
OPERATOR~MANUAL
FOR THE EM-800 DIAG·NOSTIC EMULATOR

NSCSOO™ SERIES"'i.~)" ~Z~i~·tU.;il ·li';:~~';'

MICROPROCESSOR

920-1148400
February, 1985

5020 - 148th Avenue N.E.
P.O. Box C-1002
Redmond, WA 98073
(206) 882-2000
Toll Free Service: 1-800-426-3925

Copyright © 1983 Applied Microsystems Corporation. All rights reserved.

Diagnostic Emulator is a Trademark of Applied Microsystems Corporation.
NSCSOO™ is a Trademark of National Semiconductor Corporation

Applied Microsystems Corporation has made every effort to docu­
ment this product accurately and completely. However, Applied
Microsystems assumes no liability tor errors or for any damages that
result from use of this manual or the equipment it accompanies.
Applied Microsystems reserves the right to make changes to this
manual without notice at any time.

Because this configuration of the EM-BOO Diagnostic Emulator is
intended for use in developing, debugging, and testing NSCBOO™
microprocessor-based systems, it is assumed that the us,eriS: familiar
with the terminology of the NSCBOOTM microprocessor. - .

WARNIVG - This equipment generates. US8$ and can radials radio ffequency
eneigy and if not installed and used in accordance with the instructions manual,
may cause interference to radio communications. As temPOrarily permitted by.
regulation it has not been tested for compliance with the limits for Class A
computing devices pursuant to Subpart J of Part 15 of FCC Rules. which are
designed to provicl6 reasonable protection against such interference. Operation
of this equipment in a residential area is likely to cause interference in which
case the user at his own expense will be required to take whatfMJr measures
may be required to correct /he interference.

ii

~ ' ; ,

TABLE OF CONTENTS

I. INTRODUCTION
1.1 SYSTEM CONCEPT
1.2 TRANSPARENCY
1.3 WARRANTY
1.4 GENERAL SPECIFICATIONS

II. EM-800 COMPONENTS
2.1 OPERATOR'S STATION
2.2 EMULATOR PROBE
2.3 KEYBOARD
2.4 DIAGNOSTIC EPROM SOCKET
2.5 DISPLAY PANEL
2.6 TRACE MEMORY
2.7 BACK PANEL CONTROLS AND CONNECTORS
2.8 RAM OVERLAY
2.9 DISASSEMBLER

III. BASIC OPERATING INSTRUCTIONS
3.1 OPERATING VOLTAGE
3.2 SAFETY INFORMATION
3.3 CONNECTION TO TARGET EQUIPMENT

IV. EM-BOO FUNCTIONS

1-1
1-2
1-2
1-3

2-2
2-2
2-2
2-2
2-3

·2-6
2-7
2-7
2-7

3-2
3-2
3-2

4.1 EXECUTION CONTROL 4-2
4.1.0 RESET Keyswitch 4-2
4.1.1 RUN Keyswitch 4-2
4.1.2 RUN BKPT Keyswitch 4-3
4.1.3 STEP Keyswitch 4-3
4.1.4 Breakpoint System 4-6
4.1.5 Trace Memory 4·10

4.2 EXAMINATION AND ALTERATION OF CPU REGISTERS 4-11
4.3 EXAMINATION AND ALTERATION OF MEMORY LOCATIONS 4-13
4.4 EXAMINATION AND ALTERATION OF 110 PORTS 4-15

V. RAM OVERLAY
5.1 OVERVIEW
5.2 INSTALLATION
5.3 CONTROLS
5.4 UPLOADING/DOWNLOADING

iii

5-2
5-4
5-5
5-7

.. $..tt .a.

VI. TRACE DISASSEMBLY
.6.1 OVERVIEW 6·2

6.6.1 Operation Preparation Procedures 6·2
6.2 FORMAT DEFINITION 6·3
6.3 LINE ASSEMBLER 6-9

6.3.1 How to Use the Line Assembler 6·10
6.3.2 Features Supported 6-10

6.4 MEMORY DISASSEMBLER 6-12
6.4.1 Overview 6·12
6.4.2 How to Use the Disassembler 6-12
6.4.3 Disassembler Output Format 6-13
6.4.4 Errors 6·13

VII. BUILT-IN DIAGNOSTICS (CODE FUNCTIONS)
7.1 GROUP A: MEMORY TESTS 7·4
7.2 GROUP B: OSCI LLOSCOPE LOOPS 7·7
1.3 GROUP C: MEMORY LOAD AND DUMP 7·9
7.4 GROUP D: MISCELLANEOUS 7·15
7.5 GROUP E: CHANGE DEFAULT PARAMETERS 7·18
7.6 GROUP F: INTROSPECTION MODE 7·19

VIII. USER·IMPLEMENTED CODE FUNCTIONS
8.1 OVERVIEW 8·2
8.2 INTERNAL ENVIRONMENT 8·3

8.2.1 ROM 8-4
8.2.2 Front Panel EPROM Socket 8·4
8.2.3 Scratchpad RAM 8·4
8.2.4 110 Devices 8·6

8.3 ENTRY TO USER CODE FUNCTIONS 8·15
8.4 INTROSPECTION MODE 8·16

8.4.1 Code F 8·16
8.5 GETIING TO AND FROM THE TARGET SYSTEM 8·16

8.5.1 Examine and Store 8·17
8.5.2 Pause to Run 8·18
8.5.3 Run to Pause 8·18
8.5.4 Re·Entry Jump 8·19

8.6 USER·ACCESSIBLE SUBROUTINES 8·21
8.7 INTERRUPTS 8·25
8.8 CODE FUNCTION EXAMPLE 8·25

IX. SUPPLEMENTARY INFORMATION
9.1 AUXILIARY CONNECTOR 9·2
9.2 OPTION SWITCHES 9·4
9.3 SERIAL INTERFACE 9-6
9.4 UPLOADIDOWNLOAD PROTOCOL 9-2
9.5 EXTERNAL BREAKPOINT 9·7
9.6 TRACE HOLD 9-6

9;6.1 Window Mode 9·11
9.6.2 Selective Trace 9·11

9.7. SIGNATURE ANALYSIS 9·12
9.8 SOFT SHUTDOWN 9·14

<:.w;I ,~

iv

X. MAINTENANCE & TROUBLESHOOTING

10.1 MAINTENANCE
10.1.1 Power Supply
10.1.2 Cables
10.1.3 Probe Tip Assembly

APPENDIX A.

NULL TARGET -A SOFTWARE SIMULATION TOOL

APPENDIX B.

SYSTEM ERROR CODES

INDEX

v

10·2
10·2
10·2
10·3

A·1

B·1

LIST OF FIGURES

2.1-1 Operator's Station 2-3
2.7-1 Back Panel 2-4
3.3-1 Installing 40-Pin Plug 3-2
5.1-1 RAM Overlay Decals 5-3
5.2-1 RAM Overlay Installation 5-5
5.3-1 RAM Overlay Controls 5-6
6.2-1 Code E1 80-Character Single-Line Disassembly Format 6-6
6.2-2 Code E1 72-Character Single-Line Disassembly Format 6-7
6.2-3 Code E1 72-Character Two-Line Disassembly Format 6-8
8.2-1 EM-800 Internal Memory Map 8-3
8.2-2 Map of Internal Scratch pad RAM 8-5
8.2-3 Keyboard Input Locations 8-7
8.2-4 Serial Port Data and Status Locations 8-7
8.2-4 Trace Memory Format 8-11
9.1-1 J3-Auxiliary Connector Pinout (D-Subminiature, Female) 9-2
9.2-1 Option Jumpers 9-5
9.3-1 Serial Word Format 9-7
9.5-1 Timing Relationships 9-9
9.6-1 Trace Hold and Timing 9-10
9.6-2 Window Mode Circuit 9-11
9.7-1 Simplified Microprocessor Diagram 9-13

vii

LIST OF TABLES

4.1-1 Display Panel Indicators 4-4
4.1-2 Breakpoint Qualifiers 4-6
4.2-1 Keyboard Designators 4-13
5-1 Memory Block Address A and B 5-7
6-1 Disassembly Format Selection 6-3
7.1-1 Code Functions 7-2
7.3-1 C3 and C7 Code Function Error Codes 7-11
7.3-2 Memory Dump Format 7-14
8.6-1 User-Accessible Subroutines 8-21
9.2-1 Set-Up Characteristics for Serial Port 9-4
10-2 Troubleshooti ng 10-3

/

ix

EDITION NOTE:

This is the first edition of this EM-800 Operator's Manual.
Updates and revisions will be announced on this page in future
editions.

There is one change in manual syntax that you may notice if you
are using other documentation from Applied Microsystems
Corporation. The obsolete term "carriage return" (abbreviated
< cr » has been replaced as follows:

in text: RETURN

in examples: < return >

As other documentation is reissued, it will be revised to reflect
this change.

xi

SECTION 1
INTRODUCTION

1.1 SYSTEM CONCEPT
1.2 TRANSPARENCY
1.3 WARRANTY
1.4 GENERAL SPECIFICATIONS

1·1

1.1 SYSTEM CONCEPT

1.2 TRANSPARENCY

1.3 LIMITED
WARRANTY

The EM-800 Diagnostic Emulator is a microprocessor test and
diagnosis instrument designed to emulate the NSC800™
microprocessor. The Diagnostic Emulator consists of an
Operator's Station with keyboard and display panel, and an
emulator pod and cables for connection to your system. The
EM-800 is fast and easy to use and includes many diagnostic
capabilities for troubleshooting problems in your system.

The EM-800 Diagnostic Emulator is transparent to the normal
operation of the target system in that emulation is in real·time,
with no additional processor cycles required as a result of the
emulation process. There are no target system addresses or 1/0
ports needed or used by the EM-800, and there are no programs
or other software objects that are required to be in the target
address space. As a consequence of this transparency, you
should not experience difficulties in using the EM-800 Diagnostic
Emulator with your system, even if there are critical software tim·
ing constraints in the system.

Applied Microsystems Corporation warrants that the equipment
accompanying this document is free from defects in materials
and workmanship, and will perform to the applicable published
Applied Microsystems Corporation specfications for one year
from the date of shipment. THIS WARRANTY IS IN LIEU OF,
AND REPLACES ALL OTHER WARRANTIES, EXPRESSED OR
IMPLIED, INCWDING THE WARRANTY OF MERCHANTIBILITY
AND THE WARRANTY OF FITNESS FOR PARTICULAR PUR·
POSE. In no event will Applied Microsystems Corporation be
liable for special or consequential damages as a result of a
breach of this warranty provision. The liability of Applied
Microsystems Corporation shall be limited to replacing or repair·
ing at its option any defective unit which is returned F.Q.B. to
Applied Microsystems Corporation's manufacturing plant. Equip·
ment or parts which, in Applied Microsystems Corporation's
opinion, have been subjected to abuse, misuse, accident, altera·
tion, neglect, unauthorized repair, or improper installation are not
covered by this warranty. Applied Microsystems Corporation shall
have the right to determine the existence and cause of any
defect. When items are repaired or replaced, this warranty will
remain in effect for the balance of the warranty period or 90
days following the date of shipment, whichever period is longer.

1·2

1.4 GENERAL
SPECIFICATIONS

Input Power
90 to 140 Vac
60 Hz
less than 50 watts

Optional
180 to 280 Vac
50 Hz
less than 50 watts

Physical:
Operator's Station

Width:
Height:
Depth:

292 mm (11.5 inches
117 mm (4.6 inches)
356 mm (14 inches)

Target System Connection (Ribbon Cable)
Total Length (including Pod):

Emulator Cable Pod
Length:
Width:
Depth:

1.5M (58 inches)

173 mm (6.8 inches)
90 mm (3.6 inches)
33 mm (1.3 inches)

Total Weight: 4.5 Kg (11 Ibs);
Shipping 6.3 Kg (14 Ibs)

Environmental:
Operating Temperature: O°C to 40°C (32 of to 104 oF)
Storage Temperature: - 40 DC to 70 DC (- 40 of to 158 oF)

Humidity: 5% to 95% RH non-condensing

Operators Station r 365 mm (14") :::j t- 292 mm (11.5") -1

k-<J1:~1 I
Emulator Pod

173 mm 280 mm
1-1 --1.03m (40.5") f- (6.8") ~ (11") -1
o~-----tl I 0

90 mm 40 DIP
H3.s")ls 33 mm (1.3")

I-I --,

1-3

SECTION 2
EM·SOO COMPONENTS

2.1 OPERATOR'S STATION
2.2 EMULATOR PROBE
2.3 KEYBOARD
2.4 DIAGNOSTIC EPROM SOCKET
2.5 DISPLAY PANEL
2.6 TRACE MEMORY
2.7 BACK PANEL CONTROLS

AND CONNECTORS
Main Power Switch • Saud Rate Selector

Switch • Auxiliary Connector • Option Switches

RAM Overlay Sank A and Sank S Address Switches

RAM Overlay Sank Enable Switches

2.8 RAM OVERLAY
2.9 DISASSEMBLER

2-1

2.1 OPERATOR'S
STATION

2.2 EMULATOR PROBE

2.3 KEYBOARD

The EM-800 Operator's Station consists of a keyboard, display
panel, diagnostic EPROM socket, back panel controls, and con­
nectors. The operator's station contains most of the system elec­
tronics, including the emulation control circuitry, Trace Memory,
Breakpoint comparators, plus control firmware with prepro­
grammed test routines. A RAM Overlay option may be included.
See Figure 2-1.1.

The EM-800 is the emulator probe for the NSC800
microprocessor. The probe contains the CPU and associated cir­
cuitry and buffers. It connects to the Operator's Station via
40-inch ribbon cables and to the target system CPU socket via
11-inch ribbon cables and a 4Q-contact DIP connector.

The keyboard has 32 keyswitches divided into four groupings:
Processor Control, Mode Select, Subfunction Control and Data
Entry.

F,.n>
elK _ -- D'"g"osr,c Pto""

rrs 2~12

Address Data

Machine Cycle

NSC800 :~,,!,,:::IC

CPU Status

8KPT
ENA

'-"''' •• IXT 1/ 0 lACK ID WR',- lENA INT MMI BREO \VIiI Hln

s z H PIV C

Data entrv _____ i'"--- /,--_---,.."'\ .. 1~~.~;(:.~~ FF
A2 8o!~'" . ~
A3 Add' c c~

~l~1

2.4 DIAGNOSTIC
EPROM SOCKET

A low-insertion force EPROM socket to accept EPROMs compati­
ble with Intel 2716 or 2732 types (single + 5 power supply and
Intel pinout). You may create your own system test and diagnosis
routines, program the EPROM with these routines, insert the
EPROM into the EM-800 front panel socket and then execute the
routines in a convenient manner from the EM-800 keyboard. See
Section 8: USER-IMPLEMENTED CODE FUNcrIONS.

2·2

2.5 DISPLAY PANEL The display panel consists of LED dot-matrix address and data
displays and of individual LED indicators. Address and data infor­
mation are displayed in hexadecimal notation. The individual indi­
cator LEOs are divided into five groupings:

• Fault indicators (ClK.RESET) show loss of system clock or a
continuous RESET condition.

• Machine Cycle indicators (Fetch. BK A. BK B. EXT. 110. lACK.
RD. WR) read out the control bus and other information
acquired during target program execution.

• The microprocessor condition code bits (S. Z. H. PIV. C) are
also displayed on the machine cycle indicators.

• CPU Status indicators (lENA. INT. Trap. NMI.BREQ.Halt. Pause)
show the condition of the emulated target system cpu.

• Breakpoint Enable (BKPT ENA) is illuminated if the breakpoint
System is enabled.

4 Digit Hexadecimal
Display to 16-Bit
Address Readout

Operator's
Station
Assembly

Back Panel
Diagnostic Routine
EPROM Socket (User­
Programmed 2716 or .
2732, Switch Selectable)

(Optional RAM

O.e rlTS 'del

/
2 Digit Hexadecimal
display for 8-Bit
Data Readout

40-inch
Connecting

C,?

Figure 2.1-1
Operator's Statioh

2-3

Ke\/board Legend

16 Entry Keyswitches
(Code and Register Access,
Breakpoint Control, I/O
and Memory Access)

2.6 TRACE MEMORY The Trace Memory is a 252·word by 32·bit memory that captures
information from each bus cycle of the emulated target system
microprocessor: the 16 address bits, 8 data bits; CPU read and
write signals, the type of bus cycle (i.e., op·code fetch, 110, or
Interrupt Acknowledge) and two possible breakpoint sources­
the Breakpoint Comparators and the External Breakpoint input.

Power Input
115 Vac. 60 Hz
(230 Vac, 50 Hz
option available)

Figure 2.7·1
Back Panel

Main
Power
Switch

Baud Rate
Select Switch

(Optional RAM Overlay)
Section 5)

RAM Bank A
Enable
Switch

RAM Bank A
Address
Switch

2·4

RAM Bank B
Address
Switch

RAM Bank B
Enable
Switch

2.1 BACK PANEL
CONTROLS AND
CONNECTORS

2.8 RAM OVERLAY

2.9 DISASSEMBLER

The back panel of the EM-8oo includes the controls and various
connectors used to connect the Diagnostic Emulator with power,
the emulator probe and other external equipment:

Main Power Switch
Controls the primary power to the unit.

Baud Rate Selector Switch
A 16-position switch controls the transmission rate of serial data
flow between the Diagnostic Emulator and peripheral equipment.
The baud rate selection options are visible on the back panel
template shown in Figure 2-7.1

Auxiliary Connector
A 25-pin, 0 subminiature female connector. It provides RS-232C
signals and additional control signals to auxiliary equipment (Le.,
signature analyzer, oscilloscope, target system, development
system). See section 9.t

Option Switches
These switches control characteristics of the EM-8oo RESET cir­
cuitry and communications interface. The switches are shown in
Figure 2-7.1, and switch options are discussed and illustrated in
Section 9.2.

RAM Overlay Bank A and Bank B Address Switches
RAM Overlay Bank Enable Switches

These switches allow you to select the address range and to
enable RAM Overlay Memory as off, read only or read/write. See
Section 5, RAM Overlay, if you have the RAM Overlay option.

The EM-800 may be equipped with an optional RAM overlay
feature. Either 8K bytes of 200 nS static RAM, or 16K or 64K
bytes of 150 nS static RAM are available on a circuit board that
includes the appropriate addreSSing and buffering.

This memory can be mapped into the target address space,
overlaying the user system in the address block selected. The
overlay memory may be loaded from the target system memory,
front panel EPROM or external device by executing the appro­
priate Code Function. See Section 5, RAM Overlay.

The EM-8oo is configured with a firmware package that provides
for formatting and output of system information to an ASCII ter­
minal device with RS-232 interface such as a CRT or hard copy
terminal. The disassembly firmware extracts information from the
EM-8oo Trace Memory and emulation processor registers, formats
data for display with instruction op-codes given in standard NSC
mnemonic form (Jp, ADD, PUSH, SET, LD, etc.) and outputs data
through the serial port. See Section 6.

2·5

SECTION 3
BASIC OPERATING INSTRUCTIONS

3.1 OPERATING VOLTAGE
3.2 SAFETY INFORMATION
3.3 CONNECTION TO TARGET EQUIPMENT

3-1

3.1 OPERATING.
VOLTAGE

3.2 SAFETY
INFORMATION

3.3 CONNECTION
TO TARGET
EQUIPMENT

Figure 3.3-1
Installing 40-pin plug

The EM-800 Diagnostic Emulator is normally supplied for opera­
tion from 90 to 140 Volts AC at 58 to 62 Hz line. The unit is also
available for operation from 180 to 280 Volts AC at 48 to 52 Hz
line if specified at time of order. The EM-800 uses a regulating
transformer that also has the -advantage of providing good block­
ing of conducted noise sometimes present on the power input
to the unit.

The EM-800 is supplied with a 3-wire cord with a 3-terminal
polarized plug for connection to the power source and protective
ground. The ground terminal of the plug is connected to the
metal chassis parts of the instrument. Electric-shock protection
is provided if the plug is connected to a mating outlet with a
protective ground contact that is properly grounded.

The internal (logic) ground of the EM-800 is not connected to the
protective ground, but floats to the same potential as the equip­
ment to which the unit is connected.

CAUTION:

GROUNDING CONFLICTS MAY OCCUR IF
THE EM-BOO IS CONNECTED TO TWO ITEMS
OF EQUIPMENT WITH DIFFERING GROUND
POTENTIALS. SUCH AS THE TARGET EQUIP­
MENT AND A RS-232C TERMINAL

First, connect the emulator probe to the EM-800 operator station.
Then remove the target system microprocessor from its socket
and plug in the 40-pin plug. Be sure to observe correct pin 1
orientation. (See Figure 3-3.1.)

CAUTION: NOTE CORRECT PIN 1 ORIENTATION.

3-2

Apply power to the EM-800 and the target system after the unit
is properly connected to the target circuitry. Once power is
applied to the Diagnostic Emulator and the clock begins
operating, it performs a power-on-reset operation during which
the following functions are performed:

1. Reset CPU.

2. Clear Trace Memory and CPU Registers.

3. Clear the program starting address to zero (the default start-
ing address) and display the address.

4. The Diagnostic Emulator awaits further operator input.

After the EM-800 is connected to the target system and power is
applied to both the EM-BOO and the target system, perform the
following checks to verify that the unit is operating correctly:

1. The Clock Fault and Reset Fault indicators are not illumi­
nated. This means that the system clock oscillator is
operating and is being received by the EM-8oo and that there
is no continuous RESET signal from the target system.

2. The PAUSE indicator should be illuminated. This indicates
that no target program is executing and that the EM-BOO is
awaiting operator commands.

3. At power-on time, the ADDRESS Display should indicate
0000. If it does, the EM-BOO internal control program is .
operating.

If all items check out, you can begin operating the emulator.
Details of EM-BOO functions are discussed in the next section.

If you have experienced difficulty setting up your emulator, read
Section 10 and then call your Applied Microsystems Corporation
representative, if necessary.

3-3

SECTION 4
EM·800· FUNCTIONS

4.1 EXECUTION CONTROL
RESET Keyswltch • RUN Keyswitch
RUN BKPT Keyswitch • STEP Keyswitch
Breakpoint System • Trace Memory

4.2 EXAMINATION AND ALTERATION
OF CPU REGISTERS

4.3 EXAMINATION AND ALTERATION
OF MEMORY LOCATIONS

4.4 EXAMINATION AND ALTERATION
OF 110 PORTS

4-1

EM·800 FUNCTIONS A basic function of the EM-Soo is to emulate the target system
microprocessor. Effectively, the Diagnostic Emulator is a pin­
compatible functional replacement for the microprocessor in the
target system. The unit is designed to meet the timing specifica­
tions of the emulated processor and to minimize the increase in
electrical loading of the user system.

4.1 EXECUTION
CONTROL

4.1.0 RESET Keyswitch

4.1.1 RUN Keyswitch

The EM-8oo is always in one of two modes: RUN or PAUSE. If in
the RUN mode, the EM·SOO is emulating the target system
microprocessor and executing the target system program at full
system speed. The trace memory will be active (unless inhibited
by external control), and all bus cycles of the emulated
microprocessor are recorded for possible later display. In the
PAUSE mode, emulation of the target system microprocessor is
suspended and you may perform other functions, such as
manually examining or altering memory locations, I/O ports or in­
ternal registers of the emulated microprocessor; you may also
review the history of the target program execution from the Trace
Memory or execute one of the code Function routines.

You control the EM-Soo primarily through the Operator's Station
Keyboard. Keyswitch groupings are designed for easy use. The
EM-800 display provides information about program execution,
CPU status and EM-Soo conditions. Table 4-1.1 lists the display
panel indicators.

The red RESET Keyswitch resets the microprocessor and initial­
izes the EM-Soo in the PAUSE mode. At this time the Address
Display shows the program starting address. The program start­
ing address may be changed by entering digits with the hex­
adecimal keyswitches, or the current program starting address
may be used.

The option switches on the back panel may be used to set up
one of several options concerning the RESET circuitry of the
EM-Soo and the target system. See Section 9.2.

Pressing the RUN Keyswitch causes the EM-800 to execute the
target program beginning at the preset address or continuing
from the last instruction executed. Execution is at full system
speed with no extra wait states beyond those. commanded by
the target system. The activity of the executing program is
recorded continuously in the Trace Memory. It is also possible to
obtain a general view of the program activity by watching the
displays. For example, it is possible to tell if the program is in a
tight loop or ranging widely in the program address space by
observing changes in the Address Display.

4·2

4.1.2 RUN BKPT
Keyswitch

4.1.3 STEP Keyswitch

This Keyswitch starts the EM-800 running the target program in
real time, as does RUN, and also enables the breakpoint-stop cir­
cuitry. If a breakpoint is detected, the EM-BOO wi" pause before
executing the next instruction, and the display wi" show the
cycle where the breakpoint was detected. Pressing RUN BKPT
again wi" cause execution to resume until the breakpoint is
again detected. The breakpoint-stop circuitry may be disabled
during program execution by pressing RUN.

Pressing the STEP Keyswitch while the program is running
causes the program execution to stop. The displays show the
operation code fetch cycle of the last instruction executed, with
the address, op-code (data) and control signals visible. When the
Diagnostic Emulator stops executing the target program, the
following events take place:

1. The processor stops executing the target program.

2. The processor registers are saved in internal scratch pad
memory and are accessible for display or alteration.

You, in effect, freeze the target program execution at the point
reached when STEP was depressed. You then have several
options:

1. Continue executing the program at full speed by pressing
RUN.

2. Continue executing the program one instruction at a time by
pressing STEP for each additional instruction execution.

3. Examine or change the contents of any of the processor
registers.

4. Examine any memory or 110 address, and if the location is
writable, store new data in it.

5. Review the last 252 bus cycles performed by the processor
by decrementing through the Trace Memory.

The state of the target program is not changed by any of these
operations unless you have purposely altered it and program
execution may be continued from the point where it stopped.

The program may be executed one instruction at a time by
pressing STEP once for each instruction. If STEP is pressed and
held down, the emulator begins stepping at about seven instruc­
tions per second. The step rate then accelerates gradually from 7
steps per second to about 75 steps per second. Execution stops
again if the keyswitch is released.

4·3

Table 4.1·1
Display Panel
Indicators

FAULT GROUP

CLK

RESET

ILWMINATES IF:

Target system clock not operating.
Target system clock is low in frequency
EM-800 not connected to target system.

Processor and Diagnostic Emulator held in Reset
by a low on the RESET IN terminal of the
microprocessor socket.

MACHINE CYCLE GROUP

ILWMINATES IF:

FETCH

BK A

BK B

EXT

. 110

lACK

RD

WR

Displayed machine cycle is an op-code fetch cycle.

Breakpoint A. Conditions set up for an output
from Breakpoint A Comparator were satisfied dur­
ing the displayed machine cycle.

Breakpoint B. Conditions set up for an output from
Breakpoint B Comparator were satisfied during the
displayed machine cycle.

External. External Breakpoint input low (active) duro
ing displayed machine cycle.

Input/Output. Machine cycle being displayed is a
data transfer from an input port address or to an
output port address.

Interrupt Acknowledge. Machine cycle being
displayed is an interrupt acknowledge cycle.

Read. Machine cycle being displayed is read from
memory or read from I/O cycle.

Write. Machine cyCle being displayed is write to
memory or write to 110 cycle.

4·4

FLAGS

ILWMINATES IF:

S Sign bit is true.

Z Zero bit is true.

H Auxiliary Carry bit is true.

PN Parity bit is true.

C Carry bit is true.

CPU STATUS

ILWMINATES IF:

lENA Emulated processor is ready to respond to an in­
terrupt. (Interrupts enabled.)

INT Interrupt. One of the following inputs to NSC800 is
active: INTR (PIN 10); RST 5.5 (PIN 9); RST 6.5 (PIN
7).

NMI NMI input to NScaOO is active.

BREQ BREQ input of the NSC800 is active.

Wait WAIT is active. CPU is waiting. If the CPU is work­
ing with a system that requires some wait states,
the indicator may be more or less dimly lit.

Halt Processor has executed a HALT instruction and
has entered the HALT state.

Pause Real-time emulation of the target program is
suspended and the Diagnostic Emulator is
awaiting another command.

BKPT ENA Breakpoint Enable. Illuminates if the RUN BKPT
keyswitch fs depressed.

4·5

4.1.4 Breakpoint System The DiagnQstic Emulator incorporates a Regional/Relational

Table 4.1-2
Breakpoint Qualifiers
and Features

. breakpoint generation system to enable you to monitor the
operation of your program and to stop execution of your program
when desired. The EM-800 contains two independent address
comparators. Each of these comparators continuously monitors
the 16·bit address bus of the microprocessor. In addition, each
comparator may be qualified to respond to read cycles only, to
write cycles only, or to both read and write cycles. The com­
parators may also be configured to respond to memory
addresses or to 110 port addresses.

It is also possible to configure the breakpoint system so that a
specified relationship must hold between the A and B breakpoint
comparators before PAUSE occurs. The relationships that may be
specified are the following:

1. A or B Break if condition A or condition B is found
(or both).

2. A then B. Break if condition A is found followed some time
later by condition B.

3. A+-.... B Break if any address in the range from A to B
(inclusive) is found.

4. +-A-B.... Break if any address outside of the range from A
to B is found. (Including addresses A and B.)

0- Disable
1 - Memory Read
2 - Memory Write
3 - Memory ReadlWrite

4 - Not Used
5 - 1/0 Read
6 - 1/0 Write
7 - 1/0 ReadlWrite

c -A or B
D - A then B
E - Range A to B
F - Range outside A to B

The various breakpoint qualifiers and relationships are set up by
simple keystroke sequences. Some examples of these sequences
follow.

4-6

EXAMPLE:

Set up breakpoint comparator A to respond to read or write
cycles at address 430016 ; disable comparator B.

KEYSTROKE SEQUENCE:

ij~~([~J)(G88 Set breakpoint address.

ij ~~ 8 Set qualifier 3 (memory R/W).

Press and hold down BKPT A Key while qualifier is entered.

Set qualifier a (Disable).

Press and hold down BKPT B Key while qualifier is entered.

On power·up, the EM·BOO sets the qualifiers for both breakpoint
comparators for the A OR B relation (comparators operating in·
dependently of each other) and the memory read/write qualifier.
The address to which each comparator is initialized is 000016. In
the preceding example it was not necessary to alter the relation·
ship holding between the two comparators, so the default A OR
B relationship was not altered.

EXAMPLE:

Set up breakpoint comparator A to respond to read cycles only
at memory address BA7218, and breakpoint comparator B to
respond to write cycles to I/O port 1316.

KEYSTROKE SEQUENCE:

~~n088GJ Set A breakpoint address.

ij~110 Set A qualifier 1 (MEMORY read).

Press and hold down BKPT A Key while qualifier is entered.

{1~ijG8IOG Set B breakpoint address.

{I~~ (0 Set B qualifier to 6 (110 WRITE)

Press and hold down BKPT B Key while qualifier is entered.

4-7

When the breakpoint circuitry is set up as desired, program ex·
ecution may be started using RUN BKP! The function RUN
BKPT is the same as the function of RUN except that when the
breakpoint condition occurs, program execution stops (after
finishing the instruction cycle). You can also start program
execution using the RUN Key, and then later arm the breakpoint·
stop circuitry by depressing RUN BKPT even while the target
program is executing. Breakpoints may be disabled while the
target program is executing while depressing RUN. The BKPT
ENA indicator on the display shows the current breakpoint
enable status of the emulator.

EXAMPLE:

Set up breakpoint range from 430716 to FFFFI6.

KEYSTROKE SEQUENCE:

(l~ij88GO Set A to range beginning (430716).

ij ~~ 10 Set qualifier to E (Range A to B).

Press and hold down BKPT A Key while qualifiers are entered.

~~~88G)(Gl Set B to range end (FFFFI6). 

With the specifications made as shown, the breakpoint circuitry 
will respond to any cycle to any address in the range of 430716 to 
FFFF10. Note that is was not necessary to specify any qualifiers 
for the B comparator, this is because the two comparators are 
linked together to provide address range detection, and the 
qualifiers entered for A apply. also to B. 

4-8 



EXAMPLE: 

Set up sequential breakpoint detection such that target program 
execution will halt after the A comparator has detected address 
EB2218 and then the B comparator has detected address 4818. 

KEYSTROKE SEQUENCE: 

ij~~G)(C!J8[!] Set A to address EB2216. 

(I~I)G Set A qualifier to 0 (A then B). 

Press and hold down BKPT A Key while qualifier is entered. 

Set B to address 4818. 

4·9 



4.1.5 TRACE MEMORY One of the most useful EM-800 features is its 252 bus cycle 
Trace Memory. The Trace Memory is organized as a ring buffer 
that records all target program activity. It operates in both real­
time and single-step modes, and its contents remain in the cor· 
rect sequence, regardless of whether you operate the program 
wholly or partly in either of these two modes. 

To review the Trace Memory contents, the EM-BOO must be 
paused. The PAUSE mode is entered automatically when the pro­
gram encounters a breakpoint, or it can be entered manually by 
depressing STEP. When the program enters PAUSE as a conse­
quence of depressing the STEP Key, the Display shows the fetch 
cycle address and data for the last instruction recorded. 

When a breakpoint triggers PAUSE*, the Display shows the cycle­
where the breakpoint was detected, and you can easily review 
the program activities leading up to the event. Depressing DEC 
allows you to examine the last 252 bus cycles of the program 
activity prior to the breakpoint. Depressing INC allows you to 
review forward up to the last cycle traced. Depressing STEP 
advances the target program past the breakpoint event, one 
instruction at a time. Depressing TRACE allows you to return tu 
Trace Memory again after selecting another mode (i.e., 
MEM ADDR, 110 ADDR, etc.) and return the original program 
event or bus cycle to the display. The TRACE Key has no effect 
unless the program is already in PAUSE. STEP actually causes 
the emulator to execute another program instruction and this 
instruction .is entered into the Trace Memory like all others. 

The NScaoo machine instructions may have one or several bus 
cycles per instruction. The following two examples illustrate 
displayed Trace Memory contents, first after executing a simple 
instruction and then after a more complex one. 

EXAMPLE 1: LD B, C 

Cycle 

1 

Addr 

4000 

Data 

41 

Fetch 

X 

RD 

X 

WR 

Single bus cycle instruction: Move contents of C register to B register. 
Assume the instruction location is address 400018 in the target memory. 
The Trace Memory records a bus cycle with the address of 400018• data 
of 41 18 and control bits indicating that it is a fetch operation and a read 
cycle. 

·The EM·BOO finishes executing the instruction cycle before it pauses. 

4-10 



EXAMPLE 2: LD (07055H), HL 

Cycle Addr Data 
1 4000 22 
2 4001 55 
3 4002 70 
4 7055 34 
5 7056 12 

Fetch RD 
X X 

X 
X 

WR 

X 
X 

Five bus cycle instruction: Cycle one fetches op-code 22 of the 
LD instruction located at address 400016. Cycles two and three 
read low-order and high-order bytes (5516 and 7016) of the 16-bit 
address located at 400118 and 400216. Cycles four and five write 
the contents of the HL register pair (3416 and 1216). The Trace 
Memory records all five bus cycles of the instruction. The 
address location, program data and op-code cycle are shown on 
the Display Panel for each bus cycle of the instruction. If the 
EM-800 had entered PAUSE and displayed Cycle 1 (the OP-CODE 
fetch), then the INC Key would be used to advance through the 
Trace Memory and observe the subsequent bus cycles. 

Normally, the INC and DEC Keys move tAe trace index one cycle 
at a time. However, if you depress and hold down the TRACE 
Key, the INC and OEC Keys will cause the next or previous fetch 
cycle to be displayed without stopping on other machine cycles. 

4.2 EXAMINATION AND The NSCBOO register contents may be examined, and if desired, 
ALTERATON OF overwritten with new data 
CPU REGISTERS 

Register data is displayed by using the blue REG Keyswitch, 
followed by one of the hexadecimal keyswitches to designate 
which register should be displayed. Table 4-2.1 shows the 
registers selected by the various keyswitches. Note that 4 
through 7 do not correspond to actual NSC800TM registers. These 
keyswitches are used to set up parameters for the Built-In test 
routines or user Code functions. These Code Functions are 
described in later sections. (See Section 7 and Section 8). 

4·11 



Examples of readout and alteration of CPU registers: 

EXAMPLE: 

80 
SG§00 
88 

B register contents displayed on 
address. 

B register is accessed and then 
overwritten with data 3F16. 

Stack Pointer is accessed and 
displayed on 16-bit address 
display 

HL Register Pair is accessed, and 
then the contents are overwritten 
with 3C0016. 

The prime registers are accessed by depressing the hexadecimal 
key a second time. For example, the B-prime register is accessed 
in the following example: 

EXAMPLE: 

The first key depression will access and display the B register, 
but depressing the key a second time switches the display to 
the prime register. If the register has 16 bits, then all four of the 
digits of the display will be illuminated. If the register has eight 
bits, then the value is shown on the two low-order digits of the 
Address Display. 

The Data Display is used for feedback about the register that 
has been selected. If you select the stack pOinter, the Data 
Display will show a '1' since the 1 digit key is used to select that 
register. If you select the B register (as in the example 
preceding) the Data Display will show a 'B'; if you select the 
B-prime register, then a '1B' will be displayed. 

4-12 



Table 4-2.1 
Keyboard Designators 
(After REG Keyswitch 
Is Pressed) 

4.3 EXAMINATION 
AND ALTERATION 
OF MEMORY 
LOCATIONS 

(first key (second 

RE%~~R 
key push) 

KEY REGISTER DESCRIPTION 
0 PC Program Counter 
1 SP Stack Pointer 
2 HL HI.: HL Register Pair and Prime 
3 DE DE' DE Register Pair and Prime 
4 BEG- Begin Address (for programmed tests) 
5 END- End Address (for programmed tests) 
6 ADDR- Address (programmed test parameter) 
7 DATA- Data (programmed test parameter) 
8 IX IX Register 
9 IY IY Register 
A A A' Accumulator and Prime 
B B B' B Register and Prime 
C C C' C Register and Prime 
0 D 0' o Register and Prime 
E E E' E Register and Prime 
F FLAGS FLAGS' Flags and Prime 

• Not an actual NSC800rM register 

Any memory location accessible to the emulated microprocessor 
may be accessed and displayed by the EM-BOO. If desired, new 
data may be written to the location. 
EXAMPLE: 

§r:J8888 
Address 431A16 is entered, and 
when EXAM is pressed, the 
EM-8oo will read from address 
431A16 and display the data 
obtained. 

If you wish to review a group of sequential memory locations, 
enter the initial address and examine that location as illustrated 
above; then examine successive locations by depressing INC 

EXAMPLE: 

~ tr=:il ~ tr;;iI tr;;iI8XAM 

~1bJlb:JlbJIlbJJ Examine data at 430016. 

G 
etc. 

Examine data at 430116. 

Examine data at successive 
loca tions, etc. 

A memory location may be altered by entering an address, as 
shown above, then entering data using LOAD DATA and finally 
storing the data to the selected memory address using STORE. 

4·13 



EXAMPLE: 

The above sequence writes the data 5516 to memory address 
13FE16 in the target system. 

Sequential locations may be quickly altered by incrementing the 
address after each data entry operation. For example, the follow­
ing keystroke sequence enters a short program fragment into 
memory: 

EXAMPLE: 

1[::~1)8888· Enter initial address 080016. 

ij3G08 
888 
80S 

Enter data C316 then store the 
data to 080018 and increment to 
080118. 

Enter data 0016, then store the 
data to 080116 and increment to 
080216. 

Enter data 0816 and store to 
080216; increment to 080316, etc. 

The EM-800 does not require redundant keystrokes. The unit 
assumes that if you have entered new data while a particular 
memory address is accessed, that you want to store that data 
before going to the next address. 

In all of the above examples in which INC was used, DEC (decre­
ment) could also have been used. 

4·14 



4.4 EXAMINATION 
AND ALTERATION 
OF 1/0 PORTS 

Input/Output ports of the NSC800™ may be accessed and 
displayed in a similar manner to that described for memory 
addresses, with two differences. The first is that the I/O ports 
respond to an eight-bit address and consequently only eight·bit 
addresses need be entered. The second difference is that the 
INC and DEC keyswitches do not perform an automatic read of 
the next (or previous) I/O port address. The intent of this 
characteristic is to help avoid unintended reading of an I/O port, 
which sometimes results in a change of state of complex I/O 
devices. For example, a complex interface circuit such as the 
National PIO will change state when the input data register is 
read. The following is a keystroke sequence that may be used to 
examine data at an input port: 

EXAMPLE: 

NOTE: 

Read and display data at Input 
Port 3. 

Data A018 is written to Output 
Port 1B18. (No READ cycle was 
performed at Port 18.) 

To enable or disable interrupt masks, you must execute an 
110 instruction storing data at location BB. The 110 function 
on the EM-800 cannot be used to change the interrupt 
mask because this is an internal function of the NSC800. 

4·15 





SECTION 5 
RAM OVERLAY 

5.1 OVERVIEW 
5.2 INSTALLATION 
5.3 CONTROLS 
5.4 UPLOADING/DOWNLOADING 

5·1 



5.1 OVERVIEW The emulator may be equipped with an optional RAM overlay 
feature. The following options are available: 

• 8K bytes of 200nS static RAM 

• 16K bytes of 150nS static RAM 

• 64 bytes of 150nS static RAM 

The RAM overlay feature is available on a circuit board which 
includes the appropriate addressing and buffering. 

The 8K-byte memory is divided into two independent 4K-byte 
memory banks. Each bank has independent control circuitry and 
may be enabled as read/write memory or read only memory, or 
disabled. Each 4K bank may be independently set to occupy a 
specific address range. 

The 16K-byte memory is also divided into two independent 
8K-byte memory banks. Each bank has independent control cir­
cuitry and may be enabled as read/write memory or read only 
memory, or disabled. Each 8K bank is further divided into two 4K 
blocks that can each be independently set to occupy a specific 
address range. If only a Single 4K block is required, set both 
blocks to the same address range. 

The 64K-byte memory is also divided into sixteen 4K-byte 
memory banks that can overlay the entire memory space. Each 
bank may be enabled as read/write memory or read only 
memory, or disabled by one of the sixteen switches. The address 
for each 4K is hardwired so that it is only necessary to enable 
those banks that are needed. Refer to Figure 5-1.1. 

The RAM overlay memory can be used for patching software in 
, simulated PROMs or adding further memory space to your test 

system. For instance, a program that is normally in ROM can be 
loaded into RAM and debugged with no need to burn PROMs 
until production. This kind of feature is very helpful if you are 
doing a field test with no computer available; the RAM overlay 
memory allows you to do a patch or try option values and test 
until the program is correct. 

. NOTE 

You should be aware that when the RAM 
overlay is enabled, it replaces CPU memory 
space. 

5·2 



Figure 5.1-1 
RAM Overlay Decals 

Three code function commands are used to transfer information 
into RAM overlay memory, depending on where you are transfer­
ring information from: 

• the front panel EPROM 

• downloading the Intel hex format code into RAM overlay or 
target memory 

• transferring a program out of target system memory into RAM 
overlay 

The code functions are listed later in this section (in 5.4). 

Cut here and remove. 

RAM OVERLAY 
r---: RAM BANK A RAM BANK B 

I ADDR ENABLE I ~DR ENABLE I 
RANGE a: RANGE a: 

I 

RD/WR 

OFF 

RD 
ONLY 

u.~~ u.~~ U.wo u.wo 
Oa:a: Oa:a: 

RAM OPTION NOT INSTALLED I 
a). BK and 16K RAM Overlays 

u.u.u.u.u.u.u.u. Q 
u.u.u.u.u.u.u.u. w 
u.u.u.u.u.u.u.u.cn 
O"-NC")~Il)CD""::;) 
gggggggg~ 
QQQQQQQQOz 
Q"-NC")~Il)CD"" 

64K 

RAM 

OPT. 

RD/WR 
u.u.u.u.u.u..u..u.Q 
u. u. u. u. u. u. u. u. W OFF u.u.u.u.u.u.u..u.cn coa\<Ca:lUQwu.::;) 
66666666~ 
8 Q 8888880 co ~ <C a:I U Q w u. z RD 

ONLY 

b). 64K RAM Overlay 

5·3 



5.2 INSTALLATION To install a RAM Overlay option in your emulator (units without 
the two hex stand-offs, as shown in Figure 5-2.1), the procedure 
is as follows: 

1. Unplug the power cord from the back of the emulator. 
2. Unplug the pod cables attached to the back of the emulator, 

noting the proper positioning. 
3. Turn the emulator upside down and place it on a soft surface 

to prevent scratching the top cover. 
4. Remove the four'top cover screws and the four rubber feet 

from the bottom of the emulator. 
5. Remove the bottom cover. 
6. Turn the emulator upright and carefully remove the top cover. 
7. Remove the four display assembly screws, being careful not 

to scratch the display plex panel. Note the location of the 
spacers behind the plex panel. 

S. Remove the display assembly. 
9. Remove the four keyboard assembly screws. 

10. Remove the keyboard assembly. 
11. Unplug the four-contact Molex connector from the power 

supply regulator board, located next to the power switch. 
12. Remove the two screws located on either side of the pod 

cable connector at the rear of the unit. . 
13. Slide the main logic assembly forward and out of the 

emulator frame. Note that is is necessary to install the new 
mounting bracket included in your 64K RAM kit onto the 
Main Logic Board. 

14. Install the two hex standoffs supplied into the position 
shown in Figure 5-2.1. The standoffs will be secured into 
place by using two screws supplied in the installation kit. 
(Install the screws from the bottom side of the asembly.) 

15. Cut the lower half of the back panel decal to expose the 
cutouts as shown in Figure 5-1.1a for the SK and 16K RAM 
Overlays only. For the 64K RAM Overlay, remove the old 
decal and replace it with the new one supplied in your 64K 
RAM Kit. 

16. Plug the RAM Overlay connector into the main logic 
assembly. 

17. Reassemble the emulator by reversing steps 1 through 13. 
1S. Connect the probe tip assembly to a known-good target 

system. 

5·4 



Figure 5.2-1 
Overlay Installation 

5.3 CONTROLS 

SW201 

o 
SW202 

c::::JIC 0 

o C:==::JI J6 

J4 Hex 
~-----------I Stand-Offs 

If a RAM Overlay block is set up to respond to a range of 
addresses, say 00016 to OFFFI6, then target system memory in 
the same address range becomes inaccessible to the emulation 
processor. The memory block has "overlaid" the corresponding 
target system addresses. (See, however, the description of Code 
Function C5 for an exception to this characteristic of the 
emulator.) 

The contents of the RAM Overlay are retained as long as power 
is applied to the emulator. It is possible to load the RAM Overlay 
with data, turn the enable switches off and retrieve the data at a 
later time. To retrieve data, turn the enable switches to either the 
READ or RE WR position. 

Each 4K byte block of memory for 8K and 16K RAM Overlays 
has an associated Address Range switch. The 64K RAM Overlay 
also has an associated control switch for each 4K block of 
memory. See Figure 5.3·1. 

The enable switches are three-position switches that place the 
memory bank into one of three conditions: 

• OFF 
The memory bank is disabled and is effectively removed from 
the system. 

• ReadlOnly 
In this mode, it is not possible for the target system program 
to alter the contents of the memory. Note, however, that the 
emulator is still able to write to the memory bank from the 
keyboard or from a Code function routine such as Code 
Function C3 (download). 

• Read/Write 
The memory bank is placed in a Read/Write configuration. 
Both the target system and the emulator are able to read the 
memory and write new information to it. 

5-5 



Figure 5.3-1 
RAM Overlay Controls RAM 

r--::' RAM BANK A ---, r- RAM BANK B ---, 
I AOOR ENABLE II AOOR ENABLE I 

RANGE er RANGE er 
u.~~ u.~~ 
u.wo u.wo 
oerer oera:: 

01 8K 

RAM OVERLAY 

~RAM BANK A:::l ~RAM BANKB::-;l 
AOOR ENABLE AOOR ENABLE 

RANGE a:: RANGE er 
u.~~ u.~~ 
u.wo u.wo 
o era:: oerer 

•• I I •• I I 
/11 16K 

ROiWR ROIWR 

" MK 

If a memory bank is disabled (toggle switch in the off position), 
the memory will nevertheless continue to retain data. The data 
will reappear in the target address space whenever the memory 
is again enabled. 

The address range switches for the 8K and 16K RAM Overlays 
are 16-position rotary (thumbwheel) switches used to select the 
address range where the 4K memory blocks will reside in the 
target address space. Each of the 4K memory blocks can be 
moved to any of 16 positions. beginning at a 4K boundary. See 
Table 5.3-1. 

5-6 



Table 5.3·1 
Memory Block Address 
A and B 

5.4 UPLOADINGI 
DOWNLOADING 

SWITCH MEMORY BLOCK SWITCH MEMORY BLOCK 
POSITION ADDRESS POSITION ADDRESS 

0 OOOOwOFFF16 8 800018-8FFF18 
1 100016"1 FFF18 9 9OO016·9FFF16 
2 200018·2FFF16 A AOOO16"A FFF16 
3 3000w3FFF16 B BOO018·BFFF16 
4 400018"4FFF16 C C00016·CFFF18 
5 500018"5FFF18 D D00018·DFFF16 
6 600018"SFFF16 E EOOO16·EFFF16 
7 700018·7FFF18 F FOOO16·FFFF16 

Because of the large memory capacity, the card setup for the 
64K RAM is slightly different than the 8K and the 16K RAM. The 
memory control switches consist of sixteen three·position 
switches. 

• The up position enables the RDIWR memory. 

• The down position enables the RD memory only. 

• The center position disables the memory. 

Eighteen switches are present; however two are not used. Each 
switch represents a 4K byte segment of memory. The decal on 
the back of the EM denotes the switch positions and memory 
range. 

Programs can be transferred to the RAM Overlay from the target 
system, the front panel EPROM socket or the RS·232C serial 
port on the auxiliary connector. Programs in the RAM overlay can 
be dumped to the RS·232C port. Both uploading and 
downloading are accomplished by enabling the RAM Overlay for 
read only or read/write, selecting the desired address range via 
the rotary switches, and then executing the appropriate Code 
Functions C1 through CS. A summary of these Code Functions 
is given below. (For more information see Section 7, Built·in 
Diagnostic Functions.) Note that the overlay block involved must 
be enabled; otherwise, these code functions will involve the 
target system memory in place of the RAM Overlay. 

CODE C1-LOAD RAM OVERLAY FROM FRONT PANEL PROM 

This Code Function transfers data from the front panel 
diagnostic EPROM to the Overlay RAM. To use this Code Func· 
tion, first enter the starting and ending address values in the 
BEG and END registers, then start the routine. 

CODE C2-VERIFY RAM OVERLAY AGAINST FRONT PANEL 
PROM 

Code C2 compares the front panel PROM with the address range 
you specify. The address range is loaded into the BEG and END 
register. If a non·verify occurs, the Diagnostic Emulator emits 
three beeps and pauses. The address and the data that failed to 
verify are displayed. By depressing and holding the EXAM 
keyswitch, the correct data will be displayed. 

5·7 



CODE C3-LOAD RAM OVERLAY FROM SERIAL LINK 

Code C3 transfers hex data from the RS·232C input to the RAM 
Overlay. To use this Code Function, connect the RS·232C input 
to the source of information, start the routine and then enable 
the source to download the appropriate data. 

CODE C4- DUMP RAM OVERLAY TO SERIAL LINK 

Code C4 transfers data from selected areas of RAM Overlay to 
the serial RS·232C output. To use the Code Function, first 
specify the address limits in the BEG and END registers, next 
prepare the receiving device to accept data, then start the 
routine. 

CODE C5-LOAD RAM OVERLAY FROM TARGET MEMORY 

Code C5 transfers data from selected areas of target memory 
space to the equivalent areas in Overlay Memory. The BEG and 
END registers are set to the range of addresses from which data 
is to be transferred. 

CODE C6- VERIFY RAM OVERLAY WITH TARGET MEMORY 

Code C6 compares data from selected areas of target program 
memory to the equivalent areas in Overlay Memory. The BEG and 
END registers are set to the desired target memory address 
range. 

If a non·verify occurs, the Diagnostic Emulator emits three beeps 
and pauses. The address and the data that failed to verify are 
displayed. By depressing and holding the EXAM Keyswitch, the 
correct data will be displayed. 

5-8 



SECTION 6 
DISASSEMBLY 

6.1 OVERVIEW 
6.2 FORMAT DEFINITION 

6.3 LINE ASSEMBLER 
6.3.1 How to Use the Line Assembler 
6.3.2 Features Supported 

6.4 MEMORY DISASSEMBLER 
6.4.1 Overview 
6.4.2 How to Use the Disassembler 
6.4.3 Disassembler Output Format 
6.4.4 Errors 

6·1 



6.1 OVERVIEW 

6.1.1 OPERATION 
PREPARATION 
PROCEDURES 

The disassembler firmware gives the EM·800 the ability to output 
the contents of the Trace Memory and emulation processor 
registers to the serial port. In this way, a readable and attractive 
display may be created on a CRT or hardcopy terminal. 

The disassembly firmware is disabled when the EM-8oo is first 
powered up, so you must enable it before use. The following pro· 
cedure will make the EM-8oo ready to operate with an ASCII ter· 
minal and disassembly firmware: 

1. Connect the terminal to the EM-8oo using an appropriate 
cable. The minimum circuits that must be connected are: 

Pin 1-Protective Ground 

Pin 2-Serial Data Out 

Pin 7 - Signal Ground 

Some RS·232 terminals may also require the following 
connection: 

Pin 20-Data Terminal Ready 

Take care that Pins 10, 11, 12, 13, 22, 24 and 25 are not con· 
nected to incompatible circuits. See 9.1, Auxiliary Connector. 

2. Set the Baud Rate Selector switches of the EM-8oo and the 
terminal to compatible settings. 

3. Check the setting of Option Switch 3. If Option Switch 3 is 
open (up), then the EM·800 will not output serial data unless 
the Clear·to·Send signal (Pin 5) is high. If the Clear·to·Send 
signal is not important in your application, set Option Switch 
3 to the CLOSED (down) position and the EM·800 will output 
data on command regardless of the state of Pin 5. 

4. Enable the disassembly firmware by executing the Code 
Function E1, E2 or E3. The EM·800 is now ready to output to 
the terminal device. See Table 6.1·1 for format selection 
information. 

The disassembly firmware may be turned off by executing Code 
Function EO. 

Operate the EM-800 in the normal manner. Any time that the 
EM·Boo transfers from RUN to PAUSE, the disassembly firmware 
will format and dump a part of the contents of the Trace 
Memory to the terminal; normally 24 lines of output are pro­
duced. The last line output represents the last instruction exe· 
cuted and ttle firmware will then output the register display. 

6·2 



Table 61·1 
Disassembly Format 
Selection 

6.2 FORMAT 
DEFINITION 

If the EM·800 is operated in single-step mode, the firmware will 
output the register display after every instruction. 

The disassembly software is designed so that 20 lines of output 
are produced each time the emulator transfers from RUN to 
PAUSE; this amount of data provides approximately a full screen 
on most CRT terminals. If output of the entire contents of the 
Trace Memory is desired, execute Code Function 08. This Code 
Function will execute even if disassembly is not enabled, but the 
disassembly firmware option must be installed on the machine. 
All of the data in the Trace Memory will be formatted and out· 
put. Data output may be suspended for a moment by depressing 
the EXAM Key; when the Key is released, data output will 
continue. 

CODE 

NOTE 

It is possible that the data recorded in Trace Memory 
does not represent actual machine execution of a pro­
gram (for example, a block of data left by a memory 
diagnostic Code Function or a data transfer Code 
Function). In such a case, the disassembler will not 
format and output the data 

FUNCTION REGISTERS DISPLAYED FORMAT 

EO 
E1 
E2 
E3 

Flags, A, BC, DE, HL, SP 
Flags, A, Be, DE, H L 
Flags, A, Be, DE, HL, IX 
IY, SP, Flags, A: BC', DE: HL: 

(Disable Disassembly) 
80-Character Line 
72-Character Line 
Two 72·Character Lines 

Figures 6.2-1, 6.2-2, and 6.2-3 show some lines from a printer con­
nected to an EM-800. The various fields of the disassembly 
presentation are identified in the figure. All numbers that are out­
put by the disassembler are in hexadecimal representation. Addi· 
tional information about the fields of the display follows: 

Address 

The address of the first op-code byte of the instruction. 

Op-Code 

The operation code of the instruction. Double op-code instruc­
tions are displayed with the prefix byte extending to the left of 
the column of op-code bytes. The two-line register display format 
will show the IX register contents underneath this field. 

Operand 

The operand bytes of the instruction (if any). 

6·3 



Op·Code Mnemonic 

The operation code of the instruction given in mnemonic form. 
The two·line register display format will show the IY register con­
tents underneath this field. 

Operand 

The operand field of the instruction is symbolic format, except 
that addresses and constants are given as hexadecimal numbers. 

Data Transfer 

Any data transfer operations that occur as a consequence of the 
instruction are shown here. The most common formats are: 

AAAA>OO 

AAAA<OO 

The first format means that the processor wrote data '~O' to 
address 'AAAA: The second format means that the processor 
read data '~O' from address 'AAAA: The other formats are 
associated with 110 instructions and take the form: 

- pp>OO 

-PP<OO 

The first format means that the processor wrote data '~O' to out­
put port 'PP.' The two-line register display format will show the 
stack painter contents underneath this field. 

Some instructions transfer more than one byte of data. The 
second byte of a data transfer will be shown in this field. If 
there are more than two bytes transferred, the additional bytes 
are shown in fields 6 and 7 on the following line. See, for exam­
ple, the EX (SP), HL instruction, which reads two bytes from the 
top of stack and then writes two other bytes to the top of stack. 
All of these transfers are easily seen from the display. 

Breakpoint 

If a breakpoint occurred during the execution of the instruction 
on this line, it will be identified in this column by an asterisk (*). 

6-4 



Flag Register 

The CPU flag register (condition code register) is shown in this 
field. Each of the five characters in this field represents one of 
the condition code bits as follows: 

First 
Second 
Third 
Fourth 
Fifth 
Sixth 

- '5' if sign bit is true. 
- 'Z' if zero bit is true. 
- 'H' if half carry bit is true. 
- 'P' if parity/overflow bit is true. 
- 'N' if subtract flag bit is true. 
- 'C' if carry bit is true. 

If any of the condition code bits is not true the letter is replaced 
by a period. The two-line register display format will show the 
alternate (prime) flag register underneath this field. 

Accumulator 

The content of the accumulator after the execution of the in­
struction. The two-line register display format will show the alter­
nate (prime) accumulator underneath this field. 

Be Register Pair 

The content of the BC register pair following the execution of 
the instruction. The two-line register display format will show the 
alternate (prime) BC register pair underneath this field. 

DE Register Pair 

The content of the DE register pair following the execution of 
the instruction. The two-line register display format will show the 
alternate (prime) DE register pair underneath this field. 

HLRegister Pair 

The content of the HL register pair following the execution of 
the instruction. The two-line register display format will show the 
alternate HL register pair underneath this field. 

Stack Pointer 

The content of the stack pOinter following the execution of the 
instruction. This field is not displayed in the 72-character line 
formats. 

6-5 



Figure 6.2·1 

0000 
0028 
002E 
0033 
0036 
0044 
0047 
0048 
0049 
004A 
004C 
004F 
0051 
010[1 
0018 
OEI0 

OEll 
OE12 
OE13 
OE14 
OE15 
OE17 
OEIA 
OEIB 
OEIE 
OE20 
OE23 
OE24 
OE27 
3074 
3076 
700S 

Code E1 aO-Character 
Single-Line 
Disassembly Format 

C3 2BOO 
31 E030 
18 03 
2A 8130 
18 OC 
11 [1[162 
19 
7C 
85 
20 08 
3A 8034 
E6 40 
C2 ODOl 
DF 
C3 100E 
E3 

D5 
F5 
33 
EB 
3E CB 
32 7430 
lA 
32 7530 
3E C9 
32 7630 
13 
21 9F30 
CD 7430 

CBFE 
C9 
FF 

JP 0028 
LD SP,30EO 
JR 0033 
LD HL,(30Bl) 
JR 0044 
LD DE, 62[1[1 
ADD HL,DE 
LD A,H 
OR L 
JR NZ,0054 
LD Ad3480) 
ANti 40 
JF' NZ,010D 
RST 18 
JF' OE10 
EX (SP),HL 

PUSH DE 
PUSH AF 
INC SP 
EX 
LD 
LD 
Ltl 
LD 
LD 
LD 
[NC 
LD 
CALL 
SET 
RET 
RST 

DE,HL 
A,CB 
(3074),A 
A,(DE) 
(3075),A 
A,C9 
(3076),A 
DE 
HL,309F 
3074 
7, (HL> 

38 

------ ---

30B1<23 30B2{9D 

3480<FF 

30[IF>01 30[IE>OE 

30DE<67 30DF<01 
30DF>00 30DE>00 
30DD)62 30[IC>DD 
30[18>40 30DA> 1 0 

3074>.CB 
0167<3E 
307S>3E 

3076>C9 

30DA)OE 30D9>2A 
309F<CO 309F)CO 
30D9(OS 30DA<:70 
7006(FF 30DA)70* •• H ••• C9 003D 0168 309F 30D8 

6·6 



Figure 6.2·2 
Code E2 72·Character 
Single·Line 
Disassembly Format 

I 
0000 
0028 
002E 
0033 
0036 
0044 
0047 
0048 
0049 
004A 
004C 
004F 
0051 
010D 
0018 
OE10 

OEll 
OE12 
OE13 
OE14 
OE15 
OE17 
OE1A 
OElB 
OEIE 
OE20 
OE23 
OE24 
OE27 
3074 
3076 
700S 

C3 2800 
31 E030 
18 03 
2A 8130 
18 OC 
11 DD62 
19 
7C 
85 
20 08 
3A 8034 
E6 40 
C2 OD01 
DF 
C3 100E 
E3 

DS 
FS 
33 
E8 
3E C8 
32 7430 
lA 
32 7530 
3E C9 
32 7630 
13 
21 9F30 
CD 7430 

CBFE 
C9 
FF 

JP 002B 
LD SP,30EO 
JR 0033 
LD HL'(3081) 
JR 0044 
LD DE,62DD 
ADD HL,ItE 
LIt A,H 
OR L 
JR NZ,00S4 
LD A,(3480) 
AND 40 
JP NZ,010[1 
RST 18 
JP OEI0 
EX (SF'),HL 

PUSH DE 
PUSH AF 
INC SP 
EX 
LD 
LD 
LD 
LD 
LD 
LD 
INC 
LD 
CALL 
SET 
RET 
~ST 

liE, HL 
A,CB 
(3074),A 
A, ( [IE) 
(307S),A 
A,C9 
(3076),A 
DE 
HLt309F 
3074 
7, (HL> 

38 

------ ---

3081 (23 3082(911 

3480<FF 

30[IF>01 30DE>OE 

30DE<67 30DF(01 
30[IF)00 30DE>00 
30DD>62 30DC>DII 
30DB)40 30DA)10 

3074>CB 
0167(3E 
3075>3E 

3076>C9 

30DA)OE 30I19)2A 
309F(EO 309F)EO 
30D9<05 30DA<:70 
7006(FF 30DA>70* •• H ••• C9 003D 0168 309F 

6·7 



Figure 6.2-3 
Code E3 72-Character 
Single·Line 
Disassembly Format 

I 
I 

6F 
7C 
CE 00 
27 
67 
3A 7534 
E6 08 
C9 
C2 8807 
CD D007 
3[1 
78 
A7 
CA F007 
3A 7E30 
83 
5F 
3A 7F30 
8A 
57 
7D 
CE 00 

LD 
Lt. 
AIIC 
DAA 
LII 
LD 
AND 
RET 
JP 
CALL 
DEC": 
LD 
ANII 
Jf' 
LII 
ADD 
Ltl 
LII 
ADC 
LD 
LII 
ADC 

27 DAA 

1 
J 

L,A 
A,H 
A,OO 

H,A 
A,(3475) 
08 

NZ,07B8 
07[10 
A 
A,B 
A 

Z,07FO 
A,(307E) 
A,E 
E,A 
A,(307F) 
A,D 
II fA 
A,L 
A,OO 

07E4 
07E5 
07E6 
07Ea 
07E9 
07EA 
07EIt 
07EF 
07BB 
07B8 
07ItO 
07It1 
07[12 
07D3 
07[16 
07It9 
07[1A 
07ItB 
07ItE 
07I.F 
07EO 
07E1 
07E3 
07E4 6F LD L,A 

I X: 3000 IV: 0000 

3475<4E 

305A<BB 305B<07 

305B>07 305A>BB 

307E<57 

307F<4E 

Sf':305A 

6-8 

•••••• ...... 16 1BOO 7D11 2416 
00 0000 0000 0000 



6.3 LINE 
ASSEMBLER 

6.3.1 How to Use 
the Line 
Assembler 

The NSCaOO line Assembler allows you to enter and assemble 
NSCaOO/Ziiog zao instructions into either the target system's 
memory or the EM·aOO's overlay memory. The line assembler 
recognizes all standard zao mnemonics as well as certain 
"assembler directives" detailed in Section 6.3.2. The line 
assembler gives you a powerful software tool to aid in 
hardware/software debugging and software patching. It is a 
tool for creating small hardware/software checkout routines, 
patching existing software, developing software, debugging 
software, etc. It is not designed as an all·purpose editor/ 
assembler software development package. 

NOTE: 

The assembler uses EM·aOO scratch RAM 
addresses 3100H··32BFH. 

The line assembler assumes that a terminal is attached to the 
EM as described in Section 6.1. 

NOTE: 

Many terminals generate only a RETURN 
when the RETURN key is pressed. Some 
terminals generate a RETURN/LINEFEED. 
Often this function is programable through 
a switch. If your terminal does not 
generate a LlNEFEED, then the In·line 
Assembler will overwrite the mnemonic you 
typed in with the assembled output. If your 
terminal does generate a LlNEFEED, then 
the mnemonic you typed remains and the 
assembled output is displayed on the next 
line. 

In the examples shown here, all entries 
and assembled responses are shown as if 
there is a RETURN/LINEFEED. 

To invoke the line assembler, enter on the emulator keyboard: 

<code> <C> <0> 

The following response will appear on the terminal screen: 

APPLIED MICROSYSTEMS CORPORATION 
NSC800 SINGLE LINE ASSEMBLER 
VERSION X.X 
(C) COPYRIGHT 1983 

0000> 

At this point, lines may now be entered and assembled into 
target memory. When you want to stop using the line 
assembler, type the pseudo·operation "END" after the address 
prompt as in this example: 

6·9 



6.3.2 Features 
Supported 

Table 6.3-1 
Assembler Directives 

F004> LD A,D 
F0047A 
FOOS> END 
* * * End of Line Assembly * * * 

The line assembler may be used to invoke the memory 
disassembler by entering a RETURN as the only entry on a 
line. This causes the memory disassembler to display the in· 
struction located at the current value of the location counter 
and increment the location counter. 

Example: 

FOOO> <return> . 
FOOO 20F2 JR NZ, EFF4 
F002> < return > 
F002 F620 OR 20 
F004> END < return > 
* * * End of Line Assembly * * * 

All standard mnemonics are supported. 
The following assembler directives are supported by the 
NSC800 Line Assembler: 

ORG 
= 
END 
DEFT 
DEFB 
DEFW 
LBL 
$ 
PRE 

ORG 

Assembler Directives 

Sets the address pOinter 
Sets the value of a LBL 
Terminates the line assembler 
Defines an ASCII text string 
Defines a byte of memory 
Defines a word of memory 
A temporary line assembler value 
Represents the value of the address pOinter 
Turns preview on or off 

Initially the address pOinter is OOOOH. Use ORG 
to change the,address pOinter. 

·To change the address pOinter to 0064H, enter 
ORG 100 

= Use the equal sign with LBL to set or recall a 
local label value. 

·To set label 1 to 100H, enter LBl1 = 100H 
<return> 

·To see the value of label 3, enter LBL3 = 
<return> 

END Terminates the line assembler and returns con· 
trol to the emulator keyboard. 

6·10 



DEFT To enter a target string into memory, type: 

DEFT text text text < return > 

DEFB To enter a single byte directly into memory, type: 

DEFB AFH < return> 

DEFW To enter a two·byte word, type: 

DEFW AFAFH < return > 

$ The current value of the address pOinter. 

PRE Toggles between the two forms of the line 
assembler prompt: 

·The simple address pOinter> 

·A preview of the code at the address pOinter. 

LBL The Single Line Assembler provides up to ten 
local labels in the form of LBLO through LBL9. 

NOTE: 

No labels are initialized upon entering the 
Line Assembler. You must define a label 
before using it. The allowable label opera· 
tions are defined below. 

LBLn = Prints the current label 
value . 

LBLn = number Assigns the value 
"number" to the label 

LBLn = $ Assigns the value of the 
current location counter 
to the label 

Any mnemonic and all assembler directives 
except "ORG" and "END" may be precede 
ed by a labe/. 

Line Editor 

Because the line assembler operates on a single line of text 
at anyone time, there are only simple line editing functions. 
These are: . 

Ctrl·H or Backspace 

Ctrl·1 or Tab 

6-11 

Deletes the character before the 
cursor 

Enters spaces to the next tab 
stop in the line (tab stops are 
10,20) 



6.4 MEMORY 
DISASSEMBLER 

6.4.1 Overview 

6.4.2 How to 
Use the 
Disassembler 

Numeric Bases 

Numbers may be entered in either decimal, hexadecimal, 
binary or octal forms. All numbers output by the Line 
Assembler are in hex format. The following table illustrates 
the input formats: 

Form Format 

Decimal 100 

Hexadecimal 100H 

Binary 10110B 

Octal 73420 or 
73420 

The NSC800 Memory Disassembler allows you to disassemble 
target memory (either overlay or user memory) and display the 
disassembled code on a terminal. The range' of display is 
specified by loading the beginning and end registers prior to 
entering the disassembler (see below). 

To ir:lVoke the memory disassembler, first load the begin and 
end registers with the desired address range, i.e. 

<reg> <4> <load data> ... enter starting address 
<reg> <5> <load data> ... enter ending address 

Next, start the disassembly by entering on the emulator 
keyboard: 

<code> <C> <A> 

You can control the display by entering 

Ctrt-S (stop) 

or 

Ctrt-O (resume) 

6·12 



6.4.3 Disassembler 
Output 
Format 

6.4.4 Errors 

The format of disassembled target memory is illustrated here: 

FOOO 
F003 
F004 
F005 

C206FO 
E3 
C5 
C9 

JP NZ, F006 
EX (SP), HL 
PUSH BC 
RET 

Upon detection of an error, the line assembler displays an er­
ror message and then prints a prompt. The location counter is 
not updated. The two possible types of error messages are: 

Syntax error Indicates a syntax error in the input line 

Target write error Indicates failure of store operation to 
target system (or overlay) 

If you have a syntax error, retype your input line. If you have a 
target write error, there are several possible conditions: 

• The RAM overlay switches are not on. 

• You may be trying to store code in an incorrect area, such 
as an address range where no memory is available. 

• There is a possible problem in the target system, such as 
defective RAM or an addressing error (trying to write to 
ROM). 

6-13 





SECTION 7 
BUILT-IN DIAGNOSTICS 
(CODE FUNCTIONS) 

7.1 GROUP A: MEMORY TESTS 
7.2 GROUP B: OSCILLOSCOPE LOOPS 
7.3 GROUP C: MEMORY LOAD AND DUMP 
7.4 GROUP D: MISCELLANEOUS 
7.5 GROUP E: CHANGE DEFAULT PARAMETERS 
7.6 GROUP F: INTROSPECTION MODE 

7·1 



Table 7.1-1 
Code Functions 

The Diagnostic Emulator contains built-in test functions and 
utility routines designed to be convenient and useful for testing 
systems and verifying their proper operation. These test and 
utility routines have been named Code Functions because they 
are accessed by depressing the CODE keyswitch, followed by 
hexadecimal digits designating the routine desired. Table 7-1 lists 
all of the Code Functions programmed into the Diagnostic 
Emulator. 

GROUP A: MEMORY TESTS 

A1 RAM TEST (OO/FF) 
A2 RAM TEST (Rotating 1s) Repeating Tests 
A3 RAM TEST (Addresses) 
A4 ALL RAM TESTS 

A5 ALL RAM TESTS 
A6 RAM TEST (OO/FF) 
A7 RAM TEST (Rotating 1s) One Pass and Stop 
A8 RAM TEST (Addresses) 

GROUP B: OSCILLOSCOPE LOOPS 

B1 Repetitive Memory Read 
B2 Repetitive Memory Write 
B3 Repetitive I/O Read 
B4 Repetitive I/O Write 
B5 Continuous Address Increment, 64K Range 
B6 Repetitive Memory Write (Data/Panel PROM) 
B7 Repetitive 110 Write (DatalData) 

BC Repetitive Store/Examine Memory 
BD Repetitive Store/Examine 110 Port 
BE Store Rotating 1-Bit to Memory 
BF Store Rotating 1-Bit to 110 Port 

GROUP C: MEMORY LOAD AND DUMP 

CO Line Assembly Mode (See Section 6.3) 
C1 Load Target from Front Panel PROM 
C2 Verify Target with Front Panel PROM 
C3 Load Target from Serial Link (DOWNLOAD) 
C4 Dump Target to Serial Link (UPLOAD) 
C5 Load RAM Overlay from Target 
C6 Verify RAM Overlay from Target 
C7 Verify Target against Serial Link 
C8 Fill Target with Specified Data 
C9 Verify Target with Specified Data 
CA Disassemble Memory (See Section 6.4) 
CB Block Move Target System Data 
CC Dump Target to Serial Link in User Viewable Format 
CE Repeat Segment of Data over an Entire Block 

7·2 



GROUP D: MISCELLANEOUS 

DO Clear Interrupt Enable Flip-Flop 
01 Set Interrupt Enable Flip-Flop 
02 Display Clock Frequency 
03 Display PROM I ROM Signature 
04 Output 50 Nulls from Serial Link 
05 Call User Routine in Internal RAM at 3000,6 
06 Call User Routine in Internal RAM at 3003,6 
07 Clear Trace Memory 
08 Dump Entire Content of Trace Memory 
09 Halt CPU (for changing Front Panel PROM) 
DA Display Revision Number for Control PROM 
DB Display Revision Number for Disassembly PROM 
DC Calculate Branch Offset and Display 
DO Do Self;rest of Control PROM and Disassembly PROM 
DE Output (CR) (LF)(NUL) from Serial Link 
OF Count Hours, Minutes and Seconds on Display 

GROUP E: CHANGE DEFAULT PARAMETERS 

EO Disable Disassembly (Default at Power-On) 
E1 Enable Disassembly, 80 Character Line, One Line of 

Registers 
E2 Enable Disassembly, 72 Character Line, One Line of 

Registers 
E3 Enable Disassembly, 72 Character Line, Two Lines of 

Registers (IX, IY, SP and Prime registers on Line 2) 
EF Call Remote Control Software 

GROUP F: INTROSPECTION MODE 

F Set Basic "Introspection" Mode 
FO-F9 Set Introspection Mode and Initialize Emulator for 

Debug of User Code Function 

CODE A2-ROTATE 1's 

Code Function A2 memory test routine performs a test on all 
data bits in the range specified. The range tested is from the ad­
dress contained in the BEG register through the address con­
tained in the END register. The routine starts with the first loca­
tion in the range and tests the location by writing and checking 
a bit, one bit at a time, in all of the positions of the word under 
test. The routine writes and checks by writing and reading the 
following data patterns: 

Binary Pattern Hexadecimal 

0 0 0 0 0 0 0 1 01,6 
0 0 0 0 0 0 1 0 02,6 
0 0 0 0 0 1 0 0 04,6 
0 0 0 a 1 a a 0 08,6 
a 0 0 1 0 0 0 0 10,6 
0 0 1 0 0 a 0 0 20,6 
0 1 a 0 0 0 0 0 40,6 
1 0 a 0 0 0 0 0 80,6 

7·3 



7.1 GROUP A: 
MEMORY TESTS 

CODE A1-00/FF DATA TEST 

The Code Function A1 memory test routine quickly determines 
whether all location within a specified range can be set to 0016 
and FF16. The range tested is from the address specified by the 
BEG (begin) register through the address specified by the END 
register. The routine operated by setting the first location of the 
range to 0016 and reading the location to see if a 0016 is returned. 
Then the routine stores an FF16 to this location and reads the 
location to see if an FFlsis returned. Finally, the routine incre­
ments the address and tests the next location in the range. Dur­
ing the execution of this test, the address and data activity are 
visible on the displays and stored in the Trace Memory. 

If a memory error is encountered, the routine emits three beeps 
and displays the address of the failure and the erroneous data 
read. At this time, you have three options: 

1. Depress EXAM to display the data the routine expected to 
read from the memory. Release the keyswitch to again 
display the bad data. 

2. Depress INC to continue testing at the next address in the 
range. If additional problems are found, the program will stop 
again and any of the options listed may be taken. 

3. Exit the test routine by using any of the mode keys (MEM, 
110, REG, RUN, etc.) or RESET. 

After testing all locations in the specified range, the EM-BOO 
emits one short beep and repeats the test. The RESET keyswitch 
is used to terminate the test at any time. 

After a location has been successfully tested, all bit positions in 
the location may be set and cleared independently of each other. 
The program then increments to the next sequential address in 
the range and proceeds to test in the same manner. If an error is 
detected, the test stops, the EM-BOO emits the three beeps that 
signify an error, and the Display Panel shows the defective 
memory address and the bad data. At this point you have three 
options: 

7-4 



1. Depress EXAM to display the good data the diagnostic 
routine expected to read. Release EXAM to return the 
bad data to the display. 

2. Depress INC to continue testing. If additional problems 
are found, the test stops and any of the options listed 
may be taken again. 

3. To terminate the test, depress RESET, RUN, or any of 
the mode select keyswitches. 

After testing all locations in the specified range, the EM-800 
emits one short beep and repeats the test. The RESET keyswitch 
is used to terminate the test at any time. 

CODE A3-ADDRESS TEST 

Code Function A3 memory test determines whether an address 
decoding failure exists in the memory system under test. It tests 
the memory range from the address contained in the BEG 
register to the address contained in the END register. The 
routine prepares for operation by clearing all locations in the 
range to 00,6. Next, the first location is set to FF'6 and then a 
check is made of all address-related locations in the range to 
determine if any of them have been altered by the writing of the 
FF,6. After all locations in the range that are address-related to 
the first location have been checked, the program resets the first 
location to 00,6. then the next sequential location in the range is 
set to FF'6, and the address-related locations checked. The test 
proceeds until all locations in the specified range have been set 
to FF'6, and the respective address-related locations checked. 

For the purposes of this test, an address is said to be related to 
a second addresss if it differs from it by only one bit (in any bit 
position). The test checks all possible address-related combina­
tions as long as a generated address does not fall outside the 
specified range. 

If an addressing error is found the test stops, the EM-800 emits 
three beeps, and the display shows the erroneous data and its 
address. At this pOint you have three options: 

1. Depress EXAM to display the data the diagnostic routine 
expected to read. Release EXAM to return the erroneous data 
back to display. 

7·5 



2. Depress INC to continue testing. If additional problems are 
found, the test will stop and any of the options listed may be 
taken again. 

3. To terminate the test depress RESET, or RUN or any of the 
mode selection keyswitches. 

After all locations in the specified range have been tested, the 
EM-BOO emits one short beep and repeats the test. To exit this 
code function at any time, depress RESET. 

CODE A4-ALL TESTS AND REPEAT 

Code Function A4 executes the A1, A2, and A3 diagnostic func­
tions in sequence, then emits a short beep and repeats. The test 
may be terminated by depressing RESET. If an error is found, 
you may respond in any of the ways described for the individual 
diagnostic functions. 

CODE AS-ALL TESTS AND STOP 

Code Function A5 executes the A1, A2, and A3 diagnostic func­
tions in sequence, emits a short beep and stops. If an error is 
found, you may respond in any of the ways described for the 
individual diagnostic functions. When the test is complete, the 
displays will read CODE A5 and the Trace Memory will contain a 
record of the last 252 bus transfers. 

CODE A6-00 FF DATA TEST 

Code Function A6 is identical to the Code Function A1 except 
the function stops after a single pass through the test. When 
the test is complete, the displays will read CODE A6 and the 
Trace Memory will contain a record of the last 252 bus transfers. 

CODE A7-ROTATE 1's 

Code Function A7 is identical to the Code Function A2 except 
that the function stops after a single pass through the test. 
When the test is complete, the displays will read CODE A7 and 
the Trace Memory will contain a record of the last 252 bus 
transfers. 

CODE AS-ADDRESS TEST 

Code Function A8 is identical to the Code Function A3 except 
the function stops after a single pass through the test. When 
the test is complete, the displays will read CODE A8 and the 
Trace Memory will contain a record of the last 252 bus transfers. 

7·6 



7.2 GROUP B: 
OSCILLOSCOPE 
LOOPS 

The Oscilloscope Loop Functions are a group of functions that 
provide several types of repetitive stimuli to a target system. 
They provide repetitive waveforms in the target system hardware 
that may easily be examined at various circuit pOints with an 
oscilloscope or other test equipment. Many of the functions are 
also useful as stimulus routines for Signature Analysis testing. 

NOTE: 

ADDR register referred to below is 
"Hex Keyswitch - #6." 

CODE 81- REPETITIVE MEMORY READ 

This function repetitively reads the single memory location 
addressed by the ADDR register. These address. data and RD 
signals are all shown on the Display. A high-going pulse is out­
put from the BKPT A pin (pin 12) of the Auxiliary Connector each 
time the memory location is read. Depress RESET to exit this 
function. 

CODE 82- REPETITIVE MEMORY WRITE 

This function repetitively writes the data contained in the DATA 
register to the single memory location addressed by the AD DR 
register. The address, data and RD signals are all shown on the 
Display. A high-going impulse is output from the BKPT A pin (pin 
12) of the Auxiliary Connector each time the memory location is 
read. Depress RESET to exit this function. 

CODE 83- REPETITIVE 110 READ 

This function repetitively reads the single 110 port location 
addressed by the ADDR register. The address, data and RD 
signals are all shown on the Display. A high-going impulse is 
output from the BKPT A pin (pin 12) of the Auxiliary Connector 
each time the 1/0 port is read. Depress RESET to exit this 
function. 

CODE B4- REPETITIVE 110 WRITE 

This function repetitively writes the data contained in the DATA 
register to the 110 port location addressed by the ADDR register. 
The address, data and WR signals are all shown on the Display. 
A high-going impulse is output from the BKPT A pin (pin 12) of 
the Auxiliary Connector each time the 110 port is read. Depress 
RESET to exit this function. 

CODE BS-CONTINUOUS ADDRESS INCREMENT 

This function places the EM-800 in a special mode in which it 
outputs successive addresses from 0000,6 to FFFF'6 at a very 
high rate. Internal to the EM-800 this is accomplished by forcing 
a NOP instruction to the processor on every fetch cycle. Exter­
nally the EM-800 appears to be doing a fetch cycle at each 
address at the full speed of the processor (as determined by the 
clock frequency). 

In this mode, the processor does not respond to target system 
WAIT commands. 

7-7 



The Continuous Address Increment function is used to check 
out address decoding networks in hardware systems and as a 
stimulus for signature analysis trouble-shooting. 

It is possible to obtain a sync pulse for triggering an 
oscilloscope or a signature analyzer from either the Breakpoint A 
or Breakpoint B output at the back Panel Auxiliary Connector; 
the output pulse occurs each time the processor reads from the 
breakpoint address. (The processor does not stop.) 

Depress RESET to terminate the Continuous Address Increment 
moda ' 

CODE B6-REPETITIVE MEMORY WRITE (DATA/DATA) 

This function repetitively writes data to the address designated 
by the ADDR register. The data written is that contained in the 
DATA register except it is complemented every other time data is 
written. The address, data and RD signals are all displayed. A 
high-going impulse is output from the BKPT A pin (pin 12) of the 
Auxiliary Connector each time the address is accessed. Depress 
RESET to exit this function. 

CODE B7 - REPETITIVE 110 WRITE (DATA/DATA) 

This function repetitively writes data to the 110 port designated 
by the ADDR register. The data written is that contained in the 
DATA register except it is complemented every other time data is 
written. The address, data and WR Signals are all displayed. A 
high-going impulse is output from the BKPT A pin (pin 12) of the 
Auxiliary Connector each time the address is accessed. Depress 
RESET to exit this function. 

CODE BC-REPETITIVE MEMORY WRITE/READ 

This Code Function writes the data contained in the DATA 
register to the address designated by the AD DR register, then 
reads the same address; this process is repeated at a high rate. 
A high-going impulse is output from the BKPT A pin (pin 12) of 
the Auxiliary Connector each time the memory address is 
accessed for either the write cycle or the read cycle. Depress 
RESET to exit this function. 

CODE BD-REPETITIVE 110 WRITE/READ 

This function writes the data contained in the DATA register to 
the I/O port specified in the ADDR register, then reads the same 
port address; this process is repeated at a high rate. A high­
gOing impulse is output from the BKPT A pin (pin 12) of the Aux­
iliary Connector each time the 110 port is accessed for either the 
write cycle or the read cycla Depress RESET to exit this 
function. 

7-8 



7_3 GROUP C: 
MEMORY LOAD 
AND DUMP 

CODE BE- WRITING ROTATING BITS TO MEMORY 

This function repetitively writes a rotating bit pattern to the 
memory location selected by the ADDR register. The data con· 
tained in the DATA register is written to the memory location. 
Then each bit in the DATA register is shifted left one bit positon 
each time the memory location is written to. When the bit shifts 
out of the high·order position, it is re-entered in the low-order 
position. A high-going impulse is output from the BKPT A pin 
(pin 12) of the Auxiliary Connector each time the 1/0 port is read. 
Depress RESET to exit this function. 

CODE BF - WRITING ROTATING BITS TO 1/0 PORT 

This function repetitively writes a rotating bit pattern to the 1/0 
port selected by the ADDR register. The data contained in the 
DATA register is written to the 1/0 port. Then each bit in the 
DATA register is shifted left one bit positon each time the 
memory location is written to. When the bit shifts out of the 
high-order pOSition, it is re-entered in the low-order pOSition. A 
high-going impulse is output from the BKPT A pin (pin 12) of the 
Auxiliary Connector each time the 1/0 port is read. Depress 
RESET to exit this function. 

CODE C1- LOAD TARGET FROM FRONT PANEL PROM 

The Code Function C1 transfers data from the Front Panel 
Diagnostic PROM to the target system. This routine requires you 
to specify the destination address range in the target system by 
entering the first address of the range in register BEG and the 
last address of the range in register END. To use this Code 
Function, first enter the appropriate address values in the BEG 
and END Panel PROM into the target address space with the 
first location in the PROM transferred to the first address of the 
specified range. After the transfer is complete, the Trace Memory 
contains a record of the last 252 cycles of the transfer. 

CODE C2-VERIFY TARGET WITH FRONT PANEL PROM 

The Code Function C2 compares the Front Panel PROM with the 
address range you specify. The address range should be 
specified using the BEG and END registers in the same manner 
as described for C1. 

7·9 



CODE C3- LOAD TARGET FROM SERIAL LINK (DOWNLOAD) 

The Code Function C3 transfers hex data from the serial 
RS·232C input to the target system. The data to be entered must 
first be converted into the Intel MDS" format, which is an ASCII· 
hexadecimal format. 

The destination address range is specified by the incoming data 
and need not be specified in the BEG and END registers. Fur· 
thermore, if the data is properly received, the BEG and END 
registers contain the low and high limits of the loaded data, 
regardless of the initial register settings. In addition, the limits 
will always be correct even if non·contiguous data is loaded. 

To use the Code Function, connect the RS·232C input to the 
source of information, start this routine and then enable the 
source to "download" the appropriate data During the transfer, 
note the displays showing the data being loaded. If there are no 
errors, the end·of·file record completes the transfer and the 
displays contain CODE C3. The Trace Memory contains a record 
of the last 252 cycles of the transfer. 

Error Codes-During the data transfer process, various types of 
errors can occur. If an error occurs, the Diagnostic Emulator 
emits three beeps and displays the appropriate error code. The 
Trace Memory will contain a record of the address and erroneous 
data. Once an error is detected the transfer process is aborted 
and may not be resumed. The C3 Code Function Error Codes are 
listed in Table 7.3·1. 

• MDS is an Intel Trademark. 

7·10 



Table 7.3-1 
C3 and C7 Code 
Function Error Codes 

CODE 

01 

DESCRIPTION 

Framing Error. The serial data character is not properly 
framed by start and stop bits. This error may be 
caused by an incorrect setting of the baud rate selec­
tor or by noise on the transmission link. 

02 Overrun Error. This error may occur if the processor is 
operated with an extremely low clock frequency while 
receiving data at high baud rates. 

11 Non-Hexadecimal Character Received. This error indi­
cates that a hex character was expected at some 
point, but a non-hex character was received. 

12 Sum-Check Error. In the Intel MDS format, each record 
contains an eight-bit check-sum to ensure data inte­
grity. If this sum is incorrect, 'this error code is given. 

16 Non·Zero Record Type. If the record type byte is other 
than zero (except for the end-of-file record), this error is 
signaled. ' 

21 Target Memory Write Error. If an attempt is made to 
load data to an area of memory containing no RAM or 
faulty RAM, this error occurs. This error is detected by 
doing a read·back-check of each location as it is 
stored, and recording both the write cycle and the read 
cycle in Trace Memory. After the error occurs, register 
ADDR will contain the data the EM-800 attempted to 
store. 

CODE C4- DUMP TARGET TO SERIAL LINK 

This Code Function C4 transfers data from a selected area of 
Target Memory to the serial RS-232C output. The data being out-

. put is ASCII-Hexadecimal and is compatible with the Intel MDS 
format. The use of this function requires you to specify the 
address range. The BEG register contains the starting address 
while the END register contains the address of the last location 
to be output. 

To use this Code Function, first specify the address limits, next 
prepare the receiving device to accept data, then start the 
transfer by executing CODE C4. During the transfer the display 
shows the address and data currently being transmitted. When 
transmission is completed, the displays show CODE C4 and the 
Trace Memory contains a record of the last 252 cycles. 

The rate of transfer can be controlled by the receiving device. If 
enabled by the Option-switch (with position 3 open), the CTS line 
(Clear-to-Send) can prevent output if held in the marking 
(negative) condition. In the spacing (positive) condition, output 
speed is determined by the baud rate selected. 

Each record is followed by a RETURN, line feed and two null 
characters. 

7·11 



CODE C5-LOAD OVERLAY RAM FROM TARGET MEMORY 

The Code Function C5 transfers data from a selected area of 
target memory space to the equivalent area in Overlay Memory. 
To use this Code Function, the Overlay Memory must first be 
located at the proper address by rotating the thumb-wheel 
switch. The Overlay is then enabled by setting the selector 
switch to the appropriate position. Then the BEG and END 
registers are set to the range of addresses over which data is to 
be transferred. The last step is to call the Code Function to exe­
cute the transfer. While executing, the displays show the 
addresses and data. When data transfer is completed, the 
displays show CODE C5 and the Trace Memory contains a record 
of the last 252 cycles of the data transfer. 

If a non-verify occurs during the transfer, the Diagnostic 
Emulator emits three beeps and temporarily halts the transfer. 
The error. may be skipped and the transfer resumed by depress­
ing INC, or the operation may be aborted by depressing a mode 
select keyswitch, such as CODE. While the operation is halted, 
the address and the data that failed to verify are shown on the 
display. By depressing and holding the EXAM keyswitch, the cor­
rect target data may be displayed. 

CODE C6-VERIFY RAM OVERLAY WITH TARGET MEMORY 

The Code Function C6 compares data from a selected area of 
Target Memory to the equivalent area in Overlay Memory. 

For information on the operation of this function, see Code CS. 

CODE C7 - VERIFY TARGET WITH SERIAL LINK 

The Code Function C7 is nearly identical to the C3 Code Func­
tion. It differs in two respects: 

1. Data is not stored to target memory but only verified. 

2. A non-verify results in Error 22 and the compare operation is 
aborted. Register ADDR will contain the address of the non­
compare while register DATA will contain the data that was 
supposed to be in the target memory location. 

7·12 



CODE C8-FILL MEMORY WITH DATA 

The Code Function CS is used to fill a block of target memory 
or RAM Overlay with the same data, usually all one's (FF) or all 
zeros. To use the Code Function, set the BEG and END registers 
to the range of target memory or RAM Overlay to be filled, load 
the DATA Register with the data to be stored, then execute 
CODE CS. The Display shows the transfer as it takes place. After 
transfer is completed the display shows CODE CS and the trace 
contains a record of the last 252 cycles of the transfer. 

If a location fails to store the correct data, the Diagnostic 
Emulator emits three beeps and temporarily halts the fill opera­
tion. The error may be skipped and the transfer resumed by 
depressing INC, or aborted by depressing a mode select 
keyswitch such as TRACE. While the operation is halted the 
address and the data that failed to verify are shown on the 
Display. By depressing and holding EXAM, the correct data 
(which was in DATA) may be displayed. 

CODE C9-VERIFY MEMORY WITH DATA 

The Code Function C9 compares a block of target memory or 
RAM Overlay with the byte in register DATA. See the explanation 
of CODE C8 for the operation of the function. . 

CODE CB - BLOCK MOVE 

The Code Function CB is used to move a block of data residing 
in the target system to a new location in target system RAM. 
Define the block of data to be moved by entering the address of 
the first byte of the block in the BEG register and the address of 
the last byte of the block in the END register. Enter the address 
of the first byte of the destination block in the ADDR register. 
Execute Code Function CB to move the data 

This routine is able to move the block of data to a higher 
address or to a lower address. In addition, the blocks may 
overlap in any manner and move without loss of data; for exam· 
pie, a block of 2K bytes could be moved up or down by fifteen 
positions. 

The entire destination block must be in writeable memory. 

CODE CC-DATA OUTPUT TO SERIAL PORT IN HEX 
AND ASCII FORMAT 

This Code Function provides a formatted dump of a block of 
memory to the serial port. The memory block is defined by the 
addresses contained in the BEG and END registers. When the 
function is executed, data will be output from the serial port in 
the format shown in Figure ~.3·2. 

7·13 



Figure 7.3-2 
Memory Dump Format 

t;:t'" 
~t:{J 

~'" ~ ~~ 
~ ~ ~ <;) 

0000 00 01 02 03 04 05 06 07 08 09 OA OB OC on OE OF · ......... , ..... 
0010 10 11 12 13 14 15 16 17 18 19 lA 1B 1C 1D 1E 1F • ••••••••••••••• 
0020 20 21 22 23 24 25 26 27 28 29 2A 29 2C 20 2E 2F !" •• XS'()*+r-.1 
0030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F 0123456789:;<=>? 
0040 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4[1 4E 4F @ABCOEFGHIJKLHNO 
0050 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E SF PQRSTUVWXYz[\]- _ 
0060 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 611 6E 6F \ abcdefShi Jk lllno 
0070 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F porstuywxyz{I}N. 
0080 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 80 8E 8F • ••••••••••••••• 
0090 90 91 92 93 94 95 96 97 98 99 9A 98 9C 9D 9E 9F • ••••••• t ••••••• 

OOAO AO A1 A2 A3 A4 AS A6 A7 A8 A9 AA AB AC All AE AF • •••••••••••• t •• 

OOBO BO B1 B2 83 84 B5 B6 87 B8 B9 BA BB BC BO BE BF • •• t: •••••••••••• 

OOCO CO Cl C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF • ••••••••••••••• 
0000 DO Dl 02 D3 D4 05 D6 D7 [18 D9 DA DB [IC DD DE DF • ••••••••••••••• 
OOEO EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF • •••• t •••••••••• 

OOFO FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FO FE 00 • •••••••••••• t •• 

0100 07 07 OD 77 00 07 D[I 77 01 07 0[1 77 02 07 DD 77 ••• w ••• w ••• w ••• w 
0110 03 07 DD 77 04 07 DO 77 05 07 DD 77 06 07 DD 77 ••• w ••• w ••• w ••• w 
0120 07 C9 21 00 10 0[1 21 00 30 OE 00 1E 00 41 OC 78 •• , ••• !.O •••• A.x 
0130 A9 A1 28 1F 47 AB SF 16 86 78 A3 28 02 16 C6 78 •• (.G._ •• x.C ••• x 
0140 06 07 OF 38 02 10 FB 36 [ID 23 36 CB 23 70 23 72 ••• 8 ••• 6.t6.t",tr 
0150 23 18 DA 36 E9 21 74 01 DO CB 07 86 DD CB 06 86 ••• 6.!t ••••••••• 
0160 DD CB 05 86 00 CB 04 86 00 CB 03 86 [ID CEI 02 86 • •••• t + ••••••••• 

NOTE: Memory data formatted into lines of 16 bytes with the 
address of the first byte at the left margin. 

CODE CE-REPEAT SEGMENT OF DATA OVER BLOCK 

The purpose of Code Function CE is to make replicas of a block 
of data throughout a larger block. For example, suppose you 
want to have a block of identical jump instructions throughout 
memory. Follow these steps: 

• Enter the instruction (3 bytes) in the first three locations of 
the block. 

• Enter the length of the block (3) in the DATA register. 

• Enter the address of the first location of the block in the BEG 
register (this is the same address as the first byte of the jump 
instruction). 

• Enter the last address of the block in the END register. 

When the function is executed, the jump instruction will be 
copied as many times as it will fit in the specified block. 

7·14 



r.4 GROUP 0: 
MISCELLANEOUS 

CODE DO-CLEAR INTERRUPT ENABLE FLlp·FLOP 

The interrupt enable flip-flop of the emulation processor is 
cleared so that the next time the processor starts running, inter­
rupts will not be allowed. 

CODE D1-INTERRUPT ENABLE FLlP·FLOP 

The interrupt enable flip-flop of the emulation processor is set 
so that the next time the processor starts running, interrupts will 
be allowed. 

CODE 02- DISPLAY CLOCK FREQUENCY 

This Code Function is a routine that determines the clock fre­
quency of the emulation processor by comparing the instruction 
execution rate of the processor with the EM-800 internal 1.2 KHz 
reference frequency. The internal reference frequency is derived 
from the crystal controlled UART clock. The frequency is 
displayed on the ADDRESS display and is given in kilohertz. For 
example, an NSC 800 operating with a 4.0 MHz clock will display 
4000 (kilohertz) on the ADDRESS displays when CODE D2 is exe­
cuted. The result is accurate to about ± .01 % (the accuracy of 
the UART crystal). 

CODE D3-DISPLAY PROM/ROM SIGNATURE 

The purpose of this Code Function is to provide a convenient 
way of verifying that all bits in a PROM or ROM are correct. The 
routine operates by reading each 8-bit byte in a specified range 
and shifting the bits into a firmware implemented feedback shift 
register. By this means, the routine calculates a 16-bit check 
value that is displayed as a 4-digit hexadecimal Signature on the 
ADDRESS display. This signature has a very high probability 
(.9998) of beinQ unique for any given bit pattern in a ROM. 

A PROM or ROM signature is obtained by setting the first 
address of the ROM in the BEG register and the last address of 
the ROM in the END register; then executing the routine. The 
code Function routine will calculate and display the ROM 
signature. If the correct signature has been obtained previously 
with a known good ROM, then the ROM under test is good if it 
has the same signature. 

There is a technique that may be used to create PROMs or 
ROMs whose signatures are zero. For the method to work, the 
last two locations of the ROMs must be unused. Proceed as 
follows: 

1. Program a PROM with the desired information, making sure 
that the last two bytes are zeros. 

2. Determine the signature of the PROM using the CODE D3 
function. 

3. Program a new PROM with the desired information, but 
replace the last two bytes, which previously were zero, with 
the bit pattern of the signature obtained in Step 2. 

7·15 



Now, while the signature of the new PROM is being 
calculated,the routine will arrive at a point just prior to process­
ing the last two bytes of the PROM and at that time, the shift 
register will contain the signature of the PROM as calculated in 
Step 2; entry of the last two bytes, containing the same bit pat­
tern as that already in the shift register, results in the shift 
register reaching a final value of zero when computation is com­
plete. Thus, the PROM will have a signature of 0000. 

CODE D4-0UTPUT 50 NULLS TO SERIAL PORT 

This Code Function outputs 40 null characters (0016) to the serial 
port for the purpose of providing leader or trailer for users using 
punched paper tape as a data storage media. There are no 
parameters for this Code Function. 

CODE OS-CALL USER ROUTINE IN INTERNAL RAM AT 300016. 

CODE D6-CALL USER ROUTINE IN INTERNAL RAM AT 3003,6. 

These two Code Functions provide a means for you to transfer· . 
control to routines that have been entered into the EM-800 inter­
nal scratch pad RAM for various reasons. To make use of this 
feature, you must understand the requirements of the programs 
that run in the EM-SOO internal environment. See Section 
8-User Implemented Code Functions. 

CODE 07 - CLEAR TRACE MEMORY 

The EM-800 Trace Memory is cleared when power is applied as 
part of the power-on-reset operations. Code Function 07 is used 
to clear the Trace Memory at any other time. This routine does 
not use any parameters. 

CODE D8-DISASSEMBLE AND OUTPUT ENTIRE CONTENT OF 
TRACE MEMORY (IF DISASSEMBLER FIRMWARE IS INSTALLED) 

This Code Function outputs the entire content of the Trace 
Memory to the serial port in the standard disassembler format 
(Code E2, 72-character lines*). This routine may be called even if 
the regular disassembly feature of the EM-800 is disabled. Data 
output may be suspended for a moment by depressing the 
EXAM key; when the key is released, data output will continue. 
See Section 6-Disassembly. 

*Th~ disassembly format can be changed by executing Code E1 or E3 
before executing Code D8. -

7-16 



CODE 09- HALT CPU 

Code Function 09 causes the CPU to execute a HALT instruc­
tion, thereby halting the CPU. It is recommended that the CPU 
be halted any time that an EPROM is inserted into or removed 
from the Front Panel Diagnostic PROM Socket to avoid the 
possibility of crashing the internal control program of the 
EM-800. After the CPU has been halted, RESET must be used to 
resume normal operation. There are no parameters for this 
function. 

CODE DA-DISPLAY REVISION NUMBER FOR CONTROL PROM 

CODE DB-DISPLAY REVISION NUMBER FOR DISASSEMBLY 
PROM 

These two Code Functions display the data and revision informa­
tion information for the control PROM software and the 
disassembly PROM software respectively. The format is as 
follows: 

ADDRESS 
DISPLAY 

DATA 
DISPLAY 

OJ T L Revision numbe, (0,1,2, ... ) 

Revision letter (A,B,C, ... ) 

'-------- Day of Month (1·31) 

'----------- Month (1,2,3, ... 9,A,B,C) 

'------------ Year (0,1,2, ... 9) 

CODE DC-CALCULATE BRANCH OFFSETS 

Code Function DC is intended to simplify the task of calculating 
branch offsets for NSC800 relative branch instructions. To use 
this routine: 

• Enter the address of the destination of the branch instruc­
tion in the BEG register. 

• Enter the address of the byte following the branch instruc­
tion in the ADDR register. 

• Execute the function and the Address Display will show two 
digits that are the required branch offset. 

If the required offset is too large to be reached by branch 
instructions, four digits will be displayed showing the offset. 

7·17 



7.S GROUP E: 
CHANGE DEFAULT 
PARAMETERS 

CODE DO-SELF TEST OF INTERNAL PROM DATA 

Code Function DO is used to perform a check of the data in the 
internal PROMS -the Control PROM and the Optional 
Disassembly PROM. When this function is called, the data 
display will show 01 while the first 4K (Control PROM) is being 
tested and 02 while the second 4K (Disassembly PROM) is being 
tested. 

A failure of this test will result in three beeps and the display 
will show EC 31 if the Control PROM failed or EC 32 if the 
Disassembly PROM failed. 

CODE DE-OUTPUT LINE ENDING SEQUENCE TO SERIAL 
PORT 

This Code Function outputs the line ending sequence to the 
serial port consisting of a RETURN, a line feed, and two null 
characters. The routine is used to obtain a new line on a CRT or 
other ASCII display. 

CODE OF - DISPLAY HOURS, MINUTES, SECONDS 

Code Function OF places the EM-8oo in a clock mode that 
counts hours, minutes and seconds on the Address and Data 
displays. To set the initial display, enter the desired hours and 
minutes into the ADDR register and the desired seconds display 
into the DATA register. Then execute the function to start the 
clock. If the initial values are set to zero, then the clock will indi­
cate elapsed time from 0000 00 to 1259 50 (13 hours). 

CODE EO- DISABLE DISASSEMBLY (DEFAULT) 

Code Function EO is used to disable the disassembly software if 
it is in operation. See Section 6-Disassembly. 

CODE E1- ENABLE DISASSEMBLY 

Code Function E1 enables the disassembly firmware and con­
figures the firmware to output aO-character lines with one line of 
register display. See Section 6. 

CODE E2-ENABLE DISASSEMBLY 

Code Function E2 enables the disassembly firmware and con­
figures the firmware to output 72-character lines with one line of 
register display. See Section 6. 

CODE E3- ENABLE DISASSEMBLY 

Code Function E3 enables the disassembly firmware and con­
figures the firmware to output 72-character lines with two lines 
of register display. This is the only format that displays all the 
NSC aoo internal registers of general interest. See Section 6, 
Disassembly. 

CODEEF-CALLREMOTECONTROLSOFTWARE 

Code EF disables the EM keyboard, placing it into remote control 
mode, so that commands received through the serial port control the 
emulator. 

7·18 



7.6 

GROUP F: 
INTROSPECTION MODE 

CODE F - SET INTROSPECTION MODE 

Execution of this Code Function sets the EM-800 so that its own 
internal address space becomes the "target system:' After execu­
tion of the CODE F function, memory examine and store opera­
tions will be directed to the EM-800 internal address space; pro­
grams internal to the EM-800 may be executed in a Single-step 
mode and other internal operations performed_ See Section 8, 
User-Implemented Code Functions_ 

CODE FO, F1, ... F9 

Code Functions FO through F9 are used to set up the EM-800 to 
debug user programs residing in the front panel Diagnostic 
PROM Socket. These functions each: 

• Set the emulator into "introspection" mode so that the inter­
nal address space is accessible. 

• Set the stack pOinter to 3060,6 (the top of the internal user 
RAM area). 

• Set the program counter to the starting address of the 
respective user Code Function. 

The EM-800 is then ready to execute a user program in single­
step mode or at full speed; breakpoints may be set and registers 
examined, and other normal debugging activities carried out. 

7·19 





SECTION 8 
USER·IMPLEMENTED CODE FUNCTIONS 

8.1 OVERVIEW 
8.2 INTERNAL ENVIRONMENT 
8.3 ENTRY TO USER CODE FUNCTIONS 
8.4 INTROSPECTION MODE 
8.5 GETTING TO AND FROM 

THE TARGET SYSTEM 
8.6 USER·ACCESSIBLE SUBROUTINES 
8.7 INTERRUPTS 
8.8 CODE FUNCTION EXAMPLES 

8-1 



8.1 OVERVIEW The EM-800 Diagnostic Emulator has a low-insert ion-force socket 
on the front panel that is designed to accept EPROMs similar to 
the Intel 2716 or 2732 devices. This front panel socket is called 
the Diagnostic PROM Socket. The purpose of the Diagnostic 
PROM Socket is to provide a means for you to insert EPROMs 
programmed with your own diagnostic routines and execute 
them in a convenient manner from the EM-800 Keyboard. Your 
routines may perform almost any imaginable function. In most 
cases, you will probably write special test or diagnostic routines 
to help test portions of the target system for which no Built-In 
Code Functions are provided. This discussion provides a view of 
the internal environment of the EM-800 from a programmer's 
perspective and is intended to provide the information you need 
to write and debug your own Code Functions. 

You are already familiar with the environment of your own target 
system. There is a 64K byte address space called the Memory 
Address Space, and within this address space are various blocks 
of ROM, RAM and (in some systems) I/O control or data 
registers. In addition, there is a 256-byte I/O address space 
which, in most systems, contains the addresses of I/O devices. 

The EM-800 has an internal address space with its own ROM, 
RAM, and I/O. The EM-800 control program and Built-In Code 
Functions reside in this address space. Any EPROM plugged in­
to the Diagnostic PROM Socket also appears in this internal 
address space. It is thus possible for User Code Functions to 
access all Diagnostic Emulator facilities and to function exactly 
as if they were factory-programmed. 

However, the Code Function programs executing within the inter­
nal address space do not have direct access to your system's 
target address space. If it is necessary for a Code Function to 
read or write to the external target system, it must do so in 
cooperation with the Diagnostic Emulator hardware circuits. Con­
sequently, a rigidly defined routine must be executed to perform 
read or write operations to the target system. The Built-In Code 
Functions, as well as the EXAMINE and STORE routines, use 
EM-800 control program subroutines, and you may also use 
these same subroutines to read and write to the target program 
address space. 

8-2 



8.2 INTERNAL 
ENVIRONMENT 

Figure 8.2·1 
EM·800 
Internal Memory Map 

The internal environment of the EM·800 contains ROM, RAM and 
1/0. The 1/0 devices of the EM·800 are memory mapped. Figure 
8.2·1 shows an overview of the EM·800 internal address space. 

8·3 

0000 

07FF CONTROL ROM 1 
0800 (U103) 

OFFF 
1000 

2732 

17FF CONTROL ROM 2 
1800 (U104) 

1FFF 
2000 

2732 

27FF FRONT PANEL 
2800 DIAGNOSTIC EPROM 

2716 or 2732 

2FFF 
3000 

33FF 

SCRATCH PAD RAM 
(See Fig. 8.2·2) 



8.2.1 ROM The EM-8oo has two sockets, located on the Keyboard circuit 
card, that accept EPROMs or ROMs that contain the control pro­
gram for the unit. The circuit board connections are normally set 
up for EPROMs or ROMs having the Intel 2732 pinout; a jumper 
modification of the board allows use of the 2K byte 2716 as well. 
See Figure 8.2-1. 

8.2.2 FRONT PANEL The EM-800 Front Panel EPROM Socket also accepts EPROMs 
EPROM SOCKET of the 2716 or 2732 variety. A small switch located in the center 

of the socket selects the appropriate connections for either the 
2K byte or 4K byte EPROM types. In the internal address space, 
the EPROM plugged into the Front Panel Socket will appear in 
the address range of 200016 to 27FF16 (2716) or 200016 to 2FFF16 
(2732). It is not possible to have this EPROM appear in the exter­
nal (target) address space. See Figure 8.2-1. 

8.2.3 SCRATCHPAD RAM The EM-800 also contains a small amount of Scratchpad RAM in 
the internal address space that is used by the control program in 
keeping track of the status of the emulator and the emulation 
processor. The Scratchpad RAM resides in the internal address 
space at addresses 300016 to 33FF16. Figure 8.2-2 shows a detail 
of the Scratchpad RAM. The first 96 bytes of the RAM are 
available to user-written Code Function programs. Locations 
310016 to 33FF16 are also available. 

The Scratchpad RAM also contains the area where the processor 
registers are saved each time the emulation processor pauses; 
also, the saved register values are restored each time the emula­
tion processor begins to run. User-implemented programs may 
obtain these register values or even alter them if desired. You 
should carefully avoid altering any of the data contained in the 
firmware stack area or firmware scratchpad locations to avoid 
crashing the control program. 

8·4 



Figure 8.2-2 
Map of Internal 
Scratchpad RAM 

ADDRESS 

3000 SCRAM 

305F 
3060 

30B2 
·30B3 

30DF 

30EO 

30E2 
30E4 

30ES 

30E8 

30EA 

30EC 

30EE 

30FO 

30F2 

30F4 

30F6 
30F8 
30FA 
30FC 

30FE 

30FF 

RPC 

RSP 
RIX 

RIY 

RHPL 

RPDE 

RPBC 

RPAF 

FHL 

ROE 

RBC 

RAF 
RBEG 
REND 
RADR 

ROTA 

FLAGS 

~ 

, 
j 

!r 

r 

, 

, 
j 

16 

16 
16 
16 
16 
16 
16 

16 
16 

16 

16 
16 
16 
16 
16 

8 

8 

For u 
progr 

se by user·written code function 
ams. (96 Bytes) (See Sec. 8.2.3.) 

Firm ware scratchpad locations used by 
ator control program. (83 Bytes) emul 

Emul ator firmware stack area. (45 Bytes) 

Target Register PC 

Target Register SP 
Target Index Register X 

Target Index Register Y 
Target Register H L' 
Target Register DE' 

Target Register BC' 

Target Register AF' 

Target Register HL 

Target Register DE 

(2 Bytes) 
(2 Bytes) 

(2 Bytes) 

(2 Bytes) 
(2 Bytes) 

(2 Bytes) 

(2 Bytes) 

(2 Bytes) 

(2 Bytes) 

(2 Bytes) 

Target Register BC (2 Bytes) 

Target Register AF (2 Bytes) 
Begin Pointer (2 Bytes) 
End Pointer (2 Bytes) 
Current Address of Test (2 Bytes) 

Current Data (1 Byte) 

Flag Display Data (1 Byte) 

TOTAL: 256 Bytes 

Additional Scratch RAM 
(See Sec. 8-2.3.) 

8·5 



8.2.4 I/O DEVICES The EM-BOO control program, running in the internal address 
space, has access to various 110 registers associated with dif­
ferent components of the emulator. You may wish to create 
special programs that control the EM-800 components in a way 
different than that provided for by the standard software, and for 
that reason, this detailed information is provided. In most cases, 
however, you will be able to obtain the desired result by using 
110 handler subroutines that are already present in the EM-800 
firmware. Section 8.6 provides information on the characteristics 
and use of the User-Accessible Subroutines. 

KEYBOARD: The state of the Keyboard keyswitches may be read 
by the processor at a series of eight addresses from 340016 
through 340716. Four keyswitches may be read at each of the 
input addresses as shown in Figure 8.2-3. A key depression 
causes the corresponding bit to go low as seen in the input 
data. For example, if Key 9 is depressed, bit 1 of location 340216 
will be low. Bits 4, 5, 6 and 7 of all eight of the input ports see 
the same data; bit 4 in all locations will be low if a jumper on 
the Keyboard called the Option A jumper is installed. Bit 5 in all 
locations senses the state of pin 61 on the keyboard card con­
nector; this pin is left open in the EM-800. Bit 6 will be low if 
the most recent system reset was caused by the power-on-reset 
circuitry; bit 6 will be high if the most recent system reset was 
caused by the RESET Key or a reset command from the target 
system. Bit 7 will be high if any of the following keys is 
depressed: RUN, RUN-BKPT or STEP. 

If you write software to directly read the Keyboard, you must be 
aware that there in no key debouncing or other processing of 
the key closure done by the hardware. Consequently, you must 
provide the keystroke debouncing, repeating key features or 
other special processing in the software that scans the 
Keyboard. There is a Keyboard scan routine already in the 
EM-800 that may be accessed and that provides the most com­
monly needed features. See Section 8.6. 

SERIAL INPUT/OUTPUT PORT: The EM-800 Diagnostic Emulator 
contains circuitry that implements a full-duplex (two-way) serial 
Input/Output port that conforms to RS-232C requirements. The 
baud-rate, parity and character length of the data transmitted and 
received is set up by hardware swtiches. (See Sections 9.2 and 
9.3). The nature and format of data transmitted is under the con­
trol of software. The software is able to send data to the serial 
output circuits, read data from the serial input circuits and test 
the status of the serial port circuitry via three ports as shown in 
Figure 8.2-4. Data is transferred to and from the serial port by 
means of a Universal Asynchronous Receiver-Transmitter (UART). 

Data to be output through the serial port is written to the UART 
data write address. The data enters the UART transmit buffer 
register, and then enters the transmit shift register where it is 
shifted out in serial form bit by bit. New data may be written to 
the transmit buffer register as soon as the previous data has 
entered the transmit shift register and before it has completed 
the process of shifting out. 

8·6 



Figure 8.2-3 
Keyboard Input 
Locations 

Figure 8.2-4 
Serial Port Data and 
Status Locations 

3400.. 

3401 .. 

3402,. 

3403,. 

3404t. 

3405.. 

3407 .. 

Bit read is '0' if key is depressed; 
otherwise '1: .. 

LOAD I 1101 ..... 1 DATA TRACE ADOR "DOR 

"'G I·~" I Bk~ I CODE I 
. I · I · I · I 

II L, 'f1 If Option A jumper Installed. 

'0' if pin 61 card edge is low. 
'0' if Power·On-Reset (cold start) . 
'1' if Keyswitch Reset (wann start) 

UART DATA WRITE 

UART DATA READ 

UART STATUS READ 

'1' if RUN, RUN-BKPT or STEP key is depressed. 

7 6 5 4 3 2 o 

IIIII IIII 34FOt. 

65432 I 0 

IIIII IIII 342Ot. 

7 65432 I 0 

IIIII IIII 341Ot. 

I 1 I t L Data Available 

~-- Transmit Buffer Empty 

~---- End 01 Character 

75 HzJ\S 
~ _________ Framing Enu, 

~------------O".~nEmw 

~--------------1~HzJ\JLfLJLJ 

~--------------- CIea,·to-Send 

8-7 



The UAAT Status Aeglster (Figure 8.2·4) contains two bits that 
inform the software of the status of the transmitter registers 
as follows: -

Bit 1, Transmit Buffer Empty, will be read as a '1' when the 
transmit buffer register may be loaded with another character. A 
'0' means that the transmit data register contains data that has 
not yet been moved into the transmit shift register. 

Bit 2, End of Character, will go to '1' at the time that a character 
has shifted out of the transmit shift register. If there is another 
character waiting in the transmit buffer register, then bit 2 will 
immediately go to '0' as the new character enters the shift 
register to be transmitted. 

Data received by the EM-800 through the serial port is entered 
into the UAAT receiver shift register. When an entire character 
has been received, it is transferred to the receiver holding 
register and is then available to the software by reading the data 
at the UAAT Data Read address. Several status bits in the UART 
Status Register (Figure 8.2-4) give information about the received 
data as follows: 

Bit 0, Data Available, goes to '1' when an entire character has 
been received and transferred to the receiver holding register. 
When the software reads the UART Data Read location, this bit 
is cleared to '0: 

Bit 4, Framing Error, goes to '1' if the received character has no 
stop bit at the expected location. This usually means that the 
transmitting device is sending characters of different length or 
baud rate than the EM·800 is set up to receive. Noise may also 
cause this error. 

Bit 5, Overrun Error, goes to '1' if a previously received character 
in the receiver holding register is not read by the CPU before 
another character is received and transferred into the holding 
register. 

The clear-to-send input (Auxiliary Connector, Pin 5) is visible to 
the software as Bit 7 of the UART status register. This bit is '0' if 
clear-to-send is true (high); if clear-to-send is low or discon­
nected, this bit is '1: (Note, however, that this bit may be forced 
to the '0' state by setting Option Switch 3 closed. See Section 
9.2.) 

8-8 



Two other bits share the UART Status Register, but are not 
directly involved in the communications functions. 

Bit 3, 75 Hz, is a 75 Hz square wave that is derived from the bit­
rate-generator crystal oscillator. This bit is seen by the software 
as alternate '1' and '0' with a 13.33 mSE.c full cycle. 

Bit 6, 1200 Hz, is a 1200 Hz square wave that is derived from the 
bit-rate-generator crystal oscillator. 

One additional output port is associated with the communica­
tions interface. This port controls the Request-to-Send (RTS) 
signal that is output on Pin 4 of the Auxiliary connector. 

76543210 

RTS I X I X I I X I X I X I X I X I 34E7'8 

The RTS output port is located at address 34E7'6. Writing a '1' to 
Bit 5 of the port will set the RTS signal to its negative (marking, 
or OFF) state; writing a '0' sets the RTS signal positive (spacing 
or ON). All of the remaining bits of the port are "don't care" and 
have no effect. 

HEXADECIMAL DISPLAYS AND TRACE MEMORY: The EM-800 
Trace Memory is a 252-word by 32-bit memory whose primary 
function is to record each bus cycle that occurs to the target 
system. At any given time, a single word of the trace Memory is 
selected by an 8-bit register called the 'XADDR' (trace index 
address) register. If, for example, the XADDR register contains a 
43, then the next bus cycle that oCGurs will be written into loca­
tion 43 of the Trace Memory. Immediately after the data is writ­
ten, the XADDR register is incremented (by hardware) so that the 
current Trace Memory address becomes 44. If the emulation pro­
cessor is executing a target program, each bus cycle is written 
into the Trace Memroy and XADDR is incremented for the next 
cycle: When XADDR reaches its maximum value FF'6 and is 
again incremented, it overflows to 00,6 so that the first location 
of the memory effectively follows the last location. Thus the 
Trace Memory may be viewed as a ring memory in which each 
additional bus cycle may be entered in the next position around 
the ring. Once the Trace Memory is full, each additional bus 
cycle simply overwrites the oldest bus cycle in the memory. 

The Address and Data hexadecimal displays and the eight 
discrete Machine Cycle indicators are wired directly to the Trace 
Memory circuitry, so that the current Trace Memory word (the 
word deSignated by the XADDR register) is always displayed 
unless the displays are explicitly blanked. 

8·9 



When the EM-800 is in the PAUSE mode, the internal control pro­
gram has access to the Trace Memory and the displays by a set 
of five ports. See Figure 8.2-5. The five ports are as follows: 

XADDR 
(3600,6) 

TDATA 
(364018) 

TADDL 
(364118) 

TADDH 
(364216) 

TCNTL 
(364316) 

This port gives access to the Trace Index Address 
register. The control program may read this location to 
obtain the current value of the XADDR register, and 
may store new values in the register. Storing a new 
value in the XADDR will change the current trace word 
that is accessed and displayed on the display panel. 

This port gives access to the. eight-bit portion of the 
current Trace Memory word that records the data bus 
signals of each machine cycle. The current program 
may read this location to obtain the data portion of 
the current trace word, or may store new data to the 
data portion of the trace word. 

This port gives access to the eight-bit portion of the 
current trace word that records the low-order eight bits 
of the address bus of each machine cycle. The control 
program may read or write this location. 

This port gives access to the eight-bit portion of the 
current trace word that records the high-order eight 
bits of the address bus. The control program may read 
or write this location. 

This port gives access to the eight-bit portion of the 
current trace word that records the control bits each 
machine cycle. The control bits are arranged in the 
port as shown below: 

TCNTL 

WR 

'----RD 
'-----lACK 

'------ IORO 

'-------- EXT 

'--------- BKPT 
'---------- M1' 

~----------- M1 

Any time that the control program writes new data into the Trace 
Memory, the data stored will immediately be seen on the appro­
priate displays. 

8-10 



=igure 8.2-5 
Trace Memory Format 

XADDR 

I , I 
I 36OOt. 

I 
TRACE INDEX ADDRESS 

3600. XADDR ...... -_ ... 
36401. TDATA 

3641 .. TADDL 

3642" TADDH 

TCNTL 

8-11 

00 

01 

02 
I 
I 

I 
I 
I 
I 
I 
I 

BF 

36401. 
DATA 

364111 
LOW 

AD DR 

364211 
HI 3643.. 

ADDR CONTROL 

CURRENT TRACE WORD 

TRACE MEMORY 
252 words by 32 bits 

~-- TRACE MEMORY ACCESS PORTS 



SPEAKER: The EM-800 incorporates a very small dynamic 
speaker located on the Keyboard printed circuit board. A port 
controls the current to the speaker to generate tones or other 
sounds under software control. It is necessary for the software 
to generate the actual waveform to be output by the speaker; 
there is no tone generation hardware in the EM·BOO. The speaker 
outport port is diagrammed below: 

76543210 

SPKR t Ix) X) X I X) xl xl X , 340711 

Writing a '1' to Bit 7 switches DC current to the speaker ON; 
writing '0' to Bit 7 switches the current OFF. Bits 0 through 6 of 
the port are "don't care" bits and have no effect. 

8·12 



BREAKPOINT COMPARATORS: A series of output ports is used 
to set up the Breakpoint Comparator address values and to con­
trol the desired operating mode. These ports are detailed below: 

7 6 5 4 3 2 1 0 

BKPTAL I I I I I I I 1 I 
7 6 5 4 3 2 1 0 

BKPTAH I I I I I I I 1 I 
7 6 5 4 3 2 1 0 

BKPTBL I I I I I I III 
7 6 5 4 3 2 1 0 

BKPTBH I 1 I I I I I I I 
7 

TRIGA II-x-I 
7 

lOA II-x-I 
7 

ROA II-x-I 
7 

348F,e Breakpoint A 
Low-Order Address 

3490,e Breakpoint A 
High-Order Address 

34AF,e Breakpoint B 
Low·Order Address 

34BO,e Breakpoint B 
High-Order Address 

34CO,e Trigger A 

34C1,e 110 A 

34C2,e Read A 

WRA I 1--x --I 34C3t. Write A 

7 

TRIGB I 1--x --I 34C4te Trigger B 

7 

lOB I 1--x --I 34CS,e 110 B 

7 

ROB I 1--x --I 34C6te Read B 

7 

WRB I 1--x --I 34C7,e Write B 

7 

RANGE I 1--x --I 3400.. Range Enable 

7 

INLEXL II-x-I 

7 

ATHENBII-x--1 

8·13 

3401,. Inclusivel 
Exclusive Select 

3402" A·Then·B Enable 



The ports BKTAL and BKPTAH are used to set up the A Break­
point address. The software should store the appropriate low-and 
high-order address bits to these ports. In the case of an 1/0 
address which only has eight bits, the low-order breakpoint 
address should be loaded; the high-order breakpoint address port 
will have no effect. 

The ports BKPTBL and BKPTBH are used to set up the B Break­
point address in a manner analogous to that described above. 

Two ports, TRIGA and TRIGB, are used to output pulses to the 
BKPT A and BKPT B output pins of the auxiliary connector (pins 
12 and 13; see Figure 9.1-1). Storing a '1' to the bit 7 position of 
the ports results in a high level at the corresponding output pin. 
To generate an output pulse the software must store a '1' fol­
lowed by a '0' to the bit 7 position of the port. Bit positions 1-6 
of the ports have no effect on the system. Inclusion of these 
ports enables user-programmed Code Functions to output trigger 
signals to external equipment, such as oscilloscopes or 
signature analyzers. 

Ports lOA and lOB are used to configure the breakpoint com­
parators to respond to either memory cycles or 110 cycles. Stor­
ing a '1' to the bit 7 position of either port will cause the 
associated breakpoint comparator to respond to 110 cycles with 
matching eight-bit low order address values. Storing a '0' to the 
bit 7 position of either port will cause the associated breakpoint 
comparator to respond to memory cycles with matching 16-bit 
address values. Bits 0 through 6 of these ports have no effect. 

Ports RDA and ROB are used to enable the breakpoint com­
parators to respond to read cycles (either memory read cycles or 
110 read cycles if a '1' is stored to bit position 7 of the 
associated port. 

Ports WRA and WRB are used to enable the breakpoint com· 
parators to respond to write cycles (either memory write cycles 
or 110 write cycles by storing a '1' to bit position 7 of the relevant 
port. 

Notice that if '1' bits are stored to both the RDA and WRA ports, 
the A breakpoint comparator will respond to both read and write 
cycles. If a '0' is stored to both ports, the comparator will not 
respond to any cycles and is thus disabled. The B breakpoint 
comparator may be controlled in a similar manner. 

Three ports, RANGE, INLEXL and ATHENB are used to configure 
the breakpoint circuitry for several special operating modes (see 
Section 4.1.4). Any address in the range from A to B may be . 
detected by writing a '1' to bit 7 of the INLEXL port. In order to 
incluqe both end points of the range (address = A and address 
= B), it is recommended that both the A and B comparators 
also be enabled for read and write cycles. Note that it is not 
possible to break on a range, only on the occurrence of a read 
or write cycle. 

8·14 



8.3 ENTRY TO USER 
CODE FUNCTIONS 

With a '1' stored to the INLEXL port, the inclusive range 
(everything from A to B) is detected. With a '0' stored to the 
INLEXL port, the exclusive range (every address outside of the 
range A to B) is detected. Again, the A and B comparators must 
also be set up to detect read and write cycles to ensure that 
both end pOints are included in the range. 

The ATHENB port is used to set up sequential operation of the 
comparators so that a breakpoint stop signal is generated only 
when the B address is encountered after the A address. To set 
up this mode, store a '1' to the bit 7 position of the ATHENB 
port. Also, be sure the RANGE circuitry is disabled ('0' to RANGE 
port). 

The Code Functions that are built into the EM-800 are called 
with keystroke sequences that begin with a letter key, such as 
CODE A1, CODE C4 and CODE 02. The Code Functions that use 
the decimal digit keys (O-g) are reserved for calling user­
programmed Code Functions. The keystroke sequences used to 
transfer control to user Code Functions are as follows: 

Key Sequence Transfer Address 

98 2000 .. 

88 2003 .. 

90 2006 .. 

88 2009,. 

88 200C .. 

80 200F,e 

80 2012 .. 

80 2015.. 

80 2018 .. 

88 2018'e 

8·15 



8.4 INTROSPECTION 
MODE 

8.4.1 CODE F 

8.5 GETTING TO 
AND FROM THE 
TARGET SYSTEM 

Thus, each of the key sequences has associated with it an entry 
address in the addresss space assigned to the Diagnostic Prom 
socket. It is your responsibility to properly code the EPROM so 
that the desired actions occur for each entry address. The first 
instruction of every Code Function must be a jump instruction 
(op-code C31S) because the control software examines the 
Diagnostic Prom for the presence of this data before transferring 
control to it. See the examples given in Section S.S. 

The EM-SOO Diagnostic Emulator has been designed with a 
special feature that is mainly intended as an aid to testing and 
debugging Code Function programs programmed into EPROMs 
and plugged into the Diagnostic Prom socket. This special 
feature is the "Introspection Mode" in which the EM-800 turns its 
attention to its own internal address space. In this way, you may 
examine and store to the internal address space and, with cer­
tain limitations, may Single-step programs that execute in the 
internal address space. 

The introspection mode is entered by the key sequence: 

88 
After entering the CODE F mode, you may examine or alter the 
internal memory space, step or run programs in the internal 
memory space, and review the contents of the trace memory 
after program execution. Breakpoints may also be used to halt 
program execution at appropriate internal addresses. The RESET 
key returns the EM-800 to normal operation. 

The EM-SOO Control Program, together with the built-in 
diagnostic routines and any user-programmed code functions, 
executes within the EM-SOO internal "protected" address space. 
As a consequence, programs in this internal address space do 
not have direct access to the target address space, but must 
make use of special hardware in the EM-SOO logic to make the 
target address space accessible. Code Function Programs may 
have a requirement from time to time to do one of the following 
things: 

1. Read from or write to a location in the target address space. 

2. Read from or write to an I/O port address in the target 
address space. 

3. Go to and begin executing a program residing in the target 
address space. 

4. Return from running a program in the target address space 
to a program (user code function routine) in the internal 
address space. 

The following sections give detailed information on these 
functions. 

8·16 



8.5.1 EXAMINE 
AND STORE 

The simplest method of reading and writing data to the target 
system is to use subroutines that exist in the EM-SO~ control 
program. Four subroutines are provided, as follows: 

STM Store the data contained in the accumulator to the 
target address specified in register-pair HL. 

EXM load the accumulator from the target address 
specified in the register pair HL. 

STIO Store the data contained in the accumulator to the 
target 1/0 port specified by register C. 

EXIO load the accumulator from the target 1/0 port 
specified by register C. 

The entry addresses of these subroutines (and other useful 
subroutines) are given in Section 8.6, User-Accessible 
Subroutines. 

The four subroutines shown above operate by performing a read 
or a write operation to the specified address after commanding 
the EM·BOO hardware to make the target address space accessi· 
ble during the transfer interval. The machine code listing of the 
EXM subroutine is shown below. 

, 
;Subroutine to read data from the target address 
;specified by HL. Data is returned in A. The 
;target read cycle is recorded in the trace memory. 
EXM PUSH BC 

, 

LD A, OEOH 
LD (DELAY), A 
LD B (HL) 

;Delay value 
;Command to hardware 
;Read from target 

;The data read during the target memory read 
;cycle above is automatically recorded in the 
;trace memory. The trace memory bookkeeping 
;values must be updated. 

LD A, (XADDR) ;Get trace index 
LD (XBASE), A ;Save 
DEC A 
LE (TRACE), A 

, 
;Put data in place and return to caller. 

LD A, B 
POP BC 
RET 

8-.17 



8.5.2 PAUSE to RUN 

8.5.3 RUN to PAUSE 

The EM-800 Control Program (firmware) is normally in control of 
the emulator when in the PAUSE mode. Depressing the RUN or 
RUN BKPT Key causes the control program to execute a se­
quence of operations that will load the processor registers with 
the values that had previously been saved (when the EM-800 last 
entered the PAUSE mode) and then does a coordinated jump to 
the target system program. The EM-800 hardware will switch to 
the target address space at the correct time for execution of the 
first instruction. It is possible for a user-written Code Function 
program to jump to a target system program in the same man­
ner. This facility allows a user Code Function to place programs 
into the target address space (either user RAM or Overlay RAM) 
and then transfer control to that program. The target system pro­
gram will then proceed to execute from within the target address 
space in a normal manner. 

The best way for you to transfer control to a target system pro­
gram is to use the existing EM-800 internal routine. The following 
steps are suggested: 

1. . Set up the user register save locations (addresses 30EO'6 to 
30FF,6 in the scratchpad RAM) as desired. In particular, be 
sure to set the target program counter (RPC) location to the 
correct starting address. Other registers may be used, if 
desired, as a means of passing parameters to the target 
program. 

2. If the target program needs parameters or data from the 
internal program, then transfer the data to the target RAM 
using the STORE subroutine as appropriate. 

3. Perform the transfer of control to the target program by 
jumping to the RUN routine at address OOA5,6. 

The RUN routine will load the processor registers, do the 
required coordination of the EM-800 hardware, and start the 
target program running with the desired register values 
initialized. 

When a program is executing in the target address space and 
you want to transfer control into the internal software, there are 
only three ways available to do this: 

1. Reset the system. 

2. Press. the STEP key. 

3. Cause a breakpoint to occur, either with one of the break­
point comparators or by means of the external breakpoint 
input connection. 

All three methods may be used during manual operation. The 
third method may also be used for a sort of automatic operation 
where a Code function sets up the conditions to enable a target 
program to get back to the internal environment when needed. 

8·18 



8.5.4 RE·ENTRY JUMP 

The following steps are suggested as a method that will allow a 
program executing in the target system address space to re-enter 
the internal address space: 

1. A Code Function program sets up one of the breakpoint 
comparators to monitor a prearranged address in the target 
memory space. 

2. The Code Function program sets up the re·entry jump 
address so that when the prearranged address is en­
countered and the breakpoint occurs, control will be given 
back to the Code Function program instead of the Keyboard 
Scan routine. See Section 8.5.4 below. 

3. The Code Function program gives control to the target 
system program which then begins running. 

4. At this point, depress the RUN BKPT Key to arm the break­
point system. 

5. When the target system program is ready to return control to 
the Code Function program, it accesses the prearranged 
address and causes the breakpoint to occur. After the 
EM-800 software has saved the processor registers, it will 
jump to the address specified in Step 2 (above) and the Code 
Function program may proceed. 

Some applications require that the EM-800 control software 
transfer control to a user program each time emulation of the 
target program is halted. An example would be a "soft shutdown" 
program that prevents damage to the target system when execu­
tion is halted. (See Section 9.8, Soft Shutdown.) The EM-800 has 
the flexibility required to give control to a user-written subroutine 
each time the RUN to PAUSE sequence of the emulator is exe­
cuted. Normally, this subroutine would be programmed into an 
EPROM and inserted into the front panel socket of the EM-800. 

In normal operation, the EM-800 executes an internal RUN to 
PAUSE routine each time the target program is halted. This 
routine first saves the prQcessor registers in the scratchpad RAM 
save area, then sets up the display to show the correct data, and 
finally goes to the keyboard input routine to determine the next 
action required. Before going to the keyboard routine, however, 
the RUN to PAUSE routine examines location 30A016 to see if it 
contains a jump instruction op-code (C316). If it does, the EM·800 
will regard the jump instruction as the first instruction of a user­
supplied subroutine, and will call the subroutine. (The EM·800 
calls the address of the jump instruction, which then jumps to 
the main body of the subroutine.) . 

8·19 



A user-supplied subroutine will usually be located in the front 
panel EPROM, but may also be located in the user portion of the 
internal scratch pad RAM as the following example illustrates. 

The following small program may be entered from the keyboard 
of the EM-800. It causes the EM-SOO to beep each time it 
transfers from RUN to PAUSE. Enter the program with the follow­
ing steps: 

1. Reset the EM-800, then execute CODE F to place the 
emulator in "introspection" mode. 

2. Enter the jump instruction: 

at 30AO'6 enter C3'6 

at 30A1'6 enter 00,6 

at 30A2'6 enter 30,6 

These three bytes constitute a jump instruction to location 
3000'6 in the internal address space. Location 3000,6 is the 
first location of the user portion of the scratchpad RAM. 

3. At memory address 3000,6, enter the following four-byte 
program: 

at 3000'6 enter CO'6 

at 3001'6 enter 05,6 

at 3002,6 enter 00,6 

at 3003,6 enter Cg'6 

4. Reset the emulator to exit the "introspection" mode and pro­
ceed to operate the emulator. Note that each time the 
emulator transfers from RUN to PAUSE, the beeper will 
sound. 

In most practical cases, a user subroutine will be located in the 
front panel EPROM instead of RAM as was done in this exam­
ple. Also, the jump instruction may be easily written into 
addresses 30AO through 30A2 by a Code Function program also 
residing in the EPROM. Executing the Code Function will enable 
the user subroutine and a second Code Function could be writ· 
ten to disable the subroutine by changing the jump instruction 
op-code to 00,6 (or any other code except C3,6). 

8-20 



8.6 USER·ACCESSIBLE 
SUBROUTINES 

Table S.6-1 
User-Accessible 
Subroutines 

The EM·800 Control Program contains handlers and subroutines 
that you may use in constructing your own Code Functions. The 
entry addresses and functions of the routines are summarized in 
the following table. 

ADDRESS NAME DESCRIPTION 

1000,6 

1003,6 

1060 •• 

1006 •• 

1009 •• 

101C •• 

101F •• 

1076 •• 

102E •• 

STM Store the data contained in the accumulator 
to the target address specified in register-pair 
HL. (Flags, register F, are altered.) 

EXM Load the accumulator from the target address 
specified in register-pair HL. (Flags and accu­
mulator altered.) 

CODEFN Executes the built-in Code Function 
deSignated by the contents of the accumu­
lator. For example, if the accumulator is 
loaded with AS •• and this subroutine is called 
then the EM-SOO will execute Code Function 
A8; if the Code Function completes suc­
cessfully, this subroutine will return to the 
calling program. 

STIO Store the data contained in the accumulator 
to the target 110 port specified by register C. 
(Flags may be altered.) 

EXIO Load the accumulator from the target I/O port 
specified by register C. (Flags and accumula­
tor altered.) 

LWLMIT Compares HL to the BEGIN address; the 
subroutine returns with CY = if HL = 
BEGIN. (Registers A and F may be altered.) 

HILMIT Compares HL to the END address; the 
subroutine returns with CY = if HL = END. 
(Registers A and F may be altered.) 

SIA ASCII Serial Input. Serial Data entered at the 
serial port is returned in the accumulator. Bit 
seven is always zero. Registers A and F may 
be altered. When this routine is called, the 
RTS line (request-to-send) automatically goes 
high. The RTS line goes low again whenever 
the XECUTE routine is entered. 

SIB Binary Serial Input. Serial Data entered at the 
serial port is returned in the accumulator. All 
eight bits are returned to the user without 
alteration. Registers A and F may be altered. 
When this routine is called, the RTS line 
(request-to-send) automatically goes high. The 
RTS line goes low again whenever the 
XECUTE routine is entered. 

8-21 



ADDRESS NAME DESCRIPTION 

1031,s RHB Read-Hex-Byte. This subroutine obtains two 
ASCII characters from the serial port. It 
checks to see if the characters represent 
valid hexadecimal digits. If they do, they are 
then converted to an eight-bit binary number 
and the subroutine returns to the calling pro-
gram with this result in the accumulator. If 
any characters received are not valid hexa-
decimal characters, an error code (EC 11) is 
displayed and the Diagnostic Emulator must 
be reset to proceed. This subroutine alters 
the accumulator, flags and 0 register. The 0 
register is used to accumulate a sum check 
of the data received. (All the eight-bit binary 
values are added into register O. with over-
flows ignored.) 

1034,s CNVHEX Convert ASCII character to binary value. This 
subroutine expects an ASCII character in the 
accumulator that represents one of the digits, 
0, 1, 2, ... 9 or one of the letters A, B, C, O. 
E, F. The character is converted into a 
numeric value corresponding to the ASCII-hex 
character in the accumulator. The routine 
returns with the value in the accumulator. If 
the ASCII character originally in the accumu-
lator does not represent one of the hexa-
decimal digits, an error code will be displayed 
and the EM-800 must be reset to proceed. 

1016,S CRLF Output a line ending sequence to the 
RX-232C port that consists of a RETURN 
(OO,S), line feed (OA.s), and two null characters 
(OO.s). 

1013,S TAB This subroutine outputs ASCII space 
characters (20,S) until the total number of 
printable characters output since the last 
RETURN character (OO,s) is equal to the 
number specified in the byte following the 
call to this routine. This routine is used to 
format output displays to CRT or printer ter-
minals. No registers are altered. 

1070.6 NIB This subroutine converts the low-order 4 bits 
of the accumulator to one ASCII character 
representing the value in hexadecimal and 
outputs the character to the serial port. 

1019,6 BYTE1 Converts the contents of the accumulator to 
two ASCII characters representing the value 
in hexadecimal, then outputs these 
characters to the RS-232 port. No re,gisters 
are altered. 

8-22 



ADDRESS NAME DESCRIPTION 

103A'6 

1040,6 

1025,6 

HEXOUT This subroutine is the same as the BYTE 
routine except that the contents of the accu· 
mulator are added to the D register for com· 
puting a checksum. 

S050NL Output 50 ASCII null characters (00,6) to the 
serial interface. This routine is primarily 
useful to produce blank tape leader on a 
paper tape punch interfaced to the EM-SOO. 

ERROR1 Subroutine to report an error on the display. 
This routine shows the characters "EC" on 
the address display (meaning Error Code), 
displays the contents of the accumulator in 
the data display, and emits three beeps. The 
routine then waits for you to depress some 
mode selection key. This subroutine does not 
return to the calling program. 

XECUTE This routine returns program control to the 
standard DiagnostiC Emulator firmware and 
readies it for keyboard input. If you have 
changed the display, it will return to its 
former state. This routine does not return to 
the calling program. 

KCN User's keyboard scan routine. Data represen­
tig the keyswitch depressed is returned in the 
accumulator. In addition, if the keyswitch 
depressed is one of the hexadecimal numeric 
keys, the carry bit (CY) is set to one (true) 
when the subroutine returns. This routine ig­
nores the RUN, BUN BKPT and STEP key­
switches. The table shows the data returned 
in the accumulator for each keyswitch 
depression. 

8·23 



KEYSWITCH DATA KEYSWITCH DATA 

RESET 0 00,6 

RUN 01'6 

RUN BKPT 2 02,6 

STEP 3 03,6 

ODE 18,6 4 04,6 

BKPT A 19,6 5 05,6 

BKPT B 1A,6 6 06,6 

REG 1B,6 7 07,6 

MEM ADDR 14,6 8 08,6 

1/0 ADDR 15,6 9 09,6 

TRACE 16,6 A OA'6 

LOAD DATA 17,6 B OB'6 

STORE 10,6 C OC'6 

EXAM 11,6 D OD,6 

DEC 12,. E OE,. 

INC 13 •• F OF •• 

• When RESET is depressed, the User's Code Function is 
aborted and the EM-800 reinitialized . 

•• Keyswitches RUN, RUN BKPT and STEP are ignored 
by this routine. 

ADDRESS NAME 

DSPCTL 

DESCRIPTION 

Display Control. This subroutine uses the 
low-order four bits of the accumulator to con­
trol the blanking of the display digits. This is 
shown in the example below: 

~-+_ ... I DISPLAYS 

HIGH LOW HIGH: LOW 
ADDR ADDR DATA: DATA 

I ~I xlX!xlBUdl ACCUMULATOR 

If a bit of the accumulator is a one when this 
subroutine is called, then the display digit or 
pair of digits corresponding to that bit illu­
minates. The accumulator and flags may be 
altered by this routine. 

8-24 



8.7 INTERRUPTS 

8.8 CODE FUNCTION 
EXAMPLE 

1073,. BEEP 

0028,6 SOUT 

0030,. IMSO 

A subroutine to beep the speaker located on 
the Keyboard printed circuit card. No 
registers are altered. 

Data in the accumulator is sent to the serial 
port. In addition, this subroutine affects a 
one byte counting location that is reset to 
zero each time a RETURN code is output 
(00,6) and is incremented by one each time a 
printable ASCII character is output. This 
coun.ting location is also affected and ex­
amined by the TAB routine as well as other 
output operations. This subroutine may also 
be called with an RST 5 instruction. 

The data byte following the subroutine call or 
restart code is sent to the serial port. No 
registers are altered. this subroutine may also 
be called with an RST 6 instruction. 

Target system interrupts are invisible to programs executing in 
the EM-800 internal environment. For this reason, it is not possi­
ble to write Code Function programs that directly work or test 
your interrupt system. Nevertheless, it is possible for a Code 
Function program to test or work with interrupts as follows: 

1. The internal Code Function program, when it begins exe­
cuting, first copies the interrupt portion of the routine to 
target system RAM. (If no RAM is available in the target 
system, the RAM Overlay may be used.) 

2. The Code Function program sets up one of the breakpoint 
comparators to facilitate re-entry into the internal 
environment. 

3. The Code Function program sets up the re-entry jump 
address in order to gain control after the breakpoint occurs 
(See Section 8.5.4). 

4. The Code Function program transfers control to the program 
copied to the target system. 

5. When the breakpoint occurs, the internal pro9ram may read 
results left in RAM by the target system routine and take 
whatever additional action is desired. See Section 8.5.3. 

Two examples of Code Function programs are given in this sec­
tion. The first example is a very simple routine that writes a 
range of target system memory to zeros. 

8-25 



EXAMPLE 1: 

, 
;INITIAlIZE-

ORG 2000H 
JP CODEO 
JP XECUTE 
JP XECUTE 
JP XECUTE 
JP XECUTE 
JP XECUTE 
JP XECUTE 
JP XECUTE 
JP XECUTE 
JP XECUTE 

;CODE 0 ENTRY 
;CODE 1 
:CODE 2 
:CODE 3 
;CODE 4 
;CODE 5 
:CODE 6 
;CODE 7 
;CODE 8 
;CODE 9 

CODEO LD HL, 6000H ;INITIALIZE MEMORY POINTER 
LD B,OOH ;INITIALIZE BYTE COUNT 

, 
;NOW LOOP TO CLEAR EACH TARGET MEMORY LOCATION 
:FROM 6000H to 60FFH 
C1 SUB A 

CALL STM 
INC HL 
DEC B 
JP NZ, C1 

, 
XIT TO CONTROL PROGRAM 

JP XECUTE 
, 

;CLEAR ACCUMULATOR 
;STORE TO TARGET SYSTEM 
;INCREMENT TO NEXT ADDRESS 
;DECREMENT BYTE COUNT 
;LOOP UNTIL COUNT EOUALS ZERO 

;DEFINE SUBROUTINE ADDRESSES 
STM EOU 1000H 
XECUTE EOU 1025H 

END 

This example illustrates the following pOints: 

1. The program originates at location 200016 because this is the 
start of the address range allocated for the Diagnostic 
PROM. 

2. The first instruction tells the program to jump to the actual 
starting point of the CODE 0 program. This jump instruction 
provides room for the other entry pOints, each having its own 
jump instruction. In this simple example, only one Code 
Function is implemented; consequently a full set of jump in­
structions, as shown, is really not needed. Notice the CODE 
o entry point has a jump instruction to the program; all other 
entry points jump to a routine labeled XECUTE. The XECUTE 
routine is one of several ways to exit a Code Function, giving 
control back to the Diagnostic Emulator firmware. A RET in­
struction could also be used. 

3. The Code· Function program is written in standard NSC800 
assembly language. 

8·26 



4. Whenever the Code Function program wishes to access the 
target system memory space, it may most easily do so by 
using subroutines already present in the Diagnostic Emulator 
firmware. In this example, the STM subroutine is called to 
perform the write operation to the target system. 

5. When the Code Function program has finished executing, it 
returns control to the Diagnostic Emulator firmware by jump­
ing to the XECUTE routine. 

6. The EaU statements inform the assembler of the addresses 
of routines within the Diagnostic Emulator firmware- in this 
case, the addresses of the STM and XECUTE entry points. 

EXAMPLE 2: 

The second example is a scope loop program. This program 
rotates a bit through all eight positions of an output port. The 
port address used is selected as is usual for other built-in func­
tions. The routine outputs a synchronizing pulse to the BKPT A 
output pin of the auxiliary connector just before rotating the bit 
and outputs a pulse to the BKPT B output pin after it has moved 
the bit through all eight positions of the output port. This 
program loops indefinitely and must be terminated with the 
RESET Key. 

CODE 0 
, 

ORG 2000H 
JP CODEO 
LD Sp, 03060H ;SET UP STACK 

;OUTPUT START PULSE TO BKPT A OUTPUT-
C1 LD A, OFFH 

, 

LD (034COH), A ;TURN BKPT A ON 
SUB A 
LE (034COH), A ;TURN BKPT A OFF 

;ROTATE BIT THROUGH OUTPUT PORT 

C2 

, 

LD A,030FDH ;PICK UP PORT ADDRESS 
LD C, A 
LD A, 01H 
CALL STIO 
ADD A, A 
JP NZ, C2. 

;SET ACCUMULATOR BIT 
;OUTPUT TO TARGET PORT 
;SHIFT BIT LEFT 

;FLOW HERE WHEN THE BIT HAS SHIFTED OUT 
;OF THE ACCUMULATOR. NOW OUTPUT THE STOP 
;PULSE TO THE BKPT B OUTPUT. 

, 
;NOW REPEAT 

, 

LD A. OFFH 
LD (034C4H), A ;TURN BKPT B ON 
SUB A 
LE (034C4H), A ;TURN BKPT B OFF 

JP C1 

;DEFINE SUBROUTINE ADDRESS 
STIO EQU 1006H 

END 

8·27 





SECTION 9 
SUPPLEMENTARY INFORMATION 

9.1 AUXILIARY CONNECTOR 
9.2 OPTION SWITCHES 
9.3 SERIAL INTERFACE 
9.4 UPLOADI DOWNLOAD PROTOCOL 
9.5 EXTERNAL BREAKPOINT 
9.6 TRACE HOLD 
9.7 SIGNATURE ANALYSIS 
9.8 SOFT SHUTDOWN 

9-1 



Pin 7 ,Signal Ground: Connected in the EM-800 to the system 
logic ground. which is isolated from the protective 
:grol-And (Pin 1). Note, however. that this ground is con­
f)~cted to the emulator probe ground pin: then when 
,t~e EM-800 is connected to the target equipent. the 
target system logic ground and the EM-BOO logic 
g'found are connected together and to the ground 
system of the equipment plugged into the Auxiliary 
Connector. 

Pin 10 External Break·ln: A TTL level input with an internal 
3.3K pull·up resistor. If this input is pulled low, the 
Diagnostic Emulator stops executing the target pro­
gram as though STEP were depressed or an Internal 
Breakpoint were detected. (If the Diagnostic Emulator 
is already in PAUSE, this has no effect). This input 
stops execution even when the breakpoints are not 
enabled. 

Pin 11 Trace Hold (In): A TTL level input with an internal 3.3K 
pull·up resistor. If the Diagnostic Emulator is executing 
a target program and this input is pulled low, further 
updating of the Trace Memory stops, although the pro­
gram continues to execute. The contents of the Trace 
Memory are effectively frozen, and can be reviewed 
later after program execution has been halted. 

Pin 12 BKPT A and SA START (Out): A TTL level output pro· 
viding a high·going pulse at the time breakpoint condi· 
tions are satisfied for the Breakpoint A Comparator. 
This signal can be used to trigger an oscilloscope at a 
particular point of program execution. It can also be 
used as the START signal for a signature analyzer. This 
signal may be set high or low under software control 
when the Diagnostic Emulator is in PAUSE. This per­
mits diagnostk routines to generate sync pulses or 
signature analyzer START signals under direct program 
control. 

Pin 13 BKPT B and SA STOP (Out): A TTL level output 
associated with the Breakpoint B Comparator. It is 
functionally identical with the BKPT A signal described 
above. 

Pin 20 DATA TERMINAL READY: This signal is driven to a 
nominal + 12 volts to indicate that the EM-800 is ready 
to send data. Its signal state does not change. 

Pin 22 RUN (Out): A TTL level output that is active (low) if the 
EM·BOO is executing the target program or accessing 
the target address space. 

.. Pin 23 + 5 VOLTS (Out): Loading should not exceed .5 amp. 

Pin 24 GROUND: This is the return line for the + 5 volts 
available on Pin 23. This line is internally connected to 
the signal ground (Pin 7). 

Pin 25· SIGNATURE CLOCK (Out): A TTL level output signal 
(RD) from the CPU. It is primarily used as a clock for 
Signature analysis testing of equipment for which the 
EM-800 provides the stimulus. 

9·3 



9.2.1 OPTION JUMPERS When you are using interrupting devices during your tests, you 
will have to set the option jumpers that are located in the pod. 
The option jumpers allow devices that use mode 2 interrupts 
and require an RETI response (such as PIO and SIO chips) to 
function properly. Set the option jumpers as follows: 

Figure 92·1 
Option Jumpers 

l 

JP2 JP3 DRIVE RAM OVERLAY DATA TO 
TARGET SYSTEM ON, READ CYCLES 

2·3 

2·3 

1·2 

1·2 

2·3 

1·2 

2·3 

1·2 

No 

Yes, M1 cycles only* 

No 

Yes, all READ cycles* 

*Allows the instruction located in RAM overlay in the emulator to 
be sent to the target system. 

The following figure shows the location of JP2 and JP3. To set 
the jumpers, simply insert a shorting jumper as needed for your 
application. You can, in effect, store the jumper on the 2·3 con· 
nection when mode 2 interrupts are not in usa 

JZ 
~ ",'1.-'_' '_'_' ____ --' 

~+EJ~ 
~ .,. " 

l;j ••••••• ( &3~ 
tit'!' •••... 1 !I,,, ... of 

~ 
~ '---'---

• elll~· ,,' EfrT'=:=:J 

jlJI n 
iI 
L,; 

c .. 

~ o·'n 11111 ~ '"~ 

"'0 "::: LJ 
'J_ 
(I)" 
(I)" 

II 
~i 

.". r" u. 

.:. 
'J 
(Jl 

11,d:! ' 
,a' "-~" .~ 

g:I.I,;;::, ==::::J D 
[3 

JP2 

9·5 

, +0 ~ •. "'~, ==D ~=:=:J . II I. ;lIz elbCllr 

: .. [] uD~D 
Ula 

o 

.... 
I • 

• 111 

JP3 

ullZ 

Ii 
I I u 

" 

• > 

:x • 
II :: 



Figure 9.3-1 
Serial WcJi'{j' Format 

9.4 UPLOAD/DOWNLOAD 
PROTOCOL 

·12V 'START> DIP! 01 02 03 04 OS 06 07 STOP START 00 Jl ... · .. ,.-r--r---i---r--'--- .. I--1--1 
, .'1 I , : I I t 
-j I I I I I I ... ; ....... _~ 

-.12V ''--;~=i-~-I=------------

I ' lime of one dala element or "baud" 

Swit~h PosiUof,l Baud Rate . . '.,. ; : ',' ~,' , 

0 50 20 mSEC 
C 75 13.33 
0 110 9.09 
B 134.5 7.43 
'1 .150 6.67 
A ~ r 200 5 
2 300 3.33 

·9 600 1.67 
4 1.200 833 uSEC 
5 1.800 556 

3.8 2,400 417 
6 4.800 208 

.7 9.600 104 
E.F 19.200 52 

The EM-800 routines CODE C3 and CODE C4 initiate routines to 
Iqad ~,~e target memory space with data from the serial link or 
dump data from the target address space to the serial link. The 
format used to transfer the data is compatible with the Intel 
family of development systems. 

ffi 
~ a: l­
e( Z 
Q ~ ~ Q ..., W a: 
~ w a: Ow . 

DATA RECORD 

I- Q Va. 

~ ,~ ~ ~~ DATA 
;---., ... ,....-"'--.., ..... 

START CHARACTER 
As ASCII colon is used to signal the start of a record. 

BYTE COUNT 
Two ASCII characters representing hexadecimal digits giving the 
number of data bytes in the record. 

9-7 

, -- .. 
I 
I 
I 
L __ ". 



9.5 EXTERNAL 
BREAKPOINT 

Figure 9.5·1 
Timing Relationships 

The EM-8oo Diagnostic EmulatQr is provided with an input that 
permits an external signal to hal't tl1e-'execution of the target prQ: 
gram when the EM-8oo is in the R,UN mode. Pin 10 of the back 
panel Auxiliary Connector (J3) is the input connection. External 
Breakpoint is a TTL level inpufwith a 3.3K resistor pull up to 
+ 5 volts. If this input is in the high state, or if the input is left 
open, then the EM-8oo will run the target program in the normal 
manner. If this input is pulled low, the target program will halt; jf 
the target program is already halted, the External Breakpoint 
signal will have no effect. 

The EM-800 samples the External Breakpoint input at the low-to­
high transition of the clock that begins thai'final T-state of an 
instruction. If the signal is low at the sample time, the signal is 
entered into the Trace Memory, thus marking the cycle during 
which the signal was detected; circuitry in the EM-8oo is also 
armed to halt program execution after completion of the current 
instruction. When the target program has been halted, the 
EM-8oo firmware will determine which cycle of the last instruc­
tion caused the breakpoint and the Trace Memory will be posi­
tioned to display that cycle. Figure 9.1-5 shows the timing rela­
tionships of the External Breakpoint signal. 

You can also use a logic analyzer as a trigger for the External 
Breakpoint to expand the breakpoint system. The logic analyzer 
supplies the trigger based on what it is looking at (address bus, 
line bus, etc.). 

The External Breakpoint system can also be used in a 
multiprocessor debugging situation, where you are using two or 
more emulators; if one emulator reaches a breakpoint, it may be 
configured to breakpoint the other emulator(s). 

...... -- .. last T State 

ClK 

External Breakpoint 

Set-up: 150 nSEC MIN I 
~...-- Hold: 0 NSEC MIN 

SET·UP PRIOR TO lOW-HIGH TRANSITION OF ClK: 
150 nSEC MINIMUM 

HOLD TIME AFTER lOW.HIGH TRANSITION OF ClK: 
o nSEC M.JNIMUM 

g.g 



9.6.1 WINDOW MODE 

Figure 9.6-2 
Window Mode Circuit 

9.6.2 SELECTIVE 
TRACE 

Figure 9.6·2 shows a schematic of a simple external circuit that 
may be used to implement window mode operation of the Trace 
Memory. This circuit controls the Trace Hold input of the EM·800 

'so that-ot'll-y bus activity occurring between the Breakpoint A 
address a~tb.e...BreakPoint B address is recorded. 

OFF 

74LS27 

BKPT A 12 1------+----\ 

BKPT B 13 

·RUN 22 

+- 5 VOLTS fEJ 1 .. +-5 

.1 

J 
Trace from Address A to Address B 

External circuitry may be designed for a variety of selective trac· 
ing functions. An example is an application in which it is desired 
to use the capacity of the Trace Memory to capture cycles writ­
ten to a particular I/O port; the flO port select signal (port 
decode) may be routed to the Trace Hold input to permit Trace 
Memory operation only when the port select signal is active. 
When execution is halted and the Trace Memory content is 
reviewed, only bus cycles to the I/O port will be seen. 

9·11 



~ AD<7:0> 
RZZZZI 

--c:.- r- Address 
latch 

'-- 1---1 

EM·800 
-r- A<7:0> 

A< 15:8> 
ROM 

ALE 
1 

~ 

'" 

~ 

Device 
Enable 

i 

I ,:';,; 

i 

ROM RAM 110 
2 

~~ ~~ 
, , 

P- F>- ',' ~ 
" 

.' , 

l000·17FF 

1\ 
<0' 
c 

~~~ 
0'3 ~
a~.:..
"'O~

alii'
00.
CD
III
III o ...
o
iii'
10
iil
3

:'th10~M~80o~~t~b"hasa built-in test function for obtaining a
signa:ture of a ROM in a system, and no signature analyzer is

'",.need, ',d~~TJilf,' t"~, ~s' set up by entering the first and last address
i,'9J, U1,,~ i.tJtflthe BEG and END registers of the EM-800 to
" ~~tftt~·thEt'f~h,ge,over which the routine will operate. Then start

the routine with the keys for CODE 03. The routine will execute
and then 'display a four-digit hexadecimal signature on the
EM:800 fronq;anel. The signature obtained' does not have any
,s.mph~ relationst:'tlp to signatures obtained with the HP 5004A;
for one thing, the' CODE 03 algorithm operates on all eight data
bits of 'the ROM Word simultaneously while the eight Signatures
obtained by t~e 'f:i'F;l 5C04A for a ROM are computed from one
"bit"slice" of tn1f'FIQfy1 at a time. In addition, the generating
polynomial:J.isedby the EM-800 routine differs from that used by
the HP SOO4A: '!ee Section 7.4 for additional information.

" l;' .: ~

Other routines that are programmed in the EM-800 Diagnostic
"Em'iJr~t9r fTitii.,Qkuseful as stimulus routines for signature
analysis testing. The CODE B4 routine repetitively stores a data
pattern and fhe':complement of that pattern to a selected
address. An I/O' port, such as the one shown in Figure 9.7-1, may
be tested by storing the complementing data to the 1/0 port and
observing'the signatures obtained at the output side of the I/O
port. '

In special cases, you may have to write custom CODE function
routines to stimulate a system in a way that useful signatures
may be obtained. As an example, consider the problem of obtain­
ing a signature at the outputs of an LSI interface chip such as
the Zi!og PIO. This device requires that various control registers
and data direction bits be set up for the intended application
before data transfers are performed. A custom Code Function
routine can easily perform the desired set-up and then generate
the ,sti~ulus for signature analyzer probing.

For additional information on Signature Analysis testing, see the
following publications:

1. "Hexadecimal Signatures Identify Troub/espots in
, Microprocessor Systems," Gary Gordon and Hans Nadig.
ELECTRONICS, March 3, 1977.

2. Application Note 222, ':4 Designer'S Guide to Signature
Analysis," Hewlitt Packard Corporation.

9-15

SECTION 10 , , .
MAINTENANCE & TROU'S~~E,SHocrrING

," ... ,., .. ft

10.1 MAINTENANC~~:·. ,:,
10.1.1 Power~~ly
10.1.2 Cable.; -',
10.1.3 Probe -'r,p,~sernbly:

10.2 TROUBLESHOOTING
10.3 PARTS LIST

10-'

. Itu:LPro'beJEi:f;LA,semblyis the small DIP header assembly that
plugt;,~W·j·M~.~;ystem CPU socket: The most obvious area
to inspect is the40~pln adapter as the pinS can be broken during
lris$rtfo}it:'.~r\;,e,; ' n.ll one of the pins should be inadvertently
btGk-ef('iyBl:rf¥lfftl~:'feplace the complete 40-pin adapter.

NOTE:

~~t,,~RjIJadapter can be protected by
inslaIUi:wfa CPU socket (male-female) onto
the 4ll;pyr ~dapter. If a pin is then broken on
the 'CP(F'soeket, it is easier to replace
-QeUStlSE! af its common usage.

. ~'~::r!:~~"': .
You should a1$0 i.!lspect the probe tip assembly to see if any of .
the Ya watt fe'sfstors"have been broken,

NOTE:

:".£)u:~tO·itH! close physical tolerance sur­
r~dih.~dh~ Va watt resistors, we recom­
mend that they be returned to the factory for
repair.

10.2 TROUBLESHOOTING Troubieshooting m.eroprocessor-based equipment can be a com­
plex process, due mainly to the complex nature of several
peripheral de'liCes, such as the data and address lines. To assist
you in identifying the faulty PC card or possibly a component,

. L~?~lndtf~a~~fb~~~LtII:rge~~~b~~~~o;~~~i~~s~r~~~~~s~::de to

t ._ .so

perform any specific test., you should refer to the description in
SeCHdn 7. 'Before staitfflg troubleshooting procedures, be sure
that intercol1neCtca&~ are installed properly in a compatible
target. Sy~t~~; wi~h p6~er,~pplied to both the target system and
the emulator.· .,' .

The most&ffi~oh problems encountered are listed in Table 10-2.
We rec6mm~ndthat y6u;contact the Technical Services Depart­
m:ent 6f Applied Micros),stems Corporation if you experience any
probrems that do not fall within this range of items.

NOTE

We do not recommend a component-level repair in the
field,uhless performed by a qualified service engineer .

10·3

10.3 PARTS LIST

SYMPTOM pds_t.~A"se. ~:;,'
~"'.~:':-:. '~J!;; .~~·r~ i:',':' "!t",>.:;.:~~;';":~; :

5. *,,\~»::piltiO:O int~r.c()nnect
'.: \,,:,.,,:;c~~~ .q~n'!\~Ft?r:,:, :,T"':"

6. RAM Overlay switch On but
melT\ory n,ot pro~ramm'ed 5.3

7. No clock in target system 3.3
...... ;., . .!,..,. ,: . .,.., .~ ~ "~ .. ~,,,,,. , •

'8:,'\;:'" N,!S:~'q~!.(+ 5 vol1s)i,n target
, ":",'S$1e'm"Y

,-" ,X:,"':!,"
9.;~ :,O'p~n,\ switches set .improperly 9,2

10 . .- 'E~til'~t~l;~M target system not
compatible 1.1

J . • ',.1", .' ,',' :\:::' '~1{;."'"

11·.;C!,'R'YNI~~r;bad " ;;;,
12. Constant target reset 3,3

13. Target system haS one or mo'r-e
.< SMA··:d~jce$ requesting the

,,' irtiusr(E)(ample: ausReq line =
:;:i~;rfl,;l~l : ' ,

·Call Applied Microsystems (Techr7ic/fl1 Services Depa,.rmer:W

•• Check Target System

The following parts attr:~'I~~'~for:.Xo,~·'tq',o~cJer:

40·Pin AdaRt~(.':::2io.'i~1,d .~,
Short cabl~'.St;~,'SoQ~11284 ,',

.:3 ! .. ' 'N ,'" :~' ~~: ".~. .~: ;~. 't
Long Cable Set 600·1oe.!5a,:01

Key Switc~ p~O.1Q:1.~8 I:,

Hex Display~':'t:~. I~70~10009'~":
, • ~. "'>:11. .':''< ', ~,,;. , -- ",

10·5

.. 11 1 I U I I • [. J

APPEN',DIX A;, NU,IJIJ·,r~FrG'ET - A' SOFTWARE
SIMlJLATION' TO()L~~ .

A.3 IN'StAliATION:'

Figure A·1 .
Installing the Null Target

The Null Tar~t~f~i:~~~ire siin1tIati6n tB8t comes as a stan­
dard ~e~'i;r~,',Wit!tJ:~H~qtltR' EM-Series -Oiagnostic EmUlators with
the ~xceptlon'~fth~'8!Jeo,~, 6802, and 6808. The Null Target
allows softwaf'ff~~ieH:t"bped in parallel"'with hardware. This

c. Je,~(~r~,is,R>" ·'·bJ.e·~~~',-the Null TarQet supplie'S all of the
. ~gna\s n6' td dpefate the emulator In a stand alone mode.

. '~ .• ~'. :.;':;.~~; !J: ~ ~~ ~'.; 1:l\~'~ j:r"t' • t~ ,":' .
TI1$ N~!I_ -glrQ.et,!!~q:1Mio~~;,easy program debugging. By
downtC>adiFlg:$mtWa":tt~the RAM Overlay Memory, programs can
~~)t;1§6Jl.gt;e'~,'+J.~itfW+~Ulators br~ak~oint system:

"S~Qr:of;ltioe$:canal!ip.: ~'t~ted and fmaHzed,decreaslng the
'}Hr1ijjf1"bf{rr6fl(l>q~t1tr~.f 'ilied' to be fixed when hardware' and soft­

ware ate integrated. "

The Nuil"Target 'consists:-'of'tliebox 'itseif and a five-pin strip
that attaches to the:emulator probe. '

Installafio'n of your NbH';rarget system is a simple process. First,
attach: 'thefive·pin strip'tc{'the emulator probe and then insert
the other enetof the fiv&ptn'strip into the socket on the Null
Target as shown in FigurE(A·1.

NOTE

To 'operate the' EM-800, the target
microproc$ssor chip must be installed in the
pod socket.

Pln1 __ ~~

Null Target

A·1

. ktfi,Ql;,Ut. :aiHW;.aS Ii

APPENDIX B .. e ,~
SYSTEM ERROR CPDll

ERROR (:0,01;,"
'lt~~' ':,., '·,.·!'·'.i~'

1}

i;$;:.
Ir.''; .

,i·r',

12

,13,
2;'h
~2;

••• ... ~.... ,1'Iol 4'0 y., ".~

6·1

L

;=nr;=-

.~~£~. SLit.,··

INDEX
, :.'

A

Auxiliary connector, 2-5, 9-2

B
Back panel controls, 2·5
Baud rate selector switch, 2·5
Breakpoint system, 4·6
Breakpoint comparators, 8·13

C

Cables, 1·3, 2·3, 10·2
Check byte, 9·8
Chips, LSI interface, 4·15, 9·5
Code functions, 7·2
Connection to targeCequipment, 3·2
Communications, 9·2
CPU registers, 4·11

o
Data transmission, 9·2
Default parameters, 7'18
Diagnostic EPROM socket, 2·2
Diagnostic functions, 7·2
Disassembler, 2·5
Disassembly format, 6-3
Display panel, 2·3
Displays, front panel, 2·3,4-4
Downloading

E

Protocols, 9·7
Protocol selection, 9·4
RAM overlay from front panel EPROM, 5·7
RAM overlay.from serial link, 5·8
RAM overlay from target memory, 5·8

Emulator probe, 2·2
. Entry to user code functions, 8·15

EPROM socket, 8·4
Error Codes, 7·11, 8·1
Examine and store, 8·17
Examination and alteration

CPU registers, 4·11
Memory locations, 4·13
110 ports, 4·15

External breakpoint, 4·15
Execution and control, 4·2

F

Flags, 6-5
Format definition, disassembly, ~3
Functions, EM·800, 4·2 ..

G

Getting started, 3·2

H

Hexadecimal displays and trace memory, 8-9

110 devices, 8·6
1/0 ports, 4·15
installing RAM overlay, 5·4
Interface chips, 9·5
Introspection mode, 7·19, 8·16
Internal environment of EM·SOO, 8·3
Interrupts, 8-6

J

Jump, re·entry, 8·19, 9·14

K

Keyboard, 2·2, 8·7

L

LSI interface chips, 4·:15, 9·5

M

Main power switch, 2·5
Maintenance, 10:2
Memory

Map, 8·3
Overlay, 8·2
Trace, 4·10

Memory tests, 7·4

N

Null target, A·1

·0

Operator's station, 2·3
Option jumpers, 9·5

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-03
	09-05
	09-07
	09-09
	09-11
	09-13
	09-15
	10-01
	10-03
	10-05
	A-01
	B-01
	I-01

