

(

(

TASK BUILDER FUNCTIONS

When a task uses memory management directives, the Executive views the
relationship between the task's virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address does not point anywhere. This is
a point to watch when setting up windows with the Create Address
Window directive (CRAW$). Similarly, a window can be mapped only to
an area that is all or part of an existing region within the task's
logical address space.

Once a task has defined the necessary windows and regions, the task
can issue memory management directives to perform operations such as
the following:

• Map a window to all or part of a region.

• Unmap a window from one region in order to map it to another
region.

• Unmap a window from one part of a region in order to map it to
another part of the same region.

2-23

TASK BUILDER FUNCTIONS

(

TASKS APRS MEMORY

USER D
NON-

PRIVILEGED 1/0 PAGE

USER
TASK

32K

N+32K

USER I USER
7 TASK

0

N

(

SPVSR D
7

SUPERVISOR-
MODE

LIBRARY
32K N+32K

SPVSR

SPVSR I
MODE (

LIBRARY
7

0 N

KERNEL D

EXECUTIVE 4 (36K

POOL,

DATA
COMMON,
TABLES,

ETC.

KERNEL I

INSTRUCTIONS
CODE

I+D
4K

LOW CORE
0

ZK-391-81

2-24

TASK BUILDER FUNCTIONS

TASKS APRS MEMORY

(USER D
NON-

PRIVILEGED 1/0 PAGE

USER
TASK

32K

N+32K

USER I USER
7' TASK

0

N

COPIED SPVSR D

(~ SUPERVISOR-
MODE

LIBRARY
32K N+32K

SPVSR

SPVSR I
MODE

LIBRARY

0 N

(
KERNEL D

EXECUTIVE 4
36K

POOL,

DATA
COMMON,
TABLES,

C
ETC.

KERNEL I

INSTRUCTIONS
CODE

I+D
0 LOW CORE

0

ZK-392-81

(

2-25

TASK BUILDER FUNCTIONS

2.7 PRIVILEGED TASKS

RSX-IIM/M-PLUS systems have two classes of tasks: privileged and /
nonprivileged. However, the term "privileged" has meaning in mapped (
systems only, because in mapped systems certain areas of memory are
protected from n?nprivileged tasks. In an unmapped system, any task
has the ability to access all of physical memory if so programmed.
Therefore, the distinction between these two classes of tasks is
primarily one of their mapping to memory in a mapped system.

Privileged tasks in a mapped system can access system data areas and
the Executive. Altering system data areas or the Executive can cause
obscure and difficult problems. Therefore, privileged tasks must be
pro9rammed and used with all caution.

You can specify a task as privileged by using the /PR:n switch in the
TKB command line or the /PRIVILEGED:n qualifier in LINK. The /PR:O
switch or,/PRIVILEGED:O qualifier allows a task to perform certain
privileged operations: but the task with a privilege of 0 cannot
access the Executive or system data structures. The /PR:4 switch or
the /PRIVILEGED:4 qualifier allows the task to directly map the I/O
page, Executive routines, and system data structures. The /PR:4 C
switch or hthe h/PRIVILEGED: 4. qualifier is used for a pr/ivileged task in . _
a system t at as an Executl.ve of 16K or less. The pR:5 switch or
the /PRIVILEGED:5 qualifier allows a task to directly map to the I/O
page, Executive routines, and system data structures. The /PR:5
switch or the /PRIVILEGED:5 qualifier is used for a privileged task in
a system that has an Executive of 20K or less.

Chapter 6 describes privileged tasks and their mapping in detail.

c

(

(

2-26

TASK BUILDER FUNCTIONS

c
2-27

TASK BUILDER FUNCTIONS

USER-MODE MEMORY
APRS (7 1 1 'i

/
/

TASK
VIRTUAL
ADDRESS

SPACE

4K

DATA 0
D-SPACE

0
4K

DATA

INSTRUCTIONS 7
INSTRUCTIONS

0 C--')
/ -'

I-SPACE

ZK-1049-82

2-28

(

c- -

CHAPTER 3

OVERLAY CAPABILITY

TKB provides you with the means to reduce the memory and/or virtual
address space requirements of your task by using tree-like overlay
structures created with the Overlay Description Language (ODL).
can divide your conventional task into ieces called se
are loadable with one di

sc
can specify
and those
disk.

segments
cture that form the tree. You

overlay segments: those that reside on disk,
reside permanently in memory after being loaded from

3.1 OVERLAY STRUCTURES

To create an Qverlay structure, you divide a task into a series of
segments consisting of: .

• A single root segment, which is always in memory

• Any number of overlay segments, you must consider which either
1) reside on disk and share virtual address space and physical
memory with one another (disk-resident overlays): or 2) reside
in memory and share only virtual address space with one
another (memory-resident overlays)1

Segments consist of one or more object modules, which in turn consist
of one or more program sections. Segments that overlay each other
must be logically independent: that is, the components of one segment
cannot .reference the components of another segment with which it
shares virtual address space. In addition to the logical independence
of the overlay segments, you must consider the general flow of control
within the task when creating overlay segments.

You must also consider the kind of overlay segment to create at a
given position in the .structure, and how to construct it. Dividing a
task into disk-resident overlay·s saves physical space, but introduces
the overhead activity of loading these segments each time they are
needgd -- but are not present -- in memory. Memory-resident
overlays, on the other hand, are loaded from disk only the first time
they are referenced. Thereafter, they remain in memory and are
referenced by remapping.

1. Note that memory-resident overlays can be used only if the hardware
has a memory management unit, and if support for the memory management
directives has been included in the system on which the task is to
run.

3-1

OVERLAY CAPABILITY

Several large classes of tasks can be handled effectively
as overlay structures. For example, a task that moves
through a set of modules is well suited to use as
structure. A task that selects· one of a set-of modules
the value. of an item of input data is also well suited to
overlay structure.

3.1.1 Disk-Resident Overlay Structures

when built
sequentially
an overlay

according to
use as an

Disk-resident overlays conserve virtual address space and physical
memory by sharing them with other overlays. Segments that are
logically·independent need not be present in memory at the same time.
They, therefore,. can occupy a common physical area in memory (and,
therefore, common virtual address space) whenever either needs to be
used.

The use of disk-resident overlays is shown in this section by an
example, task TKi, which consists of four input files. Each input
file consists of a single module with the same name as the file.

The task is built by the TKB .command

>TKB TK1,,=OVRLAY.ODL/MP

or the LINK commands

>LINK/TASK:TKl OVRLAY.ODL/OVERLAY_DESCRIPTION

or

>LINK/TAS:TKl OVRLAY.ODL/OVER

and the file OVRLAY.ODL contains the modules CNTRL, A, B, C in -an
overlay description for the task being built. The /MP switch in TKB
or the /OVERLAY_DESCRIPTION qualifier in LINK specifies that the input
file is an Overlay Description Language (ODL) file.

In this example, the modules A, B, and C are logically independent:
that is:

A does not call B or C and does not use the data of B or C.

B does not call A or C and does not use the data of A or C.

C does not call A or B and does not use the data o:/: A or B.

A disk-resident overlay structure can be defined in which A, B, and C
are overlay segments that occupy the same storage area in physical
memory. The flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL.

CNTRL calls Band B returns toCNTRL.

CNTRL calls C and C returns to CNTRL.

CNTRL calls A and A returns to CNTRL.

3-2

c

(

(

C

c

l_

OVERLAY CAPABILITY

In this example, the loading of overlays occurs only four times during
the execution of the task; Therefore, the virtual address space and
physical memory requirements of the task can be reduced without unduly
increasing the overhead activity.

The effect of the use of an overlay structure on allocating virtual
address space and physical memory for task TKI is described in the
following paragraphs.

The lengths of the modules are:

Module Length (in Octal)

CNTRL 20000 bytes
A 30000 bytes
B 20000 bytes
C 14000 bytes

Figure 3-1 shows the virtual address space and physical memory
required as a result of building TKI as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirement to build TKI
as a single-segment task is i04000(octal) bytes.

In contrast, Figure 3-2 shows the virtual address space and physical
memory required as a result of building TKl as a multisegment task and
using the overlay capability.

The multisegment task requires SOOOO(octal) bytes.

NOTE

In addition to the storage required for modules A, B,
and C, storage is required for overhead in handling
the overlay structures. This overhead is not
reflected in this example.

In using the overlay capability; the total amount of virtual address
space and physical memory required for the task is determined by the
sum of the length of the root segment and the length of the longest
overlay segment. Overlay segments A and B in this example are much
longer than overlay segment C. If A and B are divided into sets of
logically independent modules, task storage requirements can be
further reduced. Segment A can be divided into a control program (AO)
and two overlays (AI and A2). Segment A2 can then be divided into the
main part (A2) and two overlays (A2l and A22). Similarly, segment B
can be divided into a control module (BO) and two overlays (Bl and
B2) .

Figure 3-3 shows the virtual address space and physical memory
required for the task produced by the additional overlays defined for
A and B.

As a single-segment task, TKl requires l04000(octal) bytes of virtual
address space and physical memory. The first overlay structure
reduces the requirement by 34000(octal) bytes. The second overlay
structure further reduces the requirement by 14000(octal) bytes.

The vertical and horizontal lines in the diagrams of Figures 3-2 and
3-3 represent the state of virtual address space and physical memory
at various times during the calling,sequence of TKI. For example, in
Figure 3-3 the leftmost vertical line in both ~Uagrams shows virtual
address space and physical memory, respectively, when CNTRL, AO, and
Al are loaded. The next vertical line shows virtual address space and
physical memory when CNTRL, AO, A2, and A21 are loaded, and so' on.

3-3

OVERLAY CAPABILITY

The horizontal lines in the diagrams of Figures 3-2 and 3-3 indicate
segments that share virtual address space and physical memory. For
example, in Figure 3-3, the uppermost horizontal line of the task
region in both diagrams shows AI, A21, A22, Bl, B2, and C, all of
which can uSe the same virtual address space and physical memory. The
next horizontal line shows AI, A2, Bl, B2, and C, and so on.

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

APR 0-

:::::
:::::

C C

B B

A A

CNTRL CNTRL
(ROOT SEGMENT) (ROOT SEGMENT)

HEADER AND STACK HEADER AND STACK

VIRTUAL ADDRESS SPACE

PHYSICAL MEMORY

Figure 3-1 TKI Built As a Single-Segment Task

3-4

104000
BYTES

ZK-393-81

c

(

(

(

(

(

(

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

o APR 0-

" "

: "
: :

: : .

" " .
. :

OVERLAY CAPABILITY

· . " "

· . : " :
: " . · . . : . . .

" : : ..
. : .

:
.: : " : : : . " ..
" ..

;:.; : . . : . .
:' : :

. : . : : :
: : : : : :' : :' .
: . : : :' :: ":::: . : : .

" : : .: . : . : : .
: . . : . :

.. . : .

.:

. .
': :

~ ~ . :
': " ~ ~.

: " ...
· . : :: : : " : .

. : :; " : . " : :; ~

A

: : : : : "
: : :

B

CNTRL
(ROOT SEGMENT)

C

HEADER AND STACK
~--------~~--~- - - --

VIRTUAL ADDRESS SPACE

A

B
C

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-2 TKl Built As a Multisegment Task

50000
BYTE

ZK-394-81

3.1.2 Memory-Resident Overlay Structures (Not Supported on RSX-IIS)

TKB provides for creating overlay segments that are loaded from disk
only the first time they are referenced. Thereafter, they reside in
memory .. Memory-resident overlays share virtual address space just as

3-5

OVERLAY CAPABILITY

disk-resident overlays do but, unlike disk-resident overlays,
memory-resident overlays do not share physical memory. Instead, they
reside in separate areas of physical memory, each segment aligned on a
32-word boundary. Memory-resident overlays save time for a running
task because they do not need to be copied from a secondary storage
device each time they are to overlay other segments. "Loading" a
memory-resident overlay reduces to mapping a set of shared virtual
addresses to the unique physical area of memory containing the
overlaying segment.

The use of memory-resident overlays is shown in this section by an
example, task TK2, which consists of four input files. Each input
file consists of a single module with the same name as the file.

The task is built by the TKB command

>TKB TK2,,=OVRLAY2.0DL/MP

or the LINK commands

>LINK/TASK:TK2 OVRLAY2.0DL/OVERLAY_DESCRIPTION

or

>LINK/TAS:TK2 OVRLAY2.0DL/OV

and the file OVRLAY2.0DL contains the modules CNTRL, D, E, and F in an
overlay description for the task being built. The /MP switch in TKB
or the /OVERLAY DESCRIPTION qualifier in LINK specifies that the input
file is an Overlay Description Language (ODL) file.

In this example, the modules D, E, and F are logically independent;
that is:

D does not call E or F and does not use the data of E or F.

E does not call D or F and does not use the data of D or F.

F does not call D or E and does not use the data of D or E.

A memory-resident overlay structure
F are overlay segments that occupy
but the same virtual address space.
is as follows:

can be defined in which D, E, and
separate physical memory locations

The flow of control for the task

CNTRL calls D and D returns to CNTRL.

CNTRL calls E and E returns to CNTRL.

CNTRL calls F and F returns to CNTRL.

The effect of the use of a memory-resident overlay structure on
allocating virtual address space and physical memory for task TK2 is
described in the following paragraphs.

The lengths of the modules are:

Module Length (in Octal)

CNTRL 20000
D 10000
E 14000
F 12000

3-6

(

(

(

(

C

(

(

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

o APR 0-

: :'
.: :

: :: :

. . : ...

OVERLAY CAPABILITY

: :: :
: : .

· : : " .
. ': : .. :

. : :: . : .: . . :.
: :'.:" : :: :

:. ~ : : :; ~ .

...
. . " :

: . ,: : .
',:; : .

: . . " : ..

..
~ :: .: : .' .' . :.

. . ': :. : ,,':
: :: :: :

:: :. " . . : .. : : :: . " :

: .; :' : : . " .
.... " : .

" ..
. . : :

: "

.. " : : :' ..

· .. . : .

: : : : ::
: :: : : ;: :

: :'.
: :: :

: ::: . ~ r
.. ; ::.: : . :",

: ,','

: :' . ,',' . " : ..
: ;: : : :' .: ~: ::
.. :'" :

" '.' ::: ~ :' ;~ ;: : ': ;: :

: :: : ,: .' . . : ~: .: : :: :
} :: . .. ':::::' " : .

: : ;: : . : " " :

: :: : :; .. . : : .

All A211 A22

I A2

AO

· " . ': :' : .
... : :: : . : .

Bl"B2 C

BO

CNTRl
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

I A211 A22
Bl ~ Al I A2 B2 C

AO BO

CNTRl
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-3 TKl Built with Additional Overlay Defined

34000

ZK-395-81

Figure 3-4 shows the virtual address space and physical memory
requirements as a result of building TK2 as a single-segment task on a
system with memory management hardware.

The virtual address space and physical memory requirements when TK2 is
built as a single-segment task is 56000(octal) bytes.

3-7

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

o APR 0-

OVERLAY CAPABILITY

: : .
~ : ~ . . .

: ~ .

: : :

.. :

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

VIRTUAL ADDRESS SPACE

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

I"

I'

56000
BYTES

ZK-396-81

Figure 3-4 TK2 Built As a Single-Segment Task

If TK2 is built using the Task Builder's
capability, the relationship of virtual
memory changes, as shown in Figure 3-5.

3-8

memory-resident overlay
address space to physical

(

(

(

(

c

(

(

(

(

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

o APR 0-

OVERLAY CAPABILITY

D

: " ~
.: :

: : . . .

~ :. ~ .
: .. :

: :'

" :

E

CNTRL
(ROOT SEGMENT)

F

HEADER AND STACK

VIRTUAL ADDRESS SPACE

34000(8)
BYTES

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-5 TK2 Built As a Memory-Resident Overlay

.......

56000
BYTES

ZK-397-Bl

The physical memory requirements for TK2 do not change (56000(octal)
bytes), . but the virtual address space requirements have been reduced
to 34000(octal) bytes. This represents a savings in virtual address
space of 22000(octal) bytes.

3-9

OVERLAY CAPABILITY

NOTE

In addition to the storage required for modules D, E,
and F, storage is required for overhead in handling
the overlay structures. This overhead is not
reflected in this example.

In Figure 3-5, the vertical and horizontal lines in the virtual
address space diagram represent the state of virtual address space at
various times during the calling sequence of TK2. The leftmost
vertical line shows virtual address space when CNTRL and D are loaded
and mapped. The next vertical line shows virtual address space when
CNTRL and E are loaded and mapped. The third vertical line shows
virtual address space when CNTRL and F are loaded and mapped.

The uppermost horizontal line of the task region shows that segments
D, E, and F share virtual address space.

When TK2 is activated, the Executive loads TK2's root segment into
physical memory. The Executive loads segments D, E, and F into memory
as they are called. Once all segments in the structure have been

(

called, "loading" of the overlay segments reduces to the remapping of (/
virtual address space to the physical locations in memory where the
overlay segments permanently reside. Figures 3-6 and 3-7 illustrate
the relationship between virtual address space and physical memory for
task TK2 during four time periods:

• TIME 1 (Figure 3-6A) - TK2 is run and the system loads the
root segment (CNTRL) into physical memory and maps to it.

• TIME 2 (Figure 3-6B) - CNTRL calls segment D. The
loads segment D into physical memory and maps to it.
D returns to CNTRL.

system
Segment

• TIME 3 (Figure 3-7A) - CNTRL calls segment E. The system
loads segment E into physical memory, unmaps from segment D,
and maps to segment E. Segment E returns to CNTRL.

• TIME 4 (Figure 3-7B) - CNTRL calls segment F. The system
loads segment F into physical memory, unmaps from segment E,
and remaps to segment F. Segment F returns to CNTRL.

It is important to be careful in choosing whether to have
memory-resident overlays in a structure. Carelessly using these
segments can result in inefficient allocation of virtual address
space, because TKB allocates virtual address space in blocks of 4K
words. Consequently, the length of each overlay segment should
approach that limit if you are to minimize waste. (A segment that is
one word longer than 4K words, for example, is allocated 8K words of
virtual address space. All but one word of the second 4K words is
unusable.)

You can also conserve physical memory by maintaining control over the
contents of each segment. Including a module in several
memory-resident segments that overlay one another causes physical
memory to be reserved for each extra copy of that module. Common
modules, including those from the system object module library
(SYSLIB), should be placed in a segment that can be accessed from all
referencing segments.

3-10

c

(

(

(

(

(

(

(

OVERLAY CAPABILITY

40000 APR 2-

20000 APR 1-

CNTRL
(ROOT SEGMENT)

o APR 0- ,--_H_ E:A_D)E_ R·_ A\N_J D __ ----l

VIRTUAL ADDRESS SPACE

CNTRL
(ROOT SEGMENT)

HEADER AND STACK - - - - - -+------------------~

PHYSICAL MEMORY

Figure 3-6A Relationship Between Virtual Address Space
and Physical Memory -- Time 1

3-11

ZK-398-81

OVERLAY CApABILITY

140000 APR6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

b
20000 APR 1- t-----------I ___ _

CNTRl
(ROOT SEGMENT)

o APR 0- L-_H_EAD_>ER __ ANJD_I S_TrA_CK---,

VI RTUAl ADDRESS SPACE

.... D

CNTRl
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-6B Relationship Between Virtual Address Space
and Physical Memory -- Time 2

3-12

(

(

c

(

ZK-399-Bl

(

c

(

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

· . :

. : :

.. :

. : .~
· : . . · . : "

..
. : : . . .:

: : : .: . : : : : : ::

,:::.,.:::,::: : : : : :

. : .. :
: : : : : : : . : .

" : ..
: :' : :' :: : ~: : .

. " : " .' .
. . : .

: . .. : :
. ::,':::'

. :

: : : , .'·uNUH· i':
: ", "

: : : :
: :. . : : . :

: : ~: ~ : ~ :. . : . .

::, .
: : : " : : .

:':: : :

': :. .

: :

: : : : :
: : : ,: .
: :::: . : :' . . : '

: : ,: : " . : :

: : ;: : : " . : :. .::
. :...,'::::

. ',: ~ ~;. :':.:::::
" ~ : : ~ . '. : : :' :: .: :i : : :. : .

: ~ : : : : : .' .:: ::.,

E

---- ~

------ -----20000 APR 1- r--------------------r"-
CNTRL

(ROOT SEGMENT)

o APR 0- '----_ HI'E._:A_DE:IR_A_N!D_S_Tr,A_C:K-----'

VIRTUAL ADDRESS SPACE

.....

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-7A Relationship Between Virtual Address Space
and Physical Memory -- Time 3

3-13

OVERLAY CAPABILITY

160000 APR 7-

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000 APR 3-

40000 APR 2-

20000 APR 1-

:' "

:' :'
: "

: ::

.. :

: :'
: "

lie :k~,
.: .

:. "

:' :'

.: :

: :: ::, ::.

:: ~ ': .: :::

F

CNTRL
(ROOT SEGMENT)

: ..
:: .:
:. "

o APR 0- L..-_H_E:A_DlE_:R_A_NID_S_TCiA_CK.-I

VIRTUAL ADDRESS SPACE

.;'

.;'

.;'

.;'

.;'

.,.

F

E

D

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

Figure 3-7B Relationship Between Virtual Address Space
and Physical Memory -- Time 4

ZK-401-81

The primary criterion for choosing to have memory-resident overlays is
the need to save _virtual address space when disk-resident overlays are
either undesirable (because they would slow down the system
unacceptably), or impossible (because the segments are part of a
resident library or other shared region that must permanently reside
in memory).

3-14

(

c,

(

(

(

(

c

(

OVERLAY CAPABILITY

Memory-resident overlays can help you use large systems to better
advantage because of the time savings realized when a large amount of
physical memory is available. Resident libraries, in particular, can
benefit from the virtual address space saved when they are divided
into memory-resident segments.

3.2 OVERLAY TREE

The arrangement of overlay segments within the virtual address space
of a task can be represented schematically as a tree-like structure.
Each branch of the tree represents a segment. Parallel branches
denote segments that overlay one another and therefore have the same
virtual address; these segments must be logically independent.
Branches connected end to end represent segments that do not share
virtual address space with each other; these segments need not be
logically independent.

TKB provides an Overlay Description Language (ODL) for representing an
overlay structure consisting of one or more trees (the ODL is
described in Section 3.4).

The single overlay tree shown in Figure 3-8 represents the allocation
of virtual address space for TKI (see Section 3.1.1).

The tree has a root (CNTRL) and three main branches (AD, BO, and C).
It also has six leaves (AI, A2l, A22, Bl, B2, and C).

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root. For example:

A2l-A2-AO-CNTRL

The path up is defined from the root to the leaf. For example:

CNTRL-BO-Bl

Knowing the properties of the tree and its paths is important to
understanding the overlay loading mechanism and the resolution of
global symbols.

By' A1

I
I

BO
I

C

I
AO

I
CNTRL

ZK-402-81

Figure 3-8 Overlay Tree for TKl

3-15

OVERLAY CAPABILITY

3.2.1 Loading Mechanism

Modules can call other modules that exist on the same path. The
module CNTRL (Figure 3-8) is common to every path of the tree and,
therefore, can call and be called by every module in the tree. The
module A2 can call the modules A2l, A22, AO, and CNTRL~ but A2 cannot
call AI, Bl, B2, BO, or C.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory and mapped, or must be
brought into memory. The methods for loading overlays are described
in Chapter 4.

3.2.2 Resolution of Global Symbols in a Multisegment Task

In resolving global symbols for a multisegment task, TKB performs the
same activities that it does for a single-segment task. The rules
defined in Chapter 2 for resolving global symbols in a single-segment

(

task apply also in this case, but the scope of the global symbols is (-
altered by the overlay structure.

In a single-segment task, any module can refer to any global
definition. In a multisegment task, however, a module can only refer
to a global symbol that is defined on a path that passes through the
called segment.

The following points, illustrated in the tree diagram in Figure 3-9,
describe the two distinct cases of multiply defined symbols and
ambiguously defined symbols.

In a single-segment task, if you define two global symbols with the
same name, the symbols are multiply defined and an error message is

·produced.

In a multisegment task, you can define two global symbols with the
same name- if they are on separate paths, and not referenced from a
segment that is common to both.

If you define a global symbol more than once on separate paths, but
they are referenced from a segment that is common to both, the symbol
is ambiguously defined. If you define a global symbol more than once
on a single path, it is multiply defined.

TKB's procedure for resolving global symbols is summarized as follows:

1. TKB selects an overlay segment for processing.

2. TKB scans each module in the segment for global definitions
and references.

3. If the symbol is a definition, TKB searches all segments on
paths that pass through the segment being processed, and
looks for references that must be resolved.

4. If the symbol is a reference, TKB performs the tree search as
described instep 3, looking for an existing definition.

5. If the symbol is new, TKB enters it in a list of global
symbols associated with the segment.

(

c

Overlay segments are selected for processing in an order corresponding (
to their distance from the root. That is, TKB processes the segment .
farthest from the root first, before processing an adjoining segment.

3-16

(

(

(

(

OVERLAY CAPABILITY

When TKB processes a segment, its search for global symbols proceeds
as follows:

1. The segment being processed

2. All segments toward the root

3. All segments away from the root

4. All co-trees (see Section 3.5)

Figure 3~9 illustrates the resolution of global symbols in a
multisegment task.

A1

A21
T (OEF)
S (REF)

I
Q (REF)
R (REF)
S (REF)

A2

I

I
AD

Q (OEF)
S (OEF)
T (OEF)

R (OEF)

I

A22
R (REF)
Q (REF)
S (REF)

I

81 82
Q (REF) S (REF) SIr;-J

80
Q (OEF)
S (OEF)

CNTRL
S (REF)

C

ZK-403-81

Figure 3-9 Resolution of Global Symbols in a Multisegment Task

The following notes discuss the resolution of references in Figure
3-9:

1. The global symbol Q is defined in both segment AD and segment
BO. The references to Q in segment A22 and in segment Al are
resolved by the definition in AD. The reference to Q in Bl
is resolved by the definition in BO. The two definitions of
Q are distinct in all respects and occupy different overlay
paths.

2. The global symbol R is defined in segment A2. The reference
to R in A22 is resolved by the definition in A2 because there
is a path to the reference from the definition
(CNTRL-AD-A2-A22). The reference to R in AI, however, is
undefined because there is no definition for R on a path
through AI.

3. The global symbol S is defined in both segment AD and segment
BO. References to S from segments AI, A2l, or A22 are
resolved by the definition in AO, and references to S in Bl
and B2 are resolved by the definition in BO. However, the
reference to S in CNTRL cannot be resolved because there are
two definitions of S on separate paths through CNTRL. The
global symbol S is ambiguously defined.

3-17

4.

OVERLAY CAPABILITY

The global symbol T is defined in both segment A21 and
segment AO. Since there is a single path through the two
definitions (CNTRL-AO'-A2-A21), the global symbol T is
multiply defined.

3.2.3 Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over
the tree structure. The global symbols discussed in the previous
section are included in user-specified input modules that TKB scans in
the first pass. If any undefined symbols remain, TKB initiates a
second pass over the structure in an attempt to resolve such symbols
by searching the default object module library (normally
LBO:[l,l]SYSLIB.OLB). TKB reports any undefined symbols remaining
after its second pass.

When multiple tree structures (co-trees) are defined, as described in
Section 3.5, any resolution of global symbols across tree structures
during a second pass can result in multiple or ambiguous definitions.

c

In addition, such references can cause overlay segments to be C
inadvertently displaced from memory by the overlay loading routines, '.
thereby causing run-time failures. To eliminate these conditions, the
tree search on the second p~ss is restricted to:

• The segment in Which the undefined reference has occurred

• All segments in the current tree that are on a path through
the segment

• The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can unconditionally extend the tree search to
all segments by including the /FU (full) switch in TKB or the
/FULL SEARCH qualifier in LINK in the task image file specification.
(Refer to Chapter 10 for a description of the TKB /FU switch, or to
Chapter 11 for a description of the LINK /FULL_SEARCH qualifier.)

3.2.4 Allocation of Program Sections in a Multisegment Task

One of a program'section's attributes indicates whether the program
section is local (LCL) to the segment in which it is defined or is
global (GBL).

Local program sections with the same name can appear in any number of
segments.. TKB allocates virtual address space for each local program
section in the segment in which it is declared. Global program
sections that have the same name, however, must be resolved by TKB.

When a global program section is defined in several overlay segments
along a common path, TKB allocates all virtual address space for the
program section in the overlay segment closest to the root.

FORTRAN common blocks are translated into global program sections with
the overlay (OVR) attribute •. In Figure 3 10, the common block COMA is
defined in modules A2 and A21. TKB allocates the virtual address
space for COMA in A2 because that segment is closer to the root than
the segment that contains A21.

3-18

(

(

(

(

c

(

OVERLAY CAPABILITY

If the segments AO and BO use the common block COMAB, however, TKB
allocates the virtual address space for COMA~ in both the'segment that
contains AO and the segment .that contains BO. AO and BO cannot
communicate through COMAB. When the overlay segment containing BO is
loaded, any data stored in COMAB by AO is lost.

You can specify the allocation of program sections explicitly. If AO
and BO need to share the contents of COMAB, you can force the
allocation of this program section into the root segment by the use of
the .PSECT directive of the Task Builder's overlay description
language, described in Section 3.4.

AO
COMAB

I

B1 B2

Y
CNTRL

BO
COMAB

I
C

I

ZK-404-B1

Figure 3-10 Resolution of Program Sections for TK1

3.3 OVERLAY DATA STRUCTURES AND RUN-TIME ROUTINES

When TKB constructs an overlaid task, it builds additional data
structures and adds them to the task image. The data structures
contain information about the overlay segments and describe the
relationship of each segment in the tree to the other segments in the
tree. TKB also includes into the task image a number of system
library routines (called overlay run-time routines). The overlay
run-time routines use the data structures to facilitate the loading of
the segments and to provide the necessar¥ linkages from one segment to
another at run time.

TKB links the majority of data structures and all of the overlay
run-time :.;-.outines into the root segment of the task. The number and
type of data structures, .and the functions the routines perform,
depend on two considerations:

• Whether the task is built to use the Task Builder's autoload
or manual load facilities

• Whether the overlay segment is memory resident or disk
resident

3-19

OVERLAY CAPABILITY

These considerations have a marked impact on the size and operation of
the task. Chapter 4 describes the Task Builder's autoload and manual
load facilities and describes the methods for loading overlays. (
Appendix B describes the data structures and their contents in detail. .

The contents of the root segment for a task with an overlay structure
are discussed briefly in the following sections.

3.3.1 OverlaidCoQventional Tas~ Structures

Depending on the considerations just discussed,
following data structures are required by
routines:

• Segment tables

• Autoload vectors

• Window descriptors

• Region descriptors

some or all of the
the overlay run-time

Figure 3-11 shows a typical overlay root segment structure.

TASK CODE & DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

OVERLAY
RUN-TIME
ROUTINES

AUTOLOAD VECTORS

TASK CODE
AND
DATA

HEADER AND STACK

ZK-405-81

TYPICAL
MAIN TREE

ROOT SEGMENT

Figure 3-11 Typical Overlay Root Segment Structure

3-20

(

(

(

(

(

(

OVERLAY CAPABILITY

There is a segment descriptor for every segment in the task. The
descriptor contains information about the load address, the length of
the segment, and the tree linkage.

In an autoloadable, overlaid task, autoload vectors appear in the root
segment and in every segment that calls modules in another segment
located farther away from the root of the tree. All references to
resident libraries are resolved through autoload vectors in the root.

Window descriptors are allocated whenever a memory-resident overlay
structure is defined for the task. The descriptor contains
information required by the Create Address Window system directive
(CRAW$). One descriptor is allocated for each memory-resident overlay
segment.

Region descriptors are allocated whenever a task is linked to a shared
region containing memory-resident overlays. The descriptor contains
information required by the Attach Region system directive (ATRG$).

3-21

1.SK

300

o

VIRTUAL I-SPACE

I-SPACE PART .OF
AUTOLOAD VECTORS

CODE

OVERLAY RUN-TIME
ROUTINES

AUTOLOAD VECTORS-
I-SPACE PART

TASK
CODE

UNUSED HEADER COPY

OVERLAY CAPABILITY

3.6K

3K

3K

2740

2720

2640

2630

1270

300

o

3-22

VIRTUAL D-SPACE

D-SPACE PART OF
AUTOLOAD VECTORS

DATA

WINDOW DESCRIPTORS

REGION DESCRIPTORS

SEGMENT DESCRIPTORS

AUTOLOAD VECTORS
D-SPACE PART

TASK
DATA

STACK SPACE

TASK HEADER
USABLE COPY

UP-TREE
SEGMENT

MAIN
TREE
ROOT

SEGMENT

ZK-1050-B2

(

(

(

(

(

c

(

OVERLAY CAPABILITY

3.4 OVERLAY DESCRIPTION LANGUAGE

TKB provides a language, called the Oyer lay Description L~nguage
(OOL), that allows you to describe the overlay structure of a task.
An overlay description is a text file consisting of a series of OOL
directives, one directive per line. Each line may have as many as 132
characters. You enter the name of this file in a TKBcommand line,
and identify it as an ODL file by specifying the /MP switch in TKB or
the /OVERLAY_DESCRIPTION qualifier in LINK to the file name.

For example, the following TKB command line specifies an OOL file:

>TKBTASK1,,~OVRLAY/MP

and the following LINK command line specifies the same:

>LINK/TASK:TASK1 OVRLAY/OVERLAY_OESCRIPTION

or

>LINK/TAS:TASK1 OVRLAY/OVER

If you specify an OOL file to TKB, it must be the only input file you
specify.

A command line in an OOL file takes the form

label: directive argument-list ; comment

A label is required only for the.FCTR direciive (see Section 3.4.2).
Labels cannot be used with the other directives.

The OOL directives are listed below and deacribed in Sections 3.4.1
through 3. 4. 6 :

• .ROOT and .ENO

• • FCTR

• • NAME

• .PSECT

• @ (at sign; indirect command file specifier)

The OOL directives can act upon the following items: named input
files, overlay segments, program sections, and lines in the ODL file
itself. These items follow each directive on the same line as the
directive, and form an argument~list. Operators, such as the hyphen,
exclamation point, and comma, group the argument-list items (named
task elements) or attach attributes to them.

If the named task element is a file, you can enter a complete file
specification. Oefau1ts for omitted parts of the file specification
are as described in Chapters 1 and 10, except that the default device
is SYO:, and the default UFD is taken. from the terminal UIC.

In additio~, the following restrictions apply to argument-lists:

• You can only use the dot character (.) in a file name.

• Comments cannot appear on a line ending with a file name.

3-23

OVERLAY CAPABILITY

3.4.1 .ROOT and .END Directives

of the overlaid task.
first in the overlay

the .ROOT directive in
3.4.4. Each overlay
The .ROOT directive

and the .END directive

The .ROOT directive defines the structure
Because of this, .ROOT usually appears
description. The .NAME directive may. precede
certain circumstances discussed in Section
description must end with one .END directive.
tells TKB where to start building the tree,
tells TKB where the input ends.

The arguments of the .ROOT directive use three operators to express
concatenation, memory residency, and overlaying. These operators can
be used also in the .FCTR directive.

• The hyphen (-) operator indicates the concatenation of virtual
address space. For example, X-Y means that sufficient virtual
address space will be allocated to contain module X and module
Y simultaneously. TKB allocates segment X and segment Y in
sequence to produce one segment.

• The exclamation point (I) operator indicates memory residency
of overlays. (This operator is discussed in Section 3.4.3.)

• The comma (,) operator, 'appearing within parentheses,
indicates the overlaying of virtual address space. For
example, (Y,Z) means that virtual address space can contain
either segment Y or segment Z. If no exclamation point (I)
precedes the left parenthesis, segment Y and segment Z also
share physical memory.

The comma (,) operator is also used to define multiple tree
structures (as described in Section 3.5.1).

You use parentheses to delimit a group of segments that start at the
same virtual address. The number of nested parenthetical groups
cannot exceed 16.

For example:

.ROOT X-(y,Z-(Zl,Z2»

.END

(

(

(

These directives describe the tree and its corresponding virtual (/
address space shown in Figure 3-13:

Z1 Z2

Y
Z1 Z2

Y

Y
X

Z

X

ZK-406-81

Figure 3-13 Tree and Virtual Address Space Diagram

3-24

(

(

(~

(

OVERLAY CAPABILITY

To create the overlay description for the task TKI in Figure 3-3
(Section 3.1.1), you could create a file called TFIL.ODL that contai.ns
the directives:

.ROOT CNTRL-(AO-(Al,A2-(A21,A22}},BO-(Bl,B2},C}
• END .

To build the task with that overlay structure, you would type:

TKB LINK

>TKB TKl,,=TFIL/MP >LINK/TASK:TKI TFIL/OVERLAY_DESCRIPTION

or

>LINK/TA:TKI TFIL/OV

The /MP switch or the /OVERLAY DESCRIPTION qualifier in the command
strings above tells TKB that there is only one input file (TFIL.ODL),
and that this file contains the overlay qescription for the task.

3.4.2 .FCTR Directive

The .FCTR directive allows you to build large, complex trees and
represent them clearly.

The .FCTR directive has a label at the beginning of the ODL line that
is pointed to by a reference in a .ROOT or another .FCTR statement.
The label must be unique with respect to module names and other
labels. The .FCTR directive allows you to extend the tree description
beyond a single line, enabling you to provide a clearer description of
the overlay. (There can be only one .ROOT directive.)

For example, to simplify the tree given in the file TFIL (described in
Section 3.4.1), you could use the .FCTR directive in the overlay
description as follows:

AFCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C}

.FCTR AO-(Al,A2-(A21,A22}}

.FCTR aO-(Bl,B2}
• END

The label BFCTR is used in the .ROOT directive to designate the
argument BO-(Bl,a·2) of the .FCTR directive. The resulting overlay
description is easier to interpret than the original description. The
tree consists of a root, CNTRL, and three main branches. Two of the
main branches have sub-branches. - .

The .FCTR directive can be nested to a level of 16. For example, you
could further modify TFIL as follows:

AFCTR:
A2FCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,BFCTR,C}

.FCTR AO-(Al,A2FCTR}

.FCTR A2-(A21,A22}

.FCTR BO-(Bl,B2}

. END

3-25

OVERLAY CAPABILITY

3.4.3 Arguments for the .FCTR and .ROOT Directives

The arguments for the .FCTR and .ROOT directives may have different
forms or syntax. The examples in this chapter use forms such as A1,
B1, X, and Y for clarity, but the actual arguments that you use may
have somewhat different names. This section lists the forms that the
arguments may take for these directives. If you use an argument that
does not fall into one of the following five categories, TKB takes the
argument as that of the name of an object module file; in other words,
the file name that you use must have an extension of .OBJ.

NOTE

When you use library file specifications in .an ODL
file, as in Sections 3.4.3.2 and ,3.4.3.3, you must use
the TKB /LB switch as described in those sections and
in Chapter 10. There are no LINK equivalents to use
within an ODL file. .

3.4.3.1 Named Input File - You may use a named input file that has
the object file format. For example,

CALC: .FCTR [7,54JMULT.OBJ

The default is .OBJ.

3.4.3.2 Specific Library Modules - You may
specific object modules from a library file.

BAKER: .FCTR [300,3JCOOKIE/LB:CHIP:OAT

name and therefore
For example,

use

where COOKIE.OLB is the library file and CHIP and OAT are the modules
that you want to extract from the file. The default extension is .OLB
and it need not be specified as part of the argument.

3.4.3.3 A Library to Resolve References Not Previously Resolved - You
may specify a library as an argument in a .FCTR statement after
extracting specific modules in a previous .FCTR statement. TKB uses
the library to resolve symbols that may still be unresolved after
extracting the modules. For example,

BAKER:
LIB:

.FCTR [300,3JCOOKIE/LB:CHIP:OAT

.FCTR LB:[1,4JRECIPE/LB

3.4.3.4, A Section Name Used in a .PSECT Directive - You may use the
name that you used as a program section name in the .PSECT directive
as the-argument in a .FCTR statement. For example,

.PSECT COM,GBL,D,RW,OVR
FSTCOM: .FCTR COM

(

(

(

(

(

(

(

OVERLAY CAPABILITY

3.4.3.5 A Segment Name Used in a .NAME Directive - You may use the
name that you specified as the name of a segment in the .NAME
directive. For example,

OVLY:
. NAME
. FCTR

SEGI,GBL,DSK
SEGI-MODI-MOD2

3.4.4 Exclamation Point Operator

The exclamation point operator allows you to specify memory-resident
overlay segments (see Section 3.1.2). You specify memory residency by
placing an exclamation point (1) immediately before the left
parenthesis enclosing the segments to be affected. The overlay
description for task TK2 in Fi~ure 3-4 (Section 3.1.2) is as follows:

.ROOT CNTRL-l(D,E,F)

.END

In the example above, segments D,E, F are declared resident in
separate areas of physical memory. The Task Builder determines the
single starting virtual address for D, E, and F by rounding the octal
length of segment CNTRL up to the next 4Kboundary. Thephysical
memory allocated to segments D, E, and F is determined by rounding the
actual length of each segment to the next 32-word boundary (256-word
boundary if the jCM switch or jCOMPATIBLE qualifier is in effect), and
adding this value to the total memory required by the task.

The exclamation point operator applies to that segment immediately to
the right of the left parenthesis and those segments farther from the
root on the same level with' that segment. In other words, all
parallel segments must be of the same residency type (disk resident or
memory resident).

The exclamation point operator applies to segments at the same level
from the root inside a pair of parentheses; segments nested in
parenthesis within that level, but farther from the root, are not
affected.

It is therefore possible to define an overlay structure that combines
the space-saving attributes of disk-resident overlays with the speed
of memory-resident overlays. For example:

.ROOT A-1(Bl-(B2,B3),C)

. END

In this example, . Bl and Care
exclamation point. operator. B2
however, because no exclamation
parentheses enclosing them.

declared memory resident by the
and B3 are declared disk resident,
point operator precedes the

Note that while a memory-resident overlay can call a disk-resident
overlay, the converse is not legal: that is, you cannot use an
exclamation point for segments emanating from a disk-resident segment.
For example, you cannot build the following st~ucture:

.ROOT A-(BI-l(B2,B3),C)
.END

; this overlay description is illegal

In this example, Bl is declared disk resident: so it is illegal to use
the exclamation point to declare B2 and B3 memory resident.

3-27

OVERLAY CAPABILITY

3.4.5 .NAME Directive

The . NAME directive allows you to name a segment, and assign
attributes to the segment. The name must be unique with respect to
file names, program section names, .FCTR labels, and other segment
names used in the overlay description.' You use the .NAME directive
prior to using the .ROOT or .FCTR directive. The Task Builder
attaches attributes to a segment when it encounters the name in a
.ROOT or .FCTR directive that defines the overlay segment. If you
apply multiple names to a segment, the attributes of the last name
given are in effect. This directive does the following:

• Names uniquely a segment that is loaded through the manual
load facility (see Chapter 4)

• Permits a named data-only segment to be loaded through the
autoload mechanism

The format of the .NAME directive is:

.NAME segname[,attr][,attr]

segname

attr

A 1- to 6-character namej this name can consist of the Radix-50
characters A-Z, 0-9, and $ (the period (.) cannot be used).

One of the following:

GBL

NODSK

The name is entered in the segment's global symbol
table.

The GBL attribute makes it possible to load
data-only overlay segments by means of the autoload
mechanism (see Chapter 4).

No disk space is allocated to the named segment.

(

(

(

If a data overlay segment has no initial values, but
will have its contents established by the running
task, no space for the named segment on disk need be
reserved. If the code attempts to establish initial (~,
values for data in a segment for which no disk space

NOGBL

DSK

is allocated (a segment with the NODSK attribute),
TKB gives a fatal error.

The name is not entered in the segment's global
symbol table.

If the GBL attribute is not present, NOGBL is
assumed.

Disk storage is allocated to the named segment.

If the NODSK attribute is not present, DSK is
assumed.

3-28

(

(

(

c

c

(

OVERLAY CAPABILITY

3.4.5.1 Example of The Use of The .NAME Directive - In the following
modified ODL file for TKI (Figure 3-3 of Section 3.1.1), you provide
names for the three main branches, AO, BO, and C, by specifying the
names in the .NAME directive and using them in the, . ROOT directive.
The default attributes NOGBL and DSK are in effect for BRNCHI and
BRNCH3, but BRNCH2 has the complementary attributes (GBL and NODSK)
that cause TKB to enter the name BRNCH2 into the segment's global
symbol table and suppress disk allocation for that segment. BRNCH2
contains uninitialized storage to be utilized at run time •

AFCTR:
BFCTR:

. NAME BRNCHI

.NAME BRNCH2,GBL,NODSK
• NAME BRNCH3
.ROOT CNTRL-l(BRNCHl-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)
.FCTR AO-(Al,A2-(A21,A22»
.FCTR BO-*I(Bl,B2)
. END

(The asterisk (*) is the autoload indicator; it is discussed in
Chapter 4.)

You can load the data overlay segmentBRNCH2 by including the
following statement in the program:

CALL BRNCH2

This action is immediately followed by an automatic return to the next
instruction in the program.

You can also use segment names in making patches with the ABSPAT and
GBLPAT options (see Chapter 11).

NOTE

In the absence of a unique • NAME specification, TKB
establishes a segment name, using the first module
name or library module name occurring in the segment.

3.4.6 .PSECT Directive

You can use the .PSECT directive to control the placement of a global
program section in an overlay structure. The name of the program
section (a 1- to 6-character name consisting of the Radix-50
characters A-Z, 0-9, and $) and its attributes are given in the .PSECT
directive. The attributes used in the .PSECT directive must match
those in the actual program section in the module. Thus, you can use
the name in a .ROOT or .FCTR statement to indicate to the Task Builder
the segment to which the program section will be allocated. An
example of the use of .PSECT is given in the modified version of task
TKl (the original version is shown in Figure 3-3 in Section 3.1.1)
shown below.

In this example, TKl has a disk-resident overlay structure. The
example assumes that the programmer' was careful about the logical
independence of the modules in the overlay segment, but failed to take
into account the requirement for logical independence in multiple
executions of the same overlay segment.

The flow of task TKl can be summarized as follows. CNTRL calls each
of the overlay segments, and the ?verlay segment returns to CNTRL in
the order A, B, C, A. Module A 1S executed twice. The overlay
segment containing A must be reloaded for the second execution.

3-29

OVERLAY CAPABILITY

Module A uses a common block named DATA3. The Task Builder allocates
DATA 3 to the overlay segment containing A. The first execution of A
stores some results in DATA3. The second execution of A requires
these values. In this disk-resident overlay structure, however, the
values calculated by the first execution of A are overlaid. When the
segment containing A is read in for the second execution, the common
block is in its initial state.

To permit the two executions of A to communicate, a .PSECT directive
is used to force the allocation of DATA3 into the root. The indirect
command file for TK1, TFIL.ODL, is modified as follows:

.PSECT DATA3,RW,GBL,REL,OVR

AFCTR:
.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C)
.FCTR AO-(Al,A2-(A21,A22»

BFCTR: .FCTR BO-(Bl,B2)
. END

The attributes RW, GBL, REL, and OVR are described in Chapter 2.

3.4.7 Indirect Command Files

The Overlay Description Language processor can accept ODL text
indirectly, that is, specified in an indirect command file. If an at
sign (@) appears as the first character in an ODL line, the processor
reads text from the file specified immediately after the at sign. The
processor accepts the ODL text from the file as input at the point in
the overlay description where the file is specified.

For example, suppose you create a file, called BIND.ODL, that contains
the text:

B: .FCTR Bl-(B2,B3)

A line beginning with @BIND can replace this text at the position
where the text would have appeared:

C:
@BIND

Indirect

.ROOT A-(B,C)

.FCTR Cl-(C2,C3)

.END

C:
B:

Direct

.ROOT A-(B,C)

.FCTR Cl-(C2,C3)

.FCTR Bl-(B2,B3)

.END

The Task Builder allows two levels of indirection.

3.5 MULTIPLE-TREE STRUCTURES

You can define more than one tree within an overlay structure. These
multiple tree structures consist of a main tree and one or more
co-trees. The root segment of the main tree is loaded by the
Executive when the task is made active, while segments within each
co-tree are loaded through calls to the overlay run-time routines.
Except for this distinction, all overlay trees have identical
characteristics: a root segment that resides in memory, and two or
more overlay segments.

3-30

(

(

(

(

(

(

OVERLAY CAPABILITY

The main property of a structure containing more than one tree is that
storage is not shared among trees. Any segment in a tree can be
referred to from another tree without displacing segments from the
calling tree. Routines that are called from several main tree overlay
segments, for example, can overlay one another in a co-tree. The same
considerations in deciding whether to create memory-resident overlays
or disk-resident overlays in a single-tree structure apply in building
a structure containing co-trees.

3.5.1 Defining a Multiple-Tree Structure

Multiple-tree structures are specified within the Overlay Description
Language by extending the function of the comma operator. As
described in Section 3.4, this operator, when included within
parentheses, defines a pair of segments that share storage. Including
the comma operator outside all parentheses delimits overlay trees.
The first overlay tree thus defined is the main tree. Subsequent
trees are co-trees. For example:

X:
Y:

. ROOT

.FCTR

. FCTR

. END

X,Y
XO-(Xl,X2,X3)
YO-(Yl,Y2)

In this example, two overlay trees are specified: 1) a main tree
containing the root segment XO and three overlay segments; and 2) a
co-tree consisting of root segment YO and two overlay segments. The
Executive loads segment XO into memory when the task is activated.
The task then loads the remaining segments through calls to the
overlay run-time routines.

3.5.1.1 Defining Co-trees With a Null Root by Using .NAME - A co-tree
must have a root segment to establish linkage with its own overlay
segments. However, co-tree root segments need not contain code or
data and, therefore, can be 0 length. You can create a segment of
this type; called a null segment, by means of the . NAME directive.
The previous example is modified, as shown below, to move file YO.OBJ
to the root and include a null segment.

X:

Y:

. ROOT

.FCTR

. NAME

.FCTR

. END

X,Y
XO-YO-(Xl,X2,X3)
YNUL
YNUL-(Yl,Y2)

The null segment YNUL is created by using the .NAME directive, and
replaces the co-tree root that formerly contained YO.OBJ.

3.5.2 Multiple-Tree Example

The following example illustrates the use of multiple trees to reduce
the size of the task.

In this example, the root segment CNTRL of task TKI (described in
Section 3.1.1) has had two routines added to it: CNTRLX and CNTRLY.
The routines are logically independent of each other, and both are

3-31

OVERLAY CAPABILITY

approximately 4000(octal) bytes long. However, the routines have been
placed in the root segment of TKl instead of being overlaid because
both routines must be accessed from modules on all paths of the tree. (~
In a single-tree overlay structure, the root segment is the only
segment common to all paths of the tree. The schematic diagram for
the modified structure is shown in Figure 3-14.

A21 A22

I I
I

A1 A2 81 82

I
I

I I
I

I
AO 80 C

I
I

I I
CNTRLY

I I ROOT CNTRLX
I SEGMENT

CNTRL

ZK-407-81

Figure 3-14 Overlay Tree for Modified TKI

One possible overlay description for this structure is shown below:

AFCTR:
A2FCTR:
BFCTR:

.ROOT CNTRL-CNTRLX-CNTRLY-(AFCTR,BFCTR,C)

.FCTR AO-(Al,A2FCTR)

.FCTR A2-(A2l,A22)

.FCTR BO-(Bl,B2)

.END

Because TKI consists of disk-resident bverlays and the new routines
are concatenated within the overlay structure, the new routines add
10000(octal) bytes to both the virtual address space and physical
memory requirements of the task. However, the added routines consume
more virtual address space than might be expected, as shown in Figure
3-15.

The expansion of TKl's virtual address space requirements caused the
task to extend 4000(octal) bytes beyond the next highest 4K-word
boundary (APR 2). Because the Executive must use an additional
mapping register (APR2), the appa~ent cost in virtual address space
above APR 2 of 4000(octal) bytes 1S in fact 20000(octal) bytes.
(Compare the diagram in Figure 3-15 with the diagram in Figure 3-3.)
The shaded portion of the unused virtual address space in Figure 3-15
represents the portion of virtual address space that is allocated but
is unusable as allocated.

Small tasks, such as TKl, are seldom adversely affected by the
inefficient allocation of virtual address space, but larger tasks may
be. For example, a large task that contains code to create dynamic
regions (see Chapter 5) or that contains Executive directives to
extend its task region (see the RSX-llM/M-PLUS Executive Reference
Manual) requires at least 4K words of virtual address space to map
each region. In such a task, using co-trees can often save virtual
address space and can, therefore, be of paramount importance. TKI can
be modified to reflect this. .

3-32

(

(

(

(

c

c

C

(

(

ROOT
SEGMENT

OVERLAY CAPABILITY

APR7-

APR5-

APR4-

APR3-

- - - --
APR2- IA211A221 ~

A1 I I B1 A2 B2

AO I BO

CNT RlY CNTRlY - - - - t- - - - - - - -
CNT RlX ..

APR1- - - - CNTRlX
t- - - - -- - -

eN TRl CNTRl

APRO- - - - -- HEADER AND STACK

VIRTUAL ADDRESS
SPACE

PHYSICAL MEMORY

Figure 3-15 Virtual Address Space and Physical Memory
for Modified TKI

C

-
-

ZK-40B-B1

As noted earlier, the routines CNTRLX and CNTRLY are logically
independent. Logical independence is a primary requirement for all
segments that overlay each other. However, CNTRLX and CNTRLY cannot
be structured into either of the main branches of TKl's tree because
it is further required that the routines be accessible from modules on
all paths of the tree. Therefore, the only way CNTRLX and CNTRLY can
be overlaid and still meet all of these requirements is through a
co-tree structure. Figure 3-16 shows the schematic representation of

TKI as a co-tree structure. .

3-33

OVERLAY CAPABILITY

A21 A22

I I
I

A1 A2 B1 B2

I I I
I

I
I

AO BO C CNTRlX CNTRlY

I I I I
I

I
I

CNTRl CNTRl2

MAIN TREE CO-TREE
ZK-409-S·1

Figure 3-16 Overlay Co-Tree for Modified TKI

The root segment CNTRL2 of the co~tree is a pull segment. It contains
no code or data and has a length of O. As noted earlier, the Task
Builder requires the root segment in order to establish linkage with
the overlay segments. One possible overlay description for building
TKI as a 2-tree structure is shown below •

. NAME CNTRL2

.ROOT CNTRL-(AFCTR,BFCTR,C),CNTRL2-(CNTRLX,CNTRLY)
AFCTR: .FCTR AO-{Al,A2FCTR) .
A2FCTR: .FCTR A2-(A2l~A22)
BFCTR: .FCTR BO-(Bl,B2)

·END

You define the co-tree in the .ROOT directive by placing the comma
operator outside all parentheses (immediately before CNTRL2). The
.NAME directive creates the null root segment. Figure 3-16 shows the
new relationship between virtual address space and physical memory.

The diagrams in Figure 3-17 illustrate the savings (4000(octal) bytes)
in both virtual address space and physical memory that is realized by

(

(

(

overlaying CNTRLX and CNTRLY. What may be more important in some (
applications, however, is that the top of TKl's task region has ._
dropped below the 4K-word boundary of APR 2. TKI has gained 4K words
of potentially usable virtual address space.

NOTE

The numbers used in this example have been simplified
for illustrative purposes. In addition, the storage
required for overhead 1n handling the overlay
structures is not reflected in this example.

Because the nuli root CNTRL2 is 0 bytes long, it does not require any
virtual address space or physical memory and, therefore, does not
appear in the diagrams in Figure 3-17.

Finally, you can define any number of co-trees. Additional co-trees
can access all modules in the main tree and other co-trees.

3-34

(

(

(

(

OVERLAY CAPABILITY

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

· " .
:: : :'

· .: :
.: :

. :

.: :
. : :: :

: : . ': ..
: :.

: :.
..

: : .: .

. :. " :; .~
. : "

:' .; : ,,',

" ::
:' .:':' .. .: " .
:. '. " . '. ::
,: :'.: " : :'

. : : "

: .:
:,,' . : :: .

: "

: :: :, :

. : . : ,',' .
:' .: . " :

:, ': :: :
:: : ,: :

.: : .
" " : :' . "

" "

: .:

,: : .: ;' : :':", : .: :: : : : " : . " :
: :' .

: :: :

.. .
: :: :

:: ': . : : .: .

: "
.. : "

· " : ".; :. : .; :'.; :: : : .

, " • , , : ,. ,':/5'0,' ;i ! i ; ; i
..... ".: :' :

': : .

.: " "
" .. ' . : : ;: : :

.. : " : : .
. . : ;'" : .' ...

.. :
" " . :. : ': .. .

~ ~: ~ . " ~ :: : . . : ,: . :

: :'.:

:. : .
" "

" : .

. .

.. : :. ~ : : . . :
. . " : "

: " :

: .; . : :: : .: : ..
: " . . .

. : :

. : ~ :: :. : ': : :' ': : ~' . ': ' ".: .
.. : :. : :: ~ ': :' : ,: : :: : ::

: " .

CNTRLX CNTRLY NULL ROOT
~-'I-A--211~I--A2-+2--'I--~---+~LENGTH=0

A 1 I A2 B 1 fB2 C

AO BO

CNTRL
(ROOT SEGMENT)

APR 0- - - - - -

VIRTUAL ADDRESS SPACE

CNTRLX CNTRLY

I A211 A22 B1~ A1 I A2 82

AO BO

CNTRL
(ROOT SEGMENT)

HEADER AND STACK

PHYSICAL MEMORY

C

ZK-410-81

Figure 3-17 Virtual Address Space and Physical Memory
for TKl As a Co-Tree

3.E CREATING AN ODL FILE FROM A VIRTUAL ADDRESS SPACE ALLOCATION
DIAGRAM

You can use a graphic method as an aid to converting a virtual address
space allocation diagram into the correct Task Builder ODL file.

3-35

OVERLAY CAPABILITY

First create a virtual address space allocation diagram of your
overlaid task, similar to that shown in Figure 3-18, without the
dotted-line path shown in the diagram.

.......... · . A21 A22
· · · _,-e •••• 11 ••• ~ .. ": · · A1 · B1 : · . ! · . · . · · . : · : . ..:. · A2 B2 C · · · · 1 · ~ ... : · ! · ! · ! · · · · · . · : AO .. ~. BO ~···i
i · ·
· !
• ROOT (CNTRl) •

ZK-l052-82

Figure 3-18 Virtual Address' Space Allocation Diagram

The dotted-line path will be the basis for writing the ODL statements
that 'you need. To determine the path through your virtual address
space allocation diagram, follow these steps:

2.

Start in the lower left corner of the root segment.

Draw a dotted line upward as far as you can go without
passing through the top or into "empty" virtual space,
crossing into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical
line of the lowest segment; cross the vertical line and
continue again from step 2: otherwise, proceed to step 5.

5. Because the end of your dotted line is not opposite the
vertical line of the lowest segment proceed downward until
you reach the lowest'segment.

6. If you are not in the root, cross the vertical line to the
right and continue from step 2: otherwise, proceed to step 7.

7. If your dotted line is in the lower right corner of the root,
you have finished the dotted-line walk.

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps. While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

3-36

(

(

(

c

(

(

(

OVERLAY CAPABILITY

3.6.1 Creating a .ROOT Statement by Using a Virtual Address Space
Allocation Diagram

Now you are ready to write the .ROOT statement. Follow these steps:

1. Write .ROOT followed by the name of the root statement (in
this example, .ROOT CNTRL).

2. Follow the dotted-line path.

3. Add each successive ODL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: -("name of new segment"

B. At a horizontal crossing: ,"name of new segment"

C. At a downward crossing:

4. When you have returned to the root, your root statement is
complete.

Using the dotted-line path in Figure 3-18 and the above associated
steps for writing the .ROOT statement, you can write as shown below:

1. Step 1 : Write . ROOT CNTRL

2. Step 3A: Write . ROOT CNTRL-(AO

3. Step 3A: Write . ROOT CNTRL-(AO-(Al

4. Step 3B: Write . ROOT CNTRL- (AO- (AI, A2

5. Step 3A: Write . ROOT CNTRL-(AO-(A1,A2-(A21

6. Step 3B: Write . ROOT CNTRL-(AO-(Al,A2-(A21,A22

7. Step 3C: Write . ROOT CNTRL-(AO-(A1,A2-(A21,A22)

8. Step 3C: Write . ROOT CNTRL-(AO-(Al,A2-(A21,A22»

9. Step 3B: Write . ROOT CNTRL-(AO-(Al,A2-(A21,A22»,BO

10. Step 3A: Write • ROOT CNTRL-(AO-(Al,A2-(A21,A22»-BO-(Bl

11. Step 3B: Write . ROOT CNTRL-(AO-(Al,A2-(A21,A22»-BO-(Bl,B2

12. Step 3C: Write . ROOT CNTRL-(AO-(A1,A2-(A21,A22»-BO-(B1,B2)

13. Step 3B: Write . ROOT CNTRL- (AO- (AI, A2- (A21,A22» -BO- (B1, B2),C

14. Step 3C: Write . ROOT CNTRL- (AO- (A1, A2- (A21,A22)) -BO- (B1, B2) , C)

The steps for writing .FCTR statements and co-tree statements follow
next.

3-37

OVERLAY CAPABILITY

3.6.2 Creating a .FCTR Statement by Using a Virtual Address Space
Allocation Diagram

By using the steps for creating a . ROOT
address space allocation· diagram, you
statement .

statement from a virtual
created the following .ROOT

. ROOT CNTRL-(AD-(A1,A2-(A21,A22))-BD-(B1,B2),C)

It may be desirable to simplify your specific .ROOT statement into one
or more .FCTR statements. A technique similar to the one used to
create the .ROOT statement may be used to create the .FCTR statement ..

In this example, segments AD, AI, A2, A21, and A22 are selected to be
in the .FCTR statement. Having selected these segments (normally
related as a "stack" of segments) you are now ready to write down the
.FCTR statement.

First, draw a virtual address space allocation diagram of the segments
that you have selected. (You may use Figure 3-18 for this
explanation.) Then follow these next steps to draw a dotted-line path
through the diagram:

1. Start in the lower left corner of the lowest or "base"
segment (AD) in your diagram.

2. Draw a dotted line upward as far as you can go without
passing through the top or into empty virtual space, crossing
into new segments as needed.

3. When you reach the top segment, proceed to the right until
you reach a vertical line.

4. If the end of your dotted line is now opposite the vertical
line of the lowest segment, cross the vertical line and
continue again from step 2: otherwise, proceed to step 5.

5. Because the end of your dotted line is not opposite the
vertical line of the 10wast segment, proceed downward until
you reach the lowest segment.

6. If you are not in the base segment (AO), cross the vertical
line to the right and continue from step 2: otherwise,
proceed to step 7.

7. If your dotted line is in the lower right corner of the base
segment, you have finished the dotted-line walk.

Once you have drawn the dotted line, you should go back over it to
verify that you followed all the steps. While doing this, draw
arrowheads at each point where a line was crossed to indicate the
direction of the line.

Now you are ready to write the .FCTR statement.
steps:

Follow these next

1. Write a label followed by .FCTR, which is in turn followed by
the name of the first segment (AO) (in this example, AFCTR
.FCTR AD)

2. Follow the dotted-line path.

3-38

(

(

(

(

c

(

OVERLAY CAPABILITY

3. Add each successive OOL element to your root statement, using
the following syntax, based on the direction of your dotted
line.

A. At an upward crossing: ("name of new segment"

B. At a horizontal crossing: ,"name of .new segment"

C. At a downward crossing:

4. When you have returned to the base segment, your • FCTR
statement is complete.

Using the dotted line path and the above associated steps for writing
the .FCTR statement, you can write as shown below:

1- Step 1 : Write AFCTR .FCTR AO

2. Step 3A: Write AFCTR .FCTR AO-(Al

3. Step 3B: Write AFCTR .FCTR AO-(Al,A2

4. Step 3A: Write AFCTR .FCTR AO-(Al,A2-(A21

5. Step 3B: Write AFCTR .FCTR AO-(Al,A2-(A21,A22

6. Step 3C: Write AFCTR • FCTR AO-(Al,A2-(A21,A22)

7. Step 3C: Write AFCTR .FCTR AO-(Al,A2-(A21,A22»

You have now reached the base segment and have written the two OOL
statements:

.ROOT CNTRL-(AO-(Al,A2-(A21,A22»-BO-(Bl,B2),C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22»

The last step requires that you substitute the label, AFCTR, into the
.ROOT statement, which results in:

.ROOT CNTRL-AFCTR-BO-(Bl,B2),C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22»

Additional .FCTR statements would be determined and written in the
same way. For example, you could write a .FCTR statement labeled
BFCTR for the segments BO, Bl, and B2.

The following section shows how to write an OOL statement for a
co-tree by using the same methods.

3.6.3 Creating an OOL Statement for a Co-Tree by Using a Virtual
Address Space Diagram

Assuming that you want to write an ODL statement for a
the one in Figure 3-19, you would have two virtual
allocation diagrams, one for the main tree and one for
These two diagrams are shown in Figure 3-19.

co-tree like
address space
the co-tree.

OVERLAY CAPABILITY

A1

A21 I A22

81 r---
A2 82 C

AO 80 CNTRLX CNTRLY

ROOT (CNTRL) CNTRL2

MAIN TREE CO-TREE

ZK-l0Sl-82

Figure 3-19 Virtual Address Space Allocation for a Main Tree
and Its Co-Tree

(

From Figure 3-19 you see that the co-tree is a stack of segments also. (
Therefore, it is possible to write the statement for the co-tree in
the same fashion and with the same rules as that described in Section
3.6. However, certain facts must be kept in mind. These are that:

• The co-tree has a null root

• A .NAME statement must be used to name the null root

• A comma must be placed outside of the parentheses and at the
end of that part of the .ROOT statement that defines the main
tree

Therefore, the ODL statement that we obtain before writing the co-tree
part is:

AFCTR:

.NAME CNTRL2

.ROOT CNTRL-AFCTR-BO-(Bl,B2),C),

.FCTR AO-(Al,A2-(A21,A22»

By following the rules in Section 3.6 and by using the diagram in
Figure 3-19, you can then create the ODL statement:

AFCTR:

.NAME CNTRL2

.ROOT CNTRL-AFCTR-BO-(Bl,B2),CNTRL2-(CNTRLX,CNTRLY)

.FCTR AO-(Al,A2-(A21,A22»

3.7 OVERLAYING PROGRAMS WRITTEN IN A HIGH-LEVEL LANGUAGE

Programs written in a high-level language usually require the use of a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, the following problems can occur:

• TKB throughput may be drastically reduced because of the
number of library references in each overlay segment.

• Library references from the default object module library that
are resolved across tree boundaries can result in
unintentional displacement of segments from memory at run
time.

3-40

(

(

(

(

(

(

(

OVERLAY CAPABILITY

• Attempts to task-build such programs can result in multiple
and ambiguous symbol definitions when a co-tree structure is
defined.

The following procedures are effective in solving these problems:

• You can increase TKB throughput by linking commonly used
library routines into the main root segment.

• You can eliminate ambiguous definitions, multiple definitions,
and cross-tree references by using the NOFU switch (the TKB
default) to restrict the scope of the default library search.
However, restricting the scope of the default library search
may also cause problems.

If sufficient memory is available, you can effectively place the
object time system in the root segment by building a memory-resident
library. This also reduces total system memory requirements if other
tasks are also currently using the library.

If a memory-resident library cannot be built, you can force library
modules into the root by preparing a list of the appropriate global
references and linking the object module into the root segment.

For other ways to reduce task size, you should consult the user's
guide for the language you are using.

3.8 EXAMPLE 3-1: BUILDING AN OVERLAY

The text in this section and the figures associated with it illustrate
the building of an overlay structure. For this example, the routines
of the resident library LIB.TSK and the task that refers to it,
MAIN.TSK (from Example 5-3, Chapter 5), are assembled as separate
modules and built as an overlaid task. This task is built first with
disk-resident overlays and then with memory-resident overlays. The
disk-resident version of the task is named OVR.TSK and the
memory-resident version is named RESOVR.TSK.

NOTE

This example is intended to provide you with a working
illustration of the Overlay Description Language. It
does not reflect the most efficient use of it.

Two alterations were made to each of the routines for this example:

• ·A .TITLE and .END assembler directive was added to each
routine to establish it as a unique module.

• The following assembler directive was added to each arithmetic
routine to increase its allocation:

.BLKW 1024.*3

This was done to make TKB allocation of address space more
obvious for dOcumentation purposes.

3-41

OVERLAY CAPABILITY

The operation of the overlaid task is identical to that of Example 5-3
in Chapter 5. The routines and their titles as a result of the .TITLE
directives are as follows:

• The integer addition routine is named ADDOV.

• The integer subtraction routine is named SUBOV.

• The integer multiplication routine is named MULOV.

• The integer division routine is named DIVOV.

• The register save and restore routine is named SAVOV.

• The print routine is named 'PRNOV.

• The main calling routine is named ROOTM.

The lengths of the modules are:

Module Length (in Octal)

ADDOV 14024 bytes

SUBOV 14024 bytes

MULOV 14024 bytes

DIVOV 14026 bytes

SAVOV 4042 bytes

PRNOV 4260 bytes

ROOTM 4104 bytes

The flow of control for OVR.'i'SK is as follows:

1- ROOTM calls ADDOV and ADDOV returns to ROOTM.

2. ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

3. ROOTM calls SUBOV and SUBOV returns to ROOTM.

4. ROOTM cails PRNOV to print the result and PRNOV returns to
ROOTM.

5 .• ROOTM calls DIVOV and DIVOV returns to ROOTM.

6. ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

7. ROOTM calls MULOV and MULOV returns to ROOTM.

8. ROOTM calls PRNOV to print the result and PRNOV returns to
ROOTM.

3-42

(

(

(

(

(

(

c

(

OVERLAY CAPABILITY

The print routine (contained in module PRNOV) is called between each
arithmetic operation by the control routine (contained in module
ROOTM). To avoid loading it into physical memory each time it is
called, you can place PRNOV in the root segment of the task. In
addition, each arithmetic routine calls SAVOV. Therefore, SAVOV must
be on a path commori to all segments in the tree. It too is placed in
the root segment of the task. One possible overlay configuration for
this task is shown in Figure 3-20.

MULOV

I

SUBOV

I

I
SAVOV

I
PRNOV

I
ROOTM

. DIVOV

I
I

ADDOV

I

ZK-490-81

Figure 3-20 Overlay Tree of Virtual Address Space fdr OVR.TSK

To build this overlay, first create an ODL file (OVERTREE.ODL) that
contains its description:

. ROOT
• END

ROOTM-PRNOV-SAVOV-*(MULOV,ADDOV-(SUBOV,DIVOV»

Then, after you have modified the modules and assembled them, you can
build the task with the following TKB command line:

>TKB OVR,OVR/-SP,=OVRTREE/MP

or the following LINK command line:

>LINK/TAS:OVR/MAP:OVR/NOPRINT OVRTREE/OVER

This command instructs TKB to build a task image, OVR.TSK,. and to
create a map file, OVR.MAP, under the UFD that corresponds to the
terminal UIC. The negated spool switch /-SP or /NOPRINT as a LINK
qualifier inhibits TKB from spooling the map file to the line printer.

The overlay switch /MP attached to the input file or lOVER as a file
qualifier tells TKB that the input file is an OOL file. Therefore,
this file will be the only input file specified. Refer to Chapter 10
for a description of the switches and Chapter 11 for the qualifiers
used in this example.

A portion of the map that results from this task build is shown in
Example 3-1.

3-43

OVERLAY CAPABILITY

Example 3-1 Map File for OVR.TSK

OVR.TSK Memory allocation map TKB M40.10
01-JAN-82 10:06

Partition name GEN
Identification 01
Task UIC [7,62]
Stack limits: 000260 001257 001000 00512.
PRG xfr address: 001264 ~ ~
Total address windows: 1. ~
Task image size 7488. words
Task address limits: 000000 035107
R-W disk blk limits: 000002 000073 000072 00058.

OVR.TSK Overlay description:

~::~ ,:~: , Length

~ ~ 005~;;--~2588.
005034 021057 014024 06164.
005034 021057 014024 06164.
021060 035103 014024 06164.
021060 035107 014030 06168.

~,
*** Root segment: ROOTM

ROOTM
MULOV
AOOOV

SUBOV
OIVOV

R/W mem limits: 000000 005033 005034 02588.
Disk blk,limits: 000002 000007 000006 00006.

Memory allocation synopsis:

Section Title

. BLK.:(RW,I,LCL,REL,CON) 001260 002514 01356.
001260 000102 00066. ROOTM
001362 000260 00176. PRNOV
001642 000042 00034. SAVOV

ANS : (RW,O,GBL,REL,OVR) 003774 000002 00002.
003774 000002 00002. ROOTM
003774 000002 00002. PRNOV

Global symbols:

Page 1

Ident

01
01
01

01
01

File

ROOTM.OBJ;l
PRNOV.OBJ;l
SAVOV.OBJ;l

ROOTM.OBJ;l
PRNOV.OBJ;l

MOO
MULL

004032-R OIVV 004052-R PRINT 001550-R SUBB
004022-R SAVAL 001642-R

004042-R

*** Task bui~der statistics:

Total work file references: 6863.
Work file reads: o.
Work file writes: o.
Size of core pool: 7086. words (27.
Size of work file: 3072. words (12.

Elapsed time:00:00:14

3-44

pages)
pages)

(

(

(

C

(

(

(

(

OVERLAY CAPABILITY

Figure 3-21 shows the allocation of virtual address space for OVR.TSK.
The circled numbers in Example 3-1 correspond to those in Figure 3-21.

160000

140000

120000

100000

60000

40000

20000

o

APR 7-

APR 4-

APR 3-

APR 2-

APR 1-

\

MULOV

SUBOV DIVOV

SYSLIB
SAVOV
PRNOV
ROOTM

AOOOV

APR 0- I--_H_E:A_'O_E:R_. A_NJD_I S_Tf_AC:K----I

- 035107

~
- 021057

~
- 005033

~ ROOT SEGMENT

- 001257

-~

~
ZK-411-81

Figure 3-21 Allocation of Virtual Address Space for OVR.TSK

3-45

OVERLAY CAPABILITY

Note that the root segment for OVR.TSK (ROOTM) has expanded with task
building while the segments containing the arithmetic routines have
not. Before task building, the sum of the modules (in octal bytes)
that comprise the root segment is:

4104 + 4260 + 4042 = 14,426 bytes

After task building, the root segment is 20,677(octal) bytes long.
TKB has added a header, a stack area, and the overlay run-time
routines to it. The segments containing the arithmetic routines have
not changed. If there had been calls from segments nearer the root to
segments farther up the tree, the Task Builder would have added data
structures to the calling segments as well. (Refer to Chapter 4 for a
description of the overlay loading methods.)

You can build OVR as a memory-resident overlay by simply adding the
memory-resident operator (I) to the ODL file for OVR as shown below:

. ROOT

. END
ROOTM-PRNOV-SAVOV-*I(MULOV,ADDOV-l(SUBOV,DIVOV))

For this example, the name of the ODL file and the task image file
have been changed to RESOVR.ODL to distinguish it from the
disk-resident version.

You can build RESOVR with the TKB command line

>TKB RESOVR,RESOVR/-sP,=RESOVR/MP

or the LINK command line

>LINK/TASK:RESOVR/MAP:RESOVR/NOPRINT RESOVR/oVER

These commands direct TKB to build a task named RESOVR.TSK and to
create a map file named RESOVR.MAP. .The negated spooling switch I-sp
or INOPRINT as a LINK qualifier inhibits spooling of the map file.

The IMP switch on the input file or lOVER as a file qualifier tells
TKB that the file is an ODL file and that it will be the only input
file .for this task build. Refer to Chapter 10 for a description of
the switches and Chapter 11 for the qualifiers used in this example.

A portion of the map that results from this task build is shown in
Example 3-2.

Figure 3-19
RESOVR.TSK.
Figure 3-22.

shows the allocation of virtual address space for
The circled numbers in Example 3-2 correspond to those in

Example 3-2 Map File for RESOVR.TSK

Partition name GEN
Identification 01
Task UIC [7,62]
Stack limits: 000320 001317 001000 00512.
PRG xfr address: 001324 ~
Total address windows: 3. .----e

words
057777

Task image size 13920.
Task address limits: 000000
R-W disk blk limits: 000003 000074 000072 00058.

(continued on next page)

3-46

(

(

(

(

c

(

(

(

OVERLAY CAPABILITY

Example 3-2 (Cont.) Map File for RESOVR.TSK

RESOVR.TSK Overlay description:

Base

;;;;ooj
020000
020000

*** Root segment: ROOTM

ROOTM
MULOV
ADDOV

SUBOV
DIVOV

R/W mem limits: 000000 005677 005700 030~8.
Disk blk limits: 000003 000010 000006 00006.

Memory allocation synopsis:

Section Title

BLK.:(RW,I,LCL,REL,CON) 001320 002514 01356.
001320 000102 00066. ROOTM
001422 000260 00176. PRNOV
001702 000042 00034. SAVOV

ANS : (RW,D,GBL,REL,OVR) 004034 000002 00002.
004034 000002 00002. ROOTM
004034 000002 00002. PRNOV

Global symbols:

Ident

01
01
01

01
01

File

ROOTM.OBJ:l
PRNOV.OBJ:l
SAVOV.OBJ:l

ROOTM.OBJ:l
PRNOV.OBJ:l

MDD
MULL

004072-R DIVV 004112-R PRINT 001610-R SUBB
004062-R SAVAL 001702-R

004102-R

*** Task builder statistics:

Total work file references:
Work file reads O.
Work file writes: O.
Size of core pool: 4178.
Size of work file: 3072.

Elapsed time:00:00:21

6938.

words (16.
words (12.

pages)
pages)

Note that TKB allocates virtual address space for
overlay segment on a 4K-word boundary. When built as
overlay, this structure requires 12K words of virtual
when built as a memory-resident overlay structure,
words of virtual address space. As "noted earlier, you
when using memory-resident overlays to ensure that
space is used efficiently.

3-47

each level of
a disk-resident
address space:
it requires 16K
must be careful
virtual address

160000

140000 APR 6-

120000 APR 5-

100000 APR 4-

60000

40000

20000 APR 1-

o APR 0-

OVERLAY CAPABILITY

· " : :

· . :: : : : ,: : :
: .: : : :

..
. .

: : : : :

: ~ .' :' : . . : : . .

. .

.. · .

: " .
~ : :' : .'

: : :' : : .
...

. . " : " : : .
:

.. : : :' : :
: : : : : : :' : : : .. :

. : . : :

: : : :

..
.. ..

SUBOV DIVOV

SYSLIB
SAVOV
PRNOV
ROOTM

- 054077

-::.
-~
-~
~

- 05677

~
t-----------; - 001317

-~

ROOT SEGMENT

ZK-412-81

Figure 3-22 Allocation of Virtual Address Space for RESOVR.TSK

3.9 WINDOW BLOCKS IN OVERLAYS

Finally, note in Figure 3-22 that TKB has allocated three window
blocks to map RESOVR.TSK. Each level of the overlay in a
memory-resident overlay requires a separate window block to map it.
In a disk-resident overlay, a single window block maps the entire
structure regardless of how many segment levels there are within the
structure. This consideration can be important when you are building
an overlaid task that either creates dynamic regions or accesses a
resident library or common, because of the extra window blocks
required to use these features.

3-48

c

(

(

(

(

(

(

(

OVERLAY CAPABILITY

3.10 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

• An overlay structure consists of one or more trees. Each tree
contains at least one segment. A segment is one or more
modules containing one or more program sections that can be
loaded by a single disk access.

A tree can have only one root segment, but it can have any
number of overlay segments.

• An ODL file is a text file consisting of a series of overlay
description directives, one directive per line. You enter
this file in the TKB or LINK command line, and identify it as
an ODL file by attaching the IMP switch for TKB or the
IOVERLAY DESCRIPTION qualifier for LINK to the file name. If
you enter an ODL file in the TKB or LINK command line, it must
be the only input file you specify.

• The Overlay Description Language provides five directives for
specifying the tree representation of the overlay structure:

•

.ROOT and .END -- There can be only one .ROOT and one .END
directive; the .END directive must be the last directive
because it terminates input .

• PSECT, .FCTR, and .NAME -- These can be used in any order
in the ODL file.

You define the tree structure using the hyphen (-), comma (,);
and exclamation point (1) operators, and by using parentheses.

The hyphen operator (-) indicates that its arguments are to
be concatenated and thus are to coexist in memory.

The comma operator (,) within parentheses indicates that
its arguments are to overlay each other either physically,
if disk resident, or virtually, if memory resident.

The comma operator not within parentheses delimits overlay
trees.

The exclamation point operator (1) immediately before a
left parenthesis declares the enclosed segments to be
memory resident. Nested segments in parentheses are not
affected by an exclamation point operator at a level closer
to the root.

The parentheses group segments that begin at the same point
in memory. For example:

.ROOT A-B-(C,D-(E,F»

This ODL command line defines an overlay structure with a
root segment consisting of the modules A and B. In this
structure, there are four overlay segments: C, D, E, and
F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same virtual address;
and similarly, the inner parentheses indicate that E and F
start at the same virtual address.

3-49

OVERLAY CAPABILITY

• The .ROOT directive defines the beginning overlay structure.
The arguments of the .ROOT directive are one or more of the
following:

File specifications as described in Chapter 1

Factor labels

Segment names

Program-section names

• The .END directive terminates input.

• The .FCTR directive provides a means for replacing text by a
symbolic reference (the factor label). This replacement is
useful for two reasons:

The .FCTR directive extends the text of the .ROOT directive
to more than one line and thus allows complex trees to be
represented.

The .FCTR directive allows you to write the overlay
description in a form that makes the structure of the tree
more apparent.

For. example:

.ROOT A-(B-(C,D),E-(F,G),H)

. END

Using the .FCTR directive, you can write this
description as follows:

.RooT A-(FI,F2,H)
FI: .FCTR B-(C,D)
F2: .FCTR E~(F,G)

• END

overlay

The second representation makes it clear that the tree has
three main branches.

• The .PSECT directive provides a means for directly specifying
the segment in which a program section is placed. It accepts
the name ~f the program section and its attributes. For
example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the program section name and the remaining arguments
are the program section's attributes (program section
attributes are described in Chapter 2).

The program section name (composed of the characters A-Z, 0-9,
$, or .) must appear first in the . PSECT directive, but the
attributes can appear in any.order or can be omitted. If an
attribute is omitted, a default condition is assumed. The
defaults for program section attributes are RW, I, LCL, REL,
and CON.

In the example above, therefore, you need only specify the
attributes that do not correspond to the defaults: .PSECT
ALPHA,GBL

3-50

(

(

(

(

(

c

c

c

c

OVERLAY CAPABILITY

• The .NAME directive provides you with the means to designate a
segment name for use in the overlay description, and to
specify segment attributes. This directive is useful for
creating a null segment, naming a segment that is to be loaded
manually, or naming a nonexecutable segment that is to be
autoloadable. (Refer to Chapter 4 of this manual for a
description of manually loaded and automatically loaded
segments.) If you do not use the .NAME di~ective, the Task
Builder uses the name of the first file, program section, or
library module in the segment to identify the segment.

The .NAME directive creates a segment name as follows:

.NAME segname,a~tr,attr

segname

is the designated name (composed of the characters A-Z,
0-9, and $).

attr

is an optional attribute taken from the following: GBL,
NODSK, NOGBL, DSK.

The defaults are NOGBL and DSK. The
unique with respect to the names
segments, files, and factor labels.

defined name
of program

must be
sections,

• You can define a co-tree by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F»,X-(Y,Z),Q-(R,S,T)

The main tree in this example has the root segment consisting
.of files A.OBJ and B.OBJ. Two co-trees are defined; the first
co-tree has the root segment X and the second co-tree has, the
root segment Q.

3-51

(.

"

(

(

(

(

(

c

(

CHAPTER 4

OVERLAY LOADING METHODS

The RSX-IIM/M-PLUS systems provide two
disk-resident and memory-resident overlays:

methods for loading

• Autoload -- The overlay run-time routines are automatically
called to load segments you have specified.

• Manual Load -- You include in the task explicit calls to the
overlay run-time routines.

When you build an overlaid task, you must decide which one of these
methods to use, because both cannot be used in the same task.

The loading process depends on the kind of overlay:

• Disk resident -- A segment is loaded from disk into a shared
area of physical memory, writing over whatever was present.

• Memory resident -- A segment is loaded by mapping a set of
shared virtual addresses to a unique unshared area of physical
memory, where the segment has been made permanently resident
(after having been initially brought in from the disk).

With the autoload method, the overlay run-time routines handle loading
and error recovery. Overlays are automatically loaded by being
referenced through a transfer-of-control instruction (CALL, JMP, or
JSR). No explicit calls to the overlay run-time routines are needed.

In the manual load method, you handle loading and error recovery
explicitly. Manual loading saves space and gives you full control
over the loading process, including the ability to specify whether
loading is to be done synchronously or asynchronously.

In the manual load method, you must
segments of the main tree, as
overlay segments of the co-trees.
co-tree remains in memory.

4.1 AUTOLOAD

provide for loading the overlay
well as the root segments and the

Once loaded, the root segment of a

To specify the autoload method, you use the autoload indicator, an
asterisk (*). You place this indicator in the ODL description of the
task at the points where loading must occur. The execution of a
transfer-of-control instruction to an autoloadable segment up-tree
(farther away from the root)· initiates the autoload process.

4-1

OVERLAY LOADING METHODS

4.1.1 Autoload Indicator

The autoload indicator (*) marks as autoloadable the segment or other
task element (as defined below). If you apply the autoload indicator
to an ODL statement enclosed in parentheses, every task element within
the parentheses is marked as autoloadable. Placing the autoload
indicator at the outermost level of parentheses in the ODL description
marks every module in the overlay segments as autoloadable.

In the TKI example of Chapter 3, Section 3.1.1, if segment C consisted
of a set of modules Cl, C2, C3, C4, and C5, the tree diagram would be
as shown in Figure 4-1.

A21 A22 C5 I I
I C4

A1 A2 B1 B2 C3
I

I
, I

I
I C2

AO BO C1
I

I
I I

CNTRL
ZK-413-81

Figure 4-1 Details of Segment C of TKI

Placing the autoload indicator
ensures that, regardless of
module will be properly loaded
for task TKI would be:

at the outermost level of parentheses
the flow of control within the task, a

when it is called. The ODL description

AFCTR:
BFCTR:
CFCTR:

When you use
if one of
However, if
called, the

.ROOT CNTRL-*(AFCTR,BFCTR,CFCTR)

.FCTR AO-(Al,A2-(A21,A22l)

.FCTR BO-(Bl,B2)

.FCTR CI-C2-C3-C4~C5

.END

autoload, the root of a co-tree is loaded by path loading
the branches of the co-tree is called before the root.

the root of the co-tree is called before the branch is
root must have an autoload indicator.

Also, when the root segment of a co-tree is not a null segment, you
must mark the co-tree's root segment (CNTRL2) as well as its outermost
level of parentheses to ensure that all modules of the co-tree are
properly loaded. For example, if the co-tree root (CNTRL2) of the
multiple tree example, Section 3.5.2, had contained code or data, it
would have been marked as follows:

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR),*CNTRL2-*(CNTRLX,CNTRLY)

You can apply the autoload indicator to the following elements:

• File names -- to make all the components of
autoloadable.

the file

• Portions of ODL tree descriptions enclosed in

(

(

c

(

parentheses -- to make all the elements within the parentheses (-_
autoloadable, including elements withi~ any nested ~
parentheses.

4-2

(-

(

OVERLAY LOADING METHODS

• Program section names -- to ma~e the program section
autoloadable. The program section must have the instruction
(I) attribute.

• Segment names defined by the .NAME directive -- to make all
components of the segment autoloadable.

• .FCTR label names -- to make the first component of the factor
autoloadable. All elements specified in the .FCTR statement
are autoloadable if they are enclosed in parentheses.

In the following example, two .PSECT directives and a .NAME directive
are introduced into the ODL description for TKI. Autoload indicators
are applied as follows:

AFCTR:
BFCTR:
CFCTR:

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR} ..

. FCTR AO-*ASUBI-ASUB2-*(Al,A2-(A21,A22}} Et C)

.FCTR (BO-(Bl,B2})

.FCTR CNAM-CI-C2-C3-C4-C5

.NAME CNAM,GBL ..
• PSECT ASUBl, I,GBL,OVR Et
.PSECT ASUB2,I,GBL,OVR
.END

The following notes are keyed to the example above.

.. The autoload indicator is applied to each factor name;
therefore:

a. *AFCTR=*AO

b. *BFCTR=*(BO-(Bl,B2)}

c. *CFCTR=*CNAM

CNAM, however, is an element defined by a • NAME directive.
Therefore, all components of the segment to which the name
applies are made autoloadable, that is, Cl, C2, C3, C4, and
C5.

Et The autoload indicator is applied to the name of a program
section with the instruction (I) attribute (*ASUBl), so that
program section ASUBI is made autoloadable.

C) The autoload indicator is applied to a portion of the ODL
description enclosed in parentheses:

*(Al,A2-(A21,A22})

Thus, every element within the parentheses is
autoloadable (that is, files AI, A2, A21, anOA22).

made

The net effect of this ODL description is to make every element except
program section ASUB2 autoloadable.

4.1.2 Path Loading

The autoload method uses path loading; that is, a call from one
segment to another segment up-tree (farther away from the root)
ensures that all the segments on the path from the calling segment to
the called segment will reside in physical memory and be mapped. Path
loading is confined to the tree in which the called segment resides.

4-3

OVERLAY LOADING METHODS

A call from a segment in one tree to a segment in another tree results
in the loading of all segments on the path in the second tree from the
root to the called module.

In Figure 4-2, if CNTRL calls A22, all the modules between the CNTRL
and A2 are loaded. In this case, modules AD and A2 are lo~ded.

A21 A22
I

I
I C5

A1 A2 B1 B2
C4

I I I I C3
I I C2

AO BO C1
I

I
I I

CNTRL
ZK-414-81

Figure 4-2 Path-Loading Example

With the autoload method, the overlay run-time routines keep a record
of the segments that are loaded and mapped, and issue disk-load
requests only for segments that are not in memory. If CNTRL calls A2
after calling Al, AD is not loaded again because it is already in
memory and mapped.

A reference from one segment to another segment down-tree (closer to
the root) is resolved directly. For example, A2 can immediately
access AD because AD was path loaded in the call to A2.

4.1.3 Autoload Vectors

To resolve a reference up-tree to a global symbol in
segment, TKB generates an autoload vector for the
symbol. The reference in the code is changed to a
points to an autoload vector entry. The format
vector for conventional tasks is shown in Figure 4-3
for I- and D-space tasks is shown in Figure 4-4.

JSR PC,@.NAUTO

PC RELATIVE OFFSET TO .NAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

ZK-415-81

an autoloadable
referenced global
definition that
for the autoload
and the format

Figure 4-3 Autoload Vector Format for Conventional Tasks

4-4

(

(

(

(

(

(

c:

c:

l

OVERLAY LOADING METHODS

MOV (PC)+,-(SP)

ADDRESS OF PACKET (D-SPACE)

JMP @.NAUTO

PC RELATIVE OFFSET TO NAUTO

I-SPACE PORTION

ADDRESS OF SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

D-SPACE PORTION

ZK·l089-82

In Figures 4-3 and 4-4, a transfer-of-control instruction to the
up-tree global symbol generates an autoload vector in the shown
format. An example of the code sequence used in a call to a global
symbol in an autoloadable segment is shown in Figure 4-5.

USER TASK ROOT
•
•
•

CALL GLOBAL
AUTOLOAD VECTOR

--~~~ JSR PC,@.NAUTO
SEGMENT DESCRIPTOR ADDRESS
ENTRY POINT ADDRESS (GLOBAL)

• $AUTO AUTOLOAD ROUTINE
$AUTO: ;LOAD

;SEGMENT
USER TASK SEGMENT •
GLOBAL::· ---

L-. ___ RETURN

JMP GLOBAL ;GO TO
;GLOBALIN
;SEGMENT

ZK-416-81

Figure 4-5 Example Autoload Code Sequence for a Conventional Task

4-5

OVERLAY LOADING METHODS

An exception to the procedure for generating autoload vectors is made
in the case of a program section with the data (D) attribute.
References from a segment to a global symbol up-tree in a program
section with the data (D) attribute are resolved directly.

Because TKB can obtain no information about the flow of control within
the task, it often generates more au~oload vectors than are necessary.
However, your knowledge of the flow of control within your task, and
of path loading, can.help you determine where to place the autoload
indicators. By placing the autoload indicators only at the points
where loading is actually required, you can minimize the number of
autoload vectors generated for the task.

In the following example (all the calls to overlays originate in the
root segment. That is, no module in an overlay segment calls outside
its segment. The root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2
CALL Cl
CALL C2
CALL C3
CALL C4
CALL C5
END

If you place the autoload indicator at the outermost level of
parentheses, 13 auto.load vectors are generated for this task; however,
because A2 and AO are loaded by path loading to A2l, the autoload
vectors for A2 and AO are unnecessary. Moreover, because the call to
Cl loads the segment that contains C2, C3, C4, and C5, autoload
vectors for C2 through C5 are unnecessary.

You can eliminate the unnecessary
autoload indicator only at the
required, as follows:

autoload
points

vectors by placing the
where explicit loading is

AFCTR:
BFCTR:

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

.FCTR AO-(*Al,A2-*(A2l,A22»

.FCTR (BO-(Bl,B2»
CFCTR: .FCTR *Cl-C2-C3-C4-C5

.END

With thisODL description, TKB generates seven autoload vectors -- for
AI, A2l, A22, BO, Bl, B2, and Cl.

4.1.4 Autoloadable Data Segments

You can make o~erlay segments that contain no executable code
autoloadable, as follows. First, you must include a .NAME directive
and specify the GBL attribute, as described in Section 3.4.4. For
example:

.ROOT A-*(B,C)

.NAME BNAME,GBL
B: .FCTR BNAME-BFIL

. END

4-6

(

c

(

c

(

c

c

(

OVERLAY LOADING METHODS

The global symbol BNAME is created and entered into the symbol table
of segment BNAME. Because this segment is marked to be autoloaded,
root segment A calls segment BNAME as follows:

CALL BNAME

The segment is autoloaded and an immediate return to inline code
occurs.

The data of BFIL must be placed in a program section with the data (D)
attribute to suppress the creation of autoload vectors.

4.2 MANUAL LOAD

If you decide to use the manual-load method to load segments, you must
include in your program explicit calls to the $LOAD routine. These
load requests must supply the name of the segment to be loaded. In
addition, they can· inciude information necessary to perform
asynchronous load requests, and to handle load request failures.

The $LOAD routine does not path load. A call to $LOAD loads only the
segment named in the request. The segment is read in from disk and
mapped. For memory-resident overlays1 the segment is mapped, but only
read in if it was not previously read in.

A MACRO-II programmer calls the $LOAD routine directly. A FORTRAN
programmer calls $LOAD using the FORTRAN subroutine MNLOAD.

4.2.1 MACRO-II Manual Load Calling Sequence

A MACRO-II programmer calls $LOAD as follows:

MOV
CALL

iPBLK,RO
$ LOAD

PBLK is the address of a parameter block with the following format:

PBLK:

length

.BYTE length,event-flag

.RAD50/seg-name!

.WORD [i/o-status] or a

.WORD [ast-trp] or a

The length of the parameter block (3 to 5 words).

event-flag

The event flag number, used for asynchronous loading~ If the
event-flag number is 0, synchronous loading is performed.

seg-name

The name of the segment to be loaded: a 1- to 6-character
Radix-50 name, occupying two words.

4-7

OVERLAY LOADING METHODS

i/o-status

The address of the I/O status doubleword.
codes apply.

ast-trp

Standard QIO status

The address of an asynchronous trap service routine to which
control is transferred at the completion of the load request.

The condition code C-list is set or cleared on return, as
follows:

• If condition code C=O, the load request was accepted.

• If condition code C=l, the load request was unsuccessful.

For a synchronous load request, the return of the condition code C=O
means that the desired segment is loaded and is ready to be executed.
For an asynchronous load request, the return of the code C=O means
that the load request was successfully queued to the device driver,
but the segment is not necessarily in memory. Your program must
ensure that loading has been completed by waiting for the specified
event flag before calling any routines or accessing any data in the
segment.

4-8

(

(

(

(

(

c

c

c

OVERLAY LOADING METHODS

4.2.3 FORTRAN Manual Load Calling Sequence

To use the manual load mechanism in a FORTRAN program, your program
must refer to the $LOAD routine by means of the MNLOAD subroutine.
The subroutine call has the form:

CALL MNLOAD(seg-name, [event-flag], [i/o-status], [ast-trp], [1 d-ind])

seg-name

A 2-word real variable containing the segment name in Radix-50
format.

event-flag

An optional integer event flag number used for an asynchronous
load request. If the event flag number is 0, the load request is
synchronous.

i/o-status

An optional 2-word integer array containing the I/O
doubleword, as described for the QIO directive
RSX-IIM/M-PLUS Executive Reference Manual.

status
in the

ast-trp

An optional asynchronous trap subroutine entered at the
completion of a request. MNLOAD requires that all pending traps
specify the same subroutine.

ld-ind

An optional integer variable containing the results of the
subroutine call. One of the following values is returned:

+1 Request was successfully executed.

-1 Request had bad parameters or. was not
executed.

successfully

You can omit optional arguments. The following calls are legal:

Call Effect

CALL MNLOAD (SEGAl)

CALL MNLOAD (SEGA1,0",LDIND)

4-9

Loads segment named in
SEGAl synchronously.

Loads segment named in
SEGAl synchronously and
returns success indica
tor to LDIND.

OVERLAY LOADING METHODS

Call

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)

Effect

Loads segment named in
SEGAl asynchronously,
transferring control to
ASTSUB upon completion
of the load request:
stores the I/O status
doubleword in IOSTAT
and the success
indicator in LDIND.

The following example uses the program CNTRL, previously discussed in
Section 4.1. In this example, there is sufficient processing between
the calls to the overlay segments to make asynchronous loading
effective. The autoload indicators are removed from the ODL
description and the FORTRAN programs are recompiled with explicit
calls to the MNLOAD subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB
DATA SEGAl /6RAl /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGA1,1,IOSTAT,ASTSUB,LDIND)

CALL Al

CALL MNLOAD (SEGA21,1,IOSTAT,ASTSUB,LDIND)

CALL A21

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END

When the AST trap routine is used, the I/O status doubleword is
automatically supplied to the dummy variable IOSTAT.

4-10

(

(

(

(

(

(

(

(

(

(

OVERLAY LOADING METHODS

4.3 ERROR HANDLING

If you use the autoload mechanism, a simple recovery procedure is
provided that checks the Directive Status Word (DSW) for an error
indication. If the DSW indicates that no system dynamic storage is
available, the routine issues a Wait for Significant Event directive
and tries again: if the problem is not dynamic storage, the recovery
procedure generates a synchronous breakpoint trap. If the task
services the trap and returns without altering the· state of the
program, the request will be retried.

If you select the manual-load method, you must provide error handling
routines that diagnose load errors and provide appropriate recovery.
A more comprehensive user-written error recovery subroutine can be
substituted for the system-provided routine if the following
conventions are observed:

• The error recovery routine must have the entry point name
$ALERR.

• The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated:

1. $DSW The Directive Status Word may contain an error
status code, indicating tpat the Executive
rejected the I/O request to load the overlay
segment.

4-11

2. N .OVPT

OVERLAY LOADING METHODS

The contents of this location, offset by N.IOST,
point to a 2-word I/O status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word O. For example, for a
device-not-ready condition, the code will be
IE.DNR. (For more information on these codes,
refer to the IAS/RSX-ll I/O Operations Reference
Manual.) ---

4.4 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

This section illustrates a global cross-reference that has been
created for an overlaid task. The task consists of a root segment
containing the module ROOT.OBJ, and overlay segments composed of
modules OVR1, OVR2, OVR3, and OVR4. The overlay description of the
file is as follows:

• ROOT
OVR: .FCTR

ROOT-(OVR,*OVR2)
OVR1-*(OVR3,OVR4)

Only segments OVR2, OVR3, and OVR4 are autoloadable. Figure 4-6 shows
the resulting overlay tree.

*OVR3

I
I

OVR1
I

*OVR4

I

ROOT

*OVR2

I

ROOT: CALL OVR3
CALL OVR1
CALL OVR2

ZK-417-81

Figure 4-6 Autoload Overlay Tree Example

As shown, the global symbol OVRl is defined in module OVR1, and a
single nonautoloadable, up-tree reference is made to this symbol by
the module ROOT, as indicated by the circumflex. Note that because
OVRl is not autoloadable, it depends on a call to OVR3 or OVR4 to get
loaded by path loading. The asterisk indicates that the module
contains an autoloadable definition. The modules shown with the
asterisk define the symbol.

The asterisks preceding the modules OVR2, OVR3, and OVR4 indicate that
the global symbols OVR2, OVR3, and OVR4 are autoload symbols and are
referenced from the module ROOT through an autoload vector, as shown
by the at-sign (@) character.

The asterisk and at-sign are shown in the cross-reference listing in
Example 4-1.

4-12

(

(

(

(

(

(

·c

c

(

OVERLAY LOADING METHODS

Example 4-1 Cross-Reference Listing of Overlaid Task

OVRTST CREATED BY TKB ON 27-JUL-82 AT 12:04

GLOBAL CROSS REFERENCE

SYMBOL VALUE REFERENCES ...

N.ALER
N. lOST
N.MRKS
N.OVLY
N.OVPT
N.RDSG
N.STBL
N.SZSG
OVRI
OVR2
OVR3
OVR4
ROOT
$ALBPI
$ALBP2
$ALERR
$AUTO
$DSW
$ MARKS
$OTSV
$SAVRG
$VEXT
. FSRPT
.NALER
.NlOST
.NMRKS
. NOVLY
• NOVPT
.NRDSG
. NSTBL
.NSZSG

OVRTST

000010
000004
000016
000000
000054
000014
000002
000012
0020l4-R
0020l4-R
0020l4-R
0020l4-R
001l76-R
001320-R

·0014l6-R
001246-R
001302-R
000046
001546-R
000052
001452-R
000056
000050
001442-R
001436-R
001450-R
001432-R
000042
001446-R
001434-R
001444-R

. AUTO
OVCTL

OVRES
OVCTL
AUTO

OVRES
OVRES
OVRES
OVRI
* OVR2
* OVR3
* OVR4
ROOT
AUTO
AUTO
ALERR
AUTO

ALERR
OVCTL
VCTDF

AUTO
VCTDF
VCTDF
OVDAT
OVDAT
OVDAT
OVDAT
OVDAT
OVDAT
OVDAT
OVDAT

CREATED BY TKB

SEGMENT CROSS REFERENCE

OVRES
OVRES

OVRES
OVCTL

ROOT
@ ROOT
@ ROOT
@ ROOT

OVDAT

VCTDF

SAVRG

VCTDF

ON 27-JUL-82 AT 12:04

SEGMENT NAME RESIDENT MODULES

PAGE 1

CREF

PAGE 2

CREF

VOl

VOl

OVRI
OVR2
OVR3
OVR4
ROOT

OVRI
OVR2
OVR3
OVR4
ALERR
VCTDF

AUTO OVCTL CVDAT OVRES ROOT SAVRG

Down-tree references to the global symbol ROOT are made from modules
OVRl, OVR2, OVR3, and OVR4. These references are resolved directly.

The segment cross-reference shows the segment name and modules in each
overlay.

4-13

OVERLAY LOADING METHODS

4.5 USE AND SIZE OF OVERLAY RUNTIME ROUTINES

TKB, when constructing an overlaid task, incorporates certain modules
from the system library to perform the actual overlay operations. An
overlay run-time routine in the task loads overlays from disk or maps
resident overlays by issuing QIO$ or CRAW$ directives.

The modules and routines described below implement the TKB autoload
mechanism as described in Section 4.1.

There are three major components to the autoload service, as follows:

AUTO

MRKS

RDSG

This module controls the overlay process, and the
autoload vectors indirectly call AUTO through .NAUTO.
AUTO determines whether the referenced overlay segment
is already in memory or mapped. It then jumps to the
required entry point if the entry point is available.

The AUTO module is supplied in two
variations are separately named
follows:

variations. These
and described as

AUTO

AUTOT

Selected by TKB by default for all overlaid
tasks. It manages disk-only, PLAS, and cluster
library overlay structures.

Manually selected by you by using an explicit
reference in the TKB .ODL file, as shown below.
This module disables the AST traps while
manipulating the overlay data structures. This
is required where user task AST traps might
cause modification of the overlay database. To
incorporate this module in your task image, you
must include the following element in the .ROOT
factor of the task's ODL file:

-LB:[l,l]SYSLIB/LB:AUTOT-

In addition to including AUTOT
factor, the following code must
your task as initialization prior
handling routines in your task:

MOV @#.NOVPT,RO
BISB #200,N.FAST(RO)

in the . ROOT
be included in

to the AST

This routine traverses the overlay descriptor data
structure to mark any overlay segment that will be
displaced by a new overlay as "out of memory" and
consequently not available.

The AUTO module calls the RDSG routine repeatedly to
read or map each segment along the overlay tree path
into the task's virtual address space. This is referred
to as "path loading." When path loading is completed,
AUTO calls the required entry point.

Several versions
as appropriate
overlays, and/or
support routines

of each component exist reflecting the various sizes
for tasks having disk-only overlays, PLAS mapped
cluster libraries. TKB incorporates the smallest
appropriate for the overlay structure of your task.

4-14

(

(

(

(

(

c

c

(

OVERLAY LOADING METHODS

Depending on whether
overlays, or cluster
modules into your task:

your task
libraries,

has
TKB

disk-only overlays, resident
forces one of the following

OVCTL

OVCTR

OVCTC
Ii

Contain the MRKS
overlays only.
memory-resident or
module included for

and RDSG routines optimized for
No support is included
cluster overlays. OVCTL is

conventional tasks

disk
for
the

Contain MRKS and RDSG routines assembled for disk and
memory resident overlays. TKB selects either of these
modules if the task overlay structure includes
memory~resident overlays or maps a resident· library
containing resident overlays. OVCTR is the module
selected for conventional tasks and

Contain the MRKS, RDSG, and cluster library support
routines. TKB includes OVCTC OVIDC if cluster-
libraries are included in your OVC
module selected for conventional

Two other modules are incorporated into your task's image. They are:

OVDAT

ALERR

A small, impure data area used by AUTO, MRKS, and RDSG
routines. TKB includes OVDAT in all overlaid tasKs, and
its size is independent of the overlay structure of that
task. .

An error service module that AUTO invokes under one of
the following circumstances:

• If an I/O error occurs while attempting to read a
disk overlay into memory

• If a directive
attach or map
overlays

error occurs while attempting to
a region containing memory resident

Table 4-1 compares the sizes of the overlay run-time support modules.
You can use it to determine when it is appropriate to force certain
variants into your task image.

4-15

Module

OVERLAY LOADING METHODS

Table 4-1
Comparison of Overlay Run-Time Module Sizes

Program
Section

Number
of Bytes

Oct/Dec Specific Use

One of the following modules is included in any overlaid task
that uses autoload and in any task that links to a PLAS overlaid
resident library.

AUTO

AUTOT

$$AUTO

$$AUTO
$$RTQ
$$RTR

122/82.

132/90.
32/26.
30/24.

All tasks that use autoload

All tasks with ASTs
disabled during autoload

(

One of the following modules is included in any overlaid
conventional task. OVCTR or OVCTC is included in any C··
non-overlaid task (conventional or 1- and D- space) that links .
to a PLAS overlaid resident library.

OVCTL $$MRKS
$$RDSG
$$PDLS

OVCTR $$MRKS
$$RDSG
$$PDLS

OVCTC $$MRKS
$$RDSG
$$PDLS

76/62.
160/112.

2/2.

234/156.
332/218.

12/10.

254/172.
352/234.
120/80.

Disk overlays only

Disk and PLAS overlays with no
cluster libraries

Disk and PLAS overlays
with cluster libraries

The overlay datav~ctor OVDAT is included in any overlaid task
and in any task that links to a PLAS overlaid resident library.

OVDAT $$OVDT
$$SGDO
$$SGD2
$$RTQ
$$RTR
$$RTS

24/20.
0/0.
2/2.
0/0.
0/0.
2/2.

Included in ~ll tasks
that perform overlay
operations

(continued on next page)

4-16

(

c

Module

OVERLAY LOADING METHODS

Table 4-1 (Cont.)
Comparison of Overlay Run-Time Module Sizes

Program
Section

Number
of Bytes

Oct/Dec Specific Use

The overlay error service routine ALERR is included whenever
OVDAT is included.

ALERR $$ALER 24/20. Overlay error

Manual overlay control (LOAD) is used in place of any AUTO
routine. (See Section 4.2, Manual Load.)

LOAD $ $ LOAD
$$AUTO

252/170.
14/12.

Manual overlay control

4-17

(\ .
i

'-'""

c

c

(

(

(

CHAPTER 5

SHARED REGION CONCEPTS AND EXAMPLES

The Task Builder provides you with many ways of using shared regions
for tailoring your tasks to meet your specific requirements. This
chapter describes some of these facilities and their applications.

This chapter contains five working examples. The discussion of the
examples assumes that you are familiar with the programming concepts
described in'the RSX-11M/M-PLUS Guide to Program Development and with
the first four chapters of this manual-.-

5.1 SHARED REGIONS DEFINED

A shared region is a block of data or code that resides in memory and
can be used by any number of tasks. A shared region can contain data
for use by several tasks or it may be an area where one task writes
data for use by another task. Also, a shared region can contain
routines for use by several tasks.

Shared regions are useful because they make more efficient use of
physical memory. The ~wo kinds of shared regions are:

• A resident common that provides a way that two or more tasks
can share their data

• A resident library that provides a way that two or more tasks
can share a single copy of commonly used subroutines

The term "resident" denotes a shared region that is built and
installed into the system separately from the task that links to it.
In other words, you use TKB to build. a shared region much as you would
use it to build a task. However, the region does not have a header or
a stack. Also, you can use switches to designate the kind of shared
region (a library or a common) to be built.

Figure 5-1 shows a typical resident common. Task A stores some
results in resident common S, and Task B retrieves the data from the
common at a later time.

Figure 5~2 shows a typical resident library. In this case, common
reentrant subroutines are not included in each task image: instead, a
single copy is shared by all tasks.

5-1

SHARED REGION CONCEPTS AND EXAMPLES

RESIDENT COMMON

S

PARTITION BOUNDARY -lllllllll::m::::
TASK A

PARTITION BOUNDARY _Jii}iii[<i:::::;::
EXECUTIVE

PHYSICAL MEMORY
TIME 1

RESIDENT COMMON

S

...................

TASK B

:::::::::::::::::

EXECUTIVE

PHYSICAL MEMORY
TIME 2

ZK-418-81

Figure 5-1 Typical Resident Common

When you build a shared region, you must specify an output image file
name for the region in the TKB command sequence. But, because a
shared region is not an executable unit, it is not a task, and does
not require a header or a stack area. Therefore, when you build a
shared region, you always attach the negated header switch (j-HD) to
the region's image file specification or /NOHEADER as a LINK
qualifier. This switch or qualifier tells TKB to suppress the header
within the image. To suppress the stack area in the Task Builder or
LINK command sequence during option input, you specify STACK=O.
(Refer to Chapters 10, 11, and 12 for a complete description of the
/HD switch, /NOHEADER qualifier, the STACK option, and other switches,
qualifiers, and options.)

In either an RSX-IIM or RSX-IIM-PLUS system, when you build a shared
region, you use the PAR option to name the partition in which the
region is to reside. You specify the partition name in the TKB
command sequence during option (Refer to er 11 for a
descr of the PAR

5-2

(

(

(

(

c

SHARED REGION CONCEPTS AND EXAMPLES

PARTITION BOUNDARY

PARTITION BOUNDARY

::::,:,:::::

::t::

ROUTINE R

TASK A

ROUTINE R

TASK B

EXECUTIVE

NONSHARED
PHYSICAL MEMORY

RESIDENT LIBRARY
CONTAINING

ROUTINE R

........ . . . ~

....... :."

TASK A

TASK B

EXECUTIVE

SHARED
PHYSICAL MEMORY

ZK-419-B1

Figure 5-2 Typical Resident Library

Also, you should consider three switches when you build the region.
The IpI switch in TKB or the ICODE:PIC qualifier in LINK determines.
whether the region is re1ocatab1e. You can use the Ico switch in the
TKB command sequence or ISHAREABLE:COMMON qualifier in LINK to declare
a region as a shared common. The Ico switch or ISHAREABLE:COMMON
qualifier specifies the use of the region as a shared common rather
than as a shared library. Alternatively, you can use the ILl switch
in TKB or ISHAREABLE:LIBRARY qualifier in LINK when you build the
region to declare the region as a shared library. Using these three
switches affects the contents of the symbol definition file, which is
described in Chapter 10 under the Ico, ILl, and IpI switch or Chapter
11 under the ISHAREABLE:COMMON, ISHAREABLE:LIBRARY, and ICODE:PIC
qualifier headings. See also Figure 5-3, Interaction of the ILl, Ico,
and IPI Switches and Figure 5-4, Interaction of the
ISHAREABLE:LIBRARY, ISHAREABLE:COMMON, and ICODE:PIC qualifiers. The
contents of the symbol definition file are described in the following
sections.

5-3

SHARED REGION CONCEPTS AND EXAMPLES

SWITCH SHARED REGION REGION PSECT .STB FILE .STB FILE
SPECIFIED NAME PSECT SYMBOLS
WITH I-HD ABSOLUTE RELOCATABLE

ALL SYMBOLS.

IPIILI YES
SAME AS LIBRARY ONE PSECT RELATIVE TO
ROOT RELOCATABLE START OF THE

PSECT

ALL DECLARED ALL DECLARED
IPI/CO YES PSECT NAMES PSECTS ALL PSECTS

INCLUDED RELOCATABLE AND SYMBOLS

I-PI/LI' YES .ABS ONE PSECT ALL SYMBOLS
ABSOLUTE ABSOLUTE

ALL DECLARED ALL DECLARED
ALL SYMBOLS I-PI/CO' YES PSECT NAMES PSECTS

INCLUDED ABSOLUTE
ABSOLUTE

IPI YES SAME AS IPI/CO

I-PI' YES SAME AS I-PI/LI

NONE YES SAME AS I-PIILI

'I-PI is the default of not using IPI

ZK-420-B1

Figure 5-3 Interaction of the ILl, Ico, and IPI Switches

5.1.1 The Symbol Definition File

When you build a shared region, you must specify a symbol definition
(.STB) file in the TKB command sequence. This file contains linkage
information about the region. (The format at a .STB file as input to
TKB is the same as that of a .OBJ file. See Appendix A.) Later, when
you build a task that links to the region, TKB. uses this .STB file to
resolve calls from within the referencing task to locations within the
region.

Please note the following equivalencies among the shared region
switches in TKB and qualifiers in LINK:

TKB SWITCHES

ILl
Ico
IPI
IPI

I-LI
I-co
I-PI

LINK QUALIFIERS

ISHAREABLE:LIBRARY
ISHAREABLE:COMMON
./CODE:PIC
ICODE:POSITiON_INDEPENDENT

(none)
(none)
Absence of both ICODE:PIC
and ICODE:POSITION_INDEPENDENT

5-4

(

(

(

(

VI
I

VI

,~ ~. (~ ~

QUALIFIER SPECIFIED WITH SHARED REGION REGION PSECT .STB FILE .STB FILE
INOHEADER ABSOLUTE RELOCATABLE NAME PSECT SYMBOLS

ALL SYMBOLS.

ICODE:PIC/SHAREABLE:LlBRARY
SAME AS LIBRARY ONE PSECT RELATIVE TO

YES ROOT RELOCATABLE START OF THE
PSECT

ALL DECLARED ALL DECLARED
ALL PSECTS

ICODE:PIC/SHAREABLE:COMMON YES PSECT NAMES PSECTS
AND SYMBOLS

INCLUDED RELOCA TABLE

ISHAREABLE:LlBRARY YES .ABS
ONE PSECT ALL SYMBOLS
ABSOLUTE ABSOLUTE

ALL DECLARED ALL DECLARIOD
ALL SYMBOLS

ISHAREABLE:COMMON YES PSECT NAMES PSECTS
INCLUDED ABSOLUTE ABSOLUTE

ICODE:PIC YES SAME AS ICODE:PIC/SHAREABLE:COMMON

NONE YES SAME AS ISHAREABLE:LlBRARY

ZK-1370-83

Figure 5-4 Interaction of the /SHAREABLE:LIBRARY, /SHAREABLE:COMMON,
.and /CODE:PIC Qualifiers

----·--·1'"1 ------r

/--'\,

en

~
tj

~
(j)
H
o
Z

o

~
t:zj
'tI
t-3
en

~
tj

t:zj

~
'tI
t"
t:zj
en

SHARED REGION CONCEPTS AND EXAMPLES

If you use TKB with MCR, the IPI switch declares a shared region to be
relocatable. Conversely, the I-PI switch declares a shared region to
be absolute. If you specify the IPI switch without the Ico or ILl ~
switches to indicate a relocatable region, TKB defaults to building a,
relocatable (position-independent) shared region (a common) with all
program sections declared in the .STB file. The contents of the .STB
file when these three switches are used are described _in Chapter 10
under the Ico, ILl, and IPI switch headings. See also Figure 5-3,
Interaction of the ILl, Ico, and IPI Switches.

If you use the LINK command with DCL, the ICODE:PIC qualifier declares
a shared region to be relocatable. Conversely, the absence of the
/CODE:PIC qualifier declares the shared region to be absolute. If you
specify the ICODE:PIC qualifier without the ISHAREABLE:COMMON or
ISHAREABLE:LIBRARY qualifiers to indicate a relocatable region, TKB
defaults to building a relocatable (position-independent) shared
region (a common) with all program sections declared in the .STB file.
The contents of the .STB file when these three qualifiers are used are
described in Chapter 11 under the headings ICODE:PIC,
ISHAREABLE:COMMQN, and ISHAREABLE:LIBRARY. See also Figure 5-4,
Interaction of the ISHAREABLE:LIBRARY, ISHAREABLE:COMMON, and C.
/CODE:PIC qualifiers.

If you do not use either /CO or /LI, or for LINK either
/SHAREABLE:COMMON or ISHAREABLE:LIBRARY, the contents of-an .STB file
for a shared region depend on the use of the /PI switch or the LINK
/CODE:PIC qualifier, which determines whether the region is absolute
or relocatable. The effects of declaring a shared region relocatable
or absolute and the resuiting contents of the .STB file are described
in the following sections.

Some.STB files include an entry in the .STB file for each program
section in the region. Each entry declares the program section's
name, attributes, and length. In addition, TKB includes in the .STB
file every symbol in the shared region and its value relative to the
beginning of the section in which it resides.

5.1.2 Position-Independent Shared Regions

A position-independent shared region can be placed anywhere in a
referencing task's virtual address space when the system on which the
task runs has memory management hardware.

5.1.2.1 Position-Independent Shared Region Mapping -In the example
of using the memory management APRs, shown in Figure 5-5, two tasks
refer to the shared region S: task A and task B. The shared region S
is 4K words long and therefore requires that much space in the virtual
address space of both tasks. Task A is 6K words long and requires two
APRs (APRO and APRI) to map its task region. The first APR available
to map the shared region is APR 2. Thus, you can specify APR 2 when
task A is built.

Task B is l6.5K words long. It requires five APRs to map its task
region. The first APR available to map the shared region S in task B
is APR 5. Therefore, you can specify APR 5 when task B is built.

If you do not specify which APR is to be used to map a
position-independent shared region, TKB selects the highest set of
APRs available in the referencing task's virtual address space. In
Figure 5-5, for example, if APR 2 in task A and APR 5 in task B had
not been selected at- task-build time, TKB would have selected APR 7 in
both cases.

5-6

(

(

c

c

(

(

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

APR 0-

SHARED REGION CONCEPTS AND EXAMPLES

-: : : : :
:":::.::::" .
',::;::::
::: ,:::'::::: ,::.':

\.{ ~'N:' ;:·:::·:':·:':·::::[t·li

'\'r.··.r.·;
..... ',
:,:,:::,:.:.:.: .:,:::,:::"

".::::::" ... "

':i·iiiiiiiii:1
:' ,::i::i:'.::::·i::::',::' ,,:\:

::?&:: i i :' .:' .::::' {jill::::::'

SHARED
REGION

S

TASK A

t
4 K WORDS

t

1
6 K WORDS

-------..J

SHARED
REGION

S

APR 7-

APR 6-

APR 5-

APR 4-

APR 3-

APR 2-

APR 1-

APR 0-

TASK B 16.5 K
WORDS

ZK·421·81

Figure 5-5 Specifying APRs for a Position-Independent Shared Region

5.1.2.2 Specifying a Position-Independent Region - You specify that a
shared region is position independent when you build it by attaching
the IPI switch to the image file specification for the region. If you
use the LINK command, you specify a position-independent region by
using the ICODE:PIC qualifier attached to the LINK command or the

5-7

SHARED REGION CONCEPTS AND EXAMPLES

input file specification. (Refer to Chapter 10 for a description of
the /PI switch or Chapter 11 for a description of the /CODE:PIC
qualifier.)

You should declare a region position independent if:

• The region contains code that
regardless of its location in
referencing task.

will
the

execute correctly
address space of the

• The region contains data that is not address dependent.

• The region contains data that will be referenced by a FORTRAN
program (such data must reside in a named common).

Program section names are preserved in some shared regions. All the
following switch combinations produce shared regions in which PSECT
names are preserved:

TKB

/PI/CO
I-PI/CO
/PI

LINK

/CODE:PIC/SHAREABLE:COMMON
/SHAREABLE:COMMON
/CODE:PIC

Therefore, you should observe the following precautions when building
and referring to these regions:

• No code or data in the region should be included in the blank
(. BLK.) program section.

• No code'or data in a referencing task should appear in a
program section of the same name as a program section in the
shared region.

• The order in
(alphabetic
region- and
alphabetic
description
/SEQUENTIAL
explanation

which memory is allocated to program sections
or sequential) must be the same for the shared
its referencing tasks. (Chapter 2 describes
ordering of pro~ram sections. Refer to the

of the /SQ and /SG switches in Chapter 10 or the
and /[NO]SEGREGATE qualifiers in Chapter 11 for an
of sequential ordering of program sections.)

5.1.3 Absolute Shared Regions

When a shared region is absolute, you select the virtual addresses for
it when you .build it. Thus, an absolute shared region is fixed in the
virtual address space of all tasks that refer to it.

5.1.3.1 Absolute Shared Region Mapping - Figure 5-6 shows three tasks
(task C, task D, and task E) and a single absolute shared region, L.
The absolute shared region L is 6K words long and is built to occupy
virtual addresses l20000{octal} to l50000{octal). These addresses
correspond to APR 5 and APR 6, respectively. Tasks C and D can be
linked to region L because at the time they are built APR 5 and APR 6
are unused in both tasks. However, task E is 23K words long and even
though it has 8K words of virtual address space available to map the
shared region, APR 5 {which corresponds to virtual address 120000, the
base address of the shared region} has been allocated to the task
region. If shared region L were position independent, task E could be
linked to it.

5-8

c

(

(

c

(~

(

APR 7~

(
APR 6-

APR 5-

(
" -- APR 4-

APR 1-

APR 0-

SHARED REGION CONCEPTS AND EXAMPLES

ABSOLUTE
SHARED
REGION

L

TASK C

r ABSOLUTE
SHARED
REGION

L

6 K WORDS

VIRTUALL
120000 L..-____ --'

APR 7-

APR 6- ABSOLUTE
SHARED
REGION

L

APR 5-

APR 4-

APR 1-

APR 0-

APR 7-

APR 6-

APR 5-

APR 4-

APR 1-

APR 0-

Figure 5-6 Mapping for an Absolute Shared Region

5-9

ZK-422-B1

SHARED REGION CONCEPTS AND EXAMPLES

5.1.3.2 Specifying an Absolute Shared Region - You specify that a
shared region is absolute when you build it by using the /-PL switch
or omitting the /PI switch or /CODE:PIC qualifier from the task image (
file. You establish the virtual address for the region by specifying
the base address of the region as a parameter of the PAR option.

You should build an absolute shared region if:

• The region contains code that must appear in a specific
location in the address space of a referencing task.

• The region contains data that is address dependent.

• The region contains program sections of the same name as
program sections in referencing tasks.

5.1.3.3 Absolute Shared Region .STB File - For TKB commands, when a
shared region is created with the /-PI/LI or I-PI switches, or just
the /-HD switch, the only program section name that appears in the
.STB file for the region is the absolute program section name
(. ABS.). Similarly for LINK commands, the .ABS program section name
is .the only one that appears when you create the shared region with
the /SHAREABLE:LIBRARY qualifier and the /NOHEADER qualifier or only
the /NOHEADER qualifier. TKB includes in the .STB file for the region
each symbol in the region and its value. But, because TKB does not
include the program section names of an absolute shared region in its
.STB file, all code or data in the region must be referred to by
global symbol name. Also, because the program section names are not
in the .STB file, TKB places no restrictions on the way the program
sections ar~ ordered in either the absolute shared region or the tasks
that reference it. You can order program sections the way you want by
using the TKB /SQ. and /SG switches or the LINK /SEQUENTIAL and
/[NO]SEGREGATE qualifiers described in Chapters 10 and 11.

5.1.4 Shared Regions with. Memory-Resident Overlays

Shared regions with memory-resident overlays are a primary resource
for conserving memory. If the shared region is larger than the

(

available virtual address space in a task that must reference the C·
region, you can build the region -- both position-independent and
absolute -- with memory-resident overlays. All segments of the
overlay structure are included in the shared region, but each task
referencing the shared region can include only part of the shared
region that is. an overlay segment or series of segments in an
overlay path -- in its virtual address space. Therefore, the task
need only have enough virtual address space for the largest shared
region overlay segment, or series of segments in an overlay path, it
is likely to access. Hence, the virtual address space of the task can
be considerably smaller th?n the size of the shared region.

5.1.4.1 Considerations About Building an Overlaid Shared Region - In
general, ove~lays can be disk-resident or memory-resident, but those
in shared regions must, by their very nature, be memory-resident. TKB
marks each overlay segment in the shared region with the NODSK
attribute to suppress overlay load requests. When you build a shared
region with memory-resident overlays, you must define the overlay .
structure through a conventional ODL file. (See Chapters 3 and 4 of (
this manual for information on overlays and the Overlay Description .

5-10

c

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

Language.) TKB does not include the overlay data base (segment
descriptors, autoload vectors, and so forth) or the overlay run-time
routines within the region image. Instead, this data base becomes a
part of the .STB file that is linked to the referencing task. When
this task is built, its root segment automatically includes both the
data base and global references to overlay support routines residing
in the system object module library.

The procedure for creating a shared region with memory-resident
overlays can be summarized as follows:

• Define an overlay structure containing only memory-resident
overlays.

• Include the GLBREF option, or provide in the root segment a
module containing the appropriate global references for
defining entry points within those overlay segments. TKB
generates autoload vectors and global definitions for the
overlay segments.

5.1.4.2 Example of Building a Memory-Resident Overlaid Shared
Region - The procedure for creating a shared region is illustrated in
the following example. The shared region to be constructed consists
of reentrant code that resides within the overlay structure defined
below:

.ROOT A-l (B,C-D)

.NAME A

.END

Root segment A contains no code or data and has a length of O. All
executable code exists within memory-resident overlay segments
composed of object modules B.OBJ, C.OBJ, and D.OBJ, containing global
entry points B, C, and D, respectively.

You generate the .TSK, .MAP, and .STB files by using the following TKB
command:

TKB

TKB>A/-HD/MM,LP:,SY:A=A/MP
Enter Options:
TKB>GBLREF=B,C,D
TKB>PAR=A:160000:20000
TKB>STACK=O
TKB>/
>

or the following LINK command

LINK

>LI~K/TAS:A/NOH/MEM/MAP:LP:/SYM:SY:A/OPT A/OVER
Option? GBLREF=B,C,D
Option? PAR=A:160000:20000
Option? STACK=O
Option? lBTIl
>

5-11

SHARED REGION CONCEPTS AND EXAMPLES

NOTE

When building a shared region, you must use the
same name for the partition and the .TSK and .STB
files.

See the PAR, RESLIB, LIBR, RESCOM, and COMMON
options in Chapter 11.

TKB inserts references to entry points B, C, and D in the root segment
of the library which subsequently appear in the .STB file as
definitions.

TKB resolves the definitions for symbol C directly to the actual entry
point. TKB resolves the definitions for symbols Band D to autoload
vectors that it includes in each referencing task.

5.1.4.3 Options for Use in Overlaid Shared Regions - Certain options

(

may prove useful to you when building and linking shared regions to a r-__
task. They are described next. ~

GBLDEF -- You can declare the definition of a symbol by means of' the
GBLDEF option. The syntax of this option is:

GBLDEF=symboi-name:symbol-value

where symbol-name is a 1- to 6- character Radix-50 name qf the defined
symbol and symbol-value is an octal number in the range of 0 through
177777 assigned to the symbol. This option is frequently used in the
TKB build file for a task or shared region to allow you to alter the
va.1ue of a global symbol that resides in a module. This saves you the «-
trouble of reassembling the source code for a module if changes are '-
necessary.

GBLINC -- By means of this option, you force TKB to include the
specified symbols in the .STB file being created by the linking
process in which this option appears. The syntax of this option is:

GBLINC=symbol-name,symbol-name, •.• ,symbol-name

where symbol-name is the symbol or symbols to be included. Use this C-
option when you want to force particular modules to be linked to the _
task that references this library. The global symbol references
specified by this option must be satisfied by some module or GBLDEF
specification when you build the task.

GLBREF -- You can force the inclusion of a glbbal reference in the
root segment of the shared region by means of the GBLREF option. In
this way, the necessary autoload vectors and definitions can be
generated without explicitly including such references in an object
module. The syntax of the option is:

GBLREF=[,name[,name ...]]

where the name consists of from one to six Radix-50 characters. If
the definition resides within an autoloadable segment, TKB constructs
an autoload vector and includes it in the symbol definition file. If
the definition is not autoloadable, TKB obtains the real value and
defines it in the root segment. No global symbol appears in the .STB
file unless the symbol is either defined in the root segment or is
referenced in the root segment and defined elsewhere in th~ overlay
structure.

5-12

(

c_

c

c

c

SHARED REGION CONCEPTS AND EXAMPLES

GBLXCL -- You can exclude a symbol or symbols from the symbol
definition file of a shared region by means of the GBLXCL option. The
syntax of this option is:

GBLXCL=symbol-name,symbol-name, •.. ,symbol-name

where symbol-name is the symbol or symbols to be excluded. You can
use this option when you do not want the task to be aware of specific
symbols within the library. This option is particularly useful when
you cluster overlaid libraries together (see the CLSTR option in
Chapter 11 and the Cluster Libraries section in this chapter).

5.1.4.4 Autoload Vectors and .STB Files for Overlaid Shared Regions -
When TKB builds a task image file containing memory-resident overlays,
TKB allocates autoload vectors in the task image. If the task links
to a shared region, autoload vectors for the shared region are also
allocated in the task image. TKB allocates the autoload vectors in
the task's root segment, but not in the shared region. Therefore, the
shared region cannot reference unloaded (unmapped) segments of its
overlay structure.

When the task executes, the shared region is effectively part
task. In fact, when the task loads overlay segments, it
distinction between overlay segments of the task and those
shared region. They are loaded as needed in a procedure
transparent insofar as the execution of the task is concerned.

of the
makes no
of the
that is

For the Fast Task Builder (FTB) and older versions of TKB that do not
support overlaid I- and D-space tasks, each autoload vector in the
shared region's .STB file is allocated in the root of the task being
linked to the region, whether or not the entry point is referenced by
the task.-

NOTE

Libraries created with older versions of TKB do not
have the ISD reco~ds in the .STB .file that newer
versions of TKB use to include autoload vectors in the
task from the .STB file. Therefore, TKB must create
autoload vectors for every entry point in the library.

5-13

SHARED REGION CONCEPTS AND EXAMPLES

Only those global symbols defined or referenced in the root segment of
the shared region appear in the .STB file. The .STB file also
contains the data base required by the overlay run-time system in
re.locatable object module format. This data base include~:

• All autoload vectors

• Segment tables (linked as described in Appendix B)

• Window descriptors

• A single region descriptor

The overlay structure, as reflected in the segment table linkage, is
preserved and conveyed to the referencing task by the .STB file.
Thus, path loading for the shared region can occur exactly as it does
within a task. Aside from address space restrictions, there are no
limitations on the overlay structures that can be defined for a shared
region.

5.1.5 Run-Time Support for Overlaid Shared Regions

Memory-resident overlays within a shared region require little
additional support from the overlay run-time system. The shared
region overlay data base that is linked within the image of the
referencing task has a structure that is identical to the equivalent
data created for an overlaid task. Therefore, memory-resident
overlays within the shared region are indistinguishable from
memory-resident overlays that form a part of the task image. The only
additional processing is that required to attach the shared region and
obtain its identification for use by the mapping directives.

Once this
identical
overlays.

initialization is
to memory-resident

Several restrictions apply
memory-resident overlays:

complete,
overlay

all further processing is
processing performed on task

to shared regions existing. as

• A shared region cannot use the autoload facility to reference
memory-resident overlays within itself or any other region.
If each segment is uniquely named, overlays can be mapped
through the manual load facility.

• Named program sections in a shared region overlay segment
cannot be referenced by the task. If reference to the storage
is required, such sections must be included in the root
segment of the region (with resultant loss of virtual address
space) .

• For FTB, and libraries built with versions of TKB that do not
support I- and D-space overlaid tasks, the number of autoload,
vectors is independent of the entry points actually
referenced. The maximum nUmber of vectors will be allocated
within each referencing task. In some cases the size of the
allocation will be large.

•

As implied by the previous items, great care must be exercised if an
efficient memory-resident overlay structure for library routines such
as the FORTRAN IV OTS is to be implemented.

5-14

c

(

c

(

c

SHARED REGION CONCEPTS AND EXAMPLES

5.1.6 Linking to a Shared Region

When you build a task that links to a shared region, you must indicate
to TKB the name of the shared region and the type of access the task
requires to it (read/write or read-only). In addition, if the shared
region is position independent, you can specify which APR TKB is to
allocate for mapping the region into the task's virtual address space.
Four options are available for this action:

• RESLIB (resident library)

• RESCOM (resident common) .

• LIBR (system-owned resident library)

• COMMON (system-owned resident common)

RESLIB and RESCOM accept a complete
arguments. Thus, you can speci~y
the location of the region's image
symbol definition file. (Refer to
file specifications and defaults.)

file specification as one of their
a device and UFD indicating to TKB
file and, by implication, its
Chapter 1 for more information on

LIBR and COMMON accept a 1- to 6-character name. When you specify
either of these options, the shared region's image file and symbol
definition file must reside under UFD [1,1] on device LBO:.

The RESLIB and RESCOM options require that all users of the shared
region know the UFD under which the shared region's image file and
.STB file reside. The LIBR and COMMON options require only that the
users of the shared region know the name of the shared region. When
you specify either LIBR or COMMON, by default, TKB expects to find the
shared region's image and .STB files on device LB: underUFD [1,1].

All four options accept two additional arguments:

• The type of access that the task requires (RO or RW).

• The first APR that TKB is to allocate for mapping the region
into the task's virtual address space. As stated earlier,
this argument is valid only when the shared region is position
independent.

When you specify any of these options, TKB expects to find a symbol
definition file of the same name as that of the shared region, but
with an extension of .STB, on the same device and under the same UFD
as those of the shared region's image file.

The syntax of these options is given in Chapter 11.

When TKB builds a task, it processes first any options that appear in
the TKB command sequence. When TKB processes one of the four options
above, it locates the disk image of the shared region named in the
option. The disk image of a shared region does not have a header, but
it does have a label block that contains the allocation information

·about the shared region (for example, its base address, load size, and
the name of the partition for which it was built). TKBextracts this
data from the shared region's label block and places it in the LIBRARY
REQUEST section of the label block for the referencing task.

The .STB file associated with the shared region is an object module
file. TKB processes it as an input file. If the shared region is
position independent, its .STB file contains program section names,
attributes, and lengths. However, the program section names are
flagged within the file as "library" program sections and TKB does not
add their allocations to the task image it is building.

5-15

SHARED REGION CONCEPTS AND EXAMPLES

If the task links to only one shared region, and if neither the shared
region nor the task that links to it contain memory-resident overlays,
the Task Builder allocates two window blocks in the header of the
task. (Overlays are described in Chapter 3.) When the task is
installed, the INSTALL processor will initialize these window blocks
as follows:

• Window block a will describe the range of virtual addresses
(the window) for the task region.

• Window block 1 will describe the ,window for the shared region.

Figure 5-7 shows the window-to-region relationship of such a task.

A shared region need not be installed before a task that links to it
is built. The .STB file that you specify when you build the shared
region contains all the information required by TKB to resolve
references from within a task to locations within the shared region.
The only requirement' is that you install a shared region before you
install a task that links to it.

(

Unless you use the ILl switch or the ISHAREABLE:LIBRARY qualifier, l'~
there is a restriction on the way TKB processes tasks that link to _
relocatable shared regions. TKB places all program section names into
its internal control section table. The program section names include
those from the .STB file of the shared region as well as those from
the other input modules. A conflict can arise when building a task
that contains program sections of the same name as those in the shared
region to which the task links. The conflict arises because TKB tries
to add the program section allocation in the task to the already
existing allocation for the program section of the same name in the
region. This is not possible because the region's image has already
been built, is outside the adqress space of the task currently being (
built, and cannot be modified. Therefore, to avoid this conflict, the
program section names within a task that links to a relocatable shared
region must normally be unique with respect to program section names
within the shared region.

TKB displays an error message under the following conditions:

• A program section in the task and a program section in the
shared region have the same name.

• ,The program section in the task contains data.

• TKB tries to initialize the program section in the task.

The error message occurs when TKB tries to store data in an image
outside the address limits of the task it is building. If this
conflict occurs, TKB prints the following message:

TKB--*DIAG*-load addr out of range in module module-name,

One exception to the above restriction develops when all of the
following conditions exist:

• Both program
referencing
attributes.

sections (in the shared region and in the
task) have the (D) data and the OVR (overlay)

• The program section in the task is equal to or shorter than
the program section in the shared region.

• The program section in the task does not contain data.

5-16

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

HIGHEST VIRTUAL----__i� __
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
o

LOWEST VIRTUAL-----.... -
ADDRESS

SHARED
REGION

TASK
MEMORY

HEADER AND STACK

ZK-423-81

Figure 5-7 Windows for Shared Region and Referencing Task

5-17

SHARED REGION CONCEPTS AND EXAMPLES

When all of these conditions exist, there is nothing to be initialized
within the shared region. TKB binds the base address of the program
section in the task to the base address of the program section in the
shared region. If the program section in the task contains global
symbols, TKB assigns addresses to them that reflect their location
relative to the beginning of the program section. You can use this
technique to establish symbolic offsets into resident commons.
Examples 5-1 and 5-2 in the following sections illustrate how to
establish these offsets.

5.1.7 Number and Size of Shared Regions

number of shared regions to which link of
number of window blocks

5.1.8 Example 5-1: Building and Linking to a Common in MACRO-II

The text in this section and the figures associated with it illustrate
the development of a MACRO-II position-independent resident common and
the development of two MACRO-II tasks that share the common. The
steps in building a position-independent common can be summarized as
follows:

1. You create a source file that allocates the amount of space
required for the common. In MACRO-II, either of the
assembler directives, .BLKB or .BLKW, provide the means of
allocating this space.

2. You assemble the source file.

3. You build the assembled module, specifying both a task image
file and a symbol definition file.

You specify the /-HD (no header) switch, or the /NOHEADER
qualifier for' LINK, and declare the common with lco, or
/SHAREABLE:COMMON for LINK. You specify the common to be
position independent with the /PI switch, or the /CODE:PIC
qualifier for LINK.

Under options you specify:

STACK=O
PAR=parname

The parname in this PAR option is the name of the partition
in which the common is to reside. (The TKB switches are
described in Chapter 10. The LINK qualifiers are described
in Chapter 11. The STACK and PAR options are described along
with the other options in Chapter 12.)

5-18

(

(

(

(

c-

(

c

SHARED REGION CONCEPTS AND EXAMPLES

4. You install the common.

Example 5-1 below shows a MACRO-II source file that, when assembled
and built, creates a position-independent resident common area named
MACCOM. The common area consists of two program sections named COMI
and COM2, respectively. Each program section is 512(decimal) words
long.

Example 5-1, Part 1 Common Area Source File in MACRO-II

.TITLE MACCOM

COMI 512 WORDS
COM2 - 512 WORDS

.PSECT COMl,RW,D,GBL,REL,OVR

.BLKW 512 .

. PSECT COM2,RW,D,GBL,REL,OVR

.BLKW 512 .

. END

Once this common has been assembled, the TKB command sequence shown
below can be used to build it.

>TKB
TKB>MACCOM/PI/-HD/CO,MACCOM/-SP,MACCOM=MACCOM
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=MACCOM:O:4000
TKB>//
>

Or, with the LINK command, you may enter the following command
sequence:

>LINK/TAS:MACCOM/NOH/CODE:PIC/SHARE:COMMON/MAP:MACCOM/NOPRINT/SYM/OPT -
->MACCOM

Option? STACK=O
Option? PAR=MACCOM:O:4000
Option? (8ITJ
>

This command sequence directs TKB to build a position-independent,
headerless common image file namedMACCOM.TSK. It also specifies that
the Task Builder is to create a map file, 'MACCOM.MAP, and a symbol
definition file, MACCOM.STB. TKB creates all three
files -- MACCOM.TSK, MACCOM.MAP, and MACCOM.STB -- on device SY:
under the UFD that corresponds to the terminal UIC. TKB will not
spool a map listing to the line printer.

Under options, STACK=O suppresses the stack area in the common's
image. The PAR option specifies that the common area will reside
within a common partition of the same name as that of the common,
MACCOM. In addition, the parameters in the PAR option specify a base
of a and a length of 4000 octal bytes for the common. (Refer to
Chapters la, II, and 12 for descriptions of the switches, qualifiers,
and options used in this example.)

5-19

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 2 shows the map resulting from this command
sequence.

The task attributes section of this map reflects the switohes and
options of the command string. It indicates that the common resides
in a partition named MACCOM, that it was built under terminal UIC
[7,62], that it isheaderless and position independent, and that it
requires one window block to map. The total length of the common is
1024(decimal) words and its address limits range from 0 to
3777(octal). The common image (that portion of the disk image file
that eventually will be read into memory) begins at file-relative disk
block 2 O. The last block in the file is file-relative disk block
5 e and the common image is four blocks long e .
The memory allocation synopsis details the Task Builder's allocation
for and the attributes of the program sections within the common. For
example, reading from left to right, the map indicates that the
program section COMI permits read/write access, that it contains data,
and that its scope is global. It also indicates that COMI is
relocatable and that all contributions to COMI are to be overlaid.
Because COMI has the overlay attribute, the total allocation for it
will be equal to the largest allocation request from the modules that
contribute to it. (For more information on program section
attributes, see Chapter 2.) .

Continuing to the right, the first 6-digit number is COMl's base
address, which is 00. The next two digi'ts are its length (bytes) in
octal and decimal, respectively.

The next line down lists the first object module that contributes to
COMI. In this case there is only one: the module MACCOM from the
file MACCOM.OBJ~l. The numbers on this line indicate the relative
base address of the contribution and the length of the contribution in
octal and decimal 0. If there had been more than one module input to
TKB that contained a program section named COMl, TKB would have listed
each module and its contribution in this section.

Notice that there is a program section named. BLK. shown on the map
just above the field for COMI. This is the "blank" program section
that is created automatically by the language translators. The
attributes shown are the default attributes. The allocation for
. BLK. is 0 because the program sections in MACCOM were explicitly
declated. If the program sections had not been explicitly declared,
all of the allocation for the common would have been within this
program section.

Example 5-1, Part 2 Task Builder Map for MACCOM.TSK

MACCOM.TSK;l Memory allocation map TKB M40.l0
l7-NOV-82 16:05

Partition name MACCOM
Identification
Task, UIC [7,62]
Task attributes: -HD,PI
Total address windows: 1.
Task image size : 1024. WORDS
Task address limits: 000000 003777
R-W disk blk limits: 000002 000005

*** Root segment: MAC~ ~
000004 00004.

\
R/W mem limits: 000000 003777 004000 02048.
Disk blk limits] 000002 000005 000004 00004.

Page 1

(continued on next page)

5-20

(

(:

(

(

c

(-

(~

C

(

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 2 (Cant.) Task Builder Map for MACCOM.TSK

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 000000
COMI :(RW,D,GBL,REL,OVR) 000000

000000
COM2 : (RW,D,GBL,REL,OVR) 002000

1002000

*** Task builder statistics:

000000
002000
002000
002000
002000

Total work file references: 183.
Work file reads: o.
Work file writes: o.

00000.
01024.
01024.
01024.
01024.

Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:OO:OO:OS

.MAIN. MACCOM.OBJ;l

.MAIN. MACCOM.OBJ;l

Figure 5-8 is a diagram that represents the disk image file for
MACCOM. The circled numbers in Figure 5-8 correspond to the circled
numbers in Example 5-1, Part 2.

RELATIVE
DISK BLOCK
NUMBERS

000005 .-
000004

000003

000001

000000

COM 2

COM 1

LABEL BLOCK

DISK IMAGE FILE

RELATIVE
LOAD
ADDRESSES

002000

~

Figure 5-8 Allocation Diagram for MACCOM.TSK

5-21

002000 (BYTES) -.

ZK-424-81

SHARED REGION CONCEPTS AND EXAMPLES

have built MACCOM, you can install it.

Example 5-1, Parts 3 and 4 show two programs: MCOMl and MCOM2,
respectively. Both of these programs reference the common area MACCOM
created above. MCOMl in Example 5-1, Part 3 accesses the COMl portion
of MACCOM. It inserts into the first 10 words of COMI the numbers 1
through 10 in ascending order. It then issues an Executive directive
request for the task MCOM2 and suspends itself.

When MCOM2 runs, it adds together the integers left in COMI by MCOMl
and leaves the sum in the first word of COM2. It then issues a resume
directive for MCOMl and exits.

When MCOMI resumes, it retrieves the answer left in COM2 and calls the
system library routine $EDMSG (edit message) to format the answer for
output to device TI:.

All of the Executive directives for both programs (RQST$C, SPND$S,
QIOW$S, RSUM$C, and EXIT$S) are documented in the RSX-IIM-PLUS
Executive Reference Manual. The system library routine $EDMSG is
documented in the IAS!RSX-ll System Library Routines Reference Manual.

Example 5-1, Part 3 MACRO-ll Source Listing for MCOMl

.TITLE MCOMI

.IDENT lOll

.MCALL EXIT$S,SPND$S,RQST$C,QIOW$S

OUT: .BLKW
FORMAT: .ASCIZ
MES: .ASCII

LEN =
. EVEN

100.
ITHE RESULT IS %D.I
IERROR FROM REQUESTI
- MES

; SCRATCH AREA

PSECT - COMI IS USED TO ACCESS THE FIRST 512. WORDS OF THE
COMMON .

INT:
. PSECT COMl,GBL,OVR,D
.BLKW 10.

(continued on next page)

5-22

(

(~

c

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 4 MACRO-II Source Listing for MCOM2

PSECT - COM2 IS USED TO ACCESS THE SECOND 512. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

.PSECT COM2,GBL,OVR,D
ANS: .BLKW 1

START:

10$:

ERRl:

.PSECT

MOV
MOV
MOV

MOV
INC
DEC
BNE
RQST$C
BCS
SPND$S
MOV
MOV
MOV
CALL
QIOW$S
EXIT$S

nO.,RO
n,Rl
#INT,R3

NUMBER OF INTEGERS 'ro SUM
START WITH A 1
PLACE VALUES IN 1ST 10 WORDS
OF COMMON

Rl, (R3)+ INITIALIZE COMMON
Rl NEXT INTEGER
RO ONE LESS TIME
10$ TO INITI~LIZE
MCOM2 REQUEST THE SECOND TASK
ERRl REQUEST FAILED

WAIT FOR MCOM2 TO SUM THE INTEGERS
#OUT,RO ADDRESS OF SC~TCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG ; DO CONVERSION
#IO.WVB,#5,#1",,<#OUT,Rl,#40>

QIOW$S #IO.WVB,#5,#1",,<#MES,#LEN,#40>
EXIT$S
.END START

Example 5-1, Part 4 MACRO-ll Source Listing for MCOM2

.TITLE MCOM2

.!DENT lOll

.MCALL EXIT$S,QIOW$S,RSUM$C

MES: .ASCII IERROR FROM RESUMEI
LEN = - MES
. EVEN

PSECT - COMl IS USED TO ACCESS THE FIRST 10. WORDS OF THE
COMMON .

. PSECT COM1,GBL,OVR,D
INT: .BLKW 10.,

PSECT - COM2 IS USED TO ACCESS THE SECOND 10. WORDS OF THE
COMMON. IT WILL CONTAIN THE RESULT

.PSECT COM2,GBL,OVR,D
~~S: .BLKW 1

START:

.PSECT

MOV
MOV

CLR

nO.,RO
#INT,R3

ANS

5-23

NUMBER OF INTEGERS TO SUM
PLACE VALUES IN 1ST 10 WORDS
OF COMMMON
INITI~LIZE ANSWER

(continued on next page)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-1, Part 4 (Cont.) MACRO-ll Source Listing for MCOM2

10$:

ERR:

ADD
DEC
BNE

RSUM$C
BCS
EXIT$S

(R3)+,ANS
RO
10$

MCOMl
ER~

ADD IN VALUES
ONE LESS VALUE
TO SUM

RESUME MCOMl
RESUME FAILED

QIOW$S #IO.WVB,#5,#1",,<#MES,#LEN,#40>
EXIT$S
.END START

Note that both tasks MCOMl and MCOM2 contain .PSECT declarations
establishing program section names that are the same as program
section names within the position-independent common to which the task
is linked (MACCOM). As stated earlier, in most circumstances this
would be illegal. In this application, however, the .PSECT directives
have been placed into the tasks to establish symbolic offsets in the
resident common. When either task is built, TKB assigns to the symbol
INT: the base address of program section COMl, and to the symbol ANS:
the base address of program section COM2. Figure 5-9 illustrates this
assignment.

ANS: '-"L _______ r -- -- -- -- COM 2

- ---
f-- - - - - - - - ---.::---

ANS: ..::+--------------1

INT: -- -- COM 1 - -- -- --- -- ---- ----. -- t-------INT:--~--------------------~--~
ZK-425-81

Figure 5-9 Assigning Symbolic References within a Common

Once you have assembled MCOMl and MCOM2, you can build them with the
following command sequences:

TKB

>TKB
TKB>MCOM1,MCOMl/-SP=MCOMl
TKB>/
Enter Options:
TKB>RESCOM=MACCOM/RW
TKB>//
>

LINK

>LINK/TAS/MAP:MCOMl/NOPRINT/OPT MCOMl
Option? RESCOM=MACCOM/RW
Option? OOJ
>

5-24

(

c

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

TKB LINK

>TKB
TKB>MCOM2,MCOM2/-SP=MCOM2
TKB>/

>LINK/'rAS/MAP : MCOM2/NOPRINT/OPT MCOM2
Option? RESCOM=MACCOM/RW

Enter Options:
TKB>RESCOM=MACCOM/RW
TKB>//
>

Option? (BITJ
>

Under options in both of these command sequences, the RESCOM option
tells TKB that these programs intend to reference a common data area
named MACCOM and that the tasks require read/write access to it.
Because the RESCOM option is used, TKB expects to find the image file
and the symbol definition file for the COmmon on device SY: under the
UFD that corresponds to the terminal UIC. In addition, because the
optional APR specification was omitted from the RES COM option, TKB
allocates virtual address space for the common starting with APR7 in
both tasks (the highest APR available in both tasks).

The TKB map for MCOM1 is shown in Example 5-1, Part 5. The map for
MCOM2 is not essentially different from that of MCOMl and is therefore
not included here.

Example 5-1, Part 5 Task Builder Map for MCOM1.TSK

MCOM1.TSK;1 Memory allocation map TKB M40.10
11-DEC-82 16:11

Partition name GEN
Identification 01.
Task UIC [7,62]
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001650
Total address windows: 2.
Task image size 1184. words
Task address limits: 000000 004407
R-W disk b1k limits: 000002 000006 000005 00005.

*** Root segment: MCOM1

R/W mem limits: 000000 004407 004410 02312.
Disk b1k limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section

BLK.:(RW,I,LCL,REL,CON) 001274 002664 01460.
001274 000574 00380.

COM1 : (RW,D,GBL,REL,OVR) 160000 002000 01024.
160000 000024 00020.

COM2 : (RW,D,GBL,REL,OVR) 162000 002000 01024.
162000 000002 00002.

$DPB$$:(RW,I,LCL,REL,CON) 004160 000016 00014.
004160 000016 00014.

$$RESL:(RO,I,LCL,REL,CON) 004176 000212 00138.

Title

MCOM

MCOM

MCOM

MCOM

(continued

5-25

Page 1

Ident File

01 MCOM1.0BJ; 1

01 MCOM1.0BJ; 1

01 MCOM1. OBJ; 1

01 MCOM1.0BJ; 1

on next page)

SHARED REGION CONCEPTS AND EXAMPLES

Example 5~1, Part 5 (Cont.) 'Task Builder Map for MCOM1.TSK

*** Task builder statistics:

Total work file references: 1924.
Work file reads: O.
Work file writes: O.
Size of core pool: 7086. words (27. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:04

Note that TKB has placed two window blocks in MCOM1's header. When
MCOMl is installed, the INSTALL processor will initialize these window
blocks as follOws:

• Window block 0 will describe the range of virtual addresses
(the window) for MCOM1's task region.

• Window block 1 will describe the window for the shared region
MACCOM.

5.1.9 Linking Shared Regions Together

Shared regions can link to other shared regions. You may find it
convenient to have code in a shared library and have access to
routines in another shared library to which it links.

c

(
'-

The following text describes, as an example for a mapped system~the (
TKB command sequence for building a resident library named FILEB.
That text is followed by TKB and LINK command sequences that show an
example of building another resident library named FORCOM that links
to FILEB. Following after that, TKB and LINK command sequences show
the building of a task that links to FORCOM. In the TKB and LINK
command sequences to follow, it is assumed that you know the contents
of the libraries and the task. The examples show the linkage only.

The first shared region to be built is called FILEB. The library
FILEB is a position-dependent library. You use the I-PI switch or no C·
ICODE:PIC qualifier to signify that the library is absolute. You ,
build the library with the I-HD switch or the INOHEADER qualifier to
indicate that the library has no header. The ILl switch or the
ISHAREABLE:LIBRARY qualifier indicates that FILES is to be a shared
library. The program section name of the library is • ABS, which is
the only one in the library. FILEB is to be loaded into a
user-controlled partition on a mapped system. The name of the
partition in which FILEB resides has the same name, FILEB, that you
specify in the PAR option. The PAR option also specifies the base
address and the length of the partition. Because FILEB is absolute, a
base address must be specified~ here, the base address is 160000. The
length in this example is 4K bytes. If neither the base nor the
length is specified, TKB tries to determine the length.

The TKB command sequence follows:

>TKB
TKB>FILEB/-PI/-HD/LI,FILEB/-SP,FILEB=FILEB.OBJ
TKB>/ .
Enter Options:
TKB.> STACK=O
TKB>PAR=FILEB:160000:40000
TKB>//

5-26

c

c

(

(

SHARED REGION CONCEPTS AND EXAM~LES

For the LINK command, use the following sequence:

>LINK/TAS/SHARE:LIBRARY/NOHEAD/MAP:FILEB/NOPRINT/SYM/OPT FILES
Option? STACK=O
·Option? PAR=FILEB:l60000:40000
option? (B@
>

The next TKB command sequence specifies a shared library called
FORCOM. FORCOM links to the read-only library called FILEB. You
build FORCOM with the /LI switch or /SHAREABLE:LIBRARY qualifier to
specify a library to the Task Builder. FORCOM is relocatable. You
specify in the RESLIB option that the resident library to which FORCOM
links is called FILEB. The access required is read-only, which /RO
specifies in the RESLIB option line.

The TKB command sequence follows:

>TKB
TKB>FORCOM/-HD/LI/PI,FORCOM/-SP,FORCOM=FORCOM.OBJ
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=FORCOM:0:4000
TKB>RESLIB=FILEB/RO
TKB>//
>

For LINK, use the following command sequence:

>LINK/TAS:FORCOM/NOHEAD/CODE:PIC/SHARE:LIB/MAP:FORCOM/NOPRINT/SYM/OPT -
->FORCOM
Option? STACK=O
Option? PAR=FORCOM:0:4000
Option? RESLIB=FILEB/RO
OPTION? (B@)
>

The next command sequences build the task and specifies that the task
links to the library called FORCOM. The RESLIB option line specifies
the link to the resident library called FORCOM.

For TKB, use the following command sequence:

>TKB
TKB>FOTASK,FOTASK/-SP,FOTASK=FOTASK.OBJ
TKB>/
Enter Options:
TKB>RESLIB=FORCOM/RW
TKB>//
>

For LINK, use the following command sequence:

>LINK/TAS:FOTASK/MAP:FOTASK/NOPRINT/SYM/OPT FOTASK
Option? RESLIB=FORCOM/RW
Option? (B@
>

Build the libraries before you build the task, and install the
libraries before you run or install the task, See Chapter 10 for a
description o~ the /PI, /HD, /CO, and /LI switches; and see Chapter 11
for a description of the /CODE:PIC, /[NO]HEADER, /SHAREABLE:COMMON,
and /SHAREABLE:LIBRARY qualifiers. See Chapter 12 for a description
of the PAR, RESCOM, and RESLIB options.

5-27

SHARED REGION CONCEPTS AND EXAMPLES

5.1.10 Example 5-2: Building and Linking to a Device Common in
MAC RO-ll

A device common is a special type of common that occupies physical
addresses on the I/O page. When mapped into the virtual address space
of a task, a device common permits the task to manipulate peripheral
device registers directly.

NOTE

Because any access to the I/O page is potentially
hazardous to the running system, you must exercise
extreme caution when working with device commons.

The remaining text in this section and the figures associated with it
illustrate the development and use of a device common. Example 5-2,
Part 1 shows an assembly listing for a position-independent device
common named TTCOM. When installed, TTCOM will map the control and
data registers of the console terminal. Its physical base address
will be 777500.

Example 5-2, Part 1 Assembly Listing for TTCOM

$RCSR: :
$RBUF: :
$XCSR: :
$XBUF: :

.TITLE TTCOM

.PSECT TTCOM,GBL,D,RW,OVR

.=.+60

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1
• END

The PDP-II Peripherals Handbook defines the control and data register
addresses for the console terminal. In Example 5-2, Part 1, the
register addresses and the symbol names that correspond to them are as
follows:

Register

Keyboard Status
Keyboard Data
P.rinter Status
Printer Data

Address

777560
777562
777564
777566

. Symbol

$RCSR
$RBUF
$XCSR
$XBUF

The double colon (::) following each symbol in Example 5-2, Part 1
establishes the symbol as global. The first symbol, RCSR, is offset
from the beginning of TTCOM by 60(octal) bytes. Each symbol
thereafter is one word removed from the symbol that precedes it.
Thus, when TTCOM is installed at 777500, each symbol will be located
at its proper address.

Once you have assembled TTCOM, you can build it using the following
TKB command sequence:

>TKB
TKB>LB: [1, l]TTCOM/-HD/PI,LB: [1, l]TTCOM/-WI/SP,LB: [1, 1] TTCOM=TTCOM
TKB>/
Enter Options:

(

(

(

TKB>STACK=O
TKB>PAR=TTCOM: 0: 100 C.
TKB>/ / .
>

5-28

(

(
~--

(

(

c

SHARED REGION CONCEPTS AND EXAMPLES

For the LINK command:

>LINK/TAS:LB:[l,l]TTCOM/NOH/COD:PIC/MAP/NOWIDE/PRINT/SYM/OPT TTCOM
Option? STACK=O
Option? PAR=TTCOM:O:IOO
Option? @)
>

This command sequence directs TKB to create a common image named
TTCOM.TSK and a symbol definition file named TTCOM.STB. TKB places
both files on device LB: under UFD [1,1]. The command sequence also
specifies that TKB is to spool a map listing to the line printer.

In TKB, the I-WI switch specifies an SO-column line printer listing
format. In the LINK command, /NOWIDE specifies an SO-column format.
The /PRINT qualifier need not be present because printing of the map
file is the default operation.

NOTE

For the command sequence above to work in a multiuser
protection system,it must be input' from a privileged
terminal.

STACK=O option suppresses the stack area in the common's image

The TKB map for TTCOM that results from the command sequence above is
shown in Example 5-2, Part 2. The task attributes section of this map
indicates that the common is position independent and that no header
is associated with it. The common's image and symbol definition file
reside on device LB: under UFD [l,lJ.

The map in Example 5-2, Part 2 shows the global symbols defined in the
common with their relative offsets into the common region. You
establish the virtual base address for the common and the virtual
addresses for the symbols within it when you build the tasks that link
to the common.

the physical addresses for the with the MCR
keyword that use with the

These previous SET command sequences create a main partition named
TTCOM that begins at physical address 777500 in IS-bit systems and
physical address, 1777750 in 22-bit systems.' The partition is one
64-byte block long, (lOO(octa.l) bytes). The argument DEV identifies

5-29

SHARED REGION CONCEPTS AND EXAMPLES

You can establish the partition for a device common at any time in
both the RSX-llM and the RSX-llM-PLUS systems. Partitions created to
accommodate a device common are not a system generation consideration
because they represent areas of physical address space above memory
and therefore cannot conflict with memory partitions.

Example 5-2, Part 2 Task Builder Map for TTCOM

TTCOM.TSK;l Memory allocation map TKB M40.10
1-DEC-82 17:02

Partition name TTCOM
Identification ..
Task UIC [7,62]
Task attributes: -HD,PI
Total address windows: 1.
Task image size 32. WORDS
Task address limits: OVOOOO 000067
R-W disk b1k limits: 000002 000002 000001 00001.

*** Root segment: TTCOM

R/W mem limits: 000000 000067 000070 00056.
Disk b1k limits: 000002 000002 000001 00001.

Memory allocation synopsis:

Page 1

TASK
ATTRIBUTES
SECTION

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 000000 000000 00000.
TTCOM :(RW,D,GBL,REL,OVR) 000000 000070 00056.

000000 000070 00056 .. MAIN.

Global symbols:

TTCOM.OBJ;l

$RBUF 000062-R .$RCSR 000060-R $XBUF 000066-R $XCSR 000064-R

*** Task builder statistics:

Total work file references: 214.
Work file reads: O.
Work file writes: O.
Size of core pool: 6666. WORDS (26. PAGES)
Size of work file: 768. WORDS (3. PAGES)

Elapsed time:00:00:02

5-30

c

(

(

c

(

C

C

(

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-2, Part'3 shows an assembly listing for a demonstration
program named TEST. When built and installed, TEST will print the
letters A through Z on the console terminal by directly accessing the
console terminal status and data registers. It will access the status
and data registers through the device common TTCOM.

Example 5-2, Part 3 Assembly Listing for TEST

START:

OUTPUT:

OUTBYT:

.TITLE TEST

.IDENT /01/

.MCALL EXIT$S

MOV U5,RO
CALL OUTBYT
MOV U2,RO
CALL OUTBYT
MOV UOl,RO
MOV #26.,Rl

CALL OUTBYT
DEC Rl
BNE . OUTPUT
MOV U5,RO
CALL OUTBYT
MOV U2,RO
CALL OUTBYT
EXIT$S
TSTB $XCSR
BPL OUTBYT
MOV RO,$XBUF
INC RO
RETURN
.END START

START WITH A CARRIAGE RETURN
PRINT IT
THEN A LINE FEED
PRINT IT
FIRST LETTER IS AN "A"
NUMBER OF LETTERS TO PRINT

PRINT CURRENT LETTER
ONE LESS TIME
AGAIN
ANOTHER CARRIAGE RETURN

ANOTHER LINE FEED

OUTPUT BUFFER READY?
; IF NOT WAIT

MOVE CHARACTER TO OUTPUT BUFFER
INITIALIZE NEXT LETTER

Once you have assembled TEST, you can build it with the following TKB
command sequence:

>TKB
TKB>TEST,TEST/-WI/MA=TEST
TKB>/
Enter Options:
TKB>COMMON=TTCOM:RW:l
TKB>//
>

For the LINK command, you can build TEST with the following command
sequence:

>LINK/TAS/MAP/SYS/NOWIDE/OPT TEST
Option? COMMON=TTCOM:RW:l
Option? (Bill
>

The COMMON option in this command sequence tells TKB that TEST intends
to access the device common TTCOM and that TEST will have read/write
access to it. It also directs TKB to reserve APR 1 for mapping the
common into TEST's virtual address space.

The TKB map that results from the command sequence above is shown in
Example 5-2, Part 4.

5-31

SHARED REGION CONCEPTS AND EXAMPLES

This map contains a global symbols section. TKB included it because
the /MA switch was applied to the memory allocation file at task-build
time. Note that the global symbols in this section, which were
defined in TTCOM, now have virtual addresses assigned to them. The
addresses assigned by TKB are the result of the APR 1. specification in
the COMMON= keyword during the task build.

It is important to remember that programs like TEST, which access the
I/O page, take complete control of the registers they reference.
Therefore, coding errors in such programs can disable the devices they
reference and can even make it impossible for the device drivers to
regain control of the device: If this happens, you must reboot the
system.

Example 5.-2, Part 4 Memory Allocation Map for TEST

TEST.TSK;l Memory allocation map TKB M40.10
1-DEC-82 17:03

Page 1

Partition name GEN
Identification 01
Task UIC [7,62]
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001274
Total address windows: 2.
Task image size 384. WORDS
Task address limits: 000000 001377
R-W disk blk limits: 000002 000003 000002 00002.

*** Root segment: TEST

R/W mem limits: 000000 001377 001400 00768.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001274 000100 00068.
001274 000100 00068 .. MAIN.

TTCOM :(RW,D,GBL,REL,OVR) 200000 000070 00056.
200000 000070 00056. TTCOM

Global symbols:

$RBUF 020062-R $RCSR 020060-R $XBUF 020066-R

*** Task builder statistics:

Total work file references: 243.
Work file reads: O.
Work file writes: o.
Size of core pool: 6666. WORDS (26. pages)
Size of work file: 768. WORDS (3. pages) .

Elapsed time:OO:00:03

5-32

TEST.OBJ;l

TTCOM.STB;l

$XCSR 020064-R

(

c

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

5.1.11 Example 5-3: Building and Linking to a Resident Library in
MACRO-ll

Resident libraries consist of sUbroutines that are shared by two or
more tasks. When such tasks reside in physical memory simultaneously,
resident libraries provide a considerable memory savings because the
subroutines within the library appear in memory only once.

The text in this section and the figures associated with it illustrate .
the development and use of a resident library, called LIB.

Example 5-3, Part 1 shows five FORTRAN-callable subroutines:

• An integer addition routine, AADD

• An integer subtraction routine, SUBB

• An integer multiplication routine, MULL

• An integer division routine, DIVV

• A register save and restore coroutine, SAVAL

These subroutines are contained in a single source file, LIB.MAC.
When assembled and built, they constitute an example of a resident
library. FORTRAN-callable routines were used in this example so that
the routines can be accessed by either FORTRAN or MACRO-II programs.

Example 5~3,_ Part I Source Listing for Resident Library LIB.MAC

.TITLE LIB

.IDENT /01/

.PSECT AADD,RO,I,GBL,REL,CON

i** FORTRAN CALLABLE SUBROUTINE TO ADD TWO INTEGERS

AADD: : CALL
MOV
MOV
ADD
MOV
RETURN

$SAVAL
@2(R5),RO
@4(R5),Rl
RO,Rl
Rl,@6(R5)

SAVE RO-R5
FIRST OPERAND
SECOND OPERAND
SUM THEM
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT SUBB,RO,I,GBL,REL,CON

i** FORTRAN CALLABLE SUBROUTINE TO SUBTRACT TWO INTEGERS

SUBB: : CALL
MOV
MOV
SUB
MOV
RETURN

.PSECT

$SAVAL
@2 (R5), RO
@4(R5) ,Rl
Rl,RO
RO,@6(R5)

SAVE RO-R5
FIRST OPERAND
SECOND OPERAND

, SUBTRACT SECOND FROM FIRST
STORE RESULT
RESTORE REGISTERS AND RETURN

MULL,RO,I,GBL,REL,CON

(continued on next page)

5-33

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 1 (Cont.) Source Listing for Resident Library LIB.MAC

;** FORTRAN CALLABLE SUBROUTINE TO MULTIPLY TWO INTEGERS

MULL: : CALL
MOV
MOV
MUL
MOV
RETURN

$SAVAL
@2(R5),RO
@4(R5),Rl
RO,Rl
Rl,@6(R5)

SAVE RO-R5
FIRST OPERAND
SECOND OPERAND
MULTIPLY
STORE RESULT
RESTORE REGISTERS AND RETURN

.PSECT DIVV,RO,I,GBL,REL,CON

;** FORTRAN CALLABLE SUBROUTINE TO DIVIDE TWO INTEGERS

DIW: : CALL
MOV
MOV
CLR
DIV
MOV
RETURN

$SAVAL
@2(R5),R3
@4 (R5) , R1
R2
R1,R2
R2,@6(R5)

SAVE REGS RO-R5
FIRST OPERAND
SECOND OPERAND
LOW ORDER 16 BITS

;' DIVIDE
; STORE RESULT
; RESTORE REGISTERS AND RETURN

.PSECT SAVAL,RO,I,GBL,REL,CON

; **ROUTINE TO SAVE REGIS'rERS

$SAVAL: :
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL
MOV
MOV
MOV
MOV
MOV
MOV
RETURN
• END

R4,-(SP)
R3,-(SP)
R2,-(SP)
R1,-(SP)
RO,-(SP)
12(SP)'-(SP)
R5,14(SP)
@(SP)+
(SP)+,RO
(SP)+,R1
(SP)+,R2
(SP)+,R3
(SP)+,R4
(SP)+,R5

;SAVE R4
;SAVE R3
;SAVE R2
;SAVE R1
;SAVE RO
;COPY RETURN
;SAVE R5
;CALL THE CALLER
;RESTORE RO
;RESTORE R1
;RESTORE R2
;RESTORE R3
;RESTORE R4
;RESTORE R5

Once you have assembled LIB, you can build it with the following TKB
command sequence:

TKB>LIB/PI/-HD/LI,LIB/-WI,LIB=LIB
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=LIB:O:200
TKB>//
>

Or, for LINK, you can use the following command sequence:

>LINK/TAS/CODE:PIC/NOHEAD/SHARE:LIB/MAP/NOWIDE/SYM/OPT LIB
Option? STACK=O
Option? PAR=LIB:O:200
Option? (Bill
>

(continued on next page)

5-34

(

(

(

(

(

(

c

SHARED REGION CONCEPTS AND EXAMPLES

The TKB command sequence just shown instructs TKB to build a
position-independent (/PI), headerless (/-HD) library image named
LIB.TSK. It instructs TKB to create a map file LIB.MAP and to output
an SO-column 'listing (j -WI) to the line printer. It also specifies
that TKB is to create a symbol definition file, LIB.STB. TKB creates
all three files -- LIB.TSK, LIB.MAP, and LIB.STB -- on device SY:
under the UFO that corresponds to the terminal UIC. The /LI and /PI
switches used together cause TKB to name the program section LIB,
which is the root segment of the library. LIB becomes the only named
program section in the library.

The LINK command sequence takes the name of the input file (LIB) as
the default name for the task file, the map file, and the symbol
definition file. The qualifiers in the LINK command have the
following functions: the /CODE:PIC qualifier specifies a relocatable
library; the /NOHEAD qualifier is required for building a library or
common; the /SHARE:LIB qualifier specifies that a library be built;
the /MAP qualifier requests a map, uses the input file name for the
default name, and outputs the map file to the line printer by default;
the /NOWIDE qualifier requests an SO-column listing; the /SYM
qualifier requests a symbol definition file; and the /OPT qualifier
requests a prompt for options.

If you used the command sequence above without the /LI switch or
/SHAREABLE:LIBRARY qualifier, TKB would create a common by default.

The STACK=O option
library's image.

suppresses the
The PAR option

rtition of

stack area within the resident
TKB that the resident library

will reside that of the
libr ...
200(octal)
qualifiers,
11, and 12,

is
(For more information on switches,
used in this example, refer to Chapters 10,

Example 5-3, Part 2 shows the TKB map that results from the command
sequence above.

Note in the global symbols section of the map in Example 5-3, Part 2
that TKB has assigned offsets to the symbols for each library
function. When the task that links to this library is built, TKB will
assign virtual addresses to these symbols.

The program MAIN in Example 5-3, Part 3 exercises the routines in the
resident library LIB.TSK. When you assemble and build it, MAIN will
call upon the library routines to add, subtract, multiply, and divide
the integers contained in the labels OPI and OP2 within the program.
MAIN will print the results of each operation to device TI:.

Example 5-3, Part 2 Task Builder Map for LIB.TSK

LIB.TSK;l Memory allocation map TKB M40.l0
ll-DEC-S2l3:50

Partition name LIB
Identification 01
Task UIC [7,62]
Task Attributes: -HD,PI
Total address windows: 1.
Task image size 64. words
Task address limits: 000000 000163
R-W disk blk limits: 000002 000002 000001 00001.

Page 1

(continued on next page)

5-35

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 2 (Cont.) .Task Builder Map for LIB.TSK

*** Root segment: LIB

R/W mem limits: 000000 000163 000164 00116.
Disk blk limits: 000002 000002 000001 00001.

Memory allocation synopsis:

Section

• BLK.:(RW,I,LCL,REL,CON) 000000 000000 00000.
AADD : (RO,I,GBL,REL,CON) 000000 000024 00020.

000000 000024 00020.
DIVV : (RO,I,GBL,REL,CON) 000024 000026 00022.

000024 000026 00022.
~ULL : (RO,I,GBL,REL,CON) 000052 000024- 00020.

000052 000024- 00020.
SAVAL : (RO,I,GBL,REL,CON) 000076 000042 00034.

000076 000042 00034.
SUBB : (RO,I,GBL,REL,CON) 0001.40 000024 00020.

000140 000024 00020.

Global symbols:

Title

LIB

LIB

LIB

LIB

LIB

AADD
DIVV

OOOOOO-R t-IULL
P00024-R

000052-R SUBB 000140-R

*** Task builder statistics:

Total work file references: 368.
Work file reads: O.
Work file writes: O.
Size of core pool: 7086. words (27. pages)
Size of work file: 768. words (3. pages)

Elapsed time:00:00:03

Ident

01

01

01

01

01

Example 5-3, Part 3 Source Listing for MAIN.MAC

;+

.TITLE MAIN

.IDENT /01/

;**MAIN - CALLING ROUTINE TO EXERCISE THE ARITHMETIC ROUTINES
FOUND IN THE RESIDENT LIBRARY, LIB.TSK.

;-

• MCALL QIOW$S,EXIT$S

OP1: • WORD 1 OPERAND 1
OP2: • WORD 1 OPERAND 2
ANS: .BLKW 1 RESULT
OUT: .BLKW 100. FORMAT MESSAGE

FORMAT: .ASCIZ /THE ANSWER = %D./
• EVEN
.ENABL LSB

File

LIB.OBJ;2

LIB.OBJ;2

LIB.OBJ;2

LIB.OBJ;2

LIB.OBJ;2

(continued on next page)

5-36

(

(

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 3 (Cont.) Source Listing for MAIN.MAC

START:
MOV #ANS,-(SP) TO CONTAIN RESULT
MOV #OP2,-(SP) OPERAND 2
MOV #OP1,-(SP) OPERAND 1
MOV #3,-(SP) PASSING 3 ARGUMENTS
MOV SP,R5 ADDRESS OF ARGUMENT BLOCK
CALL AADD ADD TWO OPERANDS
CALL PRINT PRINT RESULTS
MOV SP,R5 ADDRESS OF ARGUMENT BLOCK
CALL SUBB SUBTRACT SUBROUTINE
CALL PRINT PRINT RESULTS
MOV SP,R5 ADDRESS OF ARGUMENT BLOCK
CALL MULL MULTIPLY SUBROUTINE
CALL PRINT PRINT RESULTS
MOV SP,R5 ADDRESS OF ARGUMENT BLOCK
CALL DIVV DIVIDE SUBROUTINE
CALL PRINT PRINT RESULTS
EXIT$S

_i+
.** PRINT - PRINT RESULT OF OPERATION. I

i-

PRINT: MOV
MOV
MOV
CALL
QIOW$S
RETURN
. END

#OUT,RO ADDRESS OF SCRATCH AREA
#FORMAT,Rl FORMAT SPECIFICATION
#ANS,R2 ARGUMENT TO CONVERT
$EDMSG i FORMAT MESSAGE
#IO.WVB,#5,#l",,<#OUT,Rl,#40>

i RETURN FROM SUBROUTINE
START

Once you have assembled MAIN, you can use the following TKB command
sequence to build it:

TKB>MAIN,MAIN/MA/-WI/-SP=MAIN
TKB>/
Enter Options:
TKB>RESLIB=LIB/RO:3
TKB>//
>

Or, you can use the following LINK command sequence to build it:

>LINK/TAS/MAP:MAIN/SYS/NOWIDE/NOPRINT/OPT MAIN
Option? RESLIB=LIB/RO:3
Option? ffiIT)
>

These command sequences instruct TKB to build a task file named
MAIN.TSK on device SY: under the UFD that corresponds to the terminal
UIC. It also specifies that TKB is to create a map file MAIN.MAP.
The /MA switch or /SYS qualifier requests an extended map format. In
the TKB example, /MA was applied to the device specification so that
TKB would include in the map for the task the symbols within the
library LIB. In DCL, the /SYS qualifier includes the symbols within
the library into the map. The negated form of the wide listing switch
(/-WI) was appended to the map specification to obtain an BO-column
map format. In DCL, the /NOWIDE qualifier specified an BO-column map
format. In this example, /-SP and /NOPRINT prevent TKB from spooling
a map listing to the line printer.

The RESLIB option specifies that the task MAIN is to access the
library LIB and that it requires read-only access to LIB. TKB uses
APR3 to map the library.

5-37

SHARED REGION CONCEPTS AND EXAMPLES

The TKB map that results from this command sequence is shown in
Example 5-3, Part 4.

Example 5-3, Part 4 Task Builder Map for MAIN.TSK

MAIN.TSK;l Memory allocation map TKB M40.l0
ll-DEC-82 1~:5l

Partition name : GEN
Identification : 01
Task UIC [7,62J
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001634
Total address windows: 2.
Task image size 1152. WORDS
Task address limits: 000000 004327
R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MAIN

R/W mem limits: 000000 004327 004330 02264.
Disk blk limits: 000002 000006 000005 00005.

Memory allocation synopsis:

Section

. BLK.:(RW,I,LCL,REL,CON) 001274 002620 01424.

001274 000530 00344.
002024 001050 00552.
003074 000216 00142.
003312 000074 00060.
003406 000250 00168.
003656 000126 00086.
004004 000110 00072 .

AADD : (RO,I,GBL,REL,CON) 060000 000024 00020.
060000 000024 00020.

DIVV : (RO,I,GBL,REL,CON) 060024 000026 00022.
060024 000026 00022.

MULL : (RO,I,GBL,REL,CON) 060052 000024 00020.
060052 000024 00020.

SAVAL : (RO,I,GBL,REL,CON) 060076 000042 00034.
060076 000042 00034.

SUBB : (RO,I,GBL,REL,CON) 060140 000024 00020.
060140 000024 00020.

$$RESL:(RO,I,LCL,REL,CON) 004114 000212 00138.
004114 000024 00020.
004140 000066 00054.
004226 000100 00064.

Global symbols:

Title

MAIN
EDTMG
CBTA
CATB
EDDAT
CDDMG
C5TA

LIB

LIB

LIB

LIB

LIB

SAVRG
ARITH
DARITH

Page 1

Ident

01
15
04.3
03
03
00
02

01

01

01

01

01

04
03.04
0007

File

MAIN.OBJ;l
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034

LIB.STB;17

LIB.STB;17

LIB.STB;17

LIB.STB;17

LIB.STB;17

SYSLIB.OLB;1034
SYSLIB.OLB;1034
SYSLIB.OLB;1034

AADD 060000-R $CBDSG 003110-R $CDTB 0033l2-R $EDMSG 002l22-R
DIVV 060024-R $CBOMG 003116-R $COTB 003320-R $MUL 004l40-R
IO.WVB 011000 $CBOSG 003l24-R $C5TA 004004-R $SAVRG 004114-R
MULL 060052-R $CBTA 003l54-R $DAT 003452-R $TIM 003532-R
SUBB 060l40-R $CBTMG 003l32-R $DDIV 004264-R
$CBDAT 003074-R $CBVER 003116-R $DIV 004l70-R
$CBDMG 003l02-R $CDDMG 003656-R $DMUL 004226-R

(continued on next page)

5-38

(

c

(

(

(

l

c

(

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-3, Part 4 (Cont.) Task Builder Map for MAIN.TSK

*** Task builder statistics:

Total work file references: 2218.
Work file reads: O.
Work file writes: O.
Size of core pool: 2066. words (8. pages)
Si~e of work file: 1024. words (4. pages)

Elapsed time:00:00:19

This map contains a global symbols section. Note that the symbols
within the library .now have virtual addresses assigned to them and
that these addresses begin at 60000(octal), the virtual base address
of APR 3. The Task Builder's allocation of virtual address space for
MAIN.TSK is represented diagrammatically in Figure 5-10.

APR 7-

APR 6-

APR 5-

APR 4-

VI RTUAL 60000 APR 3---:-... } WINDOW 1 REGION 1

APR 2-

: .. :.:::':'.::::: :
APR 1-

MAIN. TSK } WINDOW 0 REGION 0

VIRTUAL 0 APR 0-

ZK-426-81

Figure 5-10 Allocation of Virtual Address Space for MAIN.TSK

The library LIB is po·sition independent and can therefore be mapped
anywhere in the referencing task's virtual address space. APR 3 was
used in this example to contrast this mapping arrangement with the
mapping of MACCOM in the virtual address space of task MCOMl in
Example 5-1 (Section 5.1.7). If the optional APR parameter in the
RESLIB option above had been left blank, TKB would have allocated the
highest available APR to map the library.

5.1.11.1 Resolving Program Section Names in a Shared Region - As
described in earlier sections of this chapter, program section names
within position-independent shared regions must normally be unique
with respect to program section names within tasks that reference
them. When a shared region is a position-independent resident common
and you explicitly declare the program section names within it,
avoiding program section name conflicts is an easy matter. However,
when a shared region is a position-independent resident library that

5-39

SHARED REGION CONCEPTS AND EXAMPLES

contains calls to routines within an object module library (SYSLIB,
for example), conflicts may develop that are not apparent to you. The
problem arises when the position-independent resident library and one
or more tasks that link to it contain calls to separate routines
residing within the same program section of an object module library.

When TKB resolves a call from within a module that it is processing to
a routine within an object module library, it places the routine from
the library into the image it is building. It also enters into its
internal table the name of the program section in the object module
library within which the routine resides. If a position-independent
resident library contains a call to a routine within a given program
section of SYSLIB, for example, and then subsequently a task that
links to the resident library contains a call to a different routine
within the same program section of SYSLIB, both the resident library
and the referencing task will contain the program section name. When
you build the referencing task, the library's .STB file will contain
the program section name and a program section conflict will develop.
(Refer to Section 5.1.6 for additional information on the sequence in
which TKB processes tasks and the potential program section name
conflicts that can result.)

This situation and one possible solution to it can be illustrated with
Example 5-3. When this example was first created, only the arithmetic
routines were included in the source file of the resident library
(LIB.MAC in Example 5-3, Part 1). The system library coroutine
($SAVAL) was resolved from SYSLIB. Because the first instruction of
each arithmetic routine called $SAVAL, TKB included a copy of it in
the resident library's image at task-build time. This turned out to
be unsatisfactory because of a call to the SYSLIB routine $EDMSG (edit
message) within the program MAIN that links to the resident library.
Both routines ($SAVAL and $EDMSG) reside within the unnamed or blank
program section (. BLK.) within SYSLIB. Therefore, a program section
name conflict developed when MAIN was built.

To circumvent this problem, the source code for $SAVAL was included in
the source file for the resident library under the explicitly declared
program section name SAVAL.

Another solution would have been
absolute. In this case, TKB would
names from the resident library into
library.

to build the resident library
not have included program section
the .STB file for the resident

It is important to note that the above program section name conflict
develops only when two different routines residing within the same
program section of an object module library are involved. It presents
no problem when a resident library and a task that links to it contain
a call to the same routine in an object module library. In that case,
TKB copies the routine and the program section name in which it
resides into the resident library when the library is built. Then,
when the task that calls the same routine is built, TKB resolves the
reference to the routine in the resident library instead of in the
object module library.

5.1.12 Example 5-4: Building a Task That Creates a Dynamic Region

In all the examples of tasks shown thus far in this chapter, TKB has
automatically constructed and placed in the header of the task all of
the window blocks necessary to map all of the regions of the task's
image. The INSTALL processor has been responsible for initializing

5-40

(~

c

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

the window blocks when the task was installed. In all the examples,
this has been possible because both TKB and the INSTALL processor have
had all the information concerning the regions available to them.

When a task creates regions while it is running (dynamic regions), the
information concerning the regions is not available to either the Task
Builder or INSTALL. Therefore, when TKB builds such a task, it does
not automatically create window blocks for the dynamic regions. It
creates only the'window blocks necessary to map the task region (the
region containing the header and stack) and any shared regions that
the task references.

Dynamic regions are created and mapped with Executive directives that
are imbedded in the task's code. When you build a task that creates
dynamic regions, you must explicitly specify to TKB how many window
blocks (in excess of those created by TKB for the task region ,and any
shared regions) it is to place in the task's header. The Executive
will initialize these window blocks when it processes the region and
mapping directives. In all includ b

ion and shared r

The text in the remainder of this section and the figures associated
with it illustrate the development of a task that creates dynamic
regions. Example 5-4 shows a task (DYNAMIC. MAC) that creates a 128-
word dynamic region. This task simply creates an unnamed region, maps
to it, and fills it with an ascending sequence of numbers beginning at
the region's base and moving upwards. When the region is full,
DYNAMIC detaches from it and prints the following message on your
terminal:

DYNAMIC IS NOW EXITING

The region is automatically deleted on detach.

All of the Executive directives used by
DTRG$S, EXIT$S, CRRG$S, CRAW$S, QIOW$S,
manipulate the region are described in the
Reference Manual. These directives are
systems.

DYNAMIC (RDBBK$, WDBBK$,
and QIOW$C) to create and
RSX-IIM/M-PLUS Executive
SYSGEN options on RSX-lIM

RDB:

Example 5-4, Part 1 Source Listing for DYNAMIC.MAC

.TITLE

.IDENT

. MCALL

. MCALL

.NLIST

REGION
WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6

DYNAMIC
/VOI/
RDBBK$,WDBBK$, DTRG$S, EXIT$S,CRRG$S,CRAW$S
QIOW$C,QIOW$S

BEX

DESCRIPTOR BLOCK
SIZE OF REGION IN 32 DECIMAL WORD BLOCKS
REGION NAME

" II

NAME OF SYSTEM CONTROLLED PARTITION IN
WHICH REGION WILL BE CREATED
STATUS WORD
PROTECTION WORD

RDBBK$ 128."GEN,<RS.MDL!RS.ATT!RS.DEL!RS.RED!RS.WRT>,170017

WINDOW DESCRIPTOR BLOCK
WORD 0 APR TO BE USED TO MAP REGION

(continued on next page)

5-41

WDB:
MES1:

ERR1:

ERR2:

ERR3:

START:

20$:

,
1$:

2$:

3$:

6$:

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 1 (Cont.) Source Listing for DYNAMIC.MAC

WORD 1
WORD 2
WORD 3
WORD 4
WORD 5

WDBBK$
.ASCIZ
S1- = •
. ASCII
SIZl =
.ASCII
SIZ2 =
.ASCII
SIZ3 =
. EVEN

SIZE OF WINDOW IN 32-WORD BLOCKS
REGION ID
OFFSET INTO REGION TO START MAPPING
LENGTH IN 32-WORD BLOCKS TO MAP
STATUS WORD

7,128.,0,O"WS.MAP!WS.WRT>
/DYNAMIC IS NOW EXITING/

- MESl
/CREATE REGION FAILED/

. - ERR1
/CREATE ADDRESS WINDOW FAILEO/

. - ERR2
/DETACH REGION FAILED/
.- ERR3

. PAGE

.ENABL LSB

CRRG$S
BCS
MOV
CRAW$S
BCS
MOV
MOV
.REPT
ASL
. ENDR
MOV
MOV
INC
DEC
BGT
DTRG$S
BCS
QIOW$C
EXIT$S

ERROR

MOV
MOV
BR
MOV
MOV
BR
MOV
MOV
QIOW$S
EXIT$S
.END

#RDB : CREATE A 128 WORD UNNAMED REGION
1$: FAILED TO CREATE REGION
RDB+R.GID,WDB+W.NRID : COPY REGION ID INTO WINDOW BLOCK
#WDB CREATE ADDR WINDOW AND MAP
2$ FAILED TO CREATE ADDR WINDOW
WDB+W.NBAS,RO BASE ADDR OF CREATED REGION
WDB+\q.NSIZ,R2 NUMBER OF 32. WORDS IN REGION
5 MULTIPLY
R2 BY

32 .
#1,Rl INITIAL VALUE TO PLACE IN REGION
El,(RO)+ MOYE VALUE INTO REGION
Rl NEXT VALUE TO PLACE IN REGION
R2 ONE LESS WORD LEFT
20$ TO FILL IN
#RDB: DETACH AND DELETE REGION
3$: DETACH FAILED
IO.WVB,5,1",,<MES1,S1,40>

ROUTINES

#ERR1,RO CREATE Fl>.ILEO
#SIZ1,Rl SIZE OF MESSAGE
6$ WRITE MESSAGE
#ERR2,RO CREATE ADDRESS WINDOW FAILED
#SIZ2,Rl SIZE OF MESSAGE
6$
#ERR3',RO DETACH FAILED
#SIZ1,R1 : SIZE OF MESSAGE
#IO.WVB,#5,#1",,<RO,Rl,#40>

START

Once you have assembled DYNAMIC, you can build it with the following
TKB command sequence:

TKB>DYNAMIC,DYNAMIC/-WI/-SP=DYNAMIC
TKB>/
Enter Options:
TKB>WNDWS=1
TKB>//
>

5-42

(

(

(

l

(

c

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

Or, you may use the following LINK command sequence:

>LINK/TAS/MAP:DYNAMIC/NOWIDE/NOPRINT/OPT DYNAMIC
Option? WNDWS=l
Option? OOJ
>

This command sequence directs TKB to create a task image named
DYNAMIC.TSK and an aO-column (I-WI; or INOWIDE in DCL) map file named
DYNAMIC.MAP on device SY: under the terminal UIC. Because I-sp is
attached to the map file in the TKB command line, and because INOPRINT
is specified in the DCL command line, TKB does not spool the file to
the line printer.

Under options, the WNDWS option directs TKB to create one window block
over and above that required to map the task region. Note that one
window block must be created for each region the task expects to be
mapped to simultaneously.

The map that results from this command sequence is shown in Example
5-4, Part 2.

Note that creating dynamic regions always involves the assumption that
there will be enough room in the partition named in the task's region
descriptor block to create the region when the task is run. In this
example, if DYNAMIC were to be run in a system whose partition GEN was
not large enough to accommodate the region it creates, the CREATE
REGION directive would fail.

Example 5-4, Part 2 Task Builder Map for DYNAMIC.TSK

DYNAMIC.TSK;l Memory allocation map TKB M40.10
Il-DEC-82 16:05

Partition name
Identification
Task UIC
Stack limits:
PRG xfr address:

GEN
VOl
[7,62J
000274 001273 001000 00512.
001470

Total address windows: 2.
Task image size 512. WORDS
Task address limits: 000000 001753
R-W disk blk limits: 000002 000003 000002 00002.

*** Root segment: DYNAMI

R/W mem limits: 000000 001753 001754 01004.
Disk blk limits: 000002 000003 000002 00002.

Memory allocation synopsis:

Page 1

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001274 000430 00280.
001274 000430 00280. DYNAMI VOl

$DPB$$:(RW,I,LCL,REL,CON) 001724 000030 00024.
001724 00003000024. DYNAMI VOl

DYNAMIC.OBJ;l

DYNAMIC.OBJ;l

(continued on next page)

5-43

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-4, Part 2 (Cont.) Task Builder Map for DYNAMIC.TSK

*** Task builder statistics:

Total work file references: 549.
Work file reads: O.
Work file writes: o.
Size of core pool: 7086. words (27. pages)
Size of work file: 768. words (3. pages)

Elapsed time:00:00:06

5.2 CLUSTER LIBRARIES

(

The term "cluster libraries" refers to both a function and a structure
created by the Task Builder (TKB) that allow a task to dynamically map
memory-resident shared regions at run time. Cluster libraries permit
a task to use, for example, a F77CLS library, an FMS-ll library, and
an FCS-ll library, all mapped through the same task address window.
The run-time routines put into the task by the Task Builder remap the C-
library regions so that, instead of occupying 48K bytes of virtual
address space, they sh&re 16K bytes of virtual address space.

One task address window (window 1) maps the libraries into the same
span of virtual address space (48Kb to 64Kb). TKB maps your task from
virtual 0 upward.

TKB implements the cluster library function in two parts. The first
part, revectoring of interlibrary calls, is independent of the actual
remap mechanism but is required for remapping to work. The second
part executes the required MAP $ directives to map the appropriate
library.

The following examples use the library and task structure shown in
Figure 5-11. Note that in the following examples, the FMS-ll/RSX VI. 0
and FORTRAN-77 software products are rate license and
are not included with the or system. Cluster
library support may be used 1 er versions, and
operates in a fashion similar to the FCS-il example. Also, the
particular FCSRES used below is generated by SYSGEN. It consists of
two PLAS overlays and a null root.

FORTRAN OTS LIBRARY FMS-11 LIBRARY FCS-11 LIBRARY
F77CLS FMSCLS FCSRES

I I

USER
TASK

Figure 5-11 Example Library and Task Structure

5-44

VIRTUAL
ADDRESS

64KB

48KB

. ZK-492-81

(

c

(

(~ .

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1 Building the Libraries

You must fOllow several rules when designing and building shareable
clustered libraries. The rules are summarized next and discussed in
detail. following the summary.

5.2.1.1 Summary of Rules for Building the Libraries -

• All libraries but the first require resident overlays.

• User task vectors indirectly
references.

resolve all interlibrary

• Revectored entry point symbols must not appear in the
"upstream" .STB file.

• A called library procedure must not require parameters on the
stack.

• All the libraries must be PIC or built for the same address.

• Trap or asynchronous entry into a library is not permitted.

The rules are discussed in detail as follows.

5.2.1.2 Rule 1: All Libraries but the First Require Resident
Overlays - The first library is the first named library in

the CLSTR option line. To obtain the required run-time overlay data
structures in your task, you must define all the libraries except
possibly the first by using memory resident overlays. Although it can
be an overlaid library, the first library need not be and can be a
single-segment structure. If the first library is 'overlaid with a
null root, the overlay run-time system cannot distinguish between the
first library and the other libraries in the cluster (those named in
the CLSTR option after the first). Therefore, if the first library
called is not the first library named in the CLSTR option, severe
performance degradation may be noticed because of excessive mapping
and unmapping of the libraries. Therefore, to avoid performance
degradation if the first library is overlaid with a null root, make
certain that the first library called is the first library named in
the CLSTR option.

All the libraries, except the first, must have a null root if
overlaid. You can achieve this in cases where a library is not
normally overlaid by creating an unbalanced overlay structure with a
null module. For example, the following ODL specification for FMSCLS
and a null module would suffice:

NULL:
FMSLIB:

.NAME FMSCLS

.ROOT FMSCLS-*(NULL,FMSLIB)

.FCTR LB:[l,l]SYSLIB/LB:NULL

.FCTR SY:FMSLIB-LB:[l,l]FDVLIB/LB

.END

5-45

;NULL MODULE
;FMS-ll ROUTINES

SHARED REGION CONCEPTS AND EXAMPLES

The. above ODL specification creates an unbalanced tree in the form
shown in Figure 5-12:

FMS-11 ROUTINES

I NULL

I
ZK-427-81

Figure 5-12 Example of an Unbalanced Tree with Null Segment

The effect, after you build your task, is an overlay structure that is
represented in the Figure 5-13.

TKB provides the
overlay segment
library.

FORTRAN OTS

cross-library linkage that it creates from the
data contained in the individual .STB files of each

FMS-11 ROUTINES FCS-11 ROUTINES

NULL NULL

USER TASK

ZK-428-81

Figure 5-13 Example of an Overlay Cluster Library Structure

5.2.1.3 Rule 2: User Task Vectors Indirectly Resolve All
Interlibrary References - Figure 5-14 illustrates rule 2 and

is a part of the example in Figure 5-13. In Figure 5-14, if the
FORTRAN OTS library references an FCS-ll entry point .OPEN, the
transfer of control from the FORTRAN OTS library to the FCS-ll library
must be resolved by a jump vector in your task. Or, to state it in
another way, the CALL instruction in the FORTRAN OTS library must not
reference directly the target address (the address of .OPEN) in the
FCS-ll library. The system library contains the modules that perform
the indirect transfer for FCS-ll based libraries and user tasks. If
you want to duplicate the indirect referencing mechanism for your own
purposes, Figure 5-14 and the following text describe the control flow
for FCS-ll.

5-46

(

(

(

(

c

c

(

SHARED REGION CONCEPTS AND EXAMPLES

FORTRAN OTS

FCSVEC

.OPEN::

Sample code from FCSVEC module:

.OPEN:: MOV

DISPAT:

BR

MOV
MOV
ADD
MOV
MOV
RETURN

#30,-(SP)

DISPAT

RO,-(SP)
@#.FSRPT,RO
A.JUMP(RO),2(SP)
(SP)+,RO
@(SP)+,-(SP)

FCS-11 LIBRARY

.OPEN::

; STACK OFFSET INTO USER TASK
; JUMP TABLE
; JOIN COMMON DISPATCH

; SAVE REGISTER
; GET FCS-11 POINTER
; ADD VECTOR BASE TO OFFSET
; RESTORE REGISTER
; PICK UP ADDRESS OF TARGET
; AND TRANSFER TO TARGET

ZK-429-81

Figure 5-14 Example of a Vectored Call Between Libraries

In this example, the module FCSVEC defines the .OPEN entry point. The
code at that location stacks an offset or "entry number" and joins
common dispatch code. The dispatch code, using the low, core FCS-ll
impure pointer called .FSRPT, obtains the address of the FCS-ll impure
data area. At offset A.JUMP in that area is the address of a vector
of FCS-ll entry points. A return is executed, which transfers control
to the routine whose address is now on top of the stack. If the
target routine is an overlaid library, the run-time support ($AUTO)
loads the appropriate overlay and relays the transfer of control.

You may use this vectoring mechanism to isolate the linkages between
two libraries whether or not you use them in the cluster library
scheme. You can replace either the FORTRAN OTS or the FCS-ll library
in your system without relinking the other library. However, you must
relink your task when you replace either of these libraries.

5.2.1.4 Rule 3: Revectored Entry Point Symbols Must Not Appear in
the ·Upstream" .STB File - This rule means that the

GBLXCL=symbol option must appear for each revectored symbol, as in
FORTRAN OTS in this example. In the brief example above, the
following line must appear in the build file for the FORTRAN OTS
library:

GBLXCL=.OPEN

5-47

SHARED REGION CONCEPTS AND EXAMPLES

5.2.1.5 Rule 4: A Called Library Procedure Must Not Require
Parameters on the Stack - This rule applies to routines

contained in libraries other than the "default" library, as (
represented by the FMSCLS and FCSRES libraries of the above example.
In addition, the called procedures must use the JSR PC and RTS PC call
and return convention. The flow of control for a call into a cluster
library member other than the default proceeds as follows.

Only your task can call and reference the FCSRES library routine
.OPEN. All references from other libraries are revectored as
described above. TKB resolves all such references to an appropriate
task resident autoload vector. As in the example, when the FORTRAN
OTS library calls .OPEN, the code revectors the call through your task
and hence to the autoload vector. At this point, the TKB run-time
routine $AUTO gets control and searches the overlay segment descriptor
tree, noting which segments are resident and which must be loaded or
mapped to access the target routine.

Next, $AUTO notes that a member of a library cluster must be unmapped
to comply with the map adjustments required to access the target
routine. The reference to the unmapped library and the segment within
the. library is placed on-the stack, the target library is mapped, and
the target routine is accessed through a JSR PC instruction. That
target .routine must not attempt to access parameters by offsets from
the stack pointer (Sp) because of the presence of $AUTO saved
information. Upon return from the target by an RTS PC instruction,
the target library is unmapped, and the previous library remapped
using the saved segment .and library data on the stack. Finally, $AUTO
executes an RTS PC instruction to return to the caller.

Note that if your task contains a mix of cluster libraries and
noncluster libraries, the call format rule applies only to control
transfers to cluster library routines. Other noncluster libraries
that you create may use any appropriate call and parameter passing
convention.

5.2.1.6 Rule 5: All the Libraries Must be PIC or Built for the Same
Address - TKB must be able to place each library of the

cluster at the same virtual address. To do this, the libraries must
be built as position independent or be built to the exact address
specified in the CLSTR command described below.

5.2.1.7 Rule 6: Trap or Asynchronous Entry Into a Library is not
Permitted - A routine built as part of a library that is to

be used in a cluster may not be specified as the service routine for a
synchronous trap, or for asynchronous entry as a result of I/O
completion or Executive service. This restriction is required because
at the moment of the trap or fault, the appropriate library may not be
the one that is mapped. For example, if the default library contains
the service routine to display an error message upon odd address trap
(the odd address fault occurs within one of the other libraries of the
cluster), the routine will not be available to service the trap. It
will have been unmapped by the run-time routines to map the called
library.

I/O completion and fault service vectors and routines must be placed
in libraries or task segments that are resident at all times that the
fault, trap, or I/O completion may occur.

5-48

(

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

5.2.2 Building Your Task

After building the individual libraries and placing the .TSK
files for all the libraries into the LB:[l,l] directory, you
your task. The TKB option line that you must use for your
the following syntax:

and .STB
may build
task has

CLSTR=library_l,library_2, ... library n:switch:apr

The first specification denotes the first or the default library,
which is the library to which the task maps when the task starts
up and remaps after any call to another library.

In an RSX-IIM or RSX-IIM-PLUS system, the total number of
libraries to which a task may map is seven. The number of the
component libraries in clusters is limited to a maximum of six.
A cluster must contain a minimum of two libraries. It is
possible to have two clusters of three libraries each or three
clusters of two libraries each; any combination of clusters and
libraries must equal at least two or a maximum of six. If six
libraries are used in clusters, the task may map to only one
other, separate library.

:switch:apr

5.2.3

The switch :RW or :RO indicates whether the cluster is read-only
or read-write for this particular task. The APR specification is
optional and indicates which APR is to be used as the starting
APR when mapping to cluster libraries. If not specified, TKB
assigns the highest available APRs and as many as required to map
the library.

Examples

The sample build files for F77CLS, FDVRES, and FCSRES, and for the
FMS-ll demonstration task FMSDEM are appended as an example of the
cluster library-build process.

5.2.3.1 F77CLS -- Build the Default Library for the FORTRAN-77 OTS
If you use TKB syntax, enter the following command sequence:

>TKB
TKB>F77CLS/-HD,F77CLS/CR/-SP/MA,F77CLS=F77RES
TKB>LB:[[1,1]]F770TS/LB
TKB>LB:[[l,l]]SYSLIB/LB:FCSVEC ; INCLUDE THE FCS JUMP VECTOR
TKB>/
Enter Options:
STACK=O
PAR=F77CLS:140000:40000

FORCE THE JUMP TABLE TO BE LOADED FROM THE SYSTEM
LIBRARY WHEN THE USER TASK IS BUILT

GBLINC=.FCSJT REFERENCE SYMBOL DEFINED IN
THE MODULE SYSLIB/LB:FCSJMP

PREVENT DEFINITIONS FOR FCS-II ENTRY POINTS FROM APPEARING
IN THE .STB FILE FOR THIS LIBRARY OR OTHER SYSTEM LIBRARY

5-49

SHARED REGION CONCEPTS AND EXAMPLES

GBLXCL=.ASLUN
GB:j:..XCL=.CLOSE
GBLXCL=.CSII
GBLXCL=.CSI2
GBLXCL=.DELET
GBLXCL=.DLFNB
GBLXCL=.ENTER
GBLXCL=.EXTND
GBLXCL=.FCTYP
GBLXCL=.FIND'
GBLXCL=.FINIT
GBLXCL=.FLUSH
GBLXCL=.GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.GETDIR
GBLXCL=.MARK
GBLXCL=.MRKDL
GBLXCL=.OPEN
GBLXCL=.OPFID
GBLXCL=.OPFNB
GBLXCL=.PARSE
GBLXCL=.POINT
GBLXCL=.POSIT
GBLXCL=.POSRC
GBLXCL=.PRINT
GBLXCL=.PRSDV
GBLXCL=.PRSFN
GBLXCL=.PUT
GBLXCL=.PUTSQ
GBLXCL=.REMOV
GBLXCL=. SAVIU
GBLXCL=.TRNCL
GBLXCL=.READ
GBLXCL=.WAIT
GBLXCL=.WRITE
//

If you use DCL syntax for the command and options shown, you must do
two things. First, create a command file that contains the options
and name it, for example, CLUSTR.CMD. The reason you must do this is
that DCL cannot contain all these options within its command buffer.
This command file can contain the options in the following example
sequence:

STACK=O 1 PAR=F77CLS:, 140000 :40000
GBLINC=.FCSJT
GBLXCL=.CSIl,.CSI2,.DLFNB,.FINIT,.GET,.GETSQ, .GTDID
GBLXCL=.MRKDL,.OPFNB,.'PARSE,.POINT,.POSRC,.PRINT
GBLXCL=.PUT, .PUTSQ, .SAVRl, • READ, .WAIT

Second, enter the following DCL command sequence:

>LINK/TAS:F77CLS/NOH/MAP:F77CLS/NOPRINT/SYS/CROSS/SYM:F77CLS/OPT -
->F77RES,LB: [l,l]F770TS/LIB,LB: [l,l]SYSLIB/INC:FCSVEC
Option? @CLUSTR.CMD
Option? OOJ
>

5-50

(

(

(

(

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

The GBLINC option as shown in the TKB and DCL examples forces TKB to
add a global reference entry in the library .STB file. This ensures
that TKB links certain modules required by the library, such as impure
data areas or root-only routines, without further user action. These
modules should be in the system library (LB:[l,l]SYSLIB.OLB) or in a
library always referenced by your task, so that this forced loading
mechanism is entirely invisible to you.

5.2.3.2 FDVRES -- Build an FMS-ll/RSX Vl.O Shareable Library - The
following is an example command file. You name it FDVRES.CMD. If you
use TKB syntax, you can use the following TKB command line:

>TKB @FDVRES

If you use DCL syntax, you can use the following LINK command line:

>LINK @FDVRES

TITLE OF THE EXAMPLE COMMAND FILE THAT BUILDS THE FORMS
MANAGEMENT PLAS-RESIDENT LIBRARY FOR USE WITH THE
TASK BUILDER CLSTR OPTION.

FDVRES.CMD

THE FOLLOWING CODE IS THE EXAMPLE TKB COMMAND FILE:
I

LB:[l, l]FDVRES/-HD/MM/SG,MP: [1, 34]FVRES/MA/-SP,LB: [1, 1] FDVRES=
SY:[l,24]FDVRESBLD/MP
STACK=O
PAR=FDVRES:140000:40000
TASK=FDVRES

; THE FOLLOWING LINE FORCES THE FCS JUMP TABLE TO BE INCLUDED IN THE
; SYMBOL TABLE FILE FOR THE FORMS MANAGEMENT LIBRARY.

GBLINC=.FCSJT

; THE FOLLOWING LINES FORCE LIBRARY ENTRY POINTS AND DEFINITIONS INTO
; THE TASK ROOT:

GBLREF=CBCUR,CBREV,CBTST,CB132, DVBLD, DVBLK, DV$DH W,DV$DWD
GBLREF=DVGRA, DVREV, DVUND,DATT1,D$ATT2,D$CLRC,DFID, DFXLN
GBLREF=D$LNCL,D$PICT,D$PLEN,D$RLEN,D$VATT,D$2ATT,DlALN,DlALP
GBLREF=DlARY,DlCOM,DlMIX,DlNUM,DlSCR,DlSNM,D2$DEC,D2$DIS
GBLREF=D2$FUL,D2$NEC,D2$REQ,D2$RTJ,D2$SPO,D2$TAB,D2$VRT,D2$ZFL
GBLREF=FCALL, FCANY,FCCLS, FCCSH, FCDAT, FCGET, FC$GS C,FC$LST
GBLREF=FCOPN, FCPAL,FCPSC, FCPUT,FCRAL, RCRTN,FCSHO ,FCSLN
GBLREF=FCSPF,FCSPN,FCTRM,FEARG,FEDLN,FEDNM,FEDSP,FEFCD
GBLREF=FEFCH,FEFLB,FEFLD,FEFNM,FEFRM,FEFSP,FEICH,FEIFN
GBLREF=FEIMP,FEINI,FEIOL,FEIOR,FELIN,FENOF,FENSC,FESTR
GBLREF=FEUTR,FEINC,FSSUC,FTATB,FTKPD,FTNTR,FTNXT,FTPRV
GBLREF=FTSBK,FTSFW,FTSNX,FTSPR,FTXBK,FTXFW,F$ASIZ,F$CHN
GBLREF=FFNC,FIMP,FLEN,FNAM,FNUM,FREQ,F$RSIZ,F$STS
GBLREF=FTRM,FVAL, ISALT, ISCLR,ISDEC,ISDSP,ISERR, ISHFM
GBLREF=ISHLP, ISINS, ISLST, ISMED,ISNMS, ISSCR, IS$SG N,I$ADVO
GBLREF=I$ALLC,I$BADR,I$BEND,I$BPTR,I$BSIZ,I$CFRM,I$CURC,I$CURP
GBLREF=I$DISP,I$DLN1,I$DLN2,I$FADR,I$FBLK,I$FCHN,I$FDES,I$FDST
GBLREF=I$FDS1,I$FDS2,I$FIXD,I$FMST,I$FOFF,I$FORM,I$FSIZ,I$FXDl
GBLREF=I$FXD2,I$HLEN,I$HLPF,I$ILEN,I$IMPA,I$LCOL,I$LINE,I$LLIN
GBLREF=I$LNCL,I$LPTR,I$LVID,I$NBYT,I$NDAT,I$NFLD,I$PATN,I$PBLN
GBLREF=I$RESP,I$ROFF,I$STAT,I$STKP,I$SVST,I$VATT,L$CLSZ,L$FDES
GBLREF=L$LNCL,L$RESP,$$FDVT
GBLREF=$FDV

5-51

SHARED REGION CONCEPTS AND EXAMPLES

THE FOLLOWING LINES PREVENT THE DEFINITIONS FOR FCS-II ENTRY POINTS
FROM APPEARING IN THE FORMS MANAGEMENT LIBRARY .STB FILE:

GBLXCL=.ASCPP
GBLXCL=.ASLUN
GBLXCL=.CLOSE
GBLXCL=.CTRL
GBLXCL=.DELET
GBLXCL=.DLFNB
GBLXCL=.ENTER
GBLXCL=.EXTND
GBLXCL=. FATAL .
GBLXCL=.FCTYP
GBLXCL=.FIND
GBLXCL=.FINIT
GBLXCL=.FLUSH
GBLXCL=.GET
GBLXCL=.GETSQ
GBLXCL=.GTDID
GBLXCL=.GTDIR
GBLXCL=.MARK
GBLXCL=.MBFCT
GBLXCL=.MRKDL
GBLXCL=.OPEN
GBLXCL=.OPFID
GBLXCL=.OPFNB
GBLXCL=.PARSE
GBLXCL=.POINT
GBLXCL=.POSIT
GBLXCL=.POSRC
GBLXCL=.PPASC
GBLXCL=.PPR50
GBLXCL=.PRINT
GBLXCL=.PRSDI
GBLXCL=.PRSOV
GBLXCL=.PRSFN
GBLXCL=.PUT
GBLXCL=.PUTSQ
GBLXCL=.RDFDR
GBLXCL=.RDFFP
GBLXCL=.RDFUI
GBLXCL=.REMOV
GBLXCL=.SAVRI
GBLXCL=.TRNCL
GBLXCL=.WRITE
//

5.2.3.3 FDVRESBLD.ODL -- Overlay Description for FMS-ll/RSX Vl.O
Cluster Library - The following example file is an Overlay

Description File named FDVRESBLD.ODL. If you use DCL syntax, you
enter it as'

>LINK/ .•• / ••• / •.• FDVRESBLD/OVER

If you use TKB syntax, you enter the command line as

>TKB outfile(s)=FDVRESBLD/MP

THE FOLLOWING LINE IS THE FILENAME OF THE .ODLFILE FOR THE
PLAS-RESIDENT FORMS MANAGEMENT LIBRARY:

FDVRESBLD-. ODL'

5-52

(

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

THE FOLLOWING LINES OF CODE ARE CONTAINED IN THE .ODL FILE FOR THE
PLAS-RESIDENT FORMS MANAGEMENT LIBRARY:

NULO:
FCSV:
MAIN:

. NAME

. ROOT

.FCTR

.FCTR

.FCTR

. END

FDVROT
FDVROT-*l(MAIN,NULO)
LB:[l,l]SYSLIBjLB:NULL
LB:[l,l]SYSLIBjLB:FCSVEC
LB: [l,l]FDVLIBjLB:FDV-LB: [l,l]FDVLIBjLB-FCSV

5.2.3.4 FCSRES Library Build - FCSRSIBLD.BLD is distributed with the
RSX-llM and RSX-IIM-PLUS distribution kits. Refer to the build
command and overlay description contained in the files FCSRSIBLD.CMD
and FCSRSIBLD.ODL, which can be generated by SYSGEN if you want.

5.2.3.5 F77TST.CMD -- File to Build the FMS-II/RSX VI.O FORDEM Test
Task - The following is an example build command file named

F77TST.CMD. If you use TKB syntax, enter the following command line:

>TKB @F77TST. CMD

If you use DCL syntax, enter the following command line:

>LINK @F77TST.CMD

;THE FOLLOWING IS THE CONTENT OF THE COMMAND FILE
FORDEMjFP,FORDEMjMAj-SP=FORDEM,HLLFOR
LB;[l,l]FDVLIBjLB
LB:[1,1]F770TSjLB
j
EXTSCT=$$FSR1:2000
CLSTR=F77CLS, FDVRES, FCSRES:RO
STACK=200
jj

5.2.4 Overlay Run-Time Support Requirements

The Task Builder uses the .STB files of the cluster libraries to
obtain the information needed to create the overlay data base. For
each PLAS overlaid cluster library TKB places autoload vectors,
segment descriptors, window descriptors, and a region descriptor in
the root of the task. This information comprises the overlay run-time
support for the cluster libraries. In Appendix B, Figure B-9 and the
accompanying text describe this information. Table 5-1 describes the
space needed for the overlay run-time system support that includes
cluster libraries. For a complete description of overlay run-time
routine sizes, see Section 4.5.

Using cluster libraries conserves virtual space and may require only
one window.

5-53

Module

SHARED REGION CONCEPTS AND EXAMPLES

Table 5-1
Comparison of Overlay Run-Time Module Sizes

Program
Section

Number
of Bytes
Oct/Dec Specific Use

One of the following modules is included in any overlaid task
that uses autoload and in any task that links to a PLAS overlaid
resident library.

AUTO

AUTOT

$$AUTO

$$AUTO
$$RTQ
$$RTR

122/82.

132/90.
32/26.
30/24.

All tasks that use autoload

All tasks with AST's
disabled during autoload

One of the following modules is included
conventional task. OVCTR or OVCTC is

in any overlaid
included in any

non-overlaid task (conventional or
to a PLAS overlaid resident library.

that links

OVCTL $$MRKS
$$RDSG
$$PDLS

OVCTR $$MRKS
$$RDSG
$$PDLS

OVCTC $$MRKS
$$RDSG
$$PDLS

76/62.
160/112.

2/2.

234/156.
332/218.
12/10.

254/172.
352/234.
120/80.

Disk overlays only

Disk and PLAS overlays with no
cluster libraries

Disk and PLAS overlays
with cluster libraries

The overlay data vector OVDAT is included in any overlaid task
and in any task that links to a PLAS overlaid resident library.

OVDAT $$OVDT
$$SGDO
$$SGD2
$$RTQ
$$RTR
$$RTS

24/20.
0/0.
2/2.
0/0.
0/0.
2/2.

Included in all tasks
that perform overlay
operations

(continued on next page)

5-54

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

Table 5-1 (Cont.)
Comparison of Overlay Run-Time Module Sizes

Module
Program
Section

Number
of Bytes
Oct/Dec Specific Use

The overlay error service routine ALERR is included whenever
OVDAT is included.

ALERR $$A.LER 24/20. Overlay error

Manual overlay control (LOAD) is used in place of any AUTO
routine. (See Section 4.2, Manual Load.)

LOAD $ $ LOAD
$$AUTO

252/170.
14/12.

Manual overlay control

5.3 TASK-BUILDING AN F4PRES, FORRES, OR FMSRES LIBRARY WITH OR
WITHOUT FCSRES

The following section describes how and why you may want to link an
application task to one or more languages, FMS, or a FCS resident
library. Also, this section describes trade-offs of memory, speed,
flexibility, and ease of use. For the sake of simplicity, the example
of a FORTRAN-lV-PLUS OTS resident library (F4PRES) is used in the rest
of this text to represent FORTRAN-lV-PLUS, FORTRAN-IV (FORRES), and
FMS (FMSRES) resident libraries.

it is used
memory, compared to having
frequently used tasks.

a permanent res
enough that it saves
OTS code in the task

In all cases, the application task need only be linked to properly
built resident libraries using the LIBR, COMMON, RESLIB, RESCOM, or
CLSTR options.

5.3.1 FCSRES -- The Types of FCS Resident Libraries

It is possible to build two kinds of FCS resident libraries. They are
described in the following sections.

5.3.1.1 Building a Memory-Resident Overlaid FCSRES - SYSGEN can
automatically generate a memory-resident overlaid FCS library that.
uses one APR of task address space. This FCSRES makes available all
of FCS (except little-used routines .CTRL, .PRSDI, and .PPR50)'
.CSIl,.CSI2, and many other system library routines. See
[1,20]FCSRSIBLD.BLD for a list of routines. When FCSRES is built from
memory, and when it is built from LB:[l,l]ANSLIB.OLB, it uses 6624
words (decimal), FCSRES uses one APR in either case because it is
composed of two memory-resident overlays and a null root segment.

5-55

SHARED REGION CONCEPTS AND EXAMPLES

SYSGEN Phase II and SYSGEN Phase III can link utility tasks to this
FCSRES, frequently improving task execution speed and virtual address
space, and lessening task image size. This feature, plus the fact
that no editing of a source file is required, makes the
memory-resident FCSRES easier to use than the non-memory-resident
FCSRES.

A memory-resident FCSRES requires memory-management support.

To task-build an application task to both the memory-resident FCSRES
and F4PRES, you must take special measures when building the F4PRES.
Such a resident library is said to have revectored FCS. Once the
F4PRES is built, application tasks may be linked to it with or without
linking to FCSRES as well. The TKB cluster library facility, using
the CLSTR option, may be used to task-build the application task to
two or more resident libraries at a savings in virtual address space.

5.3.1.2 Building a Non-Memory-Resid~nt FCSRES - You can manually
assemble and build a non-memory-resident FCSRES from
[200,200]FCSRES.MAC.

If you build the resident library using LB:[l,l]SYSLIB.OLB without
editing FCSRES.MAC, you can produce a 3744-word (decimal) FCSRES that
uses one APR.

If you build the resident library using LB:[l,l]ANSLIB.OLB, you must
edit FCSRES.MAC to remove enough FCS routines from FCSRES to bring it
below 4K words. If you use ANSLIB.OLB without editing FCSRES.MAC, TKB
builds a 4448-word (decimal) FCSRES that uses two APRs.

The FCSRES library built from an unedited FCSRES.MAC contains all of
FCS. Note that .CSII and .CSI2, used by FORTRAN-IV and
FORTRAN-lV-PLUS ASSIGN and OPEN statements, are not present in the
non-memory-resident FCSRES. The 1426 (decimal) bytes used by .CSIl
and .CSI2 will be present in your task's image if you use the ASSIGN
or OPEN statement, or they can be included in F4PRES.

If you want to link RSX utilities to a non-memory-resident FCSRES, you
must create and edit the TKB .CMD and .ODL files and task-build the
utilities manually.

(

(~

(

No memory-management support is required for a non-memory-resident C·
FCSRES.

5.3.1.3 Building F4PRES - Building an optimal F4PRES depends on the
specific F4P OTS routines that your task uses, their need for virtual
address space, and the available physical memory on your system.

You must decide which F4P OTS routines are used frequently enough by
your task to warrant their presence in F4PRES. Routines are included
or excluded by editing F4PRES.MAC.

The key factor is often the number of APRs used to map to the resident
libraries. For example, you may have an important privileged
application task that has only one APR available. In this case, if
you construct an F4PRES that uses two APRs and is clustered with
FCSRES, for a total of two APRs, it may be best to edit more routines
out of F4PRES to trim it to one APR.

5-56

(

(~

(

(

SHARED REGION CONCEPTS AND EXAMPLES

The key to" building an F4PRES usable with the memory-resident FCSRES
is that no FCS code is present in the F4PRES, but all subroutine calls
to FCS in the F4PRES are resolved when the F4PRES is built. This
scheme involves revectoring. the FCS calls through the application task
image.

5.3.1.4 Options and Tradeoffs - There are a number of ways to link
application tasks with resident libraries.

The following cases assume a minimally sized F4PRESr 4096 words
(decimal) mapped by one APR if FCS is not contained in it, and 8192
words (decimal) mapped by two APRs if FCS is contained in it. These
numbers will vary according to the F4P OTS routines that you .include
in F4PRES. It may not be possible for you to construct a useful
F4PRES of one or both of these sizesr yours may use two APRs without
FCS or three APRs with FCS.

In the following cases, the "virtual and physical memory" descriptions
are always rel.ative to a task with no overlays or resident libraries.
Your tasks's disk- or memory-resident overlays may add overlay
run-time routines, autoload vectors, and segment and region
descriptors to your task •

• Case 1 - Linking to F4PRES with revectored FCScalls and
memory-resident FCSRES used as a cluster library. Linking the
application task with the following TKB option

CLSTR=F4PRES,FCSRES:RO

uses a total of one APR, making available maximal virtual
address space in the application task. This is most
appropriate for tasks that can take advantage of the increased
virtual address space. On.a system with the memory-resident
FCSRES, F4P application tasks that do not profit from the
increased address space should be built accor.ding to Case 2,
which has two LIBR= TKB options. MACRO-II application tasks
can be built with one LIBR=FCSRES:RO TKB option (see Case 3
for the memory characteristics in this case.)

If FCS routines are called from the task image, the calls are
resolved to entry points in FCSRES. (FCS routines might be
called by either OTS code in the task image, or your task's
MACRO-II subroutines.)

Virtual and physical memory: Case 1 requires one APR. The
application task root incurs a load of 1250 (decimal) bytesr
32 bytes from FCSJMP.OBJ, 650 bytes from FCSRES.STB (autoload
vectors, segment and region descriptors), and 568 bytes from
the overlay run-time routines.

Execution speed: Some execution time is consumed when the
overlay run-time code in the task image must change the APRs
from one resident library to another.

• Case 2 - Linking to F4PRES with revectored FCS calls and to a
memory-resident FCSRES not used as a clustered library.
Linking the application task with the TKB options

LIBR=FCSRES:RO
LIBR=F4PRES:RO

uses two APRs for the resident libraries, but there is less
overhead than with a cluster of libraries as in Case 1. Case

5-57

SHARED REGION CONCEPTS AND EXAMPLES

2 is best for tasks that cannot profit by using the extra APR
that a cluster could make available. If FCSRES is
predominantly being used in this way (little use of FCSRES
linked to RSX utilities or MACRO-ll application tasks, and no
clustered FCSRES and F4PRES), you should also consider Case 4,
where a two-APR F4PRES contains FCS with no cost in autoload
vectors, FCSJMP, or overlay run-time routines for FCSRES.
Other tasks can reference the resident libraries with one or
more TKB LIBR options, or with CLSTR.

If FCS routines are called from the task image, the calls are
resolved to entry points in FCSRES. (FCS routines might be
called by either the OTS code in the task image or your task's
MACRO-ll subroutines.)

Virtual and physical memory: Cas-e 2 requires two APRs . The
application task root incurs a load of 1164 (decimal) bytes;
32 bytes from FCSJMP.OBJ, 650 bytes from FCSRES.STB (autoload
vectors, segment and region descriptors), and 482 bytes from
the overlay run-time routines.

(

Execution speed: Some execution time is consumed when the I
overlay run-time code in the task image must change the ~
mapping of the APR for the FCSRES from one overlay to another,
but less time is used than with a cluster.

• Case 3 - Linking to a memory resident FCSRES and having the
OTS code present in your task's image. Link the application
task with the following TKS option:

LIBR=FCSRES:RO

Case 3 is appropriate when FCSRES is necessary, but you cannot
justify having a permanent F4PRES on your system.

Virtual and physical memory: Case 3 requires one APR for
FCSRES. The OTS code, which may be thousands of bytes, is
included in the application task image. (The OTS code should
by overlaid.) The task root also incurs a load of 1132 bytes:
650 bytes from FCSRES.STB (autoload vectors, segment and
region descriptors), and 482 bytes from the overlay run-time
routines.

Execution speed: Some execution time
overlay run-time code in the task
mapping the APRs of resident libraries
another. More execution time is used
code in the task image.

is consumed when
image must change
from one library
if you overlay the

the
the
to

OTS

• Case 4 - Linking to F4PRES with revectored FCS so that FCS
code is present in your task's image. This combination is
never the best choice because F4PRES and your task will
include FCSJMP and FCSVEC with no benefit. However, tasks
will link and execute correctly. ~ink the application task
with the TKB option

LIBR=F4PRES:RO

• Case 5 - Linking to an F4PRES that contains FCS. You can link
the task with the TKB option

LIBR=F4PRES:RO

5-58

(

(

(

(

(

(

•

SHARED REGION CONCEPTS AND EXAMPLES

This case is appropriate when F4PRES is necessary, you do not
need a permanent FCSRES on your system, and no critical
application tasks would profit from the increased address
space of a clustered FCSRES and F4PRES.

The program combination for this case tends to contain more
OTS code in the same number of APRs than Case 6 because only
the FCS used by F4PRES is present, leaving more room for OTS
code.

If your task contains macro subroutines that use FCS, try to
use the FCS routines already contained in F4PRES, like OFNB$,
OFID$, or DELET$. Otherwise, the task will contain large
amounts of FCS code.

Virtual and physical memory: Case 5 requires two APRs. There
is no overlay overhead due to the resident library.

Execution speed: There is no overlay overhead due to the
resident library.

Case 6 - Linking F4PRES to a non-memory-resident
(LIBR=FCSRES:RO in the F4PRES TKB command file).
task to the F4PRES with the option

LIBR=F4PRES:RO

FCSRES
Link the

If you have a non-memory-resident FCSRES on your system, Case
6 may be appropriate. Note that Case 5 tends to include more
OTS code in the same number of APRs.

If FCS routines are called from the task image, a space
problem can occur. (FCS routines can be called by either OTS
code in the task image, or your MACRO-ll subroutines.) FCSRES
entry points are available only to a task or resident library
linked directly to FCSRESi they are not available to a task
linked to F4PRES in this case. Thus, any FCS routine called
in your task will bring a number of FCS modules into the task
image.

Virtual and physical memory: Case 6 requires two APRs. There
is no overlay overhead due to the resident library.

Execution speed: There is no overlay overhead due to the
resident library.

• Case 7 - Linking to a non-memory-resident FCSRES with the OTS
code in the task image. Link the application task with the
option

LIBR=FCSRES:RO

Case 7 is appropriate when thenon-memory-resident FCSRES is
necessary, but you cannot justify having a permanent F4PRES on
your system.

Virtual and physical memory: Case 7 requires one APR for
FCSRES. The OTS code, which could be thousands of bytes, is
included in the task image. The OTS code should be overlaid.

Execution speed: There is no overlay overhead due to the
resident library.

5-59

SHARED REGION CONCEPTS AND EXAMPLES

5.4 VIRTUAL PROGRAM SECTIONS

A virtual program section is a special TKB storage allocation facility
that permits you to create and refer to large data structures by means
of the mapping directives. Virtual program sections are supported in
TKa through the VSECT option and in FORTRAN through a set of
FORTRAN-callable subroutines that issue the necessary mapping
directives at run time. With the TKB VSECT option, you can specify
the following parameters for a 'relocatable program section or FORTRAN
common block that you have defined in your object module:

• Base virtual address

• Virtual length (window size)

• Physical length

By specifying the base address, you can align the program section on a
4K address boundary as required by the mapping directives.
Thereafter, references within the program need only point to the base
of the program section or to the first element in the common block to
ensure proper boundary alignment.

By specifying the window size, you can fix the amount of virtual
address space that TKB allocates to the program section. If the
allocation made by a module causes the total size to exceed this
limit, the allocation wraps around to the beginning of the window.

By specifying the physical size, you' can allocate, before run time,
the physical memory that the program section will be mapped into at
run time. TKB allocates this physical memory within an area that
precedes the task image. This area is called the mapped array area.

The physical length parameter is optional. If you intend to allocate
physical memory at run time through the Create Region directive, you
can specify a value of O.

Note that when you specify a nonzero value for the physical memory
parameter, the resulting allocation affects only the task's memory
image, not its disk image.

Note also that TKB attaches the virtual attribute to a relocatable
program section you have specified in the VSECT option only if the
section is defined in the root segment of your task through either a
FORTRAN COMMON or a MACRO-II .PSECT statement. The relocatable
program section with the virtual attribute in the root does not use
address space in your task: using this procedure merely assigns an
address, window size, and physical length to a region yet to be mapped
at run time by your task. For example, in the TKB option:

TKB>VSECT=MARRAY:160000:20000:2000

Or, in the DCL option:

Option? VSECT=MARRAY:160000:20000:2000

In this
window
address
mapping

example, virtual program section MARRAY is
size of 4K words (20000 (oc,tal) bytes)
of 160000. In physical memory, 32K words
the section at run time.

allocated with a
and a base virtual
are reserved for

Assume the program is written in FORTRAN, and includes the following
statement:

COMMON /MARRAY/ARRAY(4) .•.

5-60

(

(

(

c

(

c~

(

l

SHARED REGION CONCEPTS AND EXAMPLES

This statement generates a program section to which TKB attaches the
virtual attribute. However, this program section is not a FORTRAN
virtual array. A reference to the first element of the section,
ARRAY(l), is translated by TKB to the virtual address 160000.

Figure 5-15 shows the effect of this use of the VSECT option.

As mentioned previously, TKB restricts the amount of virtual address
space allocated to the section to a value that is less than or equal
to the window size, wrapping around to the base if the window size is
exceeded.

This process is iilustrated in the following example, in which three
modules, A, B, and C, each contain a program section named VIRT that
is 3000 words long. A window size of 4K words has been set through
the VSECT option. If the program section has the concatenate
attribute, the Tas~ Builder ~rlocates memory to each module as
follows:

Module

A
B
C

Low Limit

160000
174000
170000

Length

l4000
14000
14000

High Limit

174000
170000
164000

The address limits for modules Band C illustrate the effect of
address wrap-around when a component of the total allocation exceeds
the window boundary. Note that the addresses generated will be
properly aligned with the contents of physical memory if the virtual
section is remapped in increments of the window size.

5.4.1 FORTRAN Run-Time Support for Virtual Program Sections

FORTRAN supports subroutines to make use of the mapping directives.
FORTRAN also supports calls to the following subroutines, which are
related to virtual program sections:

Subroutine

ALSCT

·RLSCT

Function

Allocates a portion of physical memory for use as a
virtual section

Releases all physical memory allocated to a virtual
section

As mentioned earlier, the effect o~ one or more VSECT= declarations at
task-build time is to create a pool of physical memory below the task
image (the mapped array area). Before a virtual section is referred
to, the task must allocate a portion of this memory through a call to
ALSCT. When space is no longer required, it is released through a
call to RLSCT.

Note that these subroutines issue no mapping directives. They
allocate and release space using region and window descriptor arrays
that you supply. The resulting physical offsets are used in the
task's subsequent calls that perform the actual mapping.

5-61

160000 APR 7-

APR6-

APR 5-

APR4-

APR3-

APR2-

APR 1--'-

APRO-

TKB>I

SHARED REGION CONCEPTS AND EXAMPLES

WINDOW

TASK
IMAGE

0 (PROGRAM
SECTION
DEFINITIONi

COMMON/MARRAY/ ...

HEADER & STACK

VIRTUAL ADDRESS
SPACE

'. (VIRTUAL BASE ADDRESS)

-

-------------7

e
ENTER OPTIONS: PHYSICAL LENGTH ~

64-BYTE BLOCKS
TKB> VSECT =MARRA Y:160000:20000:2000

Figure 5-15 VSECT Option Usage

5-62

TASK
IMAGE

ICOMMON/MARRAY/ ..

HEADER & STACK

MAPPED
ARRAY
AREA

PHYSICAL MEMORY

ZK-430-B1

(

c

(

(

(

(

(

(

SHARED REGION CONCEPTS AND EXAMPLES

The subroutine ALSCT is called to allocate physical memory to a
virtual program section as follows:

ireg

iwnd

CALL ALSCT (ireg,iwnd[,ists])

A one-dimensional integer array that is nine words long.
Elements 1 through B of the array contain a region descriptor for
the physical memory to be mapped. The descriptor has the
following format:

ireg(l)

ireg(2)

ireg(3)

ireg(4)

ireg(5)

ireg(6)

ireg(7)

ireg(B)

ireg(9)

Region 10.

Size of region in units of 64-byte blocks.

Name of region in Radix-50 format (first three
characters).

(Second three characters).

Name of main partition containing region.

The name is in Radix-50 format.

Region status word.

Region protection code.

Thread word: This element links window descriptors
that are used to map portions of the region. It is
maintained by the subroutine.

The elements of the array that you set up consist of ireg(l) and
ireg(3) through ireg(B). The thread word, ireg(9), must be a on
the initial calli thereafter, the subroutine maintains it.

When your task makes an allocation, ireg(l) and ireg(2) must be a
on the initial call. In this case, ALSCT obtains and stores the
region size in ireg(2). When the allocation is being made from a
separate region, the caller must supply both region 10 and size.
The subroutine does not refer to elements 3 through B but rather
the caller must set them up as required by the applicable system
directives. For a detailed description of these parameters,
refer to the RSX-IIM/M-PLUS Executive Reference Manual.

A one-dimensional array that is 11 words long. The first eight
words contain a window descriptor in the following format:

iwnd(l)

iwnd(2)

iwnd(3)

iwnd(4)

iwnd(5)

Base APR in bits B through 15i
bits a through 7 when the
directives are issued.

Virtual base address.

the Executive sets
appropriate mapping

Window size in units of 64-byte blocks.

Region 10.

Offset into the region, in units of 64-byte blocks.

5-63

ists

iwnd(6)

iwnd(7)

SHARED REGION CONCEPTS AND EXAMPLES

Length to map, in units of 64-byte blocks.

Status word.

Address of send/receive buffer. iwnd(8)

iwnd(9) Base offset of physical block allocated to section
in units of 64-byte blocks.

iwnd(10) Length of block in units of 64-byte blocks (supplied
by caller); set to maximum block offset by
subroutine.

iwnd(ll) Thread word: This element links window descriptors
that are used to map other portions of the region.
It is maintained by the subroutine.

You must set up IWND(10) before calling ALSCT.

The following array elements are supplied as output from the
subroutine:

iwnd(4), iwnd(5),-iwnd(9), iwnd(10), and iwnd(ll)

The remaining elements must be set up as required by the
Executive directives. Consult the R~X-11M/M~PLUS Executive
Reference Manual for a detailed description of these parameters.

An area that receives. the result of the call.
following values is returned:

One of the

+1 Block successfully allocated. In this case, the region
and window descriptor arrays are set up as described
above.

-200. Insufficient physical
allocating the block

memory was available for

The subroutine RLSCT is called to deallocate the physical memory
assigned to a virtual section as follows:

ireg

CALL RLSCT (ireg,iwnd)

A one-dimensional integer array that is nine
contents of the array are the same as
subroutine ALSCT.

words long. The
those described for

A one-dimensional integer array that is 11 words long. The
contents of the array are the same as those described for
subroutine ALSCT.

Upon return, element iwnd(10) is the length of the deallocated
region in units of 64-byte blocks.

5-64

(

c

(

c

c

(

(

(

SHARED REGION CONCEPTS AND. EXAMPLES

The procedure for using these subroutines can be summarized as
follows:

1. You allocate storage in the program for one window descriptor
per VSECT, and for a single region descriptor.

2. Your task calls the subroutine ALSCT to reserve the physical
memory to which the program section will be mapped.

3. Your task issues the mapping directives to map the virtual
address space into a portion of the physical memory. It is
the task's responsibility to ensure that the physical memory
to be mapped is always within the limits defined by iwnd(9)
and iwnd(lO).

4. When the space is no longer required, the task unmaps it and
releases it with a call to RLSCT.

5.4.2 Example 5-5: Building a Program that Uses a Virtual Program
Section

Example 5-5, Part 1 shows the FORTRAN source file for a task named
VSECT.FTN. It illustrates the use of the ALSCT FORTRAN subroutine.
When you build, install, and run VSECT, it will allocate the mapped
array area below its header, create a 4K-word window, and map to the
area through the window. ALSCT will then initialize the area and
prompt for an array subscript at your terminal by printing:

SUBSCRIPT?

When you input a subscript, it responds with ELEMENT= and the contents
of the array element for the subscript you typed. VSECT continues to
prompt until you type CTRLlz. Upon receiving a CTRL/Z, VSECT exits.

Once you have compiled VSECT, you can build it with the following TKB
command sequence:

TKB>VSECT,VSECT/-SP=VSECT,LB: [1, l]FOROTS/LB
TKB>/
Enter Options:
TKB>WNDWS=l
TKB>VSECT=MARRAY:160000:20000:200
TKB>//
>

Or, if you use LINK, use the following command sequence:

>LINK/TAS/MAP:VSECT/NOPRINT/OPT VSECT,LB:[l,l]FOROTS/LIB
Option? WNDWS=l
Option? VSECT=MARRAY:160000:20000:200
Option? (Bill
>

This command sequence directs TKB to create a task image file named
VSECT.TSK and a short (by default) map file VSECT.MAP. Because /-SP
is appended to the map file in TKB, or /NOPRINT is specified in LINK,
TKB does not spool the map to the line printer.

The library switch (/LB; /LIB in LINK) specifies that TKB is to search
the FORTRAN run-time library FOROTS.OLB to resolve any undefined
references in the input module VSECT.OBJ. Because the library switch
was applied to the FORTRAN library file without arguments, TKB
extracts from the library and includes in the task image any modules
in which references are defined.

5-65

SHARED REGION CONCEPTS AND EXAMPLES

The WNDWS option directs TKB to add a window block to the header in
the task image. The Executive initializes this window block when it
processes the mapping directives within the task.

The V~ECT option directs TKB to establish for the program section
named MARRAY a base address of 160000 (APR 7) and a length of
20000(octal) bytes (4K words). The 'program section VIRT is defined
within the task through the FORTRAN COMMON statement. The VSECT
option also specifies that. TKB is to allocate 200 64-byte blocks of
physical memory in the task's mapped array area below the task's
header. (For more information on the switches, qualifiers, and
options, used in this example, refer to Chapters 10, 11, and 12,
respectively.)

The map that results from this command sequence is shown in Example
5-5, Part 2.

Example 5-5, Part 1 Source Listing for VSECT.FTN

C
C VSECT.FTN
C

INTEGER *2 SUB, IRDB (9) , IWDB (11) , DSW
INTEGER *2 IARRAY(4096)
COMMON /MARRAY/IARRAY
IWDB (1) "3400
IWDB (3) = 128
IWDB (5) = 0
IWDB (7) = "402
IWDB (10) = 128

lUSE APR 7 FOR WINDOW
lWINDOW SIZE = 128*32 WORDS
!OFFSET
lSTATUS = WS.64B1WS.WRT
!SIZE TO ALLOCATE

C
C
C

ALLOCATE 4K MAPPED ARRAY TO IWDB,IRDB

C

CALL ALSCT (IRDB,IWDB,DSW)
IF (DSW .NE. 1) GOTO 100

C CREATE A 4K ADDRESS WINDOW
C

CALL CRAW (IWDB,DSW)
IF (DSW .NE. 1) GOTO 200

C
C MAP 4K MAPPED ARRAY
C

CALL MAP (IWDB,DSW)
IF (DSW .NE. 1) GOTO 300
DO 1 1=1,4096
IARRAY (I) = I 1

C
C MAPPED ARRAY IS INITIALIZED, PROMPT FOR A SUBSCRIPT
C
3 WRITE (5,5)
5 FORMAT (' $SUBSCRIPT? ')

READ (5,4,END=1000)SUB
4 FORMAT (17)

WRITE (5,6)IARRAY (SUB)
6 FORMAT (, ELEMENT = ',17)

GOTO 3
C
C
C
100
101

ERROR ROUTINES

WRITE (5,101)DSW
FORMAT (' ERROR FROM ALSCT. ERROR
GOTO 1000

',17)

4K

(continued on next page)

5-66

c

(

(

(

(..

(~

SHARED REGION CONCEPTS AND EXAMPLES

Example 5-5, Part 1 (Cont.) Source Listing forVSECT.FTN

200
201

WRITE (5,201)DSW
FORMAT (. ERROR FROM
GOTO 1000

CREATING ADDRESS WINDOW. ERRROR

300
301
1000

WRITE (5,301)DSW
FORMAT (. ERROR FROM
CALL EXIT
END

MAPPING. ERROR • ,17)

Example 5-5, Part 2 Task Builder Map for VSECT.TSK

VSECT.TSK;l Memory allocation map TKB M40.10
Il-DEC-82 16:12

Partition Name GEN
Identification FORV02
Task UIC : [303,1]
Stack limits: 000300 001277 001000 00512.
PRG xfr address: 016270
Total address windows: 2.
Mapped array area: 4096. words
Task image size 8736. words
Task address limits: 000000 042043
R-W disk blk limits: 000002 000044 000043 00035.

*** Root segment: VSECT

R/W mem limits: 000000 042043 042044 17444.
Disk blk limits: 000002 000044 000043 00035.

Memory allocation synopsis:

Page 1

',17)

Section Title Ident File

. BLK.:(RW,I,LCL,REL,CON) 001300 001160 00624.
MARRAY:(RW,D,GBL,REL,OVR) 160000 020000 08192.

160000 020000 08192 .• MAIN. FORV02 VSECT.OBJ;3
OTS$F :(RW,I,GBL,REL,CON) 002460 002332 01242.

002460 000406 00262. $CONVI F40003
FOROTS.OLB;2

003066 001724 00980. $fIO F40006
FOROTS.OLB;2
OTS$I : (RW,I,LCL,REL,CON) 005012 011220 04752.

Global symbols:

ADI$IA 005032-R CAL$ 005140-R ICI$ 022466-R MOI$PS 006050-R

*** Task builder statistics:

Total work file references: 27855.
Work file reads: O.
Work file writes: o.
Size of core pool: 7086. words (27. PAGES)
Size of work file: 4325. words (17. PAGES)

Elapsed time:00:OO:29

5-67

(

(

(

o

0 1
/

(~

CHAPTER 6

PRIVILEGED TASKS

6.1 INTRODUCTION

This chapter discusses privileged tasks: what they are, their
possible hazards, how they are mapped, and an example of their usage.

6.2 PRIVILEGED AND NONPRIVILEGED TASK DISTINCTION

RSX-llM/M-PLUS systems have two classes of tasks: privileged and
nonprivileged. The distinction between privileged and nonprivileged
tasks is primarily based upon system-access capabilities. Because all
tasks in an unmapped system have access to all of memory, this
distinction is not hardware enforceable. Therefore, if your system is
unmapped, your task must be responsible for observing the access rules
of your system.

In a mapped system, privileged tasks have special device and memory
access rights that nonprivileged tasks do not have. A privileged task
can, with certain exceptions, access the Executive routines ~nd data
structures: a nonprivileged task cannot. Some privileged tasks have
automatic I/O page mapping available to them: nonprivileged tasks do
not. Finally, a privileged task can bypass system security features,
whereas a nonprivileged task cannot.

6.3 PRIVILEGED TASK HAZARDS

Because of their special access rights, privileged tasks are
potentially hazardous to a running system. A privileged task with
coding errors can corrupt the Executive or system data structures.
Moreover, problems caused by such a privileged task can be obscure and
difficult to isolate. For these reasons, you must exercise caution
when developing and running a privileged task.

Make certain that your privileged task has completed its operation
when you log off the system (type BYE). BYE does not abort privileged
tasks as it does nonprivileged tasks because the privileged task may
be in the process of changing the system data base. Therefore, it
must be allowed to complete its processing. Also, if the privileged
task is in system state, neither BYE nor any other task can execute
until the privileged task completes its processing while in system
state. However, when the privileged task leaves system state, BYE
runs and logs you off the system, leaving the privileged task still in
operation.

If a processor trap occurs in a privileged task while the task is in
user state, the Executive aborts the task. However, if the processor
trap occurs in the privileged task while the task is in system state,
the system crashes. However, even while in user state the privileged

6-1

PRIVILEGED TASKS

task that is mapped to the Executive can cause a system crash by
incorrectly changing system data. Please note that a privileged task
in user state should not be modifying system data.

All tasks in an unmapped system can access all of memory. The
privileged or nonprivileged designat~on has no particular meaning in
an unmapped syst~m. Therefore, be just as careful about modifying
Executive, device, or user data in an unmapped system.

6.4 SPECIFYING A TASK AS PRIVILEGED

In TKB, you designate a task as privileged with the /PR (privileged)
TKB switch. In DCL, you use the /PRIVILEGED:nqualifier. The /PR
switch is described in Chapter 10, and the /PRIVILEGED:n qualifier is
described in Chapter 11. TKB allocates address space for a privileged
task based on the memory management APR that you specify as an
argument to this switch or qualifier. The argument is optional; the
default is 5 but you can change it by modifying the TKBBLD.CMD file
and rebuilding TKB. TKB accepts three arguments: 0, 4, and 5.
Choosing which of these arguments to specify is based on the
considerations described below.

6.5 PRIVILEGED TASK MAPPING

When you specify an argument of a on the switch or qualifier, your
task is marked as privileged but not mapped to the Executive or I/O
page. Virtual address space begins at virtual address a and extends
upward as far as 32K words. Your task c~nnot access the Executive
routines or data structures, and TKB does not reserve an APR to map
the I/O page.

When you specify /PR:4 or /PR:5 in TKB, or /PRIV:4 or /PRIV:5 in LINK,
TKB reserves APR 7 for mapping the I/O page. Moreover, TKB makes the
Executive available to your task by reserving the APRs necessary to
map the Executive into your task's virtual address space. Therefore,
if your task requires access to the Executive, you must specify an
argument of either 4 or 5. However, 5 is the default.

The choice between APR 4 and 5 is dictated by the size of the
Executive area. If the Executive is 16K words or less, you may
specify· an argument of 4 or 5. The value specified depends on the
task size. A privilege 4 task can be 12K in size and map the I/O
page. TKB applies a bias of 100000 (16K) to all addresses within your
task.

If the Executive is 20K words, you must specify an argument of 5. TKB
applies a bias of 120000 (20K) to all addresses within your task.

The mapping for privileged tasks is shown in Figure 6-1.

The mapping for APR 4 and 5 is shown in Figure 6-2.

When you specify an argument of 4, there will be 12K words of address
space between the beginning of the task and the start of the mapping
for the I/O page. If your task expects to access the I/O page, it
must not exceed this 12K-word limit. If it does, TKB uses APR 7 to
map the task instead of the I/O page.

When you specify an argument of 5, there will be 8K words of address
space between the beginning of the task and the start of the mapping
for the I/O page. In this case, the task must not be greater than 8K
words if it expects to access the I/O page.

6-2

(

(

(

(

(

(

(

VIRTUAL
ADDRESSES

177777

157777

120000

PHYSICAL
ADDRESSES

117777

0

VIRTUAL
ADDRESSES

177777

157777

120000

PHYSICAL
ADDRESSES

117777

PRIVILEGED TASKS

1/0 PAGE

8K
PRIVILEGED

TASK

• SHADING REPRESENTS
MAPPING THAT OCCURS
IN USER STATE

NOT USED NOW 1

20K NOT USED

EXECUTIVE
NOW

6

3

0

KTll MEMORY
MANAGEMENT UNIT

APRs IKISAR 0-7)

KISAR7 11/0 PAGE)

f-----------4

KISAR4 16-20K

KISAR3 12-16K

KISAR2 S-12K

KISARl 4-SK

KISARO 0-4K

PHYSICAL MEMORY

SK
PRIVILEGED TASK

MEMORY
OCCUPIED BY

TASKS AND
PARTITIONS

20K
EXECUTIVE

-"'~'L. ______ ---' 0

MAPPING FOR 8K PRIVILEGED TASK IN USER STATE AND 20K EXECUTIVE

1/0 PAGE

SK
PRIVILEGED

TASK

• SHADING REPRESENTS
MAPPING THAT OCCURS
IN SYSTEM STATE

20K
EXECUTIVE

6

5

4

3

KT-ll MEMORY
MANAGEMENT UNIT

APRs IUISAR 0-7)

NOT USED NOW

PRIV TASK 4-8K

PRIV TASK 0-4K

KISAR 0-4 AND

7 COPIES NOT

USED IN SYSTEM

STATE BUT VALUES

STILL EXIST

MAPPING FOR 8K PRIVILEGED TASK IN SYSTEM STATE AND 20K EXECUTIVE

Figure 6-1 Privileged Task Mapping

6-3

PHYSICAL MEMORY

SK
PRIVILEGED TASK

MEMORY
OCCUPIED BY
TASKS AND
PARTITIONS

20K
EXECUTIVE

o

ZK-431-B1

PRIVILEGED TASKS

I/O PAGE I/O PAGE

APR 7-

AVA1BLE
APR 6-

. - VIRTUAL 160000- APR7-

APR 6-
AVAltABLE
TASKSPAOE

TASK SPACE
APR 5- - VIRTUAL 120000- APR 5-

APR 4- - VIRTUAL 100000- APR4-

APR 3- APR 3- RESERVED FOR
RESERVED FOR EXECUTIVE

APR 2- EXECUTIVE APR 2- MAPPING
MAPPING

APR 1- APR 1-

APR 0- -VIRTUALO- APRO-

/PR:4 /PR:5

ZK-432-81

Figure 6-2 Map~ing for /PR:4 and /PR:5

When a task overlaps the I/O page, TKB does not generate an error
message. Before TKB generates an error message, a task designated to
be mapped with APR 4 must be greater than 16K words; a task designated
to be mapped with APR 5 must be greater than 12K words. Only when you
install a task that overlaps the I/O page does INSTALL generate the
following message:

INS--WARNING--PRIVILEGED TASK NOT MAPPED TO THE I/O PAGE

While this is not a fatal error message, you should consider the
condition to be fatal if you expect your task to access the I/O page.

You can use the /-IP switch in TKB or the /NOIOPAGE qualifier in LINK
to inform TKB that the task is purposely over 12K and does not need to
be mapped to the I/O page.

A task with a privilege of 4 or 5 caa access all of the Executive,
system control blocks, and I/O page. It can use Executive routines
and do logical block I/O to a volume that is physically mounted on a
device. Also, the task can issue a $SWSTK macro to change from user
to system state. This allows the task to access the Executive or
system data structures without interruptions or fear of the data being
changed while it is being accessed.

6.6 PRIVILEGE 0 TASK

Using the /PR: 0 switch in TKB or the /PRIV: 0 quali fier in .LINK causes
TKB to build the task in the same way as any other task. Virtual
address space begins at virtual address 0 and extends upwards as far
as 32K minus 32 words. This task cannot access the Executive routines
and system data structures Qr directly access the I/O page because the
Task Builder has not reserved APRs for these purposes.

6-4

(,

(

(

(

(

(

c

PRIVILEGED TASKS

There are advantages to using a task with privilege a and having it
mapped into APR O. A task with privilege a can:

• Bypass file protection.

• Use the alter priority (ALTP$) directive.

• Issue any directive that has a target task.

• Specify a device name in spawn directives.

• Write logical block I/O to a physically mounted volume,
regardless of who issued the Mount or Allocate command. For
example, the VMR task is a task with privilege a and writes to
mounted volumes during the SYSGEN process. However, this
advantage can be hazardous for obvious reasons.

A task with privilege a runs in user state and cannot switch to system
state. Also, a task with privilege a is not mapped to the Executive.
If you want to write a privileged task that does I/O processing, it is
advantageous to use the /PR:O switch in TKB or the /PRIV:O qualifier
in LINK for your task because there is less chance of corrupting the
Executive or system code and data.

6.7 PRIVILEGE 4 TASK

If you want your privileged task to map to the Executive and I/O page,
and your Executive is 16K or less, use the /PR:4 switch for TKB or the
/PRIV:4 qualifier for LINK in the command line. If you specify
privilege 4 for your task, TKB reserves APR 7 to map the I/O page and
reserves APRs a through 3 to map the Executive as part of your task's
virtual address space. The privilege 4 switch or qualifier can be
used only if your Executive size is 16K or less, because the 16K
Executive uses APRs a through 3 and your task is assigned mapping that
starts with APR 4. Therefore, TKB applies a bias of 100000 (16K
decimal) to all virtual addresses within the task. This specific
mapping of APRs a through 4 and 7 occurs whether the task is in user
or system state.

Up to 12K words of virtual address space are possible in a privilege 4
task. The beginning of the task marks the end of the Executive code.
If the task is 12K words in size, the end of the task marks the start
of the I/O page. If the task is going to access the I/O page through
APR 7, the task cannot exceed the 12K limit. If the task does exceed
the limit, TKB is forced to assign APR 7 to the task code. When
building the task, TKB does not give you an error message if your task
exceeds the 12K limit. However, when you install the task, INSTALL
sends you the following message:

"INS -- WARNING -- PRIVILEGED TASK NOT MAPPED TO THE I/O PAGE"

6.8 PRIVILEGE 5 TASK

If you want your privileged task to map to the Executive and I/O page,
and your Executive is between 16K and 20K, use the /PR:5 switch for
TKB or the /PRIV:5 qualifier for LINK in the command line. If you
specify your task as privilege 5, TKB reserves APR 7 to map the I/O
page and reserves APRs a through 4 to map the Executive as part of
your task's virtual address space. The /PR:5 switch or /PRIV:5
qualifier can be used only if your Executive size is between 16K and

6-5

PRIVILEGED TASKS

20K, because the 20K Executive uses APRs 0 through 4 and your task is
assigned APR 5. (APR 5 may be used if the Executive is less than 16K,
but this wastes virtual address space.) Therefore, TKB applies a bias
of 120000 (20K) to all virtual addresses within the task. This
specific mapping of APRs 0 through 5 and 7 occurs whether the task is
in user or system state.

Up to 8K words of virtual address space (12K if the I/O page is
overmapped) are possible in a privilege 5 task. The beginning of the
task marks the end of the Executive code. If the task is 8K words in
size, the end of the task marks the start of the I/O page. If the.
task is going to access the I/O page through APR 7, the task cannot
exceed the 8K limit. If the task does exceed the limit, TKB is forced
to assign APR 7 to the task code. When building the task, TKB does
not give you an error message if your task exceeds the 8K limit.
However, when you install the task, INSTALL sends you the following
message:

"INS -- WARNING -- PRIVILEGED TASK NOT MAPPED TO THE I/O PAGE"

NOTE

When you use a privileged task, the Executive has
dedicated almost all the APRs to the necessary mapping
for the Executive, the I/O page, and your task. Your
task can issue PLAS directives to remap any number of
these APRs to regions. However, such remapping can
cause obscure and difficult-to-find system bugs.
Also, note that when a directive unmaps a window that
formerly mapped the Executive or the I/O page, the
Executive restores the former mapping.

6.9 EXAMPLE 6-1: BUILDING A PRIVILEGED TASK TO EXAMINE UNIT CONTROL BLOCKS

The MACRO-II source program PRIVEX.MAC in Example 6-1 illustrates one
possible use of a privileged task.

NOTE

The nature of a privileged task is such that you must
have a working knowledge of system concepts to
understand its operation or to write one. If this
example deals with Executive functions that are
unfamiliar to you, you may prefer to skip this section
and return to it at a later time.

If you assemble, build, and install PRIVEX into your system, it will
scan the system device tables and examine the UCBs of all nonpseudo
devices on your system. It will determine whether each device is
attached by a task and print on your terminal the names of all
attached devices on your system with the name of each attached
program.

PRIVEX accesses two Executive routines: $SWSTK (switch stack) and
$SCDVT (scan device tables). The routine $SWSTK switches the
processor to system state (kernel mode). This switch to system state
is necessary because it inhibits all other processes from modifying
the Executive data structures until PRIVEX is finished with them. The
double semicolons (;;) indicate the portion of the task that is
running in system state.

The routine $SCDVT performs the actual scanning of the device tables.
It returns to PRIVEX each time it accesses a new UCB.

6-6

(

(

(

(

(

(

(

(

PRIVILEGED TASKS

PRIVEX also calls the system library routine $EDMSG (edit message) to
format the data it has retrieved from the device tables. This routine
is documented in the IAS/RSX-ll System Library Routines Reference
Manual.

Example 6-1, Part 1 Source Code for PRIVEX

MACRO LIBRARY CALLS
.TITLE PRIVEX
• MCALL ALUN$C,EXIT$S,QIOW$S

LOCAL DATA

.NLIST BEX

ATTMES: .ASCIZ /%2A%P: IS ATTACHED BY %2R/
BUFMES: .ASCIZ /BUFFER OVERFLOW/

.LIST BEX
QIOBUF: .BLKB 132. ;MESSAGE OUTPUT BUFFER

• EVEN

BUFFER INTO WHICH INFORMATION IS STORED AT SYSTEM STATE FOR
PRINTING AT USER STATE. AN ENTRY IS FOUR WORDS LONG:

ADDRESS IN DCB OF THE TWO ASCII CHARACTER DEVICE NAME

BINARY UNIT NUMBER

FIRST RAD50 WORD OF NAME OF ATTACHED TASK

SECOND RAD50 WORD OF NAME OF ATTACHED TASK

THE BUFFER IS TERMINATED BY A

o ALL UNITS IN THE SYSTEM HAVE BEEN EXAMINED
-1 = THE BUFFER WAS FILLED BEFORE ALL UNITS COULD BE EXAMINED

BUFFER: .BLKW 4*200.+1
BUFEND=.-2

START: MOV
CLR
CLR

#BUFFER,R2
(R2)
Rl

;ADDRESS OF LAST WORD OF BUFFER

;GET ADDRESS OF INFORMATION BUFFER
;ASSUME NO UNITS ARE ATTACHED
;INITIALIZE CURRENT DCB ADDRESS

"CALL $SWSTK,FORMAT" SWITCHES TO SYSTEM STATE. ALL REGISTERS
ARE PRESERVED ACROSS THE TRANSITION FROM USER MODE TO KERNEL
MODE. BEING IN SYSTEM STATE LOCKS OTHER PROCESSES OUT OF THE
EXECUTIVE (GUARANTEES THAT THE DATA BEING EXAMINED WILL NOT
CHANGE WHILE IT IS BEING EXAMINED). A "RETURN" WILL GIVE
CONTROL TO "FORMAT" AND WILL RESTORE THE CONTENTS OF THE
REGISTERS TO THEIR VALUES BEFORE THE "CALL $SWSTK".

CALL
MOV

$SWSTK,FORMAT
#$SCDVT,-{SP)

6-7

;SWITCH TO SYSTEM STATE
;;GET ADDRESS OF SCAN DEVICE TABLES
; ; COROUTINE

(continued on next page)

PRIVILEGED TASKS

Example 6-1, Part 1 (Cont.) Source Code for PRIVEX

20$: CALL

BCS

AT THIS POINT:

@(SP)+

100$

::GET NEXT NONPSEUDO DEVICE UCB
I I ADDRESS
::IF CS NO MORE UCBS

R3 - ADDRESS OF THE DEVICE CONTROL BLOCK
R4 - ADDRESS OF THE STATUS CONTROL BLOCK
R5 - ADDRESS OF THE UNIT CONTROL BLOCK

40$:

60$:

80$:

100$:

CMP
BEQ
MOV
CLR
BISB
MOV
BEQ

CMP
BLOS
ADD
MOV
MOV
MOV
MOV
CLR
INC
BR
CALL
BCC
COM
RETURN

.ENABL
FORMAT: TST

BEQ
CMP
BNE
MOV
CALL

EXIT:

40$:

EXIT$S

MOV
CALL
BR

Rl,R3
40$
R3,Rl
RO
D. UNIT (R3) ,RO
U.ATT(R5),R4
60$

::IS THIS A NEW DCB?
::IF EQ NO
::REMEMBER THIS DCB
::FORM LOWEST UNIT NUMBER ON
I I THIS DCB
::IS A TASK ATTACHED?
::IF EQ NO
::IF NE R4 IS TCB ADDRESS

#BUFEND,R2 ::ANY MORE ROOM IN BUFFER?
80$::IF LOS NO
#D.NAM,R3 : : FORM ADDRESS OF DE~ICE NAME
R3, (R2)+ ::SAVE IT IN BUFFER
RO,(R2)+ ::SAVE UNIT NUMBER
T.NAM(R4),(R2)+ ::SAVE NAME OF ATTACHED TASK
T.NAM+2(R4), (R2)+ I I

(R2) ::ASSUME NO MORE ATTACHED UNITS
RO ::INCREMENT UNIT NUMBER
20$ II

@(SP)+ : :GET $SCDVT TO CLEAN OFF STACK
80$:i
(R2) ::SHOW BUFFER OVERFLOW

LSB
(R2)
EXIT
#-1,(R2)
40$
#BUFMES,Rl
PRINT

#ATTMES,Rl
PRINT
FORMAT

::RETURN TO USER STATE AT FORMAT

:ANY MORE INFORMATION IN BUFFER?
:IF EQ NO
:OVERFLOWED BUFFER?
:IF NE NO
:GET ADDRESS OF OVERFLOW MESSAGE
:PRINT IT

:GET ADDRESS OF TEMPLATE
:FORMAT AND PRINT THE INFORMATION

.DSABL LSB

PRINT - FORMAT AND PRINT A MESSAGE

INPUTS:
Rl - ADDRESS OF AN $EDMSG INPUT STRING
R2 - ADDRESS OF AN $EDMSG PARAMETER BLOCK

OUTPUTS:

(

(

(

R2 - ADDRESS OF NEXT PARAMETER IN THE $EDMSG PARAMETER BLOCK
RO, Rl, R3, R4 ARE DESTROYED
R5 IS PRESERVED (_

(continued on next page)

6-8

(

-(

PRIVILEGED TASKS

Example 6-1, Part 1 (Cont.) Source Code for PRlVEX

PRINT: MOV
MOV
CALL

:/j:QIOBUF,RO
RO,R3
$ED.MSG

iGETADDRESS OF OUTPUT BUFFER
iSAVE FOR QIOW$S
iFORMAT MESSAGE INTO OUTPUT BUFFER

REMOVE LEADING ZEROS FROM UNIT NUMBER

20$:

40$:

MOV
TST

MOV
DEC

CMPB
BEQ
INC
CMPB

BNE
MOVB
INC
MOVB
BNE

R3,RO
(RO)+

RO,R4
Rl

:/j:'O,(RO)+
20$
Rl
:/j: , : , - (RO)

40$
:/j:'O,(R4)+
Rl
(RO)+,(R4)+
40$.

iPOINT AT OUTPUT BUFFER
iINCREMENT BY TWO (POINT PAST

DEVICE NAME)
iREMEMBER THIS SPOT
iASSUME NEXT BYTE IS A LEADING ZERO
i (REDUCE LENGTH OF MESSAGE)
iIS IT?
iIF EQ YES -- IGNORE IT
iCOUNTERACT TOO MUCH DECREMENTING
iWAS THE BYTE A COLON (WAS THE UNIT
i NUMBER ZERO)?
iIF NE NO
iADD A 'ZERO UNIT NUMBER
iINCREASE LENGTH OF MESSAGE
iTACK ON REST OF MESSAGE
iIF NE NOT DONE

PRINT THE MESSAGE ON LUN "OUTLUN" (DEFINED BY THE TASK BUILD FILE)
AND WAIT USING EVENT FLAG 1

QIOW$S :/j:IO.WVB,:/j:OUTLUN,:/j:l""R3,Rl,:/j:' »
RETURN
. END START

PRIVEX.MAC should be assembled with a command string similar to the
following one in TKB:

MAC>PRIVEX,PRIVEX/-sP=DRO:[l,l]EXEMC/ML,[ll,lO]RSXMC/pA:1,DR2:[303,1]PRIVEX

If you use LINK, you may enter the following command line, which is
similar to the one preceding:

>MACROIOBJ:PRIVEX/LIST:PRIVEX DRO:[l,l]EXEMC/LIB,
->[11,10]RSXMC/pA:l,DR2:[303,1]PRIVEX

The file EXEMC is the Executive macro library and the file RSXMC is
the Executive prefix file. The switches used in the command string
are described in the IAS/RSX-ll MACRO-II programmer's Reference
Manual.

The TKB command sequence for PRIVEX is as follows:

>TKB
TKB> PRIVEX/PR:5,PRIVEX/-SP=PRIVEX
TKB> DRO:[3,54]RSXIIM.STB,DRO:[1,1]EXELIB/LB
TKB> I
Enter Options:
TKB> UNITS=l
TKB> GBLDEF=OUTLUN:l
TKB> ASG=TIO: 1
TKB> II
>

6-9

iDEFINE NUMBER OF LUNS
iDEFINE LON ON WHICH TO PRINT MESSAGES
iASSIGN LUN TO DEVICE

PRIVILEGED TASKS

If you use LINK, use the following command .sequence to build PRIVEX:

>LINK/TAS/PRIV:5/MAP:PRIVEX/NOPRINT/OPT PRIVEX
Option? UNITS=l
Option? GBLDEF=OUTLUN:l
Option? ASG=TIO:l
Option? <RET>
>

;DEFINE NUMBER OF LUNS
;DEFINE LUN ON WHICH TO PRINT MESSAGES
;ASSIGN LUN TO DEVICE

These command sequences direct TKB to build PRIVEX as a privileged
task and to add a bias of 120000 to all locations within it. APR 5
was chosen in this example because the Executive in the system on
which this example was originally built is 20K words long. If the
Executive in your system is 16K words or less, you can use assign
privilege 4 when you build the task.

In the options sections of these command sequences, the UNITS=l option
specifies that PRIVEX will use only one l~gical unit. The
GBLDEF=OUTLUN:l option defines the symbol OUTLUNas being equal to 1,
and the ASG=TIO:l option associates device TIO: with logical unit 1.

(

The TKB map for PRIVEX is shown in Example 6-1, Part 2. The GLOBAL ('
SYMBOL SECTION has been shortened to save space. Note that the task's ~
address limits begin at virtual address 120000. Figure 6-3
illustrates how TKB allocates virtual address space for the program.

Example 6-1, Part 2 Task Builder Map for PRIVEX

PRIVEX.TSK;l Memory allocation map TKB M40.10
7-0CT-S2 13:26

Partition name: GEN
Identification: 01
Task UIC [303,1]
Stack limits: 120230 121227 001000 00512.
PRG xfr address: 124610
Task attributes: PR
Total address windows: 1.
Task image size 1920. words
Task address limits: 120000 127323
R-W d,isk b1k limits: 000002 000011 000010. OOOOS.

*** Root segment:PRIVEX

R/W mem limits: 120000 127323 007324 03796.
Disk b1k limits: 000002 000011 000010 OOOOS.

Memory allocation synopsis:

Section

• BLK.:(RW,I,LCL,REL,CON) 121230 005746 03046.

Title

Page 1

Ident

121230 003656 01966. PRIVEX 01
$$RESL:(RO,I,LCL,REL,CON) 127176 000124 00084.

File

PRIVEX.OBJ;2

(continued on next page)

6-10

(

(

c-

(

c

PRIVILEGED TASKS

Example 6-1, Part 2 (Cant.) Task Builder Map for PRIVEX

Global symbols:

AS. DEL 000001 BT.UAB 000002 DV.SDI 000020
D.VOUT 00Q004 F.NWAC 000034 IE.DAA 177770
AS.EXT 000004 B.DIR 000026 DV.SQD 000040
D.VPWF 000006 F.SCHA 000015 IE.DNA 177771

$PDVTA 020000
$YHCTB 022674

$REMOV 054044
.TT14 023770

$SGFFR 020652

*** Task builder statistics:

Total work file references: 250535.
Work file reads: O.
Work file writes: o.
Size of core pool: 13486. words (52. PAGES)
Size of work file: 12032. words (47. PAGES)

Elapsed tirne:00:00:51

APR 7- -

APR 6- -

I/O PAGE

h"""",,,,,,,,,,,,,,,,,,,,,.,.,.,.,.,.,.,.f-VIRTUAL 160000

111\1~~;r~i;lill

D.RS81 177657

D.RS83 177655

$TICLR 041032

PRIVEX. TSK
VIRTUAL 127147 }

TASK ADDRESS LIMITS
APR 5- - VIRTUAL 120000

APR 4- -

APR 3- -
EXECUTIVE

APR 2- -

APR 1- -

APR 0 '---------'- V I RTUAL 0

ZK-433-B1

Figure 6-3 Allocation of Virtual Address Space for PRIVEX

6-11

PRIVILEGED TASKS

(

(

(

6-12

{'\
~ /

c

c

PRIVILEGED TASKS

6-13

o

(~;

(

c

(-

7-1

(

(

(

(

. (
'--

7-2

(-

(

(

(

VIRTUAL
ADDRESS

SPACE

REGION
16K -----,..

8K

I
I
I

8K

o

D REGION MAPPING

tm~ttt:J TASK MAPPING

7-3

D-SPACE
APRS

I-SPACE
APRS

PHYSICAL
MEMORY

TASK

REGION

ZK-434-81

(

7-4

(

(

c

(

RELATIVE DISK BLOCK 0

•
•
•

RELATIVE DISK BLOCK n

~

~

LABEL BLOCK AREA

CHECKPOINT AREA

1 '-SPACE PART

HEADER (UNUSED)

ROOT - I-SPACE PART
-

INSTRUCTIONS

HEADER (USER'S)

STACK
D-SPACE PART

ROOT - D-SPACE PART
-

DATA

ZK-1098-82

7-5

VIRTUAL I-SPACE MODULES VIRTUAL D-SPACE

160000 IAPR? DAPR? 160000

140000 IAPR6 DAPR6 140000

120000 IAPR5 DAPR5 120000

100000 IAPR4 . DAPR4 100000

I-- - - -
PSECT C OVR3 PSECT G

60000 IAPR3 DAPR3 60000 '
PSECT B OVR2 PSECT F

~ - - -
PSECT A OVR1 PSECT E

40000 IAPR2 DAPR2 40000

ROOT I

- I-- -

ROOT D

f- STACK - f-20000 IAPR1 DAPR1 20000

(I
--------- ---------

UNUSED USER
HEADER HEADER

o IAPRO DAPRO 0

ZK-1099-B2

(
OVR1 OVR2 OVR3

I
ROOT I

I I

ZK-1100-82

(

7-6

(

RELATIVE BLOCK 0
LABEL BLOCK GROUP • r--- -• SEGMENT LOAD LIST

•
RELATIVE BLOCK 3 CHECKPOINT AREA

•
• TASK HEADER (UNUSED)

•
ROOT I - INSTRUCTION SPACE

AUTOLOAD VECTORS FOR I-SPACE

TASK HEADER (USED)

TASK STACK AREA

ROOT D - DATA SPACE

AUTOLOAD VECTORS FOR D-SPACE

SEGMENT DESCRIPTORS

WINDOW DESCRIPTORS

OVERLAY SEGMENT OVR1
I-SPACE PART (PSECT A) (

OVERLAY SEGMENT OVR1
D-SPACE PART (PSECT E)

OVERLAY SEGMENT OVR2
I-SPACE PART (PSECT B)

OVERLAY SEGMENT OVR2
D-SPACE PART (PSECT F)

OVERLAY SEGMENT OVR3
I-SPACE PART (PSECT C)

OVERLAY SEGMENT OVR3
D-SPACE PART (PSECT G)

ZK-1101-B2

7-7

c

(

7-8

c_

006307 006307

(005q63 005063 OUTPUT
004607 004607

INPUT
CALC

004514 004514

004513 004513

MAIN

ZK-ll07-82
(000000 000000

c
7-9

004413

003263

003007

002714
002713

000000

002513

002414
002413

000000

003263

003007
INPUT

CALC
,

002713

MAIN

002413

MAIN

7-10

(

004413

OUTPUT (

002714

000000
ZK-1108-82 (

002513

OUTPUT

002414

000000
ZK-1109-82

(

c

c

(

c
7-11

(

(

7-12

(-

(

7-13

(

(

(

(

(

7-14

c

C;

7-15

l
-~~ i

/

C)

(

(-

c

(

8-1

(

(

(

(

8-2

CD
I

W

('-,

USER
D-SPACE

USER
I-SPACE

VIRTUAL
ADDRESS

SPACE

32K~
UNUSED

OK

USER
TASK

OK ' ___ ---L

(\

APRs
0-5

COPIED

('\

APRs 7_ 6
5
4 . ! UNUSED

7 rl/I;}));;))/]
6

SUPERVISOR
D-SPACE

OK~::~JL __ ----------~-----V

SUPERVISOR VU/U/((//(~
I-SPACE 16K.

SUPERVISOR
LIBRARY

OK ,'-------'--

APR MAPPING

USER D-SPACE
USER I-SPACE
SUPERVISOR D-SPACE
SUPERVISOR I-SPACE

UNUSED
0-5 map entire user task
0-5 map eAtire-user task
0-3 map library

r-'\

PHYSICAL
MEMORY .1 1256K

30K

lr JrOK

I I--~~ -r-- -T-~~~-

24K
USER
TASK

16K
SUPERVISOR

LIBRARY

ZK-439-81

~

(,

(

(

8-4

.~

(Xl
I

VI

USER
D-SPACE

USER
I-SPACE

SUPERVISOR
D,SPACE

SUPERVISOR
I-SPACE

VIRTUAL
ADDRESS

SPACE

32K~
UNUSED

OK

OK

20K

12K
8K

OK

rill-niillii/ll

12K
~ATA & INSTR

8K INS~U~IO~S
OK

r\

-----DATA
\COPIED)

USER D-SPACE
USER I-SPACE
SUPERVISOR D-SPACE

SUPERVISOR I-SPACE

(\

APRs

I.
.. , -

0

~,
I 1

PHYSICAL
MEMORY

1 1256K

- - -

8K
4K

8K

\ ADO I)

______ ----I

c --1/1// I I / I I / / / A

APR MAPPING

UNUSED
0-4 map entire user task
0-1 and 3-4 map user task

~

2 remapped to supervisor data using MSDS$
0-2 map library

4K

8K
1/

.~

20K
USER
TASK

12K
SUPERVISOR

LIBRARY

ZK-440-81

en
I

01

(~

VIRTUAL
ADDRESS

3 SPACE 7 APRs '"fiy/l7!r 'E'(I/Ii~ ,"YS'CA' u",. 5 UNUS "'"0",

U"'. ',,"'~{.@ , ~""f9 1 1 "'"
O-"Ae' "K ...

"K us," ji usen UK OATA "K

'-SeAe, ' - - - "" u"" LVW,1,1,," '77A ,. '"' 0-

I 'N".ue,,"NS U"'" U"'. OK ",".""--"" UK 'ASK

32K

SUPERVISOR
16K

D-SPACE

OK

32K

SUPERVISOR
I-SPACE

8K

OK

(\

APR MAPPING

USER D-SPACE
USER I-SPACE
SUPERVISOR D-SPACE
SUPERVISOR I-SPACE

0-3 map user data
0-5 map user instructions
0-3 map user data
0-1 map library

(\

30K

T J OK

10

8K
SUPERVISOR

LIBRARY

ZK-1105-82

--~------------------------------------r-~-------------------------r------~---------------~I~

.~

(

(

(

(

8-7

(

c

(.

(.

(

8-8

(

(

(

(

8-9

(,

c

(

8-10

(

c

(

8-11

c

(

(

(

8-12

(

(

8-13

(

(

(

8-14

(

c

c

(

8-15

c

(

(

(

8-16

(

c

c

(

8-17

(I

(

8-18

(

(

(

(

8-19

(

(

(

(

8-20

c

A

c)

B

ROOT

ALLOWED

A

ROOT

ALLOWED

8-21

NOT ALLOWED

ZK-1102-82

C)

l~"'\)

(

(

. (

9-1

APR 7-

APR6-

APR 5-

APR4-

APR3-

APR2-

APR 1-

APRO-

READ-ONLY
PROGRAM
SECTIONS

...........

READ/WRITE
PROGRAM
SECTIONS

ZK-441-81

9-2

(

(

(

(

(

(

(

(

HIGHEST VIRTUAL
ADDRESS

WINDOW BLOCK
1

WINDOW BLOCK
o

LOWEST VIRTUAL
ADDRESS

] REGION 1

READ/WRITE
REGION 0

..
ZK-442-81

9-3

DATA APRS INSTRUCTION APRS

UNUSED UNUSED (
READ-ONLY DATA

PROGRAM SECnONS
DAPR? IAPR? - READ-ONLY

INSTRUCTION
PROGRAM SECTIONS

DAPR6 - IAP?6,

DAPR5 - IAPR5 - ,
UNUSED

DAPR4 - IAPR4 -
UNUSED

DAPR3 - IAPR3 ~

DAPR2 - IAPR2 -

READ-WRITE DATA
PROGRAM SECTIONS

- - READ-WRITE
INSTRUCTION

DAPR1 IAPR1

(

PROGRAM SECTIONS

DAPRO
HEADER + STACK

IAPRO
UNUSED HEADER

ZK-ll03-82

(

9-4

(

TASK
WINDOW BLOCKS

WINDOW BLOCK 3

WINDOW BLOCK 2

WINDOW BLOCK 1

WINDOW BLOCK 0

(

c

(

(~

9-5

PHYSICAL
MEMORY

READ-ONLY D

READ-ONLY I

READ-WRITE D

READ-WRITE I

} REGION 1

} REGION 0

ZK-1104-B2

c

(

(.

9-6

c
9-7

C~\

9-8

(

c

(

(

CHAPTER 10

TKB SWITCHES

You use TKB switches,
the construction of
reference information
the LINK qualifiers.

or LINK qualifiers, and TKB options to control
your task image. This chapter provides detailed
on all the TKB switches. Chapter 11 describes
Chapter 12 describes the TKB and LINK options.

10.1 TKB SWITCHES

The following sections discuss these topics: switches as used in the
syntax of file specifications, correct switch designation, switches
that override other switches, a switch summary table, and finally the
individual switches in alphabetical order.

10.1.1 Filespec Syntax

The syntax for a file specification, as given in Chapter 1, is:

dev:[group,member]filename.typeiversion/swl/sw2 •.. /swn

Optionally, you can conclude a file specification with one or more
switches (swl,sw2, ... swn). When you do not specify a switch, the Task
Builder establishes a default setting for it.

10.1.2 Switch Designation

You designate a switch by a 2- to 4-character code preceded by a
slash (/). I f you preceCl.e the 2- to 4-character code with a minus
sign (-) or the letters NO, TKB aegates the function of the two
characters. For example, TKB recognizes the following settings for
the sW1tch CP (checkpointable):

/Cp
/-CP
/NOCP

The task is checkpointable.
The task is not checkpointable.
The task is not checkpointable.

10.1.3 Overriding Switches

In some cases, two particular switches cannot both be used in a
specification. 'When such a conflict occurs, TKB selects
overriding switch according to the following table:

10-1

file
the

Switch

lAC (Ancillary
Control Processor)

lEA (Extended
Arithmetic Element)

Icc (Concatenated
object file)

For example:

TKB SWITCHES

Switch

IPR (Privileged)

IFP (Floating
Point Processor)

ILB (Library file)

MCR>TKB IMGS=IN6,INS/LB/cc

Overriding Switch

lAC

IFP

ILB

TKB assumes that the input file INS is a library file. It searches
the file for undefined global references. It does not include in the
task image all of the modules in INS.

10.1.4 Switch Summary Table

The switches that TKB recognizes are given in alphabetical order in
Table 10-1. Sections 10.2 through 10.39 give detailed descriptions of
each switch, in alphabetical order, including

• The switch format

• The file(s) to which the switch can be applied

• A description of the effect of the switch on the Task Builder

• The default assumption made if the switch is not present

Format

IAC[:nJ

IAL

Icc

ICM

Ico

Icp

Task is an
cessor.

Task can be

Table 10-1
TKB Switches

Meaning

ancillary control pro-

checkpointed to space
allocated in the task image file.

Input file consists of concatenated
object modules.

Memory-resident overlays are aligned
on 2S6-word physical boundaries.

Causes TKB to build a
shared common.

Task is checkpointable.

10-2

Applies
to File

.TSK

.TSK

.OBJ

.TSK

.TSK

.STB

.TSK

(continued

Default

I-AC

I-AL

Icc

I-CM

Ico

I-cp

on next

(

(

(-

(

page)

(

/IP

/LB

Allows TKB to inform INS that the
task purposely overmaps the
I/O page.

Input file is a library file.

/LI Informs TKB to build a
shared library.

/MA Map file includes information
from the file.

/MM System on which the task is to
run has memory management.

.TSK /-IP

.OLB /-LB

.TSK /-LI

.STB

.MAP, /MA or /-MAl

.OBJ

.TSK /MM or /-MM2

1. The default is /MA for an input file, and /-MA for system library
and resident library .STB files.

2. The default for the memory management switch is /MM if the host
system has memory managment hardware, and /-MM if the host system does
not have memory management hardware.

(continued on next page)

10-3

Format

/MP

/NM

/PI

/PM

TKB SWITCHES

Table 10-1 (Cont.)
TKB Switches

Meaning

Input file contains an overlay
description.

Tells TKB to inhibit two
diagnostic messages.

Task is position independent.

Postmortem Dump is requested.

/PR[:n] Task has privileged access rights.

/RO

/SE

/SG

ISH

/SL

/Sp

/SO

Memory-resident overlay operator
(1) is enabled.

Messages can be directed to the
task by means of the Executive
SEND directive.

Allocates task program sections
alphabetically by access code (RW
followed by RO).

Short memory allocation file is
requested.

Task is slaved to an initiating
task.

Spool map output.

Allocates task program sections
in input order by access code.

Iss Selective search for global
symbols.

/TR Task is to be traced.

/WI Memory allocation file is printed
at a width of 132 characters.

/XT[:n] TKB exits after n diagnostic.

10-4

Applies
to File

.ODL

.TSK

.TSK,

.STB

.TSK

.TSK

.TSK

.TSK

.TSK

. MAP

.TSK

• MAP

.TSK

.OBJ

.TSK

• MAP

.TSK

Default

/-MP

/-NM

I-PI

I-PM

/-PR

/RO

/SE

/-SG

ISH

/-SL

/Sp

I-so

/-SS

/-TR

/WI

/-XT

(

(

(i

(

c

c

(

(

(

TKB SWITCHES

AC

10.2 jAC[:N] -- ANCILLARY CONTROL PROCESSOR

File

Task image

Syntax

file.TSKjAC:O=file.OBJ

or

file.TSK/AC:4=file.OBJ

or

file.TSK/AC:5=file.OBJ

Description

The lAC switch informs TKB that your task is an ancillary control
processor: that is, it is a privileged task that extends certain
Executive functions. For example, the system task FllACP is an
ancillary control processor that receives and processes FILES-ll
related input and output requests on behalf of the Executive.

Effect

This switch also informs TKB that your task is privileged. TKB
sets the AC attribute flag and the privileged attribute flag in
your task's label block flag word.

The value of n is an octal number that specifies the first KT-ll
Active Page Register (APR) that you want the Executive to use to
map your task's image when your task is running in user mode.
Legal values are 0, 4, and 5. If you do not specify n, the Task
Builder assumes a value of 5.

If you do not explicitly specify that your task is to run on a
mapped system (through the IMM switch) and it is not otherwise
implied (TKB is not running in a system with KT-ll hardware), TKB
merely tests the value of n for validity, but otherwise ignores
it .

Default

I-AC

NOTE

You should not use lAC and IPR on the same command
line.

10-5

TKB SWITCHES

AL (

10.3 /AL -- ALLOCATE CHECKPOINT SPACE

File

Task image

Syntax

file. TSK/AL=file. OBJ

Description

The /AL switch informs TKB that your task is checkpointable. The
system will checkpoint it to a space in your task's image file.
However, the system uses the system checkpoint file first if you
specified dynamic cneckpointing.

Effect

As well as making your task checkpointable,· this switch directs
TKB to allocate additional space in your task image file to
contain the checkpointed task image.

Default

/-AL

NOTES

Do not use /Cp in the same command line in which you
use /AL.

Also, the /AL switch should not be used with the /-HD
switch to build tasks. Examples of tasks that use the
/-HD switch are: the Executive, device drivers, and
commons.

10-6

(

(

(

(

c

(

(

(

TKB SWITCHES

10.4 . Icc -- CONCATENATED OBJECT MODULES

File

Input

Syntax

file.TSK=file.OBJ/-CC

Description

cc

Icc controls the way TKB extracts modules from your input file.

Effect

By default, TKB includes in your task's image all the modules of
your input file. If you negate this switch (as in the Syntax
section above), TKB includes only the first module of your input
file.

Default

Icc

10-7

TKB SWITCHES

eM
10.5 ICM -- COMPATIBILITY MODE OVERLAY STRUCTURE

File

Task image

Syntax

file.TSK/CM=file.OBJ

Description

ICMcauses the Task Builder to build your task in compatibility
mode.

Effect

TKB aligns memory-resident
boundaries for compatibility
mapping directives.

Default

I-CM

overlay segments on 256-word
with other implementations of the

10-8

(

c

(

(

(

c

(

10.6

File

TKB SWITCHES

Ico -- BUILD A COMMON BLOCK SHARED REGION

Task image
.STB file

co

Syntax

file.TSK/CO=file.OBJ

or

,;file.STB/eo=file.OBJ

Description

The Ico switch informs TKB that a shared common is being built.
If you build a shared common, you should use the leo switch and
the I-HD switch.

If you use the I-PI switch for an absolute shared common, all the
program sections in the common are marked absolute. Using the
I-PI/-HD switches without the leo switch causes TKB to build a
shared library.

If you use the IPI switch for a relocatable shared common, all
program sections in the common are marked relocatable.

In either case, the .STB file contains all the program section
names, attributes, length, and symbols. TKB links common blocks
by means of program sections. Therefore, the .STB file of a
shared region built with the leo switch contains all defined
program sections.

Using the IpI/-HD switches without the Ico switch causes TKB to
build a shared common.

The Ico switch does not have a I-eo form.

Effect

This switch causes TKB to include
declarations in the .STB file.

Default

Ico

10-9

all program section

TKB SWITCHES

CP

10.7 /CP --CHECKPOINTABLE

File

Task image

Syntax

file.TSK/CP=file.OBJ

Description

/Cp causes TKB to mark your task as checkpointable. The system
will checkpoint it to space that you have allocated in the system
checkpoint file on the system disk. This switch assumes that you
have allocated the checkpoint space through the MCR command ACS.
(Refer to the RSX-llM/M-PLUS MCR Operations Manual.)

Effect

The system writes your task to the system checkpoint file on
secondary storage when its physical memory is required by a task
of higher priority.

Default

/-Cp

NOTE

Using /AL also makes your task checkpointable.

10-10

(

(

(

TKB SWITCHES

(CR

(

(

(

10.8 ICR -- CROSS-REFERENCE

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/CR=file.OBJ

Description

The ICR switch directs TKB to add a cross-reference listing to
the map file of your task.

Effect

TKB creates a special work file (file.CRF) that contains segment,
module, and global symbol information. The Task Builder then
calls the Cross-Reference Processor (CRF) to process the file.
CRF creates a cross-reference listing from the information
contained in the file, and then deletes file.CRF. (Refer to the
RSX-ll Utilities Manual for more information on CRF.)

The Example section below describes the cross-reference listing
and its contents.

Default

NOTE

For this switch to b~ effective, CRF must be installed
in your system.

j-CR

Example

Example 10-1 shows a cross-reference listing for task OVR. The
numbered items in the notes correspond to the numbers in Example
10-1.

10-11

TKB SWITCHES

CR (Cont.)

Example 10-1 Cross-Reference Listing for OVR.TSK

CREF CREATED BY TKB ON 27-JUL-82 AT 09:46 PAGE

1 V01]O GLOBAL CROSS REFERENCE CREF

SYMBOL VALUE REFERENCES ...

AAOD 020000-R * AADD @ CALC
ADDEXI 020060-R * AADD
ARGBLK 001340-R CALC # MAIN
BUFF 001366-R # MAIN OUTPUT
CALC 003270-R * CALC @ MAIN
DIFR 001360-R CALC # MAIN
DIVEXI 020062-R * DIW
DIVR 001364-R CALC # MAIN
OIVV 020000-R @ CALC * DIW
I 001350-R INPUT # MAIN
IE.EOF 177766 INPUT # QIOSYM
INITL 005664-R # INITL ... MAIN
INPUT 003364-R * INPUT @ MAIN
IOSB 001334-R INPUT # MAIN

CREF CREATED BY TKB ON 27-JUL-82 AT 09:46 PAGE 2

SEGMENT CROSS REFERENCE CREF VOl

SEGMENT NAME RESIDENT MODULES·

AADD AADD
CALC CALC
DIW DIVV
INPUT ARITH CATB INPUT QIOSYM SAVRG
LIBROT INITL SAVAL
MAIN ALERR AUTO MAIN OVCTR OVDAT OVRES SAVRl

VCTDF
MULL MULL
OUTPUT ARITH CATB CBTA CDDMG C5TA DARITH EDDAT

EDTMG OUTPUT QIOSYM SAVRG
SUBB SUBB

NOTES

o The cross-reference page header gives the name of the memory
allocation file, the originating task (TKB) , the date and
time the memory allocation file was created, and the
cross-reference page number .

. ~ The cross-reference list contains an alphabetic listing of
each global symbol along with its value and the name of each
referencing module. When a symbol is defined in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module is loaded in several
segments within the structure, the module name is displayed
more than once within each entry.

10-12

0

(

(

(

(

(

c

(

TKB SWITCHES

CR (Cont.)

The suffix -R appears next to the value if the symbol is
relocatable.

Prefix symbols accompanying each module name define the type
of reference as follows:

Prefix Symbol

blank

@

*

Reference Type

Module contains a reference that is
resolved in the same segment or in a
segment toward the root.

Module contains a reference that is
resolved directly in a segment away from
thE;! root or in a co-tree.

Module contains a reference that
resolved through an autoload vector.

is

Module contains a noriautoloadable
definition.

Module contains an autoloadable definition.

~ The segment cross-reference lists the name of each over~ay
segment and the modules that compose it. If the task is a
single-segment task, this section does not appear.

10-l3

TKB SWITCHES

DA

10.9 /DA -- DEBUGGING AID

File

Task image or input

Syntax

file.TSK/DA=file.OBJ

or

file.TSK=file.OBJ,file.OBJ/DA

Description

/DA causes TKB to include a debugging aid in your task.
debugging aid controls the task's execution.

The

Effect

TKB passes control to the debugging program when you or the
system starts task execution.

If you apply this switch to one of your input files, TKB assumes
that the file is a debugging aid that you have written. Such
debugging programs can trace a task, printing out relevant
debugging information, or monitor the task's performance for
analysis. The default file type for the debugging aid is .OBJ.

In either case, /DA has the following effects on your task image:

Default

/-DA

• The transfer address of the debugging aid overrides the
task transfer address.

• TKB initializes the header of
initial task load, registers
following values:

RO - Transfer address of task.

your task so that, on
RO through R4 contain the

Rl - Task name in Radix-50 format (word #1).

R2 - Task name (word #2).

R3 - The first three of six RAD50 characters representing
the version of your task. TKB derives the version
from the first .IDENT directive it encounters in your
task. If no .IDENT directive is in your task, this
value is 01.

R4 - The second three RAD50 characters representing the
version of your task.

10-14

c

(

(

(

(

(

(

TKB SWITCHES

DL

10.10 /DL -- DEFAULT LIBRARY

File

Input

Syntax

file.TSK=file.OBJ,file.OLB/DL

Description

This switch causes the input file to be
system object module library. The
input file is .OBJ.

Effect

a replacement for the
default file type for the

The library file you have specified replaces the file
LBO:[l,l]SYSLIB.OLB as the library file that the Task Builder
searches to resolve undefined global references. The default
device for the replacement file is SYO:. TKB refers to it only
when undefined symbols remain after it has processed all the
files you have specified. You can apply the /DL switch to only
one input file.

Default

/-DL

10-15

TKB SWITCHES

EA

10.11 lEA -- EXTENDED ARITHMETIC ELEMENT

File

Task image

Syntax

file.TSK/EA=file.OBJ

DesGription

lEA informs TKB that your task uses the KEll-A
Arithmetic Element.

Effect

Extended

TKB allocates three words in your task's header for saving the
state of the extended arithmetic element.

Default

I-EA

NOTE

You should not use lEA and IFP on the same command
line.

10-16

(

(

(

c

c

TKB SWITCHES

EL

10.12 /EL -- EXTEND LIBRARY

File

Task image

Syntax

file.TSK/LI/-HD/EL=file.OBJ

Description

/EL places the upper address limit as determined by the PAR
option in the library's label block, though the actual size of
the library may be smaller. This switch is useful when you build
vectored libraries such as RMS, which are subject to size
changes.

Effect

This switch specifies the maximum possible size for the library
according to the size specified in the PAR option. The switch
specifies a larger library virtual address range than is actually
present in the library to allow RMS to map its vectored library
segments.

Default

/-EL

10-17

FP

10.13 IFP -- FLOATING POINT

File

Task image

Syntax

file.TSK/FP=file.OBJ

Description

TKB SWITCHES

IFP informs TKB that your task uses the Floating Point Processor.

Effect

(

TKB allocates 25 words in your task's header for saving the state C···
of the Floating Point Processor. . ..

Default

NOTES

1. You should not use IFP and lEA on the same command
line.

2. The IFP switch allocates space in the task header
to save the floating point status if your task is
context switched. Therefore, in an RSX-llM
system, if a task that uses the Floating Point
Processor is built without the IFP switch, the
task will run correctly until a second task that
uses the Floating Point Processor is run. Then
both tasks will either crash or produce incorrect
results. For information on changing the Task
Builder's defaults, refer to Appendix F.

10-18

(

(

(

(~

(

(

TKB SWITCHES

FU

10.14 /FU -- FULL SEARCH

File

Task image

Syntax

file.TSK/FU=file.ODL/MP

Description

This switch controls the Task Builder's search fo~ undefined
symbols when it is processing modules from the default library.

Effect

When TKB processes modules from the default object module
library, and it encounters undefined symbols within those
modules, it normally limits its search for definitions to the
root of the main t'ree and to the current tree. Thus, unintended
global references between co-tree overlay segments are
eliminated. When the /FU switch is appended to the task image
file of an overlaid task, TKB searches all co-tree segments fur a
matching definition or reference. See Sections 3.2.2 and 3.2.3
in Chapter 3 for more details.

Default,

/-FU

10-19

TKB SWITCHES

HD

10.15 IHD -- HEADER

File

Task image or symbol definition

Syntax

file.TSK/-HD"file.STB=file.OBJ

or

file.TSK"file.STB/-HD=file.OBJ

Description

The I-HD form of this switch directs TKB to exclude a header from
your task image.

Effect

TKB does not construct a header in your task image. You use the
negated form of this switch when you are building commons,
resident libraries, and loadable drivers.

Default

IHD

10-20

(

(

c

TKB SWITCHES

(
'-,

(

10-21

TKB SWITCHES

IP

10.17 lIP -- TASK MAPS Ilo PAGE

File

Task image

Syntax

file.TSK/PR/-IP=file.OBJ

Description

You use the I-IP switch to inform TKB that the task is purposely
over 12K and does not need to be mapped to the 1/0 page.

Effect

(

TKB sets a bit in the task I s label block that informs INSTALL (.
(INS) that the task intentionally does not map the 1/0 page. ~
When this bit is set, INS does not display an error message when
it detects that the privileged task extends into APR 7 •

. Default

lIP

(

(

10-22

(

(

c

(

(

TKB SWITCHES

LB

10.18 /LB -- LIBRARY FILE

File

Input

Syntax

file.TSK=file.OBJ,file.OLB/LB

or

file.TSK=file.OBJ,file.OLB/LB:mod-l:mod-2 ••• :mod-8

DeElcription

The file to which this switch is attached is an object module
library file. The Task Builder's interpretation of this switch
depends upon which of the following forms you use:

• Without arguments (the first syntax given above)

• With arguments (the second syntax given above)

The default file type is .OLB.

Effect

If you apply this switch without arguments, TKB assumes that your
input file is a library file of relocatable object modules. TKB
searches the file immediately to resolve undefined references in
any modules preceding the library specification. It also
extracts from the library, for inclusion in the task image, any
modules that contain definitions for such references.

If you apply the switch with arguments, TKB extracts from the
library the modules named as arguments of the switch regardless
of whether the modules contain definitions for unresolved
references.

If you want TKB to search an object module library file both to
resolve global references and to select named modules for
inclusion in your task image, you must name the library file
twice: once, with the modules you want included in your task
image listed as arguments of the /LB switch: and a second time,
with the /LB switch and no arguments. For example:

file.TSK=file.OLB/LB:mod-l:mod-2,file.OLB/LB

The position of the library file within TKB command sequence is
important. The following rules apply:

• The library file must follow to the right
file(s) that contain references to be
library. For example: ,

TKB>file.TSK=infilel.OBJ,lib.OLB/LB

of the
defined

input
in the

The command above illustrates the correct usage of the /LB
switch: the following command illustrates incorrect usage:

TKB> file.TSK=lib.OLB/LB, filel.OBJ

10-23

TKB SWITCHES

LB (Cont.)

• If you are using the Task Builder's multiline input,
you specify a given library more than once during
command sequence, you must attach the ILB switch to
library file each time you specify the library.
example:

>TKB
TKB>file.TSK=filel.OBJ,file2.0BJ,lib.OLB/LB
TKB>file3.0BJ,file4.0BJ,lib.OLB/LB
II

and
the
the
For

• When you are building an overlay structure, you must
specify object module libraries for an overlay structure
within the Overlay Description Language (ODL) file for the
structure. To do this, you must use the .FCTR directive to
specify the library. For example:

AFCTR:
BFCTR:
LIB:

.ROOT CNTRL-LIB-(AFCTR,BFCTR,C)

.FCTR AO-LIB-(Al,A2-(A2l,A22»

.FCTR BO-LIB-(Bl,B2)

.FCTR LB:[303,3]LIBOBJ.OLB/LB

.END

The technique used in the ODL file above allows you to control
the placement of object module library routines into the
segments of your overlay structure. (For more information on
overlaid tasks, see Chapter 3.)

NOTES

1. You should not use the ILB switch and the Icc
switch in the same command sequence.

2. You can use the Iss switch in conjunction with the
ILB switch (with or without arguments) to perform
a selective search for global definitions.

c

(

Default (

I-LB

(

10-24

(

(

(

c

10.19

File

TKB SWITCHES

ILl -- BUILD A LIBRARY SHARED REGION

Task image
.STB file

LI

Syntax

file.TSK/LI=file.OBJ

or

"file.STB/LI=file.OBJ

Description

The ILl switch makes TKB build a shared library. However, you
must use the I-HD switch with the ILl switch to build the shared
library. The ILl switch does not have a I-LI form.

Effect

TKB includes only one program section declaration in the .STB
file.

If you use the I-PI switch for an absolute library, TKB names the
program section. ABS, makes the library position dependent, and
defines all symbols as absolute. Also, if you use the I-PI
switch without the ILl switch, TKB assumes ILl to be the default.

If you use the IPI switch for a relocatable library, TKB names
the program section the same as the root segment of the library.
TKB forces this name to be the first and only declared program
section in the library. TKB declares all global symbols in the
.STB file relative to that program section. Also, if you use the
IPI switch without the ILl switch, TKB assumes that a shared
common is to be built (/co is the default).

Default

I-LI

10-25

TKB SWITCHES

MA

10.20 /MA -- MAP CONTENTS OF FILE

File

Input or memory allocation

Syntax

file.TSK,file.MAP=file.OBJ,file.OBJ/-MA

or

file.TSK,file.MAP/MA=file.OBJ

Description

TKB is to include information from your input file in the memory
allocation output file.

Effect

If you negate this switch and apply it to an input file, TKB
excludes from the map and cross-reference listings "all global
symbols defined or referred to in the file. In addition, TKB
does not list the file in the "file contents" section of the map.

If you apply this switch to the map file, TKB includes in the map
file the names of routines it has added to your task from SYSLIB.
It also includes in the map file information contained in the
symbol definition file of any shared region to which the task
refers.

Default

/MA for input files

/-MA for system library and resident library STB files

10-26

(

(

TKB SWITCHES

(MM

c

(

10.21 /MM[:N] -- MEMORY MANAGEMENT

File

Task image

Syntax

file.TSK/MM[:n]=file.OBJ

or

file.TSK/-MM[:n]=file.OBJ

Description

The /MM switch informs TKB whether the system on which your task
is to run has memory management hardware. Specify n as the
decimal numbers 28 or 30.

Effect

If you use n with the /-MM switch (for an unmapped
specifies the highest physical address in K-words of
system being built. If you do not specify n with
default highest address of the task or system is 28K.

If you specify n with /MM, n is ignored.

Default

system) , n
the task or

/-MM, the

When you do not apply /MM or /-MM to your task image file, 'l'KB
allocates memory according to the mapping status of the system on
which your task is being built. The maximum task size for a
mapped system is always 32K. The default highest address for a
task or system in an unmapped system is 28K.

NOTE

When you use /-MM, TKB does not recognize the
memory-resident overlay operator(l). TKB checks
the operator for correct syntax, but it does not
create any resident overlay segments.

10-27

TKB SWITCHES

MP

10.22 iMP -- OVERLAY DESCRIPTION

File

Input

Syntax

fi1e.TSK=fi1e.ODL/MP

Description

The IMP switch specifies that the input file is an Overlay
Description Language (OOL) file.

Effect

TKB receives all the input file specifications from this file.
It allocates virtual address space as directed by the overlay
description. If you use the Task Builder's multiline command
format (see Chapter 1), TKB requests option information at the
console terminal by displaying:

Default

ENTER OPTIONS: in TKB format

NOTES

1. If you use the multiline command format in TKB
when you specify an OOL file, TKB automatically
prompts for option input. Therefore, you must not
use the single slash (I) to direct TKB to switch
to option input mode when you have specified IMP
on your input file.

2. When you specify IMP on the input file for your
task, it must be the only input file that you
specify. The default file type is .OOL.

I-MP

10-28

(

c

(

(

TKB SWITCHES

c

(

c

(

10-29

TKB SWITCHES

NM

10.24

File

/NM -- NO DIAGNOSTIC MESSAGES

Task image

Syntax

file.TSK/NM=file.OBJ

Description

The /NM switch controls the printing of diagnostic messages.

Effect

This switch eliminates two messages:

n Undefined symbols segment seg-name

and

Module module-name multiply defines P-sectionp-sect-name

Default

/-NM

10-30

(

(

(

(

(

(

TKB SWITCHES

PI

10.25 IPI -- POSITION INDEPENDENT

File

Task image or symbol definition

Syntax

file.TSK/PI=file.OBJ

or

file.TSK"file.STB/PI=file.OBJ

Description

IPI informs TKB that the task's
position-independent code or data.
either Ico or ILl.

Effect

shared region contains only
Use this switch with I-HD and

TKB sets the position-independent code (PIC) attribute flag in
the label block flag word of the shared region.

Be aware that if you specify IPI without using the Ico or ILl
switches, TKB builds a shared common (/co default). Also, if you
specify I-PI without using the Ico or ILl switch, TKB builds a
shared library (ILl default).

Default

I-PI

10-31

TKB SWITCHES

PM

10.26 /PM -- POSTMORTEM DUMP

File

Task image

Syntax

file.TSK/PM=file.OBJ

Description

If you use /PM and your task terminates abnormally, the system
automatically lists the contents of the memory image.

Effect

TKB sets the Postmortem Dump flag in your task's label flag word.

Default

NOTES

1. If your task issues an ABRT$ (abort task)
directive, the system will not dump the task image
even though TKB has set the Postmortem Dump flag
in your task's label flag word. In this case, the
system assumes that a Postmortem Dump is not
necessary since you know why your task was
aborted.

2. The PMD utility must be installed in your system
and be able to get into physical memory for this
switch to be effective.

I-PM

10-32

(

(

(

(

(

(

(

TKB SWITCHES

PR

10.27 /PR[:N] -- PRIVILEGED

File

Task image

Syntax

file.TSK/PR:O=file.OBJ

or

file.TSK/PR:4=file.OBJ

or

file.TSK/PR:5=file.OBJ

Description

The /PR switch informs TKB that your task is privileged with
respect to memory and device access rights. If you specify PR:O,
your task does not have access to the I/O page or the Executive.
However, if you specify PR:4 or PR:5, your task does have access
to the I/O page and the Executive, in addition to its own
partition.

Effect

TKB sets the Privileged Attribute flag in your task's label block
flag word.

The value of n is an octal number that specifies the first Active
Page register that you want the Executive to use to map your task
image when your task is running in user mode. Legal val.ues are
0, 4, and 5. If you do not specify one of these values, TKB
assumes a value of 5.

If you do not explicitly specify that your task is to run on a
mapped system, (through the IMM switch) and it is not implied (by
the presence of KT-ll hardware on the system upon which TKB is
running), TKB merely tests the value (:n) of the switch for
validity: otherwise, TKB ignores it. Privileged tasks are
described in Chapter 6.

Default

I-PR

NOTE

You should not use IPR and lAC on the same command
line.

10-33

TKB SWITCHES

RO

10.28 IRO -- RESIDENT OVERLAY

File

Task image

Syntax

file.TSK!-RO=file.ODL/MP

Description

The Task Builder's recognition of the memory-resident overlay
operator (1) is enabled.

Effect

The memory-resident overlay operator (1), when present in the
overlay description file, indicates to TKB that it is to
construct a task image that contains one or more memory~resident
overlay segments. If you negate this switch (as in the Syntax
section above), TKB checks the operator for correct syntactical
usage, but otherwise ignores it. W~th the memory-resident
overlay operator thus disabled, TKB builds a disk-resident
overlay from the overlay description file.

Default

IRO

10-34

(

(

(

(

c

c

(

TKB SWITCHES

SE

10.29 /SE -- SEND

File

Task image

Syntax

file.TSK/-SE=file.OBJ

Description

This switch determines whether messages can be directed to your
task by means of the Executive Send directive. (Refer to the
RSX-llM/M-PLUS Executive Reference Manual for information on the
Send directive)

Effect

By default, messages can be directed to your task by means of the
Executive Send directive. If you negate this switch (as in the
Syntax section above), the system inhibits the queuing of
messages to your task.

Default

/SE

10-35

TKB SWITCHES

SG

10.30 ISG -- SKGREGATE PROGRAM SECTIONS

File

Task image

Syntax

file.TSK/SG=file.OBJ

Description

The ISG switch allocates virtual address space to all (RW)
program sections and then to all read-only (RO) program sections.

Effect

The /SG switch gives you control over the ordering of program
sections. By using the /SG switch, you cause TKB to order
program sections alphabetically by name within access code (RW
followed by RO). If you specify the Iso switch with the ISG
switch, TKB orders program sections in their input order by
access code. See the description of the /SO switch.

You use the negated switch, I-SG, to make TKB interleave the RW
and RO program sections. Thus, the combination /-SG/SO results
in a task with its program sections allocated in input order and
its RW and RO sections interleaved. Additionally, you can use
/-so/-SG to make TKB order program sections alphabetically with
RW and RO sections interleaved. However, /-SG is the default.

Default

I-SG

10-36

(

(,

(

(

(

(

(

(

TKB SWITCHES

SH

10.31 ISH -- SHORT MAP

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/SH=file.OBJ

Description

If you specify ISH, TKB produces the short version of the memory
allocation file.

Effect

TKB does not produce the "file contents" section of the memory
allocation file.

Default

ISH

Example

The memory allocation file consists of the following items:

• Page header

• Task attributes section

• Overlay description (if applicable)

• Root segment allocation

• Tree segment description (if applicable)

• Undefined references (if applicable)

• Task Builder statistics

An example of the memory allocation file (map) is shown in
Example 10-2. The numbered and lettered items in the notes
correspond to the numbers and letters in Example 10-2.

Example 10-2 Memory Allocation File (Map) Example

OVR.TSK;1 Memory Allocation Map TKB M40.10 Page 1]0

Partition name :
Identification :
Task UIe
Stack limits:

3-JUN-83 11:28

GEN®®
Ol®
[303,3] @ ®
000260 001257 001000 00512. CD

(continued on next page)

10-37

TKB SWITCHES

SH (Cont.) C
Example 10-2 (Cont.) Memory Allocation File (Map) Example

Prg xfr address: 001264 GV~CD
Total address windows: 1. Q)®CD
Task image size 7488. words @®
Task address limits: 000000 035133~
R-W disk b1k limits: 000002 000073 000072 00058. ®®

}
OVR.TSK Overlay description:

Base Top Length

000000 005055 005056 02606. ROOTM
005060 021103 014024 06164. MULOV
005060 021103 014024 06164. ADDOV
021104 035127 014024 06164. SUBOV
021104 035131 014026 06166. DIVOV

OVR.TSK
ROOTM

Memory a1iocation map TKB M40.10 Page 2
3-JUN-83 11:28

*** Root segment: ROOTM ®

R/W mem limits: 000000 005055 005056 02606.~
Disk b1k limits: 000002 000007 000006 00006.~

Memory allocation synopsis:

Section @
-------. BLK.:(RW,I,LCL,REL,CON) 001260 001174 00636.

001260 000102 00066.
001362 000260 00176.
001642 000042 00034.

ANS : (RW,D,GBL,REL,OVR) 002454 000002 00002.
002454 000002 00002.
002454 000002 00002.

Global Symbols:

Title

ROOTM
PRNOV
SAVOV

ROOTM
PRNOV

AADD 004032-R DIVV 004052-R PRINT 001550-R SUBB
MULL 004022-R SAVAL 001642-R

AADD 004032-R DIVV 004052-R PRINT 001550-R SUBB
MULL 004022-R SAVAL 001642-R

File: ROOTM.OBJ:1 Title: ROOTM Ident: 01 GV
<. BLK.>: 001260 001361 000102 00066. ~
<ANS >: 002454 002455 000002 00002.

File: PRNOV.OBJ:1 Title: PRNOV Ident: 01 GV
<. BLK.>: 001362 001641 000260 00176. ~

PRINT 001550-R CD
<ANS >: 002454 002455 000002 00002.

Ident File

01@ ROOTM.OBJ 1
01
01

01
01

PRNOV.OBJ 1
SAVOV.OBJ 1

ROOTM.OBJ:1
PRNOV.OBJ:1

004042-R
CD

004042-R

(continued on next page)

10-38

e

(

(

(

(

(

(

TKB SWITCHES

SH (Cont.)

Example 10-2 (Conti) Memory Allocation File (Map) Example

File:~ SAVOV.OBJ;l Title: SAVOV Ident: 01 ®
<. ELK.>: 001642 001703 000042 00034. Q0

SAVAL 001642-R CD

CD ®

OVR.TSK
MULOV

Memory allocation map TKB M40.l0 Page 4
3-JUN-83 11:28

*** Segment: MULOV

R/W mem limits: 005060 021103 014024 06164.
Disk blk limits: 000010 000024 000015 00013.

Memory allocation synopsis:

Section Title Ident File

• BLK.:(RW,I,LCL,REL,CON) 005060 014024 06164.
005060 014024 06164. MULOV 01

$$ALVC:(RW,I,LCL,REL,CON) 021104 000000 00000.
$$RTS : (RW,I,GBL,REL,OVR) 004756 000002 00002.

Global symbols:

MULL 02l060-R

*** Task builder statistics:

Notes:

Total work file ref~rences: 8570. ~
Work file reads: o.}· fij\{.;\
Work file writes: O. 'V.IV
Size of core pool: 6662. words (26. pages) GD
Size of work file: 3328. words (13. pages) ~

ELAPSED TIME:00:00:14

MULOV.OBJ;l 0

.. The page header shows the name of the task image file and the
overlay segment name (if applicable), along with the date,
time, and version of TKB that created the map.

Et The task attributes
information:

section contains the following

® Task name
you do not
field.

The name specified in the TASK option. If
use the TASK option, TKB suppresses this

10-39

TKB SWITCHES

SH (Cont.)

@

®

®

Partition name -- The partition specified in the PAR
option. If you do not specify a partition, the default
is partition GEN.

Identification -- The task version as specified in the
.IDENT assembler directive. If you do not specify the
task identification, the default is 01.

Task UIC -- The task UIC as specified in the UIC option.
If you do not specify the UIC, the default is the
terminal UIC.

Task priority -- The priority of the task as specified in
the PRI option. If you do not specify PRI, the default
is 50, and is not shown on the map.

CD Stack limits -- The low and high octal addresses of the
stack, followed by its length in octal and decimal bytes.

~ ODT transfer address -- The starting address of the ODT
debugging aid. If you do not specify the ODT debugging
aid, this field is suppressed.

QV Program transfer address -- The address of the symbol
specified in the .END directive of the source code of
your task. If you do not specify a transfer address for
your task, TKB automatically establishes a transfer
address of 000001 for it. TKB also suppresses this field
in the map if you do not specify a transfer address.

Task attributes -- These attributes are
they differ from the defaults. One
following may be displayed:

AC Ancillary control processor.

listed only if
or more of the

AL Task is checkpointable, and task image file
contains checkpoint space allocation.

CP Task is checkpointable, and task image file
will be checkpointed to system checkpoint file.

DA Task contains debugging aid.

EA Task uses KEll-A extended arithmetic element.

FP Task uses Floating Point Processor.

-HD Task image does not contain header.

PI Task contains position-independent code and
data.

PM Postmortem Dump requested in the event of
abnormal task termination.

PR Task is privileged.

10-40

c

(

(

(

(

(

(

(

-SE

SL

TR

TKB SWITCHES

SH (Cont.)

Messages addressed to the task through the SEND
directive will be rejected by the Executive.

Task can be slaved.

Task initial PS word has T-bit enabled.

CD Total address windows -- The number of window blocks
allocated to the task.

® Mapped array -- The amount of physical memory (decimal
words) allocated through the VSECT option or Mapped Array
Declaration (GSD type 7, described in Appendix B); mapped
array is not shown if it does not apply.

Task extension -- The increment of
(decimal words) allocated through
option. Without these options, task
shown.

physical
the EXTTSK
extension

memory
or PAR

is not

~ Task image size -- The amount of memory (decimal words)
required to contain your task's code. This number does
not include physical memory allocated through the EXTTSK
option.

®

®

Total task size -- The amount of physical memory
words) allocated, including mapped array area
extension area. Total task size is not shown
example.

(decimal
and task
in this

Task address limits -- The lowest and highest virtual
addresses allocated to the task, exclusive of virtual
addresses allocated to VSECTs and shared regions.

® Read/write disk block limits -- From left to right: the
first octal relative disk block number of the task's
header; the last octal relative disk block number of the
task image; and the total contiguous disk blocks required
to accommodate the read/write portion of the task image
in octal and decimal.

~ Read-only disk block limits -- From left to right: the
first octal relative disk block of the multiuser task's
read-only region; the last octal relative disk °block
number of the read-only region; and the total contiguous
disk blocks required to accommodate the read-only region
in octal and decimal. This field appears only when you
are building a multiuser task.

Q The overlay description shows, for each overlay segment in
the tree structure Of an overlaid task, the beginning virtual
address (the base), the highest virtual address (the top),
the length of the segment in octal and decimal bytes, and the
segment name. Indenting is used to illustrate the ascending
levels in the overlay structure. TKB prints the overlay
description only when an overlaid task is created.

10-41

TKB SWITCHES

SH (Cont.)

E» The root segment allocation -- This section has the following
elements:

® Root segment -- The name of the root segment.
task is a single-segment task, the entire
considered to be the root segment.

If your
task is

~ Read/write memory limits -- From left to right: the
beginning virtual address of the root segment (the base)~
the virtual address of the last byte in the segment (the
top)~ and the length of the segment in octal and decimal
bytes.

®

@)

Disk block limits -- From left to right: the first
relative block number of the beginning of the root
segment~ the last relative block number of the root
segment~ total number of disk blocks in octal~ and the
total number of disk blocks in decimal.

Memory allocation synopsis -
program section name~ the
starting virtual address of
total length of the program
bytes.

From left to tight: the
program section attributes~
the program section~ and

section in octal and decimal

The program section shown as . BLK. in this field is. the
unnamed relocatable program section. Notice in this
example that there are 636(octal) bytes allocated to it
(2034 bytes - 1176 bytes = 636 bytes). This allocation
is the result of calls to routines that reside within the
unnamed program section in SYSLIB. (For more
information, see the description of the /MA switch in
Section 10.1.14.)

~ Module contributor This field lists the modules that

c

(--

(

have contributed to each program section. In this
example, the program section ANSwas defined in module
ROOTM. The module version is 01 (as a result of the
.IDENT assembler directive) and the file name from which (-
the module was extracted is ROOTM.OBJ~l. If the program -
section ANS had been defined in more than one module,
each contributing module and the file from which it was
extracted would have been listed here.

The absolute section
it appears in every
length of O.

NOTE

ABS. is not shown because
module and always has a

CD The global symbols section lists the global symbols
defined in the segment. Each symbol is listed along with
its octal value. A -R is appended to the value if the
symbol is relocatable. The list is alphabetized in
columns.

10-42

(

c

(

(

TKB SWITCHES

SH (Cont.)

The file contents section (which is composed of the four
fields listed below) is printed only if you specify j-SH in
the TKB command sequence. TKB creates this section for each
segment in an overlay structure. It lists the following
information:

® Input file -- File name, module name as established by
the .TITLE assembler directive, and module version as
established by the .IDENT assembler directive.

QY Program section -- Program section name, starting virtual
address of the program section, ending virtual address of
the program section, and length in octal and decimal
bytes.

CD Global symbol -- Global symbol names within each program
section and their octal values. If the segment is
autoloadable (see Chapter 3), this value is the address
of an autoload vector. The autoload vector in turn
contains the actual address of the symbol.

CD

A -R is appended to the value if the symbol is
relocatable.

Program section The contents of this field is
described in note g above.

~ Undefined References -- This field lists the undefined
global symbols in the segment.

@) The tree segment description is printed for every overlay
segment in an overlay structure. Its contents are the same
for each overlay segment as the root segment allocation is
for the root segment.

~ Task builder statistics lists the following information,
which can be used to evaluate TKB performance:

~ Work file references The number of times that TKB
accessed data stored in its work file.

QV Work file reads -- The number of times that the work file
device was accessed to read work file data.

~ Work file writes-- The number of times that the work
file device was accessed to write work file data.

GD Size of pool -- The amount of memory that was available
for work file data and table storage.

® Size of work file -- The amount of device storage that
was required to contain the work file.

10-43

SH (Cont.)

TKB SWITCHES

Elapsed time -- The amount of wall-clock time required to
construct the task image and produce the memory
allocation (.MAP) file. Elapsed time is· measured .from
the completion of option input to the completion of map
output. This value excludes the time required to process
the overlay description, parse the list of input file
names, and create the cross-reference listing (if
specified) .

See Appendix F for a more detailed discussion of the work file.

10-44

c

(

(

(

(

(

(

(

(

TKB SWITCHES

SL

10.32 /SL -- SLAVE

File

Task image

Syntax

file.TSK/SL=file.OBJ

Description

This switch directs TKB to mark your task as a slave to ~n

initiating task.

Effect

TKB attaches the slave attribute to your task. When your task
successfully executes a Receive Data directive, the system gives
the UIC and TI: device of the sending task to it. The slave
task then assumes the identity and privileges of the sending
task.

This switch only applies to your task if the system that you are
using has multiuser protection. (Refer to your system generation
manual for more information on multiuser protection and slave
tasks.)

De'fault

/-SL

10-45

TKB SWITCHES

SP (

10.33 /SP -- SPOOL MAP OUTPUT

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/-SP=file.OBJ

Description

This switch determines whether TKB calls the print spooler to
spool your memory allocation (map) file after task build.

Effect

By default, when you specify a map file in a TKB command
sequence, TKB creates a map file on device SYO: and then has the
file queued for listing on LPO: if the system task QMGPRT.TSK is
installed with the PRT ••• name.

If you negate this switch (as shown in the Syntax section above),
TKB creates the map file on device SYO: but does not call the
print spooler to output it to LPO:

Default

/Sp

NOTE

The PRT task must be installed to process the request
to print the map.

10-46

(

(

(

(

c

(

(

TKB SWITCHES

sa
10.34 ISQ -- SEQUENTIAL

File

Task image

Syntax

file.TSK/SQ=file.OBJ

Description

This switch causes TKB to construct your task image from the
program sections you specified, in the order that you input them.

Effect

If you use this switch, TKB collects all the references to a
given program section from your input object modules, groups them
according to their access code (RW followed by RO) and, within
these groups, allocates memory for them in the order that you
input them. However, the ISG switch affects program section
ordering and can be used with the ISQ switch. See the ISG switch
for further details.

Without the ISQ
alphabetically.

You use this switch
existing code may
RSX-ll. Using this
following reasons:

switch, TKB reorders the program sections

to satisfy any adjacency requirements that
have when you are converting it to run under

feature is otherwise discouraged for the

• Standard library routines (such as FORTRAN 1/0 handling
routines and FCS modules from SYSLIB) do not work properly.

• Sequential allocation can result in errors if you alter the
order in which modules are linked.

Alternatively, you can achieve physical adjacency of program
sections by selecting names alphabetically to correspond to the
desired order.

Default

I-SQ

10-47

TKB SWITCHES

ss

10.35 /SS -- SELECTIVE SEARCH

File

Input

Syntax

file.TSK=file.OBJ,file.OBJ/SS

or

file.TSK=file.OBJ,file.STB/SS

or

file.TSK=file.OBJ,file.OLB/LB/SS

Description

The /SS switch directs TKB to include in its internal symbol
table only those global symbols for which there is a previously
undefined reference.

Effect

c

When processing an input file, TKB normally includes in its
internal symbol table each global symbol it encounters within the (
file whether or not there are references to it. With the /SS ~
switch attached to an input file, TKB checks each global symbol
it encounters within that file against its list of undefined
references. If TKB finds a match, it includes the symbol in its
symbol table.

Default

/-SS

Example

Assume that you are building a task named SEL.TSK. The task is
composed of input files containing global entry points and
references (calls) to them as shown in Table 10-2.

Input
File Name

INI

IN2

IN3
IN4

Table 10-2
Input Files for SEL.TSK

Global Definition Global Reference

A
A
B
C

C
A
B
C

10-48

(

c_

(

(

(
,---

TKB SWITCHES

SS (Cont.)

File IN2 and IN4 contain global symbols of the same name that
represent entry points to different routines within their
respective files. Assume that you want TKB to resolve the
reference to global symbol A in INl to the definition for A in
IN2. Assume further that you want TKB to resolve the reference
to global symbol C in IN3 to the definition for C in IN4. By
selecting the sequence of the input files properly and applying
the Iss switch to files IN2 and IN4, TKB resolves the references
correctly. The following command sequence illustrates the
correct sequence:

TKB>SEL.TSK=IN1.OBJ,IN2.0BJ/ss,IN3.0BJ,IN4.0BJ/ss

TKB processes input files from left to right; therefore, in
processing the above command sequence, TKB processes file INl
first and encounters the reference to symbol A. There is no
definition for A within INli therefore, TKB marks A as undefined
and moves on to process file IN2. Because the Iss switch is
attached to IN2, TKB limits its search of IN2 to symbols it has
previously listed as undefined, in this case, symbol A. TKB
finds a definition for A and places A in its symbol table.
Because there are no undefined references to symbols B or C, TKB
does not place either of these symbols in its symbol table.

NOTE

It is important to realize that the Iss switch affects
only the way the Task Builder constructs its internal
symbol table. The routines for which symbols Band C
are entry points is included in the task image even
though there are no references to them.

TKB moves on to IN3. It encounters the references to
Because TKB did not include symbol C from IN2 in
table, it cannot resolve the reference to C in IN3.
symbol C as undefined and moves on to IN4.

symbol C.
its symbol
TKB marks

When TKB processes IN4, it
that file and includes
switch is attached to IN4,
table.

encounters the definition for C in
it in the table. Again, since the Iss
TKB includes only C in its symbol

When TKB has completed its processing
sequence, it has constructed a task image
code from all of the modules, INl through
symbols A from IN2 and C from IN4 will
symbol table.

NOTE

of the above command
composed of all of the

IN4. However, only
appear in its internal.

The example above does not
programming practice. It is
illustrate the effect of the Iss
during a search sequence.

represent good
included here to
switch on TKB

The Iss switch
size of the
building of a
routines and

is particularly valuable when used to limit the
Task Builder's internal symbol table during the

privileged task that references the Executive's
data structures. By specifying the Executive's

10-49

TKB SWITCHES

55 (Cont.)

Symbol Definition File (.STB) as an input file and applying the Iss
switch to it, TKB includes in its internal symbol table only those
symbols in the Executive that the task references. An example of a
TKB command sequence that illustrates this is shown below:

TKB>OUTFILE.TSK/pR:5=INFILE.OBJ,RSXllM.STB/ss

The above command sequence directs TKB to build a privileged task
named OUTFILE.TSK from the input file INFILE.OBJ. The specification
of the Executive's .STB file as an input file with the Iss switch
applied to it directs TKB to extract from RSXllM.STB only those
symbols for which there are references within OUTFILE.TSK.

10-50

c

(-

(

(

(

(

(-

TKB SWITCHES

TR

10.36 /TR -- TRACEABLE

File

Task image

Syntax

file.TSK/TR=file.OBJ

Description

This switch directs TKB to make your task traceable.

Effect

TKB sets the T-bit in the initial PS word of your task. When
your task is executed, a trace trap occurs when each instruction
is completed.

Default

/-TR

10-51

TKB SWITCHES

WI

10.37 /WI -- WIDE LISTING FORMAT

File

Memory allocation (map)

Syntax

file.TSK,file.MAP/-WI=file.OBJ

Description

This switch controls the width of your map file.

Effect

By default, TKB formats a map file 132 columns wide. When you (
negate this switch (as in the Syntax section above), TKB formats
the map file 80 columns wide.

Default

/WI

(

(

10-52

TKB SWITCHES

c

c:!

10-53

TKB SWITCHES

XT

10.39 /XT[:N] -- EXIT ON DIAGNOSTIC

File

Task image

Syntax

file.TSK/XT:4=file.OBJ

Description

This switch specifies the number of acceptable errors. More than
n errors are not acceptable.

Effect

TKB exits after encountering n errors. The number of errors can
be specified as a decimal or octal number, using the convention:

n.

#n or n

indicates a decimal number (the decimal point must
be included).

indicates an octal number.

If you do not specify n, TKB assumes that n is 1.

Default

/-XT

10-54

(

(

(\

i

(

(

(

CHAPTER 11

LINK QUALIFIERS

You use LINK qualifiers in the command line when building a task to
specify the characteristics of the task or the input files. This
chapter assumes a standard format for the LINK command line for the
sake of clarity. However, many command qualifiers can be used also as
qualifiers in the input filespec section of the LINK command and still
create the required characteristics in the task. A few qualifiers
must be used on input filespecs and can be used nowhere else.

11.1 LINK QUALIFIERS

The following sections describe the syntax and use of LINK qualifiers.
Section 11.1.1 describes the standard format for the LINK command line
to be presented in this chapter. Section 11.1.2 describes the
appropriate specification of and abbreviation of LINK qualifiers.
Section 11.1.3 describes qualifiers that override other qualifiers.
Section 11.1.4 contains Table 11-1, which lists all the qualifiers
alphabetically, summarizes their use, shows what they affect, and
shows their defaults.

The individual descriptions of each qualifier begin at Section 11.2.

11.1.1 LINK Command Line Syntax

For the sake of brevity, consistency, and clarity, the LINK command is
described as having two sections: an output filespec and output
qualifier section, and an input filespec and input qualifier section.
Those qualifiers that can be used as output qualifiers will be
referred to as command qualifiers. Those qualifiers that must be used
as input filespec qualifiers will be so designated. The LINK command
can thus be shown as follows:

>LINK/OUTFILESPEC(S)/QUALIFIERS INFILESPECS/QUALIFIERS
I I I I

A

Output Filespec and
Qualifier Section

11-1

A

Input Filespec and
Qualifier Section

LINK QUALIFIERS

The principal parts of the LINK output filespec section are:

•
•

LINK, the command itself

One, two, or all three of the following
designators, with or without filespecs:
/MAP:filespec, and /SYMBOL_TABLE:filespec

output file
/TASK:filespec,

• One or more output file qualifiers or command qualifiers

The LINK input filespec section consists of one or more input
filespecs and input file qualifiers.

If you do not specify a name for the output file, the LINK command, by
default, produces an output task image named the same as the first
input file. You can use /TASK:filename to specify a specific name, or
/NOTASK to eliminate producing the task image. For example, no task
is required if you want only a map of the task.

The /MAP qualifier produces a .MAP file. The .MAP file may be named
by using /MAP:filename; otherwise the name of the .MAP file will be
the same as the first input file. You may use /MAP either as a C
command qualifier or as an input filename qualifier. If you specify
/MAP, TKB spools the .MAP file to the printer. If you do not want
spooling, you can use the /NOPRINT qualifier to prevent it.

The /SYMBOL TABLE qualifier (/SYM) must
symbol definition file (.STB). You
/SYM:filenafue. .

be specified
may name the

to produce a
file by using

The input filespec and qualifier section of the LINK command consists
of an input file specification or specifications, separated by commas.
And, if necessary, there are one or more qualifiers following any of
the filenames. For example: .

>LINK/TAS/MAP/SYM INFILE1,INFILE2/QUALIFIER,INFILE3

Some qualifiers can operate correctly whether used as LINK command
qualifiers or input filespec qualifiers. Others must be used as input
filespec qualifiers; they are the ones shown following:

/CONCATENATE

/DEFAULT_LIBRARY

/GLOBALS

/INCLUDE

/LIBRARY

/SELECTIVE_SEARCH

Those qualifiers that must be
designated in the Qualifier
detailed qualifier description
as LINK command qualifiers.

used on an input filespec are so
Summary Table (Section 11.1.4) and the

following Section 11.2. Use the others

11-2

l

(

c

C

(

c

LINK QUALIFIERS

11.1.2 Qualifier Designation

You specify a qualifier by using a slash
name or its acceptable abbreviation.
library, you would use ILIBRARY as
Alternatively, you could use ILIB as the

(I) followed by the qualifier
For example, in specifying a

an input file qualifier.
abbreviated form.

To use the negated vers"ion of a qualifier, if it has one, use the
slash (I), followed by NO, followed by the qualifier name. For
example, to operate TKB without producing a task you would use INOTASK
as a LINK command qualifier. The abbreviated form is INOTAS.

As previously stated, LINK qualifiers may be abbreviated. In general,
use the first three letters of the qualifier name to abbreviate a
qualifier. However, be careful when you abbreviate LINK qualifiers
that you use enough letters to make the abbreviation distinct from
another possible abbreviation. For example, LINK will give you the
message that IPRI is ambiguous because IPRI may be the abbreviation of
IPRINT or IPRIVILEGED. To abbreviate these two qualifiers you must
use either IPRIN or IPRIV. Appropriate abbreviations are listed in
the Qualifier Summary Table in Section 11.1.4.

11.1.3 Overriding Qualifiers

In some cases, the
or "redundant and
selects one of the
are listed next in

use of two particular qualifiers may be
should not be used together. In these

qualifiers to override the other. These
the following table:

illogical
cases, TKB
qualifiers

Qualifier Used With Overriding Qualifier

IANCILLARY_PROC:n IPRIVILEGED:n IANCILLARY_PROC:n

ICODE:FPP ICODE:EAE ICODE:FPP

ILIBRARY I CONCATENATE ILIBRARY

11.1.4 Qualifier Summary Table

The qualifiers used by LINK and passed to TKB are given in
alphabetical order in Table 11-1. The qualifiers are described in
their positive form. For example, I[NO]HEADER is followed by a
description of IHEADER, its positive form. If a qualifier can be
negated (as in INOHEADER), the negative form produces the opposite
effect. Some qualifiers have no negative form; to refrain from
producing the effect described for one of these qualifiers, simply do
not use the qualifier.

Please read the table carefully. Defaults for qualifiers may be the
negative form, the positive form, or no qualifier at all (Not I ...).
The default for each qualifier is shown with its a"cceptable
abbreviation.

A summary of the LINK qualifiers in Table 11-1 follows next.

11-3

Format Meaning

LINK QUALIFIERS

Table 11-1
Link Qualifiers

/ANCILLARY_PROCESSOR[:n]

/BASIC

Task is an ancillary control
processor and privileged.

Input file is a command file
created by BASIC-PLUS-2.

/[NO]CHECKPOINT:SYSTEM

Specifies a checkpointable
task and its checkpoint
location on the system check
point file. /CHECKPOINT and
/CHECKPOINT:SYSTEM are equiva
lent.

/[NO]CHECKPOINT:TASK

Specifies a checkpointable
task and its checkpoint
location in added space in
the task image on disk.

/CODE:EAE

Specifies that the task uses
the Extended Arithmetic
Element.

/CODE:FPP

Specifies that the task uses
the Floating Point Processor.

/CODE:PIC

Specifies that the task con
tains relocatable code.
Usually used for a library or
common with /NOHEAD.

/CODE:POSITION_INDEPENDENT

Same as /CODE:PIC

11-4

File
Affected

.TSK

Input
file

.TSK

.TSK

.TSK

.TSK

.TSK

.STB

.TSK

.STB

Default and
Abbreviation

Not /ANC

Not /BAS

/NOCHE:SYS

/NOCHE:TAS

Not /COD:EAE

Not /COD:PIC

Not /COD:POS

(continued on next page)

(

(

(

(

(

(

c

(

c

Format

LINK QUALIFIERS

Table 11-1 (Cont.)
Link Qualifiers

Meaning

/COMPATIBLE

Specifies alignment of overlay
segments so as to be compatible
with PLAS directives.

/[NO]CONCATENATE

Specifies that all modules of
the input file be concatenated.
/NOCON specifies that only the
first object module of the input
file be used. Applicable only
to an input file.

/CROSS_REFERENCE

Specifies that a list of
cross-referenced global symbols
be appended to the map file.

/DEBUG[:filepsec]

Specifies that the task is to
contain the system default
debugger. An object file
(user-written debugger) may be
named.

/DEFAULT_LIBRARY

Specifies a library to be
searched for unresolved global
symbols other than the
system library. Applic,able
only to an input file.

/ERROR_LIMIT[:n]

Specifies the number of errors
at which TKB exits.

/[NO]EXECUTABLE[:filespec]

Specifies that TKB produce a
task. The task may be named
by filespec. /NOEXECUTABLE
specifies that no task be
built. Synonym for /TASK.

11-5

File
Affected

.TSK

.OBJ

. MAP

.TSK

.OBJ

Input
File
.OLB

.TSK

.TSK

Default and
Abbreviation

Not /COM

ICON

Not /CRO

Not /DEB

Not /DEF

Not /ERR

/EXE or
/TAS

(continued on next page)

Format

/FAST

LINK QUALIFIERS

Table 11-1 (Cont.)
Link Qualifiers

Meaning

Specifies that the Fast Task
Builder (FTB) be used.

/FULL_SEARCH

Specifies that TKB search all
co-tree overlay segments for
matching symbols when proces
sing the default object module
library.

/[NO]GLOBALS

Specifies that global symbols
in the input file be included
in the map file. Applicable
only to an input file.

/[NO]HEADER

Specifies that the task contain
a header. /NOHEADER specifies
a task without a header for a
library or common.

/ INCLUDE: (modulel [, module2, ... , modulen])

Includes the specified modules
from a library file. At least
one must be specified. See
also /LIBRARY. Applicable
only to an input file.

Specifies that the task is to
be mapped to the I/O page. Use
with the /PRIVILEGED qualifier.

/LIBRARY

Specifies that the input file
is an object module library.
Applicable only to an input
.OLB file. The .OLB file on
which /LIB is used should be
the last one, if other input
files are also specified.

11-6

File
Affected

ALL

.TSK

.OBJ

.TSK

.OLB

.TSK

.OLB

Default and
Abbreviation

Not /FAS

Not /FUL

/GLb

/HEA

Not /INC

/10

Not /LIB

(continued on next page)

(

(

(

(

c

(

c

c

Format

ILONG

LINK QUALIFIERS

Table 11-1 (Cont.)
Link Qualifiers

Meaning

Specifies that the file con
tents section of the input
file is to be included in the
task map.

lMAP[:filespec]

Specifies that TKB must pro
duce a map file for the task.
A short map is produced (not
ILONG). The map may be named
with filespec.

/[NO]MEMORY_MANAGEMENT[:n]

Specifies that TKB build a task
with the specified mapping for
the system on which the task is
to be run. Specify n as the
highest physical task address
on systems without memory man
agement.

/OPTION[:filespec]

Specifies to DCL that LINK
is to prompt you for
options. TKB options are des
cribed in Chapter 12.

/OVERLAY_DESCRIPTION

Specifies that the single input
file contains the Overlay
Description Language.

IpOSTMORTEM

Specifies that a postmortem
dump is taken if the task ab
normally terminates.

ItNO]PRINTER

Specifies that the .MAP file
is to be spooled to the line
printer.

IPRIVILEGED[:n]

Specifies that TKB is to build
a privileged task. Specify the
kind of privilege and mapping
with n.

11-7

File
Affected

. MAP

. MAP

.TSK

.TSK

.ODL

.TSK

.MAP

.TSK

Default and
Abbreviation

Not /LON

Not /MAP

Mapping
Status
of Build
ing System

Not /OPT
No Options
Allowed

Not lOVE

Not /POS

/PRIN

Not /PRIV

(continued on next page)

Format

LINK QUALIFIERS

Table 11-1 (Cont.)
Link Qualifiers

Meaning

/[NO]RECEIVE

Specifies that the task may
receive messages by the Exe
cutive Send directive.

/[NO] RESIDENT_OVERLAYS

/SAVE

Specifies that TKB recognize
the memory-resident overlay
operator in the .ODL file. Use
With the /OVERLAY DESCRIPTION
qualifier. -

Saves the indirect command file
that DCL uses to pass commands
to TKB when you use LINK. The
file is named ATLNK.CMD.

/[NO]SEGREGA'1'E

Segregates program sections by
access code. Read-write fol
low.ed by read-only. Interacts
with the /SEQUENTIAL qualifi~r.
See the detailed description.

/SELECTIVE_SEARCH

Includes in. the TKB internal
symbol table only those symbols
that match those in the TKB
list of undefined references.
Applicable only to an input
file.

/SEQUENTIAL

Specifies that TKB allocate
program sections in input
order. Interacts with the
/SEGREGATE qualifier. See
the detailed description.

jSHAREABLE[:COMMON]

Specifies to TKB that a shared
common be built. Use with the
/NOHEADER qualifier. Interacts
with /CODE:PIC qualifier. See
detailed description.

11-8

File
Affected

.TSK

.TSK

.CMD

.TSK

.OBJ

.TSK

.TSK

Default and
Abbreviation

/REC

/RES

Not /SAV

/NOSEG

Not /SEL

Not /SEQ

Varies; see
description

(continued on next page)

(

c

(

(

l

(

c

c

(

Format

LINK QUALIFIERS

Table 11-1 (Cont.)
Link Qualifiers

Meaning

/SHAREABLE[:LIBRARY]

/SLAVE

/SLOW

Specifies to TKB that a shared
library be built. Use with the
/NOHEADER qualifier. Interacts
with the /CODE:PIC qualifier.
See detailed description.

specifies that this task is a
slave task to a task that
initiates it.

Invokes the Slow Task Builder.

/SYMBOL_TABLE[:filespec]

Specifies that TKB produce a
symbol table file (.STB).

/[NO]SYSTEM_LIBRARY_DISPLAY

Specifies that TKB include
global symbols in the map
defined or referenced by the
task. It also includes names
routines from SYSLIB and sym
bols from shared regions to
which the task refers.

/[NO]TASK[:filespec]

/TKB

/TRACE

Specifies that a task be
built. Specify a name with
filespec.

Invokes the default Task
Builder.

Causes the task to be trace
able. A trace trap occurs
after each instruction.

11-9

File
Affected

.TSK

.TSK

.STB

• MAP

.TSK

.TSK

Default and
Abbreviation

Varies: see
description

Not /SLA

Not /SLO

Not /SYM

/NOSYS

/TAS

/TKB

Not /TRA

(continued on next page)

LINK QUALIFIERS

Table 11-1 (Cont.)
Link Qualifiers

Format Meaning

/[NO]WARNINGS

Suppresses two diagnostic
messages.

/[NO]WIDE

Formats a map to print 132
characters wide.

11.2 QUALIFIER DESCRIPTIONS

Sections 11.3
individually,
information:

through 11.52
in alphabetical

• Affected file

• Use

• Syntc!'x

• Syntax exceptions

• Acceptable abbreviation

• Effect

• Default

fully
order,

11-10

File
Affected

.TSK

• MAP

Default and
Abbreviation

/WAR

/WID

describe the
including the

qualifiers
following

(

c

(

(

(

(

(

LINK QUALIFIERS

/ANCILLARY_PROCESSOR[:n]

11.3 /ANCILLARY_PROCESSOR[:n]

Affected File

Use

Task image (.TSK)

Use /ANCILLARY PROCESSOR to specify a task as an ancillary
control processor, which is a privileged task.

Syntax

>LINK/TAS/ANCILLARY_PROCESSOR:n/MAP/SYM INPUTFILE ...

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/ANCILLARY PROCESSOR:n
c -

Acceptable Abbreviation

/ANC:n for /ANCILLARY_PROCESSOR:n

Effect

This qualifier informs TKB that the task you are building is an
ancillary control processor; that is, it is a privileged task
that extends certain Executive functions. For example, the
system task, FIIACP, is an ancillary control processor that
receives and processes Files-ll related input and output requests
on behalf of the Executive.

/ANCILLARY PROCESSOR also informs TKB that the task is
privileged~ TKB sets the AC attribute flag and the privileged
attribute flag in the task's label block flag word.

The number n is an octal number that
Active Page Register (APR) that you
map the task,'s image when the task,
Legal values are 0, 4, and 5.
assumes a value of 5.

specifies the first KT-ll
want the Executive to use to
is running in user mode.
If you do not specify n, TKB

If you do not explicitly specify that your task is to run on a
mapped system (with the /MEMORY MANAGEMENT qualifier) and mapping
is not otherwise implied (because TKB is not running on a system
with KT-ll hardware), TKB tests the value of n for validity, but
otherwise ignores it.

Default

Not /ANC; an ancillary control processor is not specified.

ll-ll

LINK QUALIFIERS

/BASIC

11.4 /BASIC

Affected File

Use

Input file is a .CMD file; may affect any output file.

Use /B~SIC as an input file qualifier when the inp~t file was
created by the BASIC-PLUS-2 compiler.

Syntax

>LINK INPUTFILE/BASIC

Syntax Exceptions

None

Acceptable Abbreviation

/BAS for /BASIC

Effect

/BASIC identifies the input file as a command file produced by
the BASIC-PLUS-2 oompiler. The BUILD command of the compiler
creates a file of commands for the use of TKB and an object file.
The command file supplies the appropriate switches and options to
build a task image from the object file. This qualifier is not
valid in any other situation.

You should
BASIC-PLUS-2
command file
BASIC-PLUS-2

Default

not modify the command file created by the
compiler. Nor should you attempt to write the

yourself. Fatal errors may occur when user- edited
command files are supplied to TKB.

Not /BASIC; TKB assumes no input command file
BASIC-PLUS-2 compiler.

from the.

11-12

c

(

(

(

LINK QUALIFIERS

(I[NO]CHECKPOINT:SV.STEM

c

c

11.5 /[NO]CHECKPOINT[:SYS]

Affected File

Task image (.TSK)

Use

Use /CHECKPOINT to create a checkpointable task image.

Syntax

>LINK/TAS/CHECKPOINT:SYSTEM/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/CHECKPOINT:SYSTEM

Acceptable Abbreviation

/CHE:SYS for /CHECKPOINT:SYSTEM

Effect

/CHECKPOINT:SYSTEM marks your task as checkpointable.

/CHECKPOINT:SYSTEM causes the system to checkpoint the task to
space that you have allocated in the system checkpoint file on
the system disk. The sy"stem writes the task to the system
checkpoint file on secondary storage when its physical memory is
required by a task of higher priority. You must preallocate that
space with the DCL SET DEVICE command. /CHECKPOINT and
/CHECKPOINT:SYSTEM are equivalent qualifiers.

The task's checkpointability has an impact on the efficient
operation of the entire system. If a task cannot be
checkpointed, it may block other more important tasks from
running. If it can be checkpointed, the .checkpoint space on the
device is not available for other use. If it is checkpointable
on the system device, there may, at times, be no room for the
task on the device. As a general rule, all user tasks should be
checkpointable. However, there are exceptions to this rule.
Consult with your system manager on the proper use of
/CHECKPOINT.

The system INSTALL command overrides the use of the /CHECKPOINT
qualifier.

Default

NOTE

Do not use /CHECKPOINT:SYSTEM and
/CHECKPOINT:TASK in the same command line. Do
not use /CHECKPOINT:TASK in the same command line
with /NOHEADER to build tasks. Examples of tasks
that use the /NOHEADER switch are the Executive,
device drivers, and commons or libraries.

/NOCHECKPOINT:SYSTEM

11-13

LINK QUALIFIERS

I[NO]CHECKPOINT:TASK

11.6 /[NO]CHECKPOINT[:TAS]

Affected File

Task image (.TSK)

Use

Use /CHECKPOINT to create a checkpointable task image.

Syntax

>LINK/TAS/CHECKPOINT:TASK/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/CHECKPOINT:TASK

Acceptable Abbreviation

/CHE:TAS for /CHECKPOINT:TASK

Effect

/CHECKPOINT:TASK - Causes the system to checkpoint the task to a
space in the task image file. However, the system uses the
system checkpoint file first if you specified dynamic
checkpointing with SET DEVICE. Also, /CHECKPOINT:TASK tells TKB
to allocate additional space in the task image to accomodate the
checkpointed task.

The task's checkpointability has an impact on the efficient
operation of the entire system. If a task cannot be
checkpointed, it may block other more important tasks from
running. If it can be checkpointed, the checkpoint space on the
device is not available for other use. If it is·checkpointable
on the system device, there may, at times, be no room for the
task on the device. As a general rule, all user tasks should be
checkpointable. However, there are exceptions to this rule.
Consult with your system manager on the proper use of
/CHECKPOINT.

The system INSTALL command overrides the use of the /CHECKPOINT·
qualifier.

NOTE

Do not use /CHECKPOINT:SYSTEM and
/CHECKPOINT:TASK in the same command line. Do
not use /CHECKPOINT:TASK in the same command line
with /NOHEADER to build tasks. Examples of tasks
that use the /NOHEADER switch are the Executive,
device drivers, and commons or libraries.

11-14

(

(

(

(

(
'-.

LINK QUALIFIERS

(

(

(

l

11-15

LINK QUALIFIERS

ICODE:EAE

11.8 /CODE:[EAE]

Affected File

Task image (.TSK)

Use

Use this qualifier to inform TKB that .the task uses the KEII-A
Extended Arithmetic Element.

Syntax

>LINK/TAS/CODE:EAE/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/CODE:EAE

Acceptable Abbreviations

/COD:E for /CODE:EAE

Effect

TKB allocates three words in the task's header for saving the
state of the arithmetic element. You should not use /CODE:EAE
and /CODE:FPP on the same command line.

Default

Not / CODE :. EAE

11-16

(

(

c

(

c

(

(

(

(

LINK QUALIFIERS

/CODE:FPP

11.9 /CQDE:[FPP]

Affected File

Use

Task image (.TSK)

Use this qualifier to inform TKB that the task uses the Floating
Point Processor.

Syntax

>LINK/TAS/COD~:FPP/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/CODE:FPP

Acceptable Abbreviations

/COD:F for /CODE:FPP

Effect

TKB allocates 25 words in the task's header for saving the state
of the Floating Point Processor if the task is context switched.
Therefore, in an RSX-llM system, if a task that uses the Floating
Point Processor is built without the /CODE:FPP qualifier, the
task will run correctly until a second task that uses the
Floating Point Processor is run. -Then both tasks will either
crash or produce incorrect results. For information on changing
TKB defaults, refer to Appendix F.

Default

11-17

LINK QUALIFIERS

/CODE:PIC

11.10 /CODE:[PIC]

Affected File

Use

Task image (.TSK) and symbol definition (.STB)

Use this qualifier to inform TKB that the task's
contains only position-independent code or data.
is equivalent to /CODE:POSITION_INDEPENDENT.

shared region
This qualifier

Syntax

>LINK/TAS/CODE:PIC/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/CODE:PIC

Acceptable Abbreviations

/CODE:PIC for /CODE:PIC

Effect

This qualifier must be used with the /NOHEADER and
/SHAREABLE:COMMON or /SHAREABLE:LIBRARY qualifiers.
PIC code attribute flag in the label block flag
shared region.

either the
TKB sets the

word of the

Be aware that if you specify /CODE:PIC without using the
/SHAREABLE:COMMON or /SHAREABLE:LIBRARY qualifiers, TKB builds a
shared common (/SHAREABLE:COMMON default). If you specify
/[NO]HEADER without /CODE:PIC, /SHAREABLE:COMMON, or
/SHAREABLE:LIBRARY, TKB creates a shared library
(/SHAREABLE:LIBRARY default).

Default

Not /CODE: PIC

11-18

c

(

(

(

(

LINK QUALIFIERS

/CODE:POSITION_INDEPENDENT

11.11 /CODE:[POSITION_INDEPENDENT]

Affected File

Use

Task image (.TSK) or symbol definition (.STB)

Use this qualifier .to inform TKB that the task I s shared region
contains only position independent code. This qualifier is
equivalent to /CODE:PIC.

Syntax

>LINK/TAS/CODE:POSITION_INDEPENDENT/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/CODE:POSITION_INDEPENDENT

Acceptable Abbreviations

/COD:POS for /CODE:POSITION_INDEPENDENT

Effect

This qualifier must be used with the /NOHEADER and
/SHAREABLE:COMMON or /SHAREABLE:LIBRARY qualifiers.
PIC code attribute ~lag in the label block flag
shared region.

either the
TKB sets the

word of the

Be aware that if you specify /CODE:PIC without using the
/SHAREABLE:COMMON or /SHAREABLE:LIBRARY qualifiers, TKB builds a
shared common (/SHAREABLE:COMMON default). If you specify
/[NO]HEADER without /CODE:PIC, /SHAREABLE:COMMON, or
/SHAREABLE:LIBRARY, TKB creates a shared library
(jSHAREABLE:LIBRARY default).

Default

Not /CODE:POSITION_INDEPENDENT

11-19

LINK QUALIFIERS

/COMPATIBLE

11.12 /COMPATIBLE

Affected File

Task image (.TSK)

Use

Use /COMPATIBLE to align memory-resident overlay segments on
256-word boundaries, if your task uses Executive mapping
directives and memory-resident overlays.

Syntax

>LINK/TAs/eOMPATIBLE/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/eOMPATIBLE

Acceptable Abbreviation

/eOM for /eOMPATIBLE

Effect

When memory-resident overlay segments are read in, TKB aligns

(

(

them on 256-word boundaries. This is to make the memory-resident ('
segment compatible with the Executive mapping directives, which ~
operate on a basis of 256-word boundaries.

Using this directive could cause some loss of the use of virtual
addressing space in your task. For example, if the root of your
task extends just a few words beyond a 256-word boundary, and you
use this qualifier, a large space will be left between the end of
the root and the first memory-resident overlay segment. A loss
of space may also occur between multiple overlay segments. To
avoid this loss, try to code your task so that the end of the C~
root or of segments is near and just below a 256-word boundary. _

Default

Not /COMPATIBLEi TKB does not align memory-resident overlay
segments on 256-word boundaries, but on 32-word boundaries.

11-20

LINK QUALIFIERS

(I[NO]CONCATENATE

(

(

(

(

11.13 j[NO]CONCATENATE

Affected File

Use

Input (. OBJ)

Use /NOCONCATENATE to include only the first module of the input
file to which this qualifier is attached.

Use /CONCATENATE to include all the modules of the input file to
which this qualifier is attached. This is the default operation.

Syntax

>LINK/TASjMAPjSYM INPUTFILE/NOCONCATENATE

Syntax Exceptions

None

Acceptable Abbreviation

ICON for /CONCATENATE
/NOCON for /NOCONCATENATE

Effect

By default, TKB includes in the task all . the modules in the input
file. In other words, it concatenates all the modules. The
/NOCONCATENATE qualifier provides a way to include only the first
module of the input file as part of the task.

Default

/CONCATENATEi TKB includes in the task all the modules in the
input file.

11-21

LINK QUALIFIERS

/CROSS_REFERENCE

11.14 /CROSS_REFERENCE

Affected File

Use

Memory allocation (.MAP)

Use /CROSS REFERENCE to add a cross-reference listing that.
includes segment, module, and global symbol information to the
map (.MAP) file.

Syntax

>LINK/TAS/MAP/CROSS_REFERENCE/SYM INPUTFILE

or

>LINK/TAS/MAP/SYM INPUTFILE/CROSS_REFERENCE

Syntax Exceptions

None

Acceptable Abbreviation

/CRO for /CROSS REFERENCE
/NOCRO for /NOCROSS_REFERENCE

Effect

If you include this qualifier, LINK automatically includes the
/MAP qualifier as well and, therefore, produces a map file. You
need not use the /MAP qualifier unless you want to supply a name
to the map file that is different from the input filename.

(

(

/CROSS REFERENCE informs TKB to create a special work file (
(file.CRF) that contains segment, module, and global symbol
information. TKB then calls the cross-reference processor
(..• CRF) to process the file. CRF creates a cross-reference
listing from the information contained in the file, and then
deletes file.CRF. Refer to the RSX-IlM/M-PLUS Utilities Manual
for more information on CRF.

For this qualifier to operate correctly, CRF must be installed in
your system.

The Example section below describes the cross-reference listing
and its contents.

Default

Not /CROSS REFERENCEj TKB does not include
information-in the map file.

Example

cross-reference

Example 11-1 shows a cross-reference list.ing for task OVR. The
numbered items in the notes correspond to the numbers in Example
11-1.

11-22

(

(

LINK QUALIFIERS

CREF CREATED BY TKB ON 27-JUL-82 AT 09:46 PAGE 2

SEGMENT CROSS REFERENCE CREF VOl

SEGMENT NAME RESIDENT MODULES

AADD AADD
CALC CALC
DIVV DIVV .. INPUT ARITH CATB INPUT QIOSYM SAVRG
LIBROT INITL SAVAL
MAIN ALERR AUTO MAIN OVCTR OVDAT OVRES SAVRl

VCTDF
MULL MULL
OUTPUT ARITH CATB CBTA CDDMG CSTA DARITH EDDAT

EDTMG OUTPUT QIOSYM SAVRG
SUBB SUBB

NOTES

.. The cross-reference page header gives the name of the
memory allocation file. the originating task (TKB), the
date and time the memory allocation file was created, and
the cross-reference page number.

~ The cross-reference list contains an alphabetic listing
of each global symbol along with its value and the name
of each referencing module. When a symbol is definea in
·several segments within . an overlay structure, ·the last
defined value is printed. Similarly, if a module is
loaded in several segments within the structure, the
module name is displayed more than once within each
entry.

11-23

LINK QUALIFIERS

/CROSS_REFERENCE (Cont.)

The suffix -R appears next to the value if the symbol
relocatable.

is

Prefix symbols accompanying each module name define the
type of reference as follows:

Prefix Symbol Reference Type

blank Module contains a reference that is
resolved in the same segment or in a
segment toward the root.

@

*

Module contains a reference that is
resolved directly in a segment away
from the root or in a co-tree.

Module contains a reference that is
- resolved through an autoload vector.

Module contains a nonautoloadable
definition.

Module contains an autoloadable
definition.

~ The segment cross-reference lists the name of each
overlay segment and the modules that compose it. If the
task is a single-segment task, this section does not
appear.

11-24

(

(

(

(

LINK QUALIFIERS

(/DEBUG[:filespec]

(

(

l

11.15 /DEBUG[:filespec]

Affected File

Task image (.TSK) or input (.OBJ)

Use

Use /DEBUG to include a debugging aid in your task.

Syntax

>LINK/TAS/DEBUG/MAP/SYM INPUT

or

>LINK/TAS/DEBUG:FILENAME/MAP/SYM FILENAME,IN~UT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/DEBUG:FILENAME,FILENAME

or

>LINK/TAS/MAP/SYM INPUT/DEBUG

Acceptable Abbreviation

/DEB for /DEBUG

Effect

If you apply /DEBUG without a filename as a LINK output qualifier
or input qualifier, TKB includes the system debugging aid
LBO:[l,l]ODT.OBJ into the task image. If you use /DEBUG in the
same way with the /CODE:DATA SPACE qualifier, TKB includes
LB:[l,l]ODTID.OBJ in the task image.

If you apply /DEBUG with a filename, you are specifying an input
file with a filetype of .OBJ that is a user-written debugger.
LINK passes the specified filename to TKB as one of the input
files.

TKB passes control to the debugger when the task
execution.

starts

Debugging aids can trace a task, run the task in single-step
mode, print out relevant debugging information, or monitor the
task's performance for evaluation.

/DEBUG without a filename has the following effects on the task
image:

• The transfer address of the debugging aid overrides the task
transfer address.

11-25

LINK QUALIFIERS

/DEBUG[:filespec] (Cont.)

• TKB initializes the header of the task so that, on initial task
load, registers RO through R4 contain the following values:

Default

RO - Transfer address of task.

Rl - Task name in Radix-50 format (word 1).

R2 - Task name (word 2).

R3 - The first three of six Radix-50 characters representing
the version of the task. TKB derives the version from
the first .IDENT directive it encounters in the task. If
no .IDENT directive is in the task, this value is 01.

R4 - The second three Radix-50 characters representing the
version of the task.

Not /DEBUG; no debugging aids are present for inclusion in the
.task.

11-26

(

(

(

(

(

(

(

LINK QUALIFIERS

/DEFAUL T_LIBRARY

11.16 !DEFAULT_LIBRARY

Affected File

Use

Input (.OLB)

Use /OEFAULT LIBRARY to substitute another library for the system
object module library.

Syntax

>LINK/TAS/MAP/SYM INPUTFILEl/OEFAULT_LIBRARY,INPUTFILE2, ..•

Syntax Exceptions

None

Acceptable Abbreviation

/OEF for /OEFAULT_LIBRARY

Effect

Attaching /OEFAULT LIBRARY to an input file causes that file to
be a replacement- library for the system object module library.
The input file default file type is .OBJ.

The specified library file replaces the file LBO:[l,l]SYSLIB.OLB
as the library file that TKB searches to resolve undefined global
references. The default device for the replacement file is SYO:.
TKB refers to it only when undefined symbols remain after it has
processed all the files you have specified. You can apply the
qualifier to only one input file.

Default

Not /OEFAULT_LIBRARYi no default library is specified or used.

11-27

/ERROR_LIMIT[:n]

11.17 /ERROR_LIMIT[:n]

Affected File

Task image (.TSK)

Use

LINK QUALIFIERS

Use /ERROR LIMIT to abort the task building process after n
diagnostic-errors.

Syntax

>LINK/TAS/ERROR_LIMIT:n/MAP/SYM INPUTFILE

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUTFILE/ERROR_LIMIT:n

Acceptable Abbreviation

/ERR:n for /ERROR_LIMIT:n

Effect

(

/ERROR LIMIT causes the TKB to abort after n diagnostic errors
have been reached. More than n errors are not acceptable. Enter C·
n as a decimal number, with or without the decimal point.

If you do not specify n, TKB assumes a value of 5.

Default

Not /ERROR LIMIT: TKB does not abort on any particular error
limit. -

• (

c
11-28

(

(

(

LINK QUALIFIERS

/[~O]EXECUT ABLE[:filespec]

11.18 /[NO]EXECUTABLE[:filespec]

Affected File

Task image (.TSK)

Use

Use /[NO]EXECUTABLE to specify a task name, or no task.

Syntax

>LINK/MAP/SYM INPUT/EXECUTABLE

or

>LINK/MAP/SYM INPUT/EXECUTABLE:TASKNAME

or

>LINK/EXECUTABLE:TASKNAME/MAP/SYM INPUT

or

>LINK/NOEXECUTABLE/MAP/SYM INPUT

or

>LINK/MAP/SYM INPUT/NOEXECUTABLE

Syntax Exceptions

None

Acceptable Abbreviation

/EXE:filename for /EXECUTABLE:filename
/NOEXE for /NOEXECUTABLE

Effect

If you use jEXECUTABLE by itself as a LINK output qualifier, it
will have no effect because the creation of a task file is the
default operation. If you use /EXECUTABLE by itself as an input
file qualifier, TKB gives the task the same name as that of the
file to which /EXECUTABLE is attached.

/EXECUTABLE:filename specifies a name different from that of the
first input file encountered in the input file string. You can
use /EXECUTABLE in this way to give a specific name to a task.
If you use /EXECUTABLE:filename attached to an input file, or as
an output qualifier, the task is named by the specified file
name.

11-29

LINK QUALIFIERS

I[NO]EXECUTABLE[:filespec] (Cont.)

/NOEXECUTABLE specifies that TKB is not to create a task file.
Use it to create a map or ,symbol definition file only, or to go
through the task build operation to check for errors.

/EXECUTABLE is a synonym for the /TASK qualifier.

Default

/EXECUTABLE as an output qualifier; a task file is created with
the same name as that of the first input file.

11-30

(

c

(

(

(

LINK QUALIFIERS

(

c

(

11-31

LINK QUALIFIERS

/FAST

11.20 /FAST

Affected File

Use

All output files

Use /FAST to specify that you want to use the Fast Task Builder
to build your task.

Syntax

>LINK/TAS/FAST/MAP INPUT

Syntax Exceptions

>LINK/TAS/MAP INPUT/FAST

Acceptable Abbreviation

/FAS for /FAST

Effect

/FAST specifies that you want to use the Fast Task Builder (FTB).
The Fast Task Builder supports a limited number of LINK
qualifiers, Task Builder capabilities, and options. See Appendix
G for a full description of the Fast Task Builder capabilities.

Default

Not /FASTi the standard Task Builder (TKB) is used.

11-32

(

(

c

(

c_

(

c

(

(

(

LINK QUALIFIERS

/FULL_SEARCH

11.21 /FULL_SEARCH

Affected File

Use

Task image (.TSK)

Use /FULL SEARCH when you want TKB to search all co-tree segments
for a matching definition or reference that matches a symbol
found in the default library.

Syntax

>LINK/TAS/FULL_SEARCH/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/FULL_SEARCH

Acceptable Abbreviation

/FUL for /FULL_SEARCH

Effect

In processing modules from the default object module library and
encountering undefined symbols within those modules, TKB normally
limits its search for definitions to the root of the main tree
and to the current tree. Thus, unintended global references
among co-tree overlay segments are eliminated. When you append
the /FULL SEARCH qualifier to the task image file of an overlaid
task, TKB searches all co-tree segments for a matching definition
or reference. See Chapter 3 for more details.

Default

Not /FULL SEARCH; TKB limits its search to the root of the main
tree and to the current tree.

11-33

LINK QUALIFIERS

![NO]GLOBALS

11.22 /[NO]GLOBALS

Affected File

Use

Memory allocation (.MAP) or input

Use /NOGLOBALS to exclude all global symbols defined or
referenced in the input file from the map and cross-reference
listings. This qualifier also eliminates "file contents" section
of the map file.

Syntax

>LINK/TAS/MAP/SYM INPUT/[NO]GLOBALS

Syntax Exceptions

None

Acceptable Abbreviation

/GLO for /GLOBALS
/NOGLO for /NOGLOBALS

Effect

TKB eliminates all global symbols defined or referenced in the
input file from the map and cross-reference listings. TKB also
does not include the "file contents" section in the map file.

Default

/GLOBALS; globals are included in the map file.

11-34

(

(

c

(

l

.(

c-

(

c

(

LINK QUALIFIERS

I[NO]HEADER

11.23 /[NO]HEADER

Affected File

Use

Task image (.TSK) and symbol definition (.STB)

Use the /NOHEADER qualifier when building a resident library,
common, or loadable driver.

Syntax

>LINK/TAS/[NO]HEADER/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/[NO]HEADER

Acceptable Abbreviation

/HEA for /HEADER
/NOHEA for /NOHEA

Effect

TKB does not construct a header for your task image. Libraries,
commons, and loadable drivers do not use task headers. Note that
you must also use the STACK=O option with this qualifier.

Default

/HEADER; TKB includes a header in the task image.

11-35

LINK QUALIFIERS

IINCLUDE:(module1 [,module2, ... ,modulen])

11.24 /INCLUDE:(modulel[,module2, ••• ,modulen])

Affected File

Use

Task image (.TSK) and input (library, .OLB)

Use /INCLUDE to include specific modules from the library file
into the task image.

Syntax

>LINK/TAS/MAP/SYM INPUT/INCLUDE:MOD1,MOD2, .•. MOD8

or

>LINK/TAS/MAP/SYM INPUT1,INPUT2/INCLUDE:MOD1, .•. ,MOD8

or

>LINK/TAS/MAP/SYM INPUT1,INPUT2,INPUT3,
->INPUT4,INPUTS/INCLUDE:MODl,MOD2, •.. MOD8

Syntax Exceptions

• The library file has a default file type of .OLB.

• . The library file from which you extract modules can be
anywhere in the input file string.

• If you are using multiline input in the LINK command string,
the library file with the /INCLUDEqualifier can appear more
than once. For example:

>LINK/TAS/MAP/SYM INPUTl,INPUT2/INCLUDE:MODl,
->INPUT3,INPUT4.0LB/INCLUDE:MODl, .•.

• You should not use the /INCLUDE qualifier and the /CONCATENATE
qualifier in the same command sequence.

• If you want TKB to search an object module library file both
to resolve global references and to select named modules for
inclusion in your task image, you must name the library file
twice: once, with the modules you want included in the task
image listed as arguments to the /INCLUDE qualifier; and a
second time, with the /LIBRARY qualifier. For example,

>LINK/TAS/MAP/SYM INLIBl/INCLUDE:MODl,MOD2,
->INPUT2,INLIBl/LIBRARY

11-36

(

(

(

(

(

(

(

LINK QUALIFIERS

/INCLUDE:(module1 [,module2, ... , modulen]) (Cont.)

Acceptable Abbreviation

/INC: for /INCLUDE:

Effect

The /INCLUDE qualifier causes TKB to extract from the library the
modules named as arguments of the qualifier regardless of whether
the modules contain definitions for unresolved references.

You can use the /SELECTIVE SEARCH qualifier in the command
sequence with both the /LIBRARY or /INCLUDE qualifiers to perform
a selective search for global definitions.

Default

Not /INCLUDEi TKB does not include modules from a library file.

11-37

LINK QUALIFIERS

/[NO]IO_PAGE

Affected File

Use

Task image (.TSK, privileged)

Use the INOIO PAGE qualifier to inform TKB that the task is over
12K words in size and need not map the 10 page.

Conversely, if you use the 110 PAGE qualifier, TKB assumes that
the task is over 12K words in size and must map the 10 page.

Syntax

>LINK/TAS/MAP/SYM/[NO]IO_PAGE INPUT

or

>LINK/TAS/MAP/SYM INPUT/[NO]IO_PAGE

Syntax Exceptions

None

Acceptable Abbreviation

110 for 110 PAGE
INOIO for INOIO_PAGE

Effect

TKB maps the task with the appropriate APRs and maps the 1/0 page
with APR 7. Using the INOIO PAGE qualifier causes TKB to set a
bit in the task's label block that informs INSTALL that the task
intentionally does not map the 1/0 page. When this bit is set,

(

(

(

INSTALL does not display an error message when it detects that (
the privileged task extends into APR 7.

Default

IIO_PAGE; TKB assumes that the 12K task is to map the 1/0 page.

(

11-38

LINK QUALIFIERS

(/LIBRARY

(.

c

(

(

11.26 /LIBRARY

Affected File

Use

Task image (.TSK) and input (.OLB)

Use /LIBRARY on an input file that is a library· and contains
relocatable object modules.

Syntax

>LINK/TAS/MAP/SYM INPUTl,INPUT2, ••• INPUTN/LIBRARY

Syntax Exceptions

• The library file must contain relocatable object modules.

•

•

•

The library file must be to the right in the string of input
files that contain references to be defined in the. library.

If you use LINK with multiline input, and you specify a given
library more than once during the command sequence, you must
attach the /LIBRARY qualifier to the library each time that
you specify the library. For example:

>LINK/TAS/MAP/SYM INPUTl,INLIB/LIBRARY,
->INPUT2,INPUT3,INLIB/LIBRARY .

If you are building an overlay structure, you must specify
object module libraries for an overlay structure within the
.ODL file for the structure. To do this, you must use the
.FCTR directive to specify the library. For example:

AFCTR:
BFCTR:
LIB:

.ROOT CONTRL-LIB-(AFCTR,BFCTR,C)

.FCTR AO-LIB-(Al,A2-(A21,A22»

.FCTR BO-LIB-(Bl,B2)

.FCTR LB:[303,3]LIBOBJ.OLB/LB

. END

The technique used in this .ODL file allows you to control the
placement of object module library routines into the segments
of the task's overlay structure. The Task Builder /LB switch
used in the .ODL file example is the equivalent of the LINK
/LIBRARY qualifier. However, you cannot use LINK qualifiers
in a .ODL file; you must use TKB switches. (TKB switches are
described in Chapter 10. For more information on overlaid
tasks, see Chapter 3.)

Acceptable Abbreviation

/LIB for /LIBRARY

11-39

LINK QUALIFIERS

/LIBRARY (Cont.)

Effect

TKB searches the file immediately to resolve undefined references
in any modules preceding the library specification. TKB also
extracts from the library, for inclusion in the task image, any
modules that contain definitions for such references.

Default

Not /LIBRARYi TKB does not use the input file as a library.

11-40

(

(

l

(

(

(

LINK QUALIFIERS

/LONG

11.27 /LONG

Affected File

Use

Memory allocation (.MAP)

Use /LONG to produce the long version of the memory allocation
file. The long version differs from the short version in that it
includes the "file contents" section.

Syntax

>LINK/TAS/MAP/SYM/LONG INPUT

or

>LINK/TAS/MAP/SYM INPUT/LONG

Syntax Exceptions

>LINK/TAS/SYM/LONG INPUT

or

>LINK/TAS/SYM INPUT/LONG

• If you use /LONG in the LINK command without /MAP, LINK
directs TKB to produce a .MAP file as though you specified
/MAP in the LINK command line.

Acceptable Abbreviation

/LON for /LONG

Effect

The memory allocation file consists of the following items:

• Page header

• Task attributes section

• Overlay description (if applicable)

• Root segment allocation

• Tree segment description (if applicable)

• Undefined references (if applicable)

• Task Builder statistics

An example of the memory allocation file (.MAP) is shown in
Example 11-2. The numbered and lettered items in the notes
following correspond to the numbers and letters in the example.

11-41

LINK QUALIFIERS

/LONG (Cont.)

Example 11-2 Memory Allocation File (Map) Example

OVR.TSK;l Memory Allocation Map TKB M40.10
15-DEC-82 11:28

Page 1 Jo
Partition name : GEN ® ®
Identification : 01 ~
Task UIC [303,1] @ 0
Stack limits: 000260 001257 001000 00512. CD
Prg xfr address: 001264 ® ®CD
Total address windows: 1. CD ® CD
Task image size 7488. words
Task address limits: 000000 035133
R-W disk blk limits: 000002 000073

OVR.TSK Overlay description:

Base Top Length

000000 005055 005056 02506.
005060 021103 014024 06164.
005060 021103 014024 06164.
021104 035127 014024 06164.
021104 035131 014026 06166.

®@
®

000072 00058. ® ®

ROOTM
MULOV
ADDOV

SUBOV
DIVOV

OVR.TSK
ROOTM

Memory allocation map TKB M40.02
28-DEC-Sl 09:10

Page 2

* * * Root segment: ROOTM ®

R/W mem limits: 000000 005055 005056 02606.®
Disk blk limits: 000002 000007 000006 00006.~··

Memory allocation synopsis:

Section @

BLK.:(RW,I,LCL,REL,CON) 001260 001174 00636.
001260 000102 00066.
001362 000260 00176.
001642 000042 00034.
002454 000002 00002.

ANS : (RW,D,GBL,REL,OVR) 002454 000002 00002.
002454 000002 00002.
002454 000002 00002.

Global Symbols:

Title

ROOTM
PRNOV
SAVOV

ROOTM
PRNOV

AADD 004032-R DIVV
MULL

004052-R PRINT 001550-R SUBB
004022-R SAVAL 001642-R

Ident File

010 ROOTM.OBJ;l
01 PRNOV.OBJ;l
01 SAVOV.OBJ;l

01 ROOTM.OBJ;l
01 PRNOV.OBJ;l

004042-R CD

(continued on next page)

11-42

e

(

(

(
"

c

(

c

c

LINK QUALIFIERS

ILONG (Cont.)

Example 11-2 (Cont.) Memory Allocation File (Map) Example

File: ROOTM.OBJ;l Title: ROOTM Ident: 01 GV
<. BLK.>: 001260 001361 000102 00066. QY
<ANS >: 002454 002455 000002 00002.

File: PRNOV.OBJ;l Title: PRNOV Ident: 01 GV
<. BLK.>: 001362 001641 000260 00176. QY

PRINT 001550-R CD
<ANS >: 002454 002455 000002 00002.

File: SAVOV.OBJ;l Title: SAVOV Ident: 01
<. BLK.>: 001642 001703 000042 00034. CD

SAVAL 001642-R
®

OVR.TSK
MULOV

Memory allocation map TKB M40.02 Pag~ 3
28-DEC-Sl 09:10 \

*** Segment: MULOV

R/W mem limits: 005060 021103 014024 06164.
Disk blk limits: 000010 000024 000015 00013.

Memory allocation synopsis:

Section Title Ident File

• BLK.:(RW,I,LCL,REL,CON) 005060 014024 06164.
005060 014024 06164. MULOV 01

$$ALVC:(RW,D,LCL,REL,CON) 021104 000000 00000.
MULOV .OBJ; 1 Cit

$$RTS : (RW,I,BGL,REL,OVR) 004756 000002 00002.

Global symbols:

MULL 021060-R

*** Task builder statistics:

Total work file references: 8570. @
Work file reads: o.} ® @) Work file writes: O. CD
Size of core pool: 6662. words (26. pages) @
Size of work file: 3328. words (13. pages) @

Elapsed time:00:00:12

11-43

LINK QUALIFIERS

/LONG (Cont.)

Notes:

.. The page header shows the name of the task image file and the
overlay segment name (if applicable), along with the date,
time, and version of TKB that created the map.

~ The task attributes
information:

section contains the following

® Task name
you do not
field.

The name specified in the TASK option. If
use the TASK option, TKB suppresses this

~ Partition name -- The partition specified in the PAR
option. If you do not specify a partition, the default
is partition GEN.

~ Identification -- The task version as specified in the
.IDENT assembler directive. If you do not specify the
task identification, the default is 01.

GD Task ·UIC -- The task UIC as specified in the UIC option.
If you do not specify the UIC, the default is the
terminal UIC.

~ Task priority The-priority of the task as specified in
the PRI option. If you do not specify PRI, the default
is 50, and is not shown on the map.

GD Stack limits -- The low and high octal addresses of the
stack, followed by its length in octal and decimal bytes.

® ODT transfer address -- The starting address of the ODT
debugging aid. If you do not specify the ODT debugging
aid, this field is suppressed.

~ Program transfer address -- The address of the symbol
specified in the .END directive of the source code of
your task. If you do not specify a transfer address for
your task, TKB automatically establishes a tranfer
address of 000001 for it. TKB also suppresses this field
in the map if you do not specify a transfer address.

Task attributes -- These attributes are
they differ from the defaults. One
following may be displayed:

AC Ancillary control processor.

listed only if
or more of the

AL Task is checkpointable, and task image file
contains checkpoint space allocation.

CP

DA

EA

Task is checkpointable, and
will be checkpointed to
file.

Task contains debugging aid.

task image file
system checkpoint

Task uses KEll-A extended arithmetic element.

FP Task uses Floating Point Processor.

11-44

(

(

(

(

(

(

(

LINK QUALIFIERS

ILONG (Cont.)

-HD Task image does not contain header.

PI Task contains position-independent code and
data.

PM Postmortem Dump requested in the event of
abnormal task termination.

PR Task is privileged.

-SE Messages addressed to the task through the
Executive SEND directive will be rejected by
the Executive.

SL Task can be slaved.

TR Task initial PS word has T-bit enabled.

CD Total address windows -- The number of window blocks
allocated to the task.

®

CD

Mapped array -- The amount of physical memory (decimal
words) allocated through the VSECT option or Mapped Array
Declaration (GSD type 7, described in Appendix B); mapped
array is not shown if it does not apply.

Task extension -- The increment of
(decimal words) allocated through
option. Without these options, task
shown.

physical
the EXTTSK
extension

memory
or PAR

is not

~ Task image size --The amount of memory (decimal words)
required to contain your task's code. This number does
not include physical memory allocat~d through the EXTTSK
option.

® Total task size -- The amount of physical memory
words) allocated, including mapped array area
extension area. Total task size is not shown
example.

(decimal
and task
in this

~ Task address limits -- The lowest and highest virtual
addresses allocated to the task, exclusive of virtual
addresses allocated to VSECTs and shared regions.

~ Read/write disk block limits -- From left to right: the
first octal relative disk block number of the task's
header; the last octal relative disk block number of the
task image; and the total contiguous disk blocks required
to accommodate the read/write portion of the task image
in octal and decimal.

® Read-only disk block limits -- From left to right: the
first octal relative disk block of the multiuser task's
read-only region; the last octal relative disk block
number of the read-only region; and the total contiguous
disk blocks required to accommodate the read-only region
in octal and decimal. This field appears only when you
are building a multiuser task.

11-45

LINK QUALIFIERS

/LONG (Cont.)

t) The overlay description shows, for each overlay segment in
the tree structure of an overlaid task, the beginning virtual
address (the base), the highest virtual address (the top),
the length of the segment in octal and decimal bytes, and the
segment name. Indenting is used to illustrate the ascending
levels in the overlay structure. TKB prints the overlay
description only when an overlaid task is created.

G) The root segment allocation -- This section has the following
elements:

® Root segment -- The name of the root segment.
task is a single-segment task, the entire
considered to be the root segment.

If your
task is

QV Read/write memory limits -- From left to right: the
beginning virtual address of the root segment (the base);
the virtual address of the last byte in the segment (the
top); and the length of the segment in octal and decimal
bytes.

® Disk block limits -- From left to right: the first
relative block number of the beginning of the root
segment; the last relative block number of the root
segment; the total number of disk blocks in octal; and
the total number of disk blocks in decimal.

GD Memory allocation synopsis -- From left to right: the
program section name; the program section attributes; the
starting virtual address of the program section; and the
total length of the program section in octal and decimal
bytes.

®

The program section shown as . BLK. in this field is the
unnamed relocatable program section. Notice in this
example that there are 636 (octal) bytes allocated to it
(2034 bytes - 1176 bytes = 636 bytes). This allocation
is the result of calls to routines that reside within the
unnamed program section in SYSLIB. (For more
information, see the description of the
/SYSTEM_LIBRARY_DISPLAY qualifier in this chapter.)

Module contributor -- This field lists the modules that
have contributed to each program section. In this
example, the program section ANS was defined in module
ROOTM. The module version is 01 (as a result of the
.IDENT assembler directive) and the file name from which
the module was extracted is ROOTM.OBJ;l. If the program
section ANS had been defined in more than one module,
each contributing module and the file from which it was
extracted would have been listed here.

The absolute section
it appears in every
length of O.

11-46

NOTE

ABS. is not shown because
module and always has a

(

(

(

(

(

(

(

CD

LINK QUALIFIERS

/LONG (Cont.)

The global symbols seption lists the global symbols
defined in the segment. Each symbol is listed along with
its octal value. A -R is appended to the value if the
symbol is relocatable. The list is alphabetized in
columns.

The file contents section (which is composed of the four
fields listed below) is printed only if you specify /LONG in
the LINK command sequence. TKB creates this section for each
segment in an overlay structure. It lists the following
information:

~ Input file -- File name, module name as established by
the .TITLE assembler directive, and module version as
established by the .IDENT assembler directive.

QY Program section -- Program section name, starting virtual
address of the program section, ending virtual address of
the program section, and length in octal - and decimal
bytes.

Global symbol -- Global symbol names within each program
section and their octal values. If the segment is
autoloadable (see Chapter 3), this value is the address
of an autoload vector. The autoload vector in turn
contains the actual address of the symbol.

A -R is appended to the value if the symbol is
relocatable.

Q) Program section -- The contents of this
described in note g above.

field are

~ Undefined References -- This field lists the undefined
global symbols in the segment.

~ The tree segment description is printed for every overlay
segment in an overlay structure. Its ~ontents are the same
for each overlay segment as the root segment allocation is
for the root segment.

CD Task builder statistics lists the following information,
which can be used to evaluate TKB performance:

~ Work file references The number of times that TKB
accessed data stored in its work file.

~ Work file reads -- The number of times that the work file
device was accessed to read work file data.

11-47

LINK QUALIFIERS

/LONG (Cont.)

~ Work file writes -- The number of times that the work
file device was accessed to write work file data.

@ Size of pool -- The amount of memory that was available
for work file data and table storage.

~ Size of work file -- The amount of device storage that
was required to contain the work file.

CD Elapsed time The amount of wall-clock time required to
construct the task image and produce the memory
allocation (map) file. Elapsed time is measured from the
completion of option input to the completion of map
output. This value excludes the time required to process
the overlay description, parse the list of input file
names, and create the cross-reference listing (if
specified) .

See Appendix F for a more detailed discussion of the work file.

Default

Not /LONG; TKB does not produce the "file contents" section of
the memory allocation file.

11-48

(

(

(

(

(

c

c

LINK QUALIFIERS

/MAP[:filespec]

11.28 /MAP[:filespec]

Affected File

Use

Map (.MAP)

Use the /MAP qualifier
qualifier produces a
also.)

to produce a . MAP file. (The /LONG
. MAP file without the need of using /MAP

Syntax

>LINK/TAS/MAP/SYM INPUT

or

>LINK/TAS/MAP:filename/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/MAP

or

>LINK/TAS/SYM INPUT/MAP:filename

Acceptable Abbreviation

/MA for /MAP

Effect

The .MAP file may be named by using /MAP:filename; otherwise the
name of the .MAP file is the same as the first input file. You
may use /MAP either. as a command qualifier or as an input
filename qualifier. If you specify /MAP, TKB spools the .MAP
file to the printer if the system task -QMGPRT.TSK is installed
with the PRT ... name. TKB does not spool the .MAP file to the
printer if you. use the /NOPRINT qualifier with the /MAP
qualifier.

Default

Not /MAP; TKB does not produce a .MAP file.

11-49

LINK QUALIFIERS

/[NO]MEMORY_MANAGEMENT[:n]

11.29 /[NO]MEMORY_MANAGEMENT[:~]

Affected File

Use

Task image (.TSK) .

Use the /MEMORY MANAGEMENT qualifier to inform TKB whether the
system on which the task is to run has memory management
hardware. Specify n as the decimal numbers 28 or 30.

Syntax

>LINK/TAS/MEMORY_MANAGEMENT:n/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/MEMORY_MANAGEMENT:n

Acceptable Abbreviation

/MEM for /MEMORY_MANAGEMENT

/NOMEM:n for /NOMEMORY_MANGEMENT:n

Effect

If you use n with /NOMEMORY MANAGEMENT (for an unmapped system),
n specifies the highest physical address in K-words of the task
or system being built. If you do not specify n with
/NOMEMORY MANAGEMENT, the default highest address of the task or
system is-28K.

If you specify n with /MEMORY_MANAGEMENT, n is ignored.

If you use /NOMEMORY MANAGEMENT, TKB does not recognize the
memory resident overlay operator, the exclamation point (1). TKB
checks-the operator for correct syntax, but it does not create
any resident overlay segments.

Default

Not /MEMORY MANAGEMENT; If you do not apply either
/MEMORY MANAGEMENT or /NOMEMORY MANGEMENT to your task image
file, TKB allocates memory according to the mapping status of the
system on which your task is being built. The maximum task size
for a mapped system is 32K or 64K for a task that uses I-and
D-space. The default highest address for a task or system in an
unmapped system is 28K.

11-50

(

c

(

(

(

(

c

(

LINK QUALIFIERS

/OPTION [:filespec]

11.30 /OPTION[:filespec]

Affected File

Use

All

Use /OPTION in the LINK command to tell LINK to prompt you for
Task Builder options.

Syntax

>LINK/TAS/MAP/SYM/OPTION:fspec INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/OPTION:fspec

Acceptable Abbreviation

/OPT for /OPTION

Effect

After you enter the LINK command line with /OPTION included, LINK
prompts you for options so that the entire sequence looks like
the following:

>LINK/TAS/MAP/SYM/OPT INPUT
Option? enter option here, or options separated by commas
Option? ~
>

If you enter multiple options, you may enter each one on a
separate line LINK will prompt you again. To end option
input, press the RETURN key only.

Another way of entering multiple options is to enter many of them
on a single option line. If you do, you must separate them with
a comma. To end option input, press the RETURN key only.

As an option entry after the Option? prompt, you may specify a
file that contains many options, each one on a seperate line.
This file must have a file type of .CMD. Comments in this file
are noted by beginning the comment line with a semicolon. There
must not be any slashes in this file.

Alternatively, you may have a file of options that you can name
in fspec, as shown in the syntax. This file must have a filetype
of .CMD. This file should be formatted as a list of options, one
option on each line. There must not be any slashes in this file.

An OPTION.CMD file could look like the following example:

STACK=O
i NO STACK BECAUSE THIS IS A LIBRARY
PAR=PETROV:160000:40000
i PARTITION SIZE AND ADDRESS
GBLREF=L$DIME
i MAKE REFERENCES GLOBAL

11-51

LINK QUALIFIERS

!OPTION [:filespec] (Cont.)

A LINK command line to enter this option file could look like the
following. example:

>LINK/TAS/NOHEAD /MAP / SYM! oP'r ffi)
File(s)? INPUTI,INPUT2
Option? @OPTION
Option? (BIT)
>

If, while entering options, you decide that the LINK command or
the options you have already entered are incorrect, you can enter
the ABORT option as the last option. Then press the RETURN key.
When TKB receives the ABORT option, it aborts its operation and
allows you to start again without having a task build take place.

Default

Not /OPTION; LINK does not prompt for or accept options.

c

(

c

(

c

c

(

LINK QUALIFIERS

/OVERLAY_DESCRIPTION

11.31 /OVERLAY~DESCRIPTION

Affected File

Use

Input (. ODL)

Use the /OVERLAY DESCRIPTION qualifier to inform TKB that the
input file (.ODL) contains the Overlay Description Language that
describes the overlaying to take place with the input files named
in the .ODL file.

Syntax

>LINK/TAS/MAP/SYM/OVERLAY_DESCRIPTION INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/OVERLAY_DESCRIPTION

Acceptable Abbreviation

lOVER for /OVERLAY_DESCRIPTION

Effect

/OVERLAY DESCRIPTION informs TKB that the single input file
contains~ Overlay Description Language. TKB uses this language,
which con.tains filenames, to build overlay segments in certain
configurations, which are also specified in the file.

The input file must have a file type of .ODL and it must be the
only file specified.

The Overlay Description Language is described in Chapters 3 and
4.

Default

Not /OVERLAY_DESCRIPTION

11-53

LINK QUALIFIERS

/POSTMORTEM

11.32 /POSTMORTEM

Affected File

Task image (.TSK)

Use

Use /POSTMORTEM to dump the contents of memory if the task
terminates abnormally.

Syntax

>LINK/TAS/POSTMORTEM/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/POSTMORTEM

Acceptable Abbreviation

/POS for /POSTMORTEM

Effect

(

(

The /POSTMORTEM qualifier sets the postmortem dump flag in the
task's label flag word. This flag is checked when the task (
abnormally terminates and, if it is on, the contents of memory
are dumped.

If your task issues an ABRT$ (Abort Task) directive, the system
will not dump the task image even though TKB has set the
postmortem dump flag in the task's label flag word. In this
case, the system assumes that a postmortem dump is not necessary
because you already know why your task was aborted.

The PMD utility must be installed in your system and be able to C.
get into physical memory for this switch to be effective. _

Default

Not /POSTMORTEMi no memory dump takes place if the
abnormally terminates.

11-54

task

(

(

(

(

LINK QUALIFIERS

I[NO]PRINTER

11.33 /[NO]PRINTER

Affected File

Use

Map (.MAP)

Use /NQPRINTER with the /MAP qualifier to prevent spooling the
. MAP file to the printer. /PRINTER is the default and it need
not be specified.

Syntax

>LINK/TAS/MAP:filename/[NO]PRINTER/SYM INPUT

Syntax Exceptions

None

Acceptable Abbreviation

/PRIN for /PRINTER
/NOPRIN for /NOPRINTER

Effect

/PRINTER controls whether or not the .MAP file is spooled to the
line printer. You should use /[NO]PRINTER with the /MAP
qualifier. If you do not want the . MAP file to print, use
/NOPRINTER. The . MAP file prints only if the system task
QMGPRT.TSK is installed with the PRT ... name.

Default

/PRINTER; the Task Builder spools the .MAP file to the printer.

11-55

LINK QUALIFIERS

/PRIVILEGED[:n]

11.34 /PRIVILEGED[:n]

Affected File

Use

Task image (.TSK)

Use /PRIVILEGED to inform TKB that the task is privileged
respect to memory access rights and device access rights.
octal number n can be 0, 4, or 5, which specify privilege 0,
or 5.

with
The

4,

Syntax

>LINK/TAS/PRIVILEGED:n/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/PRIVILEGED:n

Acceptable Abbreviation

/PRIV:n for /PRIVILEGED:n

Effect

If you specify /PRIVILEGED:O, the task does not have access to
the I/O page or the Executive. However, if you specify
/PRIVILEGED:4 or /PRIVILEGED:5, your task does have access to the
I/O page and the Executive, in addition to its own partition.

The value of n is an octal number that specifies the first Active
.Page Register (APR) that you want the Executive to use to map the
. task image when the task is running in user mode. Legal values
are 0, 4, and 5. If you do not specify one of these values, TKB
assumes a value of 5.

c

c

If you do not explicitly specify that your task is to run on a C
mapped system (with the /MEMORY MANAGEMENT qualifier) and it is -.
not implied (by the presence of KT-ll hardware on the system upon
which TKB is running), TKB merely tests the value (:n) of the
switch for validitYi otherwise, TKB ignores it. PriviLeged tasks
are described in Chapter 6.

You should not use /PRIVILEGED and /ANCILLARY_PROCESSOR on the
same command lin~.

Default

Not /PRIVILEGEDi TKB assumes that a normal task is being built.

11-56

c

(-

(

(

(

LINK QUALIFIERS

I[NO]RECEIVE

11.35 /[NO]RECEIVE

Affected File

Use

Task image (.TSK)

Use /[NO]RECEIVE to determine whether your
messages directed to it by the Executive
/RECEIVE is the normal, default operation.

task can receive
Send directive.

Syntax

>LINK/TAS/[NO]RECEIVE/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/[NO]RECEIVE

Acceptable Abbreviation

/REC for /RECEIVE
/NOREC for /NORECEIVE

Effect

/RECEIVE determines whether messages can be directed to the
by means of the Executive Send directive. (Refer to
RSX-IIM/M-PLUS Executive Reference Manual for information on
Send directive.

task
the
the

By default, messages can be directed to your task by means of the
Executive Send directive. If you negate this qualifier (/NOREC),
the system inhibits the queuing of messages to your task.

Default

/RECEIVEi the task can normally receive messages from the Send
directive.

11-57

LINK QUALIFIERS

/[NO]RESIDENT_OVERLAYS

11.36 /[NO]RESIDENT_OVERLAYS

Affected File

Use

Task image (.TSK)

Use /RESIDENT OVERLAYS to enable TKB's recognition of the
memory-resident overlay operator, the exclamation point (1), in
the Overlay Description Language file.

Syntax

>LINK/TAS/[NO]RESIDENT_OVERLAY/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/[NO]RESIDENT_OVERLAY

Acceptable Abbreviation

/RES for /RESIDENT OVERLAY
/NORES for /NORESIDENT_OVERLAY

Effect

(

The memory-resident overlay operator (1), when present in the (
overlay description file, indicates to TKB that it is to
construct a task image that contains one or more memory-resident
overlay segments. If you negate this switch (/NORES)' TKB checks
tl1e operator for correct syntactical usage, but otherwise ignores
it. With the memory-resident overlay operator thus disabled, TKB
builds a disk-resident overlay from the overlay description file.

Default

/RESIDENT OVERLAY~ TKB normally recognizes the memory-resident C.
overlay operator. _

(

11-58

(

(

LINK QUALIFIERS

/SAVE

1l.)7 /SAVE

Affected File

Use

The command file (ATLNK.CMD) that DCL creates from LINK and
passes to TKB.

Use /SAVE to save in your UFO the command file that DCL creates
from the LINK command.

Syntax

>LINK/TAS/MAP/SYM/SAVE INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/SAVE

Acceptable Abbreviation

/SAV for /SAVE

Effect

If you use /SAVE in the LINK command line, the command file
created by DCL from the LINK command line appears in your
directory after the task build. This file is named ATLNK.CMD.
It contains the resulting TKB commands translated from the LINK
commands you entered, and it contains legitimate TKB command
syntax.

ATLNK.CMD is always the same name, so you could have many files
of this name if you enter multiple LINK commands. Therefore, it
is perhaps best to rename this .file to a meaningful name to
COOKIE.CMD, for example. Later, if you want to build the same
task in the same way, you can enter the following command line:

>LINK @COOKIE

Also, ATLNK.CMDis a place to
interpre-ted and translated
entered.

Default

look to
the LINK

see how
command

Not /SAVE; ATLNK.CMD is not saved in your UFO.

11-59

DCL
line

and
that

LINK
you

LINK QUALIFIERS

I[NO]SEGREGATE

11.38 /[NO] SEGREGATE

Affected File

Use

Task image (.TSK)

Use the /SEGREGATE
program sections
program sections,
sections.

qualifier to allocate virtual address space to
contiguouslYi first to the read-write (RW)

and then to the read-only (RO) program

Syntax

>LINK/TAS/[NO]SEGREGATE/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/[NO]SEGREGATE

Acceptable Abbreviation

/SEG for /SEGREGATE
/NOSEG for /NOSEGREGATE

Effect

The /SEGREGATE qualifier gives you control over the ordering of
program sections. By using the /SEGREGATE qualifier, you cause
TKB to order program sections alphabetically by name within
access code (RW followed by RO). If you specify the /SEQUENTIAL
qualifier with the /SEGREGATE qualifier, TKB orders program
sections in their input order by access code. See the
description of the /SEQUENTIAL qualifier.

You use the negated qualifier, /NOSEGREGATE, to make TKB
interleave the RW and RO program sections. Thus, the combination
/NOSEGREGATE/SEQUENTIAL results in a task with its program
sections allocated in input order and its RW and RO, sections
interleaved. Additionally, you can use /NOSEGREGATE and
/NOSEQUENTIAL to make TKB order program sections alphabetically
with RW and RO sections interleaved. However, /NOSEGREGATE is
the default.

When task-building multiuser tasks, the. /SHAREABLE:TASK qualifier
causes TKB to default to /SEGREGATE. Therefore, to correctly
build read-only tasks, you can use the /SHAREABLE:TASK qualifier
only.

Default

/NOSEGREGATEi TKB does not segregate program sections by access
code.

11-60

(

(

(

(

c

c

(

(

(

LINK QUALI.FIERS

/SELECTIVE_· SEARCH

11.39 /SELECTIVE_SEARCH

Affected File

Use

Input: .OBJ, .STB, or .OLB

Use the /SELECTIVE SEARCH qualifier to include in TKB's internal
symbol table only those global symbols for which there is a
previously undefined reference.

Syntax

>LINK/TAS/MAP/SYM INPUT/SELECTIVE_SEARCH

Syntax Exceptions

None

Acceptable Abbreviation

/SEL for /SELECTIVE_SEARCH

Effect

When processing an input file, TKB normally includes in its
internal symbol table each global symbol it encounters within the
file, whether or not there are references to it. With the
/SELECTIVE SEARCH qualifier attached to an input file, TKB checks
each global symbol it encounters within that file against its
list of undefined references. If TKB finds a match, it includes
the symbol in its symbol table.

Assume that you are building a task named SEL.TSK. The task is
composed of input files containing global entry points and
references (call's) to them as shown in Table 11-2.

Input
File Name

INl

IN2

IN3
IN4

Table 11-2
Input Files for SEL.TSK

Global Definition

A
B
C

A
B
C

Global Reference

A

C

File IN2 and IN4 contain global symbols of the same name that
represent entry points to different routines within their
respective files. Assume that you want TKB to resolve the
reference to global symbol A in INl to the definition for A in

11-61

LINK QUALIFIERS

/SELECTIVE_SEARCH (Cont.)

IN2. Assume further that you want TKB to resolve the reference
to global symbol C in IN3 to the definition for C in IN4. By
selecting the sequence of the input files properly and applying
the /SELECTIVE SEARCH qualifier to files IN2 and IN4, TKB
resolves the references correctly. The following command
sequence illustrates .the correct sequence:

>LINK/TAS:SEL INI,IN2/SEL,IN3,IN4/SEL

TKB processes input files from left to right; therefore, in
processing the above command sequence, TKB processes file INI
first and encounters the reference to symbol A. There is no
definition for A within INI; therefore, TKB marks A as undefined
and moves on to process file IN2. Because the /SELECTIVE SEARCH
qualifier is attached to IN2, TKB limits its search of-IN2 to
symbols it has previously listed as undefined, in this case,
symbol A. TKB finds a definition for A and places A in its
symbol table. Because there are no undefined references to
symbols B or C, TKB does not place either of these symbols in its
symbol table.

NOTE

It is important to realize that the /SELECTIVE SEARCH
qualifier affects only the way the Task Builder
constructs its internal symbol table. The routines for
which symbols Band C are entry points are included in
the task image even though there are no references to
them.

TKB moves on to IN3. It encounters the references to symbol C.
Becau-se TKB did not include symbol C from IN2 in its symbol
table, it cannot resolve the reference to C in IN3. TKB marks
symbol C as undefined and moves on to IN4.

c

(

When TKB processes IN4, it encounters the definition for C in /
that file and includes it in the table. Again, because the (
/SELECTIVE SEARCH qualifier is attached to IN4, TKB includes only
C in its symbol table.

When TKB has completed its processing
sequence, it has constructed a task image
code from all of the modules, INI through
symbols A from IN2 and C from IN4 will
symbol table.

NOTE

of the above command
composed of all of the

IN4. However, only
appear in its internal

This example does not represent good programming
practice. It is included here to illustrate the effect
of the /SELECTIVE_SEARCH qualifier on TKB during a search
sequence.

11-62

c

(

c

(

LINK QUALIFIERS

/SELECTIVE_SEARCH (Cont.)

The /SELECTIVE SEARCH qualifier is particularly valuable when
used to limit the size of the Task Builder's internal symbol
table during the building of a privileged task that references
the Executive's routines and data structures. By specifying the
Executive's Symbol Definition File (.STB) as an input file and
applying the /SELECTIVESEARCH qualifier to it, TKB includes in

- its internal symbol table-only those symbols in the Executive
that the task references. An example of a LINK command sequence
that illustrates this is shown below:

>LINK/TAS:OUTFILE/PRI:5 INFILE,RSXllM.STB/SEL

This command sequence directs TKB to build a privileged task
named OUTFILE.TSK from the input file INFILE.OBJ. The
specification of the Executive's .STB file as an input file with
the /SELECTIVE SEARCH qualifier applied to it directs TKB to
extract from RSXllM.STB only those symbols for which there are
references within OUTFILE.TSK.

Default

Not /SELECTIVE SEARCHi TKB does not
symbol table -those global symbols
references.

11-63

include in its internal
with previously undefined

LINK QUALIFIERS

/SEQUENTIAL

11.40 /SEQUENTIAL

Affected File

Use

Task image (.TSK)

Use /SEQUENTIAL to cause TKB to construct the task image from the
program sections you specified, in the order in which you input
them.

Syntax

>LINK/TAS/MAP/SYM/SEQUENTIAL INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/SEQUENTIAL

Acceptable Abbreviation

/SEQ for /SEQUENTIAL

Effect

/SEQUENtIAL causes TKB to collect all the references to a given
program section from your input object modules, group them
according to their acccess code (RW followed by RO) and, within
these groups, allocate memory for them in the order in which you
input them. However, the /SEGREGATE qualifier affects program
section ordering and can be used with the /SEQUENTIAL qualifier.
See the /SEGREGATE qualifier for further details.

Without the /SEQUENTIAL qualifier, TKB reorders the program
sections alphabetically.

You use /SEQUENTIAL
existing code may
RSX-ll. Using this
following reasons:

to satisfy any adjacency requirements that
have when you are converting it to run under

qualifier otherwise is discouraged for the

• Standard library routines (such as FORTRAN I/O handling
routines and FCS modules from SYSLIB) do not work properly.

• Sequential ordering can result in errors if you alter the
order in which modules are linked.

Alternatively, you can achieve physical adjacency of program
sections by selecting names alphabetically to correspond to the
desired order.

Default

Not /SEQUENTIALi sequential program section ordering does not
take place.

11-64

(

(

(

(

LINK QUALIFIERS

(/SHAREABLE[:COMMON]

c

(

(

11.41 /SHAREABLE[:COMMON]

Affected File

Use

Task image (.TSK) and symbol definition (.STB)

Use /SHAREABLE:COMMON to inform TKB that a shared common is being
built. You must use the /NOHEADER qualifier with
/SHAREABLE:COMMON.

Syntax

>LINK/TAS/NOHEADER/SHAREABLE:COMMON/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/NOHEADER/MAP/SYM INPUT/SHAREABLE:COMMON

Acceptable Abbreviation

/SHA:COM

Effect

Shared commons, by Task Builder definition, contain only data.

If you do not use the /CODE:PIC qualifier for an absolute shared
common, all the program sections in the common are marked
absolute. Using the /NOHEADER qualifier without the
/SHAREABLE:COMMON and /CODE:PIC qualifiers causes TKB to build a
shared library.

If you use the
common, all
relocatable.

/CODE:PIC
program

qualifier
sections

for a
in the

relocatable
common are

shared
marked

In either case, TKB includes all program section declarations in
the .STB file. The .STB file contains all the program section
names, attributes, length, and symbols. TKB links common blocks
by means of program sections. Therefore, the .STB file of a
shared region built with the /SHAREABLE:COMMON qualifier .contains
all defined program sections.

Using the /CODE:PIC and /NOHEADER qualifiers without the
/SHAREABLE:COMMON qualifier causes TKB to build a shared common.

The /SHAREABLE:COMMON qualifier does not have a negative form.

Default

Not /SHAREABLE:COMMON and /CODE:PIC
built.

a shareable common is

Not /SHAREABLE:COMMON and not /CODE:PIC -- a shareable library is
built.

11-65

LINK QUALIFIERS

/SHAREABLE[:LIBRARY]

11.42 /SHAREABLE[:LIBRARY]

Affected File

Use

Task image (.TSK) and symbol definition (.STB)

Use /SHAREABLE:LIBRARY to build a shared library. You must use
also the /NOHEADER qualifier to build a shared library.

Syntax

>LINK/TAS/SHAREABLE:LIBRARY/NOHEADER/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/NOHEADER/MAP/SYM INPUT/SHAREABLE:LIBRARY

Acceptable Abbreviation

/SHA:LIB

Effect

TKB includes only one program section declaration in the .STB
file.

If you do not use the /CODE:PIC qualifier for an absolute
library, TKB names the program section ". ABS", makes the library_
position independent, and defines all symbols as absolute. Also,
if you do not use either the /CODE:PIC or the /SHAREABLE:LIBRARY
qualifier, TKB assumes /SHAREABLE:LIBRARY to be the default and
builds a shareable library.

If you use the /CODE:PIC qualifier for a relocatable library, TKB
names the program section the same as the root segment of the
library. TKB forces this name to be the first and only declared
program section in the library. TKB declares all global symbols
in the .STB file relative to that program section.

If you use the /CODE:PIC qualifier without the /SHAREABLE:LIBRARY
qualifier, TKB assumes that a shared common is to be built
(/SHAREABLE:COMMON default occurs with /CODE:PIC only).

The /SHAREABLE:LIBRARY qualifier does not have a negative form.

Default

Not /SHAREABLE:LIBRARY. With the /CODE:PIC qualifier, TKB builds
a shareable common.

Not /SHAREABLE:LIBRARY. Without the /CODE:PIC qualifier, TKB
builds a shareable library.

11-66

(

c

c

(

(

LINK QUALIFIERS

(

(

(

c
11-67

LINK QUALIFIERS

/SLAVE

11.44 /SLAVE

Affected File

Use

Task image (.TSK)

Use the /SLAVE qualifier to direct TKB to mark your task as a
slave to an intitiating task.

Syntax

>LINK/TAS/SLAVE/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/SLAVE

Acceptable Abbreviation

/SLA

Effect

TKB attaches the slave attribute to your task. When your task
successfully executes a Receive Data directive, the system gives
the UIC and TI: device of the sending task to it. The slave
task then assumes the identity and privileges of the sending
task.

This switch only applies to your task if the system that you are
using has multiuser protection. (Refer to your system generation
manual for more information on multiuser protection and slave
tasks.)

Default

Not /SLAVEi TKB does not produce a slave task.

11-68

(

(

(

(

(

LINK QUALIFIERS

/SLOW

11.45 /SLOW·

Affected File

Use

None; use of this qualifier affects the kind of Task Builder
used.

Use /SLOW to invoke the Slow Task Builder. You should use the
slow Task Builder only if the task build produced the following
message:

NO VIRTUAL MEMORY STORAGE AVAILABLE

Syntax

>LINK/TAS/MAP/SYM/SLOW INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/SLOW

Acceptable Abbreviation

/SLO for /SLOW

Effect

/SLOW causes the Slow Task Builder to be used. The default Task
Builder and the Fast Task Builder use a symbol table structure
that can be searched quickly, but that requires more work file
space than the Slow Task Builder. If you receive the error
message shown, you have the choice of reducing work-file size, as
described in Appendix F of this manual, or of using the Slow Task
Builder.

Except for the use of
default Task Builder
All qualifiers to LINK
Slow Task Builder.

different symbol table structures, the
and the Slow Task Builder are identical.

and all TKB options are available for the

You can also invoke the Slow Task Builder from DeL with the
command RUN $STK. You must follow the TKB format (not LINK
format) if you run the Slow Task Builder in this way.

Default

Not /SLOW; the default Task Builder is invoked and run.

11-69

LINK QUALIFIERS

/SYM BOL_T ABLE[:filespec]

11.46 /SYMBOL_TABLE[:filespec]

Affected File

Use

Symbol definition (.STB)

Use /SYMBOL TABLE to specify that you want a symbol definition
output file:-

Syntax

>LINK/TAS/MAP/SYMBOL_TABLE INPUT

Syntax Exceptions

>LINK/TAS/MAP INPUT/SYMBOL-TABLE

Acceptable Abbreviation

/SYM for /SYMBOL_TABLE

Effect

c

C~

The presence of /SYMBOL TABLE indicates to TKB that you want a
symbol definition fife as one of the output files. If this
qualifier is absent TKB does not produce the symbol definition (
file. You may specify a filespec, otherwise the file name
defaults to that of the first input file encount~red in the
string of input files. The default file type is .STB.

Default

Not /SYMBOL_TABLE; TKB produces no symbol definition file.

(

11-70

LINK QUALIFIERS

(- I[NO]SYSTEM_LIBRARY_DISPLAY

(

(

(

11.47 /[NO]SYSTEM_LIBRARY_DISPLAY

Affected File

Memory allocation (.MAP)

Use

Use /SYSTEM LIBRARY DISPLAY to include global symbols in the map
file. - -

Syntax

>LINK/TAS/MAP/SYSTEM_LIBRARY DISPLAY/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/SYSTEM_LIBRARY_DISPLAY

or

>LINK/TAS/SYM/SYSTEM_LIBRARY DISPLAY INPUT

Acceptable Abbreviation

/SYS for /SYSTEM_LIBRARY_DISPLAY

Effect

TKB includes in the map file the names of routines it has added
to your task from SYSLIB. It also includes in the map file
global symbols contained in the symbol definition file of any
shared region to which the task refers. Those global symbols are
the ones defined or referenced by the task.

If you use /SYSTEM LIBRARY DISPLAY, LINK automatically specifies
that TKB include-a map file. Therefore, you need not specify a
/MAP qualifier, unless you want to name the map file instead of
letting the map file name default to the first input file.

Default

/NOSYSTEM LIBRARY DISPLAY; TKB does not include
in the map file. Also, you
/NOSYSTEM_LIBRARY-DISPLAY.

11-71

global
may

symbols
specify

LINK QUALIFIERS

I[NO]TASK[:filespec]

11.48 /[NO]TASK[:filespec]

Affected File

Task image (.TSK)

Use

Use /[NO]TASK to specify a task name, or no task.

Syntax

>LINK/MAP/SYM INPUT/TASK

or

>LINK/MAP/SYM INPUT/TASK:TASKNAME

or

>LINK/TASK:TASKNAME/MAP/SYM INPUT

or

>LINK/NOTASK/MAP/SYM INPUT

or

>LINK/MAP/SYM INPUT/NOTASK

Syntax Exceptions

None

Acceptable Abb~eviation

/TAS:filename for /TASK:filename
/NOTAS for /NOTASK

Effect

Used by itself as a LINK output qualifier, /TASK has no effect
because the creation of a task file is the default operation. If
you use /TASK by itself as an input file qualifier, TKB gives the
task the same name as that of the file to which /TASK is
attached.

/TASK:filename specifies a name different from that of the first
input file encountered in the input file string. You can use
/TASK in this way to give a specific name to a task. If you use
/TASK:filename attached to an input file, or as an output
qualifier, the task is named by the specified file name.

11-72

c

c

(

(

(

(

c

LINK QUALIFIERS

/[NO]TASK[:filespec] (Cont.)

/NOTASK specifies that TKB is not to create a task file. /NOTASK
is useful when you want to create a map or symbol definition file
only, or to go through the task build operation just to check for
errors.

/TASK is a synonym for the /EXECUTABLE qualifier.

Default

/TASK as an output qualifier~ a task file is created with the
same name as that uf the first input file.

11-73

LINK QUALIFIERS

IlKB

11.49 /TKB

Affected File

Use

All

Use /TKB to specify the standard,
qualifier is included here for
default operation.

Syntax

>LINK/TAS/MAP/SYM/TKB INPUT

Syntax Exceptions '

>LINK/TAS/MAP/SYM INPUT/TKB

Acceptable Abbreviation

/TKB for /TKB

Effect

default Task Builder. This
DeL complet~ness. It is the

/TKB invokes the default Task ,Builder. This qualifier is the
default operation and need not be specified.

Default

/TKB

11-74

(

(

(

(

c

c

(

(

LINK QUALIFIERS

/TRACE

11.50 /TRACE

Affected File

Task image (.TSK)

Use

Use /TRACE to direct TKB to make the task traceable.

Syntax

>LINK/TAS/TRACE/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/TRACE

Acceptable Abbreviation

/TRA for /TRACE

Effect

TKB sets the T-bit in the initial PS word of your task. When
your task is executed, a trace trap occurs at the completion of
each instruction is completed.

Default

Not /TRACE; TKB does not set the T-bit and a trace trap does not
occur.

11-75

LINK QUALIFIERS

I[NO]WARNINGS

11.51 /[NO]WARNINGS

Affected File

Use

Task image (.TSK)

Use /WARNINGS to allow the two diagnostic messages shown in
Effect. /NOWARNINGS prevents these messages.

Syntax

>LINK/TAS/[NO]WARNINGS/MAP/SYM INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/[NO]WARNINGS

Acceptable Abbreviation

/WAR for /WARNINGS
/NOWAR for /NOWARNINGS

Effect

/WARNINGS allows two .messages:

n Undefined symbols segment seg-name

and

Module module-name multipiy defines P-section p-sect-name

/NOWARNINGS prevents these messages from occurring.

Default

/WARNINGSi the messages occur.

11-76

(

c

(

(

(

c-

(

(

c_·

LINK QUALIFIERS

11.52 /[NO]WIDE

Affected File

Memory allocation (.MAP)

Use

Use /[NO]WIDE to control the width of the map file.

Syntax

>LINK/TAS/MAP/SYM/[NO]WIDE INPUT

Syntax Exceptions

>LINK/TAS/MAP/SYM INPUT/[NO]WIDE

Acceptable Abbreviation

/WID for /WIDE
/NOWID for /NOWIDE

Effect

j[NO]WIDE

By default, TKB formats a .MAP file with a width of 132 columns.
When you negate this qualifier (by specifying /NOWIDE), TKB
formats the .MAP file 80 columns wide.

Default

/WIDEi a 132 column.MAP file is produced.

11-77

(i

(

(

(

(

c

CHAPTER 12

OPTIONS

12.1 OPTIONS

Task Builder options provide you with the means to give TKB
information about the characteristics of your task.

These options, which are listed in Table 12-1, can be
seven categories. The identifying abbreviation
description of each category are listed below:

divided
and a

into
brief

• contr

• ident

• alloc

• share

• device

• alter

• synch

You use control options to
ABORT is the only member' of
direct the Task Builder to
with this option.

affect TKB execution.
this category. You can
abort the task build

You use identification options to identify your
task's characteristics. You can specify the name
of your task, its priority, user identification
code, and partition with options in this category.

You use allocation options to modify your task's
memory allocation. With the options in this
category, you can change the size of your task's
stack and program sections. When you write
programs in a high-level language, you can change
the size of your work areas and buffers and declare
the virtual base address and size of program
sections. Finally, you can declare the number of
additional window blocks (if any) that your task
requires.

\

You use storage-sharing options to indicate tb TKB
that your task intends to access a shared region.

You use device-specifying options to specify the
number of units required by your task, and the
assignment of logical unit numbers to physical
devices.

You use the content-altering options to define a
global symbol and value, or to introduce patches in
your task image.

You use synchronous trap
syrichronous trap vectors.

options .to define

Some TKB options are of interest to all users of the system;
are of interest only to high-level language programmers: and
others are of interest only to MACRO-ll programmers. Table 12-1
all the options alphabetically, and gives a brief description of

others
still
lists
each.

12-1

Option

ABORT

ABSPAT

ACTFIL

ASG

CLSTR

COMMON
LIBR

DSPPAT

EXTSCT

EXTTSK

FMTBUF

GBLDEF

GBLINC

GBLPAT

GBLREF

OPTIONS

Table 12-1
Task Builder Options

Meaning

Directs TKB to terminate a task build

Declares absolute patch values
for conventional tasks or

Declares number of files open
simultaneously

Declares device assignment to
logical units

Declares a group of shared regions
accessed by the task and residing in
the same virtual address space in
the task

Declare task's intention to access
a memory-resident shared region

Declares absolute patch values for
conventional tasks or /1111 •• 111

Declares extension of a program
section

Declares extension of the amount of
memory owned by a task

Declares extension of buffer used
for processing format strings
at run time

Declares a global symbol definition

Includes symbols in the .STB file

Declares a series of patch values
relative to a global symbol

Declares a global symbol reference

1. The user interest range is indicated as follows:

Interest l Category

H,M contr

M alter

H alloc

H,M device

H,M share

H,M share

M alter

H,M alloc

H,M alloc

H alloc

M alter

M alter

M alter

H,M alter

• H indicates options of interest to high-level language (such
as FORTRAN) programmers .

• M indicates options of interest to MACRO-ll programmers.

(continued on next page)

12-2

(

(

(

(

(

(

(

l

Option

IDENT

LIBR

MAXBUF

ODTV

PAR

PRI

RESCOM
RESLIB

STACK

TASK

TSKV

UIC

UNITS

OPTIONS

Table 12-1 (Cont.)
Task Builder Options

Meaning

Declares the identification of the
task

Declares task's intention to access
a memory-resident shared region

Declares an extension to the FORTRAN
record buffer

Declares the address and size of
the debugging aid SST vector

Declares partition name and
dimensions

Declares priority

Declare task's intention to access
a memory-resident shared region

Declares the size of the stack

Declares the name of the task

Declares the address of the task
SST vector

Declares the user identification code
under which the task runs

Declares the maximum number of units

1. The user interest range is indicated as follows:

Interest l Category

H,M ident

H,M share

H alloc

M synch

H,M ident

H,M ident

H,M share

H,M alloc

H,M ident

M synch

H,M ident

H,M device

• H indicates options of interest to high-level language (such
as FORTRAN) programmers •

• M indicates options of interest to MACRO-ll programmers.

(continued on next page)

12-3

Option

VARRAY

VSECT

WNDWS

OPTIONS

Table 12-1 (Cont.)
Task Builder Options

Meaning

Declares the task's intention to access
a virtual array directly without
passing arguments to a subroutine

Declares the virtual base address and
size of a program section

Declares the number of additional
address windows required by the task

1. The user interest range is indicated as follows:

Interest l Category

H alloc

H,M alloc

H,M alloc

• H indicates options of interest to high-level language (such
as FORTRAN) programmers .

• M indicates options of interest to MACRO-ll programmers.

12-4

(

(

(

(

(

(

c

(

OPTIONS

ABORT

12.1.1 ABORT -- Abort the Task-Build

You use the ABORT option when you discover that an earlier error in
the terminal sequence causes TKB to produce an unusable task image.

The Task Builder, on recognizing the keyword ABORT, stops accepting
input and restarts for another task build.

Syntax

ABORT=n

n

An integer value. The integer is required to satisfy the general
form of an option; however, the value is ignored in this case.

Default

None

NOTE

If you type a CTRL/Z at any time, it causes TKB to
stop accepting input and begin building the task.

The ABORT option is the only correct way for you to
restart TKB if you discover an error and decide you do
not want the Task Builder output.

12-5

OPTIONS

ABSPAT

12.1.2 ABSPAT -- Absolute Patch

You use the ABSPAT option to declare a series of
starting address. You

Syntax

ABSPAT=seg-name:address:vall:va12 ••. :va18

seg-name

The 1- to 6-character Radix-50 name of the segment.

address

patches
ion for

u can

The octal address of the first patch. The address can be on a
byte boundary; however, two bytes are always modified for each
patch: the addressed byte and the following byte.

vall

An octal number in the range of 0 through 177777 to be stored at
address.

va12

An octal number in the range of 0 through 177777 to be ,stored at
address+2

va18

(

c

(

An octal number in the range of 0 through 177777 to be stored at (',
address+16.

NOTE

All patches must be within the segment address limits
or TKB generates the following error message:

TKB--*DIAG*--Load address out of range in module name,

12-6

(~

(

(

c

(

OPTIONS

ACTFIL

12.1. 3 ACTFIL -- Number of Active Files

You use the ACTFIL option to declare the number of files' that your
task can have open simultaneously. For each active file that you
specify, TKB allocates approximately 512 bytes.

If you specify less than four active files (the default), the ACTFIL
option saves space. If you want your task to have more than four
active files, you must use the ACTFIL option to make the additional
allocation.

You must include a language Object Time System (OTS), such as FORTRAN,
and record I/O service routines (FCS or RMS-ll) in your task image for
the extension to take place. The program section that is extended has
the reserved name $$FSRI.

Syntax

ACTFIL=file-max

file-max

A decimal integer indicating the maximum number of files that can
be open at the same time.

Default

ACTFIL=4

12-7

OPTIONS

ASG

12.1.4 ASG -- Device Assignment

The ASG option declares the physical device that is assigned to one or
more logical units.

Syntax

ASG=device-name:unit-numl:unit-num2 ••• :unit-numB

device-name

A 2-character alphabetic
decimal unit number.
units, you must use the
logical units that your

unit-numl
·unit-num2

unit-numB

device name followed by
If your task uses mo+e

UNITS option to specify
task will use.

a 1- or 2-digit
than six logical
the number of

Decimal integers indicating the logical unit numbers.

Default

ASG=SYO:l:2:3:4,TIO:5,CLO:6

12-8

(

c

(

(

(

(

(

OPTIONS

CLSTR

12.1. 5 CLSTR -- System-Owned Cluster of Resident Libraries or Commons

The CLSTR option allows you to link your program to one to six shared
regions, such as FMS, RMS, FORTRAN or BASIC+2, with a minimum of lost
virtual address k. CLSTR allows two to six shared
regions in an to reside in
the same virtual

To obtain the required overlay run-time structures in your task, you
must define all libraries except possibly the first by using memory
resident overlays. Although it can be an overlaid library, the first
library need not be overlaid and can be a single segment structure.

If the first library is overlaid with a null root, the overlay
run-time system cannot distinguish between the first library and the
other libraries in tne cluster (those named in the CLSTR option after
the first). Therefore, if the first library called is not the first
library named in the CLSTR option, severe performance degradation may
be noticed because of excessive mapping and unmapping of the
libraries. Therefore, to avoid performance degrad~tion if the first
library is overlaid with a null root, make certain that the first
library called is the first library named in the CLSTR option.

You use CLSTR to declare a cluster or group of system-owned, resident
libraries or commons that your task intends to access and have reside
at the same virtual address in the address space of your task.

The term "system-owned" means that TKB expects to find the commons or
libraries named in the option and the symbol table associated with
them under UFD [1,1] on device LB:.

Syntax

CLSTR=library_l,library_2, ••• library_n:switch:apr

library_n

The library names must be 1- to 6- character Radix-50 names. TKB
expects to find a symbol definition file of the same name for
each specified shared region under UFD [1,1] on device LB:. The
first specificatiort denotes the first or the default library,
which is the library to which the task is mapped when the task
starts up and remaps after any call to another library.

In an the total' number of
librar es The number of the
component libraries maximum of six.
A cluster must contain a minimum of two libraries. It is
possib,le to have two clusters of three libraries e;:l.ch or three
clusters of two libraries each; any combination of number of
clusters and libraries must equal at least two or a maximum of
six. If six libraries'are used in clusters, the task may map to
only one other, separate library.

: switch

The switch :RW (read/write) or :RO (read-only) indicates the type
of access the task requires. All shared regions in the cluster
have the same type of access.

12-9

OPTIONS

CLSTR (Cont.)

:apr

The apr is an integer in the range of 1 through 7 that specifies
the first Active Page Register (APR) that you want TKB to reserve
for the cluster of shared regions. You can specify it for a
cluster made up of only position-independent shared regions. If
you omit the APR parameter and all shared- regions are position
independent, TKB selects the highest available APR to map the
cluster. A cluster can be made up of both position-independent
and absolute shared r~gions. If one absolute shared region is
present with position-independent shared regions, the
position-independent shared regions assume the same base address
as that of the absolute shared region. However " if you specify
more than one absolute shared region, all must be built with the
same base address.

Default

None

NOTE

All but the first shared region in a cluster must be
memory-resident overlaid libraries. The first shared
region specified in the cluster option can be a
single-segment structure (nonoverlaid) or an overlaid
library.

12-10

(

c

c

(

c

OPTIONS

(

(

12-11

OPTIONS

COMMON or LIBR

12.1.7 COMMON or LIBR -- System-Owned Resident Common or System-Owned
Resident Library

The COMMON and LIBR options are functionally identical; they both
declare that your task intends to access a system-owned shared region.
However, by convention, the COMMON option identifies a shared region
that contains only data, and the LIBR option identifies a shared
region that contains only code.

The term "system-owned" means that TKB expects to find the common or
library named in the keyword and the symbol definition file associated
with it under UFD [l,lJ on device LB:.

Syntax

name

COMMON=name:access-code[:aprJ

or

LIBR=name:access-code[:aprJ

The 1- to 6-character Radix-50
library. TKB expects to find a
same name as that of the common
.STB under [l,lJ of device LB:.

name specifying the common or
symbol definition file having the
or library with an extension of

access-code

The code RW (read/write) or the code RO (read-only) indicating
the type of access the task requires.

NOTE

A privileged task can change data in or move data
to a resident common even though the task has
been linked to the common with read-only access.

12-12

(

(

(

(

(

(

(

apr

OPTIONS

COMMON or LIBR (Cont.)

An integer in the range of 1 through 7 that specifies the first
Active Page Register (APR) that you want. TKB to reserve for the
shared region. TKB recognizes the APR only for a mapped system;
you can specify it only for position-independent shared regions.
If you omit the APR parameter and the shared region is position
independent, TKB selects the highest available APR to map the
region.

When a shared region is absolute, the base address of the
region -- and therefore the APR that maps it -- is determined by
the arguments in the PAR option when the region is built. Refer
to PAR in Section 12.1.18.

DE!fault

None

12-13

OPTIONS

DSPPAT

12.1.8 DSPPAT -- Absolute Patch for D-space

option to tches
cified

pa a conven
eight patch values.

also use
You can

Syntax

DSPPAT=seq-name:address:vall:va12: ... :va18

segname

The 1- to 6-character Radix-50 name of the segment.

address

vall

va12

val8

The octal address of the first patch. The address can be on a
byte boundary: however, two bytes are always modified for each
patch: the addressed byte and the following byte.

An octal number in the range of 0 through 177777 to be stored at
address.

An octal number in the range of 0 through 177777 to be stored at
address+2.

an octal number in the range Of 0 through 177777 to be stored at
address+16.

NOTE

All patches must be within the
limits or TKB generates the
message:

segment address
following error

TKB--*DIAG*--Load address out of range in module-name

12-14

(

(

(

(

(

OPTIONS

(

(

c

c
12-15

OPTIONS

EXTTSK

12.1.10 EXTTSK -- Extend Task Memory

The EXTTSK option directs the system to allocate additional memory for
your task when it is installed in a system-controlled partition.

The amount of memory that the system allocates for your task is the
sum of the task size plus the increment you specify (rounded up to the
nearest 32-word boundary). If the task is built for a user-controlled
partition, the allocation of task memory reverts to the partition
size.

This option extends only the D- space of an 1- and D-space task.

In an unmapped system, TKB ignores the EXTTSK keyword.

Syntax

NOTES

1. You should not use the EXTTSK option to extend a
task containing memory-resident overlays because
the system does not map the extended area.

2. When you use the EXTTSK option to extend a
checkpointable task that has been declared
checkpointable with the /AL switch or the
/CHECKPOINT:TASK qualifier, the checkpoint file
within the task image is the size of the task plus
the size of the extended task area.

3. Be careful when extending an 1- and D-space task
that is linked to a library which contains both
data and instructions. Normally, libraries are
mapped in both I-space and D-space allQwing data
and instructions to be intermixed. The extension
length must not extend into the area mapped for
the library or the library will be mapped in
I-space only.

EXTTSK=length

length

A decimal number in the range 0<n<65,535.. specifying the
increase in task memory allocation (in words).

Default

The task is extended to the size specified in the PAR option (see
Section 12.1.18).

12-16

(

c

(

(

(-

(~

(

l

OPTIONS

FMTBUF

12.1.11 FMTBUF -- Format Buffer Size

The FMTBUF option declares the length of the internal working storage
that you want TKB to allocate within your task for compiling format
specifications at run time. The length of this area must equal or
exceed the number of bytes in the longest format· string to be
processed.

Run-time compilation occurs whenever an array is referred to as the
source of formatting information within a FORTRAN I/O statement. The
program section that TKB extends has the reserved name $$OBF1.

Syntax

FMTBUF=max-format

max-format

A decimal integer, larger than the default, that specifies the
number of characters in the longest format specification.

Default

FMTBUF=132

12-17

OPTIONS

GBLDEF

12.1.12 GBLDEF -- Global Symbol Definition

You use the GBLDEF option to declare the definition of a global
symbol.

TKB considers this symbol definition to be absolute. It overrides any
"definition in your input object modules.

Syntax

GBLDEF=symbol-name:symbol-value

symbol-name

A 1- to 6-character Radix-50 name of the defined symbol.

(

symbol-value (

An octal number in the range of a through 177777 assigned to the
defined symbol.

Default

None

(

(

12-18

(

c-··

(

OPTIONS

GBLINC

12.1.13 GBLINC -- Include Global Symbols

The GBLINC option directs the Task Builder' to include the symbol or
symbols specified in this option in the .STB file being generated by
the link operation in which .this option appears. This option is
intended for use when creating shared regions, in particular shared
libraries, when you want to force particular modules to be linked to
your task that references this library. The global symbol references
specified by this option must be satisfied by some module or GBLDEF
specification when you build the task.

Syntax

GBLINC=symbol-name,symbol-name, ..•• ,symbol-name

symbol-name

The symbol to be included.

Default

None

12-19

OPTIONS

GBLPAT

12.1.14 GBLPAT -- Global Relative Patch

The GBLPAT option declares a series of object-level patch values
starting at an offset relative to a global symbol. You can specify up
to eight patch values.

Syntax

GBLPAT=seg-name:sym-name[+/-offset]:vall:va12 ••• :va18

seq-name

The 1- to 6-character Radix-50 name of the segment.

sym-name

A 1- to 6-character Radix-50 name specifying the global symbol.

offset

vall

An octal number specifying the offset from the global symbol.

An octal number in the range of 0 through 177777 to be stored at
the octal address of the first patch.

(

(

va12 (

An octal number in the range of 0 through 177777 to be stored at
the first address+2.

va18
\

An octal number in the range of 0 through 177777 to be stored at
the first address+14.

Default

None

NOTE

All patches must be within the segment address limits
or TKB generates a fatal error.

12-20

(

c-

c

OPTIONS

GBLREF

12.1.15 GBLREF -- Global Symbol Reference

The GBLREF option declares a global symbol reference. The reference
originates in the root segment of the task. This keyword is used for
memory-resident overlays of shared regions.

Syntax

GBLREF=symbol-name,symbol-name .•• ,symbol-name

symbol-name

A 1- to 6-character name of a global symbol reference.

Default

None

12-21

OPTIONS

GBLXCL

12.1.16 GBLXCL -- Exclude Global Symbols

The GBLXCL option keyword directs TKB to exclude from the symbol
definition file of a shared region the symbol(s) specified in the
option.

Syntax

GBLXCL=symbol-name,symbol-name •.. ,symbol-name

symbol-name

The symbol(s) to be excluded.

Default

None

12-22

c

c

c

c

(

OPTIONS

IDENT

12.1.17 IDENT -- Task Identification

The IDENT option changes the identification of the task from the one
originally specified in the .IDENT MACRO-II statement in the .MAC file
to the one specified in the option.

If the IDENT option is not used, TKB uses the identification of the
first input .MAC file that it encounters.

Syntax

name

IDENT=name

Any one- to six-character Radix-50 name for use as task
identification. You may use any Radix-50 character that is
correct for use in the MACRO-II .IDENT statement.

Default

TKB supplies no default name. A name must be specified if the
IDENT option is used.

12-23

OPTIONS

LIBR (
12.1.18 LIBR -- Syste~-OWned Library

Refer to COMMON in Section 12.1.7.

c

(

(

12-24

(

(

c

(

OPTIONS

MAXBUF

12.1.19 MAXBUF -- Maximum Record Buffer Size

The MAXBUF option declares the maximum record buffer size required for
any file used by the task.

If your task requires a maximum record size that exceeds the default
buffer length, you must use this option to extend the buffer.

You must also include a language Object Time System (OTS), sUch as
FORTRAN, in your task image for the extension to take place. The
program section that is extended has the reserved name $$IOB1.

Syntax

MAxBUF=max-record

max-record

A decimal integer, larger than the default, that specifies the
maximum record size in bytes.

Default

MAXBUF=133

12-25

OPTIONS

ODTV

12.1.20 ODTV -- ODT SST Vector

The ODTV option declares that a global symbol is the address of the
ODT Synchronous System Trap vector. You must define the global symbol
in the main root segment of your task.

Syntax

ODTV=symbol-name:vector-length

symbol-name

A 1- to 6-character Radix-50 name of a global symbol.

vector-length

A decimal integer in the range of 1 through 32 specifying the
length of the SST vector in words.

Default

None

12-26

(

(

(

(

(

c

(

(

(

OPTIONS

PAR

12.1.21 PAR -- Partition

The PAR option identifies the partition for which your task is built.

In a mapped system, you can install your task in any system partition
or user partition large enough to contain it. In an unmapped system,
your task is bound to physical memory. Therefore, you must install
your task in a partition starting at the same memory address as that
of the partition for which it was built.

Syntax

pname

base

PAR=pname[:base:length]

The name of the partition.

The octal byte address defining the start of the partition. On
an unmapped system, the physical address must be specified. On a
mapped system, the base must be a for a task or a 4K boundary for
a shared region.

length

The octal number of bytes contained in the partition.

In a mapped system, a length of a implies a system-controlled
partition.

If the target system is mapped and you specify a partition length
that is greater than the length of your task, the Task Builder
automatically extends the length of your task to match the length
of the partition. This procedure is equivalent to using the
EXTTSK keyword to increase the task memory. If your task size is
greater than the partition size that you specify, TKB generates
the following error message:

TKB--*DIAG*-Task has illegal memory limits

Whether or not the target system is mapped, the Task Builder does
not extend the length of a shared region, or any task built
without a header, to match the specified partition length.

If you do not specify the base and length, TKB
information from the system on which you are
you have specified a partition that resides in
obtain the base and length.

tries to obtain
building your task.
that system, TKB

that
If

can

12-27

OPTIONS

PAR (Cont.)

TKB binds the task to the addresses defined by the partition base. If
the partition i~ user controlled, TKB verifies that the task does not
exceed the length specification.

Default

PAR=GEN

12-28

(

(

(

(

(

(

(

(

OPTIONS

PRI

12.1.22 PRI -- Priority

The PRI option declares your task's execution priority.

On systems with multiuser protection, you cannot run a task at a
priority that is greater than the system priority (50) unless it is
installed or run from a privileged terminal. If you are working from
a privileged terminal, and you do not override this option by
specifying a different priority when you install your task, the system
uses this priority.

Syntax

PRI=priority-number

priority-number

A decimal integer in the range of 1 through 250

Default

Established by Install; refer
Operations Reference Manual
Language Manual.

to
or

12-29

the RSX-IIM/M-PLUS MCR
the RSX-IIM!M-PLUS Commana

OPTIONS

RESCOM or RESLIB

12.1.23 RESCOM or RESLIB -- Resident Common or Resident Library

The RESCOM and RESLIB options are functionally identical; they both
declare that your task intends to access a user-owned, shared region.
However, by convention the RESCOM option identifies a shared region
that contains only data and the RESLIB option identifies a shared
region that contains only code.

The term "user-owned" means that the resident common or library and
the symbol definition file associated with it can reside under any UFD
that you choose. You can specify the UFD and remaining portions of
the file specification for both options. You mus~ not place comments
on the same line with either option.

Syntax

RESCOM=file-specification/access-code[:apr]

or

RESLIB=file-specification/access-code[:apr]

file-specification

The memory image file of the resident common or resident library.
The file specification format is discussed in Chapter 1.

access-code

apr

The code RW (read/write) or the code RO (read-only), indicating
the type of access required by the task.

NOTE

A privileged task can change data in or move data
into a resident common even though the task. has
been linked to the common with read-only access.

An integer in the range of 1 through 7 that specifies the first
Active Page Register (APR) that you want TKB to reserve for the
common or library. TKB recognizes the APR argument only for a
mapped system. You can specify it only for position-independent
shared regions. If the APR parameter is omitted and the shared
region is position independent, TKB selects the highest available
APR to map the region.

When a shared region is absolute, the base address of the
region -- and therefore the APR that maps it -- is determined by
the arguments in the PAR option when the region is built. Refer
to PAR in Section 12.1.18.

12-30

(

(

(

(

(

(

c

Default

OPTIONS

RESCOM or RESLIB (Cant.)

NOTES

1. The Task Builder expects to find a symbol
definition file having the same name as that
of the memory image file but with a file type
of .STB, on the same device and under the
same UFD as that of the memory image file.

2. Regardless of the version number you give in
the file specification, TKB uses the latest
version of the .STB file.

When you omit portions of the file-specification, the following
default,s apply:

• UFD - Taken from the current terminal UIe

• Device - Syo:

• File type - .TSK

• File version - Latest

12-31

OPTIONS

RESLIB

12.1.24 RESLIB Resident Library

Refer to RESCOM in Section 12.1.21.

12-32

(

(

(

(

(

OPTIONS

(

c

-(

12-33

OPTIONS

(

(

c

(

12-34

OPTIONS

(

c

12-35

OPTIONS

STACK

12.1.27 STACK -- Stack Size

The STACK option declares the maximum size of the stack required by
your task.

The stack is an area of memory that the MACRO-Il programmer uses for
temporary storage, subroutine calls, and synchronous _trap service
linkage. The stack is referred to by hardware register 6 (SP, the
stack pointer).

Syntax

STACK=stack-size

stac"1t-size

A pecimal integer specifying the number of words required for the
stack.

Default

STACK=256

12-36

(

(

c

(

OPTIONS

(

c

(

(

12-37

OPTIONS

TASK

12.1. 29 TASK -- Task Name

The TASK option gives your task an installed name different from its
task image name.

Syntax

TASK=task-name

task-name

A 1- to 6-character name identifying your task.

Default

(

task when the task is installed.
The first six characters of the task image file name identify the (

(

c

(

12-38

(

c

(

OPTIONS

TSKV

12.1.30 TSKV -- Task SST vector

The TSKV option declares that a global symbol is the address of the
task Synchronous System Trap (SST) vector. You must define the global
symbol in the main root segment of your task.

Syntax

TSKV=symbol-name:vector-length

symbol-name

A 1- to 6-character name of a global symbol.

vector-length

A decimal integer in the range of 1 through 32 specifying the
length of the SST vector in words.

Default

None

12-39

OPTIONS

UIC

12.1. 31 UIC -- User Identification Code

The. UIC option declares the User Identification Code (UIC) for your
task when you run it with a time-based schedule request.

Syntax

UIC=[group,member]

group

An octal number in the range of 1 through 377, or a decimal
number in the range of 1 through 255. Decimal numbers must be
followed by a decimal point (.) .

member

An octal number in the range of 1 through 377, or a decimal
number in the range of 1 through 255. Decimal numbers must be
followed by a decimal point (.) .

Default

The UIC that the Task Builder is running under (normally the
terminal UIC).

12-40

(

(

(

(

c

(

(

OPTION!;)

UNITS

12.1.32 UNITS -- Logical Unit Usage

The UNITS option declares the number of logical units that your task
uses.

Syntax

UNITS=max-units

max-units

A decimal integer in the range of 0 through 250 specifying the
maximum number of logical units. A 2-word block is allocated in
the task's header for every logical unit. A task that uses many
logical units can use significant portion of dynamic memory
because the header memo

Default

UNITS=6

12-41

OPTIONS

VARRAY

12.1.33 VARRAY -- Virtual Array Specification and Usage

A virtual array in FORTRAN is a defined area outside of the virtual
address space of a task, but it is within the task's logical address
space. TKB assigns the name $VIRT to the virtual array and positions
it 1.n memory adjacent to the task header. The VARRAY=OVR option
specifies an overlaid virtual array such that the virtual array may be
used in way similar to the use of a FORTRAN COMMON. Using the virtual
array in this way means that each segment of an overlaid task that
uses the virtual array defines the array in the same way as it is
defined in the root segment. Thereafter, the segment may access the
array directly without passing arguments, as is necessary when the
array has the concatenated attribute (the default, VARRAY=CON).

To use the VARRAY option with the OVR attribute as VARRAY=OVR, you
must first define the array (for example, VIRTUAL DATA(lO», in the
root segment of the task. Then, you must define the array in the same
way in each segment of the overlaid task that uses the virtual array.
Example 12-1, A Task Using a Virtual Array with the OVR Attribute,
shows a way in which a virtual array may be directly accessed by
segments in a task. Example 12-1 also shows the TKB command line and
overlay description file for building the task.

Using the VARRAY option with the CON attribute as VARRAY=CON (the
default operation) results in a virtual array subject to the
restrictions and uses that are described in the Language Reference
Manual for the specific kind of FORTRAN that you are using.

Example 12-1 A Task Using a Virtual Array with the OVR Attribute

C
C Program to test the Task Builder option VARRAY
C

PROGRAM MAIN
IMPLICIT INTEGER *2 (A-Z)
VIRTUAL DATA(lO)
CALL INPUT
CALL CALC
CALL OUTPUT
CALL EXIT
END

SUBROUTINE INPUT
IMPLICIT INTEGER *2 (A-Z)
VIRTUALDATA(lO)
TYPE 10

10 FORMAT (lX, 'Input I '$)
ACCEPT 20,DATA(1)

20 FORMAT (12)
TYPE 30

30 FORMAT (lX, 'Input J ' $)
ACCEPT 20,DATA(2)
RETURN
END

(continued on next page)

12-42

(

(

c

(

(-

(

(

(

(

(-

OPTIONS

VARRAY (Cont.)

Example 12-1: (Cont.) A Task Using a virtual Array with the OVR Attribute

SUBROUTINE CALC
IMPLICIT INTEGER *2 (A-Z)
VIRTUAL DATA(lO)
DATA(3) DATA(l) + DATA(2)
DATA(4) = DATA(l) - DATA(2)
DATA(5) = DATA(l) * DATA(2)
DATA(6) = DATA(l) / DATA(2)
RETURN
END

SUBROUTINE OUTPUT
IMPLICIT INTEGER *2 (A-Z)
VIRTUAL DATA(lO)

II + J
II - J
II * J
II / J

10
TYPE 10,DATA(3),DATA(4),DATA(5),DATA(6)
FORMAT (lX, 'I + J =',I6,/,lX, 'I - J =',16,/
1,lX'I * J =',I6,/,lX,'I / J =',16)
RETURN
END

Command file MAINFT.CMD to build MAINFT.TSK

MAINFT/FP,MAINFT/MA/-WI=MAINFT/MP
VARRAY=OVR
//

: Overlay descriptor file MAINFT.ODL for MAINFT.TSK

$MAIN:
$INPT:
$CALC:
$OUTP:

Syntax

.ROOT $MAIN-*($INPT,$CALC,$OUTP)

.FCTR MAIN-LB:[1,1]F770TS/LB

.FCTR INPUT-LB:[1,1]F770TS/LB

.FCTR CALC-LB:[1,1]F70TS/LB

.FCTR OUTPUT-LB:[1,1]F770TS/LB

.END

VARRAY=OVR

Default

VARRAY=CON

12-43

OPTIONS

VSECT

12.1. 34 VSECT -- Virtual Program Section

The VSECT option specifies the virtual base address,
and, optionally, the physical memory allocated to
section. Refer to Chapter 5 for more information on
sections.

virtual length,
the named program
virtual program

Syntax

VSECT=p-sect-name:base:window[:physical-length]

p-sect-name

base

A 1- to 6-character program section name.

An octal value representing the virtual base address of the
program section in the range of o through 177777. If you use the
mapping directives, the value you specify must be a multiple of
4K.

window

An octal value specifying the amount of virtual address space in
bytes allocated to the program section. Base plus window must
not exceed 177777 (octal).

physical-length

An octal value specifying the minimum amount of physical memory
to be allocated to the section in units of 64-byte blocks. TKB
rounds this value up to the next 256-word limit. This value,
when added to the ta~k image size and any previous allocation,
must not cause the total to exceed 2048K bytes. If you do not
specify a length, TKB assumes a value of O.

Default

Physical-length defaults to O.

12-44

c

c

(

(

C-/i

c/

OPTIONS

WNDWS

12.1. 35 WNDWS -- Number of Address Windows

The WNDWS option declares the number of address windows required by
the task in addition to those needed to map the task image, and any
mapped array or shared region. The number specified is equal to the
number of simultaneously mapped regions the task will use.

Syntax

WNDWS=n

n

Default

WNDWS=Q

12-45

(
-~ ~,

c-

\.
i

/

(

c

(

(

APPENDIX A

TASK BUILDER INPUT DATA FORMATS

An object module is the fundamental unit of· input to the Task Builder
(TKB). You create' an object module by using any of the standard
language processors (for example, MACRO-II or FORTRAN) or by using TKB
itself (symbol definition file). The RSX-IIM/M-PLUS librarian (LBR)
gives you the capapility to combine a number of object modules into a
single library file.

An object module consists of variable-length records of information
that describe the contents of the module. These records guide TKB in
translating the object language into a task image. Six record (block)
types are included in the object language:

• Declare global symbol directory (GSD) record (type 1)

• End of global symbol directory (GSD) record (type 2)

• Text xnformation (TXT) record (type 3)

• Relocation directory (RLD) record (type 4)

• Internal symbol directory (ISD) record (type 5)

• End-of-module record (type 6)

TKB requires at least five of these record types in each object
module. The only record type that it does not require is the internal
symbol directory.

The various record types are defined according to a prescribed format,
as illustrated in Figure A-I. An object module must begin with a
declare-GSD record and end with an end-of-module record. Additional
declare-GSD records can occur anywhere in the file, but must occur
before an end-of~GSD record. An end-of-GSD record must appear before
the end-of-module record, and at least one RLD record must appear
before the first TXT record. Additional RLD and TXT records can
appear anywhere in the file. The ISD records can appear anywhere in
the file between the initial declare-GSD record and the end-of-module
record.

Object module records are variable length and are identified by a
record type code in the first byte of the record. The format of
additional information in the record depends on the record type.

A-I

TASK BUILDER INPUT DATA FORMATS

Variable length records in an object file should not be longer than
128 (decimal) bytes. If TKB attempts to read an object record longer
than 128 bytes, the following error message will result:

TKB -- *FATAL*-I/O error on input file file-name

The following sections describe each of the six record types in
greater detail. The outline of these sections is as follows:

A.l
A.Ll
A.L2
A.L3
A.L4
A.LS
A.L6
A.L 7
A.L8
A.L9
A.2
A.3
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.S
A.4.6
A.4.7
A.4.8
A.4.9
A.4.10
A.4.11
A.4.12
A.4.13

A.4.14
A.4.1S
A.S
A.6

Declare Global Symbol Directory Record
Module Name (Type 0)
Control Section Name (Type 1)
Internal Symbol Name (Type 2)
Transfer Address (Type 3)
Global Symbol Name (Type 4)
Program Section Name (Type S)
Program Version Identification (Type 6)
Mapped Array Declaration (Type 7)
Completion Routine Name (Type 10)
End of Global Symbol Directory Record
Text Information Record
Relocation Directory Record
Internal Relocation (Type 1)
Global Relocation (Type 2)
Internal Displaced Relocation (Type 3)
Global Displaced Relocation (Type 4)
Global Additive Relocation (Type S)
Global Additive Displaced Relocation (Type 6)
Location Counter Definition (Type 7)
Location Counter Modification (Type 10)
Program Limits (Type 11)
Program Section Relocation (Type 12)
Program Section Displaced Relocation (Type 14)
Program Section Additive Relocation (Type lS)
Program Section Additive Displaced Relocation

Type 16)
Complex Relocation (Type 17)
Resid~nt Library Relocation (Type 20)
Internal Symbol Directory Record
End of Module Record

A.l DECLARE GLOBAL SYMBOL DIRECTORY RECORD

The global symbol directory (GSD) record contains all the information
required by TKB to assign addresses to global symbols and to allocate
the virtual address space required by a task.

GSD records are the only records processed by TKB in its first pass:
therefore, you can save substantial time by placing all GSD records at
the beginning of a module (because the Task Builder has to read less
of the file).

GSD records contain nine types of entries:

• Module name (type 0)

• Control section name (type 1)

• In-ternal symbol name (type 2)

• Transfer address (type 3)

• Global symbol name (type 4)

A-2

(

(

(--

c_

(

TASK BUILDER INPUT DATA FORMATS

• Program section name (type 5)

• Program version identification (type 6)

• Mapped array declaration (type 7)

• Completion routine name (type 10)

TASK BUILDER DATA FORMATS

GSD Initial Declare GSD

RLD Initial Relocation Directory

GSD Additional GSD

TXT Text Information

TXT Text Information

RLD Relocation Directory

•
•

GSD Additional GSD

END GSD End of GSD

ISD Internal Symbol Directory

ISD Internal Symbol Directory

TXT Text Information

TXT Text Information

TXT Text Information

END MODULE End of Module

ZK-444-81

Figure A-I General Object Module Format

Each entry type is represented by four words in the GSD record. As
shown in Figure A-2, the first two words contain six Radix-50
characters, the third word contains a flag byte and the entry type
identification, and the fourth word contains additional information
about the entry.

A-3

TASK BUILDER INPUT DATA FORMATS

A.I.I Module Name (Type 0)

of the object
to other object
module name),
object module.

The module name entry (two words) declares the name
module. The name need not be unique with respect
modules (that is, modules are :identified by file, not
but only one such declaration can occur in any given
Figure A-3 illustrates the module entry name format.

c RECORD 0 = 1
TYPE

RAD50
NAME

ENTRY TYPE FLAGS

VALUE

RAD50
NAME

TYPE FLAGS

VALUE

•
•
•

RAD50
NAME

TYPE I FLAGS

VALUE

RAD50
NAME

TYPE I FLAGS

VALUE

ZK-445-81

Figure A-2 Global Symbol Directory Record Format

MODULE
NAME (2 WORDS)

ENTRY = 0 I 0 TYPE

0

ZK-446-81

Fi'gure A-3 Module Name Entry Format

A-4

(

(

(-

(

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

A.I.2 Control Section Name (Type 1)

Control sections, which include absolute sections (ASECTs), blank, and
named control sections (CSECTs), are replaced in RSX-IIM by program
sections (PSECTs). For compatibility with other systems, TKB
processes ASECTs and both forms of CSECTs. Section A.I.6 details the
entry generated for a .PSECT directive.

ASECTs and CSECTs are defined in terms of .PSECT directives, as
follows:

For a blank CSECT, a program section is defined with the following
attributes:

.PSECT ,LCL,REL,CON,RW,I,LOW

For a named CSECT, the program section is defined as:

.PSECT name, GBL,REL,OVR,RW,I,LOW

For an ASECT, the program section is defined as:

.PSECT . ABS.,GBL,ABS,I,OVR,RW,LOW

TKB processes ASECTs and CSECTs as program sections with the fixed
attributes defined above. Figure A-4 illustrates the control section
entry name format.

CONTROL SECTION
NAME (2 WORDS)

ENTRY = 1 I IGNORED TYPE

MAXIMUM LENGTH

ZK-447-81

Figure A-4 Control Section Name Entry Format

A.I.3 Internal Symbol Name (Type 2)

The internal symbol name entry (two words) declares the name of an
internal symbol (with respect to the module). TKB does not support
internal symbol tables; therefore, the detailed format of this entry
is undefined. If TKB encounters an internal symbol entry while
reading the GSD, it ignores that entry. Figure A-5 illustrates the
internal symbol name entry format.

SYMBOL
NAME (2 WORDS)

ENTRY
= 2 I 0 TYPE

UNDEFINED

ZK-448-81

Figure A-5 Internal Symbol Name Entry Format

A-5

TASK BUILDER INPUT DATA FORMATS

A.l.4 Transfer Address (Type 3)

The transfer address entry declares the transfer address of a module
relative to a program section. The first two words of the entry
define the name of the program section, and the fourth word defines
the relative offset from the beginning of that prog,ram section. If a
transfer address is not declared in a module, then a transfer address
must not be included in the GSD, or a transfer address of 000001
relative to the default absolute program section (. ABS.) must be
specified. Figure A-6 illustrates the transfer address entry format.

NOTE

If the program section is absolute, the offset is the
actual transfer address (if not 000001).

SYMBOL
NAME (2 WORDS)

ENTRY = 3 I 0 TYPE

OFFSET

ZK-449-81

Figure A-6 Transfer Address Entry Format

A.l.S Global Symbol Name (Type 4)

The global symbol name entry declares either a global reference or a
definition. Definition entries must appear after_the declaration of
the program section in which the global symbols are defined and before
the declaration of another program section (see Section A.l.6).
Global references can be used anywhere within the GSD.

As shown in Figure A-7, the first two words of the entry define the
name of the global symbol. The flag byte of the third word declares
the attributes of the symbol, and the fourth word defines the value ,of
the symbol relative to the program section in which the symbol is
defined~

SYMBOL
NAME (2 WORDS)

ENTRY = 4 I FLAGS TYPE

VALUE

ZK-450-81

Figure A-7 Global Symbol Name Entry Format

A-6

(

c

c

(

(

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

Table A-l lists the bit assignments of the flag byte of the symbol
declaration entry.

Table A-l
Symbol Declaration Flag Byte -- Bit Assignments

Bit Number and Name

o

1

2

3

4

5

6

7

Weak qualifier

Definition or
reference type

Definition

Relocation

Setting

o

1

o

1

o

1

o

1

A.l.6 Program Section Name (Type 5)

Meaning

The. symbol has a strong
definition and is resolved in
the normal manner.

The symbol has a weak
definition or reference. TKB
ignores a weak reference (bit
3 = 0). It also ignores a
weak definition (bit 3 = 1)
unless a previous reference
has been made.

Not used.

Normal definition or
reference.

Library definition. If the
symbol is defined in a
resident library .STB file,
the base address of the
library is added to the value
and the symbol is converted to
absolute (bit 5 is reset):
otherwise, the bit is ignored.

Global symbol reference.

Global symbol definition.

Not used.

Absolute symbol value.

Relative symbol value.

Not used.

Not used.

The program section name entry declares the name of a program section
and its maximum length in the module. It also uses the flag byte to
declare the attributes of the program section.

A-7

TASK BUILDER INPUT DATA FORMATS

You must construct GSD records.such that once a program section name
has been declared, all global symbol definitions pertaining to it must
appear before another program section name is declared. Global
symbols are declared with symbol declaration entries. Thus, the
normal format is a series of program section names each followed by
optional symbol declarations. Figure A-a illustrates the program
section name entry format.

PROG RAM SECTION
NAME

ENTRY = 5 I FLAGS TYPE

MAXIMUM LENGTH

ZK-451-81

Figure A-a Program Section Name Entry Format

Table A-2 lists the bit assignments of the flag byte of the program
section name entry.

Table A-2
Program Section Name Flag Byte -- Bit Assignments

Bit Number and Name

o

1

2

Save

Library program
section

Allocation

Setting

o

1

o

1

o

1

Meaning

Normal program section.

The program section is forced
into the root of the task.

Normal program section.

The program
.relocatable and
shared region.

section
refers to

is
a

Program section references are
to be concatenated with other
references to the same program
section to form the total memory
allocated to the section.

Program section references are
to be f overlaid. The total
memory allocated to the program
section is the largest request
made by individual references to
the same program section.

(continued on next page)

A-a

(

(

(

(

(

c

c

(

TASK BUILDER INPUT DATA FORMATS

Table A-2 (Cont.)
Program Section Name Flag Byte -- Bit Assignments

Bit Number and Name Setting Meaning

3

4

5

6

7

Access o

I

Relocation o

1

Scope o

I

Type o

I

Not used; reserved for future
DIGITAL use.

The program section
read/write access.

has

The program section has
read-only access.

The program section is absolute
and requires no relocation.

The program section is
relocatable and references to
the control section must have a
relocation bias added before
they .become absolute.

The scope of the program section
is local. References to the
same program section are
collected only within the
segment in which the program
section is defined.

The scope of the program section
is global. TKB collects
references to the program
section across segment
boundaries. The Task Builder
determines the segment in which
storage is allocated for a
global program section either by
the first module that defines
the program section on a path~
or by direct placement of a
program section in a segment
using the ODL .PSECT directive.

The program section contains
instruction (I) references.

The program section
data (D) references.

NOTE

contains

The length of all absolute sections is o.

A-9

TASK BUILDER INPUT DATA FORMATS

A.I.7 Program Version Identification (Type 6)

The program version identification entry declares the version of the
module. TKB saves the version identification of the first module that
defines a nonblank version. It then includes this identification on
the memory allocation map and writ~s the identification in the label
block of the task image file.

The first two words of the entry cOQtain the
The flag byte and fourth words are not us~d
information. FigureA-9 illustrates
identification entry format.

SYMBOL
NAME

ENTRY
= 6 I 0 TYPE

0

version identification.
and contain no meaningful
the program version

ZK-452-81

Figure A-9 Program Version IdeQtification Entry Format

A.I.B Mapped Array Declaration (Type 7)

The mapped array declaration entry allocates space within the mapped
array area of task memory. The array name is added to the list of
tas~ program section names and may be referred to by subsequent RLD
records. The length (in units of 64-byte blocks) is added to the
task's mapped array allocation. ~he total memory allocated to each
mapped array is rounded up to the nearest Sl2-pyte boundary. The
contents of the flag byte are reserved and assumed to be O.

One additional window block is allocated whenever a mapped array is
declared,

Figure A-IO illustrates the mapped array declaration entry format.

MAPPED ARRAY

NAME

ENTRY = 7 I FLAGS TYPE

LENGTH (NUMBER OF 64-BYTE BLOCKS)

ZK-453-81.

Figure A-IO Mapped Array Declaration Entry Format

A-IO

(

c

c

(

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

COMPLETION ROUTINE
NAME

ENTRY = 10 I 0
TYPE

VALUE

ZK-454-81

A.2 END OF GLOBAL SYMBOL DIRECTORY RECORD

The end of global symbol directory (end-of-GSD) record declares that
no other GSD records 'are contained further on in the module. There
must be exactly one end-of-GSD record in every object module. As
shown in Figure A-l2, this record is one word long.

o RECORD
TYPE 2

ZK-455-81

Figure A-l2 End of Global Symbol Directory Record Format

A.3 TEXT INFORMATION RECORD

The text information (TXT) record contains a byte string of
information that is to be written directly into the task image file.
The record consists of a load address followed by the byte string.

TXT records can contain words and/or bytes of information whose final
contents have not yet been determined. This information will be bound
by a relocation directory record that immediately follows the text
record (see Section A.4). If the TXT record needs no modification,
then no relocation directory record is needed. Thus, multiple TXT
records can appear in sequence before a relocation directory record.

The load address of the TXT record is specified as an offset from the
current program section base. At least one relocation directory
record must precede the first TXT record. This directory .must declare
the current program section.

A-ll

TASK BUILDER INPUT DATA FORMATS

TKB writes a text record directly into the task image file and
computes the value of the load address minus 4. This value is stored
in anticipation of a subsequent relocation directory that modifies
words and/or bytes contained in the TXT record. When added to a
relocation directory displacement byte, this value yields the address
of the word and/or byte to be mod~fied in the task image.

Figure A-13 illustrates the TXT record format.

0
RECORD

= 3 TYPE

LOAD ADDRESS

TEXT TEXT

•
•
•

TEXT TEXT

ZK-456-81

Figure A-13 Text Information Record Format

A.4 RELOCATION DIRECTORY RECORD

The relocation directory (RLD) record contains the information
necessary to relocate and link the preceding TXT record. Every module
must have at least one RLD record that precedes the first TXT record.
The first RLD record does not modify a preceding TXT record; rather,
it defines the current program section and location. RLD records
contain 15 types of entries, classi£ied as relocation or location
modification entries:

• Internal relocation (type 1)

• Global relocation (type 2)

• Internal displaced relocation (type 3)

• Global displaced relocation (type 4)

A-12

(

(

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

• Global additive relocation (type 5)

• Global additive displaced relocation (type 6)

• Location counter definition (type 7)

• Location counter modification (type 10)

• Program limits (type 11)

• Program section relocation (type 12)

• Program section displaced relocation (type 14)

• Program section additive relocation (type 15)

• Program section additive displaced relocation (type 16)

• Complex relocation (type 17)

• Resident library relocation (type 20)

Each type of entry is represented by a command byte that specifies the·
type of entry and the word/byte modification, followed by a
displacement byte, and then by the information required for the
particular type of entry. The displacement byte, when added to the
value calculated from the load address of the preceding TXT record
(see Section A.3), yields the virtual address in the image that is to
be modified.

Table A-3 lists the bit assignments of the command byte of each RLD
entry.

Table A-3
Relocation Directory Command Byte -

Bit Assignments

Bit Number and Name Setting Meaning

0-6 Entry type

7 Modification o

1

Potentially, 128 command types
can be specified: currently,
15 are implemented.

The command modifies an entire
word.

The command modifies only
byte. TKB checks
truncation errors in
modification commands.
truncation is detected
is, if the modification
is greater than 255), an
occurs.

one
for·

byte
If

(that
value
error

Figure A-14 illustrates the RLD record format.

A-13

TASK BUILDER INPUT DATA FORMATS

0 RECORD
= 4 TYPE

DISP CMD

INFO INFO

INFO INFO

DISP CMD

INFO INFO

INFO INFO

DISP CMD

INFO INFO

.1

INFO INFO

ZK-457-81

Figure A-14 Relocation Directory Record Format

A.4.l Internal Relocation (Type 1)

The internal relocation entry relocates a direct pointer to an address
within a module. TKB adds the current program section base address to
a specified constant, and writes the result into the task image file
at the calculated address (that is, a displacement byte is added to
the value calculated from the load address of the preceding text
block) •

A-14

(

(

(

(-

c

(

TASK BUILDER INPUT DATA FORMATS

For example:

A: MOV #A,RO

or

. WORD A

Figure A-15 illustrates the internal relocation entry format.

OISP B
ENTRY

= 1 TYPE

CONSTANT

ZK-45B-Bl

Figure A-15 Internal Relocation Entry Format

A.4.2 Global Relocation (Type 2)

The global relocation entry relocates a direct pointer to a global
symbol. TKB obtains the definition of the global symbol and writes
the result into the task image file at the calculated address.

For example:

MOV #GLOBAL,RO

or

• WORD GLOBAL

Figure A-16 illustrates the global relocation entry format.

OISP

SYMBOL
NAME

ENTRY
TYPE 2

ZK-459-Bl

Figure A-16 Global Relocation Entry Format

A.4.3 Internal Displaced Relocation (Type 3)

The internal displaced relocation entry relocates a relative reference
to an absolute address from within a re1ocatab1e control section. TKB
subtracts the address plus 2 that the relocated value is to be written
into from the specified constant, and writes the result into the task
image file at the calculated address.

For example:

CLR 177550

or

MOV 177550,RO

A-15

TASK BUILDER INPUT DATA FORMATS

Figure A-17 illustrates the internal displaced relocation entry
format.

OISP I B l
CONSTANT

ENTRY
TYPE 3

ZK-460-81

Figure A-17 Internal Displaced Relocation Entry Format

A.4.4 Global Displaced Relocation (Type 4)

The global displaced relocation entry relocates a relative reference
to' a global symbol. TKB obtains the definition of the global symbol;
subtracts the address plus 2 that the relocated value is to be written
into from the definition value; and writes the result into the task
image file at the calculated address.

For example:

CLR GLOBAL

or

MOV GLOBAL,RO

Figure A-IS illustrates the global displaced relocation entry format.

OISP

SYMBOL
NAME

ENTRY
TYPE 4

ZK-461-81

Figure A-IS Global Displaced Relocation Entry Format

A.4.S Global Additive Relocation (Type 5)

The global additive relocation entry relocates a direct pointer to a
global symbol with an additive constant. TKB obtains the definition
of the global symbol; adds the specified constant to the definition
value; and writes the result into the task image file at the
calculated address.

For example:

MOV #GLOBAL+2,RO

or·

. WORD GLOBAL-4

Figure A-19 illustrates the global additive relocation entry format.

A-16

(

(

(

(

c

c

c

(

TASK BUILDER INPUT DATA FORMATS

DISP I B I ENTRY
= 5 TYPE

SYMBOL
NAME (2 WORDS)

CONSTANT

ZK-462-81

Figure A-l9 Global Additive Relocation Entry Format

A.4.6 Global Additive Displaced Relocation (Type 6)

The global additive displaced ·relocation entry relocates a relative
reference to a global symbol with an additive constant. TKB obtains
the definitiori of the global symbol; adds the specified constant to
the definition value; subtracts the address plus 2 that the relocated
value is to be written into from the resultant additive value; and
writes the result into the task image file at the calculated address.

For example:

CLR GLOBAL+2

or

MOV GLOBAL-5,RO

Figure A-20 illustrates the global additive displaced relocation entry
format.

DISP I B I ENTRY
= 6 TYPE

SYMBOL
NAME (2 WORDS)

CONSTANT

ZK-463-81

Figure A-20 Global Additive Displaced Relocation Entry Format

A.4.7 Location Counter Definition (Type 7)

The location counter definition entry declares a current program
section and location counter value. TKB stores the control base as
the current .control section; adds the current control section base to
the specified constant; and stores the result as the current location
counter value.

Figure A-2l illustrates the location counter definition entry format.

A-l7

TASK BUILDER INPUT DATA FORMATS

0 I B I ENTRY = 7
TYPE

PROGRAM SECTION
NAME (2 WORDS)

CONSTANT

ZK-464-81

Figure A-2l Location Counter Definition Entry Format

A.4.8 Location Counter Modification (Type 10)

The location counter modification entry modifies the current location
counter. TKB adds the current program section base to the specified
constant. and stores the result as the current location counter.

For example:

.=.+N

or

.BLKB N

Figure A-22 illustrates the location counter modification entry
format.

o I B I
CONSTANT

ENTRY
TYPE 10

ZK-465-81

Figure A-22 Location Counter Modification Entry Format

A.4.9 Program Limits (Type 11)

The program limits entry is generated by the .LIMIT assembler
directive. TKB obtains the first address above the header (normally
the beginning of the stack) and the highest address allocated to the
task. It then writes these two addresses into the task image file at
the calculated address and at the calculated address plus 2,
respectively.

For example:

.LIMIT

Figure A-23 illustrates the program limits entry format.

A-18

(

(

(

(

c_

(

TASK BUILDER INPUT DATA FORMATS

DISP
ENTRY
TYPE 11 I

ZK-466-81

Figure A-23 Program Limits Entry Format

A.4.10 Program Section Relocation (Type 12)

The program section relocation entry relocates a direct pointer to the
beginning address of another program section (other than the program
section in which the reference is made) within a module. TKB obtains
the current base address of the specified program section and writes
i.t into the task image file at the calculated address.

For example:

B:
.PSECT A

.PSECT C
MOV #B,RO

or

.WORD B

Figure A-24 illustrates the program section relocation entry format.

DISP ENTRY
TYPE

PROGRAM SECTION
NAME (2 WORDS)

12

ZK-461-81

Figure A-24 Program Section Relocation Entry Format

A.4.11 Program Section Displaced Relocation (Type 14)

The program section displaced relocation entry relocates a relative
reference to the beginning address of another program section within a
module. TKB obtains the current base address of the specified program
section; subtracts the address plus 2 that the relocated value is to
be written into from the base value; and writes the result into the
task image file at the calculated address.

A-l9

For example:

B:

TASK BUILDER INPUT DATA FORMATS

.PSECT A

.PSECT C
MOV B,RO

Figure A-25 illustrates the program section displaced relocation entry
format.

DISP
B I ENTRY

= 14 TYPE

PROGRAM SECTION
NAME (2 WORDS)

ZK-468-81

FigureA-25 Program Section Displaced Relocation Entry Format

A.4.l2 Program Section Additive Relocation (Type 15)

The program section additive relocation entry relocates a direct
pointer to an address in another program section within a module. TKB
obtains the current base address of the specified program section;
adds this address to the specified constant; and writes the result
into the ta'sk image file at the calculated address.

For example:

B:

C:

.PSECT A

.PSECT D
MOV iB+! 0 I RO
MOV iC,RO

or

.WORD B+lO

.WORD C

Figure A-26 illustrates the program section additive relocation entry
format.

A-20

c

(

(

"-

(

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

DISP J B 1 ENTRY = 15
TYPE

PROGRAM SECTION
NAME (2 WORDS)

CONSTANT

ZK-469-81

Figure A-26 Program Section Additive Relocation Entry Format

A.4.l3 Program Section Additive Displaced Relocation (Type 16)

The program section additive displaced relocation entry relocates a
relative reference to an address in another program section within a
module. TKB obtains the current base address of the specified program
section; adds this address to the specified constant; subtracts the
address plus 2 that the relocated value is to be written into from the
resultant additive value; and writes the result into the task image
file at the calculated address.

For example:

B:

C:

.PSECT A

.PSECT D
MOV B+lO,RO

-MOV C,RO

Figure A-27 illustrates the program section
relocation entry format.

DISP I B I ENTRY
=

TYPE

PROGRAM SECTION
NAME (2 WORDS)

CONSTANT

additive dip laced

16

ZK-470-81

Figure A-27 Program Section Additive Displaced Relocation
Entry Format

A-2l

TASK BUILDER INPUT DATA FORMATS

A.4.l4 Complex Relocation (Type 17)

The complex relocation entry resolves a complex relocation expression.
Such an expression is one in which any of the MACRO-II binary or unary
operations are permitted with any type of argument, regardless of
whether the argument is an unresolved global symbol; is .relocatable to
any program section base; is absolute; or is a complex relocatable
subexpression.

The RLD command word is followed by a string of numerically specified
operation codes and arguments. The operation codes each occupy one
byte. The entire RLD command must fit in a single record. The
following 15 operation codes are defined:

•
•
•
•
•
•
•
•
•
•
•

No operation Byte a

Addition (+) Byte 1

Subtraction (-) Byte 2

Multiplication (*) -- Byte 3

Division (/) -- Byte 4

Logical AND (&) -- Byte 5

Logical inclusive OR (1) Byte 6

Negation (-) -- Byte 10

Complement (AC) -- Byte 11

Store result (co~nd termination)

Store result
termination)

with
Byte 13

displaced

Byte 12

relocation (command

• Fetch global symbol -- Byte 16 (It is followed by four bytes
containing the symbol name in Radix-50 representation.)

• Fetch relocatable value -- Byte 17 (It is followed by one byte
containing the program section number, and two bytes
containing the offset within the program section.)

• Fetch constant -- Byte 20 (It is followed by two bytes
,containing the constant.)

• Fetch resident library base address -- Byte 21 (If the file is
a resident library .STB file, the library base address is
obtained; otherwise, the base address of the task image is
fetched.)

The STORE commands indicate that the value is to be written into the
task image file at the calculated address.

All operands are evaluated as l6-bit signed quantities using two's
complement arithmetic. The results are equivalent to expressions that
the assembler evaluates internally. The following rules should be
noted:

1. An attempt to divide by a yields a a result. The Task
Builder issues a nonfatal diagnostic error message.

A-22

(

(

(

(-

(-

c

c

(

TASK BUILDER INPUT DATA FORMATS

2. All results c:l. re truncated from the left to fit into 16 bits.
No diagnostic error message is issued if the number is too
large. If the result modifies a byte, TKB checks for

3.

truncation errors as described

All operations are performed
absolute l6-bit quantities.
the result only.

in Section A.4.

on relocated (additive) or
PC displacement is applied to

For example:

.PSECT ALPHA
A:

.PSECT BETA
B:

MOV #A+B-Gl/G2&"Cl77l20 !G3 > >, Rl

Figure A-28 illustrates the complex relocation entry format.

DISP I B I ENTRY = 17 TYPE

COMPLEX STRING

12

ZK-471-81

Figure A-28 Complex Relocation Entry Format

A.4.1S Resident Library Relocation (Type 20)

The library relocation entry relocates a direct pointer to an address
within a resident library.

If the current file is a resident library symbol definition file
(.STB), TKB obtains the base address of the library; adds this address
to the specified constant; and writes the result into the task image
file at the calculated address. If the file is not associated with a
resident library, TKB uses the task base address.

Figure A-29 illustrates the library relocation entry format.

DISP

CONSTANT

ENTRY
TYPE

20

ZK-472-81

Figure A-29 Resident Library Relocation Entry Format

A-23

TASK BUILDER INPUT DATA FORMATS

A.5 INTERNAL SYMBOL DIRECTORY RECORD

Internal symbol directory (ISD) records have two purposes:

1. To pass information to symbolic debuggers via the .STB file

2. To create autoload vectors dynamically for the entry points
of the library

TBK looks for global symbol definitions in the input object modules
and looks for ISO records if you specify the /DA switch or /DEBUG
qualifier; otherwise TKB ignores the ISO records. Some ISO records
require no relocation and TKB can copy them directly into the .STB
file. Others will require modification; after being modified, they
can be written to the .STB file. In addition, TKB may need to
generate some ISO records of its own in the .STB file.

Except for autoloadable library entry
into the .. STB file only if you
qualifier. When TKB outputs the .STB
types of ISO records:

points, TKB puts ISO records
use the /DA switch or the /DEBUG
file, it writes three major

• Type I records, TKB generated ISDs. The form of these records
is language independent.

• Type 3 records, written for any type 2 records in an input
object module. TKB does this after adding data and then
changing the type to 3. Type 2 relocatable/relocated records
are those that contain both language dependent and independent
sections. Language processors generate these records and TKB
modifies them. They contain information that can be used to

(

(

find the absolute task image address of source program C
entities (variables, program statements, etc.)

• - Type 4 records, written to the .STB file without modification.
Type 4 records are literal records that contain language
dependent information. Apart from the first few bytes, TKB
ignores the rest of the record.

These record formats are described in the following sections.

A.5.l Overall Record Format

ISO records have the same basic structure as all object
records. Because of the variety of different types, the
structure must include additional fields that are common to
record types. The general format of all ISO records is
Figure A-3D.

A-24

language
skeleton
all ISO
shown in

c

(

(

(

TASK BUILDER INPUT DATA FORMATS

15 8 7 0

MUST BE 0 RECORD TYPE = 5

RESERVED (0) ISD RECORD TYPE

RECORD TYPE DEPENDENT

ZK-l058-82

Figure A-30 General Format of All ISO Records

ISO record types fall into general categories. The categories are:

• 0

• 1

• 2

• 3

Illegal.

TKB-generated.

Compiler-generated relocatable.

Relocated (type 2 after TKB processing).

• 4-127 --.not defined and reserved for future use.

• 128-255 -- literal recordS: the type code identifies the
generating language processor and the internal structure.

A.5.2 TKB Generated Records (Type 1)

The content of this record type is a string of individual items, each
with its own format. The items are either start-of-segment items,
task identification items, or autoloadable entry point items. The TKB
generated record is similar to the structure of an RLD or GSD record.
The general format is shown in Figure A-31.

15 8 7 o

LENGTH (BYTES) I ITEM TYPE

CONTENT DEPENDS ON ITEM TYPE

ZK-l059-82

Figure A-31 General Format of a TKB Generated Record

A.5.2.1 Start-of-Segment Item Type (1) - The format
start-of-segment item type is shown in Figure A-32.

A-25

of the

TASK BUILDER INPUT DATA FORMATS

15 8 7 o

LENGTH = 8 I ITEM TYPE = 1

SEGMENT NAME

SEGMENT DESCRIPTOR ADDRESS

ZK-l060-82

Figure A-32 Format of TKB GeneratedStart-of-Segment Item. (l)

A.S.2.2 T~sk Identification Item Type (2) - The task identification
item type ensures that a .STB file .and the task image being debugged

c-

were generated at the same time. Otherwise, symbols that are found (
may not correspond to the actual task.

The task identification item type exists to make the correlation
between the .STB file and its related task possible.· The contents of
this item type correspond exactly to the first ten words of an area in
it task image file, which is in the TKB created PSECT called $$DBTS.

The format of the task identification item type is shown in Figure
A-33.

15 8 7 o

LENGTH = 22. I ITEM TYPE = 2

EIGHT-WORD TIME STAMp1

TWO-WORD NUMBER 2

1. Us form is that which is returned by RSi<~11 M/M-PLUS directive
GTIM$.

2. TKB generates this number as.an additional check on correspond
ence. Currently always zero.

ZK-l061-82

Figure A-33 Format of TKB Generated Task Identification Item (2)

A.S.2.3 Autoloadable Library Entry Point Item Type (3) -TKB outputs
the autoloadable library entry point item into a .STB file when
building overlaid resident libraries. The ISO record contains the
needed information for TKB to dynamically generate' autoload vectors
for entry points in the library. Autoload vectors appear only for
those entry points that are referenced by the task. Unlike the other
item types, the autoloadable library entry point item is not for use
by debuggers.

A-26

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

The format of theautoloadable entry point item is shown in Figure
A-34.

15 8 7 o

LENGTH = 12. I ITEM TYPE = 3

SYMBOL

NAME

0 I FLAGS BYTE

ENTRY POINT OFFSET FROM LIBRARY BASE

SEGMENT DESCRIPTOR OFFSET IN $$SGD1

ZK·1062·82

Figure A-34 Format of an Autoloadable Library Entry Point Item (3)

A.5.3 Relocatable/Relocated Records (Type 2)

These records are the central part of TKB's involvement in debugger
communication. Every item type in these records must be standardized,
and only standard items can appear. The general format of
relocatable/relocated records is the same as that shown in Figure
A-30.

A language processor outputs these record types as type 2. When TKB
processes them, it changes the type to type 3. It also fills in or
modifies some fields. In the descriptions of following item types,
fields that are filled in by TKB are marked with an asterisk (*).
They sQould be left as zero in language processor output.

A.5.3.1 Module Name Item Type (1) - A module name item should be the
first ISD entry of each object module. A debugger can assume that all
following ISD information up to the next module name item relates to
this module.

The language code is included so that a debugger for a specific
language can determine whether to ignore a module if it is written for
another language. The language code has the same range of values as
that of a language~dependent I$D record (128-255) and has the same
meaning.

The format of the module name item type is shown in Figure A-35.

A-27

TASK BUILDER INPUT DATA FORMATS

15 8 7 o

LENGTH ITEM TYPE = 1

MUST BE 0 LANGUAGE CODE

MODULE NAME 1

1. A counted ASCII string of the required length. A counted ASCII
string is a byte string in which the first byte indicates the number of
bytes to follow.

ZK-l063-82

Figure A-3S Format of a Module Name Item Type (1)

A.S.3.2 Global Symbol Item Type (2) - One type 2 item must appear for
each global symbol definition that the language processor wants the
debugger to understand. It need not, however, include definitions
generated fo~ the language processor run-time system.

The format of the global symbol item type is shown in Figure A-36.

15 8 7 o

LENGTH I ITEM TYPE = 2

SYMBOL NAME - -(RADIX-50)

VALUE"

DESCRIPTOR ADDRESS FOR CONTAINING
OVERLAY SEGMENT"

MUST BE ZERO I FLAGS

FULL SYMBOL NAMEl

1. Counted ASCII string of the required length. A counted ASCII
string Is.a byte string in which the first by1eindicates the number of
bytes to follow.

ZK-l053-82

Figure A-36 Format o~ a Global Symbol Item Type (2)

A-28

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

A.S.3.3 PSECT Item Type (3) ~ A concatenated PSECT has two base
addresses: one for the whole PSECT, and another for the part of it
that belongs to this module. It is the base address for the part that
belongs to this module that may be used by a debugger to convert local
symbol values to. absolute addresses.

The segment descriptor address is necessary because PSECTs may move to
segments other than the one in which it was placed. This address is
relevant to languages that provide semi-automatic overlay generation,
like COBOL-II. This word may be zero if the PSECT has not moved to
another segment.

The flag word is a copy of the flag word built by TKB. It allows for
identification of VSECTs.

The full PS.ECT name may be needed for some languages.

The format of a PSECT item type is shown in Figure A-37.

15 8 7 o

LENGTH I ITEM TYPE = 3

- PSECT NAME -

BASE ADDRESS-OF PSECT IN THIS SEGMENT·

BASE ADDRESS OF PSECT FOR THIS MODULE·

LENGTH OF PSECT FOR THIS MODULE·

DESCRIPTOR ADDRESS FOR CONTAINING
SEGMENT*

FLAG WORD·

FULL PSECT NAME1

1. A counted ASCII string of the required length. A counted ASCII
string is a byte string in which the first byte indicates the number of
bytes to follow.

ZK-l054-B2

Figure A-37 Format of a PSECT .Item Type (3)

A.S.3.4 Line;"Number or PC Correlation Item Type (4) - This item
provides the information needed to translate a source line number into
a task image address, or a task image address into a source line
number.

The format of a line-number or PC correlation item type is shown in
Figure A-38.

A-29

TASK BUILDER INPUT DATA FORMATS

15 8 7 o
LENGTH I ITEM TYPE = 4

PSECT
f-- -

NAME

START PCI

DESCRIPTOR ADDRESS OF CONTAINING OVERLAY SEGMENT·

'START PAGE NUMBER

START LINE NUMBER

STRING OF ONE-BYTE ITEMS

1. Offset into PSECT in type 2 records; absolute address in type 3 records.

ZK-1055-82

Figure A-38 Format of a Line-Number or PC Correlation Item Type (4)

A.5.3.5 Internal Symbol Name Item Type (5) - The internal symbol name
item allows for the fact that a name may have more than, one associated
address. For example, a COBOL variable may have three associated
addresses: the address of the area that contains the data, the
address of a CIS descriptor, and the address of a picture string.

The internal symbol name item is shown in Figure A-39.

A.5.4 Literal Records (Type 4)

Literal records may take any form, but the two-byte header shown in
Figure A-40 must be present.

A.6 END OF MODULE RECORD

The end-of-module record declares the end of an object module. There
must be exactly one end-of~module record in every object module. As
shown in Figure A-4l, this record is one word long.

A-30

(

C ,I

(

(

(

(

(

TASK BUILDER INPUT DATA FORMATS

ADDRESS 1:

ADDRESS 2:

ADDRESS n:

15 8 7 o

LENGTH ITEM TYPE = 5

OFFSET TO NAME OFFSET TO DATA

MUST BE ZERO NUMBER OF ADDRESSES

PSECT - -
NAME

TASK IMAGE ADDRESS/OFFSET 1

SEGMENT DESCRIPTOR ADDRESS'

PSECT - -
NAME

TASK IMAGE ADDRESS/OFFSET (1)

SEGMENT DESCRIPTOR ADDRESS'

• •
• •
• •
• •

LANGUAGE-DEPENDENT DATA

SYMBOL NAME 2

1. Modified by TKB

2. A counted ASCII string of the required length. A counted ASCII
string is a byte string in which the first byte indicates the number of
bytes to follow.

ZK-1056-82

Figure A-39 Format of an Internal Symbol Name Item Type (5)

15 8 7 o

RESERVED (0) IISD RECORD TYPE 41

ZK-1057-82

Figure A-40 Format of a Literal Record Type

o RECORD
TYPE 6]

ZK-473-81

Figure A-4l End-of-Module Record Format

A-3l

(

(

(

o

o

C)

C)

APPENDIX B

DETAILED TASK IMAGE FILE STRUCTURE

Figures B-1 through B-4 illustrate how the Task Builder (TKB) records
a task· imag~ on disk. As noted in the following sections, parts of
the task disk image shown in these figures are optional and may not be
recorded for every task image.

The following sections, which provide detailed information on the task
image file structure, are organized as follows:

B.l
B.2
B.3
B.3.1
B.3.2
B.4
B.4.1

B.4.4
B·4·5

Label Block' Group
Checkpoint Area
Header
Low-memory Context
Logical Unit Table Entry
Task Image

oad Vectors for

Window
Region

B.l LABEL BLOCK GROUP

The label block group precedes the task on the disk and contains data
that is needed by the system to install and load a task but need not
reside in memory during task execution. This group consists of three
parts:

• Task and resident library data (label block 0)

• Table of LUN assignments (label blocks 1 and 2)

• The segment load list (label block 3)

Table B-1 describes the task and resident library data. Figure B-5
illustrates how TKB organizes this data in label block O. The INSTALL
processor verifies the task and resident library data when entering
the tasks into the System Task Directory (.STD) file. You can optain
the offsets shown in Figure B-5 by calling the' LBLDF$ macro that
resides in macro library LB: [1,1] EXEMC •. MLB. The LBLDF$ macro on your
system will have the correct offsets. One of the symbols that LBLDF$
defines is $LBXL (label block-extra length). $LBXL is defined as 8
times R$L8IZ, or 340(octal) bytes. To get to L$BPRI on your
RSX-IIM-PLUS system you must add 340(octal) to the offset L$BPRI. For
a task built with RSX-IIM-PLUS options, there are 15 14-word entries
in L$BLIB and L$BPRI is found at 706.

B-1

DETAILED TASK IMAGE FILE STRUCTURE

RELATIVE DISK BLOCK 0
LABEL BLOCK 0 - TASK AND

RESIDENT LIBRARY DATA

LABEL BLOCK 1 - TABLE OF
LUN ASSIGNMENTS LABEL BLOCK GROUP

RELATIVE DISK BLOCK 2 LABEL BLOCK 2 - TABLE OF
LUN ASSIGNMENTS (OPTIONAL)

• CHECKPOINT AREA
(OPTIONAL)

•
• TASK HEADER-

FIXED PART

TASK HEADER-
VARIABLE PART

} HEADER

ROOT SEGMENT
TASK CODE AND DATA } TASK IMAGE

ZK-1064-82

Figure B-1 Image on Disk of Non-Overlaid Conventional Task

RELATIVE DISK BLOCK 0 LABEL BLOCK 0 - TASK AND
RESIDENT LIBRARY DATA

RELATIVE DISK BLOCK 1 LABEL BLOCK 1 - TABLE OF
LUN ASSIGNMENTS LABEL BLOCK GROUP

RELATIVE DISK BLOCK 2 LABEL BLOCK 2 - TABLE OF
LUN ASSIGNMENTS (OPTIONAL)

•
CHECKPOINT AREA

• (OPTIONAL)

•
TASK HEADER-

FIXED PART

TASK HEADER-
VARIABLE PART

} HEADER

ROOT SEGMENT

~-----------------------
OVERLAY RUN-TIME

SYSTEM ROUTINES IN
ROOT FOR LIBRARY

TASK IMAGE
AUTOLOAD VECTORS - -

REGION DESCRIPTORS
OVERLAY DATA BASE - -

SEGMENT DESCRIPTORS
r-- -

WINDOW DESCRIPTORS

ZK-1065-82

Figure B-2 Image on Disk of Conventional Non-Overlaid Task
Linked to Overlaid Library

B-2

(

()

(

(

(

(~

(

DETAILED TASK IMAGE FILE STRUCTURE

RELATIVE DISK BLOCK 0

RELATIVE DISK BLOCK 1

RELATIVE DISK BLOCK 2 --

RELATIVE DISK BLOCK 3 --
• • •

OVERLAY DATA BASE

LABEL BLOCK 0 - TASK AND
RESIDENT LIBRARY DATA

LABEL BLOCK 1 - TABLE OF
LUN ASSIGNMENTS

LABEL BLOCK GROUP
LABEL BLOCK 2 - TABLE OF

LUN ASSIGNMENTS (OPTIONAL)

LABEL BLOCK 3 - SEGMENT
LOAD LIST (OPTIONAL)

CHECKPOINT AREA
(OPTIONAL)

TASK HEADER-
FIXED PART

TASK HEADER-
VARIABLE PART

} HEADER

ROOT SEGMENT

~----------------
OVERLAY RUN-TIME

SYSTEM ROUTINES IN ROOT

AUTOLOAD VECTORS
- -

REGION DESCRIPTORS
~ -

SEGMENT DESCRIPTORS
'--- -

WINDOW DESCRIPTORS

OVERLAY SEGMENT 1 TASK IMAGE
- -

AUTOLOAD VECTORS

OVERLAY SEGMENT 2
- -

AUTOLOAD VECTORS . .

OVERLAY SEGMENT N
I-- -

AUTOLOAD VECTORS

ZK-1066-82

Figure B-3 Image on Disk of Conventional Overlaid Task

B-3

RELATIVE DISK BLOCK 0

RELATIVE DISK BLOCK 1

RELATIVE DISK BLOCK 2

RELATIVE DISK BLOCK 3

•
•
•

TASK IMAGE

Parameter

DETAILED TASK ~MAGE FILE STRUCTURE

LABEL BLOCK 0 - TASK AND RESIDENT LIBRARY DATA

LABEL BLOCK 1 - TABLE OF LUN ASSIGNMENTS

LABEL BLOCK 2 -
TABLE OF LUN ASSIGNMENTS (OPTIONAL)

LABEL BLOCK 3 - SEGMENT LOAD LIST (OPTIONAL)

~~ CHECKPOINT AREA (OPTIO,,!AL) ~~

TASK HEADER (UNUSED COPY) FIXED PART ----------------TASK HEADER (UNUSED COPY) VARIABLE PART

TASK ROOT - INSTRUCTION SPACE

AUTOLOAD VECTORS - I-SPACE PART

TASK HEADER (USER'S COPY) FIXED PART ----------------TASK HEADER (USER'S COPY) VARIABLE PART

TASK STACK AREA

TASK ROOT - DATA SPACE

AUTOLOAD VECTORS - D-SPACE PART ---------"""!""'"---- --
REGION DESCRIPTORS ----------------SEGMENT DESCRIPTORS -----,------------
WINDOW DESCRIPTORS

OVERLAY SEGMENT 1 - I-SPACE
I-- -

AUTOLOAD VECTORS - I-SPACE PART

OVERLAY SEGMENT 1 - D-SPACE
I-- -

AUTOLOAD VECTORS - D-SPACE PART

OVERLAY SEGMENT 2 - I-SPACE
I-- -

AUTOLOAD VECTORS - I-SPACE PART ----------------
I--

• • •

-

-

OVERLAY SEGMENT 2 - D-SPACE

AUTOLOAD VECTORS - D-SPACE PART

OVERLAY SEGMENT N - I-SPACE

AUTOLOAD VECTORS - I-SPACE PART

OVERLAY SEGMENT N - D-SPACE

AUTOLOAD VECTORS - D-SPACE PART

Table B-1

-

• • •

-
--
-

Task and Resident Library Data

Definition

LABEL BLOCK GROUP

TASK ROOT
I-SPACE PART

TASK ROOT
D-SPACE PART

ZK-1067-82

L$BTSK Task name consisting of two words in Radix-50 formqt.
This parameter is set by the TASK keyword.

L$BPAR Partition name consisting of two words in Radix-50
format. This parameter is set by the PAR keyword.

(continued on next page)

B-4

(

c

c

(

(

c

(

(~

Parameter

L$BSA

L$BHGV

L$BMXV

L$BLDZ

L$BMXZ

L$BOFF

L$BWND

L$BSYS

L$BWND

L$BSEG

L$BFLG

DETAILED TASK IMAGE FILE STRUCTURE

Table B-1 (Cont.)
Task and Resident,Library Data

Definition

Starting address of task. Marks the lowest task virtual
address. This parameter is set by the PAR keyword.

Highest virtual address mapped by,address window O.

Highest task virtual address. When the task
have memory-resident overlays, the value
L$BHGV.

does not
is set to

Task load size in units of 64-byte blocks.
represents the size of the root segment.

This value

Task maximum size in units of 64-byte blocks. This
value represents the size of the root segment plus any
additional physical memory needed to contain task
overlays.

Task offset into partition in units of 64-byte blocks.
This value represents the size of the mapped array area,
which precedes the task's code and data in the
partition.

Number of task window blocks less library window blocks
-- Low byte

System ID High byte (l=RSX-llM, 4=RSX-llM-PLUS)

Number of task windows (excluding resident libraries).

Size of overlay segment descriptors (in bytes).

Task flags word. The following flags are defined:

Bit

15

14

13

12

11

10

9

8

7

6

5

Flag

TS$PIC

TS$NHD

TS$ACP

TS$PMD

TS$SLV

TS$NSD

TS$PRV

TS$CMP

TS$CHK

TS$RES

Meaning When Bit = 1

Task contains position-independent code
(PIC).

Task has no header.

Task is ancillary control processor.

Task generates Postmortem Dump.

Task can be slaved.

No SEND can be directed to task.

(Not used)

Task is privileged.

Task is built in compatibility mode.

Task is not checkpointable.

Task has memory-resident overlays.

(continued on next page)

B-5

Parameter

L$BFLG
(Cont.)

L$BDAT

L$BLIB

L$BPRI

L$BXFR

L$BEXT

L$BSGL

L$BHRB

L$BBLK

L$BLUN

L$BROB

L$BROL

L$BRDL

L$BHDB

L$BDHV

L$BDMV

L$BDLZ

L$BDMZ

DETAILED TASK IMAGE FILE STRUCTURE

Table B-1 (Cont.)
Task and Resident Library Data

Definition

Bit

4

Flag

TS$IOP

Meaning When Bit = 1

Privileged task does not map I/O page

1 TS$NXH Task was built with pool resident
header (non external)

Three words containing the task creation date as 2-digit
integer values as follows:

• Year since 1900

• Month of year

• Day of month

Resident library entries.

Task priority set by the PRI keyword.

Task transfer address. Used to initiate a bootable core
image, for example, the resident executive.

Task extension size in units of 32-word blocks.
parameter is set by the EXTTSK keyword.

This

Relative block number of segment load list. Set to 0 if
no list is allocated.

Relative block number of header.

Number of blocks in label block group.

Number of logical units.

Relative block number of R/O image.

R/O load size· in 32-word blocks.

Size of R/O data in 32-word blocks.

Relative block number of data header.

High vitrual address of data window 1.

High virtual address of data.

Load size of data

Maximum size of data

B-6

(

(

(

(

Label

(L$BTSK

L$BPAR

L$BSA

L$BHGV

L$BMXV

L$BLDZ

L$BMXZ

L$BOFF ~

L$BWN D/L$BSYS

L$BSEG

L$BFLG

L$BDAT

L$BLlB

(

C

L$BPRI

L$BXFR

L$BEXT

L$BSGL

(
L$BHRB

L$BBLK

L$BLUN

L$BROB

L$BROL

L$BRDL

L$BHDB

L$BDHV

L$BDMV

L$BDLZ

L$BDMZ

Figure B-5

(

DETAILED TASK IMAGE FILE STRUCTURE

Offset

0

2

4

6

10

12

14

16

20

22

24

26

30

32

34

36

40

42

44

46

50

52

54

56

60

62

64

66

70

72

.
344

346

350

352

354

356

360

362

364

366

370

372

374

376

400

402

Task

Name

Task

Partition

Base address of task

Highest window 0 virtual address

Highest virtual address in task

Load size in 64-byte blocks

Maximum size in 64-byte blocks

Task offset into partition

System LD_ I Number of window blocks'

Size of overlay segment descriptors

Task flag word

Task creation date - Year

- Month

-Day

Library/common

Name

Base address of library

Highest address in first library window

Highest address in library

Library load size (64-byte blocks)

Library maximum size (64-byte blocks)

Library offset into region

Number of library window blocks

Size of library segment dest:riptors

Library flag word

Library creation date - Year,

-Month

- Day

0

Task priority

Task transfer address

Task extension (64-byte blocks)

Block number of segment load list

Block number of header

Number of blocks in label

Number of logical units

Relative block of R-O image

RIO load size

RIO data size in 32-word blocks

Relative block number of data header

High virtual address of data window 1

High virtual address of data

Load size of data

Maximum size of data

o

· ·

·

R$LNAM

R$LSA

R$LHGV

R$LMXV

R$LLDZ

R$LMXZ

R$LOFF

R$LWND

R$LSEG

R$LFLG

R$LDAT

• Less library window blocks_

ZK-475-;81

Label Block 0 -- Task and Resident Library Data

B-7

DETAILED TASK IMAGE FILE STRUCTURE

Table B-2 describes the contents of the resident shared region name
block. TKB constructs this block by referring to the disk image of
the resident shared region. The format is identical to words 3
through 16 of the label group block.

Parameter

R$LNAM

R$LSA

R$LHGV

R$LMXV

R$LLDZ

R$LMXZ

R$LOFF

R$LWND

R$LSEG

R$LFLG

R$LDAT

Table B-2
Resident Library/Common Name Block Data

Definition

Shared region name consisting of 2 words in Radix-50
format.

Base virtual address of library or common.

Highest address mapped by first library window.

Highest virtual address in library or common.

Shared region load size in 64-byte blocks.

Library maximum size in 64-byte blocks. This value
represents the size of the root segment plus the sum of
all memory-resident overlays.

Size of mapped
library. This
of the task.

array space allocated by resident
value is added to the mapped array area

Number of window blocks required by library.

Size of library overlay segment descriptors in bytes.

Library flags word. The following flags are defined:

Bit Meaning

15 LD$ACC -- Access intent (l=read/write,
O=read-only)

14 LD$RSV APR was reserved

13 LD$CLS Library is part of a cluster

2 LD$REL -- Position-independent code (PIC) flag
(l=PIC)

1 LD$TYP -- Shared region type (1
a = library)

common,

Three words containing the shared region creation date
in 2-digit integer values as follows:

• Year since 1900

• Month of year

• Day of month

B-8

(

(

(

(

c

(

/

(

(

(

DETAILED TASK IMAGE FILE STRUCTURE

The table of LUN assignments, illustrated in Figure B-6, contains the
name and logical unit number of each device assigned. Label block 2
(the second block of LUN assignments) is allocated only if the number
of LUNs exceeds 128.

TKB creates the segment load list if the image contains only
memory-resident overlays. The segment load list is used only in
RSX-llS systems for loading tasks that have resident overlays. Figure
B-7 illustrates the segment load list. Each entry in the list gives
the length, in bytes, of a memory-resident overlay segment.

Device name
LUN 1

Unit number
Label • Block •
1 •

Device name
LUN 128

Unit number

Device name
LUN 129

Unit number
Label • Block •
2

Device name
LUN 255

Unit number

ZK-476-81

Figure B-6 Label Blocks 1 and 2 -- Table of LUN Assignments

Length of root segmen t

Le~gth of first overlay segment

Length of second overl ay segment

• • •
o

ZK-477-81

Figure B-7 Label Block 3 -- Segment Load List

B.2 CHECKPOINT AREA

The checkpoint area is created by the /AL switch (refer to Chapter 10)
or the /CHECKPOINT:TASK qualifier (refer to Chapter 11). The
checkpoint area is as large as the task image plus any areas created
by the EXTTSK, PAR, or VSECT options. The checkpoint area does not
include space for the external header if the /XH switch or /EXTERNAL
qualifier was specified.

B-9

DETAILED TASK IMAGE FILE STRUCTURE

B.3 HEADER

As shown in Figures 8-1 through B-4, the task header starts on a block
boundary and is immediately followed by the task image. The header is
read into memory with the task image.

The header is divided into two parts: a fixed part as shown in Figure
B-8: and a variable part as shown in Figure B-9. The offsets for the
fixed part are defined by macro HDRDF$ residing in LB:[l,l]EXEMC.MLB.

The variable part of the header contains window blocks that describe
the following:

• The task's virtual-to-physical mapping

• Logical unit data

• Task context

A~though the header is fully accessible to the task, you should
consider only the information in the low-memory context (H.DSW through
H.VEXT) in the fixed part of the header to be accurate. In a mapped
system, the Executive copies the header of an active task to protected
memory. Subsequent Executive updates to the header are made to this
copy, not to the header copy within the running task.

The following sections provide more detail on the low-memory context
and on Logical Unit Table .entries (the Logical Unit Table is part of
the variable part of the header: see Figure B-9).

NOTE

To sav~ the identification, you should move the
initial value set by the Task Builder to local
storage. When the program is fixed in memory and
being restarted without being reloaded, you must test
the reserved program words for their initial values to
determine whether the contents of'R3 and R4 should be
saved.

The contents of RO, Rl, and R2 are only set when you
include a debugging aid in the task image.

B.3.l Low-Memory Context

The low-memory context for a task consists of the Directive Status
Word and the impure area vectors. TKB recognizes the following global
names:

Name Meaning

• FSRPT File Control Services work area and buffer pool vector

$OTSV FORTRAN OTS work area vector

N'.OVPT Overlay run-time system work area vector

$VEXT Vector extension area pointer

B-IO

(

(

(

(

r
Label Offset

H.CSP 0

H.HDLN 2

H.EFLM 4

6

H.CUlC 10

H.DUIC 12

H.IPS 14

/-
H.IPC 16

~ .. H.ISP 20

H.ODVA 22

H.ODVL 24

H.TKVA 26

H.TKVL 30

H.PFVA 32

H.FPVA 34

(H.RCVA 36

H.EFSV 40

H.FPSA 42

H.WND 44

H.DSW 46

H.FCS 50

H.FORT 52

(H.OVLY 54

H.VEXT 56

H.SPRI/H.NML 60

H.RRVA 62

64

66

70

H.GARD 72

H.NLUN 74

DETAILED TASK IMAGE FILE STRUCTURE

Current Stack Pointer (R6)

Header length

Event flag mask

Even t fl ag ad dress

Current UIC

Default UIC

Initial PS

Initial PC (R7)

Initial Stack Pointer (R6)

ODT SST vector address

ODT SST vector length

Task SST vector address

Task SST vector tength

Power fail AST control block

Floating·point AST control block

Receive AST control block

Address of event flag context

Address of floating-point context

Pointer to number cif window blocks

Directive Status Word

Address of FCS impure storage

Address of FORTRAN impure storage

Address of overlay impure storage

Address of impure vectors

Mailbox LUN I Swapping priority

Receive by reference AST control block

Reserved I H.X25

Reserved

Reserved

Header guard word pointer

Number of LUNs

I'

I~

I

Low-Core
Context

Figure B-8 Task Header, Fixed Part

B-11

ZK·47B·Bl

DETAILED TASK IMAGE FILE STRUCTURE

The only proper reference to these pointers is by symbolic name. The
pointers are read-only. If you write into them, the result will be
lost on the next context switch ..

The impure area pointers contain the addresses of the storage used by
the reentrant library routines listed above.

The address contained in the vector extension pointer locates an area
of memory that can contain additional impure area pointers.

H. LUN I LUN Table (2 words per LUN)

• •

Number of window blocks

Partition control block address

Low virtual address limit

High virtual address limit

Address of attach ment descriptor

Window size (in 32-word blocks)

Offset into partition (in 32-word blocks)

Number of PDRs to Map

Contents of last P D R

Current PS

Current PC

Current R5

Current R4

Current R3

Current R2

Current R 1

Current RO

Header guard word

· •

I First PDR Address

Initial Values

Relative block number of header

Ident. word #2

Ident. word #1

Task name word #2

Task name word #1

Program transfer address

Offsets

W.BPCB

W.BLVR

W.BHVR

W.BATT

W.BSIZ

W.BOFF

W.BNPD/W.BFPD

W.BLPD

ZK-479-81

Figure B-9 Task Header, Variable Part

Figure B-10 illustrates the format of the vector extension area. Each
location within this area contains the address of an impure storage
area that can be referred to by subroutines within a resident library;
these subroutines must be reentrant. The address of this area
(location $VEXTA) is contained at absolute address $VEXT in the task
header. Addresses below $VEXTA, referred to by negative offsets, are
reserved for DIGITAL applications. Addresses above $VEXTA, referred
to by positive offsets, are allocated for user applications.

B-12

(

(

(

c_

r

c

(

DETAILED TASK IMAGE FILE STRUCTURE

$VEXT rl I
•
•
•

.PSECT $$VEXO \
Reserved for
DIGITAL use

~

} $VEXTA .PSECT $$VEXl Reserved for
user appl ications

ZK-4BO-B1

Figure B-lO Vector Extension Area Format

The program sections $$VEXO and $$VEXI have the attributes D, GBL, RW,
REL, and OVR.

The program section attribute OVR facilitates defining the offset to
the vector and initializing the vector location at link time. For
example:

.GLOBL $VEXTA ; MAKE SURE VECTOR AREA IS LINKED

.PSECT $$VEXl,D,GBL,REL,OVR

$$$=.

.BLKW

LABEL: • WORD
OFFSET==LABEL-BEG

.PSECT

IMPURE:

N

IMPURE

POINT TO BASE OF POINTER TABLE

OFFSET TO CORRECT LOCATION
IN VECTOR AREA

SET IMPURE AREA ADDRESS
DEFINE OFFSET

You should centralize all offset definitions within a single module
from which the actual vector space allocation is made. Also, you
should write the source code with conditional statements to create two
object modules: one that reserves the vector storage; and one that
defines the global offsets that will be referred to by your resident
library's subroutines.

Note that the sequence of instructions above intentionally redefines
the global symbol. The Task Builder reports an error if this value
differs from the centralized definition.

B-13

DETAILED TASK IMAGE FILE STRUCTURE

You 'can locate your vector through a sequence of instructions
to the fOllowing:

MOV @#VEXT, RO
MOV OFFSET(RO),RO
• END

GET ADDRESS OF VECTOR EXTENSIONS
POINT TO IMPURE AREA

'B.3.2 Logical Unit Table Entry

similar

Figure B-ll illustrates the format of each entry in the Logical Unit
Table.

UCB address

Window block pointer

ZK-4B1-B1

Figure B-ll Logical Unit Table Entry

The first word contains the address of the device unit control block
in the Executive system tables. That block contains device-dependent

. information.

The second word. is a pointer to the window block if the device is file
structured.

The UCB address is set during task ihstallation if a corresponding ASG
parameter is specified at task-build time. You can also set this word
at run time with the Assign LUN Directive to the Executive.

The window block pointer is set when a file is opened on the device
whose UCB address is specified by word 1. The window block pointer is
cleared when the file is closed.

B.4 TASK IMAGE

The system reads the task image into memory beginning with the task
header (see Figures B-1 through B-4). The root segment of a
conventional task image is a set of di

Each overlay segment of the task image begins on a block boundary (see
Figure B-3). Note that a given overlay segment occupies as many
contiguous disk blocks as it needs to supply its space request. The
maximum size for any segment, including the root, is 32K minus 32
words.

('

(

(

c_

DETAILED TASK IMAGE FILE STRUCTURE

NOTE

One exception to the block boundary alignment of
segments occurs when shared regions contain resident
overlays. When this occurs, the image is compressed
and, instead of being aligned on block boundaries,
segments are aligned on 32-word boundaries. This
facilitates the loading of regions.

Figures B-12 and B-13 illustrate the structure
components of the task-resident overlay data base.

and principal

AUTOLOAD
VECTOR

AUTOLOAD
VECTOR

AUTOLOAD
VECTOR

SEGMENT
DESCRIPTOR

SEGMENT
DESCRIPTOR

SEGMENT
DESCRIPTOR ~ I

-----,

WINDOW
DESCRIPTOR

WINDOW
DESCRIPTOR

I
I
I
I

I

I

®
r-------,
I

REGION

I DESCRIPTOR

I
I
I

L ______ ..JL ______ ...J

o Window descriptors are necessary for the
windows that'the Overlay Run-Time
System uses to map memory resident
overlays. The Overlay Run-Time System
also needs window descriptors to map
disk-resident overlays that are up-tree
from memory-resident overlay segments. ,

® The Overlay Run-Time System uses
regio(1 descriptors to map overlaid
libraries.

(~-

l

Figure B-12 Task-Resident Overlay Data Base
for a Conventional Overlaid Task

B-15

DETAILED TASK IMAGE FILE STRUCTURE

AUTOLOAD
VECTOR

D-SPACE PART

AUTOLOAD
VECTOR

D-SPACE PART

AUTOLOAD
VECTOR

1------
D-SPACE PART ~

SEGMENT
DESCRIPTOR

EXTENSION

SEGMENT
DESCRIPTOR

EXTENSION

SEGME;NT
DESCRIPTOR

o Window descriptors are necessary for the
windows that the Overlay Run-Time
System uses to map memory resident
overlays. The Overlay Run-Time System
also needs window descriptors to map
disk-resident overlays that are up-tree
from memory-resident overlay segments.

® The Overlay Run-Time System uses
region descriptors to map overlaid
libraries.

®
r

I
I

I

WINDOW
DESCRIPTOR
FOR I-SPACE

WINDOW
DESCRIPTOR
FOR D-SPACE

WINDOW
DESCRIPTOR
FOR I-SPACE

WINDOW
DESCRIPTOR
FOR D-SPACE

WI~DOW

DESCRIPTOR

--,

r
I

I

I I

- - - --
REGION

DESCRIPTOR

- ..,
I
I
I

____ J

ZK·1069-82

Autoload vectors are generated whenever a reference is made to an
autoloadable entry point in a segment located farther away from the
root than the segment making the reference.

One segment descriptor is generated for each overlay segment in the
task or shared region. The segment descriptor contains information on
the size, virtual address, and location of the segment within the task
image file. In addition, it contains a set of link words that point
to other segments. The overlay structure determines the link word
contents.

B-16

c

(

(

(

(

(

DETAILED TASK IMAGE FILE STRUCTURE

The window descriptor contains information required to issue the
mapping directives. TKB allocates one window descriptor for each
memory-resident overlay in the structure.

The region descriptor contains information required to attach a
resident library or common block. There is one region descriptor for
each shared region containing memory-resident overlays.

The following sections describe each data base component in greater
detail.

B.4.l Autoload Vectors for Conventional Tasks

The autoload vector table consists of one entry (put into the task
image for each autoload entry point) in the form shown in Figure B-14.

- JSR PC,@.NAUTO

PC RELATIVE OFFSET TO .NAUTO

SEGMENT DESCRIPTOR ADDRESS

ENTRY POINT ADDRESS

ZK-1070-82

Figure B-14 Autoload Vector Entry for Conventional Tasks

The autoload vector executes an indirect JSR instruction to $AUTO
through .NAUTO. Following the JSR instruction is a pointer to the
descriptor for the segment to be loaded. Following the descriptor is
the real address of the required entry point.

B-17

DETAILED TASK IMAGE FILE STRUCTURE

MOV (PC)+, -(SP)

ADDRESS OF PACKET (D-SPACE)

JMP @.NAUTO

PC RELATIVE OFFSET TO .NAUTO

I-SPACE PORTION

ADDRESS OF SEGMENT DESCRIPTOR

ENTRY POINT ADDRESS

D-SPACE PORTION

ZK·l071-82

B.4.3 Segment Descriptor

The segment descriptor for a conventional task consists. of a fixed
part and two optional parts. The fixed part is six words long. If
the ma:nual-load feature is used ($LOAD), two words are added
containing the segment name. When a memory-resident overlay structure
is included, a ninth word is appended that points to the window
descriptor.

Figure B-16 illustrates the contents of the segment descriptor.

B-18

(

(

li

c

(

DETAILED TASK IMAGE FILE STRUCTURE

TASK-RESIDENT SEGMENT DESCRIPTOR OFFSETS

15 12 11 o

FLAGS I RELATIVE DISK BLOCK ADDRESS

VIRTUAL LOAD ADDRESS OF SEGMENT I F

LENGTH OF SEGMENT IN BYTES

LINK UP

LINK DOWN

LINK NEXT

r--- SEGMENT NAME (2-WORD RADIX 50) -

WINDOW DESCRIPTOR ADDRESS

FLAGS: 15-TASK RESIDENT FLAG (ALWAYS 1)
14-SEGMENT HAS DISK ALLOCATION (1=NO)
13-SEGMENT IS LOADED FROM DISK (1=YES)
12-SEGMENT IS LOADED AND MAPPED (O=YES)

Figure B-16 Segment Descriptor

BYTE

o

2

4

6

10

12

14

20

Word 0 contains the relative disk address in bits 0 through 11 and the
segment status in bits 12 through 15. Each segment in the task image
file begins on a disk block boundary. The relative disk address is
the block number of the segment relative to the start of the root
segment. The segment status flags are defined as follows:

Bit Setting

15 Always set to 1

14 0 = Segment has disk allocation.
1 = Segment does not have disk allocation.

13 0 Segment is not loaded from disk.
1 = Segment is loaded from disk.

12 0 = Segment is loaded and mapped.
1 = Segment is either not loaded or not mapped.

B-19

DETAILED TASK IMAGE FILE STRUCTURE

Word 1 contains the load address of the segment. This address is the
first virtual address of the area where the segment will be loaded.

Word 2 specifies the length of the segment in bytes.

Words 3, 4, and 5 point to the following segment descriptors:

• Link up ,-- The next segment away from the root (O=none).

• Link down -- The next segment toward the root (O=none).

• Link next -- The adjoining segment; the link-next pointers are
linked in circular fashion.

When the system loads a segment, the overlay run-time system follows
the linkS to determine which segments are being overlaid and should
therefore be marked out of memory. For example:

Al

I

The segment descriptors are linked as follows:

A22 A2l A22

Al~A2

link up' link down link next

If there is a co-tree, the link next for the root segment descriptor
points to the co-tree root segment descriptor.

Words 6 and 7 contain the segment name in Radix-50 format.

Word 8 points to the window descriptor used to map the segment
(O=none) •

B.4.4 Window Descriptor

TKB allocates window descriptors only
containing memory-resident overlays.
format of a window descriptor.

if you
Figure

define a structure
B-17 illustrates the

Words 0 through 7 constitute a window descriptor in the format
required by the mapping directives. If the memory'-resident overlay is
part of the task, the region ID is O. If the memory-resident overlay
is part of a shared region, the overlay loading routine fills in the
ID at run time.

Words 8 and 9 contain additional data that is referred to by the
overlay routines. Bit 15 6f the flags word, if set, indicates that
the window is currently mapped into the task's address space.

B-20

c

.(

(

C)

C)

c;

DETAILED TASK IMAGE FILE STRUCTURE

Word 9 contains the address of the associated region descriptor. If
the memory-resident overlay is part of the task, and no region
descriptor is allocated, this value is o.

Word 15 8 7 o
0 Base Active Page Register I Window ID

Virtual base address ~

2 Window size in 64·byte blocks

3 Region ID

4 Offset in partition

5 Length to map

6 Status word

7 Send/receive buffer address (always 0)

8 Flags word

9 Address of region descriptor

ZK·485·81

Figure B-17 Window Descriptor

B.4.S Region Descriptor

The region descriptor is allocated only when the memory-resident
overlay structure is part of a shared region. Figure B-18 illustrates
the format of a region descriptor.

o Region ID

Size of region

2 Region

3 name

4 Region

5 partition

6 Region status

7 Protection codes (always 0)

8 Flags

ZK·486·81

Figu~e B-18 Region Descriptor

B-2l

DETAILED TASK IMAGE FILE STRUCTURE

Words 0 through 7 constitute a region descriptor in the format
required by the mapping directives. The flags word is referred to by
the overlay load routine. Bit 15 of the flags word, if set, indicates
that a valid region identification is in word O. If this bit is
clear, the overlay load routine issues an Attach Region directive
(with protection code set to 0) to obtain the identification.

B-22

C)

o

o

C)

o

c

APPENDIX C

HOST AND TARGET SYSTEMS

C.l INTRODUCTION

You can build a task on one system (the host), and run it on another
(the. target). For example, your installation might consist of one
large computer system with mapping hardware, and several smaller
unmapped systems. On the large system you could create and debug
tasks, and then transfer them to the smaller systems to run.

For example, if you are developing a task named TK3, using the default
partition of your host system, the TKB command could be:

>TKB TK3,TK3=SQl,SQ2

or, the equivalent LINK command could be:

>LINK/TAS:TK3/NOMEN/MAP:TK3/0PT SQl,SQ2
Option? PAR=PARTl:lOOOOO:40000
Option? (Bill
>

When you are ready to move TK3 to
indicating the mapping status
partition in which the task is to
command similar to the following:

>TKB
TKB>TK3/-MM,TK3=SQl,SQ2
TKB>/
Enter Option:
TKB>PAR=PARTl:lOOOOO:40000
TKB>//
>

a target system, you build it again,
of the target system and naming the
reside. You can do this with a TKB

or a LINK command similar to the following:

>LINK/TAS:TK3/NOMEN/MAP:TK3/0PT SQl,SQ2
Option? PAR=PARTl:lOOOOO:40000
Option? (Bill

>

The resulting task image is ready to run on the unmapped target
system.

You can transfer a task from the host system to the target system by
following these steps:

1. Build the task image specifying the partition in which the
task will run. If the target system is an unmapped system,
specify the partition's base address and size.

C-l

HOST AND TARGET SYSTEMS

2. Ensure that any shared regions accessed by the task are
present in both systems.

3. If the target system and the host system do not have the same
mapping status, use the Memory Management switch (/MM or
/-MM) or the /[NO]MEMORY MANAGEMENT qualifier to reflect the
mapping status of the target system.

The task code must not use any hardware options (FPP, EIS, EAE,and so
forth) that are not present on the target system. This is
particularly important if you are a FORTRAN user because FORTRAN tasks
often use mathematics routines that are hardware dependent. (Refer to
the RSX, VAX/VMS FORTRAN IV Installation Guide/Release Notes and the
RSX, VAX/VMS FORTRAN IV-User's Guide for more information on FORTRAN
requirements.)

C.2 EXAMPLE C-l: TRANSFERRING A TASK FROM A HOST TO A TARGET SYSTEM

In this section, the resident library LIB and the task that refers to
it, MAIN (from Example 4, Chapter 5), are rebuilt to run on an
unmapped system. To save space, only the Task Builder command
sequences are shown.

Assuming that the target system has a partition within it named LIB,
you need to make only two changes to the original command sequence
that builds the library:

1. You must attach the. negated memory management switch (/-MM)
to the image file specification.

2. You must specify the partition base and length.

The modified TKB command sequence is as follows:

TKB>LIB/-HD/PI/-MM, LIB/-WI, LIB=LIB
TKB>/
Enter Options:
TKB>STACK=O
TKB>PAR=LIB:136000:20000
TKB>//
>

The equivalent LINK command sequence is as follows:

>LINK/TAS/NOHEA/COD:PIC/NOMEM/MAP/NOWID/SYM/OPT
Option? STACK=O
Option? PAR=LIB:136000:20000
Option? ~
>

LIB

If the target system does not contain a partition of the same name as
that of the shared region, you must change the name of the shared
region to match the name of an existing partition in the target
system. This is a requirement of RSX-IIM: on RSX-IlM-PLUS systems it
is not.

Assuming that the target system has a partition named GEN and that the
task MAIN is to run in that partition in the target system, you must
make three changes to the command sequence that builds the task MAIN:

(

c-

(

1. You must attach the negated memory management switch (/-MM) (
to the task image file specification. "'-,

C-2

(

c

(

HOST AND ,TARGET SYSTEMS

2. You must eliminate the APR parameter of the RESLIB keyword.

3. You must explicitly specify the base address and length of
the partition in which the task is to reside.

The modified TKB command sequence is as follows:

TKB>MAIN/-MM,MAIN/MA/-WI=MAIN
TKB>/
Enter Options:
TKB>RESLIB=LIB/RO
TKB>PAR=GEN:30100:40000
TKB>//
>

The equivalent modified LINK command is as follows:

>LINK/TAS/NOMEM/MAP/NOWIO/SYS/OPT MAIN
Option? RESLIB=LIB/RO
Option? PAR=GEN:30100:40000
Option? ~
>

Example C-l, Part 1 shows the map file of the resident library LIB for
an unmapped system. LIB is bound to the partition base specified by
the PAR keyword in the task-build command sequence. Note that the
shared region is declared position independent even though it is bound
to the partition base 136000. The position-independent declaration is
hot necessary in this example because the referencing task MAIN does
not require the program section names within the library in order to
refer to it. However, in applications involving tasks that require
the program section names from the library, you must declare the
library position independent so that TKB will place the program
section names in the library's symbol definition file.

Example C-l, Part 1 Task Builder Map for LIB.TSK

LIB.TSK;l Memory allocation map TKB M40.l0
10-OEC-82 11:50

Partition name LIB
Identification 01
Task UIC [303,3J
Task attributes: -HO,PI
Total address windows: 1.
Task image size 64. words
Task address limits: 000000 000163
R-W disk blk limits: 000002 000002 000001 00001.

*** Root segment: LIB

R/W mem limits: 000000 000163 000164 00116.
Oisk blk limits: 000002 000002 000001 00001.

Page 1

(continued on next page)

C-3

HOST AND TARGET SYSTEMS

Example C-l, Part 1 (Cont.) Task Builder Map for LIB.TSK

Memory allocation synopsis:

Section Title Ident File --- ---
. BLK.:(RW,I,LCL,REL,CON) 000000 000000 00000 •
AADD : (RO, I, GBL, REL, CON) 000000 000024 00020.

000000 000024 00020. LIB 01 LIB.OBJil
DIVV : (RO,I,GBL,REL,CON) 000024 000026 00022.

000024 000026 00022. LIB 01 LIB.OBJ'il
MULL : (RO,I,GBL,REL,CON) 000052 000024 00020.

000052 000024 00020. LIB 01 LIB.OBJil
SAVAL : (RO,I,GBL,REL,CON) 000076 000042 00034.

000076 000042 00034. LIB 01 LIB.OBJil
SUBB : (RO,I,GBL,REL,CON) 000140 000024 00020.

000140 000024 00020. LIB 01 LIB.OBJil

Global ,symbols:

AADD OOOOOO-R MULL 000052-R SUBB 000140-R
DIW 000024-R SAVAL 000076-R

*** Task builder statistics:

Total work fil.e references: 368.
Work file reads: O.
Work file writes: O.
Size of core pool: 7086. words (27. PAGES)
Size of word file: 768. words (3. PAGES)

Elapsed time:00:00:03

Example C-l, Part 2 shows the map file of the task MAIN for an
unmapped system. The task is bound to the partition base 30100 and
linked to the shared region LIB, which begins at 136000.

Example C-l, Part 2 Task Builder Map for MAIN.TSK

MAIN.TSKil Memory allocation map TKB M40.10
Il-DEC-82 13:41

Partition name GEN
Identification 01
Task UIC [303,3]
Stack limits: 000274 001273 001000 00512.
PRG xfr address: 001634
Total address windows: 2.
Task image size 115.2. WORDS
Task address limits: 00000 004327
R-W disk blk limits: 000002 000006 000005 00005.

*** Root segment: MAIN

Page 1

(continued on next page)

C-4

~-

c

C-

c

(

C'

c

HOST AND TARGET SYSTEMS

Example C-l, Part 2 (Cont.) Task Builder Map for MAIN.TSK

R/W mem limits: 000000 004327 004330 02264
Disk blk limits: 000002 000006 000005 00005.
Memory allocation synopsis:

Section Title Ident File

· BLK.:(RW,I,LCL,REL,CON) 001274 002620 01424.
001274 000530 00344. MAIN

Global symbols:

AADD 160000-R SAVAL 060000-R $CBDSG
DIVV 160000-R SUBB 060000-R $CBOMG
IO.WVB 011000 $CBDAT 003074-R $CBOSG
MULL 060000-R $CBDMG 003102-R $CBTA

*** Task builder statistics:

Total work file references: 1889.
Work file reads: O.
Work file writes:. o.

003110-R
003116-R
003124-R
003154-R

Size of core pool: 7086. WORDS (27. PAGES)
Size of work file: 1024. WORDS (4. PAGES)

Elapsed time:00:00:07

C-5

01 MAIN.OBJil

$CBTMG 003132-R
$CBVER 003116-R
$CDDMG 003656:-R
$CDTB 003312-R

(';
/

C)

C)

c

c

C
! ",

C

APPENDIX D

MEMORY DUMPS

The RSX-IIM/M-PLUS Postmortem Dump task (PMD) generates postmortem
memory dumps of tasks that are abnormally terminated. In addition,
PMD can'produce edited dumps, called snapshot dumps, for tasks that
are running. Section D.l describes Postmortem Dumps in general;
Section D.2 discusses the specific case of snapshot dumps. Both types
of dumps are very useful debugging aids.

D.l POSTMORTEM DUMPS

You can make a task eligible for a Postmortem Dump in any of three
ways:

•

•

•

By using, at task-build time, the /PM switch for the task file
or the /POSTMORTEM output qualifier in the LINK command.
Using the I-PM switch or not using the /POSTMORTEM qualifier
disables dumps; it is the default condition.

By installing a task with the /PMD switch in MCR or the
/[NO]POSTMORTEM qualifier in DCL to override the task-build
/PM switch or /POSTMORTEM qualifier. /PMD=YES and /POST.MORTEM
e~able dumping; /PMD=NO and /NOPOSTMORTEM disable dumping.

By using the ABORT command in MCR (described in the
RSX-IIM/M-PLUS MCR Operations Manual) and including the PMD
switch in the. command line to specify a dump; or by using the
ABORT command in DCL (described in the RSX-IIM!M-PLUS Command
Language Manual) and including the /POSTMORTEM qualifier to
specify a dump.

You should install the PMD task in a 4K partition in which all other
tasks are checkpointable. This allows the dump to be generated in a
timely manner, and prevents the system from being locked up while the
dump is being generated. PMD can dump either from m~mory or from the
checkpoint image of your task. The PMD is sensitive to the location
of the aborted task; therefore, if the aborted task is checkpointed
during the dump, PMD switches to reading the checkpoint image. Once
the task is checkpointed, PMD locks it out of memory until it has
completed formatting the dump.

D-l

MEMORY DUMPS

Dumps are always generated on the system disk under UFO [1,4];
therefore, to avoid errors from PMD, you must create a UFO for [1,4]
before installing the task. When PMD finishes generating the dump, it (-
attempts to queue the dump to the print spooler for subsequent
printing. If no spooler is installed, the dump file is left on the
disk and can be printed at a later time using the Peripheral
Interchange Program (PIP, described in the RSX-ll Utilities Manual).

NOTE

Dump files tend to be somewhat large. The dump of an
8K partition averages about 340 blocks. Therefore, if
there is little space on the disk, it is important to
print and delete the dump file without delay. The
print spooler automatically deletes all files with the
type .PMD after printing them.

Example 0-1 shows the contents of a Postmortem Dump and snapshot dump;
the notes that follow the figure are keyed to the figure and provide a
description of the dumps contents. Snapshot Dumps are explained more
fully in Section 0.2.

D.2 SNAPSHOT DUMPS

Snapshot dumps are edited dumps produced for running tasks. You can
request a snapshot dump any number of times during the execution of a
task. The information generated is under the control of the
programmer.

Snapshot dumps are generated by the following macros:

• SNPDF$ -- Defines offsets in the snapshot dump control block
and defines control bits, which control the format of the dump

.SNPBK$ -- Allocates the snapshot dump control block (see
Figure 0-1)

• SNAP$ -- Causes a snapshot dump to be generated

SNPBK$, and SNAP$ issue calls to SNPDF$; so, you need not explicitly

c

(

issue the SNPDF$ macro call. Sections 0.2.1 and 0.2.2 describe the c-
SNPBK$ macro and the SNAP$ macro, respectively. _

0-2

c

c

(

l

MEMORY DUMPS

Example D-1 Sample Postmortem Dump (Truncated)

POST-MORTEM DUMP ..

TASK: TT68

pc: 000720 0
TIME: 5-0CT-76 15:06

lOT EXECUTION 0
REGS: RO - 000345 Rl - 074400

R4 - 000000 R5 - 000000

TASK STATUS: MSG AST DST -CHK HLT

EVENT FLAG MASK FOR <1-16> 000001 ~

CURRENT UIC: [007,001] DSW: 1. f)

R2 - 000120

SP - 000304

STP REM MCR 0

R3 - I.OI30} e
PS - 170000

PRIORITY: DEFAULT - 50. RUNNING - 50. I/O COUNT: O. TI DEVICE - TT6:~

LOAD DEVICE - DBO: LBN: 1,160034 CD

FLOATING POINT UNIT

STATUS - 000000

RO - 000000
Rl - 000000
R2 - 000000
R3 - 000000
R4 - 000000
R5 - 000000

LOGICAL UNITS

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

UNIT DEVICE FILE STATUS

1 DBO:
2 DBO:
3 DBO:
4 DBO:

000000
000000
000000
000000
000000
000000

4D

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED 001454}~ STARTING RELATIVE BLOCK: 000002
STARTING RELATIVE BLOCK: 000004

BASE: 000000
BASE: 001454

TASK STACK

ADDRESS CONTENTS
000304 000045

ASCI I RAD50} ~
% 7

TASK IMAGE

D-3

LENGTH:
LENGTH: 000264

ZK-487/1-81

(continued on next page)

(

0-4

(

c

c

o

MEMORY DUMPS

Type of dump: Postmortem or snapshot. If it is a snapshot
dump, the dump identification. is printed.

The name of the task being dumped, and the date and time the
dump was generated.

• The program counter at the time of the dump. If it is a
Postmortem Dump, the reason the task was aborted is printed.

~ The general registers, stack pointer, and processor status at
the time of the dump.

~ The task status flags at the time of the dump. See the
description of the ATL or TAL command in the RSX-llM/M-PLUS
MCR Operations Manual for the meaning of the ·flags. Also,
for DCL, see the description of the SHOW TASK/FULL and the
SHOW TASK/ACTIVE/FULL commands in the RSX-llM/M-PLUS Command
Language Manual.

The task event flag mask word at the time of the dump. If
the dump is a snapshot dump, the efn specified in the SNAP$
macro will be ON (see Section D.2.2).

The task UIC and the cu.rrent value of the directive status
word.

The task's priority and
outstanding I/O requests,
task was initiated (TI:).

default priority, number of
and the terminal from which the

The task load device and the logical block number for the
start of the task image on the device.

The floating-point unit (FPU) registers or the extended
arithmetic element (EAE) registers if the task is using one
of these hardware features. If the task is not using the FPU
or EAE, these registers are not printed. If the task uses
the FPU and you did not specify the /FP switch. or the
/CODE:FPP qualifier, or if it uSeS the EAE unit and you did
not specify the /EA switch or the /CODE:EAE qualifier, the
registers are not printed. If the machine you are using has
both an FPU and an EAE, PMD assumes you are using the FPU
because it is the unit of choice for arithmetic computations.

The logical unit assignments at the time of the dump. UNIT
is the logical unit number, and DEVICE is the device to which
the logical unit is assigned. For snapshot dumps, the file
names of any open files are displayed under FILE STATUS.
Postmortem Dumps do not display this information because all
of the files ·have been clOSed as a result of the I/O rundown
on the aborted task. ..

The following are displayed: the overlay segments loaded and
resident libraries mapped at the time of the dump; the
relative block number of the segment; the base address; the
length of the segment; and, for tasks using manual load, the
segment names. For resident libraries, the library name is
also displayed. The block number can be used to determine
which segment is loaded, by reference to the memory
allocation file generated by the Task Builder. The starting
block number for each segment is the relative block numper of
the segment. By obtaining a match, you can determine the
name of the segment in memory. Zero-length segments are
usually co-tree roots.

D-5

MEMORY DUMPS

The task stack at the time of the dump. The address is
displayed, along with the contents, in octal, ASCII, and
Radix-50. Each word on the stack is dumped. If the stack
pointer is above the initial value of the stack (H.ISP), only
one word is dumped. The rest is dumped as part of the task
image.

GD The task image itself. The partition being dumped and the
limits of interest are displayed. For Postmortem Dumps, all
address windows in use are dumped. For snapshot dumps, the
virtual task limits that you request are displayed. The dump
routine rOtmd-s-t.he requested low limit down to the nearest
multiple of eight bytes and-rounds the requested high limit
up to the nearest multiple of eight bytes. The dump image
displays the virtual starting address of a 4-word block of
memory, the data in both octal and Radix-50 on the first
line, and byte octal and ASCII on the second line. A 4-word
block that is repeated in a contiguous region of memory is
printed once, and then noted by the message

*** DUPLICATE THROUGH xxxxxx ***
where xxxxxx indicates the last word that is duplicated. If
the task was aborted, all address windows in use are dumped.
If the dump is a snapshot dump, up to four contiguous blocks
of memory can be dumped, if requested.

Label Offset

SB.CTL 0 CONTROL FLAGS

SB.DEV 2 DEVICE MNEMONIC

SB.UNT 4 UNIT NUMBER

SB.EFN 6 EVENT FLAG

SB.ID 10 SNAP IDENTIFICATION

SB.LM1 (L 1) 12 MEMORY BLOCK 1
(H1) 14 LIMITS

(L2) 16 MEMORY BLOCK 2
(H2) 20 LIMITS

(L3) 22
MEMORY BLOCK 3

(H3) 24 LIMITS

(L4) 26
MEMORY BLOCK 4

(H4) 30 LIMITS

SB.PMD 32 "PMD ... "
34 IN RADIX-50

ZK-488·81

Figure D-l Snapshot Dump Control Block Format

D.2.l Format of the SNPBK$ Macro

The format of the SNPBK$ macro call is:

SNPBK$ dev,unit,ctl,efn,id,Ll,Hl,L2,H2,L3,H3,L4,H4

D-6

(

c

(

(

(

c

(

(

dev

unit

ctl

efn

id

MEMORY DUMPS

The 2-character ASCII name of the device to which the dump is
directed. If it is a directory device, the UFD [1,4] must be on
the volume. The dump is written to the disk and then spooled to
the line printer. If there is no print spooler, the file is left
on the disk. If the device is not a directory device, the dump
goes directly to the device.

The unit number of the device to which the dump is directed.

The set of flags that control the format of the dump and the data
to be printed. The flags are:

SC.HDR

SC.LUN

SC.OVL

SC.STK

SC.WRO

SC.BYT

Print the dump header (items 3 to 10 in Figure
D-l). Items 1 and 2 are always printed.

Print information on all assigned LUNs (item 11).

Print information about all loaded overlay segments
(item 12).

Print the user stack (item 13).

Print the requested memory in octal words and
Radix-50 (item 14).

Print the requested memory in octal bytes and ASCII
(item 14).

The event flag to be used to synchronize your program and PMO.

A number that identifies the snapshot dump. Because dumps can be
requested at different times and under different conditions, this
10 is used to identify the place or reason for the dump.

Ll,L2,L3,L4

The starting addresses of the memory blocks to be dumped.

Hl,H2,H3,H4

The ending addresses of the memory blocks to be dumped.

NOTE

If no memory is to be dumped,
(Ll,L2,L3,L4,Hl,H2,H3,H4) should be O.

Only one snapshot dump control block is allowed.
global label .. SPBK.

0-7

each limit

It generates the

MEMORY DUMPS

NOTE

Because SNPBK$ is used to allocate storage for the
snapshot dump control block, all arguments except dev
must be valid arguments for .WORD or .BYTE directives.

D.2.2 Format of the SNAP$ Macro

The format of the SNAP$ macro is:

ct1

efn

id

SNAP$ ct1,efn,id,L1,H1,L2,H2,L3,H3,L4,H4

The set of flags that control the format of the dump and the data
to be printed. The flags are:

SC.HDR Print the dump header.

SC.LUN Print information on all assigned LUNs.

SC.STK Print the user stack.

SC.OVL Print information about all loaded overlay
segments.

SC.WRD Print the requested memory in octal words and
Radix-50.

SC.BYT Print the requested memory in octal bytes and
ASCII.

The event flag to be used to synchronize your program and PMD. A
Wait-For-Sing1e-Event-F1ag directive is always generated to
perform synchronization.

A number that identifies the snapshot dump. Because dumps can be
requested at different times and under different conditions, this
ID is used to identify the place or reason for the dump.

Ll,L2,L3,L4

The starting addresses of memory blocks to be dumped.

Hl,H2,H3,H4

The ending addresses of memory blocks to be dumped.

NOTES

1. If no memory is to be dumped, each limit
(L1,L2,L3,L4,H1,H2,H3,H4) should be O.

D-8

(

(

(

c

(-

l

MEMORY DUMPS

2. You can set the control flags in any
combination; they are not mutually
exclusive. Thus, any number of options can
be obtained; for example,
SC.HDR1SC.LUN1SC.WRD prints the header,
LUNs, and the requested memory in word octal
and Radix-50 mode.

3. Arguments should be specified only to
override the information already in the
snapshot dump control block.

4. Because SNAP$ generates instructions to move
data into the snapshot dump control block,
its arguments must be valid source operands
for MOV instructions.

D.2.3 Example of a Snapshot Dump

The sample program shown in Example D-2 causes two snapshot dumps to
be printed directly on LPO:. The first dump uses the parameters
defined in the snapshot dump control block. The header is generated,
and the data in relative locations BLK to BLK+220 ~s displayed, in
word octal and Radix-50. The identification on the dump is 1.

The second dump causes the data in the locations BLK to BLK+220 to be
displayed in byte octal and ASCII. A heaqer is also generated. The
dump identification is 64 (100 octal). Examples D-3 and D-4 show the
dumps generated by the sample program.

D-9

t:l
I

I-'
0

SNPTST - TEST SNAP DUMP AND PMD MACRO M1010 03-SEP-76 15:57 PAGE 1

1 . TITLE SNPTST - TEST SNAP DUMP AND PMD
2 .IDENT lOll -
3 • MCALL SNPBK$,SNAP$,CALL
4 000000 BLK: SNPBK$ LP,0,SC.HDRlSC.OVL1SC.WRD,1,1,BLK,BLK+220
5 000036 123 116 120 BUF: .ASCIZ ISNPTSTI

000041 124 123 124
000044 000

6 . EVEN
7 000046 START: SNAP$
B 000216 012700 000036'
9 000222

10 000226
11 000412 000004
12 000046'

SNPTST ~ TEST SNAP DUMP AND PMD MACRO M1010
SYMBOL TABLE

BLK OOOOOOR SB.EFN= 000006
BUF 000036R SB.IO = 000010
IE.ACT= ****** GX SB.LM1= 000012
SB.CTL= 000000 SB.PMD= 000032
SB.DEV= 000002 SB.UNT= 000004

. ABS. 000000 000
000414 001

ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 1335 WORDS (6 PAGES)
DYNAMIC 'MEMORY AVAILABLE FOR 30 PAGES
ASSEMBLY TIME (ELAPSED): 00:00:14
SNPTST,SNPTST=SNPTST

MOV #BUF,RO
CALL $CAT5
SNAP$ #SC.HDR!SC.OVL1SC.BYT,,#100
lOT
. END START

03-SEP-76 15:57 PAGE 1-1

SC.BYT= 000040 SC.STK= 000010
SC.HDR= 000001 SC.WRD= 000020
SC.LUN= 000002 START 000046R
SC.OVL= 000004 $CAT5 = ****** GX

Example D-2 Sample Program That Calls for Snapshot Dumps

(' ,~ (\ 0,

3:
t"iI

~
~

$DSW ****** GX g
$$$T2 000027 3:
.• SPBK OOOOOORG 'tl

... SNP= 000032 en

,"\

C)

C:

Ci

MEMORY DUMPS

Example D-3 Sample Snapshot Dump (in Word Octal and Radix-50)

SNAPSHOT DUMP ID: 1

TASK: TT6 TIME: 5-0CT-76 15:06

pc: 000522

REGS: RO - 000000 R1 - 100104 R2 - 000000 R3 - 140130

PS - 170000 R4 - 000000 R5 - 000000 SP - 000304

TASK STATUS: MSG -CHK STP WFR REM MCR

EVENT FLAG MASK FOR 1-16> 000001

CURRENT UIC: [007,001] DSW: 1.

PRIORITY: DEFAULT - 50. RUNNING - 50.

LOAD DEVICE - DBO: LBN: 1,160034

FLOATING POINT UNIT

STATUS - 000000

RO - 000000
R1 - 000000
R2 - 000000
R3 - 000000
R4 - 000000
R5 - 000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000

I/O COUNT: O. TI DEVICE - TT6:

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCK: 000002 BASE: 000000 LENGTH: 001454

000300
000310
000320
000330
000340
000350
000360
000370
000400
000410
000420
000430
000440
000450
000460
000470
000500
000510
000520

TASK IMAGE

PARTITION: GEN VIRTUAL LIMITS: 000304 - 000524

001051
000000
000524
000000
131574
000000
001037
012746
017646
000002
012746
005046
012746
062766
000002
104377
000046
016746
104377

000001
000001
000000
000000
047123
016746
104377
000304
000000
017666
0002507
005046
000336
000002
000002
103006
001402
177576
012700

000025
000001
000000
000000
052120
177734
103456
012746
062766
000002
104377
005046
017646
000002
012746
022737
000261
012746
000342

050114
000304
000000
063014
052123
012746
005046
000336
000002
000002
013435
005046
000000
017666
003413
177771
000405
001051
004767

D-11

M3 A U L361
A A D61

HT 1
PMDI

1 ••• LUK MSX MS$l
1 DIN 7T CTFI
1 MW U61 UYFAX8l
lCTF D6 CTF EVI
lEBV PLV Bl
1 B EB8 B Bl
lCTF 31 U61 UX/l
lAX8 AX8 AX8 AX81
lCTE EV EBV 1
IPLV B B EB81
1 B B CTF AECI
lU61 UQO FBO 811
1 8 SJ DQ FUI
lD1N SF CTF M31
lU61 CSH EZ AWl!

MEMORY DUMPS

Example D-4 Sample Snapshot Dump (in Byte Octal and ASCII)

SNAPSHOT DUMP ID: 64

TASK: TT6 TIME: 5-0CT-76 15:06

PC: 000716

REGS: RO - 000345 R1 - 074400 R2 - 000120 R3 - 140130

R4 - 000000 R5 - 000000 SP - 000304 PS - 170000

TASK STATUS: MSG -CHK STP WFR REM MCR

EVENT FLAG MASK FOR 1-16> 000001

CURRENT UIC: [007001J DSW: 1-

PRIORITY: DEFAULT - 50. RUNNING .,. 50. I/O COUNT: O. TI DEVICE - TT6:

LOAD DEVICE - DBO: LBN: 1,160034 C~;
FLOATING POINT UNIT

STATUS - 000000

RO - 000000 000000 000000 000000
R1 - 000000 000000 000000 000000
R2 - 000000 000000 000000 000000
R3 - 000000 000000 000000 000000 C) R4 - 000000 000000 000000 000000
R5 - 000000 000000 000000 000000

OVERLAY SEGMENTS LOADED AND RESIDENT LIBRARIES MAPPED

STARTING RELATIVE BLOCK: 000002 BASE: 000000 LENGTH: 001454
STARTING RELATIVE BLOCK: 000004 BASE: 001454 LENGTH: 000264

. TASK IMAGE

PARTITION: GEN VIRTUAL LIMITS: 000304 - 000524
l~)

000300 051 002 001 000 045 000 114 120 ! } % LP!
000310 000 000 001 000 100 000 304 000 I @ D I
000320 124 001 000 000 000 000 000 000 !T I
000330 000 000 000 000 000 000 014 146 fl
000340 174 263 123 116 120 124 123 124 I 3 SN PT STI
000350 000 000 346 035 334 377 346 025 I f \ f I
000360 037 002 377 210 056 207 046 012 I & !
000370 346 025 304 000 346 025 336 000 ! f D f
000400 246 037 000 000 366 145 002 000 !& ve
000410 002 000 266 037 002 000 002 000 6
000420 346 025 107 005 377 210 035 207 If G
000430 046 012 046 012 046 012 046 012 1& & & & I

000440 346 025 336 000 246 037 000 000 1 f A &
000450 366 145 002 000 002 000 266 037 !ve 6
000460 002 000 002 000 346 025 013 007 f
000470 377 210 006 206 337 045 371 377 ! % y C) 000500 046 000 002 003 261 000 005 001 !& T
000510 346 035 176 377 346 025 051 002 !f f
000520 377 210 300 025 342 000 367 011 @ b w

D-12

c

(

c

APPENDIX E

RESERVED SYMBOLS

Several global symbols and program section names l are reserved for use
by TKB.2 Special handling occurs when TKB encounters a definition of
one of these names in a task image.

The definition of ~ reserved global symbol in the root segment causes
a word in the task image to be modified with a value calculated by
TKB. The relocated value of the symbol is taken as the modification
address.

The following global symbols are reserved by TKB:

Global
Symbol

. FSRPT

. MBLUN

. MOLUN

.NLUNS

. NOVLY

N.OVPT

. NSTBL

. ODTLI

.ODTL2

Modification
Value

Address of file storage region.work area (.FSRCB) •

Mailbox logical unit number .

Error message output device .

The number of logical units used by the task, not
including the message output and overlay units.

The overlay logical unit number •

Address of overlay run-time system work area (.NOVLY).

The address of the segment description tables. This
location is modified only when the number of segments
is greater than one.

Logical unit number for the ODT terminal device TI: •

Logical unit number for the ODT line printer device
CL: .

1. In absolute sections (ASECTs) and both
blank (CSECTs) are supplanted by program
sections (PSECTs). The .PSECT assembler directive eliminates the need
for .ASECT and .CSECT directives, except for compatibility with other
systems~ This manual refers to all sections as program sections,
unless the specific characteristics of ASECTs or CSECTs apply.

2. All symbols and program.section names containing a period (.) or a
dollar sign ($) are reserved for DIGITAL-supplied software.

E-l

Global
Symbol

. SUMLI

. PTLUN

$OTSV

. TRLUN

. USLUI

. USLU2

$VEXT

RESERVED SYMBOLS

Modification
Value

P/OS standard utility module LUN .

Logical unit number for plotter/graphics software .

Address of Object Time System work area ($OTSVA).

The trace subroutine output logical unit number .

Logical unit number for special purpose user software .

Logical unit number for special purpose user software .
-

Address of vector extension area ($VEXTA).

TKB reserves the following program section names. In some cases, the
definition of a reserved program section causes that program section
to be extended if you specify the appropriate option.

Source
Location

TKB

TKB

Input
Module

SYSLIB

Section
Name

$$ALER

$$AUTO

$$DBTS

$$DEVT

Description

Contains code to process or trap Overlay Run-time
System segment load errors. Provides named areas
in the task for the FORTRAN-IV Object Time System
and the RSX-llM Overlay Run-time System.

Contains code to determine if a called subroutine
in an overlay segment is already in memory or if
that overlay segment should be read into memory
before control is passed to the subroutine that is
called.

This symbol should appear in the debugger input
module with the symbol $DBTS as follows:

.PSECT $$DBTS
$DBTS: :

.PSECT

The task builder extends $$DBTS and fills it with
time stamp information followed by the filename
information of the .STB file.

The extension length (in bytes) is calculated from
the formula:

EXT = <S.FDB+52>*UNITS

The definition of S.FDB is obtained from the root

c

(

c

c·

segment symbol table, and UNITS is the number of (
logical units used by the task, excluding the
message output, overlay, and ODT units.

E-2

(

c

(

Source
Location

SYSLIB

SYSLIB

TKB

TKB

TKB

SYSLIB

TKB

TKB

TKB

TKB

TKB

TKB

TKB

Section
Name

$$FSRl

$$IOBl

$$IOB2

$$LOAD

$$MRKS

$$OBFl

$$OBF2

$$OVDT

$$OVRS

$$PDLS

$$RDSG

$$RGDS

$$RTQ

RESERVED SYMBOLS

Description

The extension of this section is specified by the
ACTFIL option.

The extension of this option is specified by the
MAXBUF option.

A zero length .PSECT containing a label, IOBFND,
that is stored in the work area offset, W.BEND,
representing the upper bound of the I/O buffer,
$$IOB1. TKB uses $$IOB2 as a boundary value to
determine whether the I/O buffer has overflowed.

Overlay manual load routine.

Contains code to properly mark those segments that
are not needed any longer or have been overlaid by
another segment as being out of memory. This
ensures that a fresh copy of the overlay segment
will be read in the next time the overlay segment
is needed.

FORTRAN OTS uses this area to parse array type
format specifications. This section can be
extended by the FMTBUF keyword.

A zero length .PSECT containing a label, OBFH,
that is stored in the work area offset, W.OBFH,
which represents the upper bound of the run-time
format buffer, $$OBF1. TKB uses $$OBF2 to
determine whether the run-time format buffer has
overflowed.

The Overlay Run-time System impure data area. The
symbol . NOVPT in low memory points to this area.
This area defines the operational parameters with
which the Overlay Run-time System operates on
disk-resident and . memory-resident overlay
structures.

The .ABS. program section that redefines the
Overlay Run-time System impure data area with
different symbols, defined as offsets and relative
to zero. These off~ets are necessary for proper
linkages between the subroutines in the Overlay
Run-time System. This program section is never
included in the memory allocation of the task
because of its absolute program section attribute.

Cluster library service routine.

Contains the code that reads into memory the
overlay segment selected by the code contained in
the programs section $$AUTO.

Contains the region descriptors for
libraries referred to by the task.

resident

Defines the PSECT used for selective enabling of
AST recognition in the Overlay Run-time System.
$$RTQ is 0 in length if $AUTOT is not included.

E-3

SQurce
Location

TKB

TKB

TKB

TKB

TKB

FORTRAN

TKB

Section
Name

$$RTR

$$RTS

$$SGDO

$$SGDl

$$SGD2

$$TSKP

$$WNDS

RESERVED SYMBOLS

Description

Defines the PSECT used for selective disabling of
AST ,recognition in the Overlay Run-time System.
$$RTR is 0 in length if $AUTOT is not included.

Contains the return instruction.

Contains the program section adjoining the task
segment descriptors.

Contains the task segment descriptors.

Contains a .WORD 0 following the task segment
descriptors.

TKB fills in the following words in the PSECT:

• APR bit map in word $APRMP _

• Task offset into region in word $LBOFF

• Maximum physical read/write memory needed for
task in word $MXLGH

• Maximum physical read-only memory needed for
task in word $MXLGH+2

• Task extension in 32-word blocks in word $LBEXT

Contains task window descriptors

E-4

o

o

C)

o

c--

c

(

APPENDIX F

IMPROVING TASK BUILDER PERFORMANCE

This appendix contains procedures to assist you in maximizing Task
Builder (TKB) performance. These procedures include:

• Evaluating and improving TKB throughput

• Modifying command switch defaults to provide a more efficient
user interface

• Using the Slow Task Builder when large work file space is
required

These procedures assume
features not found in
Appendix G.

that the
the Fast

program to be linked requires
Task Builder (FTB) described in

Using the procedures described in this appendix may require relinking
TKB. You can do this only in a system that has, as a minimum, a 14K
user-cont,rolled or system-controlled partition. In some cases, you
can make the modifications without relinking by using the binary patch
program ZAP (see the RSX-ll Utilities Manual).

Modifications to the TKB build file imply one or more of the following
files located under UFO [1,24J (mapped) or [1,20J (unmapped):

These files reside on the disk containing the utility object files.

F.l EVALUATING AND IMPROVING TASK BUILDER THROUGHPUT

Task Builder throughput is determined by three factors:

• The amount of disk latency incurred because of overlays

• The amount of memory available for .table. storage

• The amount of disk latency due to input file processing

The following sections outline methods for improving throughput in
each of these last two cases.

F-l

IMPROVING TASK BUILDER PERFORMANCE

F.l.l Table Storage

The principal factor governing TKB performance is the amount of memory
available for table storage. To reduce memory requirements, a work
file is used to store symbol definitions and other tables. This work
file cannot exceed 65,543 bytes. As long as the size of these tables
is within the limits of available memory, the contents of this file
are kept in memory and the disk is not accessed. If the tables exceed
this limit, some information must be displaced and moved to the disk,
degrading performance accordingly.

You can gauge work file
portion of the TKB map.

performance by consulting the statistics
The map displays the following parameters:

• Number of work file references -- Total number of times that
work file data was referred to.

• Work file reads -- Number of work file references
resulted in disk accesses to read work file data.

that.

•

•

•

•

Work file writes -- Number of work file references that
resulted in disk accesses to write work file data.

Size of core
This value
(information
words) •

pool -- Amount of in-core table storage in words.
is also expressed in units of 256-word pages
is read from and written to disk in blocks of 256

Size of work file Amount of work file storage in words. If
this value is less than the pool size, the number of work file
reads and writes is O. That is, no work file pages are
removed to the disk. This value is also expressed in pages
(256-word blocks).

Elapsed time -- Amount of time
image and output the map. This
option processing, and the time
cross-reference.

required to build the task
value excludes ODL processing,
required to produce the global

You can reduce the overhead for gaining access to the work file in one
or more of the following ways:

• By increasing the amount of memory available for table storage

• By placing the work file on the fastest random access device

• By de~reasing system overhead required to gain access to the
file

• By reducing the number of work file references

You can increase the amount of table storage by installing TKB ina
larger partition or, if TKB is running in a s'ystem-controlled
partition, by using the INSTALL/INC command in MCR or the
INSTALL/EXTENSION command in DCL to allocate more space.

In a system that includes support for the Extend Task directive, TKB
automatically increases its size if it is checkpointable and installed
in a system-controlled partition. You set the maximum limit. You can
increase this maximum by issuing the MCR command SET !MAXEXT or the
DCL command SET SYSTEM/EXTENSION_LIMIT.

Increasing the proportion of resident dynamic memory reduces the
amount of I/O necessary for access to TKB internal data structures.
As stated above, once the resident memory has been filled, the data
structures overflow into a temporary work file on the device assigned

F-2

(

(

c

(

(

(

C~

(

c

IMPROVING TASK BUILDER PERFORMANCE

to the wbrk file logical unit number. This logical unit number
(W$KLUN) is specified in the build command file. Preferably, this
unit number should be assigned to a device other than the system
device, for example a fixed-head disk.

Displacement of pages to the work file is done on a least recently
used basis. The work file extends automatically as necessary to hold
all pages displaced. The parameter W$KEXT is provided in the build
command file of TKB and defines the file extension properties. A
negative value indicates that the extend is noncontiguous; a positive
value indicates that the extend is contiguous. If a contiguous extend
fails, a noncontiguous request is attempted; if a noncontiguous extend
fails, a fatal work file I/O error is reported. As long as the work
file remains contiguous, a higher access rate can be obtained ..

It is not possible to state exactly how many symbols TKB can process,
because there are many data structures included in virtual memory.
The following is a list of the structures that are stored in the
virtual memory. All the sizes given are approximate only (sizes vary
with characteristics of the t'ask being built and may vary from release
to release).

Structure Name

Segment Descriptor

P-section Descriptor

Symbol Descriptor

Element Descriptor

Control Section
Mapping Table

Description Approximate Size
(in Words)

Contains listhead BO.
sizes, the pointers
defining the overlay
tree, the segment name.
Part of this structure
becomes the segment
descriptor in the
resultant task image.

Contains the name, 10.
address size, and
attributes of a
p-section.

Contains symbol name,
value, flags, and
pointers to defining
segment and program
section descriptors.

Contains module
name, ident, filename,
count of program
section and some
flags.

Table of program
section size and
program section
descriptor addresses.

B. (nonoverlaid task)

15. (overlaid ~ask)

B.-lB.

Two words per
program section in
each module

The maximum usage of virtual memory occurs during phase three of TKB,
when the symbol table is built. .However, phase one makes significant
use of virtual memory when an overlaid task is being built. It is at
this point that all the segment descriptors are allocated, as well as
an element descriptor for every file name encountered during the
parsing of the tree description. In addition, a p-section descriptor
is produced for every .PSECT directive encountered in the overlay
description.

F-3

IMPROVING TASK BUILDER PERFORMANCE

The parsing of the overlay description also makes use of dynamic
memory during the processing of each directive. This memory is
released upon completion of the analysis; during the analysis,
however, the whole tree description must fit into the resident portion
of the storage. If sufficient storage cannot be obtained in the
resident dynamic memory, the error message NO DYNAMIC STORAGE
AVAILABLE is returned. The method for increasing the ratio of dynamic
storage to virtual memory can be applied here, possibly to allow a
task with a large overlay description to be built.

The amount of memory required during analysis depends on:

• The number of directives

• The length of .FCTR lines

• The number of operators, that is, commas, dashes, and
parentheses)

• The number of file names encountered

TKB links all DEC-supplied tasks in a 14K partition.

There are a number of ways to reduce the amount of virtual memory
required during the build of a specific task. Reducing the data
structures in virtual memory also increases the speed of searching the
tables and reduces the amount of paging to the work file.

1.

2.

Extract object modules
libraries (for example.,
requires smaller element
descriptors and is also
to open and close.

Use concatenated object
above.

by name from relocatable object
LIBRy/LB:MODl:MOD2). This technique
descriptors and fewer file name

faster because there are fewer files

modules for the same reasons as

3. Use shared regions (resident libraries and common areas) for
language and overlay run-time systems and file control
services. Such use of shared regions allows symbols and
p-sections to be defined only once, rather than on multiple
branches of the tree.

4. Place modules that occur on parallel branches of the tree in
a common segment (for example, closer to root) for the same
reasons as in 3 above.

5. Use the Iss switch for TKB or the ISELECTIVE SEARCH qualifier
for LINK on symbol table files (.STB) that describe absolute
symbol definitions so that only those symbols referenced are
extracted from the module.

6. Minimize the number of segments and keep the tree balanced.
For example, if one segment is very long, there is no value
in putting a tree structure in parallel unless creating one
segment in parallel would be longer.

In addition to the above, a version of TKB can be built which has less
throughput but requires less virtual memory per element than TKB.
This version is built using the command file STKBLD.CMD supplied on
the RK05 utility disk, or the RK06 and RP system disks under UFD
[1,20J (unmapped) or [1,24J (mapped).

F-4

(

c

(

c

(

c-

(

(

IMPROVING TASK BUILDER PERFORMANCE

There are four error messages associated with the virtual memory
system:

• NO DYNAMIC STORAGE AVAILABLE. This error occurs when there is
insufficient resident storage for creating some data
structures. As much as possible of the data already allocated
(all unlocked pages) has been paged to the work file, but
there is still not enough free memory. Such a situation might
arise during the analysis of the overlay description, early in
the task-build run, and particularly if it is a complex tree.
Reducing the ODL and extending the Task Builder memory
allocation (see above) are the recommended recovery
procedures.

• UNABLE TO OPEN WORKFILE. The probable causes of this error
are:

Device assigned to logical unit 8 of the Task Builder is
not mounted.

The device is not FILES-ll.

There is no space on the volume.

The device is off line, not ready, write locked, or faulty.

There is no such device.

The MCR function LUN ... TKB may be used to determine which
device the Task Builder is attempting to use.

• WORKFILE I/O ERROR. The probable causes of this error are:

Hardware error (for example, parity error on the disk).

Device is not ready, or is write-locked.

An extend failure has occurred (for example, the disk is
full) .

• NO VIRTUAL MEMORY STORAGE AVAILABLE. The addressable limit of
the virtual memory has been reached. There is no recovery
other than to reduce the virtual memory requirements of the
task being built along the lines suggested earlier.

The work file normally resides on the device from which TKB was
installed. You can change the device by reassigning logical unit 8
through the Monitor Console Routine or by editing the build file and

, relinking TKB.

System overhead for work file accesses is incurred in translating a
relative block number in the file to a physical disk address. To
minimize this overhead, TKB requests disk space in contiguous
increments. The size of each increment is equal to the value of
symbol W$KEXT defined in TKB build file. A larger positive value
causes the file to be extended in larger contiguous increments and
reduces the overhead required to gain access to the file. The
increment should be set to a reasonable value because TKB resorts to
noncontiguous allocation whenever contiguous allocation fails.

You can reduce the size of the work file by:

• Linking your task to
commonly used routines
System) whenever possible

a core-resident
(for example,

F-5

library
FORTRAN

containing
Object Time

IMPROVING TASK BUILDER PERFORMANCE

• Including common modules, such as components of an object time
system, in the root segment of an overlaid task

• Using an object library or file of concatenated object modules
if many modules are to be linked

When you use either of the last two procedures, system overhead is
also significantly reduced because fewer files must be opened to
process the same number of modules.

You can reduce the number of work file references by eliminating
unneeded output files and cross-reference processing, or by obtaining
the short map. In addition, you can usually exclude selected files,
such as· the default system object module library, from the map. In
this case you can obtain, and retain, a full map at less frequent
intervals.

F.l.2 Input File Processing

The procedures for minimizing the size of the work file and number of
work file accesses also drastically reduce the amount of input file
processing.

A given module can be read up to four times when the task is built:

• To build the symbol table

• To produce the task image

• To produce the long map

• To produce the global cross-reference

Files that are excluded from the long map are read only twice. The
third and fourth passes are eliminated for all modules when you
request a short map without a global cross reference.

F.l.3 Summary

In summary, you can use the following procedures to improve TKB
throughput:

• Use the MCR INSTALL/INC command or the EXTK$ Executive
directive to allocate more table space.

• Use the DCL INSTALL/EXTENSION command to allocate more table
space.

• Increase maximum task size by raising the system li~it for
dynamic task extension.

• Reduce disk latency by placing the work file on the fastest
random access device.

• Reduce system overhead by modifying the command file to
allocate work file space in larger contiguous increments.

F-6

(

c-

(

c

(

c-

(

(

IMPROVING TASK BUILDER PERFORMANCE

• Decrease work file size by using resident
concatenated object files, and object libraries.

libraries,

• Decrease work file size by including common modules into the
root segment of an overlaid task.

• Decrease the number of work file references by eliminating the
map and global cross-reference, obtaining the short map, or
excluding files from the map.

F.2 MODIFYING COMMAND SWITCH DEFAULTS

The default switch settings and values provided by the Task Builder as
released may not suit the requirements of all installations. For
example, the default switch setting /-EA, or being forced to use the
/CODE:EAE qualifier in LINK, would be unsatisfactory at an
installation that made frequent use of the KEll Extended Arithmetic
hardware.

Thus, you are allowed to tailor the switch defaults by altering the
contents of the words that contain initial switch states. Modifying
TKB in this way is a 3-step process:

1. Consult Tables F-l through F-4 to determine the switch word
and bit to be altered.

2. Edit the appropriate TKB command file to include the switch
word modification through a GBLPAT option referring to the
global switch word name.

3. Relink TKB using the modified command file.

However, be aware that if you use the DCL LINK command and you change
TKB switch defaults in a TKB build command file, you also alter, in
effect, the LINK command defaults. For example, the following LINK
command line

>LINK/TAS:CALC/MAP:CALC/SYM:CALC MOD1,MOD2,MOD3/LB

is translated by DCL into the following TKB command line

CALC,CALC,CALC=MOD1,MOD2,MOD3/LB

If you had changed the Task Builder /-EA switch default to /EA for
your installation, the same TKB command line as shown above would
still be constructed by DCL, but the hidden default (hidden from the
point of view of LINK) is now assumed by TKB to be /EA instead of
I-EA.

The command files for system tasks, as provided with the released
system, require the standard set of TKB defaults; therefore, you must
retain and use an unmodified copy of TKB whenever such tasks are
relinked.

You use Tables F-l through F-4 to alter the defaults as follows:

1. You identify the switch and the file to which it applies ..

2. You consult the switch category entry in each table to locate
the applicable switch words.-

F-7

iMPROVING TASK BUILDER PERFORMANCE

3. You look at the switch settings to find the switch and
associated bit.

4. You specify the revised value and switch word as arguments in
a GBLPAT option.

5. You relink TKB to produce a
appropriate defaults.

version containing the

For example, to change the TKB Extended Arithmetic Element default to
lEA, perfo.rm the st.eps described below.

By consulting Table F-l, you determine that two switch words, $DFSWT
and $DFTSK, contain task file switches. Of these, $DFTSK contains the
default setting for the lEA switch or ICODE:EAE qualifier in bit 13.
Setting this bit to 1 changes the initial switch setting to lEA. This
new value is combined with the initial contents to yield the revised
setting 120002. The required option input is:

TKB>GBLPAT=TASKB:$DFTSK:120002

NOTE

The setting of bit positions not listed in the tables
must not be altered.

The only switches that have associated values are lAC and
(jANCILLARY PROCESSOR and IPRIVILEGED in LINK). In these cases,
value is the number of the initial APR used to map the task. You
alter the default by changing the value of the GBLDEF keyword for
symbol D$FAPR in TKB build file. Only values 4 or 5 can be used.

Table F-l
Task File Switch Defaults

Switch Category: Task file

Switch Word: $DFSWT

Initial Contents: 0

IPR
the
can
the

(

C

C

Switch Settings: ~

Initial Condition

Initial TKB LINK
Bit State Switch Qualifier Meaning

15 0 I-XT Not IERR Not abort after n diagnostics

11 0 I-SQ Not ISEQ Not sequential PSECT
allocation

4 0 I-FU NOT IFUL Not full overlay tree search

3 0 IRO IRES Recognize memory-resident
overlay operator.

(continued on next page) (

F-8

\

(

c

IMPROVING TASK BUILDER PERFORMANCE

Table F-l (Cont.)
Task File Switch Defaults

Switch Category: Task file

Switch Word: $DFTSK

Initial Contents: 100002

Switch Settings:

Bit

15

14

13

12

11

10

9

8

7

6

5

4

2

1

Initial
State

1

o

o

o

o

o

o

o

o

o

o

o

o

1

TKB
Switch

/-CP
/-AL

/-FP

/-EA

/HD

/-CM

/-DA

I-PI

/-PR

/-TR

I-PM

/-SL

/SE

/-AC

/-AL

Initial Condition

LINK
Qualifier

/NOCHECK:SYS
/NOCHECK:TAS

Meaning

Not checkpointable l

Not /COD:FPP Not Floating Point Processor

Not /COD:EAE Not Extended Arithmetic
Element

/HEA

Not /COM

/NODEB

Header

Not compatibility mode

No debugging aid

Not /COD:PIC Not position independent

Not /PRI Not privileged

Not /TRA

Not /POS

Not /SLA

/REC

Not /ANC

No trace

No Postmortem Dump

Not slave task

Send to task allowed

Not ancillary control
processor

/NOCHECK:TAS No checkpoint allo~ation

1. The combination of not checkpointable with checkpoint
allocation (100000) is illogical and should not be used.

(continued on next page)

F-9

IMPROVING TASK BUILDER PERFORMANCE

Table F-l (Cont.)
Task File Switch Defaults

Switch Category: Task File

Switch Word: $DFTSO
Initial Contents: 000010

Switch Settings:

Initial Condition

Initial TKB LINK
Bit State Switch Qualifier Meaning

3 1 /-SG /NOSEG RO and RW PSECTs

Table F-2
Map File Switch Defaults

Switch Category: Map file

Switch Word: $DFLBS

Initial Contents: 120000

Switch Settings:

Iriitial Condition

Initial TKB LINK
Bit State Switch Qualifier

15 1 /-MA /NOSYS

Switch Category: Map file

Switch Word: $DFMAP

Initial Contents: 2040

Switch Settings:

Meaning

Do not include system
library and .STB files
in map

Initial Condition

Initial TKB LINK
Bit State Switch Qualifier Meaning

10 1 ISH /MAP and Short map
not /LONG

8 a /sp /PRINT Spool

6 a /-CR /NOCRO No CREF

5 1 /WI /WID Wide format

F-IO

c

(

(

(

C~i

IMPROVING TASK BUILDER PERFORMANCE

Table F-3
Symbol Table File Switch Defaults

Switch Category: Symbol table file

Switch Word: $DFSTB

Initial Contents: 0

Switch Settings:

Initial Condition

Initial TKB LINK
Bit State Switch Qualifier Meaning

12 0 IHD IHEA Build task with header

9 o I-PI Not ICOD:PIC Task is not position
independent

Table F-4
Input File Switch Defaults

Switch Category: Input file

Switch Word: $DFINP

Initial Contents: 000100

Switch Settings:

Initial Condition

Initial TKB LINK
Bit State Switch Qualifier Meaning

15 0 lMA ISYS Include file contents in map

6 1 Icc ICON File contains two or more
concatenated object modules

F.3 THE SLOW TASK BUILDER

TKB.TSK uses a symbol table structure that can be
but which requires more work file space than
versions. You may thus receive the following
instances:

searched quickly,
that of previous
message in some

NO VIRTUAL MEMORY STORAGE AVAILABLE

If this occurs, you should try to reduce the work file size by using
the procedures described in Section F.l. If these procedures do not
sufficiently reduce the work file size, you can link another version
of TKB, the Slow Task Builder. This version requires less storage,
but runs considerably slower than the other versions. The build file
is STKBLD.CMD, which resides on the same device and UFD as the other
Task Builder command files. The default name of STK.TSK, the Slow
Task Builder, is .•• TKB. It may be convenie,nt to install the, Slow
Task Builder with a different name if you want to use both Task
Builders in your system.

F-ll

C)

o

o

c)

('\
)

APPENDIX G

THE FAST TA~K BUILDER

The Fast Task Builder (FTB) allows you to build simple tasks about
four times faster than the Task Builder (TKB). However, FTB has
limited functionality. It can only link single-segment, nonprivileged
tasks, and supports a limited number of switches and options.

If you use DCL, you can invoke the Fast Task Builder by using the DCL
command

>RUN $FTB

However, if you invoke the Fast Task Builder, you will have to use the
TKB switches and options (as described in Chapters 1, la, and 12) in
the standard TKB-forrnat command line, be~ause the LINK command invokes
only the standard Task Builder (TKB).

The (FTB) is intended for use as a load-and-go type of linker.
contains very few options and 'does not support:

• New map format

• Overlaid programs

• FORTRAN virtual arrays

• Production of symbol table files

• Creation of resident libraries

• Privileged tasks

• Cluster libraries

The only supported switches are:

• /SP on map file (default = /SP)

• /CP on task file (default /CP)*

• /EA on task file (default = /-EA)

• /MM on task file (default = /MM)

1. No checkpoint space is allocated in the task image file.

G-l

It

THE FAST TASK BUILDER

• IFP on task file (default = IFP)

• IDA on input or task image (default I-DA)

• ILB on an input file in the form:

>TKB TASK=PROG.OBJ,LIBRARY/LB

but not in the form:

>TBK TASK=PROG.OBJ,LIBRARY/LB:MODULE

The supported option inputs are:

• ASG (same defaults as TKB)

• STACK (same default as TKB)

• UNITS

• TASK .. (same default as TKB)

• EXTSCT

• ACTFIL (same default as TKB)

• MAXBUF (same default as TKB)

• LIBR

• COMMON

• RESLIB (same defaults as TKB)

• RESCOM (same defaults as TKB)

FTB supports linking to shared regions but not building a shared
FTB cannot link to clustered libraries.

FTB allocates symbol table space from the end of its
of. the partiti9n. It does not have a virtual symbol
Task or equivalent of 8K is recommended. FTB does
extend itself at run time.

image to the end
table. An Extend
not dynamically

FTB runs approximately four times faster than TKB on an 11/70 with
RP04s when TKB is running with a totally resident symbol table. In
smaller systems with slower disks, the ratio should be much higher.

FTB also supports shared regions.

FTB uses asynchronous system traps (ASTs) and therefore requires AST
support in the Executive.

G-2

C~)

c)

(

c

c

(

(

APPENDIX H

ERROR MESSAGES

The Task Builder (TKB) produces diagnostic and fatal error messages.
Error messages are printed in the following forms:

TKB -- *DIAG*-error-message

or

TKB -- *FATAL*-error-message

Some errors are correctable when command input is from a terminal. In
such a case, a diagnostic error message can be printed, the error
corrected, and the task-building sequenc.e continued. However, if the
same error is detected in an indirect command file, a correction
cannot be made and the Task Builder aborts.

Some diagnostic error messages merely advise you of an unusual
condition. If you consider the condition normal for your task, you
can install and run the task image.

NOTE

The Task Builder exits with .two statuses: it returns
an ERROR status when it encounters a diagnostic err/or,
and a SEVERE ERROR when it encounters a fatal error.
(For more information about the Exit-With-Status
directive, see the RSX-llM/M-PLUS Executive Reference
Manual.)

This appendix tabulates the error messages produced by TKB. Most of
the messages are self-explanatory. In some cases, the line in which
the error occurred is printed.

A Software Performance Report (SPR) should be submitted to DIGITAL in
cases where the explanation accompanying a message refers to a system
error.

Allocation failure on file file-name

TKB could not acquire sufficient disk space to store the task
image file, or did not have write-access to the UFD or volume
that was to contain the file.

Blank P-section name is illegal
overlay-de scription-line

The overlay-description-line printed contains a .PSECT directive
that does not have a p-section name.

H-l

ERROR MESSAGES

Cluster library element library-name does not have null root

This is a fatal error. All libraries, except the first, must be
PLAS-overlaid and have a null root. The first library in the
group can be nonoverlaid or overlaid with a null or non-null
root.

Command I/O error

An I/O error occurs on a command input device.
be on line, or possible hardware error.}

Command syntax error
command-line

The command-line printed has incorrect syntax.

Complex relocation error - divide by zero: module
module-name

(Device may not

A divisor having the value 0 was detected in a complex
expression. The result of the divide was set to O. (Probable
cause: division by a global symbol whose value is undefined.)

Conflicting base addresses in cluster library

This conflict arises when you specify APRs, for both PIC and
non-PIC libraries that are included in the cluster. See the APR
parameter as described in the CLSTR option. This is a fatal
error.

Disk image core allocation too large
invalid-line

The minimum disk allocation specified in the invalid line is
greater than 128.

File file-name attempted to store data in virtual section

The file contains a module that has attempted to initialize a
virtual section with data .

. File file-name has illegal format

The file file-name contains an object module whose format is not
valid.

Illegal APR reservation

An APR specified in a COMMON, LIBR, RESCOM, or RESLIB keyword is
outside the range 0-7.

Illegal cluster configuration

If the cluster contains a non-overlaid library, that library must
be the first library in the cluster. Check the configuration of
the libraries in the cluster. This is a fatal error.

Illegal default priority specified
option-line

The option-line printed contains a priority greater than 250.

H-2

(

c

(

(

(

(

(

(-

Illegal device/volume
invalid-line

The invalid
specification.

Illegal directory
invalid-line

line

ERROR MESSAGES

printed contains an illegal device

The invalid line printed contains an illegal directory name.

Illegal error-severity code octal-list

System error (no recovery). An SPR should be submitted with a
copy of the message containing the octal-list as printed.

Illegal filename
invalid-line

The invalid-line printed contains a wildcard (*) in a file
specification. Using wildcards is prohibited.

Illegal get command line error code

System error (no recovery).

Illegal logical unit number
invalid-line

The invalid-line printed contains a device assignment to a unit
number larger than the number of logical units specified by the
UNITS keyword, or assumed by default if the UNITS keyword is not
used.

Illegal multiple parameter sets
invalid-line

The invalid-line printed contains multiple sets of parameters for
a keyword that allows only a single parameter set.

Illegal number of logical units
invalid-line

The invalid-line printed contains a logical unit number greater
than 250.

Illegal ODT or task vector size

ODT or SST vector size specified is greater than 32 words.

Illegal overlay description operator
invalid-line

The invalid-line printed contains an unrecognizable operator in
an overlay description. This error occurs if the first character
in a p-section or segment name is a dot (.).

Illegal overlay directive
invalid-line

The invalid-line printed contains an unrecognizable overlay
directive.

H-3

ERROR MESSAGES

Illegal partition/common blOck specified
invalid-line

User-defined base or length is not on a 32-word boundary.

Illegal P-section/segment attribute
invalid-line

The invalid-line printed contains a program section or segment
attribute that is not recognized.

Illegal reference to library P-section p-sect-name

A task has attempted to reference a p-sect-name existing in a
shared region but has not named the shared region in a keyword.
This error occurs when you explicitly specify an .STB file as an
input file, but you have not specified the library to which the
.STB file belongs in an option.

Illegal switch
file~specification

The file-specification printed contains an illegal switch or
switch value.

Incompatible reference to library P-section p-sect-name

A task has attempted to reference more storage in a shared region
than exists in the shared region definition.

Incorrect library module specification
invalid-line

The invalid-line contains a module name with a non-Radix-50
character.

Indirect command syntax error
invalid-line

The invalid-line printed contains a syntactically incorrect
indirect file specification.

Indirect file depth exceeded
invalid-line

The invalid-line printed gives the file reference that exceeded
the permissible indirect file depth (2).

Indirect file open failure
invalid-line

The invalid-line contains a reference to a command input file.
that could not be located.

Insufficient parameters
invalid-line

The invalid-line contains a keyword with an insufficient number
of parameters to complete its meaning.

H-4

(

c

(

c

(~

l

ERROR MESSAGES

Invalid APR reservation
invalid-line

APR is specified on a keyword for an absolute library.

Invalid keyword identifier
invalid-line

The invalid-line printed contains an unrecognizable keyword.

Invalid partition/common block specified
invalid-line

A partition is invalid for one of the following reasons:

• TKB cannot find the partition name in the host system in order
to get the base and length.

• The system is mapped, but the base address of the partition is
not on a 4K boundary for a nonrunnable task or is not a for a
runnable task.

• The memory bounds for the partition overlap a shared region.

• The partition name is identic~l to the name of a previously
defined COMMON or LIBR shared region.

• The top address of the partition for a runnable task exceeds
32K minus 32 words for a mapped system, or exceeds 28K minus 1
for an unmapped system.

• A system-controlled partition was specified for an unmapped
system.

Invalid reference to mapped array by module module-name

The module has attempted to initialize the mapped array with
data. An SPR should be submitted if DIGITAL-supplied software
caused this problem.

Invalid window block specification
invalid-line

I/O error library image file

An I/O error has occurred during an attempt to open or read the
Task Image File of a shared region.

I/O error on input file file-name

This error occurs when TKB cannot read an input file
specification (for example, when the command line is greater than
80 characters). The error may also occur if the variable length
records in an object file are longer than 128 (decimal) .bytes.

H-5

ERROR MESSAGES

I/O error on output file file-name

Label or name is multiply defined
invalid-line

The invalid-line printed defines a name that has already appeared
as a .FCTR, • NAME, or .PSECT directive.

Library file filename has incorrect format

A module has been requested from a library file that has an empty
module name table.

Library library-name not found in any cluster

All task image and symbol table files to be included as cluster
elements must reside in LB:[l,l].

Library references overlaid library
invalid-line

An attempt was made to link the resident library being built to a
shared region that has memory-resident overlays.

Load addr out of range in module module-name

An attempt has been made to store data in the task image outside
the address limits of the segment. This problem is usually
caused by one of the following:

• An attempt to initialize a p-section contained in a shared
region

• An attempt to initialize an absolute location outside the
limits of the segment or in the task header

• A patch outside the limits of the segment to which it applies

• An attempt to initialize a segment having the NODSK attribute

Lookup failure on file file name
invalid-line

The invalid-line printed contains a file name that cannot be
located in the directory.

Lookup failure on system library file

TKB cannot find the system Library (SYO:[I,l]SYSLIB.OLB) file to
resolve undefined symbols.

Lookup failure resident library file - filename.ext

No symbol table or task image file can be found for the shared
region "filename.ext." If the shared region was linked to another
shared region, ensure that the task image of both regions and the
symbol table files exist on the same device and in the same UIC

by the option RESLIBi RESCOM, LIBR, COMMON,

H-6

(

c

c

c>

(

(

l

ERROR MESSAGES

Module module-name ambiguously defines P-section p-sect-name

~he p-section p-sect-name has been defined in two modules not on
a common path, and referenced from a segment that is common to
both paths.

Module module-name ambiguously defines symbol sym-name

Module module-name references or defines a symbol sym-name whose
definition exists on two different paths, but is referenced from
a segment that is common to both paths.

Module module-name illegally defines xfr address p-sect-name addr

This message occurs under anyone of the following conditions:

• The start address printed is odd.

• The module module-name is in an overlay segment and has a
start address. The start address must be in the root segment
of the main tree.

• The address is in a p-section that has not yet been defined.
An SPR should be submitted DIGITAL-supplied software caused
this problem.

Module module-name multiply defines P-section p-sect-name

• The p-section p-sect-name has been defined more than once in
the same 'segment with different attributes.

• A global p-section has been defined more than once with
different attributes in more than one segment along a common
path.

Module module-name multiply defines symbol sym-name

Two definitions for the relocatable symbol sym-name have occurred
on a common path. Or two definitions for an absolute symbol with
the same name but different values have occurred.

Module module-name multiply defines xfr addr in seg
segment-name

This error occurs when more than one module making up the root
has a start address.

Module module-name not in library

TKB could not find the module named on the /LB switch in the
iibrary.

No dynamic storage available

TKB needs additional symbol table storage and cannot obtain it.
(If possible, install TKB in a larger partition.)

H-7

ERROR MESSAGES

No memory available for library library-name

TKB could not find enough free virtual memory to map the
specified shared region.

No root segment specified

The overlay description did not contain a .ROOT directive.

No virtual memory storage available

Maximum permissible ,size of the work file is exceeded. The user
should consult Appendix F for suggestions on reducing the size of
the work file.

Open failure on file file-name

Option syntax error
invalid-line

The invalid-line printed contains unrecognizable syntax.

Overlay directive has no operands
invalid-line

All overlay directives except .END require operands.

Overlay directive syntax error
invalid-line

The invalid-line printed contains a syntax error or references
line that contains an error.

Partition partition-name has illegal memory limits

a

• The partition-name defined in the
address alignment that is not
system.

host system has a base
compatible with the target

• The user has attempted
partition whose length
space (8K or 12K).

to build a privileged task in a
exceeds. the task I s available address

(

c

(

Pass control stack overflow at segment segment-name ~.
System .error. An SPR should be submitted with a copy of the ODL
file associated with the error.

PIC libraries may not reference other libraries
invalid-line

The user has attempted to build a position-independent shared
region that references another shared region.

p-sect~on p-sect-name has overflowed

A section greater than 32K has been created.

Required input file missing

At least one input file is required for a task build.

H-8

(

c

(

(

ERROR MESSAGES

Required partition not specified

The PAR keyword was not used when running TKB on an RSX-IID host
system. The keyword must contain explicit base address and
length specifications.

Resident library has incorrect address alignment
invalid-line

The invalid-line specifies a shared region that has one of the
following problems:

• The library references another library with invalid address
bounds (that is, not on 4K boundary in a mapped system).

• The library has invalid address bounds.

Resident library mapped array allocation too large
invalid-line

The invalid-line printed contains a reference to a shared region
that has allocated too much memory in the task's mapped array
area. The total allocation exceeds 2.2 million bytes.

Resident library memory allocation conflict
keyword-string

One of the following problems has occurred:

• More than seven shared regions have been specified.

• A shared region has been specified more than once.

• Non-position~independent shared regions
allocations overlap have been specified.

whose , memory

Root segment is multiply defined
invalid-line

The invalid-line printed contains the second . ROOT directive
encountered. Only one .ROOT directive is allowed.

Segment seg-name has addr overflow: allocation deleted

Within a segment, the program has attempted to allocate more than
32,767 words. A map file is produced, but no task image file is
produced.

Segment seg-name not found for patch

The Task Builder could not locate the named segment for a global
patch. The option used was GBLPAT=X:Y:O.

Symbol sym-name not found for patch

TKB could not locate symbol Y for a global patch.
used was GBLPAT=X:Y:O.

H-9

The option

ERROR MESSAGES

Task has illegal memory limits

An attempt has been made to build a task whose size exceeds the
partition boundary. If a task image file was produced, it should
be deleted.

Task has illegal physical memory limits
mapped-array task-image task extension

The sum of the parameters displayed -- mapped array size, task
image size, and task extension -- exceeds 2.2 million bytes. The
quantities are shown as octal numbers in units of 64-byte blocks.
Any resulting task image file should be deleted.

Task image file filename is noncontiguous

Insufficient contiguous disk space was available to contain the
task image. A noncontiguous file was created. After deleting
unnecessary files, the /CO switch in PIP for MCR or the
COPY/CONTIGUOUS command in COpy for DCL should be used to create
a contiguous copy.

Task requires too many window blocks

The number of address windows required by the task and any shared
regions exceeds 8 for RSX-IIM tasks and 16 for RSX-IIM-PLUS
tasks.

Task-build aborted via request
option-line

The option~line contains a request from the user to abort the
task build.

Too many nested .ROOT/.FCTR directives
invalid-line

The invalid-line printed contains a .FCTR directive that exceeds
the maximum nesting level (16).

Too many parameters
invalid-line

The invalid-line printed contains a keyword with more parameters
than required.

Too many parentheses levels
invalid-line

The invalid-line printed contains a parenthesis that exceeds the
maximum nesting level (16).

Truncation error in module module-name

An attempt has been made to load a global value greater than +127
or less than -128 into a byte. The low-order eight bits are
loaded.

Unable to openwork file

The work file device is not mounted. (The work file is usually
located on the same device as is the Task Builder.)

H,..lO

c

(

(

(

C)

C~)

Unbalanced parentheses
invalid-line

ERROR MESSAGES

The invalid-line printed contains unbalanced parentheses.

n Undefined symbols segment seg-name

The segment named contains n undefined
allocation file is requested, the
terminal.

Virtual ~ection has illegal address limits
option-line

symbols. If no memory
symbols are printed on the

The option-line printed contains a VSECT keyword whose base
address plus window size exceeds 177777.

Work rile I/O error

An I/O error occurs during an attempt to reference data stored by
TKB in its work file.

H-ll

()

•

C)

c)

(

c

TASK BUILDE~ GLOSSARY OF TERMS

ABSOLUTE SHARED REGION

A shared region that has the same virtual addresses in all tasks
that refer to it.

AUTOLOAD

The method of loading overlay segments, in which the Overlay
Run-Time routines automatically load overlay segments when they
are needed and handles any unsuccessful load requests.

AUTOLOAD VECTOR

A transfer of control instruction generated by the Task Builder
to resolve an up-tree reference to a global symbol.

CO-TREE

One of one or more secondary tree structures within a multiple
tree overlay structure. When a co-tree's root segment contains
code or data, the root segment of the co-tree is made resident in
physical memory through calls to the Overlay Run-Time routines.

COMMON BLOCK

Another name for resident common.

DISK-RESIDENT

That which resides on disk storage until needed.

DISK-RESIDENT OVERLAY SEGMENT

An overlay segment that shares the same physical memory and
virtual address space with other segments. The segment is read
in from disk each time it is loaded (compare Memory-Resident
Overlay Segment).

GLOBAL CROSS-REFERENCE

A list of global symbols, in alphabetical order, accompanied by
the name of each referencing module.

GLOBAL SYMBOL

A symbol whose definition is known outside the defining module.

HEADER

That portion of a task image that contains the task's
characteristics and status. Shared regions, although built like
a task, do not have a header.

Glossary-l

TASK BUILDER GLOSSARY OF TERMS

HOST SYSTEM

The system on which a task is built.

LOGICAL ADDRESSES

The actual physical addresses that the task can access.

LOGICAL ADDRESS SPACE

The total amount of physical memory to which the task has access
rights.

MAIN TREE

An overlay tree whose root segment is loaded by the Executive
when the task is made active.

MANUAL LOAD

The method of loading overlay segments in which the user includes
explicit calls in his routines to load overlays and handles
unsuccessful load requests.

MAPPED ARRAY AREA

An area of the task~s physical memory, preceding the task imag~,
that is used for storage of large arrays. Space in the area 1S

reserved by means of the VSECT keyword or through a Mapped Array
Declaration contained in an object module. Access is through the
mapping directives issued at run time.

MEMORY ALLOCATION FILE

The output
information
task.

MEMORY-RESIDENT

file created by the Task Builder that lists
about the size and location of components within a

In general, that which resides in memory all the time. The
entity, as in the case of memory-resident overlays, may initially
reside on disk.

MEMORY-RESIDENT OVERLAY SEGMENT

An overlay segment that shares virtual address space with other
segments, but which resides in its own physical memory. The
segment is loaded from disk only the first time it is referenced;
thereafter, mapping directives are issued in place of disk load
requests.

MULTIUSER TASKS

An RSX-IIM-PLUS task, the read-only region of which is shared
among several copies of the same task.

OVERLAy DESCRIPTION LANGUAGE

A language that allows you to describe the overlay structure of a
task.

Glossary-2

(

(

(

c

(

(

TASK BUILDER GLOSSARY OF TERMS

OVERLAY RUNTIME ROUTINES

A set of system library subroutines linked as part of an overlaid
task that are called to load segments into memory.

OVERLAY SEGMENT

A segment that shares virtual address space with other segments,
and is loaded when needed.

OVERLAY TREE

PATH

A tree structure consisting of a root segment and optionally one
or more overlay segments.

A route that is traced from one segment in the overlay tree to
another segment in that tree.

PATH-DOWN

A path toward the root of the tree.

PATH-LOADING

The technique used by the autoload method to load all segments on
the path between a calling segment and a called segment.

PATH-UP

A path away from the root of the tree.

PHYSICAL ADDRESS

The assigned byte location in physical memory, which is usually
located in the processing unit.

POSITION-INDEPENDENT REGION

A shared region that can be placed anywhere in a referencing
task's virtual address space when the system on which the task
runs has memory management hardware.

PRIVILEGED TASK

A task that has privileged memory access rights. A privileged
task can access the Executive and the I/O page ip addition to its
own partition and referenced shared regions.

PROGRAM SECTION

A section of memory that is a unit of the total allocation. A
source program is translated into object modules that consist of
program sections with attributes describing access, allocation,
relocatability, and so forth.

REGION

A contiguous block of physical addresses in which a driver, a
task, a resident common, or library resides.

Glossary-3

TASK BUILDER GLOSSARY OF TERMS

RESIDENT COMMON

A shared region in which data resides that can be shared by two
or more tasks.

RESIDENT LIBRARY /

A shared region in which single copies of common:)..y used
subroutines reside that can be shared by two or more tasks.

ROOT SEGMENT

The segment of an overlay tree that, once loaded, remaine in
memory during the execution of the task.

RUNNABLE TASK

A task that has a header and stack and that can be installed and
executed.

SHARED REGION

A shared region is a ~lock of data or code that resides in
physical memory and can be used by any number of tasks. A shared
region is built and installed separately from the task.

SYMBOL DEFINITION FILE

The output object file created by the Task Builder that contains
the global symbol definitions and values and sometimes program
section names, attributes, and allocations in a format suitable
for reprocessing by the Task Builder. Symbol definition files
contain linkage information about shared regions.

TARGET SYSTEM

The system on which a task executes.

TASK IMAGE FILE

The output file created by the Task ,Builder that contains the
executable portion of the task.

VIRTUAL ADDRESSES

The addresses within the task. Task addresses can range from
zero through 177777(8) depending on the length of the task.

VIRTUAL ADDRESS SPACE

That space encompassed by the range of virtual addresses that the
task uses.

VIRTUAL PROGRAM SECTION

A program section that has virtual memory allocate~ to it, but
not physical memory. Virtual address space ~s mapped into
physical memory at run-time by means of the mapping directives.

Glqssary-4

(

(r

(

c)

TASK BUILDER GLOSSARY OF TERMS

WINDOW

A continuous virtual address space that can be moved to allow the
task to examine different parts of a region or different regions.

WINDOW BLOCK

A structure defined by the Task Builder that describes a range of
continuous virtual addresses.

Glossary-5

C)

c)

o

o

o

c

(

Abort
TKB

during input, 12-5
ABORT option, 12-5
ABSPAT option, 12-6
/AC switch, 10-5
Access-code

grouping program section,
10-36, 11-60

ACP
specifying APR, 10-5, 11-11
specifying task, 10-5; 11-11

ACTFIL option, 12-7
Active Page Register

See APR
Address

assigning, 2-1
concepts, 2-12, 2-14 to 2-19
logical, 2-13
physical, 2-12
space, 2-13

logical, 2-13
physical and virtual, 2-14
translation, 2-22
virtual, 2-13
virtual and logical, 2-22

transfer, A-5
virtual, 2-12

space division, 2-17
space layout, 2-17

virtual space
allocation diagram to

create ODL file, 3-36
cotree and main tree, 3-40
disk-resident overlay, 3-1

to 3-3
memory and overlaid task,

3-11 to 3-14·
memory-resident overlay,

3-6
overlaid task, 3-10, 3-14
overlay, 3-5 to 3-6, 3-33

to 3-35
overlay tree, 3-24
reducing usage, 3-1

/AL switch, 10-6
$$ALER program section, 5-55

reserved name, E-2
ALERR module, 5-55
Allocation

task memory, 2-6

INDEX

ALSCT FORTRAN subroutine, 5-63
to 5-65

$$ALVC program section, 7-10
reserved name, E-2

$$ALVD program section, 7-10
reserved name, E-2

$$ALVI program section, 7-10
reserved name, E~2

Ancillary Control Processor
See ACP

ANCILLARY PROCESSOR[:n]
qualiIier, 11-11

APR, 2-15
1- and D-space

allocation in.multiuser
task, 9-3

relocatab1e region
specifying, 5-7

resident common
system-owned, 12-13

resident library
system-owned, 12-13

specifying for ACP, 10-5,
11-11

supervisor-mode, 8-2, 8-4
Arithmetic

extended
specifying, 10-16, 11-16

Array
area

mapped, 5-64
declaration

mapped, A-I0
virtual, 12-42 to 12-43

example, 12-42 to 12-43
ASG option, 12-8
Asterisk (*)

See also Autoload indicator
cross-reference

of overlaid task, 4-12
cross-reference listing,

10-12, 11-23 to 11-24
At. sign (@)

cross-reference
of overlaid task, 4-12

cross-reference listing,
10-12 to 10-13, 11-23 to
11-24

indirect file, 1-11
Attribute

.NAME directive

Index-l

Attribute
.NAME directive (Cont.)

DSK, 3-28
GBL, 3-28
NODSK, 3-28
NOGBL, 3-28

AUTO module, 5-54
$$AUTO program section, 5-54 to

5-55
reserved name, E-2

Autoload, 4-1
applying indicator

cotree root, 4-2
.FCTR label name, 4-3
file name, 4-2
portions of ODL tree, 4-2
program section name, 4-3
segment name, 4-3

code sequence, 4-5
conventional task, 4-5

data segment, 4-6
error handling, 4-11
indicator, 4-2

efficiently placed, 4-6
making program section, 4-3
path load, 4-3 to 4-4
specifying, 4-1
vector, 4-4 to 4-5

eliminating unnecessary,
4-6

I- and D-space, 7-8, 7-10
vector format

conventional task, 4-4
I- and D-space, 4-4 to 4-5

Autoload vector, B-15 to B-16
Autoloadable

making file
using file name, 4-2

Autoloadable library
internal symbol, A-27

AUTOT module, 5-54

BASIC qualifier, 11-12
Block

label, 2-8
Buffer record

maximum size, 12-25
Build file

modifying
to improve performance, F-l,

F-5

Icc switch, 10-7
Checkpoint area

task image, B-9

INDEX

Checkpoint space
allocating, 10-6, 10-10,

11-13 to 11-14
[NO]CHECKPOINT[:SYS] qualifier,

11-13
[NO]CHECKPOINT[:TAS] qualifier,

11-14
Circumflex ()

cross-reference listing,
10-12 to 10-13, 11-23 to
11-24

global cross-reference
of an overlaid task, 4-13

CLSTR option, 12-9 to 12-10
Cluster library, 5-44

See also Library
ICM switch, 10-8
$CMPAL

completion routine, 8-8
$CMPCS

completion routine, 8-8, 8-12
to 8-14

CMPCS module, 8-8, 8-12 to 8~13
CMPRT option, 8-4, 8-8, 12-11

supervisor-mode library, 8-8
use in CSM library, 8-8

Ico switch, 10-9
CODE:PIC qualifier

use in region, 5-3 to 5-6
CODE[:DATA SPACE] qualifier,

11-15 -
CODE[:EAE] qualifier, 11-16
CODE[:FPP] qua~ifier, 11-17
CODE[:PIC] qualifier, 11-18
CODE[:POSITION INDEPENDENT]

qualifier,-11-19
Comma (,)

See ODL operator
Comma operator, 3-49
Command file

comment, 1-14
indirect, I-II, 3-30
interaction with indirect,

1-12 to 1-13
level of indirection, 1-13
option, 1-14
with ODL, 3-30

Command line
form, 1-2
LINK

form, 1-3
input file, 1-4
map file, 1-5 to 1-6
symbol definition file, 1-6
task file, 1-5

Index-2

(

(

(

(

(

c'

(

Command line (Cont.)
MCR

form, 1-2
to build a task, 1-2

multiline input, 1-7
LINK, 1-8
TKB, 1-7

output file interpretation,
1-8

terminating character, 1-7,
1-11 to 1-12

UFD convention, 1-15 to 1-16
Command sequence

simple, 1-2
Comment

command file, 1-14
Common, 5-1, 5-28 to 5-32

See also Region
allocation diagram, 5-21
assigning reference, 5-24
building

a linking task, 5-22 to
5-24

building and linking, 5-16,
5-18 to 5-20

to device, 5-28 to 5-32
definition, 2-18
device, 5-28 to 5-32

See Device common
example map, 5-30

establishing offset, 5~29
installing

RSX-IIM, 5-2 to 5-3, 5-22
RSX-IIM-PLUS, 5-2 to 5-3,

5-22
linking to region, 5-16
MACRO-ll

building and linking, 5-18
to 5-20

building and linking to
See Region

map, 5-20 to 5-21
map of linking task, 5-25
program section

building a linking task,
5-24

resident, 5-1 to 5-2
declaring, 12-12, 12-24,

12-30
name block data, B-8

specifying, 10-9, 11-65
COMMON option, 12-12 to 12-13,

12-24
shared region use, 5-15

COMPATIBLE qualifier, 11-20

INDEX

Completion routine,
$CMPAL, 8-2, 8-8
$CMPCS, 8-2, 8-8, 8-12 to

8-13
definition, A-II
identification, A-II
name,. A-II
supervisor library, 8-1 to

8-2, 8-7 to 8-8
user-written, 8-21

Complex relocation, A-22
entry,A-23
operation code, A-22

[NO]CONCATENATE qualifier,
11-21

Control section
name, A-5
name entry, A-5

Cotree, 3-31, 3-33
and main tree

virtual address space, 3-40
global symbol resolution,

3-17
null root, 3-31
ODL statement

from allocation diagram,
3-40

overlay, 3-34 to 3-35
segment

affecting symbol search,
10-19, 11-33

loading, 4-3
.summary, 3 -51
virtual address space, 3-32

Counter
location

definition, A-17
modification, A-18

jCF switch, 10-10
JCR switch, 10-11 to 10-13
Cross-reference

global
of overlaid task, 4-12 to

4-13
listing

specifying, 10-1l, 11-22
CROSS REFERENCE qualifier,

11-22
CSM library

dispatching, 8-19

Index-3

linking task
example, 8-14 to 8-16

supervisor-mode, 8-7
building, 8-7 to 8-8
.STB file, 8-9

CSM routine, 8-12
CTRL/Z

effect on Task Builder, 12-5

/DA switch, 10-14
Data

adjacency in memory, 2-27
segment

autoloadable, 4-7
structure

building, 2-1
overlay, 3-18

Data base
overlay, B-15

I- and D-space task, B-16
Data format

input
Task Builder, A-I to A~32

$$DBTS program section
reserved name, E-2

DEBUG[: filespec] qualifier,
11-25 to 11-26

Debugging aid
including, 10"":14, 11-25 to

11-26
Declaration flag byte

symbol, A-7
Default

switch
modifying, F-7

task building, 1-1
DEFAULT LIBRARY qualifier,

11-27
Default of switch

modifying, F-8 to F-ll
Descriptor

region, B-15, B-17, B-2l to
B-22

segment, B-15 to B-20
window, B-15, B-17, B-20 to

B-2l
Device

assignment, 12-8
common, 5-30 to 5-32

building and linking, 5-28
to 5-32

$$DEVT program section
reserved name, E-2

Diagnostic exit, 10-54, 11-28
Directive

• NAME, 3-28
attributes, 3-28
example use, 3-29

ODL, 3-23 to 3-24
.END, 3-23 to 3-24

INDEX

Directive
ODL (Cont.)

.FCTR, 3-23, 3-25
introduction, 3~23
• NAME, 3-23
.PSECT, 3-23
• ROOT, 3-23 to 3-24

.PSECT, 3-29
use of parenthes~s, 3-24

Directory record
declare global symbol, A-2
end of global symbol, A-II
global symbol

end, A-II
internal symbol, A-24
relocation, A-12

Disk image, 2-8
conventional task, 7~5

Disk-resident
overlay, 3-1 to 3-2

loading, 4-1
overlay structure, 3-2

Displaced relocation
internal, A-15

/DL switch, 10-15
DSPPAT option, 12-14
Dump

See Postmortem dump
See Snapshot dump
memory, D-ll

Dynamic region, 5-40 to 5-44

/EA switch, 10-16
/EL switch, 10-17
Element

extended arithmetic
specifying, 11-16

.END directive, 3-23 to 3-24
summary, 3-50

End of global symbol directory,
A-11

End-of-module
record, A-24, A-30
record format, A-32

Error
exit TKB command, 12-5
handling

$ALERR entry, 4-11
for autoload, 4-11
for manual load, 4-11
overlay, 4-11

message, H-l to H-ll
ERROR LIMIT[:n] qualifier,

11-28

Index-4

(

(

(

(

('

(

(

(

INDEX

Exclamation point (1)
See ODL operator

Exclamation point operator,
3-49

[NO]EXECUTABLE[:filespec]
qualifier, 11-29 to 11-30

Exit on diagnostic, 10-54,
11-28

Extend Task directive
improving performance, F-2

Extended arithmetic
specifying, 10-16

[NO]EXTERNAL qualifier, 11-31
EXTSCT option, 12-15
EXTTSK option, 12-16

F4PRES
building, 5-56

FAS~ qualifier, 11-32
Fast Task Builder

See FTB
FCSRES

non-memory-resident, 5-56
dverlaid, 5-55
types, 5-55

.FCTR directive, 3-23, 3-25
allocation diagram

creating, 3-:-38 to 3-39
argument, 3-26

library modules, 3-26
library to resolve

references, 3-26
named input file; 3-26
program section name, 3-26
segment name, 3-27

autoloadable
making first component, 4-3

summary, 3 ... 50
use of label, 3-25

File
command

comment, 1-14
level of indirection, 1-13
option, 1-14

declaring number of active,
12-7

indirect command, 1-11
input

designating as debugging
aid, 10-14, 11-25 to
11-26

designating as library file,
10-23, 11-39

File
tnput (Cont.)

directing selective symbol
search, 10-48 to 10-50,
11-61 to 11-63

including content of in map,
10-26

processing to reduce
overhead, F-6

specifying as default
library, 10-15, 11-27

library
declaring, 10-23, 11-39

LINK command input, 1-4
making autoloadable

using name, 4-2
map

LINK command, 1-5 to 1-6
printing, 1-3
printing in LINK command,

1-6 to 1-7
ODL

creating using diagram,
3-35 to 3-40

omitting specific output, 1-3
open at one time, 12-7
output

omitting specific, 1-3
.STB, 5-10

I- and D-space task, 7-8
overlaid region, 5-13 to

5-14
overlaid region global

symbol, 5-13 to 5-14
shared region, 5-13 to 5-14
use of jCOjLIjPI switch,

5-10
symbol definition

LINK command, 1-6
task

LINK command, 1-5
File specification

convention, 1-15 to 1-16,
. 1-19

default, 1-15 to 1-16
Floating Point Processor

specifying, 10-18, 11-17
FMTBUF option, 12-17
Format

overall
internal symbol, A-25

FORTRAN
common block

overlays, 3-18

Index-5

FORTRAN (Cont.)
manual load calling sequence,

4-9 to 4-10
for 1- and D-space task,

4-10 to 4-11
run-time support

virtual program section,
5-61, 5-64

/FP switch, 10-18
$$FSRI program section

reserved name, E-3
• FSRPT

low-memory context, B-IO
reserved global symbol, E-l

FTB
description, G-l to G-2
speed of, G-2
supported feature, G-l to G-2
supported option, G-2
supported switch, G-l
unsupported feature, G-l to

G-2
!FU switch, 10-19
FULL SEARCH qualifier; 11-33
Function

Task Builder, 2-1 to 2-28

GBLDEF option, 12-18
GBLINC option, 12-19
GBLPAT option, 12-20
GBLREF option, 12-21
GBLXCL option, 8-4, 12-22

use in CSM library, 8-8 to
8-9, 8-17

Global
additive relocation, A-16
relocation, A-15

additive displaced, A-17
displaced, A-16

symbol
address of ODT SST routine,

12-26
autoloadable segment, 4-7
cross-reference listing,

10-12 to 10-13, 11-23
to 11-24

declaration directory
record, A-2

directory record format,
A-4

end of directory record,
A-11

from the default library,
3-18

name, A-6

INDEX

Global
symbol (Cont.)

name entry, A-6
undefined, 2-7

symbol resolution, 2-7 to 2-8
default library, 3-18

Global symbol
internal, A-28

[NO]GLOBALS qualifier, 11-34

/HD switch, 10-20
Header, 2-8 to 2-9

exclud~ng task, 10-20, 11-35
1- andD-space task, 7-10
task

fixed part, B-l1
variable part, B-12
vector extension area, B-13

task image, B-IO
[NO]HEADER qualifier, 11-35
High-level language

overlay program, 3-40 to 3-41
Host system, C-l to C-5

building a task for another
system, C-:l

description, C-l to C-2
transferring example, C-3 to

C-5
transferring to target, C-2

Hyphen (-)
See ODL operator

Hyphen operator, 3-49

1- and D-space
specifying, 10-21, 11-15

1- and D-space task
See Task

I/O page
specifying, 10-22, 11-38

/ID switch, 10-21
IDENT option, 12-23
Image

disk, 2-8
memory, 2-9
task

See Task image
INCLUDE:(module) qualifier,

11-36 to 11-37
Information record

text, A-ll
Input

data format
Task Builder, A-I to A-32

Internal displaced relocation,
A-15

Inqex-6

(

,(

(

c-

(

l

Internal symbol
directory record, A-24
name· entry, A-5
overall format, A-25
start-of-segment, A-26

Introduction
Task Builder, 1-1 to 1-19

[NO]IO PAGE qualifier, 11-38
$$IOB1-program section

reserved name, E-3
$$IOB2 program section

reserved name, E-3
lIP switch, 10-22

Label block, 2-8
Label block group, B-1
Language

high-level
overlay program, 3-40

ILB switch, 10-23 to 10-24
LBLDF$ macro, B-1
ILl switch, 10-25
LIBR

liriking to region, 5-15
option, 12-12 to 12-13, 12-24

shared region use, 5-15
Library

autoloadable
internal symbol, A-27
symbol, A-26

cluster, 5-44
building, 5-45, 5-49 to

5-53
building example, 5-49 to

5-53
building rule 1: overlay,

5-45
building rule 2: reference,

5-46
building rule 3: .STB file,

5-47
building rule 4: stack,

5-48
building rule 5: PIC, 5-48
building rule 6: trap, 5-48
building rule summary, 5-45
example, 5-49
overlay description, 5-52

to 5-53
overlay run-time support,

5-53 to 5-54
resolving interlibrary

reference, 5-52
converting SCAL to CSM, 8-19
CSM

INDEX

Library
CSM (Cont.)

use of CMPRT option, 8-8
use of GBLXCL option, 8-8

to 8-9, 8-17
use of RESSUP option, 8-9,

8-18 to 8-20
use of SUPLIB option, 8-9,

8-19
declaring, 10-23, 11-39
default

controlling symbol search,
10-15, 10-19, 11-27,
11-33

global symbol resolution,
3-18

specifying, 10-15, 11-27
extending, 10-17
F4PRES

building, 5-56
FCSRES

non-memory-resident, 5-56
overlaid, 5-55
task linking alternatives,

5-57 to 5-59
file

declaring, 10-23, 11-39
linking

CLSTR option, 12-9 to 12-10
resident to supervisor-mode,

8-20
moduleS

.FCTR directive, 3-26
object-module

placing in overlay
structure, 10-24, 11-39

overlay
high-level language, 3-40

region, 2-19
specifying, 10-25

relocation
resident, A-23

resident, 5-1, 5-3

Index-7

building and linking, 5-33
to 5-39

data in ,task image, B-4 to
B-6

declaring, 12-12, 12-24,
12-30

label block 0, B-7
label block 1, B-9
label block 2, B-9.
label block 3, B-9
name block data, B-8
relocation, A-23

Library'
resident (Cont.)

search, 10-23, 11-39
resolving references

.FCTR directive, 3-26
restriction in I- and D-space

task, 7-8
specifying, 11-66
supervisor-mode, 2-23

building, 8-1
building the referencing

task, 8-7
building with relevant

option, 8-4, 8-7
compietion routine, 8-1 to

8-2, 8-8, 8-21
converting SCAL to CSM,

9-19
data, 8-4
definition, 8-1
description, 8-1 to 8-21
example, 8-10 to 8-16
linking, 8-9, 8-20
linking a resident, 8-20
linking task, 8-9 to 8-11
linking to SYSLIB, 8-2, 8-9

to 8-11, 8-i4 to 8-18
linking with relevant

option, 8-4, 8-8 to 8-9
mapping, 8-2
method of mode switching,

8-1, 8-19
mode switching, 8-1, 8-7
mode switching compared,

8-1
mode'switching vector, 8-1
$MSDS directive, 8-2
$MSDS directive restriction,

8-2
multiple, 8-20
overlaid, 8-21
overlay restriction, 8-21
parameter passing, 8-2
restrictions on content,

8-2
using as resident, 8-20
using system supplied

vector, 8-19
with I- and D-space task,

8-4
your own completion routine,

8-21
your own vector, 8-21

supervisor-mode mapping
conventional task, 8-3, 8-5

INDEX

Library
supervisor-mode mapping

(Cont.)
with I- and D-space task,

9-6
SYSLIB

replacing as default, 10-23,
11-39

type of FCSRES, 5-55
LIBRARY qualifier, 11-39 to

11-40
Line

multiple
TKB input, 1-7 to 1-8

TKB input, 1-7
Line-number item

internal symbol, A-29 to A-30
LINK qualifier

abbreviation, 11-3
description, 11-1 to 11-77
designation, 11-3
overriding, 11-3
summary table, 11-3 to 11-10

LINK syntax, 11-1 to 11-2
Listing

global cross-reference
generating, 10-11, 11-22

wide
specifying, 10-52, 11-77

Literal record
internal symbol, A-30

Literal record format,
internal symbol, A-3l

Load
asynchronous example, 4-10
manual

calling sequence, 4-7 to
4-8

FORTRAN calling sequence "
4-9 to 4-11

MACRO-II calling sequence,
4-7 to 4-9

path
autoload, 4-,3 to 4-4

LOAD module, 5-55
$$LOAD program section, 5-55

reserved name, E-3
$LOAO routine

manual load, 4-7
Loading

mechanism
overlay, 3-16

Location counter
definition, A-17
modification, A-18

Index-8

(

c

(i

(

(

·c

(

l

Logical unit
number, 12-41

assigning physical device,
12-8

table, B-9
table, B-9 to B-10
table entry, B-14

Logical unit number
See also LUN

LONG qualifier, 11-41 to 11-48
Low-memory context, B-10
LUN, 12-41

See also Logical unit number
assigning physical device,

12-8
table, B-10
table entry, B-14

LUN table, B-9

/MA switch, 10-26
Macro

LBLOF$, B-1
SNAP$, 0-6
SNPBK$, 0-6
SNPOF$, 0-6

MACRO-11 calling sequence
manual load, 4-7

I- and O-space task, 4-8 to
4-9

Manual load
error handling, 4-11

Map
common, 5-20 to 5-21
file, 1-1

adding cross-reference,
10-11, 11-22

content, 10-37 to 10-44,
U-41 to 11-48

description, 10-37 to 10-44,
11-41 to 11-48

example, 10-37 to 10-44,
11-41 to 11-48

general, 10-37 to 10-44,
11-41 to 11-"48

inhibiting spooling, 10-46,
11-55

LINK command, 1-5 to 1-6
printing, 1-3

LINK command, 1-6 to 1-7
specifying, 10-26, 11-41,

11-49
including SYSLIB contribution,

10-26
multiuser task, 9-7

INDEX

Map (Cont.)
overlaid I- and O-space task,

7-11 to 7-15
privileged task, 6-10 to 6-11
region, 5-20 to 5-21
resident region

including symbol definition,
10-26

short
specifying, 10-37

spooling to print, 10-46,
11-55

task
I- and O-space, 7-8
linked to a common, 5-25

MAP qualifier
designation, 11-2

MAP[:fi1espec] qualifier, 11-49
Mapped

array
area, 5-61, 5-63
declaration, A-IO
declaration entry, A-IO

region
declaring address window,

12-45
system, 2-13

Mapping
conventional task

linked to region
I- and O-space system,

7-3
supervisor library, 2-24 to

2-25
I- and O-space task, 7-3 to

7-4
I- and O-space system, 7-4

supervisor-mode, 2-23
task, 2-14
window concept, 2-21 to 2-23

MAXBUF option, 12-25
.MBLUN

reserved global symbol, E-1
Memory

allocation
I- and O-space task, 7-8 to

7-10
task, 2-6

allocation file
See Map file

dump, 0-11
image, 2-9
layout

unmapped system, 2-15
.management

Index-9

Memory
management (Cont.)

specifying for target
system, 10-27, 11-50

physical
disk-resident overlay, 3-3
memory-resident overlay,

3-6
overlay, 3-5 to 3-6 t 3-33

to 3-35
reducing

to build a task, F-4
usage, 3-1

resident overlay structure,
3-6

saving
overlaid task, 3-9 to 3-10

Memory dump, D-1
Memory management

use by task, 2-15
[NO]MEMORY MANAGEMENT[:n]

qualifIer, 11-50
Memory Management Unit, 2-14
Memory-resident

overlay, 3-1
loading, 4-1

Message
diagnostic

eliminating, 10-30, 11-76
error, H-1 to H-11

virtual memory system, F-5
inhibiting system queuing,

10-35, 11-57
IMM switch, 10-27
Mode

compatibility
task, 10-8, 11-20

Mode switching
to supervisor-mode, 8-18
vector

supervisor library, 8-1,
8-19

Module
calls in overlay, 3-16
common in root

improving performance, F-6
concatenated object

using to reduce overhead,
F-4, F-6

extracting from library,
10-23, 11-39

linked
mapped, 2-3
unmapped, 2-3

name, A-4

INDEX

Module
name (Cont •)

internal symbol, A-27 to
A-28

name entry format, A-4
object, 1-1

extracting by name, F-4
linking, 2-1 to 2-2, 2-4 to

2-8
placing in segment

reducing overhead, F-4, F-6
record

end, A-24
Module' object

concatenating, 10-7, 11-21
• MOLUN

reserved global symbol, E-1
IMP switch, 10-28
$$MRKS program section, 5-54

reserved name, E-3 '
IMU switch, 10-29
Multiuser task

as an overlaid task, 9-2
building, 9-5
declaring read-only partition,

12-35
defined, 9-1
description, 9-1, 9-7
disk image, 9-2'
example, 9-5 to 9-7
example map, 9-7 to 9-8
I- and D-space, 9-3

APR allocation, 9-3
building, 9-4
program section, 9-3
program section allocation,

9-4
window, 9-5

program section allocation,
9-1 to 9-2

specifying, 10-29, 11-67
TKB command sequence, 9-7
window block assignment, 9-1,

9-3

N.OVPT
low-memory context, B-10
reserved global symbol, E-1

Name
global symbol, A-6

.NAME directive, 3-23, 3-28
attribute

DSK, 3-28
GBL, 3-28
NODSK, 3-28

Index-10

(

(

r

c

l

.NAME directive
attribute (Cont.)

NOGBL, 3-28
example use, 3-29
summary, 3-51'

Name format
internal symbol, A-32

.NLUNS
reserved global symbol, E-1

/NM switch, 10-30
• NOVLY

reserved global symbol, E-1
.NSTBL

reserved global symbol, E-l
Null

segment
ODL, 3-31

Number sign (
cross-reference listing,

10-12 to 10-13, 11-23 to
11-24

$$OBFl program section
reserved name, E-3

$$OBF2 program section
reserved name, E-3

Object code
patching, 12-6

Object module, 1-1
content, A-I
format, A-3
linking, 2-1 to 2-5, 2-7 to

2-8
overriding definition, 12-18
selective global symbol

using SS to include, 10-48
to 10-50, 11-61 to
11-63

Object module library
See Library
See SYSLIB.OLB

Object Time System
SeeOTS

ODL
autoload indicator, 4-2
directive, 3-23 to 3-24

• END, 3-23 to 3-24
example use of • NAME, 3-29
• FCTR, 3-23, 3-25
introduction, 3-23
• NAME, 3-23, 3-28
.NAME attributes, 3-28
.PSECT, 3-23, 3-29
• ROOT, 3-23 to 3-24

efficiently placing in

INDEX

ODL
efficiently placing in

(Cont.)
autoload indicator, 4-6

enabling operator
memory-resident overlay,

10-34, 11-58
multiple tree

defining structure, 3-30 to
3-35

example, 3-3lE, 3-32
structure, 3-30 to 3-35

operator
, (comma), 3-24
1 (exclamation point), 3-24,

3-27
- (hyphen), 3-24
introduction, 3-24

summary, 3-49 to 3-51
tree

defining, 3-49
using indirect file, 3-30

ODL file, 3-49
creating

start. of procedure, 3-36
with allocation diagram,

3-35 to 3-40
declaring, 10-28, 11-53
.FCTR statement

creating from allocation
diagram, 3-38 to 3-39

.ROOT directive
creating from allocation

diagram, 3-37
virtual address space

allocation diagram, 3-36
ODL statement

cotree
from allocation diagram,

3-40
ODT vector, 12-26
.ODTLI

;-eserved global symbol, E-l
.ODTL2

reserved global symbol, E-l
ODTV option, 12-26
Operator .

ODL, 3-24
, (comma), 3-24
1 (exclamation point), 3-24,

3-27
- (hyphen), 3-24
introduction, 3-24

Option
See also specific options

Index 1 1

Option (Cont.)
category, 12-1
CMPRT

supervisor-mode, 8-8
use in CSM library, 8-8

description, 12-1 to 12-45
entering, 1-9 to 1-11
FTB supported, G-2
GBLXCL

use in CSM library, 8-8 to
8-9, 8-17

general form, 1-9
indirect command file, 1-14
input

LINK command line, 1-9 to
1-10

TKB command line, 1-9
linking to a region, 5-15
RESLIB

supervisor-mode library,
8-20

RESSUP
supervisor library, 8-7,

8-9
use in CSM library, 8-9,

8-18 to 8-20
separation of argument list,

1-11
summary, 12~2 to 12-4
SUPLIB

supervisor library, 8-7,
8-9

use in CSM library, 8-9,
8-19

supported by Fast TKB, G-2
Task Builder, 1-9
usage

virtual section, 5-61 to
5-62

OPTION[:fi1espec] qualifier,
11.-51 to 11-52

OTS
usage to extend record buffer,

12-17
$OTSV

low-memory context, B-10
reserved global symbol, E-2

OVCTC module, 5-54
OVCTL module, 5-54
OVCTR module, 5-54
OVDAT module, 5-54
$$OVDT program section, 5-54

reserved name, E-3
Overlay

allocation diagram

INDEX

Overlay
allocation diagram (Cont.)

creating ODL file, 3-35 to
3-40

autoload vector, 3-21
building, 3-41 to 3-48
building memory-resident

for region, 5-10
capability, 3-1
choosing a memory-resident,

3-14
cotree, 3-34 to 3-35
data base, B-15

I- and D-space task, B-16
data structure, 3-19

linked into root, 3~20 to
3-21

defining a multiple tree,
3-31 to 3-32

description
effect on performance, F-4

disk-resident, 3-1 to 3-2
defined, 4-1
effect of virtual address

space, 3-1 to 3-3
effect on memory, 3-1, 3-3

effect
physical memory, 3-5 to 3-6
virtual address space, 3-5

to 3-6
error handling, 4-11
example of building, 3-41 to

3-48
high-level language, 3-40

considerations, 3-41
I- and D-space task, 3-21 to

3-22, 7-5
disk image, 7-7
program section, 7-6

I- and D-space task vector
region, 5-13 to 5-14

introduction, 2-9
loading

asynchronously, 4-8, 4-10
disk-resident, 4-1
mechanism, 3-16
memory-resident, 4-1
method, 4-1
synchronously, 4-8 to 4-9

memory-resident, 3-1, 3-6
conserving physical memory,

3-14
defined, 4-1
effect on physical memory,

3-6

Index-12

(

(

(

(

(

c

C----

Overlay
memory-resident (Cont.)

effect on virtual address
space, 3-6

physical memory usage, 3-6·
region, 5-10
virtdal address space, 3-14

multiuser task, 9-2
operator

enabling recognition, 10-34,
11-58

suppression of a
memory-resident, 10-34,
11-58

path loading, 4-4
physical memory, 3-33 to 3-35
program section

specifying, 3-19
region

autoload vector, 5-13 to
5-14

building, 5-10
descriptor, 3-20 to 3-21
example of building, 5-11
global symbols in .STB file,

5-13 to 5-14
.S.TB file, 5-13 to 5-14
vectors in I- and D-space

task, 5-13 to 5-14
region restriction, 5-14
run-time, 3-19

comparison of sizes in
routine, 4-16 to 4-17

module, 5-54 to 5-55
module size, 4-16, 5-54 to

5-55
routine, 3-19, 4-16 to 4-17
size of routine, 4-16 to

4-17
support requirement, 5-14,

5-53
use of routine, 4-14 to

4-15
run-time module

ALERR, 4-17
AUTO, 4-16
AUTOT, 4-16
LOAD, 4-17
OVCTC, 4-16
OVCTL, 4-16
OVCTR, 4""'16
OVDAT, 4-16
OVIDC, 4-16
OVIDL, 4-16
OVIDR, 4-16

INDEX

Overlay (Cant.)
run-time program section

$$ALERR, 4-17
$$AUTO, 4-16 to 4-17
$$LOAD, 4-17
$$MRKS, 4-16
$$OVDT, 4-16
$$PDLS, 4-16
$$RDSG, 4-16
$$RTQ, 4-16
$$RTR, 4-16
$$RTS, 4-16
$$SGDO, 4-16
$$SGD2, 4-16

segment, B-14
alignment, 10-8, 11-20
arrangement, 3-15
descriptor, 3-20 to 3-21
processing order, 3-17

structure, 3-49
ambiguously defined symbol,

3-16
considerations in creating,

3-1
most effective, 3-2 to 3-3
multiple tree, 3-18
multiply defined symbol,

. 3-'-16
specifying library search,

10-23, 11-39
symbol resolution, 3-16
task, 3-7

global cross-reference,
4-12 to 4-13

memory resident, 3-9
segment call, 3-10
virtual address space, 3-10

tree
calling segment, 4-4
for I- and D-space task,

7-6
path, 3-15
root, 3~15

vector
region, 5-13 to 5-14

virtual
address space, 3-33 to 3-35
address space and memory,

3-11 to 3-14
virtual address space, 3-48
window

block, 3-48
descriptor, 3-20 to 3-21

Overlay Description Language
introduction, 3-23 to 3-31

Index-13

Overlay Description Operator
See also Operator
See ODL

OVERLAY DESCRIPTION qualifier,
11-53

Over1ayy
disk';"resident

effect on memory, 3-2
OVIDC module, 5-54
OVIDL module, 5-54
OVIDR module, 5-54
$$OVRS program section

reserved name, E-3

PAR, 2-15
PAR option, 12-27 to 12-28

building region, 5-2
Parentheses

use of
ODL, 3-24

Parenthesis in overlay, 3-49
Partition

declaring, 12-27
naming for target system, C-1
option, 12-27
region, 5-29
requirement

region, 5-2
shared region, 5-3

size
improving performance, F-2

specifying for region, 5-29
Patch

D-space, 12-14
declaring object level, 12-6
global relative, 12-20

Path load, 4-3 to 4-4
See also Overlay
autoload, 4-3 to 4-4
example, 4-4

PC correction
internal symbol, A-29 to A-30

$$PDLS program section, 5-54
reserved name, E-3

PDR, 2-15
Performance

improving TKB, F-1 to F-11
/PI switch, 10-31
/PM switch, 10-32
PMD task

installation for timely
operation, D-1

Postmortem dump, D-1
content, D-3 to D-6
example, D-3 to D-6

INDEX

Postmortem dump (Cont.)
specifying, 10-32, 11-54
task, D-1

See also PMD task
POSTMORTEM qualifier, 11-54
/PR switch, 6-2, 10-33
PR:O privileged task, 6-2
PR:4 privileged task, 6-2
PR:5 privileged task, 6-2
PRI option, 12-29
[NO]PRINTER qualifier, 11-55
Priority

task
declaring, 12-29

Privilege 0 task, 6-4 to 6-5
uses, 6-5

Privilege 4 task, 6-4 to 6-5
uses, 6-5

Privilege 5 task, 6-4 to 6-6
uses, 6.;..5

Privileged and nonprivi1eged
task

distinction, 6-1
PRIVILEGED[:n] qualifier, 11-56
Privileged task, 2-26

access right
establishing, 10-33

accessing
Executive, 6-4
I/O page, 6-4

building, 6-6 to 6-11
comparison of nonprivi1eged,

6-1
description, 6-1, 6-11
establishing access right,

11-56
examining unit control block,

6-7 to 6-11
example, 6-7 to 6-11

examining unit control
block, 6-6

hazards, 6-1 to 6-2
1- and D-space system, 6-11

to 6-12
LINK command sequence, 6-10
logging off, 6-1
MAC command sequence, 6-9
map, 6-10 to 6~11
mapped system, 6-1
mapping, 6-2 to 6-3

1- and D-space system, 6-12
to 6-13

PR:O, 6-2, 6-4 to 6-5
PR:4, 6-2, 6-4 to 6-5
PR:4 mapping, 6-4

Index-14

(

(

(

(
privileged task (Cont.)

PR:5, 6-2, 6-4 to 6-6
PR:5 mapping, 6-4
specifying, 2-26, 6-2, 10~33,

11-56
TKB command sequence, 6-9
trap, 6-1 to 6-2
virtual address space

example, 6-11
/PRIVILEGED:n qualifier, 6-2
Program

development step, 1-1
limit, A-18
version

identification, A-IO
virtual section

building a task using, 5-66
to 5-67

creating, 5-66 to 5-67
Program section, 2-2, 5-60

See also individual program
section names

acces~-code, 2~4to 2-5)
additive displaced relocation,

A-21
additive relocation, A-20
adjacency requirement; 10-47,

11-64 .
allocation, 2-2, 2-4 to 2-8
allocation-code, 2-4 to 2-6
$$ALVC, 7-10
$$ALVD, 7-10
$$ALVI, 7-10
attribute, 2-2, 2-4
.BLK, 2-3
displaced relocation, A-19
extension, 12-15
I- and D-space task

o~erlay, 1-5 to 7-6
length, 2-2, .2-4
making autoloadable, 4-3
multiuser task

I- and D-space, 9-3
name, 2-2 to 2-4,A-7

applying autoload indicator,
4-3

conflict, 5-8, 5-39 to 5-40
entry, A~8
.FCTR directive argument,

3-26
flag byte, A-8 to. A-9
resolution, 5-8, 5-39
restriction, 5-8

named in region,. 5-14

INDEX

Program section (Cont.)
ordering, 5-8, 10-36, 10-47,

11-60, 11-64
overlay

allocation, 3-19
overlay run-time, 5-54 to

5-55
PSECT, 2-3
relocation, A-19
relocation-code, 2-4
resolution, 3-19
resolving name, 5~40
save, 2-4, 2-6 .
scope-code, 2-4 to 2-5, 2-7
~egregating,10-36, 10-47,

11-60, 11-64
sequential ordering, 10-36,

10~47, 11-60, 11-64
shared region, 5-8
specifying explicitly in

overlay, 3-29 .
specifying in overlay, 3-19
type-code, 2-5, 2-7
unnamed, 2-3
virtual, 5.,..60

allocating physical memory,
5-63

attaching virtual attribute,
5-63

building a task using, 5-65
creating, 5-63, 5-65
FORTRAN r~n-time support,

5.,..6l, 5-64
option usage, 5-60 to 5-62
run time support, 5-61
specifying, 12-44

base address, 5-64
length, ·5-60 .
physical size, 5-60
window size, 5-60

support, 5-64
Program section item

internal symbol, A-29
PSECT

See also .PSECT directive
See Program section .

.PSECT directive, 3-23, 3-29
summary, 3-50

.PTLUN
reserved global symbol, E-2

Qualifier
See also specific qualifiers
description, 11-10
LINK

Index-15

Qualifier
LINK (Cont.)

See LINK qualifier
list of abbreviated, 1-8

$$RDSG program section, 5-54
reserved name, E-3

[NO]RECEIVE qualifier, 11-57
Region

absolute, 5-8 to 5-10
building precautions, 5-10

, mapping, 5-8 to 5-9
specifying, 5-10
symbol definition file,

5-10
allocation

diagram, 5-21
window block, 5-26

APR.
specifying, 5-7

assigning reference, 5-24
building, 5-18

a linking task, 5-22 to
5-24

and linking, 5-18 to 5-20
interaction of /CO/LI/PI

switch, 5-3
option, 5-18
use of /CO/LI/PI switch,

5-3
with PAR option, 5-2

building option, 5-19
definition, 2-17
descriptor, B-15, B-2l
descriptor in overlay, 3-20

to 3-21
dynamic, 2-19, 5-40 to 5-44

building a task that
creates, 5-40 to 5-44

installing
RSX-llM, 5-2 to 5-3, 5-22
RSX-llM-PLUS, 5-2 to 5-3,

5-22
library, 2-19
linked to a region; 5-26 to

5-27
linking, 5-15 to 5-16, 5-28

.STB file, 5-15
map, 5-20 to 5-21
mapping of an absolute, 5-8

to 5-9
memory-resident overlaid, ;

5-10
building, 5-10
example of building, 5-11

INDEX

Region (Cont.)
number and size, 5-18
options in overlaid, 5-12 to

5-13, 5-15
overlaid, 5-10

autoload, 5-14
a~toload call overhead,

5-14
autoload vector, 5-13 to

5-14
FTB and old library, 5-14
global symbols in .STB file"

. 5-13 to 5-14
I- and D-space task vector,

5-13 to 5-14
named program section, 5-14
reference inclusion, 5-12
run-time support, 5~14
.STB file, 5-13 to 5-14
symbol declaration, 5-12
symbol inclusion, 5-12
vector, 5-13 to 5-14

partition, 5-29
requirements, 5-2

procedure for building, 5-18
to 5-20

program section, 5-8
building a linking task,

5-24
relocatable, 5-6

mapping, 5-6
specifying, 5-7
specifying APR, 5-7
.STB file, 5-10

resident relocatable, 5-6
resolving program section

name, 5-39 to 5-40
shared; 2-19, 5-1

autoload vector, 5-14
defined, 5-1
partition requirement, 5-3
restrictions for overlaid,

5-14
use of /CO/LI/PI switch,

5-6
specifying

as position independent,
10-9, 10-31, 11-18

partition, 5-29
position independent, 11-65

to 11-66
.STB file, 5-4, 5-6

for an absolute, 5-10, 5-14
using /CO/LI/PI switch, 5-4

symbol definition file, 5-10

Index-16

(

c'

(

(

(

Region (Cont.)
symbol exclusion, 5-13
symbol resolution, 5-12 to

5-13
task, 2-18
task building option, 5-15
use of /CO/LI/PI switch, 5-6
use of /CODE:PIC, 5-3 to 5-6
use of /SHAREABLE:COMMON, 5-3

to' 5-6
use of /SHAREABLE:LIBRARY,

5-3 to'5-6
window, 5-17, 5-26
with linked task

1- and D-space system, 7-3
Region descriptor, B-17, B-22
Relocatable region

See Region
Relocatablesymbol, A-27
Relocated symbol, A-27
Relocation

complex, A-22
entry, A-23
operation code, A-22

directory command byte, A-13
directory record, A-12

entry, A-12 to A-13
format, A-14

displaced
global, A-16

global, A-15
additive, A-16

global additive displaced,
A-17

internal, A-14
displaced, A-15

library
resident, A-23

program section, A-19
additive, A-20
additive displaced, A-21
displaced, A-19

resident library, A-23
task

mapped system, 2-16
RESCOM

linking to region, 5-15
option, 12-30 to 12-31

shared region use, 5-15
Reserved symbol

description, E-l to E-4
Resident

common
name block data, B-8

library

INDEX

Resident
library (Cont.)

name block data, B-8
relocation, A-23

memory
forTKB performance, F-2 to

F-3
overlay operator

enabling recognition, 10-34,
11-58

[NO]RESIDENT OVERLAYS qualifier,
11-58 -

Resident region
map file

including symbol definition,
10-26

using to reduce overhead, F-4
RESLIB

linking to region, 5-15
option, 12-30 to 12-32

shared region use, 5-15
supervisor-mode library,

8-20
RESSUP

option, 8-4, 8-9, 12-33 to
12-34

supervisor library, 8-7,
8-9

use in CSM library, 8-9;
8-18 to 8-20

Restarting TKB option, 12-5
$$RGDS program section

reserved name, E-3
RLSCT FORTRAN subroutine, 5-64

to 5-65
/RO switch, 10-34
Root

cotree, 3-31
null, 3-31

ODL, 3-31
sel}ment, B-14
structur~

overlay, 3-21
.ROOT directive, 3-23 to 3-24

allocation diagram
creating, 3-37

argument, 3-26
summary, 3-50

ROPAR option, 12-35
Routine

completion
See Completion routine

$$RTQ program section, 5-54
reserved name, E-3

Index-17

$$RTR program section, 5-54
reserved name, E~4

$$RTS program section, 5-54
reserved name, E-4

Run-time support
overlaid region, 5-14

autoload, 5-14
autoload call overhead,

5-14
FTB and o~d library, 5-14
named program section, 5-14

$SAVAL routine, 5-40
SAVE qualifier, 11-59
SCAL to CSM library

converting, 8-19
ISE switch, 10-35
Segment

aut610adable
data, 4-6
defining, 4-3
global symbol, 4-7

call, 3-10
to up-tree, 4-4

definition, 3-1
descriptor, B-15 to B-17,

B-19 to B-20
1- and D-space, 7-10
1- and D-space task, 7-10.
overlay, 3-20 to 3-21

global symbol
autoload, 4-7

limiting number
reducing overhead, F-4

loading
as part of cotree, 4-3
when called, 4-6 to 4-7

mapping, 2-10 to 2-11
diSk-resident, 2-10
memory-resident, 2-11

multiple
global symbol, 3-16
global symbol resolution,

3-17
overlay, 3-5
symbol resolution, 3-16

name
applying autoload indicator,

4-3
.FCTR directive argument,

3-27
null _

ODL, 3-31
overlay

arrangement, 3-15

INDEX

Segment
overlay (Cont.)

root structure, 3-21
symbol processing, 3-17

processing order, 3-17
single

overlay, 3-4, 3-8
up-tree

1- and D-space, 3-22
Segment load list, B-9
[NO]SEGREGATE qualifier, 11-60
SELECTIVE SEARCH qualifier,

11-61-to 11-63
Semicolon (;)

for comment, 1-14
SEND directive

enabling for your task, 10-35,
11-57

SEQUENTIAL qualifier, 11-64
ISG switch, 10-36
$$SGDO program section, 5-54

reserved riame, E-4
$$SGDl program section

reserved name, E-4
$$SGD2 program section, 5-54

reserved name, E-4
ISH switch, 10-37
SHAREABLE[:COMMON] q~alifier,

11-65
SHAREABLE[:LIBRARY] qualifier,

11-66
SHAREABLE:COMMON qualifier

use in region, 5-3 to 5-6
SHAREABLE:LIBRARY qualifier

use in region, 5-3 to 5-6
SHAREABLE [: TASK] qualifier,

11-67
Shared region, 5-1

See Region
ISL switch, 10-45
Slash ,

double (j /), 1-12 to 1-13 ,
1-17

single (I), 1-7, 1-11 to 1-13,
1-17

SLAVE qualifier, 11-68
SLOW qualifier, 11-69
Slow Task Builder

See Slow TKB
Slow TKB, F-4

to improve performance, F-ll
$$SLVC program section

reserved name, E-4
SNAP$ macro, D-6

format, D-8 to D-9

Index-18

(

c

(

(

c

(

Snapshot dump, 0-2, 0-6, 0-11
call to, 0-10
example, 0-9 to 0-11
macro, 0-2

SNPBK$, 0-5
macro format

for creating, 0-6 to 0-7
SNPBK$macro, 0-6

format, 0-7
SNPOF$ macro, 0-6
/SP switch, 10-46
/SQ switch, 10-47
SRTI routine, 8-13
Iss switch, 10-48 to 10-50

symbol definition file
reducing overhead, F-4

SST vector address
declaring, 12-29

Stack
declaring size, 12-36
supervisor-mode, 8-19

STACK option, 12-36
Start-of-segment symbol, ~-26
.STB file

absolute region, 5-10
content, 5-6
excluding symbol, 12-22
for region, 5-4, 5-6
for system-owned region,

12-12, 12-24
for user-owned region, 12-31
interaction of /CO/LI/PI

switch, 5-4 .
LINK command, 1-6
program sections, 5-6
reducing overhead, F-4
relocatable region, 5-10
supervisor-mode library

system-owned, 12-37
user-owned, 12-33

symbol inclusion, 12-19
use of /CO/LI/PI switch, 5-6

Structure
TKB

size, F-3
.SuMLl

reserved global symbol, E-2
Supervisor-mode, 2-23

library, 2-23
/ See Libra,ry
mapping, 2~23 to 2-25
mode switching, 8-18
stack, 8-19

Supervisor-mode library
description, 8-1 to 8-21

INDEX

SUPLIB option, 12-37
supervisor library, 8-7, 8-9
use in CSM library, 8-9, 8-19

Switch
See also specific switches
conflict, 10-1
default

modifying, F-7 to F-ll
description, 10-5 to 10-54
designation, 10-1
FTB supported, G-l
modifying default, F-7 to

F-ll
overriding, 10-1
summary, 10~2 to 10-4
syntax, 10-1

Symbol
affecting search, 2-7
cross-reference listing,

10-12, 11-23 to 11-24
declaration flag byte, A-7
directory record

declare global, A-2
end of global, A-ll
internal, A-24

full search in overlays
specifying, 10-19, 11-33

global

Index-19

address of OOT SST routine,
12-26

ambiguously defined in
overlay, 3-16

autoloadable segment, 4-7
cross-reference listing,

10-12 to 10-13, 11-23
to 11-24

declaring definition in
task, 12-18

default library resolution,
3-18

directory recor,d, A-2
directory record format,

A-4
end of directory record,

A-ll
excluding in task, 12-22
from the default library,

3-18
internal, A-28
multiply defined, 3-16
name, A-6
name entry, A-6
overlaid region .STB file,

5-13 to 5-14

Symbol
global (Cont.)

overlay search sequence,
3-17

resolution, 3-16 to 3-17
resolution in cotree, 3-17
resolution in multisegment

task, 3-16
search sequence in overlay,

3-16
task inclusion, 12-19

internal
autoloadable library, A-26

to A-27

INDEX

Symbol name format
internal, A-32

Symbol name item
internal, A-30 to A-31

SYMBOL TABLE[:filespec]
qualifier, 11-70

SYMBOL TABLE qualifier
designation, 11-2

Syntax
LINK command line, 11-1 to

11-2
Syntax rule

summary, 1-16 to 1-19
SYSLIB

end-of-module record format, including contribution in map,
10-26 A-32

global, A-28
line-number, A-29 to A-30
literal record, A-30
literal record format, A-32
module name, A-27 to A-28
name, A-30
name format, A-32
overall format, A-24 to

A-25
PC correlation, A-29 to

A-30
program section item, A-29
record, A-30
relocatable/relocated, A-27
start-of-segment, A-25 to

A-26
task identification, A-26
TKB generated, A-25

name entry
internal, A-5

number of processed for
performance, F-3

resolution
global, 2-7 to 2-8
global in cotree-, 3-17
multi segment task, 3-17

search
selective, 10-48 to 10-50,

11-61 to 11-63
TKB reserved, E-l to E-4
undefined

global, 2-7
Symbol definition

ambiguous
eliminating, 3-41

SYSLIB.OLB, 2-7
Symbol definition file

See also .STB file

linking to
by supervisor library, 8-2
by supervisor-mode library,

8-18
supervisor library, 8-14 to

8-16
supervisor-mode library,

8-9 to 8-11, 8-17
replacing as default, 10-23,

11-39
SYSLIB.OLB

for symbol definition, 2-7
System

host and target, C-l to C-2
mapped, 2-14

physical and virtual space,
2-14

task relocation, 2-16
object module library, 2-7

See Library
See SYSLIB.OLB

target
memory management, 10-27,

11-50
unmapped, 2-13 to 2-14

[NO]SYSTEM LIBRARY DISPLAY
qualifier, 11-71

System-controlled partition
extending memory for task,

12-16

T-bit trace trap, 10-51, 11-75
Table storage, F-2 to F-7

memory
improving performance, F-2

Target system, C-l to C-5
description, C-l to C-2
transfering task, C~l

Index-20

(

(

(

(

(

(~

c

(

(

Target system (Cont .•)
transferring example, C-3 to

C-5
transferring to host, C-2

TASK
option, 12-38
qualifier

designation, 11-2
Task

access
system-owned common or

library, 12-12, 12-24
system-owned

supervisor-mode library,
12-37

user-owned common, 12-30
user-owned library, 12-30
user-owned supervisor-mode

library, 12-33 .
active file

declaring number, 12-7
additional memory, 12-16
address windows

declaring an additional,
12-45

Ancillary Control Processor
specifying, 10-5, 11-11

assigning physical device to
LUN, 12-8

attaching' slave attribute,
10-45, 11-68

building for target system,
C-l

building time, F-2
changing name, 12-38
checkpointable

specifying, 10-6, 10-10,
11-13 to 11-14

command line to build,· 1-2
comparison

conventional and I- and
D-space, 7-2

completion routine, 12-11
·conventional

autoload vector, B-17
disk image, 7-5
mapping compared to I- and

D-space task, 7-2
creating a dynamic region,

5-40 to 5-44
creating multiuser, 10-29,

11-67
D-space·

overlay structure, 3-22
data

INDEX

Task
data (Cont.)

needed by system to install,
B-1

task image, B-4 to B-6
declaring

execution priority, 12-29
maximum stack size, 12-36
number of LUNs, 12-41
object-level patch, 12-6
OD~ SST vector, 12-26

disk image, 2-8
enabling

postmortem Dump, 10-32,
11-54

T-bit trace trapping, 10-51,
11-75

extending
memory, 12-16
program section, 12-15
to partition length, 12-16

external header
specifying, 10-53, 11-31

file
LINK command, 1-5

floating point processor in
specifying, 10-18, 11-17

format buffer
declaring length, l2~17

global relative patch
declaring, 12-20

global symbol
excluding, 12-22
inclusion, 12-19

global symbol definition
declaring, 12-18

global symbol reference
declaring, 12-21

header, 2-8 to 2-9
allocating additional

(checkpoint) space,
11-14

allocating additional
checkpoint space, 10-6

checkpoint area within, B-9
controlling creation, 10-20,

11-35
fixed part, B-ll to B-12
I- and D-space, 7-10
space for EAE context,

10-16, 11-16
space for floating-point

context, 10-18, 11-17
variable part, B-12

host to target system

Index-2l

Task
host to target system (Cont.)

transferring example, C-3
to C-5

1- and D-space, 2-27
autoload vector, 7-8, B-17

to B-18
description, 7-1 to 7-15
differing from conventional

task, 2-27
manual load calling

sequence, 4-8 to 4-9,
4-11

map, 7-8
mapped in 1- and D-space

system, 7-4
mapping, 7-3
mapping summary, 7-2
memory allocation, 7-8 to

7-10
overlaid, 7-5
overlay region vector, 5~13

to 5-14
overlay structure, 3-21 to

3-22
program section in overlay,

7-5 to 7-6
simplified mapping, 2-28
specifying, 10-21, 11-15
.STB file, 7-8
up-tree segment, 3-22

I-aod-D and conventional
mapping compared, 7-2

identification
for 1- and b-space, 7-1

identification change, 12-23
identifying partition, 12-27
image, B-1, B-14

. file structure description,
8-1 to B-22

image on disk
linked to overlaid library,

B-2
nonoverlaid, B-2
overlaid, B-3
overlaid 1- and D-space,

B-4
including debugging aid (ODT),

10-14, 11-25 to 11-26
inhibiting queuing message,

10-35, 11-57 .
installed name

declaring, 12-38
label block, 2-8
label block 0, B-7

INDEX

Task (Cont.)
label block 1, B-9
label block 2, B-9
label block 3, B-9
linking

supervisor library, 8-14 to
8-16

to region, 5-15
to region in 1- and D-space

system, 7-3
to several libraries, 12-9

to 12-10
list of attributes, 10-37,

11-41 to 11-49
logical unit

number, 12-41
LUN, 12-41
making checkpointable, 10-6
map'

linked to a common, 5-25
mappingj 2-14, 2-18 to 2-23
maximum record buffer size

declaring, 12-25
memory, 2-9
memory allocation, 2-6
memory-resident overlay

operator
enabling, 10-34, 11-58

memory-resident overlay
segment

changing alignment, 10-8,
11-20

multisegment
See Overlay
global symbol resolution,

3-17
overlay, 3-5

multiuser, 2-26
See Multiuser task
declaring read-only

partition, 12-35
specifying, 10-29, 11-67

ODT vector, 12-26
overlaid, 3-7

global cross-reference,
4-12 to 4-13

memory resident, 3-9
memory saving, 3-9 to 3-10
segment call, 3-10
virtual address space, 3-10

overlaid 1- and O-space
disk image, 7-7
map, 7-11 to 7-15
tree, 7-6
virtual address, 7-6

Index-22

(

c

c

(

(

(

c

Task (Cont.)
overlay

introduction, 2-9
partition

declaring, 12-27
patching

D-space, 12-14
1- space, 12-6
with object code, 12,...6

postmortem dump, D-l
privileged

See Privileged task
program section order

effect in creating, 10-36,
10-47, 11-60, 11-64

relocation, 2-2
mapped system, 2-16

resident common
system-ownec:l, 12-12-1 12-24

resident library
system-owned, 12-12, 12-24

single segment
overlay, 3-4, 3-8

slave
specifying, 10-45, 11~68

specifications
multiple, 1-11

specifying
data space in 1- and

D-space, 7-4
KE11-A,10-16, 11-16

SST vector address
declaring, l2-j9

stack size .
declaring, 12-36

structure, 2-8
label block, 2-8

supervisor-mode library,
12-33, 12-37 .

system mapping status of
indicating, 10-26

time-based schedule request
-declaring UIC, 12-40 -

traceable
specifying, 10-51, 11-75

UIC
declaring, 12-40

use of memory management,
2-15

user
data space definition, 7-1

vector address
declaring system SST trap,

12-39
virtual program section

INDEX

Task
virtual program section

(Cont.)
specifying, 12-44

window, 2-19 to 2-23
1- and D-space, 7-4

Task Builder
See TKB
fast

See FTB
Task identification symbol,

A-26
[NO]TASK[:filespec] qualifier,

11-72 to 11-73
Text information record, A-II

to A-12
format, A-12

Throughput
improving TKB, F-l to F-ll
overlay

high-level language, 3-40
TKB

command. line, 1-2
function, 2-1 to 2-28
option, 1-9
qualifier, 11-74
slow

specifying, 11-69
to improve performance,

F-11
switch, 10-1

/TR switch, 10-51
TRACE qualifier, 11-75
Transfer address entry, A-6
Tree

applying autoload indicator,·
4-2

calling up-tree s~gments, 4-4
multiple

defined, 3-30 to 3-35
defining, 3":3l.to 3-32
example, 3-32 .
structure, 3-18, 3-32

overlay diagram
virtual address space, 3,...24

structure .
defining multiple, 3-31
multiple, 3-31

Tree structure
defining, 3-49

.TRLUN
reserved global symbol, E-2

$$TSKP program section
reserved name, E-4

TSKV option, 12-39

Index-23

UFD convention
command line, 1-15 to 1-16

UIC
declaring in task, 12-40

UIC option, 12-40
Unit assignment

improving per£ormance, F-2 to
F-3

UNITS option, 12-41
Unmapped

system, 2-13 to 2-14
User-mode I- and D-space

description, 7-1 to 7-15
.USLUl

reserved global symbol, E-2
.USLU2

reserved global symbol, E-2

VARRAY option, 12-42 to 12-43
Vector

autoload, 4-4 to 4-5, B-15 to
B-16

conventional task, B-17
eliminating unnecessary,

4-6
I- and D-space, 7-10
I- and D-space format, 4-5
I- and D-space task, 7-8,

B-17
overlay, 3-21
region, 5-14

mode switching
supervisor library, 8-1,

8-19
ODT, 12-26
overlaid region

I- and D-space task, 5-13
to 5-14

overlay
region, 5-13 to 5-14

SST address, 12-29
task header

extension area format, B-13
$VEXT

low-memory context, B~ld

INDEX

$VEXT (Cont.)
reserved global symbol, E-2

$VIRT, 12-42 to 12-43
Virtual array, 12-42 to 12~43

example, 12-42 to 12-43 .
VSECT option, 12-44

[NO]WARNINGS qualifier, 11-76
/WI switch, 10-52
[NO]WIDE qualifier, 11-77
Window, 2-19 to 2-23

block, 2-19
for a region, 5-18
overlay, 3':"'49

definition block, 2-21
descriptor, B-15, B-17, B-20

to B-21
overlay, 3-20 to 3-21

I- and D-space task, 7-4
option, 12-45
region, 5-17, 5-26
task, 2-19 to 2-23
wrap around

virtual section, 5-60
$$WNDS program section

reserved name, E-4
WNDWS option, 12-45
Work file

accesses
system overhead, F-2, F-5

to F-7
contigui ty,' F-3
parameters, F-2
performance, F-2

changing device to improve,
F-2, F-5

reads, F-2
reducing size, F-5 to F-6
reference, F-2

improving performance, F-6
size, F-2
writes, F-2

/XH switch, 10-53
/XT switch, 10-54

Index-24

c

(

l

r

(

USER'S COMMENTS

RSX-llM/M-PLUS and MicrolRSX
Task SuilderManual

AA-AB46A':"TC

Your comments and suggestions are welcome and will help us in our continuous effort to improve the quality and
usefulness of our documentation and software.

Remember, the system includes information that you read on your terminal: help files, error messages, prompts,
and so on. Please let us know if you have comments about this information, too.

Yourname ______________________________________ _ Position ______________________________ __
Company __ __

Street ___ City ________________________________ __

State Zip Date

1. How would you rate this manual for the following:
Excellent Good Fair Poor

" Completeness of information
Accuracy of information
Ease of use . (clarity, organization)

Use of examples
Clarity and style of writing

2. Did you find errors in this manual?

Incorrect information
Information left out
Information hard to understand
Too much information

Paragraph

3. Was there anything that you thought was especially confusing or difficult to understand? __________ __

(4. Was there anything that you thought was especially good at helping you understand things?

5. Do you have any suggestions for improvement or any other comments?

What kind of user are you? Programmer __ Nonprogrammer

What do you use the system for?

Years of experience as a computer programmer/user:

What experience do you have with DIGITAL software?

What experience do you have with non-DIGITAL computers?

- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

IIIIII

BUSINESS REPL YMAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - - Do Not Tear - Fold Here -- -

(

(

(

Printed in U.S.A.

