CP/M 2.2 OPERATING SYSTEM REFERENCE GUIDE

820-11 PERSONAL COMPUTER

Copyright©l982 Xerox Corporation. All rights reserved 9R80448

This equipment has been certified to comply with the limits for a Class B computing device,
pursuant to Subpart J of part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

This equipment generates and uses radio frequency energy and if not installed and used
properly, that is, in strict accordance with the manufacturer's instructions, may cause
interference to radio and television reception. It has been type tested and found to comply
with the limits for a Class B computing device in accordance with the specifications in
Subpart J of part 15 of FCC Rules, which are designed to provide reasonable protection
against such interference in a residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause
interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one or
more of the following measures:

Reorient the receiving antenna.

Relocate the computer with respect to the receiver.

Move the computer away from the receiver.

Plug the computer into a different outlet so that computer and receiver are on
different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician
for additional suggestions. The user may find the following booklet prepared by the Federal
Communications Commission helpful.

"HOW TO IDENTIFY AND RESOLVE RADIO-TV INTERFERENCE PROBLEMS"

This booklet is available from the U.S. GOVERNMENT PRINTING OFFICE,’ WASHINGTON,
D.C. 20402, STOCK NO. 004-000-00345-4,

™
Xerox® and 820-I are registered trademarks of Xerox Corporation.

Zilog and Z80 are trademarks of Zilog Inc.; with whom the publisher is not associated.
CP/M is a registered trademark of Digital Research Incorporated.
Portions of this manual are reproduced by permission of Digital Research

Incorporated, Pacific Grove, California.

ii

TABLE OF CONTENTS

INTRODUCTION

Disk Drive Options

Floppy Disks

Configuring the 820-II

Utilities and Programs
Applications Software

ROM Level

Software Serial Number and Level

FEATURES & FACILITIES
Introduction
Functional Description of CP/M
General Command Structure
File References
Switching Disks
The Form of Built-In Commands
ERA afn cr
DIR afn cr
REN ufnl=ufn2 cr
SAVE nufn cr
TYPE ufn cr
Line Editing and Output Control
Transient Commands
STAT cr
ASM ufn cr
LOAD ufncr
PIP cr
ED ufn cr
SYSGEN cr
SUBMIT ufn parm#! ... parmin cr
DUMP ufn cr
MOVCPM cr
BDOS Error Messages
Operation of CP/M on the MDS

USER'S GUIDE

An Overview of CP/M 2.0 Facilities
User Interface

Console Command Processor (CCP) Interface
STAT Enhancements

PIP Enhancements

ED Enhancements

The XSUB Function

BDOS Interface Conventions

CP/M 2.0 Memory Organization
BIOS Differences

ALTERATION GUIDE

Introduction

First Level System Regeneration
Second Level System Generation
Sample Tetsys and Putsys Programs

Diskette Organization

iii

CO0ON U Wi

N O RN N ONWWW

The BIOS Entry Points 14

A Sample BIOS 21
A Sample Cold Start Loader 22
Reserved Locations in Page Zero 23
Disk Parameter Tables 25
The DISKDEF Macro Library 30
Sector Blocking and Deblocking 34
Appendix A 36
Appendix B 39
Appendix C 50
Appendix D 56
Appendix E 59
Appendix F 61
Appendix G 66
INTERFACE GUIDE
Introduction |
Operating System Call Conventions 3
A Sample File-to-File Copy Program 29
A Sample File Dump Utility 34
A Sample Random Access Program 37
System Function Summary 46

ASSEMBLER (ASM)
Introduction
Program Format
Forming the Operand
Labels
Numeric Constants
' Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Operators
Assembler Directives
The ORG Directive
The END Directive
The EQU Directive
The SET Directive
The IF and ENDIF Directives
The DB Directive
The DW Directive
Operation Codes
Jumps, Calls, and Returns
Immediate Operand Instructions
Increment and Decrement Instructions
Data Movement Instructions
Arithmetic Logic Unit Operations
Control Instructions
Error Messages
A Sample Session

ot et ot et et b fmt bt et et s bt bt
NAOANAMFEFTFTVWONNFOOOVUVWOONANANNNETRTREN -

ASSEMBLER (MACRO-80)
Introduction

[
]
[aa—

iv

MACRO-80 Assembler 2-1
Running MACRO-80 2-1
Command Format 2-1
Format of MACRO-80 Source Files 2-5
Expression Evaluation 2-8
Opcodes as Operands 2-10
Pseudo Operations 2-11
Macros and Block Pseudo Operations 2-25
Using Z80 Pseudo-ops 2-33
Sample Assembly 2-34
MACRO-80 Errors 2-35
Compatability with Other Assemblies 2-36
Format of Listings 2-37

LINK-80 Linking Loader 4-1
Running LINK-80 4-1
Command Format 4-1
Format of LINK Compatible Object Files 4-7
LINK-80 Error Messages 4-10
Program Break Information 4-11

TEKDOS Operating System A-1
TEKDOS Command Files A-1
MACRO-80 A-1
CREF-80 A-2
LINK-80 A-2

CONTEXT EDITOR

Ed Tutorial |
Introduction to ED 1
ED Operation 1
Text Transfer Functions 1
Memory Buffer Organization 5
Memory Buffer Operation 5
Command Strings 7
Text Search and Alteration 8
Source Libraries 11
Repetitive Command Execution 12

Ed Error Conditions 13

Control Characters and Commands 14

DEBUGGING TOOL
Introduction
DDT Commands
The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Command
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command
Implementation Notes
An Example

QWO NNITTOTA NN ET T FTWVWW—

—

GENERAL PROGRAMS

SYSTEM CONFIGURATION UTILITY
Record Restart Command
Select Printer Port Options
Select Communication Port Options
Select 1/O Device Assignments
Select Keyboard Data Format
Select Screen Attributes
Select Floppy Disk Head Step Rate
Configure Rigid Disk

BACKUP
List Directory
Backup Files
Replace Files
Verify Disk Integrity
Delete Files
Exit to CP/M

HOST TERMINAL

KILLESC

SWAP

TIME AND DATE

SCREEN PRINT

SET

SYSTEM COMPONENTS
620 PRINTER (20 CPS)
Introduction
Unpacking
Installation
Familiarization
Preparation for Operation
Installing a Printwheel
Installing a Ribbon Cartridge
Inserting Paper or Forms
Operating the 620 Printer (20 CPS)
Special Considerations
Cleaning Printwheels
Cleaning the Platen and Paper Rollers
Cleaning the Card Guide
Setting the Switches Under the Front Cover
Using the Control Panel Switches
Specifications
630 PRINTER (40 CPS)
Introduction
Unpacking
Installation
Familiarization
Preparation for Operation
Installing a Printwheel
Installing a Ribbon Cartridge
Inserting Paper or Forms

Paper Thickness/Print Intensity Adjustment

Operating the 630 Printer (40 CPS)

vi
6/1/82

N
NNNNNNNNDN -

NNDNN
W www

w NN
W w

= £ WwWw
— O \0 \0

+~
—

Special Considerations
Cleaning Printwheels
Changing Ribbons During Operation
Cleaning the Print Hammer
Setting the Switches Under the Front Cover
Setting the Operating Switches
Reading the Control Panel Indicators
Specifications
FORMS TRACTOR (630 Printer - 40 CPS)
Installation
Removal
Loading Paper
PARALLEL PRINTER INSTALLATION KIT
DAISY CHAINING DISK DRIVES

REFERENCE
SYSTEM RESIDENT MONITOR
Monitor Command Summary
Display Memory Command
Modify Memory Command
Extended Memory Command
Fill Memory Command
Copy Memory Command
Verify Memory Block Command
Go To Command
Input Command
Output Command
Load System
Read Disk Sector Command
Baud Rate Command
Typewriter Command
Host Terminal Command
Protocol Command
USER ACCESSIBLE MONITOR ROUTINES AND VARIABLES
Subroutine Entry Points
Display Control Codes
Escape Sequences
Control Codes
Escape Sequences
Numeric Pad
Main Keyboard
MONITOR RESIDENT 1/O DRIVER FUNCTIONS
Interrupt Processing
Memory Mapped Video Display
Display Character Codes
Key Station Numbering and Key Codes
Parallel Keyboard Input
Disk Interface
Serial Input/Output
Real Time Clock
Parallel I/O Option
DISK FORMAT
Disk Parameters
Disk Format (Floppy Disks)
GRAPHICS

vii
6/1/82

N
<)

34
34
34
34
35
36
37
38
4l
u2
42
uy
u5
51

OO NNAANA NPT R PR WWLWN—

NNNNANDNNNDNN /- ———
A UMWV NWNNN—F=0ONOONOO

WNNN
—_ NN N

THEORY OF OPERATION
Central Processor
Clock Generator
Reset Controller
Port Address Decoding
Disk Transfer Synchronization
CRT Display Controller
Video Scrolling
Video RAM Addressing
Video Generation
Display Blanking
64K RAM and Bank Switching
Refresh
Bank Switching
CTC
System PIO
General Purpose PIO and SIO
SIO
Baud Rate Generator
Interrupt Structures
General Purpose PIO Strappings (J11) and Pin Assignments (J8)
CTC Strapping and I/O Assignments (J10)
Video Output Connector Pin Assignments (37)
Serial I/O Connector Pin Assignments Channel A (J4%)
Serial 1/O Strapping Options for Channel A (J9)
Serial I/O Connector Pin Assignments Channel B (J3)
Keyboard Connector Pin Assignments (J2)
Disk Drive Connector Pin Assignments (J1)42

DIAGNOSTICS
Preparing to Run Diagnostics on a Nem 820-II
Initialize a Disk (floppy)
Format (initialize) a Rigid Disk
Running Diagnostics

viii
6/1/82

33
33
33
33
33
35
35
35
35
36
36
36
36
36
36
36
37
37
37
38
39
39
39
40
40
41
42

0O N —

INTRODUCTION

This is your CP/M Operating System Reference Manual. An operating system is a set of
programs that controls the computer's internal operation. In this manual you will find
detailed instructions for using the CP/M Operating System on your XEROX 820-II Personal
Computer.

The CP/M Operating System is an industry standard that lets you use a variety of programs
you can purchase at software houses everywhere. Instructions for using application
programs can be found in the CP/M Handbook.

If you have not used CP/M and the 820-II before, it is recommended that you go through the
CP/M Handbook to learn how to operate the 820-II. This introduction section also gives you
basic information about using the 820-II. You may want to read through it after you finish
the handbook.

If you need more detailed information about the 820-I1I and CP/M, you'll find it in the other
sections of this reference guide. A technical description of the 820-II and ROM monitor
commands is given in the REFERENCE section of this manual. This information will be
helpful to you as a programming aid.

One final note on using the 820-II successfully:

It is recommended that you always remove your disks from the 820-I
before you turn it off. Leaving disks in the system when you power down
can permanently erase information on the disks.

DISK OPTIONS

The 820-II can utilize either single or double sided disk drives. If you're not sure what type
of drive your system has, you can check the serial number plate (located on the bottom of
the disk drives) and compare the number to the chart below. Page 3 shows the type of disk
to use in each drive.

CAUTION: When checking the serial number on the Rigid Disk Drives, don't bump or drop
the unit or you may damage the Rigid Disk.

ser+X929- 001083

Disk Drives Serial Number Disk Drives Serial Number
5%" Single Sided = X929-000-0000 8" Single Sided = X973-000-0000
5%" Double Sided= T66-000-0000 8" Double Sided = F10-000-0000
8" Rigid = U07-000-0000

INTRODUCTION

1

In addition to the number of sides on a disk, the 820-II will allow you to select the density of
the information recorded on the disk. "Density" refers to how much data can be stored on a
disk. The 820-II is designed to record in "double density", which means that you'll get twice
the amount of data on the disk as "single density". You do have the option of selecting and
using single density on the 820-II, if you so desire.

The density of a disk is determined when the disk is initialized. The INIT utility (step-by-
step instructions for INIT are in the handbook) lets you select:

Single Density, Single Side
Single Density, Double Side
Double Density, Single Side
Double Density, Double Side

=W N -

Usually, you'd select the density and number of sides you want to work with and initialize all
your disks to work that way. This is the most convenient way to work and is recommended
for anyone just learning the 820-II.

Read the rest of this page only when using:

e disks that have different densities.

e disks that have different numbers of sides.
Should this situation arise, use the following guidelines:

e Use the PIP program to copy files between disks with different densities or numbers
of sides.

© Remember that the 820-II "sets" a disk drive to work in a certain density and
number of sides when it reads the first disk you insert after loading the CP/M
software. If you want to insert another disk with a different density and number of
sides, you'll have to tell the 820-II to "reset" the drive in one of two ways:

- You can press CTRL + C to reload the CP/M software, or

- When using a floppy disk system you can tell the 820-II to pretend that the drive
has a different name. The A Drive can be referred to as Drive C and the B
Drive can be referred to as Drive D. :

For example: This means that you can put a double density disk in Drive B and
work in double density by using B as the drive name (e.g., use B:filename to
address a file on the disk). Then, when you remove that disk and insert a single
density disk, you can refer to the drive as D (e.g., D:filename) so the 820-II will
recognize the change in density. Using this method, you can switch back and
forth between densities without reloading CP/M by referring to the drive as B
and D.

INTRODUCTION
2

Should you ever want to check to see what kind of disk a drive is set to read, you can use the
WHATSA program. This program will display a list of the possible drive names (A through
H) and the type of disk that is read (logged) by each drive. Remember, the first disk
inserted and read by a drive after CP/M is loaded determines what type of disk the drive is
set for. '

It should be noted that the first drive logged 6n can be referred to as A or C. Another

floppy disk drive can be referred to as B or D. The other drive names (E through H) are used
in conjunction with a rigid disk.

FLOPPY DISKS

The disks used in the 820-II can be purchased from Xerox or from any computer or office
equipment dealer. Disks will vary in quality and type. When a disk is marked "certified" for
double density, it means that the surface is of a high enough quality to allow you to record
double density data on the disk. Disks certified double sided are a high enough quality to
prevent errors in recording on either side of the disk.

When purchasing 8" disks, specify:

e Either Single Sided (77 tracks) or certified Double Sided (77 tracks per side).

o Double Density certified.

° Soft Sectored.

When purchasing 5%" disks, specify:
e Either Single Sided (40 tracks) or certified Double Sided (40 tracks per side).
o Double Density certified.

° Soft Sectored.

USING THE COPY UTILITY

The COPY utility will copy single or double density disks. The utility will physically copy
disks that have the same density and the same number of sides (such as, single sided double
density). When copying disks or files that have different densities or sides, you would use
the PIP utility to copy your files from one disk to the other and the SYSGEN utility to copy
the operating system.

If you suspect a problem with the files being copied, use the PIP utility with the verify
option instead of using the copy utility (the copy utility will copy the problem along with the
data).

INTRODUCTION
3

CONFIGURING THE 820-11

Software Configuration

You can make changes to certain areas of the CP/M software to customize the 820-II to
your specific needs.

You can use the CONFIGUR or SET utility to change the software to operate with different
applications. The following is a list of modifications that can be made to the software using
the CONFIGUR utility:

e CP/M commands can be entered as restart commands to be executed each time that
CP/M is loaded.

e The standard printer port options may be changed to operate with different printers
other than the Xerox 620 (20 CPS) and 630 (40 CPS) printers.

e The communication port options may be changed.

e The I/O device assignments (such as Console, etc.) may be changed.

e The keyboard data format (7 or 8 bits) may be changed.

e The screen attributes (blink, inverse video, etc.) may be changed on the screen.
e The floppy disk head step rate (speed) can be changed to improve performance.

e The rigid disk may be divided into four disks.
Note: The SET utility is used to change the communications/printer baud rate.

Disk Drive Configuration (Daisy Chain)

An 8" floppy disk drive assembly (single or double sided disk drives) can be modified and
connected (daisy chained) to the back of a rigid disk drive assembly by a Xerox Service
Technician. Your system would then have three 8" floppy disk drives and one rigid disk
drive. If you configure your system with disk drives that are daisy chained, refer to "Daisy |
Chaining Disk Drives" in the System Components section (page 51).

INTRODUCTION
10/1/82 4

UTILITIES AND PROGRAMS

The following is a list and description of the most commonly used utilities and programs on

your CP/M disk.

UTILITY/PROGRAM

BACKUP

CONFIGUR

COPY
ED
FMT

HELP

INIT
KILLESC
PIP

SET

STAT

SWAP

SYSGEN

TIME

WHATSA

DESCRIPTION

Used to backup the data on a rigid disk.

Used to modify CP/M for the following particular
requirements:

restart command

printer port options
communication port options
I/O device assignments
keyboard data format
screen attributes

floppy disk step rate

rigid disk partitioning

Used to make an exact copy of a disk.
Used to create and edit files.
Used to format a rigid disk prior to use.

Used as a guide for information about CP/M commands,
reference manuals, and 820-II special features.

Used to prepare (initialize) a new disk.
Used to disable the CTRL + ESC command.

Used to move a file(s) from one disk to another, and to
make copies of files.

Used to change the communications/printer port baud
rate.

Used to display the status of a disk; such as disk space and
information about the number, size, and kind of files on
any given disk.

Used to exchange logical disk drive assignments.

Used to copy the CP/M operating system onto a disk.

Used to set and display the date and time.

Used to show which logical and physical drives are in use

and what type of disks (density/number of sides etc.) are
being used.

INTRODUCTION
5

The following is a list and description of the utilities and programs which are normally used

when creating software programs.

UTILITY/PROGRAM

ASM

DDT

DUMP
L80
LOAD
MOVCPM
Mg0

SUBMIT

XSuB

DESCRIPTION

Used to translate an assembly language source file into a
hex file.

Used to load, alter and test programs written in the CP/M
environment.

Used to display the contents of a file in hexadecimal.
Used to translate a REL file into a COM file.

Used to translate a HEX file into a COM file.

Used to relocate CP/M for a different memory size.
Used to assemble the 8080 or Z-80 code.

Used to batch together CP/M commands for automatic
processing.

Used to input to programs executed in the submit file.

The following is a list of programs used only by the CP/M software and programs. You
should not erase these from the disk. '

UTILITY/PROGRAM

TERMINAL
XERBAK
XERCPY

XERMAIN

DESCRIPTION

Support file for BACKUP utility.
Support file for BACKUP utility.
Support file for BACKUP utility.

Support file for BACKUP utility.

INTRODUCTION
6

APPLICATIONS SOFTWARE

The instructions in the 820-11 CP/M Operating System Handbook told you how to load CP/M.
After loading CP/M, you can run "applications" programs on the 820-II. The applications
software may be purchased from XEROX or from other vendors.

When you use your CP/M software to run an applications program for the first time, the
program may ask you to define your system. The following information will help you answer
these questions:

Your 820-II is configured like a Televideo 950 terminal, or a Lear Slegler ADM-3A
display terminal.

Your 820-II has the choice of the following disk drives:

The 5%" single sided double density disks have 40 tracks and will have 155K of
available space.

The 5%" double sided double density disks have 40 tracks per side and will have
322K of available space.

The 8" single sided double density disks have 77 tracks and have 482K of
available space.

The 8" double sided double density disks have 77 tracks per side and have 980K
of available space.

The rigid disk drive assembly has a 8" double sided floppy drive, and an 8" 10
megabyte rigid drive. The double sided 8" drive is the same as the one above,
and the rigid disk has 1,024 tracks and has 8.192 megabytes of available space.

Always read and follow the instructions that come with the Applications
Programs.

Your software is a CP/M 2.2 Operating System.

INTRODUCTION
7

ROM LEVEL
The Xerox 820-II Basic Operating System monitor is contained in ROM on the CPU board.

To check what ROM level is in your system you would turn the 820-II on or press the RESET
button if it is already on and read the ROM version level on the screen as shown below.

ROM LEVEL

820-1I v 0.00 (C) 1982 Xerox Corp

L - Load System
H - Host Terminal
T - Typewriter

SOFTWARE SERIAL NUMBER AND LEVEL

To check the software serial number and version level you would load your software and
read the screen as shown below: '

SOFTWARE LEVEL

\ SERIAL NUMBER

Xerox 60k CP/M vers 2.20 #2-294 DCT0000000
A

INTRODUCTION
8

)0 DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (e) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Section

1.

2,

7

Table of Contents

IN‘I‘RODUCI‘IQ\I 8860000000000 00000000U0cC000GRRRRRSIORSTGS

EUNCTIONAL DESCRIPI‘Im OF CP/M 9@ 0008 S S8GOSPSAISTVINESBOBLBESEORISIGBSOIS
2.1, General Command StruCtUre ...cesccesescecccssss
2.2, File References ..ceccececcccecscccsssscsssassas

SWITCHING DISKS 9 0888800800800 006880008800808808800808800s0800

THE FORM OF BUILT—IN COMMANDS ,eccceccccascccacscncsa
4.l. ERA afn cr IE NN EFNNERNNNNNNNNENNNENRNNERNENNNNRENNENRNNRNHN]
20 DIR afn cr 9 080 8000080800800 000080000000s80000000000
3. REN Ufnl=ufn2 Cr .eecececccccsccccacccsaccnsae
4. SAVE n Uﬁl cr 08 0082800800000 000a0c080a00asssvsase
5. TYPE ufn cr 9 9 0088808800880 00008008800080s00a0880080

LINE EDITING H\ID OIJIIP[JI‘ mNTROL.....................

TRANSIENT (QOMMANDS ,cccccvesccsacsaccascscsascscsascassns
STAT cr GO S G 0O D08V B0 BB CEENN SNBSSV BIOSLBNIIBSLBSLBNEEDINDNDLSS
ASM UfN CI cececccsseccesccsecacaccscsaansscas
LmD Ufn cr 90 5000608888080 08300000s8s800008ss3000a0

PIP cr 9800600800008 000008088808808008000800800008aas00sss

ED Ufn cr S 8500000880000 0880000000000088000080000a0

SYSGEN Cr [E N RN NENEEREEFENNNENNEFNENNENERNENEFENERFNNNENYRN]
SUBMIT ufn parm#l ... PArM#n Cr seceecscssscss
DUMP ufn cr [EE R ENEEENNEENNNENNNNNENNNNENNNENNENNEN]
MOVCPM CIr 4teececcscesnscacccacscccssccancscaccs

[eANe) We)Ner e We) We)We)We)l
.

WO UTdWN -
.

Bms ERmR MESSAGES G880 8000808008008 00080080000000scc0808>

OPERATION%‘ CP/M ON THEm 9 0800600000080 0000088080s00

Page

1

3
3
3

O WO Jd

12
13
16
17
18
25
27
28
30
30

33
34

1, INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage. Using a computer
mainframe based upon Intel’s 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-80) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives. A
detailed discussion of the modifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MDS 800, several different hardware manufacturers
support their own input-output drivers for CP/M,

The CP/M monitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access, Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems, Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with wvarious
high-level lanquages. When coupled with CP/M°s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

ccp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user—defined peripherals), and can be tailored by the
user for any particular hardware environment by “"patching" this portion of
CP/M. The BDOS provides disk management by controlling one or more disk
drives containing independent file directories. The BDOS implements disk
allocation strategies which vrovide fully dynamic file construction while
minimizing head movement across the disk during access, Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files, The

BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations,

CLOSE Close a file after vprocessing,

RENAME Change the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further
operations,

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section.

The last segment of CP/M is the area called the Transient Program Area
(TPA)., The TPA holds programs which are loaded from the disk under command of
the CCP, During rrogram editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program. That is, once a user’s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area, A "bootstrap” 1loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard enviromment by changing the peripheral
drivers to handle the custom system,

2. FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console, In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives), These disk drives are labelled A, B, C,
and D, A disk is “"logged in" if the CCP is currently addressing the disk., 1In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"
indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m,m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.,m is the CP/M version number, All CP/M systems are initially set to operate
in a 16K memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient command), Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk "A"), and waits for a
command. The cammands are implemented at two levels: built-in commands and
transient cammands,

2.1, GENERAL (OMMAND STRUCTIURE,
Built-in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory.

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk,

Nearly all of the cammands reference a particular file or group of files, The
form of a file reference is specified below,

2.2. FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
“unambiguous” (ufn) or ‘“ambiguous" (afn). An unambiguous file reference
uniquely identifies a single file, while an ambiguous file reference may be

satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a "." as shown below:

POPPPPPP.SSS

where pppppppp represents the primary name of eight characters or 1less, and
sss is the secondary name of no more than three characters, As mentioned
above, the name

DPPPPPPP
is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<>, 0= 2% []

while all alphanumerics and remaining special characters are allowed.

An ambiguwous file reference is used for directory search and pattern
matching, The form of an ambiguous file reference is similar to an
unambiguwous reference, except the symbol "?" may be interspersed throughout
the primary and secondary names, In various commands throughout CP/M, the "?"
symbol matches any character of a file name in the "?" position. Thus, the
ambiguwous reference

X?Z ,.,C?2M
is satisfied by the unambiguous file names
XYZ7 ,COM
and
X3z .CAM
Note that the ambiguous reference
.
is eguivalent to the ambiguous file reference

while

PPPPPPPP. *
and
* ,SSS

are abbreviations for

PPPPPPPP. 2?27
and

respectively, As an example,
DIR * *

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIR X.Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambigwous reference,

The following file names are valid unambiquous file references:
X XYZ GAMMA

XY XYZ7 ,00M GAMMA,1

As an added convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
a letter A through Z followed by a colon (:)., The specified drive is then
“logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA
Z :XYZ ,00M B:X,A?M C:* ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCpP,

3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console imput, Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,
SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B,

B>DIR * ,ASM List all "AsM" files on B.
DUMP ASM

FILES ASM

B>A: Switch back to A.

4, THE FORM OF BUILT-IN COMMANDS,

The file and device reference forms described above can now be used to
fully specify the structure of the built-in cammands, In the description
below, assume the following abbreviations:

ufn - unambiquous file reference
afn - ambiguous file reference
cr - carriage return

Fur ther, recall that the CCP always translates lower case characters to upper
case characters internally, Thus, lower case alphabetics are treated as if
they are upper case in cammand names and file references,

4,1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the “">"). The files
which are erased are those which satisfy the ambiguous file reference afn,
The following examples illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned,

ERA X,* All files with primary name X are removed from
the current disk,

ERA * ASM All files with secondary name ASM are removed
from the current disk,

ERA X?Y.C?M All files on the current disk which satisfy the
ambiguous reference X?Y,C?M are deleted.

ERA * . * Erase all files on the current disk (in this case
the CCP prompts the console with the message
"ALL FILES (¥Y/N)?"
which requires a Y response before files are
actually removed),

ERA B:* ,PRN All files on drive B which satisfy the ambiguous
reference ??2????2??.PRN are deleted, independently
of the currently logged disk,

4,2, DIR afn cr
The DIR (directory) command causes the names of all files which satisfy
the ambiguous file name afn to be listed at the console device, As a special
case, the cammand
DIR

lists the files on the currently logged disk (the command "DIR" is equivalent
to the cammand "DIR *,*"), Valid DIR commands are shown below.

DIR X.Y

DIR X?Z,C?M

DIR ?2?2.Y

Similar to other CCP commands, the afn can be preceded by a drive name,

The following DIR commands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X.Y

DIR B:* ,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message “NOT FOUND" is typed at the console.

4,3. REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl)., The CCP also allows the user
to type a left—directed arrow instead of the equal sign, if the user’s console
supports this graphic character. Examples of the REN command are

REN X,Y=Q.R The file Q.R is changed to X.Y.
REN XYZ7 ,00M=XYZ .XXX The file XYZ.XXX is changed to XYZ.COM.

The operator can precede either ufnl or ufn2 (or both) by an optional
drive address, Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl, Similarly, if ufn2 is preceded by
a drive name, then ufnl is assumed to reside on that drive as well, If both
ufnl and ufn2 are preceded by drive names, then the same drive must be

specified in both cases. The following REN commands illustrate this format.

REN A:X.ASM = Y,ASM The file Y.ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=70T.BAS The file ZOT.BAS is changed to ZAP.BAS
on drive B,

REN B:A,ASM = B:A,BAK The file A.BAK is renamed to A,ASM on
drive B,

If the file ufml is already present, the REN command will respond with
the error "FILE EXISTS" and not perform the change. If ufn2 does not exist on
the specified diskette, then the message "NOT FOUND" 1is printed at the
console,

4,4, SAVE n ufn cr

The SAVE conmand places n pages (256-byte blocks) onto disk from the TPA
and names this file ufn., In the CP/M distribution system, the TPA starts at
100H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area from 10@H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:

SAVE 3 X.00M Copies 1@0H through 3FFH to X.COM.

SAVE 40 Q Copies 1@@H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 160 B:Z20T.COM Copies 10 pages (100H through @AFFH) to
the file ZOT.COM on drive B,

4,5, TYPE ufn cr

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y

TYPE X.,PLM
TYPE XXX
The TYPE command expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X,PRN The file X.PRN from drive B is displayed.

10

5. LINE EDITING AND OUTPUT QONTROL.

The CCP allows certain line editing functions while typing command lines.

rubout

ctl-U
ctl-=X

ctl-R

ctl-E

ctl-C

ctl-2

Delete and echo the last character typed at the
console.

Delete the entire line typed at the console,
(Same as ctl-0U)

Retype current command line: types a "clean line" fol-
lowing character deletion with rubouts,

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below,

ctl~-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT command), Output
is sent to both the list device and the console device
until the next ctl-P is typed.

Stop the console output temporarily. Program execution
and output continue when the next character is typed

at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT’s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key sequences shown above are obtained by depressing the
control and 1letter keys simultaneously., Further, CCP command lines can
generally be up to 255 characters in lenath; they are not acted upon until the
carriage return key is typed.

11

6. TRANSIENT QOMMANDS.

Transient commands are loaded from the currently logged disk and executed
in the TPA, The transient commands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD command definition).

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk.

LQOAD Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCp).

DDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations,

ED Ioad and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of commands for batch processing,

DUMP Dump the contents of a file in hex.

MOVCPM Regenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the wuser, As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution, Thus, the command

B:STAT
causes CP/M to temporarily “log in" drive B for the source of the STAT

transient, and then return to the original logged disk for subsequent
processing,

12

The basic transient commands are listed in detail below.
6.l. STAT cr

The STAT command provides general statistical information about file
storage and device assignment, It is initiated by typing one of the following
forms:

STAT cr
STAT “command line" cr

Special forms of the "command line" allow the current device assignment to be
examined and altered as well. The various command 1lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnkK
or
x: R/0, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start), The space
remaining on the diskette in drive x is given

in kilobytes by nnn,

STAT x: cr If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the command "STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK
STAT afn cr The command line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of 128-byte records

13

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...2),
prepeppep is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name, After listing the individual
files, the storage usage is summarized,

STAT x:afn cr As a convenience, the drive name can be given
ahead of the afn, In this case, the specified
drive is first selected, and the form "STAT afn"
is executed,

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place., When a disk if read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key

is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals “CP/M Interface
Guide" and "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are
named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device |

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M. Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:,
output goes to current LST: device)

UCl: User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

UPl: User—-defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULl: User—defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes,
The exact correspondence and driving subroutine is defined in the BIOS portion
of CP/M, In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system,

The possible logical to physical device assignments can be displayed by
typing
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

CON. = TTY: CRT: BAT: UCl:
RDR: = TTY: PITR: URl: UR2:
PUN: = TTY: PTP: UPl: UP2:
LST: = TTY: CRT: LPT: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the list might
appear as follows:

CON: = CRT:
RDR: = UR1l:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT command of the form

STAT 1d1 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr
where 1dl through 1ldn are logical device names, and pdl through pdn are
compatible vhysical device names (i.e., 1di and odi appear on the same line in
the "VAL:" command shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

STAT (ON:=CRT: cr
STAT PUN: = TTY:,LST:=LPT:, RDR:=TTY: Cr

6.2, ASM ufn cr
The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM commands are valid:
ASM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X « PRN
where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any. The PRN file can be listed

16

at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example)., Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator s quide) by removing the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro" cammand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly. The file

X HEX

is also produced which contains 8088 machine language in Intel "hex" format
suitable for subseguent loading and execution (see the LOAD command), For
complete details of CP/M’s assembly lanquage program, see the "CP/M Assembler
Language (ASM) User’s Guide."

Similar to other transient commands, the source file for assembly can be
taken from an a.ternate disk by prefixing the assembly language file name by a
disk drive name., Thus, the command

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the

source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case,

6.3. LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed, The file name ufn is assumed to be of the form

X JHEX

and thus only the name x need be specified in the command, The LOAD command
creates a file named

X .OM
which marks it as containing machine executable code., The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character “>" printed by the CCP.
In general, the CCP reads the name x following the prompting character

and looks for a built-in function name., If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x ,O0OM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can “"invent" new commands in the CCP, (Initialized disks contain the
transient commands as QOM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file ‘name is
prefixed by a drive name., Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA.HEX file must contain wvalid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA, Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard "OOM" files which operate in
the TPA. Programs which occupy regions of memory other than the TPA can be
loaded under DDT,

6.4. PIP cr

PIP is the CP/M Perivheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files, The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP "command line" cr

In both cases, PIP is loaded into the TPA and executed., In case (1), PIP
reads command 1lines directly from the console, prompted with the "*"
character, until an empty command 1line is typed (i.e., a single carriage
return is issued by the operator), Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP command is eguivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines,
The form of each command line is

destination = source#l, source#2, ... , source#n cr

where "destination" is the file or peripheral device to receive the data, and

18

"source#l, ..., source#n" represents a series of one or more files or devices
which are copied from left to right to the destination,

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O vparameter to
override this assumption), The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability., Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total command line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width),

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name, That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored, When
the drive name is not included, the currently logged disk is assumed,
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete, If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condition arises)., The following command lines (with explanations to the
right) are valid as input to PIP: '

X=Ycr Copy to file X from file Y.
where X and Y are unambiguous
file names; Y remains unchanged.

X=Y,Z2 cr Concatenate files Y and Z and
copy to file X, with Y and Z
unchanged,

X.,ASM=Y ,ASM,Z ,ASM,FIN,ASM cr Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type ASM,

NEW.ZOT = B:OLD,ZAP cr Move a copy of OLD.ZAP from drive
B to the currently logged disk;
name the file NEW,ZOT.

B:A.U = B:B,V,A:C.W,D.X cr Concatenate file B.V from drive B

with C,W from drive A and D.X.
from the logged disk; create
the file A,U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

19

PIP x:=afn cr

PIP x:=y:afn cr |
PIP ufn = y: cr 0

PIP x:ufn = y: Cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A...Z). ‘The second form is
equivalent to the first, where the source for the copy is drive y (y = A...
Z). The third form is eguivalent to the command "PIP ufn=y:ufn cr" which
copies the file given by ufn from drive vy to the file ufn on drive x. The
fourth form is equivalent to the third, where the source disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases. 1If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed uron successful completion of the copy, and
replaced by the copied file,

The following PIP commands give examples of valid disk-to-disk copy
operations:

B:=* ,QOM cr Copy all files which have the
secondary name "COM" to drive B
from the current drive,

A:=B:ZAP,* cr Copy all files which have the
primary name "ZAP" to drive A
from drive B.

ZAP,ASM=B: cr Equivalent to ZAP.ASM=B:ZAP,ASM
B:Z0T,OM=A: cr Eguivalent to B:Z0T.COM=A:20T.COM
B:=GAMMA_,BAS cr Same as B:GAMMA,BAS=GAMMA,BAS
B:=A:GAMMA,BAS cr Same as B:GAMMA,BAS=A:GAMMA,BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT command, along with a number of specially named devices, The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PTR: (reader), URl: (reader), UR2: (reader)
PTP: (punch), UPl: (punch), UP2: (punch)
LPT: (list), ULl: (list)

gNote that the "BAT:" physical device is not included, since this assignment
1s used only to indicate that the RDR: and LST: devices are to be used for
console input/output,)

The RDR, LST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system,
(The current physical device mapping is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function)., The destination device
must be capable of receiving data (i.e., data cannot be sent to the punch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 40 "nulls" (ASCII 0°s) to the device
(this can be issued at the end of punched output),

EOF : Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
143H, with data returned in location 1@9H (parity
bit must be zero).

our': Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit, Note that locations 1@9H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator ‘s manual).

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated from left to right until the last data source has been

21

read. The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension "COM"
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices), PIP will respond with the message "ABORTED"
to indicate that the operation was not completed, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT command,

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader., 1In this case, the PIP program checks to ensure that the source
'file contains a rroperly formed hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 2@ inches). When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape position cannot be properly read, simply continue the read (by tyving a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed, For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device, In this case, the PIP program reads the device and monitors the
keyboard., If ctl-Z is typed at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below.

PIP IST: = X.PRN cr Copy X.PRN to the LST device and
terminate the PIP program,

PIP cr Start PIP for a seguence of
commands (PIP prompts with "*"),

*(ON:=X,ASM,Y,ASM,Z .ASM cr Concatenate three ASM files and
copy to the CON device,

*X ,HEX=CON: ,Y . HEX,PTR: cr Create a HEX file by reading the
(ON (until a ctl-Z is typed), fol-
lowed by data from Y.HEX, followed
by data from PIR until a ctl-Z is
encountered,

*cr Single carriage return stops PIP,

22

PIP PUN:=NUL: ,X.ASM,EQOF:,NUL: cr Send 40 nulls to the punch device;

then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right square brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed 1list of parameters must
immediately follow the affected file or device, Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are

exceptions),

B

Dn

The valid PIP parameters are listed below,

Block mode transfer: data is buffered by PIP until an ASCII
x-0ff character (ctl-S) is received from the source device,
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data., The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Delete characters which extend past column n in the transfer
of data to the destination from the character source, This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device,

Echo all transfer operations to the console as they are being
performed.

Filter form feeds from the file, All imbedded form feeds are
removed, The P parameter can be used simultaneously to
insert new form feeds,

Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation, The console will be
prompted for corrective action in case errors occur,

Ignore ":08" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case,

Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1., Leading zeroes are
suppressed, and the number is followed by a colon, If N2

is specified then leading zeroes are included, and a tab is
inserted following the number. The tab is expanded if T is

23

set.

0 Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored,

Pn Include page ejects at every n lines (with an initial page
eject). If n=1 or is excluded altogether, page ejects
occur every 6@ lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted,

0sTz Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered.

sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z), The S and O parameters
can be used to “abstract" a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways included in the copy operation.

NOTE - the strings following the s and g parameters are
translated to upper case by the CCP if form (2) of the
PIP command is used., Form (1) of the PIP invocation, how-
ever, does not perform the automatic upper case translation,
(1) PIP cr
(2) PIP "command line" cr

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source,

U Translate lower case alphabetics to upper case during the
the copy operation.

\Y Verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file). :

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.,ASM=B:[v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

PIP LPI':=X,ASM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case,

24

PIP PUN:=X_ HEX[i],Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.ZO0T, which contains hex records, including
any ":00" records which it contains,

PIP X.LIB = Y.ASM [sSUBRl:Tz gqIMP 137z] cr Copy from the file Y,ASM
into the file X.LIB., Start the copy when the
string "SUBR1:" has been found, and quit copy-
ing after the string "JMP L3" is encountered.

PIP PRN:=X,ASM[p50] Send X,ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 5@th line. Note that
nt8p6d is the assumed parameter list for a PRN
file; p5@ overrides the default value,

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment, Complete details of
operation are given the ED user’s manual, "ED: a Context Editor for the CP/M
Disk System." 1In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed seqguence), There is no
practical restriction on line length (no single line can exceed the size of
the working memory), which is instead defined by the number of characters
typed between cr’s. The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M. Although the CP/M has a
limited memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access., The programmer then "appends” data from
the source file into the work area, if the source file already exists (see the
A command), for editing, The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.S

to hold the edited data during the ED run., Upon completion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM, Thus, the X,BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version, Suppose, for example, that the current X.,ASM
file was improperly edited; the sequence of CCP command shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X.ASM Erase most recent version,

REN X.,ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact,

The ED program also allows the user to "ping-pong" the source and create
backup files between two disks, The form of the ED command in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and 4 is
the name of an alternate drive, The ED program reads and processes the source
file, and writes the new file to drive d, using the name ufn. Upon completion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.SS on drive
B. Upon campletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X,ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit, Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file, 1In this case, the operator must first ERAse the existing file
and then restart the edit operation,

26

Similar to other transient cammands, editing can take place on a drive
different from the currently logged disk by preceding the source file name by
a drive name., Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.ASM on drive A, with
new file and backup on drive A,

ED B:X.,ASM A: Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X.ASM
on drive B to X.BAK, and change X,SSS
on drive A to X.,ASM,

6.6. SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system., The SYSGEN program prompts the console
for commands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.
SYSGEN VERSION m.m SYSGEN sign-on message,

SOURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only, Typing a drive name
X will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
X (x isone of A, B, C, or D).
Answer with cr when ready.

FUNCTION COMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

If a diskette is being ini-
tialized, place the new disk
into a drive and answer with

the drive name. Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
X will cause SYSGEN to prompt

27

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION COMPLETE New diskette is initialized
in drive x.

The “DESTINATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A: *,*[v] cr

which copies all files from disk drive A to disk drive B, and wverifies that
each file has been copied correctly, The name of each file is displayed at
the console as the copy operation proceeds.,

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place, In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7, SUBMIT ufn parm#l ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing, The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB." The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted cammands are processed sequentially by CP/M,

28

The prototype coammand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is submitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parm#n are paired with the formal parameters
$1 ... $n in the prototype cammands, If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted commands with the name

$$$.SUB

on the logged disk., When the system reboots (at the termination of the
SUBMIT) , this cammand file is read by the CCP as a source of input, rather
than the console, If the SUBMIT function is performed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots., Further, the user can abort command processing at
any time by typing a rubout when the command is read and echoed. 1In this
case, the $$S$.SUB file is removed, and the subsequent commands come from the
console, Command processing is also aborted if the CCP detects an error in
any of the cammands. Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing any existing
$$$.SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single “$" within the command file, Further, an
up-arrow symbol “*" may precede an alphabetic character x, which produces a
single ctl-x character within the file, '

The last cammand in a SUB file can initiate another SUB file, thus
allowing chained batch commands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
AM $1
DIR $1.*
ERA *_BAK
PIP $2:=$1,PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN cr

is issued by the operator, The SUBMIT program reads the ASMBL.SUB file,

swbstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

ASM X

DIR X.*

ERA *,BAK

PIP PRN:=X,PRN
ERA X,PRN

which are executed in sequence by the CCp,

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name, Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A,

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the 1left of each 1line in
hexadecimal. Long typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is omitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat @@00H). If
the second parameter is omitted, the system is executed, but not permanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation. The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 1600H). Upon com—
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 864,

30

MOVCPM n cr Create a relocated CP/M system for
‘ management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above,

MOVCPM * * cr Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The canmand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN” OR
"SAVE 32 CPMxx,COM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation,

SOURCE IRIVE NAME (OR RETURN O SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION DRIVE NAME (OR RETURN T@ REBOOT)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN

Ready the fresh diskette on drive
B and type a return when ready,

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot,

The user can then go through the reboot process with the old or new
diskette., Instead of performing the SYSGEN operation, the user could have

typed
SAVE 32 CPMxx.COM

at the campletion of the MOVCPM function, which would place the CP/M memory
image on the currently logged disk in a form which can be “"patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide,"

Valid MOVCPM commands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recordind; response is

READY FOR "SYSGEN" OR
"SAVE 32CpM48,COM"

MOVCPM * * cr Construct a maximum memory version of CP/M

and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Aqreement,

32

7. BDOS ERROR MESSAGES.

There are three error situations which the Basic Disk Operating System
intercepts during file processsing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and “error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette., This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-80@ controller, for example,
requires two bytes of one’s following the data CRC byte, which is not required
in the IBM format, As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the "BAD SECTOR" message when read
by the MDS, In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation., Note, however, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adeuuate backups in this case,

The “"SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range. In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console,

The "READ ONLY' message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS. In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed. If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only, The status of the drive
is subsequently changed to read/write if a warm or cold start occurs, Upon
issuing this message, CP/M waits for input from the console, An automatic
warm start takes place following any input.

33

8. OPERATION OF CP/M ON THE MDS,

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed,

CP/M is initiated in essentially the same manner as Intel’s 1ISIS
operating system, The disk drives are labelled @ through 3 on the MDS,
corresponding to CP/M drives A through D, respectively., The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in seguence., The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates). The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prompt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT @ switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT, in which case the DDT program gets control instead.

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another

without rebooting the system (cold or warm start), unless the inserted
diskette is "read only,"

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data., The operator can reboot the CP/M system and try
the operation again.

Termination of a CP/M session requires no special action, except that it
is necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics.

It should be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS “FORMAT" operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written uwnder CP/M which causes the MDS 808 controller to reformat with
seguential sector numbering (1-26) on each track.,

- - ————

Note: "MDS 80@" and “"ISIS" are registered trademarks of Intel Corporation,

35

48: ; dad b again if double precision tran

49: mov l,m ;only low byte necessary here
5d: ; fill both H and L if double vrecision tran
51: ret JHL = ?27?ss

52: ;

53: sector: ds 1

54; endef

55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector =2lements). The last two elements provide access to the
"LISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release, It should be noted that
the 1.4 DESPOOL program will not operate under version 2.0, but an
update version will be availapnle from Digital Research in the near
future.

The "SECTRAN" (Sector Number Translate) entry shown in the Jjump
vector at line 6 provides access to a BI0S-resident sector translation
subroutine, This mechanism allows the user to specify the sector skew
factor and translation for .a particular disk system, and is described
below. :

A macro library 1is shown in the 1listing, <called DISKDEF,
included on line 2, and referenced 1in 12-15. Although it is not
necessary to use the macro liporary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all cp/M 2.8 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which vyou <can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 9,...
DISKDEF 1,...
DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as vyour BI0S) into MAC's internal tables., The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-1 (corresvonding to logical drives A
through P). HNote that the DISKS and DISKDEF macros denerate in-line

(All Information Contained Herein is Proprietary to Digital Research.)
1

29

fixed data tables, and thus must be placed in a non-executable portic
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following t!
DISKDEF macros, with the ENDEF macro call immediately preceding tl
END statement. The ENDEF (End of Diskdef) macro generates tli
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, ¥ to n-1
fsc is the first physical sector number (6 or 1)
lsc is the last sector number
skt is the optional sector skew factor
ols is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ots is the track offset to logical track 40

(0] is an ootional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDI
macro invocation, The "fsc” parameter accounts for differing sectc
numbering systems, and is usually § or 1, The "1lsc" 1is the la:
numbered sector on a track. When present, the "skf" parameter defin
the sector skew factor which is used to create a sector translati
table according to the skew., If the number of sectors 1is 1less th:
256, a single-byte table is created, otherwise each translation tab
element occupies two bytes. No translation table is created if ti
skf parameter is omitted (or egqual to @). The "bls" paramet:
specifies the number of bytes allocated to each data block, and take
on the wvalues 1924, 2048, 4396, 8192, or 16384, Generalls
performance increases with larger data block sizes since there a:
fewer directory references and logically connected data records a
physically close on the disk. Further, each directory entry address
more data and the BIOS-resident ram space is reduced. The "“dk:
specifies the total disk size in "bls" units, That is, if the bls

2048 and dks = 1008, then the total disk capacity is 2,248,000 byte:
If dks is greater than 255, then the block size parameter bls must |
greater than 1624, The value of "dir" 1is the total number ¢
directory entries which may exceed 255, if desired. The "ck:
parameter determines the number of directory items to check on ea
directory scan, and is used internally to detect changed disks duri
system operation, where an intervening cold or warm start has n
occurred (when this situation is detected, CP/M automatically mar!
the disk read/only so that data 1is not subsequently destroyed
Normally the value of cks = dir when the media is easily changed,
is the case with a floppy disk subsystem., If the disk is permanent
mounted, then the value of cks is typically @4, since the probabili
of changing disks without a restart is guite low. The "ofs" val
determines the number of tracks to skip when this particular drive

addressed, which can be used to reserve additional operating syst

(A1l Information Contained Herein is Proprietary to Digital Research

39

)>ace or to simulate several logical drives on a single large capacity
iysical drive. Finally, the [@] parameter 1is included when file
moatibility is required with versions of 1.4 which have been
ydified for higher density disks. This parameter ensures that only
K 1s allocated for each directory record, as was the case for
evious versions, Normally, this pvarameter is not included.

For convenience and economy of table svace, the special form
DISKDEF i,J

ves disk i the same characteristics as a previously defined drive j.
standard four-drive single density system, which is compatible with
rsion 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF
DISKDEF
DISKDEF
DISKDEF

,26,6,1024,243,64,64,2

4
’
r
14

1
]
9
]

whhHES

ENDEF

th all disks having the same parameter values of 26 sectors per
ack (numbered 1 through 26), with 6 sectors skipped between each
cess, 1024 bytes per data block, 243 data plocks for a total of 243k
te disk capacity, 64 checked directory entries, and two opverating
stem tracks. '

The definitions given in the program shown above (lines 12
rough 15) provide access to the largest disks addressable by CP/M
. All disks have identical parameters, except that drives @ and 2
ip three sectors on every data access, while disks 1 and 3 access
ch sector in sequence as the disk revolves (there may, however, be a
ansparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
dress DPBASE which 1is a label generated by the macro. Each disk
ader block contains sixteen bytes, and correspond, in sequence, to
ch of the defined drives. 1In the four drive standard system, for
ample, the DISKS macro generates a table of the form:

DPBASE EQU $

DPE#: DW XLT@ ,2000H,00060H,0000H,DIRBUF ,DP3d,CSVJ ,ALVY
DPELl: DW XLTO ,0000H,0000H,0900H,DIRBUF,DPBJ,CSV]1,ALV1
DPE2: DW XLTO,6000H,0000H,0009H,DIRBUF ,DPBJ,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBJ,CSV3,ALV3

ere the DPE (disk parameter entry) labels are included for reference
rposes to show the beginning table addresses for each drive 0
rough 3. The values contained within the disk parameter header are
scribed in detail in the CP/M 2.0 Alteration Guide, but basically
dress the translation vector for the drive (all reference XLT#,
ich is the translation vector for drive # in the above example),

11 Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit *“scratch" addresses, followed by th
directory buffer address, disk parameter block address, check vecto
address, and allocation vector address, The <check and allocatioc
vector addresses are denerated by the ENDEF macro in the ram are
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.,0. I
particular, the selected disk number is passed to the BIOS in registe
C, as before, and the SELDSK subroutine performs the appropriat
software or hardware actions to select the disk. Version 2.0
however, also requires the SELDSK subroutine to return the address ¢
the selected disk parameter header (DPE®, DPEl, DPE2, or DPE3, in th
above example) 1in register HL, If SELDSK returns the value HL
d000H, then the BDOS assumes the disk does not exist, and prints
select error mesage at the terminal. Program lines 22 through 36 giv
a sample CP/M 2.0 SELDSK subroutine, showing only the disk paramete
header address calculation.

The subroutine SECTRAN is also included in version 2.0 whic
performs the actual 1logical to physical sector translation. I
earlier versions of CP/M, the sector translation process was a part ¢
the BDOS, and set to skip six sectors between each read. Du
differing rotational speeds of various disks, the translation functic
has become a vart of the BIOS in version 2,4, Thus, the BDOS senc
sequential sector numbers to SECTRAN, starting at sector number ¢
The SECTRAN subroutine uses the seguential sector number to produce
translated sector number which is returned to the B8DOS. The BDC
subsequently sends the translated sector number to SELSEC before tr
actual read or write is verformed. Note that many controllers hav
the capability to record the sector skew on the disk itself, and thu
there is no translation necessary. 1In this case, the "skf" paramete
is omitted in the macro call, and SECTRAN simply returns the sax
value which it receives., The table shown below, for example, i
constructed when the standard skew factor skf = 6 is specified in tt
DISKDEF macro call:

XLT0: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the followir
process takes place. The sector to translate is received in registe
pair BC. Only the C register is significant if the sector value doe
not exceed 255 (B = 08 in this case). Register pair DE addresses tt
sector translate table for this drive, determined by a previous cal
on SELDSK, corresponding to the first element of a disk paramete
header (XLT0 in the case shown above). The SECTRAN subroutine the
fetches the translated sector number by adding the input sector numbe
to the base of the translate taple, to get the indexed translate tab]
address (see lines 46, 47, and 48 in the above program). The value ¢
this location is then returned in register L, HNote that if the numbe
of sectors exceeds 255, the translate table contains 16-bit element
whose value must be returned in HL,

Following the ENDEF macro call, a number of wuninitialized dat
areas are defined. These data areas need not be a part of the BI(
(All Information Contained Herein is Proprietary to Digital Research.

32

1ich is loaded upon cold start, but must be available between the
0S8 ana the end of memory. The size of the uninitialized RAM area is
*termined by EQU statements generated by the ENDEF macro. For a
andard four-drive system, the ENDEF macro might oroduce

4C72 = BEGDAT EQU 3
(data areas)
4DBY = ENDDAT EQU 3
B13C = DATSIZ EQU S-BEGDAT

tich indicates that uninitialized RAM begins at location 4C72H, ends
4DBYH-1, and occuplies ¥1l3Cd Dbytes. You must ensure that these
idresses are free for use after the system is loaded.

CP/M 2.9 is also easily adapated to disk subsystems whose sector
.ze 1s a multiple of 128 bytes. 1Information is orovided by the BDOS
I sector write ovperations which eliminates the need for pre-read
verations, thus allowing pnlocking and deblocking to take pwlace at the
05 level.

See the "CP/M 2.8 Alteration Guide" for additional details
yncerning tailoring your CP/M system to your varticular hardware.

1l Information Contained Herein is Proprietary to Digital Research.)

33

10

DIGITAL BESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. Al rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically diselaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction ., & . .
First Level System Regeneration .
Second Level System Generation .
Sample Getsys and Putsys Programs
Diskette Organization .,
The BIOS Entry Points .,
A Sample BIOS ., . & ¢ ¢ o o o o &
A Sample Cold Start Loader . . .
Reserved Locations in Page Zero .
Disk Parameter Tables
The DISKDEF Macro Library
Sector Blocking and Deblocking .

Appendix

Appendix

Appendix

‘Appendix

Appendix

Appendix
Appendix

QmEmoOwy
e o e o o o o
e e e o o o
e o & e e o o
e e e o o ¢ o

L . L] L] L] L[]

e e ® o o o o

e e e ¢ o ¢ o

e o o o o o .

. . L] . . L .

19
12
14
21
22
23

25

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-38060
microcomputer develooment system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can produce a diskette
whicn operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"nard daisk" systems, In order to simplify the following adaptation
orocess, we assume that CP/M 2.9 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available, If an earlier version of CP/M 1is available, the
customizing process is eased considerably. In this latter case, you
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M 1is separated into
tnhree distinct modules:
BIOS - basic I/0 system which is environaent dependent
BDOS - basic disk operating system which is not dependent
upon the hardware configuration
CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is devendent upon the particular
nardware, That is, the user can “patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware systen.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory 1loader, called GETSYS, which brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write tnhe reverse of GETSYS, called PUTSYS, which
olaces an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
describea in Section 3, and listed in Apvendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start 1loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2, FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patcn the CP/M system is given below in
several steps. Address references in eacn step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/#M system. For larger CP/M systems, add a "bias" to each
address which is shown with a “"+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 10490H
32K: o = 32K - 20K = 12K = 30694
49K: b = 49K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7600H
56K: b = 56K - 20K = 36K = 9900H
6 2K: b = 62K - 20K = 42K = A800H
04K: b = 64K - 20K = 44K = BOdOH

Note: The standard distribution version of CP/M 1is set for
operation within a 20K memory system, Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338¢H. Code GETSYS so that it starts at
location 1¢¥H (pase of the TPA), as shown in the first wovart of
Appendix d.

(2) Test the GETSYS vprogram by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program,

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/i1 starting at 3380H (the operating system
actually starts 128 bytes later at 3499dd).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 33804 back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown in
the second part of Appendix D. .

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

2

(7) Test CBIOS completely to ensure that it properly performs
console character I/0 and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/4 system after it is
patched.

(3) Referring to Figure 1 in Section 5, note that the BI0S 1is
placed between locations 4A0#H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing,

(14) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 338YH, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load).
Upon successful load, brancn to the cold start code at location 4A¢0d.
The cold start routine will initialize vage zero, then jumo to the CCP
at location 340¥H which will call the BDOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type “A>", the system prompt.

wWwhen you make it tnis far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
oreakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has promovted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry.
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: X comM
(13) Test the erase command by typing

ERA X,COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A promot. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely. '

(14) Write a bootstrap loader which is similar to GETSYS, ana
place it on track §, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 48 for
more information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Uoon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the systen,
and types the A prompt.

(16) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette. Use GETSYS to load CpP/#
from vyour test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSY3
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR
CP/¥ should respond with a list of files which are provided on the
initialized diskette, One such file should be the memory image for
the debugger, called DDT.COM.
NOTE: from now on, it is important that you always reboot tne CP/M
system (ctl-C is suificient) when the diskette is removed and replaced

by another diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DDT
(see the document "CP/M Dynamic Debugging Tool (DDT)" for opverating
procedures, You should take tnhe time to become familiar with DDT, it

will be your pest friend in later steps.

(1Y) 3efore making further CBIOS modifications, practice using
the editor (see the ED wuser's guide), and assembler (see the ASH
user's guide). Then recode and test the GETSYS, PUT3YS, and CBIOS
programs using ED, AS!, and DDT. Code and test a COPY program whicn
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (WNOTE: read your CP/M
Licensing Agreement; it specifies vour 1legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research .

"(All Information Contained Herein is Proprietary to Digital Research.)

4

on eacn copy which is made with your COPY program.

(20) Modify wyour CBIOS to include the extra functions for
ouncnes, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or vyou can refer to the following section, which outlines
Cp/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for vyour use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all

other CpP/M systems, (assuming media compatipblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proorietary to Digital Research.)

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, vyou will want to
configure CP/M for your memory size. 1In general, you will first get a
memory image of CP/M with the "MOVCPM" program (system relocator) and
vlace this memory image into a named aisk file, The disk file can then
be loaded, examined, patched, and replaced using the depugger, and
system generation oprogram. For further details on the operation of
these programs, see the “Guide to CP/M Features and Facilities"
manual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and 300T.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format. »

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxK Cp/M VERS 2.4
READY FOR “SYSGEN" OR
“SAVE 34 CPMxx.COM"

At this voint, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location #99¥H through
227FHd. (i.e., The BOOT is at @99¢H, the CCP 1is at 98@0H, the BDOS
starts at 1180H, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-80Y BIOS and BOOT on 1it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx,COM

The memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed 1in preparation for a new generation of the system. DDT is
loaded with the memory image by typving:

DDT CPMxx,COM Load DDT, then read the CPM
image

DDT should respond with
NEXT PC
2300 0160
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 90¢YH and 227FH. ~Note, however,
that to.find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address., Track dd, sector ¥l is loaded to location 9¢¥H (you should
find the cold start loader at 9Y90UH to 97FH), track %8, sector ¥2 is
loaded into 986H (this is the base of the CCP), and so-forth throughn
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 98VYH - 3409H

Assuming two's complement arithmetic, n = D588H, which can be checked
by

3406H + D580H = 10980YH = 9980UH (ignoring high-order
overflow).

Note that for larger systems, n satisfies
(346G0H+b) + n = 9Y8¥H, or

n 98¥H - (3409H + b), or
n D580H - b,

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K YouoH D58YH - VPBYH = D530H
24K 1gvad D580H - 1909H = C53UH
32K 39001 D580H - 3000H = A589¥H
49K 500 0H D58¥H - 5@g9Y¥H = 8530H
4 8K 790 dH D589H - 7800H = 6580H
56K 99 0uvH D58¥H - YYUOH = 4589H
62K AB00QH D58pH - A89wH = 2D80H
64K BOOOH D580H - BOYOH = 2588H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system, First type

Ax,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

d3409,D5840

for example, will produce 989dH as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the B8I0OS located at
(4A90OH+D) -n which, when vyou use the H command, oroduces an actual
address of 1F89YH. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

L1F89
It is now necessary to vatch in your CBOOT and CBIOS routines, The
BOOT resides at 1location @96#H in the memory image., If the actual
load address is "n", then to calculate the bias (m) use the command:

H900 ,n Subtract load address from
target address.

The second number typved in response to the command is the desired bias
(m). For example, if your BOOT executes at V@P8GH, the command:

H969,80
will reply
98w PBBY Sum and difference in hex.

Therefore, the bias "m" would be 9¥88¥H., To read-in the BOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias‘of
m (=9¥dH-n)

You may now examine your CBOOT with:
L9¢9

We are now ready to replace the CBIOS. Examine the area at 1F80H4
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A@¢YH. 1In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. This is accomplished by
typing

RD589 Read the file with bias D586GH
Upon completion of the read, re-examine the area where the CBIOS has
pbeen loaded (use an "L1F86" command), to ensure that is was loaded

properly. When you are satisfied that the changde has been made,
return from DDT using a control-C or "G@" command.

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research.)

3

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2. Sign—-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return.
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in BSection 2., The READSEC and WRITESEC
subroutines must be inserted by the wuser to read and write the
specific sectors.

GETSY5 PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3389H

; REGISTER USE
; A (SCRATCH REGISTER)
; B TRACK COUNT (8, 1)
; C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
; sp SET TO STACK 'ADDRESS
: |
START: LXI SP,3386H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 338uH ;SET BASE LOAD ADDRESS
MVI B, © ; START WITH TRACK &
RDTRK : ;READ NEXT TRACK (INITIALLY 9)
MVI C,1 ;READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR
CALL READSEC ; USER-SUPPLIED SUBROUTINE
LXI D,1238 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
5AD D ;HL = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
CPI 27
Jc RDSEC ;CARRY GENERATED IF SECTOR < 27
4
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B | |
MOV A,B ;TEST FOR LAST TRACK
CPI 2
Jc RDTRK ;CARRY GENERATED IF TRACK < 2

~e we

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AHND
ADDRESS TO FILL IN HL

N8 we wo o '/.U“ ~e

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

® ® 0 0 P O ® OB VOO OSSO PO OO T D OSSO O L0000 LS OES

perform disk read at this point, branch to

label START if an error occurs

POP H sRECOVER HL
POP B sRECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research.)

10

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 1d6H. The hexadecimal
operation codes which are listed on the left may be wuseful 1if the
program has to be entered through your machine's front panel switcnes.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opvosite function: data from address HL
is written to the track given by register B and sector given by
register C, It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/i 1is gqgiven here for reference purposes., The first sector (see
table on the following page) contains an optional software boot
section., Disk controllers are often set uo to bring track @, sector 1
into memory at a specific 1location (often 1location U0@06H). The
program in this sector, (called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
34pPd+b., If your controller does not have a built-in sector load, you
can ignore the program in track ¢, sector 1, and begin the 1load from
track ¥4 sector 2 to location 34@dH+b.

As an example, the Intel MDS-899 hardware cold start loader brings
track ¥, sector 1 into absolute address 39d0H. Uoon loading this
sector, control transfers to location 300dH, where the bootstrap
operation commences by loading the remainder of tracks g, and all of
track 1 1into memory, starting at 344wH+b. The user should note that
tnis bootstrap loader is of 1little wuse in a non-MDS environment,
although it 1is useful to examine it since some of the boot actions
will have to pbe duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Track# Sectorj Pagei# Memory Address CP/M Module name

4 a1 (boot address) Cold Start Loader
3o g2 Bd 349 GH+Db Cccp
. 23 v 3480H+Db .

' 04 21 350dH+Db .

“ b5 . 353¥H+Db "

" Jo G2 3609H+Db "

" b7 . 3680H+Db .

" 08 93 37U¥H+p "

. B9 " 3780H+Db "

o 19 G4 3800H+Db "

" 11 " 388UH+Db "

. 12 25 3900H+b "

" 13 " 3980H+Db "

“ 14 b6 3A03H+b "

. 15 " 3A80H+b "

" 16 37 38¢00d+b "
D9 17 . 3B8YH+b Cccp
29 138 n8 3CO0H+b BDOS

. 19 " 3C80@H+Db "

" 24 39 3D@YH+D .

. 21 . 3D8@H+Db "

. 22 19 3EQ@H+Db "

" 23 " 3880H+b "

. 24 11 3F0@H+b .

" 25 " 3F80H+Db "

" 26 12 4908H+b "
g1 Bl " 4980H+Db "

S g2 13 4190H+b "

" g3 . 418@H+Db .

" 94 14 4233H+Db oM

" 35 " 42806H+Db .

" 36 15 430dH+b "

" 07 " 4389H+Db !

. 98 16 4400H+b "

” 09 . 4480GH+Db "

" 13 17 4503H+b .

. 11 " 4589H+Db .

. 12 18 4606H+Db .

” 13 " 4682H+Db "

" 14 19 4730H+Db .

. 15 . 4780H+b .

. 16 20 4800H+b “

" 17 . 4880H+b .

. 18 21 496G0H+b .

21 19 . 4980H+b BDOS

31 29 22 4A00H+b BIOS

. 21 v 4780H+b "

o 23 23 4B0OH+Db "

! 24 " 4B8QH+Db .

. 25 24 4CQOAH+D "

g1 26 . 4C8@H+b BIOS

g2-76 P1-26 (directory and data)

(A1l Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS
are detailed below. Entry to the BIOS 1is through a "jump vector"
located at 4Ad9H+b, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 Jjumop instructions which send
orogram control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.,e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the-jump vector,.

The jump vector at 4A¢0H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A0VH+D JMp BOOT
4AY3d+p JHMP WBOOT
42 6H+b JMP CONST
4AP9H+b JMP CONIN
4A9CH+D Jip CONOUT

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT

4A3FH+D JMP LIST WRITE LISTING CHARACTER OUT
4Al2H+b JMP PUNCH WRITE CHARACTER TO PUNCH DEVICE
4A15H+Db JMP READER READ READER DEVICE

4A18H+D JMP HOME MOVE TO TRACK @8 ON SELECTED DISK

4A1Bd+Db JiP SELDSK
4A1EH+0 JMP SETTRK
4A21H+D JMP SETSEC
4A24Hd+b JMP SETDMA
4A27H+Db JMP - READ
4AZAH+D JMP WRITE
4A2DH+D JMp LISTST
4A39H+Db JMP SECTRAN

SELECT DISK DRIVE

SET TRACK NUMBER

SET SECTOR NUMBER

SET DMA ADDRESS

READ SELECTED SECTOR

WRITE SELECTED SECTOR
RETURN LIST STATUS

SECTOR TRANSLATE SUBROUTINE

WO NE WO NE NS NE e NP NE NE Ve Ve Ne we Ne we “wo

Bach jump address corresponds to a particular subroutine which
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/0
pertormed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 verformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN,

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file <condition for an input device is given by an ASCII
control-z (lAH). Peripheral devices are seen by CP/M as “logical"”
devices, and are assigned to physical devices within the BIOS,

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the 1initial version of CBIOS may have empty
subroutines for the remaining ASCII devices,.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

LIST The principal listing device, if it -exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype,

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

READER The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single veripheral can be assigned as
the LIST, PUNCH, and READER device-simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user orogram, Alternately, the PUNCH and LIST
routines can just simpoly return, and the READER routine
can return with a 1AH (ctl-2Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the wuser can oontionally
implement the “IOBYTE" function which allows
reassignment of ohysical and 1logical devices. The
IOBYTE function <creates a mapping of 1logical to
physical devices which can be altered during CP/M
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory {(currently
location ¥69P3H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
verformed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 96634 | LIST | PUNCH | READER | COWNSOLE |

bits 6,7 bits 4,5 bits 2,3 bits 6,1
The value in each field can be in the range #-3,
defining the assigned source or destination of each

logical device, The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 6,1)

1] -
1 -
2 -

3 -

WN -3
|

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device (UCl:)

R field (bits 2,3)

READER is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

) -

1 -
2 -
3

PUNCH is the Teletype device (TTY:)

PUNCH is the high speed punch device (PUN:)
user defined punch # 1 (UP1l:)

user defined vunch # 2 (UP2:)

LIST field (bits 6,7)

g -
1 -
2 -
3

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the -existence of the IOBYTE at 1location
Yow3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide”). In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/0 is always performed through a seaguence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations., Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selectea DMA address pbefore the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE overations are performed,

(All Information Contained Herein is Proprietary to Digital Research.)

16

Note that the READ and WRITE routines should
perform several retries (14 1is standard) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 08 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 48.

The exact responsibilites of eacn entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the cold start
loader and 1is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. ‘The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 34006H+b for further
processing, Note that reg C must be set to =zero to
select drive A,

WwBOOT The WBOOT entry point gets control when a warm start
occurs., A warm start is performed whenever a user
program branches to location @@d0H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if vyou have
completed your patch). System parameters must be ini-
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(PvooH: JMP 4AQ3H+D)

location 3 set initial value of IOBYTE, 1if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs. (90@5H: JMP
3Cd6H+Db) '

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3490H+b to (re)start
the system. Upon entry to the CCP, register C 1is set
to the drive to select after system initialization.

CONST Sample the status of the currently assigned console
device and return GFFH in register A if a character is
ready to read, and @0H in register A if no console
characters are ready.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research,)

17

set the parity oit (high order bit) to zero. If no
console character is ready, wait until a character is
tyred pefore returning,

CONQuUT Send the character from register C to the console
output device, The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if vyour
console device requires some time interval at the end
of the line (such as a TI Silent 760 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for examole),

LIST Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity.

pPydCH Send the character from register C to the currently
assigned punch device, The character is in ASCII with
zero parity,

READER Read the next character from the currently assigned
reader device 1into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (1lAH).

HOME Return the disk heaa of the currently selected disk
(initially disk A) to the track 00 position, If your
controller allows access to the track 6 flag from the
drive, step the heaa until the track ¥ flag is
detected. If your controller does not support this
feature, you <can translate the HOME call into a call
on SETTRK with a varameter of 4,

SELDSK Select the disk drive given by register C for further
operations, where register C contains @ for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives), On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 16. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically, If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0@0OH as an error indicator. Although SELDSK must
return the header address on each call, it is
advisaple to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually pertformed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subseguent
disk accesses on the currently selected drive, You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs, Register BC can take on values in the range
¥-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems,

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive., You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write overation occurs,

SETDMA Register 3C contains the DMA (disk memory access)
address for subseguent read or write operations. For
example, if B = @PPH and C = 89H when SETDMA is calledq,
then all subseguent read operations read their data
into 8@dH through @FFH, and all subsequent write
operations get their data from 84H through @FFH, until
the next call to SETDMA occurs, The initial DMA

address is assumed to be BUH. Note that the
controller need not actually support dairect memory
access, If, for example, all data is received and

sent through I/0 ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations,

READ Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA aadress
has been - specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

] no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a 2zero or non-zero
value as the return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completea properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see 1if the error is recoverable. When an error is
reported the BDOS will print the message "“BDOS ERR ON
X: BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort,

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector,
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems, The
error codes given in the READ command are returned in
register A, with error recovery attempots as descriped
above,

LISTST Return the ready status of the list device. Used by
the DESPOOL program to improve console resvonse during
its operation, The value U6 is returned in A if the
list device is not ready to accept a character, and
@FFH 1if a character can be sent to the printer, Note
that a 09 value always suffices.

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "“skew factor”
of 6, where six physical sectors are skipped between
each logical reaa operation., This skew factor allows
enough time between sectors for most programs to loaa
their buffers without missing the next sector, In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response, Note, however,
that vyou should maintain a single density IBM
compatible version of CpP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address 1in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For standard systems, the tables and
indexing code is vrovided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

29

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for vyour
first BIOS. The simplest furctions are assumed in this BIOS, so that
you can enter it through the iront wvanel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WEITE, and WAITIO subroutines, Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the B8I0S 1is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanceda to print
the 1initial sign-on message and perforim better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
ana the program must be loaded somehow starting at location 6000.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will oprobably want to get this loader onto the first disk sector
(track b, sector 1), and cause your controller to load it into memory
automatically upon system start-uo. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system, In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
wnhicn brancnes to the loader. Subsequent warm starts will not require
this key=-in operation, since the entry point *‘WBOOT' gets control,
thus pbringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
pe enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.).

22

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations @GH and UFFH, contains
several segments of code and data which are used during CP/#
processing, The code and data areas are given below for reference
purposes,

Locations Contents
from to
Wovpd - VBO2H Contains a jump instruction to the warm start

entry point at location 4A@3H+b. This allows a
simple programmed restart (JMP @03¥H) or manual
restart from the front vanel.

@0034d 0003H Contains the Intel standard IOBYTE, which is
optionally included in the user's CBIO0OS, as

described in Section 6.

Voo Aad

¥ o4H Current default drive number (#=A,...,15=P),.

¥005H

PO T7H Contains a Jjump instruction to the B8D0S,and
serves two purposes: JMP 0005H provides the
primary entry point to the BDOS, as described in
the manual “CP/M Interface Guide,"™ and LHLD
QBP6H brings the address field of the
instruction to the HL register pair. This value
is the 1lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode,

d008H - 0027d (interrupt locations 1 through 5 not used)

60364 - 960378 (interrupt location 6, not currently used -
reserved)

P238H - 0O3AH Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by Cp/M.

@03BH - GO3FH (not currently used - reserved)

00404 - VO4FH 16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CpP/M

BO59H - YW5BH (not currently used - reserved)

Yo5CH - 007CH default file control block produced for a
transient program by the Console Command
Processor,

PO7DH.

PO7FH Optional default random record vosition

(A1l Information Contained Herein is Proprietary to Digital Research.)

23

Vo8YH - GIFFH default 1238 byte disk buffer (also filled with
the command 1line when a transient is loaaed
under the CCP). ‘

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient vrogram if the
BDOS facilities are not regquired by the transient,

If, for example, a particular program performs only simple I/0 and
must begin execution at location ¥, it can be first loaded into the
IPA, wusing normal CpP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from 1location @186H, which is the assumed beginning of zall
transient programs). The move prodram can then proceed to move the
entire memory 1image down to location 6, ana pass control to the
starting address of the memory loadad. dote that if the BIOS is
overwritten, or if location ¢ (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proorietary to Digital Research.)

24

19, DISK PARAMETER TABLES.,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 9000 | 0000 | 9600 |DIRBUF| DPB | Csv | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT Address of the logical to.physical translation vector,
if wused for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same), Disk drives
with identical sector skew factors share the same
translate tables,

Voeoo Scratchpad values for use within the BDOS (initial
value is unimportant),

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same

scratchpad area.

DPB Address of a disk parameter block for this drive,.
Drives with identical disk characteristics address the
same disk parameter block.

csv Address of a scratchpad area used for software check
for <changed disks, This address is different for each
DPH,

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information., This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

P90 |XLT 00| 0000 | 6000 | 0000 |DIRBUF|DBP 00|CSV 86 |ALV 00|

g1 |XLT 61| 0000 | 2000 | 0000 |DIRBUFI|IDBP 91|CSV 91|ALV @1]

n-1|XLTn-1| 0000 | 0003 | 0000 |DIRBUF|DBPn-1|CSVn-1|ALVn-1]|

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive, The following seguence of
operations returns the table address, with a 0@009H returned 1if the
selected drive does not exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK:
sSELECT DISK GIVEN BY BC
LXI H,00060H ;ERROR CODE
MOV A,C :DRIVE OK?
CpI NDISKS ;CY IF SO
RNC :RET IF ERROR
:NO ERROR, CONTINUE
MOV L,C : LOW (DISK)
MOV H,B sHIGH(DISK)
DAD H %2
DAD H 2 %4
DAD H ;%8
DAD H :*16
LXI D,DPBASE ;FIRST DPH
DAD D :DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1l) are located
elsewhere in the BIOS, and simply correspond one-for—-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex., A particular
DPB, which is addressed by one or more DPH's, takes the general form

16b 8b 8b 8b 16b l6b 8b 8b 16b 1l6b

where each is a byte or word value, as shown by the "8b" or “l6b"
indicator below the field.

SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined
by the data block allocation size.
(A1l Information Contained Herein is Proprietary to Digital Research.)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks,

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL@,ALl1l determine reserved
directory blocks,

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

e values of BSH and BLM determine (implicitly) the data allocation
ze BLS, which is not an entry in the disk parameter block. Given
at the designer has selected a value for BLS, the values of BSH and
M are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

ere all values are in decimal. The value of EXM depends upon both
e BLS and whether the DSM value is less than 256 or greater than
5, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1]
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
is particular drive, measured in BLS units, The product BLS times
SM+1) is the total number of bytes held by the drive and, of course,
st be within the capacity of the physical disk, not counting the
served operating system tracks.

The DRM entry is the one less than the total number of directory
tries, which can take on a2 16-bit value. The values of AL@® and ALl,
wever, are determined by DRM. The two values AL# and ALl can
gether be considered a string of 16-bits, as shown below.

11 Information Contained Herein is Proprietary to Digital Research,)

27

0% 01 02 03 04 @5 #6 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL#, and 15 corresponds to the low order bit of the byte
labelled AL1. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 66 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,024 32 times # Dbits
2,048 64 times # Dbits
4,096 128 times # Dbits
8,192 256 times # Dbits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1624, then there
are 32 directory entries per block, reguiring 4 reserved blocks, In
this case, the 4 high order bits of AL# are set, resulting in the
values AL = @F@H and ALl = @0H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l1l)/4, where DRM is the last directory
entry number, If the media is fixed, then set CKS = 6 (no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB. ‘

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use., If CKS = #, then no storage is reserved,

(All Information Contained Herein is Proprietary to Digital Research,)

28

The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to

examine this program, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is Proprietary to Digital Research.)

29

11, THE DISKDEF MACRO LIBRARY,

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF

facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0,...
DISKDEF 1,...

DISKDEF n-1

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros denerate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of vyour BIOS, typically
directly following the BIOS jump vector,

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the

necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, @ to n-1
fsc is the first physical sector number (@ or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "“checked" directory entries
ofs is the track offset to logical track 40
(8] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research,)

30

macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually @ or 1. The “lsc" is the 1last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew., If the number of sectors 1is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter is omitted (or equal to @). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2048, 4096, 8192, or 16384, Generally,
performance increases with 1larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk., Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced, The "dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1080, then the total disk capacity is 2,048,000 bytes,
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The wvalue of "dir" 1is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily <changed, as is the case with a floppy disk subsystem, 1If
the disk is permanently mounted, then the value of cks is typicallyhﬂ,
since the probability of changing disks without a restart is aquilte
low, The "“ofs" value determines the number of tracks to skip when
this particular drive is addressed, which <can be wused to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is reguired with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions, Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,J
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1,4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS 4
DISKDEF 9,1,26,6,1024,243,64,64,2
DISKDEF 1,0

DISKDEF 2,0
DISKDEF 3,

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one~for-one to each of the defined drives., In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPED: DW XLTY,0009H,0000H,0000H,DIRBUF,DPBO,CSVE ,ALVY
DPEl: DW XLT0 ,0000H,0000H,00060H,DIRBUF,DPBA,CSV]1,ALV1
DPE2: DW XLT0 ,0000H,0000H,0090H,DIRBUF ,DPB@,CSV2,ALV2
DPE3: DW XLT0 ,0000H,0000H,0800H,DIRBUF,DPB@O,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive # through 3. The values
contained within the disk parameter header are described in detail in
the previous section, The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a 0@06OH value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsegquent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
P0PPH, and simply returns the original logical sector from BC in the
HL register pair. A translate table 1is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(A1l Information Contained Herein is Proprietary to Digital Research.)

32

4C72

BEGDAT EQU §$
(data areas)
ENDDAT EQU $
DATSIZ EQU S$S-BEGDAT

4DB0
13C

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB@PH-1, and occupies ©013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check vyour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Directory Entries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

T oOQOo~AR

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system),

DISKDEF 6,1,58,,2048,256,128,128,2
r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 9,1,58,,2048,1024,300,0,2
r=16384, k=2048, d4=300, c=0, e=128, b=16, s=58, t=2

DISKDEF ¢,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.,

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following
information in register C: :

normal sector write
write to directory sector
write to the first sector
of a new data block

]
1
2

Condition @ occurs whenever the next write operation 1is into a
previously written area, such as a random mode record update, when the
write 1is to other than the first sector of an unallocated block, or
when the write is not into the directory area, Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. 1In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file 1is included on vyour CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector 1involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by “hst.”
The egquate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system,'and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk'at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research,)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz, All other mapping functions are performed by the
algorithms,

This particular algorithm was tested using an 80 megabyte hard
disk wunit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increase<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>