
CP/M 2.2 OPERATING SYSTEM REFERENCE GUIDE

820-11 PERSONAL COMPUTER

Copyright ©1982 Xerox Corporation. All rights reserved 9R80448

This equipment has been certified to comply with the limits for a Class B computing device,
pursuant to Subpart J of part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

This equipment generates and uses radio frequency energy and if not installed and used
properly, that is, in strict accordance with the manufacturer's instructions, may cause
interference to radio and television reception. It has been type tested and found to comply
with the limits for a Class B computing device in accordance with the specifications in
Subpart J of part 15 of FCC Rules, which are designed to provide reasonable protection
against such interference in a residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does cause
interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one or
more of the following lneasures:

Reorient the receiving antenna.
Relocate the computer with respect to the receiver.
Move the computer away from the receiver.
Plug the computer into a different outlet so that computer and receiver are on
different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician
for additional suggestions. The user may find the following booklet prepared by the Federal
Communications Commission helpful.

"HOW TO IDENTIFY AND RESOLVE RADIO-TV INTERFERENCE PROBLEMS"

This booklet is available from the u.S. GOVERNMENT PRINTING OFFICE, WASHINGTON,
D.C. 20402, STOCK NO. 004-000-00345-4.

® TM
Xerox and 820-11 are registered trademarks of Xerox Corporation.

Zilog and Z80 are trademarks of Zilog Inc., with whom the publisher is not associated.

CP/M is a registered trademark of Digital Research Incorporated.

Portions of this manual are reproduced by permission of Digital Research
Incorporated, Pacific Grove, California ~

ii

TABLE OF CONTENTS

INTRODUCTION
Disk Drive Options
Floppy Disks
Configur ing the 820-11
Utilities and Programs
Applications Software
ROM Level
Software Serial Number and Level

FEA TURES &: FACILITIES
Introduction
Functional Description of CP/M

General Command Structure
File References

Switching Disks
The Form of Built-In Commands

ERA afn cr
OIR afn cr
REN ufnl=ufn2 cr
SAVE n ufn cr
TYPE ufn cr

Line Editing and Output Control
Transient Commands

STAT cr
ASM ufn cr
LOAD ufn cr
PIP cr
ED ufn cr
SYSGEN cr
SUBMIT ufn parmlll ••• parmlln cr
DUMP ufn cr
MOVCPM cr

BOOS Error Messages
Operation of CP/M on the MDS

USER'S GUIDE
An Overview of CP/M 2.0 Facilities
User Interface
Console Command Processor (CCP) Interface
STAT Enhancements
PIP Enhancements
EO Enhancements
The XSUB Function
BOOS Interface Conventions
CP/M 2.0 Memory Organization
BIOS Differences

ALTERATION GUIDE
Introduction
First Level System Regeneration
Second Level System Generation
Sample Tetsys and Putsys Programs
Diskette Organization

iii

1
3
4
5
7
8
8

1
3
3
3
6
7
7
8
8
9
9

11
12
13
16
17
18
25
27
28
30
30
33
34

1
3
4
5
8

10
11
12
27
28

1
2
6

10
12

The BIOS Entry Points
A Sample BIOS
A Sample Cold Start Loader
Reserved Locations in Page Zero
Disk Parameter Tables
The DISKDEF Macro Library
Sector Blocking and Deblocking

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

INTERFACE GUIDE
Introduction
Operating System Call Conventions
A Sample File-to-File Copy Program
A Sample File Dump Utility
A Sample Random Access Program
System Function Summary

ASSEMBLER (ASM)
Introduction
Program Format
Forming the Operand

Labels
Numeric Constants

, Reserved Words
String Constants
Arithmetic and Logical Operators
Precedence of Oper a tors

Assembler Directives
The ORG Directive
The END Directive
The EQU Directive
The SET Directive
The IF and ENDIF Directives
The DB 0 irecti ve
The OW Directive

Operation Codes
Jumps, Calls, and Returns
Immediate Operand Instructions
Increment and Decrement Instructions
Data Movement Instructions
Arithmetic Logic Unit Operations
Control Instructions

Error Messages
A Sample Session

ASSEMBLER (MACRO-80)
Introduction

iv

14
21
22
23
25
30
34
36
39
50
56
59
61
66

1
3

29
34
37
46

1
2
4
4
4
5
6
6
7
8
8
9
9

10
10
11
12
12
13
14
14
14
15
16
16
17

1-1

MACRO-80 Assembler
Running MACRO-80
Command Format
Format of MACRO-80 Source Files
Expression Evaluation
Opcodes as Operands
Pseudo Operations
Macros and Block Pseudo Operations
Using 280 Pseudo-ops
Sample Assembly
MACRO-80 Errors
Compatability with Other Assemblies
Format of Listings

LINK-80 Linking Loader
Running LINK-80
Command Format
Format of LINK Compatible Object Files
LINK-80 Error Messages
Program Break Information

TEKDOS Operating System
TEKDOS Command Files
MACRO-80
CREF-80
LINK-80

CONTEXT EDITOR
Ed Tutorial

Introduction to ED
ED Operation
Text Transfer Functions
Memory Buffer Organization
Memory Buffer Operation
Command Strings
Text Search and Alteration
Source Libraries
Repetitive Command Execution

Ed Error Conditions
Control Characters and Commands

DEBUGGING TOOL
Introduction
DDT Commands

The A (Assemble) Command
The D (Display) Command
The F (Fill) Command
The G (Go) Command
The I (Input) Com mand
The L (List) Command
The M (Move) Command
The R (Read) Command
The S (Set) Command
The T (Trace) Command
The U (Untrace) Command
The X (Examine) Command

Implementation Notes
An Example

v

2-1
2-1
2-1
2-5
2-8

2-10
2-11
2-25
2-33
2-34
2-35
2-36
2-37

4-1
4-1
4-1
4-7

4-10
4-11
A-I
A-I
A-I
A-2
A-2

1
1
1
1
5
5
7
8

11
12
13
14

1
3
3
4
4
4
5
6
6
6
7
7
8
8
9

10

GENERAL PROGRAMS
SYSTEM CONFIGURATION UTILITY

Record Restart Command
Select Printer Port Options
Select Communication Port Options
Select I/o Device Assignments
Select Keyboard Data Format
Select Screen A ttr ibutes
Select Floppy Disk Head Step Rate
Configure Rigid Disk

BACKUP
List Directory
Backup Files
Replace Files
Verify Disk Integrity
Delete Files
Exit to CP/M

HOST TERMINAL
KILLESC
SWAP
TIME AND DATE
SCREEN PRINT
SET

SYSTEM COMPONENTS
620 PRINTER (20 CPS)

Introduction
Unpacking
Installa tion
Familiar iza tion
Preparation for Operation

Installing a Print wheel
Installing a Ribbon Cartr idge
Inserting Paper or Forms

Operating the 620 Printer (20 CPS)
Special Considerations

Cleaning Print wheels
Cleaning the Platen and Paper Rollers
Cleaning the Card Guide

Setting the Switches Under the Front Cover
Using the Control Panel Switches
Specifica tions

630 PRINTER (40 CPS)
Introduction
Unpacking
Installa tion
Familiar ization
Preparation for Operation

Installing a Pr intwheel
Installing a Ribbon Cartridge
Inserting Paper or Forms
Paper Thickness/Print Intensity Adjustment

Operating the 630 Printer (40 CPS)

vi
6/1/82

1
2
2
2
2
2
2
2
2

22
23
23
23
23
23
23
35
39
39
40
41
41

1
2
3
4
7
8

11
13
14
15
15
16
16
18
20
21

23
24
26
28
30
30
31
32
32
33

Special Considerations
Cleaning Pr intwheels
Changing Ribbons During Operation
Cleaning the Pr int Hammer

Setting the Switches Under the Front Cover
Setting the Operating Switches
Reading the Control Panel Indicators
Specifica tions

FORMS TRACTOR (630 Printer - ItO CPS)
Installation
Removal
Loading Paper

PARALLEL PRINTER INSTALLATION KIT
DAISY CHAINING DISK DRIVES

REFERENCE
SYSTEM RESIDENT MONITOR
Monitor Command Summary

Display Memory Command
Modify Memory Command
Extended Memory Command
Fill Memory Command
Copy Memory Command
Ver ify Memory Block Command
Go To Command
Input Command
Output Command
Load System
Read Disk Sector Command
Baud Rate Command
Typewriter Command
Host Terminal Command
Protocol Command

USER ACCESSIBLE MONITOR ROUTINES AND VARIABLES
Subroutine Entry Points
Display Control Codes
Escape Sequences
Control Codes
Escape Sequences
Numeric Pad
Main Keyboard

MONITOR RESIDENT I/o DRIVER FUNCTIONS
Interrupt Processing
Memory Mapped Video Display
Display Character Codes
Key Station Numbering and Key Codes
Parallel Keyboard Input
Disk Interface
Ser ial Input/Output
Real Time Clock
Parallel I/O Option

DISK FORMAT
Disk Parameters
Disk Format (Floppy Disks)

GRAPHICS

6/1/82
vii

31t
31t
31t
31t
35
36
37
38
Itl
1t2
1t2
It It
1t5
51

1
2
3
3
It
It
It
It
5
5
6
6
7
7
8
9

10
10
16
16
17
18
21
21
22
22
22
23
17
25
25
25
26
26
27
27
27
31

THEORY OF OPERATION
Central Processor

Clock Generator
Reset Controller
Port Address Decoding
Disk Transfer Synchronization

CRT Display Controller
Video Scrolling
Video RAM Addressing
Video Generation
Display Blanking

64K RAM and Bank Switching
Refresh
Bank Switching
CTC
System PIO

General Purpose PIO and SIO
SIO
Baud Rate Generator
Interrupt Structures

General Purpose PIO Strappings (J 11) and Pin Assignments (J8)
CTC Strapping and I/o Assignments (J 10)
Video Output Connector Pin Assignments (J7)
Serial I/O Connector Pin Assignments Channel A (J4)
Ser ial I/O Strapping Options for Channel A (J9)
Serial I/O Connector Pin Assignments Channel B (J3)
Keyboard Connector Pin Assignments (J2)
Disk Drive Connector Pin Assignments (J 1)42

DIAGNOSTICS
Preparing to Run Diagnostics on a Nem 820-11
Initialize a Disk (floppy)
Format (initialize) a Rigid Disk
Running Diagnostics

viii
6/1/82

33
33
33
33
33
35
35
35
35
36
36
36
36
36
36
36
37
37
37
38
39
39
39
40
"40
41
42

1
2
5
8

INTRODUCTION

This is your CP/M Operating System Reference Manual. An operating system is a set of
programs that controls the computer's internal operation. In this manual you will find
detailed instructions for using the CP/M Operating System on your XEROX 820-11 Personal
Computer.

The CP/M Operating System is an industry standard that lets you use a variety of programs
you can purchase at software houses everywhere. Instructions for using application
programs can be found in the CP/M Handbook.

If you have not used CP/M and the 820-11 before, it is recommended that you go through the
CP/M Handbook to learn how to operate the 820-11. This introduction section also gives you
basic information about using the 820-II. You may want to read through it after you finish
the handbook.

If you need more detailed information about the 820-II and CP/M, you'll find it in the other
sections of this reference guide. A technical description of the 820-11 and ROM monitor
commands is given in the REFERENCE section of this manual. This information will be
helpful to you as a programming aid.

One final note on using the 820-II successfully:

It is recommended that you always remove your disks from the 820-11
before you turn it off. Leaving disks in the system when you power down
can permanently erase information on the disks.

DISK OPTIONS

The 820-II can utilize either single or double sided disk drives. If you're not sure what type
of drive your system has, you can check the serial number plate (located on the bottom of
the disk drives) and compare the number to the chart below. Page 3 shows the type of disk
to use in each drive.

CAUTION: When checking the serial number on the Rigid Disk Drives, don't bump or drop
the unit or you may damage the Rigid Disk.

XEROX .
SER#X929- 001083

Disk Drives Serial Number

5Yc," Single Sided = X929-000-0000

5Yc," Double Sided = T66-000-0000

Disk Drives

8" Single Sided =

8" Double Sided =

8" Rigid

INTRODUCTION
1

=

Serial Number

X 97 3-000-0000

F 10-000-0000

U07 -000-0000

In addition to the number of sides on a disk, the 820-11 will allow you to select the density of
the information recorded on the disk. "Density" refers to how much data can be stored on a
disk. The 820-11 is designed to record in "double density", which means that you'll get twice
the amount of data on the disk as "single density". You do have the option of selecting and
using single density on the 820-II, if you so desire.

The density of a disk is determined when the disk is initialized. The INIT utility (step-by­
step instructions for INIT are in the handbook) lets you select:

1 Single Densi ty, Single Side
2 Single Density, Double Side
3 Double Density, Single Side
4 Double Densi ty, Double Side

Usually, you'd select the density and number of sides you want to work with and initialize all
your disks to work that way. This is the most convenient way to work and is recommended
for anyone just learning the 820-11.

Read the rest of this page only when using:

• disks that have different densities.

• disks that have different numbers of sides.

Should this situation arise, use the following guidelines:

• Use the PIP program to copy files between disks with different densities or numbers
of sides.

• Remember that the 820-11 "sets" a disk drive to work in a certain density and
number of sides when it reads the first disk you insert after loading the CP/M
software. If you want to insert another disk with a different density and number of
sides, you'll have to tell the 820-11 to "reset" the drive in one of two ways:

You can press CTRL + C to reload the CP/M software, or

When using a floppy disk system you can tell the 820-11 to pretend that the drive
has a different name. The A Drive can be referred to as Drive C and the B
Drive can be referred to as Drive D.

For example: This means that you can put a double density disk in Drive Band
work in double density by using B as the drive name (e.g., use B:filename to
address a file on the disk). Then, when you remove that disk and insert a single
density disk, you can refer to the drive as D (e.g., D:filename) so the 820-11 will
recognize the change in density. Using this method, you can switch back and
forth between densities without reloading CP/M by referring to the drive as B
and D.

INTRODUCTION
2

Should you ever want to check to see what kind of disk a drive is set to read, you can use the
WHATSA program. This program will display a list of the possible drive names (A through
H) and the type of disk that is read (logged) by each drive. Remember, the first disk
inserted and read by a drive after CP/M is loaded determines what type of disk the drive is
set for.

It should be noted that the first drive logged on can be referred to as A or C. Another
floppy disk drive can be referred to as B or D. The other drive names (E through H) are used
in conjunction with a rigid disk.

FLOPPY DISKS

The disks used in the 820-11 can be purchased from Xerox or from any computer or office
equipment dealer. Disks will vary in quality and type. When a disk is marked "certified" for
double density, it means that the surface is of a high enough quality to allow you to record
double density data on the disk. Disks certified double sided are a high enough quality to
prevent errors in recording on either side of the disk.

When purchasing 8" disks, specify:

• Either Single Sided (77 tracks) or certified Double Sided (77 tracks per side).

• Double Density certified.

• Soft Sectored.

When purchasing 5"" disks, spe~ify:

• Either Single Sided (40 tracks) or certified Double Sided (40 tracks per side).

• Double Density certified.

• Soft Sectored.

USING THE COpy UTILITY

The COPY utility will copy single or double density disks. The utility will physically copy
disks that have the same density and the same number of sides (such as, single sided double
density). When copying disks or files that have different densities or sides, you would use
the PIP utility to copy your files from one disk to the other and the SYSGEN utility to copy
the operating system.

If you suspect a problem with the files being copied, use the PIP utility with the verify
option instead of using the copy utility (the copy utility will copy the problem along with the
data).

INTRODUCTION
3

CONFIGURING THE 820-ll

Software Configuration

You can make changes to certain areas of the CP/M software to customize the 820-11 to
your specific needs.

You can use the CONFIGUR or SET utility to change the software to operate with different
applications. The following is a list of modifications that can be made to the software using
the CONFIGUR utility:

• CP/M commands can be entered as restart commands to be executed each time that
CP/M is loaded.

• The standard printer port options may be changed to operate with different printers
other than the Xerox 620 (20 CPS) and 630 (40 CPS) printers.

• The communication port options may be changed.

• The I/o device assignments (such as Console, etc.) may be changed.

• The keyboard data format (7 or 8 bits) may be changed.

• The screen attributes (blink, inverse video, etc.) may be changed on the screen.

• The floppy disk head step rate (speed) can be changed to improve performance.

• The rigid disk may be divided into four disks.

Note: The SET utility is used to change the communications/printer baud rate.

Disk Drive Configuration (Daisy Chain)

An 8" floppy disk drive assembly (single or double sided disk drives) can be modified and
connected (daisy chained) to the back of a rigid disk drive assembly by a Xerox Service
Technician. Your system would then have three 8" floppy disk drives and one rigid disk
drive. If you configure your system with disk drives that are daisy chained, refer to "Daisy
Chaining Disk Drives" in the System Components section (page 51).

10/1/82
INTRODUCTION

4

UTILITIES AND PROGRAMS

The following is a list and description of the most commonly used utili ties and programs on
your CP/M disk.

UTILITY /PROGRAM

BACKUP

CONFIGUR

COpy

ED

FMT

HELP

IN IT

KILL ESC

PIP

SET

STAT

SWAP

SYSGEN

TIME

WHATSA

DESCRIPTION

Used to backup the data on a rigid disk.

Used to modify CP/M for the following particular
requirements:

• restart command
• pr inter port options
• communication port options
• I/O device assignments
• keyboard data format
• screen attributes
• floppy disk step rate
• rigid disk partitioning

Used to make an exact copy of a disk.

Used to create and edit files.

Used to format a rigid disk prior to use.

Used as a guide for information about CP/M commands,
reference manuals, and 820-11 special features.

Used to prepare (initialize) a new disk.

Used to disable the CTRL + ESC command.

Used to move a file(s) from one disk to another, and to
make copies of files.

Used to change the communications/printer port baud
rate.

Used to display the status of a disk; such as disk space and
information about the number, size, and kind of files on
any given disk.

Used to exchange logical disk drive assignments.

Used to copy the CP/M operating system onto a disk.

Used to set and display the date and time.

Used to show which logical and physical drives are in use
and what type of disks (density/number of sides etc.) are
being used.

INTRODUCTION
5

The following is a list and description of the utilities and programs which are normally used
when creating software programs.

UTILITY /PROGRAM

ASM

DDT

DUMP

L80

LOAD

MOVCPM

M80

SUBMIT

XSUB

DESCRIPTION

Used to translate an assembly language source file into a
hex file.

Used to load, alter and test programs written in the CP/M
environment.

Used to display the contents of a file in hexadecimal.

Used to translate a REL file into a COM file.

Used to translate a HEX file into a COM file.

Used to relocate CP/M for a different memory size.

Used to assemble the 8080 or Z-80 code.

Used to batch together CP/M commands for automatic
processing.

Used to input to programs executed in the submit file.

The following is a list of programs used only by the CP/M software and programs. You
should not erase these from the disk.

UTILITY /PROGRAM

TERMINAL

XERBAK

XERCPY

XERMAIN

DESCRIPTION

Support file for BACKUP utility.

Support file for BACKUP utility.

Support file for BACKUP utility.

Support file for BACKUP utility.

INTRODUCTION
6

APPLICA TIONS SOFTWARE

The instructions in the 820-II CP/M Operating System Handbook told you how to load CP/M.
After loading CP/M, you can run "applications" programs on the 820-II. The applications
software may be purchased from XEROX or from other vendors.

When you use your CP/M software to run an applications program for the first time, the
program may ask you to define your system. The following information will help you answer
these questions:

Your 820-11 is configured like a Televideo 950 terminal, or a Lear Siegler ADM-3A
display terminal.

Your 820-11 has the choice of the following disk drives:

• The 5Y4" single sided double density disks have 4-0 tracks and will have 155K of
available space.

• The 5Y4" double sided double density disks have 4-0 tracks per side and will have
322K of available space.

• The 8" single sided double density disks have 77 tracks and have 4-82K of
available space.

• The 8" double sided double density disks have 77 tracks per side and have 980K
of available space.

• The rigid disk drive assembly has a 8" double sided floppy drive, and an 8" 10
megabyte rigid drive. The double sided 8" drive is the same as the one above,
and the rigid disk has 1,024- tracks and has 8.192 megabytes of available space.

• Always read and follow the instructions that come with the Applications
Programs.

Your software is a CP/M 2.2 Operating System.

INTRODUCTION
7

ROM LEVEL

The Xerox 820-11 Basic Operating System monitor is contained in ROM on the CPU board.
To check what ROM level is in your system you would turn the 820-11 on or press the RESET
button if it is already on and read the ROM version level on the screen as shown below.

ROM LEVEL

..----~----
820-11 v 0.00 (C) 1982 Xerox Corp

L - Load System
H - Host Terminal
T - Typewriter

SOFTW ARE SERIAL NUMBER AND LEVEL

To check the software serial number and version level you would load your software and
read the screen as shown below:

SOFTW ARE LEVEL

__ --------------~-----S-E-R-IA-L-\-U-M-B-E-R---------------------------
Xerox 60k CP 1M vers 2.20 112-294 DCTOOOOOOO
A

INTRODUCTION
8

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF J'ANUARY 1978

Copyright (c) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Cbntents

Section Page

1. INTRODUCTION ••••••••••••••••••••• ~ ••••••••••••••••• 1

2. FUNCTIONAL DESCRIPTION OF CP/M ••••••••••••••••••••• 3
2.1. General Command Structure •••••••••••••••••••• 3
2.2. File References •••••••••••••••••••••••••••••• 3

3. SWITCHING DISKS •••••••••••••••••••••••••••••••••••• 6

4. THE FORM OF BUILT-IN ODMMANDS ••••••••••••••••••••••
4.1. ERA afn cr •••••••••••••••••••••••••••••••••••
4.2.
4.3.
4.4.
4.5.

OIR afn cr •••••••••••••••••••••••••••••••••••
REN ufn1=ufn2 cr •••••••••••••••••••••••••••••
SAVE n ufn cr ••••••••••••••••••••••••••••••••
TYPE ufn cr ••••••••••••••••••••••••••••••••••

7
7
8
8
9
9

5. LINE EDITING AND OUTPUT ODNTROL ••••••••••••••••••••• 11

6.

7.

8.

TRANSIENT ODMMANDS •••••••••••••••••••••••••••••••••
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

STAT cr ••••••••••••••••••••••••••••••••••••••
ASM ufn cr •••••••••••••••••••••••••••••••••••
L~ ufn cr ••••••••••••••••••••••••••••••••••
PIP cr
ED ufn
SYSGEN
SUBMIT

.......................................
cr
cr

....................................

....................................
ufn parmi1 ••• parm#n cr ••••••••••••••

DUMP ufn cr ••••••••••••••••••••••••••••••••••
mvCPM cr

BDOS ERROR MESSAGES ••••••••••••••••••••••••••••••••

OPERATION OF CP/M ON THE MDS

12
13
16
17
18
25
27
28
30
30

33

34

1. INTROOOcrION.

CP/M is a nonitor control program for microcomputer system developnent
which uses IBM-compatible flexible disks for backup storage. Using a computer
mainframe based uIX>n Intel's 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check-out facilities. An imI;X>rtant feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Ziloq Z-80) Central processing Unit, and has at least
16K bytes of main rremory wi th up to four IBM-compatible diskette drives. A
detailed discussion of the nodifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digi tal Research version operates on
a single-density Intel MDS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M nonitor provides rapid access to programs through a
comprehensive file management packaqe. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access. usirg this file system, a large number of
distinct programs can be stored in both s:>urce and machine executable form.

CP/M also supports a I;X>werful context editor, Intel-compatible assembler,
and debugger subsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M's Console Command Processor, the
reSUlting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)

BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard ~ripherals (teletype, CRI', Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching II this IX>rtion of
CP/M. The BDOS provides disk management by controlling one or nore disk
drives containing independent file directories. The BDOS implements disk
allocation strategies \tklich provide fully dynamic file construction while
minimizirq head ITOvement across the disk dur ing access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

BOOS has entry };X)ints \\hich include the following pr imi tive operations which
can be programmatically accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELEcr

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Change the name of a particular file.

Read a record from a particular file.

write a record onto the disk.

Select a particular disk drive for further
operations.

The CCP provides symbolic interface between the user' s ~onsole and the
remainder of the CP/M system. The CCP reads the console device and processes
commands which include listinq the file directory, pr inting the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuqgers. The standard commands which are available
in the CCP are listed in a following section.

The last sEgment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under command of
the CCP. Durinq program editinq, for example, the TPA holds the CP/M text
edi tor machine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It srould be trentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executinq program. That is, once a user's program is
loaded into the TPA, the CCP, BOOS, and BIOS areas can be used as the
program's data area. A II bootstrap" loader is programmatically accessible
whenever the BIOS };X)rtion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk.

It srould be reiterated that the CP/M operating system is partitioned
into di stinct nodules, including the BIOS pJrtion mich defines the hardware
environment in which CP/M is executing. Thus, the standard system can be
easily nodified to any non-standard environment by cnanqing the J;:eripheral
drivers to handle the custom system.

2

2. FUN:TIONAL DESCRIPrION OF CP/M.

The user interacts with CP/M primarily through the CCP, mich reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks mich are online (the standard system addresses
up to four different disk drives). These disk drives are labelled A, B, C,
and D. A disk is I'logged in" if the CCP is currently crldressing the disk. In
order to clearly irrlicate mich disk is the currently logged disk, the CCP
always l;ranpts the operator wi th the disk name followed by the symbol ")"
indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K memory space, but can be easily reconfigured to fit any memory size
on the host system (see the IDVCPM transient canmand). Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
II A) " (indicating that CP/M is currently crldressing disk "A"), and waits for a
command. The canmands are implemented at two levels: built-in canrnands and
transient canrnands.

2.1. GENERAL CDMMAND STRUCIURE.

Built-in canmands are a part of the CCP program itself, mile transient
commands are loaded into the TPA fran disk and executed. The built-in.
commands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Nearly all of the commands reference a particular file or group of files. The
form of a file reference is specified below.

2.2. FILE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
.. tmambigoous" (ufn) or "ambiguous" (afn). An tmarnbiguous file reference
uniquely identifies a single file, vklile an ambiguous file reference. may be

3

satisfied by a number of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that
is, the secondary name IAsM," for example, is used to denote that the file is
an assembly language source file, Yhile the pr imary name distinguishes each
particular oource file. The two names are separated by a "." as shown below:

PPWPPPp.sss

where pppppppp represents the l;rirnary name of eight characters or less, and
sss is the secondary nane of no rrore than three characters. As rrentioned
above, the name

pppppppp

is also allowed am is a:Juivalent to a secondary name consisting of three
blanks. The characters used in sp=cifying an unambiguous file reference
cannot contain any of the special characters

<>.,;:= ?*[]

while all alphanumerics and ranaining s~cial characters are allowed.

An ambigoous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unarnbigoous reference, except the symbol "?II may be interspersed throughout
the p: irnary and secondary names. In various canrnands throughout CP/M, the II?"
symbol matches any character of a file name in the "?" IX>sition. Thus, the
ambiguous reference

X?Z.C?M

is satisfied by the unambiguous file names

Xyz.mM
and

X3Z.CAM

Note that the ambiguous reference

* * •

is equivalent to the ambiguous file reference

???????? ???
while

4

PPPPPPPP.*
and

*.sss

are abbreviations for

PPPPPPPP.???
and

????????sss

respectively. As an example,

DIR *.*

is interpreted by the CCP as a canmand to list the names of all disk files in
the directory, While

DIR X.Y

searches only for a file by the name X.Y Similarly, the command

DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk Which satisfy
this ambiguous reference.

The followin] file names are valid tmambiquous file references:

x XYZ GAMMA

X.Y xyz.mM GAMMA.l

As an crlded convenience, the programmer can generally specify the disk
drive name alon] with the file name. In this case, the drive name is given as
a letter A through Z follo~d by a colon (:). The specified drive is then
"logged inn before the file operation occurs. Thus, the followin] are valid
file nanes wi th disk name prefixes:

A:X.Y B:XYZ C:GAMMA

z:xyz.mM B:X.A?M C:*.ASM

It srould also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case when they are trocessed by
the CCP.

5

3. SWITCHING DISKS.

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and canmands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE Aev1

SAMPLE PRN

A>B: Switch to disk B.

B>DIR *.ASM List all "ASM" files on B.

DUMP ASM

FILES ASM

B>A: Switch back to A.

6

4. THE FORM CF BUILT-IN mMMANOO.

The file am device reference forms described above can now be used to
fully s};Ecify the structure of the built-in canmands. In the description
below, assume the fbllowing abbreviations:

ufn unambiquous file reference

afn ambiguous file reference

cr carr iage return

Fur ther, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names and file references.

4.1 ERA afn cr

The ERA (erase) command ranoves files from the currently logged-in disk
(i.e., the disk nane currently prompted by CP/M preceding the ")"). The files

which are erased are those Wlich satisfy the ambiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X. Y

ERA X.*

ERA *.ASM

ERA X?Y.C?M

ERA *.*

ERA B:* .PRN

The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned.

All files with primary name X are removed from
the current disk.

All files with secondary name ASM are removed
from the current disk.

All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP prompts the console with the message

"ALL FILES (YIN)?"
which requires a Y response before files are
actually removed).

All files on drive B which satisfy the ambiguous
reference ????????PRN are deleted, independently
of the currently logged disk.

7

4.2. OIR afn cr

The OIR (directory) canmand causes the names of all files T..A1ich satisfy
the anbigoous file name afn to be listed at the console device. As a sp?cial
case, the canrnand

OIR

lists the files on the currently logged disk (the canrnand "OIR" is Equivalent
to the canrnand "OIR *. *"). Valid DIR canmands are shown below.

OIR X.Y

OIR X?Z.C?M

OIR ??Y

Similar to other CCP canmands, the afn can be preceded by a drive name.
The followirg OIR canmands cause the selected drive to be addressed before the
directory search takes place.

OIR B:

DIR B:X.Y

DIR B:*.A?M

If no files can be found on the selected diskette \\hich satisfy the
directory request, then the rressage "Nor FOUND" is typ=d at the console.

4.3. REN ufnl=ufn2 cr

The REN (rename) canmand allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to typ= a left-di rected arrow instead of the equal sign, if the user" s console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file O.R is changed to X.Y.

REN XYZ.OOM=XYZ.XXX The file XYZ • XXX is changed to XYZ. mM.

The operator can rrecede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by
a drive nane, then ufnl is assumed to reside on that drive as ~ll. If both
ufnl arrl ufn2 are preceded by drive names, then the same drive must be

8

sp:cified in both cases. The followin;J REN canrnands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS=ZOT.BAS

REN B:A.ASM = B:A.BAK

The file Y.ASM is changed to X.ASM on
drive A.

The file ZOT.BAS is changed to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the file ufnl is already present, the REN canmand will respond with
the error "FILE EXISTS" and not p:rform the change. If ufn2 does not exist on
the sp:=cified diskette, then the Iressaqe IINar FOUND II is pr inted at the
console.

4.4. SAVE n ufn cr

The SAVE canmand places n pages (256-byte blocks) onto disk fran the TPA
and nanes this file ufn. In the CP/M distribution system, the TPA starts at
100H (hexadecimal), mich is the second page of memory. Thus, if the user"s
prCXjram occupies the area fran 100H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine ccx:1e file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.OOM

SAVE 40 Q

SAVE 4 X.Y

COpies 100H through 3FFH to X.OOM.

Copies 100H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

Copies 100H throuqh 4FFH to X.Y.

The SAVE canmand can also sp:=cify a disk drive in the afn p::>rtion of the
canmand, as smwn below.

SAVE 10 B:ZOT.OOM

4.5. TYPE ufn cr

Copies 10 pages (100H through 0AFFH) to
the file ZOT.OOM on drive B.

The TYPE canmand displays the contents of the ASCII source file ufn on
the currently lCXjged disk at the console device. Valid TYPE canmands are

TYPE X. Y

9

TYPE X.PIM

TYPE XXX

The TYPE camnarrl expands tabs (clt-! characters), assummi~ tab p:>sitions
are set at eJery eighth column. The ufn can also reference a drive name as
shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

10

5. LINE EDITING AND OUI'pur CONTROL.

The CCP allows certain line editing functions while typing command lines.

rubout

ctl-U

ctl-x

ctl-R

ctl-E

ctl-C

ctl-Z

Delete and echo the last character typed at the
console.

Delete the entire line tjped at the console.

(Same as ctl-U)

Retype current canmand line: types a "clean line" fol­
lowing character deletion with rubouts.

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT command). Output
is sent to both the list device and the console device
until the next ctl-P is typed.

stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con­
tinuing.

Note that the ctl-key sequences soown above are obtained by depressing the
control arrl letter keys simultaneously. Further, CCP canmand lines can
generally be up to 255 characters in length; they are not acted uJX>n until the
carriage return key is typed.

11

6. TRANSIENT OOMMANDS.

Transient canmands are loaded fran the currently logged disk and executed
in the TPA. The transient canrnands defined for execution tmder the CCP are
shown below. Addi tional ftmctions can easily be defined by the user (see the
LOAD command definition).

STAT

ASM

Dur

PIP

ED

SYSGEN

SUBMIT

DUMP

roVCPM

List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment.

Load the CP/M assembler and assemble the specified
program from disk.

Load the file in Intel "hex" machine 'code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command tmder the CCP).

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of commands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded fran the specified drive into the TPA for
execution. Thus, the command

B:STAT

causes CP/M to tenp:>rarily "log in'· drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

The basic transient commands are listed in detail below.

6.1. STAT cr

The STAT canmand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

Special forms of the "canmand line" allow the current device assignment to be
examined and altered as well. The various canmand lines which can be
specified are shown below, wi th an explanation of each form shown to the
right.

STAT cr

STAT x: cr

STAT afn cr

If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: RIO, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and RIO indicates
the drive is read only (a drive becomes RIO by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start). The space
remaining on the diskette in drive x is given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the canmand ·'STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The canmand line can also specify a set of files
to be scanned by STAT. The files which satisfy
afh are listed in alphabetical order, with stor­
age requirements for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:PPPPPPPP.sss

where rrrr is the number of 128-byte records

13

STAT x:afn cr

STAT x:=R/O cr

allocated to the file, bbb is the number of kilo­
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extenf,ions (ee=bbb/16),
d is the drive name containing the file (A ••• Z),
pppppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, and the form "STAT afn l

'

is executed.

This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk i p read-only,
the rressage I

BOOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals "CP/M Interface
Guide" aoo "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices. The four logical devices are
named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP
for communication with the operator)

The paper tape reader device

The paper tape punch device

The output list device

'rhe actual devices attached to any particular computer system are driven
by subroutines in the BIOS p:>rtion of CP/M. Thus, the logical RDR: device,
for example, could actually be a high sr:eed reader, Teletype reader, or
cassette tape. In order to allow rome flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

TTY:

CRr:

BAT:

UCl:

PrR:

URI:

UR2:

PrP:

UPl:

UP2:

LPr:

ULl:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output qoes to current 1ST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (high s~ed punch)

User-defined punch #1

user-defined punch #2

Line printer

User-defined list device #1

It must be emphasized that the physical device names mayor may not
actually corresp:>nd to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS portion
of CP/M. In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system.

The };Ossible logical to physical device assignments can be di splayed by
typing

STAT VAL: cr

The STAT pr ints the p:>ssible values which can be taken on for each logical
device:

roN. = T'lY: CRr: BAT: UCl:
RDR: = T'lY: PrR: URI: UR2:
PUN: = T'lY: PrP: UPl: UP2:
LST: = T'lY: eRr: LPr: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the r iqht. For example, the Ii st might
appear as follows:

CON: = eRr:
RDR: = URI:
PUN: = PrP:
LST: = TTY:

The cur rent logical to physical device assignment can be changed by typing a
STAT canmand of the form

STAT ldl = pdl, ld2 = pd2 , ••• , ldn = pdn cr

where ldl through ldn are logical device names, and pdl through r:dn are
compatible ~hysical device names (i.e., ldi and odi appear on the same line in
the "VAL: II canmand shown above). The followirg are valid STA'l1 commands which
change the current logical to physical device assignments:

STAT mN:=CRr: cr
STAT PUN: = TTY: ,LST:=LPr:, RDR:=TTY: cr

6.2. A~ ufn cr

The ASM command loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM commands are valid:

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file

x.PRN

where x is the pr imary name sp=cified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

at the console usirq the TYPE canmand, or sent to a p?ripheral device using
PIP (see the PIP canrnand structure below). Note also that the PRN file
contains the original source prcxjram, augmented by miscellaneous assembly
information in the leftIrost 16 columns (program crldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator's guide) by removing the
leftrrost 16 characters of each line (this can be done by issuing a single
edi tor "macro" canmand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced which contains 8080 machine language in Intel "hex" format
suitable for sLDsequent loading and execution (see the LQ.Z\D command). For
complete details of CP/M's assembly language program, see the "CP/M Assembler
Language (ASM) User's Guide. II

Similar to uther transient commands, the oource file for assembly can be
taken from an a~ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the canrnand

AEM B :ALPHA cr

loads the assembler from the currently logged drive and operates upon the
source program ALPHA.ASM on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. L(N) ufn cr

The LQlill command reads the file ufn, which is assumed to contain II hex II
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command. The LQ.Z\D command
creates a file named

x.mM

which marks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character 11)" printed by the CCP.

In general, the CCP reads the name x following the prompting character
and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17
/,'

x.ooM

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once: it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent" new canmands in the CCP. (Initialized disks contain the
transient canrnands as mM files, which can be deleted at the user's option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LQ.2\D B:BETA

brings the LOAD program into the TPA fran the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA. HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at l00H, the beginning of the TPA. Further, the addresses in the
hex records must be in ascending order: qaps in tmfilled memory regions are
filled wi th ze roes by the LOAD canmand as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard "ooM" files which operate in
the TPA. Programs \\hich occupy regions of memory other than the TPA can be
loaded under our.

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP IIcanmand line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads canmand lines directly fran the console, prompted with the "*11
character, until an empty canmand line is typed (i.e., a single carriage
return is issued by the operator). Each successive canmand line causes rome
media conversion to take place according to the rules shown below. Form (2)
of the PIP canmand is equivalent to the first, except that the single command
line given wi th the PIP canmand is automatically executed, and PIP terminates
immediately wi th no further pranpting of the console for input corrunand lines.
The form of each canmand line is

destination = sourceil, source#2, ••• , source#n cr

where "destination" is the file or peripheral device to receive the data, and

18

.. oource#l, ••• , source#n" represents a series of one or rrore files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the 0 parameter to
overr ide this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readabili ty. Lower case ASCII alphabetics are internally translated to upper
case to be consistent wi th CP/M file and device name conventions. Finall y ,
the total canmand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width) •

The destination and source elements can be unambiguous references to CP/M
source files, with or without a precedin:J disk drive name. That is, any file
can be referenced wi th a p:-eceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or rrore of the source
files, in which case the source file is not altered until the entire
concatenation is complete. If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condi tion arises). The following canmand lines (with explanations to the
right) are valid as input to PIP:

x = Y cr

X = Y,Z cr

X.ASM=Y.ASM,Z.ASM,FIN.ASM cr

NEW.ZOT = B:OLD.ZAP cr

B;A.U = B:B.V,A:C.W,D.X cr

Copy to file X from file Y.
where X and Yare unambiguous
file names~ Y remains unchanqed.

Concatenate files Y and Z and
copy to file X, with Y and Z
unchanqed.

Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type ~SM.

Move a copy of OLD. ZAP from drive
B to the currently logged disk~
name the file NEW.ZOT.

Concatenate file B.V from drive B
\'lith C.W from drive A and D.X.
from the logged disk~ create
the file A.U on drive B.

For rrore convenient use, PIP allows abbreviated commands for transferr ing
files between disk drives. The abbreviated forms are

19

PIP x:=afn cr

PIP x:=y:afn cr

PIP ufn = y: cr

PIP x:ufn = y: cr

The first form copies all files from the currently loqged disk which satisfy
the afn to the same file names on drive x (x = A ••• Z) • The second form is
equivalent to the first, where the source for the copy is drive y (y = A •••
Z) • . The third form is equivalent to the canrnand "PIP ufn=y: ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the S)urce disk is explicitly
given by v.

Note that the source and destination disks must· be different in all of
these cases. If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed UlX>n successful completion of the copy, and
re?laced by the copied file.

The following PIP commands qive examples of valid disk-to-disk copy
operations:

B:=*.CDM cr

A:=B:ZAP.* cr

ZAP .ASM=B: cr

B:ZOT.CDM=A: cr

B:=GAMMA.BAS cr

B:=A:GAMMA.BAS cr

Copy all files which have the
secondary name "COM" to drive B
from the current drive.

Copy all files which have the
primary name "ZAP" to drive A
from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.COM=A:ZOT.COM

Same as B : GAMMA. BAS=GAMMA. BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and l~ical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT command, alon:j with a number of s:r;ecially named devices. The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY:
CRr:
PI'R:
PI'P:
LPI':

(console,
(console,
(reader) ,
(punch) ,
(list) ,

reader, punch,
or list) ,
URI: (reader),
UPl: (punch),
UIJ. : (Ii st)

\

or list)
UCl: (console)
UR2: (reader)
UP2: (punch)

(Note that the IIBAT: II physical device is not included, since this assignment
is used only to indicate that the RDR: and IST: devices are to be used for
console input/output.)

The RDR, IST, PUN, and CON devices are all defined wi thin the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mappiI'KJ is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function). The destination device
must be capable of receivilXJ data (i.e., data cannot be sent to the punch),
and the source devices must be capable of qenerating data (i.e., the LSTO:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls " (ASCII 0 's) to the device
(this can be issued at the end of punched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP).

Sp:cial PIP input source which can be "patched"
into the PIP program itself: PIP qets the input
data character-by-character by CALLing location
l03H, with data returned in location l09B (parity
bit must be zero).

Sp:cial PIP output destination which can be
patched into the PIP program: PIP CALLs location
l06H with data in register C for each character
to transmit. Note that locations l09H throuqh
lFFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator's manual).

Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the s{:ecific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files). Data from each device or
file is concatenated fran left to riqht tmtil the last data oource has been

21

read. The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a ten{X>rary
file is created ($$$ secondary name) which is chanqed to the actual file name
only uPJn soccessful completion of the copy. Files wi th the extension "OOM"
are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "ABORJ'ED"
to indicate that the operation was not completed. Note that if any operation
is aborted, or if an error occurs dur inq processing, PIP removes any -p=nding
commands which were set up while usinq the SUBMIT command.

It soould also be noted that PIP performs a s-p=cial function if the
destination is a disk file wi th type "HEX" (an Intel hex formatted machine
code file), and the source is an external p?ripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source
'file contains a p:-operly formed hex, file, wi th legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carr iage return at the console, and PIP will attempt another read. If the
tape J;X>sition cannot be properly read, simply continue the read (by typing a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered fran the console if the source file is a RDR:
device. In this case, the PIP program reads the device and rronitors the
keyboard. If ctl-Z is typ:=d at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below.

PIP 1ST: = X.PRN cr

PIP cr

*CON:=X.ASM,Y.ASM,Z.ASM cr

*X.HEX=CON:,Y.HEX,PTR: cr

*cr

22

Copy X.PRN to the IST device and
terminate the PIP program.

Start PIP for a sequence of
commands (PIP prompts with "*11).

Concatenate three ASM files and
copy to the CON device.

Create a HEX file by reading the
CON (until a ctl-Z is typed), fol­
lowed by data from Y.HEX, followed
by data from PTR until a ctl-Z is
encountered.

Single carriage return stops PIP.

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device:
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac­
ters.

The user can also s~cify one or rrore PIP parameters, enclosed in left
and right square brackets, separated by zero or nPre blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be follo~d by an optional decimal integer value (the Sand 0 parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data. The amount of data which can be buffered is de­
pendent upon the memory size of the host systew (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) pr inter or console devic~,.

E Echo all transfer operations to the console as they are being
performed.

F Fil ter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
prompted for corrective action in case errors occur.

I Ignore 11:00" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter) •

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementinq by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified then leadinq zeroes are included, and a tab is
inserted followi~ the number. The tab is expanded if T is

23

set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qstz Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered.

Ss'z Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The Sand 0 parameters
can be used to "abstract" a particular section of a file
(such as a subroutine). The start and quit strings are al-
ways included in the copy operation.

NOTE - the strings following the sand q parameters are
translated to upper case by the CCP if form (2) of the
PIP canmand is used. Form (1) of the PIP invocation, how­
ever, does not perform the automatic upper case translation.

(1) PIP cr
(2) PIP "command linen cr

Tn Expand tabs (ctl-I characters) to every nth column durinq the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation.

V verify that data has been copied correctly by rereadinq
after the write operation (the destination must be a disk
file) •

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM=B:[v] cr

PIP LPT:=X.ASM[ntSu] cr

Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

Copy X.ASM to the LPT: device; number each
line, expand tabs to every eiqhth column, and
translate lower case alphabetics to upper
case.

24

PIP PUN:=X.HEX[il ,Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing" :00" record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any 11:00" records which it contains.

PIP X.LIB = Y.ASM [sSUBRl:tz qJMP L3t z] cr Copy from the file Y.ASM

PIP PRN:=X.ASM[p50]

6.5. ED ufn cr

into the file X.LIB. Start the copy when the
string "SUBRl:" has been found, and quit copy­
in:} after the string "JMP L3" is encountered.

Send X.ASM to the LST: device, with line num­
bers, tabs expanded to every eighth column,
and page ejects at every 50th line. Note that
ntSp60 is the assumed parameter list for a PRN
file; p50 overrides the default value.

The ED program is the CP/M system context editor, \4.'hich allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, liED: a Context Edi tor for the CP/M
Disk SysteITl. II In general, ED allows the operator to create and operate up:>n
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the workin;J memory), which is instead defined by the number of characters
typed between cr's. The ED program has a number of commands for character
string searching, replacement, and insertion, \4.'hich are useful in the creation
and correction of programs or text files under CP/M. Although the CP/M has a
limi ted rremory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily llpaged ll through this work area.

Upon initiation, ED creates the srecified source file, if it does not
exist, and opens the file for access. The programmer then "appends" data from
the oource file into the work area, if the source file already exists (see the
A canmand), for edi tinq. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular IX>ints in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file.

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edi ted data dur ing the ED run. upon canpletion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM. Thus, the X.BAK file contains the oriainal (unedited) file, and the
X.ASM file contains the newly edited file. The -operator can always return to
the previous version of a file by renovinq the IlOst recent version, and
renamirg the IX'evious version. SUT;>pc>se, for example, that the current X.ASM
file was improperly edited; the sequence of CCP canmand shown below would
rec~aim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file
is available.

Erase most recent version.

Rename the BAK file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q canmand) wi thout destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "pinq-pxlq" the s:>urce and create
backup files between two disks. The form of the ED command in this case is

ED ufn d:

where ufh is the name of a file to edit on the currently logged disk, and d is
the name of an alternate drive. The ED program reads and processes the s:>urce
file, and writes the new file to drive d, using the name ufn. Upon completion
of processing, the original file becomes the backup file. Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

mich edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently logged
disk becomes drive B at the end of the edit. Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS

is pr inted at the console as a precaution cqainst accidently destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Similar to other transient canrnands, editing can take place on a drive
different fran the rurrently lOjged disk by preceding the rource file name by
a drive name. Examples of valid edit requests are shown below

ED A:X.ASM

ED B:X.ASM A:

6.6. SYSGEN cr

Edit the file X.ASM on drive A, with
new file and backup on drive A.

Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A. On
termination of editing, change X.ASM
on drive B to X.BAK, and chanqe X.$$S
on drive A to X.ASM.

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program prompts the console
for commands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on roessage.

SOURCE !EIVE NAME (OR RE'IURN TO SKIP)

SOURCE ON x THEN TYPE RETURN

FUNCTION COMPLETE

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys­
tem; usually A. If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating system on drive
x (x is one of A, B, C, or D).
Answer wi th cr when ready.

System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RE'IURN TO REBOOr)

27

If a diskette is being ini­
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a cr and the system will reboot
from drive A. Typing drive name
x will cause SYSGEN to prompt

\\'i th:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION mMPLETE New diskette is initialized
in drive x.

The "DESTlNATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon canpletion of a successful system qener ation, the new di skette
contains the q;>erating system, and only the built-in canrnands are available.
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate CDM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can cq;>y all files fram an existing diskette by typing the PIP
camrnand

PIP B: = A: *.*[vJ cr

which ccpies all files fram disk drive A to disk drive B, and Verifies that
each file has been copied correctly. The name of each file is .disl;>layed at
the console as the copy operation proceeds.

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system. Further, if a diskette is beirg used only on drives B through D, and
will never be the source of a bootstrap operation, on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7. SUBMIT ufn parrn#l ••• parrn#n cr

The SUBMIT command allows CP/M coorrnands to be batched toqether for
automatic {Xocessinq. The ufn qiven in the SUBMIT command must be the
filename of a file Which exists on the currently logged disk, with an assumed
file type of "SUB." The SUB file contains CP/M prototype carunands, with
possible parameter substitution. The actual parameters parm#l ••• parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted commands are processed sequentially by CP/M.

28

The prototype canmand file is created using the ED program, wi th
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corres~ndi~ to the number of actual parameters which will be included when
the file is submitted for execution. When the SUBMIT transient is executed,
the actual parameters parm#l ••• parm#n are paired with the formal parameters
$1 ••• $n in the prototype canrnands. If the number of formal and actual
parameters does not corres~nd, then the submit function is aborted with an
error message at the console. The SUBMIT function creates a file of
substituted commands with the name

$$$.SUB

on the lCXJged disk. When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a s::>urce of input, rather
than the console. If the SUBMIT function is performed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots. Fur ther, the user can abort canmand processing at
any time by typirn a rubout when the canmand is read and echoed. In this
case, the $$$.SUB file is ranoved, and the subsequent canmands cane from the
console. Command processing is also aborted if the CCP detects an error in
any of the commands. Programs which execute under CP/M can abort processing of
command files \\hen error condi tions occur by simply erasing any existing
$$$.SUB file. .

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the command file. Further, an
up-arrow symbol "fll may precede an alphabetic character x, which oroduces a
single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, thus
allowi rq chained batch canrnands.

Supt:X)se the file ASMBL.SUB exists on disk and contains the prototype
commands

and the conmand

Agvt $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $l.PRN

SUBMIT ASMBL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
stDstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

AS1 X
OIR X.*
ERA *.BAK
PIP PRN:=X.PRN
ERA X.PRN

Which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file which is on an alternate drive
by precedin;} the file name by a drive name. Submitted files are only acted
up:>n, however, when they appear on drive A. Thus, it is IX'ssible to create a
submi tted file on drive B which is executed at a later time when it is
inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the left of each line in
hexadecimal. IDng typeouts can be aborted by pushing the rubout key dur ing
printout. (The oource listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. M)VCPM cr

The IDVCPM t;rogram allows the user to reconfigure the CP/M system for any
particular !femory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disT;X)sition of the new system
at program termination. If the first parameter is Ollitted or a "*" is given,
the mVCPM program will reconfigure the system to its maximum size, based uIX>n
the kilobytes of contiguous RAM in the host system (starting aat 0000H). If
the second parameter is ani tted, the system is executed, but not -p=rmanentl y
recorded~ if "*" is qiven, the system is left in memory, ready for a SYSGEN
operation. The rvDVCPM program relocates a rremory image of CP/M and places
this image in rremory in preparation for a system generation operation. The
canrnand forms are:

MOVCPM cr Relocate and execute CP/M for manage­
ment of the current memory configura­
tion (memory is examined for contigu­
ous RAM, starting at I00H). Upon com­
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette. The system
which is constructed contains a BIOS
for the Intel MDS 800.

30

MOVCPM n cr

M)VCPM * * cr

MOVCPM n * cr

The canmand

MOVCPM * *

Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

Construct a relocated memory image for
the current memory confiquration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGE~1 operation.

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation. The message

READY FOR II SYSGEN" OR
IISAVE 32 CPMxx.OOMIl

is p= inted at the console ulX>n canpletion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation.

SOURCE IRIVE NAME (OR RRlURN fro SKIP) Respond with a cr to skip
tile CP/M read operation since t.he system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION eRIVE NAME (OR RETIJRN T0 REBOOT)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE REIURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond wi th IIAII rather than liS II above, the system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION eRIVE NAME (OR RRlURN TO REBOOT)

until the operator resp:>nds wi th a single carriage return, \lYhich stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process wi th the old or new
diskette. Instead of performin:y the SYSGEN operation, the user could have
t~d

SAVE 32 CPMxx.(l)M

at the canpletion of the IDVCPM function, \\hich would place the CP/M memory
image on the currently logged disk in a form which can be "{:etched. /I This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr

MOVCPM 48 * cr

M)VCPM * * cr

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in prepara­
tion for -p?rmanent recording; resJX>nse is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.mM"

Construct a maximum memory version of CP/M
and start execution.

It is imp:>rtant to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensinq Aqreement.

32

7. BOOS ERROR MESSAGES.

There are three error situations v.hich the Basic Disk Operating System
intercepts dur irg file processsing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and "error ll is one of the three error messages:

BAD SECI'OR
SELEcr
READ ONLY

The "BAD SEcroR" rressage indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condi tion of your media. You may also encounter this condition in
readi~ files generated by a controller produced by a different rranufacturer.
Even trough cont.rollers are claimed to be IBM-compatible, one often finds
small di fferences in recording formats. The MIS-800 controller, for example,
requires two bytes of one's following the data CRC byte, v.hich is not required
in the IBM format. As a result, diskettes generated by the Intel MOO can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer's equipment will produce the "BAD SEcroR" rressage when read
by the MIS. In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, v.h ich simpl y
ignores the bad sector in the file operation. Note, oowever, that typing a
return nay destroy your diskette integrity if the operation is a directory
wr i te, so make sur e you have adegua te backups in this case.

The "SELEcr" error occurs \tk1en there is an attempt to address a drive
beyond the A through D range. In this case, the value of x in the error
message gives the selected drive. The system reboots following any input from
the console.

The "READ ONLY" nessage occurs \tk1en there is an attempt to write to a
diskette v.hich has been designated as read-only in a STAT command, or has been
set to recrl-only by the BDOS. In general, the operator should reboot CP/M
either by using the \\arm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed. If a changed diskette is to be read but
not wr i tten, BOOS allows the di skette to be chanqed wi thout the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is subsequently chanjed to read/write if a warm or cold start occurs. Upon
issuing this IlEssage, CP/M waits for input from the console. An automatic
warm start takes place following any input.

33

8. OPERNJ.lION OF CP/M ON THE MIS.

This section gives q:>erating procedures for using CP/M on the Intel Mrs
microcomputer development system. A basic knowledge of the MrS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The disk drives are labelled 0 through 3 on the MIS,
corresJX)ndirq to CP/M drives A. through D, respectively. The CP/M system
diskette is inserted into drive 0, and the roar and RESET switches are
depressed in sequence. The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light srould go out (if it does not, then check connections
and baud rates). The roar switch is then turned off, and the CP/M siqnon
message srould appear at the selected console device, followed by the "A>u
system {ranpt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 0 switch on the front panel. The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operatinq under DDT, in Which case the DDT program gets control instead.

Diskettes can be renoved from the drives at any time, and the system can
be shut down dur in;J operation wi thout affecting data integr i ty. Note,
however, that the user must not remove a diskette and replace it with another
wi thout rebooting the system (cold or warm start), tmless the inserted
diskette is "read only. II

l)Je to hardware hang-ups or malfunctions, CP/M may type the message

BOOS ERR ON x: BAD SEcroR

where x is the drive which has a permanent error. This error may occur when
drive doors are q:lened and closed- randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation again.

Termination of a CP/M session requires no special action, except that it
is necessary to ranove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics.

It srould be noted that factory-fresh IBM-canpatible diskettes should be
used r ather than di skettes which have previously been used wi th any ISIS
version. In particular, the ISIS uFORMAT" operation produces non-standard
sector numbering throughout the diskette. This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version. If it becomes necessary to reformat a diskette
(which srould not be the case for standard diskettes), a p:-ogram can be

written under CP/M \\hich causes the MC6 800 controller to reformat wi th
sequential sector numbering (1-26) on each track.

Note: "MIS 800" am "ISIS" are reqistered trademarks of Intel Corporation.

35

48: dad b
49: mov
50: fill
51 : ret
52:
53: sector: ds
54: endef
55: end

again
l,m

botn H

1

if double precision tran
;only low byte necessary here

and L if double precision tran
;HL = ??ss

Referring to the program shown above, lines 3-6 re?resent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jUffi?
vector elements). The last two elements provide access to the
"LIs'!'s'r" (List Status) entry point for DESPOOL. 'rhe use of this
particular entry point is defined in the DESPOOL documentation, and is
no different tnan the previous 1.4 release. It should be noted that
the 1.4 DESPOOL orogram will not o?erate under version 2.0, but an
update version will be ava"ilaole from Digital Research in the near
future.

'rhe "SEcrrRAN'1 (Sector Number 'rranslate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subrou tine. 'This mechanism allows the user to specify the sector skew
factor and translation for ~ 9articular disk system, and is described
below.

A macro library is shown in the listing, called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
·
DISKS n
DISKDEF o , •••
DISKDEF 1 , ...
·
DISKDEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your 8IOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
QISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corres~onding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable 90rti(
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following tl
DISKOEF macros, with the ENDEF macro call immediately preceding tl
EL~D statement. [rhe ENDEF (End of Diskdef) macro generates tl
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISK D E F d n, f s c ,Is c, [s k f] , b 1 s , d k s , d i r , c k s ,of s, [(1]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
ols is the data allocation block size
dir is the number of directory entries
cks is the number of It checked ,. directory entries
ots is the track offset to logical track 00
[0] is an ootional 1.4 compatibility flag

:rhe value 'Idn" is the dr ive number being defined wi th this DISKD1
macro invocat;.ion. ;rhe "fsc" parameter accounts for differing sect(
n U ill i::> e r i nq s y stem s, and i sus u all y 0 0 r 1. The" 1 s c .. i s the 1 a ~
numbe red sec tor on a tr ack. \~hen l?r esen t, the "s k f" par arne ter de finE
the sector skew factor which is used to create a sector translati(
table according to the skew. If the number of sectors is less the
256, a single-byte table is created, otherwise each translation tab:
element occu9ies two bytes. No translation table is created if tl
s k f par am e t e r i s om itt e d (0 r e qua Ito 0). The II b 1 s·· par am e t E

s~ecifies the number of bytes allocated to each data block, and takE
on the values 1024, 2048, 4096, 8192, or 16384. Generall~
performance increases with larger data block sizes since there al
fewer directory references and logically connected data records al
physically close on the disk. Further, each directory entry addressl
mo red a t a and t l1 e B lOS - res id e n tram spa c e i s red u c e d • 'r hell d k ~
specifies tne total disk size in "bls" units. That is, if the bls
2048 and dks = 1000, tnen the total disk capacity is 2,048,000 byte:
If dks is greater than 255, then the block size parameter bls must I
greater than 1024. 'rhe value of 'Idir" is the total number (
d ire c tory en t r i e s w h i c h rna y ex c e e d 2 5 5 , i f des ire d • 'r he" c k ~
parameter determines the number of directory items to check on eal
directory scan, and is used internally to detect changed disks duril
system operation, where an intervening cold or warm start has nl
occurred (when this situation is detected, CP/M automatically marl
the disk read/only so that data is not subsequently destroyed
Normally the value of cks = dir when the media is easily changed,
is the case with a floppy disk subsystem. If the disk is permanent:
mounted, then the value of cks is typically 0, since the probabili
of cnanging disks without a restart is quite low. The "ofs" vall
determines the number of tracks to skip when this particular drive
addressed, which can be used to reserve additional operating syst

(All Information Contained Herein is Proprietary to Digital Research

30

>ace or to simulate several logical drives on a single large capacity
lysical drive. Finally, the [0] parameter is included when file
)m9atibility is required with versions of 1.4 which have been
~dified for higher density disks. This parameter ensures that only
iK is allocated for each directory record, as was the case for
evious versions. Normally, this parameter is not included.

For convenience and economy of table s9ace, the special form

DISKDEF i,j

ves disk i the same characteristics as a previously defined drive j.
standard four-drive single density system, which is com9atible with

rsion 1.4, is defined using the following macro invocations:

DISKS
OISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2 .
1,0
2,0
3,0

th all disks having the same parameter values of 26 sectors per
ack (numbered 1 through 26), with 6 sectors skipped between each
cess, 1024 bytes per data block, 243 data blocks for a total of 243k
te disk capacity, 64 checked directory entries, and two operating
stem t rack s •

The definitions given in the program shown above (lines 12
rough 15) provide access to the largest disks addressable by CP/M
0. All disks have identical parameters, except that drives 0 and 2
ip three sectors 'on every data access, while disks 1 and 3 access
ch sector in sequence as the disk revolves (there may, however, be a
ansparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
dress DPBASE which is a label generated by the macro. Each disk
ader block contains sixteen bytes, and correspond, in sequence, to
ch of the defined drives. In the four drive standard system, for
ample, the DISKS macro generates a table of the form:

DPBASE
DPE0 :
OPEl:
OPE2 :
OPE3 :

EQU
ow
DW
DW
Dvl

$
XLT0,0000H,0000H,0000H,DIRBUF,DPBa,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

ere the DPE (disk parameter entry) labels are included for reference
rposes to show the beginning table addresses for each drive 0
rough 3. The values contained within the disk parameter header are
scribed in detail in the CP/M 2.0 Alteration Guide, but basically
dress the translation vector for the drive (all reference XLT0,
ich is the translation vector for drive 0 in the above example),

11 Information Contained Herein is Proprietary to Digital Research.)

31

followed by three l6-bit "scratch" addresses, followed by th
directory buffer address, disk parameter block address, check vecto
address, and allocation vector address. The check ana allocatio
vector addresses are generated by the ENDEF macro in the ram ar~
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. I
particular, the selected disk number is passed to the BIOS in registe
C, as before, and the SELDSK subroutine performs the appropriat
software or hardware actions to select the disk. Version 2.0
however, also requires the SELDSK subroutine to return the address c
the selected disk parameter header (DPE0, DPEl, DPE2, or OPE3, in th
above example) in register HL. If SELDSK returns the value HL
0000H, then the BOOS assumes the disk does not exist, and prints
select error mesage at the terminal. program lines 22 through 36 giv
a sample CP/M 2.0 SELDSK subroutine, showing only the disk paramete
header address calculation.

The subroutine SECTRAN is also included in version 2.0 whic
performs the actual logical to physical sector translation. I
earlier versions of CP/M, the sector translation process was a part c
the BOOS, and set to skip six sectors between eaCh read. Du
differing rotational speeds of various disks, the translation functic
has become a part of the BIOS in version 2.1.1. 'rhus, the BOOS sene
sequential sector numbers to SECTRAN, starting at sector number 0
The SECTRAN subroutine uses the sequential sector number to produce
translated sector number which is returned to the BDOS. The SOC
subsequently sends th6 translated sector number to SELSEC before tt
actual read or write is performed. Note that many controllers hav
the capability to record the sector skew on the disk itself, and thL
there is no translation necessary. In this case, the "skf" paramete
is omitted in the macro call, and SEc'rRAN simply returns the sarr
val u e w h i ch i t r e c e i v e s • 'r he tab 1 e show n below, for e x am pIe, i
constructed when the standard skew factor skf = 6 is specified in tr
OISKOEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the followir
process takes place. The sector to translate is received in registE
pair BC. Only the C register is significant if the sector value dOE
not exceed 255 (8 = 00 in this case). Register pair DE addresses tr
sector translate table for this drive, determined by a previous caJ
on SELDSK, corresponding to the first element of a disk parametE
header (XLT0 in the case shown above). The SECTHAN subroutine thE
fetches the translated sector number by adding the input sector numbE
to the base of the translate taole, to get the indexed translate tab]
address (see lines 46, 47, and 48 in the above program). The value c
this location is then returned in register L. Note that if the numbE
of sectors exceeds 255, the translate table contains l6-bit elemen1
whose value must be returned in HL.

Following the ENOEF macro call, a number of uninitia1ized da1
areas are defined. These data areas need not be a part of the BIC

(All Information Contained Herein is Proprietary to Digital Research,

32

lich is loaded u~on cold start, but must be available between the
:08 and the en6 of memory. The size of the uninitialized RAM area is
!termined by EQU statements generated by tne END8F macro. For a
:andard four-drive system, the 8NOEF macro might oroduce

4C72 =

4D80 =
013C =

BEGDA'r EQU :;;
(da ta areas)
ENDOA'r EQU $
DATSIZ EQU $-BEGDAT

llcn indicates that uninitialized RAM begins at location 4C72H, ends
4DB0H-l, and occupies 013Ca bytes. You must ensure that these

idresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
.ze is a multiple of 128 bytes. Information is orovided by the BOOS
l sector write operations whicn eliminates the need for pre-read
lerations, thus allowing olocking and deblocking to take p13ce at the
as level.

See the ,I CP /~1 2.0 Al tera t ion Gu ide" fo r addi t iona1 de tails
)ncerning tailoring your CP/M system to your ?articular hardware.

11 Information Contained Herein is Proprietary to Digital Research.)

33

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. An rights reserved.
No pa~t of thjs publication may be reproduced, transmitted,
transcribed, stored in B.' retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanica1, magnetic, optical, chemical,
manua] or otherwise, without the prjor written permission of
Digital Research, Post Office Box 579, Pacific Grove,
CaJifornia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and speciffca])y disclaims any
implied warranties of merchantability or fitness for any parti­
cular purpose. Further, Digital Research reserves the right
to revise this pubJication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of DigitaJ Research. l'I{P/M,
MAC, and SID are trademarks of Digital Research.

1. In troduction

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove" California

.
2. First Level System Regeneration.

3.

4.

5.

6.

7 •

Second Level System Generation

Sample Getsys and Putsys Programs

Diskette Organization •

The BIOS Entry Points •

A Sample BIOS

8. A Sample Cold Start Loader

9. Reserved Locations in Page Zero

10. Disk Parameter Tables

11. The DISKDEF Macro Library •

12. Sector Blocking and Deblocking

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

·

· ·

1

2

6

10

12

14

21

22

23

25

321

34

36
39
50
56
59
61
66

1. INTRODUCTION

'rhe standard CP/M system assumes operation on an Intel r,1DS-B00
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can produce a diskette
whicn operates with any IBM-374l format comoatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"nard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wiSh to briefly review the system generation process, and skip to
later sections whiCh discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

o

BIOS - basic I/O' system which is envirofhoent dependent
BDOS - basic disk operating system which is not dependent

upon the hardware configuration
eCl? - the console command processor which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular
l1ardware. 'fhat is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
'rhe purpose of this document is to provide a step-by-step procedure
for patcning your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. 'rhe standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write tne reverse of GETSYS, called PUTSYS, whicn
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order. to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRST LEVEL SYSTEM REGENERATION

'fhe procedure to follow to patcn the C)?/f1 system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/H system. For larger CP/t"l systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K 20K = 4K = 1000H
32K: b = 32K 20K = 12K = 30f00H
4tJK: b = 40K 20K = 20K = 5000H
4 8K: b = 48K - 20K = 28K = 7000H
5 6K: b = 56K - 20K = 36K = 9000H
62K: b = 62K 20K = 42K = A800H
6 4K: b = 64K 20K = 44K = 8000H

Note: The standard distribution version of CP/M is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/~'1 system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 3380H. Code GETSYS so that it starts at
1 0 cat ion 1'1 011 (0 a s e 0 f the If P A), ass h ow n in the fir s t 1? art 0 f
Appendix d.

(2) 'rest tne GE':rSYS program by reading a blanK diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 338roH back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks: clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcn.)

2

(7) Test CBIOS completely to ensure that it pro~erly performs
console character I/O and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
9atched.

(8) Referring to Figure I in Section 5, note that the SIOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). 'rhis replacement is done in the memory of
the machine, and will be 9laced on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, brancn to the cold start code at location 4A00rl.
~he cold start routine will initialize page zero, then jum9 to the CCP
at location 3400H which will call the BDOS, which will call the CaIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, cp/r-t will type lOA>", the system l?rompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(II) Upon completion of step (10), CP/M has orom?ted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM

(recall that all commands must be followed by a carriage return).

CP/M should respond with another ?rompt (after several disk accesses):

A>

If it does not, debug your disK write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A: X COM

(13) Test the erase command by typing

ERA X.COH

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A promote When you make it this far, you
should have an operational system which will only require a bootstrap
loader to func-tion completely.

(14) write a bootstrap loader which is similar to GETSYS, and
?lace it on track 0, sector 1 using PUTSYS (again using the test
disKette, not the distribution diskette). See Sections 5 and 8 for
more information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Uoon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

OIR

CP/M should res~ond with a list of files wnlcn are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT. COM.

NOTE: from now on, it is important that you always reboot tne CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing

DDT

(see the document "CPiN Dynamic lJebugging Tool (DD'r) II for oT?erating
?rOCedures. You should take tne time to become familiar with DDT, it
will be your nest friend in later steps.

(l~) Before making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUT3YS, and CBIOS
programs using ED, ASM, ~nd DDT. Code and test a COpy program which
does a sector-to-sector CO?y from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement: it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.)

4

on eacn copy which is made witn your COpy program.

(20) Modify your CaIOS to include the extra functions for
9uncnes, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
CB/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBlas portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other Cp/M systems, (assuming media com?atinlity, of course) which
allows transfer of non-~roprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP /i1 wi th the .. l10VCPM" program (system relocator) and
9lace this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
the s e pro gram s, see the " G u id e to C P / L~ Fe at u res and Fa c i 1 i tie s It
~anual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASH, producing files called CBIOS.HEX and BOOT.HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

N.OVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will oe:

CONs'rROC'I'ING xxK Cf> /£1 VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.CO[v1"

At this ooint, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227FH. (i.e., The BOOT is at 0900H, the CCP is at 9808, the BOOS
starts at lld0H, and the BIOS is at lF80H.) Note that the memory
image has the standard MDS-800 8IOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and caOOT into it:

SAVE 34 CPMxx.COM

'rhe memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM

DDT should respond with

NEXT PC
2300 0100

Load DDT, then read the CPM
image

(,rhe DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FH. Note, however,
that to.find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at 900H to 97FH), track 00, sector 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H

Assuming two·s complement arithmetic, n = 0580H, which can be checked
by

3400H + 0580H = l0980H = 0980H (ignoring high-order
overflow) .

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H D580H - 0000H = 0580H
24K l000H 0580H l000H = C580H
32K 3000H 058011 - 300011 = A580H
40K 5000H 0580H - 5000H = 8580H
48K 7000H D580H 7G00H = 6580H
56K 9000H 0580H 9000H = 4580H
62K A800H 0580H A80~H = 2D80H
64K 8000H D580H - 3000H = 2580H

Assume, for example, that you want to locate the ad,dress x within
memory image loaded under DDrr in a 20K system. First type

Hx,n Hexadecimal sum and difference

the

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number 9rinted by DDT will be the actual memory address in
the image where the data or code will be found. The input

H3400,0580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the gIGS located at
(4A00H+b)-n which, when you use the H command, produces an actual
address of IF80H. 'rhe disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

LIF80

It is now necessary to oatch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is "n", then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number ty~ed in response to the command is the desired bias
(m). For example, if your BOOT executes at 0080H, tne command:

H900,80

will reply

0980 0880 Sum and difference in hex.

'fherefore, the bias "mil would be 0880H. 'ro read-in the BOOT, give the
command:

ICBoo'r. HEX

Then:

Rm

You may now examine your CBOOT with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m (=900H-n)

We are now ready to replace the CBIOS. Examine the area
Then type where the original version of the CSIOS resides.

at IF80H

ICBIOS. HEX Ready the "hex" file for loading

assume that your caIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
caIOS in tne memory image under DDT, we must apply the negative bias n
for a 2 "K s Y stem w hen load i n g the 11 ex f i Ie. 'r his i sac c om pI ish e d oy
typing

RD580 Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "LIF80" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDif using a control-C or "G0 II command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is eroprietary to Digital Research.)

8

SYSGEN
S~SGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON B, THEN

FUNCTION COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RE'rURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

~lace the scratch diskette in your drive A, and then ?erform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

4. SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUil'SYS programs referenced in Section 2. 'rhe READSEC and V~RI'rESEC
subroutines must be inserted by the user to read and write the
specific sectors.

i

GETSYS PROGRAM -
REGISTER

A
B
C
DE
HL
Sf>

READ TRACKS 0 AND 1 TO MEMORY AT 3380H
USE

(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, ..• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK 'ADDRESS

srrAR11 : LXI SP,3380H iSET STACK POINTER TO SCRATCH AREA
iSET BASE LOAD ADDRESS LXI H, 3380H

MVI S, 0 iSTART WITH TRACK 0
RD'rRK:

r·1VI
ROSEC:

CALL

C,l

READSEC

i READ NEXT TRACK (INI'rIALLY 0)
iREAD STARTING WITH SECTOR 1
iREAD NEXT SECTOR
iUSER-SUPPLIED SUBROUTINE

LXI
0AD

D,128
D

iMOVE LOAD ADDRESS TO NEXT 1/2 PAGE
iHL = HL + 128

INR C iSECTOR = SECTOR + 1
lJI0V A,C iCHECK FOR END OF TRACK
cpr 27
JC ROSEC iCARRY GENERATED IF SECTOR < 27

ARRIVE HERE AT END OF 'rRACK, l10VE '1'0 NEXT
INR B
MOV A,B i'rEs'r FOR LAs'r irRACK
CPI 2
JC RD'rRK iCARRY GENERA'rED Ie

ARRIVE HERE A'l' END OF LOAD, HAL'r FOR NOW
HL'r

i USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

'fRACK

'rRACK

PUSH
PUSH

B
H

jSAVE BAND C REGISTERS
iSAVE HL REGISTERS .

perform disk read at this point, branch, to
I

label START if an error occurs .
POP
POP
RE'I'

H
B

END START

iRECOVER HL
jRECOVER BAND C REGISTERS
jBACK TO MAIN PROGRAM

< 2

(All Information Contained Herein is Proprietary to Digital Research.)

10

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of I00H. The hexadecimal
operation codes which are listed on the left may be useful if the
program has to be entered through your machine's front panel switcnes.

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations up'on these registers do not change
within the program. The READSEC subroutine is replaced by ~ WRI'rESEC
subroutine which performs the opposite function: data from address HL
is written to the"track given by register B and sector given oy
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix. . -

(All Information Contained Herein is proprietary to Digital Research.)

11

5 • 0 I SK E T'r E 0 RG A N I Z AT ION

The sector allocation for the standard distribution version of
CP/M is given here for reference pur?oses. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set u9 to bring track 0, sector I
into memory at a specific location (often location 0000H). The
program in this sector, \ called BOO'r, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector l,ano begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector I into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 340~H+b. The user should note that
this bootstrap loader is of little use in a non-MDS environment,
althougn it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

'rr ack # Sector#

.j

..

..

..

01

..

..

..

..

01

01

u

..

01

02-76

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
01
102
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

20
21
23
24
25
26

01-26

Page#

01

02

03

04
••

05

06

07 ..

08
.j

09

10

11

12 ..
13

14

15

16

17 ..
18

19 ..
20

21

22

23 ..
24

Memory Address

(boot address)

3400H+b
3480H+b
3500H+b
3580H+o
3600H+o
3680H+b
3700H+O
3780H+b
3800H+b
38808+b
3900H+b
3980H+b
3A00H+b
3A80H+b
3800H+b
3B80H+b

3C00H+b
3C80H+b
3000H+b
3081OH+O
3E00H+b
3E80H+b
3F00H+b
3F80H+b
4000H+b
4080H+b
4101OH+b
4180H+b
4200H+b
4280H+b
4300H+b
4381OH+b
4400H+b
4480H+b
4500H+b
4580H+b
4600H+b
4680H+b
4700H+b
4780H+b
4800H+b
4880H+b
4900H+b
4980H+b

4A00H+b
4A80H+b
4B00H+b
4880H+b
4C00H+b
4C80.H+b

CP /i\1 Module name

Cold start Loader

CCP

..

CCP

BOOS

II

..

..

..

..

..

II

..
BOOS

BIOS ..
..
..

BIOS

(directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BOOS
are detailed below. Entry to the BIOS is through a "jump vector'·
located at 4A00H+b, as shown below (see A?pendices Band C, as well).
The jump vector is a sequence of 17 jump instructions which send
9rogram control to the individual BIOS subroutines. The BIOS
subroutines may be em?ty for certain functions (i.e., they may contain
d single RET operation) during regeneration of CP/M, but the entries
must be 9resent in the· jump vector.

The jUffi? vector at 4A00H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A00H+b
4A03d+o
4A.k16H+b
4A09H+b
4A0CH+b
4A0FH+b
4A128+b
4AlSH+b
4A18H+b
4AIBd+b
4AIEH+o
4A21H+o
4A24H+b
4A27H+b
4A2AB+b
4A2DH+b
4A30H+b

JMP BOO'l"
Jf't1P WBOOrr
JMP CONST
J'MP CONlt~

JHP CONOUT
JrvlP LIST
J~P PUNCH
Jt-1P READER
J~1P HOME
J r·.u~ S ELDSK
J ~'1J? S E T'r RK
JLV1,P SE'rSEC
J {ltIF S E'rDr~A
Jf.1P . READ
JHP~vRI'rE

J HP L I s'rs'r
JMP S EcrrRAN

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START
CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN
HRI'rE CONSOLE CHARAc'rER oUfr
WRITE LISTING CHARACTER OUT
WRITE CHARACTER TO PUNCH DEVICE
READ READER DEVICE
MOVE TO TRACK 00 ON SELECTED DISK
SELECT DISK DRIVE
SE'11 'fRACK Nur1BER
SET SECTOR NUMBER
S E'r DrllA ADDRESS
READ SELECTED SECTOR
WRITE SELECTED SECTOR
RETURN LIST STATUS
SECTOR TRANSLATE SUBROUTINE

Each jum~ address corresponds to a particular subroutine which
performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
whicn results from calls on BOOT and WBOOT, simple character I/O
performed by calls on CONST, CONIN, CONOU'!', LIST, PUNCH, READER, and
LISTsrr, and diskette I/O performed by calls on HOME, SELDSK, SET;rRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH). Peripheral devices are seen by CP/M as "logical"
devices, and are assigned to physical devices within the BIOS.

In order to operate, the SDOS needs only the CONST, CONIN, and
CONOU'r subroutines (LIS'r, PU1~CH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty'
subroutines for the remaining ASCII devices.

(All Information" Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

BUNCH

READER

The princioal interactive console which communicates
with" the ~operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CR1' or 'reletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The princioal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single ~eripheral can be assigned as
the LIS'r, PUNCH, and READER device"simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not "hang" if the device is accessed by PIP or some
other user ~rogram. Alternately, the PUNCH and LIST
routines can just sim~ly return, and the READER routine
can return with a IAH (ctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user can o~tionally
implement the "IOBY'rE" function which allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 0003H I LIST I PUNCH I READER I CONSOLE I

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)
o - console is assigned to the console printer device (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 user defined console device (UCl:)

READER
o
1
2
3

PUNCH
{1

1
2
3

field (bits 2,3)
- READER is the Teletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (ORl:)
user defined reader # 2 (UR2:)

field (bits 4,5)
- ~UNCH is the Teletype device (TTY:)
- PUNCH is the high speed punch device (PUN:)
- user defined punch # 1 (UPl:)

user defined ?unch # 2 (UP2:)

LIST field (bits 6,7)
o - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - US2r defined list device (ULl:)

Note again that the im?lementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0003H), except for PIP which allows access to the
physical dev ices, and S'rA'r wh ich allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facili ties Guide"). In any case, the IOBy'rE
implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
par~neters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another- drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address betore the OMA address is changed.
The track and sector s~broutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

WBOO'f

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BOOS, it will report
the error to the user. The HOME subroutine mayor may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SET~rRK wi th a parameter of 00.

The exact responsibilites of eacn entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. The various system parameters which are set by
the wBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select dr ive A..

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
?rogram branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini­
tialized as shown below:

location 0,1,2 set to JMP WBOOT for warm starts
(0000H: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the
primary entry' point to CP/M for
t ran s i en t pro gram s • (0 0 0 5 H : J MP
3C06H+b) .

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are ready.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIs'r

PUt~CH

READER

BONE

SELDSK

set the parity oit (high order bit) to zero. If no
console character is ready, wait until a character is
typed oetore returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (sucn as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam?le).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the cnaracter from register C to the currently
assigned punch device. The character is in ASCII with
zero 1?arity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (IAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SE'I,rrRK wi tn a parameter of (1.

Select the disk drive given by register C for further
operations, wnere register C contains 0 for drive A, 1
for drive B, and so-forth UP to 15 for drive P (the
standard CP/M distribution ~version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/O, and many
controllers will unload the head of the current disk

(All Information Contained Herein is ~roprietary to Digital Research.)

18

SE'l'TRK

SE'rOMA

READ

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subsequent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register 8C can take on values in the range
0-76 corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register Be contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is called,
then all sUbsequent read operations read their data
into 80H through 0FFH, and all subsequent write
operations get their data from 80H through 0FFH, until
the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. Note that the
controller need not actually support direct memory
access. If, for example, all data is received and
sent through I/O ports, the CBIOS which you construct
will use the 120 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been· specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

o no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as the return code. That is, if the value in
reg~ster A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable. When an error is
reported the BDOS will print the message "BOOS ERR ON
x: BAD SEC'rOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

write the data from the currently selected DMA address
to the currently selected drive, track, and sector.
'rhe data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

SEC1'RAN

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value 00 is returned in A if the
list device is not ready to accept a character, and
0FFH if a character can be sent to the printer. Note
that a 00 value always suffices. -

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical reaa operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, witn the resulting pnysical sector
number in HL. For standard systems, the tables and
indexing code is orovided in the CaIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

20

7. A SAMPLE BIOS

The program sh~n in Appendix C can serve as a basis for your
first BIOS. The simplest furctions are assumed in this BIOS, so that
you can enter it through the iront panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, RE~, W~ITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE tunction can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD S'rAR'r LOADER

'r he pro gram show n in Ap pen d i x Dca n s e r v e a s a bas is for you reo 1 d
start loader. The disk read function must be supplied by the user,
ana the program must be loaded somehow starting at location 0000.
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will prObably want to get this loader onto the first disk sector
(track 0, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system. In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
whicn orancnes to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCA'rIONS IN PAGE ZERO

Main memory page zero, between locations 00H and 0FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purl?oses.

Locations
from to
0000fl - 0002H

{1 0 0 3H - 0 0 0 3H

o 0048 - 00 0 4H

0005H - 00078

0008H - 00278

0030H - 00378

0038H - 003AH

003BH - 003FH

0040H - 004FH

0050H - 00588

005CH - 007CH

0070H.- 007FH

Contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (JHP 0000H) or manual
restart from the front nanel.

Contains the Intel standard IOBYTE,
optionally included in the user's
described in Section 6.

which is
CBIOS, as

Current default drive number (0=A, .•• ,15=B).

Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as described in
the manual II CP /t-1 In terface Gu ide, II and LHLD
0006H brings the address field of the
instruction to the tiL register pair. This value
is the lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DD'r program wi 11 change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations 1 through 5 not used)

(interrupt location ~, not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for ~rogrammed breakpoints, but is not otherwise
used by CP /r~.

(not currently used - reserved)

16 byte area reserved for scratch by CEIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default file control
transient program by
Brocessor.

block produced for a
the Console Command

Optional default random record Dosition

(All Information Contained Herein is Proprietary to Digital Research.)

23

0080H - 00F'FH default l2d byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

Note that this information is set-up for normal o?eration under
the CP/M system, but can be overwritten by a transient program if the
BOOS facilities are not required by the transient.

If, for exam~le, a particular program performs only sim?le I/O and
must begin execution at location 0, it can be first loaded into the
~PA, using normal' CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location 0l00H, which is the assumed beginning of all
transient prog rams). ':(lhe move program can then pr oceed to mov.e the
entire memory image down to location 0, and pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proprietary to Digital Research.)

24

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The
format of the disk parameter header for each drive is shown below

Disk Parameter Header

XLT I 0000 I 0000 I 0000 IDIRBUFI DPB C~ ALV

l6b l6b l6b l6b l6b l6b l6b l6b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

DIRBUF

Dffi

C~

ALV

Address of the logical to.physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the SDOS (initial
value is unimportant).

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPR.

Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-l. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

00 IXLT 001 0000 1 0000 1 0000 IDIRBUF\DBP 001csv 001ALV 001

01 IXLT 011 0000 1 0000 1 0000 IDIRBUFIDBP 01lcsv 01lALV 011

(and so-forth through)

n-lIXLTn-ll 0000 1 0000 1 0000 IDIRBUFIDBPn-lICSVn-lIALVn-ll

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 iNUMBER OF DISK DRIVES

SELDSK:
iSELECT DISK GIVEN BY BC
LXI H,0000H iERROR CODE
MOV A,C iDRIVE OK?
CPI NDISKS iCY IF SO
RNC iRET IF ERROR
iNO ERROR, CONTINUE
rJIOV L, C i LOW (DISK)
MOV H,B iHIGH(DISK)
DAD H i*2
DAD H i*4
DAD H i*8
DAD H i*16
LXI D~DPBASE iFIRST DPH
DAD DiD PH (D I SK)
RET

The translation vectors (XLT 00 through XLTn-l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH1s, takes the general form

SPT IBSHIBLMIEXMI DSM DRM IAL01ALII CKS OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the '18b ll or 1I16b"
indicator below the field.

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

EXM

DSM

DRM

CKS

OFF

is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

det~rmines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,ALI determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

e values of BSH and BLM determine (implicitly) the data allocation
ze BLS, which is not an entry in the disk parameter block. Given
at the designer has selected a value for BLS, the values of BSH and
M are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

ere all values are in decimal. The value of EXM depends upon both
e BLS and whether the DSM value is less than 256 or greater than
5, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
is particular drive, measured in BLS units. The product BLS times
SM+l) is the total number of bytes held by the drive and, of course,
st be within the capacity of the physical disk, not counting the
served operating system tracks.

The DRM entry is the one less than the total number of directory
tries, which can take on a l6-bit value. The values of AL0 and ALl,
wever, are determined by DRM. The two values AL0 and ALI can
gether be considered a string of l6-bits, as shown below.

11 Information Contained Herein is Proprietary to Digital Research.)

27

AL0 ALI

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low orde~ bit of the byte
labelled ALI. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times # bits
64 times # bits
128 times # bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALI = ~0H.

The CRS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set CRS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH1s
can address the same DPB if their drive characteristics are identical.
F~rther, the DPB can be dynamically changed when a new drive is
addressed by sim?ly changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values csv ~nd ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the DPB. .

The size of the area addressed by CSV is CRS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+I.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8 11 single density drives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
·
DISKS n
DISKDEF o , •••
DISKDEF 1 , ••• ·
DISKDEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC·s internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). NJte that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf] ,bls,dks,dir,cks,ofs,[0]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of Itchecked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value IIdn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

macro invocation. The nfsc" parameter accounts for differing sector
number ing systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf ll parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The !IbIs" parameter
specifies the number of bytes allocated to each data block, and takes
on the values1024~ 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The ·'dks"
specifies the total disk size in IIbls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of !ldir" is the total number of
directory entries which may exceed 255, if desired. The licks·'
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily ~hanged, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF
ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data bloc~s for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tr ack s.

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
dr ive standard system, for example, the DIS.KS macro generates a table
of the form:

DPBASE
DPE0:
DPEl:
DPE2 :
DPE3 :

EQU
DW
DW
DW
DW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the I'skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
0000H, and sim~ly returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 =

4DB0 =
013C =

BEGDAT EQU $
(data areas)
ENDDAT EQU $
DATSIZ EQU $-BEGDAT

which indicates that un initialized RAM begins at location 4C72H, ends
at 4D80H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ••• ,P) and displays
the values shown below:

r : 128 Byte Record Capacity
k: Kilobyte Dr ive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved 'rr ack s

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

shown below
produces a

r=4096, k=512, d=128, c=128" e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

with
full

(All Information Contained Herein is Proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BOOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following
information in register C:

o
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocate~ data block is
written. In most cases, applIcation programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by IIhst.1I
The equate statements beginning on lin~ 29 of Appendix G define the
mapping between CP/rvl and the host system, '"and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk"at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number) • You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

0000 =
ffff =
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 =
ff0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff

~~~6 ~~~130 

APPENDIX A: THE MDS COLD START LOADER 

MDS-800 Cold Start Loader for CP/M 2.0 

version 2.0 August, 1979 

false equ 
true equ 
testing equ 
; 

bias 

bias 

cpmb 
bdos 
bdose 
boot 
rboot 

; 
bdosl 
ntrks 
bdoss 
bdos0 
bdosl 
i 
mon80 
rmon80 
base 
rtype 
rbyte 
reset 
, 
dstat 
ilow 
ihigh 
bsw 
recal 
readf 
stack 

rstart: 

if 
equ 
endif 
if 
equ 
endif 
equ 
equ 
equ 
equ 
equ 

org 

equ 
equ 
equ 
equ 
eau 

equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 
equ 

lxi 
clear 
in 
in 

i check 
coldstart: 

in 
ani 
Jnz 

o 
not false 
false 

testing 
03400h 

not testing 
0000h 

bias 
806h+bias 
l880h+bias 
l600h+bias 
boot+3 

ibase of dos load 
ientry to dos for calls 
;end of dos load 
icold start entry point 
iwarm start entry point 

3000h iloaded here by hardware 

bdose-cpmb 
2 itracks to read 
bdosl/128 
25 
bdoss-bdos0 

i# sectors in bdos 
i# on track 0 
i# on track 1 

0f800h 
0ff0fh 
078h 
base+l 
base+3 
base+7 

base 
base+l 
base+2 
0ffh 
3h 
4h 
l00h 

iintel monitor base 
;restart location for mon80 
;Ibase l used by controller 
;result type 
;result byte 
;reset controller 

;disk status port 
;low iopb address 
;high iopb address 
;boot switch 
irecalibrate selected drive 
;disk read function 
;use end of boot for stack 

sp,stack;in case of call to mon80 
disk status 

rtype 
rbyte 

if boot switch is off 

bsw 
02hd t' t-switch on? coT s ar 

36 

( 



3fHle d37f 

3010 0602 
3012 214230 

3015 7d 
3016 d379 
3018 7c 
3019 d37a 
301b db78 

j~l~ ~~~g30 

3022 db79 
3024 e603 
3026 fe02 

3028 d20030 

302b db7b 

302d 17 
302e dc0fff 
3031 If 
3032 e6le 

3034 c20030 

3037 110700 
303a 19 
303b 05 
303c c21530 

303f c30016 

; 
start: 

wai to: 

clear the controller 
out reset ;logic cleared 

mvi 
lxi 

read 
mov 
out 
mov 
out 
in 
ani 
JZ 

check 
in 
ani 
cpi 

if 
cnc 
endif 
if 
jnc 
endif 

b,ntrks ;number of tracks to read 
h, iopb0 

first/next track into cpmb 
a,l 
ilow 
a,h 
ihigh 
dstat 
4 . 0 walt 

disk status 
rtype 
lIb 
2 

testing 
rmon80 ;90 to monitor if 11 or 10 

not testing 
rstart ;retry the load 

in rbyte ;i/o complete, check status 
if not ready, then go to mon80 
ral 
cc rmon80 ;not ready bit set 
rar ;restore 
ani 11110b ;overrun/addr err/seek/crc 

if 
cnz 
endif 
if 
jnz 
endif 

lxi 
dad 
dcr 
jnz 

testing 
rmon80 ;go to monitor 

not testing 
rstart ;retry the load 

d,iopbl ;length of iopb 
d ;addressing next iopb 
b ;count down tracks 
start 

jmp boot, print message, set-up jmps 
jmp boot 

parameter blocks 

37 



3042 80 iopb0: db 80h i iocw, no update 
3043 04 db readf iread function 
3044 19 db bdos0 i# sectors to read trk 0 
3045 00 db 0 itrack 0 
3046 02 db 2 istart with sector 2, trk 0 
3047 0000 Ow cpmb istart at base of bdos 
0007 = iopbl equ $-iopb0 . , 
3049 80 iopbl: db 80h 
304a 04 db readf 
304b 18 db bdosl isectors to read on track 1 
304c 01 db 1 itrack 1 
304d 01 db 1 isector 1 
304e 800c uw cpmb+bdos0*128 ibase of second rd 
3050 end 

38 



APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS) 

0014 = vers 

4a00 
3400 = cpmb 
3c06 = bdos 
1600 = cpml 
002c = nsects 
0002 = offset 
0004 = cdisk 
0080 = buff 
000a = retry 

4a00 c3b34a 
4a03 c3c34a wboote: 
4a06 c3614b 
4a09 c3644b 
4a0c c36a4b 

mds-800 i/o drivers for cp/m 2.0 
(four drive single density version) 

version 2.0 august, 1979 

equ 20 ;version 2.0 

copyright (c) 1979 
digital research 
box 579, pacific grove 
california, 93950 

org 
egu 
equ 
equ 
equ 
egu 
egu 
egu 
equ 

perform 
boot 
wboot 

4a00h ;base of bios in 20k system 
3400h ;base of cpm ccl? 
3c06h ;base of bdos in 20k system 
$-cpmb ; length (in bytes) of cpm system 
cpml/128;number of sectors to load 
2 ;number of disk tracks used by cp 
0004h ;address of last logged disk 
0080h ;default buffer address 
10 ;max retries on disk i/o before e 

following functions 
cold start 
warm start (save i/o byte) 

(boot 
const 

and wboot are the same for mds) 
console status 

conin 
conou t 
list 
punch 
reader 
home 

reg-a = 00 if no character ready 
reg-a = ff if character ready 
console character in (result in reg-a) 
console character out (char in reg-c) 
list out (char in reg-c) 
punch out (char in reg-c) 
paper tape reader in (result to reg-a) 
move to track 00 

(the following calls set-up the io parameter bloc 
mds, which is used to perform subsequent reads an 
seldsk select disk given by reg-c (0,1,2 ••• ) 
settrk set track address (0 •••• 76) for sub r/w 
setsec set sector address (1, ••• ,26) 
setdma set subsequent dma address (initially 80h 

read/write assume previous calls to set i/o parms 
read read track/sector to preset dma address 
write write track/sector from preset dma addres 

jump 
jmp 
jmp 
jmp 
jmp 
jmp 

vector for indiviual routines 
boot 
wboot 
const 
conin 
conout 

39 



4a0f c36d4b jmp list 
4a12 c3724b jmp punch 
4a15 c3754b jmp reader 
4a18 c3784b jmp home 
4alb c37d4b jmp seldsk 
4ale c3a74b jmp settrk 
4a2l c3ac4b jml? setsec 
4a24 c3bb4b jmp setdma 
4a27 c3c14b jmp read 
4a2a c3ca4b jmp write 
4a2d c3704b jmp listst ;list status 
4a30 c3b14b jmp sectran 

maclib diskaef ;load the disk definition library 
disks 4 ;four disks 

4a33+= dpbase equ $ ;base of disk parameter blocks 
4a33+824af2J0 dpe0: dw xlt0,0000h ;translate table 
4a37+000000 dw 0000h,0000h ;scratch area 
4a3b+6e4c73 dw d i r bu f , dp b 0 ;dir buff,parm block 
4a3f+0d4dee dw csv0,alv0 ;check, alloc vectors 
4a43+824a00 dpel: dw xltl,0000h ;translate table 
4a47+000000 dw 0000h,0000h ;scratch area 
4a4b+6e4c73 dw dirbuf, dl?bl ;dir buff,parm block 
4a4f+3c4dld dw csvl,alvl ;check, alloc vectors 
4a53+824a00 dpe2: dw xlt2,0000h ;translate table 
4a57+000000 dw 0000h,0000h ;scratch area 
4a5b+6e4c73 dw di rbuf, dpb2 ;dir buff,parm block 
4a5f+6b4d4c dw csv2,alv2 ;check, ailoc vectors 
4a63+824a00 dpe3: dw xlt3,0000h ;translate table 
4a67+000000 dw 0000h,0000h ;scratch area 
4a6b+6e4c73 dw di rbuf, dpb3 ;dir buff,parm block 
4a6f+9a4d7b dw csv3,alv3 ;check, alloc vectors 

diskdef 0,l,26,6,1024,243,64,64,offset 
4a73+= dpb0 equ $ ;disk l?arm block 
4a73+la00 dw 26 ;sec per track 
4a75+03 db 3 ;block shift 
4a76+07 db 7 ;block mask 
4a77+00 db 0 ;extnt mask 
4a78+f200 dw 242 ;disk size-l 
4a7a+3f00 dw 63 ;directory max 
4a7c+c0 db 192 ;alloc0 
4a7d+00 db 0 :allocl 
4a7e+1000 dw 16 :check size 
4a80+l1200 dw 2 ;offset 
4a82+= xlt0 equ $ ;translate table 
4a82+01 db 1 
4a83+07 db 7 
4a84+0d db 13 
4a85+l3 db 19 
4a86+l9 db 25 
4a87+05 db 5 
4a88+0b db 11 
4a89+l1 db 17 
4a8a+17 db 23 
4a8b+03 db 3 

40 



4a8c+09 
4a8d+0f 
4a8e+1S 
4a8f+02 
4a90+08 
4a91+0e 
4a92+14 
4a93+1a 
4a94+06 
4a95+0c 
4a96+12 
4a97+18 
4a98+04 
4a99+0a 
4a9a+10 
4a9b+16 

4a73+= 
1001f+= 
00110+= 
4a82+= 

4a73+= 
001f+= 
0010+= 
4a82+= 

4a73+= 
001f+= 
10010+= 
4a82+= 

100fd = 
100fc = 
01Of3 = 
1007e = 

f81010 = 
ff0f = 
f803 = 
f8106 = 
f8109 = 
f810c = 
f810f = 
f812 = 

dpbl 
alsl 
cssl 
xltl 

dpb2 
als2 
css2 
xlt2 

dpb3 
als·3 
css3 
xlt3 

revrt 
intc 
icon 
inte 

mon80 
rmon81O 
ci 
ri 
co 
po 
10 
csts 

db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
diskdef 
equ 
equ 
equ 
equ 
diskdef 
equ 
equ 
equ 
equ 
diskdef 
equ 
equ 
equ 
equ 

9 
15 
21 
2 
8 
14 
20 
26 
6 
12 
18 
24 
4 
10 
16 
22 
1,10 
dpblO 
als0 
css0 
xlt0 
2,0 
dpblO 
als0 
css0 
xlt0 
3,10 
dpblO 
als0 
css0 
xltlO 

iequivalent parameters 
isarne allocation vector size 
isame checksum vector size 
isame translate table 

iequivalent parameters 
;same allocation vector size 
isame checksum vector size 
isame translate table 

ieguivalent parameters 
isame allocation vector size 
isame checksum vector size 
isame translate table 

endef occurs at end of assembly 

end of controller - independent code, ~he remaini 
are tailored to the particular operating environm 
be altered for any system which differs from the 

the following code assumes the mds monitor exists 
and uses the i/o subroutines within the monitor 

we also 
equ 
equ 
equ 
equ 

assume the mds system has four disk drive 
IOfdh iinterrupt revert port 
IOfch iinterrupt mask port 
IOf3h iinterrupt control port 
1011l$111lObienable rst o (warm boot) ,rst 7 

mds 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

monitor equates 
0f8100h imds monitor 
IOfflOfh irestart mon81O (boot error) 
IOf8103h iconsole character to reg-a 
IOf8106h ireader in to reg-a 
IOf8109h iconsole char from c to console 0 
IOf80ch iPunch char from c to punch devic 
IOf81Ofh ilist from c to list device 
0f812h iconsole status IOIO/ff to register 

41 



0078 -
0078 = 
0079 = 
007b = 

0079 = 
007a = 

0004 = 
0006 = 
0003 = 
0004 = 
000d = 
000a = 

4a9c 
4a9f 
4aal 
4aad 
4ab0 

4ab3 
4ab6 
4ab9 
4abc 
4abd 
4ac0 

0d0a0a 
3230 
6b20.43f 
322e30 
0d0a00 

310001 
219c4a 
cdd34b 
af 
320400 
c30f4b 

4ac3 318000 

4ac6 0e0a 
4ac8 cS 

4ac9 010034 
4acc cdbb4b 
4acf 0e00 
4adl cd7d4b 
4ad4 0e00 
4ad6 cda74b 
4ad9 0e02 
4adb cdac4b 

4ade cl 
4adf 062c 

'i 
base 
dstat 
rtype 
rbyte 
i 
ilow 
ihigh 

readf 
writf 
recal 
iordy 
cr 
If 

s ignon: 

i 
boot: 

i 

disk ports and commands 
equ 78h ;base of disk command 

;disk status (input) 
;result type (input) 
;result byte (input) 

io ports 
equ base 
egu base+l 
egu base+3 

equ 
equ 

egu 
equ 
equ 
equ 
equ 
equ 

; s ignon 
db 
db 
db 
db 
db 

;print 
(note: 
lxi 
lxi 
call 
xra 
sta 
jmp 

base+l 
base+2 

4h 
6h 
3h 
4h 
0dh 
0ah 

iiopb low address (output) 
;iopb high address (output) 

;read function 
;write function 
;recalibrate drive 
;i/o finished mask 
;carriage return 
;line feed 

message: xxk cp/m vers y.y 
cr,lf,lf 
120 1 ;sample memory size 
'k cp/m vers 1 
vers/10+ ' 0 1,'.',vers mod 10+'0' 
cr,lf,1Zi 

signon message and go to ccp 
mds boot initialized iobyte at 0003h) 

sp,buff+80h 
h,signon 
prmsg ;print message 
a ;clear accumulator 
cdisk ;set initially to disk a 
gocpm ;go to cp/m 

wboot:; loader on track 0, sector 1, which will be skippe 
read cp/m from disk - assuming there is a 128 byt 
start. 

wboot0: 

lxi 

rnvi 
push 
;enter 
lxi 
call 
mvi 
call 
mvi 
call· 
rnvi 
call 

sp,buff ;using dma - thus 80 thru ff ok f 

c,retry imax retries 
b 

here on error retries 
b,cpmb ;set dma address to start of disk 
se tdma 
c,0 ;boot from drive 0 
seldsk 
c,0 
settrk ;start with track 0 
c,2 ;start reading sector 2 
setsec 

read sectors, count nsects to zero 
pop b . i 10-error count 
rnvi b,nsects 

42 



4ael c5 
4ae2 cdc14b 
4ae5 c2494b 
4ae8 2a6c4c 
4aeb 118000 
4aee 19 
4aef 44 
4af0 4d 
4afl cdbb4b 
4af4 3a6b4c 
4af7 fela 
4af9 da054b 

4afc 3a6a4c 
4aff 3c 
4b00 4f 
4b01 cda74b 
4b04 af 

rdsec: 

. , 

4b05 3c rdl: 
4b06 4f 
4b07 cdac4b 
4b0a cl 
4b0b 05 
4b0c c2e14a 

4b0f f3 
4b10 3e12 
4b12 d3fd 
4b14 af 
4b15 d3fc 
4b17 3e7e 
4b19 d3fc 
4blb af 
4blc d3f3 

4ble 018000 
4b21 cdbb4b 

4b24 3ec3 
4b26 320000 
4b29 21034a 
4b2c 220100 
4b2f 320500 
4b32 21063c 
4b35 220600 
4b38 323800 
4b3b 2100f8 
4b3e 223900 

gocpm: 

iread next sector 
push b isave sector count 
call read 
jnz booterr 
Ihld iod 
lxi d,128 
dad d 
mov b,h 
mov c,l 
call setdma 
Ida ios 
cpi 26 
jc rdl 

iretry if errors occur 
iincrement dma address 
isector size 
iincremented dma address in hI 

iready for call to set dma 

isector number just read 
iread last sector? 

must be sector 26, zero and go to next track 
Ida iot iget track to register a 
inr a 
mov 
call 
xra 
inr 
mov 
call 
pop 
dcr 

c,a 
settrk 
a 
a 
c,a 
setsec 
b 
b 

jnz rdsec 

iready for call 

iclear sector number 
ito next sector 
iready for call 

irecall sector count 
i done? 

done with the load, reset default buffer address 
i (enter here from cold start boot) 
enable rst0 and rst7 
di 
mvi 
out 
xra 
out 
mvi 
out 
xra 
out 

a,12h 
revrt 
a 
intc 
a,inte 
intc 
a 
icon 

iinitialize command 

icleared 
irst0 and rst7 bits on 

;interrupt control 

set default buffer address to 80h 
lxi b,buff 
call setdma 

reset monitor entry points 
mvi a, jmp 
sta 0 
lxi h,wboote 
shld 1 ;jmp wboot at location 00 
sta 5 
lxi h,bdos 
shld 6 ;jrnp bdos at location 5 
sta 7*8 ;jrnp to rnon80 (may have been chan 
lxi h,mon80 
shld 7*8+1 
leave iobyte set 

43 



previously selected disk was b, send 9arameter to 
4b41 3a0400 Ida cdisk ;last logged disk number 
4b44 4f mov c,a ;send to ccp to log it in 
4b45 fb ei 
4b46 c30034 jmp cpmb 

; error condition occurred, print message and retry 

4b49 cl 
4b4a 0d 
4b4b ca524b 

4b4e c5 
4b4f c3c94a 

4b52 215b4b 
4b55 cdd34b 
4b58 c30fff 

booterr: 

booter0: 

; 
bootmsg: 

pop b ;recall counts 
dcr c 
jz booter0 
try again 
push b 
jmp wboot0 

otherwise too many retries 
lxi h,bootmsg 
call prmsg 
jmp rmon80 ;mds hardware monitor 

4b5b 3f626f4 db l?boot l ,0 

4b61 c312f8 

4b64 cd03f8 
4b67 e67f 
4b69 c9 

const: 

conin: 

; 

;console status to reg-a 
(exactly the same as mds call) 
jmp. csts 

;console character to reg-a 
call ci 
ani 7fh ;remove parity bit 
ret 

conout: ;console character from c to console out 
4b6a c309f8 jmp co 

4b6d c30ff8 

4b70 af 
4b71 c9 

; 
list: 

listst: 

;list device out 
(exactly the same as mds call) 
jmp 10 

;return list status 
xra 
ret 

a 
;always not ready 

punch: ;punch device out 
(exactly the same as mds call) 

4b72 c30cf8 jmp po 
; 
reader: ;reader character in to reg-a 

(exactly the same as mds call) 
4b75 c306f8 jmp ri 

; 
home: ;move to home position 

44 



4b78 0e00 
4b7a c3a74b 

4b7d 210000 
4b80 79 
4b81 fe04 
4b83 d0 

4b84 e602 
4b86 32664c 
4b89 79 
4b8a e601 
4b8c b7 
4b8d ca924b 
4b90 3e30 

4b92 47 
4b93 21684c 
4b96 7e 
4b97 e6cf 
4b99 b0 
4b9a 77 

aB98 ~600 
4bge 29 
4b9f 29 
4ba0 29 
4bal 29 
4ba2 11334a 
4ba5 19 
4ba6 c9 

4ba7 216a4c 
4baa 71 
4bab c9 

4bac 216b4c 
4baf 71 
4bb0 c9 

4bbl 0600 
4bb3 eb 
4bb4 09 
4bb5 7e 
4bb6 326b4c 

igg~ g~ 

treat as track 00 seek 
mvi c,0 
jmp settrk 

; 
seldsk: ;select disk given by' register c 

lxi h,0000h ;return 0000 if error 
mov a,c 
cpi ndisks ;too large? 
rnc ;leave hI = 0000 

ani 
sta 
mov 
ani 
ora 
jz 
mvi 

10b ;00 00 for drive 0,1 and 10 10 fo 

setdr ive: 
mov 
lxi 
mov 
ani 
ora 
mov 
mov mvl. 

; 
settrk: 

setsec: 

sectran: 

; 

dad 
dad 
dad 
dad 
lxi 
dad 
ret 

;set 
lxi 
mov 
ret 

;set 
lxi 
mov 
ret 

mvi 
xchg 
dad 
mov 
sta 
mo¥ re 

dbank ito select drive bank 
a,c ;00, 01, 10, 11 
Ib ;mds has 0,1 at 78, 2,3 at 88 
a ;result 00? 
setdr ive 
a,00110000b ;selects drive 1 in bank 

b,a 
h,iof 
a,m 

;save the function 
;io function 

11001111b ;mask out disk number 
b ;mask in new disk number 
m,a ;save it in iopb 

h:~ ;hl=disk number 
h ;*2 
h ;*4 
h ;*8 
h ;*16 
d,dpbase 
d ;hl=disk header table address 

track address given by c 
h,iot 
m,c 

sector number given by c 
h,ios 
m,c 

;translate sector bc using table at de 
b,0 ;double precision sector number 

;translate table address to hI 
b ;translate(sector) address 
a,m ;translated sector number to a 
ios 
l,a ;return sector number in 1 

setdma: ;set dma address given by regs b,c 

45 

i 



4bbb 69 
4bbc 60 
4bbd 226c4c 
4bc0 c9 

4bcl 0e04 
4bc3 cde04b 
4bc6 cdf04b 
4bc9 c9 

4bca 0e06 
4bcc cde04b 
4bcf cdf04b 
4bd2 c9 

4bd3 7e 
4bd4 b7 
4bd5 c8 

4bd6 e5 
4bd7 4f 
4bd8 cd6a4b 
4bdb el 
4bdc 23 
4bdd c3d34b 

4be0 21684c 
4be3 7e 
4be4 e6f8 
4be6 bl 
4be7 77 

4be8 e620 
4bea 216b4c 
4bed b6 
4bee 77 
4bef c9 

4bf0 0e0a 

4bf2 cd3f4c 
4bf5 cd4c4c 

4bf8 3a664c 

i 
read: 

i 
write: 

l?rmsg: 

i 
setfunc: 

. , 
waitio: 

rewai t: 

mov l,c 
mov h,b 
shld iod 
ret 

iread next disk record ( assuming disk/trk/sec/dma 
mvi c,readf i set to read function 
call setfunc 
call waitio iperform read function 
ret imay have error set in 

idisk write function 
mvi 
call 
call 
ret 

utili ty 
iprint 
mov 
ora 
rz 
more 
push 
mov 
call 
pop 
inx 
jmp 

to 

c,writf 
setfunc iset to write function 
waitio 

imay have error set 

subroutines 
message at h,l to 0 

a,m 
a i ze r o? 

print 
h 
c,a 
conout 
h 
h 
prmsg 

reg-a 

set function for next i/o (command in reg-c) 
lxi h,iof iio function address 
mov a,m iget it to accumulator for maskin 
ani 11111000b iremove previous command 
ora c iset to new command 
mov m,a ireplaced in iopb 
the mds-800 controller req's disk bank bit in sec 
mask the bit from the current i/o function 
ani 00100000b imask the disk select bit 
lxi h,ios iaddress the sector selec 
ora m iselect proper disk bank 
mov m,a iset disk select bit on/o 
ret 

mvi c,retry imax retries before perm error 

start the i/o function and wait for completion 
call intype iin rtype 
call inbyte iclears the controller 

Ida dbank iset bank flags 

46 



4bfb b7 
4bfc 3e67 
4bfe 064c 
4c00 c20b4c 
4c03 d379 
4c05 78 
4c06 d37a 
4c08 c3104c 

4c0b d389 
4c0d 78 
4c0e d38a 

4c10 cd594c 
4c13 e604 
4c15 ca104c 

4c18 cd3f4c 

4clb fe02 
4cld ca324c 

4c20 b7 
4c21 c2384c 

4c24 cd4c4c 
4c27 17 
4c28 da324c 
4c2b If 
4c2c e6fe 
4c2e c2384c 

4c31 c9 

4c32 cd4c4c 
4c35 c3384c 

i 
iodrl: 

i 
wai to: 

; 

ora a izero if drive 0,1 and nz 
mvi a,iopb and 0ffh i low address for iopb 
mvi b, iopb shr 8 ; high address for iopb 
jnz iodrl ;drive bank I? 
out ilow ;low address to controlle 
mov a,b 
out ihigh ; high 
jmp wait0 

; dr ive bank 1 
out ilow+10h 
mov a,b 
out ihigh+10h 

call instat 
ani iordy 
jz wait0 

check io completion ok 

address 
ito wait for complete 

;88 for drive bank 10 

;w~it for completion 
;ready? 

call intype ;must be io complete (00) 
00 unlinked i/o complete, 01 linked i/o comple 
10 disk status changed 11 (not used) 
cpi 10b ;ready status change? 
j z wready 

must be 00 in the accumulator 
ora 
jnz 

check 
call 
ral 
jc 
rar 
ani 
jnz 

a 
werror 

i/o error 
inbyte 

wready 

bits 

11111110b 
werror 

;some other condition, re 

;unit not ready 

;any other errors? 

read or write is ok, accumulator contains zero 
ret 

wready: ;not ready, treat as error for now 
call inbyte ;clear result byte 
jmp trycount 

werror: ;return hardware malfunction (crc, track, seek, e 
the mds controller has returned a bit in each pos 
of the accumulator, corresponding to the conditio 
o - deleted data (accepted as ok above) 
1 - crc error 
2 - seek error 
3 - address error (hardware malfunction) 
4 - data over/under flow (hardware malfunct 
5 - write protect (treated as not ready) 
6 - write error (hardware malfunction) 
7 - not ready 

47 



(accumulator bits are numbered 7 6 5 4 3 2 1 0) 

it may be useful to filter out the various condit 
but we will get a permanent error message if it i 
recoverable. in any case, the not ready conditio 
treated as a separate condition for later improve 

trycount: 
register c contains retry count, decrement -til z 

4c38 0d dcr c 
4c39 c2f24b jnz rewait ;for another try 

cannot recover from error 
4c3c 3e0l mvi a,l ;error code 
4c3e c9 ret 

intype, inbyte, instat read drive bank 00 or 10 
intype: Ida dbank 

ora a 
jnz intypl ;skip to bank 10 
in r type 
ret 

4c3f 3a664c 
4c42 b7 
4c43 c2494c 
4c46 db79 
4c48 c9 
4c49 db89 
4c4b c9 

intypl: in 
ret 

rtype+10h ;78 for 0,1 88 for 2,3 

; 
4c4c 3a664c inbyte: Ida 
4c4f b7 ora 
4c50 c2564c jnz 
4c53 db7b in 
4c55 c9 ret 
4c56 db8b inbytl: in 
4c58 c9 ret . , 
4c59 3a664c instat: Ida 
4c5c b7 ora 
4c5d c2634c jnz 
4c60 db78 in 
4c62 c9 ret 
4c63 db88 instal: in 
4c65 c9 ret 

dbank 
a 
inbytl 
rbyte 

rbyte+10h 

dbank 
a 
instal 
dstat 

dstat+l0h 

. data areas (must be in ram) , 
4c66 00 

4c67 80 
4c68 04 
4c69 01 
4c6a 02 
4c6b 01 
4c6c 8000 

dbank: 

iopb: 

iof: 
ion: 
iot: 
ios: 
iod: 

db 0 ;disk bank 00 if drive 
10 if drive 

;io parameter block 
db 80h ;normal i/o operation 
db readf ;io function, initial 
db 1 ; number of sectors to 
db offset ;track number 
db 1 ;sector number 
dw buff ;io address 

define ram areas for bdos operation 

48 

0~l 
2~3 

read 
read 



4c6e+= 
4c6e+ 
4cee+ 
4d0d+ 
4d1d+ 
4d3c+ 
4d4c+ 
4d6b+ 
4d7b+ 
4d9a+ 
4daa+= 
013c+= 
4daa 

begdat 
di rbuf: 
a1v0 : 
csv0: 
a1v1: 
csv1: 
a1v2: 
csv2: 
a1v3: 
csv3: 
enddat 
da tsiz 

endef 
equ 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
equ 
equ 
end 

$ 
128 ;directory access buffer 
31 
16 
31 
16 
31 
16 
31 
16 
$ 
$-begda t 

49 



0014 = 

0000 = 
3400 = 
3c06 = 
4a00 = 
0004 = 
0003 = 

4a00 
002c = 

4a00 c39c4a 

APPENDIX C: A SKELETAL CBIOS 

skeletal cbios for first level of cp/m 2.0 altera 

msize equ 20 icp/m version memory size in kilo 

"bias" is address offset from 3400h for memory sy 
than 16k (referred to as "btl throughout the text) 

i 
bias egu 
ccp equ 
bdos equ 
bios egu 
cdisk equ 
iobyte equ 

org 
nsects equ 

(msize-20) *1024 
3400h+bias ibase of ccp 
ccp+806h ibase of bdos 
ccp+1600h ibase of bios 
0004h icurrent disk number 0=a, ••• ,15=p 
0003h iintel i/o byte 

bios iorigin of this program 
($-ccp)/128 iwarm start sector count 

individual subroutines 
icold start 

4a03 c3a64a wboote: 
4a06 c3ll4b 

jump 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jmp 

vector for 
boot 
wboot 
const 
conin 
conout 
list 
punch 
reader 
horne 
seldsk 
settrk 
setsec 
setdma 
read 
write 
listst 
sectran 

iwarm start 
iconsole status 

4a09 c3244b 
4a0c c3374b 
4a0f c3494b 
4a12 c34d4b 
4a15 c34f4b 
4a18 c3544b 
4alb c35a4b 
4ale c37d4b 
4a2l c3924b 
4a24 c3ad4b 
4a27 c3c34b 
4a2a c3d64b 
4a2d c34b4b 
4a30 c3a74b 

i 
4a33 734a00 dpbase: 
4a37 000000 
4a3b f04c8d 
4a3f ec4d70 

4a43 734a00 
4a47 000000 
4a4b f04c8d 
4a4f fc4d8f 

4a53 734a00 
4a57 000000 
4a5b f04c8d 
4a5f 0c4eae 

iconsole character in 
iconsole character out 
ilist character out 
iPunch character out 
ireader character out 
imove head to home positi 
iselect disk 
iset track number 
iset sector number 
iset dma address 
iread disk 
iwrite disk 
ireturn list status 
isector translate 

fixed data tables for four-drive standard 
ibm-compatible 8" disks 
disk parameter header for disk 00 
dw trans,0000h 
dw 0000h,0000h 
dw dirbf,dpblk 
dw chk00,al100 
disk parameter header for disk 01 
dw trans,0000h 
dw 0000h,0000h 
dw dirbf,dpblk 
dw chk0l,al10l 
disk parameter header for disk 02 
dw trans,0000h 
dw 0000h,0000h 
dw dirbf,dpblk 
dw chk02,al102 

50 



4a63 734a00 
4a67 000000 
4a6b f04c8d 
4a6f lc4ecd 

; 

a~11 ~~~~~g trans: 
4a7b 170309 
4a7f 150208 
4a83 141a06 
4a87 121804 
4a8b 1016 

4a8d 
4a8f 
4a90 
4a91 
4a92 
4a94 
4a96 
4a97 
4a98 
4a9a 

la00 
03 
07 
00 
f200 
3f00 
c0 
00 
1000 
0200 

4a9c af 
4a9d 320300 
4aa0 320400 
4aa3 c3ef4a 

4aa6 318000 
4aa9 0e00 
4aab cd5a4b 
4aae cd544b 

4abl 062c 
4ab3 0e00 
4ab5 1602 

4ab7 210034 

4aba c5 
4abb d5 
4abc e5 
4abd 4a 
4abe cd924b 
4acl cl 

; 
dpblk: 

; 
boot: 

; 
wboot: 

10adl : 

disk 
dw 
dw 
dw 
dw 

parameter header 
trans,0000h 
0000h,0000h 
dirbf,dpblk 
chk03,al103 

for disk 03 

sector translate vector 
gg 
db 
db 
db 
db 
db 

;disk 
dw 
db 
db 
db 
dw 
dw 
db 
db 
dw 
dw 

25~S;!1;17 
23,3,9,15 
21,2,8,14 
20,26,6,12 
18,24,4,10 
16,22 

~~~gEgf~ ~:~:1:~ 
;sectors 9,10,11,12
;sectors 13,14,15,16
;sectors 17,18,19,20
;sectors 21,22,23,24
;sectors 25,26

parameter
26
3
7

block, common to all disks
;sectors per track
;block shift factor
;block mask

o
242
63
192

" 16
2

;null mask
;disk size-l
;directory max
;alloc 0
;alloc 1
;check size
;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi
xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/

isimplest case is to read the disk until all sect
lxi sp,.80h ;use space below buffer f
mvi c,0 ;select disk 0
call seldsk
call horne igo to track 00

mvi b,nsects ib counts # of sectors to
mvi c,0 iC has the current tra~k
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial 10
;load one more sector
push b isave sector count, current track
push d isave next sector to read
push h ;save dma address
mov c,d ;get sector address to register c
call setsec ;set sector address from register
pop b ;recall dma address to b,c

51

4ac2 c5
4ac3 cdad4b

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 c5
4ae4 d5
4ae5 e5
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4f
4b0e c30034

gocpm:

push
call

b ireplace on stack for later recal
setdma iset dma address from b,c

drive set to 0, track set, sector set, dma addres
call read
cpi 00h iany errors?
jnz wboot iretry the entire boot if an erro

no error, move to next sector
irecall dma address
idma=dma+128

pop h
lxi d,128
dad d inew dma address is in h,l

irecall sector address pop d
pop b irecall number of sectors remaini

isectors=sectors-l dcr b
j z gocpm itransfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr
mov
cpi
jc

d
a,d
27
loadl

isector=27?, if so, change tracks

icarry generated if sector<27

end of current track, go to next track
mvi d,l ibegin with first sector of next
inr c itrack=track+l

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk itrack address set from register
h
d
b
loadl ifor another sector

end of load operation, set parameters and go to c

mvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
Ida
mov
j mp

a,0c3h ic3 is a jmp instruction
o ;for jmp to wboot
h,wboote ;wboot entry point
1 ;set address field for jrnp at 0

5 ;for jmp to bdos
h,bdos ;bdos entry point
6 ;address field of jump at 5 to bd

b,80h ;default dma address is 80h
setdma

;enable the interrupt system
cdisk ;get current disk number
c,a ;send to the ccp
ccp ;go to cp/m for further processin

52

4bll
4b21 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b37 79
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4b51 e67f
4b53 c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a 210000
4b5d 79
4b5e 32ef4c
4b61 fe04

i

i

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

const: iconsole status, return 0ffh if character ready,
ds 10h ispace for status subroutine
mvi a, 00h
ret

conin: iconsole character into register a
ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

conout: ;console character output from register c
mov a,c ;get to accumulator
ds 10h ;space for output routine
ret

;
1 ist: ;list character from register c

mov a,c ;character to register a
ret ;null subroutine

i
listst: ireturn list status (~ if not ready, 1 if ready)

xra a ;0 is always ok to return
ret

;
punch: ;punch character from register c

mov a,c ;character to register a
ret ;null subroutine

;
reader: ;read character into register a from reader rlevic

;
home:

;

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
ret ;we will move to 00 on first read

seldsk: ;select disk given by register c
lxi h,0000h ;error return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3

53

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b81
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7 eb
4ba8 09
4ba9 6e
4baa 2600
4bac c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

4bd6

rnc ;no carry if 4,5, •••
disk number is in the proper range
ds 10 ;space for disk select
compute proper disk parameter header address
Ida diskno
mov I,a ;l=disk number 0,1,2,3
mvi h,0 ;high order zero
dad h ;*2
dad h ;*4
dad h ; *8
dad h ;*16 (size of each header)
lxi d,dpbase
dad d ;hl=.dpbase(diskno*16)
ret

;
settrk~ ;set track given by register c

;
setsec:

;

mov
sta
ds
ret

;set
mov
sta
ds
ret

a,c
track
10h ;space for track select

sector given by register c
a,c
sector
10h ;space for sector select

sectran:
;translate
;translate
xchg

the sector given by bc
table given by de

;hl=.trans
;hl=.trans(sector)
;1 = trans(sector)
;hl= trans(sector)
;with value in hI

using the

dad b
mov I,m
mvi h,0
ret

;
setdma: ; set

mov
mov
shld
as
ret

dma address given by registers band c
l,c ;low order address
h,b ;high order address
dmaad ;save the address
10h ;space for setting the dma addres

;
read:

;

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds 10h ;set up read command
jmp waitio ito perform the actual i/o

write: ;perform a write operation
ds 10h ;set up write comman~

;
waitio: ;enter here from read and write to perform the ac

operation. return a 00h in register a if the ope
properly, and 01h if an error occurs during the r

54

4be6
4ce6 3e01
4ce8 c9

4ce9
4ceb
4ced
4cef

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c =
013c =
4e2c

in this case,

ds 256
mvi a,l
ret

we have saved the disk number in Id
the track number in Itrackl (0-76
the sector number in Isector l (1-
the drna address in Idmaad l (0-655
ispace reserved for i/o drivers
ierror condition
ireplaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdatU and "enddat").

track: ds
sector: ds
dmaad: ds
diskno: ds

2
2
2
1

itwo bytes for expansion
itwo bytes for expansion
idirect memory address
idisk number 0-15

i
begdat
di rbf:
al100 :
al101:
al102 :
al103:
chk00:
chk01:
chk02 :
chk03:
i

scratch
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds

enddat equ
da tsiz equ

end

ram
$
128
31
31
31
31
16
16
16
16

area for bdos use
ibeginning of data area
iscratch directory area
iallocation vector 0
iallocation vector 1
iallocation vector 2
iallocation vector 3
icheck vector 0
icheck vector 1
icheck vector 2
i check vector 3

$ iend of data area
$-begdatisize of data area

55

0014 =

0000 =
3400 =
3c00 =
4a00 =

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

msize

combined getsys and putsys programs from Sec 4.
Start the ~rograms at the base of the TPA

org

equ

0100h

20 size of cp/m in Kbytes

; "bias" is the amount to add to addresses for > 20k
(referred to as ubI! throughout the text)

bias
ccp
bdos
bios

equ
equ
equ
equ

(msize-20) *1024
3400h+bias
ccp+0800h
ccp+1600h

; getsys programs tracks " and 1 to memory at
3880h + bias

;

gstart:

register
a
b
c
d,e
h,l
sp

usage
(scratch register)
track count (0 ••• 76)
sector count (1 ••• 26)
(scratch register pair)
load address
set to stack address

0100 318033 lxi sp,ccp-0080h
h,ccp-0080h
b,0

start of getsys
convenient plac
set initial loa
start with trac
read next track
each track star

~103 218033 lxi
0106 0600 mvi

rd$trk:
0108 0e01 mvi

010a cd0003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 da0a01

rd$sec:
call
lxi
dad
inr
rnov
cpi
jc

c,l

read$sec
0,128
d
c
a,c
27
rdsec

get the next se
offset by one s

(hl=hl+128)
next sector
fetch sector nu

and see if la
<, do one more

arrive here at end of track, move to next track

0118 04
0119 78
011a fe02
011c da0801

011f fb
0120 76

inr
rnov
cpi
jc

b
a,b
2
rd$trk

track = track+l
; check for last

track = 2 ?
; <, do another

arrive here at end of load, halt for lack of anything b

ei
hIt

56

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 0c
0212 79
0213 fe1b
0215 da0a02

0218 04
0219 78
021a fe02
021c da0802

021f fb
0220 76

0300

0300 c5
0301 e5

0302

0342 e1
0343 c1

putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1
start this program at the next page boundary

org

put$sys:
1xi
1xi
mvi

wr$trk:

wr$sec:
mvi

call
1xi
dad
inr
mov
cpi
jc

arrive here

inr
mov
cpi
jc

($+0100h) and 0ff00h

sp,ccp-0080h
h,ccp-0080h
b,0

c,l

write$sec
d,128
d
c
a,c
27
wr$sec

at end

b
a,b
2
wr$trk

of track, move to

convenient p1ac .
start of dump
start with trac

start with sect

write one secto
length of each
<h1>=<h1> + 128
<c> = <c> + 1
see if

past end of t
no, do another

next track

track = track+1
see if

last track
no, do another

done with putsys, halt for lack of anything bette

ei
hIt

user supplied subroutines for sector read and write

move to next page boundary

org ($+0100h) and 0ff00h

read$sec:
read the next sector
track in ,
sector in <c>
dmaaddr in <hI>

push
push

b
h

user defined read operation goes here
ds 64

pop
pop

h
b

57

0344 c9 ret

0400 org ($+0100h) and 0ff00h another page bo

wr i te$sec:

; same parameters as read$sec

'0400 c5 push b
0401 e5 push h

user defined write operation goes here
0402 ds 64

0442 e1 pop h
0443 c1 pop b
0444 c9 ret

end of getsys/putsys program

0445 end

58

0000

0014 =

0000 =
3400 =
4a00 =
0300 =
4a00 =
1900 =
0032 =

0000 010200
0003 1632
0005 210034

APPENDIX E: A SKELElrAL COLD START LOADER

t his i s a. s amp 1 e col d s tar t load e r w h i ch, w hen mod i fie d
resides on track 00, sector 01 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro­
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "loadp" (3400h + "bias l

'). in a 20k
memory system, the value of "bias" is 0000h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + IIbias. II the cold start loader is not used un­
til the system is ~owered u~ again, as long as the bios
is not overwritten. the origin is assumed at 0000h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

msize

bias
ccp
bios
biosl
boot
size
sects

cold:

Isect:

org 0 base of ram in cp/m

equ 20 min mem size in kbytes

equ (msize-20) *1024 offset from 20k system
equ 3400h+bias base of the ccp
equ ccp+1600h base of the bios
equ 0300h length of the bios
equ bios
equ bios+biosl-ccp size of cp/m system
equ size/128 # of sectors to load

begin the load operation

lxi b,2 b=0, c=sector 2
mvi d,sects d=# sectors to load
lxi h,ccp bas-e transfer

; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hI>

address

branch to location "cold" if a read error occurs

59

0008 c36b00
000b

006b 15
006c ca004a

006f 318000
0072 39

0073 0c
0074 79
0075 felb
0077 da0800

007a 0e01
007c 04
007d c30800
0080

*
*
*

user supplied read o~eration goes here •••

jmp
ds

past$patch:

past$patch
60h

; remove this when patche

; go to next sector if load is incomplete
dcr d ; sects=sects-l
jz boot ; head for the bios

more sectors to load

we aren't using a stack, so use <sp> as scratch registe
to hold the load address increment

lxi
dad

inr
mov
cpi
jc

sp,128
sp

c
a,c
27
Isect

128 bytes per sector
<hI> = <hI> + 128

sector = sector + 1

last sector of track?
no, go read another

end of track, increment to next track

mvi
inr
jmp
end

c,l
b
Isect

60

sector = 1
track = track + 1
for another group
of boot loader

1:
2:
3 :
4 :
5 :
6:
7 :
8:
9: ;

10:
11 :
12 :
13:
14: ;
15:
16:
17:
18: ;
19: ;
20:
21:
22:
23: ;
24:
25:
26:
27:
28:
2!:J: ;
3"': ;
31:
32 :
33:
3 4: ;
3 5: ;
36:
3 7: ;
38: ;
39: ;
40:
41 :
4 2:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52 :
5 3: ;

APPENDIX F: ~ CP/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-detinition library

Copyright (c) 1979
Digital R~::earch
Box 579
Pacific Grove, CA
939510

CP/M logic~l disk drives are defined using the
macros given below, where the sequence of calls
is:

disks 1'\

diskdef ?arameter-list-0
diskdef 9arameter-list-l

diskdef parnmeter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=0,1, ••• ,n-l)

each parameter-list-i takes the form
dn,f.3c,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where
dn is the disk number 0,1, .•. ,n-l
fsc is tde first sector number (usually 0 or 1)
Isc is tile last sector nurnoer on a track
skf is o~tional "skew factor ,j for sector translate
bls is tne data block size (1024,2048, ••• ,16384)
dks is tnt. disk size in 015 increments (word)
dir is tnt:": number of directory elements (word)
cks is tn0 number of dir elements to checksum
ofs is the number of tracks to skip (word)
[0] is an optional 0 which forces 16K/directory en

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four drive CP/M system is defined by
disks 4
diskdei 0,1,26,6,1024,243,64,64,2

dsk set 0
rept 3

dsk set dsk+1
diskdef %dsk,0
endm
endei

the value of "begdat" at the end of assembly defines t

61

54:
55:
56:
57:
58:
59:
61.iJ: ;'

;

beginning of the uninitialize ram area above the bios,
while the va llle of "enddat" defines the next location
followinq the end of the data area. the size of this
area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

61 :
62:
63:
64:
65:
66:
67:
68:
69:
70:
71 :
72:
73:
74:'
15:

dskhdr macro dn
;; define a single disk

xlt&dn,0000h
0000h,{1000h
dirbuf,dpb&dn
csv&dn,alv&dn

header list
;translate table
;scratch area

dpe&dn: dw

76:
77:

;
disks
; ;
ndisks
dpbase .. , ,
dsknxt

78: dsknxt
79:
80:
81: ;
82: dpbhdr
83: dpb&dn
84:
85:
86:
8'7 :
88:
89:
90:
91:
92:
93:
94:
95:

;
ddb
; ;

;
ddw
; ;

96: gcd
97: ;;
98: ;;
9 g: ;;

100: gcdm
101: gcdn
102: gcdr
103:
104: gcdx
105: gcdr
106:
107:
108:

dw
dw
dw
endm

macro nd
define nd disks

;dir buff,parm block
;check, alloc vectors

set nd ;;for later reference
equ $;base of disk parameter blocks
generate the nd elements
set 0
rept nd
dskhdr %dsknxt
set dsknxc+l
endm
endm

macro
equ
endm

macro
define
db
endm

macro
define
dw
endm

a

a

dn
$

data, comment
db statement

data

data,comment
dw statement

data

macro m,n

;disk parm block

comment

comment

greatest common divisor of m,n
produces value gcdn as result
(used in sector translate table generation)
set m ;;variable for m
set n ;;variable for n
set 0 ;;variable for r
rept 65535
set gcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr = 0
exitm
endif

62

109:
110:
Ill:
112 :

gcdm
gcdn

113: ;

set
set
endm
endm

gcdn
gcdr

114: diskdef macro dn,fsc,lsc,skf,bls,dks~dir,cks,bfs,k16
115: ;; generate the set statements for later tables
116: if nul lsc
117: ;; current disk dn s~me as orevious fsc

;8quivalent 9arameters 118: dpb&dn equ dpb&fsc
119: als&dn equ als&fsc ;same allocation vector size

isame checksum vector size
;same translate table

120: css&dn equ css&fsc
121: xlt&dn equ xlt&fsc
122: else
123: secmax set
124: sectors set
125: als&dn set

lsc-(fsc). i isectors 0 ••• secmax
secmax+l;;number of sectors
(dks)/8 ;isize of allocation vector
((dks) mod t,) ne fa 126: if

127:
128 :
129 :
130:
131 :
132 :
133:
134:
135:
136:
137:

als&dn

css&dn
i ;
blkval
blkshf
blkmsk

138: ;;
139: blkshf
140: blkmsk
141: blkval
142 :
143:
144:
145:
146:
147:
148:
149:

; i
blkval
extmsk

150: ;;
151: extmsk
152: blkval
153 :
154: ;;

extmsk
155 :
156 :
157:
158: ;;
159:
160:
161 :
162 :
163:

extmsk

; i
dirrem

set
endif

als&dn+l

set (cks)/4 ;;number of checksum elements
generate the block shift value
set bls/128 ;;number of sectors/block
set 0 i;counts ~ight 0's in blkval
set 0 ;;£ills with l's from right
rept 16 ;;~nce for eacn bit ?osition
if blkval=l
exitm
endif
otherwise, high ord~r 1 not found yet
set blkshf+l
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent mask byte
set bls/1024 ;;number of kilooytes/block
set 0 ;;fi1l from right with l's
rept 16
if blkval=l
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be double byte lllocation
if (dks) > 256
set
endif

(extmsk shr 1)

may be optional
if not nul
set k16
endif

[0]
k16

in last position

now generate directory reservation bit vector
set dir ;;# remaining to process

63

164: dirbks
165: dirblk
166:
167 :
168:
169:
170: ;;
17-1: ;;
172: dirblk
173:
174: dirrem
175:
176: dirrem
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
18a:
189:
190: ;;
191:
192: xlt&dn
193:
194:
1~5: xlt&dn
196:
197: ;;
198: nxtsec
199: nxtbas
200:
201: ;;
202: neltst
203: ;;
204: ;;
205: nelts
206: xlt&dn
207:
208:
209:
21'1:
211:
212:
213: nxtsec
214:
215: nxtsec
216:
217: nelts
218:

set
set
rept
if
exitm
endif

bls/32
o
16
dirrem=0

;inumber of entries per block
iifill with l's on each loop

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr l) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else
set 0
endif
endm
dpbhdr dn iige~erate equ $
ddw %sectors,<isec per track>
ddb %blkshf,<;blcck shift>
ddb %blkmsk,<;block mask>
ddb %extmsk,<ie~tnt mask>
ddw %(dks)-l,<iOisk size-I>
ddw %(dir)-l,<;oirectory max>
ddb %dirblk shr 8,<ialloc~>
ddb %dirblk ana 0ffh,<iallocl>
ddw %(cks)/4,<icheck size>
ddw %ofs,<;offset>
generate the translate table, if requested
if nul skf
equ 0 ino xlate taole
else
if skf = (1
equ 0 ino xlate table
else
generate the translate taole
set 0 i i11ext sector to fill
set 0 iifficves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap orevious elements
set neltst ii~ounter
equ $ itranslate table
rept sectors ;;once for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

%nxtsec+(fsc)

nxtsec+(sKf)
nxtse~ >= sectors
nxtsec-sectors

nelts-l
nelts = fa

64

219: nxtbas
220: nxtsec
221: nelts
222 :
223:
224:
225:
226 :
227: ;
228: defds
229: lab:
230:
231: ;.
232: Ids
233:
234:
235: ;
236: endef
237: ;;
238: begdat
2 3 9: d i r bu f :
240: dsknxt
241 :
242:
243:
244: dsknxt
245:
246: enddat
247: datsiz
248: ;;
249:

nxtbas+l
nxtbas
neltst

set
set
set
endif
endm
endif
endif
endm

;;end of nul fac test
;;end of nul bls test

macro
ds
endm

lab, space
space

macro
aefds
endm

Ib,dn,val
Ib&dn,%val&dn

macro
generate the nec~ssary ram data areas
equ $
ds 128 ;directory access buffer
set 0
rept ndisks ;;once for eaCh disk
Ids alv,%dsknxt,als
Ids csv,%dsknxt,css
set dsknxt+l
endm
equ $
equ $-begdat
db 0 at this point forces hex record
endm

65

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

1: ;***
2: ; * *
3: ;*
4: ;*

Sector Deblocking Algorithms for CP/M 2.0 *
*

5: ;***
6 :
7: ;
8: smask
9: ;;

10:
11 :
12 :

; ;
@y
@x

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set 0

13: ;;
14 :

count right shifts of @y until = 1
rept 8

15 :
16 :
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31 :
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51 :
52:
53:

; ;
@y
@x

if @y = 1
exi tm
endif
@y is not 1, shift right one position
set @y shr 1
set @x + 1
endm
endm

i
.*** ,
• * ,
· * ,
· * ,

*
CP/M to host disk constants *

*
.*** ,
blk s iz
hstsiz
hstspt
hstblk
cpmspt
secmsk

secshf

equ
equ
equ
equ
equ
equ
smask
equ

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-l
hstblk
@x

;CP/M allocation size
;host disk sector size
;host disk sectors/trk
;CP/M sects/host buff
iCP/M sectors/track
isector mask
icompute sector mask
i log 2 (hstblk)

;
.*** ,
· * ,
· * ,
· * ,

*
BOOS constants on entry to write *

*
.*** ,
wrall
wrdir
wrual

equ
equ
equ

o
1
2

iwrite to allocated
iwrite to directory
iwrite to unallocated

;
i~**
. * * ,
i* The BDOS entry points given below show the *
i* code which is relevant to deblocking only. *
.* * ,
.*** ,

66

54:
55:
56:
57:
58:
59:
60:
61 :
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:

; DISKDEF macro, or hand coded tables go here
dpbase equ $;disk param block base
;
boot:
wboot:

;
seldsk:

;
settrk:

setsec:

;
setdma:

;
sectran:

;enter here on system boot to initialize
xra a ;0 to accumulator
sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
ret

;select disk
mov
sta
mov
mvi
rept
dad
endm
lxi
dad
ret

a,c
sekdsk
l,a
h,0
4
h

d,dpbase
d

;selected disk number
;seek disk number
;disk number to HL

;multiply by 16

;base of parm block
;hl=.dpb(curdsk)

jset track given by registers Be
mov h,b
mov l,c
shld sektrk jtrack to seek
ret

;set sector given by register c
mov
sta
ret

a,c
seksec ;sector to seek

jset dma address given by Be
mov h,b
mov l,c
shld dmaadr
ret

jtranslate sector number Be
mov h,b
mov l,c
ret

67

104 :
105:
106:
107:
108 :
109 :
110 :

i**1****
.* * ,
· * ,
· * ,
· * ,

The READ entry point takes the place of
the previous BIOS defintion for READ.

*
*
*

.*** ,
read:

iread the selected CP/M sector
mvi a,l
sta readop iread operation
sta rsflag imust read data
mvi a,wrual
sta wrtype itreat as unalloc
jrnp rwoper ito perform the read

i
.*** ,

Ill:
112:
113:
114 :
115 :
116:
117:
118:
119 :
120:
121:
122 :
123 :
124 :
125 :
126:
127 :
128:
129 :
130:
131 :
132 :
133:
134:
135 :
136 :
137:
138 :
139:
140 :
141 :
142 :
143 :
144:
145:
146:
147:
148 :
149:
150:
151 :
152 :
153 :
154 :
155:
156:
157: i
158 :

.* * ,
· * ,
· * ,
· * ,

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*

.*** ,
write:

chkuna:

ivrite the selected CP/M sector
xra a i0 to accumulator
sta readop inot a read operation
rnov a,c iwrite type in c
sta wrtype
cpi wrual
jnz chkuna

write to unallocated,
mvi a,blksiz/128
sta unacnt
Ida sekdsk
sta unadsk
Ihld sek trk
shld unatrk
Ida seksec
sta unasec

;write unallocated?
icheck for unalloc

set parameters
inext unalloc recs

idisk to seek
iunadsk = sekdsk

iunatrk = sectrk

iunasec = seksec

icheck for write to unallocated sector
Ida unacnt iany unalloc remain?
ora
jz

a
alloc iskio if not

more unallocated records remain
dcr a ;unacnt = unacnt-l
sta unacnt
Ida sekdsk
lxi h,unadsk
crop
jnz

m
alloc

disks are the same

68

isame disk?

;sekdsk = unadsk?
iskip if not

159 :
160:
161 :
162:
163 :
164 :
165:
166:
167:
168 :
169:
170:
171:
1 7 2:
173:
174:
175:
176:
177:
178 :
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202 :
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:

i
noovf:

i
alloc:

lxi
call
jnz

tracks
Ida
lxi
cmp
jnz

h,unatrk
sektrkcmp
alloc

are the same
seksec
h,unasec
m
alloc

match, move to next
inr m
mov a,m
cpi cpmspt
j c noovf

isektrk = unatrk?
iskip if not

isame sector?

iseksec = unasec?
iskip if not

sector for future ref
iunasec = unasec+l
iend of track?
icount CP/M sectors
iskip if no overflow

overflow to next track
mvi
IhId
inx
shld

imatch
xra
sta
jmp

;not an
xra
sta
inr
sta

m,0
unatrk
h
unatrk

found,
a
rsflag
rwoper

mark

unallocated
a
unacnt
a
rsflag

iunasec = 0

iunatrk = unatrk+l

as unnecessary read
i 0 to accumulator
i rsflag = 0
ito perform the write

record, requires pre-read
i 0 to accum
;unacnt = 0
il to accum
; rsflag = 1

i
.*** ,
. * * ,
;* Common code for READ and WRITE follows *
. * * ,
.*** ,
rwoper:

ienter
xra
sta
Ida
rept
ora
rar
endm
sta

active
lxi
mov
mvi

here to perform
a
erflag
seksec
secshf
a

sekhst

host sector?
h,hstact
a,m
m,l

69

the read/write
izero to accum
ino errors (yet)
;compute host sector

;carry = 0
ishift right

ihost sector to seek

;host active flag

;always becomes 1

214:
215:
216:
217:
218:
219 :
220:
221:
222:
223 :
224:
225 :
226:
227 :
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239: ;

i
nomatch:

240: filhst:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253: ;
254: match:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:

ora
jz

a
filhst

iwas it already?
ifill host if not

host buffer active, same as seek buffer?
Ida sekdsk
1 xi h , h s td s k
cmp
jnz

m
nomatch

same disk, same track?
lxi h,hsttrk

isame disk?
isekdsk = hstdsk?

call sektrkcmp isektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
Ida sekhst
lxi h,hstsec
cmp m
jz match

iproper disk, but
Ida
ora
cnz

imay
Ida
sta
Ihld
shld
Ida
sta
Ida
ora
cnz
xra
sta

hstwrt
a
writehst

have to fill
sekdsk
hstdsk
sek trk
hsttrk
sekhst
hstsec
rsflag
a
readhst
a
hstwr t

data to or
seksec
secmsk
l,a
h,0
7
h

not

isekhst = hstsec?

iskip if match

correct sector
ihost written?

iclear host buff

the host buffer

ineed to read?

iyes, if 1
i0 to accum
ino pending write

from buffer
imask buffer number
ileast signif bi~s
iready to shift
idouble count
ishift left 7

iCOPY
Ida
ani
mov
mvi
rept
dad
endm
hI has
lxi
dad
xchg
Ihld
mvi

relative host buffer address
d,hstbuf
d

dmaadr
c,128

70

ihl = host address
inow in DE
iget/put CP/M data
i1ength of move

rwmove:

Ida
ora
jnz

readop
a
rwmove

iwhich way?

;skip if read

write operation, mark and switch direction
mvi a,l
sta hstwr t
xchg

i hstwrt = 1
isource/dest swap

iC initially 128, DE is source, HL is dest
1dax d isource character
inx d
mov m,a
inx h
dcr c
jnz rwmove

data has been moved
Ida wrtype
cpi wrdir
Ida erf1ag

ito dest

i100p 128 times

to/from host buffer
iwrite type
ito directory?
iin case of errors

269:,
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303: i*
304:
305:
306:
307 :
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319 :
320:

rnz ino further processing

· ,

clear host buffer for
ora
rnz
xra
sta
call
Ida
ret

a

a
hstwr t
writehst
erf1ag

directory write
ierrors?
iskip if so
;0 to accum
ibuffer written

.*** ,

· * , utility subroutine for 16-bit compare
*
*

· * * ,
.*** ,
sektrkcmp:

iHL =
xchg
1xi
1dax

.unatrk or .hsttrk, compare with sektrk

h,sektrk
d
m

i10w byte compare
isame?
ireturn if not

cmp
rnz
low
inx
inx
1dax
cmp
ret

bytes equal, test high Is
d
h
d
m isets flags

71

321:
322:
323:
324 :
325:
326:
327 :
328:
329 :
330:
331:
332:
333 :
334 :
335:
336:
337 :
338:
339:
340:
341 :
342:
343:
344 :
345 :
346:
347 :
348:
349 :
350:
351:
352 :
353 :
354:
355:
356:
357:
358:
359 :
360:
361 :
362:
363:
364:
365:
366:
367:
368:
369 :
370:

.*** ,
· * ,
· * ,
· * ,
· * ,

WRITEHST performs the physical write to
the host disk, READHST reads the physical
disk.

*

*
*

.* * ,

.*** ,
writehst:

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write I'hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error

;
readhst:

ret

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

· ,
.**~******** ,
.* * ,
;* Unitialized RAM data areas *
· * * ,
.*************************************ft*************** ,
;
sekdsk: ds
sektrk: ds
seksec: ds
;
hstdsk: ds
hsttrk: ds
hstsec: ds

sekhst: ds
hstact: ds
hstwr t: ds

unacnt: ds
unadsk: ds
unatrk: ds
unasec: ds
;
erflag: ds
rsflag: ds
readop: ds
w=type: ds
dmaadr: ds
hstbuf: ds

1
2
1

1
2
1

1
1
1

1
1
2
1

1
1
1
1
2
hstsiz

72

;seek disk number
;seek track number
;seek sector number

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flag
;host written flag

;unalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

;error reporting
;read sector flag
;1 if read operation
;write operation type
;last dma address
;host buffer

371:
372:
373 :
374 :
375 :
376 :

.*** ,
· * * ,
· * ,
· * ,

The ENDEF macro invocation goes here *
*

.********~** ,
end

73

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright (c) 1979 by Digital Research. An rights reserved.
No pa~t of this publication may be reproduced, t~ansmitted.
transcribed, stored in B. retrieval system, or translated into
any language or computer language. in any form or by anv
means, electronic, mechanical. magnetic, optjcal~ chemical,
manual or otherwise. without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove.
California ~3950.

Disclaimer

Digital R.esearch makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti­
cular purpose. Further~ Digital Research reserves the right
to revise this pub1ication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

1.

2.

3 •

4.

5.

6.

I n t r 0 du c t ion • •

CP/M 2.2 INTERFACE GmDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Operating System Call Conventions . • •

A Sam?le File-to-File Copy Program .

A Sample File Dump utility

A Sample Random Access Program •

System Function Summary

1

3

• • 29

• 34

• 37

46

I • INrrRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS), the Basic Disk Operating System (BOOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/O. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environm~nt
(see the Digital Research manual entitled "CP/M Alteration Guide").
The BIOS and BOOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct pr·ograrn which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:
FDOS (BDOS+BIOS)

I
CCP I

CBASE: I

I I
I I
I I
I TPA I
I I

TBASE: I I

I system parameters

BOOrr: I

The exact memory addresses corresponding to BOOT, TBASE, CBASE," and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT = 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 0100H.
The principal entry point to the FOOS is at location BOOT+0005H
(normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed a.s
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command line takes one of the
forms:

command
command f ilel
command filel file2

where hcommand" is either a built-in function such as OIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is
the CCP prepares one
system parameter area.
to access files through
section.

followed by one or two file specifications,
or two file control block (FCB) names in the

These optional FCB's are in the form necessary
the FOOS, and are described in the next

The transient program receives control from the CCP and begins
execution, perhaps using the I/O facilities of the FOOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-l is free.

The transient program may use the CP/M I/O facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"function number" and an "information address" to CP/M through the
FOOS entry point at BOOT+0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FOOS. The
FOOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein i~ Proprietary to Oigital Research.)

2

2. OPERA'rING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/O macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language 11anual and Applications Guide. II

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
write a Console Character
Read a Sequential Tape Character
write a Sequential Tape Character
write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Seauential Read
Random or Sequential write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = Land register"B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel1s
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

o System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 P r i n t S t r i n9

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 write Sequential
22 r.:lake File
23 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr(Alloc)
28 write Protect Disk
29 Get R/O Vector
30 Set File Attributes
31 Get Addr(Disk Parms)
32 Set/Get User Code
33 Read Random
34 write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it­
is sufficiently large to make CP/rvl system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (as suming a s tandard CP/M sys tern wi th Boo'r = 000 0H) :

BOOS EQU 0005H i STANDARD CP /r.-I ENrfRY
CONIN EQU 1 iCONSOLE INPUT FUNCTION

ORG 0100H i BASE OF TPA
N EXrrC: MVI C,CONIN iREAD NEXT CHARACTER

CALL BOOS i RErrURN CHARACTER IN <A)
CPI I * I iEND OF PROCESSING?
JNZ NEXlrC i LOOP IF NO'r
RET i RE'fURN 'ra CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
cat eg 0 ry • 'I' he f i 1 e type s 1 i s ted below n am e a few g e n e ric cat eg 0 r i e s

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Pr inter Listing
Hex Machine Code
Basic Source File
Intermediate Code
CCP Command File

PLI
REL
TEX
BAR
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carr iage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/r.l record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or. a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
ope rat ions.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered lo~ically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file" is accessed randomly. The defaul t file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are available for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
this purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

5

Idrlfllf21/ /lf8Itllt2It3Iexlslls2Ircld01/ IIdnlcrlr01rllr21
--

00 01 02 •.• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

.where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex, II
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Each file be ing accessed. through CP /l-'l must have a cor responding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "ern field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCBls are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) •

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "f ilel ll and "file2 1i in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 ••• dn portion of the first FCB, ~nd must be moved to another
area of memory before use. If, for example, the operator types

PROGI~ME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOO'I'+005CH is initialized to drive code 2, file name "X" and file type
.. ZOT". The second dr ive code takes the defaul t value 0, which is
placed at BOO rr+006CH, with the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All r em a i n i ng fie 1 ds t h r ou g h II C r II are set to z e r 0 • Not e a g a i nth a tit
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOO rr+005CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator follOWing the program name. The first position contains the
number of characters, with the characters themselves followinq the
character count. Given the above command line, the area beginning at
Boo'r+0080H is initialized as follows:

BOQ'f+0 0 8 0H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14

1 4 .. II .- B II .. : II II X" I.... II Z.. .. 0 II II T" y .. It... .. Z U .. A" .. P It

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
wh ich follON.

(All Information Contained Herein is Proprietary to Digital Research.)

7

* * FUNCTION 0: System Reset

*
*
* *

* Entry Parameters: *
* Register C: 00H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

*
* FUNc'r ION 1: CONSOLE INPUT

*
*

* *

*
*
*

En t ry Par am e t e r s:
Register C: 01H

*
*
*

* Returned Value: *
* Register A: ASCII Character *

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FOOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* *
*
*

CONSOLE OUTPUT *
*

*
*
*
*

En t ry Par am e t e r s:
Reqister C:
Reg is ter E:

*
02H *
ASCII Character *

*

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

*
* FUNC'r ION 3: READER INPUT
*

*
*
*

*
*
*

En try Par ame te r s:
Register C: 03H

*
*
*

* Returned Value: *
* Register A~ ASCII Character *

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

* *
* FUNCTION 4: PUNCH OUTPUT *
* *

En t ry Par am e t e r s: * *
*
*

Register C:
Register E:

04H *
ASCII Character *

* *

The Punch Output function sends the character from register E to
the logical punch device.

* *
* FUNCTION 5: LIST OUTPUT
*

*
*

* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

* *
* FUNCTION 6: DIRECT CONSOLE I/O *
* *

* Entry Parameters: *
* Register C: 06H *
* Register E: 0FFH (input) or *
* char (output) *
* *
* Returned Value: *
* Register A: char or status *

(no value) *

Direct console I/O is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P). Programs which perform direct I/O through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/O under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a 'console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

*
* FUNCTION 7: GET I/O BYTE
*

*
*
*

*
*
*

En t ry Par am e t e r s:
Register C: 07H

*
*
* * Returned Value: *

* Register A: I/O Byte Value *

The Get I/O Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

*
*
*

FUNC'fION 8: SE'r I/O BYTE
*
*
*

*
*
*
*

Entry Parameters:
Register C:
Register E:

08H
I/O Byte Value

*
*
*
*

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

* *
* FUNCTION 9: PRINT STRING
*

*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

09H
Str ing Address

*
*
*
*

The Print String function sends the character string stored in

memory at the location given by DE to the console device, until a "$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

* *
* FUNCrI'ION 10: READ CONSOLE BUFFER *
* *

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

(oAH
Buffer Address

*
*
*
* * Returned Value: *

* Console Characters in Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

Imxlnclcllc21c31c41c51c61c71 I??I

where "mx " is the maximum number of characters which the buffer will
hold (1 to 255), "nc " is the number of characters read (set by FOOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "??I, in the above fiqure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes operator data input
and line correction more legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

* * * FUNCTION 11: GET CONSOLE STATUS *
* *

*
*
*

Entry Parameters:
Register C: 0BH

*
*
* * Returned Value: *

* Register A: Console Status *

The Console Status function checks to see if· a character has
been typed at the console. If a character is ready, the value 0FFH is
returned in register A. Otherwise a 00H value is returned.

* *
* FUNC'r ION 12: RErrURN VERS ION NUMBER *
* *

* Entry Parameters: *
* Register C: 0CH *
* *
* Retur ned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register -, L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, wi th -random access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

* * * FUNCTION 13: RESET DISK SYSTEM *
~ *

* Entry Parameters: *
* Register C: 0DH *
* *

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

* * * FUNCTION 14: SELECT DISK
*

*
*

*******************.*******************
* Entry Parameters: *
* Register C: 0EH *
* Register E: Selected Disk *
* *

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
lion-line" sta tuswhich, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

14

*
*
*

FUNCTION 15: OPEN FILE
*
*
*

*
*
*

Entry Parameters:
Register C:
Registers DE:

0FH
FCB Address

*
*
*

* * * Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a "directory code" with the value 0 through 3 if the open was
s uc c e s s f ul ,or 0 F F H (2 5 5 dec im a 1) i f the f i 1 e can not be f 0 u n d . I f
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

*
* FUNCTION 16: CLOSE FILE
*

*
*
*

* Entry Parameters: *
* Register C: l0H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a -0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close o~eration is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

* *
* FUNCTION 17: SEARCH FOR FIRST *
* *

*
*
*
*

En t ry Par ame te r s:
Regis te r C:
Registers DE:

IlH
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted f rom the buffer at th is pos i tion.

An ASCII question mark (63 decimal, 3F' hexadecimal) in any
position from IIflli through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
furiction is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the IIs2" byte is automatically zeroed.

* * FUNCTION 18: SEARCH FOR NEXT
*

*
*
*

* Entry Parameters: *
: Register C: 128 :

* Retur ned Value: *
* Reg i s t e r" A : D ire c tory Cod e *

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

* *
* FUNCTION 19: DELETE FILE
*

*
*

* Entry Parameters: *
* Register C: l3H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the arlve
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

* *
*
*

FUNc'rION 20: READ SEQUENTIAL *
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

l4H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

if the referenced file or
value in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position hcr" of the
extent, and the hcr" field is automatically incremented to the next
record pos i t ion. I f the II c rio field ove r flows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

*
*
*

FUNCTION 21: WRITE SEQUENTIAL
*
*
*

* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the "cr" field is automatically incremented to the next
record position. If the Ilcr U field ove'rflows then the next logical
extent is automatically opened and the Ilcr" field is reset to zero in
preparation for the next write operation. write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = 00H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* *
* FUNCTION 2~: MAKE FILE *
* *

*
*
*
*

Entry Parameters:
Reg ister C:
Registers DE:

l6H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

The ,Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a no n- z e r 0 "d r II cod e ,or the de fa ul t dis kif II d r .. i s z e r 0). The F DOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = 0,
1, 2, or 3 if the operation wa~ successful and 0FFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

* *
*
*

FUNC'fION 23: RENAME FILE *
*

*
*
*

Entry Parameters:
Register c:
Registers DE:

17H
FCB Address

*
*
*

* *
* Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position Qj is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between Qj and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name could not be found in the
d ire c tory s can.

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

*
*
*

Entry Parameters:
Register C: 18H

*
*
*

* Returned Value: *
* Registers HL: Login Vector *

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A '10'1 bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

*
*
*

FUNCTION 25: RETURN CURRENT DISK
*
*
*

* Entry Parameters: *
* Register C: 19H *
* * * Returned Value: *
* Register A: Current Disk *

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to drives A through P.

* * * FUNCTION 26: SET DMA ADDRESS
*

*
*

* Entry Parameters: *
* Register C: lAH *
* Registers DE: DMA Address *
* *

.• DMA II is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-D~lA access (i. e. ,
the data is transfer'ed through programmed I/O operations), the DMA
address has, in CP/M, corne to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0080H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

* * * FUNCTION 27: GET ADDR{ALLOC) *
* *

*
*
*

Entry Parameters:
Register C: IBH

*
*
* * Returned Value: *

* Registers HL: ALLOC Address *

An '-allocation vector ll is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide. I.

* *
* FUNCTION 28: WRITE PROTECT DISK *
* *

*
*
*

Entry Parameters:
Register C: ICH

*
*
*

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

*
*
*

*
FUNCTION 29: GET READ/ONLY VECTOR *

*
*********************.******************
* Entry Parameters: *
* Register C: lDH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*

Function 29 returns a bit vector in register pair tiL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significan~ bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

*
*
*
*

Entry Parameters:
Register c:
Registers DE:

lEH
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators f5' through f8' and t3' are reserved for future system
expans ion.

(All Information Contained ijerein is Proprietary to Digital Research.)

23

* *
*
*

FUNCTION 31: GET ADDR(DISK PAfu~S) *
*

* Entry Parameters: *
* Register C: IFH *
* *
* Returned Value: *
* Registers HL: DPB Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* *
* FUNCTION 32: SET/GET USER CODE *
* *

*
*
*
*
*

Entry Parameters:
Register C:
Register E:

*
20H *
0FFH (get) or *
User Code (set) *

*
* Returned Value: *
* Register A: Current Code or *
* (no value) *
~********************************

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register E is not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

*
* FUNC'r ION 33: READ RANDOM
*

*
*
*

* Entry Parameters: *
* Reg i s t e r C : 21 H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Reqister A: Return Code *
*********;*****************************

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent mayor may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BOOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set., Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course~ simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

*
* FUNCTION 34: WRITE RAND~1
*

*
*
*

* Entry Parameters: *
* Register C: 22H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following eacn write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created due to directory
overflow.

(All Information Contained Herein is Proprietary to Digital Research.)

27

* * * FUNCTION 35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FeB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a
l6-bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then pe r fo rming a sequence of random wr i tes star t ing a t the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
ran d om mod e (i. e., r e cor d n u m be r 6 5 53 5), the nth e vir t ua 1 s i z e i s
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

* * * FUNC'rION 36: SET RANDOM RECORD *
* 'k

* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* * * Returned Value:
* Random Record Field Set

*
*

The Set Random Record function causes the BOOS to automatically
produce the random record position from a file which has been read or
written sequentially to a p~rticular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various 'ikey" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
'rhe scheme is eas ily generalized when var iable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COpy PROGRAH.

The program shown below provides a relatively simple example of
file operations. 'rhe program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. 'I'he LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 00SCH is
properly set-up by the CCP upon entry to the COpy program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CH. rrhe program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COpy until each record has
been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

0000 =
0005 =
00Sc =
00Sc =
006c =
0080 =
0100 =

0009 =
000f =
0010 =
0013 =
0014 =
0015 =
0016 =

0100
0100 311b02

0103 0e10

. ,
boot
bdos
fcbl
sfcb
fcb2
dbuff
tpa
;
printf
openf
cloosef
deletef
readf
writef
makef

sample file-to-file copy program

at the ccp level, the command

copy a:x.y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b •

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

org
lxi

0000h
000Sh
00Sch
fcbl
006ch
0080h
0100h

9
15
16
19
20
21
22

system reboot
bdos entry point
first file name
source fcb
second file name
de f a ul t b u f fer
beg inning of tpa

print buffer func#
open file func#
close file func#
delete file func#
sequential read
sequential write
make file func#

tpa beginning of tpa
sp,stack; local stack

move second file name to dfcb
mvi c,16 ; half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

0105 116c00
0108 21da01
010b la mfcb:
010c 13
010d 77
010e 23
010f 0d
0110 c20b01

0113 af
0114 32fa01

0117 115c00
011a cd6901
011d 118701
0120 3c
0121 cc6101

0124 I1da01
0127 cd7301

012a I1da01
012d cd8201
0130 119601
0133 3c
0134 cc6101

0137 115c00 copy:
013a cd7801
£113d b7
013e c25101

0141 Ilda01
£1144 cd7d01
0147 lla 901
014a b7
014b c46101
014e c3 3 701

;

lxi
lxi
Idax
inx
mov
inx
dcr
jnz

d, fcb2
h,dfcb
d
d
m,a
h
c
mfcb

source of move
destination fcb
source fcb
ready next
c1est fcb
ready next
count 16 ••. 0
100p 16 time s

name has been moved, zero cr
xra a ; a = 00h
sta dfcbcr; current rec = 0

source and destination fcb's ready

lxi
call
lxi
inr
cz

d, s fcb
open ;
d,nofile;
a
finis

source file
error if 255
ready message
2 5 5 be corn e s 0
done if no file

source file open, prep destination
lxi d,dfcb destination
call delete' remove if present

lxi
call
lxi
inr
cz

d,dfcb
make
d,nodir
a
finis

destination
create the file
ready message
255 becomes (1
done if no dir space

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

d, s fcb
r eac1
a
eofile

source
read next record
end of file?
skip write if so

not end of file, write the record
lxi d,dfcb destination
call write write record
lxi
ora
cnz
jmp

d,space
a
finis
copy

ready message
00 if write ok
end ifso
loop until eof

eofile: ; end of file, close destination
0151 Ilda01
0154 cd6e01
0157 21bb01
015a 3c
015b cc6101

lxi d,dfcb
call close
lxi h,wrprot;
inr
cz

a
finis

destination
255 if error
ready message
255 becomes 00
shouldn't happen

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

015e llcc01

0161 0e09
0163 cd0500
0166 c30000

;
finis:

0169 0e0f open:
016b c3" 500

;
016e 0e10 close:
0170 c30500

;

lxi d,normal; ready message

; write message given by de, reboot
rnvi c,printf
call bdos ; write message
jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

mvi
jmp

mvi
jmp

c,openf
bdos

c,closef
bdos

01730e13 delete: mvi c,deletef
bdos 0175 c30500 jmp

;
o 1 7 8 0 e 1 4 read:
017a c30500

;
017d 0e15 write:'
017f c30 500 . ,
0182 0e16 make:
0184 c30500

0187 6e6f20fnofile:
0196 6e6f209nodir:
01a9 6f7574fspace:
01bb 7772695wrprot:
01cc 636f700normal:

mvi
jmp

mvi
jmp

mvi
jmp

console
db
db
db
db
db

c,readf
bdos

c,writef
bdos

c,makef
bdos

messages
'no source file$'
Ino directory spaceS'
lout of data spaceS'
'write protected?$'
'copy completeS I

data areas
010a
01fa =

01fb

o 2lb

dfcb: ds 33
dfcbcr equ dfcb+32

as 32
stack:

end

destination fcb
current record

16 level stack

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary'to Digital Research.)

32

the size of memory by fetching FBASE from location 0006~ and use the
entire remaining portion of memory for a aata buffer. In this case,
the progr~rner simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digitai Research.)

33

4. A SAtI1PLE FILE DUNP UrrILITY.

'rhe file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCp's stack upon entry,
resets the stack to a local area, and restores the CCp's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the ena of proce~sing.

0100
0005 =
0001 =
0002 =
0009 =
000b =
o 00f =
0014 =

005c =
0080 =

o 00d =
o 00a =

005c =
005d =
0065 =
0068 =
006b =
007c =
007d =

0100 210000
0103 39

0104 221502

0107 315702

0l0a cdc10l
0l0d feff
0l0f c2lb0l

0112 llf30l
0115 cd9c01
0118 c35l0l

DUMP program reads input file and displays hex data

org l00h
bdos equ 0005h ;dos entry point
cons equ 1 ; read console
typef egu 2 ; type function
prlntf equ 9 ;buffer print entry
brkf equ 11 ;break key function (true if char
openf equ 15 ;file open
readf equ 20 ; read function
;
fcb equ 5ch ; file con trol block address
buff egu 80h ;input disk buffer address

non graphic characters
cr equ 0dh ;carriage return
If equ 0ah ;line feed

fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln

file
egu
equ
equ
egu
equ
equ
equ

control block definitions
fcb+0 ; disk name
fcb+l ; f il e name
fcb+9 ;disk file type (3 characters)
fcb+12 ;file's current reel number
fcb+15 ;file's record count (0 to 128)
fcb+32 ;current (next) record number (0
fcb+33 ;fcb length

set up stack
lxi h,0
dad sp
entry stack pointer in hI from the ccp
shld oldsp
set sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and return
lxi d,opnmsg
call err
jmp finis; to return

(All Information Contained Herein is Proprietary to Digital Research.)

34

011b 3e80
011d 321302

0120 210000

0123 e5
0124 cda201
0127 el
0128 da5101
012b 47

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0f
0139 da5101

013c 7c
013d cd8f01
0140 7d
0141 cd8f01

0144 23
0145 3e20
0147 cd6501
014a 78
014b cd8f01
014e c32301

0151 cd7201
0154 2a1502
0157 f9

0158 c9

0159 e5d5c5
015c 0e0b
015e cd0500
0161 cldlel

openok:

i
gloop:

i

nonum:

i
finis:

i
br eak:

iopen operation ok, set buffer index to end
mvi a,80h
sta ibp iset buffer pointer to 80h
hI contains next address to print
lxi h,0 istart with 0000

push h isave line position
call gnb
pop h irecall line position
jc finis icarry set by gnb if end file
mov b,a
print hex values
check for line fold
mov a,l
ani 0fh icheck low 4 bits
jnz nonum
print line number
call crlf

check for break key
call break
accum lsb = I if character ready
r r c i in to car ry
j c finis i don't pr int any more

mov
call
mov
call

inx
mvi
call
rnov
call
j rnp

a,h
phex
a,l
phex

h
a,' ,
pchar
a,b
phex
gloop

ito next line number

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crlf
Ihld olasp
sphl
stack pointer contains ccp's stack location
ret ito the ccp

subr ou ti nes

icheck break key (actually any key will do)
push h! push d! push bi environment saved
mvi c,brkf
call bdos
pop b! pop a! pop hi environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

0164 c9 ret . ,
pchar: iprint a character

0165 e5d5c5 push h! push d! push bi saved
0168 0e02 mvi c, typef
0l6a 5f mov e,a
0l6b cd0500 call bdos
0l6e cldlel pop b! pop d! pop hi restored
0171 c9 ret

i
cr If:

0172 3e0d mvi a,cr
0174 cd650l call pchar
0177 3e0a mvi a,lf
0179 cd6501 call pchar
017c c9 ret

pnib: iprint nibble in reg a
017d e60f ani 0fh i low 4 bits
0l7f fe0a cpi 10
0181 d2890l jnc 010

less tha'i1 or equal to 9
0184 c630 adi 10 1

0186 c38b0l jmp prn

greater or equal to 10
0189 c637 p10: adi I a I - 10
0l8b cd6501 prn: call pchar
018e c9 ret

i
phex: iprint hex char in reg a

0l8f f5 push psw
0190 0f rrc
0191 0f rrc
0192 0f rrc
0193 0f rrc
0194 cd7d0l call pnib iprint nibble
0197 fl pop psw
0198 cd7d0l call pnib
019b c9 ret

er r: iprint error message
d,e addresses message ending with IISIo

0l9c 0e09 mvi c,printf iprint buffer function
0lge cd0500 call bdos
0lal c9 ret

i
gnb: iget next byte

0la2 3a1302 Ida ibp
0la5 fe80 cpi 80h
0la7 c2b30l jnz g0

read another buffer

(All Information Contained Herein is Proprietary to Digital Research.)

36

01aa cdce01
01ad b7
01ae cab301

01bl 37
01b2 c9

01b3 Sf
01b4 1600
01b6 3c
01b7 321302

01ba 218000
01bd 19

01be 7e

01bf b7
0lc0 c9

0lcl af
01c2 ~27c00

01c51l5c00
0lc8 0e0f
01ca cd0500

01cd c9

0lce e5d5c5
01dl 115c00
01d4 0e14
01d6 cd0500
01d9 cldlel
0ldc c9

i
g0:

setup:

i
diskr:

call diskr
ora a izero value if read ok
jz g0 ifor another byte
end of data, return with carry set for eof
stc
ret

iread the byte at buff+reg a
mov e,a ;ls byte of buffer index
mvi d,0 ;double precision index to de
inr a iindex=index+l
sta ibp iback to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora
ret

a

iset up file

i reset car ry bi t

open the file for input
xra a ; zero to accum
sta fcbcr ;clear current record

lxi d,fcb
mvi c,openf
call bdos
255 in accum if open error
ret

iread disk file record
push h! push d! push b
lxi d,fcb
mvi c" readf
call bdos
pop b! pop d! pop h
ret

fixed message area
01dd 46494c0signon: db 'file dump version 2.0$'
01f3 0d0a4e0opnmsg: db cr,lf,'no input file present on diskS'

0213
0215

0217

0257

;
ibp:
oldsp:

stktop:

var iable area
ds 2
ds 2

stack area
ds 64

end

iinput buffer pointer
ientry sp value from ccp

ireserve 32 level stack

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SArtJPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM. COM, the CCP level
command:

RANDCM X .DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input Commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively& If the W command is issued,
the RANDOM p~ogram issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number nand d ispl ays the s tr ing value at the console. I f the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only er ror message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called "readc."
'I'his particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

0100

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
000c =
000f =
0010 =
0016 =
0021 =
0022 =

005c =
0070 =
007f =
0080 =

000d =
000a =

.*** ,

.* * ,
;* sample random access program for cp/m 2.0 *
.* * ,
.*** ,

;
reboot
bdos

org

equ
equ

coninp egu
conout equ
pstr ing egu
r s tr ing equ
version egu
openf equ
closef equ
makef equ
readr equ
wr iter equ
;
fcb
ranrec
ranovf
buff

cr
If

equ
egu
egu
equ

equ
equ

100h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

; system reboot
;bdos entry point

;console input function
;console output function
; p r i n t s t ring un til I $ I

;reao console buffer
;return version number
;file open function
;close function
;make file function
; read random
;write ranaom

;default file control block
;random record position
;high order (overflow) byte
;buffer address

; car r i ag ere t ur n
;line feed

;
.*** ,
. * ,
;* load SP, set-up file for random access

*
*

.* * ,

.*** ,
0100 31bc0 lxi sp,stack

0103 0e0c
0105 cd050
0108 fe20
010a d2160

010d 111b0
0110 cdda0
0113 c3000

0116 0e0f
0118 115c0
011b cd050
011e 3c
011f c2370

versok:

version 2.0?
c,version
bdos

mvi
call
cpi
jnc
bad
1xi
call
jmp

20h ;version 2.0 or better?
versok

version, message and go back
d,badver
print
reboot

correct version for random access
mvi c,openf ;open default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes
jnz ready

cannot open file, so create it

zero

(All Information Contained Herein is Proprietary to Digital Research.)

39

0122 0e16
0124 11Sc0
0127 cd050
012a 3c
012b c2370

"012e 113a0
0131 cdda0
0134 c3000

0137 cde50
013a 227d0
013d 217f0
0140 3600
0142 fe51
0144 c2560

0147 0e10
0149 11Sc0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0
0161 0e7f
0163 21800

0166 c5
0167 e5
0168 cdc20
016b el

mvi c,makef
lxi I d,fcb
call bdos
inr a i err 255 becomes zero
jnz ready

cannot create file, directory full
lxi d,nospace
call print
jmp reboot i back to ccp

· ,
.*** ,
.* * ,
· * ,
· * ,

loop back to II ready" after each command *
*

.*** ,

ready:
file is ready for processing

call readcom ;read next command
shld ranrec istore input record#
lxi h, r anovf
mvi m,0 iclear high byte if set
cpi IQI i qu i t?
jnz notq

quit pr ocess ing, close file
mvi c,closef
lxi d,fcb
call bdos
inr a ierr 255 becomes 0
jz error i er ror message, retry
jmp reboot iback to ccp

i
.*** ,
.* * ,
i* end of quit command, process write *
.* * ,
.*** ,
notg:

not the gu i t command, random wr i te?
cpi IW I

jnz notw

this is a random wr i te, fill buffer until cr
lxi d,datmsg
call print ida ta prompt
rnvi c,127 iUP to 127 characters
lxi h,buff idestination

r loop: i read next character to buff
push b i save counter
push h ;next destination
call getchr icharacter to a

" pop h i restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

40

016c cl
016d fe0d
016f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a
017c
017f
0182
0183
0186

0e22
115c0
cd050
b7
c2b90
c3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd0S0
0196 b7
0197 c2b90

019a cdcf0
0190 0e80
019f 21800

01a2 7e
01a3 23
01a4 e67f
01a6 ca370
01a9 c5
01aa e5
01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 0d
01b3 c2a20
01b6 c3370

e r loop:

pop b
cpi cr
jz erloop

;restore next to fill
;end of line?

not end, store character
mov
inx
dcr
jnz

m,a
h
c
rloop

;next to fill
;counter goes down
iend of buffer?

end of read loop, store 00
mvi m, 0

write the record to selected record number
mvi
lxi
call
ora
jnz
jmp

c,writer
d,fcb
bdos
a
error
ready

ierror code zero?
i me s s ag e i f not
ifor another record

i
i***
. * ,
i* end of write command, process read

*
* .* * ,

.*** ,
notw:

wloop:

not a write command, read record?
cpi 'R'
jnz error iskip if not

read random record
mvi c, readr
lxi d,fcb
call bdos
ora
jnz

a
error

ireturn code 00?

read was successful, write to console
call crlf inew line
mvi c,128 imax 128 characters
lxi h,buff inext to get

mov
inx
ani
jz
push
push
cpi
cnc
pop
pop
dcr
jnz
jmp

a,m
h
7fh
ready
b
h
I I

putchr
h
b
c
wloop
ready

inext character
inext to get
imask parity
ifor another command if 00
isave counter
isave next to get
igraphic?
iskip output if not

icount=count-l

(All Information Contained Herein is Proprietary to Digital Research.)

41

0lb9 11590
0lbc cdda0
0lbf c3370

01c2 0e0l
01c4 cd050
0lc7 c9

01c8 0e02
01ca Sf
01cb cd050
0lce c9

01cf 3e0d
01dl cdc80
01d4 3e0a
01d6 cdc80
01d9 c9

0lda d5
01db cdcf0
0lde dl
0ldf 0e09
0lel cd050
0le4 c9

0le5 l16b0
01e8 cdda0
0leb 0e0a
0led l17a0
0lf0 cd050

i
i***
.* * ,
;* end of read command, all errors end-up here
. * , *

*
i***

error:
lxi
call
jmp

d, e r rmsg
print
ready

i
i***
.* * ,
i* utility subroutines for console i/o *
.* * ,
.*** ,
getchr:

putchr:

cr If:

i
pr int:

read com :

i read next console character to a
mvi c,coninp
call bdos
ret

iwrite character from a to console
mvi c, conout
mov e,a icharacter to send
call bdos isend character
ret

isend car r iage return line feed
mvi a,cr i car r iage return
call putchr
mvi a,lf ;line feed
call putchr
ret

iprint the buffer addressed by de until $
push d
call crlf
pop d inew line
mvi c, pstr ing
call bdos iprint the str ing
ret

i read
lxi
call

the next command line to the conbuf
d ,prompt

mvi
lxi
call
command

print ; command?
c, rstr ing
d ,conbuf
bdos iread command line
line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

01f3 21000
01f6 117c0

h,0 ;start with 0000
d,conlin;command line

01f9 la readc:

lxi
lxi
Idax
inx
ora

d ;next command character
01fa 13
01fb b7
01fc c8

01fd d6 3 0
01£f fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
o 20a 85
o 20b 6f
020c d2f90
o 20f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
o 21a c9

endrd:

d ito next command position
a ;cannot be end of command

rz
not zero, numeric?
sui 10 1

cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;*2
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

c,l
b,h
h
h
b
1
l,a
readc
h
readc

;bc = value * 2
;*4
;*8
;*2 + *8 = *10
; +d ig i t

;for another char
;overflow
;for another char

end of read, restore value in a
ad i 10 1 ; command
cpi la' ;translate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

;
.*** , '-

. * ,
;* string data area for console messages

*
*

. * * ,

.*** ,
badver:

021b 536f79 db 'sorry, you need cp/m version 2$1
nospace:

o 23a 4e6f29 db • no directory space$'
da tmsg :

o 24d 547970 db I type da ta: $ I

e r rmsg:
0259 457272 db 'error, try again.$'

prompt:
o 26b 4e6570 db 'next command? $,

(All Information Contained Herein is Proprietary to Digital Research.)

43

027a 21
o 27b
QJ 27c
0021 =

o 29c

02bc

;***
.* * ,
;* fixed and variable data area *
.* * ,
;***
conbu f: db conlen ; length of console buffer
cons iz: ds 1 ; resul ting size after read
conlin: ds 32 ; length 32 buffer
conlen equ $-consiz

ds 32 ;16 level stack
stack:

end

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES. DA'r LASTNAr.~E 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME u field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, alonq with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LAs'rNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
par lance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES. DAT LASTNA~1E. KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DA'r data base.
Since the LAS'rNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in 10g2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Resea~ch.)

44

At this point you're just getting started. with a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNC,!'ION SUMt1ARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Pr int Str ing
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr (d i s k parms)
Set/Get User Code
Read Random
Wr i te Random
Compute File Size
Set Random Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE = • Buffer
DE = • Buffer
none
none
none
E = Disk Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
none
none
DE = .DMA
none
none
non~

DE = .FCB
none
see def
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FeB

* Note that A = L, and B = H upon return

none
A = char
none
A = char
none
none
see def
A = IOBYTE
none
none
see def
A = 00/FF
HL= Version*
see def
see def
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL= Login Vect*
A = Cur Disk#
none
HL= .Alloc
see def
HL= R/O Vect*
see def
HL= .DPB
see def
A = Err Code
A = Err Code
r0, rl, r2
r0, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

46

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. An rights reserved.
No part of thjs publication may be reproduced, transmitted,
transcribed, stored in B. retrieval system, or translated into
anv language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prjor written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

DigitaJ Research makes no representations or warranties with
respect to the contents hereof and specificaUy disclaims any
implied warranties of merchantability or fitness for any parti­
cu]ar purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

TrRdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Hesearch.

CP 1M 2 USER'S GUIDE

Co~yright (c) 1979
Digital Researcn, aox 579
Pacific Grove, California

1. An Uverview of CP/M 2.0 Facilities

2. User Intertace

3. Console Command @rocessor (CCP) Intertace

4 • S~A~ Enhancements

s. FIB 2nnancements •

c:
\) . ~D Enhancements

7. The XSU9 Function

d • JuOS Interrace Conventions •
9 . CP/M 2.0 Memory Organization.

10. 3IOS Differences •••••••

1

• 3

• 4

• • • 5

· 10

• 11

• • 12

. • .27

• 28

1 • At·~ OV8 RV I 8~~ OF CP /t'1 2.0 FACI LI'rI ES.

cp/~ 2.0 is a high-performance single-console operating system
which uses table driven techniques to allow field recontiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release·l. Features of CP/K 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reaCh the full drive size
witn the capaoility to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated by user numbers, with facilities for file copy operations
from one user area to another. Powerful relative-record random access
functions are present in CP/M 2.0 which provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS-resident "disk 9arameter block" wi1ich is either hand coded or
~roduced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specity the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this intormation to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or aisassembly of sector sizes
which are multiples of tne fundamental 12d oyte data unit, and the
system alteration manual includes general-pur?ose suoroutines which
use the this deblocking information to taKe advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algorithms, make CP/M 2.0 truly a universal data management
system.

File ex?ansion is achieved by providing up to 512 logical tile
extents, where eaCh logical extent contains 16K bytes of data. CP/M
2.0 is structured, nowever, so that as much as 123K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with orevious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight ~egabyte file. using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record ?osition requires little
searcn time. Sequential file access is u?ward compatible from earlier
versions to the full .eight megaoytes, while random access
compatibility stops at 5l2K byte files. Due to CP/M 2.0'5 sim?ler and
faster random access, application orogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules ana utilities have improvements which
corres?ond to the enhanced file system. STAT and PIP both account for
tile attributes and user areas, while the CCl? orovides a "login"

(All Information Contained Herein is Proprietary to Digital Research.)

I

function to change from one user area to anotner. ~he CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-c09Y devices in its enhanced line editing
functions.

'I' he sec t ion s below po i n t 0 u t the ina i v i d u a 1 d iff ere n c e s be twe e n
CP/M 1.4 and CP/M 2.0~ with the understanding that the reader is
eitner familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
r:>resentea in the Digital Research manual IICp/ttl 2.0 Alteration Guide. II

(All Information Contained Herein is proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the s y~ b 01 .. c t 1 .• below in d i cat est hat the con t r 0 1 key i s
simultaneously depressed) :

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
c tl-t'1
ctl-R
ctl-LJ
ctl-x

removes and ecnoes last character
reboot when at beginning of line
physical end of line
oackspace one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates in~ut
retype current line after new line
remove current line after new line
backspace to beginning of current line*

In ?articular, note tnat ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another cnaracter, such
as delete, through a simple single byte change). Further, the line
editor keeps track ot the current prom~t column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) I~TERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. 'lthe altered OIR format is
self-explanatory, while the USER command takes the for~:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The
subsequent

active
USER

is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user U

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect. In version 1.4,
this commana can be used to erase a directory whicn has "garbage"
information, perhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA ~.*
command affects only the current user number. 'rhUS, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Pro?rietary to Digital Research.)

4

4. STA~ ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

s'rA'r VAL:

produces a summary of the available status commands, resulting in the
ou t9ut:

~em~ RIO Disk: d:=R/O
Set Indicator: d:filename.typ $RIO $R/~ $SYS $DIR
Disk Status DSK: d:DSK:
User Status USR:
Iobyte Assign:
(list of 90ssible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.tY9 ~S

wnere ltd: ,I is an optional
unambiguous or ambiguous
forma t:

Size Recs 3ytes
48 48 6k
55 55 121<

65536 128 2k

or ive
file

name, and .. filename. typj, is an
name, produces the out9ut display

Ext Acc
1 RIO A.:ED.COM
1 RIO (A:PIP.COH)
2 R/w A:X.DA'll

where tne $S parameter causes the "Size" field to be disr;>layed
(without the $5, the Size field is skipped, but the remaining fields
are dis pI aye d). Ir he S i z e fie 1 d 1 is t s the vir t u a 1 f i 1 e s i z e in
records, while the "Recs" field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. Irhe 'IBytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position ana the Recs
field counts the logical records of each extent (each of these
extents, nowever, :nay contain unallocated ,jnoIes" even though they are
add e din tot her e cor d co un t). 'r he" Ext.. fie 1 d co un t s the n urn be r 0 f
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K oytes (8
logical extents) directly addressed by a single directory entry,
de?ending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

li'he "Acc"
changed usinq

field gives the RIO or R/W access mode, which is
the commands shown below. Similarly, the parentheses

(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the "system"
indicator set, so that it will not be listed in OIR commands. 'rhe
four command forms

s'rAif d:filename.typ !?R/O
s'rA'r d:filename.typ $R/W
S'I'A'r d:filename.typ ;;;8YS
S'rA'f d:filename.typ $DIR

set or reset various permanent file indicators. The RiO indicator
places the file (or set of files) in a read-only status until changed
oy a subsequent STAT command. The RIO status is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
oermanent read/write status. The SYS indicator attaches the system
indicator to the file, while the OIR command removes the system
indicator. {fhe "filename.typ·' may be ambiguous or unambiguous, but in
eitner case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denotea by lid:" is
optional.

When a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BOOS message

ddos Err on d: File R/O

~he BDOS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). ;rhe command form

s'rA·r d: DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range A:, B:, .•• , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes. The directory size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm sta~t. The number of records per extent determines the
addressing capacity of each directory entry {1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

12dK in the example above). 'rhe number of records oer block shows the
basic allocation size (in the example, 128 records/Dlock times 128
bytes per record, or 16K Dytes ~er block). The listing is ~hen
followed by the number of physical sectors ?er track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disKs. The command form

STAT DSK:

Droduces a drive characteristics taDle for all currently active
drives. The final STAT command form is

STAT USR:

which produc~s a list of the user numbers whiCh have files on the
currently addressed disk. The display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), witn three user numbers
whicn have active files on the current disk. 'rhe operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commanas are:

Gn Get File from User number n
(n in the range 0 - IS)

w write over R/O files without
console interrogation

R Read system files

'rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. 'rhe
command

PIP A: =A: * . * [G2]

copies all of the files from the A drive directory for user number 2
inio the A drive directory of the currently logg~d user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP 9rogram itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves pIP
from one user area to the next.

USER 0
DDT PIP. COM
(note PIP size

G0
OSER 3
SAVE s PIP.COH

login user ;0

load PIP to memory
s)

return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under oorr, by refer ring to the value under the II NEXT II d is?lay.
If for example, "the next available address is 1000, then PIP.COM
requires lC hexadecimal pages (or 1 times 16 + 12 = 28 ~ages), and
thus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent RIO status. If attempt is made to overwrite a RIO
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

nRSTINATION FILE IS RIO, DELETE (yiN)?

is iss u e d • 1ft h e 0 per at 0 r res po n ds wit h the c h a r act e r II y " the nth e
file is overwritten. Otnerwise, the res~onse

** NOT DELETED **

is issued, the file transfer is skip?ped, and PIP continues with the
next operation in sequence. In order to avoid the ?rom?t and response
in the case of Rio file overwrite, the command line can include the W
parameter, as shown below

PIP A:=9:*.COM[~]

which copies all non-system files to. the A drive from the B drive, and
overwrites any RIO files in the process. If the operation involves
several concatenated files, the ~ parameter need only be included with
the last file in the list, as shown in the following example

PIP A.OAT = B.DAr,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED. COM = B:ED.CO~[R]

for example, reads the EO.COM file from the B drive, even if it has
been marked as a RIO ana system file. The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CPIM is only maintained if the file does not exceed one
~egabyte, no file attributes are set, and the file is created by user
0. If com?atibility is required with non-standard (e.g., ,jdouble
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk oarameter alock
(see the "CP/H 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHA~CEMENTS.

'rhe CP/M standard orogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the edi tor has the 'IV"

(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED l,ine number mode, you may wish to refer to
tne Appendix in tne ED user's guide, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTE[1" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
tne s'rA'r program can be used to change the system attribute, if
desirea.

Finally, the insert mode (" i ") command allows CR'r line edi ting
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the ~ower of the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, 3elf-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$l.HEX
R
G0
SAVE 1 $2.COH

with a subsequent SUBMIT command:

SUBMI'r SAVER X y.

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DD'r which is sent the command -lines
"IX.HEX" "R" and uG0" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the cepe

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSOB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BDOS INTERFACE CONVENTIONS.

CP/t1 2.0 system calls take place in exactly the same manner- as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in aLl cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

0 System Reset 19* Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 write Sequential
3 Reader Input 22* iVlake File
4 PunCh Output 23* Rename File
5 List Outr;>ut 24* Return Login Vector
6* Direct Console I/O 25 Return Current Disk
7 Get I/O ayte 26 Set Df'1A Address
3 Set I/O Byte 27 Get Addr (A.lloc)
9 Print String 28* write Protect Disk

10* Read Console Buffer 29* Get Addr(R/O Vector)
11 Get Console Status 30* Set File Attributes
12* Return Version Number 31* Get Addr(Disk .l?arms)
13 Reset Disk System 32~ Set/Get User Code
14 Select Disk 33* Read Random
15* Open File 34* ~vr i te Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set :Random Record
18* Search for Next

(Functions 2~, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below. I

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BOOS console I/O
operations. Programs whicn currently perform direct I/O tnrougn the
BIOS should be changed to use direct I/O under SDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register S contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console in?ut
character.

If the inr;>ut value in E is not FF, then function 6 assumes that
E contains a valid ASCII character whiCh is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains uncnanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
90sition (e.g., ctl-X) do so only to the column position where the
prompt ended (?reviously, the carriage returned to the extreme left
margin). 'rhis new convention makes operator data input and line
correction more legible. - -

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent programming (this was previously the "lift
head" function whicn returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. using function 12, for example, you can
write application programs which orovide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file ooerations described below, DE addresses a file
control olock (FCB). Further, all directory operations take place in
a reserved area which does not affect write Dufters as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Slock (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
bytes 00708, 007EH, and 007FH are available for this purpose. For
notational ?urposes, the Fca format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

Idrlfllf21/ Ilf8ltllt2lt3lexlslls2lrcrd01/ /ldnlcrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o =) use default drive for file
1 =) auto disk select drive A,
2 =) auto disk select drive B,

16=) auto disk select drive P.

fl •.• iU contain the file name in ASCII
u9per case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these oositions,
tI' = 1 =) Read/Only file,
t2' = 1 =) SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

51 reserved for internal system use

52 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

'rne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward cOffi9atibility witn the latest version, where it is required.

Function 17: Searcn for First.

Search First scans the directory for a match with the file given
by the FCa addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is ~resent. In the 6ase
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A ~ 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user numbe~. This latter function is not normally used by
a~plication programs, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continu~s from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File.

'fhe Make File o?eration is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the 300S.

Function 23: Rena~e File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
8L, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: write Protect Current Disk.

The disk write protect function provides tem?orary write
protection for the currently selected disk. Any attem9t to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register oair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant nit corresponds to drive A,
while the most significant bit corresponds to drive P. 'rhe R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tIl and t2 1 above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

~atcn, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching orocess during file open and close operations.
Indicators £5' tnrough fa' and t3' are reserved for future system
ex?ans ion.

Function 31: Get Disk Parameter Block Address.

~he address of the BIOS resident disk ~arameter block is
returned in ilL as a result of this function call. 'rhis address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space ·computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

Function 32: Set or Get User Code.

An ap91ication program can change or interrogate the currently
active user number by calling function 32. If register E = FF
nexadecimal, tnen tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register E is
not FP, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

~he Read Random function is similar to the sequential file read
operation of orevious releases, except that the read o?eration takes
9lace at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
oositions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant ayte first (r0), middle
byte next (rl), and high byte last (r2). CP/M release 2.0 does nut
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the d megabyte file. In order to orocess a file using
random access, the base extent (extent 0) must first be opened.
Altnough the base extent mayor may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in OIR requests. The selected record number is then stored
into the random record field (r0,rl), and the BOOS is called to read
tne record. Uoon return from the call, register A either contains an

(All Information Contained clerein is Proprietary to 0igital Research.)

17

error code, as listed below, or the value 00 indicating the 0geration
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
reaa operation, the record number is not advanced. Tnus, subsequent
random read operations continue to read the same record.

upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed ?osition. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record 90sition following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
o 2 (not ret urn e din ran d om mod e)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disK

error coce 01 ana 04 occur when a random reaa operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

Function 34: write Random.

;rhe Wr i te Random 0gera t ion is ini tiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical" extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence· following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2 .0.

~he error codes returned by a random write are identical to the
random read operation with the addition of error code 05, wnich
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute File Size.

~hen computing the size of a file, the DE reqister pair
addresses an FCB in random mode format (bytes'r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
.. vi r tual'l file size wh ich is, in effect,. the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is ~l, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
constitute a l6-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be ap~ended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

Toe virtual size of a file corresponds to the physical size when
the file is written sequentially. ,If, instead, the file was created
in random mode and "holes'i exist in the allocation, then ,the .file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
ran d om mod e (i • e., r e cor d n urn be r 6 5 53 5), the nth e vir t u a 1 s i z e i s
65536 records, although only one block of data is actually allocated.

Function 36: Set Random. Record.

The Set Random Record fUnction causes the BDOS to automatically
?roduce the random record position from a file which has been read or
written sequentially to a 9articula~ point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various IIkeyll fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record 90sition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
?osition along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular ?oint in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but comolete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RA~DOM.COM, the CCP level
command:

RAN DOH X. DAlr

starts the test program. 'rhe program looks for a file by the name
X.OAT (in this particular case) and, if found, proceeds to prom?t the
console for input. If not found, the file is created before the
9rompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input com~ands take the form

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, an~ quit processing, resgectively: If the W command is issued,
the RAN DOl\1 program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.OAT file at record n. If the R command is issued, RANDOM reads
record number nand dis?lays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the ?rogra~'s not so brief), the only error message is

error, try again

The 9rogram begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. 'rhe
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the 9rincipal in9ut line processor,
This 9articular program shows the elements of
processing, and can be used as the basis for
development •

called
random
further

"readc."
access

9 rogram

0100

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
000c =
000f =
01110 =
0016 =
J021 =
0022 =

005c =
007d =
007f =
0080 =

000d =
000a =

0100 31bc0

0103 0e0c
0105 cd050
0108 fe20
010a d2160

0100 111blO
0110 cdda0
0113 c3000

. *** ,
· * * ,
· * sample random access program for cT?/m 2.0 * ,
• * * ,
.*** ,

org 100h ibase of tea
;
reboot equ 0000h ; system reboot
bdos equ 0005h i bdos entry point

conin? equ 1 iconsole input function
conout equ 2 ;console outl?ut function
9S tr ing equ 9 ;print str ing until • $'
rstr ing equ 10 ;read console buffer
version equ 12 ; re tur n version number
openf equ 15 ; file open function
closef egu 16 ;close function
makef equ 22 imake file function
readr equ 33 ;read random
writer eau 34 i wr i te random

fcb egu 00Sch ;default file control block
ranrec equ fcb+33 ; random record oosition
ranovf equ fcb+35 i high order (overflow) byte
buff equ 0080h ibuffer address

cr equ 0dh ;carriage re tur n
If egu 0ah ;line feed
;
.*** ,
· * ,
;* load SP, set-up file for random access

*
*

• * * ,
.*** ,

lxi sP,stack

version 2.0?
mvi c,version
call bdos
cpi 20h ;version 2.0 or better?
jnc versok
baa version, message and go back
1xi d,badver
call print
jrn? reboot

versok:
correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

~j 116 0e0f
0118 115c0
011b cd050
011e 3c
011£ c2370

0122 0e16
0124 115c0
0127 cd050
012a 3c
0120 c2370

012e 113a0
0131 cada0
0134 c3000

0137 cde50
013a 2 2 ~/d0
013d 217f0
0140 3600
~142 fe51
0144 c256k3

0147 iOe10
0149 115c0
014c cd0S0
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0

mvi c,openf iooen default fcb
lxi d,fcb
call bdos
inr a ierr 255 becomes zero
jnz ready

cannot open file, so create it
mvi c,makef
lxi d, fcb
call bdos
inr a ierr 255 becomes zero
jnz ready

cannot create file, directory full
lxi d,nospace
call orint
jrnp reboot i back to ccp

i
.*** ,
· * ,
· * , 1001;:> back to ,. ready" after each command

*
*

· * * ,
.*******~**~********~******************************* ,
;
ready:

· ,

file is ready for processing

call
snld
lxi
mvi
cpi
jnz

readcorn iread next command
ranrec istore input record#
h,ranovf
m,0 iclear high byte if set
'Qt iguit?
notq

quit processing, close file
rnvi c,closef
lxi d,fcn
call bdos
inr a ierr 255 becomes 0
jz error ierror message, retry
jm9 reboot iback to cco

.*** ,
· * , *
i* end of quit command, orocess write *
.* * ,
.*** ,
notq:

not the quit command, random write?
cp i • ~v'
jnz notw

this is a random write, fill buffer until cr
lxi d,datmsg
call ~rint idata prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

J161 0e7f
0163 21800

0166 cS
0167 e5
0168 cdc20
0160 el
016c cl
016d fevjd
016£ ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a 0e22
017c 115c0
017f cd050
01d2 b7
0183 c2b90
fJlcib c337iJ

01H9 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd050
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019£ 21800

01a2 7e
01a3 23
01a4 e67f
01a6 ca370
01a9 c5
01aa e5

mvi c,127 iUT? to 127 characters·
lxi h,cuff idestination

r loop: iread next character to buff
PUSh b i save counter
l?ush h inext destination
call ge tch r iCharacter to a
pop h irestore counter
pOT? b irestore next to fill
cpi cr iend of line?
jz erloo,?
not end, store character
mov m,a
inx h inext to fill
ocr c icounter goes down
jnz rloop iend of buffer?

e r loop:
end of read loop, store 00
mvi m, (1

write the record to selected record number
mvi c,writer
lxi d,fcb
call bdos
ora a ierror code zero?
jnz error i message if not
jmp ready ifor another record

I

.**********~*****~********************************** I

. * I

;* end of write command, ~rocess read
. *
I

*
*
*

.***********~*******~******************~************ I

notw:
not a write command, read record?
cl;>i I R'
jnz error ;skip if not

read random record
mvi c, r eadr
lxi d,fcb
call bdos
ora a ;return code 00?
jnz error

read was successful, write to console
call cr If ;new line
mvi c,128 ;max 128 characters
lxi h,buff ;next to get

wloop:
mov a,m ;next character
inx h inext to get
ani 7fh imask parity
jz ready ifor another command if 00
push b ; save counter
puSh h isave next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 0d
01b3 c2a20
01b6 c3370

01b9 11590
01bc cdda0
01bf c3370

01c2 0e01
01c4 cd050
01c7 c9

01c8 0e02
01ca 5f
01cb cd050
01ce c9

01cf 3e0d
01dl cdc80

\

01d4 3e0a
01d6 cdc80
0109 c9

01da d5
01db cdcf0
0lde dl
010f 0e09
01el cd050
01e4 c9

cpi ~graphic?
cnc putchr ~skip output if not
pop h
pop b
dcr c ~ count=count-l
jnz wloop
jmp ready

~
.******~** ,
· * * ,
:* end of read command, all errors end-uo here
· * ,

*
*

.**************~************************************ ,

error:
lxi
call
jmp

d,errmsg
print
ready

:
.*** ,
· * ,
:* utility subroutines for console i/o
· * ,

*
*
*

.*******~****************************~************** ,
getchr:

: read next console character to a
mvi c,coninp
call bdos
ret

putchr:
:write character from a to console
mvi c, conou t
mov e,a :character to send
call bdos ;send character
ret

;
cr If:

:send car r iage return line feed
mvi a,cr i carriage· return
call putchr
mvi a,lf ;line feed
call outchr
ret

i
print:

;print the buffer addressed by de until $
T?ush d
call crlf
?oP d inew line
mvi c,pstring
call baos ;print the string
ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

01eS 116b0
01e8 cdda0
If) leb 0e0a
01ed 117a0
01f0 cd050

01f3 21000
01f6 117c0
01f9 la
01fa 13
01fb b7
01fc c8

0lfd d630
glff fe0a
0201 d2130

0204 29
0205 4d
02k16 44
0207 29
0208 29
0209 09
020a 85
02'00 tit
o 20c d2t90
J 20f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
021a c9

iread the next command line to tne conbuf
lxi d,prompt
call l?rint i command?
mvi c, r s tr ing
lxi d ,conbuf
call bdos iread command line
command line is l?resent, scan it
lxi h,0 istart with 0000
lxi d,conlinicommand line

readc: Idax d inext command cnaracter
inx d ito next command oosition
ora a icannot be end of command
rz
not zero, . ? numer IC.
sui • 0 •
cpi 10 i car ry if numeric
jnc endrd
add-in next digi t
dad h i~2

mov c,l
mov b,h ibC = value * 2
dad h i*4
dad h i*8
dad b i*2 + *8 = *10
add 1 i+digit
mov 1,a
jnc readc ifor another char
inr h ioverflow
jmp readc ifor another char

endrd:
end of read, restore value in a
adi • 0· i command
coi • a· itranslate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

i
.*** ,
. * ,
i* string data area for console messages

*
*

.* * ,

.*** ,
oadve r :

021b 536f79 db ·sorry, you need cp/m version 2$'
nosJ?ace:

023a 4e6f29 db 'no directory spaceS'
da tmsg:

024<..1 547970 db 'type data: $ •
errmsg:

0259 457272 db 'error, try again.$'
prompt:

0260 4e6570 db 'next command? $.

(All Information Contained Herein isPro~rietary to Digital Research.)

25

027a 21
027b
~J 27c
0021 =

o 29c

02bc

.*********************~***************************** I

. * * I

;* fixed and variable data area *
. * * I

.*** I

conbu f: db conlen ;length of console buffer
consiz: as 1 ;resulting size after read
conlin: ds 32 ;1ength 32 buffer
conlen equ $-consiz

ds 32 ;16 level stack
stack:

end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9. CP/r-l 2.0 MEivlORY o RG A N I Z A or ION.

Similar to earlier versions, CP/~1 2.0 is field-altered to fit
va r ious memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
CCl? 3400H 4401.1H 6400H A400H E400H
BDOS 3C00H 4C00H 6C00H AC00H EC00H
BIOS 4A00H 5A00H 7A00H BA008 FA00H
'rop of Ram 4FFFH 5fFFH 7 F FFrl BFFFH FFFFH

'l'he distribution disk contains a CP/t1 2.0 system configured for a 20k
Intel 1'10S- 8 (() 0 with standard IBM 8" floppy disk drives. The disk
layout is shown belovl:

Sector 'rr ack 00 Module ;rrack 01 Nodule
1 (Bootstrap Loader) 4080H BOOS + 48£1H
2 3400H CCP + 1000H 4100H BOOS + 500H
3 3480H CCP + 080H 41808 BOOS + 580H
4 35008 CCP + 100H 4200H BOOS + 6008
5 35808 CCP + 180H 42d0H BDOS + 680H
6 36008 CCP + 200H 43008 BOOS + 700H
7 36808 CCP + 280H 4380H BOOS + 780H
u 31i:1~H CCP + 3008 4400H BOOS + 8008
:J 3780H CCP + 380tl 4480rl BOOS + 8808

111 380~d CCP + 400H 4500H BOOS + 900H
11 3BS0H CCP + 480H 4580H BOOS + 980H
12 39006 CCP + 500H 4600H BOOS + A00H
13 39808 CCP + 580H 46808 BDOS + A80H
14 3A00H CCP + 6008 4700H BOOS + B00H
15 3A80H CCP + 680H 4780H BOOS + Bd0H
16 3800H CCP + 700H 4800H BOOS + C00H
17 3Bd0H CCP + 780H 4880H BOOS + C80H
18 ' 3C00H BOOS + 000H 4900H BOOS + 000H
19 3C80H BOOS + 08t1H 4980H BOOS + 0808
20 30008 BOOS + 100H 4A00H BIOS + 000H
21 3080H BOOS + 1808 4A80H BIOS + 080H
22 3E008 BOOS + 200H 4800H BIOS + 100H
23 3E80H BOOS + 2808 4B8fZJH BIOS + 180H
24 3F00H BOOS + 300H 4C00H BIOS + 200H
25 3F80H BOOS + . 380H 4C80H BIOS + 2808
26 4000H BOOS + 400H 4000H BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the SDOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

The CP/M 2.0 Basic I/O System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. 'rhe skeletal form of these
changes are found in the program shown below.

1 :
2:
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10:
11:
12 :
13 :
14:
15 :
16 :
17:
18:
19:
2 v] :

21:
22:
23:
24:
25:
26:
27:
2a:
29:
310:
31 :
32:
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42:
43:
44:
45:
46:
47:

bpb
rpb
maxb

;
boot: . ,
listst:

;
selds k:

;
selsec:

sectran:

org
maclio
jmp

4000h
di s kde f
boot

listst ;list status
sectran ;sector translate
4

jmp
jmp
disks
large
eau
equ

capaci ty dr ive

equ
di s kde f
diskdef
diskdef
di s Kde f

ret

xra
ret

; drive
lxi
mov
cl?i
rnc
proper
mov
dad
dad
dad
dad
lxi
dad
ret

16*1024 ;bytes per block
bpb/128 ;records per block
65535/rpb ;rnax block number
0,1,58,3,bpb,maxb+l,128,0,2
1,1,58"bpb,maxb+l,128,0,2
2,0
3,1

a ; nop

number in c
h,0 ;0000 in hI produces select error
a,c ;a is disk number 0 ••• ndisks-l
ndisks ;less than ndisks?

;return with HL = 0000 if not
disk number, return dpb element address
l,c
h ;*2
h ;*4
h ;*8
h ;*16
d,dpbase
d ; H1=. dpb

;sector number in c
lxi h,sector
mov m,c
ret

;translate sector BC using table at DE
xchg ;H1 = .tran
dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP 1M ASSEMBLER (ASM)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section

1.
2.
3.

4.

5.

6.
7.

• ••••••••••••••••••••••••••••••••••••••
PROGRAM BORMAT •••••••••••••••••••••••••••••••••••••
FOBMING THE OPERAND ••••••••••••••••••••••••••••••••
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Labels •••••••••••••••••••••••••••••••••••••••
Numeric Constants ••••••••••••••••••••••••••••
Reserved WOrds •••••••••••••••••••••••••••••••
String Constants •••••••••••••••••••••••••••••
Arithmetic and Logical Operators •••••••••••••
Precedence of Operators ••••••••••••••••••••••

ASSEMBLER DIRECTIVES •••••••••••••••••••••••••••••••
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

'!he OR; Directive
The END Directive
The EQU Directive
The SET Directive
The IF and ENDIF
The DB Directive
The Iltl Di recti ve

• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••

Directives ••••••••••••••••••
• ••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••

Qp~ION ODDES ••••••••••••••••••••••••••••••••••••
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Jumps, calls, and Returns ••••••••••••••••••••
Immediate Operand Instructions •••••••••••••••
Increment and ~rement Instructions •••••••••
Data Movement Instructions •••••••••••••••••••
Arithmetic Logic Unit Operations •••••••••••••
Control Instructions •••••••••••••••••••••••••

ERROR MESSAGES •••••••••••••••••••••••••••••••••••••
A sru-4PLE SESSION ••••••••••••••••••••• ' ••••••••••••••

Page

1
2
4
4
4
5
6
6
7
8
8
9
9

Ie
Ia
11
12
12
13
14
14
14
15
16
16
17

CP/M Assembler User's Guide

1. INl'RJDUCTICN.

The CP/M assembler reads assent>ly language rource files fran the diskette,
and produces 8~8~ machine language in Intel hex format. '!he CP/M asseni:>ler is
initiated by typing

A9i filename
or

AS4 filename.parms

In both cases, the aS5elli:>ler assumes there is a file on the diskette with the
name

filename.ASM

which contains an 8~8~ assembly language rource file. ''!he first and second
forms stmm above differ only in that the second form allows p:lrameters to be
passed to the assembler to control rource file access and hex and pr into file
destinations.

In either case, the CP/M assembler loads, am prints the message

CP/M ASSDffiLER VER n.n

where n.n is the rurrent version ru.mber. In the case of the first command,
the assembler reads the rource file wi th assumed file tyfe "ASH" and. creates
two output files

filename • HEX
and

filename. PRN

the llBEX" file contains the nadline code corres{X)nding to the original program
in Intel hex format, and the "PRNU file contains an annotated listing showing
generated machine code, error flags, and rource lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second camnand foon can be used to redirect input and output files
fran their defaults. In this case, the "paons" p:>rtion of the command is a
three letter group which s~cifies the origin of the rource file, the
destination of the hex file, and the destination of the print file. 'nle form
is

filename.plp2p3

tmere pI, p2, and p3 are single letters

pI: A,B, ••• , Y designates the disk name \\bich contains

1

p2:

p3:

Thus, the camnand

ru:M

A,B,

Z
A,B,

x
Z

X.AM

••• , Y

••• , Y

the source file
designates the disk name which will re­
ceive the hex file
skips the generation of the hex file
designates the disk name which will re­
ceive the print file
places the listing at the console
skips generation of the print file

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X. HEX) and];:rint (X.PRN) files are to be created also on disk A.
This form of the canrnand is implied if the assenbler is run fran disk A. That
is, given that the operator is currently addressing disk A, the above command
is equi valent to

The canmaoo

ru:M X.ABX

indicates that the source file is to be taken. from disk A, the hex file is
placed on disk B, aoo the listing file is to be sent to the console. '!he
command

ru:M X.BZZ

takes the source file fran disk S, and skips the generation of the hex and
print files (this canmand is useful for fast execution of the asserrbler to
check I;rogram syntax).

The S)urce program format is canpatible with both the Intel 8080 asserrbler
(macros are not currently implemented in the CP/M asserct>ler, mwever), as well
as the Processor Technology Software Package #1 asserrbler. That is, the CP/M
asserrbler accepts S)urce programs written in either format. There are certain
extensions in the CP/M assenbler which make it somewhat easier to use. These
extensions are described below.

2. PRCX;RAM FORMAT.

An asserrbly language JXogram acceptable as input to the assenbler consists
of a sequence of statements of the form

line# label operation q>erand :conunent

\tbere any or all of the fields may be present in a y;:articular instance. Fach

2

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "! II which is a treated as an end-of-line by the asserrbler (thus,
multiple assenbly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an ~tional decimal integer value representing the source
program line nurrber, which is allowed on any source line to maintain
compatibili ty wi th the Processor Technology format. In general, these line
nurrbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement types. '!he
identifier is a sequence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the pc ogr ammer to label elements such as program steps and asserrbler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the eJllbedded dollar symbol ($) which
can be used to improve readability of the name. Further, all lower case
alphabetics become are treated as if they were uwer case. Note that the .. : It

followin;J the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

x
x:
XIY2

xy
yxl:
Xlx2

long $ name
longer$named$data:
x234$5678$9012$3456:

The operation field contains either an asserrbler directive, or pseudo
operation, or an 8080 machine operation code. '!he pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with ari thrnetic and logical
operations on these elements. Again, the canplete details of properly formed
expressions are given below.

The canment field contains arbitrary characters following the ":" symbol
until the next real or logical end-of-line. These characters are read,
listed, arrl otherwise ignored by the asserrt>ler. In order to maintain
compatability with the Processor Technology assembler, the CP/M asserrbler also
treat statements \\hich begin wi th a "*U in column one as comment statements,
which are listed aoo ignored in the asserrbly process. Note that the Processor

3

Technology asserrbler has the side effect in its q>eration of ignoring the
characters after the q>erand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel's language, since
arbi trary expressions are allowed in this case. Hence, programs \lrhich use
this side effect to introduce ccrranents, must be edited to place a ": II before
these fields in order to assemble correctly.

'!he ·asseIri::>ly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. EURMING THE CPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. '!be expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a l6-bit value during the assembly. Further, the
nurrber of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte nove irranediate instruction,
then the JOOst significant 8 bits of the expression must be zero. '!he
restrictions on the expression significance is qiven with the iooividual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement \lrhich it !X'ecedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MeV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is qiven
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
asserrbler. This value can then be canbined with other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a l6-bi t value in one of several bases. '!he base,
called ·the radix of the constant, is denoted by a trailing radix iooicator.
The radix indicators are

B binary constant (base 2)
o octal constant (base 8)

4

Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate rcrlix iooicator for octal nurrbers since the letter 0 is
easily confused wi th the digit 0. lmy numeric constant which does not
terminate with a rcrlix indicator is assumed to be a decimal constant.

A constant is thus canp:>sed as a sequence of digits, followed by an
optional rcrlix iooicator, mere the digits are in the appropr iate range for
the rcrlix. That is binary constants must be comp:>sed of 0 and 1 digits, octal
constants can contain digi ts in the range 0 - 7, \tthi1e decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (100), B (lID), C (12D), D (13D), E (14D), aOO F
(15D) • Note that the leading digit of a hexadecimal constant must be a
decimal digi t in order to avoid confusing a hexadecimal constant wi th an
identifier (a leadirg 0 will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assent>ler. Similar to
identifiers, irrbedded U$" are allowed within constants to improve their
readability. Finally, the rcrlix iooicator is translated to upper case if a
lo\tler case letter is encountered. The following are all valid instances of
numeric constants

1234
1234H
33770

1234D
0FFEH
0fe3h

3.3. Reserved Words.

1100B
33770
1234d

1111$0000$1111$00008
33$77$220
0ffffh

There are several reserved dlaracter sequences which have predefined
meanings in the q;>erand field of a statement. 'lhe names of 8080 registers are
given below, mich, when encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their uRJer case
equivalents). Madl'ine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions ~ich require
operands, where the s~cific q:>erand becanes a p:lrt of the binary bit p:lttern

5

-0 f -tne instruction (e.g, IDV A,B), the value of the instruction (in this case
MOV) is the'bit pattern of the instruction with zeroes in the optional fields
(e.g, IDV produces 40H).

When the synbol "$" occurs in the operand field (not irrbedded wi thin
identifiers am numeric constants) its value becomes the crldress of the next
instruction to generate, not including the instruction contained wi thing the
current logical line.

3.4. String Constants.

String constants represent sequences of ASCII characters, and are
represented by enclosing the dlaracters wi thin apostrophe synDols ('). All
strings must be fully contained wi thin the current physical line (thus
allowin:J "! It syrrbols wi thin strings), arrl must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes "), which becomes
a single apostrophe \\hen read by the asserrbler. In ITOst cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in \\hich case the str ing become"s an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is" no
case translation wi thin strings, and thus both u~r and lower case dlaracters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'ab' , c'
'a"1 """ "'u"

'Walla Walla Wash. '
'She said ' 'Hello" to me. '
'I said "Hello" to her. '

3.5. Arithmetic and Logical Operators.

The cperands described above can be combined in normal algebraic notation
using any canbination of properly formed operands, operators, aoo
parenthesized expressions. The operators recognized in the operand field are

a+b
a-b

+b
- b

a * b
a / b
a IDD b
Nor b

unsigned arithmetic sum of a and b
qnsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to 0 - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all 0's became l's, l's
become 0' s), where b is considered a 16-bi t value

6

a AND b
a OR b
a XOR b
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results from shifting a to the
left by an amount b, with zero fill
the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a am b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 l0h+37Q Ll /3 (L2+4) SHR 3
('a' and 5fh) + '0' ('8'+8) OR (PSW+~)
(l+(2+c)) shr (A-(B+l))

Note that all canputations are ~rformed at asserrbl y time as l6-bi t tmsigned
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i .e., alII's). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI -1" produces an error Iressage (-1
becomes 0ffffh ~ich cannot be represented as an 8 bit value), while "ADI (-1)
AND 0FFH" is accepted by the assembler since the "AND" cperation zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the IX'ograrnmer, ASM aSSLnneS that operators have a
relative precedence of application which allows the programmer to write
expressions wi thout nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative IX'ecedence. The
order of application of operators in tmparenthesize expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / lwDD SHL SHR
- +
Nor
AND

OR .XOR

Thus, the expressions shown to the left below are interpreted by the asserrbler
as the fully parenthesize expressions shown to the right below

a * b + C

a + b * c
a IDD b * c SHL d

7

(a * b) + C

a + (b * c)
((a lwDO b) * c) SHL d

a OR b AND Nor c + d SHL e a OR (b AND (NOT (c + (d SHL e»)))

Balanced parenthesized subexpressions can always be used to override the
assmned p:lrentheses, am thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e»)

Note that an Ulparenthesized expression is well-formed only if the expression
which results from inserting the assmned parentheses is well-formed.

4. ASSFMBLER DIRECl'IVES.

Asserrbler directives are used to set labels to specific values during the
assrrbly, perform conditional asserrbly, define storage areas, am s};'ecify
starting crldresses in the program. Each asserrbler directive is denoted by a
"pseudo q>eration" which appears in the q:>eration field of the line. '!he
acceptable pseudo q>erations are

OR;
END
mU
SEr
IF
ENDIF
00
m
Il3

set the program or data origin
em program, optional start address
numeric "equate"
numeric "set"
begin conditional assembly
em of conditional asserrbly
define data bytes
define data words
define data storage area

The individual pseudo q>erations are detailed below

4.1. The OR:; directive.

The OR:; statement takes the form

label ORG expression

where "label" is an optional program label, and expression is a l6-bit
expression, consisting of operands \tthich are defined previous to the OR;
statement. The asserrbler begins machine code generation at the location
specified in the expression. There can be any nunber of ORG statements wi thin
a particular IX"ogram, am there are no checks to ensure that the programmer is
not defining overlapping rrernory areas. Note that llOSt programs written for
the CP/M system begin with an OR; statement of the form

OR; l00H

8

which causes machine code generation to begin at the base of the CP/M
transient p:-ograrn area. If a label is specified in the oro statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2. The END directive.

The END statement is cptional in an assent>ly language program, but if it
is p:esent it must be the last statement (all subsequent statements are
ignored in the assent>ly). The two forms of the END directive are

label END
label END expression

where the label is cgain optional. If the first form is used, the asserrbly
process stops, am the default starting address of the p:-ogram is taken as
eeee. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted madline code "hex" file which results fran tne assenbly).
Thus,- most CP/M asseni::>ly language proqrarns end with the statement

END leeH

resulting in the default starting address of l0eH (beginning of the transient
program area).

4.3. The EQU directive.

The EOU (equate) statement is used to set up synonyms for particular
numeric values. the form is

label EQU expression

where the label must be p:-esent, am must not label any other statement. The
asserrbler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a nore human-oriented manner. Further, this name is used
throughout the program to up3rameterize u certain ftmctions. Suppose for
example, that data received fran a Teletype appears on a p:lrticular input
port, am data is sent to the Teletype through the next output p:>rt in
sequence. The series of equate statements could be used to define these ports
for a particular hardwa~e environment

T'IYBASE
T'IYIN
T'IYCXJr

mu l0H ; BASE !ORr NUMBER EOR TrY
mU TIYBASE ;'I'lY mTA IN
mU TIYBASE+ 1;Tl'Y mTA CXJl'

At a later p:>int in the {:rogram, the statements which access the Teletype
could appear as

9

IN Tl'YIN i READ TrY mTA ro REG-A

•••
our 'ITYour iWRITE mTA ro TrY FROM REG-A

making the program IlOre readable than if the absolute i/o p:>rts had been
used. Further, if the hardware environment is redefined to start the Telet~
communications p:>rts at 7FH instead of l0H, the first state~nt need only be
changed to

TIYBASE FJJU 7FH :BASE FORI' NUMBER FOR TrY

and the program can be reassembled without changing any other statements.

4.4. The SET Directive.

'rhe SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on other SET statements wi thin the program.
'rhe expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, \ltiil~ the
SET statement defines a value which is valid from the current SET statement to
the p::>int where the label occurs on the next SET statement. '!he use of the
SET is similar to the EQU statement, but is used IlOst often in controlling
conditional assembly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of assercbly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement#2

•••
statement#n
ENDIF

Upon encountering the IF statement, the assenDler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#l through statemeI)t#n are asserrbled; if the expression evaluates to
zero, then the statements are listed but not assercbled. Conditional asserrbly
is often used to write a single "generic" proqram which includes a rurcber of
possible run-time environments, with only a few s~cific {X)rtions· of the
program selected for any particular assembly. The following program segments
for example, might be {art of a ~C>g'ram which canmunicates with either a
Telet~ or a eRr console (but not both) by selecting a };Brticular value for
TTY before the assercbly begins

10

1RU£ mU 0FFFFH
FALSE mU NOr TRJE

TTi mU TruE
:
TIYBASE EX)U l0H
CRrBASE mu 20H

IF Tn
OONIN EOU TIYBASE
OONCXJI' EQU 'ITYBASE+l

ENDIF

IF Nor TIY
OONIN mu CRI'BASE
OONoor mu CRrBASE+ 1

ENDIF
•••
IN OONIN
•••
OUI' OONCXJ.r

:DEFlNE VALUE CF TIDE
:DEFlNE VALUE CF FALSE

:TRUE IF TTY, FALSE IF CRT

:BASE CF TrY I/O roRrS
: BASE CF CRT I/O FORI'S
:ASSEMBLE RELATIVE 'ID TrYBASE
:CONSOLE INPUI'
:CONSOLE oorPur

:ASSEMBLE REIATIVE 'ID CRrBASE
:CONSOLE INPUI'
:CONSOLE CXJrFur

: RE'AD mNSOLE mTA

:w"RITE CDNSOLE mTA

In this case, the tx"ogram would asserrble for an envirorunent where a Teletype
is connected, based at IX>rt 10H. The statement defining TTY could be dlanged
to

mU FALSE

and, in this case, the p:-ogram would asserri:>le for a CRr based at !X)rt 20H.

4.6. The DB Directive.

The DB directive allows the IX'ograJl1Iler to define initialize storage areas
in single IX'ecision (byte) format. The statement form is

label DB e#l, e#2, ••• , e#n

\tbere e#l through e#n are either expressions which evaluate to 8-bi t values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the nunber
of expressions included ona single source line. The expressions are
evaluated aoo placed sequentially into the machine code file following the
last pcogram address generated by the assembler. String characters are
similarly placed into nemory starting with the first dlaracter and ending with
the last character. Strings of length greater than two dlaracters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the canmas). Note that ASCII characters are always placed in merory
with the J;8rity bit reset (0). Further, recall that there is no translation
fran lower to uQ?er case wi thin strings. The optional label can be used to
reference the data area throughout the ranainder of the pcogram. Examples of

11

valid DB statements are

data: DB
re

signon: DB
00

4.7. The OW Directive.

0,1,2,3,4,5
data and 0ffh,5,377Q,1+2+3+4
'please type your name',cr,lf,0
'AS' SHR 8, 'C', 'DE' AND 7FH

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label OW e#l, e#2, ••• , e#n

Where e#l through e#n are expressions which evaluate to l6-bit results. Note
that ASCII strings of length one or two characters are allowed, but strings
longer than two characters disallowed. In all cases, the data storage is
consistent wi th the 8080 processor: the least significant byte of the
express~on is stored forst in rremory, followed by the IlOst significant byte.
Examples are

daub: OW 0ffefh,doub+4,signon-$,255+255
OW 'a', 5, 'ab", 'CD', 6sh180rllb

4.8. The OS Directive.

The OS staterrent is used to reserve an area of mini tialized memory, and
takes the form

label OS expression

where the label is cptional. The assenbler begins subsequent code generation
after the area reserved by the OS. Thus, the OS staterrent given above has
exactl y the same effect as the statement

label: EQU $;IABEL VALUE IS CURRENT. rolE LCX:ATION
OR:; $+expression ;IDVE PASr RESERVED AREA

5. OPERATICN Q)DES.

Asserrbly language operation codes form the pr incipal part of assent>ly
language proqrarns, am form the operation field of the instruction. In
general, AS-1 accepts all the standard nnaoonics for the Intel 8080
microcanputer, \tbich are given in detail in the Intel manual "8080 Assent>ly
language Progranunin;} Manual." Labels are optional on each input line and, if
included, take the value of the instruction crldress immediately before the
instruction is issued. The imividual q>erators are listed brei fly in the

12

followi03 sections for canpleteness, although it is tmderstood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
which can be one of the ~edefined registers
A, S, C, 0, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

e16 represents a 16-bit value in the range ~-65535

which can themselves be formed from an arbitrary canbination of operands am
operators. In &lrne cases, the cperands are restricted to p:;lrticular values
wi thin the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections \\hich follow, each operation codes is listed in its rrost
general form, along wi th a sp:cific example, wi th a short explanation and
special restrictions.

5.1. Jumps, Calls, and Returns.

The Jump, Call, am Return instructions allow several di fferent forms
which test the condi tion flags set in the 8080 microcomputer CPU. The forms
are

JMP e16 JMP IJ. Jump unconditionally to label
JNZ e16 JMP L2 Jump on non zero condition to label
JZ e16 JMP 100H Jump on zero condition to label
JNC e16 JNC Ll+4 Jump no carry to label
JC e16 JC L3 Jump on carry to label
Jro e16 Jro $+8 Jump on parity odd to label
JFE e16 JPE L4 Jump on even parity to label
JP e16 JP GAl+1A Jump on positive result to label
JM e16 JM al Jump on minus to label

CALL e16 CALL Sl Call subroutine unconditionally
CNZ e16 CNZ S2 Call subroutine if non zero flag
CZ e16 CZ l00H Call subroutine on zero flag
CNC el6 mc Sl+4 Call subroutine if no carry set
CC e16 CC S3 Call subroutine if carry set
cro el6 cro $+8 Call subroutine if p3rity odd
CPE el6 CFE S4 Call subroutine if P3ri ty even
CP e16 CP GJt1MA Call subroutine if positive result
eM e16 CM bl$c2 Call subroutine if minus flag

RST e3 RSI' 0 Programmed "restart", equivalent to
CALL 8*e3, except one byte call

13

HEr
RNZ
RZ
ROC
RC
RPO
RPE
RP
RM

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if p3ri ty is odd
Return if parity is even
Return if positive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available t,o,hich load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions W:'lich parform imrrediate arithmetic or logical operations on the
accumulator (register A).

MVI e3,e8

ADI e8
ACI e8
SUI e8
SBI e8
ANI e8
XRI e8
OR! e8
CPI e8

LXI e3,e16

MVI B,255 Move immediate data to register A, B,
C, 0, E, H, L, or M (memory)

ADI 1 Add immediate operand to A without carry
ACI 0FFH Add immediate operand to A with carry
SUI L + 3 Subtract from A without borrow (carry)
SBI L AND lIB Subtract from A with borrow (carry)
ANI $ ·AND 7FH Logical II and II A with immediate data
XRI llll$0000B "Exclusive or" A with immediate data
OR! L AND 1+1 Logical "or" A with immediate data
CPI 'a' Compare A with immediate data (same

as SUI except register A not changed)

LXI B,100H Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3

OCR e3

INX e3

OCX e3

INR E

OCR A

INX SP

OCXB

Single precision increment register (e3
produces one of A, B, C, 0, E, H, L, M)
Single precision decrement register (e3
produces one of A, B, C, 0, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
(e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions.

14

Instructions mich rrove data fran rremory to the CPU and fran CPU to
memory are given below

r!DV e3,e3

Lrnx e3

STAX e3

LHLD e16

SHLD e16

Lm e16
STA e16
IDP e3

PUSH e3

IN e8
our e8
XTHL
PCHL
SPHL
XOIG

IDV A,B

Lrnx B

STAX D

LHLD Ll

SHLD L5+x

Lm Ganuna
STA X3-5
IDP PSW

PUSH B

IN 0
our 255

Move data to leftmost element from right­
rrost element (e3 produces one of A,B,C
D,E,H,L, or M). MOV M,M is disallowed
Load register A from canputed addr.ess
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load HL direct from location e16 (double
precision load to H and L)
Store HL direct to location e16 (double
precision store from Hand L to memory)
Load register A from address e16
Store register A into memory at e16
Load register p3ir from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load register A with data fran port e8
Send data fram register A to port e8
Exchange data fran top of stack wi th HL
Fill program counter with data from HL
Fill stack pointer with data from HL
Exchange DE pair wi th HL pair

5.5. Arithmetic Logic unit Operations.

Instructions \'chich act up:m the single precision accLUnulator to perform
arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L)

AOC e3 ADC L Add register to A with carry, e3 as above
SUB e3 ruB H Subtract reg e3 from A without carry,

e3 is defined as above
SBB e3 SBB 2 Subtract register e3 from A with car.ry,

e3 defined as above
ANA e3 ~A 1+1 Logical Uand" reg with A, e3 as above
XRA e3 XRA A "Exclusive or" with A, e3 as above
ORA e3 ORA B Logical "or" with A, e3 defined as above
CMF e3 CMF H Compare reqister with A, e3 as above
mA Decimal adjust register A based upon last

arithmetic logic unit operation
CMA Complement the bi ts in register A
Sr.rc Set the carry flag to 1

15

cre
RLC

RAL

RAR

mn e3 mn B

5.6. Control Instructions.

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)
Rotate carry/A register to right (carry
is involved in the rotate)

Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)

The four ranaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NCF

6. ERROR mSSAGES.

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

wllen errors occur within the assembly language p:ogram, they are listed as
single character flags in the lefbrost p:>sition of the S)urce listing·. '!he
line in error is also echoed at the console S) that the S)urce listing need
not be examined to determine if errors are p:esent. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assembly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
futur.e ASM versions (e.g., macros) are recognized,
but flagged in this version)

o Overflow: expression is too canplicated (i .e., too
many pending operators) to computed, simplify it

P Phase error: label does not have the same value on
two slbsequent passes through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

V Value error: operand encountered in expression is
improper 1 y formed

. Several error message are printed which are due to terminal error
conditions

NO samCE FILE PRESENT

NO DIRECl'ORY SPACE

SOORCE FILE NAME ERROR

SOURCE FILE READ ERROR

OOl'pur FILE VRlTE ERROR

CANNer CLOSE PI LE

7. A SAMPLE SESSlOO.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with "?I. fields)

Source file cannot be read pcoperly by th~
assembler, execute a TYPE to determine the
I;X>int of error

OUtput files cannot be written properly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if disk is write protected

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program.

17

AS'" 'SORT~

CP/M ASSEMBLER - VER 1.9

PI 15C ~ -f~ OlldtE5S •)
ee3H USE FACTOR % tf -+ItW~ ~ed. 00 To fF' l~c!ecl~
END OF AS,SEMBL Y

DIR SORT. *~

SORT
S'ORT
SORT
SORT
A>TVPE

~(Ll~
r~-----~--------~'

SORT PROGRA" IN CP/M ASSEMBLY LANGUAGE 'Mtlclu\4L cJL \0_ i
.-J i

01ee lr-- .
ST~RT AT THE BEGIHNING OF THE TRANSIENT PROGRA" A

~bAW'kc1 ~'* ~
0100 2146el~ SORT:
0193 3601
9les 214791
018e 3699

919A 7E COMP:
BIBB FE99
eleD D21981

9110 2146Bl
a 11 3 7EB7C20ee'1

ORG laaH

LXI
MVI
L1< I
M'II

COMPARE
MOV
CPI
JHC

I tdI1ti
A, M
H-l
CONT

END OF O~E PASS
LX I H, S~
MOV AI"! ORA A!

iADDRESS SWITCH TOGGLE
;SET TO 1 FOR FIRST ITERATION
iADDRESS INDEX
; I = e

ARRAV SIZE
i A REGISTER = I
iCY SET IF I < (H -1)
iCONTIHUE IF I < = (H-2)

THROUGH DATA
i C HE CK FOR ZERO SWITCHES
.JNZ SORT ;END OF SORT IF S,",,=8'

9118 FF RST 7 iCO TO THE DEBUGCfR INSTEAD OF RE

;-trl.lt\t4.~COH. TI HUE THI S PRSS
J ~ ADDRESS I HG I I SO LOAD AY(I) INTO REGl STERS

9 1 1 9 5 F 1 68 e 2 1 4 8 C 0 H T : M 0 VElA! M Y I D, 0 ! LXI H J A..,! DAD D ! DAD D
9121 4E792346 MOV C .. M! MOY A, C! INX H! riO.., B,.11

L 0 I.J OR DE R B If TEl N A A I~ D C J H I G H O'R DE R BY TEl H B

MOY HAND L TO ADDRESS AV(I+1)
8125 23 lUX ~

COMPARE YALUE WITH REGS CONTAINING AY(I)
9 t 2 6 96-5 77 8 23 9 E SUB M! MOV DI A! MOV A, B! INK H! seB r1 j SUBTRACT

BORROW S~T IF AV(I+l) > AY(I)
912B DA3F81 JC IHCI ;SKIP IF IN PROPER ORDER

012E B2CA3F81
CHECK FOR EQUAL VALUES ~
ORA D! JZ IUCI ;Sf<IP IF AY(]) = AY()+t) ~

9132 5670285E MOV D J M ! t10V t1, 8! DCX H! MOV E J f1
0136 7128722873 MOV f1"C! DCX HI MOV r1, D ! DCX H! 110Y M 1 E

IHCREMENT SWITCH COUHT
0138 21468134 LXI H" s·w ! IHR t1

IHCREt1EHT I
913F 21479134C3IHCI: Ll(I H" I ! I NR 11! JMP COMP

DEFINITION SECTION
9146 99 SW:

DATA
DB
DS

o ;RESERYE SPACE FOR SWITCH COUNT
0147 I: 1 ;SPACE FOR IHDEX
8148 95B064eelEAV: D~'

EQU
S, le01 39,58, 2B, 7,18£10, 300 .. 1ea, -32767

eeeA = N
e 1 5 C It.- ~t UAlt WltlAL

A>TYPE SORT. HEX.,

($-AV)/2 ;COMPUTE H INSTEAD OF PRE
END

: leeleeee214691360121479136097EFEB9D2190140
I 109t19092146917E87C2ge91FF5F16002148011983 ~tu~ ~l~
I 1 09 1 2 9 e 9 1 9 4 E 7 92 3 46 23 9 65 7 7 a 23 9 E D A·3 F fJ 1 B 2 C A A 7 lI'::t7.f.-~ A. -'-

: 109139003F9156792B5E7128722B732146913421C7 ~~ ~

:97914ge94?9134C30A91906E
: 109148099S9964901·E093200140e0700E8932C01BB
:0491580964e091S9BE
:0eBgeaege8
A> DD T S OR T. HEX,?" 'S'"b.v+ dtf,,,,,, vu~

16K DDT YER 1. e \

~~~~ 0:~e defn.~ tJdbess (~addv~ ~ BJO ~-b.~) 
-xP~ 

p=0geB 1 eeJ c~~e pc. ~ toO 

-UFF FF; lA.~ -f~ 6~3c;' stcfs ab:vt w'Jl., r )"U.b.DcJ:t 

CeZ9t1BEeI9 A=08 B=fJ00e D=9009 H=0009 S=0100 P=9100 LXI H 1 0 1 4 6 ;11 €I 1 B 0 

- T 10,2 -h~ (0" c;+~('!) 

C0Z9HBE0I0 A=81 B=80S0 D=8ee9 
ceZ8118E0I0 A=01 B=900e D=8909 
CeZel10E910 A=01 B=900e D=8099 
C0Z911.9E010 A=91 B=e0ee D=8a09 
ceZ9119E910 A=91 8=9909 D=9ge0 
ceZBMBE0I9 A=00 8=0000 D=Baee 
C1Z9M1E0I0 A=e9 8=&99·0 D=oage 
CIZ8MIE819 A=fJ9 B=e990 D =8 e 08 
CIZ9111E910 A=B9 8=990 B D-=9 0 99 
C1Z9t11E919 A=el B=8000 D =9 a 8e 
CeZ9t18E0I0 A=81 B=S090 D=8099 
C0ZBH0EBIB A=Bl 8=0999 D=9909 
C9ZBMBE010 A=Bl 8=0990 D=Sge8 
ceZBM9E010 A=91 8=0090 D=90e9 
CBZ9M0E0I9 A=01 8·=8 ge 9 D=9009 
ceZ9M9E910 A=Bl 8 =8 99·9 D=B0e0 
.. A10D 

H=B146 S=01·90 P=91SB 
H=0146 S=9190 P=0103 
H=e146 S=0100 Pr:910S 
H=0147 S=,9100 p=910a 
H=0147 S=0109 P=010A 
H=0147 S=0100 p==01as 
H=0147 S=0190 P=016D 
H=0147 5=01e0 P=0110 
H=0146 S=91ee P=,0 11 3 
H=0146 S=0190 P=0114 
H=9146 5=0100 P=9115 
H=0146 S=9100 p=910e 
H=0146 5=010'0 P=9193 
H=0146 3=9100 P=9105 
H=0147 5=0100 P=0108 
H=0J 47 S=0100 P=910A 

LXI H,,9146 
r1 v I 111 9 1 
LXI HI0147 
f1'J 1M" 9 e 
MOV AIM 
C P I ·09 
JHC 0119 
LXI H .. 0146 
MOY A .. M 
ORA A 
JHZ 0180 
LXI HI0146 
MV1 M .. 91 
LXI HIe ·147 
MVI MI0e 
MOV A .. f1*810B 

~dttt~ 
IJ8H 



"'XP; 

1o(A~~ -b bc!~',,,~,Y1j of1'(,djra.m. P=8i9B 1 e ~ ye~+ "fyOjVaw. ct1~~ 

- Tie +rQ£'e ~itDlI\ -tw (OH 'S-krS 
¥ 

. 
C9Z8"eE8I0 A=80 8=889'8 D=898e H=0147 S=0100 P=01B0 L.XI 
CeZBMBE0I0 A=00 B=e0e0 D =8 e 98 

~~ 
H,8146 . ~~ 
11" e 1 ; \J). H=0146 

C8Z9HBE0I9 A=90 B=90ee D=S8e.9 H=0146 
C0Z0M9E0I0 A=e0 B=00e0 D=Bee0 H=0147 
C0ZElH8E810 A=90 B=90e0 D=B009 H=0147 
CeZ8MBE810 A=S0 B=S0B9 D =8 9 00 H=0147 
C 1 Z 8 111 E 8 1.9 A=B9 B=8099 D'=B 0 aB H=0147 
C 1 Z B 11 1 Eel ·0 A=80 8=80B0 II=8ee8 H=0147 
C1Zel11E0I0 A=80 8=e0e8 D=Be0B H=0147 
C1Z9HIE818 A=Be B=8099 D =8 0 09 H=0i47 
CIZBI11E010 A=B0 B=0000 D=8000 H=0148 
g8Z0t11E819 A=B8 B=00BB D=B0ee H=0148 

0Z9111 Eel 0 A=ee B=Etge0 D =8 a 09 H=014B 
C0Z0H1EBIB A=B0 B=eees D=8000 H=0148 
ceZ9111E8Ie A=BS B=gees D =8 0 09 H=0148 
ceZ9MIE0I0 A=BS B=gees D=80ee H=0149 
-L10~ 

818e LXI HIBl46 
9183 HYI M,d31 
81,85 LXI H,fBI47. 
910S MYI 
910A MOY 
e18e CPI 
918D JC 

MIBS 
AI H. 
09 
'81'19 

t lst S"o~c CCidl 

~ lDO~ 
81 1 e LXI H,fB146 
B113 HOY AIM 
e 114 ORA A 
91 15 JHZ Blee 
-L; 
8118 RST 97 
B119 HOY EIA 
ellA "VI DIB0 
91le LXI HIB148 

S=0100 P=01B3 
S=010e P=01E15 
8.=0100 P=0108 
S=0190 P=018A 
S=0100 P=010B 
5=0100 P::01BD 
S=010e P= e 11 9 
S=0100 p= e 11 A 
$=0100 P=011C 
S=018e p= 011 F 
S=0100 P=B120 
$=0106 P=0121 
S=01e~ P=0122 
S=0100 P=0123 
S=0100 P=0124 

I1Vl 
LXI 
MVI 
ti0V 
CPl 
JC 
MOY 
MVI 
LXI 
DAD 
DAD 
t'10V 
t10V 
I NX 
MOV 

H" 9 1 4 7 \l(l-( 
M, e0 ~ . 
AIM ) 
09 ~ 
0119 
E"A 
D,0e 
H,,0148 
D 
D 
c: J r1 
A/C 
H 
B,M*812:S 

~ 

- a~+ h~ w~~ r~L,~ . +. I 
"""L ~ -f ~?l:. (Ol'z.~) ()'1AIl \"to{. l\.\ V"~"'\ lVU -To Il!5H 

- Gil 18; ~ -pvoya~ (l)K4 

.0127 *PI'~d"':~ 0. .... ex~~( i~n.tpf 7 tYrMA. fr-+ j?() .... 4 ('f'I'~r/lUl was 

- T4~ loolc. ~ loot'~ I'YDjfAVOI. l'" +.oct mok "+ tOCf'"'' \VIbh~) 
C8Z8"8E8I8 A-J8 9=8864 Da8006 H-e156 S=8198 P=8127 HOY DIA 
C0Z8"BE910 A=38 8=8964 D=3S96 H=01'56 S=0100 P=8128 MOY AlB 
C8Z0HBE01e A=e0 ~=ee64 D=3806 H=8156 S=0100 p=e129 IHX H 
.ceZ9HBE0IB A=BB 8=0864 D=3S06 H=Q1S7 S=0100 P=812A SBe M*012B 
-D148 

~&crA lS~, bcJ- YVOjrAW Joes~t s~ . 
9148 a5 80 97 Be 14 90 IE ae ....... . 
else 32 ee 64 Be 64 e0 2C el E9 0'3 Bl 90 ee Be 09 ee 2, D. D., ........ . 
8 I 68 88 88 88 88 88 8 It 88 8 It Itil b ,) e 8 111 It 111 It 9 B e 9 89 .............• •• ® 



-&~ r~LA"'v\ -\-0 c.r 1M 

D Di SO RT . HE X.; reload -tk meMIYj 1fl'\4~ 

16K DDT YER 1. 0 
NEXT PC 
else Baea 
-xp 

p", 09 9 e 1 9 e,2 set -pc. ~ be;)1 ~11;~ of fDljYIIM 

-LIBD; l\.~ baA Ofcod.t 

910D· JHC 9119/ 
BI1B LXI H,Bl46 
... a.~ h~ w~~ foJOou.t 

- Ale D; a.~~\~ UUJ cf'tJJ.t, 

Bi0D JC 11~ 

eil~ 

-LI ae; 11:'1- -s\u~ sedtQ... of 'fYDjV/1J4A. 

91a8 LXI H,9146 
9103 MYI H,B1 
9195 LXI H,B147 
e 1 08 M a~ 1M" 9 0 
... oJoOl\: t\st VI~~ ~4U.t 
-A 193,z dAO.""f "SW"'+c/.. h l ... ~"t,.~lb..~ -Ie ~f/ 

a 1 03 11 Y I H I 0~ 

fJl'JS,2 

_'" c rt.k" -\0 e?/~ WL~ Cl+{ ... C. (G, Ul""~ CAS well) 

SAVE 1 SORT. COM; '$tAvl 1 f~'~ (1f)' ~~s,f~ 1Do,",4v~H) 0"'/\ d($k. \~ C4«oL-
. w~ ~\le. 40 Y"e.looA. l~~ 

A> DD T SORT. C O"~ Y'~~V"f" 1)'0'- w~ 
S4vtd ~~Y"I'~~ \~~e 

16K DDT YEI< 1. 0 
HEXT PC' . 
e 2 e 8 9 1 e 8 II <!oM" .fllt. ~lvJ(1~'So S~ WL~ aMYlSIS l OO~ 
-G.l rCA"~ 1'''~rtl\M +~ ?C-=ICJOH 

.9119 Mf().~~d~.p (2.~f11 el.\ell.L~ 
"D149 

8148 B5 B9 97 ee 14 Be IE 
~ J.da. "f"0f6'.s ~rkA 

90 ....... . 
01Se 32 e0 64 ee 64 98 2C a 1 E.8 0 3 alB 9 0 0 e B 08 9 0 2. D. D. ~ . . . . . . . . . 
8160 98 ge ae ea 09 99 aa Be ae 08 00 Et0 0e ae ee ee ............... . 
9179 90 00 ee ~9 B9 e9 aa a e 08 08 8 aBe e 0 ae Be 8 e ............... . 

-G~ r~Y""'- 40 ~/M. ZI 



iSET TO 1 FOR FIRST ITERATION 

;ADDRESS INDEX 

M .. 9 iZERO St.J 

H .. I i ADDRESS I HDE>~ 

iCOHTIHUE IF I (= (H-2) 

CP/H ASSEMBLER - VER 1.0 

a i 5 C ~ aJtlr$S -\0 C6M" 
eet3H USE FACTOR 
END OF ASSEMBLY 

[I D T SO R T. H E x~ M ~"j'(t\1M cUCl~l.S 

16K DDT VER 1. e 
NE:~T PC 
015(: Bet€te 
-G'10e~ 

.9118 
- D 148~ 

9148 95 90 
81sa 32 8e 
e168 00 Be 

97 ee 14. ee ~ do..~5~~d 1 E ge ......... 
64 ee 64 oe 2C 01 EB 03 81 
00 ee 09 ge fie e0 0B 0e ee 

- o.'oDY-t w~ 'rlA-Io,,,,,t 

-G~ r~~1v e1'(M--1(7A~ d~s O~. 

80 013 08 
eo 0'') oe 

00 0e,2.D.D.I, ........ 
00 Be ................ 

22 



MACRO =80 
Assembler 

Reference Manual 

(c) Microsoft· 1981 

All Rights Reserved Worldwide 



Information in this document is subject to change without notice and does not represent a 
commitment on the part of Microsoft. The software described in this document is 
furnished under a license agreement or non-discfosure agreement. The software may be 
used or copied only in accordance with the terms of the agreement. 

(C) Microsoft, 1979 

NOTE: Chapters 2 and 3 of this manual have been deleted as the associated 
software is not provided as part of the Xerox software. 

CP 1M is a registered trade mark of Digital Research 

8401-340-03 



Microsoft MACRO-80 Assembler, Release 3.4 November 1980 

ADDENDA TO: Utility Software Manual 
MACRO-80 Assembler Reference Manual 
XMACRO-86 Assembler Reference Manual 

The following features were added or modified in release 
3 . 4 • 

Add to Section 2.2.2 Switches 

Switch 

1M 

Action 

Initialize Block Data Areas. 
If the programmer wants the area that is defined 
by the OS (Define Space) pseudo-op initialized to 
zeros, then the programmer should use the 1M 
switch in the command line. Otherwise, the space 
is not guaranteed to contain zeros. That is, OS 
does not automatically initialize the space to 
zeros. 

IX The presence or absence of IX in the command line 
sets the initial current mode and the initial 
value of the default for listing or suppressing 
lines in false conditional blocks. IX sets the 
current mode and initial value of default to 
not-to-list. No IX sets current mode and initial 
value of default to list. Current mode determines 
whether false conditionals will be listed or 
suppressed. The initial value of the default is 
used with the .TFCOND pseudo-op so that .TFCOND is 
independent of .SFCOND and .LFCOND. If the 
program contains .SFCOND or .LFCOND, Ix has no 
effect after .SFCOND or .LFCOND is encountered 
until a .TFCOND is encountered in the file. SO IX 
has an effect only when used with a file that 
contains no conditional listing pseudo-ops or when 
used with .TFCOND. 



MACRO-SO, Release 3.4, Addenda Page 2 

The following chart illustrates the effects 
three pseudo-ops when encountered under 
under no IX. See the addition to Section 
below for a full description of the 
conditional listing pseudo-ops. 

of the 
IX and 
2.6.27 
three 

PSEUDO-OP 

(none) 

.SFCOND 

.LFCOND 

.TFCOND 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

.TFCOND 

NO L! 
ON 

OFF 

ON 

OFF 

ON 

OFF 

OFF 
ON 

OFF 

OFF 

OFF 

ON 

ON 

OFF 

OFF 

ON 
OFF 

ON 

Add to Section 2.6.26 Conditional Pseudo Operations 

IFIDN <argl>,<arg2> 

IFDIF <argl>,<arg2> 

True if the string <argl> is 
IDeNtical to the string <arg2>. 
The angle brackets around <argl> 
and <arg2> are required. 

True if the string <argl> is 
DIFferent from the string <arg2>. 
The angle brackets around <argl> 
and <arg2> are required. 



MACRO-80, Release 3.4, Addenda Page 3 

Add to Section 2.6.27 Listing Control Pseudo Ooerations 

There are now five listing control pseudo-ops. 
the listing file can be controlled by the 
pseudo-ops: 

.LIST, .XLIST, .SFCOND, .LFCOND, .TFCOND 

Output to 
following 

The three new pseudo-ops control the listing of conditional 
pseudo-op blocks which evaluate as false. These pseudo-ops 
give the programmer control over four cases. 

1. Normally list false conditionals 
For this case, the programmer simply allows the 
default mode to control the listing. The default 
mode is list false conditionals. If the programmer 
decides to suppress false conditionals, the /X 
switch can be issued in the command line instead of 
editing the source file. 

2. Normally suppress false conditionals 
For this case, the programmer -issues the .TFCOND 
pseudo-op in the program file. .TFCOND reverses 
(toggles) the default, causing false conditionals 
to be suppressed. If the programmer decides to 
list false conditionals, the /x switch can be 
issued in the command line instead of editing the 
source file. 

3. Always suppress/list false conditionals 
For these cases, the programmer issu~s either tne 
.SFCOND pseudo-op to suppress false conditionals, 
or the .LFCOND pseudo-op to list all false 
conditionals. 

4. Suppress/list some false conditionals 
For this case, the programmer has decided for most 
false conditionals whether to list or suppress, but 
for some false conditionals the programmer has not 
yet decided. For the false conditionals decided 
about, use .SFCOND or .LFCOND. For those not yet 
decided, use .TFCOND. .TFCOND sets the current and 
default settings to the opposite _ of the default. 
Initially, the default is set by giving /X or no /x 
in the command line. Two subcases exist: 

1. The programmer wants some false conditionals 
not to list unless /X is given. The programmer 
uses the .SFCOND and .LFCOND pseudo-ops to 
control which areas always suppress or list 
false conditionals. To selectively suppress 
some false conditionals, the programmer issues 
.TFCOND at the beginning of the conditional 
block and again at the end of the conditional 
block. (NOTE: The second .TFCOND is should be 
so that the default setting will be the same as 
the initial setting. Leaving the default equal 



MACRO-80, Release 3.4, Addenda Page 4 

to the initial setting makes it easier to keep 
track of the default mode if there are many 
such areas.) If the conditional block evaluates 
as false, the lines will be suppressed. In 
this subcase, issuing the IX switch in the 
command line causes the conditional block 
affected by .TFCOND to list even if it 
evaluates as false. 

2. The programmer wants some false conditionals to 
list unless IX is given. of the file. Two 
consecutive .TFCONDs places the conditional 
listing setting in initial state which is 
determined by the presence or absence of the Ix 
switch (the first .TFCOND sets the default to 
not initial; the second to initial). The 
selected conditional block then responds to the 
IX switch: if a IX switch is issued in the 
command line, the conditional block is 
suppressed if false; if no IX switch is issued 
in the command line, the conditional block is 
listed even if false. 

The programmer then must reissue the .SFCOND or 
.LFCOND conditional listing pseudo-op to 
restore the suppress or list mode. Simply 
issuing another .TFCOND will not restore the 
prior mode, but will toggle the default 
setting. Since in this subcase, the next area 
of code is supposed to list or suppress false 
conditionals always, the programmer must issue 
.SFCOND or .LFCOND. 

The three conditional listing pseudo-ops are summarized 
below. 

PSEUDO-OP 

.SFCOND 

.LFCOND 

.TFCOND 

DEFINITION 

Suppresses the listing of conditional blocks 
that evaluate as false. 

Restores the listing of conditional blocks that 
evaluate as false. 

Toggles the current setting which controls the 
listing false conditionals. .TFCOND sets the 
current and default setting to not default. If 
a Ix switch is given in the MACRO-80' run 
command line for a file which contains .TFCOND, 
IX reverses the effect of .TFCOND. 



MACRo-ao, Release 3.4, Addenda Page 5 

Add to Section 2.7.9 Special Macro Operators and Forms 

% The percent sign is used only in a macro argument. 
% converts the expression that follows it (usually a 
symbol) to a number in the current radix. During 
macro expansion, the number derived from converting 
the expression is substituted for the dummy. Using 
the % special operator allows a macro call by value. 
(Usually, a macro call is a call by reference with 
the text of the macro argument substituting exactly 
for the dummy.) 

The expression following the % must conform to the 
same rules as the DS (Define Space) pseudo-oPe A 
valid expression returning a non-relocatable 
constant is required. 

EXAMPLE: 

Normally, LB, the argument to MAKLAB, would be 
substituted for Y, the argument to MACRO, as a 
string. The % causes LB to be converted to a 
non-relocatable constant which is then substituted 
for Y. without the % special operator, the result 
of assembly would be ~Error LB~ rather than ~Error 
I ~, etc. 

MAKLAB MACRO Y 
ERR&Y: DB ~Error &Y~,O 

ENDM 
MAKERR MACRO X 
LB SET 0 

REPT X 
LB SET LB+l 

MAKLAB %LB 
ENDM 
ENDM 

When called by MAKERR 3 , the assembler will 
generate: 

ERRl : DB ~Error l~,O 

ERR2: DB ~Error 2~,O 

ERR3: DB ~Error 3~,O 





Microsoft 

CONTENTS 

CHAPTER 1 Introduction 

CHAPTER 2 MACRO-SO Assembler 

2.1 Running MACRO-SO 
2.2 Command Format 
2.2.1 Devices 
2.2.2 Switches 
2.3 Format of MACRO-SO Source Files 
2.3.1 Statements 
2.3.2 Symbols 
2.3.3 Numeric Constants 
2.3.4 Strings 
2.4 Expression Evaluation 
2.4.1 Arithmetic and Logical Operators 
2.4.2 Modes 
2.4.3 Externals 
2.5 Opcodes as Operands 
2.6 Pseudo Operations 
2.6.1 ASEG 
2.6.2 COMMON 
2.6.3 CSEG 
2.6.4 DB - Define Byte 
2.6.5 DC - Define Character 
2.6.6 DS - Define Space 
2.6.7 DSEG 
2.6.S DW - Define Word 
2.6.9 END 
2.6.10 ENTRY/PUBLIC 
2.6.11 EQU 
2.5.12 EXT/EXTRN 
2.6.13 INCLUDE 
2.6.14 NAME 
2.6.15 ORG - Define Origin 
2.6.16 PAGE 
2.6.17 SET 
2.6.1S SUBTTL 
2.6.19 TITLE 
2.6.20 . COMMENT 
2.6.21 .PRINTX 
2.6.22 • RADIX 
2.6.23 .ZSO 
2.6.24 .SOSO 
2.6.25 . REQUEST 
2.6.26 Conditional Pseudo Operations 
2.6.26.1 ELSE 
2.6.26.2 ENDIF 
2.6.27 Listing Control Pseudo Operations 



2.6.2S Relocation Pseudo Operations 
2.6.2S.l ORG Pseudo-op 
2.6.2S.2 LINK-SO 
2.6.29 Relocation Before Loading 
2.7 Macros and Block Pseudo Operations 
2.7.1 Terms 
2.7.2 REPT-ENDM 
2.7.3 IRP-ENDM 
2.7.4 IRPC-ENDM 
2.7.5 MACRO 
2.7.6 ENDM 
2.7.7 EXITM 
2.7.S LOCAL 
2.7.9 Special Macro Operators and Forms 
2.S Using ZSO Pseudo-ops 
2.9 Sample Assembly 
2.10 MACRO-SO Errors 
2.11 Compatability with Other Assemblers 
2.12 Format of Listings 
2.12.1 Symbol Table Listing 

CHAPTER 3 CREF-80 Cross Reference Facility 

CHAPTER 4 LINK-80 Linking Loader 

4.1 
4.2 
4.2.1 
4.2.2 
4.3 
4.4 
4.5 

Running LINK-SO 
Command Format 

LINK-SO Switches 
Sample Link 

Format of LINK Compatible Object Files 
LINK-SO Error Messages 
Program Break Information 

CHAPTER 5 LIB-SO Library Manager 

APPENDIX 

5.1 
5.1.1 
5.2 
5.3 
5.4 
5.5 

A 

A.l 
A.2 
A.3 
A.4 

LIB-SO Commands 
Modules 

LIB-SO Switches 
LIB-SO Listings 
Sample LIB Session 
Summary of Switches and Syntax 

TEKDOS Operating System 

TEKDOS Command Files 
MACRO-SO 
CREF-80 
LINK-SO 



CHAPTER 1 

INTRODUCTION 

MACRO-80 is a relocatable macro assembler for 8080 and Z80 
microcomputer systems. It assembles S080 or Z80 code on any 
8080 or Z80 development system running the CP/M, ISIS-II~ 
TRSDOS or TEKDOS operating system. The MACRO-80 package 
includes the MACRO-80 assembler, the LINK-SO linking loader, 
and the CREF-SO cross reference facility. CP/M versions 
also include the LIB-SO Library Manager. MACRO-SO resides 
in approximately 14K of memory and has an assembly rate of 
over 1000 lines per minute. 

MACRO-80 incorporates almost all "big computer" "assembler 
features without sacrificing speed or memory space. The 
assembler supports a complete, Intel standard macro 
facility, including IRP, IRPC, REPEAT, local variables and 
EXITM. Nesting of macros is limited only by memory. Code 
is assembled in relocatable modules that are manipulated 
with th~ flexible linking loader. Conditional assembly 
capability is enhanced by an expanded set of conditional 
pseudo operations that include testing of assembly pass, 
symbol definition, and parameters to macros. Conditionals 
may be nested up to 255 levels • 

. MACRO-80's linking loader provides a versatile array of 
loader capabilities, which are executed by means of easy 
command lines and switches. Any number of programs may be 
loaded with one command, relocatable modules may be loaded 
in user-specified locations, and external references between 
modules are resolved automatically by the loader. The 
loader also performs library searches for system subroutines 
and generates a load map of memory showing the locations of 
the main program and subroutines. The cross reference 
facility that is included in this package supplies a 
convenient alphabetic list of all program variable names, 
along with the line numbers where they are referenced and 
defined. 



INTRODUCTION Page 1-2 

This manual is designed to serve as a reference guide to the 
MACRO-80 package. It defines, explains and gives examples 
of all the features in MACRO-80 in terms that should be 
understandable to ~nyone familiar with assembly language 
programming. It is not intended, however, to serve as 
instructional material and presumes the user has substantial 
knowledge of assembly language programming. The user should 
refer to instructional material available from a variety of 
sources for additional tutorial information. 



CHAPTER 2 

MACRO-SO ASSEMBLER 

2.1 RUNNING MACRO-SO 

The command to run MACRO-SO is 

MSO 

MACRO-SO returns the prompt 
accept commands. 

n*n , 

NOTE 

indicating it is 

If you are using the TEKDOS 
operating system, see Appendix 
A for proper command formats. 

2.2 COMMAND FORMAT 

ready to 

A command to MACRO-SO consists of a string of filenames with 
optional switches. All filenames should follow the 
operating system's conventions for filenames and extensions. 
The default extensions supplied by Microsoft software are as 
follows: 

File 

Relocatable object file 
Listing file 
MACRO-SO source file 
FORTRAN source file 
COBOL source 
Absolute file 

REL 
PRN 
MAC 
FOR 
COB 
COM 

ISIS-II 

REL 
LST 
MAC 
FOR 
COB 



MACRO-SO ASSEMBLER PAGE 2-2 

A command to MACRO-SO conveys the name of the source file to 
be assembled, the names of the file(s) to be created, and 
which assembly options are desired. The format of a 
MACRO-SO command is: 

objfile,lstfile=source file 
.' 

Only the equal sign and the source file field are 
to create a relocatable object file with the 
(source) filename and the default extension REL. 

required 
default 

Otherwise, an object file is created only if the objfile 
field is filled, and a listing file is created only if the 
lstfile field is filled. 

To assemble the source file without producing an object file 
or listing file, place only a comma to the left of the equal 
sign. This is a handy procedure that lets you check for 
syntax errors before assembling to an object file. 

Examples: 

*=TEST 

*,=TEST 

TEST,TEST=TEST 

*OBJECT=TEST 

OBJECT,LIST=TEST 

MACRO-SO also 
invocation and 
example: 

MSO ,=TEST 

Assemble the source file TEST.MAC 
and place the object file in TEST.REL. 

Assemble the source file TEST.MAC 
without creating an object or listing 
file. Useful for error checking. 

Assemble the source file TEST.MAC, 
placing the object file in TEST.REL 
and the listing file in TEST.PRN. 
(With ISIS-II, the listing file is 
TEST. LST.) 

Assemble the source file TEST.MAC 
and place the object file in 
OBJECT.REL. 

Assemble the source file TEST.MAC, 
placing the object file in OBJECT.REL 
and the listing file in LIST.PRN. 
(With ISIS-II, the listing file is 
LIST. LST.) 

supports command lines; that is, 
command may be typed on the same line. 

the 
For 



MACRO-SO ASSEMBLER PAGE 2-3 

2.2.1 Devices 

Any field in the MACRO-SO command string can also specify a 
device name. The default device name with the CP/M 
operating system is the currently logged disk. The default 
device name with the ISIS-II operating system is disk drive 
O. The command format is: 

dev:objfile,dev:lstfi1e=dev:source file 

The device names are as follows: 

Device ISIS-II 

Disk drives A:, B:, C:, ••• :FO:, :F1:, :F2:, ••• 
Line printer 
Teletype or CRT 
High speed reader 

Examples: 

LST: 
TTY: 
HSR 

LST: 
TTY: 

*,TTY:=TEST Assemble the source file TEST.MAC 
and list the program on the 
console. No object code is 
generated. Useful for error check. 

*SMALL,TTY:=B:TEST Assemble TEST.MAC (found 
on disk drive B), place 
the object file in SMALL.REL, 
and list the program on the console. 

2.2.2 Switches 

A switch is a letter that is appended to the command string, 
preceded by a slash. It specifies an optional task to be 
performed during assembly. More than one switch can be 
used, but each must be preceded by a slash. (With the 
TEKDOS operating system, switches are preceded by commas or 
spaces. See Appendix A.) All switches are optional. The 
available switches are: 

Switch Action 

0 Octal listing 

H Hexadecimal listing (default) 

R Force generation of an object file 

L Force generation of a listing file 

C Force generation of a cross reference file 



MACRO-80 ASSEMBLER PAGE 2-4 

Z Assemble Z80 opcodes (default for Z80 operating 
systems) 

I Assemble 8080 opcodes (default for 8080 operating 
systems) 

P Each IP allocates an extra 256 bytes of stack 
space for use during assembly. Use IP if stack 
overflow errors occur during assembly. Otherwise, 
not needed. 

M Initialize Block Data Areas. If the programmer 
wants the area that is defined by the DS (Define 
Space) speudo-op initialized to zeros, then the 
programmer should use the 1M switch in the command 
line. Otherwise, the space is not guaranteed to 
contain zeros. That is, DS does not automatically 
initialize the space to zeros. 

x Usually used to 
conditionals. 
the IX switch 
technical terms. 

suppress the listing of false 
The following paragraph describes 

more completely but in very 

The presence or absence of IX in the command line 
sets the initial current mode and the initial 
value of the default for listing or suppressing 
lines in false conditional blocks. Ix sets the 
current mode and initial value of default to 
not-to-list. No IX sets current mode and initial 
value of default to list. Current mode determines 
whether false conditionals will be listed or 
suppressed. The initial value of the default is 
used with the .TFCOND pseudo-op so that .TFCOND is 
independent of .SFCOND and .LFCOND. If the 
program contains .SFCOND or .LFCOND, IX has no 
effect after .SFCOND or .LFCOND is encountered 
until a .TFCOND is encountered in the file. SO IX 
has an effect only when used with a file that 
contains no conditional listing pseudo-ops or when 
used with .TFCOND. 



MACRO-SO ASSEMBLER PAGE 2-5 

Examples: 

*=TEST/L 

*=TEST/L/O 

*LAST=TEST/C 

Assemble TEST. MAC , place the object file in 
TEST.REL and a listing file in TEST.PRN. 
(With ISIS-II, the listing file is 
TEST. LST.) 

Same as above, but listing file addresses 
will be in octal. 

Assemble TEST.MAC, place the object file in 
LAST.REL and cross reference file in 
TEST. CRF. (See Chapter 3.) 

2.3 FORMAT OF MACRO-SO SOURCE FILES 

Input source lines of up to 132 characters in length are 
acceptable. 

MACRO-SO preserves lower case letters in quoted strings and 
comments. All symbols, opcodes and pseudo-opcodes typed in 
lower case will be converted to upper case. 

If the source file includes line numbers from an editor, 
each byte of the line number must have the high bit on. 
Line numbers from Microsoft's EDIT-SO Editor are acceptable. 

2.3.1 Statements 

Source files input to MACRO-SO consist of statements of the 
form: 

[label:[:]] [operator] [arguments] [ icomment] 

With the exception of the ISIS assembler $ controls (see 
Section 2.11), it is not necessary that statements begin in 
column 1. Multiple blanks or tabs may be used to improve 
readability. 

If a label is present, it is the first item in the statement 
and is immediately followed by a colon. If it is followed 
by two colons, it is declared as PUBLIC (see ENTRY/PUBLIC, 
Section 2.6.10). For exmple: 

FOO:: RET 

is equivalent to 

PUBLIC Faa 
FOO: RET 



MACRO-80 ASSEMBLER PAGE 2-6 

The next item after the label, or the first item on the line 
if no label is present, is an operator. An operator may be 
an 8086 mnemonic, pseudo-op, macro call or expression. The 
evaluation order is as follows: 

1. Macro call 

2. Mnemonic/Pseudo operation 

3. ~xpression 

Instead of flagging an expression as an error, the assembler 
treats it as if it were a DB statement (see Section 2.6.4). 

The arguments following the operator will, of course, vary 
in form according to the operator. 

A comment always begins with a semicolon and ends with a 
carriage return. A comment may be a line by itself or it 
may be appended to a line that contains a statement. 
Extended comments can be entered using the .COMMENT pseudo 
operation (see Section 2.6.20). 

2.3.2 Symbols 

MACRO-80 symbols may be of any length, however, 
first six characters are significant. The 
characters are legal in a symbol: 

A-Z 0-9 $ ? @ 

only the 
following 

With Microsoft's 8080/Z80/8086 assemblers, the underline 
character is also legal in a symbol. A symbol may not start 
with a digit. When a symbol is read, lower case is 
translated into upper case. If a symbol reference is 
followed by ## it is declared external (see also the 
EXT/EXTRN pseudo-op, Section 2.6.12). 

2.3.3 Numeric Constants 

The default base for numeric constants is decimal. This may 
be changed by the .RADIX pseudo-op (see Section 2.6.22). 
Any base from 2 (binary) to 16 (hexadecimal) may be 
selected. When the base is greater than la, A-F are the 
digits following 9. If the first digit of the number is not 
numeric the number must be preceded by a zero. 



MACRo-aD ASSEMBLER PAGE 2-7 

Numbers are l6-bit unsigned quantities. A number is always 
evaluated in the current radix unless one of the following 
special notations is used: 

nnnnB 
nnnnD 
nnnnO 
nnnnQ 
nnnnH 

X'nnnn' 

Binary 
Decimal 
Octal 
Octal 
Hexadecimal 
Hexadecimal 

Overflow of a number beyond two bytes is ignored and the 
result is the low order l6-bits. 

A character constant is a string comprised of zero, one or 
two ASCII characters, delimited by quotation marks, and used 
in a non-simple expression. For example, in the statement 

DB 'A' + 1 

'A' is a character constant. But the statement 

DB 'A' 

uses 'A' as a string because it is in a simple expression. 
The rules for character constant delimiters are the same as 
for strings. 

A character constant comprised of one character has 
value the ASCII value of that character. That is, 
order byte of the value is zero, and the low order 
the ASCII value of the character. For example, the 
the constant 'A' is 4lH. 

as its 
the high 
byte is 
value of 

A character constant comprised of two characters has as its 
value the ASCII value of the first character in the high 
order byte and the ASCII value of the second character in 
the low order byte. For example, the value of the character 
constant "AB" is 4lH*256+42H. 

2.3.4 Strings 

A string is comprised of zero or more characters delimited 
by quotation marks. Either single or double quotes may be 
used as string delimiters. The delimiter quotes may be used 
as characters if they appear twice for every character 
occurrence desired. For example, the statement 

DB "I am ""great"" today" 

stores the string 

I am "great" today 



MACRO-80 ASSEMBLER PAGE 2-8 

If there are zero characters between the delimiters, the 
string is a null string. 

2.4 EXPRESSION EVALUATION 

2.4.1 Arithmetic And Logical Operators 

The following operators are allowed in expressions. The 
operators are listed in order of precedence. 

NUL 

LOW, HIGH 

*, I, MOD, SHR, SHL 

Unary Minus 

+, -

EQ, NE, LT, LE, GT, GE 

NOT 

AND 

OR, XOR 

Parentheses are used to change the order of precedence. 
During evaluation of an expression, as soon as a new 
operator is encountered that has precedence less than or 
equal to the last operator encountered, all operations up to 
the new operator are performed. That is, subexpressions 
involving operators of higher precedence are computed first. 

All operators except +, -, *, I must be separated from their 
operands by at least one space. 

The byte isolation operators (HIGH, LOW) isolate the high or 
low order 8 bits of an Absolute 16-bit value. If a 
relocatable value is supplied as an operand, HIGH and LOW 
will treat it as if it were relative to location zero. 

2.4.2 Modes 

All symbols used as operands in expressions are in one of 
the following modes: Absolute, Data Relative, Program 
(Code) Relative or COMMON. (See Section 2.6 for the ASEG, 
CSEG, DSEG and COMMON pseudo-ops.) Symbols assembled under 
the ASEG, CSEG (default), or DSEG pseudo-ops are in 
Absolute, Code Relative or Data Relative mode respectively. 



MACRO-80 ASSEMBLER PAGE 2-9 

The number of COMMON modes in a program is determined by the 
number of COMMON blocks that have been named with the COMMON 
pseudo-oPe Two COMMON symbols are not in the same mode 
unless they are in the same COMMON block. In any operation 
other than addition or subtraction, the mode of both 
operands must be Absolute. 

If the operation is addition, the following rules apply: 

1. At least one of the operands must be Absolute. 

2. Absolute + <mode> = <mode> 

If the oper?tion is subtraction, the following rules apply: 

1. <mode> - Absolute = <mode> 

2. <mode> - <mode> = Absolute 
where the two <mode>s are the same. 

Each intermediate step in the evaluation of an expression 
must conform to the above rules for modes, or an error will 
be generated. For example, if FOO, BAZ and ZAZ are three 
Program Relative symbols, the expression 

FOO + BAZ - ZAZ 

will generate an R error because the first step (FOO + BAZ) 
adds two "relocatable values. (One of the valu~s must be 
Absolute.) This problem can always be fixed by inserting 
parentheses. So that 

FOO + (BAZ - ZAZ) 

is legal because the first step (BAZ ZAZ) generates an 
Absolute value that is then added to the Program Relative 
value, FOO. 

2.4.3 Externals 

Aside from its classification by mode, a symbol is either 
External or not External. (See EXT/EXTRN, Section 2.6.12.) 
An External value must be assembled into a two-byte field. 
(Single-byte Externals are not supported.) The following 
rules apply to the use of Externals in expressions: 

1. Externals are 
subtraction. 

legal only in addition and 

2. If an External symbol is used in an expression, the 
result of the expression is always External. 

3. When the operation is addition, either operand (but 
not both) may be External. 



MACRO-80 ASSEMBLER PAGE 2-10 

4. When the operation is subtraction, only the first ( 
operand may be External. 

2.5 OPCODES AS OPERANDS 

8080 opcodes are valid one-byte operands. Note that only 
the first byte is a valid operand. For example: 

MVI A, (JMP) 
ADI (CPI) 
MVI B, (RNZ) 
CPI (INX H) 
ACI (LXI B) 
MVI C,MOV A,B 

Errors will be generated if more than one byte is included 
in the operand -- such as (CPI 5) I LXI B,LABEL1) or (JMP 
LABEL2) • 

Opcodes used as one-byte operands need not be enclosed in 
parentheses. 

NOTE 

Opcodes are not valid operands 
in Z80 mode. 



MACRO-SO ASSEMBLER PAGE 2-11 

2.6 PSEUDO OPERATIONS 

2.6.1 ASEG 

ASEG 

ASEG sets the location counter to an absolute segment of 
memory. The location of the absolute counter will be that 
of the last ASEG (default is 0), unless an ORG is done after 
the ASEG to change the location. The effect of ASEG is also 
achieved by using the code segment (CSEG) pseudo operation 
and the /P switch in LINK-SO. See also Section 2.6.28 

2.6.2 COMMON 

COMMON /<block name>/ 

COMMON sets the location counter to the selected common 
block in memory. The location is always the beginning of 
the area so that compatibility with the FORTRAN COMMON 
statement is maintained. If <block name> is omitted or 
consists of spaces, it is considered to be blank common. 
See also Section 2.6.2S. 

2.6.3 CSEG 

CSEG 

CSEG sets the location counter to the code relative segment 
of memory. The location will be that of the last CSEG 
(default is 0), unless an ORG is done after the CSEG to 
change the location. CSEG is the default condition of the 
assembler (the INTEL assembler defaults to ASEG). See also 
Section 2.6.2S. 

2.6.4 DB - Define ~ 

DB <exp>[,<exp>.~.] 

DB <string>[<string> ••• ] 

The arguments to DB are either expressions or strings. DB 
stores the values of the expressions or the characters of 
the strings in successive memory locations beginning with 
the current location counter. 



MACRO-BO ASSEMBLER PAGE 2-12 

Expressions must evaluate to one byte. (If the high byte of 
the result is a or 255, no error is given; otherwise, an A 
error results.) 

Strings of three or more characters may not be used in 
expressions (i.e., they must be immediately followed by a 
comma or the end of the line). The characters in a string 
are stored in the order of appearance, each as a one-byte 
value with the high order bit set to zero. 

Example: 

0000' 
0002' 
0003' 

41 42 
42 
41 42 43 

DB 
DB 
DB 

2.6.5 DC - Define Character 

DC <string> 

'AB' 
'AB' AND OFFH 
'ABC' 

DC stores the characters in <string> in successive memory 
locations beginning with the current location counter. As 
with DB, characters are stored in order of appearance, each 
as a one-byte value with the high order bit set to zero. 
However, DC stores the last character of the string with the 
high order bit set to one. An error will resu~t if the 
argument to DC is a null string. 

2.6.6 DS - Define Space 

OS <exp> 

DS reserves an area of memory. The value of <exp> gives the 
number of bytes to be allocated. All names used in <exp> 
must be previously defined (i.e., all names known at that 
point on pass 1). Otherwise, a V error is generated during 
pass 1 and a U error may be generated during pass 2. If a U 
error is not generated during pass 2, a phase error will 
probably be generated because the OS generated no code on 
pass 1. 

2.6.7 DSEG 

DSEG 

DSEG sets the location counter to the Data Relative segment 
of memory. The location of the data relative counter will 
be that of the last DSEG (default is 0), unless an ORG is 

( 



MACRO-BO ASSEMBLER PAGE 2-13 

done after the DS,EG to change the loca tion. See also 
Section 2.6.2B. 

2.6.B DW - Define Word 

OW <exp>[,<exp> .•. ] 

DW stores the values of the expressions in successive memory 
locations beginning with the currenc location counter. 
Expressions are evaluated as 2-byte (word) values. 

2.6.9 END 

END [<exp>] 

The END statement specifies the end of the program. If 
<exp> is present, it is the start address of the program. 
If <exp> is not present, then no start address is passed to 
LINK-BO for that program. 

NOTE 

If an assembly language 
program is the main program, a 
start address (label) must be 
specified. If not, LINK-BO 
will issue a "no start 
address" error. If the 
program is a subroutine to a 
FORTRAN program (for example), 
the start address is not 
required because FORTRAN has 
supplied one. 

2.6.10 ENTRY/PUBLIC 

ENTRY <name>[,<name> ••. ] 
or 

PUBLIC <name>[,<name> •.• ] 

ENTRY or PUBLIC declares each name in the list as internal 
and therefore available for use by this program and other 
programs to be loaded concurrently. All of the names in the 
list must be defined in the current program or a U error 
results. An M error is generated if the name is an external 
name or common-blockname. 



MACRO-SO ASSEMBLER PAGE 2-14 

2.6.11 EQU 

<name> EQU <exp> 

EQU assigns the value of <exp> to <name>. If <exp> is 
external, an error is generated. If <name> already has a 
value other than <exp>, an M error is generated. 

2.6.12 EXT/EXTRN 

EXT <name>[,<name> ••• ] 
or 

EXTRN <name>[,<name> ••• ] 

EXT or EXTRN declares that the name(s) in the list are 
external (i.e., defined in a different program). If any 
item in the list references a name that is defined in the 
current program, an M error results. A reference to a name 
where the name is followed immediately by two pound signs 
(e.g., NAME##) also declares the name as external. 

2.6.13 INCLUDE 

INCLUDE <filename> 

The INCLUDE pseudo-op applies only to CP/M versions of 
MACRO-SO. The pseudo-ops INCLUDE, $INCLUDE and MACLIB are 
synonymous. 

The INCLUDE pseudo-op assembles source statements from an 
alternate source file into the current source file. Use of 
INCLUDE eliminates the need to repeat an often-used sequence 
of statements in the current source file. 

<filename> is any valid specification, as determined by the 
operating system. Defaults for filename extensions and 
device names are the same as those in a MACRO-SO command 
line. 

The INCLUDE file is opened and assembled into the current 
source file immediately following the INCLUDE statement. 
When end-of-file is reached, assembly resumes with the 
statement following INCLUDE. 

On a MACRO-SO listing, a plus sign is ~rinted between the 
assembled code and the source line on each line assembled 
from an INCLUDE file. (See Section 2.12.) 

Nested INCLUDEs are not allowed. If encountered, they will 
result in an objectionable syntax error '0'. 

( 



MACRO-80 ASSEMBLER PAGE 2-15 

The file specified in the operand field must exist. If the 
file ii not found, the error 'V' (value error) is given, and 
the INCLUDE is ignored. 

2.6.14 NAME 

NAME ('modname') 

NAME defines a name for the module. Only the first six 
characters are significant in a module name. A module name 
may also be defined with the TITLE pseudo-oPe In the 
absence of both the NAME and TITLE pseudo-ops, the module 
name is created from the source file name. 

2.6.15 ORG - Define Origin 

ORG <exp> 

The location counter is set to the value of <exp> and the 
assembler assigns generated code starting with that value. 
All names used in <exp> must be known on pass 1, and the 
value must either be absolute or in the same area as the 
location counter. 

2.6.16 PAGE 

PAGE [<exp>] 

PAGE causes the assembler to start a new output page. The 
value of <exp>, if included, becomes the new page size 
(measured in lines per page) and must be in the range 10 to 
255. The default page size is 50 lines per page. The 
assembler puts a form feed character in the listing file at 
the end of a page. 

2.6.17 SET 

<name> SET <exp> 

SET is the same as EQU, except no error is generated if 
<name> is already defined. 



MACRO-80 ASSEMBLER PAGE 2-16 

2.6.18 SUBTTL 

SUBTTL <text> 

SUBTTL specifies a subtitle to be listed on the line after 
the title (see TITLE, Section 2.6.19) on each page heading. 
<text> is truncated after 60 characters. Any number of 
SUBTTLs may be given in a program. 

2.6.19 TITLE 

TITLE <text> 

TITLE specifies a title to be listed on the first line of 
each page. If more than one TITLE is given, a Q error 
results. The first six characters of the title are used as 
the module name unless a NAME pseudo operation is used. If 
neither a NAME or TITLE pseudo-op is used, the module name 
is created from the source filename. 

2.6.20 • COMMENT 

.COMMENT <de1im><text><de1im> 

The first non-blank character encountered after .COMMENT is 
the delimiter. The following <text> comprises a comment 
block which continues until the next occurrence of 
<delimiter> is encountered. For example, using an asterisk 
as the delimiter, the format of the comment block would be: 

.COMMENT * 
any amount of text entered 
here as the comment block 

* 
:return to normal mode 



MACRO-SO ASSEMBLER PAGE 2-17 

2.6.21 .PRINTX 

.PRINTX <delim><text><delim> 

The first non-blank character encountered after .PRINTX is 
the delimiter. The following text is listed on the terminal 
during assembly until another occurrence of the delimiter is 
encountered. .PRINTX is useful for displaying progress 
through a long assembly or for displaying the value of 
conditional assembly switches. For example: 

2.6.22 . RADIX 

IF CPM 
.PRINTX /CPM version/ 
ENDIF 

NOTE 

.PRINTX will output on both 
passes. If only one printout 
is desired, use the IFl or IF2 
pseudo-oPe For example: 

IF2 
IF CPM 
.PRINTX /CPM version/ 
ENDIF 
ENDIF 

will only print if CPM is true 
and MSO is in pass 2. 

.RADIX <exp> 

The default base (or radix) for all constants is decimal. 
The .RADIX statement allows the default radix to be changed 
to any base in the range 2 to 16. For example: 

MOVI BX,OFFH 
.RADIX 16 
MOVI BX,OFF 

The two MOVIs in the example are identical. The <exp> in a 
• RADIX statement is always in decimal radix, regardless of 
the current radix. 



MACRO-80 ASSEMBLER PAGE 2-18 

2.6.23 .Z80 

.Z80 enables the assembler to accept Z80 opcodes. This is 
the default condition when the assembler is running on a Z8D 
operating system. Z80 mode may also be set by appending the 
Z switch to the MACRO-80 command string -- see Section 
2.2.2. 

2.6.24 .8080 

.8080 enables the assembler to accept 8080 opcodes. This is 
the default condition when the assembler is running on an 
8080 operating system. 8080 mode may also be set by 
appending the I switch to the MACRO-80 command string -- see 
Section 2.2.2. 

2.6.25 • REQUEST 

.REQUEST <filename>[,<filename> ••• ] 

.REQUEST sends a request to the LINK-80 loader to search the 
filenames in the list for undefined globals. The filenames 
in the list should be in the form of legal symbols. They 
should not include filename extensions or disk 
specifications. LINK-SO supplies a default extension and 
assumes the default disk drive. 



MACRo-ao ASSEMBLER PAGE 2-19 

2.6.26 Conditional Pseudo Operations 

The conditional pseudo operations are: 

IF/IFT <exp> 

IFE/IFF <exp> 

IFI 

IF2 

IFDEF <symbol> 

True 

True 

True 

True 

True 

if 

if 

if 

if 

if 

<exp> is not o. 
<exp> is o. 
pass 1. 

pass 2. 

<symbol> is defined 
has been declared External. 

or 

IFNDEF <symbol> True if <symbol> is undefined 
or not declared External. 

IFB <arg> 

IFNB <arg> 

IFIDN <argl>,<arg2> 

IFDIF <argl>,<arg2> 

True if <arg> is blank. The 
angle brackets around <arg> 
are required. 

True if <arg> is not blank. 
Used for testing when dummy 
parameters are supplied. The 
angle brackets around <arg> 
are required. 

True if the string <argl> is 
IDeNtical to the string 
<arg2>. 
The angle brackets around 
<argl> and <arg2> are 
required. 

True if the string <argl> is 
DIFferent from the string 
<arg2>. 
The angle brackets around 
<argl> and <arg2> are 
required. 

All conditionals use the following format: 

IFxx [argument] 

. 
[ELSE 

ENDIF 



MACRO-80 ASSEMBLER PAGE 2-20 

Conditionals may be nested to any level. Any argument to a 
conditional must be known on pass 1 to avoid V errors and 
incorrect evaluation. For IF, IFT, IFF, and IFE the 
expression must involve values which were previously defined 
and the expression must be absolute. If the name is defined 
after an IFDEF or IFNDEF, pass 1 considers the name to be 
undefined, but it will be defined on pass 2. 

2.6.26.1 ELSE - Each conditional pseudo operation may 
optionally--se used with the ELSE pseudo operation which 
allows alternate code to be generated when the opposite 
condition exists. Only one ELSE is permitted for a given 
IF, and an ELSE is always bound to the most recent, open IF. 
A condttional with more than one ELSE or an ELSE without a 
conditional will cause a C error. 

2.6.26.2 ENDIF - Each IF must have a matching ENDIF to 
terminate the conditional. Otherwise, an 'Unterminated 
conditional' message is generated at the end of each pass. 
An ENDIF without a matching IF causes a C error. 

2.6.27 Listing Control Pseudo Operations 

Output to the listing file can be controlled by two 
pseudo-ops: 

.LIST and .XLIST 

If a listing is not being made, these pseudo-ops have no 
effect. .LIST is the default condition. When a .XLIST is 
encountered, source and object code will not be listed until 
a .LIST is encountered. 

The output of false conditional blocks is controlled by 
three pseudo-ops: .SFCOND, .LFCOND, and .TFCOND. 

These pseudo-ops give the programmer control over four 
cases. 

1. Normally list false conditionals 
For this case, the programmer simply allows the 
default mode to control the listing. The default 
mode is list false conditionals. If the programmer 
decides to suppress false conditionals, the IX 
switch can be issued in the command line instead of 
editing the source file. 



MACRO-SO ASSEMBLER PAGE 2-21 

2. Normally suppress false conditionals 
For this case, the programmer issues the .TFCOND 
pseudo-op in the program file. .TFCOND reverses 
(toggles) the default, causing false conditionals 
to be suppressed. If the programmer decides to 
list false conditionals, the /X switch can be 
issued in the command line instead of editing the 
source file. 

3. Always suppress/list false conditionals 
For these cases, the programmer issues either the 
.SFCOND pseudo-op to always suppress false 
conditionals, or the .LFCOND pseudo-op to always 
list all false conditionals. 

4. Suppress/list some false conditionals 
For this case, the programmer has decided for most 
false conditionals whether to list or suppress, but 
for some false conditionals the programmer has not 
yet decided. For the false conditionals decided 
about, use .SFCOND or .LFCOND. For those not yet 
decided, use .TFCOND. .TFCOND sets the current and 
default settings to the opposite of the default. 
Initially, the default is set by giving /X or no /X 
in the command line. Two subcases exist: 

1. The programmer wants some false conditionals 
not to list unless /X is given. The programmer 
uses the .SFCOND and .LFCOND pseudo-ops to 
control which areas always suppress or list 
false conditionals. To selectively suppress 
some false conditionals, the programmer issues 
.TFCOND at the beginning of the conditional 
block and again at the end of the conditional 
block. (NOTE: The second .TFCOND should be 
issued so that the default setting will be the 
same as the initial setting. Leaving the 
default equal to the initial setting makes it 
easier to keep track of the default mode if 
there are many such areas.) If the conditional 
block evaluates as false, the lines will be 
suppressed. In this subcase, issuing the /X 
switch in the command line causes the 
conditional block affected by .TFCOND to list 
even if it evaluates as false. 



MACRO-80 ASSEMBLER PAGE 2-22 

2. The programmer wants some false conditionals to 
list unless IX is given. Two consecutive 
.TFCONDs places the conditional listing setting 
in initial state which is determined by the 
presence or absence of the IX switch in the 
command line (the first .TFCOND sets the 
default to not initial; the second to 
initial). The selected conditional block then 
responds to the IX switch: if a IX switch is 
issued in the command line, the conditional 
block is suppressed if false; if no IX switch 
is issued in the command line, the conditional 
block is listed even if false. 

The programmer then must reissue the .SFCOND or 
.LFCOND conditional listing pseudo-op to 
restore the suppress or list mode. Simply 
issuing another .TFCOND will not restore the 
prior mode, but will toggle the default 
setting. Since in this subcase, the next area 
of code is supposed to list or suppress false 
conditionals always, the programmer must issue 
.SFCOND or .LFCOND. 

The three conditional listing pseudo-ops are summarized 
below. 

PSEUDO-OP 

.SFCOND 

.LFCOND 

.TFCOND 

DEFINITION 

Suppresses the listing of conditional blocks 
that evaluate as false. 

Restores the listing of conditional blocks that 
evaluate as false. 

Toggles the current setting which controls the 
listing false conditionals. .TFCOND sets the 
current and default setting to not default. If 
a Ix switch is given in the MACRO-80 run 
command line for a file which contains .TFCOND, 
IX reverses the effect of .TFCOND. 



MACRo-aD ASSEMBLER PAGE 2-23 

The following chart illustrates the effects of the three 
pseudo-ops when encountered under /X and under no /X. 

PSEUDO-OP 

(none) 

.SFCOND 

.LFCOND 

.TFCOND 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

·0 

.TFCOND 

ON 

OFF 

ON 

OFF 

ON 

OFF 

OFF 
ON 

OFF 

OFF 

OFF 

ON 

ON 

OFF 

OFF 

ON 
OFF 

ON 

The output of cross reference information is controlled by 
.CREF and .XCREF. If the cross reference facility (see 
Chapter 3) has not been invoked, .CREF and .XCREF have no 
effect. The default condition is .CREF. When a .XCREF is 
encountered, no cross reference information is output until 
.CREF is encountered. 

The output of MACRO/REPT/IRP/IRPC expansions is controlled 
by three pseudo-ops: .LALL, .SALL, and .XALL. .LALLlists 
the complete macro text for all expansions. .SALL 
suppresses lsiting of all text and object code produced by 
macros. .XALL is the default condition; a source line is 
listed only if it generates object code. 



MACRO-80 ASSEMBLER PAGE 2-24 

2.6.28 Relocation Pseudo Operations 

The ability to create relocatable modules is one of the 
major features of Microsoft assemblers. Relocatable modules 
offer the advantages of easier coding and faster testing, 
debugging and modifying. In addition, it is possible to 
specify segments of assembled code that will later be loaded 
into RAM (the Data Relative segment) and ROM/PROM (the Code 
Relative segment). The pseudo operations that select 
relocatable areas are CSEG and DSEG. The ASEG pseudo-op is 
used to generate non-relocatable (absolute) code. The 
COMMON pseudo-op creates a common data area for every COMMON 
block that is named in the program. 

The default mode for the assembler is Code Relative. That 
is, assembly begins with a CSEG automatically executed and 
the location counter, in the Code Relative mode, pointing to 
location a in the Code Relative segment of memory. All 
subsequent instructions will be assembled into the Code 
Relative segment of memory until an ASEG or DSEG or COMMON 
pseudo-op is executed. For example, the first DSEG 
encountered sets the location counter to location zero in 
the Data Relative segment of memory. The following code is 
assembled in the Data Relative mode, that is, it is assigned 
to the Data Relative segment of memory. If a subsequent 
CSEG is encountered, the location counter will return to the 
next free location in the Code Relative segment and so on. 

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you 
wish to alter the current value of the location counter, use 
the ORG pseudo-oPe 

2.6.28.1 ORG Pseudo-op - At any time, the value 
of the location counter may be changed by use of the the ORG 
pseudo-oPe The form of the ORG statement is: 

ORG <exp> 

where the value of <exp> will be the new value of the 
location counter in the current mode. All names used in 
<exp> must be known on pass I and the value of <exp> must be 
either Absolute or in the current mode of the location 
counter. For example, the statements 

DSEG 
ORG 50 

set the Data Relative location counter to 50, relative to 
the start of the Data Relative segment of memory. 



MACRO-BO ASSEMBLER PAGE 2-25 

2.6.2S.2 LINK-BO - The LINK-BO linking loader (see 
Chapter 4~thIs manual) combines the segments and creates 
each relocatable module in memory when the program is 
loaded. The or~g~ns of the relocatable segments are not 
fixed until the program is loaded and the origins are 
assigned by LINK-SO. The command to LINK-SO may contain 
user-specified origins through the use of the IP (for Code 
Relative) and ID (for Data and COMMON segments) switches. 

For example, a program that begins with the statements 

ASEG 
ORG BOOH 

and is assembled entirely in Absolute mode will always load 
beginning at SOD unless the ORG statement is changed in the 
source file. However, the same program, assembled in Code 
Relative mode with no ORG statement, may be loaded at any 
specified address by appending the IP:<address> switch to 
the LINK-BO command string. 

2.6.29 Relocation Before Loading 

Two pseudo-ops, .PHASE and 
located in one area, but 
specified area. 

.DEPHASE, allow code to be 
executed only at a different, 

For example: 

DODO' • PHASE 100H 
0100 ES 0003 FOO: CALL BAZ 
0103 E9 FFOI ~P ZOO 
0106 C3 BAZ: ~T 

.DEPHASE 
0007' E9 FFFB ZOO: ~P 5 

All labels within a .PHASE block are defined as the 
value from the origin of the phase area. The code, 
is loaded in the current area (i.e., from 0' 
example) • The code within the block can later be 
100H and executed. 

2.7 MACROS AND BLOCK PSEUDO OPERATIONS 

absolute 
however, 
in this 
moved to 

The macro facilities provided by MACRO-BO include three 
repeat pseudo operations: repeat (REPT), indefinite repeat 
(IRP), and indefinite repeat character (IRPC). A macro 
definition operation (MACRO) is also provided. Each of 
these four macro operations is terminated by the ENDM pseudo 
operation. 



MACRO-80 ASSEMBLER 

2.7.1 Terms 

For the purposes of discussion of macros 
operations, the following terms will be used: 

PAGE 2-26 

and block 

1. <dummy> is used to represent a dummy parameter. 
All dummy parameters are legal symbols that appear 
in the body of a macro expansion. 

2. <dummylist> is a list of <dummy>s separated by 
commas. 

3. <arglist> is a list of arguments separated by 
commas. <arglist> must be delimited by angle 
brackets. Two angle brackets with no intervening 
characters. «» or two commas with no intervening 
characters enter a null argument in the list. 
Otherwise an argument is a character or series of 
characters terminated by a comma or >. With angle 
brackets that are nested inside an <arglist>, one 
level of brackets is removed each time the 
bracketed argument is used in an <arglist>. See 
example, Section 2.7.5.) A quoted string is an 
acceptable argument and is passed as such. Unless 
enclosed in brackets or a quoted string, leading 
and trailing spaces are deleted from arguments. 

4. <paramlist> is used to represent a list of actual 
parameters separated by commas. No delimiters are 
required (the list is terminated by the end of line 
or a comment), but the rules for entering null 
parameters and nesting brackets are the same as 
described for <arglist>. (See example, Section 
2.7.5) 

2.7.2 REPT-ENDM 

REPT <exp> 

ENDM 

The block of statements between REPT and ENDM is repeated 
<exp> times. <exp> is evaluated as a 16-bit unsigned 
number. If <exp> contains any external or undefined terms, 
an error is generated. Example: 

SET a 
REPT 10 
SET X+l 
DB X 
ENDM 

igenerates DB 1 - DB 10 



MACRO-80 ASSEMBLER PAGE 2-27 

2.7.3 IRP-ENDM 

IRP <dummy>,<arglist> 

ENDM 

The <arglist> must be enclosed in angle brackets. The 
number of arguments in the <arglist> determines the number 
of times the block of statements is repeated. Each 
repetition substitutes the next item in the <arglist> for 
every occurrence of <dummy> in the block. If the <arglist> 
is null (i.e., <», the block is processed once with each 
occurrence of <dummy> removed. For example: 

IRP X,<1,2,3,4,S,6,7,8,9,IO> 
DB X 
ENDM 

generates the same bytes as the REPT example. 

2.7.4 IRPC-ENDM 

IRPC <dummy>,string (or <string» 

ENDM 

IRPC is similar to IRP but the arglist is replaced by a 
string of text and the angle brackets around the string are 
optional. The statements in the block are repeated once for 
each character in the string. Each repetition substitutes 
the next character in the string for every occurrence of 
<dummy> in the block. For example: 

IRPC X,0123456789 
DB X+I 
ENDM 

generates the same code as the two previous examples. 



MACRO-80 ASSEMBLER PAGE 2-28 

2.7.5 ~~CRO 

Often it is convenient to be able to generate a given 
sequence of statements from various places in a program, 
even though different parameters may be required each time 
the sequence is used. This capability is provided by the 
MACRO statement. 
The form is 

<name> MACRO <dummylist> 

ENDM 

where <name> conforms to the rules for forming symbols. 
<name> is the name that will be used to invoke the macro. 
The <dummy>s in <dummylist> are the parameters that will be 
changed (replaced) each time the MACRO is invoked. The 
statements before the ENDM comprise the body of the macro. 
During assembly, the macro is expanded every time it is 
invoked but, unlike REPT/IRP/IRPC, the macro is not expanded 
when it is encountered. 

The form of a macro call is 

<name> <paramlist> 

where <name> is the name supplied in the MACRO definition, 
and the parameters in <paramlist> will replace the <dummy>s 
in the MACRO <dummylist> on a one-to-one basis. The number 
of items in <dummylist> and <paramlist> is limited only by 
the length of a line. The number of parameters used when 
the macro is called need not be the same as the number of 
<dummy>s in <dummylist>. If there are more parameters than 
<dummmy>s, the extras are ignored. If there are fewer, the 
extra <dummy>s will be made null. The assembled code will 
contain the macro expansion code after each macro call. 

NOTE 

A dummy parameter in a 
MACRO/REPT/IRP/IRPC is always 
recognized exclusively as a 
dummmy parameter. Register 
names such as A and B will be 
changed in the expansion if 
they were used as dummy 
parameters. 



MACRO-80 ASSEMBLER PAGE 2-29 

Here is an example of a MACRO definition that defines a 
macro called FOO: 

FOO MACRO X 
Y SET 0 

REPT X 
Y SET Y+l 

DB Y 
ENDM 
ENDM 

This macro generates the same code as the previous three 
examples when the call 

Foa 10 

is executed. 

Another example, which generates the same code, illustrates 
the removal of one level of brackets when an argument is 
used as an arglist: 

FOO 

When the call 

MACRO 
IRP 
DB 
ENDM 
ENDM 

X 
Y,<X> 
Y 

FOO <1,2,3,4,5,6,7,8,9,10> 

is made, the macro expansion looks like this: 

2.7.6 ENDM 

IRP 
DB 
ENDM 

Y,<1,2,3,4,S,6,7,8,9,10> 
Y 

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated 
with the ENDM pseudo-oPe Otherwise, the 'Unterminated 
REPT/IRP/IRPC/MACRO' message is generated at the end of each 
pass. An unmatched ENDM causes an 0 error. 

2.7.7 EXITM 

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or 
MACRO call. When an EXITM is executed, the expansion is 
exited immediately and any remaining expansion or repetition 
is not generated. If the block containing the EXITM is 
nested within another block, the outer level continues to be 
expanded. 



MACRO-SO ASSEMBLER PAGE 2-30 

2.7.S LOCAL 

LOCAL <dummylist> 

The LOCAL pseudo-op is allowed only inside a MACRO 
definition. When LOCAL is executed, the assembler creates a 
unique symbol for each <dummy> in <dummylist> and 
substitutes that symbol for each occurrence of the <dummy> 
in the expansion. These unique symbols are usually used to 
define a label within a macro, thus eliminating 
multiply-defined labels on successive expansions of the 
macro. The symbols created by the assembler range from 
•• 0001 to •• FFFF. Users will therefore want to avoid the 
form •• nnnn for their own symbols. If LOCAL statements are 
used, they must be the first statements in the macro 
definition. 

2.7.9 Special Macro Operators And Forms 

& The ampersand is used in a macro expansion to 
concatenate text or symbols. A dummy parameter that 
is in a quoted string will not be substituted in the 
expansion unless it is immediately preceded by &. 
To form a symbol from text and a dummy, put & 
between them. For example: 

ERRGEN MACRO 
ERROR&X:PUSH 

MOVI 
JMP 
ENDM 

X 
BX 
BX,'&X' 
ERROR 

In this example, the call ERRGEN A will generate: 

ERRORA: PUSH B 
MOVI BX,'A' 
JMP ERROR 

;; In a block operation, a comment preceded by two 
semicolons is not saved as part of the expansion 
(i.e., it will not appear on the listing even under 
.LALL) • A comment preceded by one semicolon, 
however, will be preserved and appear in the 
expansion. 

When an exclamation point is used in an 
the next character is entered literally 
and <;> are equivalent}. 

argument, 
(i.e., !~ 



MACRO-80 ASSEMBLER PAGE 2-31 

NUL NUL is an operator that returns true if its argument 
(a parameter) is null. The remainder of a line 
after NUL is considered to be the argument to NUL. 
The conditional 

IF NUL argument 

is false if, during the expansion, the first 
character of the argument is anything other than a 
semicolon or carriage return. It is recommended 
that testing for null parameters be done using the 
IFB and IFNB conditionals. 

% The percent sign is used only in a macro argument. 
% converts the expression that follows it (usually a 
symbol) to a number in the current radix. During 
macro expansion, the number derived from converting 
the expression is substituted for the dummy. Using 
the % special operator allows a macro call by value. 
(Usually, a macro call is a call by reference with 
the text of the macro argument substituting exactly 
for the dummy.) 

The expression following the % must conform to the 
same rules as the DS (Define Space) pseudo-oPe A 
valid expression returning a non-relocatable 
constant is required. 

EXAMPLE: Normally, LB, the argument tcr r~KLAB, 
would be substituted for Y, the argument to MACRO, 
as a string. The % causes LB to be converted to a 
non-relocatable constant which is then substituted 
for Y. Without the % special operator, the result 
of assembly would be 'Error LB' rather than 'Error 
1', etc. 

MAKLAB MACRO Y 
ERR&Y: DB 'Error &Y' ,0 

ENDM 
MAKERR MACRO X 
LB SET a 

REPT x 
LB SET LB+I 

MAKLAB %LB 
ENDM 
ENDM 

When called by MAKERR 3, the assembler will 
generate: 

ERRI: DB 'Error l' , a 
ERR2: DB 'Error 2' , a 
ERR3: DB 'Error 3 ' ,0 



MACRO-BO ASSEMBLER PAGE 2-32 

TYPE The TYPE operator returns a byte that describes two 
characteristics of its argument: 1) the mode, and 
2) whether it is External or not. The argument to 
TYPE may be any expression (string, numeric, 
logical). If the expression is invalid, TYPE 
returns zero. 

The byte that is returned is configured as follows: 

The lower two bits are the mode. If the lower two 
bits are: 

a the mode is Absolute 
1 the mode is Program Relative 
2 the mode is Data Relative 
3 the mode is Common Relative 

The high bit (BaH) is the External bit. If the high 
bit is on, the expression contains an External. If 
the high bit is off, the expression is local (not 
External). 

The Defined bit is 20H. This bit is on if the 
expression is locally defined, and it is off if the 
expression is undefined or external. If neither bit 
is on, the expression is invalid. 

TYPE is usually used inside macros, where an 
argument type may need to be tested to make a 
decision regarding program flow. For example: 

FOO MACRO X 
LOCAL Z 

Z SET TYPE X 
IF Z ••• 



MACRo-ao ASSEMBLER PAGE 2-33 

2.a USING zao PSEUDO-OPS 

When using the MACRo-a 0 assembler, the following zao 
pseudo-ops are valid. The function of each pseudo-op is 
equivalent to that of its counterpart. 

zao pseudo-op 

COND 
ENDC 
*EJECT 
DEFB 
DEFS 
DEFW 
DEFM 
DEFL 
GLOBAL 
EXTERNAL 

Equivalent pseudo-op 

IFT 
ENDIF 
PAGE 
DB 
DS 
DW 
DB 
SET 
PUBLIC 
EXTRN 

The formats, where different, conform to the previous 
format. That is, DEFB and DEFW are permitted a list of 
arguments (as are DB and DW), and DEFM is permitted a string 
or numeric argument (as is DB) • 



MACRO-80 ASSEMBLER PAGE 2-34 

2.9 SAMPLE ASSEMBLY 

A>M80 

*EXMPL1,TTY:=EXMPL1 

MAC80 3.2 PAGE 1 

00100 iCSL3(P1,P2) 
00200 iSHIFT PI LEFT CIRCULARLY 3 BITS 
00300 iRETURN RESULT IN P2 
00400 ENTRY CSL3 
00450 iGET VALUE OF FIRST PARAMETER 
00500 CSL3: 

0000' 7E 00600' MOV A,M 
0001' 23 00700 INX H 
0002' 66 00800 MOV H,M 
0003' 6F 00900 MOV L,A 

01000 iSHIFT COUNT 
0004' 06 03 01100 MVI B,3 
0006' AF 01200 LOOP: XRA A 

01300 iSHIFT LEFT 
0007' 29 01400 DAD H 

01500 iROTATE IN CY BIT 
0008' 17 01600 RAL 
0009' 85 01700 ADD L 
OOOA' 6F 01800 MOV L,A 

01900 iDECREMENT COUNT 
OOOB' 05 02000 DCR B 

02100 iONE MORE TIME 
OOOC' C2 0006' 02200 JNZ LOOP 
OOOF' EB 02300 XCHG 

02400 iSAVE RESULT IN SECOND PARAMETER 
0010' 73 02500 MOV M,E 
0011' 23 02600 INX H 
0012' 72 02700 MOV M,D 
0013' C9 02800 RET 

02900 END 

MACaO 3.2 PAGE S 

CSL3 OOOOI' LOOP 0006' 

No Fatal error(s) 



MACRO-80 ASSEMBLER PAGE 2-35 

2.10 MACRO-80 ERRORS 

MACRO-80 errors are indicated by a one-character flag in 
column one of the listing file. If a listing file is not 
being printed on the terminal, each erroneous line is also 
printed or displayed on the terminal. Below is a list of 
the MACRO-80 Error Codes: 

A Argument error 
Argument to pseudo-op is not in correct format or 
is out of range (.PAGE 1: .RADIX Ii PUBLIC Ii 
JMPS TOOFAR). 

C Conditional nesting error 
ELSE without IF, ENDIF without IF, two ELSEs on 
one IF. 

D Double Defined symbol 
Reference to a symbol which is multiply defined. 

E External error 
Use of an external illegal in context (e.g., FOO 
SET NAME##i MOVI AX,2-NAME##). 

M Multiply Defined symbol 
Definition of a symbol which is multiply defined. 

N Number error 
Error in a number, usually a bad digit (e~g., 8Q). 

o Bad opcode or objectionable syntax 
ENDM, LOCAL outside a block; SET, EQU or MACRO 
without a name; bad syntax in an opcode; or bad 
syntax in an expression (mismatched parenthesis, 
quotes, consecutive operators, etc.). 

P Phase error 
Value of a label or EQU name is different on pass 
2. 

Q Questionable 
Usually means a line is not terminated properly. 
This is a warning error (e.g. MOV AX,BX,). 

R Relocation 
Illegal use of relocation in expression, such as 
abs-rel. Data, code and COMMON areas are 
relocatable. 

U Undefined symbol 
A symbol referenced in an expression is not 
defined. (For certain pseudo-ops, a V error is 
printed on pass 1 and a U on pass 2.) 



MACRO-SO ASSEMBLER PAGE 2-36 

V Value error 
On pass 1 a pseudo-op which must have its value 
known on pass 1 (e.g., .RADIX, .PAGE, DS, IF, IFE, 
etc.), has a value which is undefined. If the 
symbol is defined later in the program, a U error 
will not appear on the pass 2 listing. 

Error Messages: 

'No end statement encountered on input file' 
No END statement: either it is missing or it is 
not parsed due to being in a false conditional, 
unterminated IRP/IRPC/REPT block or terminated 
macro. 

'unterminated conditional' 
At least one conditional is unterminated at the 
end of the file. 

'Unterminated REPT/IRP/IRPC/MACRO' 
At least one block is unterminated. 

[xx] [No] Fatal error (s) [,xx warnings] 
The number of fatal errors and warnings. The 
message is listed on the CRT and in the list file. 

2.11 COMPATIBILITY WITH OTHER ASSEMBLERS 

The $EJECT and $TITLE controls are provided for 
compatability with INTEL's ISIS assembler. The dollar sign 
must appear in column 1 only if spaces or tabs separate the 
dollar sign from the control word. The control 

$EJECT 

is the same as the MACRO-SO PAGE pseudo-oPe 
The control 

$TITLE ( , text' ) 

is the same as the MACRO-SO SUBTTL <text> pseudo-oPe 

The INTEL operands PAGE and INPAGE generate Q errors when 
used with the MACRO-SO CSEG or DSEG pseudo-ops. These 
errors are warnings; the assembler ignores the operands. 

When MACRO-SO is entered, the default for the origin is Code 
Relative O. 

With the INTEL ISIS assembler, the default is Absolute O. 



MACRO-SO ASSEMBLER PAGE 2-37 

With MACRO-SO, the dollar sign ($) is a defined constant 
that indicates the value of the location counter at the 
start of the statement. Other assemblers may use a decimal 
point or an asterisk. Other constants are defined by 
MACRO-SO to have the following values: 

A=7 
H=4 

B=O 
L=5 

C=l 
M=6 

2.12 FORMAT OF LISTINGS 

D=2 
SP=6 

E=3 
PSW=6 

On each page of a MACRO-SO listing, the first two lines have 
the form: 

[TITLE text] 
[SUBTTL text] 

where: 

MSO 3.3 PAGE x[-y] 

1. TITLE text is the text supplied with the TITLE 
pseudo-op, if one was given in the source program. 

2. x is the major page number, which is incremented 
only when a form feed is encountered in the source 
file. (When using Microsoft's EDIT-SO text editor, 
a form feed is inserted whenever a page mark is 
done.) When the symbol table is being printed, x = 
s. 

3. Y is the minor page number, which is incremented 
whenever the .PAGE pseudo-op is encountered in the 
source file, or whenever the current page size has 
been filled. 

4. SUBTTL text is the text supplied with the SUBTTL 
pseudo-op, if one was given in the source program. 

Next, a blank line is printed, followed by the first line of 
output. 

A line of output on a MACRO-SO listing has the following 
form: 

[crf#] [error] loc#m Ixx I xxxxl··· source 

If cross reference information is being output, the first 
item on the line is the cross reference number, followed by 
a tab. 

A one-letter error code followed by a space appears next on 
the line, if the line contains an error. If there is no 
error, a space is printed. If there is no cross reference 
number, the error code column is the first column on the 
listing. 



MACRO-80 ASSErvlBLER PAGE 2-38 

The value of the location counter appears next on the line. 
It is a 4-digit hexadecimal number or 6-digit octal number, 
depending on whether the /0 or /H switch was given in the 
MACRO-80 command string. 

The character at the end of the location 
the mode indicator. It will be one 
symbols: 

" 

<space> 
* 

Code Relative 
Data Relative 
COMMON Relative 
Absolute 
External 

counter value is 
of the following 

Next, three spaces are printed followed by the assembled 
code. One-byte values are followed by a space. Two-byte 
values are followed by a mode indicator. Two-byte values 
are printed in the opposite order they are stored in, i.e., 
the high order byte is printed first. Externals are either 
the offset or the value of the pointer to the next External 
in the chain. 

If a line of output on a MACRO-80 listing is from an INCLUDE 
file, the character 'C' is printed after the assembled code 
on that line. If a line of output is part of a text 
expansion (MACRO, REPT, IRP, IRPC) a plus sign '+' is 
printed after the assembled code on that line. 

The remainder of the line contains the line of source code, 
as it was input. 

Example: 

OC49 3A A9lZ' C+ LDA LCOUNT 

'C+' indicates this line is from an INCLUDE file and part of 
a macro expansion. 



MACRO-80 ASSEMBLER PAGE 2-39 

2.12.1 Symbol Table Listing 

In the symbol table listing, all the macro names in the 
program are listed alphabetically, followed by all the 
symbols in the program, listed alphabetically. After each 
symbol, a tab is printed, followed by the value of the 
symbol. If the symbol is Public, an I is printed 
immediately after the value. The next character printed 
will be one of the following: 

U 

C 

* 
<space> 

.. 

Undefined symbol. 

COMMON block name. (The "value" of the 
COMMON block is its length (number of 
bytes) in hexadecimal or octal.) 

External symbol. 

Absolute value. 

Program Relative value. 

Data Relative value • 

COMMON Relative value. 





CHAPTER 4 

LINK-SO LINKING LOADER 

NOTE 

If you are using the TEKDOS 
operating system, see Appendix 
A for proper command formats. 

4.1 RUNNING LINK-SO 

The command to run LINK-SO is 

LSO 

LINK-SO returns the prompt 
accept commands. 

4.2 COMMAND FORMAT 

"*" , indicating it is ready to 

Each command to LINK-SO consists of a string of object 
filenames separated by commas. These are the files to be 
loaded by LINK-SO. The command format is: 

objfilel,objfile2, ••• objfilen 

The default extension for all filenames is REL. Command 
lines are supported, that is, the invocation and command may 
be typed on the same line. 

Example: 

LSO MYPROG,YRPROG 



LINK-aD LINKING LOADER PAGE 4-2 

Any filename in the LINK-aO command string can also specify 
a device name. The default device name with the CP/M 
operating system is the currently logged disk. The default 
device with the ISIS-II operating system is disk drive O. 
The format is: 

devl:objfilel,dev2:objfile2, ••• devn:objfilen 

The device names are as listed in Section 2.2.1. 

Example: 

L80 MYPROG,A:YRPROG 

After each line is typed, LINK-80 will load the specified 
files. After LINK finishes this process, it will list all 
symbols that remained undefined followed by an asterisk. 

Example: 

*MAIN 

DATA 0100 0200 

SUBRl* (SUBRI is undefined) 

*SUBRI 

DATA 0100 0300 

* 
Typically, to execute a MACRO-aD program and subroutines, 
the user types the list of filenames followed by IG (begin 
execution). To resolve any external, undefined symbols, you 
can first search your library routines (See Chapter 5, 
LIB-aD) by appending the filenames, followed by IS, to the 
loader command string. 

*MYLIB/S 

*/G 

Searches MYLIB.REL for unresolved 
global symbols 

Starts execution 

4.2.1 LINK-aD Switches 

A number of switches may be given in the LINK-aD command 
string to specify actions affecting the loading or execution 
of the program(s). Each switch must be preceded by a slash 
(I). (With the TEKDOS operating system, switches are 
preceded by hyphens. See Appendix A.) 



LINK-ao LINKING LOADER PAGE 4-3 

Switches may be placed wherever applicable in the command 
string: 

1. At command level. It is possible for a switch to 
be the entire LINK-aO command, or to appear first 
in the command string. For example: 

*/G Tells LINK-aO to begin execution 
of program(s) already loaded 

*/M List all global teferences 
from program(s) already loaded 

*/P:200,FOO Load FOO, with program area 
beginning at address 200 

2. Immediately after a filename. An S or N switch may 
refer to only one filename in the command string. 
Therefore, when the S or N switch is required, it 
is placed immediately after that filename, 
regardless of where the filename appears in the 
command string. For example: 

*MYLIB/S,MYPROG 
Search MYLIB.REL and load necessary 
library modules, then load MYPROG.REL. 

*MYPROG/N,MYPROG/E 
Load MYPROG.REL, save MYPROG.COM 
on disk and exit LINK-80. 

3. At the end of the command string. Any required 
switches that affect the entire load process may be 
appended at the end of the command string. For 
example: 

*MYPROG/N,MYPROG/M/E 
Open a CP/M COM file called 
MYPROG.COM, load MYPROG.REL 
and list all global refer­
ences. Exit LINK-80 and save 
the COM file. 

MYLIB/S,MYSUB,MYPROG/N,MYPROG/M/G 
Search MYLIB.REL, load and link 
MYSUB.REL and MYPROG.REL, 
open a CP/M COM file 
called MYPROG.COM, list 
all global references, save the 
COM file, and execute MYPROG. 



LINK-80 LINKING LOADER PAGE 4-4 

The available switches are: 

Switch 

R 

E or E:Name 

G or G:Name 

N 

Action 

Reset. Put loader back in its initial state. 
Use /R if you loaded the wrong file by 
mistake and want to restart. /R takes effect 
as soon as it is encountered in a command 
string. 

Exit LINK-80 and return to the operating 
system. The system library will be searched 
on the current disk to satisfy any existing 
undefined globals. Before exiting, LINK-80 
prints three numbers: the start address, the 
address of the next available byte, and the 
number of 256-byte pages used. The optional 
form E:Name (where Name is a global symbol 
previously defined in one of the modules) 
uses Name for the start address of the 
program. Use /E to load a program and exit 
back to the monitor. 

Start execution of the program as soon as the 
current command line has been interpreted. 
The system library will be searched on the 
current disk to satisfy any existing 
undefined globals if they exist. Before 
execution actually begins, LINK-8~ prints 
three numbers and a BEGIN EXECUTION message. 
The three numbers are the start address, the 
address of the next available byte, and the 
number of 256-byte pages used. The optional 
form G:Name (where Name is a global symbol 
previously defined in one of the modules) 
uses Name for the start address of the 
program. 

If a <filename>/N is specified, the program 
will be saved on disk under the selected name 
(with a default extension of .COM for CP/M) 
when a /E or /G is done. A jump to the start 
of the program is inserted if needed so the 
program can run properly (at lOOH for CP/M). 



LINK-SO LINKING LOADER PAGE 4-5 

P and D 

u 

M 

S 

/P and /D allow the origin(s) to be set for 
the next program loaded. /P and /D take 
effect when seen (not deferred), and they 
have no effect on programs already loaded. 
The form is /P:<address> or /D:<address>, 
where <address> is the desired origin in the 
current typeout radix. (Default radix is 
hex. /0 sets radix to octal; /H to hex.) 
LINK-SO does a default /P:<link origin>+3 
(i.e., I03H for CP/M and 4003H for ISIS) to 
leave room for the jump ~o the start address. 
NOTE: Do not use /P or /D to load programs 
or data into the locations of the loader's 
jump to the start address (IOOH to 102H for 
CP/M) unless it is to load the start of the 
program there. If programs or data are 
loaded into these locations, the jump will 
not be generated. 

If no /D is given, data areas are loaded 
before program areas for each module. If a 
/D is given, all Data and Common areas are 
loaded starting at the data origin and the 
program area at the program origin. Example: 

*/P:200,FOO 
Data 200 300 
*/R 
*/P:200 /D:400,FOO 
Data 400 4S0 
Program 200 280 

List the origin and end of the program and 
data area and all undefined globals as soon 
as the current command line has been 
interpreted. The program information is only 
printed if a /D has been done. Otherwise, 
the program is stored in the data area. 

List the origin and end of the program and 
data area, all defined globals and their 
values, and all undefined globals followed by 
an asterisk. The program information is only 
printed if a /D has been done. Otherwise, 
the program is stored in the data area. 

Search the filename immediately preceding the 
/S in the command string to satisfy any 
undefined globals. 



LINK-80 LINKING LOADER PAGE 4-6 

4.2.2 CP/M LINK-80 Switches 

The following switches apply to CP/M versions only. 

x 

Y 

If a filename/N was specified, /X will cause 
the file to be saved in Intel ASCII HEX 
format with an extension of HEX. 

Example: FOO/N/X/E will create an Intel 
ASCII HEX formatted load module named 
FOO.HEX. 

If a filename/N was specified, /Y will create 
a fi1ename.SYM file when /E is entered. This 
file contains the names and addresses of all 
Globals for use with Digital Research's 
Symbolic Debugger, SID and ZSID. 

Example: FOO/N/Y/E creates FOO.COM and 
FOO.SYM. MYPROG/N/X/Y/E creates MYPROG.HEX 
and MYPROG.SYM. 

4.2.3 Sample Links 

LINK AND GO 

A>L80 
*EXAMPL, EXMPLI/G 
DATA 3000 30AC 
[304F 30AC 49] 

[BEGIN EXECUTION] 

A> 

1792 
14336 

-16383 
14 

112 

LINK AND SAVE 

A>L80 

14336 
-16383 

14 
112 
896 

*EXAMPL, EXAMPL1 ,EXAM/N/E 
DATA 3000 30AC 
[304F 30AC 49] 
A> 

Loads and links EXAMPL.REL, EXMPLI.REL and creates 
EXAM. COM. 



LINK-ao LINKING LOADER 

4.3 FORMAT OF LINK COMPATIBLE OBJECT FILES 

NOTE 

Section 4.3 is reference 
material for users who wish to 
know the load format of 
LINK-ao relocatable object 
files. Most users will want 
to skip this section, as it 
does not contain material 
necessary to the operation of 
the package. 

PAGE 4-7 

LINK-compatible object files consist of a bit stream. 
Individual fields within the bit stream are not aligned on 
byte boundaries, except as noted below. Use of a bit stream 
for relocatable object files keeps the size of object files 
to a m~n~mum, thereby decreasing the number of disk 
reads/writes. 

There are two basic types of load items: Absolute and 
Relocatable. The first bit of an item indicates one of 
these two types. If the first bit is a 0, the following a 
bits are loaded as an absolute byte. If the first bit is a 
1, the next 2 bits are used to indicate one of four- types of 
relocatable items: 

00 Special LINK item (see below). 

01 Program Relative. Load the following 16 bits 
after adding the current Program base. 

10 Data Relative. Load the following 16 bits af~er 
adding the current Data base. 

11 Common Relative. Load the following~ 16 bits 
after adding the current Common base. 

Special LINK items consist of the bit stream 100 followed 
by: 

a four-bit control field 

an optional A field consisting of a two-bit 
address type that is the same as the two-bit 
field above except 00 specifies absolute address 

an optional B field consisting of 3 bits that 
give a symbol length and up to a bits for eac~ 
character of the symbol 



LINK-ao LINKING LOADER PAGE 4-a 

A general representation of a special LINK item is: 

1 00 xxxx yy nn zzz + characters of symbol name 

A field B field 

xxx x 
yy 
nn 

Four-bit control field (0-15 below) 
Two-bit address type field 
Sixteen-bit value 

zzz Three-bit symbol length field 

The following special types have a B-field only: 

a Entry symbol (name for search) 
1 Select COMMON block 
2 Program name 
3 Request library search 
4 Extension LINK items (see below) 

The following special LINK items have both an A field and a 
B field: 

5 Define COMMON size 
6 Chain external (A is head of address chain, B is 

name of external symbol) 
7 Define entry point (A is address, B is name) 

The following special LINK items have an A field only: 

a External - offset. Used for JMP and CALL to 
externals 

9 External + offset. The A value will be added to 
the two bytes starting at the current location 
counter immediately before execution. 

10 Define size of Data area (A is size) 
11 Set loading location counter to A 
12 Chain address. A is head of chain, replace all 

entries in chain with current location counter. 
The last entry in the chain has an address field 
of absolute zero. 

13 Define program size (A is size) 
14 End program (forces to byte boundary) 



LINK-ao LINKING LOADER PAGE 4-9 

The following special Link item has neither an A nor a B 
field: 

15 End file 

An Extension LINK item follows the general format of a 
B-field-only special LINK item, but contents of the B-field 
are not a symbol name. Instead, the symbol area contains 
one character to identify the type of Extension LINK item, 
followed by from 1 to 7 characters of additional 
information. 

Thus, every Extension LINK item has the format: 

1 00 0100 zzz i jjjjjjj 

where 

zzz may be any three bit integer (with 000 
representing a) , 

i is an eight bit Extension LINK item type 
identifier, and 

jjjjjjj are zzz-l eight bit characters of 
information whose significance depends on i 

At present, there is only one Extension LINK item: 

i = X1 35 1 COBOL overlay segment sentinel 

zzz = 010 (binary) 

j = COBOL segment number -49 (decimal) 

When the overlay segment sentinel is encountered by the 
linker, the current overlay segment number is set to the 
value of j+49. If the previously existing segment 
number was non-zero and a IN switch is in effect, the 
data area is written to disk in a file whose name is the 
current program name and whose extension is Vnn, where 
nn are the two hexadecimal digits representing the 
number j+49 (decimal). 



LINK-SO LINKING LOADER PAGE 4-10 

4.4 LINK-SO ERROR MESSAGES 

LINK-SO has the following error messages: 

?No Start Address 

?Loading Error 

?Out of Memory 

?Command Error 

?<fi1e> Not Found 

A /G switch was issued, but no main 
program had been loaded. 

The last file given for input was not a 
properly formatted LINK-SO object file. 

Not enough memory to load program. 

Unrecognizable LINK-SO command. 

<file>, as given in the command string, 
did not exist. 

%2nd COMMON Larger /XXXXXX/ 
The first definition of COMMON block 
/XXXXXX/ was not the largest definition. 
Reorder module loading sequence or 
change COMMON block definitions. 

%Mult. Def. Global YYYYYY 
More than one definition for the global 
(internal) symbol YYYYYY was encountered 
during the loading process. 

%Overlaying { program) Area 
Data 

,Start = xxxx 
,Public = <symbol name> (xxxx) 
,External = <symbol name> (xxxx) 
/P will cause already loaded 
be destroyed. 

?Intersecting 

A /D or 
data to 

{
program} Area 
Data 

The program and data area intersect and 
an address or external chain entry is in 
this intersection. The final value 
cannot be converted to a current value 
since it is in the area intersection. 

?Start Symbol - <name> - Undefined 
After a /E: or /G: is given, the 
symbol specified was not defined. 



LINK-aD LINKING LOADER PAGE 4-11 

Origin f Above) Loader Memory, Move Anyway (Y or N)? 
\ Below 

After a /E or /G was given, either the 
data or program area has an or~g~n or 
top which lies outside loader memory 
(i.e., loader origin to top of memory). 
If a Y <cr> is given, LINK-aD will move 
the area and continue. If anything .else 
is given, LINK-SO will exit. In either 
case, if a /N was given, the image will 
already have been saved. 

?Can't Save Object File 
A disk error occurred when the file was 
being saved. 

4.5 PROGRAM BREAK INFORMATION 

LINK-aD stores the address of the first free location in a 
global symbol called $MEMRY if that symbol has been defined 
by a program loaded. $MEMRY is set to the top of the data 
area +1. 

NOTE 

If /D is given and the data 
or~g~n is less than the 
program area, the user must be 
sure there is enough room to 
keep the program from being 
destroyed. This is 
particularly true with the 
disk driver for FORTRAN-a 0 
which uses $MEMRY to allocate 
disk buffers and FCB's. 





APPENDIX A 

TEKDOS Operating System 

The command formats for MACRO-aD, LINK-aD and CREF-aO differ 
slightly under the TEKDOS operating system. 

A.l TEKDOS COMMAND FILES 

The files FaO, MaO, and cao are actually TEKDOS command 
files for the compiler, assembler, loader, and cross 
reference programs, respectively. These command files set 
the emulation mode to 0 and select the z-ao assembler 
processor (see TEKDOS documentation), then execute the 
appropriate program file. You will note that all of these 
command files are set up to execute the Microsoft programs 
from drive 1. LINK-aO will also look for the library 
(FORLIB) on drive 1. If you wish to execute any of this 
software from drive 0, the command file must be edited and 
LINK-aO should be given an explicit library search directive 
"FORLIB-S". (See Section 4.2.1 of thi s manual.) 

A.2 MACRO-aD 

The MaO assembler accepts command lines only. A prompt is 
not displayed and interactive commands are not accepted. 
Commands have the same format as TEKDOS assembler commands~ 
i.e., three filename or device name parameters plus optional 
switches. 

Mao [objfile] [lstfile] sourcefile [swl] [sw2 ••• ] 

The object and listing file parameters "are optional. These 
files will not be created if the parameters are omitted,' 
however any error messages will still be displayed on the 
console. The available switches are as described in Chapter 
2 of this manual. except that the switches are delimited by 
commas or spaces instead of slashes. 



PAGE A-2 

A.3 CREF-aO 

The form of commands to CREFSO is: 

CSO lstfile sourcefile 

Both filename parameters are required. The sourcefile 
parameter is always the name of a CREFSO file created during 
assembly, by use of the C switch. 

Example: 

Create a CREFSO file using MACRO-aO: 

MSO " TSTCRF TSTMAC C 

Create a cross reference listing from the CREFSO file: 

CSO TSTLST TSTCRF 

A.4 LINK-SO 

with TEKDOS, the LINK-SO loader accepts interactive commands 
only. Command lines are not supported. 

When LINK-SO is invoked, and whenever it is waiting for 
input, it will prompt with an asterisk. Commands -are lists 
of filenames and/or devices separated by commas or spaces 
and optionally interspersed with switches. The input to 
LINK-ao must be Microsoft relocatable object code (not the 
same as TEKDOS loader format). 

Switches to LINK-SO are delimited by hyphens under TEKDOS, 
instead of slashes. All LINK-SO switches (as documented in 
Chapter 3) are supported, except "G" and "N", which are not 
implemented at this time. 

Examples: 

1. Assemble a MACRO-SO program named XTEST, creating 
an object file called XREL and a listing file 
called XLST: 

>MSO XREL XLST XTEST 

2. Load XTEST and save the loaded module: 

>Lao 
*XREL-E 
[04AD 22Ba] 
*DOS*ERROR 46 
LBO TERMINATED 
>M XMOD 400 22Ba 04AD 



PAGE A-3 

Note that "-E" exits via an error message due to execution 
of a Halt instruction. The memory image is intact, however, 
and the "Module" command may be used to save it. Once a 
program is saved in module format, it may then be executed 
directly without going through LINK-80 again. 

The bracketed numbers printed by LINK-80 before exiting are 
the entry point address and the highest address loaded, 
respectively. The loader default is to begin loading at 
400H. However, the loader also places a jump to the start 
address in location 0, thereby allowing execution to begin 
at O. The memory locations between 0003 and 0400H are 
reserved for SRB's and I/O buffers at runtime. 





INDEX 

$INCLUDE • • • • • • • • • • • 2-14 
$MEMRY • • • • • • • • • • • • 4-11 

• COMMENT · · · · · 2-16 
.CREF · · · · · · · · · · 2-23 
.DEPHASE · · · · · · · · · 2-25 
.LALL · · · · · · · · · · · · 2-23 
.LFCOND · · · · · · · · · · · 2-20 
.LIST · · 2-20 
• PAGE · · · · · · · · · · 2-37 
• PHASE · · · · · · 2-25 
.PRINTX · · · · · · · 2-17 
• RADIX · · · · · · 2-6, 2-17 
• REQUEST · · · 2-18 
.SALL · · · · · · · · 2-23 
.SFCOND · · · · · · · · · · · 2-20 
.TFCOND · · · · · · · 2-20 
.XALL · · · · 2-23 
• XCREF · · · · · · · · · · 2-23 
.XLIST · · · · · · · · · · · · 2-20 

Absolute memory • • • • • • 
Arithmetic operators •••• 
ASEG • • • • 

• 2-8, 2-11, 2-38 
• 2-8 
• 2-8, 2-11, 2-24 

Block pseudo ops • 

Character constants 
Code Relative • • • 
Command format • • • • 
Comments • • • • • • • • 
COMMON • • • • • • • • • 

Conditionals • 
Constants • • • . 
CP/M • • • • • 

• 2-25 

• 2-7 
• •• 2-11, 2-24 to 2-25, 2-38 

• • 2-1, 3-1, 4-1, 5-1 
• 2-6, 2-16 
• 2-8, 2-11, 2-24 to 2-25, 

2-38 to 2-39 
• • 2-19 

• 2-6 
• 2-2 to 2-3, 4-4 to 4-6, 

5-1, 5-4 
Cross reference facility ••• 2-4, 2-23, 2-37, 3-1 
CSEG ••••••••••••• 2-8, 2-11, 2-24, 2-36 

Data Relative 

DB · · · · · DC · · · · · · · Define Byte · · Define Character 
Define Origin 
Define Space · Define Word · · DS · · · · · · · DSEG · · · · · · DW · · · · 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

· · · · · · · · · · · · · · · · 

2-8, 2-12, 2-24 to 2-25, 
2-38 

·2-6, 2-11 
2-12 
2-6, 2-11 
2-12 
2-15 
2-12 
2-13 
2-12 
2-8, 2-12, 2-24, 2-36 
2-13 



EDIT-80 
ELSE • 
END 
ENDIF 
ENDM • 
ENTRY 
EQU 
Error codes· • 
Error messages • 
EXITM 
EXT 
Externals 
EXTRN 

IF • 
IFl 
IF2 
IFB 
IFDEF 
IFDIF 
IFE 
IFF 
IFIDN 
IFNB • 
IFT 
INCLUDE 
INTEL 
IRP 
IRPC • 
ISIS-II 

LIB-80 • 
Library manager 
LINK-80 

Listings • 

LOCAL • 
Logical operators 

MACLIB • 
MACRO 

• 

• 

Macro operators 
Modes • • 
Modules 

NAME. 

Operators 
ORG 

PAGE • 
Program Relative • 
PUBLIC • 

REPT • 
• i • 

SET 

• 

• 

• 

• 

• 

• 

• 2-5, 2-37 
• 2-20 
• 2-13 
• 2-20 
• 2-25, 2-29 
• 2-13, 5-2 
• 2-14 to 2-15 
• 2-35, 2-37 
• 2-36, 4-10 
• 2-29 
• 2-14 
• 2-9, 2-14, 2-35, 2-38 
• 2-14 

• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-19 
• 2-14 
• 2-36 
• 2-23, 2-25, 2-27 
• 2-23,.2-25, 2-27 
• 2-2 to 2-3, 2-5, 4-5 

• 5-1 
• 5-1 
• 2-11, 2-13, 

4-1, 5-4 
• 2-14, 2-20, 

3-2, 5-4 
• 2-30 
• 2-8 

• 2-14 

2-18, 2-25, 

2-37 to 2-38, 

• 2-23, 2-25 to 2-26, 2-28 to 2-29 
• 2-30 
• 2-8 
• 5-.2 

• 2-15 

• 2-8 
• 2-11, 2-13, 2-15, 2-24 

• 2-15, 2-36 
• 2-8 
• 2-5, 2-13, 2-39 

• 2-23, 2-25 to 2-26 

• 2-15 



Strings • • •• • 2-7 
SUBTTL •••••••••••• 2-16, 2-36 to 2-37 
Switches ••• • ••• 2-3, 3-1, 4-2, S-3, S-S 
Symbol table. • • • • 2-37, 2-39 

TEKDOS • 
TITLE . . . . ••• 2-1, 3-1, 4-1, A-I 

. ••• 2-1S to 2-16, 2-37 





Microsoft 
Software Problem Report 

Use this form to report errors or problems in: [] FORTRAN-SO 

o COBOL-SO 

o MACRO-SO 
o LINK-SO 

Release (or version) number: 
Date 

Report only one problem per form. 

Describe your hardware and operating system: 

Please supply a concise description of the problem and the 
circumstances surrounding its occurrence. If possible, reduce 
the problem to a simple test case. Otherwise, include all 
programs and data in machine readable form (preferably on a 
diskette). If a patch or interim solution is being used, 
please describe it. 

This form may also be used to describe suggested enhancements 
to Microsoft software. 

Problem Description: 

-over-



Did you find errors in the documentation supplied with the 
software? If so, please include page numbers and describe: 

Fill in the following information before returning this form: 

Name Phone 
------------------------------------- ----------------------

Organization 
---------------------------------------------------------Address ________________________ City __________ __ State Zip 

Return form to: Microsoft 
10800 NE Eighth, Suite 819 
Bellevue, ~iA 98004 

---



Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM 

USER'S MANUAL 

COPYRIGHT (c) 1976, 1978 

DIGITAL RESEARCH 



Copyright (c) 1976, 1978 by Digital Research. All rights 
reserved. No part of this publication may be reproduced, 
transmitted, transcribed, stored in a retrieval system, or 
translated into any language or computer language, in any 
form or by any means, electronic, mechanical, magnetic, 
optical, chemical, manual or otherwise, without the prior 
written permission of Digital Research, Post Office Box 579, 
Pacific Grove, California 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any 
particular purpose. Further, Digital Research reserves the 
right to revise this publication and to make changes from 
time to time in the content hereof without obligation of 
Digital Research to notify any person of such revision or 
changes. 



Table of Contents 

1. ED TUTORIAL . . . . . · · · · · · · · · · 1 

1.1 Introduction to ED · · · · · 1 

1.2 ED Operation . . · · · · · 1 

1.3 Text Transfer Functions 1 

1.4 Memory Buffer Organization · 5 

1.5 Memory Buffer Operation · · . . · · · · 5 

1.6 Command Strings · · · · 7 

1.7 Text Search and Alteration · · · · · 8 

1.8 Source Libraries · · · · · · . . · · 11 

1.9 Repetitive Command Execution •. • 12 

2. ED ERROR CONDITIONS • • · . . . . . . 13 

3. CONTROL CHARACTERS AND COMMANDS • • • • • • • 14 

ii 





ED USER'S MANUAL 

1. ED TUTORIAL 

1.1. Introduction to ED. 

ED is the context editor for CP/M, and is used to create 
and alter CP/M source files. ED is initiated in CP/M by 
typing 

{

<filename> } 

ED <filename>. <filetype> 

In general, ED reads segments of the source file given by 
<filename> or <filename> • <filetype> into central memory, 
where the file is manipulated by the operator, and subse­
quently written back to disk after alterations. If the 
source file does not exist before editing, it is created by 
ED and initialized to empty. The overall operation of ED 
is shown in Figure 1. 

1.2. ED Operation 

ED operates upon the source file, denoted in Figure 1 
by x.y, and passes all text through a memory buffer where 
the text can be viewed or altered (the number of lines which 
can be maintained in the memory buffer varies with the line 
length, but has a total capacity of about 6000 characters 
in a 16K CP/M system). Text material which has been edited 
is written onto a temporary work file under command of the 
operator. Upon termination of the edit, the memory buffer 
is written to the temporary file, followed by any remaining 
(unread) text in the source file. The name of the original 
file is changed from x.y to x.BAK so that the most recent 
previously edited source file can be reclaimed if necessary 
(see the CP/M commands ERASE and RENAME). The temporary 
file is then changed from x.$$$ to x.y which becomes the 
resulting edited file. 

The memory buffer is logically between the source file 
and working file as shown in Figure 2. 

1.3. Text Transfer Functions 

Given that n is an integer value in the range a through 
65535, the following ED commands transfer lines of text 
from the source file through the memory buffer to the tem­
porary (and eventually final) file: 



Source 

File 

After 
Edit (E) 

Backup 

File 

x.BAl< 

Figure 1. Overall. ED Operation 

Append 
(A) 

Source 
Libraries 

(R) 

Memory Buffer 

Insert 
(I) 

Write 

Type 
(T) 

Temporary 

File 

After 
Edit (E) 

New 

Source 

File 

x.y 

Note: the ED program accepts both lower and upper case ASCII 
characters as input from the console. Single letter commands 
can be typed in either case. The Ucommand can be issued to 
cause ED to translate lower case alphabetics to upper case as 
characters are filled to the memory buffer from the console. 
Characters are echoed as typed without translation, however. 
The -U command causes ED to revert to "no translation" mode. 
ED starts with an assumed -U in effect. 

2 



Figure 2. Hemory Buffer Organization 

Source File 

1 
. ., 

F~rst L~ne , 

Memory Buffer 

1 .' First Line" 

2 ,,"Appended,' 2 --2.. Buffered ~ 

3 -:-, Li~e~ " " :: ~ "Text ",,"--

sc........I7-·'~" -I} MP-"" ~,,~ 
I Unprocessed I ~NT~ t I Free I I lex 
I Source I Append : Memory 

. I I 
1 L~nes I Space I L _______ I ~ _______ --I 

Next 
Write 

1 

2 

3 

TP ~ 

Temporary File 

" ~irst Line" 

, Processed' ,,' 

\ T~xt "'" '\ -'- \--, ,,\ , 
, , -,-, \ -, 

Free File 

Space 

L _______ I 

Figure 3. Logical Organization of Memory Buffer 

first 
line 

Memory Buffer 

---------<cr><lf> 

--------<cr><lf> 

current GJ ------- cp ------<cr><lf> line CL 

last --------<cr><lf> 
line 

3 



nA<cr>* - append the next n unprocessed source 
lines from the source file at sp to 
the end of the memory buffer at MP. 
Increment SP and MP by n. 

nW<cr> 

E<cr> 

H<cr> 

O<cr> 

Q<cr> 

write the first n lines of the memory 
buffer to the temporary file free space. 
Shift the remaining lines n+l through 
MP to the top of the memory buffer. 
Increment TP by n. 

end the edit. Copy all buffered text 
to temporary file, and copy all un­
processed source lines to the temporary 
file. Rename files as described 
previously. 

move to head of new file by performing 
automatic E command. Temporary file 
becomes the new source file, the memory 
buffer is emptied, and a new temporary 
file is created (equivalent to issuing 
an E command, followed by a reinvocation 
of ED using x.y as the file to edit). 

return to original file. The memory 
buffer is emptied, the temporary file 
id deleted, and the SP is returned to 
position 1 of the S01rrce file. The 
effects of the previous editing commands 
are thus nullified. 

quit edit with no file alterations, 
return to CP/M.--

There are a number of special cases to consider. If the 
integer n is omitted in any ED command where an integer is 
allowed, then 1 is assumed. Thus, the commands A and Wappend 
one line and write 1 line, respectively. In addition, if a 
pound sign (#) is given in the place of n, then the integer 
65"535 is assumed (the largest value for n which is allowed). 
Since most reasonably sized source files can be contained 
entirely in the memory buffer, the command #A is often issued 
at the beginning of the edit to read the entire source file 
to memory. Similarly, the command #W writes the entire buffer 
to the temporary file. Two special forms of the A and W 

*<cr> represents the carriage-return key 

4 



commands are provided as a convenience. The command OA fills 
the current memory buffer to at least half-full, while OW 
writes lines until the buffer is at least half empty. It 
should also be noted that an error is issued if the memory 
buffer size is exceded. The operator may then enter any 
command (such as W) which does not increase memory require­
ments. The remainder of any partial line read during the 
overflow will be brought into memory on the next successful 
append. 

1.4. Memory Buffer Organization 

The memory buffer can be considered a sequence of source 
lines brought in with the A command from a source file. The 
memory buffer has an associated (imaginary) character pointer 
CP which moves throughout the memory buffer under command of 
the operator. The memory buffer appears logically as shown 
in Figure 3 where the dashes represent characters of the 
source line of indefinite length, terminated by carr~e­
return «cr» and line-feed «If» characters, and cp 
represents the imaginary character pointer. Note that the 
CP is always located ahead of the first character of the 
first line, behind the last character of the last line, or 
between two characters. The current line CL is the source 
line which contains the CP. 

1.5. Memory Buffer Operation 

Upon initiation of ED, the memory buffer is empty (ie, 
CP is both ahead and behind the first and last character). 
The operator may either append lines (A command) from the 
source file, or enter the lines directly from the console 
with the insert command 

I<cr> 

ED then accepts any number of input lines, where each line 
terminates with a <cr> (the <If> is supplied automatically), 
until a control-z (denoted by tz is typed by the operator. 
The CP is positioned after the last character entered. The 
sequence 

I<cr> 
NOW IS THE<cr> 
TIME FOR<cr> 
ALL GOOD MEN<cr> 
tz 

leaves the memory buffer as shown below 

5 



NOW IS THE<cr><lf> 
TIME FOR<cr><lf> 
ALL GOOD MEN<cr><lf~ 

~ 

Various commands can then be issued which manipulate the CP 
or display source text in the vicinity of the CP. The 
commands shown below with a preceding n indicate that an 
optional unsigned value can be specified. When preceded by 
±, the command can be unsigned, or have an optional preceding 
plus or minus sign. As before, the pound sign (#) is replaced 
by 65535. If an integer n is optional, but not supplied, 
then n=l is assumed. Finally, if a plus sign is optional, 
but none is specified, then + is assumed. 

±B<cr> - move CP to beginning of memory buffer 
if +, and to bottom if -. 

±nC<cr> - move CP by ±n characters (toward front 
of buffer if +), counting the <cr><lf> 
as two distinct characters 

±nD<cr> - delete n characters ahead of CP if plus 
and behind CP if minus. 

±nK<cr> - kill (ie remove) ±n lines of source text 
using CP as the current reference. If 
CP is not at the beginning of the current 
line when K is issuea, then the charac­
ters before CP remain if + is specified, 
while the characters after CP remain if -
is given in the command. 

±nL<cr> - if n=O then move CP to the beginning of 
the current line (if it is not already 
there) if nFO then first move the CP to 
the beginning of the current line, and 
then move it to the beginning of the 
line which is n lines down (if +) or up 
(if -). The CP will stop at the top or 
bottom of the memory buffer if too large 
a value of n is specified. 

6 



±nT<cr> - If n=O then type the contents of the 
current line up to CP. If n=l then 
type the contents of the current line 
from CP to the end of the line. If 
n>l then type the current line along 
with n-l lines which follow, if + 
is specified. Similarly, if n>l and 
- is given, type the previous n lines, 
up to the CP. The break key can be 
depressed to abort long type-outs. 

±n<cr> - equivalent to ±nLT, which moves up or 
down and types a single line 

1.6. Command Strings 

Any number of commands can be typed contiguously (up to 
the capacity of the CP/M console buffer), and are executed 
only after the <cr> is typed. Thus, the operator may use 
the CP/M console command functions to manipulate the input 
command: 

Rubout 

Control-U 

Control-C 

Control-E 

remove the last character 

delete the entire line 

re-initialize the CP/M System 

return carriage for long lines 
without transmitting buffer 
(max 128 chars) 

Suppose the memory buffer contains the characters shown 
in the previous section, with the CP following the last 
character of the buffer. The command strings shown below 
produce the results shown to the right 

Command String 

1. B2T<cr> 

2. 5COT<cr> 

Effect 

move to beginning 
of buffer and type 
2 lines: 
"NOW IS THE 

TIME FOR" 

move CP 5 charac­
ters and type the 
beginning of the 
line 
"NOW I" . 

7 

Resulting Memory Buffer 

L~ NOW IS THE<cr><lf> 
1.5:J TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

NOW I~~S THE<cr><lf> 
~ 



3. 

4. 

5. 

6. 

7. 

2L-T<cr> 

-L#K<cr> 

I<cr> 
TIME TO<cr> 
INSERT<cr> 
tz 

-2L#T<cr> 

<cr> 

move two lines down 
and type previous 
line 
"TIME FOR" 

move up one line, 
delte 65535'lines 
which follow 

insert two lines 
of text 

move up two lines, 
and type 65535 
lines ahead of CP 
"NOW IS THE" 

move down one line 
and type one line 
"INSERT" 

1.7. Text Search and Alteration 

NOW IS THE<cr><lf> 

TIME FOR<cr><lf> 

~ALL 

~ 

GOOD MEN<cr><lf> 

NOW IS THE<cr><lf> ~ 
C!:J 

NOW IS THE<cr><lf> 

TIME TO<cr><lf> 

INSERT<cr><lf>~ 
L3:J 

NOW IS THE<cr><lf> ~ 
~ TIME TO<cr><lf> 

INSERT<cr><lf> 

NOW IS THE<cr><lf> 

TIME TO<cr><lf> ~~ 
l3:J INSERT<cr><lf> 

ED also has a command which locates strings within the 
memory buffer. The command takes the form 

where cl through ck represent the characters to match followed 
by either a <cr> or control -z*. ED starts at the current 
position of CP and attempts to match all k characters. The 
match is attempted n times, and if successful, the CP is 
moved directly after the character ck- If the n matches are 
not successful, the CP is not moved from its initial position. 
Search strings can include-rl (control-I), which is replaced 
by the pair of symbols <cr><lf>. 

*The control-z is used if additional commands will be typed 
following the tz. 

8 



The following commands illustrate the use of the F 
command: 

Conunand String 

1. B#T<cr> 

2. FS T<cr> 

3. FltzOTT 

Effect 

move to beginning 
and type entire 
buffer 

find the end of 
the string "s T" 

find the next "I" 
and type to the 
CP then type the 
remainder of the 
current line: 
"TIME FOR" 

Resulting Memory Buffer 

~ NOW IS THE<cr><lf> 
l.91:J TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

NOW IS T ~ HE<cr><~f> 
~ 

NOW IS THE<cr><lf> 

TI ~ME FOR<cr><lf> cp 
ALL 000 MEN<cr><lf> 

An abbreviated form of the insert command is also allowed, 
which is often used in conjunction with the F conunand to make 
simple textual changes. The form is: 

c <cr> 
n 

where cl through c n are characters to insert. If the inser­
tion string is terminated by a tz, the characters cl through 
c n are inserted directly following the CP, and the CP is 
moved directly after character c n • The action is the same 
if the command is followed by a <cr> except that a <cr><lf> 
is automatically inserted into the text following character 
c n . Consider the following command sequences as examples 
of the F and I commands: 

Command String Effect 

BITHIS IS tz<cr> Insert "THIS IS " 
at the beginning 
of the text 

9 

Resulting Memory Buffer 

THIS IS~OW THE <cr><lf> 

~ 
TIME FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 



FTIMEtz-4DIPLACEtz<cr> 

find "TIME" and delete 
it; then insert "PLACE" 

3FOtz-3D5DICHANGESt<cr> 

-8CISOURCE<cr> 

find third occurrence 
of "0" (ie the second 
"0" in GOOD), delete 
previous 3 characters; 
then insert "CHANGES" 

move back 8 characters 
and insert the line 
"SOURCE<cr><lf>" 

THIS IS NOW THE<cr><lf> 

PLACE cfEJ FOR<cr><lf> 

ALL GOOD MEN<cr><lf> 

THIS IS NOW THE <cr><lf> 

PLACE FOR<cr><lf> 

ALL CHANGES~<cr><lf> 
~ 

THIS IS NOW THE<cr><lf> 

PLACE FOR<cr><lf> 

ALL SOURCE<cr><lf> 

...0-, CHANGES < cr > < 1 f> 
~ 

ED also provides a single command which combines the F and 
I commands to perform simple string substitutions. The command 
takes the form 

n S c1c 2···ck +z d1d 2 ••. dm {<~~>} 
and has exactly the same effect as applying the command string 

a total of n times. That is, ED searches the memory buffer 
starting at the current position of CP and successively sub­
stitutes the second string for the first string until the 
end of buffer, or until the substitution has been performed 
n times. 

As a convenience, a command similar to F is provided by 
ED which automatically appends and writes lines as the search 
proceeds. The form is 

n N c l c 2 ••• c k { 
ctrz } 

which searches the entire source file for the nth occurrence 
of the string clc2 ••• ck (recall that F fails if the string 
cannot be found in the current buffer). The operation of the 

10 



~~ command is precisely the same as F except in the case that 
the string cannot be found within the current memory buffer. 
In this case, the entire memory contents is written (ie, an 
automatic #W is issued). Input lines are then read until 
the buffer is at least half full, or the entire source file 
is exhausted. The search continues in this manner until the 
string has been found n times, or until the source file has 
been completely transferred to the temporary file. 

A final line editing function, called the juxtaposition 
command takes the form 

with the following action applied n times to the memory buffer: 
search from the current CP for the next occurrence of the 
string clc2 ••• ck. If found, insert the string d~d2 •.• ,dm, 
and move CP to follow dm- Then delete all characters following 
CP up to (but not including) the string el,e2, ... eq , leaving 
CP directly after dm. If el,e2, •.• e q cannot be fOUnd, then 
no deletion is made. If the current line is 

~ NOW IS THE TI~1E<cr><lf> 
B:J 

Then the command 

JW tzWHATtztl<cr> 

Results in 

NOW WHAT ~ <cr><lf> 
1S?1 

(Recall that tl represents the pair <cr><lf> in search and 
substitute strings). 

It should be noted that the number of characters allowed 
by ED in the F,S,N, and J commands is limited to 100 symbols. 

1.8. Source Libraries 

ED also allows the inclusion of source libraries during 
the editing process with the R command. The form of this 
comrnand is 

11 



where flf2 •• fn is the name of a source file on the disk with 
as assumed filetype of 'LIB'. ED reads the specified file, 
and places the characters into the memory buffer after CP, 
in a manner similar to the I command. Thus, if the command 

RMACRO<cr> 

is issued by the operator, ED reads from the file MACRO.LIB 
until the end-of-file, and automatically inserts the charac­
ters into the memory buffer. 

1.9. Repetitive Command Execution 

The macro command M allows the ED user to group ED com­
mands together for repeated evaluation. The M command takes 
the form: 

where clc2 .•. ck represent a string of ED commands, not inclu­
ding another M command. ED executes the comrnand string n 
times if n>l. If n=O or 1, the command string is executed 
repetitively until an error condition is encountered (e.g., 
the end of the memory buffer is reached with an F command). 

As an example, the following macro changes all occur­
rences of GAMMA to DELTA within the current buffer, and 
types each line which is changed: 

MFGAMMAtz-SDIDELTAtzOTT<cr> 

or equivalently 

MSGAMMAtzDELTAtzOTT<cr> 

12 



2. ED ERROR CONDITIONS 

On error conditions, ED prints the last character read 
before the error, along with an error indicator: 

? unrecognized command 

> memory buffer full (use one of 
the commands D,K,N,S, or W to 
remove characters), F,N, or S 
strings too long. 

# cannot apply command the number 
of times specified (e.g., in 
F command) 

o cannot open LIB file in R 
command 

Cyclic redundancy check (CRC) information is written with 
each output record under CP/M in order to detect errors on 
subsequent read operations. If a CRC error is detected, CP/M 
will type 

PERM ERR DISK d 

where d is the currently selected drive (A,B, ••• ). The oper­
ator can choose to ignore the error by typing any character 
at the console (in this case, the memory buffer data should 
be examined to see if it was incorrectly read), or the user 
can reset the system and reclaim the backup file, if it 
exists. The file can be reclaimed by first typing the con­
tents of the BAK file to ensure that it contains the proper 
information: 

TYPE x.BAK<cr> 

where x is the file being edited. Then remove the primary 
file: 

ERA x.y<cr> 

and rename the BAK file: 

REN x.y=x.BAK<cr> 

The file can then be re-edited, starting with the previous 
version. 

13 



3. CONTROL CHARACTERS AND COMl'1ANDS 

The following table summarizes the control characters 
and commands available in ED: 

Control Character 

tc 

te 

ti 

tl 

tu 

tz 

rubout 

break 

14 

Function 

system reboot 

physical <cr><lf> (not 
actually entered in 
command) 

logical tab (cols 1,8, 
15, ... ) 

logical <cr><lf> in 
search and substitute 
strings 

line delete 

string terminator 

character delete 

discontinue command 
(e.g., stop typing) 



Command 

nA 

±B 

±nC 

±nD 

E 

nF 

H 

I 

nJ 

±nK 

±nL 

nM 

nN 

o 

±nP 

Q 

R 

nS 

±nT 

± U 

nW 

nZ 

±n<cr> 

Function 

append lines 

begin bottom of buffer 

move character positions 

delete characters 

end edit and close files 
(normal end) 

find string 

end edit, close and reopen 
files 

insert characters 

place strings in juxtaposition 

kill lines 

move down/up lines 

macro definition 

find next occurrence with 
autoscan 

return to original file 

move and print pages 

quit with no file changes 

read library file 

substitute strings 

type lines 

translate lower to upper case if U, 
no translation if -U 
write lines 

sleep 

move and type (±nLT) 

15 



Appendix A: ED 1.4 Enhancements 

The ED context editor contains a number of commands which enhance its 
usefulness in text editing. The improvements are found in the addition of line numbers, 
free space interrogation, and improved error reporting. 

The context editor issued with CP/M 1.4 produces absolute line number prefixes 
when the "V" (Verify Line Numbers) command is issued. Following the V command, 
the line number is displayed ahead of each line in the format: 

nnnnn: 

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer 
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears 
as 5 blanks. 

The user may reference an absolute line number by preceding any command by 
a number followed by a colon, in the same format as the line number display. In this 
case, the ED progr-a-m moves the current line reference to the absolute line number, 
if the line exists in the current memory buffer. Thus, the command 

345:T 

is interpreted as "move to absolute line 345, and type the line." Note that absolute 
line numbers are produced only during the editing process, and are not recorded with 
the file. In particular, the line numbers will change following a deleted or expanded 
section of text. 

The user may· also reference an absolute line number as a backward or forward 
distance from the current line by preceding the absolute line number by a colon. Thus, 
the command 

:400T 

is interpreted as "type from the current line number through the line whose absolute 
number is 400." Combining the two line reference forms, the command 

345::4~0T 

for example, is interpreted as "move to absolute line 345, then type through absolute 
line 4(11~." Note that absolute line references of this sort can precede any of the 
standard ED commands. 

A special case of the V command, "0V", prints the memory buffer statistics in 
the form: 

free/total 

where "free" is the number of free bytes in the memory buffer (in decimal), and "total" 
is the size of the memory buffer. r 



ED 1.4 also includes a "block move" facility implemented through the "X" (X fer) 
command. The form 

nX 

transfers the next n lines from the current line to a temporary file called 

X$$$$$$$.LIB 

which is active only during the editing process. In general, the user can reposition 
the current line reference to any portion of the source file and transfer lines to the 
temporary file. The transferred line accumulate one after another in this file, and 
can be retrieved by simply typing: 

R 

whIch is the trivial case of the library read command. In this case, the entire 
transferred set of lines is read into the memory buffer. Note that the X command 
does not remove the transferred lines from the memory buffer, although a K command 
can be used directly after the X, and the R command does not empty the transferred 
line file. That is, given that a set of lines has been transferred with the X command, 
they can be re-read any number of times back into the source file. The command 

~X 

is provided, however, to empty the transferred line file. 

Note that upon normal completion of the ED program through Q or E, the 
temporar'y LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist 
if lines have been transferred, but will generally be empty (a subsequent ED invocation 
will erase the temporary file). 

Due to common typographical errors, ED 1.4 requires several potentially dis as­
terous commands to be typed as single letters, rather than in composite commands. 
The commands 

E (end), H (head), 0 (original), Q (quit) 

must be typed as single letter com mands. 

ED 1.4 also prints error messages in the form 

BREAK "x" AT c 

where x is the error character, and c is the command where the error occurred. 





Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

CP/M DYNAMIC DEBUGGING TOOL (DDT) 

USER'S GUIDE 

COPYRIGHT (c) 1976, 1978 

DIGITAL RESEARCH 



Copyright (c) 1976, 1978 by Digital Research. All rights 
reserved. No part of this publication may be reproduced, 
transmitted, transcribed, stored in a retrieval system, or 
translated into any language or computer language, in any 
form or by any means, electronic, mechanical, magnetic, 
optical, chemical, manual or otherwise, without the prior 
written permission of Digital Research, Post Office Box 579, 
Pacific Grove, California 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any 

. particular purpose. Further, Digital Research reserves the 
right to revise this publication and to make changes from 
time to time in the content hereof without obligation of 
Digital Research to notify any person of such revision or 
changes. 



Table of Contents 

Section Page 

I. 
II. 

INrRODUCTION ••••••••••••••••••••••••••••••••••••• 
Dill' OOMMANIE ••••••••••••••••••••••••••••••••••••• 
1. 
2. 
3. 
4. 
5. 
6. 

The A 
rrhe D 
The F 
The G 
The I 
The L 

7. The M 
8. The R 
9. The S 
10. The T 
11. The U 

(Assemble) Command ••••••••••••••••••••• 
(Display) Command •••••••••••••••••••••• 
(Fill) Command ••••••••••••••••••••••••• 
(Go) Commaoo ••••••••••••••••••••••••••• 
(Input) Command •••••••••••••••••••••••• 
(List) Command ••••••••••••••••••••••••• 
(Move) Command ••••••••••••••••••••••••• 
(Read) Command ••••••••••••••••••••••••• 
(Set) Commaoo •••••••••••••••••••••••••• 
(Trace) Command •••••••••••••••••••••••• 
(Untrace) Command •••••••••••••••••••••• 

12. The X (Examine) Command •••••••••••••••••••••• 
III. IMPLEMENTATION NOTES ••••••••••••••••••••••••••••• 
N • ru.J EXAM.PLE ••••••••••••••••••••••••••••••••••••••• 

1 
3 
3 
4 
4 
4 
5 
6 
6 
6 
7 
7 
8 
8 
9 
10 





CP/M Dynamic Debugging Tool (DDT) 

User's Guide 

I. Introduction. 

The DDT program allows dynamic interactive testing and debugging of 
programs generated in the CP/M environment. The debugger is initiated by 
typing one of the following commands at the CP/M Console Command level 

Dur 
DDr filename.HEX 
Dur filename.COM 

where "filename" is the name of the program to be loaded and tested. In both 
cases, the DDT program is brought into main memory in the place of the Console 
Canrnand Processor (refer to the CP/M Interface Guide for standard memory 
organization), and thus resides directly below the Basic Disk Operating System 
portion of CP/M. The BOOS starting address, which is located in the address 
field of the JMP instruction at location 5H, is altered to reflect the reduced 
Transient Program Area size. 

The second and third forms of the DIJr command shown above perform the same 
actions as the first, except there is a subsequent automatic load of the 
specified HEX or CDM file. The action is identical to the sequence of 
commands 

DDr 
Ifilename.HEX or Ifilename.COM 
R 

where the I and R canmands set up and read the specified program to test (see 
the explanation of the I and R commands below for exact details). 

Upon initiation, DD[' prints a sign-on message in the format 

nnK DDr-s VER m.m 

where nn is the !Ternary size (which must match the CP/M system being used), s 
is the hardware system which is assumed, corresponding to the codes 

D Digital Research standard version 
M MDS version 
I IMSAI standard version 
o Ornocon systems 
S Digital Systems standard version 

and m.m is the revision number. 

1 



Following the sign on message, DDT prompts the operator with the character 
"_" and waits for input canmands from the console. The operator can tyr:e any 
of several single character canrnands, terminated by a carriage return to 
execute the command. Each line of input can be line-edited using the standard 
CP/M controls 

rubout 
ctl-U 
ctl-C 

remove the last character tyr:ed 
remove the entire line, ready for re-typing 
system reboot 

Any command can be up to 32 characters in length (an automatic carriage return 
is inserted as the 33rd character), \\here the first dlaracter determines the 
command type 

A enter assembly language mnemonics with operands 
D display memory in hexadecimal and ASCII 
F fill memory with constant data 
G begin execution with optional breakpoints 
I set up a standard input file control block 
L list memory using assembler mnemonics 
M move a memory segment from source to destination 
R read program for subsequent testing 
S substitute memory values 
T trace program execution 
U untraced program monitoring 
X examine and optionally alter the CPU state 

The command character, in some cases, is followed by zero, one, two, or three 
hexadecimal values \\hich are separated by canmas or single blank characters. 
All DDT numeric output is in hexadecimal form. In all cases, the commands are 
not executed until the carriage return is typed at the end of the command. 

A.t any p:>int in the debug run, the operator can stop execution of DDI' 
using either a ctl-C or G0 (jmp to location 0000H), and save the current 
memory image using a SAVE command of the form 

SAVE n filename.COM 

where n is the nurrber of pages (256 byte blocks) to be saved on disk. 'rhe 
nurrber of blocks can be determined by taking the high order byte of the top 
load crldress am converting this number to decimal. For example, if the 
highest crldress in the Transient Program Area is 1234H then the number of 
pages is 12H, or 18 in decimal. Thus the operator could type a ctl-C during 
the debug run, returning to the Console Processor level, followed by 

SAVE 18 X.COM 

The rremory image is saved as X.COM on the diskette, and can be directly 
executed by simply typing the name X. If further testing is required, the 
memory image can be recalled by typing 

2 



om X.COM 

which reloads {reviously saved program from loaction 100H through p:lge 18 
(12FFH) • The machine state is not a part of the COM file, and thus the 
program must be restarted from the beginning in order to properly test it. 

II. om' ml~DS. 

'l'he irrlividual canmands are given below in some detail. In each case, the 
operator must wait for the prompt character (-) before entering the command. 
If control is p3ssed to a {Xogram under test, and the program has not reached 
a breakpoint, control can be returned to OIJI' by executing a RST 7 from the 
front p:lnel (note that the rubout key should be used instead if the program is 
executing a T or U ccmrnand). In the explanation of each corrunand, the command 
letter is soown in rome cases with nurrbers separated by canmas, mere the 
nurrbers are represented by lower case letters. These numbers are always 
assumed to be in a hexadecimal radix, and from one to four digi ts in length 
(longer numbers will be automatically truncated on the right). 

Many of the camnands operate upon a "CPU state" which corresponds to the 
program under test. 'l'he CPU state holds the registers of the program being 
debugged, and initially contains zeroes for all registers and flags except for 
the IXogram counter (P) and stack IX>inter (S), mich default to 100H. The 
program counter is subsequently set to the starting address given in the last 
record of a HEX file if a file of this form is loaded (see the I and R 
commands) • 

1. The A (Assemble) Command. Dill' allows inline assembly language to be 
inserted into the current rremory image using the A command which takes the 
form 

As 

where s is the hexadecimal starting address for the inline assembly. OIJr 
prompts the console wi th the address of the next instruction to fill, and 
reads the console, looking for assembly language mnemonics (see the Intel 8080 
Assembly Language Reference Card for a list of mnemonics), followed by 
register references and operands in absolut0 hexadecimal form. Each sucessive 
load cildress is p:- inted before reading the console. The A command terminates 
when the first empty line is input from the console. 

Upon canpletion of assembly language input, the operator can review the 
memory segment using the OIJr disassembler (see the L command). 

Note that the assembler/disassembler tnrtion of ODI' can be overlayed by 
the transient program being tested, in which case the om program responds 
wi th an error condi tion vklen the A and L commands are used (refer to Section 
IV) • 

3 



2. 'l.'he D (Display) Command. The D command allows the operator to view 
the contents of memory in hexadecimal and ASCII formats. The forms are 

D 
OS 
Ds,f 

In the first case, memory is displayed from the current display crldress 
(initially l00H) , and continues for 16 display lines. Each display line takes 
the form shown below 

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc 

where aaaa is the di splay address in hexadecimal, and bb represents da ta 
present in memory starting at aaaa. The ASCII characters starting at aaaa are 
given to the right (represented by the sequence of c"s) , where non-graphic 
characters are printed as a p=riod (.) symbol. Note that both upper and lower 
case alphabetics are displayed, and thus will appear as upper case symbols on 
a console device that sup}X>rts only uT;Per case. Each display line gives the 
values of 16 bytes of data, except that the first line displayed is truncated 
so that the next line begins at an address which is a multiple of 16. 

The second form of the D canrnand shown above is similar to the first, 
except that the di splay address is first set to address s. The third form 
causes the display to continue from address s through crldress f. In all 
cases, the display address is set to the first address not displayed in this 
command, so that a continuing display can be accomplished by issuing 
successive D commands with no explicit addresses. 

Excessively long displays can be aborted by pushing the rubout key. 

3. The F (Fill) Command. The F command takes the form 

Fs,f,c 

where s is the starting address, f is the final address, and c is a 
hexadecimal byte constant. The effect is as follows: DDT stores the constant 
c at address s, increments the value of s and tests against f. If s exceeds f 
then the operation terminates, otherwise the operation is repeated. Thus, the 
fill command can be used to set a memory block to a specific constant value. 

4. The G (Go) Command. PrC>g'ram execution is started using the G comand, 
wi th up to two optional breakpoint addresses. The G command takes one ot the 
forms 

G 
Gs 
Gs,b 

4 



Gs,b,c 
G,b 
G,b,c 

The first form starts execution of the program under test at the current value 
of the '[rogram counter in the current JPachine state, wi th no breakrx>ints set 
(the only way to regain control in om' is through a RST 7 execution). The 
current '[rograrn' counter can be viewed by typing an X or XP corrunand. The 
second form is similar to the first except that the program counter in the 
current madhine state is set to address s before execution begins. The third 
form is the same as the second, except that program execution stops when 
address b is encountered (b must be in the area of the program under test). 
The instruction at location b is not executed when the breakrx>int is 
encountered. The fourth form is identical to the third, except that two 
breakfX)ints are sp=cified, one at b and the other at c. Encountering either 
breakp:>int causes execution to stop, and both breakp:>ints are subsequently 
cleared. The last two forms take the program counter from the current machine 
state, and set one and two breakp:>ints, resp=ctively. 

Execution continues from the starting address in real-time to the next 
breakfX)int. That is, there is no intervention between the starting address 
and the break address by ODr. Thus, if the program under test does not reach 
a breakpoint, control cannot return to DDT without executing a RST 7 
instruction. Upon encountering a breakp:>int, DDT stops execution and types 

*d 

where d is the stop address. The machine state can be examined at this fX)int 
using the X (Examine) command. The operator must s~cify breakp:>ints which 
differ from the '[rogram counter address at the beginning of the G command. 
Thus, if the current program counter is l234H, then the commands 

G,l234 
and 

G400,400 

both produce an immediate breakpoint, without executing any instructions 
whatsoever. 

5. The I (Input) Command. The I command allows the operator to insert a 
file name into the default file control block at SCH (the file control block 
created by CP/M for transient programs is placed at this location; see the 
CP/M Interface Guide). The default FCB can be used by the program under test 
as if it hOO been passed by the CP/M Console Processor. Note that this file 
name is also used by ODr for reading addi tional HEX and COM files. The form 
of the I canmand is 

Ifilename 
or 

5 



Ifilename.filetype 

If the second form is used, and the filety-p: is either HEX or COM, then 
subsequent R commands can be used to read the pure binary or hex format 
machine code (see the R command for further details). 

6. The L (List) Command. The L command is used to list assembly language 
mnerronics in a particular program region. The forms are 

L 
Ls 
Ls,f 

The first canmand lists twelve lines of disassembled machine code from the I 
current list crldress. The second form sets the list address to s, and then 
lists twelve lines of code. 'rhe 'last form lists disassembled code from s 
thtough address f. In all three cases, the list address is set to the next 
unlisted location in preparation for a subsequent L command. Upon 
encountering an execution break~int, the list address is set to the current 
value of the p:ogram counter (see the G and T commands). Again, long typeouts 
can be aborted using the rubout key during the list process. 

7. The M (Move) Command. The M command allows block IrOvement of program 
or data areas from one location to another in memory. The form is 

Ms,f,d 

where s is the start address of the move, f is the final address of the move, 
and d is the destination address. Data is first noved from s to d, and both 
addresses are incremented. If s exceeds f then the nove operation stops, 
otherwise the move operation is repeated. 

8. The R (Read) Command. The R command is used in conjunction wi th the I 
command to read COM and HEX files from the diskette into the transient program 
area in };reparation for the debug run. The forms are 

R 
Rb 

where b is an optional bias address which is added to each program or data 
address as it is loaded. 'l'he load operation must not overwrite any of the 
system parameters from 000H throuqh 0FFH (i.e., the first page of memory). If 
b is ani tted, then b=0000 is assumed. The R command requires a p:evious I 
command, s~cifying the name of a HEX or COM file. The load address for each 
record is obtained from each individual HEX record, while an assumed load 
address of l00H is taken for COM files. Note that any nurrt>er of R commands 
can be issued following the I command to re-read the program under test, 

6 



assuming the tested program does not destroy the default area at 5CH. 
Further, any file sJ;ecified wi th the filetype "COM II is assumed to contain 
machine code in pure binary form (created with the LOAD or SAVE command), and 
all others are assumed to contain machine code in Intel hex format (produced, 
for example, wi th the ASlr1 command) • 

Recall that the command 

DDT filename.filetype 

which initiates the DD[' program is equivalent to the commands 

DDr 
-Ifilename.filetype 
-R 

Whenever the R command is issued, DDT responds with either the error indicator 
"?" (file cannot be opened, or a checksum error occurred in a HEX file), or 
with a load message taking the form 

NEXT PC 
nnnn PWP 

where nnnn is the next address following the loaded program, and pppp is the 
assumed program counter (100H for COM files, or taken from the last record if 
a HEX fi+e is sJ;ecified). 

9. The S (Set) Command. 
examined and optionally altered. 

Ss 

The S command allows memory locations to be 
The form of the command is 

where s is the hexadecimal starting address for examination and alteration of 
memory. DDT resp::>nds wi th a numeric prompt, qi ving the memory location, along 
with the data currently held in the rrernory location. If the operator types a 
carriage return, then the data is not altered. If a byte value is typed, then 
the value is stored at the prompted address. In either case, DDT continues to 
pranpt wi. th successive addresses and values ootil either a period (.) is typed 
by the operator, or an invalid input value is detected. 

10. The T (Trace) Command. The T command allows selective tracing of 
program execution for 1 to 65535 program steps. The forms are 

T 
Tn 

In the first case, the CPU state is displayed, and the next program step is 
e,xecuted. The program terminates immediately, with the termination address 

7 



displayed as 

*hhhh 

where hhhh is the next address to execute. The display address (used in the 0 
command) is set to the value of Hand L, and the list address (used in the L 
command) is set to hhhh. rrhe CPU state at program termination can then be 
examined using the X command. 

The second form of the T command is similar to the first, except that 
execution is traced for n steps (n is a hexadecimal value) before a p:-ogram 
breakp:>int is occurs. A break}:Oint can be forced in the trace node by typing 
a rubout dlaracter. The CPU state is displayed before each program step is 
taken in trace node. The format of the display is the same as described in 
the X canrnand. 

Note that program tracing is discontinued at the interface to CP/M, and 
re.sumes after return from CP/M to the program tmder test. Thus, CP/M 
functions which access I/O devices, such as the diskette drive, run in 
real-time, avoiding I/O timing problems. Programs running in trace rode 
execute approximately 5QJQJ times slower than real time since our gets control 
after each user instruction is executed. Interrupt processing routines can be 
traced, but it must be noted that canmands which use the breakpoint facility 
(G, T, and U) accomplish the break using a RST 7 instruction, which means that 
the teste¢i program cannot use this interrupt location. Further, the trace 
mode always runs the tested program with interrupts enabled, which may cause 
problems if asynchronous interrupts are received during tracing. 

Note also that the operator should use the rubout key to get control back 
to ODr dur ing trace, rather than executing a RS'I' 7, in order to ensure that 
the trace for the current instruction is completed before interruption. 

11. The U (Untrace) Command. The U command is identical to the T command 
except that intermediate {Xogram steps are not displayed. The mtrace rode 
allows from 1 to 65535 (QJFFFFH) steps to be executed in nonitored rode, and is 
used p:- incipally to retain control of an executing pr(Xlr am while it reaches 
steady state conditions. All conditions of the T command apply to the U 
command. 

12. The X (Examine) Command. The X command allows selective display and 
alteration of the current CPU state for the program under test. The forms are 

X 
Xr 

where r is one of the 8080 CPU registers 

C Carry Flag 
Z Zero Flag 

(0/1) 
(0/1) 

8 



M Minus Flag (0/1) 
E Even Parity Flag (0/1) 
I Interdigit Carry (0/1) 
A Accumulator (0-FF) 
B BC register pair (0-FFFF) 
D DE register pair (0-FFFF) 
H HL register p:1ir (0-FFFF) 
S Stack Pointer (0-FFFF) 
P Program Counter (0-FFF'F) 

In the first case, the CPU register state is displayed in the format 

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst 

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte 
quantity corres};X)nding to the register p:lir. The "instil field contains the 
disassembled instruction which occurs at the location addressed by the CPU 
state's program counter. 

The second form allows display ~nd optional alteration of register values, 
where r is one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or 
P) • In each case, the flag or register value is first displayed at the 
console. The DDT program then accepts input from the console. If a carriage 
return is typed, then the flag or register value is not altered. If a value 
in the proper range is typ=d, then the flag or register value is altered. 
Note that BC, DE, and HL are displayed as register pairs. Thus, the operator 
types the entire register pair when B, C, or the BC pair is altered. 

III. IMPLEMENTATION NarES. 

The organization of DDT allows certain non-essential };X)rtions to be 
overlayed in order to gain a larger transient program area for debugging large 
programs. The DDT program consists of two p3rts: the Dor nucleus and the 
assembler/disassembler rrodule. rrhe DDl' nucleus is loaded over the Console 
Command Processor, and, al though loaded wi th the DDT nucleus, the 
assembler/disassembler is overlayable unless used to assemble or disassemble. 

In particular, the BrxlS address at location 6H (address field of the JMP 
instruction at location 5H) is modified by DDl' to address the base location of 
the DDT nucleus Which, in turn, contains a JMP instruction to the BDOS. Thus, 
progr ams \tfhich use this address field to size rremory see the logical end of 
memory at the base of the DDT nucleus rather than the base of the BDOS. 

The asserrbler/disassembler rrodule resides directly below the DDl' nucleus 
in the transient trogram area. If the A, L, T, or X commands are used during 
the debugging process then the DDT program again alters the address field at 
6H to include this module, thus further reducinq the logical end of memory. 
If a program loads beyond the beginning of the assembler/disassembler rrodule, 
the A and L canrnands are lost (their use produces a "?II in resJ:X)nse), and the 

9 



trace am display (T and X) commands list the "instil field of the display in 
hexadecimal, rather than as a decoded instruction. 

IV. AN EXAMPLE. 

The followil'XJ example soows an edit, asserrble, and debug for a simple 
program which reads a set of data values and determines the largest value in 
the set. The largest value is taken fran the vector, and stored into "IARGE" 
at the termination of the p:-ogram 

.!..~ 
j J 

YECT: 
LEH 
LARG E: 

~*B0P 
-,} 

LOOP: 

HFOllND: 

iTO t~E:<T ELEMENT 
;ti0RE TO SCAt4? ~ 
j FOR A i~ 0 THE R.1 ,} 

END OF SCAN.. STORE Cil 
tl..QL A .• C i GET LARGE~;T VALUE 
STA L'ARGE.7 J 
.4.t1£ Jt ; REBOOT; 

TEST DATA 
2 .. a .. 4~ 3) 5) 6 .. 1 .. 5J 
f.-VECT ;LENGTH,2 

C '( tate SaU(QZ. 

'P (~Vo.~ - (,lw:(e,(,vt~ 
C~a (aderS ~l't:c{ 
~ 1NCJ5 Y-().YYl me( 

IIJ" vePleseufs c{).((io1t 

(t-kt(~. 
DB 
Uill 
lL.§. 
£@,2 

~ ;LARGEST VALUE ON EXIT) 

ORG 
t1 V 1 
M'y'l 
LXI 
MOV 
SUB 
\.INC 
HE~I 

MOV 
I NX 
nCR 
JNZ 

leaH ;START OF TRANSIENT AREA 
8,LEH ;LENGTH OF VECTOR TO SCAN 
c,e ;LARGEST VALUE SO FAR 
H,VECT ;BASE OF VECTOR 
A,M iGET YALUE 
C ;LARGER VALUE IN C? 
NFOUND ;JUMP IF LARGER VALUE NOT FOUND 

LARGEST YALUE~ STORE IT TO C 
C.' A 
H 
B 
LOOP 

;TO NEXT ELEMENT 
iMORE TO SCAN? 
i FOR Af40THER 

10 



ENII OF SCHt~ .. STORE C 
MOY Ale ;GET LARGEST VALUE 
STA LARGE 
JMP (3 ;REBOOT 

TEST DATA 
VEeT: riB 2 .. e .. 4 .. 3,5,6 .• 1)5 
LEN 
LARGE: 

EQU $-VECT ;lENGTH 
DS 1 ;LARGEST VALUE ON EXIT 
EN II • 
4- ~~\lt r1 tdlt 

CP/M ASSEMBLER - VER 1.0 

0122 
0C12H USE FACTOF~ 
ENII OF AS:3ENBLY 

T 'l F E S (: A t4 . F' R N 
- J 

CodeM!{~ 
e 1 0 0 Mll~me CCift 

( Sou(re :t1CBV"GM 

01ee 06BBj 
0102 €IEee 

~ ORG 100H ;START OF TRANSIENT AREA 
;LENGTH OF VECTOR TO SCAN 
;LARGEST VALUE SO FAR 

0104 2119(11 
0107 7E 
e10S 91 
01a9 D20D01 

010C 4F 
B1BD 23 
0laE 05 
B10F (:20701 

0112 79 

LOOP: 

NFOIJI4D: 

13113 322191 
13116 C3~.~B~ I_ 

Cc&/~ ilGi1Y!1 .i 

~td ~.; 
0119 0200040305YECT: 
01308 - <f) LEN 
€I 12 1 Value at LA R G E : 
0122 EqUtrk 

A} 

NVI B .. LEN 
NV I 
LgI 
MOV 

c) 0 
H.I VEel .' BliSE OF VECTOR 

iGET VALUE 
SUB C' ; LARGEF: VI~LUE IN C? 
JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND 
N E 1,1 L A F.' G EST \.1 I~ l. U E .1 S T (I F.: E ITT (I C 
NO V 
I H~: 
nCR 
IN Z 

C.' A 
H 
B 
LOOP 

i T I] N E 1: TEL E ~1 E N T 
.i NORE TO SCAN? 
i FOF: i~NOTHEF: 

Ef.lII OF SCAN, ::::TORE C 
MDV A;. C .i GET LARGEST VALUE 
STA LAF.:CE 
.J t1 F' 

TE::;T DATA 
DB 2J0J4 .. 3 .. ~:')6Jl)5 
EQU $-VECT ;LENGTH 
DS ;LARGEST VALUE ON EXIT 
Ei~ II 

Il 



{lIlT SCAN. HE>: - ~ 

16K DIIT VEl< 1. I:) 

NEXT PC 
~~21,ee00 

-~ 
C0zeMaE010 A=00 8=0080 D=0000 H=000e 8=0100 P~0000 

'- ~UlW~ Ve~lCO~ kJOie de~~ YUV', 
p=0eea 100 

-; C~ltnje 'Pc, -\0 lOO 

-~ J \.ock. at Vts \S1u6 ~(.tl~ r 'Pc. cktut'ld. 
p:::01~le ~1VI B .. €I 8) C0Z0MBE010 A=Be B=0000 D=B000 H=0000 8=0100 

-L10e --; 
0100 MVI B,e:3 
£1102 MVI C.' e0 
0104 LXI H .. 0119 
0107 MOV A .• t1 
ales SUB c 

'D tS6.~Y'\~l(,J MarL t~t 0109 JHC e 10 II 
010(: MOV (:) A C'Dde ai tOO" 01€tD 1 H~<: H $,et Sllict ud~ fj10E II CR B 
~leF JHZ 0107 "O(~lSO~) 
£1 112 t10'1 A .• C 
-L 
-~ 

~ \~4vudtOY\ 
-to tifaek a\ P~::\bD 



011 7 NOP 
0118 NOP 
0119 S TA)~ B 
011 A NOP 
o 11 B INR B 
(11 1 C I N~: B 

C0Z0MBE010 A=0e B=0000 D=B008 H=0000 8=0100 P~0100 MVI BI08 

-L.1 &Rcu..1e fYO~(o.m -ftr OY\(..,kf. i~d~( CRu. strdt. J ~efv(e J i\ ~ecu:kd 
C0Z0M0E010 A=00 8=000e D=80e0 H=0008 8=0100 P~0100 MY] 8J08*0102 

-1.~ lrtU Odt *P aga;\1 (VlDf{ oru in g) au:bwa-hL ~(eakp,,\~J --' 
C0zeM0E0I0 A=0e 8=8800 D=00eo H=0000 8=0100 P~01B2 MYI C,00*0104 

-L) TrIKe dja;V\ ((~l~U C ~~ dl'll((dJ 
cezeM0E010 A=8e B=080e D=8000 H=000B 8=0100 P=0104 LXI H~e119*01e7 

-Il.llYa~ -fVlvt'! ~kfs 
ceZet18E010 A=ee 8=€t806 II=00e0 H=0119 S=@10~3 p:= a 1.07 i10V A .• M 
ceZ0M0E010 A=02 8=0a00 [1=0000 H=0119 S=0100 P::0108 SUB C 
C0Zet1BE0Il A=B2 8=0800 [/=000€1 H=~3119 S~'3100 P::01l~9 • ..1 NC 018D*010D 
-I1119 

. 
c;.Lt16wvJU. brea.~1'o'Ytt ('d jOD~~ -~ 'Ols~l~ me:MOfj ~t~ crt IlqH# d.~ 

£11 19 £12 00 04 03 a5 06 o 1 ~q9~~~ .. 
0120 1 1 80 22 21 80 02 7E EB '?7 

I I 1 3 ":1'7 
1-,,;) EB 08 

0130 27 01 C3 03 29 80 00 00 00 €I 0 f.10 00 1210 00 
0140 €Ie 00 100 00 00 a0 00 100 130 £10 00 a0 100 130 00 

D~ \S d\ ~~ . d .... 015a 00 010 130 00 e0 £10 e0 130 00 00 o ~3 0(1 IZ1l1 0€1 €I '3 .. ... . ~ ~.~ ... , 

016(1 a0 00 130 130 ee €I0 00 00 13£1 £1(3 €I0 a0 00 00 e0 . A<Jcrr. . ttt ," . l\t· . . Wt a.' , .. 
(11 70 80 €Ie 100 08 00 013 £10 1210 la0 00 0e ala 00 00 00 ·ltA.:fue ?~rho~ of . · . 01:3€1 e0 00 130 130 00 €Ie €Ie 00 00 00 £1 (1 a ~3 00 i30 ee · . 
019a e0 80 a0 e0 0€1 00 80 0e 00 00 00 00 00 00 130 0e :V\O~> 6(Op~~t: : : : : · . 
[11A0 B0 a0 0e e0 e0 00 £10 00 00 00 00 00 0€1 1210 00 £10 elMraUu's . ..... · . 
0180 Ete 00 0e ~3e 0€1 80 00 o ~) eo 00 eo a0 013 130 00 00 . . . . . . . . . . . · . 
tJ 1 C0 €Ie €Ie 00 eo 130 00 00 0e 130 00 00 00 00 00 00 00 . . . . . . . . . . . . · . 

• t 

-. .t:..~ Cu«M CPu. ~-\e, ~ 
ceZ0M0E0Il A=02 8=0800 D =0 0 00 H=0119 :::=0100 P~010It I Ni<: H 

TI:' 
-rract s ~ ps ~yOnt LU((eLAf CPu sll - . .J -" 

ceZ0M0E0Il A=02 B=€,a00 It =0 €I 00 H=0119 8=0100 P::€110It I N~: H 
ceZ0t1EtE011 A=02 B=0S0e D =0 a 00 H=011A ~;=0100 P::(:110E IleR B AtA>Ml).-ki 
ceZet1BE0Il A=02 8:=0700 D =0 e 00 H=011f~ S=0100 P::010F JHZ BlgkfO;..ct ceZ0MBE0Il A=02 8=078e II =6 0 €Ie H=011A S=0100 P=~3107 MOV A) t1 
cezeM8E011 A=00 B=07ee II=0008 H=011A 8=010121 P::~110e 3UB C*0189 
-us . 

\l~;~ ~lA~ed lc.dt, ~-k.s -I \tact \Nl~~0tl1 
C0Z1MBEIIl A=00 B=€170et D=€t000 H=011A :::=010'21 p~a109 ,JNC a 1011*0108 
-x -J CRu. ~k 0'+ fL\dof US~ 
C0Z0MBElll A=04 8:=0680 II=000€1 H=011B s=e101~1 p=01e18 SUB c 



ceZ1MBEl11 A=00 8=0000 D=0000 H=0121 

-!i£i ba\',\l~ avJ. dla"~l 't1{~~ et>l,lI'\W' 
P=0116 100

J 
-X -J 

8=0100 P=0116 RST 07 

:~~~;B~~ l~=~;::~) :;00~~~0;1;:r:;e'~lfMv:~~:& 
A=0e 0 H=0121 S-.10€1 P::titI0 t1Vl E: .• ~I8 CBZIMEtElll 

ceZlM0Elll 
ceZlM0ElIl 
c:eZlMBElll 
CeZlt10El11 
ceZ0M0E011 
ceZ0M0E011 
ceZ0MBE0Il 
C0Z0MBE0Il 
ceZ0r~0E01 1 
ceZ0M0E011 
C:0Z1MBEIIl 
CeZ1Mf.tEl11 
ceZlMBElll 
ceZ0M0Ell1 
c:€tZ0M0El11 

A=00 P=0102 MVI 

A=0Z 8=0800 
A=02 8=0880 
A=02 B=0790 
A=02 8=0700 
A=00 8=0700 
A=0e 8=0700 
A=00 8=0780 
A=00 B=€170~ 

A=00 8=€1680 
A=00 9::06130 

-A189 
-~ 

itSV-. IIDT VE~: i. (1 

HE:r.:T PC 
£121210 0100 
- L 1 0 €I J LL~+ SO~e C«le 
£1180 MVI B .. 08 
£1102 t1 VI C .. 00 

D=8eee 
D=0000 
It=0000 
It=000e 
It=0000 
It=0000 
It=Et000 
11=0000 
D=00(10 
11=1300'21 

H- 121 P~0104 LXI 
H=e1119 
H=~3119 

H=0119 
H=0119 
H=011A 
H=011A 
H=011A 
H=011A 
H=011A 
H=el1A 
H=011B 
H=@11B 
H=@11B 

8=0100 
8=0100 
S=010~} 

S=~110e 

8=0100 
8=01013 
8=01013 
8=0100 
8=0100 
:::=10100 
8=0100 
!::=€1100 
S=01 (10 

P::0107 t10V 
P::01(I8 E;UB 
p~01el:3 \.IN 
P::€110D I N~: 
P=010E DCR 
P::010F \.INZ 
P::0107 MOV 
P::~1108 SUB 
P=0109 JNC 
P::010D INX 
P~010E nCR 
P::€110F \.IN2 
P=01€17 t10V 

61l34- L>n H .. €I 11 9 . ~yevlOc.tS p()J~ 
. 

f{e5!Ltt X~LO~ ~ lC lY\ 
(11 €17 MOV ~ .. t1~ elee SliB l: 
01139 \.1 (: 010 

j4 

[: 

12110 II 
H 
8 
0107 
AIM 
C 
010 II 
H 
e: 
0107 
A .. M*0108 



010(; MOV C I H 
010D IHX H 
81'3E DCR 8 
81eF JHZ B107 
a 112 MOV A.I C 
-;x:p 
-; 

p=~leB 
J 

-Tla TVGlf -h, SeR bt.J p~~ VeiSlJ~ ope.fc.tt!S nm is ~d frM\ A~ C -~ 
ceZBMBE010 A=Be 8=8eBB D=B00€1 H=I1€te~ =81013 M I~ I 8,88 
cezeMBE010 A=80 B=8SBB D=8e0B H=0eae p=01e2 M I~ I C.' ea 
ceZBMBE010 A=BB 8=0SB8 D=B00B H=ee0e P=0104 LXI H .• 8113 
C0ZBI'tBEeI0 A=Be 8=B8BB D=Be0B H=0119 P=€tlB7 MOY A., M 
C0Zel'tBEeI0 A e'" B=08e~ D=Baee H=0 p=ales SUB c 
CeZBI'tBE0Il A=B2 9 8BB D=BB 1 19 8=01ee P=0189 JC 9lBD 
ceZBMBE0Il A=82 8=8 B8 D- ee H=0119 8=B1ae p=8lec MOY C.' A 
C0ZBMBEell A=82 B=B B D=eeee H=el19 8=€t10e p=e10D I H~: H 
ceZ8M8E0Il A=B2 D=seeB H=011A 8=0100 P=€t18E DCR B 
CeZBI't8Eeli A=B2 D=seSB H=011A 8=010e P=818F ,..1HZ a187 
ceZ0N8Eell A=82 8=8782 D=8ee8 H=OllA s=el0B P=~lB7 MOY A .• M 
ceZ8118E0Il A=B0 8=0782 D=aeee H=011A S=01ae P=018S SUB C 
CIZ8NIE010 A=FE 8=8782 D=8 e Be H=011A S=01ee P=81B9 JC BleD 
CIZ8MIE010 A=FE 8=87B2 D=Beee H=011A 8=0100 P=€t18D IHX H 
CIZ0MIE010 A=FE 9=8782 D=Beee H=e118 S=01ee P=818E nCR B 
CIZBMBEIIl A=FE 9=8682 D=8eee H=e11B S=01ae P=BIBF JHZ 0187*9107 
- ~: ~fbUrl Jief lb ~ -J 

CIZBMBEIIl A=FE 8~e6B2 D=aaeB H=6118 s=e1ae P=81B7 ~OY AJ'" 

- G .. 1 e 8 el 12(.U,\ -f~M CUtv~ ~t 'PC aYlJ ~eahpo;~ at I0C6H 
*0108 
-K i 

CIZEtMBEIIl 
-T -J 

CIZ8M8EIIl 
-T 
-rl 

CeZBMBEBl1 
-X 
-,/ 

. 
r~t.d- da:k.J~ 

A=94 8=8682 D=Beee 

~l~lt ~ fO'( 
A=B4 8=0682 D=eeee 

A=82 B=9602 D=aeee 

H=et118 8=0100 P=81B8 

a.:kw G9d~ 
H=el i8 8=0100 P=BIB:3 

H=011B 8=010(1 P=€t189 

SUB C 

SUB C*91B9 

.JC 01€tD*018C 

CeZBMBE011 A=B2 8=e682 D=0B0B H=011B S=0100 P=010C MOV C~A 

- G J R~ -\0 C!r~J)leh~ 
*0116 
-X~ 

C0Z1MBE111 A=B3 B=eBe3 D=6Be0 H=0121 S=010e P=0116 RST 87 
- §1..U.1 {ook cd -t\Ae \kllllf cf I' LAfG€ II 

8 1 21 e 3" WVcKlJ \b.ltll.l 



0122 00; 

€I123 22; 

0124 21.1 

(112.5 Bet; 

€I 1 26 B 2 J / b,d ~ ~e S CoIVIVWJ.v0. 

0l:?? ?E • 
-~ 

-~J 
01 (;0 MVI BJ0S 
[1102 t1 V I C .• 00 
0104 LXI HJ0119 
0187' MOY A.I M 
0108 SUB C 
0109 ,-Ie 010 II 
010C MOV C.' A 
010Ir I N~: H 
010E DCR 8 
010F ,-1HZ 01'217 
0112 t10V A .• C \2eVth.v 1te C edt -L 
-J 
0113 STA €I 12 1 
0116 RST 07 
(11 1 7 NOP 
01 18 NOP 
01 19 STA~: E: 
011 A NOP 
(I 11 B INR B 
o i 1 C I N~: B 
(11 1 II DCR B 
(111 E MVI B J 0 1 
0120 DCR B 
- ~~: p 
-J 

P=0116 100 Qe~et ~e fe 
-J 

-1. J S\~lt~. I {lV\t\ ~L~ dak VlAllt~S 
C0Z1M0El11 A=03 8=0003 D=0a00 H=0121 8=0108 P=0100 MYI 8~08*0102 
-T 
-J 

C0Z1t10EIIl A=03 B::~18e3 D=€t000 H=0121 S=0100 P=0102 MVI (: .. 00*0104 
-T 
-~ 

C~?ZlMaEI1 1 

r Cuut\+ 'St-t eJ- II 

~lo.t~ sri 
A=03 B ---0 I ea-- H -1- ~:;=@10e P=0104 LXI H .. 0119*0107 .=~::<tt 1= 'I ~~j =~ ~1 

-l.l r ~ aJJ.r~ tf dtdu. ~t 
C0Z1M0EIIl ~=03 8=0880 D=B00e H=0119 8=0100 P=0107 MOY A~M*e108 

" 



-T 
-~ 

CeZ1M0EIIl 
-T -J 

c:eZ0MF.tE€tll 
-T 
-J 

C!3Z0M0E0Il 
-1' 
-J 

C0Z0M0E011 
-T -; 
c:eZBMBE011 
-T -,; 
C0Z0t10E0Il 
-T 
-J 

tez0MBE0Il 
-'T 
-J 

C:0Z0MBE0Il 
-T -J 
CIZ0t11E010 
-T 
-~ 

C.fl';~ o.a~ ~W\ ~Yo~kt~ A 
A=02 8=0800 D=0000 H=@119 8=0100 P=tI10:3 8UB 

A=02 8=0:300 II =0 €I 00 H=(t119 ::;=010121 P=~ZI109 .-,e 

A=02 B=0800 D=0000 H=0119 8=0100 P=010C MOV 

r-h~l-d~~ V'rlCN ttl -k c (O'fedlj 

A=02 8=t1802 It=0000 H=0119 8=01 ~10 P:::~110D I N~: 

A=02 8=0882 D=0 9 99 H:::011A :3=0100 P=010E nCR 

A=02 8=07B2 D=t100B H=011A 8=010(1 P:::010F ",1HZ 

A=02 8=0702 D=0000 H=0iiA 5=0100 P=0187 MOV 

r SUo"Nl dottl lb ~YD'-l"Ld- -b A 
A=00 8=0702 D=000e H=011A 8=0100 P=0108 SUB 

r stMvo.d d.~o85 deJa., \/a,{u.t WklCk W~s (o~lci.l/! 
A=FE 8=0702 D=B000 H=011A 5=0100 P=0109 JC 

C*01B9 

010D*010C 

C.' A*0 lell 

H:ft01 BE 

8:1101 ElF 

0107*€t107 

C1Z0M1E010 A=FE 8=0702 D=0800 H=011A 8=8180 P=010D INX H*010E 
-L100 
-J 

0100 
0102 
0104 
01 (1 (' 

01138 
010~ 
010(: 
€1 1 8~1 
[110E 
010F 
til 12 
-·Al(18 
--oJ 

o i (18 

[t i 09
J 

MVI 
MVI 
L X I 
MOV 
SUB 
de 
t10\l 
I H~'<; 
DCR 
\.1 HZ 
MOV 

B., 0:3 
C .• 00 
H~0119 
A) t1 
C .o4od--~~ sLtou.(d ~4.~l iotet,{ fA CMP so -tkd- 'rear;~f A 
~.~ : II W')lt(d vtot \at dRJr09tc1. 
H 
8 
0107 
A .• C 

CMf' C 
J 

-llJ ~p 'Dt>T ~ <SAVe 

(7 



SAVE 1 SCAN.COM~ 

A}IIItT SCAN. COM 
------~ 

16K IIDT VER 1.0 
HE:~T PC 
021210 010e 
- \<P t.:..-J 

P=010£1&? 

-Li16 
-J 

0116 RST 07 
[1117 NOP 
0118 NOP 
0119 STA}i: 8 
til1A HOP 

Look. a.t cvde- +0 See 'If i+ WCts ?.JD?~~ L(x:l~ed 
(lo~.9 ~~Ot.lt a.~tNtC-'\ lAJl~ YuJoou-t ') 

- ( ~l.L\')(AAk ) 

- G. 1.16 ~Uvt ~VV~ ~OO\..t +0 ~Yl\yk+L6~ 
d 

_. r£ J \. ock e<t Cc.f~ (Cdl:LLle~b..1 b po') 
Ci~ 

-' ~~ ~ Look a.t Cfu. ~td-L 
C1Z1MBE111 A=06 8=0006 D=0000 H=0121 8=0100 P=0116 RST 07 

-~J loo~ a+~\ La~j!. 0 ". if afPea(s +0 ~e C0rrett 
0121 

(1122 

(1123 

E D ~; C A No AS r1 
---~-J 

iLARGER VALUE ! N C? 

.i L.AF.:CiER VALUE 1 N c: "? 

r~FOIJHI: .i J U ~lP 1 F LAF.:GEF: VALUE NOT FOIJND 

~'~FOUHII ; 1.1 1I t'l P I F LARGEF: VALUE t~ (I T F (I UN:O 

I~ 



A ~; t1 :3 C A t~. A A"Z ~ - ~e -a.!6eIAA~\e ~ ~lech~, '5C1W1Cl ~ YOffl d l4. A-

c P / N (, SSE ~1 B L E R - '~ E R 1. I) ~~:a':l~ t Sekcf..; \0\0 'P/l~t fitl) 
~) 1 ;2 2 
(q)2H USE FACTOR 
E WO (I F ASS E t1 B L Y 

1 6 /<' II [I T V E R 1. (1 

t·, E >:: T PC 
~ji21 0(10Et 
-'LiltS; 

f; 1 i E: d N P \3 00 (1 eLfC ~ 40 tvlSuVt lVld.°lS ~.t" III ttt II b~ 
[1119 STA;{: B 
[IliA HOP 
0118 INR B 
-, (-ru'ooLl1) 

- G 1 .. "', i 1 \, Gil .fnw. ~~; \iI~\t\j Wl~ k(lt~ PO'I>\~ ti± ewi 
>t: 011 ,; /ov!a.~ P{)l~ \"!a.C~ed 
-'~,; Loo~ at I'LAt'~JI C(Jtl(~ Valul ~~ptd-Cr~ 
ij 1 ,:21 00 02 ?E EB 77 1 ";r .... ':1 '7 ,. '-' E8 f18 78 
i) 1 '30 C ':' ,'-

'j -; 
'-I f1 1 C3 t2t :~ 29 (n3 (1IZ! 0e 00 {j (1 00 0€1 fiB 

(~I 1 'i-(1 00 Et0 0(1 0(1 ~j (1 BEl Et0 ~Hj 00 00 \) ~3 00 013 f10 

- (Yu.\UlA.t) 

B1 11 ! .-, 

00 £10 .' 

00 tl0 

hi It. l.' 
c\ 

:> 





SYSTEM CONFIGURATION 

The CP/M 2.2 Operating System software is set up for a Xerox 820-11 Personal Computer 
and a Xerox 620 Printer (20 CPS) or 630 Printer (40 CPS). If you have a different 
configuration, you must go through this procedure to change the CP/M software to work 
with your system. You can also use the CONFIGUR Utility to modify other segments of 
CP/M and initialization parameters for adaption of other specific requirements. 

The program will present menus from which you can rnake the appropriate selection for 
your system; in other words, these instructions are guidelines for you to follow -- you'll 
have to read the information (printed within the instructions and on the screen) to make 
the proper choices. 

This procedure contains instructions for the following functions: 

• Record Restart Commands 

., Select Printer Port Options 

• Select Communication Port Options 

• Select I/O Device Assignments 

• Select Keyboard Data Format 

• Select Screen Attributes 

• Select Floppy Disk Head Step Rate* 

or 

Configure Rigid Disk * 

* The Floppy Head Step Rate is not recognized or used by systems configured with a rigid 
disk drive. The floppy head step rate is only recognized and used by systems with floppy 
disk drives only. 

To use the CONFIGUR Utility, you must first load the CP/M software and CONFIGUR 
Utility, then select the function you wish to use. 

When using the CONFIGUR Utility with single density disks, you can only ternporarily 
sa ve any configuration changes. 

To configure the rigid disk, you must format (initialize) it first. (Format will erase all the 
data on the rigid disk.) 

6/1/82 
GENERAL PROGRAMS 

I 



To load the CP/M software and CONFIGUR Utility, use the following instructions: 

TURN ON the 820-II, or press the RESET button or CTRL + ESC if it is already 
on. (The locations of the ON/OFF switch and RESET button are shown in 
your CP/M Handbook, along with instructions on how to insert a disk.) 

Resul t The screen will display the following: 

820-11 v 0.00 (C) 1982 Xerox Corp 

L - Load System 
H - Host Terminal 
T - Typewriter 

*" 

INSERT the CP/M System Disk in the left (A) disk drive. 

TYPE the letters LA and press the RETURN key. 

Result After a few seconds, the screen displays: 

60k CP/M vers 2.20 112-294 DCTOOOOOOO 
A 

TYPE the word CONFIGUR and press the RETURN key. 

Result The following message will be displayed on the screen: 

6/1/82 

System Configuration -- Version 0.00 
Copyright (c) 1982, XEROX Corporation 

Enter SOURCE disk name (or RETURN for this disk): 

GENERAL PROGRAMS 
2 



TYPE the name of the disk drive which already has the parameters you wish to 
use. 

OR 

press the RETURN key to use or change the parameters of the currently 
selected disk drive. 

Resul t The following message is displayed on the screen: 

Enter DESTINATION disk name (or RETURN for same disk) 

TYPE the disk drive name of the disk containing the operating system that you 
want modified. 

OR 

press the RETURN key to modify the operating system on the disk of the 
currently selected disk drive. 

Result The main menu will be displayed as follows: 

6/1/82 

System Configuration -- Version 0.00 
Copyright (c) 1982, XEROX Corporation 

Enter number of function to be executed. Upon completion of the 
selected function the program will return to this menu. 
Touch ESC when all desired selections have been made. 

1) Record Restart Command 

2) Select Printer Port Options 

3) Select Comm Port Options 

4) Select I/o Device Assignments 

5) Select Keyboard Data Format 

6) Select Screen A ttr ibutes 

7) Select Floppy Disk Head Step Rate (floppy disk only) 

or 

Configure Rigid Disk (rigid disk only) 

GENERAL PROGRAMS 
3 



To use the CONFIGUR Utility function{s), choose the function, then go to the page as 
indicated below and follow the instructions. 

Page 5 

Record Restart Command. This allows you to enter a CP/M command (such as 
DIR, STAT, etc.) to be executed automatically each time you load CP/M. 

Page 6 

Select Printer Port Options. This allows you to change the standard printer port 
options (such as Baud Rate, Stop Bits, etc.). 

Page 8 

Select Communication Port Options. This allows you to change the standard 
communications port options (such as Baud Rate, Stop Bits, etc.). 

Page 10 

Select I/O Device Assignments. This allows you to select I/O device assignments 
(such as Console, etc.). 

Page 12 

Select Keyboard Data Format. This allows you to change the keyboard data 
format (7 or 8 bits). 

Page 14 

Select Screen Attributes. This allows you to select blink, inverse video, high­
light, etc., on your screen. 

Page 16 

Select Floppy Disk Head Step Rate. This allows you to select a step rate (speed) 
at which your disk drives will operate. 

Page 18 

Configure Rigid Disk. This allows you to divide the rigid disk into four disks. You 
have the option of selecting one of four recommended configurations or you may 
choose to divide the rigid disk space in a way that will meet your own specific 
requirements. 

Note: Before you can configure the rigid disk, you must first put the operating 
system in one of the rigid disk partitions. If the operating system is not on the 
rigid disk, use your CP/M Handbook and SYSGEN Utility to copy the operating 
system. 

6/1/82 
GENERAL PROGRAMS 

4 



Record Restart Command 

TYPE the number 1 to select the "Record Restart Command" function~ 

Result The following message will be displayed on the screen: 

Note: The selection on this page is saved permanently 
and immediately upon entry - Be careful! 

Enter the normal CP/M command you wish to be executed after every 
"COLD" boot (Power up, CTRL+ESC, or restart button) 

End your entry with a RETURN. 

-OR-

Enter either a RETURN or an ESC to clear the command. 

TYPE the CP/M command that you want and press the RETURN key. 

OR 

press the RETURN or ESC key to clear the command. 

Resul t The main menu will be displayed on the screen: 

IF you need to use another function, turn to page 4 in this section and 
follow the instructions. 

PRESS the ESC key when you have completed all of your selections. 

Result The following message is displayed on the screen: 

The selections you have made are not yet in effect. 

P lease enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but do not save them. 

CHOOSE one of the above selections to return to the operating system. 

GENERAL PROGRAMS 
6/1/82 5 



Select Printer Port Options 

TYPE the number 2 to select the "Select Printer Port Options" function. 

Result The current printer parameters will be displayed as follows: 

Move cursor to option and SPACE to cycle through valid parameters. 

Touch ESC to exit or R to reset to original values. 

OPTION PRINTER 

Baud Rate l200 

Stop Bits 1 

Word Length 7 

Parity Even 

Clear-to-Send Ignore 

Carr ier Detect Ignore 

Protocol XON/XOFF 

PRESS the SPACE BAR to step through the parameters. When the correct 
parameter is displayed, go to the next step. 

PRESS the DOWN ARROW key once to move to the next option and use the 
SPACE BAR to step through the parameters. Continue this 
procedure until you have completed selecting all of the options 
required to initialize your printer port before going to the next step. 

CHECK your screen to be sure that you have selected all of the options 
needed for your printer. 

PRESS the ESC key to display the main menu when you have finished 
making all of your selections. 

6/1/82 

OR 

type R to reset the parameters to their original values and then 
press the ESC key to display the main menu. 

GENERAL PROGRAMS 
6 



IF you need to use another function, turn to page 4 in this section and 
follow the instructions. 

PRESS the ESC key when you have completed aU of your selections. 

Result The following message is displayed on the screen: 

The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but"do not save them. 

CHOOSE one of the above selections to return to the operating system. 

The printer port options shown, work with the Xerox 620 Printer (20 CPS) and 630 
Printer (40 CPS). 

To select the correct options for other printers, see the printer manual that came 
with your printer. 

6/1/82 
GENERAL PROGRAMS 

7 



Select Communication Port Options 

TYPE the number 3 to select the "Select Comm Port Options" function. 

Result The current Comm parameters will be displayed as follows: 

Move cursor to option and SPACE to cycle through valid parameters. 
Touch ESC to exit or R to reset to original values. 

OPTION COMM 

Baud Rate 300 

Stop Bits 1 

Word Length 7 

Parity None 

PRESS the SPACE BAR to step through the parameters. When the correct 
parameter is displayed, go to the next step. 

PRESS the DOWN ARROW key to move to the next option and use the 
SPACE BAR to step through the parameters. Continue this 
procedure until you have completed selecting all the options 
required to initialize your comm port before going to the next step. 

CHECK your screen to be sure that you have selected all of the options 
needed for your communications port. 

PRESS the ESC key to display the main menu when you have finished 
making all of your selections. 

IF 

6/1/82 

OR 

type the letter R to reset the parameters to their original values 
and then touch the ESC key to display the main menu. 

you need to use another function, turn to page 4 in this section and 
follow the instructions. 

GENERAL PROGRAMS 
8 



PRESS the ESC key when you have completed all of your selections. 

Result The following message is displayed on the screen: 

The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but do not save them. 

CHOOSE one of the above selections to return to the operating system. 

6/1/82 
GENERAL PROGRAMS 

9 



Select I/O Device Assignments 

TYPE the number 4 to select the "Select I/O Device Assignments" 
function. 

Result The current device assignments will be displayed on the screen as 
follows: 

Move the cursor to device and SPACE through allowed assignments. 

CRT = Display and Keyboard, LPT = Printer, COMM = Communications 

Touch ESC to exit or R to reset to original values. 

Output Device CP/M and XEROX Designations 

Console = CRT: 

List = LPT: (Serial Printer) 

Note: To use the parallel printer (list device) option, the parallel printer 
cable and jumpers must be installed on the 820-11 processor (see Parallel 
Printer Installation Kit in the System Components section of this manuaI). 

PRESS the SPACE BAR to step through the parameters. When the correct 
parameter is displayed, go to the next step. 

PRESS the DOWN ARROW key to move to the next option and press the 
SPACE BAR to step through the parameters. Continue this 
procedure until you have completed selecting. 

CHECK your screen to be sure that you have selected all of the device 
assignments needed for your system. 

PRESS the ESC key to display the main menu when you have finished 
making all of your selections. 

6/1/82 

OR 

type the letter R to reset the parameters to their original values 
and then press the ESC key to display the main menu. 

GENERAL PROGRAMS 
10 



IF you need to use another function, turn to the appropriate page in 
this section and follow the instructions. 

PRESS the ESC key when you have completed all of your selections. 

Resul t The following message is displayed on the screen: 

The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but do not save them. 

CHOOSE one of the above selections to return to the operating system. 

6/1/82 
GENERAL PROGRAMS 

11 



Select Keyboard Data Format 

TYPE the number 5 to select the "Select Keyboard Data Format" function. 

Result The current keyboard data format (configuration) will be displayed on 
the screen as follows: 

SPACE to select keyboard configuration. 

Touch ESC to exit or R to reset to original value. 

Keyboard Data Format 7 Bits 

PRESS the SPACE BAR to select keyboard configuration. 

CHECK your screen to be sure that the correct keyboard configuration is 
displayed. 

PRESS the ESC key to display the main menu when you have finished 
making your selection. 

OR 

type the letter R to reset the parameter to the original value and 
then press the ESC key to display the main menu. 

IF you need to use another function, turn to the appropriate page in 
this section and follow the instructions. 

PRESS the ESC key when you have completed all of your selections. 

Result The following message is displayed on the screen: 

GENERAL PROGRAMS 
6/1/82 12 



The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but do not save them. 

CHOOSE one of the above selections to return to the operating system. 

6/1/82 
GENERAL PROGRAMS 

13 



Select Screen Attributes 

TYPE the number 6 to select the "Select Screen Attributes" function. 

Result The current screen attributes will be displayed on the screen: 

SPACE to select desired screen attribute. 

Touch ESC to exit or R to reset to original value. 

Screen A ttr ibute Blink 

PRESS the SPACE BAR to select a screen attribute. 

CHECK your screen to be sure that the correct screen attribute is displayed. 

PRESS the ESC key to display the main menu when you have finished 
making your selection. 

OR 

type the letter R to reset the parameter to the original value and 
then press the ESC key to display the main menu. 

IF you need to use another function, turn to the appropriate page in 
this section and follow the instructions. 

PRESS the ESC key when you have completed all of your selections. 

Result The following message is displayed on the screen: 

GENERAL PROGRAMS 
6/1/82 14 



The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but do not save them. 

CHOOSE one of the above selections to return to the operating system. 

6/1/82 
GENERAL PROGRAMS 

15 



Select Floppy Disk Head Step Rate 

TYPE the number 7 to select the "Select Floppy Disk Head Step Rate" 
function. 

Result The current floppy disk drive step rate will be displayed on the 
screen: 

SPACE to select floppy disk drive step rate. 

Touch ESC to exit or R to reset to original value. 

Drive Step Rate 15 msec. 

PRESS the SPACE BAR to select floppy disk drive step rate. 

Note: The following disk drive head step rates are recommended for use with 
Xerox disk drives. 

DISK DRIVES 

8" Double Sided 
8" Single Sided 
5M," Double Sided 
5M," Single Sided 

SERIAL NUMBER 

F 10-000-0000 
X973-000-0000 
T66-000-0000 
X929-000-0000 

STEP RATE 

15 msec 
15 msec 
30 msec 
30 msec 

CHECK your screen to be sure that the correct step rate has been selected. 

PRESS the ESC key to display the main menu when you have finished making 
your selection. 

IF 

6/1/82 

OR 

type the letter R to reset the parameter to the original value and then 
touch the ESC key to display the main menu. 

you need to use another function, turn to the appropriate page in this 
section and follow the instructions. 

GENERAL PROGRAMS 
16 



PRESS the ESC key when you have completed all of your selections. 

Result The following message is displayed on the screen: 

The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

T = Temporarily activate the selections - but do not save them. 

CHOOSE one of the above selections to return to the operating system. 

6/1/82 
GENERAL PROGRAMS 

17 



Configure Rigid Disk 

There are three standard rigid disk partition (space) configurations to choose from 
or, you may custom partition the rigid disk into as many as four logical disks. 

Standard Partitions 

• Partition Size Partition Size Partition Size Partition Size 
/I K /I K /I K /I K 

---------- ---------- ---------- ----------

1 = 4032 2 = 1984 3 = 960 4 = 960 *(4,2,1,1) 

• Parti tion Size Partition Size Partition Size Partition Size 
/I K /I K /I K /I K 

1 = 1984 2 = 1984 3 = 1984 4 = 1984 *(2,2,2,2) 

• Partition Size Partition Size Partition Size Partition Size 
/I K /I K /I K /I K 

---------- ---------- ---------- ----------

1 = 7936 2 = ° 3 = ° 4 = ° *(8,0,0,0) 

* Rigid disk configuration (size of partitions in megabytes). 

(4, 2,1,1) 

/ ~--------
PARTITION /II PAR TITIaN /12 PARTITION /13 PARTITION /14 

Custom Partitioning 

When custom partitioning, the smallest amount of space that you are allowed to 
allocate to a partition (logical drive) is 128K. Any additional space added will be in 64K 
increments. Listed below are the drive names (logical) for each partition. 

6/1/82 

LOGICAL NAME 

E 
F 
G 
H 

PARTITION NUMBER 

1 
2 
3 
4 

GENERAL PROGRAMS 
18 



Reconfiguring the Rigid Disk 

Use the following table when configuring or reconfiguring the rigid disk: 

FROM TO CONDITIONS 

(4,2,1,1) {2,2,2,2} If drives F,G and H are unused {no files} and 
drive E has less than 2 megabytes of space 
used. 

(8,0,0,0) This can only be selected on a newly 
formatted (blank) disk. 

(2,2,2,2) (4,2,1,1) Only if F,G and H are unused (no files). 

(8,0,0,0) This can only be selected on a newly 
formatted (blank) disk. 

(8,0,0,0) (4,2,1,1) This can only be selected on a newly 
formatted disk. 

(2,2,2,2) This can only be selected on a newly 
formatted disk. 

CUSTOM (4,2,1,1) A newly formatted disk must be used to 

(2,2,2,2) reconfigure from a custom configuration to 

(8,0,0,0) a standard configuration. 

Note: The rigid disk cannot be configured or reconfigured if drive H has been used. 

6/1/82 
GENERAL PROGRAMS 

19 



TYPE the number 7 to select the "Configure Rigid Disk" function. 

Result The current rigid disk configuration will be displayed on the screen: 

Use SPACE to cycle through the standard rigid disk partition allocations. 

Touch ESC to exit or R to reset to original values. 

Partition Size Partition Size Partition Size Partition Size 
# K # K # K # K 

1 = 4032 2 = 1984 3 = 960 4 = 960 (4,2,1,1) 

PRESS the SPACE BAR to select a standard partition allocation or to 
select the custom partition program. 

IF you've selected a standard partition allocation, press the ESC key to 
exit or type the letter R to reset to the original allocation. 

OR 

IF you chose to select the custom partition program, press the 
RETURN key to display the following menu: 

Move the cursor and SPACE to select the storage to be allocated to any 
partition. Once a new partition is allocated, the allocation(s) for 
those preceding it may not be changed. (A new partition is allocated 
by dividing the last partition.) Touch ESC to exit or R to reset. 

DISK ASSIGNMENT ALLOCATION 

Partition 1: 7936K 

Parti tion 2: Not Allocated 

Parti tion 3: Not Allocated 

Parti tion 4: Not Allocated 

GENERAL PROGRAMS 
6/1/82 20 



PRESS the SPACE BAR to allocate space to partition 2. When you've 
allocated the amount of space that you want in partition 2, go on to 
the next step. 

PRESS the down arrow key to move to partition 3 and press the SPACE 
BAR to allocate the amount of space to partition 3. Continue this 
procedure until you have completed allocating space. 

CHECK your screen to be sure that you have completed allocating space. 

PRESS the ESC key twice to display the main menu when you have finished 
making all of your selections. 

OR 

type the letter R to reset the partitions to their original values and 
then press the ESC key twice to display the main menu. 

IF you need to use another function, turn to the appropriate page in 
this section and follow the instructions. 

PRESS the ESC key when you have completed all of your selections. 

Result The following message is displayed on the screen: 

The selections you have made are not yet in effect. 

Please enter one of the following: 

S = Save and activate the selections permanently. 

Q or ESC = Quit without making any changes. 

Note: Rigid disk drive selections cannot be temporarily saved. 

CHOOSE one of the above selections to return to the operating system. 

6/1/82 
GENERAL PROGRAMS 

21 



BACKUP 

The BACKUP Utility is a procedure used to backup (copy) the files (data) that are 
stored on the rigid disk. 

The program will present menus from which you can make the appropriate 
selection; in other words, these instructions are guidelines for you to follow -­
you'll have to read the information (printed within the instructions and on the 
screen) to make the proper choices. 

This utility contains instructions for the following options: 

• List Directory 

• Backup Files 

• Replace Files 

• Verify Disk Integrity 

• Delete Files 

• Exit to CP/M 

To use the BACKUP Utility options, you must first load the CP/M software and 
BACKUP Utility, then select the option you wish to use. 

To load the CP/M software and BACKUP Utility, use the following instructions: 

TURN ON the 820-11, or press the RESET button or CTRL + ESC if it is 
already on. (The locations of the ON/OFF switch and RESET button 
are shown in your CP/M Handbook, along with instructions on how to 
insert a disk.) 

Result The screen will display the following: 

6/1/82 

820-11 v 0.00 (C) 1982 Xerox Corp 

L - Load System 
H - Host Terminal 
T - Typewriter 

* 

GENERAL PROGRAMS 
22 



INSERT the CP/M System Disk in the left (A) disk drive. 

TYPE the letters LA and then press the RETURN key. 

Result After a few seconds the screen displays: 

Xerox 60k CP/M vers 2.20 112-294 DCTOOOOOO 
A 

TYPE the word BACKUP and then press the RETURN key. 

Result The disk backup and maintenance menu will be displayed on the 
screen as shown below: 

The Xerox Disk Backup & Maintenance System 
(C) 1982 Balcones Computer Corporation (p) 
All Rights Reserved Version 0.00 (Month) 1982 

DISK BACKUP & MAINTENANCE MENU 

You have the following options available: 

(1) List Directory 
(2) Backup Files 
(3) Replace Files 
(4) Verify Disk Integrity 
(5) Delete Files 
(6) Exit to CP/M 

Please enter your choice: 

Note: When using the BACKUP Utility, you may want to increase the 
brightness of your screen using the brightness control located under the left 
edge of the screen. 

To use the BACKUP Utility options, choose the option as shown on the next page, 
then go to the page as indicated and follow the instructions. 

6/1/82 
GENERAL PROGRAMS 

23 



List Directory. The List Directory option allows you to examine the disk directory 
and to print it out on the printer if you have one. 

GO TO PAGE 25 

Backup Files. This option allows any or all files to be copied from the rigid disk to 
floppy disks and store them under a unique backup (session) name. 

Note: If any of the files that are being backed up are larger than the space of the 
disk they are being backed up onto, use the procedure for large files. A single 
sided double density disk has 480K of available space and a double sided double 
density disk has 978K. 

GO TO PAGE 26 

GO TO PAGE 32 (large file procedure) 

Replace Files. The Replace Files option operates the opposite of the Backup 
option. The files (data) are copied from the backup disks (floppies) using the 
unique backup session name to the rigid disk. 

Note: Check to be sure that the disk (rigid partition) you are replacing your files 
on, is large enough to accept all of the files. A backup session may have required a 
number of disks. 

GO TO PAGE 38 

GO TO PAGE 41 (large file procedure) 

Verify Disk Integrity. This option allows the verification of the surface of the disk. 
When flawed sectors are located, the Verify Disk Integrity option will identify 
those sectors and prevent them from being used by allocating them to a user area. 

GO TO PAGE 43 

Delete Files. The Delete Files option allows the deletion of files while using the 
BACKUP Utility without having to return to the operating system. 

GO TO PAGE 44 

Exit to CP/M. This option allows you to return to the CP/M operating system. 

GO TO PAGE 46 

6/1/82 
GENERAL PROGRAMS 

24 



List Directory 

TYPE the number 1 

Result The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
{C} 1982 Balcones Computer Corporation {P} 
All Rights Reserved Version 0.00 {Month} 1982 

LIST DIRECTORY 

Which Disk Drive {A-P}: { 

TYPE the name of the disk drive that you want to examine the directory 
of. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): { } 

TYPE the number of the user area {DO to 3D}. 

Result The following message is displayed on the screen: 

Do you want it listed on the PRINTER also {Y or N}: 

TYPE the letter Y to print the directory on the printer. 

OR 

the letter N to display the directory on the screen only. 

Note: User area 31 is reserved for allocating any flawed {bad} sectors that 
may be found on the rigid disk when using the Verify Disk Integrity option. 

Result The directory for the disk drive and user area that was entered is 
displayed on the screen. 

PRESS any key on the keyboard to return to the Disk Backup and 
Maintenance Menu. 

GENERAL PROGRAMS 
6/1/82 25 



Backup Files 

Note: Check to be sure that you have enough floppy disks initialized (prepared for 
use) before starting. 

TYPE the number 2 

Result The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
{C} 1982 Balcones Computer Corporation {P} 
All Rights Reserved Version 0.00 (Month) 1982 

BACKUP FILES 

Note: Touch ESC any time to exit. 

Enter Disk Drive that Files are to be copied FROM (A-P): } 

TYPE the name of the disk drive {A through P} which contains the files you 
want to backup {copy}. 

Resul t The following message is displayed on the screen: 

Indicate User Area (00-31): ( ) 

Note: User area 0 (DO) is the most commonly used, and on most systems is 
reserved for system and applications programs. User areas 2 {02} through 30 
may be used to create and store files in to assist in file {data} organization. 
User area 31 is reserved for use by the Verify Disk Integrity option and is 
never accessed by any program. 

TYPE the user area number {O through 3D}. 

Result The following message is displayed on the screen: 

6/1/82 

Enter Disk Drive that Files are to be copied TO (A-P): { } 

GENERAL PROGRAMS 
26 



TYPE the name (A through P) of the floppy disk drive. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): ( 

TYPE the name of the user area that the files are to be copied in. 

Result The following message is displayed on the screen to allow you to 
check your entries: 

Copy files FROM drive ( ), user ( ) TO drive ( ), user ( ) - Correct (y or N)? 

TYPE the letter Y to accept. 

OR 

the letter N if you made an error to exit the Backup Files option. 

IF you typed the letter Y, the following message is displayed on the 
screen: 

When Disk is ready in Drive ( _ ), touch any key to continue. 

WHEN the disk to be copied FROM is ready, press any key on the keyboard 
to continue. 

Result The following message is displayed on the screen: 

6/1/82 

Enter the file name and touch RETURN: 

. GENERAL PROGRAMS 
27 



TYPE the name of each file to be copied pressing the RETURN key once 
after each file name is entered. 

OR 

*. * to copy all of the files on the disk. 

*.COM to copy only the files that have the file name extension COM. 

*.*-COM*.* to copy all files except the files that have the file 
extension COM. 

Note: Any file name extension may be used to select files. 

Result The files to be copied and the following message is displayed on the 
screen: 

Touch RETURN if you are finished entering file names. 

PRESS the RETURN key. 

Result The following message is displayed on the screen: 

Enter backup session name and touch RETURN: 

TYPE the name that you want the backup (copy) session to be called, then 
touch the RETURN key. 

Result The system will load the program and after a few seconds the 
following message is displayed on the screen: 

When disk to copy FROM is ready in drive ( _ ) touch RETURN (or ESC to exit) 

PRESS the RETURN key. 

Resul t The system will compute the total amount of space required to backup the 
files that were entered and then display the following message: 

6/1/82 

When disk to copy TO is ready in drive ( _) touch RETURN (or ESC to exit) 

GENERAL PROGRAMS 
28 



INSERT an initialized disk in drive A, then press the RETURN key. 

Result The following message will be displayed on the screen: 

OaK Remaining to be copied from ( ): User ( ). 
OOOK Available for use on drive ( ): User ( ). Better get some more diskettes 

r 00 Copying file (filename) • OOOk - -

Note: The message "Better get some more diskettes" will only be displayed on the 
screen as shown in the above example if the disk you are copying to doesn't have 
enough space to store all of the files that are being copied. 

IF the disk you are copying to has enough space to store all of the files, the 
following message will be displayed when copying is complete: 

T ouch any key to exit .•• 

Note: You would remove the backup disk and insert the CP/M system disk. Then 
press any key on the keyboard to return to te Disk Backup and Maintenance Menu. 

IF all of the files cannot fit on the disk in drive A, when the disk cannot fit 
any more files, the following message is displayed on the screen: 

000 K Remaining to be copied from ( ): User ( __ ). 
There is not enough space on the disk in drive ( ) to copy any more files. 

(l )Oh no, Drive ( ) is a Non-Removable Hard Disk 
(2) Try to fit the Remaining Files on another Diskette in Drive ( ) 
(3) Split (filename) (OOOK) over Multiple Diskettes in Drive ( ) 

DO NOT REMOVE ANY DISKS YET 
Please enter your choice (or ESC to exit) 

Note: • The first (l) option will return you to the Disk Backup and Maintenance 
Menu • 

6/1/82 

• The second (2) option is the normal choice you would use. Starting with the 
largest file, the remaining files will be copied on the next disk until all of 
the files have been copied or the disk is full. This option can only be used 
when backing up onto floppy disks • 

• The third (3) option is used to backup a file that will not fit on one disk. 

GENERAL PROGRAMS 
29 

1 



TYPE the number 2 

Result The following message is displayed on the screen: 

000 K Remaining to be copied from (): User ( ) 
When disk to copy TO is ready in drive ( ) touch RETURN (or ESC to exit) 

Note: Write the following information on the disk label before putting it on the 
disk. Writing on the label after it has been put on a disk, could damage the disk. 

REMOVE and label the disk providing the following information which will be 
needed when replacing files: 

• Disk number (Number the disks as they are copied 1, 2 etc.).) 

• Backup session name. 

• User area. 

INSERT an initialized disk, then press the RETURN. 

Result The following message will be displayed on the screen: 

OOK Remaining to be copied from ( ): User ( ). 
OOOK Available for use on drive ( ): User ( __ ). -Better get some more diskettes 

r 00 Copying file (filename) 

IF the disk you are copying to has enough space to store the remaining files, 
the following message will be displayed when copying is complete: 

T ouch any key to exi t ••• 

Note: You would remove the backup disk and insert the CP/M system disk. Then 
press any key on the keyboard to return to te Disk Backup and Maintenance Menu. 

IF 

6/1/82 

the remaining files cannot fit on the disk in drive ( ), when the message 
that tells you there is not enough space left on the disk displays on the 
screen, repeat the steps starting at the top of this page until all of the files 
have been copied. The message "Touch any key to exit ••• " will be 
displayed on the screen when copying is complete. 

GENERAL PROGRAMS 
30 



PRINT the disk directories and keep them with each disk. The directories will be 
needed when the files are replaced. 

Note: The Backup Files Option requires space on the disk to record (save) the 
backup session information which is used when replacing the files. This information 
is saved on the disk(s) and is identified by the file extension name BKD. DO NOT 
delete this file from the disk. 

6/1/82 
GENERAL PROGRAMS 

31 



Backup Files {Large file procedure} 

Note: Check to be sure that you have enough floppy disks initialized {prepared for 
use} before starting. 

TYPE the number 2 

Result The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
{C} 1982 Balcones Computer Corporation {P} 
All Rights Reserved Version 0.00 {Month} 1982 

BACKUP FILES 

Note: Touch ESC any time to exit. 

Enter Disk Drive that Files are to be copied FROM {A-P}: 

TYPE the name of the disk drive {A through P} which contains the files you 
want to backup {copy}. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): { } 

Note: User area 0 {DO} is the most commonly used, and on most systems is 
reserved for system and applications programs. User areas 2 {02} through 30 
may be used to create and store files in to assist in file {data} organization. 
User area 31 is reserved for use by the Verify Disk Integrity option and is 
never accessed by any program. 

TYPE the user area number {O through 3D}. 

Result The following message is displayed on the screen: 

6/1/82 

Enter Disk Drive that Files are to be copied TO {A-Ph { 

GENERAL PROGRAMS 
32 



TYPE the name (A through P) of the floppy disk drive. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): 

TYPE the name of the user area that the files are to be copied in. 

Result The following message is displayed on the screen to allow you to 
check your entries: 

Copy files FROM drive ( _ ), user ( _ ) TO drive ( _ ), user ( _ ) - Correct (y or N)? 

TYPE the letter Y to accept. 

OR 

the letter N if you made an error to exit the Backup Files option. 

IF you typed the letter Y, the following message is displayed on the 
screen: 

When Disk is ready in Drive ( _), touch any key to continue. 

WHEN the disk to be copied FROM is ready, press any key on the keyboard 
to continue. 

Result The following message is displayed on the screen: 

6/1/82 

Enter the file name and touch RETURN: 

GENERAL PROGRAMS 
33 



TYPE the name of the file that is larger than the disk that you are copying 
to. 

Result The file name that was entered and the following message is 
displayed on the screen: 

Touch RETURN if you are finished entering file names. 

PRESS the RETURN key. 

Result The following message is displayed on the screen: 

Enter backup session name and touch RETURN: 

TYPE the name that you want the backup (copy) session to be called, th~n 
touch the RETURN key. 

Result The system will load the program and after a few seconds the 
following message is displayed on the screen: 

When disk to copy FROM is ready in drive ( _) touch RETURN (or ESC to exit) 

PRESS the RETURN key. 

Result The system will compute the total amount of space required to backup the 
file that was entered and then display the following message: 

When disk to copy TO is ready in drive ( _ ) touch RETURN (or ESC to exit) 

INSERT an initialized disk in drive A, then press the RETURN key. 

Result The following message will be displayed on the screen: 

GENERAL PROGRAMS 
6/1/82 34 



000 K Remaining to be copied from ( ): User ( _). 
There is not enough space on the disk in drive () to copy any more files. 

(l) Oh no, Drive ( ) is a Non-Removable Hard Disk 
(2) Try to fit the Remaining Files on another Diskette in Drive ( ) 
(3) Split (filename) (OOOK) over Multiple Diskettes in Drive ( ) 

DO NOT REMOVE ANY DISKS YET 
Please enter your choice (or ESC to' exit) 

Note: • The first (l) option will return you to the Disk Backup and Maintenance 
Menu • 

• The second (2) option is the normal choice you would use. Starting with the 
largest file, the remaining files will be copied on the next disk until all of 
the files have been copied or the disk is full. This option can only be used 
when backing up onto floppy disks • 

• The third (3) option is used to backup a file that will not fit on one disk. 

TYPE the number 3 

Result The following message is displayed on the screen: 

( ) : (filename) • 

000 K Remaining to be copied from ( ): User ( __ ) 

Note: Splitting a file into pieces requires that drive ( ) has removable 
media. Do not change diskettes until prompted to do so. 
Be sure and label the diskettes copied as part 1, part 2, etc. 

DO NOT REMOVE ANY DISKS YET 
Are you sure you want to split file (filename) • (Y or ESC to exit): 

TYPE the letter Y 

Result The following message is displayed on the screen: 

6/1/82 

( ) : (filename) • 

000 K Remaining to be copied from ( ): User ( ). 
000 K Available for use on drive ( ): User ( __ >=" -Better get some more diskettes. 

Note: Splitting a file into pieces requires that drive ( ) has removable 
media. Do not change diskettes until prompted to do so. 
Be sure and label the diskettes copied as part 1, part 2, etc. 

When a disk is ready in drive ( ) for (filename) • part 1, type RETURN 

GENERAL PROGRAMS 
35 



PRESS the RE TURN key. 

Result The following message is displayed on the screen: 

rOOD Copy 000 K out of 000 K (filename) • Part 1 

WHEN the disk in physical drive A is full, the following message is displayed on 
the screen: 

When a disk is ready in drive ( ) for (filename) • part 2, type RETURN 

Note: Write the following information on the disk label before putting it on the 
disk. Writing on the label after it has been put on a disk, could damage the disk. 

REMOVE and label the disk with the following information which will be needed 
when replacing the file: 

• Disk number (Number the disks as they are copied 1, 2, etc.). 

• Backup session name. 

• User area. 

INSERT an initialized disk, then press the RETURN key. 

Result The following message will be displayed on the screen: 

IF 

6/1/82 

00 K Remaining to be copied from ( ): User ( ). 
000 K Available for use on drive ( ): User ( ).-

Note: Splitting a file into pieces requires that-drive ( ) has removable 
media. Do not change diskettes until prompted to do so. 
Be sure and label the diskettes copied as part 1, part 2, etc. 

r 00 Copy 000 K out of 000 K (filename) • Part 2 

the disk you are copying to has enough space to store the remaining part of 
the file being copied, the following message will be displayed when copying 
is complete: 

GENERAL PROGRAMS 
36 



( ) : (filename) • 

a K 
000 K 

Remaining to be copied from ( ): User ( ). 
Available for use on drive ( ): User ( _ _ J.-

When disk to copy TO is ready in drive ( ) touch RETURN (or ESC to exit) 

Note: You would press the RETURN key and the following message would be 
displayed on the screen: 

Touch any key to exit •.• 

Note: You would remove the backup disk and insert the CP/M system disk. Then 
press any key on the keyboard to return to the Disk Backup And Maintenance Menu. 

IF the remaining part of the file cannot fit on the disk, when the message that 
tells you there is not enough space left on the disk displays on the screen, 
repeat the steps on the previous page starting with "REMOVE and label 
the disk etc." until all of the file has been copied. The message "Touch 
any key to exit ••• " will be displayed on the screen. 

PRINT the disk directories and keep them with each disk. 

Note: The Backup Files Option requires space on the disk to record (save) the 
backup session information which is used when replacing the files. This information 
is saved on the disk(s) and is identified by the file extension name BKD. DO NOT 
delete this file from the disk. 

6/1/82 
GENERAL PROGRAMS 

37 



Replace Files 

CHECK to be sure that the rigid disk partition that will be used, has enough space 
available before starting. 

TYPE the number 3 

Resul t The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
(C) 1982 Balcones Computer Corporation (P) 
All Rights Reserved Version 0.00 (Month) 1982 

REPLACE FILES 

Note: Touch ESC any time to exit. 

Enter Disk Drive that Files are to be copied FROM (A-P): 

TYPE the name of the disk drive that the files are to be copied from. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): ( ) 

TYPE the user area number that the files are to be copied from. 

Result The following message is displayed on the screen: 

Enter Disk Drive that Files are to be copied TO (A-P): ( ) 

TYPE the name of the disk drive that the files are to be copied to. 

Result The following message is displayed on the screen: 

6/1/82 

Indicate User Area (00-31): ( ) 

GENERAL PROGRAMS 
38 



TYPE the user area number that the files are to be copied to. 

Result The following message is displayed on the screen: 

Copy files F~OM drive ( ), user ( ) TO drive ( ), user ( ) - Correct (Y or N)? 

TYPE the letter Y to accept. 

OR 

the letter N to exi t the Replace Files option. 

IF you typed the letter Y to accept, the following message is displayed 
on the screen: 

Enter backup session name and touch RETURN 

TYPE the name of the backup session that was written on the disk label 
when the files were backed up then press the RETURN key. 

Result The system will load the program and then display the following 
message on the screen: 

When disk to copy FROM is ready in drive ( ) touch RETURN (or ESC to exit) 

INSERT the backup disk marked number 1 in the disk drive, close the drive and then 
press the RE TURN key. 

Result The system will compute the files on the disk and display the file names 
and the following message on the screen: 

When disk to copy TO is ready in drive ( ) touch RETURN (or ESC to exit) 

PRESS the RETURN key. 

GENERAL PROGRAMS 
6/1/82 39 



Result The screen will display each file name as they are being copied, the 
remaining amount of data to be copied, the amount of available space left 
on the disk being copied to. 

WHEN all the informatiom from the backup disk has been copied, the following 
message is displayed on the screen: 

00 More files left to replace. 
When disk to copy FROM is ready in drive ( _ ) touch RETURN (or ESC to exit) 

REMOVE the disk from the drive. 

INSERT the disk marked number 2 in the disk drive and close the drive. 

PRESS the RETURN key. 

Result The following message will be displayed on the screen: 

When disk to copy TO is ready in drive ( ) touch RETURN (or ESC to exit) 

PRESS the RETURN KEY. 

Result The screen will display each file name as they are being copied, the 
remaining amount of data to be copied, and the amount of available space 
left on the disk being copied to. 

WHEN all of the files have been replaced, the following message is displayed on 
the screen: 

T ouch any key to exit ••• 

Note: You would remove the backup disk and insert the CP/M system disk. Then 
press any key on the keyboard to return to the Disk Backup and Maintenance Menu. 

IF there are more files to be copied, the following message will be displayed 
on the screen: 

00 More files left to replace. 
When disk to copy FROM is ready in drive ( _ ) touch RETURN (or ESC to exit) 

REPEAT the steps above, starting with removing the disk. 

6/1/82 
GENERAL PROGRAMS 

40 



Replace Files (Large files) 

CHECK to be sure that the rigid disk partition that will be used, has enough space 
available before starting. 

TYPE the number 3 

Result The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
(C) 1982 Balcones Computer Corporation (P) 
All Rights Reserved Version 0.00 (Month) 1982 

REPLACE FILES 

Note: Touch ESC any time to exit. 

Enter Disk Drive that Files are to be copied FROM (A-P): ( ) 

TYPE the name of the disk drive that the files are to be copied from. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): ( ) 

TYPE the user area number that the files are to be copied from. 

Result The following message is displayed on the screen: 

Enter Disk Drive that Files are to be copied TO (A-P): ) 

TYPE the name of the disk drive that the files are to be copied to. 

Result The following message is displayed on the screen: 

6/1/82 

Indicate User Area (00-31): 

GENERAL PROGRAMS 
41 



TYPE the user area number that the files are to be copied to. 

Result The following message is displayed on the screen: 

Copy files FROM drive ( _ ), user ( _) TO drive ( _), user ( _) - Correct (Y or N)? 

TYPE the letter Y to accept. 

OR 

the letter N to exit the Replace Files option. 

IF you typed the letter Y to accept, the following message is displayed 
on the screen: 

Enter backup session name and touch RETURN 

TYPE the name of the backup session that was written on the disk label 
when the files were backed up then press the RETURN key. 

Result The system will load the program and then display the following 
message on the screen: 

When disk to copy FROM is ready in drive (_) touch RETURN (or ESC to exit) 

INSERT the backup disk marked number 1 in the disk drive and close the drive 

PRESS the RETURN key. 

Result The following message is displayed on the screen: 

6/1/82 

RECONSTRUCT FILE FROM PIECES 

File (filename) • was split amoung several diskettes when it was backed up. 

Place the Part 1 diskette in drive ( ) then type RETURN 

GENERAL PROGRAMS 
4-2 



PRESS the RETURN key. 

Result The system will start copying part I of the file and display the following 
message on the screen: 

r 000 Unsplitting file (filename) • Part I 

WAIT for the following message to be displayed on the screen: 

Place the Part 2 diskette in drive ( ) then type RETURN 

REMOVE the disk marked part I from the disk drive. 

INSERT the disk marked part 2 in the disk drive and close the drive. 

PRESS the RETURN key. 

Result The system will start copying part 2 of the file and display the following 
message on the screen: 

000 Unspli tting file (filename) • Part 2 

IF there are more parts of the file to be replaced, repeat the instructions 
above beginning with flW AIT for the following etc. fl. 

WHEN all of the parts of the file that was split are replaced, the following 
message will be displayed on the screen: 

Touch any key to exit ••• 

REMOVE the backup disk and insert the CP/M system disk. 

PRESS 

6/1/82 

any key on the keyboard to return to the Disk Backup and Maintenance 
Menu. 

GENERAL PROGRAMS 
43 



Verify Disk Integrity 

TYPE the number 4 

Resul t The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
(C) 1982 Balcones Computer Corporation (P) 
All Rights Reserved Version 0.00 (Month) 1982 

VERIFY DISK INTEGRITY 

Verify which Disk: ( ) 

TYPE the name of the disk drive that you want to verify. 

Result The Verify Disk Integrity option will start verifying the disk and display the 
following message: 

00 Reading a to 0000 Blocks. (Touch ESC at any time to exit.) 

WAIT for the following message to be displayed on the screen: 

No errors detected. Touch any key to exit. 

PRESS any key on the keyboard to return t-o the Disk Backup and Maintenance 
Menu. 

GENERAL PROGRAMS 
6/1/82 44 



Delete Files 

TYPE the number 5 

Resul t The following message is displayed on the screen: 

The Xerox Disk Backup & Maintenance System 
(C) 1982 Balcones Computer Corporation (P) 
All Rights Reserved Version 0.00 (Month) 1982 

DELETE FILES 

Delete Files on which Disk: ( 

TYPE the name of the disk drive that you want to delete files from. 

Result The following message is displayed on the screen: 

Indicate User Area (00-31): ( ) 

TYPE the number of the user area (00-30) that you want to delete files from. 

Result The following message is displayed on the screen: 

Erase Files on Drive ( ), User ( ) - Correct (y or N)? 

TYPE the letter Y to accept. 

OR 

the letter N to return to the Disk Backup and Maintenance menu. 

Result The following message is displayed on the screen: 

6/1/82 

When Disk is ready in Drive ( _), touch any key to continue. 

GENERAL PROGRAMS 
45 



WHEN the disk to be deleted from is ready, press any key on the keyboard to 
continue. 

Result The following message is displayed on the screen: 

Enter the file name and touch RETURN: 

TYPE the characters *. * to delete all of the files on the disk. 

OR 

the name of each file to delete, pressing the RETURN key once 
after each file name entered. 

Resul t The following message is displayed on the screen with the names of 
the files that were entered: 

Touch RETURN if you are finished entering file names. 

WHEN you have entered the names of the files you want deleted, press the 
RETURN key. 

Result The following message is displayed on the screen: 

Type A to Delete all Files or Q to Query each File to Delete: 

TYPE the letter A to delete all of the files that you've entered. 

Result Each filename is automatically displayed on the screen as it is 
deleted. 

OR 

the letter Q to check (query) each filename before deleting each 
file. 

Resul t Each file will be displayed on the screen and allow you to delete 
that file by typing Y or, leave that file on the disk and go to the 
next file by typing N. Repeat this procedure until all of the files 
that were entered are done. 

GENERAL PROGRAMS 
6/1/82 46 



WHEN you have finished deleting the files, the following message will be 
displayed on the screen: 

All done. Type any key. 

PRESS any key on the keyboard to return to the Disk Backup and 
Maintenance Menu. 

Exit to CP/M 

TYPE the number 6 to return to the CP/M operating system. 

Resul t The following message is displayed on the screen for a few seconds, 
then the CP/M prompt is displayed: 

6/1/82 

The Xerox Disk Backup & Maintenance System 
(C) 1982 Balcones Computer Corporation (P) 
All Rights Reserved Version 0.00 (Month) 1982 

EXIT TO CP/M 

GENERAL PROGRAMS 
47 



HOST TERMINAL 

The Xerox 820-11 Personal Computer has the ability to communicate with another host 
computer or time share system without using additional software. In the Host Terminal 
mode, the 820-11 interfaces with a computer system as another terminal. 

The Xerox 820-11 can be remotely connected to the computer from any location that has 
access to a telephone by using dial-up modems or data sets. The Xerox 820-11 Host Terminal 
operates in the full duplex mode. 

You can use either the communication or printer port when entering the terminal mode to 
indicate which serial channel to use. If no port (parameter) is specified, the communication 
port will be used. To use the printer port, you would select B as the optional channel 
parameter (see directions below). 

GETTING STARTED 

In addition to the Xerox 820-11, you'll need the following equipment/items to use the Host 
Terminal application. 

• A data-phone and telephone number - to access the host computer. 

• An initialized double density working disk - which will be used if you want to 
save any data transferred from the host computer to the 820-11. 

Note: Information that is scrolled off the top of the screen is saved in memory but not on 
disk. This information can be saved on a disk by using the save command shown on 
the next page. 

When you turn the system ON or press the RESET button, the communication port is set for 
300 baud, and the printer port for 1200 baud. Both serial ports are set for 7 data bits and 
even parity with 1 stop bit. When entering the terminal mode, the baud rate and serial port 
to be used may be specified. If no parameter is specified, the communication port set at 
300 baud will be used. To use the printer port or change the baud rate, use the following 
procedures: 

Selecting the Printer Port 

Example: TYPE 87 B from the load page and press the RETURN key. 

6/1/82 

B = 
7 = 
B = 

Baud command 
Baud rate (1200) 
Printer port 

GENERAL PROGRAMS 
48 



Setting the Baud Rate 

To change the baud rate at the communications port, you would first enter the baud 
command, then enter the baud rate code from the table below and press the RETURN key.' 

Example: 

B 
7 

= 
= 

see note 

TYPE B7 and press the RETURN key. 

Baud com mand 
Baud rate (1200) 
Communication port 

Note: If a port parameter is not specified, the communications port will be used. 

BAUD RATE TABLE 

0 hex = 50 Baud 
1 hex = 75 Baud 
2 hex = 110 Baud 
3 hex = 134.5 Baud 
4 hex = 150 Baud 
5 hex = 300 Baud 
6 hex = 600 Baud 
7 hex = 1200 Baud 
8 hex = 1800 Baud 
9 hex = 2000 Baud 
A hex = 2400 Baud 
B hex = 3600 Baud 
C hex = 4800 Baud 
D hex = 7200 Baud 
E hex = 9600 Baud 
F hex = 19.2 Kbaud 

Using the Host Terminal 

To use the the Host Terminal application follow the instructions below. If you should make 
a mistake at any time, you may press the CTRL + ESC keys and start over. 

6/1/82 

USING the example and table above, set the baud rate (speed). 

Note: The baud rate for the communications port is set at 300 baud when the system 
is turned ON or the RESET button is pressed. 

TYPE 

Result 

the letter H and press the RETURN key to enter the Host Terminal mode. 

The screen displays "Terminal mode. Touch CTRL+ESC to exit." 

GENERAL PROGRAMS 
49 



You can type and manipulate the information on the screen using the keys described on the 
next page. 

If you are connected to the Host Computer with a Data Phone and Modem, proceed with the 
following instructions, or refer to the instruction guide for your particular modem. 

PRESS 

Result 

PRESS 

Result 

PRESS 

Result: 

the TALK key on the Data Phone and dial the telephone number for the 
Host Computer. 

When the connection to the Host Computer has been made, you will hear 
an audible signal. 

the D AT A key on the Data Phone. 

The link to the Host Computer is connected. 

the RETURN key. 

The Host Computer will respond with: "PASSWORD" 

You are now ready to sign on to the Host Computer. Refer to your Host Computer manual 
for the proper sign on procedures. 

6/1/82 
GENERAL PROGRAMS 

50 



Keyboard Commands and Functions 

This section describes the functions using the CTRL key and the numeric keypad keys when 
operating in the Host Terminal mode. 

COMMAND 

CTRL+DOWN ARROW 

CTRL+UP ARROW 

CTRL+DEL 

CTRL+LINE FEED 

CTRL+l 

CTRL+2 

CTRL+. (period) 

CTRL+ESC 

FUNCTION 

Scrolls information down on the screen. 

Scrolls information up on the screen. 

Enable local echo. Characters transmitted and received will be 
displayed on the screen. 

Enable local auto line feed. When the RETURN key is 
touched, a line feed is also sent to the local screen but not 
transmitted. 

Enable remote echo. Characters received will be echoed back 
to the transmitting device. In this mode, the Xerox 820-II can 
act as a host to another terminal. 

Enable remote auto line feed. Carriage return characters 
received will be echoed to the remote device as carriage return 
and line feed codes. 

Transmit BREAK. When these keys are touched a break 
condition will be enabled until CTR L+. is touched or any other 
character is typed. 

Exit the Host Terminal mode. 

Saving Host Terminal Information 

Text that is scrolled off the top of the screen when using the Host Terminal mode is stored 
in main memory. The information is stored in the Transient Program Area (TPA) of main 
memory and is large enough to store approximately 700 lines. It is stored in memory until 
power is turned off or an applications program is loaded into the Transient Program Area. 
This informatiom may be printed using the screen print function (CTRL+HELP) or stored on 
disk by loading the CP/M software and executing the SAVE command. 

EXAMPLE: The command SAVE 220 "filename" will save the information in the CP/M file 
called "filename". 

6/1/82 
GENERAL PROGRAMS 

51 



KILLESC 

The KILLESC program allows the disabling of the CTRL+ESC command. The CTRL+ESC 
function is reactivated whenever the 820-11 is reset. 

To use the KILLESC program, you would enter the following command: 

TYPE the word KILLESC, press the RETURN key and then follow the instructions 
on the screen. 

Result The following message is displayed on the screen: 

KILLESC version 0.00 
Copyright (C) 1982 XEROX Corporation 

You may touch 
CTRL+C 
RETURN 
P 

to EXIT the program 
to IGNORE the CTRL+ESC function or 
to PASS the CTRL+ESC sequence unaltered 

SWAP 

The SWAP program allows a physical disk drive to be referenced by another logical disk 
drive name. This utility allows taking advantage of the speed of the rigid disk drives with 
systems having both rigid disk drives and floppy disk drives. 

When the system is first turned on, the floppy disk drives are always referred to as A 
through D, and the rigid disk drives as E through H. CP/M always requires a drive A for 
reset and "warm boot" operations. Warm boot and many applications programs are 
considerably faster from rigid disk drives than floppy disk drives, therefore it is desirable 
to use the speed of the rigid disk drives. 

If CP/M is booted directly frorn one of the rigid drives (partition), then a "SWAP" 
command is done automatically. Loading CP/M from rigid drive H (partition H) would 
cause rigid drive H to be referenced automatically as the A Drive, and the original A 
Drive (floppy disk) would be referenced as the H Drive. 

When using the SWAP program, each physical drive in the system can have its name 
changed. To change (swap) the names of disk drives Band F, you would enter the 
following com mand: 

TYPE SWAP b=f and press the RETURN key. 

Result The following message will be displayed on the screen: 

Logical drive B: exchanged with F: 

In this example the rigid drive (partition) normally called F will be accessed by CP/M 
whenever a program looks for information on the B Drive. 

6/1/82 
GENERAL PROGRAMS 

52 



TIME AND DATE 

The 820-II allows you to display the time and date on the screen. 

To set the time and date: 

TYPE the word TIME and press the RETURN key. 

Result The following message is displayed on the screen: 

Enter the date and time as: mm-dd-yy hh.mm.ss 

ENTER your date as mm-dd-yy, your time in hours (hh) (expressed as zero to 
twenty three), minutes (mm) (expressed as zero to fifty-nine) and seconds 
(ss) (expressed as zero to fifty-nine). 

PRESS the RETURN key to exit. 

To display the date and time of day: 

TYPE TIME P and press the RETURN key. 

Result The time and date will be displayed on the screen as shown in the following 
example: 

May 8, 1982 10:32:47 

Once TIME is set, typing TIME M allows it to be reset. 

6/1/82 
GENERAL PROGRAMS 

53 



SCREEN PRINT 

The 820-11 has the capability to print what is currently displayed on the screen. 

To print what is displayed on the screen: 

PRESS the CTRL + HELP keys. 

Result The printer will print what is displayed on the screen. 

Note: Do not change what is displayed on the screen until the printer has 
finished printing. 

If you print a screen that is displaying graphics, the printed document will not be 
an exact duplicate of the screen. 

SET 

When you turn the system on, press the RESET button or load the CP/M software, 
the communication port is set for 300 baud and the printer port for 1200 baud. The 
SET utility allows you to change (set) the baud rate of the communication or 
printer port. To change the baud rate you would enter the SET command, the port 
you want to set, and then the baud rate as shown in the examples below. 

To change (set) the baud rate (speed) for the printer port: 

TYPE SET PRINTER 600 and press the RETURN key. 

Result The printer port is set for 600 baud. 

To change (set) the baud rate (speed) for the communications port: 

TYPE SET COMM 9600 and press the RETURN key. 

Result The communications port is set for 9600 baud. 

GENERAL PROGRAMS 
6/1/82 54 



SYSTEM COMPONENTS 

T ABLE OF CONTENTS 

620 PRINTER (20 CPS) 
Introduction 
Unpacking 
Installa tion 
Familiar iza tion 
Preparation for Operation 
Operating the 620 Printer (20 CPS) 
Special Considerations 
Setting the Switches Under the Front Cover 
Using the Control Panel Switches 
Specifications 

630 PRINTER (40 CPS) 
Introd uc tion 
Unpacking 
Installation 
Familiar ization 
Prepara tion for Operation 
Opera ting the 630 Printer (40 CPS) 
Special Considerations 
Setting the Switches Under the Front Access Cover 
Setting the Operating Switches 
Reading the Control Panel Indica tors 
Specifications 

FORMS TRACTOR (630 Printer - 40 CPS) 
Installation 
Removal 
Loading Paper 

PARALLEL PRINTER INSTALLATION 

DAISY CHAINING DISK DRIVES 

SYSTEM COMPONENTS 
6/1/82 

I 
2 
3 
4 
7 

14 
15 
18 
20 
21 

23 
24 
26 
28 
30 
33 
34 
35 
36 
37 
38 

41 
42 
42 
44 

45 

51 



SYSTEM COMPONENTS 
ii 



620 PRINTER (20 CPS) 

INTRODUCTION 

An illustration of the 620 printer (20 CPS) is shown below. If your printer does not 
match the illustration you may have a 630 printer (40 CPS), described on page 23. -

The 620 Printer (20 CPS) is a serial printer designed for the low speed, low-to­
moderate output requirements of standalone word and data processing business 
systems. The printer uses conventional data interchange techniques and protocol at 
speeds up to 1200 Baud. 

The 620 Printer (20 CPS) produces a "typewriter" quality output of fully-formed 
characters at a maximum of 20 CPS. It includes operating features such as page 
formatting, graphics, positive and negative full and half line feed, absolute horizontal 
and vertical tabbing and proportional spacing. 

The 620 Printer (20 CPS) features a new 98 character plastic printwheel with 
automatic recognition of print wheel type and language. A "drop in" print wheel 
exchange system is also featured where printwheels may be exchanged without 
removing the ribbon cartridge. The printwheels are available in many languages and 
type styles. 

The 620 Printer (20 CPS) features quick change carbon film ribbon cartridges. 

6/1/82 
SYSTEM COMPONENTS 

1 



UNPACKING THE 620 PRINTER (20 CPS) 

1. Inspect the outer carton and the various packing components as you open the 
carton. Note any damage which could have occurred during shipment. 

2. Remove any accessories packed around the printer. 

3. Lift the printer out of the carton using the hand grips provided in the foam 
packing, and remove the foam packing end caps and plastic dust bag. Place the 
printer on a table or desk. 

NOTE: The weight of the printer is centered toward its right rear (as you look 
at it); thus it is easiest to lift by holding it at the right-rear and left-front. 

4. Inspect the printer and any accompanying accessories for evidence of shipping 
damage. Immediately notify the shipping agent of any damage to the unit or its 
parts. 

5. Remove any papers, tags or other materials found inside the printer, and 
remove any plastic tie or rubber band shipping restraints found. 

6/1/82 
SYSTEM COMPONENTS 

2 



INST ALLATION 

1. Connect the interface cable to the connector at the rear of the printer and to 
the printer connector on the back of the screen. 

2. Check the ON/OFF switch on the front of the printer -- it must be OFF! 

3. Plug the power cord into the outlet (left side, looking at the back of the printer) 
on the back of the printer. 

4. Plug the other end of the power cord into the wall outlet. DO NOT turn on the 
printer yet. 

5. If the platen has been removed, replace it (see instructions on page 17). 

6. Install a print wheel and ribbon (see instructions on pages 9 and 12). 

7. Check the switch settings (see instructions on page 18) 

6/1/82 
SYSTEM COMPONENTS 

3 



F AMILIARIZA TION 

1. Control Panel - Operator control switches and indicators. 

2. AC Power Switch - This switch provides operator control of power to the 
printer. 

3. Front Access Cover - Operator access to internal operating switches. 

4. Sound Panel - Provides sound control when the printer is operating, and provides 
operator access for changing print wheels and ribbon cartridges and inserting 
paper. 

5. Paper Release Lever - This lever releases paper roller pressure when pulled 
forward, allowing the paper to be positioned manually. Returning this lever to 
its back position re-establishes paper roller pressure. 

6. Paper Bail Lever - The paper bail lever is used by the operator to move the 
paper bail forward to allow loading of paper, and back again to its operating 
position. 

7. Paper Rack - This rack holds the paper up off the top rear of the printer to 
allow the flow of cooling air to exit the printer. Use of the paper rack is 
required in all cases where fan-fold (continuous) paper is used. Use of fan-fold 
paper without the paper rack will cause overheating of the printer. 

NOTE: Operation of the printer without the paper rack in such a mode will void 
warranty guarantees. 

8. Paper Guide - A movable guide for aid in inserting paper. 

9. Top Rear Cover - The rear half of the top cover is easily removed whenever the 
printer needs service or maintenance. 

10. Electronics Compartment Ventilation - These openings along with similar 
openings in the bottom provide for a flow of cooling air up through the 
electronics compartment. 

11. AC Power Input - This plug on the right rear of the printer provides for 
connecting the AC power cable. 

12. Interface Connector - This connector, located on the left rear of the printer 
provides for connecting the unit to a modem or host system. 

6/1/82 
SYSTEM COMPONENTS 

4 



10 

11 12 

SYSTEM COMPONENTS 
5 

2 



Paper Handling Features 

1. Platen Knob - This knob, when pushed in to disengage the drive gear, allows 
rotation of the platen to insert and position paper. 

2. Platen Release Latches - These two latches are pressed down to release the 
platen for removal or when inserting a platen. 

3. Platen - The platen is similar to those on standard office typewriters. The left­
hand platen knob pushes in (to disengage the drive gear) for manual setting of 
paper position. 

4. Paper Bail Lever - This lever is used to move the paper bail forward to allow 
loading of paper, and then back again to its operating position. 

5. Paper Bail - The paper bail holds the paper against the platen for optimum print 
quality and quietness. The bail must be moved forward away from the platen 
using the paper bail lever when inserting paper. 

6. Paper Release Lever - This lever releases paper roller pressure when pulled 
forward, allowing paper to be positioned manually. Returning this lever to its 
rearward position re-establishes paper roller pressure. 

7. Paper Scales Bar - The scales on this bar aid in centering and spacing paper and 
copy. The bar itself helps direct the paper down behind the platen during 
insertion. 

4 

2 

/ 
1 

7 

SYSTEM COMPONENTS 
6 

6 

I 

3 



PREPARATION FOR OPERATION 

Remove Access Cover 

1. Open the sound panel by grasping the edge towards the back of the printer and 
lifting it towards the front of the printer. 

2. Press both latches on the inside of the front access cover and remove it by 
lifting it from the printer • 

. SYSTEM COMPONENTS 
7 



Removing a Printwheel 

1. Remove the printer cover. 

2. Release the CARRIER LATCH by pulling it toward you with your finger. It will 
snap open, so the printwheel can be easily removed. (It is not necessary to 
remove the ribbon.) 

Pull Carrier Latch 

3. Slide your finger between printwheel and ribbon. 

4. Grasp the top of the print wheel with your thumb and first finger and lift it 
straight up. 

SYSTEM COMPONENTS 
8 



Installing a Printwheel 

1. Be sure CARRIER LATCH is open. 

2. Grasp the printwheel gently between your thumb and first finger. Be sure the 
pitch printed on the pointer is toward you. 

3. Lower the print wheel into the carrier (between the ribbon/correction tape and 
the ribbon guide). 

4. Push the carrier forward and hold it in place while you push the Carrier Latch 
forward into its groove. 

5. When you touch any character, the print wheel spins as the printer locks it into 
the correct position for printing. 

If the printwheel continues to spin and the printer beeps twice, it means that it can't 
identify the printwheel. Open the Carrier Latch to verify that the print wheel is 
inserted correctly. Then close it again and touch any key. If it still spins and beeps, 
try another printwheel. 

SYSTEM COMPONENTS 
9 



The Ribbon Cartridge 

Before you install a new ribbon cartridge in the printer notice: 

1. The WINDOW lets you see how much ribbon remains in the cartridge. The 
ribbon feeds from the left side of the cartridge to the right side, so that a new 
cartridge should have all of the ribbon showing on the left side. 

2. The colored KNOB tightens the ribbon across the cartridge guides. You turn it 
counterclockwise to tighten the ribbon (look at the arrow above the knob). You 
cannot tighten the ribbon when the cartridge is locked in the printer. 

3. At the back of the cartridge is a GUIDE SLOT. This slot helps you center the 
cartridge correctly as you install it. ... 

SYSTEM COMPONENTS 
10 



Removing a Ribbon Cartridge 

1. Raise the sound panel. 

2. Release the CARRIER LATCH as if you were about to remove the printwheel 
(see printwheel removal instructions). 

3. Push the red CARTRIDGE RELEASE LEVER (under the right side of the ribbon) 
toward the platen to the OPEN position. 

l,-~==~§ 
J{EROX 

4. Hold the sides of the cartridge with both hands. 

5. Tilt the front of the cartridge upward, then lift the cartridge up and out of the 
printer. 

SYSTEM COMPONENTS 
11 



Installing a Ribbon, Cartridge 

1. Take up any tension in the ribbon by turning the colored knob on the top of 
the cartridge in the direction of the arrow. 

2. Move the red CARTRIDGE RELEASE LEVER at the side of the carrier to 
the open position. 

3. Return the CARRIER LATCH if it is not released. 

4. Hold the cartridge in both hands, tilt the back of the cartridge down, and 
slide it backward into the rear guide as you lower it onto the carrier (see 
illustration below). 

5. As you lower the cartridge, position the ribbon between the plastic card 
guide and the ribbon guides until the cartridge fits securely on the carrier. 

6. Slowly move the CARTRIDGE RELEASE LEVER to its locked position. 

7. Push the carrier forward and hold it in place while you push the CARRIER 
LATCH forward into its groove. 

, SYSTEM COMPONENTS 
12 



Inserting Paper or Forms 

Inserting paper or forms into the printer is accomplished in much the same manner as 
in a standard typewriter. Paper is inserted down behind the metal paper out bail and 
platen while the platen is turned manually to bring the paper around and up in front 
of the platen. The front paper bail aids in guiding the paper back over the platen to 
the rear when pUlle.d forward. The paper release lever at the right-hand side of the 
printer may be pulled forward to release roller pressure after paper insertion so the 
paper can be properly aligned in the printer. After paper is positioned, both the front 
paper bail and paper release lever are returned to their operating positions. 

SYSTEM COMPONENTS 
13 



OPERATING THE 620 PRINTER (20 CPS) 

Preliminary Steps 

1. Install a printwheel, a ribbon cartridge and insert a sheet of paper. 

2. Check switches as shown on page 18 of this section. 

3. Move the carriage manually to the right a short distance. 

4. Move the power ON/OFF switch at the right front of the printer to ON. 

5. The POWER indicator should glow; the carriage should move to the left slowly, 
and then back to the right, to stop at the first print position; and the print­
wheel should rotate and stop at its "home" position (i.e., the "flag"). This entire 
process is called the INITIALIZATION, RESET or RESTORE sequence. It clears 
all volatile memory,-resets all position counters and sets the printer to print the 
first character. ' 

SYSTEM COMPONENTS 
14 



SPECIAL CON SIDER A nONS 

1. Cleaning Printwheels 

Printwheels used with carbon ribbons seldom need cleaning. Printwheels used 
with cloth ribbons will require an occasional cleaning. 

Remove the printwheel and clean with toluene or naphtha * and a soft brush or 
wiper. DO NOT clean with water. Make sure to keep the reflective "code" 
segments on the back or character side of the printwheel clean and shiny. Be 
careful not to bend the "spokes". 

2. Cleaning the Platen and Paper Rollers 

Platens and paper rollers are made of rubber. They require periodic cleaning 
for a more positive friction paper drive. Periodically clean the platen, paper 
bail rollers and pressure rollers with soft tissues or cloth wipers and a good 
com merically available platen cleaner. 

3. Cleaning the Card Guide 

Remove the ribbon cartridge, printwheel and platen. Remove the card guide 
and clean it using soft tissue or a soft cloth and alcohol. 

CAUTION: DO NOT use alcohol, water or platen cleaners to clean printwheels. 

DO NOT use alcohol to clean platens or other rubber parts (it hardens the 
surface). 

DO NOT use platen cleaner to clean the card guide or other plastic parts 
(it attacks the plastic). 

* Toluene and naphtha are available at most drug stores. 

SYSTEM COMPONENTS 
15 



For safety, unplug your printer before you begin to clean it. Avoid spraying or 
pouring liquids directly on the printer. 

Special cleaning materials are available from Xerox. 

Cleaning the Platen and Card Guide. 

1. Remove the printer cover. 

2. Lift the paper bail, and the tissue deflector. 

3. Release the carrier latch and remove the print wheel and ribbon. 

4. Push back on the platen release levers at each end of the platen. 

5. Lift the platen up and out. 

6. Clean the platen. 

7. Clean both sides of the card guide. 

SYSTEM COMPONENTS 
16 



8. To replace the platen: 

a. Hold the pIa ten over the release levers. 

b. Lower the left side of the platen and push the left release lever back with 
the metal platen rod until the groove falls into the guide. 

c. Lower the middle of the platen behind the plastic paper guide. 

d. Push the right release lever back with your right thumb far enough to 
lower the metal platen rod into the right guide. The release lever will 
snap over the rod when you have placed the rod in the correct position. 

9. Reinstall the print wheel and ribbon. 

10. Lower the tissue deflector, paper bail and typewriter cover. 

SYSTEM COMPONENTS 
17 



Setting the Switches Under the Front Cover 

The printer has been factory preset to the proper switch positions for use with a 
Xerox 820-11 Personal Computer. 

These switches are located to the left of the external Control Panel, but is covered 
when the front cover is in place. These switches control operating modes and 
ordinarily do not require attention once set. 

ON ex) K::I OPTION 
12 ..... CJI 11 PAGE SIZE 

ON coCJI AUTO L F 

ON IOCJI SELF TEST 

ON ~E:J DC1/DC3 

-CON MCJI OFF 
PARITY ODD .NE:l EVEN 

110 
,.. 300 BAUD 

z~-· 

OPTION: This switch when ON, enables the printer to receive and transmit 
data at a speed of 1200 Baud. 

PAGE SIZE: This switch enables setting page size, used in the Top Of 
Form/Form Feed function, to either the US standard 11" or the European 
standard 12" page length. 

AUTO LF: When ON, this switch enables the 20 CPS to automatically advance 
the paper one line with each carriage return. This relieves the host system of 
the need to send a line feed command with each carriage return command. 

SELF TEST: If this switch is in the ON position when the printer is turned on, 
the printer will enter a self test mode and begin sequencing thru its self test 
program. The Control Panel PAUSE and RESET switches may be used to 
interrupt the self test sequence. To exit the mode, the SELF TEST switch must 
be moved to OFF and the power to the 20 CPS must be turned off momentarily. 

SYSTEM COMPONENTS 

18 f)ylt III t~~ 
tl t7 Jl} rr·-l~~ l ~ 



Setting the Switches Under the Front Cover 

The printer has been factory preset to the proper switch positions for use with a 
Xerox 820-11 Personal Computer. . 

These switches are located to the left of the external Control Panel, but is covered 
when the front cover is in place. These switches control operating modes and 
ordinarily do not require attention once set. 

1200/0PT 8 110/300 

12 7 11 PAGE SIZE 

ON 6 AUTO/LF 

ON 5 SELFTEST 

PTR/ ROY 4 DC1/DC3 

CON 3 OFF 
PARITY 

ODD EVEN 

110/1200 1 300/0PTION 

BAUD 

OPTION: This switch when ON, enables the printer to receive and transmit 
data at a speed of 1200 Baud. 

PAGE SIZE: This switch enables setting page size, used in the Top Of 
Form/Form Feed function, to either the US standard 11" or the European 
standard 12" page length. 

AUTO LF: When ON, this switch enables the 20 CPS to automatically advance 
the paper one line with each carriage return. This relieves the host system of 
the need to send a line feed command with each carriage return command. 

SELF TEST: If this switch is in the ON position when the printer is turned on, 
. the printer will enter a self test mode and begin sequencing thru its self test 
program. The Control Panel PAUSE and RESET switches may be used to 
interrupt the self test sequence. To exit the mode, the SELF TEST switch must 
be moved to OFF and the power to the 20 CPS must be turned off momentarily. 

6/1/82 
SYSTEM COMPONENTS 

18 



DCl/DC3: This switch is used to allow the printer to operate with much faster 
host systems without loss of data. When ON, special characters (DCI/DC3) are 
transrnitted between the printer and the host automatically whenever the print 
buffer is either nearly full or nearly empty. 

Note: The 820-11 does not support ETX/ ACK operation. 

PARITY ON-OFF: This switch enables parity checking and parity information 
tr anslnission when on. 

PARITY ODD-EVEN: This is used in conjunction with Parity ON-OFF to 
determine the nature of parity information handling. 

110-300 BAUD: This switch selects 110 or 300 Baud as the speed at which the 
printer will receive and transmit data. If 1200 Baud is selected (OPTION switch 
ON), this switch doesn't have any affect on printer operation. 

For use with the Xerox 820-11, all the switches should be positioned to the right 
of the printer except for switch 8. It should be positioned toward the left of 
the printer. 

6/1/82 
SYSTEM COMPONENTS 

19 



/~. D C' .',' / s:;_. 7~­;01 1.-4 J 0 ~.- £- I z:: 
l ... "fr' f-/ 

DC1/DC3: This switch is used to allow the printer to operate with much faster 
host systems without loss of data. When ON, special characters (DCI/DC3) are 
transmitted between the printer and the host automatically whenever the print 
buffer is either nearly full or nearly empty. 

Note: The 820-11 does not support ETX/ ACK operation. 

PARITY ON-OFF: This switch enables parity checking and parity information 
transmission when on. 

PARITY ODD-EVEN: This is used in conjunction with Parity ON-OFF to 
determine the nature of parity information handling. 

110-300 BAUD: This switch selects 110 or 300 Baud as the speed at which the 
printer will receive and transmit data. If 1200 Baud is selected (OPTION switch 
ON), this switch doesn't have any affect on printer operation. 

For use with the Xerox 820-11, all the switches should be positioned to the right 
of the printer except for switches 2, 4 and 8. They should be positioned toward 
the left of the printer. 

SYSTEM COMPONENTS ~ 

19 () (3)() f-£"-re 



Using The Control Panel Switches 

These five switches are located to the right of the Control Panel where they are 
accessible to the operator with all covers on the machine. These are membrance 
type momentary action switches actuated by a touch of the finger. 

RESET: This switch will clear an "error" indication and return the printer to 
operation. It will also return the printer to operation following a PAUSE 
command. 

PAUSE: Touching this switch will cause the printer to stop printing without any 
loss of data, and the power indicator will go out. Printing is continued by 
pressing the RESET switch. 

LINE FEED: Touching this switch initiates a single line feed. Action is 
repeated if the switch is held activated longer than 1/2 second. A line feed 
code will not be transmitted. 

FORM FEED: Touching this switch initiates a form feed to the next top-of­
form position. A form feed code is not transmitted. 

The POWER Indicator 

The power indicator glows whenever power is turned on to the printer. 

The indicator will flash for the following conditions: 

1. A parity error was detected with the PARITY switch on. 

2. The printer buffer (memory) has overflowed. 

3. The printer didn't receive a "Data Set Ready" signal. 

0 
POWER 0~BB FEED FEED 

SYSTEM COMPONENTS 
20 



SPECIFICA nONS 

Print Speed: Up to 20 characters per second. 

Character Set: 98 printable character printwheel. 

Print wheels: Plastic 98 character Xerox. 

Character Spacing: 1 O-pi tch = 10 characters/inch 
12-pitch = 12 characters/inch 
15-pi tch = 15 characters/inch 

Column Spacing: 1/120 inch (.21mm) minimum. 

Print Line: 

Paper Width: 

13.2 inches (335.3mm) 
132 columns 10 pitch 

13.2 inches (387.4mm) maximum - friction feed platen. 

Carriage Speed: 1.7 sec maximum for 13.2 inches (332.77mm) of motion. 

Tabulation: Left or right. 

Line Spacing: 1/48 inch (.53mm) minimum. 

Paper Feed: Bidirectional. 

Paper Thickness: 1 to 5 part forms; maximum overall thickness .024" (.61mm). 

Other Features: Self test; host program control through escape sequences; data 
receive/transmit speed selection. 

Power Requirements: Operation from nominal 120/220-240 volt AC inputs, 50-60 Hz. 
120W maximum power consumption. 

CHECK YOUR PRINTERS's SERIAL PLATE FOR PROPER INPUT POWER. 

SYSTEM COMPONENTS 
21 



SYSTEM COMPONENTS 
22 



630 PRINTER (40 CPS) 

INTRODUCTION 

An illustration of the 630 printer (40 CPS) is shown below. If your printer does not 
match the illustration you may have a 620 printer (20 CPS), described on page 1. -

The 630 Printer (40 CPS) is a universal RS 232-C interface printer. It will support a 
heavy workload using conventional serial data interchange techniques and protocols. 

The 630 Printer (40 CPS) can use all Diablo and Xerox plastic and metal printwheels. 

The 630 Printer (40 CPS) can use many of Diablo's present paper handling devices, 
such as forms tractors, sheet feeders, etc. 

6/1/82 

0000000\ 

SYSTEM COMPONENTS 
23 



UNPACKING THE 630 PRINTER (40 CPS) 

1. Take the printer and all accessories out of the carton and remove the plastic 
dust bag. Place the printer on a desk or table. 

NOTE: The weight of the 630 Printer (40 CPS) is centered toward its right-rear 
(as you look at it); thus it is easiest to lift by holding it at the right-rear and 
left-front. 

2. Inspect the printer and any accompanying accessories for evidence of shipping 
damage. Immediately notify the shipping agent of any damage to the unit or its 
parts. 

3. Remove the access cover. It is held in place by magnetic latches in front and 
small tabs in back. 

4. Remove the plastic bag and the CAUTION tag attached to the paper bail by 
cutting or removing the tie wrap (nylon strap). 

5. Remove or cut the following shipping restraint items, if installed (see pictures 
on opposite page): 

a} Rubber band securing the cover open switch actuator. 

b} Rubber band securing the paper cradle to the paper pressure rollers (if no 
platen is installed). 

c} Tie wrap (nylon strap) holding the carriage to the right printer frame. 

CAUTION: DO NOT cut any other tie. wraps! 

6/1/82 
SYSTEM COMPONENTS 

24 



REtI\O'/lNG sH1PP1NG RESIRAl
N

lS 

. S,<S1'cM COM\?O\'lC
N

1'S 
25 



INST ALLATION 

1. Place the 630 Printer {40 CPS} on your desk or table. Look at the two cords. 
One printer cord plug fits the large outlet on the back of the printer; the other 
plug fits the large outlet on the back of the screen. One power plug fits the 
smaller outlet on the back of the printer; the other plug fits a wall outlet. 

2. Check the ON/OFF switch on the back of the printer -- it must be OFF! 

3. Plug the printer cord into the large outlet {right side, looking at back -- see 
picture on the opposite page} on the back of the printer. Tighten the screws on 
the plug. 

4. Plug the L-shaped end of the power cord into the small outlet {left side, looking 
at back -- see picture on the opposite page} on the back of the printer. 

Plug the other end of the power cord into the wall outlet. DO NOT turn on the 
printer yet. 

5. If the platen has been removed, reinstall it by lowering it down into place while 
pressing down on both platen release levers. {See item number 3 on page 29 for 
an illustration.} 

NOTE: Make sure the platen's releasable drive gear end is on the right {as you 
view it}. 

6. Install the sound shield on the front access cover as shown in the illustration on 
the bottom of page 27. 

7. Install the platen knob on the right end of the platen - thru the hole in the top 
cover. Engage the knob on the platen shaft, rotate the knob until its slot fits 
over the cross pin on the platen shaft, then push against the knob to snap it into 
place. 

8. Now you are ready to read the information on page 28 and then install a 
printwheel and ribbon using the instructions on pages 30 and 31. 

6/1/82 
SYSTEM COMPONENTS 

26 



SOUND COVER TABS 

SYSTEM COMPONENTS 
27 



F AMILIARIZA TION 

(See picture on opposite page) 

1. Control Panel - Operator control switches and indicators. 

2. Access Cover - Operator access to internal controls and for changing print­
wheels and ribbons. 

3. Platen - Similar to those on standard office typewriters. There is a hand knob 
on the right side only. 

Paper Handling Features 

4. Platen Knob - This knob, when pushed in (to disengage the drive gear), allows 
the operator to rotate the platen to insert and position paper. 

Platen Release Latches - These two latches are pressed down simultaneously to 
insert a platen or to release the platen for removal. 

5. Paper Bail - The paper bail holds the paper against the platen for optimum print 
quality and quietness. The bail must be pulled forward (away from the platen) 
when inserting paper. 

6. Paper Release Lever - This lever releases paper roller pressure when pulled 
forward, allowing the paper to be positioned manually. Returning this lever to 
its back position re-establishes paper roller pressure. 

7. Paper Guide - A movable guide for aid in inserting paper. 

8. Paper Scales - There are two scales associated with the printer. One is a 
column indicator, located on the top cover; the second is a paper scale mounted 
on the access cover. These scales aid the operator in centering and spacing 
paper and copy. 

9. Power Indicator Light - This light indicates that the power is on. 

10. Reset Button - This button must be pressed each time the cover has been 
opened. 

SYSTEM COMPONENTS 
28 



7 

8 

9 

8 6 

100(]OOOO 

I 
I 

10 
5 

SYSTEM COMPONENTS 
29 

'-"'--2 

1 



PREPARATION FOR OPERATION 

Installing a Printwheel 

CAUTION: Ensure that power to the 630 Printer (40 CPS) is turned OFF! 

1. Remove the access cover, if its in place. 

2. Grasp the print hammer assembly (the cylinder with a red line on top of it) and 
pull it toward you to tilt the printwheel mechanism away from the platen and 
card guide. 

3. Grasp the printwheel (metal or plastic) by its rubber hub and place it on the 
printwheel motor hub. Align the wheel's alignment slot with the hub's 
alignment tab, and push the wheel firmly to fully seat it on the motor hub. 

4. Tilt the printwheel mechanism back to its operating position. 

Removal of the print wheel is simple. Tilt the printwheel mechanism toward you, 
grasp the printwheel by its rubber hub and pull it free of the print wheel hub. 

Note: Printwheels are rugged and dependable, but they can be damaged. Use care 
when handling them to avoid bending the "spokes". Always store printwheels in their 
plastic containers when they are not installed in the printer. 

6. Install a ribbon using the instructions on the next page. 

6/1/82 
SYSTEM COMPONENTS 

30 

ALIGNMENT 
TAB 



Installing a Ribbon Cartridge 

1. Open the plastic envelope and take out the ribbon cartridge. Note the small 
knob on the top surface of the cartridge for advancing the ribbon manually. 
Use this knob to take up any slack in the exposed portion of the ribbon and to 
make sure the ribbon is tight and straight. 

2. Hold the cartridge in one hand with the exposed ribbon toward the platen. 
Lower the cartridge down over the print hammer guide (orange stripe). Be sure 
the exposed ribbon is straight and located between the card guide and print­
wheel. Push the cartridge down firmly until both latches have snapped into 
position. Rock the cartridge back and forth on the platform to ensure that the 
ribbon is free to move up and down. Turn the ribbon advance knob a turn or 
two to ensure that the ribbon is tight, straight and ready to operate. 

The ribbon cartridge may be removed by pressing down on both latches 
simultaneously. The cartridge will be raised up slightly and may be grasped 
easily and lifted out of the printer. 

Note: When a ribbon cartridge is nearly empty, a yellow cross-hatched pattern 
will appear on the visible back side of the ribbon. The printer will stop printing, 
sound its alarm and the RIBBON/PAPER light will come on if printing is 
attempted with the ribbon in the warning (yellow) zone. 

3. Check to be sure the switches (located in front of the ribbon and behind the 
control panel) are set as indicated on page 35. 

RI7cuices 

fl1~~~~~VCARrruOCE 

IMPRESSION CONffiOL 

SYSTEM COMPONENTS 
31 



Inserting Paper or Forms 

Inserting paper or forms into the 630 Printer (40 CPS) is accomplished in much the 
same manner as in a standard typewriter. Paper is inserted down behind the metal 
paper out bail and platen while the platen is turned manually to bring the paper 
around and up in front of the platen. The front paper bail aids in guiding the paper 
back over the platen to the rear when pulled forward. The paper release lever at the 
right-hand side of the printer may be pulled forward to release roller pressure after 
paper insertion so the paper can be properly aligned in the printer. After paper is 
positioned, both the front paper bail and paper release lever are returned to their 
operating positions. 

Press the RESET switch on the front of the printer. 

Paper Thickness/Print Intensity Adjustment 

The two-position Multicopy lever located at the front of the carriage assembly 
adjusts for paper thickness and print intensity. Setting the lever to its upper position 
moves the carriage close to the platen, and actuates a switch to the proper setting 
for light and medium weight paper and form sets of up to two carbon copies. For 
heavier paper or form sets of up to five copies, the Multicopy lever is set to its lower 
position. This rocks the carriage away from the platen slightly, and deactivates the 
switch to enable an increased print intensity. 

To avoid the possibility of ribbon damage, the Multicopy lever should always be set at 
its upper position when printing on single sheets of paper using carbon ribbons. 

6/1/82 
SYSTEM COMPONENTS 

32 



OPERATING THE 630 PRINTER (40 CPS) 

Preliminary Steps 

1. Install a printwheel, a ribbon cartridge and insert a sheet of paper. 

2. Move the carriage manually to the right a short distance. 

3. Move the power ON/OFF switch at the right reqr of the printer to ON. 

The POWER indicator should glow; the carriage should move to the left slowly, and 
then back to the right, to stop at the first print position; and the printwheel should 
rotate and stop at its "home" position (i.e., the "flag" on metal print wheels should be 
at the top if the Printwheel Select switch - under the access cover - has been 
properly set). This entire process is called the INITIALIZATION, RESET or RESTORE 
sequence. It clears all volatile memory, resets all position counters and sets the 
printer to print the first character. 

Paper Handling Accessories 

Forms Tractor/Pin Feed Platen: These devices facilitate precIsIon handling of the 
continuous or manifold paper forms and are. provided in both unidirectional and 
bidirectional versions. 

Mechanical Front Feeder: This device also mounts on top of the 630 Printer 
(40 CPS). It is intended for use with difficult, multipart forms and the heavier ledger 
card stocks. 

Bottom Feed: The can be configured for feeding continuous or manifold forms up 
through the bottom of the machine. It must be used with either a pin feed platen or a 
forms tractor. 

6/1/82 
SYSTEM COMPONENTS 

33 



SPECIAL CONSIDERATIONS 

1. Cleaning Printwheels 

Printwheels used with carbon ribbons seldom need cleaning. Both plastic print­
wheels and metal printwheels used with cloth ribbons will require an occasional 
cleaning. 

Remove the printwheel and clean with toluene or naphtha* and a soft brush or 
wiper. DO NOT clean with water. DO NOT get solvent on the hub or damper 
ring (metal wheels). Be careful not to bend the "spokes". 

2. Changing Ribbons During Operation 

The 40 CPS printer will stop printing, the RIBBON/PAPER light will appear, 
and the alarm will sound upon reaching the end of a carbon ribbon. Should this 
happen during receipt and print out of data from a host system, the operator 
should open the access cover, replace the ribbon cartr idge as described, close 
the access cover, and then touch the control panel RESET switch to resume 
printing. 

3. Cleaning The Print Hammer 

Remove the printwheel and ribbon cartridge as described. Locate the movable 
print hammer inside its guide and push the hammer out to the rear, to expose as 
much of the head as possible. Use toluene or naphtha* and a wiper or brush to 
remove any accumulated ink or other substances, and wipe dry. 

* 
* 

Toluene and naphtha are available at most drug stores. 
90% isopropyl alcohol may be used as a solvent for cleaning the print 
hammer. 

SYSTEM COMPONENTS 
34 



Setting The Switches Under The Access Cover (left to right) 

Check to be sure the printer has been set to the proper switch positions for use with a 
Xerox 820-11. Check your printwheel to determine if its plastic or metal and 10 or 12 
pitch. The available setting positions are as follows: 

1. Printwheel Select Switch. Set this switch to match the particular type of print­
wheel being used. This ensures your text will print correctly and prevents 
possible print wheel damage or excessive wear. 

PRINTWHEEL SELECT: 

0: 
2: 
3: 
4: 
5: 
6: 

88 Metal 
92 Metal 
96 Metal 
96D Metal 
APL Metal 
APL Plastic 

7: 
1,8,9: 

Plastic (This is the print wheel normally shipped with the printer) 
Optional 

2. Spacing Select Switch. This switch selects the horizontal spacing for character 
print out. Set this switch to 1 for '10 Pitch PWS or 2 for 12 Pitch PWS. 

0: Proportional 
1: 10 (This is the print wheel normally shipped with the printer) 
2: 12 
3: 15 
4 - 9: Self Test 

3. For use with the Xerox 820-11, the switches to the right of Print wheel and 
Spacing switches should be positioned toward the front of the printer, except 
for the BAUD switch marked 120. It should be positioned toward the back of 
the printer. 

4. Replace the access cover. 

5. If your installing the printer for the first time, return to the 820-11 installation 
card for fl:lrther instructions. 

PRINTWHEEL SELECT 
SWITCH SPACING SELECT 

SWITCH 

SYSTEM COMPONENTS 
35 

AUDIO ALARM 



Setting The Operating Switches 

These six switches are located in the right-hand area of the control panel where they 
are accessible to the operator with all covers on the machine. These are membrance 
type momentary action switches actuated by a touch of the finger. 

1. RESET Switch. This switch will restore the printer to normal operating status 
following a printer check or an error condition, and clears all error indicators. 

2. SCROLL Switch. Touching this switch advances the paper a small amount to 
give the operator a clear view of the last printed line. The paper is 
automatically returned to the last printing position when the switch is released. 

3. LINE FEED Switch. Touching this switch initiates a single or a double line feed 
operation, as selected by the DOUBLE L.F. MODE SWITCH. Action is repeated 
if the switch is held activated longer than 600 msec. A line feed code will not 
be transmitted. 

4. FORM FEED Switch. Touching this switch initiates a form feed to the next 
top-of-form position. A form feed code is not transmitted. 

5. HERE IS Switch. Touching this switch causes a special "Here Is. ." message 
of up to 31 characters to be transmitted over the communications link when 
operating in remote ASCII mode with the fully featured HPR05 option 
installed. This is not used with the Xerox 820-11. 

6. BREAK Switch. Touching this switch causes a break (250 msec space) to be 
transmitted over the communications link when operating in remote mode. 

7. Audio Alarm. This device buzzes briefly to indicate the occurrence of various 
errors or operating conditions. 

6/1/82 
SYSTEM COMPONENTS 

36 



Reading The Control Panel Indicators (left to right) 

1. POWER. Indicates that AC power is applied to the 630 Printer (40 CPS). 

2. PRINT CHK*. Indicates that a print operation has been called for while the 
printer is in a "check" condition. A check condition occurs when a printwheel 
or carriage movement command has been received but cannot be successfully 
completed due to a malfunction. This condition disables the printer until a 
restore sequence clears the check condition. 

RESET. Note that if the problem causing the check condition has not been 
corrected when a restore sequence has been initiated, the check will reappear 
as soon as printing is attempted. 

3. PARITY. Indicates detection of any of the following types of errors: 

Incorrect parity sensed on received character. 
A framing error (no stop bit) detected on a received non-break character. 
A serial data character detected with an excess number of bits. 

When a parity error is detected, a DEL character is substituted for the 
erroneous character. 

This indicator functions only if the PARITY ENABLE switch (under the access 
cover) is ON. 

4. o VERFLOW*. Indicates that the printer's print input memory (buffer) is too 
full (has overflowed). Protocol has not been used properly. 

5. RIBBON/PAPER*. Indicates end of ribbon has been reached or that the printer 
is out of paper, and printing has been attempted. 

6. COVER*. Indicates that printing was attempted with the sound cover open. 

* 

6/1/82 

These errors cause a break to be transmitted when the 630 Printer 
(40 CPS) is in Remote mode if DCl/DC3 protocol has not been selected. 

SYSTEM COMPONENTS 
37 



SPECIFICA nONS 

Print Speed: Up to 40 characters per second with metalized printwheels. 

Character Set: 88, 92 or 96 printable characters per printwheel. Switch selectable 
program support for APL and all ENGLISH language printwheels. 

Printwheels: Metal -88 character Xerox 
-96 character Diablo and Xerox 

Plastic -96 character Diablo 

Character Spacing: 10 and 12-pitch. 

Column Spacing: 1/120 inch (.21 mm) minimum. 

Print Line: 13.2 inches (335.3mm) 
132 columns 10-pitch 
158 columns 12-pitch 
198 columns 15-pitch 

Paper Width: 16.53 inches (419.9mm) maximum. 
- friction feed without Top Paper Out switch. 
16.00 inches (406.4mm) maximum. 
- friction feed with Top Paper Out switch. 
15.25 inches (387.4mm) maximum. 

full width with optional forms tractor (14.75 inches/-374.7mm between holes). 3.25 
inches (82.55mm) minimum with forms tractor (2.75 inches/69.85mm between holes). 

Carriage Speed: 400msec maximum for 13.1 inches (332.77mm) of motion. 

Tabulation: Left or right. 

Line Spacing: 1/48 inch (.53mm) minimum. 

Paper Feed: Bidirectional, except with unidirectional forms tractor and unidirec­
tional pin feed platen. 

Paper Feed Speed: 4 inches (101.6mm) per second plus 40msec (typical) settling delay 
time. 

Sensors: End of ribbon, top paper out, and cover open. 

SYSTEM COMPONENTS 
38 



Paper Thickness: .000 - .101 inch (.254mm) at low setting 0-3 part forms) 
.010 - .027 inch (.254 - .686mm) at high setting (4-6 part form). 

Other Features: Self test; host program control THROUGH escape sequences; data 
receive/transmit speed selection. 

Power Requirements: Strappable for operation from nominal 100, 120, 220 or 240 
volt (+10%/-15%) AC inputs, 49-61 Hz. 350W maximum power consumption. Factory 
preset for 120 VAC. 

CHECK YOUR PRINTER's SERIAL PLATE FOR PROPER INPUT POWER. 

SYSTEM COMPONENTS 
39 



This page intentionally left blank 

SYSTEM COMPONENTS 
40 



FORMS TRACTORS 

The Forms Tractor can only be installed on the 630 Printer (40 CPS). 

The unidirectional and bidirectional Forms Tractors are very similar except the 
unidirectional does not have the reverse drive sprockets required for bidirectional 
paper feeding. 

Unidirectional Forms Tractor: This unit JT:lounts on top of the printer cover 
where it engages the platen shaft for alignment and drive. It requires use of a 
friction feed platen. It is adjustable to any paper width from 2-3/4" (69.85mm) 
to 14-1/2" (368.3mm) maximum'as measur~d between the pin feed drive holes. 

Bidirectional Forms Tractor: This unit mounts' on top of the printer cover 
where it engages the platen shaft for alignment and drive. It requires use of a 
friction feed platen. It is adjustable to any paper width from 2-3/4" (69.85mm) 
to 14-1/2" (368.3mm) maximum as measured between the pin feed drive holes. 
It also features both forward and reverse pin feed paper drives to enable 
feeding paper in either direction. 

SYSTEM COMPONENTS 
41 



Forms Tractor Installation 

Note: If your 630 Printer (40 CPS) has a sound panel, it must be the special sound 
panel designed for use with a Forms Tractor. 

1. If you have a sound panel, swing it forward to its open position. 

2. Pull the paper release lever and paper bail toward the front of the printer. 

3. Holding the forms tractor at both ends, depress the two latch release levers on 
the tractor and lower it onto the platen shaft. As the tractor is being lowered, 
guide the paper release actuator fork on the tractor over the paper release 
lever on the printer. 

4. Release the latch levers to clamp the tractor assembly onto the platen shaft. 
Check to see that both ends of the tractor are firmly latched. 

5. Swing the paper support rack forward then backward to make sure the paper 
release lever stays inside the release actuator fork. If the paper release lever 
slips out, remove the forms tractor and repeat steps 2 through 4 of this 
installation procedure. 

Forms Tractor Removal 

1. Remove any paper from the Forms Tractor. 

2. Swing the sound panel forward. 

3. Depress the two latch release levers and lift the tractor straight up. 

SYSTEM COMPONENTS 
42 



REVERSE DRIVE ASSEMBLY 

PAPER FEED ASSEMBLY 

SYSTEM COMPONENTS 
43 

PAPER RELEASE 
ACTUA TOR FORK 



Loading Paper into the Bidirectional Forms Tractor 

1. If you have a bidirectional Forms Tractor, swing the sound panel open. 

2. Adjust the two pin feed assemblies to the appropriate form width by loosening 
the feed assembly lock levers and sliding the feed assemblies to the left or right 
as necessary. 

3. Swing the paper rack on the tractor to a forward position. This allows you to 
insert the paper into the reverse drive sprockets; it also moves the pressure 
release lever backward so the platen will be able to grip the leading edge of the 
paper and pull it around to the forward drive assemblies. 

4. Open the gates on the reverse and forward drive assemblies. 

5. Bring the leading edge of the continuous form paper up over the rear of the 
printer and hook the pin feed holes along each side of the paper onto the feed 
pins on the reverse drive sprockets. (Be certain that the paper is aligned 
straight on the sprockets.) Close the gates over the reverse drive sprockets to 
hold the paper in place on the feed pins. 

6. Slowly rotate the platen to feed the leading edge of the paper down behind the 
paper bar, around and up in front of the platen. 

7. Swing the paper rack back. This moves the paper release lever on the printer to 
release the grip of the platen on the paper. 

8. Grasp the leading edge of the paper and pull it up while manually turning the 
platen until the leading e"dge of the paper is above the forward drive assemblies 
on the tractor. 

9. While gently creating tension on the paper by pulling up on the leading edge, fit 
the side holes in the paper onto the feed pins of the forward drive belts. Close 
the gates to hold the paper in place on the feed pins. Be certain that the paper 
is aligned straight. 

10. Move the paper bail back toward the platen. (The bail will be held away from 
the platen slightly; this is proper when operating with the forms tractor.) 

11. Rotate the platen 2 or 3 turns forward and backward to check that the paper is 
feeding properly through the drive assemblies. 

12. Close the sound panel, if you have one. 

SYSTEM COMPONENTS 
44 



PARALLEL PRINTER INSTALLATION 

Follow the instructions below to install a parallel printer on your 820-11. Before you can 
connect the printer, you'll need to take the cover off the 820-11 screen. 

TURN the 820-11 off, then UNPLUG the 820-11 from the wall outlet and wait 30 
seconds. -

WARNING: Hazardous voltage areas near the back of the screen tube will 
be exposed when the screen cover is removed. 

REMOVE the two screws on the top of the 820-11 screen cover. 

r , 
//':'//111111J J j jl I ill .1\\ 

LIFT the cover straight up and place it on your table or desk. 

TURN the 820-11 so you can see inside the back, as shown below. 

NOTICE the location of the end of the screen tube. While you are working on the 
820-11 you must take CAUTION not to bump or damage this area. If broken, the 
screen tube could explode. 

CAUTION 
BREAKABLE 

/' 
~-,.Jt'~ 

~~~4 
.a;.a~.~$

SYSTEM COMPONENTS
45

Now you're ready to install the "jumpers" (shown in the first illustration below) on the pins
on the 820-II's board (as shown in the second illustration below). The pins on the board are
sharp, so take CAUTION not to prick your fingers on them.

LOCATE the three small, black "jumpers" that came in the printer kit.

LOCATE the pins that stick up near the back of the 820-11, as shown in the
illustration below.

WARNING: Computer components and connectors are delicate.
Care should be taken not to bend or damage these parts.

SYSTEM COMPONENTS
46

PUSH the jumpers onto the third, fifth and ninth rows of pins, as shown below.
The illustration (below right) shows that the jumpers should cover pin
numbers 5 and 6, pin numbers 9 and 10, and pin numbers 17 and 18.

1 []]J []]J 2

3 [IJJ [IJJ 4

51Q;;[]16
7 [IJJ OJ] 8

91Q;;[]110
11 [IJJ OJ] 12
13 [IJJ tID 14

15 [IJJ tID 16
171~118
19 aD tID 20

The parallel printer is connected to a printer port inside the 810. It is not connected to the
port on the back of the 820-11. -

LOCATE the parallel printer port (marked 38) inside the 820-11, as shown below.

SYSTEM COMPONENTS
47

LOCATE the cable that came with your printer kit. Notice that one end of the
cable has two small plugs, with a ground wire coming off the first plug.

PUSH the second small plug on the cable down on the printer port inside the
820-II, as shown below. Be sure that the plug covers both rows of pins,
then push the plug down firmly.

GROUND WIRE FIRST PLUG

J8 PRINTER PORT
INSIDE 820

LOCATE the ground wire.

(not used)

PUSH the two ground wire connectors onto the pins in front of and to the left of
the first jumper you installed earlier. Be sure the ground wires connect to
the exact pins shown in the illustration below.

SYSTEM COMPONENTS
48

LOCATE the wire bracket (shown below) that came with your printer kit.

PLACE the bracket over the copper foil on the printer cable and screw the
bracket into the holes beside the socket marked "PRINTER" on the back
of the 820-11. (See the illustration below.)

Now that you've installed your printer, you may want to go back and double check your work
before you put the cover on the 820-11.

REPLACE the cover on the 820-11 and fasten it in place using the two screws
removed earlier from the top of the cover.

PLUG

PLUG

CHECK

NOTE:

the other end of the printer cable into your parallel printer.

the 820-11 back into a wall outlet.

your printer for a power cable. You'll need to plug it into a wall outlet
and turn your printer on before you print.

It is a good idea to check your printer manual for the printer set-up
information (such as the DIP switch settings), if you have not already done
so. Suggested settings for some printers are given on page 16. I

SYSTEM COMPONENTS
49

XEROX PARALLEL CABLE

PRINTER 820
PRINTER SIGNAL SIGNAL

CONNECTOR NAME SOURCE NAME

PI

1 Data Strobe 820 PB2
2 Data Bit 1 820 PA0
3 Data Bit 2 820 PAl

4 Data Bit 3 820 PA2
5 Data Bit 4 820 PA3
6 Data Bit 5 820 PA4

7 Data Bit 6 820 PA5
8 Data Bit 7 820 PA6

9 Data Bit 8 820 PA7

10 Acknowledge Printer PB7
11 Busy Printer PB4
12 NC PB5

13 On Line Printer PB6

14 Auto LF 820 PB0
15 NC
16 GND 820

17 NC

18 NC

.19 GND 820

~O GND 820

21 GND 820

22 GND 820

23 GND 820

24 GND 820

25 GND 820

26 GND 820

27 GND 820

28 GND 820
29 GND 820
30 GND 820

31 NC
32 NC
33 GND

34 NC

35 NC

36 NC

Below is a top wire view of the 36 pin Centronics connector.

SYSTEM COMPONENTS
50

820
CONNECTOR

J8

30
6
8

10
12
14
16
18
20
40
34
36
38
26

37

1 Cabl4
5
7
9

11
13
15
17
19
21 Cabll

3
35

39

28

DAISY CHAINING DISK DRIVES
(Connecting)

If you are upgrading your system by connecting floppy disk drives to a rigid disk drive
(daisy-chain), you must have your Xerox Service Technician modify both the dual floppy 8"
and rigid 8" disk drive assemblies before they will operate in a daisy-chain configuration.

CAUTION: If a rigid disk drive is connected to a screen that is not upgraded to operate with
a rigid disk drive, it will cause permanent damage to the screen.

Once the daisy-chain configuration has been established, the drive names of the floppy disk
drives in the dual floppy disk drive assembly will become Band D. The rigid disk drive
names will remain unchanged. See the illustration below:

8" RIGID

o

A EFGH

8" DUAL FLOPPY
DISK DRIVE

D

B D

When using a system that's been configured with daisy-chained disk drives, use the CP/M 2.2
Operating System Handbook for the 8" Rigid Disk and the information in the CP/M 2.2
Operating System Reference Guide.

10/1/82
SYSTEM COMPONENTS

51

10/1/82
SYSTEM COMPONENTS

52

SYSTEM RESIDENT MONITOR

The XEROX 820-11 Basic Operating System monitor (BOS) is the primary control
program for the Xerox-II. It begins execution when the computer is first turned on,
or whenever the reset button is pressed. The monitor resides in the top 4K of
read-write memory, and also in the lower 6K of Read Only Memory (ROM).

BOS provides several essential functions for the system. It is the initial software
level of the computer and contains routines to control the initialization operation
of the system input/output and memory resources. The initial functions of BOS
include commands to display and alter the contents of memory and I/O ports, to
begin execution at a given address with user-specified entry conditions, and to load
programs from anyone of the disks. The I/O functions of BOS provide driving
routines for the built-in CRT display and keyboard, the printer and communications
ports, and the disk controller. In this capacity BOS is always active, even when
applications programs like the CP/M disk operating system have control of the
CPU.

The following sections of this manual will explain how to use the BOS Console
Monitor commands, what facilities are provided by the resident I/O handlers, and
how to interface applications programs with the BOS.

XEROX 820-11 COMMAND SUMMARY

The Xerox 820-11 BOS enters the BOS Console Monitor mode after it has initialized
the system following a power-on or a reset. The following sign-on message is
displayed on the screen as an indication that BOS is ready to accept commands.

820-11 v 0.00 (C) 1982 Xerox Corp

L - Load System
H - Host Terminal
T - Typewriter'

*

Commands consist of a single character command name and parameters. The
parameters are hexadecimal numbers and can be separated by commas or spaces.
The command line may be entered using upper case or lower case letters. The
RETURN key terminates the command entry. Errors within a line can be
corrected by touching the BACK SPACE key to delete the last character or
CTRL + X to delete the entire line. If an invalid command or parameter is
detected, an error message will be displayed and the command will not be
executed.

REFERENCE
1

The user may wish to halt long running commands like the memory display before
they are finished. This can be done by touching the RETURN key while the
command is displaying on the screen. The display can also be stopped temporarily
by touching the space bar. Touching the space bar again will allow the display to
continue.

The following table summarizes the monitor's command set. The items enclosed in
angle brackets represent the numeric parameters required by the command. The
i terns enclosed in square brackets represent optional parameters.

Command Format

d(isplay memory) D start address end address
m(odify memory) M address
x(tended memory test) X start address end address
fOIl memory) F start address end address fill data
c(opy memory) C start addr end addr destination addr
v(erify memory block) V start addr end addr with addr

g(oto) G address HL DE BC registers
i(nput) I 16-bi t port address
o(utput) 0 16-bit port address data

Hoad from disk) L disk drive unit value
r(ead disk sector) R drive unit track sector address

b(aud rate) B baud rate code channel
t(ypewriter) T baud rate code
h(ost terminal} H channel
p(rinter protocol) P Xon/Xoff status mask status value

1) D - DISPLAY MEMORY COMMAND

The display memory command will display of the contents of memory in
hexadecimal and ASCII representation. Each display line has the following
format:

AAAA DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD CCCCCCCCCCCCCCCC

where AAAA is the starting memory address of the line in hexadecimal, the
OD's are the hex values of the 16 bytes of data starting at location AAAA, and
the C's are the ASCII characters equivalent to each data byte. Bytes with a
value less than 20 hex are displayed with their appropriate display character
code as shown in the display character code table. Bytes with a value greater
than 7F hex are displayed in low intensity. The display memory command
accepts zero, one or two address parameters. If two addresses are specified,
the block of memory between those two locations will be displayed. Entering
only one address will display 256 bytes of memory starting at the specified
location. Entering 'D' with no parameters will display the 256 byte block of
memory starting one location past the last address displayed by the previous
display memory command.

REFERENCE
2

2) M - MODIFY MEMORY COMMAND

The modify memory command allows the contents of individual memory
locations to be changed. This command accepts one parameter representing
the first memory address to modify or examine. The display format is:

AAAA DO

where AAAA is the current memory address and DO is the hexadecimal value
of the data in that location. After displaying the contents of a memory
location, the routine waits for one of the following parameters to be input
from the keyboard:

• Touching the RETURN key will not modify the memory data at the
currently displayed memory address, but will display the contents of the
next memory address.

o Typing a minus sign will have a similar effect, except the address is
decremented instead of incremented.

• Typing a hexadecimal number will replace the data at the currently
displayed address with the number entered. The new data is stored as
soon as the second digit is entered, with no terminating character
required. If only one digit is entered, touching the RETURN key will
cause the single digit hex number to replace the previous data.

• Typing a quote sign will cause the ASCII value of the next key typed to be
stored at the currently displayed address.

• Typing any character other than a RETURN, a minus sign, a quote sign,
or a hexadecimal digit will terminate the command.

3) X - EXTENDED MEMORY TEST COMMAND

This command will test the specified range of memory for errors that may be
caused by any of a number of reasons. Any portion of memory may be tested
except the read-write area reserved for BOS (FOOO to FFFF hex). At least
two parameters are required, the starting address and ending address to be
tested.

Only the high order eight bits of the addresses entered are actually used,
however. If no errors are detected, the test will display a plus sign every time
a test pass is completed. A total of 256 plus signs must be displayed for all
possible test patterns to have been tried. When errors are detected an error
line will be displayed in the following format:

AAAA DO should=XX

where AAAA is the address of a location that fails the test, DO is the data
read back from the defective location, and XX is the test pattern that was
written there.

REFERENCE
3

4) F - FILL MEMORY COMMAND

The fill command allows blocks of memory to be filled with a fixed data
value. Three parameters are required in the command line; a starting
memory address, an ending address, and a fill data value. Each location in
the specified block of memory has the constant written into it and then read
back again to check for memory errors. An error line like the one described
for the 'X' command is printed for any locations that fail to verify.

5) C - COPY MEMORY COMMAND

The copy command allows blocks of data to be moved in memory. Three
parameters are required in the command line; a starting memory address, an
ending address, and a destination address. The contents of the block of
memory bounded by the first two addresses is copied to the block starting at
the third address. As with the fill command, a test is made to verify that
each byte of the destination block, when read back, is the same as the
corresponding byte in the source block.

6) V - VERIFY MEMORY BLOCK COMMAND

This command is similar to the copy memory command except that memory
data is not moved, but simply checked to see if it is the same as data that is
located at a different address in memory. Three parameters are required; a
starting memory address, an ending address, and the first address of the
memory block to compare with.

7) G - GO TO COMMAND

The go to command allows control of the CPU to start executing at a
particular memory location. This command requires a single parameter
from the user representing the address at which to begin execution. Three
additional optional parameters may also be specified so that the HL, DE,
and BC register pairs may be preset before execution begins at the specified
address. Each of these optional parameters is a 16-bit (four digit hexa­
decimal) number. A command line using the optional parameters would be
entered as:

GIOOO AAFF DDEE BBCC

where 1000 is the hexadecimal address at which to begin execution, AA is
placed in the H register, FF is placed in the L register, DO is placed in the
o register, EE is loaded into the E register, BB is transferred to the
B register, and CC is put into the C register. In addition, FF (the value
specified for the L register) will also be placed into the A register. Thus, a
shortened command line using only a single optional parameter would be
entered as:

GFOOC 0024

REFERENCE
4

In this example, the hex value 24 will be loaded into both the Land
A registers before executing the CRT output driver at memory address
FOOC hex. This example will display a '$' on the screen.

BOS actually passes control to the specified address by simulating a CALL
instruction. This makes it possible for the external program to return to
BOS by doing a RET, assuming it does not re-Ioad the stack pointer or lose
the return address to BOs. After the routine returns, BOS will display the
contents of the A register, and the HL register pair.

8) I - INPUT COMMAND

This command allows data to be read from input ports. It operates very
much like the modify memory command, except that input ports are being
examined instead of memory locations. A single parameter representing a
port number is expected in the command line. Since many of the I/O ports
of the XEROX 820-11 are accessed using the unique Z-80 I/O instructions,
the parameter may be a 16-bit port address. The BC register pair is loaded
with the parameter, and then an IN A,(C) instruction is executed. An
example of the full parameter specification would be:

IAA55

where AA represents the contents of the B register, which is placed on the
high order address lines (A8-A15), and 55 represents the contents of the
C register, which is placed on the low order address lines (AO-A?). Using
only an 8-bit parameter will place a zero in the B register.

Touching the space bar will input data from the same port address again.
The contents of adjacent ports can be examined by touching the RETURN
key or a minus sign as in the 'M' command. Typing any other key will
terminate the command.

9) 0 - OUTPUT COMMAND

The output command allows output ports to be written with a specified data
value. Two parameters are required in the command line; a l6-bit port
address as described for the input command, and an 8-bit data value that is
to be written to that port. After outputting the specified data to the port,
the command returns to BOs instead of stepping to the next output port like
the input command. This makes it possible to use the output command to
initialize Z-80 peripheral devices like the 510, PIO and CTC. Since a l6-bit
port address is specified, special ports such as the scroll port register can be
modified directly from BOs. Some of these special ports require that their
"data" value be placed on the high order address lines. A sample command
to alter the scroll port register is:

01014 FF

REFERENCE
5

where 10 represents the contents of the B register which is placed on the
high order address lines and is the actual "data" that will be written to the
scroll port register. The 14 represents the value that is placed into the
C register and is output as the low order address lines to actually select the
scroll port. The data value FF hex is output on the data lines, but the data)
is not looked at by this type of special port.

10) L - LOAD SYSTEM

The load from disk command is used to read a one-sector program from the
first sector of the specified disk drive. The most common use of this
command will be to load the CP/M disk operating system, though it is not
solely restricted to this purpose. The load command accepts one optional
parameter to specify which physical disk to load from. If this optional
parameter is omitted, BOS will load from physical drive unit 0, or the "A"
disk drive. The parameter may be in the range of "A" through uP", which
represents the valid disk drive designations for CP/M.

Configurations with only floppy disks have valid disk drive parameters of
"A" through "0". The normal load from disk command for floppy drives will
simply be L or L A, to load from drive "A".

Configurations with a rigid disk drive can have valid disk drive parameters
of "A" through "H".

One of the most powerful features of BOS is that the drive that is loaded
from becomes logical drive "A:" in CP/M. Thus when CP/M is loaded from
drive "E" (the L E command), the disk will be referenced in CP/M as A: so
that the high speed of the rigid disk is available for warm starts. See the
notes on Xerox CP/M for a more detailed explanation of logical drive
swapping.

The disk loader reads the first logical sector into memory at location 80 hex
and starts execution at that address. Normally the program will be a small
loader that in turn reads in a larger program such as CP/M. This two level
bootstrap process makes the boot command more application independent.
The only requirements are that the first sector of the disk be reserved for a
loader, the first instruction of this loader cannot be a PUSH HL, and the
first 256 bytes of memory cannot be overwritten by the program being
loaded.

11) R - READ DISK SECTOR COMMAND

The read disk sector command allows one physical sector to be read from
the specified disk drive to a designated address in memory. The drive unit is
a number between 0 and F hex, with 0 corresponding to the "A" drive as
described in the load from disk command.

It should be noted that different disks may not have the same sector size.
The read sector command will always read one physical sector, no matter
what its length. Typically single density disks will have 128 byte sectors,

REFERENCE
6

and double density disks will have 256 byte sectors. The sector size for rigid
disk drives will always be 256 bytes or larger. Even though one physical
sector is read, 256 bytes will be displayed after the read. Thus, when
reading single density disks, only the first 128 bytes of the 256 bytes
displayed on the screen are valid.

12) B - BAUD RATE COMMAND

This command will set the baud rate for the designated serial I/O channel.
One parameter is required to indicate the baud rate code as shown in the
following table. If the second optional parameter is not specified, then the
baud rate for the printer port (channel B) will be set. Specifying the
"A" channel will cause the baud rate for the communication port to be set.
A t power-on or reset, the communications port is set for 300 Baud, and the
printer port for 1200 Baud. Both serial ports are set for 7 data bits and even
parity with one stop bit.

Baud rate code (hex) Baud rate

00 50 Baud
01 75 Baud
02 110 Baud
03 134.5 Baud
04 150 baud
05 300 Baud
06 600 Baud
07 1200 Baud
08 1800 Baud
09 2000 Baud
OA 2400 Baud
OB 3600 Baud
OC 4800 Baud
00 7200 Baud
OE 9600 Baud
OF 19.2 Kbaud

13) T - TYPEWRITER COMMAND

This command allows the XEROX 820-11 to be used as a standard electronic
typewriter. All keystrokes will be typed directly on the attached printer
and the display screen in a direct print mode. The optional baud rate code
parameter can be used to alter the printer channel baud rate so that two
commands are not necessary to use printers with Baud rates that are
different than the default rate of 1200 baud. To exit the typewriter mode,
touch the CTRL+ESC keys.

REFERENCE
7

14) H - HOST TERMINAL COMMAND

The host terminal command configures the XEROX 820-11 as a sophisticated
editing terminal when connected to another Host Computer or time share
system. Two optional parameters may be specified when entering the
terminal mode to indicate which serial channel to use. If no parameter is
specified, the communication port will be used. To use the printer port, use
"B" as the optional channel parameter (a step by step procedure for using
the Host Terminal Mode is provided in the General Programs section of this
manuaI).

A unique feature of the XEROX 820-II is that all information displayed is
saved in unused memory as the information is scrolled off the top of the
screen. Four command keys control how this stored information can be
recalled:

• CTRL+DOWN ARROW will cause information scrolled off the top of
the screen to reappear line-by-line at the top of the display.
Information that scrolls off the bottom will be saved.

• CTRL+UP ARROW will cause information that has scrolled off the
bottom of the screen to be recalled line-by-line at the bottom of the
display.

The terminal operates initially in full duplex mode. Characters typed on the
keyboard will not be displayed on the screen unless the Host Computer has received
the typed character and transmitted it back to the XEROX 820-11. However, 'the
820-11 can be operated in several different modes which are activated by using the
CTRL key in conjunction with the keys on the numeric keypad:

o CTRL+DEL Enable local echo. Characters typed on the keyboard will
be displayed on the screen and transmitted through the serial port.
Touching these keys again will disable the local echo mode of operation.

.. CTRL+LINE FEED Enable local auto line feed. When the RETURN
key is touched, a line feed will also be sent to the local screen display,
but not transmitted through the serial port. Touching these keys again
will disable the local auto line feed mode of operation.

• CTRL+l Enable remote echo. Characters received through the serial
port will be echoed back to the transmitting device. In this mode the
XEROX 820-11 may act as a host to another terminal. Touching these
keys again will disable the remote echo mode of operation.

o CTRL+2 Enable remote auto line feed. Carriage return characters
received through the serial port will be echoed to the remote device as
carr iage return and line feed codes. Touching these keys again will
disable the remote auto line feed mode of operation.

• CTRL+. Transmit BREAK. When the CTRL and the period key on the
numeric keypad are touched, a break condition will be enabled on the
serial port until: 1) CTRL+. is touched again. 2) Any other character
is typed. "Toggling" the break function in this way allows the length of
the break condition to be determined by the user. Some host computers
require a very short break condition, while some communication control
devices require a long break condition.

REFERENCE
8

In the terminal mode the Xerox 820-11 will respond to the special control codes and
escape sequences described on page 16. These codes are similar to ADM-3A style
terminals, with several enhancements for sophisticated editing control. To exit the
Host Terminal mode, touch the CTRL+ESC keys.

15) P - PROTOCOL COMMAND

The protocol command allows the method used to control the transmission
of characters to the printer to be altered for different types of serial
printers. Normally the Xon/Xoff protocol is enabled to allow efficient
communications with a Xerox 620 (20 CPS) or 630 (40 CPS) printer. Since
this is a "transparent" protocol, it will not interfere with printers that do
not use this method.

The protocol command requires at least one parameter to enable or disable
the Xon/Xoff protocol. P I enables this protocol, while PO disables it.

The second type of protocol is used for printers that control the
transmission of characters by means of a "reverse channel" or other
hardware communications signals. Two signals may be used in the Xerox
820-11 to control the transmission of characters to the printer:

R TS (Request to Send) Printer connector Pin 4

DTR (Data Terminal Ready) Printer connector Pin 20

Two parameters are used to specify how these signals will be used for
"hardware handshaking"; the first designates which signals are to be
checked, and the second indicates which logical state will be used to enable
the transmission of data.

The most commonly used modes are shown below. The voltage level is the EIA
RS-232 level measured at the printer connector:

PI 28 28

PI 8 8

PI 20 20

Check RTS and DTR, pins 4 and 20. If either changes to false
(-12), stop transmission.

Check DTR, pin 20. If false (-12), stop transmission.

Check RTS, pin 4. If false (-12), stop transmission.

(The following examples show the values for some less common printers that
indicate transmission should stop with signals of the opposite sense.)

PI 28 0

PI 8 0

PI 20 0

Check R TS and DTR, pins 4 and 20. If either changes to true
(+12), stop transmission.

Check DTR, pin 20. If true (+12), stop transmission.

Check RTS, pin 4. If true (+12), stop transmission.

Note that all the above examples also enable the Xon/Xoff protocol by specifying a
"I" as the first parameter.

6/1/82
REFERENCE

9

USER ACCESSIBLE MONITOR ROUTINES AND VARIABLES

This section gives the locations and calling sequences of the user accessible I/O
routines in the Xerox 820-11 Basic Operating System (BOS). It also describes a
number of important monitor variables that may need to be accessed by user
written programs.

The BOS subroutines are accessed via a table of JUMP instructions beginning at
memory location FOOO hex. All BOS calls should be made to these entry points,
since the actual addresses of the routines will vary between different releases.

Storage for the monitor's stack and working variable occupies the top 256 bytes of
memory, from FFOO to FFFF hex. Programs should not attempt to write into any
locations in this block that are not specifically mentioned below.

XEROX 820-11 SUBROUTINE ENTRY POINTS

Most of the entry points are downward compatible with the original Xerox 820.
Differences are noted with an *. Entries with a /I are provided exclusively for
820-11 BIOS compatibility.

* FOOO
* F003

F006
F009
FOOC

* FOOF
F012
F015
F018

/I FOIB
/I FOIE
/I F021
/I F024

. /1 F027

F02A
F02D
F030

F033

F036
F039
F03C
F03F
F042
F045
F048

Cold Start. The resident monitor is loaded from ROM.
Warm Start. Called by keyboard interrupt service routine when
CR TL + ESC is touched.

Keyboard Status. Returns FF if keyboard ready, 00 if not.
Keyboard Input. Waits for, then returns keyboard data in A.
CRT output. From reg A, saves/restores all registers
Fast CRT output. From reg C destroys registers.
SIO-B input ready status. Returns status in A register.
SIO-B input data. Returns character in A register.
SIO-B output data. Transmit character from reg A.
Select logical disk. From reg C (OOH-OFh).
Home disk. Seek track O.
Seek Logical Track. Track in reg C, always returns success.
Read Sector. Transfer address in regs HL, Sector in reg C •
Write Sector. Transfer address in regs HL, Sector in reg C.

Execute Physical Driver. Parameter block pointer in regs HL.
Set direct CRT cursor. Address from regs HL.
Direct CRT display. Store character in A at location set by direct CRT
cursor, increments direct cursor address.
CR T memory block move. Move memory block to or from screen.
Source address in HL, destination in DE, number of bytes to move in
Be. Register A indicates type of move.
Return disk map table address in HL.
Return address of time of day locations in HL.
Return configuration status.
SIO-B output ready status. Returns FF if ready, 00 if not.
Get or Set configurable data.
Start screen print. Initiates background screen print.
User accessible 1 second interrupt.

REFERENCE
10

l) OFOOO - Cold Start.
This entry point may be called at any time to cause a Software Reset.
The BOS is reloaded from ROM and all I/O devices are reinitialized.

2) OF003 - Warm Start.
This is actually an exit point from the BOS. It is called by the keyboard
interrupt service routine when CR TL + ESC is touched. When the BOS is
initialized, this exit point is set to the address of the scan line scanner. Thus,
CTRL +' ESC is used to exit the various command processors. When the L{oad)
com mand enters the boot loader, it directs the exit point to the Cold Start
entry point. This causes CTRL + ESC to act the same as pressing the reset
button. The user may load the address of his own software abort routine into
locations OF004-0F005. This routine must be located in the upper 16K of RAM
(above OCOOO). Only the HL, BC, and AF registers are available for use if the
routine RETurns to the keyboard interrupt driver. Any other registers used
must be saved. Five levels of stack space are available. All rules of Interrupt
Service Routines must be followed. For example, no calls maybe made to the
BOS I/O drivers. Typically this routine will set an Abort Flag that is monitored
by the application and exit with a RET instruction. When the application sees
the flag set, it should proceed with its abort sequence. If the behavior of this
key is undesirable, simply patch a RET' instruction (OC9h) at location OF003.
But, save the opcode that was there first so that it can be restored when you
are finished.

3) OF006 ~ Console Status.
Returns OFFh in the A register if console data is available. Otherwise a 0 is
returned. The flags reflect the state of A.

4) OF009 - Console Input.

5) OFOOC - Console Output.
The character in register A is sent to the CRT driver. All registers are
preserved. This entry is convenient but more time consuming than the next
one.

6) OFOOF - Fast Console Output.
This entry takes the character in register C and sends it to the CRT driver. All
8080 compatible registers are destroyed, while the additional 280 registers are
preserved. Valuable information will be returned in registers HL and A.
Normally ,the character under the cursor prior to entry is returned in A and
registers HL contain the address in CRT RAM of the cu'rsor in exit. However,
several display control functions will return with values worth their weight in
gold. A few gold mines are listed below:

a) Character Insert. (ESC Q)
The returned value is the character that got pushed off the end of the line.

b) Character Delete. (ESC W)
The returned value is the character that got deleted. These two gold mines
are useful for horizontal scrolling.

REFERENCE
11

c) Line Insert. (ESC E)
The line that was pushed off of the bottom is moved to the Command
Processor's line input buffer. The location of this line buffer is directly
after the time of day clock variables, whose address is obtained through
another BOS entry.

d) Line Delete. (ESC R)
The line that was deleted was first moved to the line buffer, as in Line
Insert. These golden lines are used by the H(ost) terminal command to
remember lines normally lost.

e) Line Feed. (CTRL + J)
The A register returns a flag indicating whether or not the line feed caused
the top line to be lost (screen scrolled). If so, the line may be found in the
BOS line buffer, as in line delete.

7) OF012 - SIO B Input Ready Status.

8) OF015 - SIO B Input Character.

9) OF018 - SIO B Transmit Character. (See 15, OFOxx below)

10) OFOIB - Select Logical Disk from Register C.
The value in register C is used to select the logical disk driver in all successive
820-11 emulator read or write requests. The first time this entry is called, the
physical disk driver will be asked t~ identify the media in the selected drive.
The disk must be single density since you are running an old 820 CP/M
compatibility. Their behavior emulates, but does not exactly duplicate the
operation of the original entry points.

11) OFOI E - Home Disk Heads.
This entry point calls the next one with a value of zero in reg C.

12) OF021 - Seek to Track in Register C.
The value in register C is saved for later use when a read or write call is made.
Note that no disk action is taken at this time.

13) OF024 - Read Sector.
The sector specified by register C, on the track specified in the last Seek call is
read into the buffer pointed to by registers HL. Note, if a double density disk is
read, the entire 256 byte sector will be read in, which will explode the old 820
BIOS.

14) OF027 - Write Sector.
The arguments are identical to the Read entry point; the sector is written from
the buffer.

The previous entry points are similar to the ones provided by the original XEROX
820-11. On the next page, several new entry points for the Xerox 820-11 will be
described. These new functions directly control the operation of the BOS monitor.
Due to the extreme power of these functions, their use should not be taken lightly.
Inexperienced programmers should get some experience first.

REFERENCE
12

15) F02A - Execute Physical Driver.
This entry point is the heart of the disk sub-system. All disk I/O must be
dispatched by this point. Registers HL must point to a nine byte block of
memory as follows:

00: db command ;Offh = Select, OOh = Write, 01 h = Read
01 ds 1 ;This byte filled in by the BOS
02 db Ldrive ;Logical drive for request
03 dw Track ;Track number for request
05 dw Sector ;Sector number for request
07 dw Address ;Address of sector buffer for request

The byte holding the logical drive (HL+02) is used to select the appropriate
physical disk driver by indexing into the Select Table to obtain the driver unit,
as well as the driver entry point address. Byte (HL+Ol) is filled with the
physical unit number for this physical driver, then the command is passed
directly to the physical disk driver. Any (pseudo) disk driver may be linked into
the Select Table if it conforms to this virtual interface. The following
command must be supported by the physical driver.

OFF - Select Media Format. This command causes the disk driver to
identify the media in the logical drive. Registers HL return pointing to a
CP/M compatible Disk Parameter Header if the media was successfully
identified. Otherwise, a ZERO is returned. Since this command causes
several disk accesses, it should not be issued repeatedly. The XEROX CP/M
issues this command whenever a disk is "Logged In".

OOOh - Write Sector. This command causes the physical sector identified by
bytes 03-06 of the command to be written from- the buffer pointed to by
bytes 07-08. The acceptable values for Track and Sector vary with different
physical disk drivers.

001 h - Read Sector. This command causes the physical sector identified by
bytes 03-06 of the command to be written from the buffer pointed to by
bytes 07-08. The acceptable values for Track and Sector vary with different
physical disk drivers.

16) F02D - Set Direct CRT Cursor.
This entry stores the address passed in registers HL for use in successive calls
to the next entry point.

17) F030 - Direct CRT Display.
Store character in A in the CRT RAM at the direct cursor location. The normal
cursor is uneffected. The direct cursor address is incremented, however,
line/screen overflow is not processed.

18) F033 - CRT Memory Block Move.
Moves a memory block to or from the alternate memory bank. If data is
transferred to or from the screen RAM, only 80 bytes should be moved at a
time. This is because each 80 character line actually occupies 128 bytes of
address space. This entry may also be used to access the ROMs or RAM in the
alternate memory bank. Length restrictions do not apply in this instance.
Parameters are as for the 280 LDIR instruction, source address in HL,
destination in DE, number of bytes to move in BC. Register A indicates type of
move desired. A zero value causes a direct move within the alternate bank; a

REFERENCE
13

value less than zero causes a move from the Main RAM to the alternate, while
a number greater than zero causes a move from the alternate bank to the Main
System RAM.

19) F036 - Return Disk Map Table Address.
The address of the Logical to Physical Disk Mapping Table is returned in
registers HL. If register H is non-zero on entry, the table address is stored in
the integer variable pointed to by HL. This allows easy access by high level
programming languages. The table consists of two sections. The first section
contains 16 two byte entries, one for each logical CP/M drive. The first byte of
each pair indicates which physical disk driver to activate for an I/O request, the
second specifies which physical unit within that physical driver to access.
These byte pairs may be carefully rearranged with other byte pairs in the table.
They may even be removed or overwritten, but they must not be duplicated
elsewhere in the table. The second part of the table holds the addresses of
eight physical disk driver entry points. By convention, the driver number 0
always returns an error. It is used to force Select errors on unidentified logical
drives. Driver number 1 controls WD-1797-02 floppy disk system, while driver
number 2 manages the SA-1403 combination rigid/floppy disk system.
Additional virtual disk drivers linked into this table, with appropriate values in
the first section, may be accessed through the normal CP/M disk I/o facilities.

20) F039 - Return Address of Time of Day Locations.
This entry must be used to gain access to the timer variables maintained by the
BOS. As above, if register H is non-zero on entry, it is used as an address of an
integer variable in which to store the result. In any case, HL holds the timer
address on exit. The returned address points to the following structure:

Milsec: ds 2 ;Location incremented by CTCI interrupt
ds 2 ;(unused)

Ticker: ds 2 ;Increments once per second
Steprt: ds 1 ;WD1797 step rate
Motor: ds 1 ;Disk Motor / Select timeout (l HZ)

HL- day: ds 1 ;01-31
month: ds 1 ;01-12
year: ds 1 ;80-99
hour: ds 1 ;00-23
minute: ds 1 ;00-59
second: ds 1 ;00-59
1 inbuf: ds 80 ;CR T gold mine

21) F03C - Return Configuration Status.
This function returns in register HL, or in the variable pointed to by HL, if H is
non-zero, the current 820-11 configuration. This function should be used to find
out what kind of disk system is present, the current keyboard mask state, or
other variable information concerning the 820-11. Only three bytes are currently
defined, but more may be added in later releases. The status is as follows:

H = 00000000
L = kdfOOOOO

k = Keyboard bi t-8 mask
d = Rigid disk present
f = 5.25" floppies present

REFERENCE
14

22) F03F - SIO-B Output Ready Status.
Returns FF if ready to transmit, 00 if not.

23) F042 - Get or Set Configurable Data.
This entry used by the CONFIGUR program, not by users.

24) F045 - Start Screen Print.
Initiates background screen print. Don't change the screen during printing, or
results will be strange.

25) F048 - User Accessible 1 Second Interrupt.
This is actually another exit point. It is called by the real time clock interrupt
service routine once each second. The user must follow the rules of interrupt
service. Only registers HL and AF may ~ used, any others must be
saved/restored on the 5 level stack provided. You must terminate with a RET
instruction, or a jump to the address in this vector prior to patching your
address in.

REFERENCE
15

Display Control Codes

The video display may be controlled by various control codes and escape sequences
to perform sophisticated screen manipulations. The Xerox 820-11 responds to the
following codes when CP/M is running and they are sent to the CRTOUT routines in
the BaS.

Code (hex)

05
06
07
08
09
OA
OB
OC
00
11
18
lA
IB
IE

IF

Code (hex)

28
29
2A
30
31
34
35
36
37
38
3D
45
51
52
57

CTRL and

E
F
G
H
I
J
K
L
M
Q
X
z
[
A.

Control Sequences

Function

Set cursor character as next character
Restore previous attribute mode
Bell
Backspace or cursor left
Hor izontal tab
Line feed or cursor down
Cursor up .
Cursor right
Carr iage return
Clear to end of screen
Clear to end of line
Clear screen and home cursor
.Escape
Home Cursor (HELP key produces this
code)
Display next charcter direct

Escape Sequences

ESC followed by Function

(
)

*
o
1
4
5
6
7
8
=
E
Q
R
W

Disable attribute display
Enable attribute display
Clear screen
Pass 7-bit keyboard data
Pass 8-bit keyboard data
Set blink attribute mode
Set graphics attribute mode
Set blink attribute mode
Set inverse video attribute mode
Set low intensity attribute mode
XY cursor position leadin
Line insert
Character insert
Line delete
Character delete

REFERENCE
16

Display Code Description

The display control codes of the Xerox 820-11 are completely compatible with the
Xerox 820 with several advanced editing features added. The following
summarizes the effect of each of the display codes:

Control Codes

"CTRL E" Set cursor character. After receiving this code the next character is
interpreted as the code to be used as the cursor character. Only codes
between 0 and 20 (hex) will be accepted. The normal cursor character
is 2. The "space" (hex) character is a special case used to eliminate the
display of a cursor. This is useful for displaying a screen without a
large visible moving cursor for special effects.

"CTRL F" Restore previous attribute mode. Whenever the attribute mode is
changed, the previous mode is remembered by the Xerox 820-11. In this
way a program can set its own attributes mode for its unique display
requirements, and then restore the original mode that was in effect
before the program was run. Since the user may set his own default
attribute mode with the CONFIGUR program in CP/M, it is desirable to
restore this mode after it has been temporarily changed.

"CTRL G" Bell. This code will sound a short tone to alert the operator.

"CTRL H" Backspace or cursor left. Moves the cursor one column position to the
left without altering the character under the cursor.

"CTRL I" Horizontal tab. Moves the cursor to the next tab stop. Tabs are preset
for every eighth column.

"CTRL J" Line feed or cursor down.

"CTRL K" Cursor up. Moves the cursor up one row without effecting the current
column position.

"CTRL L" Cursor right. Moves the cursor one column position to the right without
altering the character under the cursor.

"CTRL M" Carriage return. Returns the cursor to the first column position of the
current row.

"CTRL Q" Clear to end of screen. Clears all characters to spaces beginning with
the current cursor position to the end of the screen. The position of the
cursor remains unchanged. Characters before the cursor remain
unchanged.

"CTRL X" Clear to end of line. Clears all characters from the current cursor
position to the end of the current line to spaces. The cursor position is
unchanged. Characters before the cursor are unchanged.

REFERENCE
17

"CTRL ZIt Clear screen and home cursor. Clears the entire screen of spaces and
places the cursor in the home position (column 0, row 0).

"CTRL [" Escape. The first character of an escape sequence. These sequences
or are explained below.

"ESC"

"CTRL " Home Cursor. Moves the cursor to the home position (column 0 row 0)
without otherwise affecting the screen display. (HELP key produces IE
hex code)

"CTRL _If Display next character direct. After receiving this display code, the
next character is displayed directly on the screen without interpreting
it as a special display function code. This code is usually used to
display control characters that are not normally displayed by the BOS.

Escape Sequences

"ESC (" Disable attributes display. Will cause all succeeding characters
displayed on the screen to unconditionally have the upper bit reset, so
that the selected attribute mode will not be displayed. Display will
continue in this mode until changed by the "ESC)" sequence code.

"ESC)" Enable attribute display. Setting this mode will cause all following
characters displayed on the screen to unconditionally have the upper bit
set, thereby causing the selected attribute mode to be displayed. This
mode will continue in effect until the "ESC (" mode disables it.

"ESC *" Clear screen. This function is the same as the CTRL + Z function, and
clears the screen to spaces with the cursor at the home position.

"ESC 0" Sets BOS to pass only 7 bits of data from the keyboard. This is the
default setting when power-on or reset is applied, and is compatible
with the earlier Xerox 820. This mode of operation does not allow
many of the unique codes generated by the keyboard to be used by
applications software. A corollary effect is also automatically engaged
in the 7-bit mode. Only 7 bits of data will be passed to the video
display screen. ASCII characters with the upper bit set will normally
cause one of the four attributes to be displayed (blink, lowlight, inverse
video, or graphics characters). The "ESC 0" mode prevents this
sometimes undesired feature.

"ESC 1" Sets BOS to pass the upper bit of data from the keyboard. Using the
CTRL key in conjunction with certain keys will set the upper (eighth)
bit of that key, which allows these codes to be processed as special
function keys by applications programs. The following keys will
produce unique codes with the upper bi t set when they are typed in
conjunction with the CTRL key.

REFERENCE
18

"ESC 4"
or

"ESC 6"

"ESC 5"

"ESC 7"

"ESC 8"

Set blinking attribute mode. This code will not actually begin
displaying blinking characters on the screen. An "ESC)" sequence is
used to enable the display of the attribute characters, or storing
characters on the screen with the upper bit set, as described above.
Thus, different attribute modes can be selected without affecting the
screen display as long as there are NO characters on the screen with
the upper bit set. If there ARE characters displayed on the screen with
upper bit set, changing attribute modes will cause an 1M MEDIA TE
change in the way the upper bit characters are displayed, depending on
the attribute mode selected.

Set graphic character attribute mode. This code will not actually begin
displaying graphics characters on the screen. An "ESC)" sequence is
used to enable the display of the attribute characters, or storing
characters on the screen with the upper bit set, as described above.
Thus, different attribute modes can be selected without affecting the
screen display as long as there are NO characters on the screen with
the upper bit set. If there ARE characters displayed on the screen with
upper bit set, changing attribute modes will cause an 1M MEDIA TE
change in the way the upper bit characters are displayed, depending on
the attribute mode selected.

Set inverse video attribute mode. This code will not actually begin
displaying inverse video characters on the screen. An "ESC)" sequence
is used to enable the display of the attribute characters, or storing
characters on the screen with the upper bit set, as described above.
Thus, different attribute modes can be selected without affecting the
screen display as long as there are NO characters on the screen with
the upper bit set. If there ARE characters displayed on the screen with
upper bit set, changing attribute modes will cause an 1M MEDIA TE
change in the way the upper bit characters are displayed, depending on
the attribute mode selected.

Set low intensity attribute mode. This code will not actually begin
displaying characters on the screen in low intensity. An "ESC)"
sequence is used to enable the display of the attribute characters, or
storing characters on the screen with the upper bit set, as described
above. Thus, different attribute modes can be selected without
affecting the screen display as long as there are NO characters on the
screen with the upper bit set. If there ARE characters displayed on the
screen with the upper bit set, changing attribute modes will cause an
IMMEDIATE change in the way these upper bit characters are
displayed, depending on the attribute mode selected.

It should be noted that the low intensity mode is the DEFAULT
attribute mode. This is because the D{isplay memory) command in BOS
will store the ASCII character representation of the hex code so that
more information about the dump is available. The low intensity mode
is more suitable for this type of display. When CP/M is loaded, the
CONFIGUR program allows the user to select his own default attribute
mode.

REFERENCE
19

"ESC =" Position the cursor to the location indicated by the following two row
and column codes. The "home" position is designated as row 0, column
o. An offset of 20h must be added to the X and Y position codes. The
positioning formula· is:

ESC = (y +20h) (X+20h)

where legal Y (row) values are between 0 and 79. If the column or row
position codes exceed the normal 80 column or 24 row boundaries, the
cursor will not be positioned to the illegal coordinate.

"ESC E" Line insert. Will move the entire line on which the cursor resides down
one line, filling the cursor line with spaces, and causing the line on the
bottom of the screen to disappear. (It is actually moved to the internal
command line buffer for the monitor so that applications programs
wishing to preserve the bottom line are able to do so.) The actual
position of the cursor will not change.

"ESC Q" Character insert. Will insert a space at the current cursor position,
causing the character under the cursor and all characters after the
cursor to be shifted one position to the right. The last character on the
line will disappear. The cursor position will remain unchanged and the
character under the· cursor will be the inserted space. No other lines
will be affected. The character that was "lost" at the end of the line
will actually be placed into the A register and the HL register will be
pointing to the current cursor position upon return from the Fast CRT
jump vector entry point (OFOOFh) so that applications programs can
preserve this character.

"ESC R" Line delete. Similar to the line insert function except that the line on
which the cursor resides will be deleted from the screen (and moved to
the line buffer as described above), and all lines below it will be moved
up one line. The position of the cursor will be unchanged.

"ESC WIt Character delete. This function will delete the character under the
cursor and cause all characters to the right of the cursor to move one
position to the left. The last character position of the line will be
replaced by a space. The cursor position will be unchanged and the
character under the cursor will now be the character that was to the
immediate right of the cursor before the character delete operation.
The deleted character will be placed into the A register and the
HL register will be pointing to the current cursor position upon return
from the Fast CRT jump vector entry point (OFOOFh) so that
applications programs can preserve this character.

"ESC T" Clear to End of Line. (Same as CTRL + X)

"ESC Y" Clear to End of Screen. (Same as CTRL + Q)

REFERENCE
20

Key

o
1
2
3
4
5
6
7
8
9
period
plus sign
minus sign
up arrow
down arrow
right arrow
left arrow
line feed
Esc
Del

Key

Help
1
2
3
4
5
6
7
8
9
o
=
backspace
tab
return

Numeric Pad

ASCII Code (hexadecimal value)

BOh
Blh
B2h
B3h
B4h
B5h
B6h
B7h
B8h
B9h
AEh
ABh
ADh
81h
82h
83h
84h
8Ah
9Bh (Special key reserved for program abort)
FFh

Main Keyboard

ASCII Code (hexadecimal value)

9Eh (Special key reserved for Screen Print function)
9lh
92h
93h
94h
95h
96h
97h
98h
99h
90h
9Ah
88h
89h
9Dh

This is a total of 33 additional function keys that are available for applications
programs when the ESC 1 mode is enabled. The natural result of this mode is that
characters passed to the video display that have the upper bit set will be stored on
the screen with the upper bit on, which causes the selected attribute mode to be
enabled.

REFERENCE
21

MONITOR RESIDENT I/O DRIVER FUNCTIONS

This section describes the facilities available in the Xerox 820-11 monitor for
controlling the input/output resources of the Xerox 820-11.

1) INTERRUPT PROCESSING

The Xerox 820-11 monitor takes advantage of the powerful interrupt handling
capabilities of the 2-80 microprocessor. Interrupts are utilized in the I/O
dr ivers for the console keyboard input, the real-time clock and the floppy
disk controller. All necessary initialization tasks and interrupt service
routines for these devices are contained in the monitor.

For the most part, the operation of the interrupt mechanism should be
transparent to most applications programs that will run under Xerox 820-11.
A few precautions must be taken however, to ensure that user written
software does not adversely effect the operation of the system. The
following list describes the major hazards to the interrupt system:

• Interrupts should not be disabled permanently by user code, as this will
lock-up the console input and real-time-clock routines.

• The 2-80 'I' register should never be altered. Doing so is GUARAN­
TEED to crash the system.

• The CPU operates in 2-80 i.nterrupt mode 2 and should not be switched
to either of the other two interrupt modes.

• Adequate stack space must be reserved in user programs to allow at
least one level of stack for interrupt return addresses. Use of the stack
pointer for 'trick' programming purposes is highly discouraged for the
same reason.

The monitor initializes the 2-80 'I' register to point to the system interrupt
vector table at location FFOO to FF 1 F hex. This table contains pre-assigned
vector locations for all the peripheral devices on Xerox 820-11, including
those that are not used by any built-in functions in Xerox 820-11.

2) MEMORY MAPPED VIDEO DISPLAY

The Xerox 820-11 single-board computer is equipped with a built-in 80 charac­
ter by 24 line CRT display controller, for use with an external video monitor
as the system console output device. The refresh memory for the CRT is
bank switchable from the system's 64K byte memory space and includes a
hardware address translation circuit for high speed scrolling.

The Xerox 820-11 monitor contains an output driver routine for the CRT that
emulates the characteristics of a typical stand-alone video terminal. All character
codes between 00 and 7F hex are directly displayable on the screen. Characters
are formed in a 5 x 7 dot matrix.

REFERENCE
22

DISPLAY CHARACTER CODES

This table shows the code for each character to be displayed by the system. Each
character is defined by a unique eight bit code which is represented by a
hexadecimal code 'XV' where X represents the 4 most significant bits of the code
and Y represents the 4 least significant bits of the code.

There are a total of 128 characters in the font set. Therefore, Y represents a
hexadecimal number from 0 to F, and X represents a hexadecimal number from 0
to 7. Therefore, the complete font set is defined by codes from 00 to 7F. If the
most significant bit of the eight bit code is set to '1', then the complete font set is
duplicated with the blink attribute set. The blinking set of characters is then
defined by codes from 80 to FF.

0 0

1
3

2

3 0

4 @

5 P

6 "

7 p

1 2 3 456 7 8 9 ABC D E F

¢ 0 §

2 <>
c:::II

" /I $

1 2 3 4

A B C D

Q R S T

a b c d

q r s t

~ 2

en

%

5

E

U

e

u

~
~ ± ~I

.,.
~ .a-

&

6 7 8

F G H

V W X

f g h

v w x

REFERENCE
23

.,. -+ ~ ~:~: @ .~

0 +I +I @] -M ~

* + /

9 < = > ?

J K L M N 0

Y Z I: \ J A

k 1 m n 0

Y z { } N
Tm

~
rn
-<

OJ[]]@J0~~[?J[]]~[ill[I!]@]~[ill [!§]5§][ili~[ill (I'

[]§J~~~~~~~~~@9~m ~~~~~ ~
"()-iZ g g-i:ro [}[]~~§]~§]§]~~~~~ 50 @!]~~~~ =. :;0 ~ -i
:Jr"rn I 56 I~~~~@TI~~~~~I 67 I ~~~~~ z ~ ~ 00

n+'< Z oog-i 001 74 I~ :Jrnlll:r c: < ., ~
~ ~ r 0. n a Ui· 5· &. C'

.... ~ 'g ~ KEY NAME KEY II UNSHIFTEDSHIFTED CONTROL KEY NAME KEY II UNSHIFTEDSHIFTED CONTROL e :r:J "' "' CII ~ z ., ., CII

.... ~o C') o 0. C ~ HELP 01 IE IE 9E =.0. 1 02 31 21 91 A 39 61 41 01 > ." :J1ll
2 03 32 40 92 S 40 73 53 13 :r~o-

~ 9~ 0 3 04 33 23 93 D 41 64 44 04
~,,:J< 4 05 34 24 94 F 42 66 46 06

10 x~ ~
5 06 35 25 95 G 43 67 47 07 ':-"''< :r III ~ [Tl o-~" 6 07 36 5E 96 H 44 68 48 08

"TJ g 3 ~ 7 08 37 26 97 J 45 6A 4A OA ~ N[Tl
.,0 8 09 38 2A 98 K 46 6B 4B OB 0.:J:r

4="10 ~ 9 10 39 28 99 L 47 6C 4C DC 8 ~ Ill 0 11 30 29 90 SEMICOLON 48 3B 3A 7E [Tl =:Qn Z
_ MINUS 12 2D 5F IF APOSTROPHE 49 27 22 60 0 () o CII c EQUAL 13 3D 2B 9A RETURN 50 OD OD 8D
c~~ BACKSPACE 14 08 08 88 LINEFEED 51 OA OA 8A rn

[Tl -5 C11 :r DELETE 15 7F 7F FF UPARROW 52 01 01 81
(I'

c 0- ~ - (PAD) 16 2D 2D AD 1 (PAD) 53 31 31 Bl ·x 7 (PAD) 17 37 37 B7 2 (PAD) 54 32 32 B2 'Tl n
'Tl o &. 8 (PAD) 18 38 38 B8 3 (PAD) 55 33 33 B3 - ~ 9 (PAD) 19 39 39 B9 L SHIFT 56 FUNCTION KEY
:r Ill CII TAB 20 09 09 89 Z 57 7A 5A lA
~ -'0 Q 21 71 51 11 X 58 78 58 18 x -.,
-no W 22 77 57 17 C 59 63 43 03
o-:ro. E 23 65 45 05 V 60 76 56 16 C III C

R 24 72 52 12 B 61 62 42 02,n
.... Ill~ T 25 74 54 14 N 62 6E 4E OE :r!lo. Y 26 79 59 19 M 63 6D 4D OD ~~o-

U 27 75 55 15 COMMA 64 2C 3C lC ,,~'<
~ "" I 28 69 49 09 PERIOD 65 2E 3E 7C

~o~ 0 29 6F 4F OF SLASH 66 2F 3F 5C

g ~" P 30 70 50 10 R. SHIFT 67 FUNCTION KEY
., ~ [31 5B 7B IB L. ARROW 68 04 04 84
o.~~ J 32 5D 7D lD D.ARROW 69 02 02 82
.... :r 0 ESC 33 IB IB 9B R.ARROW 70 03 03 83 :J ~ III + (PAD) 34 2B 2B AB o (PAD) 71 30 30 BO "C:J.,
~Ill?- 4 (PAD) 35 34 34 B4 • (PAD) 72 2E 2E AE

5 (PAD) 36 35 35 B5 L.CTRL 73 FUNCTION KEY
6 (PAD) 37 36 36 B6 SPACE BAR 74 20 20 00
LOCK 38 FUNCTION KEY R.CTRL 75 FUNCTION KEY

3} PARALLEL KEYBOARD INPUT

A parallel keyboard interface is provided on Xerox 820-11 for systems that
will use the built-in keyboard and CRT display as the console I/o device.
This interface is designed to connect to an ASCII encoded keyboard with 8
bits of parallel data and a key-pressed strobe.

The monitor contains an interrupt driven input handler for the keyboard that
maintains a 16 character deep FIFO buffer for input data. This makes it
possible to do a considerable amount of typing ahead without any input
characters being lost. If characters are typed while disk access is going on,·
they may be lost because the disk routines lock out all lower priority
interrupts. Any characters received when the FIFO is full will also be lost.

4} DISK INTERFACE

The 820-11 (with floppy disk drives) has an edge-card connector for
interfacing to a. "baby board" for disk interface. The 820-11 will be equipped
with a "baby board" for controlling up to two Shugart compatible 8" drives, or
two 5~" drives. The interface hardware on the 820-11 "baby board" (floppy
disk drives) is based on a western Digital 1797 Floppy Disk Controller chip
along with extra TTL Support circuitry to provide buffering, drive select, and
data separator functions.

The 820-11 (with a rigid disk drive) will be equipped with a "baby board" for
interfacing to a Shugart 14030 Controller which in turn will control up to
four drives of various mixes of Shugart compatible 8" floppy and 8" rigid disk
drives. The interface hardware on the 820-11 "baby board" is based on a Z80A
PIO chip.

The monitor contains a complete I/O driver package for the disk controller.
Linkage to the disk I/O routines in the monitor is provided by a set of sub­
routine entry points described later in this manual. The basic functions
available are: drive select, restore, seek track, read sector, and write sector.
The user can also specify the track-to-track seek stepping rate, and the
sector record length.

All disk functions are verified upon completion, with the final status being
returned in the A register. If the command was executed successfully, then
A will contain all zeros on return, otherwise it will contain an error status
byte as described above under the console monitor 'R' command. The disk
drive routines will attempt to recover from any disk I/O errors that occur, so
it is generally not necessary for user written programs to try to re-execute
commands that fail the first time.

5} SERIAL INPUT IOUTPUT

The computer has provisions for two completely independent RS-232 serial
ports that can be used to interface to printers, CRT terminals and data
communications equipment.

REFERENCE
25

6) REAL TIME CLOCK

The computer has a Z-80 CTC device that can be used to generate the
timebase for interrupt driven timers, real-time clocks, and other time keeping
functions. The monitor will initialize CTC channels 2 and 3 to interrupt the
processor once a second. Channels 0 and 1 of the CTC are not initialized and
can be used for other purposes.

The one second interrupt from the CTC is utilized by the monitor's disk I/O
routines to implement the disk motor turn-off function.

7) PARALLEL I/O OPTION

A Z-80 PIO chip has been included on the Xerox 820-11 IP for general purpose
I/O interfacings. This device is completely unused by any built-in functions.
The PIO contains two independent 8-bit parallel I/O ports that can be used to
interface to printers, ROM programmers, analog converters, other computers,
or just about anything else imaginable. Those interested in using the PIO
should consult the schematic drawings for any needed hardware interfacing
details. Data about programming the PIO can be found in most Z-80
applica tions manuals.

REFERENCE
26

DISK FORMAT

DISK PARAMETERS

5M." 8"

SSSD DSSD SSDD DSDD SSSD DSSD SSDD DSSD

Tracks 1-39 1-79 1-39 1-79 1-76 1-153 1-76 1-153

Sectors/
18 18 17 17 26 26 26 26 Track

Bytes/
128 128 256 256 128 128 256 256 Sector

Reserved
3 3 3 3 2 2 2 2 Tracks

* Disk 82K 172K 155K 322K 241K 490K 482K 980K Capacity

DISK FORMAT (floppy disks)

The system is equipped with two (2) compatible Shugart 5M." drives, or two 8"
Shugart drives. The disks for the 5M." drives are initialized in a CROMEMCO
format, and the disks for the 8" drives are initialized in an IBM 3740 format.

A format is divided into three (3) parts; field A, field B, and field C. Field A is
written at the start of each track known as the preamble. Field B is written once '
for each sector which consists of a gap between sectors, ID fields, and a data field.
Field C is written at the end of each track and is known as a postamble.

TRACK 0 FORMAT

Track 0 is written in single density and in the following format:

PARAMETER

Tracks
Sectors
Bytes/Sector

8"

o
26
128

5M."

o
18
128

REFERENCE
27

5"" Format - Track 0

Number of Hex Value
Bytes of Bytes Comment

16 FF Preamble on Gap 4A
4 00 Gap 3
1 FE ID Address Mark
I XX Track II
1 00
1 XX Sector /I
1 00

* 1 F7 Generate eRe (2)
11 FF Gap 2
6 00
1 FB Data Address Mark
128 E5 Data Field
1 F7 Generate eRe (2)
8 FF Gap 3
101 FF Postamble Gap 4B

* Repeated for /I sectors per track.

8" Format - Track 0

8" data architecture is similar to IBM 3740 format.

Number of Hex Value
Bytes of Bytes Comment

28 FF Preamble - \Vri te at the
6 00 start of each track
I Fe
26 FF
6 00 Gap 3
I FE ID Address Mark
1 XX Track /I
1 00
1 XX Sector /I

* 1 00
1 F7 Generate eRe
11 FF Gap 2
6 00
1 FB Data Address Mark
128 E5 Data Field
1 F7 Generate eRC
27 FF Gap 3

247 FF Postamble Gap 4B

* Repeated for /I of sectors per track.

REFERENCE
28

OTHER TRACKS

The disks are initialized in the following format:

PARAMETER

Tracks
Sectors
Bytes/Sector
Tracks reserved for OS*

8"

1-76
26
256
2

5~"

1-39
17
256
3

Reserved tracks for 8" - Track 0, 1

Reserved tracks for 5~" - Track 0, 1, and 2

.5,," Format - Tracks 1 to 39

Data architecture is IBM a modified System 34 format.

Number of
Bytes

50
12
3
1
1
1
1

* 1
1
22
12
3
1

256
1
32

284

Hex Value
of Bytes Comment

4E Gap 1
00 Sync Field
F5 10 Address Mark
FE 10 Mark
XX Track
XX Head/!
XX Sector
01 Sector Length 10
F7 CRC Generates 2 Bytes
4E Gap 2
00 Sync Field
F5 Data Address Mark
FB Data Mark
E5 Data
F7 CRC Generates 2 Bytes
4E Gap 3 Between Sectors
4E Postamble

REFERENCE
29

8" Format - Tracks 1 to 76

, Data architecture is IBM 34 format.

'*

Number of
Bytes

80
12
3
1
50
12
3
1
1
1
1
1
1
22
12
3
1

256
1
54

600

Hex Value
of Bytes

4E
00
F6
FC
4E
00
F5
FE
XX
XX
XX
01
F7
4E
00
F5
FB
E5
F7
4E
4E

* Repeated for II of sectors per track.

Comment

Gap 4A
Sync Field
Index Address Mark
Index Mark
Gap 1
Sync Field
ID Address Mark
ID Mark
Track
Headll
Sector
Sector Length ID
CRe Generates 2 Bytes
Gap 2
Sync Field
Data Address Mark
Data Mark
Data
eRe Generates 2 Bytes
Gap 3 Between Sectors
Postamble

REFERENCE
30

GRAPHICS

The 820-11 Display Controller is based on displaying characters within a 7 x 10
character cell (7 dots horizontal by 10 scan lines verticaI). To guarantee spaces
between characters, one dot on each side of the character cell is blanked by
hardware. Also, to guarantee spaces between character lines, the top two scan
lines are blanked by hardware. This gives an actual active character size of 5 dots
horizontal by 8 scan lines vertical as shown below:

BLANKED
AREA

ACTIVE
AREA

For Business Graphics, the hardware is configured to eliminate the automatic
blanking and allow continuous lines both horizontal and vertical. However, the
Display Controller is still based on displaying a character within a 7 x 10 character
cell. Since the 820-11 is an 8 bit system and the controller design and available
refresh memory allows only one byte per character, the maximum number of
unique characters that can be defined by any 8 bits is 256. Since the standard
820-11 text font set contains 128 characters, the limit on unique characters for
graphics that can be displayed together with text is 128.

The character set for Business Graphics divides the character cell into blocks of
4 dots horizontal by 4 scan lines vertical. Since the total number of scan lines per
character is 10, the character set actually consists of two subsets of 4-4-2 and
2-4-4 as shown below:

4 -

4 _

2 _

REFERENCE
31

1----+---.... - 2

-4

-4

Each subset divides the character cell into 6 parts requIring 64 possible
combinations or unique characters. Therefore, the total number of unique
characters for the complete graphics set is 128. With this character set, any
combination of adjacent 4 x 4 blocks can be chosen. Also, at the character cell
boundary the 4 x 4 blocks can be set vertical by 2 scan lines. Since the total
number of horizontal dots per character cell is 7, there will be an overlap of one
horizontal dot in the center of the character cell for diagonal blocks within the cell
as shown below:

It should be noted that the above examples are shown inverted from actual display
of 820-11. That is, the 820-11 will display 4 x 4 white on black vs. the above
examples which are shown 4 x 4 black ory white.

It should be also noted that for the standard text font containing 128 unique
characters defined by 7 bits, the eighth bit is used for the blink attribute. For
Business Graphics, since both text characters and graphic characters can be
displayed simultaneously, this requires all 8 bits to define the character,
consequently the blink attribute is not available in graphics mode.

REFERENCE
32

THEORY OF OPERATION - CENTRAL PROCESSOR

CLOCK GENERATOR

All the system clocks with the exception of the baud clock and the video dot clock
are generated from a master oscillator operating at 16 Mhz. The 2 Mhz (1 Mhz for
5~") clock for the disk controller is generated from the 16 Mhz clock by a divide by
8 counter.

The lJ. Mhz processor clock is generated by dividing the master 16 Mhz clock by lJ.
with binary counter. The column address strobe "CAS", and the address multi­
plexer control "MUX", are derived from the 16 Mhz clock. When memory request
"MREQ" is low and refresh "RFSH" is high generation of "CAS" and "MUX" is
enabled.

RESET CONTROLLER

Two types of reset take place on the board.
conditioned by part of hex schmitt inverter.
conditioned by a part of hex schmitt inverter.

PORT ADDRESS DECODING

Power on reset is detected and
The pushbutton reset is also

Octal decoder is used to select the appropriate I/O device based on the binary
value of the address bits A2, A3, & AlJ.. When A7 is low and "MIR" is high, a low on
"IORQ" will cause the appropriate output of the decoder to go low, selecting the
I/O device for a read or write operation.

I/O Port Assignments For Floppy Disk Option

HORT 0-3 = CHANNEL A BAUD RATE (WRITE ONLY)
POR T lJ. = SIO CHANNEL A DATA
PORT 5 = SIO CHANNEL B DATA
POR T 6 = SIO CHANNEL A CONTROL
PORT 7 = SIO CHANNEL B CONTROL
POR T 8 = GP PIO CHANNEL A DATA
PORT 9 = GP PIO CHANNEL A CONTROL
POR T A = GP PIO CHANNEL B DATA
PORT B = GP PIO CHANNEL B CONTROL
POR T C-F = CHANNEL B BAUD RATE (WRITE ONLY)
PORT 10 = FLOPPY DISK CONTROLLER STATUS/COMMAND REGISTER
POR T 11 = FLOPPY DISK CONTROLLER TRACK REGISTER
PORT 12 = FLOPPY DISK CONTROLLER SECTOR REGISTER
PORT 13 = FLOPPY DISK CONTROLLER DATA REGISTER
PORT 1lJ.-17 = CRT SCROLL REGISTER (WRITE ONLY)
POR T 18 = CTC CHANNEL 0
PORT 19 - CTC CHANNEL 1
POR T 1 A = CTC CHANNEL 2
PORT IB = CTC CHANNEL 3
PORT lC = SYSTEM PIO CHANNEL A DATA
PORT ID = SYSTEM PIO CHANNEL A CONTROL
PORT IE = SYSTEM PIO CHANNEL B KEYBOARD DATA

REFERENCE
33

PORT IF = SYSTEM PIO CHANNEL B KEYBOARD CONTROL
PORT 20-27 = NOT USED/NOT AVAILABLE
POR T 28 = RESET AUDIBLE ALARM (WRITE ONLY)
PORT 29 = ACTIVATE AUDIBLE ALARM (WRITE ONLY)
PORT 2A-2F = NOT USED/NOT AVAILABLE
PORT 30 = SINGLE DENSITY (WRITE ONLY)
PORT 31 = DOUBLE DENSITY (WRITE ONLY)
PORT 32 = NOT USED/NOT AVAILABLE
POR T 33 = NOT USED/NOT A V AILABLE
PORT 34 = RESET CRT FONT GENERATOR TO ROM III (WRITE ONLY)
POR T 35 = SELECT CRT FONT GENERA TOR TO ROM 112 (WRITE ONLY)
PORT 36 = SET LOLIGHT VIDEO MODE (WRITE ONLY)
PORT 37-67 = NOT USED/NOT AVAILABLE
PORT 68 = ASYNCHRONOUS COMMUNICATIONS (WRITE ONLY)
PORT 69 = SYNCHRONOUS COMMUNICATIONS (WRITE ONLY)

I/o Port Assignments For Fixed Drive Options

PORT O-F = SAME AS FLOPPY DISK OPTION
PORT 10 = FIXED DISK PIO CHANNEL A DATA
PORT 11 = FIXED DISK CHANNEL A CONTROL
PORT 12 = FIXED DISK CHANNEL B DATA
PORT 13 = FIXED DISK CHANNEL B CONTROL
PORT 14-2F = SAME AS FLOPPY DISK OPTION
PORT 30-33 = NOT USED/NOT AVAILABLE
PORT 34-69 = SAME AS FLOPPY DISK OPTION

REFERENCE
34

FLOPPY DISK TRANSFER SYNCHRONIZATION

In order to successfully execute the high speed data transfers between the
processor and the disk controller, the fast Z-80 non-maskable interrupt "NMI"
response was employed. During reads and writes to and from the disk controller,
the data at memory location 66 hex is retrieved and stored. This location is
overwritten with a RETURN instruction. After this setup is accomplished the
processor executes a HALT instruction. When the processor is in a HALT
condition, a DATA REQUEST (DRQ) or an INTERR UPT REQUEST (IRQ) from the
disk controller will cause a non-maskable interrupt to be generated. The processor
then executes the RETURN instruction at 66 hex and returns to transfer the data
to or from the disk controller. When the 128 byte (or 256 bytes in double density)
transfer is complete the old data is restored and the processor resumes normal
operation. This hardware assistance obviated the necessity for a DMA device by
eliminating the disk controller "DRQ" status test.

CRT DISPLAY CONTROLLER

VIDEO SCROLLING

In order to eliminate the delay associated with software scrolling, hardware
assistance was employed. For ease of understanding, the CRT RAM resides from
3000 hex to 3FFF hex. Writing into the scroll register adds an offset to the line
address developed by the line counter. The net effect is similar to the rotation of
a cylinder whose axis is horizontal and perpendicular to the line of shift. The
amount of rotation is determined by the magnitude of the number contained in the
scroll register. For instance, an offset of zero puts the data at location 3000 hex
(of the CRT memory) at the bottom of the screen. If the offset was one, the data
at 3000 hex would be displayed on the line next to the bottom. An offset of
seventeen hex (23 decimal) puts the data at location 3000 hex at the top of the
screen.

VIDEO RAM ADDRESSING

If the processor is doing a read or write to video RAM "CRTCE" (CRT memory
access enable) will go low. When "CRTCE" goes low, the address from the
processor is selected instead of the address generated by the counter chain. This
gives the processor access to the video RAM for read or write operations.

CPU ACCESS OF VIDEO RAM

During read or write operations involving the video RAM and the CPU, "CRTCE"
will go low. When "CRTCE" goes low the processor address bus is selected as the
address source for the video RAM. A low on "CRTCE" is also used as a term in the
direction control logic for data bus access. During a processor read operation, data
from the video RAM at the specified address is allowed onto the processor data
bus. During a processor write operation, data from the processor is written to the
video RAM at the specified address.

REFERENCE
35

VIDEO GENERATION

While in the display mode, ASCII data from the video RAM and scan address data
are used to select the proper dot patterns from the character generator. The
character generator contains 1 font pattern of 128 characters.

DISPLAY BLANKING

The display is blanked during horizontal retrace, vertical retrace, CPU access, and
decode of scan counts 8 and 9. Blanking is accomplished by disabling the character
generator.

64 K RAM AND BANK SWITClHNG

REFRESH

During the refresh cycle, the Z-80 places the refresh address on the lower 7 bits of
the address bus. When this address is stable in the RAM array, the "RFSH" pin on
the Z-80 goes low. The active low "RFSH" generates an "RAS" on all RAMs. An
active "RFSH" disables the generation of both "CAS" and "MUX" •

BANK SWITCHING

Bit 7 of port lC hex is the bank switch control. When the output is high, the ROMs
and the CRT display appear in the lower 16K block, and the second 16K block is
reserved for memory expansion via the bus access slot. When bit 7 of port lC hex
is low, all the 64K RAM is available to the processor.

CTC

The CTC resides at ports 18 hex through 1 B hex. All the inputs and outputs
associated with the CTC are available to the user. Refer to the strapping option
section for pin assignments.

SYSTEM PIO

The system PIO resides at ports lC hex through IF hex. The "A" side of the system
PIO controls the floppy disk drive select, bank switching, sensing keyboard data
available (for polled keyboard applications), and an uncommitted user definable I/o
bit. The bit allocations are as follows:

BIT 0 = DVSEL 1 (820-11), LOW (820-11 Rigid Disk)
BIT 1 = DVSEL 2 (820-11), UNUSED (820-11 Rigid Disk)
BIT 2 = SIDE (820-11), UNUSED (820-11 Rigid Disk)
BIT 3 IS USED FOR KEYBOARD DATA AVAILABLE
BIT 4 IS 8"15~" DISK SELECT «820-11), UNUSED (820-11 Rigid Disk)
BIT 5 DOUBLE SIDED MEDIA (820-11), UNUSED (820-11)
BIT 6 CONTROLS DISPLAY CHARACTER SET
BIT 7 CONTROLS THE BANK SWITCHING (O=RAM)

REFERENCE
36

GENERAL PURPOSE PIO AND SIO

The G.P. PIO provides the user with '16 bits of user definable input or output or a
mix of input and output on nibble boundaries. The G.P. PIO resides at ports 08 hex
-OB hex. The PIO will support all modes of interrupt supported by the 2-80. For
detailed programming information refer to the 2-80 PIO data sheet. For
applications information, refer to the strapping option section.

SIO

The 2-80 SIO supports two full channels of serial I/O with the capability of
supporting full RS-232 protocol on both channels. In addition, the A side of the SIO
can provide clocks to synchronous modems or receive clocks from the modem.

Channel A of the SIO can be configured to interface to a modem or a terminal.
Refer to the strapping option sheets for detailed instructions. Refer to the SIO
data sheet for programming information.

Channel B of the SIO is dedicated for printer operation and has no strapping
options.

BAUD RATE GENERATOR

The COM 8116 provides the user with two programmable baud rate generators.
Channel A baud rate resides at port 00 hex and is write only. Channel B baud rate
resides at port OC hex and is also write only. The programming procedure is as
follows:

00 hex =
01 hex =
02 hex =
03 hex =
04 hex =
05 hex =
06 hex =
07 hex =
08 hex =
09 hex =
OA hex -,
OB hex =
OC hex =
OD hex =
OE hex =
OF hex =

50
75
110
134.5
150
300
600
1200
1800
2000
2400
3600
4800
7200
9600
19.2

Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Baud
Kbaud

REFERENCE
37

INTERRUPT STRUCTURES

All the Z-80 family devices on this board are capable 'of supporting mode 0, 1, and
2 interrupts. Mode 2 interrupts are used in the Monitor delivered with the system.
The I register in an unmodified system is loaded with OFF hex. The priority chain
is organized high to low as follows:

SIO CHANNEL A
SIO CHANNEL B
SYSTEM PIO PORT A
SYSTEM PIO PORT B
GP PIO PORT A
GP PIO PORT B
CTC CHANNEL 0
CTC CHANNEL 1
CTC CHANNEL 2
CTC CHANNEL 3

REFERENCE
38

GENERAL PURPOSE PIO STRAPPINGS (lll) AND PIN ASSIGNMENTS (J8)

J8

1 2
all odd 0 0

numbered 0 0

pins are 0 0

grounded 0 0

0 0

JII 0 0

0 0

1 2 0 0

PB6 0 0 PB4 0 0

0 0 port B READY polarity 0 0

0 0 port B lower direction 0 0

odd pins 3-17 0 0 port A READY polarity 0 0

are grounded 0 0 port A upper direction 0 0

0 0 port B upper direction 0 0

0 0 port A STROBE polarity 0 0

0 0 port B STROBE polarity '0 0

0 0 port A lower direction 0 0

+5V 0 0 +5V 0 0

19 20 0 0

0 0

39 40

eTC 'STRAPPING AND I/O ASSIGNMENTS (lIO)

llO

2 1
SYSTEM CLOCKo 0 CLOCK/TRIGGER

ZC-TOO 0 0 CLOCK/TRIGGER
ZC-TOI 0 0 CLOCK/TRIGGER
ZC-T02 0 0 CLOCK/TRIGGER

8 7

VIDEO OUTPUT CONNECTOR PIN ASSIGNMENTS (J7)

J7

6 1
o 0

o 0
6-10 grounded 0 0 Vertical Sync

o 0 Horizontal Sync
o 0 Video
10 5

REFERENCE
39

port A STROBE
port A READY
port A bit 0
port A bit 1
port A bit 2
port A bit 3
port A bit 4
port A bit 5
port A bit 6
port A bit 7
port BREADY
port B STROBE
port B bit 0
port B bit 1
port B bit 2
port B bit 3
port B bit 4
port B bit 5
port B bit 6
port B bit 7

0
1
2
3

SERIAL I/O CONNECTOR PIN ASSIGNMENTS CHANNEL A (J4)

J4
1 14

PROTECTIVE GROUND 0 0

TRANSMIT DATA 0 0 TRANSMIT CLOCK
RECEIVE DATA 0 0

REQUEST TO SEND 0 0 RECEIVE CLOCK
CLEAR TO SEND 0 0

DATA SET READY 0 0

PROTECTIVE GROUND 0 0 DATA TERMINAL READY
CARRIER DETECT 0 0

0 0

0 0

0 0

0 0

0 25
13

SERIAL I/O STRAPPING OPTIONS FOR CHANNEL A (J9)

Only channel A is capable of utilizing baud clocks from an external device or of
providing baud clocks to an external device. When providing the baud clock to the
external device the SIO must use the same clock source.

J9
1 2
0 0

0 0

0 0 (M) RXD to Pin 3
0 0 (T) TXD to Pin 2
0 0 (M) TXD from Pin 2
0 0 (T) RXD from Pin 3
0 0 (M) CTS to Pin 5
0 0 (T) RTS to Pin 4
0 0 (M) R TS from Pin 4
0 0 (T) CTS from Pin 5
0 0 (M) DCD to Pin 8
0 0 (T) OTR to Pin 20
0 0 (M) DTR from Pin 20
0 0 (T) DCD from Pin 8

Clock supplied to Modem as RX Clock 0 0

Clock supplied to SIO with RX Clock 0 0

Modem supplies SIO with RX Clock 0 0

Clock supplied to SIO with TX Clock 0 0

Modem supplies SIO with TX Clock 0 0

Clock supplied to Modem with TX Clock 0 0

39 lJ.0

REFERENCE
lJ.0

/'

DATA SET READY IS ACTIVE ON BOTH CHANNELS

Legend

(M) Indicates modem (Data Communications Equipment) function
(T) Indicates terminal (Data Terminal Equipment) function

For instance, exercising the (T) strap options will allow communication with a
modem. Exercising the (M) strap options would allow communication with a
terminal.

TXD = Transmitted Data
RXD = Received Data
R TS = Request to Send
CTS = Clear to Send
DTR = Data Terminal Ready
DCD = Data Carrier Detect

SERIAL I/O CONNECTOR PIN ASSIGNMENTS CHANNEL 8 (J3)

Ground
Receive Data
Transmit Data
Clear to Send
Request to Send
Data Set Ready
Ground
Terminal Ready

J3
1 14
0 0

0 0

0 0

0 0

0 0

0 0

0 0 Data Carrier Detect
0 0

0 0

0 0

0 0

0 0

0 25
13

REFERENCE
41

KEYBOARD CONNECTOR PIN ASSIGNMENTS (l2)

BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STROBE

+5 volts

1
0

0

0

0

0

0

0

0

0

0

0

0

0

13

J2

14
0

0

0

0

0

0 Pins 14-25 are all grounded
0

0

0

0

0

0

25

DISK DRIVE CONNECTOR PIN ASSIGNMENTS (ll)

RIGID

NDI
NMSG
ND5
ND6
ND4
ND7
ND3
NRST
NPB
Nc/D
NREQ
NIIo
NOT USED
NBSY
NDZ
ND<b
NSEL
NACK

FLOPPY

8/5~ Select
Media
Index
Select 1
Select 2
Side
HDLD
Step In
Step
Write Data
Write
TRK 00
Write Protect
Read Data
Low Current
Ready
+12VDC
+5VDC

REFERENCE
42

Jl

1 20
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 Pins 20-37 are
0 0 all grounded
0 0

0 0

0 0

0 0

0 0

0 0

0 0

19 37

/

PREPARING TO RUN DIAGNOSTICS ON A NEW 820-11

Your Xerox 820-11 Personal Computer comes with an 820-11 Diagnostic Exerciser disk in the
disk drive box. You can use this disk to check that your system is in proper working order.
The disk will check the different components of the system and display a message if it finds
a malfunction.

It's a good idea to check your system when you first install it. If you experience any
problems while using the system,· you can use the 820-11 Diagnostic Exerciser disk to check
the system and find out if it needs to be serviced (repaired).

If you have just installed a new Xerox 820-11, proceed with the steps below. If you've
already used the Xerox 820-11, turn to page 8.

COMPARE your disk drive unit to the illustration below to determine what type of
disk drive you have.

5Y4" DUAL FLOPPY
DISK DRIVE

8" DUAL FLOPPY DISK DRIVE 8" RIGID DISK DRIVE

OPEN

LOCATE

LOCATE

the disk drives by pushing on the latch or button as shown above.

the ON/OFF switch on the left side of the 8" disk drives (the 5Y4" disk drive
does not have an ON/OFF switch).

the ON/OFF switch under the right side of the screen (toward the back).

ON/OFF
SWITCH

(Under edge
of screen)

V
ON/OFF ON/OFF
SWITCH SWITCH

DIAGNOSTICS
6/1/82 1

TURN

TURN

WAIT

the 8" disk drives on -- if your system has 8" drives, they must be turned
on for your system to operate.

the screen on -- if it is already turned on, press the RESET button at the
back of the screen or CTRL+ESC on the keyboard.

for your screen to display information in the left top corner of your
screen. If it does not appear after a few seconds, try adjusting the
brightness control (under the left edge of the screen) toward the front.

If nothing appears on the screen, your system needs servicing.

ADJUST the brightness control (under the left edge of the screen) for the best
viewing.

If you have dual floppy disk drives, continue with the steps below. If you have an 8" rigid
disk, turn to page .5.

TO INITIALIZE A FLOPPY DISK

When you use the Xerox 820-11 Diagnostic disk to check out a system that has dual floppy
disk drives, you'll need to initialize a floppy disk to use for the test. An initialized disk is a
disk that has been prepared for use.

6/1/82

FIND

INSERT

the CP/M disk (The CP/M disk comes packaged with the CP/M manuals).

the CP/M disk in the left drive (drive A) as shown below. Use the up and
in arrows on the disks as guides.

DRIVE
A

DRIVE
A

5M," DISK DRIVES 8" DISK DRIVES

CLOSE

DRIVE
A

the drive as shown below.

DIAGNOSTICS
2

DRIVE
A

6/1/82

TYPE the letters LA and press the RETURN key on the' keyboard.
(If the screen displays the message "load error" it means the disk is in
upside down. Remove the disk and resert it correctly. Press the RESET
button on the back of the screen and repeat the above step.) .

TYPE the word INIT and press the RETURN key.

WAIT for the message "Enter physical disk drive to initialize (A or B)"

OBTAIN a new disk. Be sure the write protect tape is off the notch on the 5~"
disk, or the write protect tape is on the notch on the 8" disk. (Write
protect tapes come packaged in the box of disks when you purchase them.
If you don't have a new disk, a previously used one will do).

WRITE
PROTECT

TAPE

CUTOUT
OVAL

5~" DISK

lus of di

I~
f-

~
f-

[[]

-

0eQ)

8" DISK

C

c:::::J
I

UP AND IN
ARROWS

\ WRITE
PROTECT

TAPE

HOLD the disk with the oval cutout toward the drive (as shown in the picture on
the opposite page).

INSERT the new disk in the right drive (drive B) and close the door.

TYPE the letter B

The following message to be displayed on the screen:

Available disk formats are:

1) Single Density, Single Side
2) Single Density, Double Side
3) Double Density, Single Side
4) Double Density, Double Side

Enter desired format, or ESC to re-enter selections

DIAGNOSTICS
3

6/1/82

TYPE the number 3

The following message is displayed on the screen:

Are you ready to ERASE (initialize) the disk in physical drive B (Y /N)?

TYPE the letter Y

WAIT several minutes for the following message to display on the screen:

"0 Defective Sectors"

Touch any key to continue or CTRL+C to Exit

IF the disk has defecti ve s~ctors indicated by a number other than 0 in front
of the Defective Sectors message, do not use it - initialize another disk
using the steps below:

• Replace the disk in drive B with another disk.

• Touch any key on the keyboard and follow the directions on the screen.

• Wait for the "0 Defective Sectors - Touch any key to continue or
CTRL+C to Exit" message to display on the screen.

REMOVE both of the disks from the disk drives.

You're now ready to check out the system with the Diagnostic Exerciser disk. The
instructions for running diagnostics start on page 8.

DIAGNOSTICS
4

TO FORMAT (INITIALIZE) A RIGID DISK

DO THIS PROCEDURE ONLY IF THE SYSTEM IS NEW. If the rigid drive has been used,
this procedure will erase all stored data.

Before you use the diagnostic exerciser disk to check. a system with a rigid disk drive, you'll
need to format (initialize) the rigid disk before running the test.

INSERT the CP/M disk in the left disk drive (drive A).

CLOSE

TYPE

TYPE

Result

DRIVE A

the drive as shown below.

the letters LA and press the RETURN key on the keyboard.

the letters FMT and press the RETURN key.

The following message will be displayed on the screen:

Rigid Disk Initialization Utility VER. 0.00
Copyright (C) 1982, XEROX Corporation

INITIALIZING Will ERASE ALL The DATA On The RIGID DISK
Touch ANY KEY To EXIT Or RETURN To CONTINUE

PRESS the RETURN key to continue.

Result ""The following message is displayed on the screen:

DIAGNOSTICS
6/1/82 5

6/1/82

Are You SURE You Want To CONTINUE? (Y/N)

TYPE the letter Y and press the RETURN key.

Result The following message is displayed on the screen:

WAIT

Initializing Rigid Disk Track 0000

several minutes for the following message to be displayed on the screen:

Please run the Verify Disk Integrity section of the
Xerox Disk Backup and Maintenance System Utility to
identify any flawed sectors.

It is necessary for you to reload the system
Touch ANY KEY To RESET the machine

TOUCH any key on the keyboard~

TYPE the letters LA and press the RETURN key.

TYPE

Result

the word BACKUP and press the RETURN key.

The following menu is displayed on the screen:

The Xerox Disk Backup and Maintenance System
(C) 1982 Balcones Computer Corporation (P)
All Rights Reserved Version 0.00 (Month) 1982

DISK BACKUP & MAINTENANCE MENU

You have the following options available:

(l) List Directory
(2) Backup Files
(3) Replace Files
(4) Verify Disk Integrity
(5) Delete Files
(6) Exit to CP/M

P lease enter your choice: (_)

DIAGNOSTICS
6

Note: When using the BACKUP Utility, you may want to increase the brightness of
your screen using the br ightness control located under the left edge of the screen.

TYPE the number 4 to select the Verify Disk Integrity option.

Result The following message is displayed on the screen:

TYPE

VERIFY DISK INTEGRITY

Verify which Disk: (_)

the letter E to verify disk (partition) E which is used by the diagnostic
exerciser program to check the operation of the disk dr ives.

Result The following message is displayed on the screen:

0000 Reading a to 1007 Blocks. (Touch ESC at any time to exit.)

WAIT several minutes for the following message to be displayed on the screen:

No errors detected. Touch any key to exit.

IF an error is detected, TYPE the letter Y to automatically store the error
(flawed area) in a special file on that partition.

PRESS any key on the keyboard to return to the Disk Backup and Maintenance
Menu.

REPEAT the steps on this page to verify disks (partitions) F, G and H.

You're now ready to check out the system with the Diagnostic Exerciser disk. The
instructions for running diagnostics start on page 8.

6/1/82
DIAGNOSTICS

7

RUNNING DIAGNOSTICS

Before you run diagnostics, you'll need to put paper in your printer. Use two sheets so that
the paper covers the width of the platen, and turn on the printer. The On/Off switch is on
the front of the 620 printer (20 CPS) and on the back of the 630 printer (40 CPS).

As the test runs, you'll need to watch the screen for error messages. You may wish to read
the procedures below to acquaint yourself with the messages before beginning the test.

6/1/82

PRESS the RESET switch on the front of the 630 printer.

PRESS . the RESET button on the back right corner of the screen or the
CTRL+ESC keys on the keyboard.

REMOVE any disks from the disk drives.

CHECK the Xerox 820-11 Diagnostic Exerciser disk to be sure that it is not write
protected. (The 5Y4" disks are not protected when the tapes are removed,
and the 8" disks are not protected when the tapes are on.)

INSERT the 820-11 Diagnostic Exerciser disk in the left disk drive (drive A) and
close the drive.

WRITE
PROTECT

TAPE

CUTOUT
OVAL

5Y4" DISK

[Ji !

...
><

UP AND IN
ARROWS

o © <==> \ WRITE

PROTECT
TAPE

8" DISK

Note: The disk marked 820-11 Diagnostic Exerciser disk must be used to run the
diagnostic test. If you use the 820 Diagnostic Exerciser disk, a false error indication
will occur.

IF

TYPE

you are testing a dual floppy disk drive system, insert an initialized disk in
the right disk drive (drive B) and close the drive.

the letters LA and press the RETURN key.

DIAGNOSTICS
8

2

The Xerox 820-11 Diagnostic Exerciser disk will begin to check out the system. Be
careful not to touch any keys on the keyboard while the test is running. Touching a
key can stop the test.

Note: If there is an error during the test, holding down CTRL while pressing C will
run the remaining tests.

WATCH the screen for the results of the first memory test. In about 30 seconds,
the screen should show:

PASSES COMPLETE = 0001 ; COUNT OF ERROR BYTES = 0000
PASSES COMPLETE = 0001 ; COUNT OF ERROR BYTES = 0000

If the COUNT OF ERROR BYTES does not equal 0000, your system needs
to be serviced.

WATCH the screen for the results of the second memory test. The screen
should show:

PASSES COMPLETE = 0001 ; COUNT OF ERROR BYTES = 0000
PASSES COMPLETE = 0001; COUNT OF ERROR BYTES = 0000

If the COUNT OF ERROR BYTES does not equal 0000, your system needs to be
serviced.

WATCH your screen for the results of the disk test. The disk drives will click
during this test. When finished the screen should show:

o read/ wri te errors detected
o seek errors detected

WATCH the screen test as it displays the screen test. The test pattern should fill
the screen with characters. (The border around the test pattern will
remain black.)

If there are missing characters or irregularities in the test pattern,. your
system needs to be serviced.

(If you do not have a printer, the test will end here. Remove both disks
and press the RESET button.)

DIAGNOSTICS
9

WAIT while the printer prints its test pattern. (If you have an 88 or 92
character wheel on the Printer, the test pattern will have blanks in some
places.)

Normal pr int forward and back
!" #$ %& ' () *+, _. /01234 56789: ; '<=~ ?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [. J 0_° abcdefghi ~ klmnopg r stuvwxyz §\r t: !" #$ %&' () * +, -. /0 1234 56 789: ; '<=~ ?@SUB
! "#$%&' ()*+,-./0123456789: ;,<=lj?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[· J o_oabcdefghlJklmnopgrstuvwxyz§\1 t ! "#$%&' () *+,-./0123456789:; l=~?@SUB

Inter leaved overpr int ing, forward and backward
!"#$%&'()*+,-./0123456789:;,<=lj?@ABCDEFGHIJKLMNOPQRSTUVWXYZl·Jo_oabcdefghijklmnopgrstuvwxyz§~t: !"t$%&'()*~,-./0123456789:;,<=lj?@SUB
! "#$%&' () *+, _. /0123456789: ; ~=lj ?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [. J 0_0 abcdefgh ij klmnopgrstuvwxYZ§II t ! "#$ %&' () *+, -. /0 1234 56789: ; ~=~ ?@SUB

Overprint with absolute horizontal tabbing
S I" i$%&' () *+, -. /01234 56789: ; ~=lj ?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [. J C _ 0 abcdefghij klmnopgr stuvwxyz§~ t· !" #$%&' () *+, -. /0123456789: ; ~=lj ?@SUB

6/1/82

If the test pattern did not print the alphabet and numbers, or if the characters were
not properly aligned on the paper as shown in the example above, check the printer
switches described in the SYSTEMS COMPONENT section on page 18 for the 620
Printer (20 CPS) or page 35 for the 630 CPS Printer (40 CPS). If the switches are
correctly set, your system may need to be serviced.

WAIT for the following message to be displayed on the screen:

Diagnostics Complete - Touch ANY KEY to reset machine

REMOVE the Xerox 820-11 Diagnostic Exerciser disk, the initialized disk, and place
them back in their disk envelopes. Store your Diagnostic Exerciser disk in
a safe place.

If all the test messages corresponded with those shown in the instructions, your
system is hooked up correctly and in proper working order.

To learn how to use the basic features of CP/M on the 820-11, you should go through
the CP/M Handbook. Then go through the manuals for any Applications software
(such as Supercalc, TTY Communications, Accounting, etc.) to learn the specific
features of that software.

DIAGNOSTICS
10

820-II PERSONAL COMPUTER

CP/M 2.2 OPERATING SYSTEM REFERENCE GUIDE

HISTORY PAGE

This package contains supplement pages to be inserted in your 820-II CP/M 2.2 Personal
Computer Reference Guide. To update your manual, insert this page as the first page in the
manual, then remove and add new pages as instructed below.

MANUAL REORDER /I 9R80448

Manual Issue Date:

Supplement Oates:

5/1/82

6/1/82

Part /I

79S80096A

156P82598
(79S80096B)

Software Level

1.000

1.000

This supplement updates the CP/M 2.2 documentation to the DCT000008 software level and
includes the Rigid Disk documentation with the following page changes:

SECTION

Table of Contents

Introduction

General Programs

Systems Components

Reference

Diagnostics

REMOVE

v thru viii

1 through 8

1 through 54

i,ii 1 thru 4 18,19
23 thru 32 35,36

1,2 9 thru 16
21,22,31,32

1 thru 10

ADD

v thru viii

1 through 8

1 through 54

i,ii 1 thru 4 18,19
23 thru 32 35,36
51,52

1,2 9 thru 16
21,22,31,32

1 thru 10

156P82598
6/1/82

156P82598
6/1/82

ii

