
I Contents

Chapter INTRODUCTION

Chapter 2 C LANGUAGE DEFINITION

2.1 LEXICAL CONVENTIONS
2.1.1 Comments
2.1 .2 Identifiers (Names)
2. 1.3 Keywords
2.1.4 Constants
2.1.5 Strings
2.1.6 Hardware Characteristics

2.2 SYNTAX NOTATION

2.3 NAMES
2.3 .1 Storage Class
2.3.2 Type

2.4 OBJECTS AND LVALUES

2.5 CONVERSIONS
2.5.1 Characters and Integers
2.5.2 Float and Double
2.5.3 Floating and Integral
2.5.4 Pointers and Integers
2.5.5 Unsigned
2.5.6 Arithmetic Conversions
2.5.7 Void

2.6 EXPRESSIONS
2.6.1 Primary Expressions
2.6.2 Unary Operators
2.6.3 Multiplicative Operators
2.6.4 Additive Operators
2.6.5 Shift Operators
2.6.6 Relational Operators
2.6.7 Equality Operators
2.6.8 Bitwise AND Operator
2.6.9 Bitwise Exclusive OR Operator
2.6.10 Bitwise Inclusive OR Operator
2.6.11 Logical AND Operator
2.6.12 Logical OR Operator

X/OPEN Portabil ity Guide (July 1985) Part III Page: i

Contents

2.6.13 Conditional Operator
2.6.14 Assignment Operators
2.6.15 Comma Operator

2.7 DECLARATIONS (}

2.7.1 Storage Class Specifiers
2.7 .2 Type Specifiers
2.7.3 Declarators
2.7.4 Meaning of Declarators
2.7 .5 Structure and Union Declarations
2.7 .6 Enumeration Declarations
2.7.7 Initialisation
2.7.8 Type Names
2.7.9 Typedef

2.8 STATEMENTS
2.8.1 Expression Statement
2.8.2 Compound Statement or Block
2.8.3 Conditional Statement
2.8.4 While Statement
2.8.5 Do Statement
2.8.6 For Statement
2.8.7 Switch Statement
2.8.8 Break Statement
2.8.9 Continue Statement
2.8.10 Return Statement
2.8.11 Goto Statement
2.8.12 Labeled Statement
2.8.13 Null Statement

2.9 EXTERNAL DEFINITIONS
2.9.1 External Function Definitions
2.9.2 External Data Definitions

2.10 SCOPE RULES
2.10.1 Lexical Scope
2.10.2 Scope of Externals

2.11 COMPILER CONTROL LINES
2.11 .1 Token Replacement

(2.11 .2 File Inclusion
2.11.3 Conditional Compilation
2.11.4 Line Control

2.12 IMPLICIT DECLARATIONS

Part III Page: ii X/OPEN Portability Guide (July 1985)

Contents

2.13 TYPES REVISITED
2.13.1 Structures and Unions
2.13.2 Functions

(2.13.3 Arrays , Pointers, and Subscripting
2.13.4 Explicit Pointer Conversions

2.14 CONSTANT EXPRESSIONS

2.15 SYNTAX SUMMARY
2.15.1 Expressions
2.15.2 Declarations
2.15.3 Statements
2.15.4 External Definitions
2.15.5 Preprocessor

CHAPTER 3 PORTABILITY

3.1 DATA ALIGNMENT

3.2 BIT AND BYTE ORDERING

3.3 VARIABLE NAMES

3.4 LENGTHS OF DATA TYPES

3.5 MISUSE OF POINTERS

3.6 EVALUATION ORDER AND SIDE-EFFECTS

3.7 ARITHMETIC

3.8 LINT

3.9 THE ANSI X3J11 DRAFT STANDARD
3.9.1 Keywords
3.9 .2 External Declarations
3.9.3 Structure Members
3.9.4 Characters
3.9.5 Preprocessor

3.10 I NTERNATIONALISATION
3.10.1 Character Sets
3.10.2 Messages
3.10.3 Input/Output (
3.10.4 Collating Sequences

3 .11 INPUT / OUTPUT DEVICES

X/ OPEN Portability Guide (July 1985) Part III Page : iii

Contents

CHAPTER 4 LINT

4.1 GENERAL

4.2 USAGE (
4.3 TYPES OF MESSAGE
4.3.1 Unused Variables and Functions
4.3.2 Set/Used Information
4.3.3 Flow of Control
4.3.4 Function Values
4.3.5 Type Checking
4.3.6 Type Casts
4.3.7 Nonportable Character Use
4.3.8 ASSignments of "longs" to " ints"
4.3 .9 Strange Constructions
4.3.10 Old Syntax
4.3 .11 Pointer Alignment
4.3.12 Multiple Uses and Side Effects

(

Part III Page: iv X/OPEN Portability Guide (July 1985)

(
I Chapter 1

Introduction

Together, the C-Ianguage and the System V interface definition provide
the foundation for application portability. PART II defines the X/OPEN
System V Interface. This part covers the C language and gives
guidelines for portability when writing C code.

The ANSI committee, X3J11, is currently working towards a standard for
the C programming language. X/OPEN is represented on that
committee by member companies and intends to adopt the standard
once it is established as a practical reality.

In the meantime, X/OPEN adopts the definition of the C-Ianguage given
in Chapter 2 of the AT&T "UNIXTM System V Programming Guide, release
2.0". This definition is reproduced in Chapter 2 below. Machine-specific
information has been removed, and some minor editorial alterations have
been made.

The C-Ianguage, as defined, does not guarantee portability. It is
possible, using valid C constructs, to write programs that are machine­
specific. In Chapter 3, advice is given on writing portable application
programs in C. It is anticipated that this chapter will grow in future
editions, and readers are invited to contribute additional material.

It is a declared intention of X/ OPEN to develop a co-ordinated and
integrated approach to internationalisation. Towards this end, Chapter 3
also gives advice to application writers on structuring C-Ianguage
programs that are intended to operate in more than one natural
language / character-set environment.

A draft of the ANSI X3J11 standard has been published, and this
indicates the need for portability guidelines to ensure that programs will
compile correctly when using future compilers that support the standard .
This issue is also addressed in Chapter 3.

The description of the "C Program Checker - linf ' featured in the AT&T
"UNIX System V programming Guide, release 2.0" , is reproduced in
Chapter 4. Use of this program is strongly recommended since it
enforces a number of portability restrictions, in addition to carrying out
general checks on a C program.

X/OPEN Portability Guide (July 1985) Part III Page : 1.1

(

(2.1

/C
Chapter2

Language Definition

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants,
strings, operators, and other separators. Blanks, tabs, new-lines, and
comments (collectively "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character,
the next token is taken to include the longest string of characters which
could possibly constitute a token .

2.1.1 Comments

The characters 1* introduce a comment which terminates with the
characters * I. Comments do not nest.

2.1.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must
be a letter. The underscore C) counts as a letter. Upper case and lower
case letters are different. Although there is no limit on the length of a
name, only initial characters are significant: at least eight characters of a
non-external name, and perhaps fewer for external names.

2.1.3 Keywords

The following identifiers are reserved for use as keywords and may not
be used otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue extern long struct while
default float register switch

Some implementations also reserve the words fortran and asm .

X/ OPEN Portability Guide (July 1985) Part III Page : 2.1

Lexical Conventions C Language Oefinition

2.1 .4 Constants

There are several kinds of constants. Each has a type; an introduction to
types is given in " NAMES". Hardware characteristics that affect sizes
are summarised in "Hardware Characteristics" under "LEXICAL
CONVENTIONS" .

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal
if it begins with 0 (digit zero) . An octal constant consists of the digits 0
through 7. A sequence of digits preceded by Ox or OX (digit zero) is
taken to be a hexadecimal integer. The hexadecimal digits include a or
A through f or F with values 10 through 15. Otherwise, the integer
constant is taken to be decimal. A decimal constant whose value
exceeds the largest signed machine integer is taken to be long; an octal
or hex constant which exceeds the largest unsigned machine integer is
likewise taken to be long. Otherwise, integer constants are int.

Explicit Long Constants

A decimal, octal , or hexadecimal integer constant immediately followed
by I (letter ell) or L is a long constant. As discussed below, on some
machines integer and long values may be considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in 'x'.
The value of a character constant is the numerical value of the character
in the machine's character set.

Part III Page: 2.2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition Lexical Conventions

Certain nongraphic characters, the single quote (') and the backslash
(\)' may be represented according to the following table of escape
sequences:

new-line NL (LF) \ n
horizontal tab HT \ t
vertical tab VT \ v
backspace BS \ b
carriage return CR V
form feed FF \ f
backslash \ \\
single quote \'
bit pattern ddd \ ddd

The escape \ ddd consists of the backslash followed by 1, 2, or 3 octal
digits which are taken to specify the value of the desired character. A
special case of this construction is \ 0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is
not one of those specified, the behavior is undefined. A new-line
character is illegal in a character constant. The type of a character
constant is int.

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction
part, an e or E, and an optionally signed integer exponent. The integer
and fraction parts both consist of a sequence of digits. Either the integer
part or the fraction part (not both) may be missing . Either the decimal
point or the e and the exponent (not both) may be missing. Every
floating constant has type double.

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and
Enumeration Declarations" under "DECLARATIONS") have type int.

X/OPEN Portability Guide (July 1985) Part III Page: 2.3

Lexical Conventions C Language Oefinition

2.1 .5 Strings

A string is a sequence of characters surrounded by double quotes, as in
" .. . " . A string has type "array of char" and storage class static (see
"NAMES") and is initialised with the given characters. The compiler
places a null byte (\ 0) at the end of each string so that programs which
scan the string can find its end. In a string, the double quote character
(") must be preceded by a \; in addition, the same escapes as described
for character constants may be used.

A \ and the immediately following new-line are ignored. All strings, even
when written identically, are distinct.

2.1.6 Hardware Characteristics

The following table summarises certain hardware properties that vary
from machine to machine.

It is the responsibility of the programmer to check that the sizes of data
structures on any particular machine are sufficient for requirements.

Typical 16-bit Processor Typical 32-bit Processor
(ASCII) (ASCII)

char 8 bits 8 bits
int 16 32
short 16 16
long 32 32
float 32 32
double 64 64
float range ± 10±38 ± 10 ±38

double range ±10±38 ±10±38

Part III Page : 2.4 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Syntax Notation

2.2 SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and
characters in bold type. Alternative categories are listed on separate
lines. An optional terminal or nonterminal symbol is indicated by the
subscript "opt", so that

{ expression opt }

indicates an optional expression enclosed in braces. The syntax is
summarised in "SYNTAX SUMMARY".

X/OPEN Portability Guide (July 1985) Part III Page: 2.5

Names C Language Definition

2.3 NAMES

The C language bases the interpretation of an identifier upon two
attributes of the identifier - its storage class and its type. The storage
class determines the location and lifetime of the storage associated with
an identifier; the type determines the meaning of the values found in the
identifier's storage.

2.3.1 Storage Class

There are four declarable storage classes:

• Automatic
• Static
• External
• Register.

Automatic variables are local to each invocation of a block (see
"Compound Statement or Block" in "STATEMENTS") and are discarded
upon exit from the block. Static variables are local to a block but retain
their values upon re-entry to a block even after control has left the block.
External variables exist and retain their values throughout the execution
of the entire program and may be used for communication between
functions, even separately compiled functions. Register variables are (if
possible) stored in the fast registers of the machine; like automatic
variables, they are local to each block and disappear on exit from the
block.

2.3.2 Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of
the implementation's character set. If a genuine character from that
character set is stored in a char variable, its value is equivalent to the
integer code for that character. Other quantities may be stored into
character variables, but the implementation is machine dependent. In
particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int , and long int, are
available. Longer integers provide no less storage than shorter ones, but
the implementation may make either short integers or long integers, or
both, equivalent to plain integers. "Plain" integers have the natural size
suggested by the host machine architecture. The other sizes are
provided to meet special needs.

Part III Page: 2.6 X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition Names

The properties of enum types (see "Structure, Union, and Enumeration
Declarations" under " DECLARATIONS") are identical to those of some
integer types. The implementation may use the range of values to
determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic
modulo 2n where n is the number of bits in the representation.

Single-precision floating point (float) and double precision floating point
(double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as
numbers, they will be referred to as arithmetic types . Char, int of all
sizes whether unsigned or not, and enum will collectively be called
integral types. The float and double types will collectively be called
floating types.

The void type specifies an empty set of values. It is used as the type
returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite
class of derived types constructed from the fundamental types in the
following ways:

• Arrays of objects of most types
• Functions which return objects of a given type
• Pointers to objects of a given type
• Structures containing a sequence of objects of various types
• Unions capable of containing anyone of several objects of various

types.

In general these methods of constructing objects can be applied
recursively.

X/OPEN Portability Guide (Juty 1985) Part III Page : 2.7

Objects And L values C Language Oefinition

2.4 OBJECTS AND LVALUES

An object is a manipulatable region of storage. An Ivalue is an
expression referring to an object. An obvious example of an Ivalue
expression is an identifier. There are operators which yield Ivalues: for
example, if E is an expression of pointer type, then *E is an Ivalue
expression referring to the object to which E points . The name " Ivalue"
comes from the assignment expression E1 = E2 in which the left
operand E1 must be an Ivalue expression. The discussion of each
operator below indicates whether it expects Ivalue operands and whether
it yields an Ivalue.

Part III Page : 2.8 X/ OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Conversions

2.5

2.5.1

CONVERSIONS

A number of operators may, depending on their operands, cause
conversion of the value of an operand from one type to another. This
part explains the result to be expected from such conversions. The
conversions demanded by most ordinary operators are summarised
under "Arithmetic Conversions". The summary will be supplemented as
required by the discussion of each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be
used. In all cases the value is converted to an integer. Conversion of a
shorter integer to a longer preserves sign . Whether or not sign-extension
occurs for characters is machine dependent, but it is guaranteed that a
member of the standard character set is non-negative. On machines
which do sign-extend, char variables range in value from -128 to 127.
The more explicit type unsigned char forces the values to range from 0
to 255.

On machines that treat characters as signed, the characters of the ASCII
set are all non-negative. However, a character constant specified with an
octal escape suffers sign extension and may appear negative; for
example, if a char is 8 bits, \ 377 has the value -1 .

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

2.5.2 Float and Double

2.5.3

All floating arithmetic in C is carried out in double precision . Whenever a
float appears in an expression it is lengthened to double by zero
padding its fraction . When a double must be converted to float, for
example by an assignment, the double is rounded before truncation to
float length. This result is undefined if it cannot be represented as a
float.

Floating and Integral

Conversions of floating values to integral type are rather machine
dependent. In particular, the direction of truncation of negative numbers
varies. The result is undefined if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some
loss of accuracy occurs if the destination lacks sufficient bits.

X/OPEN Portability Guide (July 1985) Part III Page : 2.9

Conversions C Language Definition

2.5.4 Pointers and Integers

An expression of integral type may be added to or subtracted from a
pointer; in such a case, the first is converted as specified in the
discussion of the addition operator. Two pointers to objects of the same
type may be subtracted; in this case, the result is converted to an integer
as specified in the discussion of the subtraction operator.

2.5.5 Unsigned

Whenever an unsigned integer and a plain integer are combined , the
plain integer is converted to unsigned and the result is unsigned. The
value is the least unsigned integer congruent to the signed integer
(modulo 2word-size). In a 2's complement representation , this conversion
is conceptual; and there is no actual change in the bit pattern.

When an unsigned short integer is converted to long , the value of the
result is the same numerically as that of the unsigned integer. Thus the
conversion amounts to padding with zeros on the left.

2.5.6 Arithmetic Conversions

A great many operators cause conversions and yield result types in a
similar way. This pattern will be called the " usual arithmetic
conversions" .

1 . First, any operands of type char or short are converted to int, and
any operands of type unsigned char or unsigned short are
converted to unsigned int.

2. Then, if either operand is double, the other is converted to double
and that is the type of the result.

3. Otherwise, if either operand is unsigned long , the other is
converted to unsigned long and that is the type of the result.

4. Otherwise, if either operand is long , the other is converted to long
and that is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int,
they are both converted to unsigned long and that is the type of
the result.

6. Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the
result.

Part III Page: 2.10 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Conversions

2.5.7 Void

The (non-existent) value of a void object may not be used in any way,
and neither explicit nor implicit conversion may be applied. Because a
void expression denotes a nonexistent value, such an expression may be
used only as an expression statement (see "Expression Statement"
under "STATEMENTS") or as the left operand of a comma expression
(see "Comma Operator" under "EXPRESSIONS").

An expression may be converted to type void by use of a cast. For
example, this makes explicit the discarding of the value of a function call
used as an expression statement.

X/ OPEN Portability Guide (July 1985) Part III Page · 2.11

Expressions C Language Definition

2.6 EXPRESSIONS

The precedence of expression operators is the same as the order of the
major subsections of this section , highest precedence first. Thus, for
example, the expressions referred to as the operands of + (see "Additive
Operators") are those expressions defined under "Primary Expressions",
"Unary Operators" , and " Multiplicative Operators" . Within each subpart,
the operators have the same precedence. Left- or right-associativity is
specified in each subsection for the operators discussed therein. The
precedence and associativity of ali the expression operators are
summarised in the grammar of " SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined . In
particular, the compiler considers itself free to compute subexpressions
in the order it believes most efficient even if the subexpressions involve
side effects. The order in which subexpression evaluation takes place is
unspecified. Expressions involving a commutative and associative
operator (*, +, &, I, ') may be rearranged arbitrarily even in the presence
of parentheses; to force a particular order of evaluation, an explicit
temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows;
treatment of division by a and all floating-point exceptions varies between
machines and is usually adjustable by a library function.

2.6.1 Primary Expressions

Primary expressions involving ., - > , subscripting, and function calis
group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-listopt)
primary-expression. identifier
primary-expression - > identifier

expression-list:
expression
expression-list, expression

Part III Page : 2.12 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Oefinition Expressions

An identifier is a primary expression provided it has been suitably
declared as discussed below. Its type is specified by its declaration. If
the type of the identifier is "array of ... ", then the value of the identifier
expression is a pointer to the first object in the array; and the type of the
expression is "pointer to ... " . Moreover, an array identifier is not an
Ivalue expression. Likewise, an identifier which is declared "function
returning ... ", when used except in the function-name position of a call,
is converted to " pointer to function returning ... ".

A constant is a primary expression . Its type may be int, long , or double
depending on its form. Character constants have type int and floating
constants have type double.

A string is a primary expression. Its type is originally "array of char",
but following the same rule given above for identifiers, this is modified to
"pointer to char " and the result is a pOinter to the first character in the
string. (There is an exception in certain initialisers; see " Initialisation"
under "DECLARATIONS").

A parenthesised expression is a primary expression whose type and
value are identical to those of the unadorned expression. The presence
of parentheses does not affect whether the expression is an Ivalue.

A primary expression followed by an expression in square brackets is a
primary expression . The intuitive meaning is that of a subscript. Usually,
the primary expression has type "pointer to ... ", the subscript
expression is int, and the type of the result is " ... ". The expression
E1 [E2] is identical (by definition) to *((E1)+(E2)). All the clues needed
to understand this notation are contained in this subpart together with the
discussions in "Unary Operators" and "Additive Operators" on
identifiers, * and +, respectively. The implications are summarised under
"Arrays, Pointers, and Subscripting" under "TYPES REVISITED" .

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of expressions which
constitute the actual arguments to the function. The primary expression
must be of type "function returning ... ", and the result of the function
call is of type " . .. ". As indicated below, a hitherto unseen identifier
followed immediately by a left parenthesis is contextually declared to I

represent a function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

X/OPEN Portability Guide (July 1985) Part III Page: 2.13

Expressions C Language Oefinition

Any actual arguments of type float are converted to double before the
call. Any of type char or short are converted to in!. Array names are
converted to pOinters. No other conversions are performed
automatically; in particular, the compiler does not compare the types of
actual arguments with those of formal arguments. If conversion is
needed, use a cast; see "Unary Operators" and "Type Names" under
"DECLARATIONS".

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A
function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. It is possible
to pass a pOinter on the understanding that the function may change the
value of the object to which the pointer points. An array name is a
pointer expression. The order of evaluation of arguments is undefined by
the language; take note that the various compilers differ. Recursive calls
to any function are permitted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union , and the
identifier must name a member of the structure or union. The value is
the named member of the structure or union, and it is an Ivalue if the first
expression is an Ivalue.

A primary expression followed by an arrow (built from - and »
followed by an identifier is an expression. The first expression must be a
pointer to a structure or a union and the identifier must name a member
of that structure or union . The result is an Ivalue referring to the named
member of the structure or union to which the pointer expression pOints.
Thus the expression E1-> MOS is the same as (*E1).MOS. Structures
and unions are discussed in "Structure, Union, and Enumeration
Declarations" under "DECLARATIONS".

Part III Page : 2.14 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition

2.6.2 Unary Operators

Expressions with unary operators group right to left.

unary-expression:
* expression
& Ivalue
- expression
! expression
expressIOn
++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
(type-name) expression
sizeof expression
sizeof (type-name)

Expressions

The unary * operator means indirection; the expression must be a
pointer, and the result is an Ivalue referring to the object to which the
expression pOints. If the type of the expression is "pointer to ... ", the
type of the result is " . . . ".

The result of the unary & operator is a pointer to the object referred to by
the Ivalue. If the type of the Ivalue is " ... ", the type of the result is
"pointer to ... ".

The result of the unary - operator is the negative of its operand. The
usual arithmetic conversions are performed. The negative of an unsigned
quantity is computed by subtracting its value from 2n where n is the
number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its
operand is zero, zero if the value of its operand is non-zero. The type of
the result is int. It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

The object referred to by the Ivalue operand of prefix + + is incremented.
The value is the new value of the operand but is not an Ivalue. The
expression + +x is equivalent to x=x+1. See the discussions "Additive
Operators" and "Assignment Operators" for information on conversions.

X/OPEN Portability Guide (July 1985) Part III Page: 2.15

Expressions C Language Definition

The Ivalue operand of prefix -- is decremented analogously to the prefix
+ + operator.

When postfix + + is applied to an Ivalue, the result is the value of the
object referred to by the Ivalue. After the result is noted, the object is
incremented in the same manner as for the prefix + + operator. The
type of the result is the same as the type of the Ivalue expression.

When postfix -- is applied to an Ivalue, the result is the value of the
object referred to by the Ivalue. After the result is noted, the object is
decremented in the manner as for the prefix -- operator. The type of the
result is the same as the type of the Ivalue expression.

An expression preceded by the parenthesised name of a data type
causes conversion of the value of the expression to the named type.
This construction is called a cast . Type names are described in "Type
Names" under "DECLARATIONS" .

The sizeof operator yields the size in bytes of its operand. (A byte is
undefined by the language except in terms of the value of sizeof.
However, in all existing implementations, a byte is the space required to
hold a char .) When applied to an array, the result is the total number of
bytes in the array. The size is determined from the declarations of the
objects in the expression. This expression is semantically an unsigned
constant and may be used anywhere a constant is required. Its major
use is in communication with routines like storage allocators and 1/ 0
systems.

The sizeof operator may also be applied to a parenthesised type name.
In that case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type))-2.

2.6.3 Mult iplicative Operators

The multiplicative operators *, I, and % group left to right . The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression 1 expression
expression % expression

The binary * operator indicates multiplication. The * operator is
associative, and expressions with several multiplications at the same level
may be rearranged by the compiler. The binary 1 operator indicates
division.

Part III Page : 2.16 X/OPEN Portability Guide (July 1985)

(

(

C Language Definition Expressions

2.6.4

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of
truncation is machine-dependent if either operand is negative. On all
machines covered by this manual, the remainder has the same sign as
the dividend. It is always true that (a/b)*b + a%b is equal to a (if b is
not 0).

Add itive Operator

The additive operators + and - group left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities
for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pOinter to an
object in an array and a value of any integral type may be added. The
latter is in all cases converted to an address offset by multiplying it by the
length of the object to which the pOinter pOints. The result is a pointer of
the same type as the original pointer which points to another object in
the same array, appropriately offset from the original object. Thus if P is
a pOinter to an object in an array, the expression P+ 1 is a pointer to the
next object in the array. No further type combinations are allowed for
pointers.

The + operator is associative, and expressions with several additions at
the same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any
integral type may be subtracted from a pOinter, and then the same
conversions for addition apply.

If two pOinters to objects of the same type are subtracted, the result is
converted (by division by the length of the object) to an int representing
the number of objects separating the pointed-to objects. This conversion
will in general give unexpected results unless the pointers point to
objects in the same array, since pointers, even to objects of the same
type, do not necessarily differ by a multiple of the object length .

X/OPEN Portability Guide {July 1985) Part III Page: 2.17

Expressions C Language Definition

2.6.5 Shift Operators

The shift operators « and » group left to right. Both perform the
usual arithmetic conversions on their operands, each of which must be
integral. Then the right operand is converted to int; the type of the result
is that of the left operand. The result is undefined if the right operand is
negative or greater than or equal to the length of the object in bits.

shift-expression:
expression < < expression
expression > > expression

The value of E1 « E2 is E1 (interpreted as a bit pattern) left-shifted E2
bits. Vacated bits are 0 filled . The value of E1 » E2 is E1 right-shifted
E2 bit positions. The right shift is guaranteed to be logical (0 fill) if E1 is
unsigned; otherwise, it may be arithmetic.

2.6.6 Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), < = (less than or equal
to) , and > = (greater than or equal to) all yield 0 if the specified relation
is false and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. Two pointers may be compared;
the result depends on the relative locations in the address space of the
pOinted-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

2.6.7 Equality Operators

equality-expression:
expression = = expression
expression! = expression

The == (equal to) and the != (not equal to) operators are exactly
analogous to the relational operators except for their lower precedence.
(Thus a< b == c < d is 1 whenever a<b and c < d have the same truth
value) .

A pointer may be compared to an integer only if the integer is the
constant O. A pOinter to which 0 has been assigned is guaranteed not to

Part III Page : 2.18 X/ OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Expressions

2.6.8

point to any object and will appear to be equal to O. In conventional
usage, such a pOinter is considered to be NULL.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be
rearranged. The usual arithmetic conversions are performed. The result
is the bitwise AND function of the operands. The operator applies only to
integral operands.

2.6.9 Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ' expression

The ' operator is associative, and expressions involving , may be
rearranged. The usual arithmetic conversions are performed; the result is
the bitwise exclusive OR function of the operands. The operator applies
on ly to integral operands.

2.6.10 Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may be
rearranged . The usual arithmetic conversions are performed; the result is
the bitwise inclusive OR function of its operands. The operator applies
only to integral operands.

2.6. 11 Log ical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands
evaluate to nonzero, 0 otherwise. Unlike &, && guarantees left to right
evaluation; moreover, the second operand is not evaluated if the first
operand is O.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always in!.

X/OPEN Portability Guide (July 1985) Part III Page: 2.19

Expressions C Language Definition

2.6.12 Logical OR Operator

logical-or-expression:
expression II expression

The II operator groups left to right. It returns 1 if either of its operands
evaluates to nonzero, 0 otherwise. Unlike I, II guarantees left to right
evaluation; moreover, the second operand is not evaluated if the value of
the first operand is nonzero.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always int.

2.6.13 Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left . The first expression is
evaluated; and if it is nonzero, the result is the value of the second
expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third
expressions to a common type. If both are structures or unions of the
same type, the result has the type of the structure or union. If both
pOinters are of the same type, the result has the common type.
Otherwise, one must be a pointer and the other the constant 0, and the
result has the type of the pointer. Only one of the second and third
expressions is evaluated.

2.6.14 Assignment Operators

There are a number of assignment operators, all of which group right to
left. All require an Ivalue as their left operand, and the type of an
assignment expression is that of its left operand. The value is the value
stored in the left operand after the assignment has taken place. The two
parts of a compound assignment operator are separate tokens.

Part III Page : 2.20 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition

assignment-expression:
Ivalue = expression
Ivalue + = expression
Ivalue - = expression
Ivalue * = expression
Ivalue / = expression
Ivalue % = expression
Ivalue > > = expression
Ivalue < < = expression
Ivalue & = expression
Ivalue A= expression
Ivalue I = expression

Expressions

In the simple assignment with =, the value of the expression replaces
that of the object referred to by the Ivalue. If both operands have
arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. Second, both operands may be
structures or unions of the same type. Finally, if the left operand is a
painter, the right operand must in general be a pointer of the same type.
However, the constant a may be assigned to a pointer; it is guaranteed
that this value will produce a null pOinter distinguishable from a pointer to
any object.

The behavior of an expression of the form E1 op= E2 may be inferred
by taking it as equivalent to E1 = E1 op (E2); however, E1 is evaluated
only once. In + = and -=, the left operand may be a pointer; in which
case, the (integral) right operand is converted as explained in "Additive
Operators" . All right operands and all nonpointer left operands must
have arithmetic type.

2.6.15 Comma Operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right ,
and the value of the left expression is discarded. The type and value of
the result are the type and value of the right operand. This operator
groups left to right. In contexts where comma is given a special
meaning, e.g., in lists of actual arguments to functions (see " Primary
Expressions") and lists of initialisers (see "Initialisation " under
"DECLARATIONS"), the comma operator as described in this subpart
can only appear in parentheses .

X/OPEN Portability Guide (July 1985) Part III Page : 2.21

Expressions C Language Definition

For example,

f(a, (t = 3, t + 2), c)

has three arguments, the second of which has the value 5. (

(

Part III Page: 2.22 X/ OPEN Portability Guide (July 1985)

(

C Language Definition Declarations

2.7 DECLARATIONS

Declarations are used to specify the interpretation which C gives to each
identifier; they do not necessarily reserve storage associated with the
identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being
declared. The decl-specifiers consist of a sequence of type and storage
class specifiers.

decl-specifiers:
type-specifier decl-specifiers opt
sc-specifier decl-specifiers opt

The list must be self-consistent in a way described below.

2.7.1 Storage Class Specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage
class specifier" only for syntactic convenience. See "Typedef" for more
information. The meanings of the various storage classes were
discussed in "NAMES".

The auto, static, and register declarations also serve as definitions in
that they cause an appropriate amount of storage to be reserved. In the
extern case, there must be an external definition (see " External
Definitions") for the given identifiers somewhere outside the function in
which they are declared.

X/OPEN Portability Guide (July 1985) Part III Page : 2.23

Declarations C Language Definition

A register declaration is best thought of as an auto declaration, together
with a hint to the compiler that the variables declared will be heavily
used. Only the first few such declarations in each function are effective.
Moreover, only variables of certain types will be stored in registers. One
other restriction applies to register variables: the address-of operator &
cannot be applied to them. Smaller, faster programs can be expected if
register declarations are used appropriately, but future improvements in
code generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration . If the sc­
specifier is missing from a declaration, it is taken to be auto inside a
function, extern outside. Exception: functions are never automatic.

2 .7.2 Type Specifiers

The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifier

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction
with int; the meaning is the same as if int were not mentioned. The word
long may be specified in conjunction with float; the meaning is the same
as double. The word unsigned may be specified alone, or in
conjunction with int or any of its short or long varieties, or with char.

Otherwise, at most one type-specifier may be given in a declaration. In
particular, adjectival use of long , short , or unsigned is not permitted
with typedef names. If the type-specifier is missing from a declaration, it
is taken to be int.

Part III Page : 2.24 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition Declarations

2.7.3

Specifiers for structures, unions, and enumerations are discussed in
"Structure, Union, and Enumeration Declarations" . Declarations with
typedef names are discussed in " Typedef" .

Declarators

The declarator-list appearing in a declaration is a comma-separated
sequence of declarators, each of which may have an initialiser.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initialiser opt

Initialisers are discussed in "Initialisation" . The specifiers in the
declaration indicate the type and storage class of the objects to which
the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator 0
declarator [constant-expression opt 1

The grouping is the same as in expressions.

2.7.4 Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of
the same form as the declarator appears in an expression, it yields an
object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has
the type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but
the binding of complex declarators may be altered by parentheses. See
the examples below.

Now imagine a declaration

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator.
Suppose this declaration makes the identifier have type "... T", where

X/ OPEN Portability Guide (July 1985) Part III Page : 2.25

Declarations C Language Definition

the" ... " is empty if D1 is just a plain identifier (so that the type of x in
"int x" is just int). Then if D1 has the form

*D

the type of the contained identifier is " ... pOinter to T".

If D1 has the form

DO
then the contained identifier has the type" ... function returning T".

If D1 has the form

D[constant-expression]

or

D[]

then the contained identifier has type" ... array of T". In the first case,
the constant expression is an expression whose value is determinable at
compile time, whose type is int, and whose value is positive. (Constant
expressions are defined precisely in "CONSTANT EXPRESSIONS").
When several "array of" specifications are adjacent, a multidimensional
array is created; the constant expressions which specify the bounds of
the arrays may be missing only for the first member of the sequence.
This elision is useful when the array is external and the actual definition,
which allocates storage, is given elsewhere. The first constant
expression may also be omitted when the declarator is followed by
initialisation. In this case the size is calculated from the number of initial
elements supplied.

An array may be constructed from one of the basic types, from a pointer,
from a structure or union, or from another array (to generate a
multidimensional array).

Not all the possibilities allowed by the syntax above are actually
permitted. The restrictions are as follows : functions may not return
arrays or functions although they may return pOinters; there are no
arrays of functions although there may be arrays of pointers to functions.
Likewise, a structure or union may not contain a function; but it may
contain a pointer to a function.

As an example, the declaration

int i, *ip, fO, *fiPO, (*pfi)O;

declares an integer i, a pOinter ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pOinter pfi

Part III Page : 2.26 X/ OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Declarations

to a function which returns an integer. It is especially useful to compare
the last two. The binding of *fiPO is *(fip()). The declaration suggests,
and the same construction in an expression requires, the calling of a
function fip . Using indirection through the (pointer) result to yield an
integer. In the declarator (*pfi)O, the extra parentheses are necessary,
as they are also in an expression, to indicate that indirection through a
pointer to a function yields a function, which is then called; it returns an
integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float
numbers. Finally,

static int x3d[3H5H7];

declares a static 3-dimensional array of integers, with rank 3 X 5 X 7. In
complete detail, x3d is an array of three items; each item is an array of
five arrays; each of the latter arrays is an array of seven integers. Any of
the expressions x3d, x3d[i], x3d[i][j], x3d[ilOHk] may reasonably appear
in an expression. The first three have type "array" and the last has type
int.

2.7.5 Structure and Un ion Declarations

A structure is an object consisting of a sequence of named members.
Each member may have any type. A union is an object which may, at a
given time, contain anyone of several members. Structure and union
specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

X/ OPEN Portability Guide (July 1985) Part III Page : 2.27

Declarations C Language Definition

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-deciarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of
a structure or union . A structure member may also consist of a specified
number of bits. Such a member is also called a field; its length, a non­
negative constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
deciarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase
as the declarations are read left to right. Each nonfield member of a
structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field
which does not fit into the space remaining in a word is put into the next
word. No field may be wider than a word .

Fields are assigned right to left on some machines, left to right on others.

A struct-deciarator with no declarator, only a colon and a width, indicates
an unnamed field useful for padding to conform to externally-imposed
layouts. As a special case, a field with a width of 0 specifies alignment
of the next field at an implementation dependent boundary.

The language does not restrict the types of things that are declared as
fields, but implementations are not required to support any but integer
fields. Moreover, even int fields may be considered to be unsigned, on
some systems. For these reasons, it is strongly recommended that fields
be declared as unsigned. In all implementations, there are no arrays of
fields, and the address-of operator & may not be applied to them, so that
there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at
offset 0 and whose size is sufficient to contain any of its members. At
most, one of the members can be stored in a union at any time.

Part III Page : 2.28 X/ OPEN Portability Guide (July 1985)

(

(

C Language Definition Declarations

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the
structure specified by the list. A subsequent declaration may then use
the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags
also permit the long part of the declaration to be given once and used
several times. It is illegal to declare a structure or union which contains
an instance of itself, but a structure or union may contain a painter to an
instance of itself.

The third form of a structure or union specifier may be used prior to a
declaration which gives the complete specification of the structure or
union in situations in which the size of the structure or union is
unnecessary. The size is unnecessary in two situations: when a painter
to a structure or union is being declared and when a typedef name is
declared to be a synonym for a structure or union. This , for example,
allows the declaration of a pair of structures which contain pointers to
each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the same
structure, but the same name may be used in several different structures
in the same scope.

A simple but important example of a structure declaration is the following
binary tree structure:

struct tnode
{

} ;

char tword[20];
int count;
struct tnode *Ieft;
struct tnode *right;

which contains an array of 20 characters, an integer, and two painters to
similar structures. Once this declaration has been given, the declaration

struct tnode s, *sp;

X/OPEN Portability Guide (July 1985) Part III Page: 2.29

Declarations C Language Definition

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort . With these declarations, the expression

sp->count

refers to the count field of the structure to which sp pOints;

s.left

refers to the left subtree pointer of the structure s ; and

s.right->tword[O]

refers to the first character of the tword member of the right subtree of s.

2.7.6 Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required . If no enumerators with = appear, then
the values of the corresponding constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with = gives
the associated identifier the value indicated; subsequent identifiers
continue the progression from the assigned value.

The names of enumerators in the same scope must all be distinct from
each other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to
that of the structure tag in a struct-specifier, it names a particular
enumeration.

Part III Page: 2.30 X/ OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Declarations

For example,

enum colour { chartreuse, burgundy, claret=2D, wined ark };

enum colour *cp, col;

col = claret;
cp = &col;

if (*cp = = burgundy) .. .

makes colour the enumeration-tag of a type describing various colours,
and then declares cp as a pointer to an object of that type, and col as
an object of that type. The possible values are drawn from the set
{D,1 ,20,21 }.

2.7.7 In itialisation

A declarator may specify an initial value for the identifier being declared.
The initialiser is preceded by = and consists of an expression or a list of
values nested in braces.

initialiser:
= expression
= { initialiser-list }
= { initialiser-list , }

initialiser-list:
expression
initialiser-list , initialiser-list
{ initialiser-list }
{ initialiser-list , }

All the expressions in an initialiser for a static or external variable must
be constant expressions, which are described in "CONSTANT
EXPRESSIONS", or expressions which reduce to the address of a
previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialised by arbitrary expressions
involving constants and previously declared variables and functions.

Static and external variables that are not initialised are guaranteed to
start off as zero. Automatic and register variables that are not initialised
are guaranteed to start off as garbage.

X/ OPEN Portability Guide (July 1985) Part III Page: 2.31

Declarations C Language Definition

When an initialiser applies to a scalar (a painter or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The in itial
value of the object is taken from the expression; the same conversions as
for assignment are performed.

When the declared variable is an aggregate (a structure or array), the
initialiser consists of a brace-enclosed, comma-separated list of
initialisers for the members of the aggregate written in increasing
subscript or member order. If the aggregate contains subaggregates,
this rule applies recursively to the members of the aggregate. If there are
fewer initialisers in the list than there are members of the aggregate, then
the aggregate is padded with zeros. It is not permitted to initialise unions
or automatic aggregates.

Braces may in some cases be omitted. If the initialiser begins with a lett
brace, then the succeeding comma-separated list of initialisers initialises
the members of the aggregate; it is erroneous for there to be more
initialisers than members. If, however, the initialiser does not begin with
a left brace, then only enough elements from the list are taken to account
for the members of the aggregate; any remaining members are lett to
initialise the next member of the aggregate of which the current
aggregate is a part .

A final abbreviation allows a char array to be initialised by a string. In
this case successive characters of the string initialise the members of the
array.

For example,

int x[] = { 1,3,5 };

declares and initialises x as a one-dimensional array which has three
members, since no size was specified and there are three initialisers.

float y[4][3] =

{

} ;

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialisation: 1,3, and5 initialise the first row of
the array y[O] , namely y[O][O], y[0][1], and y[0][2]. Likewise, the next
two lines initialise y[1] and y[2]. The initialiser ends early and therefore
y[3] is initialised with O. Precisely, the same effect could have been
achieved by

Part III Page: 2.32 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Definition

float y[4][3] =

{
1, 3,5,2,4, 6,3,5,7

) ;

Declarations

The initialiser for y begins with a left brace but that for y[O] does not;
therefore , three elements from the list are used. Likewise, the next three
are taken successively for y[1] and y[2]. Also,

float y[4][3] =

{
{ 1 }, { 2 }, { 3 }, { 4 }

} ;

initialises the first column of y (regarded as a two-dimensional array) and
leaves the rest O.

Finally,

char msg[] = "Syntax error on line %s \ n" ;

shows a character array whose members are initialised with a string.

2.7.8 Type Names

In two contexts (to specify type conversions explicitly by means of a cast
and as an argument of sizeof), it is desired to supply the name of a data
type. This is accomplished using a "type name" , which in essence is a
declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator 0
abstract-declarator [constant-expression opt]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this
restriction, it is possible to identify uniquely the location in the abstract­
declarator wHere the identifier would appear if the construction were a
declarator in a declaration . The named type is then the same as the type
of the hypothetical identifier.

X/OPEN Portability Guide (July 1985) Part III Page : 2.33

Declarations

For example,

int
int *
int * [3]
int (*)[3]
int *0
int(*)O
int (* [3])0

C Language Definition

name respectively the types "integer", " pointer to integer", "array of
three pointers to integers" , " pointer to an array of three integers",
"function returning pointer to integer", "pointer to function returning an
integer" , and "array of three pointers to functions returning an integer".

2.7.9 Typedef

Declarations whose "storage class" is typedef do not define storage but
instead define identifiers which can be used later as if they were type
keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier
appearing as part of any declarator therein becomes syntactically
equivalent to the type keyword naming the type associated with the
identifier in the way described in "Meaning of Declarators" . For
example, after

typedef int MILES, *KLlCKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLiCKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is
"pointer to int, " and that of z is the specified structure. The zp is a
pOinter to such a structure.

The typedef does not introduce brand-new types, only synonyms for
types which could be specified in another way. Thus in the example
above distance is considered to have exactly the same type as any other
int object.

Part III Page : 2.34 X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition Statements

2.8 STATEMENTS

2.8.1

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls .

2.8.2 Compound Statement or Block

So that several statements can be used where one is expected, the
compound statement (also, and equivalently, called "block") is provided:

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared,
the outer declaration is pushed down for the duration of the block, after
which it resumes its force.

Any initialisations of auto or register variables are performed each time
the block is entered at the top. It is currently possible (but a bad
practice) to transfer into a block; in that case the initialisations are not
performed. Initialisations of static variables are performed only once
when the program begins execution . Inside a block, extern declarations
do not reserve storage so initialisation is not permitted.

2.8.3 Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is non-zero, the first
substatement is executed. In the second case, the second substatement
is executed if the expression is O. The "else" ambiguity is resolved by
connecting an else with the last encountered else-less if.

X/OPEN Portability Guide (July 1985) Part III Page : 2.35

Statements C Language Definition

2.8.4 While Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the
expression remains non-zero. The test takes place before each
execution of the statement.

2.8.5 Do Statement

The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression
becomes o. The test takes place after each execution of the statement.

2.8.6 For Statement

The for statement has the form:

for (exp-1 opt ; exp-2 opt; exp-3 opt) statement

Except for the behavior of continue, this statement is equivalent to

exp-1 ;
while (exp-2)
{

statement
exp-3 ;

Thus the first expression specifies initialisation for the loop; the second
specifies a test, made before each iteration, such that the loop is exited
when the expression becomes O. The third expression often specifies an
incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes
the implied while clause equivalent to while(1); other missing
expressions are simply dropped from the expansion above.

Part III Page : 2.36 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Language Definition Statements

2.8.7 Switch Statement

The switch statement causes control to be transferred to one of several
statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the
result must be int. The statement is typically compound . Any statement
within the statement may be labeled with one or more case prefixes as
follows:

case constant-expression:

where the constant expression must be int. No two of the case
constants in the same switch may have the same value. Constant
expressions are precisely defined in "CONSTANT EXPRESSIONS".

There may also be at most one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated and
compared with each case constant. If one of the case constants is equal
to the value of the expression, control is passed to the statement
following the matched case prefix. If no case constant matches the
expression and if there is a default prefix, control passes to the prefixed
statement. If no case matches and if there is no default, then none of
the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which
continues unimpeded across such prefixes. To exit from a switch, see
"Break Statement".

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initialisations
of automatic or register variables are ineffective.

2.8.8 Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch
statement; control passes to the statement following the terminated
statement.

X/ OPEN Portability Guide (July 1985) Part III Page : 2.37

Statements

2.8.9 Continue Statement

The statement

continue;

C Language Definition

causes control to pass to the loop-continuation portion of the smallest
enclosing while, do, or for statement; that is to the end of the loop.
More precisely, in each of the statements

while (...) do for (.. .)
{ { {

contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contin . (Following the contin : is a null
statement, see " Null Statement".)

2.8.10 Retu rn Statement

A function returns to its caller by means of the return statement which
has one of the forms

return ;
return expression;

In the first case, the returned value is undefined. In the second case, the
value of the expression is returned to the caller of the function . If
required, the expression is converted, as if by assignment, to the type of
function in which it appears. Flowing off the end of a function is
equivalent to a return with no returned value. The expression may be
parenthesised.

2.8.11 Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see "Labeled Statement") located in the
current function .

2.8.1 2 Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier :

Part III Page : 2.38 X/OPEN Portability Guide (July 1985)

(

{

(

C Language Oefinition Statements

2.8.13

which serve to declare the identifier as a label. The only use of a label is
as a target of a goto. The scope of a label is the current function ,
excluding any sub-blocks in which the same identifier has been
redeclared. See "SCOPE RULES" .

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a
compound statement or to supply a null body to a looping statement
such as while .

X/OPEN Portability Guide (July 1985) Part III Page: 2.39

External Definitions C Language Definition

2.9 EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default)
or perhaps static, and a specified type. The type-specifier (see "Type
Specifiers" in "DECLARATIONS") may also be empty, in which case the
type is taken to be int. The scope of external definitions persists to the
end of the file in which they are declared just as the effect of
declarations persists to the end of a block. The syntax of external
definitions is the same as that of all declarations except that only at this
level may the code for functions be given.

2.9.1 External Function Definit ions

Function definitions have the form

function-definition :
decl-specifiers opt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or
static; see "Scope of Externals" in "SCOPE RULES" for the distinction
between them. A function declarator is similar to a declarator for a
"function returning . . . " except that it lists the formal parameters of the
function being defined.

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-listopt compound-statement

The identifiers in the parameter list, and only those identifiers, may be
declared in the declaration list. Any identifiers whose type is not given
are taken to be int. The only storage class which may be specified is
register; if it is specified, the corresponding actual parameter will be
copied, if possible, into a register at the outset of the function.

Part III Page: 2.40 X/ OPEN Portability Guide (July 1985)

(

(

(

C Language Definition External Definitions

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

int m;

m = (a > b) ? a : b;
return«m > c) ? m : c);

Here int is the type-specifier, max(a, b, c) is the function-declarator,
int a, b, c; is the declaration-list for the formal parameters; { ... } is the
block giving the code for the statement.

The C program converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double.
All char and short formal parameter declarations are similarly adjusted to
read int. Also, since a reference to an array in any context (in particular
as an actual parameter) is taken to mean a pointer to the first element of
the array, declarations of formal parameters declared "array of . .. " are
adjusted to read "pointer to "

2.9.2 External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or
static but not auto or register.

X/OPEN Portability Guide (July 1985) Part III Page: 2.41

Scope Rules C Language Definition

2.10 SCOPE RULES

A C program need not all be compiled at the same time. The source text
of the program may be kept in several files, and precompiled routines
may be loaded from libraries. Communication among the functions of a
program may be carried out both through explicit calls and through
manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be
called the lexical scope of an identifier, which is essentially the region of
a program during which it may be used without drawing "undefined
identifier" diagnostics; and second, the scope associated with external
identifiers which is characterised by the rule that references to the same
external identifier are references to the same object.

2.10.1 Lexical Scope

The lexical scope of identifiers declared in external definitions persists
from the definition through the end of the source file in which they
appear. The lexical scope of identifiers which are formal parameters
persists through the function with which they are associated. The lexical
scope of identifiers declared at the head of a block persists until the end
of the block. The lexical scope of labels is the whole of the function in
which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations"
in "DECLARATIONS") that tags, identifiers associated with ordinary
variables, and identities associated with structure and union members
form three disjoint classes which do not conflict. Members and tags
follow the same scope rules as other identifiers. The enum constants are
in the same class as ordinary variables and follow the same scope rules .
The typedef names are in the same class as ordinary identifiers. They
may be redeclared in inner blocks, but an explicit type must be given in
the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken
to be a declaration with no declarators and type distance.

Part III Page: 2.42 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Scope Rules

2.10.2 Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must
be at least one external definition for the identifier. All functions in a
given program which refer to the same external identifier refer to the
same object, so care must be taken that the type and size specified in
the definition are compatible with those specified by each function which
references the data.

It is illegal to explicitly initialise any external identifier more than once in
the set of files and libraries comprising a multi-file program. It is legal to
have more than one data definition for any external non-function
identifier; explicit use of extern does not change the meaning of an
external declaration.

In restricted environments, the use of the extern storage class takes on
an additional meaning. In these environments, the explicit appearance of
the extern keyword in external data declarations of identities without
initialisation indicates that the storage for the identifiers is allocated
elsewhere, either in this file or another file . It is required that there be
exactly one definition of each external identifier (without extern) in the
set of files and libraries comprising a multi-file program.

Identifiers declared static at the top level in external definitions are not
visible in other files. Functions may be declared static.

X/OPEN Ponability Guide (,Ju ly 1985) Pan III Page: 2.43

Compiler Control Lines C Language Definition

2.11 COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning
with # communicate with this preprocessor. There may be any number
of blanks and horizontal tabs between the # and the directive. These
lines have syntax independent of the rest of the language; they may
appear anywhere and have effect which lasts (independent of scope)
until the end of the source program file.

2. 11.1 Token Replacement

A compiler-control line of the form

#define identifier token-stringopt
causes the preprocessor to replace subsequent instances of the identifier
with the given string of tokens. Semicolons in or at the end of the
tOken-string are part of that string. A line of the form

#define identifier(identifier, ...) token-stringopt
where there is no space between the first identifier and the (. is a macro
definition with arguments. There may be zero or more formal
parameters. Subsequent instances of the first identifier followed by a (. a
sequence of tokens delimited by commas, and a) are replaced by the
token string in the definition. Each occurrence of an identifier mentioned
in the formal parameter list of the definition is replaced by the
corresponding token string from the call. The actual arguments in the
call are token strings separated by commas; however, commas in quoted
strings or protected by parentheses do not separate arguments. The
number of formal and actual parameters must be the same. Strings and
character constants in the token-string are scanned for formal
parameters, but strings and character constants in the rest of the
program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined
identifiers. In both forms a long definition may be continued on another
line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants", as in

#define TABSIZE 100

int table[TABSIZE];

Part III Page : 2.44 X/ OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Compiler Control Lines

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #undef, then the two token-strings are compared textually. If
the two token-strings are not identical (all white space is considered as
equivalent), then the identifier is considered to be redefined.

2.11 .2 File Inclusion

A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file
filename. The named file is searched for first in the directory of the file
containing the #include, and then in a sequence of specified or
standard places. Alternatively, a control line of the form

#include <filename>

searches only the specified or standard places and not in the directory of
the file containing the #include. (How the places are specified is not
part of the language).

#includes may be nested.

2.11 .3 Cond itional Compilation

A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant-expression evaluates to nonzero.
(Constant expressions are discussed in "CONSTANT EXPRESSIONS";
the following additional restrictions apply here: the constant expression
may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary
expression

defined identdier
or
defined(identifier)

which evaluates to one if the identifier is currently defined in the
preprocessor and zero if it is not.

X/OPEN Portability Guide (July 1985) Part III Page: 2.45

Compiler Control Lines C Language Definition

All currently defined identifiers in restricted-constant-expressions are
replaced by their token-strings (except those identifiers modified by
defined) just as in normal text. The restricted constant expression will
be evaluated only after all expressions have finished. During this
evaluation, all undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a # define control line. It is equivalent
to # if defined(identifier). A control line of the form

ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
It is equivalent to # if !defined(identifier).

All three forms are followed by an arbitrary number of lines, possibly
containing a control line

else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and
#endif are ignored. If the checked condition is false, then any lines
between the test and a #else or, lacking a #else, the #endif are
ignored.

These constructions may be nested.

2.11.4 Line Control

For the benefit of other preprocessors which generate C programs, a line
of the form

#Iine constant" filename"

causes the compiler to believe, for purposes of error diagnostics, that the
line number of the next source line is given by the constant and the
current input file is named by "filename" . If" filename" is absent, the
remembered file name does not change.

Part III Page: 2.46 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Implicit Declarations

2.12 IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type
of identifiers in a declaration. The storage class is supplied by the
context in external definitions and in declarations of formal parameters
and structure members. In a declaration inside a function, if a storage
class but no type is given, the identifier is assumed to be int; if a type but
no storage class is indicated, the identifier is assumed to be auto. An
exception to the latter rule is made for functions because auto functions
do not exist. If the type of an identifier is "function returning ... ", it is
implicitly declared to be extern .

In an expression, an identifier followed by (and not already declared is
contextually declared to be " function returning int".

X/OPEN Portability Guide (July 1985) Part III Page : 2.47

Types Revisited C Language Oefinition

2.13 TYPES REVISITED

This part summarises the operations which can be performed on objects
of certain types.

2.13.1 Structures and Unions

Structures and unions may be assigned, passed as arguments to
functions, and returned by functions . Other plausible operators, such as
equality comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of
the - > or the. must specify a member of the aggregate named or
pointed to by the expression on the left. In general , a member of a union
may not be inspected unless the value of the union has been assigned
using that same member. However, one special guarantee is made by
the language in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence and if the union
currently contains one of these structures, it is permitted to inspect the
common initial part of any of the contained structures.

Part III Page : 2.48 X/OPEN Portability Guide (July 1985)

(

(

(

(

C Language Oefinition

For example, the following is a legal fragment:

union

} u;

struct
{

} n;
struct
{

} ni;
struct
{

int type;

int type;
int intnode;

int type;
float floatnode;

} nf;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
... sin(u .nf.floatnode) ...

2.13.2 Functions

Types Revisited

There are only two things that can be done with a function : call it or take
its address. If the name of a function appears in an expression not in the
function-name position of a call, a pOinter to the function is generated.
Thus, to pass one function to another, one might say

int to;

g(f);

X/OPEN Portability Guide (July 1985) Part III Page : 2.49

Types Revisited

Then the definition of 9 might read

g(funcp)
int (*funcp)();

(*funcp)();

C Language Oefinition

Notice that f must be declared explicitly in the calling routine since its
appearance in g(f) was not followed by (.

2.13.3 Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is
converted into a pointer to the first member of the array. Because of this
conversion, arrays are not Ivalues. By definition, the subscript operator
[) is interpreted in such a way that E1 [E2) is identical to *«E1)+(E2)).
Because of the conversion rules which apply to +, if E1 is an array and
E2 an integer, then E1 [E2) refers to the E2th member of E1 . Therefore,
despite its asymmetric appearance, subscripting is a commutative
operation .

A consistent rule is followed in the case of multidimensional arrays. If E
is an n-dimensional array of rank i X j X ... X k, then E appearing in an
expression is converted to a pointer to an (n-1)-dimensional array with
rank j X ... X k. If the * operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to
(n-1)-dimensional array, which itself is immediately converted into a
painter.

For example, consider

int x[3](5);

Here x is a 3 X 5 array of integers. When x appears in an expression, it
is converted to a painter to (the first of three) 5-membered arrays of
integers. In the expression x[i), which is equivalent to *(x+i), x is first
converted to a painter as described; then i is converted to the type of x ,
which involves multiplying i by the length the object to which the painter
paints, namely 5-integer objects. The results are added and indirection
applied to yield an array (of five integers) which in turn is converted to a
painter to the first of the integers . If there is another subscript, the same
argument applies again; this time the result is an integer.

Part III Page : 2.50 X/OPEN Portability Guide (July 1985)

(

E

(

(

C Language Definition Types Revisited

2.13.4

Arrays in C are stored row-wise (last subscript varies fastest) and the first
subscript in the declaration helps determine the amount of storage
consumed by an array. Arrays play no other part in subscript
calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by means of
an explicit type-conversion operator, see "Unary Operators" under
"EXPRESSIONS" and "Type Names" under "DECLARATIONS".

A pOinter may be converted to any of the integral types large enough to
hold it. Whether an int or long is required is machine dependent. The
mapping function is also machine dependent but is intended to be
unsurprising to those who know the addressing structure of the machine.

An object of integral type may be explicitly converted to a pointer. The
mapping always carries an integer converted from a pOinter back to the
same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pOinter may cause addressing exceptions upon use if the
subject pointer does not refer to an object suitably aligned in storage. It
is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of a smaller size and back again
without change.

For example, a storage-allocation routine might accept a size (in bytes)
of an object to allocate, and return a char pOinter; it might be used in
this way.

extern char *allocO;
double *dp;

dp = (double *) alioc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value
is suitable for conversion to a pOinter to double; then the use of the
function is portable.

X/OPEN Portability Guide (July 1985) Part III Page: 2.51

Constant Expressions C Language Definition

2.14 CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after
case, as array bounds, and in initialisers. In the first two cases, the
expression can involve only integer constants, character constants , casts
to integral types, enumeration constants, and sizeof expressions,
possibly connected by the binary operators

+ _ * 1%& I A « » == != < > < = > = && II
or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calis .

More latitude is permitted for initialisers; besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts
and can also apply the unary & operator to external or static objects and
to external or static arrays subscripted with a constant expression . The
unary & can also be applied impliCitly by appearance of unsubscripted
arrays and functions. The basic rule is that initialisers must evaluate
either to a constant or to the address of a previously declared external or
static object plus or minus a constant.

Part III Page : 2.52 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Definition Syntax Summary

2.15 SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension
than as an exact statement of the language.

2.15.1 Expressions

The basic expressions are:

expression:
primary
* expression
& Ivalue
- expression
! expression
expression

++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression, expression

primary:
identifier
constant
string
(expression)
primary (expression-listopt)
primary [expression]
primary . identifier
primary - > identifier

Ivalue:
identifier
primary [expression]
Ivalue . identifier
primary - > identifier
* expression
(Ivalue)

X/OPEN Portability Guide (July 1985) Part III Page: 2.53

Syntax Summary C Language Definition

The primary-expression operators

o [] - >

have highest priority and group left to right. The unary operators

* & - ! - + + -- sizeof(type-name)

have priority below the primary operators but higher than any binary
operator and group right to left. Binary operators group left to right; they
have priority decreasing as indicated below.

binop:

*
+
»
<

&

I
&&
II

/ %

«
> <= >=
!=

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
= += -= *= / = %= »= «= &= ' = 1=

The comma operator has the lowest priority and groups left to right.

2.15.2 Declarations

declaration:
dec/-specifiers init-dec/arator-/istopt ;

dec/-specifiers:
type-specifier dec/-specifiers opt
sc-specifier dec/-specifiers opt

sc-specifier:
auto
static
extern
register
typedef

Part III Page: 2.54 X/OPEN Portability Guide (July 1985)

(

(

(

C Language Oefinition

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifier

basic-type:
char
short
int
long
unsigned
float
double
void

enum-specifier:
enum { enum-list}
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
in it-declarator
in it-declarator , init-declarator-list

init-declarator:
declarator initialiser opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression opt]

X/ OPEN Portability Guide (July 1985)

Syntax Summary

Part III Page: 2.55

Syntax Summary

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:

C Language Definition

type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

initialiser:
= expression
= { initialiser-list }
= { initialiser-list , }

initialiser-list:
expression
initialiser-list , initialiser-list
{ initialiser-list }
{ initialiser-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression opt]

typedef-name:
identifier

Part III Page : 2.56 X/ OPEN Portability Guide (July 1985)

(

(

(

(

C Language Oefinition

2.15.3 Statements

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expopt" expopt; expopp statement

switch (expression) statement
case constant-expression: statement
default : statement
break;
continue ;
return ;
return expression;
goto identifier;
identifier : statement

2.15.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-defif'Jition:

Syntax Summary

decl-specifier opt function-declarator function-body

X/OPEN Portability Guide (July 1985) Part III Page : 2.57

Syntax Summary C Language Definition

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier . parameter-list

function-body:
declaration-list opt compound-statement

data-definition:
extern declaration;
static declaration;

2.15.5 Preprocessor

#define identifier token-stringo t
#define identifier(identifier) 'foken-stringopt
#undef identifier
#include " filename "
#include < filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#Iine constant " filename "opt

Part III Page: 2.58 X/ OPEN Portability Guide (July 1985)

(

(

(

(

I Chapter3

Portability

The portability areas addressed below arise from differences in the
underlying hardware and from variances that can arise from the actual C
compiler in use. It is not practically possible to provide a definitive guide
to portability. However, general recommendations and hints can be
given, and attention drawn to specific problems and possible solutions.

Writing highly portable C programs demands skill in coding , carefu l
testing (preferably on machines of different types), and knowledge of the
types of portability problems that have previously arisen.

Fortunately, one of the toughest barriers to portability - that of non­
standard library support - has largely been overcome since the standard
system interface was defined, see PART II.

3.1 DATA ALIGNMENT

3.2

Different processors align data items differently. For example, some
microprocessors require data types longer than one byte to be aligned
on word boundaries, whereas others do not. Therefore any data that lies
in structures or unions may be aligned on different boundaries.

A portable program should not make any assumptions regarding a
particular alignment.

It is common practice in C programs to write structures to files as a
" record" , the reason being that such records can then be read back into
the same type of structure, and its elements accessed accordingly.
However, it is important to remember that this operation is only safe if the
records have been written by a program running on the same type of
processor, and compiled using a compatible compiler.

Because the sizes, alignments and byte-order of the objects inside a
structure are determined by the processor architecture and the compiler,
such binary record-structured files are not portable.

BIT AND BYTE ORDERING

The sequencing order of bytes in memory varies from machine to
machine, as does the ordering of bits in bit fields . Portable programs
should not make any assumptions regarding the layout of bits, bytes or
words in memory.

X/OPEN Portability Guide (July 1985) Part III Page : 3.1

Variable Names Portability

3.3 VARIABLE NAMES

Different compi lers may allow different maximum lengths for the names of
variables. For portability, assume the maximum to be eight characters.
However, as some linkers apply a limit below this, six characters is the
advised maximum for external names, and these should be unique
irrespective as to whether they are in upper or lower case. For further
explanation, refer to Chapter 2 for the definition of the permitted lengths
of variable names.

3.4 LENGTHS OF DATA TYPES

The data type int is usually mapped as the most natural integer type of a
particular machine, and therefore can have a different maximum and
minimum integer values on different machines. On most machines, the
data types short and long occupy two and four bytes respectively. C
gives no guarantees about precisional range for float or double types.
For full portability, variables should be declared as appropriate typedef
types declared in header files. Where required, the actual sizes of types
should be determined by use of the sizeof operator.

Most C programmers are aware of the problems that can be caused by
different word-lengths on different machines. In the context of portability,
the major source of difficulties is the assumption that the int variables
have more than 16 bits - which is not guaranteed. Code written on
machines that do offer 32 bit int variables often fails to be fully portable
to machines with 16 bit ints. This is for several reasons:

• More than 16-bit values are needed - an occasional problem.

• Incorrect use of formats in functions such as printf(3S) and
scanf(3S) , where the same format - ego %d - has been used for
both long and int arguments. This only works if both types have the
same number of bits, and fails when the code is tried elsewhere (%d
is for int, %Id is for long).

• Often, passing of incorrect types to library routines can also cause
problems. For example, the following incorrect Iseek(2) library call
will work on most 32-bit machines. On most 16-bit machines, it will
not:

int fdes, offset;
Iseek(fdes, offset, 0);

The correct version would define offset to be of type long .
Fortunately, The lint program will identify and warn about any
problems of this type.

Part III Page: 3.2 X/OPEN Portability Guide (July 1985)

(

(

(

Portability Lengths Of Oata Types

3.5

• The assignment of long to int may cause a loss in precision and /or
the loss of the sign information. The lint program will draw attention
to any problems of this type.

MISUSE OF POINTERS

It is a serious error to assume that pointer-to-one-type bears much
resemblance to pointer-to-some-other-type. On many machines, pointers
and int or long variables are the same length , and compilers should warn
when pointers are assigned to such variables, or vice versa. However, in
an attempt to re-use certain variables, some programs assume that this
can be done safely and the compiler warnings can often be suppressed
through the use of casts .

Be careful not to do such things, unless explicitly performing a non­
portable task, such as the examination of known storage locations.

Furthermore, it is not even safe to assume that pOinters of different types
can be inter-mixed. The only guarantee given by C is that a pointer can
be cast to (char *) and back.

The formal language definition states that the integer constant 0 is the
only non-pointer value that can be assigned to, or compared with, the
value of any pOinter. This is the value of the NULL pOinter, but as is
indicated below, it is not recommended that explicit use of 0 should be
made.

Some machines are unable to support C's assertion that the value 0 is
the value of a NULL pointer, although they adhere to the other semantics
of the language. For portability to these machines as well, it is
recommended that instead of using 0, all programs should use the NULL
constant declared in < stdio.h> . For example:

#include < stdio.h >
int *p;

p = NULL;
if(p != NULL){

fprintf(stderr, "Pointer problem \ n");
abortO;

Another common, mistaken practice is to de-reference such a NULL
pOinter. Some programs assume that, not only does a NULL pointer
generally contain 0, but also the place that it points to contains O. There
is nothing to justify such an assumption. If it is possible for a pOinter to
be NULL, then a program must check that it is not before performing any

X/OPEN Portability Guide (July 1985) Part III Page : 3.3

Misuse Of Pointers Portability

3.6

indirection using the pOinter. Checking the validity of pOinters is
particularly recommended in application libraries.

EVALUATION ORDER AND SIDE-EFFECTS

The evaluation order of function arguments, and the order of side-effects,
is implementation-dependent. Portable programs should not make any
assumptions with regard to ordering.

Specifically, the use of the ++, -- and assignment (+=, -=, etc.)
operators should be avoided if an argument list or expression mentions
the object of these operators more than once.

3.7 ARITHMETIC

3.8

In a number of cases the behaviour of programs is undefined. The most
common example is arithmetic overflow / underflow and shifting by more
places than there are bits in a word. Careful program design is essential
if this is to be prevented.

The combination of signed and unsigned numbers presents a subtle
portability problem. Whenever signed and unsigned numbers are mixed
in C, the rules of arithmetic require that the signed quantity is converted
to unsigned. If the signed variable contains a negative number, it
becomes positive when converted.

For example, if 'c' is of type char in the expression "c + = CONST;",
the type of CONST should be viewed with suspicion. If it is int and
negative in value, then the correct result wil l be obtained if this particular
machine used signed char variables. If they are unsigned, then CONST

will first become some unexpected positive value, with surprising results.

Fortunately, the lint program checker will warn of this problem if it
occurs.

A final point on arithmetic. Never use bit-wise operators to look at the
high-order bit in a word in order to find out if it is negative. There is no
guarantee that 2's complement arithmetic is in use. Indeed, some
machines do not use the high-order bits in a word for arithmetic
purposes at all.

LINT

Since the lint checker provides a considerable aid to portable
programming, regular use should be made of it during program
development. A program cannot begin to be regarded as portable until it
has been checked by lint. The check should be performed not only on

Part III Page: 3.4 X/ OPEN Portability Guide (July 1985)

(

(

(

Portability Lint

3.9

the machine on which the program was developed, but also on every
machine to which the program is moved - even though the output of
lint should be the same on all machines.

THE ANSI X3J11 DRAFT STANDARD

The ANSI X3J 11 Committee has now released a document, number
X3J11 / 85-008, as the preliminary draft proposed American National
Standard for the C Programming Language.

X/ OPEN along with AT&T, has expressed a commitment to adopt the
Standard when it is a practical reality. However, because the standard
has already modified the language in some places, and has more
rigorously defined certain aspects of it , it will impact the portability of
programs written according to the current definition of C.

The purpose here, therefore, is to identify changes made to the
language, and to provide guidelines which will help to prevent programs
from conflicting with the standard when it is eventually adopted.

A copy of the draft standard can be obtained from:

CBEMA, 311 First Street, NW,
Suite 500, Washington DC 20001, USA.
Tel: 202-737-8888.

The draft was published on 11th February, 1985, and it should be noted
that the standard is not yet approved and may be subject to change.
Although substantial changes are not anticipated, the recommendations
below may be affected by subsequent revisions to the standard .

3.9 .1 Keywords

New keywords have appeared in two forms. First, there are new
keywords in the language itself. Second, it is now considered to be an
error to use external names that are the same as the names found in the
Standard Library - unless the Library is not being used.

The new reserved words are:

const
signed
volatile

and must not be used anywhere in a program as identifiers.

The Standard reserves any identifier beginning with an underscore CJ for
use as external objects and macros. Such names should not be used as
identifiers, even if the Library is not actually being used.

X/OPEN Portability Guide (July 1985) Part III Page : 3.5

The Ansi X3j11 Draft Standard Portability

The following list of external and macro identifiers gives the remaining
names used by the Standard Library. These identifiers are also reserved
if any Library features are being used. Hence, they are only safe for use
in a "freestanding" environment, for example an operating system kernel. (

abort fputc memset sscanf
abs fputs modf stderr
acos fread NDEBUG stdin
asctime free NULL stdout
asin freopen onexit strcat
assert frexp onexiU strchr
atan fscanf perror strcmp
atan2 fseek pow strcpy
at of ftell print! strcspn
atoi fwrite putc strlen
BUFSIZ getc putchar strncat
calloc getchar puts strncmp
ceil getenv rand strncpy
clearerr gets realloc strpbrk
CLK_TCK gmtime remove strrchr
clock HUGE_VAL rename strspn
clock_t isalnum rewind strtod
cos isalpha scanf strtok
cosh iscntrl SEEK_CUR strtol
ctime isdigit SEEK_END system
difftime isgraph SEEK_SET SYS_OPEN
EDOM islower setbuf tan
EOF isprint setjmp tanh
ERANGE ispunct SIGABRT time
errno isspace SIGFPE time_t
exit isupper SIGILL tm
exp isxdigit SIGINT tmpfile
fabs jmp_buf signal tmpnam
fclose kill SIGSEGV TMP_MAX
feof Idexp SIGTERM tolower

(

Part III Page: 3.6 X/ OPEN Portability Guide (July 1985)

(

(

Portability The Ansi X3j11 Oraft Standard

ferror localtime SIG_DFL toupper
fflush log SIG_ERR ungetc
fgetc log10 SIG_IGN va_arg
fgets longjmp sin va_end
FILE L_tmpnam sinh vaJist
floor malloc size_t va_start
fmod memchr sprintf vfprintf
fopen memcmp sqrt vprintf
fprintf memcpy srand vsprintf

3.9.2 External Declarations

The current definition of C is ambiguous in its description of the effect of
the extern keyword. This is especially true of extern in inner scope,
inside a compound statement. For safety, external objects should only
be declared at the outermost level. Conflicting declarations involving
both static and extern should not be used either, as in this example.

/ * conflicting declarations * /
extern int ext;
extern static int ext;

External objects should be declared at the beginning of every file
intending to use them; nowhere else.

3.9.3 Structure members

A common practice when referring to members of structures is to provide
an incompletely qualified name, which is nonetheless, unambiguous,
since the compiler fills in the missing information. For instance:

struct{
int a;
struct{

float f;
double d;

}b;
}x;

x.f = 0;

The expression x.f is not permitted by the Standard. The object x has no
member called f. The Standard requires that the full name be given , so
the expression must read x.b.f.

X/OPEN Portability Guide (July 1985) Part III Page : 3.7

The Ansi X3j11 Draft Standard Portability

3.9.4 Characters

The Standard introduces a notation to express characters present in the
C alphabet which are not present in IS0646 (invariant subset). The
notation uses "tri-graphs", these being the escape sequence ??
followed by one other character. At a very early stage of lexical
processing during compilation, the tri-graph sequence is translated into a
single character in the C character set.

The only place that this can occur in a well-formed program, according
to current definitions of C, is in character constants, strings, and
comment. Therefore, to ensure compatibility with the new Standard, it is
recommended that the sequence?? is avoided throughout the source of
a C program.

3.9.5 Preprocessor

define

The operation of the # define directive has changed considerably in the
Standard. At the simplest level, its use is unchanged, and "normal" use,
to define constants and macros, will be relatively unaffected. Specific
pOints to look out for are:

• Replacement of defined names no longer occurs in strings or
character constants.

• The name of the macro currently being expanded is not itself
expanded if it occurs in the replacement string.

• Recursion and catenation (token pasting) was not portable prior to the
Standard. It should not be present in programs in any way.

The Standard defines ways in which replacement inside strings and token
catenation can be performed.

Directives

Text used as comment must not be used following #else and #endif,
unless it is surrounded by comment brackc:.ts.

Part III Page : 3 .8 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Portability The Ansi X3j11 Draft Standard

Example:

/ * incorrect * /
ifdef TOKEN

#endif (ifdef TOKEN)

/ * permitted * /
ifdef TOKEN

#endif / * (ifdef TOKEN) * /

3.10 INTERNATIONALISATION ISSUES

Internationalisation is a key topic in X/ OPEN plans and will be treated in
depth in a future issue of this Guide. In the meantime this section gives
basic advice on the structuring of C Programs to minimise development
costs whilst facilitating their use in different natural language / character
set contexts.

3.10.1 Character Sets

Currently UNIX System V and most derived systems are based on the
ASCII 7 -bit code, or national variants of it. Future versions are likely to
exist which use alternative character codes based on the full eight bits in
a byte. It should always be assumed that the eighth bit is part of the
character and not available for any other purpose.

3.10.2 Messages

3.10.3

3.10.4

Messages for communication with users and operators (strings and
character constants) should be kept in a file or files separate from the
main body of the program. This guideline also applies to parameter
options.

I n put! Output

All input/output should be kept in a separate module. See the following
section: "INPUT/ OUTPUT DEVICES" .

Collating Sequences

All comparisons of strings and characters should be handled by
functions . These functions may then have alternative forms to handle
different collating sequences.

X/ OPEN Portability Guide (July 1985) Part III Page : 3.9

Input/Output Devices Portability

3.11 INPUT/ OUTPUT DEVICES

The handling of I/O devices such as terminals, printers and keyboards is
often dependent on the hardware concerned. To insulate appl ications
from changes in I/O devices, code written to handle them should be kept
in separate modules which can easily be changed.

The design of applications software should try to avoid depending on a
particular form of user interface. Ideally, an application should be
capable of working on I/ O devices ranging from line by line typewriters
to multi-window high resolution graphics devices, simply by changing (or
re-configuring) its user interface modules. This is achieved much more
easily if it is built in at the design stage, instead of being imposed on an
application which already works on one class of I/ O devices.

Part III Page : 3.1 0 X/ OPEN Portability Guide (July 1985)

(

(

(
4.1

I Chapter4

Lint

GENERAL

The lint program examines C language source programs detecting a
number of bugs and obscurities . It enforces the type rules of C language
more strictly than the C compiler. It may also be used to enforce a
number of portability restrictions involved in moving programs between
different machines and / or operating systems. Another option detects a
number of wasteful or error prone constructions which nevertheless are
legal. The lint program accepts multiple input files and library
specifications and checks them for consistency.

X/ OPEN Portability Guide (July 1985) Part III Page: 4.1

Usage Lint

4.2 USAGE

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages;
files are the files to be checked which end in .c or .In ; and library­
descriptors are the name of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppress messages about assignments of long values to
variables that are not long.

-b Suppress messages about break statements that cannot be
reached.

-c Only check for intra-file bugs; leave external information in
files suffixed with .In.

-h Do not apply heuristics (which attempt to detect bugs, improve
style, and reduce waste) .

-n Do not check for compatibility with either the standard or the
portable lint library.

-0 name Create a lint library from input files named Iliblname.ln.

-p Attempt to check portability to other dialects of C language.

-u Suppress messages about function and external variables
used and not defined or defined and not used.

-v Suppress messages about unused arguments in functions.

-x Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a
sing le argument, such as, -ab or -xha.

The names of files that contain C language programs should end with the
suffix .c which is mandatory for lint and the C compiler.

The lint program accepts certain arguments, such as:

-Iy

Part III Page: 4.2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Lint Usage

These arguments specify libraries that contain functions used in the C
language program. The source code is tested for compatibility with these
libraries. This is done by accessing library description files whose names
are constructed from the library arguments. These files all begin with the
command:

which is followed by a series of dummy function definitions. The critical
parts of these definitions are the declaration of the function return type,
whether the function returns a value, and the number and types of
arguments to the function. The VARARGS and ARGSUSED comments
can be used to specify features of the library functions.

The lint library files are processed almost exactly like ordinary source
files. The only difference is that functions which are defined on a library
file but are not used on a source file do not result in messages. The lint
program does not simulate a full library search algorithm and will print
messages if the source files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library
file which contains descriptions of the programs which are normally
loaded when a C language program is run. When the -p option is used,
another file is checked containing descriptions of the standard library
routines which are expected to be portable across various machines.
The -n option can be used to suppress all library checking.

X/ OPEN Portability Guide (July 1985) Part III Page: 4.3

Types Of Messages Lint

4.3 TYPES OF MESSAGES

4.3.1

The following paragraphs describe the major categories of messages
printed by lint .

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and
arguments to functions may become unused. It is not uncommon for
external variables or even entire functions to become unnecessary and
yet not be removed from the source. These types of errors rarely cause
working programs to fail, but are a source of inefficiency and make
programs harder to understand and change. Also, information about
such unused variables and functions can occasionally serve to discover
bugs.

The lint program prints messages about variables and functions which
are defined but not otherwise mentioned. Variables which are declared
through explicit extern statement but are never referenced, such as the
statement

extern double sinO;

will evoke a comment if sin is never used. In some cases, these unused
external declarations might not be of interest and so can be suppressed
by using the -x option with the lint command, (note that this agrees with
the semantics of the C compiler).

Certain styles of programming require many functions to be written with
similar interfaces; frequently, some of the arguments may be unused in
many of the calls. The -v option is available to suppress the printing of
messages about unused arguments. When -v is in effect, no messages
are produced about unused arguments except for those arguments
unused and also declared as register arguments. This can be considered
an active (and preventable) waste of the register resources of the
machine.

Messages about unused arguments can be suppressed for one function
by adding the comment:

I*ARGSUSED*I

to the program before the function . This has the effect of the -v option
for only one function . Also, the comment:

I*VARARGS*I

can be used to suppress messages about variable number of arguments
in calls to a function . The comment should be added before the function

Part III Page : 4.4 X/ OPEN Portability Guide (July 1985)

(

(

(

Lint Types Of Messages

definition. In some cases, it is desirable to check the first several
arguments and leave the later arguments unchecked. This can be done
with a digit giving the number of arguments which should be checked.
For example:

/*VARARGS2* /

will cause only the first two arguments to be checked.

There is one case where information about unused or undefined variables
is more distracting than helpful. This is when lint is applied to some but
not all files out of a collection which are to be loaded together. In this
case, many of the functions and variables defined may not be used.
Conversely, many functions and variables defined elsewhere may be
used. The -u option may be used to suppress the spurious messages
which might otherwise appear.

4.3.2 Set/Used Information

The lint program attempts to detect cases where a variable is used before
it is set. The lint program detects local variables (automatic and register
storage classes) whose first use appears physically earlier in the input file
than the first assignment to the variable. It assumes that taking the
address of a variable constitutes a "use", since the actual use may occur
at any later time, in a data dependent fashion .

The restriction to the physical appearance of variables in the file makes
the algorithm very simple and quick to implement since the true flow of
control need not be discovered. It does mean that lint can print
messages about some programs which are legal, but these programs
would probably be considered bad on stylistic grounds. Because static
and external variables are initialised to zero, no meaningful information
can be discovered about their uses. The lint program does deal with
initialised automatic variables.

The set/used information also permits recognition of those local variables
which are set and never used. These form a frequent source of
inefficiencies and also be symptomatic of bugs.

4.3.3 Flow of Control

The lint program attempts to detect unreachable portions of the programs
which it processes. It will print messages about unlabeled statements
immediately following goto, break, continue, or return statements. An
attempt is made to detect loops which can never be left at the bottom
and to recognise the special cases while(1) and for (;;) as infinite loops.
The lint program also prints messages about loops which cannot be

X/ OPEN Portability Guide (July 1985) Part III Page : 4.5

Types Of Messages Lint

entered at the top. Some valid programs may have such loops which are
considered to be bad style at best and bugs at worst.

The lint program has no way of detecting functions which are called and
never returned. Thus, a call to exit(3C) may cause an unreachable code
which lint does not detect. The most serious effects of this are in the
determination of returned function values (see "Function Values"). If a
particular place in the program cannot be reached but it is not apparent
to lint, the comment

/ *NOTREACHED* /

can be added at the appropriate place. This comment will inform lint that
a portion of the program cannot be reached.

The lint program will print a message about unreachable break
statements. Programs generated by yacc and especially lex may have
hundreds of unreachable break statements. The -0 option in the C
compiler will often eliminate the resulting object code inefficiency. Thus,
these unreached statements are of little importance. There is typically
nothing the user can do about them, and the resulting messages clutter
up the lint output. If these messages are not desired, lint can be invoked
with the -b option.

4.3.4 Function Values

Sometimes functions return values that are never used. Sometimes
programs incorrectly use function "values" that have never been
returned . The lint program addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return;

statements is cause for alarm; the lint program will give the message

function name contains returnee) and return

Part III Page: 4.6 X/OPEN Portability Guide (July 1985)

(

(

(

Lint Types Of Messages

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function . This can be
seen with a simple example:

f(a){
if (a) return (3);
gO;

Notice that, if a tests false, f will call g and then return with no defined
return value; this will trigger a message from lint. If g, like exit(3C) ,
never returns, the message will still be produced when in fact nothing is
wrong.

In this practice, some potentially serious bugs have been discovered by
this feature .

On a global scale, lint detects cases where a function returns a value that
is sometimes or never used. When the value is never used, it may
constitute an inefficiency in the function definition. When the value is
sometimes unused, it may represent bad style (e.g., not testing for error
conditions).

The dual problem, using a function value when the function does not
return one, is also detected. This is a serious problem.

4.3.5 Type Checking

The lint program enforces the type checking rules of C language more
strictly than the compilers do. The additional checking is in four major
areas:

• Across certain binary operators and implied aSSignments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balancing
between types of the operands. The assignment, conditional (?:), and
relational operators have this property. The argument of a return
statement and expressions used in initialisation suffer similar conversions.
In these operations, char, short, int, long, unsigned, float, and double
types may be freely intermixed. The types of pointers must agree exactly
except that arrays of x's can, of course, be intermixed with pOinters to
x's .

X/OPEN Portability Guide (July 1985) Part III Page : 4.7

Types Of Messages Lint

The type checking rules also require that, in structure references, the left
operand of the -> be a pointer to structure, the left operand of the . be
a structure, and the right operand of these operators be a member of the
structure implied by the left operand . Similar checking is done for
references to unions.

Strict rules apply to function argument and return value matching. The
types float and double may be freely matched, as may the types char,
short, int, and unsigned . Also, pointers can be matched with the
associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts .

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and that
the only operations applied are =, initialisation, ==, !=, and function
arguments and return values.

If it is desired to turn off strict type checking for an expression, the
comment

I*NOSTRICT*I

should be added to the program immediately before the expression. This
comment will prevent strict type checking for only the next line in the
program.

4.3.6 Type Casts

The type cast feature in C language was introduced largely as an aid to
producing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. The lint program will print a message as
a result of detecting this . Consider the assignment

p = (char *) 1 ;

in which a cast has been used to convert the integer to a character
pointer. The programmer obviously had a strong motivation for doing
this and has clearly signaled his intentions. It seems harsh for lint to
continue to print messages about this. On the other hand , if this code is
moved to another machine, such code should be looked at carefully.
The -c flag controls the printing of comments about casts . When -c is in
effect , casts are treated as though they were assignments subject to
messages; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Part III Page: 4.8 X/OPEN Portability Guide (July 1985)

(

(

(

Lint

4.3.7

Types Of Messages

Nonportable Character Use

On some systems, characters are signed quantities with a range from
-128 to 127. On other C language implementations, characters take on
only positive values. Thus, lint will print messages about certain
comparisons and assignments as being illegal or nonportable. For
example, the fragment

char c;
if ((c = getchar()) < 0) ...

will work on one machine but will fail on machines where characters
always take on positive values. The real solution is to declare c as an
integer since getchar(3S) is actually returning integer values. In any
case, lint will print the message "nonportable character comparison".

A similar issue arises with bit fields. When assignments of constant
values are made to bit fields, the field may be too small to hold the value.
This is especially true because on some machines bit fields are
considered as signed quantities. While it may seem logical to consider
that a two-bit field declared of type int cannot hold the value 3. the
problem disappears if the bit field is declared to have type unsigned.

4.3.8 Assignments of " longs" to " ints"

Bugs may arise from the assignment of long to an int, which will truncate
the contents. This may happen in programs which have been
incompletely converted to use typedefs. When a typedef variable is
changed from int to long , the program can stop working because some
intermediate results may be assigned to ints, which are truncated. Since
there are a number of legitimate reasons for assigning longs to ints, the
detection of these assignments is disabled by the -a option.

4.3.9 Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected
by lint. The messages hopefully encourage better code quality, clearer
style, and may even point out bugs. The -h option is used to suppress
these checks. For example, in the statement

*p++;

the * does nothing. This provokes the message "null effect" from lint.
The following program fragment:

unsigned x ;
if (x < 0) ...

X/ OPEN Portability Guide (July 1985) Part III Page: 4.9

Types Of Messages

results in a test that will never succeed. Similarly, the test

if (x > 0) ...

is equivalent to

if (x != 0)

Lint

which may not be the intended action . The lint program will print the
message "degenerate unsigned comparison" in these cases. If a
program contains something simi lar to

if (1 != 0) ...

lint will print the message "constant in conditional context" since the
comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence.
Bugs which arise from misunderstandings about the precedence of
operators can be accentuated by spacing and formatting, making such
bugs extremely hard to find. For example, the statement

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to
parenthesise such expressions, and lint encourages this by an
appropriate message.

Finally, when the -h option has not been used, lint prints messages about
variables which are reduced in inner blocks in a way that conflicts with
their use in outer blocks. This is legal but is considered to be bad style,
usually unnecessary, and frequently a bug.

Part III Page: 4.10 X/OPEN Portability Guidp. (July 1985)

(

(

(

Lint

4.3.10

Types Of Messages

Old Syntax

Several forms of older syntax are now illegal. These fall into two
classes - assignment operators and initialisation .

The older forms of assignment operators (eg.=+, = -, ...) could cause
ambiguous expressions, such as:

a=-1 ;

which could be taken as either

a =- 1 ;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as
the result of a macro substitution. The newer and preferred operators
(eg.+=, - =, ...) have no such ambiguities. To encourage the
abandonment of the older forms, lint prints messages about these old­
fashioned operators.

A similar issue arises with initialisation . The older language allowed

int x 1;

to initialise x to 1. This also caused syntactic difficulties. For example,
the initialisation

int x (-1) ;

looks somewhat like the beginning of a function definition :

int x (y) { ...

and the compiler must read past x in order to determine the correct
meaning . Again, the problem is even more perplexing when the initialiser
involves a macro. The current syntax places an equals sign between the
variable and the initialiser:

int x = -1 ;

This is free of any possible syntactic ambiguity.

4.3.11 Pointer Alignment

Certain pointer assignments may be reasonable on some machines and
illegal on others due entirely to alignment restrictions. The lint program
tries to detect cases where pointers are assigned to other pointers and
such alignment problems might arise. The message "possible alignment

X/OPEN Portability Guide (July 1985) Part III Page: 4.11

Types Of Messages Lint

problem" results from this situation .

4.3.12 Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For example, on
machines in which the stack runs backwards, function arguments will
probably be best evaluated from right to left. On machines with a stack
running forward , left to right seems most attractive. Function calls
embedded as arguments of other functions may or may not be treated
simi larly to ordinary arguments. Similar issues arise with other operators
which have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of
complicated expressions up to the local compiler. In fact, the various C
compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is
changed by a side effect and also used elsewhere in the same
expression, the result is explicitly undefined.

The lint program checks for the important special case where a simple
scalar variable is affected . For example, the statement

a[i] = b[i+ +];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

Part III Page : 4.12 X/CPEN Portability Guide (July 1985)

()

