. USER'S GUIDE TO
N 56K
VECTOR GRAPHIC SYSTEMS

USING MDOS

MDOS System Diskette version 8.5

USER'S GUIDE
Revision B

October 18, 1979

IMPORTANT: This manual is for MDOS System Diskettes 8.5 ONLY.

This manual AND Diskette 8.5 are for use only with systems having
56K of contiguous memory.

Please turn to the ERRATA following the title page.

To start up a system using MDOS, see first page of Chapter 2. -

Copyright 1979 Vector Graphic Inc.



~ """ “Copyright 1979 by Vector Graphic Inc.
All rights reserved.

Disclaimer
Vector Graphic makes no representations or warranties w1th respect to the
contents of this manual itself, whether or not the' product it describes is
covered by a warranty or. repair agreement ' Further, Vector Graphic reserves the
right to revise this publication and to make changes from time to time in the
content hereof without obligation of Vector Graphic to notify any person of such
revision or changes, except when an agreement to the contrary exists.

Revisions

The date of release and revision letter of each page herein appears at the
bottom of each page. Changes from the previous revision are marked with a bar
in the margin. The revision letter such as A or B changes if the MANUAL has
been improved but the PRODUCT itself has not been significantly modified. The
date of release and revision letter on the Title Page corresponds to that of the
page most recently revised. When the product itself is modified significantly,
the product will get a new revision number, as shown on the manual's title page,
and the manual will revert to revision A, as if it were treating a brand new
product. EACH MANUAL SHOULD ONLY BE USED WITH THE PRODUCT IDENTIFIED ON THE
TITLE PAGE.



Page

ERRATA

The following sheets describe the differences between the 8.4 MDOS manual
and the 8.5 manual. The change occurs because of a very significant change to
the system and the MDOS System Disk. Because of printing schedules, the manual
text is NOT modified. Please make the appropriate changes in the text. The
disk, however, is ready to use.

Most of the differences derive from inclusion in the system of a 64K RAM
board which provides the user with 56K of contiguous memory. (8K are not used.)
To accomplish this, all other boards having on-board memory have been
readdressed (Flashwriter, Disk Controller, and PROM/RAM boards). The Extended
Systems Monitor has been changed to accomodate this, and the version of the
Monitor used with the Flashwriter board has been enhanced in other ways as well.
The MDOS operating system and utilities have also been modified as required by
the change, and two new utilities added.

Change the following in the manual text:

If your system is a System B, the Extended Systems Monitor Executive will
prompt the operator with "MON>". In other systems, the Monitor prompt is still
"*%", Make this change in the text wherever you find it. It appears in many
places.

Change

1-1 The system has a 64K board, not é 48K board. The user has access to 56K of

1-9

this. .
Charge the chart as follows:

FF4P-FFFF Monitor stack area (on PROM RAM board) . o

FCO@-FF3F RAM available to user {on PROM RAM board) =~ = - N '
F800-FBFF Disk Bootstrap ROM and Disk Controller RAM ’ e
FO@@-FTFF Flashwriter video buffer ' ‘ o S "
ECO@-EFFF 1K optional PROM

EBAB-EBFF 1K optional PROM

EQ@@-E7FF  Extended Systems Monitor

#000-E20080 56K available to user

1-18 Top of RAM is DFFF.

Rev. 8.5-B 10/18/79



1-11 Remove NOESCAPE, change FLASH7 to FLASH8, add UPDATE-RES and WORM utilities
(both type EC. )

- UPDATE-RES is used to convert MDOS System Diskettes 8.4 and before into
diskettes that can run on the Update-64 systems as the 8.5 diskette can. Simply
put the diskette you want to update in drive @ (remove any write protect tab),
put the 8.5 diskette in drive 1, and type 1:UPDATE-RES (return) while in the
MDOS Executive,

WORM is a utility which tests memory more thoroughly than any other test,
including MDIAG. It erases all of memory, so make sure you have saved your data
on a diskette before using it. To use, type WORM (return) while in the MDOS
Executive. . Allow it to repeat 5 times, . It will report any errors in memory.

2-2 N causes E@99, not Cﬁﬂﬁ, to be dlsplayed 1f the system is working properly.

_2=3 and 2-13 Some systems have a Bltstreamer I board and some systems have a

: B;tstn:eamer II board. All configuration instructions in Chapter II apply to the

Bitstreamer ;I board. Consult the Bitstreamer II manual or Vector Graphic or its

agents for instructions on interfacing with the Bitstreamer II. Basically, it

has -3 serial ports (2&3, 4&5, 6&7) each having a data and a status port address,

and 2 parallel ports (8 and 9.) Centronics drivers on the 8.5 MDOS Systems
Diskette w111 not work with Bitstreamer II.

2-17. Remove section: 2 3.7.. (This is because the only way now to cause a return of
control te. the Extended Systems Monitor Executive is to press the RESET button
on the computer chassm.)

3-3 'NCharIQe section 3.7 to explain' Depress RESET on the computer chassis to retur:

control to the Monitor Executive. Control=-Q, ESC, and control=-X will not work.
3-4 Change the reference to "control-Q" to "RESET button.”

Change the title of section 3.1¢ to "ENTERING MDOS AND M.BASIC COMMANDS."
Change the contents of the section to read "All operator entries to the MDOS and
M.BASIC Executives can be edited with the BACK SPACE, DEL, underscore, or
control-H keystrokes. Terminate every line by depressing the RETURN key. If

esired, press control-T at almost any time to reverse the video image to black
on white, or back again. Some other special keys, such as the arrow keys to
move the cursor, may affect the screen image, but do not use them while in the
MDOS or M.BASIC Executives because these keys may confuse the Executives. (Note
that other Executives, such as the Extended Systems Monitor Executive and the
Word Management System do allow use of some of these special keys.)"

4-1 Replace "ASSM"™ with "ZsM."

Rev,. 8.5~-B 14/18/79



REPAIR AGREEMENT

The Vector Graphic computer sold hereunder is sold "as is", with all
faults and without any warranty, either expressed or implied,
including any implied warranty of fitness for intended use or
merchantability. However, the above notwithstanding, VECTOR
GRAPHIC, INC., will, for a period of ninety (98) days following
delivery to customer, repair or replace any Vector Graphic computer
that is found to contain defects in materials or workmanship,
provided:

1., Such defect in material or workmanship existed at the
time the Vector Graphic computer left the VECTOR GRAPHIC, INC.,
factory;

2. VECTOR GRAPHIC, INC,, is given notice of the precise
defect claimed within ten (18) days after its discovery;

3. The Vector Graphic computer is promptly returned to
VECTOR GRAPHIC, INC,, at customer's expense, for examination by
VECTOR GRAPHIC, INC., to confirm the alleged defect, and for
subsequent repair or replacement if found to be in order.

Repair, replacement or correction of any defects in material or
workmanship which are discovered after expiration of the period set
forth above will be performed by VECTOR GRAPHIC, INC., at Buver's
expense, provided the Vector Graphic computer is returned, also at
Buyer's expense, to VECTOR GRAPHIC, INC., for such repair,
replacement or correction. 1In performing any repair, replacement or
correction after expiration of the period set forth above, Buyer
will be charged in addition to the cost of parts the then—current
VECTOR GRAPHIC, INC., repair rate. At the present time the
applicable rate is $35.90 for the first hour, and $18.98 per hour
for every hour of work required thereafter. Prior to commencing any
repair, replacement or correction of defects in material or
workmanship discovered after expiration of the period for
no-cost~-to-Buyer repairs, VECTOR GRAPHIC, INC., will submit to Buyer
a written estimate of the expected charges, and VECTOR GRAPHIC,
INC., will not commence repair until such time as the written
estimate of charges has been returned by Buyer to VECTOR GRAPHIC,
INC., signed by duly authorized representative authorizing VECTOR
GRAPHIC, INC., to commence with the repair work involved. VECTOR
GRAPHIC, INC., shall have no obligation to repair, replace or
correct any Vector Graphic computer until the written estimate has
been returned with approval to proceed, and VECTOR GRAPHIC, INC.,
may at its option also require prepayment of the estimated repair
charges prior to commencing work.

Repair Agreement void if the enclosed card is not returned to VECTOR
GRAPHIC, INC. within ten (14) days of end consumer purchase.

Revision 8.1 &/2/79



TABLE OF CONTENTS

PAGE
SECTION I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

—
i
—t

1.0.1 STANDARD HARDWARE AND SOFIWARE
1.0.2 OPTIONAL COMPONENTS AND SOFTIWARE

— o
11
o -

1.1 MICROPOLIS DISKETTE SUBSYSTEM SPECIFICATIONS

—t
]

1.1.1 PERFORMANCE
1.1.2 DRIVE RELIABILITY

ek wandh
I

1.2 HEXADECIMAL NOTATION
1.3 OPERATING SYSTEM SOFTWARE

—t -t
i

.2 PROGRAM DEVELOPMENT SOFTWARE
.3 ELEMENTS OF MDOS

.4 ELEMENTS OF M.BASIC

.5 OTHER OPERATING SYSTEMS

.6 RESIDENT PROGRAMS

[ S T S RF S G Y

L O R S|

MZ SOFTWARE STRUCTURE USING MDOS

1.1
1.2 MEMORY MAP FOR VECTOR GRAPHIC SYSTEMS
1.3 MEMORY MAP FOR MDOS AND M.BASIC

=N 00 ~OunbEdil WWw MY

[}
o

1.4 MDOS SYSTEM DISKETTE 1-17 to

—
]

—

(@]

SECTION II INSTALLATION, CONFIGURING PERIPHERALS,

AND USE OF ﬁI§KETTEs

2.1 INSTALLATION
2.2 CONFIGURING THE MZ (for non-turnkey systems)

2-1
2-2
2.2.0 MODIFYING THE RES MODULE 2~2
2.2.1 STANDARD CONFIGURATIONS 2-3

2.2.1.1 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL
CONSOLE: SERIAL VIDEC TERMINAL 2-4

2.2.1.2 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR
TELETYPE PROTOCOL
CONSOLE: SERIAL VIDEC TERMINAL 2-4

2.2.1.3 PRINTER: PARALLEL, CENTRONICS 700 SERIES
PROTOCOL
CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE
VIDEO MONITOR 2-6



2.2.1.4 PRINTER: PARALLEL, CENTRONICS 700 SERIES

PROTOCOL
CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL

2.2.1.5 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR

TELETYPE PROTOCOL
CONSOLE: PARALLEL ASCII KEYBOARD, SEPARATE
VIDEO MONITOR

2.2.1.6 PRINTER: SERIAL, DIABLO 1610 PROTOCOL OR

TELETYPE PROTOCOL
CONSOLE: VECTOR GRAPHIC MINDLESS TERMINAL

2.2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),

DIABLO 1610 OR TELETYPE PROTOCOL
AND A VIDEQO MONITOR

2.2.1.8 SERIAL PRINTING TERMINAL (HAS A KEYBOARD),

DIABLO 1610 OR TELETYPE PROTOCOL
AND NO VIDEO

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING MZ

SYSTEM

2.2.3 NON-STANDARD CONFIGURATIONS

2.3 OTHER MODIFICATIONS TO SYSTEM SOFTWARE & HARDWARE

n
.

A

OO NRNNRDNON & N NN DR

& 5

-

L]
w Wi 2 WL ww

-

L] & & & & » 2

N NN S S
L]

* * .

. 8 » - - L4 L]

o0 ~J O U W —

CHANGING TO 2 MHZ CLOCK RATE

CONNECTING ADDITIONAL DISK DRIVES

USING I/0 PORTS

CHANGING MEMORY ADDRESS AND I/0 PORT
ASSIGNMENTS OF BOARDS

SHORTENING BASIC

BASIC-ONLY DISKETTE

STOPPING ESC FROM RETURNING CONTROL TO THE
SYSTEMS MONITOR

FINALIZING THE PERSONALIZED SYSTEM DISKETTE

DISKETTE MEDIA

- *
Qi PN~

=™
N

DESCRIPTION

IF YOU HAVE PROBLEMS WLTH DISK ERRORS
HANDLING

LOADING AND UNLOADING

RECOVERY TECHNIQUES

REPLACEMENT AND BACK-UP OF DISKETTES
INITIALIZING DISKETTES
WRITE PROTECT FOR DISKETTES

.1 5 1/4 INCH DISKETTE
.2 HOW TO MOUNT WRITE PROTECT TAB

Rev. 8.3-A 7/1/79

PAGE

2-8

2-9

2-12

2-13

N N
i i

— —
w w

[
b k.

[ |
— —h ——

]

1
— —

i
—

[

i

NN N N PN NN
RO 1o 1o s :

-t et O OO oo~ OOy L

[y o]
(L
NN
N

3%
i |

[\

2



PAGE
SECTION III DAY TO DAY OPERATIONS

0 SUMMARY OF NORMAL START UP PROCEDURE
SUMMARY OF PROMPTS

POWER-ON

LOAD MDOS

LOAD M.BASIC FROM MDOS

OTHER OPERATING SYSTEMS AND LANGUAGES
RETURNING TO MDOS FROM M.BASIC

RETURNING TO MONITOR FROM ANYPLACE
RETURNING TO MDOS (OR M.BASIC) FROM MONITOR IF
MDOS (OR M.BASIC) IS ALREADY IN MEMORY
RETURNING TO MDOS OR M.BASIC EXECUTIVE FROM
A ROUTINE RUNNING UNDER THAT EXECUTIVE
VIDEO COMMANDS

« & o 9
| I I I I |

>

I 11
v oo e BB WL -

a o o &
(Yo [« RN T WU, I~ PUY L R
[} U

»

[#%) W WWwwwwwww

O

CLEAR SCREEN

SCROLL SCREEN UP ONE LINE

BACKSPACE CURSOR

CONVERT TO REVERSE VIDEO

TAB CURSOR 8 SPACES TO THE RIGHT
ELIMINATE CURSOR FROM THE SCREEN
MOVE CURSOR TO TOP OF SCREEN

MOVE CURSOR DOWN, UP, LEFT, OR RIGHT
.RETURN CURSOR TO LEFT EDGE OF SCREEN

3.11 POWER-DOWN

WWwwwwwww w
& 8 & & s & & »
b ek h mah - b ek
OCOQOOOOO O
s s o & b s o o @
WO~ P op -

w WwWWwiwwwbwwwww (iow w WWwiwbwwwww

SECTION IV MIéROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MDOS
4.1 THE MDOS EXECUTIVE

4-1
42
ENTERING EXECUTIVE COMMANDS 4=-2
EXECUTIVE STATEMENT FORMAT 4-2
CANCELING AN OPERATION 4-3
DISPLAY CONTROL 4-4

£0 D -

£ e
¢ e s »
— b o

Rev. 8.3-A 7/1/79



PAGE

o>
o

.5 EXPLICIT EXECUTIVE COMMANDS

I
.

E

5.1 THE COMP COMMAND

5.2 THE DUMP COMMAND

5.3 THE ENTR COMMAND

.5.4 THE FILL COMMAND

.5.5 THE MOVE COMMAND

.5.6 THE SEAR COMMAND

5.7 THE SEARN COMMAND
.5.8 THE CREATE COMMAND
5.9 THE DISP COMMAND

.5.19 THE FILES COMMAND
.g.l] THE FREE COMMAND
5
5
5
5
5
5
5
5
5
5

-
TR X
-

i

i

.5.12 THE SCRATCH COMMAND
.13 THE LOAD COMMAND
.14 THE SAVE COMMAND
.15 THE RENAME COMMAND

.5.16 TYPE COMMAND
.17 THE APP COMMAND

.5.18 THE ASSIGN COMMAND

.5.19 THE EXEC COMMAND

.5.20 THE MATH COMMANMD

.5.21 THE PROMPT COMMAND
.22 THE INIT COMMAND

RN

N o S N O N N N N N
[UR SpY RVUUNE" SN YR S [P SN S S [ SR QI [T S VSN SO SNSRI T SR S R— Y
R T T T R T T T I I T EE s
i ek wmd e DO W OO OO0 NN D NI P o

4.2 MDOS DISK FILE I/0 4-13
4.2.1 TRACK INDEXED FILE STORAGE 4-13
4.2.2 FILE NAMES 4-13
4.2.3 FILE PROTECTION AND TYPE DEFINITION 4-14
4.2.4 FILE AND RECORD STRUCTURE 4-15
4.2.5 FILE ACCESS METHODS 4-16
4.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES 4-17

4.3 MDOS SHARED SUBROUTINES 4-18
4.3.1 CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES 4-18

4.3.1.1 @CIN - CONSOLE INPUT 4-18
4.3.1.2 @COUT - CONSOLE OUTPUT 4-18
4.3.1.3 @CBRK - CONSOLE BREAK CHECK 4-19
4.3.1.4 @CDIN - CONSOLE DEVICE INPUT 4-19
4.3.1.5 @CDOUT - CONSOLE DEVICE OQUTPUT 4-19
4.1.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK 4-19
4.3.1.7 @CDINIT - CONSOLE DEVICE INITIALIZATION 4-19
4.3.1.8 BLOUT - LIST OUTPUT 4-19
4.3.1.9 ALATN - LIST ATTENTIOM 4-20
4.3.1.7¢ @LDOUT - LIST DEVICE QUTPUT 4-20
4.3.1.11 @LDATN -~ LIST DEVICE ATTENTION 4-20
4.3.1.12 @LDINIT - LIST DEVICE INITIALIZATION 4-20
4.3.1.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN 4-20
4.3.1.14 GLCRLF - LIST LINE FEED CARRIAGE RETURN 4-20
4.3.1.15 BASSIGN - ASSIGN 4-20

Rev. 7 3/78



Rev.

.16 BCILINE - CONSOLE INPUT LINE
.17 BHEXOUT - HEXADECIMAL OUTPUT

.29 BSPACEOUT - SPACE OUT
.21 @NLINEQUT - NEW LINE OUTPUT
.22 GLINEOUT - LINE OUTPUT

TEXT LINE PARSING SUBROUTINES

1 @PARAM - PARAMETER

2 @SKIPSPACE - SKIP SPACES
.3 @SCAN - SCAN

4 @SEAR - SEARCH

5 GAHEXTBIN - ASCII HEX TO BINARY

HE FILE ACCESS ROUTINES

@CREATE - CREATE

@GFILESTAT - GET FILE STATUS
@DIRSEARCH - DIRECTORY SEARCH
@OPENFILE - OPEN A FILE
@CLOSEFILE - CLOSE A FILE
@RFILEINF - READ FILE INFORMATIOM

. . L . . . * *
CO I ON U DY -t

GRRECORDLEN - READ RECORD LENGTH

.9 @RINXPOS - READ INDEX POSITION

.19 @SINXPOS - SET INDEX POSITION

.11 @INCINX - INCREMENT INDEX POSITION
.12 @RFINXPOS - READ FROM INDEX POSITION

INCREMENT INDEX
.14 GWTINXPOS - WRITE TO INDEX POSITION

INCREMENT INDEX
.16 BLOADDATA - LOAD DATA
.17 BSAVEDATA - SAVE DATA
END OF RECORD

FILE
.2P GINCRECPOS ~- INCREMENT RECORD POSITION

TLE MANAGEMENT SUBROUTINES
@FREE - FREE
@RENAME - RENAME

1

2

3 @TYPE - FILE TYPE -

4 @SCRATCH - SCRATCH A FILE

7 3/78

1
1
1.18 @GHEXADDOUT - HEXADECIMAL ADDRESS QUTPUT
.1.19 @HEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE

1

1

1

@SINXTRS - SET INDEX POSITION TO RECORD START

.3.15 GWTINXPOSI - WRITE TO INDEX POSITION AND

.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION TO

3

3

3

3

3

3

3

3

3

3

3

3
.3.13 @RFINXPOSI - READ FROM INDEX POSITION AND
3

3

3

3

3

3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF
3
F
.4.
4.
.4,
4.

PAGE

4-21
4-21
4-21
4-21
4-21
4-22
4-22

4-22

4-22
4-23
4-23
4-23
4-24

4-24

4-26
4-26
4-27
4-27
4-27
4-27
4-28
4-28
4-28
4-29
4-29
4-29

4-30
4-30

4-30
4-31
4-31

4-31

4-32
4-32

4-32

4-32
4-32
4-33
4-33



4.3.5 PHYSICAL DISK ACCESS ROUTINES

4.3.

SO QF N

N

»

£
1] *
AR R W PRRRE W O PRDBDRE AR BPARDRR (W

4.3.9

W W w oo W W w et ] L Lo W W W WWwWwwww (9 W W W Wi w

@GETASEC -~ GET A SECTOR
@PUTASEC - PUT A SECTOR

@VERIFYSECTOR - VERIFY A SECTOR
5 @SEEKTRACK - SEEK TO A TRACK

5.1

.5.2

.5.3 QWRITESECTOR - WRITE A SECTOR
5.4

5.

:5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

PROCESSOR ORIENTED UTILITY ROUTINES

1 @HLADDA - ADD A TO HL

2 RINXM - INCREMENT MEMORY

3 GLHLINDEXED - LOAD HL INDIRECT IMDEXED

4 @LHLT - LOAD HL INDIRECT

.5 GTRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

7 @TRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF
BC REVERSE

8 @TRANSFILENAME - TRANSFER A FILENAME

9 @FILLZER - FILL ZEROES

.19 @FILLSPC - FILL SPACES

.11 @FILLA - FILL FROM THE A REGISTER

O Eh O OB,
- - » » . - - .

.6.72 GCOMPARE - COMPARE HL TO DE

EXTENDED 8@8p INTEGER ARITHMETIC (16 BITS)

.7.1 @DEADDHL - BC=DE+HL
.7.2 @DESUBHL - BC=DE-HL
.7.3 @DEMULHL - BC=DE*HL
.7.4 GDEDIVHL - BC=DE/HL
.7.5 QGDEMODHL - BC=DEZHL

MESSAGE OUTPUT SUBROUTINES

.8.1 @DISKERROR - DISK ERROR MESSAGES
.8.2 Q@CLOSEFILES - CLOSE ALL FILES
.8.3 RERRORMES - ERROR MESSAGES

.8.4 BMESSAGEOUT - MESSAGE QUTPUT

SYSTEM BUFFERS AND ENTRY POINTS

4.4 LINEEDIT - THE MDOS LINE EDITOR

4.4.1

4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

ENTERING LINES TO LINEEDIT
KEYING IN A NEW TEXT FILE
ENTERING LINEEDIT COMMANDS
THE CLEAR COMMAND

HE MAME COMMAND

T
.6 THE FILE COMMAND
T

HE AUTO COMMAND

Rev. 7 3/78



£ 0

SRR LDELPDD B

.8
.9
.18 THE APPEND COMMAND
.11 THE SAVE COMMAND

.12 THE RESAVE COMMAND
.13 THE LIST COMMAND

.14 THE LISTP COMMAND

.15 THE PRINT COMMAND

.16 THE PRINTP COMMAND
.17 THE TA8 COMMAND

.18 THE DELT COMMAND

.19 THE RENUM COMMAND

.29 THE SEARCH COMMAND
.21 THE SEARCHALL COMMAND
.22 THE CHANGE COMMAND
.23 THE CHANGEALL COMMAND
.24 THE EDIT COMMAND

THE PROMPT COMMAND
THE LOAD COMMAND

COMPLETING THE EDIT COMMAND

.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

F~ g1 EogE R - R BT - R - - R T S R S S SR -

.26 LINEEDIT FILE STRUCTURE

4.5 ZSM - Z-80 ASSEMBLER

4.5.1 HOW TO RUN ZSM
L, LANGUAGE ELEMENTS

.1 CONSTANTS
.2 OPERATORS
.3 REGISTERS
.4 PSEUDO-OPS

SSEMBLY ERRORS

NSTRUCTION SET
EST FILE FOR ZSM

Rev. B.4=A T7/26/79

4.24.1 ADVANCING THE EDIT POINTER

4.24.2 CHANGING THE NEXT CHARACTER - C

4.24.3 DELETING THE NEXT CHARACTER - D

4.24.4 INSERTING CHARACTERS - I

4.24.5 LISTING THE LINE IN THE EDIT BUFFER - L
4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S
4.24.7 DELETING TO A SPECIFIED CHARACTER - K
4.24.8 QUITTING THE EDIT COMMAND MODE - Q
4.24.9

[N T I |
[0 - R~ o -
[es Ve Ve RVe RVe

[
Y U
~ Py~

[

£ b o b e B e e hhh?bb#hh-hbh&bbblb
n
o

i
tnaernnn o n ovian
Wi ww N rar

Tt
o
>

455

4-55
4-56

b-57
4-58
4-58
4-59

4-63

4-64
4-67

Fooed sk Pt fed fand

w

At




PAGE

4.6 SYMSAVE UTILITY 4-568
4.7 FILECOPY UTILITY 4-69
4.8 DISKCOPY UTILITY 4-69
4.9 MDOS ERROR MESSAGES 4-7
4.10 COPYFILE UTILITY FOR SINGLE DISK 4-74
4.11 MICROPOLIS DEBUG 4 7;
4-9

4.12 DEBUG-GEN UTILITY
SECTION V MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION 5-1
5.1 ENTERING LINES TO THE BASIC INTERPRETER 5-1
5.2 ENTERING A PROGRAM 5-2
5.3 IMMEDIATELY EXECUTED LINES 5-3
5.3.1 THE EDIT COMMAND 5-3
5.3.2 THE RENUM COMMAND 5-4.
5.3.3 THE MERGE COMMAND 5-4.
5.4 DELETE COMMAND 5-3
5.5 LIST COMMAND 5-4
5.6 SAVE COMMAND 5-4
5.7 LOAD COMMAND 5.5
5.8 DISPLAY COMMAND 5-5
5.9 SCRATCH COMMAND 5-6
5.10 RUN COMMAND 5-6
5.11 INTERRUPTING A RUNNING PROGRAM 5-7
5.12 CONTINUING AN INTERRUPTED PROGRAM 5-7
5.13 PROGRAM TRACING COMMANDS 5-8
5.14 BASIC SYSTEM ERROR HANDLING 5-8
5.15 BASIC. CHARACTER SET 5-9
5.16 DATA 5-9
5.16.1 CONSTAMNTS 5-9
5.16.2 VARIABLES 5-10
5.16.3 OUTPUT FORMATS 5-12

Rev. 8 9/78




5.17 OPERATORS

5.17.1 NUMERIC OPERATORS
5.17.2 STRING OPERATORS
5.17.3 RELATIONAL OPERATORS
5.17.4 LOGICAL OPERATORS

5.18 FUNCTIONS

5.18.1 INTRINSIC FUNCTIONS

5.18.1.1 NUMERIC FUNCTIONS

ABS
ATN
Cos
EXP
FIX
FRAC
INT
LN
LOG
MAX
MIN
MOD
RND
SGN
SIN
SQR
TAN

5.18.1.2 STRING FUNCTIONS

ASC
CHARS
FMT
INDEX
LEFT$
LEN
MID$
MAX
MIN
REPEAT$
RIGHT$
STR$
VAL
VERIFY

5.18.1.3 SPECIAL FUNCTIONS

5.18.2 USER DEFINED FUNCTIONS

Rev. 8 9/78

IN

PEEK
PGMSIZE
SPACELEFT

LI I I D I B |

Tt ol v an
-—l.—l—l..-l—-l—l.—!—d-‘-a—d—l—l—.‘-.‘.—a-—l—‘
WO W0 WO W W 0o 00000000 000000 000000



5.19 Expressions

5.19.1
5.19.2
5.19.3
5.19.4

‘5.20 BASIC Stare

DATA
DEF N
DEF FA
DIM
END
EXEC
FLOW
FOR
GOSUB
GJTO

. e 8
.

e« # » [
NNNNNIQNNNNNNMNNNNNNNNNNNNNNN
*» -

AL 0N D W N

-
-
(WO 5 e ]

. s e
-

INPUT
LET
.14 MEMEND
0.15 NEXT
0.16 NOFLOW

QDOOOOOOOQOOOO

0.1% ouT
0.20 POKE
PRINT
0.22 READ
0.23 REM

O
N
—

CE Y

0.25 RETURN
.20.26 SIZES
.20,27 STO?P
0.28 STRING

mmmmmmmmmmmmm\nmmmmmmmmmmmmL.nur
.

5.21° BASIC DISK FILE 1/0

5.21.1 Disk Fi

5.21.2 Disk File Commands

Rev. 7 3/78

Evaluation of Expressions
Numeric Expressions
String Expressions
Logical Expressions

ments

iF..THEN

0.17 ON..GOTO
0.18 ON..GOSUB

0.24 RESTORE

les

DISPLAY
LOAD
PLOADG
SAVE
SCRATCH
CHAIN
LINK

5-33

5=-33
5-33
5-34
5-35

5-36

5-36
5-37
5-37
5-38
5-38
5-39
5-39
5-40
5-42
5-43
5+43
5-44
5-44
3-45
5-45
5=45
5-45
5=46
5-46
5-46
5-47
5-49
5-49
5-49
5-49
5-50
5-50
5-50



5.21.3 Disk I/0 Statements 5-54 .1

5.21.3.1 OPEN 5-55 -
5.21.3.2 PUT 5-57
5.21.3.3 GET 5-60
5.21.3.4 CLOSE 5-60
5.21.3.5 ATTRS 5-61
5.21.3.6 EOF 5-61
5.21.3.7 FREESPACE 5-62
5.21.3.8 GETSEEK 5-62
5.21.3.9 PUTSEEK 5-62
5.21.3.10 RENAME 5-63
5.21.4 Disk 1/0 Functions 5-63
ATTR 5-64
ERR 5-64
ERR$ 5-64
NAME 5«64
RECGET 5-64
RECPUT 5-64
SIZE 5-64
TRACKS 5-64
FREETR 5-64
5.22 BASIC PRINT FILE OUTPUT 5-65

5.22.1 Printer Related Language Features 5-65

5.22.1.1 OPEN 5-65
5.22.1.2 PUT 5-66
5.22.1.3 CLOSE 5-66
5.22.1.4 ENDPAGE 5-67
5.22.1.5 ASSIGN 5-67
5.22.1.6 LISTP 5-69
5.22.1.7 PAGESIZE 5-69
5.22.2 Notes on Printer Related 5-70
Progranming
5.22.2.1 Separating Print Files 5-70
and Interactive Messages
5.22.2.2 Paginating Print Files 5-73
5.22.2.3 Spooling Print Files to 5-76

Disk for Later Qutput

5.22.2.4 Draining File Qutput to A 5-76
Null Device

5.22.2.5 Echoing of Terminal 5-77

Output to Printer

Rev. 7 3/78



PAGE
SECTION VI DISK SUBSYSTEM THEORY AND DIRECT
PROGRAMMING

L)
]
—

FIGURE 6.1 5 1/4 INCH DISKETTE

1
w—

6.0 TINTRODUCTION

6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA
6.2 HARDWARE FUNDAMENTALS

6.3 CONTROLLER REGISTERS
6.4
6.5
6.6

DISK OPERATIONS
ERROR HANDLING
DISK DRIVER

O\O\O\?\O\O\O\ ()}
PRI O YW
—0OWw

APPENDICES

BASIC ERROR MESSAGES

BASIC UTILITY PROGRAM

ACCESSING DISKCOPY FROM BASIC

SUMMARY OF MDOS ERROR MESSAGES

RES.I1/0 SOURCE LISTING

MICROPOLIS DISK BOOTSTRAP

"FEATURES" PROGRAM TO OPTIONALLY SHORTEN BASIC
INTERFACING TC A CENTRONICS PRINTER

TROUBLE SHOOTING IF MDOS DOES NOT LOAD

GAMES AND DISPLAYS ON THE MDOS SYSTEM DISKETTE
CHANGING MICROPOLIS BOOTSTRAP ROM AND DISK I/0 ADDRESS
CHANGING CLOCK RATE TO 2 MHZ

WRITING A CONSOLE PHYSICAL I/0 ROUTINE

WRITING A PRINTER PHYSICAL I/0 ROUTINE
REASSEMBLING AND SAVING THE RES MODULE

MAP OF I/0 PORTS

MEMORY DIAGNOSTICS

OYOoOZRBHRGHEOAPOOm P
L T T T T T T T T I O T I R A



appendices o
E-1 Add remark: RES.I/0 has been altered for the re—-arranged board addressing.

H-1

J-1

K-1

0-1

Hence, if you need it, list it using LINEEDIT, or assemble it using ZSM from the
8.5 MDOS System Diskette.

The instructions in this appendix only apply to the Bitstreamer I board.
Change C209 to EQ@8.

Change FLASH7 to FLASHS8.
and K-2 The standard location is from F889-FBFF. A single jumper at W4 is the
standard.

If the system has a Bitstreamer II board controlling a printer, use éitstreamer
base address of @ for serial ports at 2 and 3, and use base address 4 for ports
6 and 7 (to control the printer.) (Do not worry about control of a serial
terminal, if used. This is handled by the Extended Systems Monitor.)

If controlling a printer out of a Bitstreamer Il parallel port, then do not use
the standard drivers.

Add the following: Ports 8 and 9 are Bitstreamer II parallel ports. 48 is 64K
and 16K bank select. 10-14 are used by the Vector Graphic Precision Analog
Board. The Tarbell Disk uses FC as well as its other port addresses. -

Q-1 and Q=2 Change "48K" to "56K." To use the T command, enter T @88¢ DFFF. MAP

uses scratch pad FC8@ to FDFF in all systems now. Add explanation of WORM,
taken from the explanation above in this errata. ST T e

Rev. 8.5-B 18/18/79



I GENERAL INFORMATION

1.0 GENERAL DESCRIPTION OF SYSTEM AND SUBSYSTEMS

Your system is a general purpose microprocessor based computer. It
is delivered by Vector Graphic completely assembled and fully
tested, including both hardware and operating system software, and
including two quad density mini-floppy disk drives.

1.0.1 STANDARD HARDWARE AND SOFTWARE

1) Chassis with power supply and 18 slot fully shielded S-100
motherboard;

2) 4 MHz Z-80 CPU board;

3) Two quad density Micropolis mini floppy disk drives, allowing
1232 256-byte sectors per diskette.

4) Disk controller board;

5) Bitstreamer I/0 board;

6) 48K Dynamic RAM board;

7) PROM/RAM III board, with space for 12K of EPROM and the
ability to program EPROM's (see the PROM/RAM III board
manual).

8) The Vector Graphic Extended Systems Monitor, on PROM;

9) Two coples of the MDOS System Diskette, each containing: .

a) The Vector Graphic-enhanced ﬁicropolis Disk Operating
System - MDOS - a complete floppy diskette operatlng
system, lncluding a Z-80 Assembler, an edltor, a debugger,
and several other utilities (see Ch.4);

b) Micropolis BASIC (see Ch. 5);

¢) A number of games and video displays (see Appendix J.)

1.0.2 OPTIONAL COMPONENTS AND SOFTWARE

Your MZ can be configured with various optional peripherals.
Section 2.2 of this manual lists the confilgurations of printers and
consoles consldered "standard" for the MZ, and gives the components
such as 1nterface boards and cables needed for each configuration.
In addition to the configurations discussed in Section 2.2, the
following components can optionally be added to an MZ:

1) Additional Bitstreamer I/0 board(s), such as the Bitstreamer
II having three serlal ports, two parallel ports, real-time




clock, and Z-80 interrupts.
2) Additional memory board(s);

3) Other S-100 compatible boards from Vector Graphic or other
sources.

4) 2 additional Micropolls mini-floppy disk drives;

5) Other operating system and language software.

Contact your dealer for more information on adding components
to the system.

1.1 MICROPOLIS FLQOPPY DISKETTE SUBSYSTEM SPECIFICATIONS

1.1.1 PERFORMANCE

Capaclty per drive: 315K bytes, formatted
Transfer rate: 250K bits/second

Average rotational latency time: 100 milliseconds
Access time - track-to-track : 30 milliseconds
settling time: 10 milliseconds

Head load time: 75 milliseconds

Head positioner: stepper motor with lead-screw drive
Drive motor start time: 1 second

Rotational speed: 300 RPM

Recording density 5248 bits per inch (BPI)
Recording mode: MFM

Track density: 100 tracks per inch (TPI)

Surfaces used per diskette: 1

1.1.2 DRIVE RELIABILITY

MTBF 8000 hrs.

MTTR 0.5 hrs.

Media life . 3 X 10 EXP 6 passes on single track
Head life 10 EXP 4 hrs.

Soft error rate 1 in 10 EXP 9

Hard error rate 1l in 10 EXP 12

Seek error rate 1 in 10 EXP 6

1-2 Rev. 8.4-A 7/26/79




l.2 HEXADECIMAL NOTATION

In this manual as in most microcomputer literature, the base 16
number system is used for all references to memory locations,
instruction codes, character codes, and so on. If you are not
familiar with it, you will soon find that the hexadecimal system is
the most natural way to express these numbers when dealing with a
computer that stores data as groups of 8 binary digits (bits) and
memory addresses as groups of 16 bits. Hex numbers will be
indicated by an upper case H following the digits. Remembering a
few key values will make things a great deal easier:

HEX NUMBER DECIMAL VALUE JARGON BINARY BITS

A 10 4

B 11 4

C 12 4

D 13 4

E 14 4

F 15 4

10 16 5
FF 255 8
100 256 9
3FF 1,023 10
400 1,024 1K 11
FFF 4,095 12
1000 4,096 4K 13
4000 16,384 16K 15
8000 32,768 32K 16
FFFF 65,535 64K-1 16

The familiar rules of arithmetic work just the same in hex as in
decimal:

10 HEX (TRIVIAL)
40)~ 400

16 DECIMAL (MORE DIFFICULT)
64) 1024

64

384

384

-0

or

1.3 OPERATING SYSTEM SOFTWARE

1.3.1 VECTOR GRAPHIC EXTENDED SYSTEMS MONITOR

The first program the user comes into contact with after turning on
the system is the Vector Graphic Extended Systems Monitor.
(Exception: this is not true for MEMORITE systems.) It is entirely
stored on non-volatile PROM. Note that this use of the term
"Mpnitor" has a meaning entirely different than the term "monitor",
which refers to a piece of hardware, namely a stand-alone video
display. (NOTE: in the MEMORITE system, the Extended Systems

Rev. 8.1 2/5/79 1-3



Monitor is not encountered unless you press the RESET keg: or touch
the ESC key while the system is under control of MDOS or ancther

NON-word processing operating system.)

The Monitor consists of two parts: first, the Extended Systems
Monitor Executive, which allows the operator, through special
commands, to manipulate and display memory data and to jump to some
other program; second, a program used to control console I/0.

You know the Extended Systems Monitor Executive is in control of the
system when the Monitor prompt (*) appears on the left edge of the
screen. The operator is then expected to enter one of the commands
available for manipulating or displaying memory or jumping to
another program. Most often, the operator will use the command
which calls up a full operating system and then transfers control to
it, and out of the Monitor.

Regardless of whether executive is in control of the system at any
given time, the Monitor console I/O routines, though invisible to
the operator, are continually being called on to control the
console. (Exception: when MEMORITE or the Word Management System
are doing word processing, the Monitor is not used to control the
console. Instead, the word processing software in these two systems
handles this task.)

Some of the Monitor's features and commands are explained where

relevent in this manual. A complete description is included as a
separate manual with your system.

1.3.2 PROGRAM DEVELOPMENT SOFTWARE - "PDS"

The operating system found on the MDOS Systems Diskette included
with the system is the Micropolis Diskette Operating System (MDOS).
MDOS includes an assembly language program development package.
Also found on the MDOS Systems Diskette is Micropolis Disk Extended
BASIC (often called just M.BASIC). MDOS and M.BASIC together give
all the functions a programmer may need for the development of
either assembly language or BASIC programs.

l.3.3 ELEMENTS OF MDOS

MDOS consists of an executive program, a group of "shared"
subroutines available to user programs as well as being used by
MDOS, and various utilities which include assembly languagde program
development tools.

The MDOS executive program allows the user to control computer
system operations from the system console. It provides commands for

memory management, file management, I/0 control and program
control.

The shared subroutines include those that provide for console and

printer character I/0, buffered line I/0, text line parameter
parsing, sequential and random file access, file management,

1-4 Rev. 8.1 2/5/79



physical diskette access, and 16 bit interger arithmetic. There are
also a number of processor oriented utility subroutines.

The MDOS utilities are:

ZSM - a two pass, 8080/8085/280 disk to disk assembler program.
LINEEDIT - a line number oriented assembly language text editor with
character~within-line edltlng and global search and change
capabilities.

FILECOPY - a utility that copies disk files.

DISKCOPY =~ a utility that makes an exact copy of an entire
diskette.

SYMSAVE - a utility that creates a source file of symbol equate

statements from the symbol table left in memory immediately after an
assembly by the 2SM assembler.

DEBUG - a utility that facilitates checkout and debugging of

8080/8085 machine language programs. It cannot be used if 280 code
which is not part of the 8080 set is used.

l.3.4 ELEMENTS OF M.BASIC

M.BASIC is a complete, self-contained software package that provides
total support for BASIC programming. When M.BASIC is loaded you

have at hand a powerful set of tools for developing, testing,
executing and maintaining BASIC programs.

Program lines may be as long as 250 characters in length and may
include multiple statements. The maximum line number is 65529.

M.BASIC has 12 immediate mode commands, including: SAVE a file,
LOAD a file, DISPLAY the file directory, SCRATCH a file, LIST a
program, DELETE lines from a program, RUN a program, CNTL/C to
interrupt a running program, CONT to continue an interrupted
program, CNTL/U to cancel an input line, and FLOW and NOFLOW to
enable and disable the flow trace debugging aid.

M.BASIC supports 6 distinct data types, including integers, integer
arrays, floating point numbers in the range 1lE-61 to 1E62~1, string
arrays, floating point arrays, and character strings up to 250
characters long. Integer and floating point arrays may have up to 4
dimensions. String arrays may have up to 3 dimensions plus a length
parameter.

A unique SIZES statement enables you to select the precision of
numeric variables up to 60 digits for simple arithmetic and 20
digits for transcendental functions. The system defaults to 8
digits for real numbers and 6 for integers.

M.BASIC supports numeric operators for addition, subtraction,
multiplication, division, integer division, and exponentiation.

Rev. 8.1 2/5/79% 1-5



There are relational operators to compare numbers or strings and the
logical operators AND, OR, and NOT. String concatenation is also
available.

Numeric functions include ABS, ATN, C0S, EXp, FIX, FRAC, INT, LN,
LOG, MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHARS$, FMT, INDEX, LEFTS$, LEN, MIDS,
MAX, MIN, REPEATS$, RIGHT$, STRS$, VAL, VERIFY.

The unique FMT (X,Y¥$) function is the key to a powerful formatted
output capability. It returns a string which is the value of X
formatted per the image defined by format string ¥$.

The DEF FN statement is provided to allow construction of user
defined functions. An assembly language function may be accessed by
using the DEF FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT,
END, EXEC, FOR-NEXT-STEP, GOSUB, GOT0O, IF-THEN, INPUT, LET, MEMEND,
MERGE, NOFLOW, FLOW, ON-GOTO, ON-GOSUB, OUT, PLOADG, POKE, PRINT,
READ, REM, RENUM, RESTORE, RETURN, SIZES, STOP, and STRING.

The CHAIN is a true chain that passes variables from the current
program segment to next one loaded f£rom disk.

EXEC is a unique statement that allows a string variable or constant
to be executed as if it were a predefined program line.

Data file programming in M.BASIC is simple. Files can be opened
simultaneously for both sequential and direct (random) access in
both read and write modes. Up to 10 files can be open at one time.
A CLEAR option allows a file to be opened for rewrite instead of
append. An END option provides an on-endfile-goto capablllty. An
ERROR option provides an on-error-goto capability.

Data is written to and read from files using GET and PUT statements
with variable lists that allow a mixture of numeric and string
variables.

The file I/O structure also extends to printer and console output
files to afford a high degree of device independence. Additional
options on the OPEN statement facilitate the pagination of output
reports.

Also provided is a BASIC Utility program that provides for
initializing diskettes, saving M.BASIC on a BASIC-only diskette, and
examining and changing RAM memory. In addition, there is a utility
called FEATURES which allows you to shorten M.BASIC by eliminating
some of the features needed only for program development, but not
for running production programs.

1.3.5 OTHER OPERATING SYSTEMS

Other operating systems and higher level languages are available

1-6 Rev. 8.1 2/5/79



from Vector Graphic. These will not be discussed here. (See the
literature accompanying this manual.) MDOS and M. BASIC meet the
needs of the large majority of users.

1l.3.6 RESIDENT PROGRAMS

MDOS and M.BASIC share the Extended Systems Monitor. They also
share a common program module called RES. This module contains
among other routines, the printer and diskette I/O routines, and
some of the console I/0 routines.

Also shared is the ROM resident Disk Bootstrap program, (which is
what the Monitor uses in order to call up MDOS), and the Disk

Controller, (which is simply memory space needed to handle the
diskette drives.)

These routines are always resident in the computer memory when
either MDOS or M.BASIC is running. For interested users, listings
will be found in Appendix E for the I/0 portion of RES, Appendix F
for the Disk Bootstrap program, and the Extended Systems Monitor
manual for the Monitor.

In contrast, MDOS and M.BASIC overlay each other; that is, they are
assigned the same area of memory; only one can be in memory at any
given time. Commands are provided for leaving one and calling up
the other.

Fig. 1.1 illustrates the relationships between the various system

programs. Programs which are always in memory when MDOS or M.BASIC
is used are in the center.

Fig. 1.2 gives the addresses of the various programs and important
memory locations in your system. No particular operating system is
shown.

Fig. 1.3 gives addresses for MDOS and M. BASIC. Note that this

operating system software fits into the unassigned memory area in
Fig. 1l.2. ’

Rev. 8.1 2/5/79 1-7



8-T

1°8 a9y

6L/S/C

FIGURE 1.1 MZ

SOFTWARE STRUCTURE USING MDOS

EXTENDED SYSTEMS MONITOR,
wnsole physical I/0 routines

with

DISK BOOTSTRAP ROM, and
DISK CONTROLLER ADDRESSES
MDOS I
EXECUTIVE RES MODULE
COMMON CONSOLE
‘AND PRINTER 1/0
{Console
physical 1/0
| braqches to
ASSEMBLY Monitor.)
LANGUAGE
APPLICATION
PROGRAMS
— — — — | comon p1sK
FILE STRUCTURES
ASSEMBLER FILECOPY
EDITOR

SYMSAVE

DISK
EXTENDED
BASIC
INTERPRETER

BASIC
PROGRAMS




Rev.

FIG 1.2 MEMORY MAP FOR VECTOR GRAPHIC SYSTEMS

Hex address

FFFF

EO00
DF40

DCO0

DAOO
D800

DCOO
CCoo

C3800
C400

c000

8000

0000

8.1

Contents

8K RAM for user's programs, optional;
= 4 OR ?45
’r High Resolution Video board, optional;

OR

Memorite PROM's, optional.

PR-2 stack area, not available to user.

RAM available to user.

Disk controller - first 3 bytes are addresses

used for mem. mapped disk I/0. Remaining are

unusable.

Disk Bootstrap ROM.

Flashwriter board video buffer, optional.

Memorite configuration PROM, optional.

EVIOS PROM, optional.

MZOS PROM, optional.

Extended Systems Monitor, including console

I/0 routines.

48K RaM, available to user.
ot s’

2/5/79



FIG 1.3 MEMORY MAP FCOR MDOS AND M. BASIC

Hex address Contents
BEFFF
- =~
RAM memory for user's program
2800 if MDCS Starting point depends on whether MDOS or M. BASIC
5700 to is being used, ard whether BASIC has been shortened.
5D86 if BASIC
MDOS, including all user callable routines not in RES Module;
;j OR r:
M. BASIC Interpreter. <
1599
RES MODULE
1598 End of RES Module.
0627 LDOUT -~ Physical List Output Routine.
0613 LDINIT - Physical List Initialization.
0611 LIATN - Physical List Attention Check Routine.
060F CDINIT - Physical Console Initialization.
0604 CDBRK - Physical Break Check Routine.
0600 CoOUT - Physical Console Output Routine.
O5SF8 CDIN - Physical Console Input Routine.
04E7 MDOS or M. BASIC warmstart (entry) location.
0281 Beginning of RES Module code. ’
01a0 Beginning of RES Module input buffer.
01A0
MDOS system stack, and used by Boot loader.
006ea
RAM available to user.
0000

1-10 Rev. 8.1 2/5/79



1.4 MDOS SYSTEM DISKETTE

This revision of the User's Guide to Vector Graphics Systems Using
MDOS corresponds to MDOS System Diskette 8.4, (and minor revisions

of it labeled 8.4.1, 8.4.2, etc.) Following i1s a list of the files
on this diskette:

(Under TYPE, "EC" means the file i1s stored in executable machine
language code and it will be executed lmmedlately 1f you type its
name after the MDOS prompt. "AL" means the file 1s stored in
assembly language source code. You must first assemble 1t using ZSM
before 1t can be executed by the computer. "B" means the flle 1s
stored in the M.BASIC language. It will be executed by using the
M.BASIC interpreter explained in chapter 5.)

NAME DESCRIPTION TYPE
DIR The disk directory.
RES Machine language routines used by both MDOS .
and M.BASIC Do not delete it unless you
are modifying it.
MDOS MDOS executive and disk I/0 routines.
Do not delete this. See Appendlix B
to create a BASIC-only diskette.
BASIC M.BASIC interpreter and disk I/0. EC
See Chapter 5.
LINEEDIT Line editor for writing assembly language. EC
programs. See Sectlon 4.4.
ZSM Assembler of Z-80 code prepared in extended EC
8080 mnemonics. See Section 4.5.
SYMSAVE Utllity which creates a source file EC
of equate statements using the symbol
table resulting from an assembly.
See Section 4.6. Used occaslonally by
assembly language programmers.
PILECOPY Utility for copying a file from one drive EC
to another. See Secton 4.7. Used often.
DISKCOPY Utllity for copying a disk from one drive to EC
another. See Section 4.8. Used often.
COPYFILE Utility for copying a file from one disk to EC
another, using the SAME drive, for systems
having only one drive. See Section 4.10.
DEBUG-GEN Utility used to generate the DEBUG utility EC
residing in a partilicular portion of
memory. See Section 4.11.
FEATURES Utility used to shorten BASIC. EC

Rev. 8.4-A 7/26/79

See Appendix G.

1-11



NAME

DESCRIPTION TYPE

SYSQl, and
SYSQ2

UTILITY

RES.I/0

DIAB

DIAB4
CENT
CENT4
DECW

DECW4
SAVERES

NCESCAPE

MDIAG
MAP

FLASHT

PROM
STARTREKG
CIVILWAR

LUNAR
FINANCE

Assembly language source code containlng the AL
names of all MDOS shared subroutines,
equated to thelr addresses. Used
in assembly language programs calling those
routines. See Section 4.3. Used from time
to time by assembly language programmers.

A utility used to initialize diskettes, create B
BASIC-only diskettes, and examine memory.

See Appendix B.

The source code file of the I/0 routines in AL
RES. Used to rewrite the I/0 routines if
using non-standard peripherals.

See Appendlces M, N, and O.

Routine for interfacing to Diablo-protocol EC
printers 1f the Biltstreamer board is
addressed for ports 0 - 3. Overlays
directly over RES in memory.

See Section 2.2.2. Not
needed after RES 1is saved on diskette.

Same as DIAB, but Bltstreamer 1s at 4 - 7. EC

Same as DIAB, but for Centronics printers. EC

Same as CENT, but Bitstreamer is at 4 - 7. EC

Same as DIAB, but for teletype-protocol EC
printers.

Same as DECW, but Bitstreamer is at 4 - 7. EC

Utility used to save on disk the machine EC

language version of the I/0 portion of the
RES Module. See Section 2.2.0. Not
needed after the RES Module 1is finalized.

Utility which stops the ESC key from causing EC
control to be passed to the Systems Monitor.
See Section 2.3.7. Not needed after used
once.

Utility used to check the computer's memory. EC
See Appendix Q. Do not delete this.

Utility which tells what kind of memory EC
(RAM, ROM or nothing) is in the system
at each address. See Appendix Q.

Useful when servicing a system.

Demonstration of the graphics capability of EC
the Flashwrlter II board. See Appendix J.
Dealers use often.

Utility used with the PROM/RAM III board to EC
program EPROM's. See PROM/RAM III manual.

The Star Trek game. See Appendix J.

Dealers use often. Others 1f they like 1it.

Another game. See Appendix J.

Another game. See Appendilx J.

Day-to-day financial calculations.

See Appendlx J. Used often if you need it.

v wm W

1-12

Rev. 8.4-A 7/26/79



To obtain a list of the files on your diskette, to see what 1is
actually there, turn the machine on, mount the system diskette in
drive 0 (right-hand drive), type B after the Monitor prompt (%),

type FILES after the MDOS prompt (>), and then press the RETURN key.
The interaction looks like this on the screen:

*B

Vector MZ MDOS X.XX
>FILES

DIR 03 0000
RES 03 0014

The left-hand number refers to the file type, explained in Section

4.2.3. The right-hand number gives the length of the file in
sectors. Both numbers are in hexadecimal (base 16).

The list is long and will roll past the edge of the screen. To stop
it at any point, depress control-S (CTRL key and S at the same
time.) To start it up again, depress the spacebar.

If you have a printer which is up and running with your system, you
can print the directory by typing ASSIGN 2,3 (return), before you
type FILES. After the directory is printed, type ASSIGN 2,2

return) to turn the printer off again. "(return)" means press the
RETURN key.

Rev. 8.3-A 7/1/79 1-13



II INSTALLATION, CONFIGURING PERIPHERALS, AND USE OF DISKETTES

2.1 INSTALLATION

For turn-key systems (that is, all internal wiring and software
modifications have been done prior to delivery), just plug in
external cables to the sockets on the rear panel of the mainframe.
End users: if sockets are not labeled and choice is not obvious, ask
your dealer.

For non-turn-key systems, refer to Section 2.2 for directions on
setting up peripherals, interface boards, cables, and interface
software. For systems with which a printer will be used, it may be
desirable to first set the system up as if there were no printer,
test it as explained below, then complete the setting up procedures
for the printer. Section 2.2 separates the 2 stages.

When ready to test the system, do as follows:

1. Turn the power key on the front panel and then turn on
peripherals. The Monitor prompt * should appear on the
screen. (Exception: in MEMORITE systems, depress RESET on

the front panel after turning the power on. The Monitor
prompt should then appear.)

2. Enter N on the keyboard. This is a memory test which also
functions as a test of the console. After a few seconds a
hexadecimal number should appear. It indicates the first
memory address where no memory hardware is located. 1In
normal systems with 48K of RAM, the number should be C00Q.

3. Insert and mount the MDOS Personalized System Diskette in
drive 0. Drive 0 is the right-hand drive. The left-~hand
drive is drive 1. Refer to Section 2.4 for how to insert,
mount, and in general handle diskettes.

4. Enter B. This causes MDOS to be loaded and take control.
This will be indicated by the MDOS sign on message and the
MDOS prompt: >.

5. To test a separate printer, if any, first make sure there is
paper in the printer. Then, enter ASSIGN 2,3 (return),
followed by FILES (return). (The expression (return) always
means "press the RETURN key."). A list of the files on the
System Diskette will be printed.

When the system is working properly, refer to Chapter 3 for a
complete description of normal operating procedures, and to Section
2.4 for instructions on the handling and maintenance of diskettes.
Do not neglect either Section 2.4 or Chapter 3 as they contain
information which is not effectively acquired by trial and error
alone. Section 2.3 describes various modifications which can be
made to the hardware.



alone. Section 2.3 describes various modifications whilch can be
made to the hardware and systems software.

2.2 CONFIGURING THE MZ - THIS SECTION FOR NON-TURN-KEY SYSTEMS ONLY

2.2.0 MODIFYING THE RES MODULE

At various points in this chapter (or in related appendices) you
will be 1instructed to carry out procedures which modify the RES
Module. The most common of such procedures are the Software
Implementation Procedures found in section 2.2.1 under each of the
standard configurations. (These Software Implementation Procedures
are used only if a printer 1s implemented.)

To carry out any procedure which modifies the RES Module, turn the
system and all. peripherals on. In MEMORITE systems, depress the
RESET button next. Then insert and mount the Personalized MDOS
System Diskette 1n drive 0. Do not use the Master MDOS System
Diskette. This diskette should never be altered and only used for
emergency back-up. After the Monitor prompts with *, enter B. This
"boots up" MDOS, as indicated by the MDOS sign-on message and MDOS
prompt: >. Now proceed with the glven procedure.

Note that in all software procedures, "(return)" means "press the
RETURN key."

The user may be instructed to enter a command, such as DIABY
(return). Whenever such a command 1s entered, the system will
respond by displaying the MDOS sign-on message agaln, or at least
the MDOS prompt >.

A step will be found which commands "Save the RES Module on
Personalized System Diskette.” This i1s accomplished as follows:
Make sure the Personalized MDOS System Diskette 1s inserted and
mounted in drive 0. Then under MDOS type SAVERES (return). .The
drive should write on the diskette. The RES Module 1s now saved on
the Personalized MDOS System Diskette.

Important: You may want to do several different procedures, each of
which terminates with saving the RES Module. You are definitely
free to do any group of them at one sitting, and then save the RES
Module as described above ONCE at the end of the session, in order
to save trouble. Alternately, you may of course save the RES Module
after each such procedure, if desired.

Note: SAVERES 1is a utility which saves on diskette the I/0 portion
of the RES Module, in machine language form. The block of code
which 1s saved corresponds to the code found in the source listing
called RES.I/O, plus a few bytes before and after. In the rare case
you have modified the RES Module outside of the I/0 portion, then
you must use the following alternate steps to save the RES Module:
Under MDOS, enter TYPE "RES" @ (return) SCRATCH "RES" (return) SAVE
"RES" 2B1 1598 3 (return).

Rev. 8.4-4 T7/26/79 2=2



2.2.1 STANDARD CONFIGURATIONS

At this time, Vector Graphic supplies the interface hardware and
software to support several different configurations of main
peripheral devices, that is, printers, keyboards, video displays,
and terminals. This section i1s concerned with identifying these
standard configurations, and explaining how they are implemented.

If the peripheral device desired is not found among the standard
configurations, refer to Section 2.2.3.

The information is collected in the following pages. Each section
is concerned with one configuration. Each configuration is a
selected group of peripherals. Peripherals are listed as generic
types, (upper case lettering). Specific makes are given as examples,
(lower case lettering). The user is not limited to these examples,
but can use any model that falls within the given generic
description.

To use these charts, find the configuration desired. When ordering
an MZ or other Vector Graphic computer, order it with the components
listed as well as the peripherals desired if supplied by Vector
Graphic. (Since all systems are always delivered with omne
Bitstreamer board and an I/0 cable, do not explicity order these
items.)

If no printer is being used, find the desired configuration ignoring
the type of printer listed. For this purpose, refer only to those
configurations whose. headings are NOT preceded by asterisks(¥*).

Then, only order the parts and carry out the steps shown WITHOUT
asterisks.

If a printer is being added to an existing system, find the desired
configuration, then only order the parts and carry out the steps
shown WITH an asterisk (*). To obtain a useful summary of the
issues involved with printers, see seciton 2.2.2

Some systems may already be partially configured at the factory or
by intermediaries, so that you need order and set up only the
components not already included. For example, "System B"™ is an MZ
with the Vector Graphic Mindless Terminal and Flashwriter II board.
All you have to add is a printer. Your choices would be the
configurations in Sections 2.2.1.4 and 2.2.1.6 for Centronics or
~Diablo-type printers respectively. MEMORITE is even simpler than a
" System B. Just do the Software Implementation procedure in Section
2.2.1.6, using the DIAB4 command.

Flashwriter Board: The charts refer to a "Flashwriter Board."
Order a Flashwriter I for 16 x 64 display and Flashwriter II for 80
X 24 display. When ordering an Extended Systems Monitor for use
with one of these boards, always state which it is for.

When your system and/or components are delivered, refer again to the

chart. Perform the implementation procedures listed in order to
implement the desired configuration.

Rev. 8.3-A 7/1/79 2-3



* 2.2.1.1

Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL.

Example:

Interface

l.
* 2.
3.

Hardware

* 1.

* 3.

Software
* 1.

* 2.

2.2.1.2 Printer:

Console: SERIAL VIDEO TERMINAL.

Parallel Centronics matrix printer (700 Series), and
Hazeltine terminal.

Components Required

Option C Extended Systems Monitor, on PROM.
Centronics interfacing kit

Bitstreamer board and I/0 cable (no need to order:
included in system automatically.)

Implementation Procedures

Install the Centronics interfacing kit as instructed in

Appendix H. Make sure there is an I/0O cable connected at
one end to J3 on the Bitstreamer board and at the other

end installed in one of the cutouts at the rear of the
mainframe.

Plug the external terminal cable into the socket on the
rear of the mainframe which is wired to the 6 pin molex
connector on the Bitstreamer board.

Plug the printer cable into the socket which is wired to
J3 on the Bitstreamer board.

Implementation Procedures

Under MDQOS, enter CENT (return).

Save RES Module on Personalized System Diskette.

SERIAL, DIABLQO 1610 OR TELETYPE PROTOQOCOL.

Console:

SERIAL VIDEC TERMINAL.

Example:

Printer: if Diablo protoceol - Diablo 1610 or 1620,

Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -
Decwriter, Teletype, or TI 810 or 820.

Console: Hazeltine terminal.

Interface Components Required

1.
2.

* 3.
* 4,

Hardware

* l.

Option C Extended Systems Monitor, on PROM
Bitstreamer board and I/0 cable (no need to order;
included in system automaticelly.)

A second Bitstreamer board

A second I/0 cable

Implementation Procedures

Jumper one ©of the Bitstreamer boards so that it 1is
readdressed for ports 4 - 7 rather than the original 0 -
l. Instructions will be found in the Bitstreamer User's

Rev., 8.1 2/5/7%



Software

Rev.

8.1

Manual. This board will be used to control the printer.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Connect one of the I/0 cables to J3 on one of the
Bitstreamer boards. 1Install the 25 pin socket on the
other end of the cable in a cutout at the rear of the
mainframe. .

Do step 4 for the second Bitstreamer and I/0 cable.

Plug the printer cable into the socket connected to the
readdressed Bitstreamer.

Plug the terminal cable into the socket connected to the
normal Bitstreamer. IMPORTANT: Some terminals will not
operate if they are connected to all 25 pins, because some
of the pins of J3 on the Bitstreamer have functions other
than serial communications. If your terminal does not
operate after comnecting it to all pins, then connect only
the essential ones. Example: the Hazeltine 1400 will
function only if a 3-line cable is used, connecting, pins
2,3, and 7. A 25 pin ribbon connector will not work.
Other terminals may require additional pins, but again not
all 25, Refer to the Bitstreamer board manual 1if
necessary for definitions of each of the pins on the
backpanel connector.

Implementation Procedures
Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
{(return).

Save RES Module on Personalized System Diskette.

2/5/79 2-5



* 2.2.1.3 Printer: PARALLEL, CENTRONICS 700 SERIES PROTOCOL

Example:

Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEC MONITOR.

Printer: Parallel Centronics matrix printer (Series 700)
Console: Vector Graphic stand-alone parallel keyboard and

Hitachi video monitor.

Interface Components Required

1.
2.
3.
4.
5.
* 6.
* 7.

Hardware

* 1.

Option EV Extended Systems Monitor on PROM

Flashwriter board

I/0 cable

Video cable, for Flashwriter to rear panel

Video monitor to mainframe cable

Centronics interface kit

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Implementation Procedures

Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

Install the Centronics interfacing kit as instructed in
Appendix H. However, do not install the 6 pin molex
connector or the serial I/0 cable which come in the
Centronics interface kit. They are not needed and can be
set aside. Make sure that there is a regular I/O cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.
This socket will be used for the printer cable.

Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the-outside "shield" wire is
connected to pin 2 (ground). Install the circular socket
at the other end of the cable into one of the circular

cutouts at the rear of the mainframe.

Connect the 24 pin dip plug at one end of the second I/0
cable to Jl1 on the Flashwriter board. Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

Plug the printer cable into the appropriate sockets on the
rear of the mainframe.

Plug the external keyboard and monitor cables into the
appropriate sockets on the rear of the mainframe.

2=6 Rev. 8.1 2/5/79



Software Installation Procedures

* 1. Under MDOS, enter CENT4 (return).

* 2. Save RES module on Personalized System Diskette.

* 2.2.1.4 Printer: PARALLEL, CENTRONICS SERIES 700 PROTOCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Parallel Centronics matrix printer (Series 700) and
Graphic Mindless Terminal.

Interface Components Required

1. Option EV Extended Systems Monitor on PROM

2. Flashwriter board

3. Mindless Terminal 3-part I/0 cable

4. External Mindless Terminal cable (or equivalent)
* 5. Centronics interface kit

* 6. Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

Vector

* 1. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions

will be found in the Bitstréamer User's Manual.

* 2. 1Install the Centronics interfacing kit as instructed in

Appendix H. However, do not install the 6 pin

molex

connector or the serial (3 wire) I/O cable which come in
the Centronics interface kit. They are not needed and can
be set aside. Make sure that there is a regular I/0 cable
connected to J3 on the Bitstreamer board and installed at
the other end in a cutout at the rear of the mainframe.

This socket will be used for the printer cable.

3. 1If not already done at the factory, install the Mindless
Terminal 3-part I/0 cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the

Flashwriter board keyboard input socket (J1l).

At the

other end, the DB25 socket is installed in one of the

cutouts at the rear of the mainframe.

* 4. Plug the printer external cable into the respective
socket at the rear of the mainframe.

5. Plug the terminal external cable into the respective

socket at the rear of the mainframe.
Sof tware Installation Procedures

* 1. Under MDOS, enter CENT4 (return).




* 2.

Diskette.

Save RES module on Personalized System

2.2.1.5 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOCOL

Console: PARALLEL ASCII KEYBOARD, SEPARATE VIDEO MONITOR.

Example:

Printer: if Diablo protocol - Diablo 1610 or 1620,

Qume Sprint 5, or NEC Spinwriter; if Teletype protocol -
Decwriter, Teletype, or TI 810 or 820.

Console: a Vector Graphic stand-alone parallel

keyboard and Hitachi video monitor.

Interface Components Required

Hardware

1.

Option EV Extended Systems Monitor on PROM
Flashwriter board

I/0 cable .

Video cable, Flashwriter to rear panel

Video monitor to mainframe cable

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Implementation Procedures

If no printer is being used, remove the Bitstreamer
from the mainframe, and do not put it back in. It cannot
be in the system (unless readdressed as explained below.)

Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. Instructions
will be found in the Bitstreamer User's Manual.

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left~hand corner of the bocard. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0 cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Connect the 2 pin socket at one end of the video cable to
the 2 left-most pins which will be found rising vertically
from the left~hand corner of the Flashwriter board.
Install the circular socket at the other end of the cable

2-8 Rev. 8.1 2/5/79



into one of the circular cutouts at the rear of the
mainframe.

7. Connect the 24 pin dip plug at one end of the second I/0
cable to Jl on the Flashwriter board. 1Install the 25 pin
socket at the other end in one of the cutouts at the rear
of the mainframe. This socket will be for the keyboard
cable.

* 8. Plug the printer external cable into the appropriate
socket on the rear of the mainframe.

9. Plug the keyboard and monitor external cables in the
appropriate sockets on the rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW{4

{return].
* 2. Save RES module on Personalized System Diskette

2.2.1.6 Printer: SERIAL, DIABLO 1610 or TELETYPE PROTOQCOL.
Console: VECTOR GRAPHIC MINDLESS TERMINAL.

Example: Printer: if Diablo protocol - Diablo 1610 or 1620, Qume
Sprint 5, or NEC Sprinwriter; if Teletype protocol - Decwriter,
Teletype, or TI 810 or 820.

Console: Vector Graphic Mindless Terminal.

Interface Components Required

l. Option EV Extended Systems Monitor on PROM
2. Flashwriter board
3. Mindless Terminal 3-part I/0 cable
4. External Mindless Terminal cable (or eguivalent)
* 5. Bitstreamer board with I/O cable (no need to order;
included in system automatically.)

Hardware Implementation Procedures

l. If no printer is being used, remove the Bitstreamer from

the mainframe. Do not put it back in. It cannot be in
the system.

* 2. Jumper the Bitstreamer board so that it is readdressed for
ports 4 - 7 rather than the original 0 - 1. 1Instructions
will be found in the Bitstreamer User's Manual.

* 2. Make sure that the printer is set for its highest speed,

(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if

Rev. 8.1 2/5/79 2-9



necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

* 4. Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left~hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

* 5. Make sure that there is a regular I/0 cable connected to
. J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket

will be used for the printer cable.

6. If not already done at the factory, install the Mindless
Terminal 3-part I/0 cable as instructed in the terminal's
documentation. The 3 parts are connected to the power
supply, the Flashwriter board video output pins, and the
Flashwriter board keyboard input socket (J1). At the
other end, the DB25 socket is installed in one of the
cutouts at the rear of the mainframe.

* 7. Plug the printer external cable into the respective socket
at the rear of the mainframe.

8. Plug the terminal external cable into its socket at the
rear of the mainframe.

Software Installation Procedures

* 1. Under MDOS, if printer uses Diablo protocol, enter DIAB4
(return); if printer uses Teletype protocol, enter DECW4
{(return).

* 2. Save RES module on Personalized System Diskette.

"~ * 2.2.1.7 SERIAL PRINTING TERMINAL (HAS A KEYBOARD), DIABLO 1610
OR TELETYPE PROTOCOL
AND X VIDEO MONITOR

Example: Printing terminal: if Diablo protocol - Diablo 1620, Qume
Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol - Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Video monitor: Hitachi.

Interface Components Required

l. Option CV Extended Systems Monitor on PROM
2. Plashwriter board
3. Video cable, Flashwriter to rear panel
4. Video Monitor to Mainframe cable
* 5. Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

2-10 Rev. 8.1 2/5/79



Hardware

* 1.

Sof tware

Rev.

* l.

* 2.

8.1

Implementation Procedures

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual 1if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner of the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/0 cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Disable the parallel port on the Flashwriter board. To do
this, simply remove chip U52 from the board, using a small
screw driver to pry it out of its socket. If US52 cannot
be easily located, refer to the Flashwriter User's
Manual.

. Connect the 2 pin socket at one end of the video cable to

the 2 left-most pins which will be found rising vertically
from the left-hand corner of the Flashwriter board. The
socket should be positioned so that the inside wire is
connected to pin 1, and the outside "shield" wire is
connected to pin 2 (ground). 1Install the circular socket
at the other end of the cable into one of the circular
cutouts at the rear of the mainframe.

Plug the printer external cable into the socket on the
rear of the mainframe.

Plug the monitor external cable into the appropriate
socket on the rear of the mainframe.

Installation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer used Teletype protocol, enter DECW
{return).

Save RES module on Personalized Diskette.

2/5/79 2-11



* 2.2.1.8 SERIAL PRINTING TERMINAL (HAS KEYBOARD), DIABLO 1610

Example:

OR TELETYPE PROTOCOL
NO VIDEO.

Printing terminal: if Diablo protocol -~ Diablo 1620, Qume

Sprint 5 with keyboard, or NEC Sprinwriter with keyboard; if
Teletype protocol - Decwriter, Teletype, or TI 810 or 820, with
keyboards;

Interface Components Required

1.

* 2.

Hardware

* l.

Sof tware

* l.

* 2.
* 3.

Option C Extended Systems Monitor on PROM

Bitstreamer board with I/0 cable (no need to order;
included in system automatically.)

Implementation Procedures

Make sure that the printer is set for its highest speed,
(1200 baud for Diablo 1610 protocol), and that its parity
setting is MARK parity. Check the printer manual if
necessary. Some printers such as the Diablo require a
jumper on internal circuitry to increase from 300 baud to
1200 baud.

Make sure that the Bitstreamer board is set for the same
speed as the printer. This is set on a dipswitch on the
upper left-hand corner o©f the board. Press the
appropriate switch in and upward and make sure all other
switches are pressed downward.

Make sure that there is a regular I/O cable connected to
J3 on the Bitstreamer board and installed at the other end
in a cutout at the rear of the mainframe. This socket
will be used for the printer cable.

Plug the printer cable into the socket at the rear of the
mainframe.

Implementation Procedures

Under MDOS, if printer uses Diablo protocol, enter DIAB
(return); if printer uses Teletype protocol, enter DECW
{return).

Save RES Module on Personalized System Diskette.

If printer uses Diablo protocol, then before each session
at the computer, as the first step after loading MDOS,
enter:

ASSIGN 2,3 (return)
ASSIGN 1,0 {(return)

{Do not be concerned that while entering the second line,
the printer prints every character twice.)

2-12 Rev. 8.1 2/5/79



NOTE: Using the serial Diablo protocol printing terminals at 1200
baud with no video display is limited by the fact that no Extended
Systems Monitor commands which cause outputing more than about 40
characters can be used. (This is because serial output from the
Extended Systems Monitor does not use the Diablo protocol technique
of checking whether the printer can accept the next character. More
than 40 characters at 1200 baud will usually cause the printer's
buffer to overflow.) MDOS and M.BASIC commands do not cause the

same problem, so long as the above mentioned ASSIGN commands are
used prior to each session.

One way to solve this problem is to run the printer at 300 baud
(Bitstreamer at 300 baud too) and to use the DECW command rather
than the DIAB command before saving the RES module on the
Personalized System Diskette. 1In this case, the ASSIGN commands are
not needed. The drawback is slower printing.

2.2.2 ADDING A STANDARD PRINTER TO AN EXISTING SYSTEM

The information in this section concerns adding a printer to an
existing system, one which already has some kind of video dlsplay
and keyboard functlonlng. The logic behind this information is the

same as that used in sectlon 2.2.1, except that here it is presented
in summary form.

The printers presently considered standard for Vector Graphic
systems are:

Centronics Series 700 parallel matrix printers,
Diablo 1610 protocol serial printers, such as Diablo 1610, Qume
Sprint 5, or NEC Sprinwriter, and

Teletype protocol printers, such as Decwriter, Teletype, or TI
810 and 820.

There are many makes and models with protocols similar or identical
to the above. Some differences between makes of printers will not
make them incompatible with the Vector Graphic computers
necessarily, but it is recommended that the user try out with his
system any printer not listed above, before purchasing.

Adding a printer inveolves 3 steps:

l) obtain the interface components, as well as the printer,
2) do hardware implementation procedures required, and
3) do software implementation procedures regquired.

INTERFACE COMPONENTS REQUIRED

l) Bitstreamer board and I/O cable. Generally, use the one which
came with your system. If it is being used to control a serial
terminal now, it can be used in addition to control a parallel
printer such as a Centronics printer., However, if the present

Rev. 8.1 2/5/79 2-13



terminal is serial, and a SERIAL printer such as Diablo, Qume, or
Teletype is desired, a second Bitstreamer and I/0 cable must be
ordered.

2) If a parallel Centronics protocol printer is to be implemented,
order a CENTRONICS INTERFACE KIT from Vector Graphic or an
authorized dealer.

HARDWARE IMPLEMENTATION

1) If the keyboard and video are controlled by a Flashwriter board,
or if both the printer and the video console are serial, then there
will be 2 interface boards in the system. When this is the case,
the Bitstreamer controlling the printer must be jumpered to respond
to port addresses 4 ~ 7 rather than 0 - 1. Instructions will be
found in the Bitstreamer User's Manual.

2) If the printer is a parallel printer using Centronics protocol,
make the modifications to the Bitstreamer board and install the
Centronics Interface Kit, both as described in Appendix H. Do all
the procedures in Appendix H if the keyboard and video are a serial
terminal such as Hazeltine. However, if the keyboard and video are
controlled by a Flashwriter board, then do not bother to install the
6-pin plug or the serial I/0 cable.

3) If printer is serial, make sure it is set at its highest speed
(1200 baud if it is Diablo 1610 protocol.) Then make sure the
dipswitch on the upper left-hand corner of the Bitstreamer is set at
the same rate (chosen switch up, all others down.) Printer must be
set for MARK parity.

4) Make sure the the 24 pin dip plug on the I/O cable is inserted in
J3 on the Bitstreamer board and that the socket on the other end is
installed in one of the cutouts on the mainframe back panel. Then
plug the printer cable into that same socket on the back panel.

SOFTWARE IMPLEMENTATION

The RES Module on the MDOS System Diskettes is not configured for
any particular printer. However, a large number of versions of the
I/0 portion of the RES Module are present on the diskettes. The
user need only overlay the desired version onto the RES Module
stored in memory, and then save the new RES Module onto the
Personalized System Diskette. The versions available as of this
release are:

CENT and CENT4 for parallel Centronics protocol printers

DIAB and DIAB4 for serial Diablo protocol printers

DECW and DECW4 for serial Teletype protocol printers

In each case, the version with a "4" attéched must be used if the

Bitstreamer has been readdressed for ports 4 - 7. Otherwise use the
version without a "4".

2-14 Rev. 8.1 2/5/79



To accomplish the overlay, simply enter the name of the file in
upper case letters following the MDOS prompt >. After the overlay is
done, indicated by another MDOS sign-on message appearing on the
screen, save the RES Module by entering the following commands under
MDOS:

TYPE "RES"™ 0 (return)
SCRATCH "RES" (return)
SAVE "RES" 2B8 146B 3 (return)

If the printer is not one of the above types, then a custom
interface routine must be written. See Appendix N.

2.2.3 NON-STANDARD CONFIGURATIONS

Any configuration of peripherals which includes a printer, video
unit, keyboard, or terminal different than those used in the
standard configqurations, is a non-standard configuration.

Hardware: In order to order and implement the interface hardware,
use the standard configuration procedures as models as far as is
possible.

Software: In many non-standard configurations, it will be necessary
to custom write a printer and/or console physical I/O routine. refer

to Appendix M for rewriting console I/0 and to Appendix N for
rewriting printer I/O.

2.3 MODIFYING THE SYSTEM HARDWARE

2.3.1 CHANGING TO 2 MHZ CLOCK RATE

Some non-Vector Graphic S-100 boards operate only at 2 MHz, the rate
of the original 8080 clock. Since the 2Z2-80 can operate at both
rates, you may desire to run the system at 2 MHz in order to include
such boards. Instructions will be found in Appendix L.

2.3.2 CONNECTING ADDTIONAL DISK DRIVES

2 Micropolis disk drives are standard equipment. Additional drives
may be added because the Micropolis software can addresss up to 4
drives. Contact your dealer or Vector Graphic in order to order.

Rev. 8.1 2/5/79 2-15



2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

The recording medium used with the MZ Micropolis diskette subsystem
is an industry standard 5 1/4-inch diskette (Fig 2.1) in its
‘hard-sectored version with 16 sectors, each defined by a sector
hole. Thus, it has one index hole and 16 sector holes. Diskettes
of this type are available from computer stores or from other
computer supply sources. DO NOT USE DISKETTES WITH OTHER THAN 16
HARD SECTORS, OR THOSE WHICH ARE SOFT-SECTORED (NO SECTOR HOLES).
THEY WILL NOT WORK.

2.4.2 HANDLING

1) The Micropolis flexible disk drive subsystem was designed to
take every reasonable precaution to protect your diskettes and the
data recorded on them. Examples of this care are the door interlock
which prevents mounting ©of the diskette until it is properly
inserted, and the automatic 5 second deselect feature which relieves
the head load pressure from the recording surface when the drive is
not in use.

Once the diskette is removed from the drive, it is your
responsibility to exercise the same care in handling and storing the
diskette to ensure its long service life. The following precautions
are guidelines for proper handling:

a) The exposed recording surface is easily contaminated -~ do
not touch or attempt to clean the surface. Do not smoke, eat or
drink while handling the diskette. Whenever the diskette is removed
from the drive, return it to its protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which may
be damaged if handled carelessly. Do not place heavy objects on the
diskette; do not expose the diskette to excessive heat or sunlight;
do not use rubber bands or paper clips on the diskette; do not bend
or fold the diskette.

¢} Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette or it may
be damaged by the force exerted in writing. A fiber-tip type of pen
is recommended. Return the diskette to its envelope before writing
on labels,

d) Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may result in the
loss of information.

If a diskette is damaged or contaminated it should be replaced. If
a contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

2) The auto-deselect will ensure reasonable diskette life. But, as

2-16 Rev. 8.1 2/5/79



a rule you should unmount the diskette whenever it is not going to
be accessed for long periods of time. This will give added diskette
life and prolong the life of the drive motor.

2.4.3 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side upward for horizontal drives, or leftward
for vertical drives, and with the edge nearest to the read/write
head access hole going in first. 1Insert the diskette all the way,
until it clicks into place. At this point the diskette is said to
be "inserted" but not yet "mounted". The diskette may be left like
this for any length of time without decreasing its life. Power may
be turned on or off with the diskette in this condition. It is
recommended however that if a diskette will not be used for any
length of time it be returned to its envelope or other storage
file.

Second, the diskette is "mounted"™ by depressing the manual load
actuater on the disk drive slowly but firmly until it stays in the
mounted position. The drive will begin to turn and rotate the
diskette inside its jacket. If the load actuator cannot be fully
depressed, this indicates that the diskette was not inserted
completely or properly.

Power should NOT be turned on or off when a diskette is in the
mounted position. The consequence is from time to time the loss of
data on the diskette.

Once the diskette is mounted, it is accessible by software for
writing or reading. When a read or write operation is initiated,
you will hear an audible click from the drive unit and the red light
on the unit will glow, indicating that unit has been selected.
After the operation is complete, the unit will remain selected for 5
seconds. At the end of 5 seconds, the unit will be automatically
deselected: the red light will go out, and there will be another
click as the head load pad is raised off the surface of the
diskette. This automatic deselect feature is important in
lengthening the life-span of diskettes.

To dismount the diskette, press the load actuator down as far as it
will go, then release pressure. It will then open to the unmounted
position. This discontinues rotation of the diskette within its
jacket. In order to do your part as user in prolonging the life of
the diskette, observe the following rule: UNLOAD THE DISKETTE DURING
PERIODS IN WHICH IT IS NOT IN USE. This reduces wear of the
diskette against its jacket. Note that the diskette may be left
inserted, so long as it is unmounted, without shortening its life.

To remove the diskette, press the load activator upward (or leftward

in vertical drives). The diskette will be popped out (de-inserted)
and can now be removed.

Rev. 8.1 2/5/7% 2-17



2.4.4 REPLACEMENT AND BACK-UP OF DISKETTES

The nature of floppy diskette drives is that the read-write head is
in contact with the diskette surface whenever the unit is selected,
resulting in gradual deterioration of the surface. <Continual
loading of the head on a single track will naturally result in its
deterioration before the rest of the diskette. The rotation of the
diskette within its jacket is an additional source of wear.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back=-up diskette for each diskette you use. In the
business world, this is considered dogma. Data is most often lost
due to damage to diskettes from accidental mis~handling; normal wear
is much less often a problem. The standard rule of thumb is as
follows: copy a front-line diskette on to its back-up whenever you
cannot afford to lose the information stored since you last backed
it up. This goes for programs as well as data. If you are
operating business programs such as inventory or accounts
receivable, maintain a regular back-up schedule, once a week or once
bi-weekly. In addition, your programs if possible should be written
so that an internal file of entries is maintained, and a printout of
entries made each day is produced. Then, if data is lost before it
can be copied on to the back-up, it is fairly easy to re-enter it,
using the back-up diskette as the starting point. In business
particularly, back-up diskettes and printouts of daily entries
should be stored in a safe place.

Replacement: In addition to being backed up, frequently used
diskettes must be replaced from time to time. The intervals are
entirely dependent on the kind of usage. There are no accurate
predictions for diskette life-~span, but 2000 to 3000 hours of
rotation is a reasonable estimate. A good suggestion therefore is
to replace such diskettes every 6 months. Data diskettes used
infrequently may never require replacement.

Failure of a diskette will be indicated by the inability of the
system to read a file which it normally has been able to read. MDOS
will report "PERM I/0 ERROR". With proper care, this should not
occur.

Replacing a diskette simply means copying it onto a new previously
unused diskette. The old diskette can be used for temporary
storage, or disposed of.

To copy diskettes use the Diskcopy Utility, see Section 4.3.

2-18 Rev. 8.1 2/5/79



2.4 DISKETTE MEDIA

2.4.1 DESCRIPTION

Use an industry standard 5 1/4-inch diskette (Fig 2.1) with 16
"hard" sectors. There will be 16 sector holes and 1 additional
index hole around the edge of the center hole. Get them from
computer stores or from other computer supply sources. DO NOT USE
DISKETTES WITH OTHER THAN 16 HARD SECTORS, OR THOSE WHICH ARE
SOFT-SECTORED (NO SECTOR HOLES). THEY WILL NOT WORK.

Without relation to price, some brands of diskettes do not work well
in the Micropolis high-density drives. Use one of the following

brands: Scotch, Dysan, or Maxell. Other brands will not be
reliable.

Individual diskettes may sometimes not work. Besides manufacturing
defects, we have occasionally found batches of diskettes with the
wrong number or sectors, and sometimes diskettes are manufactured
with 2 diskettes inside the jacket. Diskettes which do not work or
do not work reliably should be replaced immediately.

2.4.2 IF YOU HAVE PROBLEMS WITH DISK ERRORS

By a disk error, we are referring to errors reported on the screen
as "PERM I/0 ERROR", indicating something wrong with the diskette or
drive. (The message is dlf%erent in different operating systems.
Another uses "CRC ERROR" ) If your system generates such errors
often with different diskettes, take the following measures in the
order given:

a) Make sure the ocver to the mainfram is on. It is a
shield.

b) Switch to another of the suggested brands of diskettes.

c) If the errors persist, contact your dealer or service
representative.

2.4.3 HANDLING

Diskettes are easily damaged and contaminated. Please obey the
following rules without exception:

a) Do not touch or attempt to clean the inner surface.
b) Do not smoke, eat, or drink while handling the diskette.
c) Do not place heavy objects on the diskette.

d) Do not expose the diskette to excessive heat or sunlight.

Rev. 8.3-A 7/1/79 2-19



e) Do not use rubber bands or paper clips on the diskette.
f) Do not bend or fold the diskette.

g) Do not write on a diskette with a pencil. A fiber-tipped
pen is recommended. Return the diskette to its envelope before
writing on it.

h) Do not expose the diskette to magnetic fields.

i) After use, always return a diskette to its protective
envelope or other protective system such as plastic notebook pages
designed for diskettes.

i) Store diskettes in a vertical position, thus reducing
rubbing.

k) If a diskette is damaged or contaminated, replace it. If a
contaminated diskette is placed in the drive, the receiver and
read/write head may become contaminated and ruin other diskettes.

1) Unmount the diskette if it will not be accessed.for a half
hour or more. If the interval is very long, remove it from the
drive and return it to its storage envelope.

2.4.4 LOADING AND UNLOADING

There are two stages of loading a diskette. First, insert the
diskette with label side leftward, with the edge nearest the exposed
area pointing inward. Insert the diskette until it clicks into
place. You should not have to push so hard that the diskette bends.
The diskette is now "inserted" but not yet "mounted". Although not
good practice for long periods, you may leave the diskette like this
any length of time, and even turn power on or off.

Second, to "mount" the diskette, push the door of the drive until
you feel increased resistence about half-way closed, then SLOW DOWN,
and push SLOWLY but surely until it stays in the mounted position.
The drive will begin to turn and rotate the diskette inside its
jacket. If you cannot fully close the door, the diskette is not
inserted properly.

Do NOT turn power on or off while a diskette is in the mounted
position. This will sometimes damage the diskette. However, 1f you
accidently do this, go ahead and use the diskette because it is
probably undamaged.

Once the diskette is mounted, it is accessible by software for
writing or reading. When the computer accesses tge diskette, you
will hear a click from the drive and its red light will glow. After
the operation is complete, the drive will remain on for 5 seconds.
You can be entering new material at the keyboard during this time.

At the end of 5 seconds, the red light will go out, and there will
be another click as the head load pad is raised off the surface of



the diskette. This automatic deselect feature is imporant in
lengthening the life-span of diskettes.

To dismount the diskette, press the door further open as far as it
will go, then let it close. It will then release to the unmounted
position. This stops the rotation of the diskette. UNMOUNT THE
DISKETTE DURING PERIODS IN WHICH IT IS NOT IN USE. This reduces
wear of the diskette against its jacket. You may leave it inserted
withough shortening lifespan.

To remove a diskette, press the door lefward. The diskette will pop
out.

2.4.5 RECOVERY TECHNIQUES

If you repatedly get PERM I/0 erros using one particular diskette,
then it is probably defective. This will sometimes happen with a
new diskette when you are initializing it or copying another
diskette to it. After several attempts, discard it or return it if
possible. Whenever you repeat a disk operation after an error,
always unload and reload the diskette, because it may be seated
incorrectly.

If an old diskette repeatedly gives errors, first repeat the
operation several times, unloading and reloading the diskette each
time. If there is still a problem, check the center hole. If it is
wrinkled, straighten it out with your fingers and then try again.
If you still get errors, try copying the diskette to another
diskette using the DISKCOPY utility in MDOS. If the error still
occurs, try switching source and destination drives. Some
combination of drives and repositioning of diskettes within drives
will almost always result in a successful copy. If you cannot copy
a diskette at all, then copy it file by file to another initialized
diskette using the MDOS COPYFILE utility. There will probably be

one file which does not copy, but if you are lucky, they will all be
good.

2.54.6 REPLACEMENT AND BACK-UP OF DISKETTES

As with any magnetic storage medium, the recording gradually
deterioreates over time. Even if a diskette is not damaged, it will
begin producing errors after sufficient use.

Backup: The BEST defense against loss of diskette-based data is
maintaining a back-up diskette for each diskette you use. In the
business world, this is considered dogma. Copy a diskette on to its
back-up whenever you cannot afford to lose the information stored
since you last backed it up. This goes for programs as well as
data. If you are operating business programs such as inventory or
accounts receivable, maintain a regular back-up schedule, once a
week or once bi-weekly. In addition, a transaction journal - that
is a printed copy of entries made each day into the system - is an

gxﬁfllent idea to build into business software as a last resort
ac "up »

Rev. 8.3-A 7/1/79 2-21



Replacement: In addition to being backed up, replace frequently used
diskettes by copying to a fresh diskette every 6 months. A good
suggestion is to use the back-up diskette, which is fairly fresh, as
the new front-line diskette, and to create a fresh back-up. Do not
wait until a frequently used diskette fails, before you replace it
with the back-up.

To copy diskettes, use the DISKCOPY utility. See Section 4.3

2.4.7 INITIALIZING DISKETTES

Previously unused diskettes must be initialized (also called
"formatted'") before use. There are two routines in the Micropolis
software that can do this. Use either the INIT command in MDOS (see
4.1.5.22) or the F command in the BASIC UTILITY program operating
under M.BASIC. (see Appendix B). Their results are identical. DO
NOT INITIALIZE THE MDOS SYSTEM DISKETTES PROVIDED WITH THE SYSTEM,
OR ANY OTHER DISKETTE CONTAINING DESIRED INFORMATION. THIS DESTROYS
THEIR CONTENTS.

2.4.8 WRITE PROTECT FOR DISKETTES

Write protect tabs come in boxes of new diskettes. If you attach a
tab over the write protect cutout on a diskette as shown in Fig. 2.2
the disk drive will not allow you to erase or change any information
on the diskette. The tab may be removed later.

2-22 Rev. 8.3-A 7/1/79



WRITE PROTECT TAB
WRITE ENABLE NOTCH FOLD OVER SIDE OF DISK  WRITE PROTECT TAB IN PLACE

N S

. ™\ INDEX AND
! SECTOR HOLC

Figure 2.2 How To Mount Write Protect Tab

Rev. 8.3-A 7/1/79 2-23



III DAY TO DAY OPERATIONS FOR MDOS AND M.BASIC

3.0 SUMMARY OF NORMAL START UP PROCEDURE

Power-on the mainframe, then the peripherals.

If yours is a MEMORITE system, depress RESET key.
Insert and mount MDOS System diskette in drive O.
Enter B on keyboard. MDOS comes on.

Enter BASIC (return) on keyboard. M.BASIC comes on.

W=l o=
Mt Sae? S S? Soe?

(return) means press the RETURN key.

Please read the rest of this chapter thoroughly. The above does not
give all the information you need.

3.1 SUMMARY OF PROMPTS

When one of these prompts appears, it indicates the corresponding

system is loaded and its executive routine is waiting for coperator
input.

1) * Monitor
2) > MDOS
3) READY M.BASIC

3.2 POWER-ON

1) No diskette may be in mounted position, (i.e. rotating)
but it may be inserted in drive.

2) Turn the power key on the mainframe. The RESET button
will light up. ‘

3) If yours is a MEMORITE system, depress the RESET button.
) Switch on all desired peripherals.

5) Depress RESET on printer, if printer will be used and if
printer has one.

6) An asterisk and cursor will appear on the console
indicating the Extended Systems Monitor executive is
available for commands. A few Monitor commands are
covered in this chapter. The remaining will be found in
the Extended Systems Monitor manual. Look it over. Some
may be useful. Monitor commands can be entered at this
time or at any other time that the Monitor executive is

?a%led back into control, indicated by the Monitor prompt
* .

Rev. 8.4-A 7/26/79 3-1



3.3 LOAD MDQS

1) Insert, if not done already, and mount an MDOS System
diskette in drive 0. In place of the MDOS System
diskette, you may substitute an M.BASIC-only diskette.

2) Enter B. MDOS will be loaded into memory and control will
be transferred to the MDOS executive. The screen will
look like this:

*B
Vector MZ MDOS X.XX
>

You may now enter MDOS commands (Chapter 4).

If MDOS should come up but does not, refer to Appendix I for
troubleshooting.

If a M.BASIC-only diskette was in drive 0, the screen will look like
this:

*B
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

In this case, you may begin entering M.BASIC commands immediately
(chapter 5) and skip Section 3.4. Section 2.3.6 discusses
BASIC-only diskettes.

3.4 LOAD M.BASIC FROM MDOS

You may work in MDOS for some time and then transfer control to
M.BASIC, or you may desire to go immediately to M.BASIC as your
first MDOS command. In either case, enter BASIC (return). The
screen will appear like this:

>BASIC
MICROPOLIS BASIC VS. X.X.-COPYRIGHT 19XX
READY

You may now enter M.BASIC commands. (Chapter 5).

3.5 OTHER OPERATING SYSTEMS AND LANGUAGES

This manual deals primarily with the MDOS operating system, as it is
normally delivered. For commands in other operating systems,
including how to load their associated BASIC's or other languages,

refer to the manuals for those systems, included if and when they
are ordered.

3"2 REV- 803"A 7/1/79



3.6 RETURNING TO MDOS FROM M.BASIC

1) Make sure there is a System diskette with MDOS mounted in
drive Q.

2) Enter LINK "MDOS" (return). (See Section 5.21.2.7 for how
LINK works and for other uses of LINK command).

3) Screen will look like this:

READY

LINK "MDOS"

Vector MZ MDOS X.XX
>

You may now enter MDOS commands.

To return to M.BASIC, enter BASIC (return) as usual (see Section
3.4.)

3.7 RETURNING TO MONITOR FROM ANYPLACE

1) Depress control-Q (hold CTRL key down while depressing Q);
or press the ET key on the mainframe front panel.

Control-Q is preferred.

2) You may now enter Extended System Monitor commands.

NOTE: For systems without the version 3.1 Systems Monitor,
control-Q will not work when you try it. If you find this
to be the case, then either the ESC key or control-X WILL
work instead. To find out which will work in your system,
get MDOS running and try them. Control-X and the ESC key
each have a special function in the MDOS and M.BASIC
editors. If one of these causes a return to the Monitor,
then obviously, you cannot use that function in the MDOS
and M.BASIC editors. Make a mental note of this when
reading the MDOS and M.BASIC editor instructions. If ESC
or control-X causes a return to the Monitor instead of
controz-g then substitute it wherever control-Q appears in
this chapter.

Returning to the Monitor is useful when Monitor commands are needed
for trouble-shooting MDOS or M.BASIC programs. It is also used if
there is no other way to break out of an undesired loop or output
sequence in any program. Always use control-Q rather than RESET if
possible, because on extremely rare occasions, RESET may change some
of the contents of memory.

Control-Q will not work when certain special purpose programs are
operating. The most important of these are disk access routines,
and the Word Management System and MEMORITE word processing
software. RESET is necessary in these cases if you want to return
to the Monitor.

ReV- 803"A 7/1/79 3"3



Avoid using RESET to abort a disk write operation, if possible,
because if at that moment the directory is being written, then all
the data on the disk can be effectively lost. (The same holds true
if you dismount the disk at that time.)

In addition, aborting a disk read or write operation may leave the
file in an "open" state, which can cause an error message next time
the drive is accessed. This can be cleared by executing the FILES
command in MDOS. Enter FILES (return), then return to your program
and access the disk.

The best advice is, in general, allow disk read and write operations
to go to their natural conclusions. Only abort if the operatiom is
looping indefinitely.

3.8 RETURNING TO MDOS (OR M.BASIC) FROM MONITOR IF MDOS (OR M.BASIC)
IS ALREADY IN MEMORY

This is the MDOS (or M.BASIC) warm-start command.

Depress J after the Monitor prompts with *.

3.9 RETURNING TO MDOS OR M.BASIC EXECUTIVE FROM WITHIN A ROUTINE
RUNNING UNDER THAT EXECUTIVE

Depress control-C. (Hold the CTRL key down while depressing C.

Response is MDOS prémpt (>) if MDOS is the executive, or BASIC
prompt (READY) if BASIC is the executive.

Control-C is used to leave a routine at other than the normal end
point. Use it when the routine is waiting for any type of keyboard
input. It is sometimes also effective for interrupting an overly
long or unending stream of output.

If it does not work, then control-Q is the alternative. Since this

returns control to the Monitor, depress J then to return to MDOS or
M.BASIC.

3.10 VIDEO COMMANDS

This section is ONLY relevent to systems using memory mapped video,
such as the Vector Graphic Mindless Terminal. If a serial terminal
such as Hazeltine is used, then refer to the manual for that

terminal to find how you can control the screen image from the
keyboard.

These commands may also not work if another operating system, such
as CP/M is in control of the system. They will definitely not work

when word processing, using the Word Management System or MEMORITE,
is in control.

Most of the time, when the system is waiting for keyboard input,

3'4‘ Rev. 8.3-A 7/1/79



operator may perform the following operations on the screen image.
These commands are made possible by the Extended Systems Monitor.

For more information of a technical nature, refer to the Extended
Systems Monitor manual.

3.10.1 CLEAR SCREEN

Depress control-D.

3.10.2 SCROLL SCREEN UP ONE LINE

Depress control-J or LF key.

-

3.10.3 BACKSPACE CURSOR

Depress BACKSPACE key, underscore key, or control-H. Also, the DEL
key will have this effect LF MDOS or M.BASIC is running.

These commands will always work when MDOS or M.BASIC executives are

waiting for input, and when any M.BASIC program is waiting for
input.

In other situations, for example, when an assembly language program
is waiting for input, these commands may or may not work depending
on how the program in control was written.

3.10.4 CONVERT THE SYSTEM TO REVERSE VIDEO

For variation, you can cause the screen to display characters
black-on-white rather than white-on-black. Just depress control-T

(hold down CTRL key while depressing T ) If you depress this again,
the vidéo will return to white-on-black. Characters already entered
will remain on the screen the way they were entered.

3.10.5 TAB CURSOR TO NEXT TAB LOCATION (EVERY 8 SPACES)

Depress TAB key or control-I

3.10.6 ELIMINATE CURSOR FROM THE SCREEN

Depress control-N

3.10.7 MOVE CURSOR TO TOP OF SCREEN

Depress control-B



3.10.8 MOVE CURSOR DOWN, UP, LEFT, OR RIGHT

Depress one of the keys with an arrow on it. If your keyboard has
no arrow keys, then depress control-R, control-U, control-W, or
control-Z to move cursor down, up, left, or right respectively.
However, Control-U and the up-arrow key will not work under while in
MDOS or M.BASIC, though it will work under certain machine language

programs and when in the Extended Systems Monitor echo mode (Y
command) .

3.10.9 RETURN CURSOR TQO LEFT EDGE OF SCREEN

Depress RETURN key or control-~M,

3.11 POWER-DOWN

1. Make sure you have stored on diskette all the programs and
data you wish to save.

2. Dismount all diskettes. They may be left inserted and
clicked in, so long as they are not mounted (rotating).

3. Turn off all”peripherals.

4. Turn the power key on the mainframe front panel.

Rev. 8.4-4 7/26/79 3-6



IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.9 INTRODUCTION TO MDGS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MDOS). MDOS consists of an executive
program, a group of shared subroutines available to user programs,
and an assembly language program development package.

The MDOS executive program impiements an interactive command language
that allows the user to control computer system operations from the
system consaole. It provides commands for memory management, file
management, I/0 control and program control.

MDOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
consale and printer character 1/0, buffered line I/0, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor orientad utility subroutines.

Six application programs make up the package that supports assembly
lanquage program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8@8@/8885 disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent

symbol table. FILECOPY is a utility for copying named files. DISKCOPY
is a utility for making 1iteral copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
Tanguage programs.

4-1

Rev, 8 9/78



Rev.

4.1 THE MDOS EXECUTIVE

The MDOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When MDOS is loaded it signs on with the
message

MICROPCOLIS MDOS VS. X.X - COPYRIGHT 1978

>

It is then waiting for an executive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. During the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

1) when DEL or RUBGOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

2) Holding down the control key and typing X {CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The
executive is positioned to accept entry of a new line.

4.1.2 EXECUTIVE STATEMENT FORMAT

An executive statement has the following form:
[unit:INAME ["<ASCII>" "“<ASCII>" ... “"<ASCII>" <hex> <hex> ... <hex>]

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MDOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only

and must not be preceded by any spaces. In addition, executable assembly
language programs can be loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII characters in the code range 21 hex to 7E hex. Imbeded
spaces, double gquotes, backarrows, and rubouts are not allowed in
implicit command filenames.

When an executive statement is entered the executive program searches
its table of explicit command names for a match with the NAME that was
input. If the NAME is found in the table of command names the statement
is executed immediately. I[f the MAME is not an explicit command name,
then the NAME is treated as an implicit command filename which must be

8.1 2/5/79 4-2



found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAMEd file is to
be found. If no unit number is specified, unit @ is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the specified disk drive for the file. If
the file is found on the disk (and the file type is correct) the executive
loads the program file into memory and transfers control, along with any
parameters in the executive statement, to the program. If the executive
does not find the file on the specified drive an error message is output

to the console stream: COMMAND NOT FOUND. If the file is found on the
disk but it is not an executable file an error message is output to the
console stream: WRONG FILE TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necessary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at least one space between
the NAME and any parameters. A1l parameters must be separated from each
other by at least one space. =Intry of an executive statement with too many
parameters of either type, or without the required spaces between fields

will result in a SYNTAX ERROR. :

ASCII parameters consist of from 2 to 18 ASCII characters in the code range
2@H to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCII parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced quotation marks or illegal characters

in an ASCII parameter will result in a SYNTAX ERROR.

ASCII parameters in executive statements are generally used to specify
disk filenames. In this usage a unit number may be prefixed to the ASCII

. filename within the quotation marks by typing the unit number followed by

a colon (:) followed by the filename. This indicates the disk drive unit

on which the file is to be found. If no unit is specified, unit 8 is
assumed. The digit of the unit specification and the colon are not included
in the 1@ character length restriction for ASCII parameters. For example,
“"DATAFILEQO1™ and "1:DATAFILEQ1" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from P to FFFF. They represent such elements as memory addresses, filetypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with illegal characters will result in a SYNTAX ERRCR.

4.1.3 CANCELLING AN OPERATION

A1l MDOS explicit commands and all application programs supplied by Micropolis
can be cancelled in progress by holding down the control key and typing a

C (CNTL/C) on the console keyboard. The operation will be terminated as soon
as the CNTL/C is recognized and the message CANCELLED will be output to the
console. Control is returned to the MDOS executive.

Rev. 7 3/78 4-3



4.1.4 DISPLAY CONTROL

A1l MDOS explicit commands and all application programs supplied by Micropolis
can be temporarily stopped in progress by holding down the control key and
typing an S {(CNTL/S). The process will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
viewed at reading speed by stopping and resuming the output as necessary.

4.1.5 EXPLICIT EXECUTIVE COMMANDS

Command syntax for each of the MDOS explicit commands is illustrated in
this section with the aid of the following notation:

[ ] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE COMP COMMAND

COMP <«start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

>COMP 5@Q9 50QF 5019
5804 91 P9 5914

The block of memory from 5998 to 5P@F is compared with the block of memory
from 5018 to 581F. One location fails to compare. Location 5804 contains
A1 while the corresponding location, 5@14, in the second block contains 9.

4.1.5.2 THE DUMP COMMAND

DUMP <start addr.>{<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown

16 to a line with the memory address_at the left margin. If the optional end
address parameter is not entered, only one byte is displayed. Example:

>DUMP 590 5911

5000 5P Cp 27 77 4F 33 4F CD 7D SE 98 9p 6A FD 82 9@
5810 77 28

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

4-4

Rev. 8 9/78



The ENTR command allows data to be entered intc memory directly from the
console device, Example:

>ENTR 7889
>78 89
6F/

Three bytes were entered starting at location 7982 hex. These were 78
at 7999, 89 at 7001, and 6F at location 7992.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

>FILL 7000 8999 9

Each byte of memory in the biock from 7000 to 8902 is changed to a #9
by this command.

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

>MOVE 3009 4900 7009

Each byte in the memory block from 3992 to 4@P@ is copied into the
corresponding position in the memory block from 7898 to 809@.

4.1.5.6 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 3009 3929 SF

3994 9F
3918 SF

The block of memory from 30P@ to 3928 is searched for all occurrences of
a 9F. Location 30804 and location 3918 both contain 9F. No other
locations in the block contain 9F.

4-5

Rev. 7 3/78



4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 3008 3@19 67
3002 @S 67
3996 76 67

The block of memory from 3099 to 3219 is searched for all non-matches with
the mask 67. Location 3982 contained a 9 rather than a 67, and 3826
contained a 76 rather than a 67.

4.1.5.8 THE CREATE COMMAND

CREATE "[unit:]<filename>" [<file type>]

The CREATE command creates a new file in the directory of the diskette

in the specified unit and allocates the initial track for the file. If
no unit is specified, unit @ is assumed. The second parameter optionally
gives the file a TYPE designation. If no type is specified the type is
defaulted to 2.

4.1.5.9 THE DISP COMMAND

DISP "[unit:]<filename>" [<record number>]

The DISP command outputs a formatted hex display of the data contents of
a file to the system console. The unit number indicates the disk drive

. on which the file is to be found. If no unit is specified, unit @ is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed. 4

Each record is displayed with a header line that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data lines follow the record header.
Each data line has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that line.

>DISP "1:TEST" 29

9829 3Cp9 p@22

g8 12 2ABD 76 8F ED 54 41 89 99 99 32 BC CC 76 89
19 78 88 38 BB 83 54 58 56 99 88 32 31 39 90 29 09

29 89 55
PA2A 3C3p 9PP3
@ FF FF FF

028 3F0P 9999

9@ 45 43 4B 4C 31 37 38 90 29
g@2C 2800 90099

END-FILE

Rev. 8 9/73 4-6



The first line of the display shows the record number 29, the load

address 3C@@, and the length of the record 22 bytes (all in hex). The
header line is followed by three l1ines which display the data in record

29. Each data line starts with the index position of the first byte in the
line. It is followed by two spaces and then the data.

The next header is for record 2A which has a load address of 3C88 and
contains 93 bytes of data.

Reéord 2B has a load address 3F@p and contains §9 bytes of data.

The last header is for record 2C which has a load address of 2B@2 and a
record length of @. If the file is an executable object file (1ike ASSM
for example), the address in the zero length sector is the execution
address of the file. LOADing stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1

Rev. 8 9/78



4.1.5.19 THE FILES COMMAND

FILES [<unit>]

The FILES command outputs a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory is to be displayed. If no unit is
specified, unit P is assumed. Example:

>FILES 1

IR 83  pogp
RES 3 @013
MDOS gF  9p1C
L INEEDIT 15 ppac
ASSM 15 92019
SYMSAVE 15 po@3
FILECOPY 15 9003
DISKCOPY - @F  0p99
BASIC pF  po4B

The files on drive one are displayed on the console. The left column
contains the filename, the second column is the file type, and the
third column contains the number of sectors the file uses. A1l numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>] ‘

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
diskvdrive. If no unit is specified, unit @ is assumed. Example:

" >FREE 1
2938

The diskette on drive one'has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]<filename>"

The SCRATCH command removes a named file from the directory of a diskette
- and returns its allocated tracks to available status. Disk drive @ is
assumed if no unit is specified.

Note: Some files cannot be SCRATCHed without first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

4-7

Rev. 7 3/78



4.1.5.13 THE LOAD COMMAND

The LOAD command loads (reads) a named file’ from a diskette into the computers
memory and then returns control to the MDOS executive. If no unit number
is specified, the file is expected to be found on unit 2.

The LOAD command can be used in conjunction with two categories of files,
OBJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be loaded. The
process of LOADing an OBJECT file is described in 4.1.5.13.1. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the QVERLAY category.

An OVERLAY file is defined as any file with a file type value in the range

PC - PF hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WROMG FILE TYPE. OVERLAY files are not LOADable because

they generally imply the replacement of the MDOS module and require immediate
execution. Control cannot be returned to the MDOS executive and must be
transferred immediately to the newly overlayed program module. If there is

a necessity to LOAD an OVERLAY file into a memory area which does not
conflict with MDOS, this can be done by changing the file type to an OBJECT
type and then using an offset load per Section 4.1.5.13.1.

4.1.5.13.1 THE LOAD COMMAND FQR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
P8 - @B hex or 14 - 1B hex. These ranges include ASSM object files, BASIC
'save memory' files, executable system files, and executable user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:
LOAD "[unit:] <filename>" [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4). This is called a
'scatter load' because it permits records in the file to be loaded into
non-contiguous portions of memory depending on the associated addresses.
The LOAD is terminated when the first @ length record in the file is
encountered.

If the optional start address is not specified in the LOAD command, then
the load of an OBJECT file proceeds according to the following example.

The OBJECT file to be loaded is “TEST".

DISP "TEST"

009 2BP@ 9925

p@ 31 32 33 34 35
p001 2Cp@ 2pp4

Pp@ 54 45 53 54

p@0z 2800 2000
END-FILE

Rev. 8 9/78 4-8



Tynping LOAD "TEST" loads two text strings into memory. The string "12345"
in record ® is loaded starting at 28@@ hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2C@@ hex for four bytes. The last
record contains a zero length sector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case is 2B®@ hex. This file, however, could not be

g2 run file as it stands as there is no executable code.

If the load address of the first record is less than 2B@@ hex, the message
LOAD ADDRESS ERROR is displayed because file may not be loaded beneath the
MDOS application area.

If the optional start-address is specified in the LOAD command, then the
first record of the file is loaded starting at the specified address. The
load address in the record header of the first record is subtracted from
the start-address to produce an offset. When the records following the
first record of the file are loaded, the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an 'offset scatter load'.

Using the file TEST in the example above, typing LOAD "TEST" 5008 loads the
string "12345" starting at memory location 5099 hex for five bytes. The

offset is calculated by subtracting the load address in the header of the first
record from the start-address. 500p-2B@@=250@ hex. The string "TEST" is
loaded starting at 5199 hex for four bytes. The load address in the header

of the second record, 2C3® has the offset 2500 hex added to it and the result
is the offset-load address. :

If the optional start-address is less than 2B@@ the message LOAD ADDRESS
ERROR is displayed.

4.1.5.13.2 THE LOAD COMMAMD FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as

a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges 9-7, 19-13 hex, and 1C-FF hex. These ranges cover MDOS and
BASIC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD “[unit:] <filename>" <start addr.>

The start address parameter is mandatory. If a start address is not specified
a SYNTAX ERROR message will be displayed. If the start address is less than

2B@@ HEX a LOAD ADDRESS ERROR will result. This prevents accidental destruc-
tion of the operating system.

4-8.1

Rev. 8 9/78



Data is loaded starting at the specified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contiquously. Only the
number of data bytes in each record are loaded. The LOAD command does not
nad records of less than 256 bytes. If a file were Joaded at location
329 and the first record had only 4 data bytes in it, then the first data
byte from the next record would be loaded at location 3@34. Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4) has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:J<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>]

The SAVE command saves (writes) a new file to a diskette from a block

of memory. The file is written sequentially from the memory start

address through the memory end address into full sequential records. If
no unit number is specified, the file is written to unit @§. If a file
type is not specified the file type will be zero. If an execution address
is not specified, the execution address of the file will be set to the
start address of the memory block. Note that the type and execution
address parameters are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE "1:NEWFILE" 2B39@ 37090 P 3909

A file is created on the diskette in drive one with the name NEWFILE

and the memory block from 2B@@ to 3799 is written to that file. The file
is given a type of @ and the execution address saved with the file is
392@. If no execution address had been specified then 2Bg@ would be
saved as the execution address.

4.1.5.15 THE RENAME COMMAND

RENAME "[unit:]<filename>" "<new name>"

The RENAME command changes the name of a diskette file to a specified
new name. If no unit number is specified, the file to be renamed is
expected to be found on unit 2. Example:

>REMAME “1:0LDFILE" “NEWFILE"

The file named OLDFILE on the diskette in drive one is changed to NEWFILE

on the diskette in drive one. The file type is unchanged by the renaming
process.

Rev. 8 8/78 4-3.2



4.1.5.16 THE TYPE COMMAND

TYPE "[unit:]<filename>" <type>

The TYPE command changes the type designation of a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "1:PROGRAMX" 15

The type of the file PROGRAMX one disk drive one is changed to a value
of 15.

4.1.5.17 THE APP COMMAND

APP [“<ASCII>" "<ASCII>"..."<ASCII>"] [<hex> <hex>...<hex>]

The APP command transfers program control from the MDOS executive to

the start of the MDOS applications area at 2B@@ hex. It expects a valid
executable program to be in the applications area with its entry point

at the beginning. Up to four ASCII parameters and four hex parameters

can be passed to the program. For example, if you are doing several
assemblies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.

After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "1:SOURCE" "OBJECT" "P"

If the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembier
would assemble the source file called SOURCE from drive one; produce an
object file on drive zero called OBJECT; and output a paginated 1isting
on the print device.

The APP command functions 1ike the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.1.5.18 THE ASSIGN COMMAND

ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSIGN command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to logical
output streams and the values for carriage width and nullcount of the
referenced physical device. The physical device number must be 1 or 2.
The Togical stream mask must be a @8,1,2, or 3. The device width and
nullcount must be numeric values in the range 1 to FF hex. The width
and nullcount parameters are optional. If width or nullcount are not
included, the values corresponding to the referenced physical device

4-9

Rev. 8 9/78



are not changed. 1If only the device width is included, then the
nullcount is left unchanged. However, if a nullcount is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command contains only three parameters the third is always
the width.

Logical output stream number one consists of all output generated by
system messages, keyboard echoing and the output from any explicit
executive command. Logical output stream number two consists of all
output generated by LISTP and PRINTP commands in the line editor, and

by all listings in the assembler. The logical stream mask can be set to
a three to represent both Togical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is configured as the system console (see
Section 2.2.4.1 on terminal configuration). Physical device number two
represents the hard copy print device which is configured as the system
printer (see Section 2.2.4.3).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous
assignment of the specified device.

In its initialized state the terminal is assigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing:

>ASSIGN 1 1

>ASSIGN 2 2

Rev.

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each line for the given device. When a line is
output that is Tonger than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The

width can be changed on a given device by repeating the current assignment
with the new width parameter. For example, if the console were currently:
assigned to stream one with a width of 8¢ characters (decimal), it could
be changed to a width of 72 characters {decimal) as follows:

>ASSIGN 1 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reassigned, or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character

serial devices which may lose characters while the carriage is being
returned. The nullcount value is one greater than the actual number of

7 3/78 4-10



output nulls (ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and

no nulls (nullcount=1), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 6

132 decimal is 84, and 6 will result in five nulls being output after a
carriage return.

Because the MDOS executive language has been designed to be interactive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

4.1.5.19 THE EXEC COMMAND
EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. It expects a valid program to begin at that address.
The address of the operating systems warm start entry point is PUSHed
onto the 8p8@'s hardware stack by the EXEC command. Therefore, if the
executed program does not set its cwn stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers. It displays the sum, difference, product, quotient, and modulus.
Example:

>MATH 4 5
@p@9 FFFF 9@14 0000 DOR4

The results are displayed from left to right: 4+5=9 ; 4-5=FFFF ; 4*5=14
; 4/5=0 (intiger division) and a remainder {modulus) of 4.

4.1.5.21 PROMPT "<ASCII>"

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up to ten characters long. Spaces are

4-11

Bev. 8 9/78



not allowed. The prompt is initially > when the system is configured.
Example:

>PROMPT "*"
Fk

The prompt is changed from > to a **

4.1.5.22 THE INIT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector

to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of

a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE YOU SURE?. It waits
for a 'Y' or 'N' response to indicate yes or no. An 'N' cancels the
command without doing any damage. Example:

INIT 1
ARE YOU SURE?

The diskette on drivé one will be initialized if a 'Y' is typed. All

other replys will result in the command being canceled. Control returns
to the executive.

Rev. 7 3/78 4-12



4.2 MDOS DISK FILE I/0

MDOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track

@ of each diskette contains a directory of the files on that diskette.

Each directory entry holds the name, protection attributes, type, length
and starting location for one file. Track § also contains a track map
index that lists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly) by record or byte within record.

4.2.7 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file is all tracks on the diskette (35 on MOD I subsystems and 77 on

MOD IT subsystems), except the directory track @. When MDOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment.

Maintenance of the track map in the track indexed scheme operates as
follows. Whenever a file is opened for access MDOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference thrcugh
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files size or status.

4.2.2 FILE NAMES

File names consist of from @ to 18 ASCII characters in the code range
2PH to 7EH except for 22H which is the double quote and SFH and 7FH
which are interpreted as backspace requests by the logical console
input routines.

A unit number may be prefixed to the filename by typing the unit number
followed by a colon (:) followed by the filename. This indicates the

disk drive unit on which the file is to be found. If no unit is specified,
unit @ is assumed. The digit of the unit specification and the colon

are not included in the 19 character length restriction for ASCII para-
meters. For example, DATAFILE@1 and 1:DATAFILE@1 are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not
start with a blank. It may have no imbeded blanks and it may not exist
in the MDOS explicit command table.

4-13
Rev. 7 3/78



Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 1@ characters long and use the ASCII
characters from 2D hex through 5A hex except the colon (3A hex). This
should be kept in mind when creating file names for MDOS. The BASIC
file names are a subset of the MDOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MDOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MDOS also allows files to be classified
as to unique information content by assigning a type designation. A files'’
access codes and type designation are combined in one byte of the files'
directory entry. The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT

19

. A normal read/write file
g1 A normal read only file

18 A permanent read/write file
11 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but it cannot be written into. A permanent file can
be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts
to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary. ,

Note that these access code safeguards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes @ through 7F hex are reserved for present and future system usage
and should not be assigned other meanings by the user. The codes from 8@
to FF hex are available to the user and are not used by the system.

Rev. 8 9/78 4-14



The executive, the assembler, and the editor check file types when called
upon to load, save, or resave a file. If the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE DESCRIPTION

INHEX_ . ______

89-23 MDOS & BASIC DATA FILES

94-97 EDITOR/ASSEMBLER SOURCE FILES
p8-g8 ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
ac-gF EXECUTABLE OVERLAY FILES
19-13 BASIC PROGRAM FILES

14-17 EXECUTABLE SYSTEM FILES

18-18 EXECUTABLE USER FILES

1C-7F RESERVED FOR FUTURE EXPANSION
8p-FF AVAILABLE FOR USER DEFINITION

The line editor produces type 4 files. It can load type 4,5,6, and 7 files.

The assembler will only assemble type 4,5,6, and 7 files. It produces
type 8 files. '

Executable system files and user files may be loaded with the load command.
Any attempt to load a file below the application program area will result
in a LOAD ADDRESS ERROR. Executable overlay files may be loaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an overlay file
will result in the message WRONG FILE TYPE.

It is not possible to load an overlay file without beginning its execution.
However, the entry point of the overlay could contain a jump to the MDOS
warmstart address. This would return control to MDOS immediately after
the overlay file was loaded, provided that the file did not overlay any
functional MDOS code.

4.2.4 FILE AND RECORD STRUCTURE

An MDOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the file directory on track @ of the diskette.

Each record of an MDOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the record consists of

P to 256 data bytes. The memory address tells MDOS where in memory to Toad
the data from that record. The length indicator tells MDOS how many valid
data bytes are in the record. A record needs a minimum block of 4 bytes
and a maximum block of 26@ bytes to be properly stored.

The records of a MDOS file are stored on the sectors of a diskette, one

for one. Micropolis disk subsystems write a physical sector that is 268
bytes long. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 26@ bytes are available

for a record. Short records, including @ length (empty) records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any

time by rewriting the sector to make use of the unused bytes.

4-15
Rev. 8 9/78



The object program file that corresponds to the following assembly
language program serves to illustrate the MDOS file and record structure.

ADDR B1 B2 B3 E LINE# LABEL 0PCODE OPERAND
2000 1899 START ORG 4900H
4009 21 99 79 2009 LXI H,7008H
4903 3p@9 DATA DS 19H
4013 929 4900 BYTE DB p

4014 5088 DATAl DS 1¢H
4924 @1 6009 BYTE] 0B 1

4925 C3 25 49 7090 BEGIN JMP $

4928 8089 END BEGIN

The first record of the object file has 4@9@ hex in the memory address
bytes in Intel low/high format. The record length bytes contain §983,
indicating that the record has only three bytes of data. The three data
bytes are 21 99 7@8. This record is written on the disk as one sector.
The second record of the object file has a memory address of 4813 and a
length of P@@1, one byte of data @@. This record is also stored on the
disk as one sector. The third record has a memory address of 4@24 and a
length of @@@4, four bytes of data @1 C3 25 4@. This record is stored
on the disk as one sector. A fourth record is written that has a memory
address 4025 and a length of @@@@. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement.

The structure of this object file is standard for all MDOS executable

or memory load files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file

execution address. Given an executable file type, the records of this file
could be loaded into memory at 4@¢@, 4013 and 4@24 by typing its name to
the executive. Direct processor control would transfer to 4925 to begin
program execution. This type of file is called a scatter loadable file .
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MDOS file is included in the directory
entry for that file. This determines the end of file for data files.

Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record

is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MDOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and directly {randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

Rev. 8 9/78 4-16



until a full 256 byte record is constructed and then writes it to the

next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner

may have records of varying length up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. . If the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access. A file may

also be read sequentially a record at a time by starting at the first record,
reading the record length and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be read or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file.

4.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

BASIC file names are a subset of MDOS file names. Therefore all BASIC files
can be handled by the MDOS file name parsing logic, but not all MDOS file
name can be handled by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 25¢ bytes of data. The
file and record structure is the same as that used by MDOS as discussed

in Section 4.2.4. The two bytes at the start of the record which hold the
length of the record can never be greater than 258 if the file is to be
used by a BASIC program as a data file. BASIC will oufput an error message
to the console stream and stop the program if the record length is greater
than 25@. MDOS can create BASIC readable files as follows:

1908 * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE

2000 MVI 8,250

399 GET CALL GETDATE

3500 JC EXIT ;CLOSE FILE & EXIT
4200 CALL @WTINXPOSI

5a98 DCR B

6000 JNZ GET

7900 CALL @INCRECPOS

8009 JMP GET

This partial program illustrates a method for writing 250 byte records.

For these records to be meaningfull to BASIC, the data must be seven bit
ASCIT with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC). The subroutine GETDATE is the users data acquisi-
tion routine which returns the carry flag set when the process is done.

@WT INXPOSI and @INCRECPOS are MDOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5.

4-17
Rev. 8 9/78



4.3 MDOS SHARED SUBROUTINES

MDOS provides the applications development programmer with many useful
sybroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character I/0, buffered
Tine I/0, text line parameter parsing, sequential and random file access,
file management, physical diskette access, and 16 bit integer arithmetic.
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name; e.g. CALL @HLADDA. The PDS MASTER diskette contains
two files named SYSQ1 and SYSQ2. These are editor compatible source
files that contain the names of all of the MDOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should inciude the SYSQ1 and SYSQ2 files in their
assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.5.

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

4.3.1 CONSOLE AND PRINTER INPUT/QUTPUT SUBROUTINES

Micropolis Program Development Software packages perform input and output
through the following subroutines. These routines link the system with
the device handlers described in Chapter Il under configuring for
supported devices.

The device handler routines start with a vector table whose address is

@CIOTABLE for the console, and @LIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables

using @CONSOLEADDR, and GLISTADDR which are buffers that hold pointers

to the actual location of GCIOTABLE and BLIOTABLE. By changing the two
bytes at Tocations @CONSOLEADDR or GLISTADDR the user can have special

purpose drivers in memory at the same time as the standard drivers.

4.3.1.1 GCIN ~ CONSQLE INPUT

The GCIN routine waits for input from the system console. It strips
parity and changes ASCII codes 5F (backarrow) and 7F (rubout) into 98
(backspace). It returns the input character (7 bit ASCII) in the B
register, with the carry flag clear (NC). It preserves the HL, DE,
and C registers.

4.3.1.2 RCOUT - CONSOLE QUTPUT

The @COUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associated with the device attached to the console
stream. It changes ASCII code @8 hex (backspace) into a 5F (backarrow).

If the wrap logic for the device assi%ned to the console stream is enabled
a line feed and a carriage return nulls sequence will be output when the

Rev. 8 9/78 4-18



number of characters on the line equals the width. Refer to the ASSIGN
command in the MDOS executive. It expects the character (7 bit ASCII)
in the B register. It returns the carry flag set (C) if a printer
attention condition occurs, and sets the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It
preserves the HL, DE, and BC registers.

4.3.1.3 BCBRK - CONSOLE CHECK BREAK

The @CBRK routine checks the console device for the input of a cancel
(control C), or a pause (control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (@3) is
input. It preserves the HL, DE, and C registers. On pause (control S)
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the caller.

4.3.1.4 GCDIN - CONSOLE DEVICE INPUT

The @CDIN routine waits for input from the console device. It returns the
character (8 bits including parity) in the B register, with the carry flag
clear (NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE QUTPUT

The @CDOUT routine waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
%t greserves the DE, HL, and BC registers. It returns the carry flag clear
NC).

4.3.1.6 G@CDBRK -~ CONSOLE DEVICE BREAK CHECK

The @CDBRK routine checks the console input ready status. If an input .

is ready it gets the input. Otherwise it returns immediately. It retyrns
the zero flag set (Z) and the input character (8 bits including parity

in the B register if there was an input. It preserves the DE, HL, and C
registers. [f there was no input the @CDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 GCDINIT - CONSOLE DEVICE INITIALIZATION

The @CDINIT routine jnitializes the console interface device. It preserves
the HL, DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 @LOUT - LIST OUTPUT

The BLOUT routine waits until the 1ist stream is ready to receive and

then outputs a character. [t changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the 1ist stream. It changes ASCII code @8 hex {backspace) into a 5F
(backarrow). If the wrap logic for the device assigned to the list stream
is enabled 2 1ine feed and a carriage return nulls sequence will he output

4-19

Rev. 8 9/78



when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MDOS executive. It expects the character

(7 bit ASCII) in the B register. It returns the carry flag set (C) if
a printer attention condition occurs, and sets the assignment to ASSIGN
1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive.
It preserves the HL, DE, and BC registers.

4.3.1.9 GLATN - LIST ATTENTION

The GLATN routine checks the 1list stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MDOS executive. It preserves the HL, DE, and BC registers.

4.3.1.10 @LDOYT - LIST DEVICE QUTPUT

The @LDOUT routine waits until the 1ist device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag

set (C) if a printer attention occurs.

4.3.1.11 RLDATN - LIST DEVICE ATTENTION

The BLDATN routine checks the list device for a printer attention condition.
It returns the carry flag set {(C) if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.1.12 RLDINIT - LIST DEVICE INITIALIZATION

The -BLDINIT routine initializes the 1ist device. [t preserves the HL, DE,
and BC registers. It returns the carry flag clear (NC). :

4.3.1.13 BCCRLF - CONSOLE LINE FEED CARRIAGE RETURM

The GBCCRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,
DE, and BC registers.

4.3.1.14 BLCRLF - LIST LINE FEED CARRIAGE RETURN

The @LCRLF routine outputs a line feed carriage return and nulls to the

list output stream. It returns the carry flag set (C) if a printer attentiaon
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,

DE, and BC registers.

4.3.1.15 @ASSIGN - ASSIGN

The BASSIGN routine assigns the physical device to specified logical stream(s)
and sets the width and nullcount associated with the device. It expects the
physical device number in the E register, the logical stream mask in the D

Rev. 7 3/78 4-20



register, the width in the C register, the nullcount (nulls+l) in the B
register, and the number of parameters passed in the H register. No
registers are preserved. (Refer to the ASSIGN command in the executive for
a detailed discussion of physical device assignment to logical output
streams).

4.3.1.16 @CILINE - CONSOLE INPUT LINE

The @CILINE routine outputs a specified prompt message to the console

and then buffers up to 132 characters of input text from the console
device. It provides the standard backspace (rubout) and line cancel
(CNTL/X) controls during the line entry process. The text line input is
terminated by a carriage return. (Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of @ through 1F hex or the high order eight

bit of the last byte set. It returns the input line in QINBUFF, and ?he
number of input characters including the terminating carriage return in the
B register. It preserves the HL, DE, and C registers. Any control char-
acters input during the line entry process are echoed to the console stream
but not entered into @INBUFF.

4.3.1.17 GHEXOUT - HEXADECIMAL OUTPUT

The GHEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and ocutputs the number to the console. It returns
the carry flag set (C) if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MDOS executive. It preserves the HL, DE, and C registers.

4.3.1.18 GHEXADDOUT - HEXADECIMAL ADDRESS OUTPUT

The @HEXADDOUT routine converts an unsigned 16 bit binary value in the

HL registers to a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGMN command in the MDOS executive. It preserves
the HL, DE, and C registers.

4.3.1.19 @HEXOUTSPC ~ HEXADECIMAL OUTPUT WITH SPACE

The @HEXOUTSPC routine converts an unsigned 8 bit binary value in the
HL registers to a hex number and outputs the number to the console
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDQS
executive. It preserves the HL, DE, and C registers.

4.3.1.20 RSPACEQUT - SPACE OUTPUT

The @SPACEOUT routine outputs a space (2@ hex) to the console stream.

It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the
ASSIGN command in the MDOS executive. It preserves the HL, DE, and

C registers.

4-21

Rev. 8 9/78



4.3.1.21 BNLINEOUT - NEW LINE OUTPUT

The ONLINEQUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text line in the HL registers. The message pointed to must be properly
terminated with a byte code in the range @ through 1F hex or the high

order eighth bit of the last byte set. It returns the carry flag

clear (NC) in all cases. It preserves the HL, DE, and C registers.

4.3.1.22 GLINEOUT - LINE OUTPUT

The GLINEOUT routine outputs a line of text to the conscle stream. It
expects the address of the beginning of the text Tine in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range @ through 1F hex or the high order eighth bit of the last byte
set. It returns the carry flag clear (NC) in all cases. It preserves

the HL, DE, and C registers.

4.3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command lines

for the MDOS executive. After the command has been entered into the input
buffer using @CILINE, the @SCAN routine is used to locate the first space
after the command, and @3KIPSPACE skips to the first non-space character.

Then the @PARAM routine separates the command parameters into buffers according
to their type. @PARAM makes use of @SCAN, BSKIPSPACE, and BAHEXTBIN to do

its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into @MASKADDR and the @SEAR routjine
searches the MDOS command table for a match., If the command is valid, the
@SEAR routine returns with the zero flag clear and @LHLI will get the function
from the table, which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve

the parameters from the appropriate buffers with LHLD instructions.

The user can use these routines to parse applications program input lines
using similar logic.

4.3.2.1 BPARAM - PARAMETER

The ®PARAM routine parses a text line. It separates parameters into ASCII,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count anq each parameter in a separate buffer.
It expects the start address of the text to be parsed in the HL registers.
It returns ASCII narameters in QASCBUFFP through BASCBUFF3.

It returns unit numbers in GDRIVEND through BDRIVEN3.

Rev. 8 9/78 4-22



It returns binary (numeric) parameters in @BBUFFP through @BBUFF3.
1t returns the number of ASCII parameters in @NASCPAR.

It returns the number of unit number parameters in @NDRVPAR.

It returns the number of binary parameters in @NBINPAR.

It returns the carry flag clear (NC) and the end of line address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry flag is set (C), the SYNTAX ERROR
code is in the A register, and the location where the error occurred is
returned in the HL registers.

4.3.2.2 @SKIPSPACE - SKIP SPACES

The BSKIPSPACE routine skips spaces in a text line.

It expects the text line's start address in the HL register.

It returns the address in the HL registers of the first non-space character.
If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 @SCAN - SCAN

The BSCAN routine scans a text line for the first occurrence of a specified
character. '

[t expects the text 1ine's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C registers.

4.3.2.4 @SEAR - SEARCH

The @SEAR routine searches a table of argument-function pairs and returns

the address of the function associated with the argument. The last character
of the argument has the most significant bit set high. For example, an

ASCII A is 41 hex. If the most significant bit is set high it is a Cl hex.

4-23

Rev. 7 3/78



The argument is immediately followed by its function. The arguments can be
variable length but the functions must all be the same length. The end of
the table is marked by a @ following the last function.

It expects the table's start address in the HL register and the argument
masks' starting address in @MASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size {(number of bytes) of the functions in the table.

It returns the zero flag clear (NZ) and the address of the start of the
argument's function in the HL register.

The zero flag is set (Z) if the argument was not in the table. In this
case the HL registers contain the end of table address, je. the address of
the @ after the last function.

It preserves the DE and BC registers.

4.3.2.5 GAHEXTBIN - ASCII HEX TO BINARY

The @AHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to
four digits in length. It must end with a space or control character.

It expects the string’s start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

It returns the number of digits in the number in the B register.

It returns the DE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

If the number is greater than four digits long or not a hex value, the
routine returns the carry flag clear {(NC) and the illegal character's
address in the DE registers.

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines implement the MDOS file access methods described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number

and a filebuffer. MDOS supports simultaneously open files numbered from
@ through 7. It makes available two resident filebuffers. Additional
filebuffers must be allocated in the memory space of the appliication
program. Each filebuffer requires 288 bytes of memory.

Rev. 7 3/78 4-24



When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current record will cause the update flag to be set.
If the update flag is set, any access that leads to the current record
being replaced by a new record will first cause the current record with
the modified content to be rewritten in place {updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag.

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. Its value may vary from

@ to 256. A 0 length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended.

The index position of the current racord is a logical pointer that marks

the next byte in the record to be accessed. The value of the index position
ranges from @ to 255. However, the index position may never be greater than
the length in a particular record. An index position of 2 indicates that
the next byte to be accessed is the first byte in a record. An index
position of 255 indicates that the next byte to be accessed is the last

byte in a full record.

if the index position in the current record is less than the current record
length, then it points to a valid byte positicn within the record. That

byte may be read or rewritten. If the index position is equal to the current
record length, then it points to the end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position

may he written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to @ and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

If the end of record position is written to, the length of the current

record is increased by one and the position just writter becomes a valid

byte position. This allows data to be added to the end of a record extending
it up to its maximum length of 256 bytes. Note, however, that incrementing
the index position when it aiready has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to .

A new file may be written sequentially by byte by repeatedly writing to

the index position and incrementing the index position. This will produce
a file of full records with the possible exception of the last record. The
system automatically extends the amount of disk space allocated to a file
when enough new records are written to require another track.

4-25

Rev. 7 3/78



The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position number may be
set or incremented. Setting the record position updates the current
record to disk as necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file is read and becomes the current record. This
function can be used to sequentially write a file of short/mixed length
records.

When processing of a file is complete, the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 GCREATE - CREATE

The @CREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty
(@ length) record written to it. It is left open and ready for access
with the index position set to @ and the empty record as the current
record.

It expects the file number in the B register and the disk unit number in the
C register and the filename in GASCIIBUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects.an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the HL, DE, and BC registers.

4.3.3.2 BGFILESTAT - GET FILE STATUS

The BGFILESTAT routine checks the open/closed status of a file.
It expects the file number in the B register.

If the file is closed it returns with the zero flag set (Z) and the
“FILE NOT OPEN" message code in the A register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8 g9/78 4-26



4.3.3.3 @DIRSEARCH - DIRECTORY SEARCH

The @DIRSEARCH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the C register and the file name in
@ASCIIBUFF. ’

[t returns the zero flag clear (NZ) and the "FILE NOT FOUND" message
code in the A register if the file is not in the directory.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.4 GOPENFILE - OPEN A FILE

The @OPENFILE routine opens a file for processing. It assigns a specified
logical file number and filebuffer to the file.

It expects the file name in @ASCIIBUFF, the file number in the B register,
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.5 @CLOSEFILE - CLOSE A FILE

The @CLOSEFILE routine updates the current record to disk as necessary
and frees the logical file number and the filebuffer for subsequent
reallocation.

It expects the file number in the B register.

it preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.6 @RFILEINF - READ FILE INFORMATION

The @RFILEINF routine gets the disk unit number, the number of records
in the file, the file type, and the record position number of the
current record.

It expects the file number in the B register.

Y
4-27

Rev. 7 3/78



It returns the file type in the B register and the disk unit number in
the C register.

It refurns the number of records in the file in the DE registers.

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.7 BSINXTRS - SET INDEX POSITION TO RECORD START

The @SINXTRS routine updates the current record to disk as necessary
and reads a specified record which becomes the current record. The
index position is set to @.

It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.8 GRRECORDLEN - READ RECORD LENGTH

The @RRECORDLEN routine gets the length of the current record in a file.
It expects the file number in the B register.

It returns the length of the record in the HL registers.

It preserves the DE and BC registers.

If the routine detects an error it returns the carry fTag.set'(C) and
the error message code in the A register.

4.3.3.9 BRINXPOS - READ INDEX POSITION

The @RINXPOS routine gets the index position of the current record of a
file.

It expects the file number in the B register.
It returns the index position in the C register.
It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

Rev. 7 3/78 4-28



4.3.3.1@ @SINXPOS - SET INDEX POSITION

The B@SINXPOS routine sets the index position within the current record
in a file.

It expects the file number in the B register and the index poasition in
the C register.

[t preserves the HL, OE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.11 @INCINX - INCREMENT INDEX POSITIOM

The @INCINX routine increments the index position in the current record
of a file. If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary and the next record of the file becomes the current record
and the index position is set to 8.

It expects the file number in the B register.

It returns the zero flag set {Z) if the index position is in the same
record. .

It returns the zero flag clear (NZ) if the index position is in a new
record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.12 GRFINXPOS - READ FROM INDEX POSITION

The @RFINXPOS routine reads the data byte pointed to by the index position
in-the current record of a file. If the index position is at the EOR
position the current record is updated to disk as necessary and the next
record of the file becomes the current record. The index position is

set to @ and the data is read from this position.

It expects the file number in the B register.

It returns the data in the C register. -

It returns the zero flag set (Z) if the data is from the same record.

It returns the zero flag clear (NZ) if the data is from a new record,

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C] and
the error message code in the A register.

4-29

Rey. 7 3/78



4.3.3.13 GRFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The BRFINXPOSI reads the data byte pointed to by the index position in
the current record of a file and then increments the index pesition. If
the original index position is at the EOR position, the current record
is updated to disk as necassary and the next record of the file becomes
the current record. The index position is set to D and the data is read
from that position. Then the increment takes place. If the increment
‘would result in a value greater than the current record length, the
current record is updated to disk as necessary and the next record from
the file becomes the current record. The index position is set to ? in
that case.

It expects the file number in B.

It returns the data in the { register.

It returns the zero flag set (Z) if the data is from the same record.
It returns the zero flag clear (NZ) if the data is from a new record.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.14 @NTINXPOSV d“WQITE TO_INDEX POSITION

The @WTINXPOS routine writes to the index position in the current record
of a file. 1If the index position is the EOR position the record length is
extended by cne.

It expects the data in the C register, and the filenumber in the B .
register.

It preserves the HL, DE, BC registers

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the data is from the
same record.

It returns the zero flag clear (NZ) if the data is from a
new rescord.

4.3.3.15 GWTINXPOST - WRITE TO INDEX POSITION AND INCREMENT INDEX

The GWTINXPOSI routine writes to the index position in the current record
and then increments the index position. If the index position is the

EOR position the current record length is extended by one. If the incre-
ment would result in an index greater than 255, then the current record

Rev. 8.1 2/5/79 4-37



is updated to disk as necessary and the next record in the file becomes
the current record. The index position is set to § in this case.

It expects the data in the C register, and the filenumber 1in the B register.
It preserves the HL, DE, BC registers.

[f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the data is from the same record.
It returns the zero flag clear (NZ) if the data is from a new record.

4.3.3.16 @LOADDATA - LQAD DATA

The QLOADDATA routine loads a block of data into memory starting from

the index position in the current record and continuing from a specified

number of bytes. It advances the index position like a repeated sequence of
reads and increments.

It expects the file number in the B register.
It expects the start address of the memory block in the HL registers.
[t expects the block size in the DE registers.

It returns the zero flag set (Z) if the last byte read is from the
same record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

It preserves the HL, DE, BC registers.

[f the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

After a call to GLOADDATA the buffer @MEMORYPNTR contains the address

of the memory byte immediately after the last memory byte loaded.

For example, if 5 bytes are loaded into 4¥@@H through 4@@4H, then

@MEMORYPNTR contains the address 4@@5H in standard Tow-high format. This

is useful in cases where the number of bytes Toaded is less than the number
of bytes requested because an end of file is encountered during the @LOADDATA.

4.3.3.17 BSAVEDATA - SAVE DATA

The @SAVEDATA routine writes a block of memory to a file starting at
the index position of the current record and continuing for a specified
number of bytes. It advances the index position like a repeated
sequence of writes and increments.

It expects the file number in the B register.

Rev. 801 2/5/79 4“31



It expects the start address of the memory block in the HL registers.
It expects the number of bytes in the memory block in the DE registers.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It returns the zero flag set (Z) if the last byte read is from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to @SAVEDATA the buffer GMEMORYPNTR contains the address of the
memory byte immediately after the last memory byte saved. For example, if 5
bytes are saved from 408@H to 4@@4H then @MEMORYPNTR contains 4D@5H in
standard Tow-high format. This is useful in cases where a DISK FULL
condition causes less bytes to saved than are requested in the call to
@SAVEDATA.

4.3.3.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION TO END OF RECORD

The @DFINXPOSTEOR routine deletes from the index position to the end of
the current record by making the record length equal to the value of
the index position. ‘

It expects the file number in the B register.

It preserves the HL, DE, BC registers,

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

Rev. 8.1 2/5/79 4-31A



4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The @DFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
position number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation

to other files.

It expects the file number in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.2¢ GINCRECPOS - INCREMENT RECORD POSITION

The @INCRECPOS routine updates the current record to disk as necessary,
reads in the next record which becomes the current record and sets the
index position to @§. If the current record is the last record in the
file, the file is automatically extended by one record.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disk it becomes necessary

on occasion to perform housekeeping functions such as removing old files,
changing file types and names, and determining the amount of space left

on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used directly

by applications programs. .

4.3.4.1 @FREE - FREE

The @FREE foutine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.
It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (C) and_
the error message code in the A register.

4.3.4.2 QRENAME - RENAME

The @RENAME routine renames a file on a diskette.

4-32
Rev. 7 3/78



It expects the file number in the B register.
It expects the new name in @ASCIIBUFF.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.3 @TYPE - FILE TYPE

The @TYPE routine changes the type (attributes) of a file. See Section
4.2.3 for type definitions.

It expects the file number in the B register.
It expects the new file type in the C register.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.4 @SCRATCH - SCRATCH A FILE

The @SCRATCH routine deletes a specified file from a specified disk unit.
It expects the unit number in the C register.

It expects the file name in @ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MDOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MDOS file
system and provide access to a specified logical block on a specified
track of a diskette.

Micropolis MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD II subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered § through 34 or 76 are written concentrically
inward toward the center of the diskette. The pnysical sectors on a track
are numbered from § through 15.

4-33

Rev. 7 3/78



Diskettes initialized by and formatted for use with MDOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system.

The remaining 266 bytes of a sector are accessible as a logical block
by the MDOS physical disk access routines. In order to enhance access
time to multiple blocks, MDOS maps logically sequential blocks onto the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 12345 6 7 8 91011 1213141516
PHYSICAL SECTORS § 2468141214 1 3 5 7 9111315

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that is specified.
[f it is necessary to access the sectors of a track in true physically
sequential order, the application program must use the table above to
unmap the sectors. For example, to access sector @ followed by sector 1.
the program would have to specify logical block 1 followed by logical
block 9.

Note that the record structure of MDOS files as detailed in Section
4.2.4 must be preserved if the physical disk access routines are used
to operate on such records.

4.3.5.1 BGETASEC - GET A SECTOR

The BGETASEC routine gets (reads) a sector from a specified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the £ register.

It expects the address in the HL register of the start of a 266 byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.2 @PUTASEC - PUT A SECTOR

The @PUTASEC routine puts {writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This

is called a preread. It requires that the preread sector be readable.

It expects the unit number in the C register.

[t expects the track number in the D register and the logical block number
in the E register. .

Rev. 7 3/78 4-34



It expects the address in the HL register of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.3 GWRITESECTOR - WRITE A SECTOR

The @WRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number. It does not do a preread before writing. This allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

It expects the address in the HL registers of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.4 GVERIFYSECTOR - VERIFY A SECTOR

The @VERIFYSECTOR routine verifies the validity of the header 1nformat1o
and checksum of a sector on a specified disk unit.

b= ]

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

If the routine detects an error it returns the carry flag set (€) and
the error message code in the A register.

4.3.5.5 @SEEKTRACK - SEEK TO A TRACK

The @SEEKTRACK routine moves the read/write head to a specified track on
a specified disk unit.

It expects the unit number in the C register.
It expects the track number in the D register.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.5.6 GRESTOREDISK - RESTORE THE READ/WRITE HEAD

The @RESTQREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35
Rev. 7 3/78



It expects the unit number in the C register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 8088 to
provide for some commonly required operations.

When parentheses enclose an item in the following subse~tions, this
indicates the contents of the memory location specified by the value
within the parentheses. For example, HL={HL) means that the HL register
pair is replaced with the bytes at the address in HL and HL+1. If the
HL registers contain the address 40899 hex, and at location 4298 there is
a @1, and at location 49471 there is a P2, then the HL register would be
replaced by 2201 hex. The low byte goes into L and the high byte into H.

4.3.6.1 GHLADDA - ADD A TO HL

The @HLADDA routine adds the unsigned 8 bit value in the A register to
the unsigned 16 bit value in the HL registers.

It expects a value in the HL, and the A registers.
It returns HL=HL+A,
It preserves the DE and BC registers.

4.3.6.2 @INXM - INCREMENT MEMORY

The @INXM routine increments a memory pair pointed to by the HL registers.
[t is similar to an INR M instruction but it operates on a byte pair

(16 bits) in memory. ,

It expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 GLHLINDEXED - LOAD HL INDIRECT INDEXED

The GLHLINDEXED routine loads the HL registers indirect from the location
pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.
It returns HL=(HL+2*A).

It preserves the DE and BC registers.

Rev. 8 9/78 4-36



4.3.6.4 GLHLI - LOAD HL INDIRECT

The @LHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL registers. ~
It returns HL = (HL).
It preserves the BC and DE registers.

4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT QF C

The BTRANSDHC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL reg1sters and
the number of bytes to copy in the C register.

It returns {HL+)...+C) = (DE+@...+C).

It preserves the B register.

4.3.6.6 BTRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

The @TRANSDHBC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length

in the BC registers. It begins at the start of each block and works to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+@...+BC) = (DE+P...+BC).

4.3.6.7 GTRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF BC REVERSE

The @TRANSDHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+BC....+@), = (DE+BC....+P).

4-37

Rev. 7 3/78



Rev.

4.3.6.8 GTRANSFILENAME - TRANSFER A FILENAME

The @TRANSFILENAME routine copies a filename from one of the ASCII
buffers (@ASCBUFF@ through ®ASCBUFF3) to the @ASCIIBUFF.

It expects the @ASCBUFF number (ie. @ to 3) in the C register.
It preserves the HL, DE, and BC registers.
4.3.6.9 GFILLZER - FILL ZEROES

The BFILLZER routine fills a block of memory up to 256 bytes in length
with zeros.

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.10@FILLSPC - FILL SPACES

The Q@FILLSPC routine fills a block of memory up to 256 bytes in length
with spaces (hex 2@).

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.11 @FILLA - FILL FROM THE A REGISTER

The @FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

It expects the start address of the memory block in the HL registers,
the number of bytes to fill in the B register, and a fill value in the
A register.

1t preserves the DE and C registers.

4.3.6.12 BCOMPARE - COMPARE HL TO DE

The BCOMPARE routine compares the value in the HL registers to the
value in the DE registers.

It expects a value in the DE register and the value to compare it to in

the HL register. The forms are like an 8@8) CMP B instruction where DE
is analogous to the A register and HL is analogous to the B register.

7 3/78 4-38



It returns the following sense:

DE = HL  zero flag set (Z), carry flag clear {NC)
DE > HL  zero flag clear (NZ), carry flag clear (NC)
DE < HL  zero flag clear (NZ), carry flag set (C)
DE >=HL zero flag any state, carry flag clear (NC)

It preserves the HL, DE, and BC registers.

4.3.7 EXTENDED 8@8@ INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 8@8@ to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division (quotient,
and modulus).

The result of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of GDEDIVHL and
RDEMOBHL (divide and modulus routines), the carry flag is returned set (C)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 GDEADDHL - BC=DE+HL

The @DEADDHL routine performs 16 bit unsigned integer addition.
It expects the addend in the DE register and the augend in the HL registers.

It returns the sum in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 @DESUBHL - BC=DE-HL

The @DESUBHL routine performs 16 bit unsigned integer subtraction using
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.3 Q@DEMULHL ~ BC=DE*HL

The @DEMULHL routine performs 16 bit unsigned integer multiplication.
It expects the multiplicand in the DE registers and the multiplier in the
HL registers.

4-39

Rev. 7 3/78



It returns the product in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.4 GDEDIVHL - BC=DE/HL

The @DEDIVHL routine performs 16 bit unsigned integer division.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the integer gquotient in the BC registers.

It preserves the HL and DE registers.

4.3.7.5 @DEMODHL - BC=DEZHL

The @DEMODHL routine performs 16 bit unsigned integer division and returns
the modulus (remainder) of the operation.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the remainder of the division in the BC registers.
It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of @DEDIVHL
and the modulus (or remainder) is the result of @DEMODHL.

4.3.8 MESSAGE OUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.

Some of the routines access the system messages while others allow the user

to set up a table of applications messages. The system messages are described
in Section 4.8.

4.3.8.1 @DISKERROR - DISK ERROR MESSAGES

The @DISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, outputs the appropriate error message
to the console stream, and returns control to the MDOS executive which resets
the 8@88 stack to the MDOS system stack.

It will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines {Sections 4.3.3 and 4.3.4) when they return
a carry set (C) condition and an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

Rev. 7 3/78 4-40



4.3.8.2 @CLOSEFILES - CLOSE ALL FILES

The @CLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.

It always returns the carry flag clear (NC).
It preserves the HL, DE and BC registers.

4.3.8.3 GERRORMES - ERROR MESSAGES

The BERRORMES routine performs similarily to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.
It preserves the C register.

4.3.8.4 GMESSAGEQUT - MESSAGE QUTPUT

The @MESSAGEQUT routine is a generalized message-table output routine.

The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with

a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth

bit high will be output after the bit is stripped. For example, an ASCII A
is hex 41. C1 hex is an ASCI! A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in_the table. ie., @ is the first message, 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY PQINTS

These are miscellaneous entry points and buffers already described in detail
in conjunction with other subroutines.

@CONSOLEADDR - Contains the location of @CIOTABLE

@LISTADD - Contains the location of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table
BLICTABLE -~ Start address of the 1ist input/output vector table
@PCON - Start address of physical console driver routines

@PLIST - Start address of physical list driver routines

4-41
Rev. 8 9/78



@WARMSTART ~ Warm start entry point; initializes console and list devices,
and prints the MDOS signon message.

@MDOSEXECUTIVE - Entry point for MDOS executive. Outputs the current MDOS
executive prompt and initializes the MDOS stack. This entry does not output
the signon message.

@FILEBUFFER® and @FILEBUFFER1 - @FILEBUFFER@ and @FILEBUFFER] are 288 byte
buffers used by the system for file access. They may be used as applications
program file buffers. See the section on FILE ACCESS ROUTINES.

@APROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. All file types except overlay
(#C-@F hex) must have load addresses greater than or equal to SAPROGRAM or
a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR ~ A two byte pointer used by the @SEAR routine. @MASKADDR points
to the address of the mask string.

@PARAMLEN - A one byte parameter used by the ®SEAR routine. It contains
the length of the functions in the table to be searched.

@MDOSRETURN - Applications programs that have not changed the I/0 initializa-
tion return to this entry point instead of @WARMSTART. @MDOSRETURN outputs

the MDOS signon message and initializes the MDOS stack but does not reinitialize
the I/0 handlers.

The following buffers are used by the @PARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.
@NDRVPAR @NASCPAR @NBINPAR
2) Ten byte buffers which holds ASCII pa;ameters.

@ASCBUFF@ @ASCBUFF1
@ASCBUFF2 BASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@DRIVEND @DRIVENI]
@DRIVENZ @DRIVEN3

4) Two byte buffers which holds binary parameters.

@BBUFFP @BBUFF1
@BBUFF2 ~ @BBUFF3

@ASCTIBUFF - @ASCIIBUFF is a ten byte buffer which holds filenames for
the @CREATE, @RENAME, OSCRATCH, and @TRANSFILENAME routines.

@INBUFF - @INBUFF is the system input buffer. It is 132 bytes long.

Rev. 7 3/78 4-42



4.4 LINEEDIT - THE MDOS LINE EDITOR

LINEEDIT is an MDOS application program which provides assistance in
creating and maintaining assembly language source program files that
are compatible with the MDOS 8p88/8p85 assembler. It may also be used
as a ]imited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MDOS executive
prompt or by typing the command LOAD “LINEEDIT" followed by the command
APP. It signs on with the message MDOS LINE EDITOR VS. X.X.

The user interacts with LINEEDIT through the system console. Lines
entered at the keyboard may be text lines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line
at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting lines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists

of not more than 132 characters typed in sequence. The entry of a line

is terminated by pressing the RETURN key. During the entry of a line

each character that is typed is echoed by LINEEDIT on the console display.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text 1ine are ASCII
characters in the code range 2@H to 7EH with the exception of the backarrow
(5FH). LINEEDIT also uses the MDOS console output system to keep track

of the character count as a line is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the line count.

Two control features may be used when entering a line.
1) When DEL or RUBOUT key is pressed the next previously typed
character will be deleted from the 1ine. A backarrow is echoed

to the terminal display for each character deleted. Neither the
deleted characters nor the backarrow are included in the line count.

Rev. 81. 2/5/79 4-43



2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
positioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEDIT recognizes a line as a text file line by the presence of a
leading line number. Each line number must be in the range @ to 9999. A
text file is entered one line at a time using the normal line entry
procedure. As each line is entered LINEEDIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text lines are
stored in the edit buffer in numeric order by line number. The lines in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file, type in the new line
including the line number. LINEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing 1ine in the current text file enter the line number
and the new text. The new line will automatically replace the old Tine
that has the same line number in the current text file.

To delete one existing program line in the current text file type the
line number and press the return key. The corresponding line will be
eliminated from the current text file. Note that multiple lines may also
be eliminated by using the DELT command as described in Section 4.4.18,

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic line numbering feature. Prior to typing the first character

of a new line, you can cause the 'next' line number to be generated for
you by pressing the space bar one time. The 'next' line number will echo
to the terminal display and LINEEDIT will then be waiting for the first,
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' line number.

4.4.3 ENTERING LINEEDIT COMMANDS

Whenever a line is typed which does not begin with a 1ine number,
LINEEDIT attempts to interpret this line as a command. If the line is
not recognizeable as a LINEEDIT command, the message COMMAND NOT FOUND
will be displayed.” LINEEDIT commands are single words or abbreviations
followed by parameters if required. A1l LINEEDIT commands are uppercase
only. If the command requires one or more parameters, there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

Rev. 7 3/78 4-44



4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the contents of the current text file has
not been stored on disk since it was last altered. When the message appears
the current text file is not yet lost. To override this warning type Y

and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which indicate that the edit
buffer is empty and unnamed.

4.4.5 THE NAME COMMAND

The current text file in the edit buffer may be named or renamed by using
the NAME command. NAME "filename" is the general form of this command.
The filename may be any valid MDOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory. When the
NAME command is executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of"
the current text file in memory. A text file may be keyed into the edit

buffer before it is named. However, it cannot be stored on disk without
being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address limits in memory can

be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
current text file will be displayed, followed by two hex numbers which are
the starting and ending memory addresses of the current text file. If the
current text file has not been named, the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic line numbering facility adds a fixed increment to
the last entered line number in order to compute the ‘'next’ automatic
1ine number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form of the command is AUTO number. The increment will be set
to the decimal value of number.

4-45

Rev. 7 3/78



4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing

an input line, it simply echoes a carriage return/line feed combination,
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT “message" is the general
form of this command. The message may be from 1 to 1@ characters in
length and include any characters valid in a text line. [t must be
enclosed in double quotes as shown. When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be restored to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded into the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
command. The double quotes must be used as shown. The filename must be
a valid MDOS filename. The unit number is optional. I[f it is supplied,
it must consist of a single digit from @ to 3 followed by a colon (:).
It designates the disk unit on which the specified file is to be found.
If no unit number is specified, unit @ is assumed.

When a text file is successfully loaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded, not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears, the current
text file is not yet lost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type N and
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER OVERFLOW.
See Appendix D for an explanation of this condition.

4.4.10 THE APPEND COMMAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number:filename" is the general form of this command. The double quotes
must be used as shown. The filename must be a valid MDOS filename. The
unit number is optional. If it is supplied, it must consist of a single
digit from 3 to 3 followed by a colon (:). It designates the disk unit

on which the specified file is to be found. If no unit number is specified,
unit @ is assumed.

Rev., 7 3/78 4-48



When an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
1ines of the appended file are not merged into the existing file in order
by line number. The appended file may contain line numbers which conflict
with the existing file. For these reasons it is important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler.

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory available for the
edit buffer is not enocugh to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4.11 THE SAVE COMMAND

The current text file in the edit buffer may be stored on disk as a new
disk file by using the SAVE command. The general form of this command

is SAVE unit number. The unit number is optional. If it is supplied, it
must consist of a single digit from @ to 3. It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit @ is assumed.

The name of the current text file in the edit buffer is used to create

an entry in the directory of the specified disk and the text file is
stored on the disk under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn‘t conflict or by using the
RESAVE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file
or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from @ to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number is specified, unit @ is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78



found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source fi'le
type.

4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to

the system console by using the LIST command. The forms of this command
are LIST, LIST linenumberl, and LIST linenumberl linenumber2. The display
will begin with linenumberl or the next highest and continue through
1inenumber? or the next lowest. If linenumberl and linenumber2 are the
same, only one line will be displayed. If linenumber2 is less than
linenumberl, nothing will be displayed. If linenumber? is not supplied,
the display will begin with linenumberl or the next highest, and continue
through the last line currently in the current text file. If no line
numbers are supplied, the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text lines that is
oriented to 8880 assembly language source text. The format is defined

as four fields each beginning at a specific tab location. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the -t
text line through the first space or colon (:) that occurs. The third

field is the opcode and operands field. The opcode consists of all
characters following the label field through the next occurrence of a space.
The operand consists of all characters following the opcode through the

next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon {;) following the space that terminates the operands
and continues to the end of the text line.

Refer to the TAB command to change the tab settings which determine the
placement of the fields for the LIST format. When using the LIST command
with general text editing, it is advisable to set the tabs to 1 1 1. This
effectively removes the tabuiation effects which are designed for assembly
language source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be output to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP linenumberl, and LISTP linenumberl 1inenumber2.

The LISTP command functions the same as the LIST command except that output
is directed to the system printer instead of the system console.

Rev. 7 3/78 4-43



4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT linenumberl, and PRINT linenumberl 1inenumber2.
The Tinenumber specifications in the PRINT command function the same as

in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the line numbers so that general text may be displayed just as
it was entered. If an unformatted display of assembly language source

text is desired, it can be obtained by setting the tabs to 1 1 1 and using
the LIST command.

4.4.16 THE PRINTP COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system printer by using the PRINTP command. The forms of
this command are PRINTP, PRINTP 1inenumberl, and PRINTP 1linenumber]
1inenumber2.

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that determine the placement of the fields for the LIST
and LISTP format may be changed by using the TAB command. TAB number]
numberZ number3 is the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins.

The initial and default values of the TAB parameters are 15, 22, 36 decimal.
The settings may be reset to these values by typing TAB without any para-
meters. Missing parameters are set to the default if possible or the vaiue
of the preceding parameter if that parameter is greater than the default
value for that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs to 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive 1ines may be deleted from the current text file

by using the DELT command. The forms of this command are DELT 1inenumberl,
and DELT Tinenumberl linenumber2. Lines will be deleted from 1inenumberl

or the next highest that exists, through linenumber2 or the next lowest that
exists. If 1inenumber2 is less than linenumberl nothing will be deleted.

If they are equal only that line will be deleted. If only linenumberl is
specified then only that line will be deleted. The edit buffer is
automatically compressed whenever lines are deleted.

Rev. 8 9/78 4-49



4.4.19 THE RENUM COMMAND

A1l or part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-line-to-change. RENUM takes the line number of the first
line to change and sets it equal to the starting number. The line number
of each line after the first line to change is then set to the value of
the preceding new line number plus the increment value. If no first line
to change is specified, the first 1ine in the edit buffer is assumed. I[f
no increment value is specified, the valuz 1@ is used. If no starting
number is specified, the value 9 is used. Typing RENUM alone will produce
a text file numbered from @ by 19°'s.

Entering a RENUM command may result in the message LINE NUMBER QVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have heen renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

l.ines in the current text file that contain a specified string of text
can be located and displayed by using the SEARCH command. The forms of
this command are SEARCH, SEARCH linenumberl, or SEARCH 1inenumber]
linenumber2. SEARCH without a linenumber specified will search the whole
buffer. SEARCH linenumber]l will search from the line number specified

to the end of the buffer. SEARCH 1linenumberl linenumber2 will search the
buffer starting at the first line specified through the second Tine
specified.

When the SEARCH command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text line characters can be
entered. The entry is terminated by pressing the return key. LINEEDIT
searches through the lines in the current text file looking for the first
occurrence within each 1ine of a substring that matches the specified search
mask. It examines every line except those lines that begin with an asterisk
(*). Every examined line that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly language source text. Refer to the SEARCHALL command to operate

on comment lines.

The SEARCH command also provides a universal match character capability.
Each question mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?I will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for.

If no Tines in the current text file contain a match to .the specified
search mask, the message STRING NOT FQOUND will be displayed.

Rev. 8 9/78 4-50



4,.4.21 THE SEARCHALL COMMAND

A11 lines in the current text file that contain a specified string of
text, including those Tines that begin with an asterisk (*) can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL linenumberl, or SEARCHALL
linenumberl linenumber2. SEARCHALL without a linenumber specified will
search the whole buffer. SEARCHALL Tinenumberl will search from the line
number specified to the end of the buffer. SEARCHALL 1inenumberl 1inenumber2
will search the buffer starting at the first line specified through the
second line specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with

an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in 1ines of the current text

file can be replaced with a different string of same or different length

by using the CHANGE command. The forms of this command are CHANGE, CHANGE
linenumberl, or CHANGE 1inenumberl linenumber2. CHANGE without a 1inenumber
specified will change all 1ines in the buffer. CHANGE 1inenumberl will
change lines from the line number specified to the end of the buffer. CHANGE
Tinenumberl Tinenumber2 will change lines in the buffer starting at the

first Tine specified through the second 1ine specified.

CHANGE operates on all lines within the specified range except 1ines starting
with an asterisk (*) or semicolon (;). These lines are considered comment
Tines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines.

When the CHANGE command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text line characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUND will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TQ ?. Another string of up to 132 legal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
looking for the first occurrence within each 1ine of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change-to string, adjusting line and buffer lenath accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHANGE command also respects the universal match character capability
as described under the SEARCH command. If the search mask contains one or
more question marks {?) these characters positions will match any character
in the search process, and the matched substring will then be repiaced by
the change-to string. Example:

Rev. 8 9/78 4-81



LIST

19 S1@LABEL1A

2 S2@LABEL2A

39 @LABEL3

CHANGE

SEARCH MASK ? S7@
CHANGE TO ? @
1@ BLABEL1A

2P GLABELZ2A

The change-to string may also contain question marks (?). This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST

18 TAGR1A

2P TAGOFF

39 TAG22A

CHANGE

SEARCH MASK ? TAG??A
CHANGE TO  ? LABEL?78
19 LABELQ1B

3@ LABEL228

Lines 19 and 3@ have been changed while line 28 is unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of lines 19 and 3P have been changed. The #1 in line 18 and the
22 in line 38 have been retained.

4.4.23 THE CHANGEALL COMMAND

The first occurrences of a specified string in all lines of the current
text file, including those lines that begin with an asterisk (*), or
semicolon (;) can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL, CHANGEALL linenumberl, or CHANGEALL Tinenumberl 1inenumber2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text lines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT COMMAND

The text within a specified line in the current text file can be changed
without retyping the entire line by using the EDIT command. EDIT linenumber
is the form of this command. If the specified 1inenumber is not found in
the current text file, the message LINE NOT FOUND is displayed. LINEEDIT

processes an EDIT command by copying the specified line into a special
editing buffer and displaying the line number at the left margin of the
console. An invisible edit pointer is set to point to the first character
in the text line after the space that terminates the line number. LINEEDIT
is now in the EDIT command mode. A separate set of single key commands is
available for editing a Tine in the special edit buffer.

Rev. 8 9/78 452



4.4.24.1 ADVANCING THE EDIT POINTER ~ THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

4.4.24.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by

the edit pointer. Characters are inserted in sequence as typed until
the insert mode is terminated by depressing the ESC key. The edit
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
line in the current text file with the new]y edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the 1line in the special edit buffer from the position

of the-edit pointer to the end of the line may be displayed by typing

an 1 or L. The characters are displayed on the console followed by

a carriage return-line feed. The line number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the line looks like before
editing is completed. It may also be useful to use this command immediately
after entering the original EDIT command. This would display the line

about to be edited without exiting the editing mode.

4-52.1

Rev. 8.3-A 7/1/79



4.4.24.6 SEARCHING TQ A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing ans or S

followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character

are printed on the console. The edit pointer is left pointing at the
first occurrence of che searched for character. If the search argument
does not exist in the line then the entire line is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted
characters are displayed on the console, enclosed in backslashes (/).
[f the search argument does not exist in the edit line, then all the
characters from the edit pointer to the end of the line are deleted.
The edit pointer is left pointing at the search character or at the end
of the line.

4.4.24.8 QUITTING THE EDIT COMMAND MOOE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partially edited line in the

special editing buffer is abandoned. MNo changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can replace the line in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEDIT to the MDOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is

returned to the MDOS executive which signs on with the message MICROPOLIS
MDOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The D0S command will be processed. Otherwise type N and press
the return key. The message CANCELLED will be displayed and LINEEDIT will
be waiting for an alternate command.

Rev. 8 9/78 4-53



4.4.26 LINEEDIT FILE STRUCTURE

The current text file in the LINEEDIT edit buffer has the following
format. Each line begins with a byte that contains a count of the number
of bytes in the Tine. The count includes the count byte and the carriage
return at the end of the line. The count byte is followed by four bytes
that hold the digits of the line number in ASCII. The line number can
range from @P@@ to 9999. At least one space {20 hex) follows the line
number. The remainder of the line can contain from @ to 125 characters
followed by a carriage return. The shortest line contains 6 bytes. The
longest line contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEDIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there is no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a #1 to mark the end of the file.

The current text file is written to a disk file just as it appears in

the edit buffer. A1l records in the disk file with the possible exception
of the last one are full records. A text line may spar two records. ‘The
following logic could be used in an MDOS application program designed to
process an editor source file.

1099 START CALL @RFINXPOSI
2000 DCR C

3029 JZ ENDOFFILE
4009 MVI D, ‘
5009 MOV E,C

6009 . LXI H,BUFFER
7000 CALL @LOADDATA
80@9 *PROCESS THE LINE IN THE BUFFER

9099 JMP START

The GRFINXPOS routine gets the line count byte into the C register. If
the count is @1 the end of the file has been reached. Otherwise, all
program 1ines have a line length of no less than 6. The line length is
moved into the DE registers (D=P) and the buffer address is placed into
the HL registers. The GLOADDATA routine starts at the index position

and loads the next DE bytes into the buffer which leaves the index position
pointing to the line count byte of the next text line. The program can
then process the text line and loop back to get the next line.

Rev. 7 3/78 4-54



4.5 ZsM - Z-80 ASSEMBLER

ZSM is an MDOS program to convert Z-80 assembly language source code
into object code, which consists of a sequence of binary codes that
can be loaded into the computer's memory and executed. ZSM takes
the place of ASSM, the earlier 8080¢/8¢85 assembler for MDOS. Any
references in this manual to ASSM should be understood as references
to ZSM.

As input ZSM expects a type 4, 5, 6, or 7 text file, such as that
produced by LINEEDIT. The output file produced will be a type 8
file. This type of file may be scatter loaded into memory, meaning
that it need not be contiguous code; rather, it can be several
groups of individual code.

Note that this is a disk assembler, so memory size is not a
constraint on the size of file that may be assembled.

ZSM is a copyrighted piece of software. Any reproduction or
redistribution of it or this manual is expressly forbidden.

4.5.1 HOW TO RUN ZSM

ZSM is invoked from the MDOS executive by typing its name, followed
by the assembly parameters. The format is as follows:

>ZSM "<source filename>" "<object filename>" "<options>" [<offset>]

The <source filename> must be the assembly language source progdgram
as explained above. The <object filename> is the name of the output

file. It must be included, but may be blank if the S or M option,
below, is used.

The <options> are instructions to ZSM pertaining to how to assemble
the program. The number of options specified varies with what is
desired and may be blank, but the field must nevertheless be
included. The options are as follows.

E Only lines containing éssembly errors will be listed.

p The assembly listing will be paginated.

S The assembly listing will be produced, but no object code.

M The object code will be written into memory, not to a disk
file.

L The line numbers from the source file will not appear on the
listing.

T The symbol table created by ZSM will be printed following
the listing.

"SM" is the only combination not allowable, since they are mutually

exclusive. If they are both present, though, the S option will
Prevail.

Rev. 8.1 2/5/79 4-55



The <offset> parameter indicates an offset to be added before the
object code is placed into memory (via the M option). For example,
it would be impossible to assemble a program into memory at 2B@&d,
since that is where ZSM resides. Therefore, to put a program into
memory that was designed to run at 2B##, you would have to specify
an offset, for example 3888. This would result in code destined for
2B2@ to be actually put into memory at 5A80 (2B@¢ + 3000).

Here are some examples of valid commands:

1. ZSM "SFILE" "OFILE" ""
2. ZSM "SFILE" "" "“"PTS"

3. 2ZSM "SFILE"™ "" "ML" 3009
4. 2ZSM "SFILE" "OFILE" "E"

Line 1 would assemble SFILE into the file OFILE, and produce a
normal listing. Line 2 would assemble SFILE, producing a paginated
listing including a symbol table, but not produce an object file.
Line 3 would assemble SFILE, putting the object code into memory
with an offset of 3008; it would produce no object file; and it
would produce a normal listing, but without line numbers. Line 4
would assemble SFILE into the file OFILE, and only list those lines
(if any) containing errors.

Assembling a file with the M option in such a way that the operating
system or assembler would be overwritten will cause a 'Load address
error'. Including the wrong number of parameters in the command
line, or forgetting a quote symbol, will cause a 'Syntax error'.
Specifying an object file which already exists will cause a
'‘Duplicate name' error, meaning there already exists a file with
that name. Either SCRATCH that file, or select a new name for the
object file.

4.5.2 LANGUAGE ELEMENTS

The source file has a general format as follows:

###%# LABEL: OPCODE OPERANDS ;comments

The ##4# represents the four digit line number assigned each line by
the line editor. Although the line number itself is ignored, it
“must”™ be present, and must be four characters long, followed by a
space.

The LABEL is optional. If present, it will be entered into the
symbol table. Whether or not it is present, its position must be
followed by a space or colon. That is,

#### LABEL OPC or #### LABEL: OPC or $#3#% OPC

are valid, while

###%# oPC

is not,

4-56 Rev. 8.1 2/5/79



Labels may include any of the following characters:

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghiijklmnopgqrstuvwsxyszszg
123456789 . [1¢Cr\}| >~~~

To avoid ambiguity, however, the first character may not be . or
-9. In addition, a label may be of any length up to 47 characters.
All characters are significant. In normal use, though, up to 12
characters should suffice; and over 14 characters will look a little
strange on the listing.

The OPCODE must either be a Z2-88 opcode or a pseudo-op. Both are
explained later.

The OPERANDS vary. There can be any number of them, depending on
whether they are operands for an opcode or a pseudo-op. There are
also instances where there are no operands, and therefore this field
can, in some cases, be omitted. If more operands are supplied that
are needed, the extras are ignored.

The COMMENT field is totally ignored by the assembler, except for
printing it on the listing. Comments are used only for
documentation or clarity, and can be omitted altogether. If
present, comments should be preceeded by a semicolon (;). The
semicolon will cause a TAB to the third TAB setting, whereas its
absence will result in the comment appearing immediately to the
right of the operand field.

There is one exception to the above format, and that is the case of
an all-comment line., If the first character of the line (after the
line number and space) is either an asterisk (*) or semicolon, the
entire line will be treated as a comment. .

4.5.2.1 CONSTANTS

ZSM provides for constants of two varieties, numeric and ASCII.

ASCII constants are indicated by enclosing the appropriate character
in single quotes ('). Any ASCII character can appear between the

quotes, except for (1) control characters, having an ASCII code of
under 28 hex; (2) the single quote character, ASCII code 27 hex; (3)

the underscore character _, ASCII code 5F hex; and (4) the DEL
character, 7F hex.

Numeric constants may be in any of four bases - 2, 8, 14, and 1l6. A
specific base is indicated as follows:

###H indicates hexadecimal (base 16) -~ for example 1C7H
###Q indicates octal (base 8) - for example 62Q
###B indicates binary (base 2) - for example 18101B

ﬁ##n or just ### indicates decimal (base 10) - for example 193D or
93

Rev. 8.1 2/5/79 4-57



Regardless of base, all numeric constants "must™ begin with a digit,
#§-9. (This is to prevent ambiguity with labels.) Thus A@7 hex
would have to be written as GAQ7H.

There is one special numeric constant, denoted by the symbol $.
This constant is always equal to the address of the current line;
that is, the memory location that the current line will be written
into when it is loaded. Note that this reflects the address of the
beginning of the current line, “not™ the next line (as in some
assemblers}). As an example, consider that

gelie JMP $

would cause an infinite loop, since it would jump to itself.

4.5.2.2 OPERATORS

ZSM recognizes 10 operators. They are as follows:

addition

subtraction, or negative {as in -1)
multiplication

division

modulo (remainder of d1v151on)

logical AND

logical OR

logical EXCLUSIVE~OR

rotate right (110161B>3 yields 161119B)
rotate left (1110110B<1 vyields 1141141B)

AV ™ % | +

All arithmetic operators treat their operands as unsigned 16-bit
quantities, and answers are truncated to 16 bits. All logical
operators perform their function on a bit-by-bit basis, and they
also treat their operands as 16-bit values.

Operators combine with constants to form expressions. In an

expression, all operators are evaluated in a strict left-to-right
order, with no precedence of operators.

Thus consider the following situation:

TEST has been assigned the value 108@H.
INC has been assigned the value 6.

The expression encountered is TEST*6+INC!7<8.

The procedure would be TEST*6 (6000H) +INC (6Q@6H) 17 (6087H) <8
(8760H). Thus the resulting value is 764H.

4.5.2.3 REGISTERS

The Z-8¢ has a number of registers, all of which have a specific
symbolic reference. 2ZSM supports these references, as follows.




register designation

register B - B Also called BC for register-pair instructions
register C - C

register D - D Also called DE for register-pair instructions
register E - E

register H - H Also called HL for register-pair instructions
register L - L

accumulator- A

memory - M Also called (HL), but 2ZSM does not allow this.
A & flags - PSW Program Status Word, may also be called AF
Stack Ptr - SP

Index reg X- IX Also may be called X for brevity
Index reg Y- IY Also may be called Y for brevity

Of course, the Z-8¢ also has registers A', B', Cc', D', E', H', L',

F', PC, I, and R, but these are never explicitly referred to in an
instruction, so no special designation is needed.

4.5.2.4 PSEUDO-CPS

ZSM supports a large number of pseudo-ops. They will be explained
now.

ORG Set origin

The ORG pseudo-op specifies where the object code is to be put.
Assembled code and data is assembled starting at the address
specified as the operand to the ORG psuedo-op, and proceeds upward,
until the end of the program or another ORG. A program can contain
as many ORGs as desired. Since ORG is handled in pass 1, any symbol
appearing in the operand must already be defined.

LINK Link to a file

The LINK pseudo-op allows separate program files on the disk to be
'linked together' and assembled as one file. The LINK operand is a
source file name, enclosed in single gquotes. No drive specification
is needed for the LINK file, as all units will be searched (starting
with the unit the original source file is on) to locate the file.
If the file is not found, a 'File not found' error will be issued,
and the assembly aborted.

Linking to a file is like a subroutine; that is, when the linked-to
file is exhausted, assembly of the original program will continue
from where it was left off at. For example,

8010 LXI H,4000H
2020 LINK 'TEST'
2039 MoV A, M

will cause the entirety of the file TEST to be assembled between the
LXI and the MOV,

Files that are linked to must not contain an END pseudo-op.

Rev., 8.1 2/5/79 4-59



END End of assembly

The END pseudo-op indicates to ZSM that the end of the program has
been reached. As such, it may be omitted, since the physical end of
a program has the same effect.

In addition, though, an operand may be included. This operand, if
present, indicates the starting address of the program. This
address is not where the program is loaded, but instead where
execution will begin. This allows the program to begin execution at
any point in memory, rather than the beginning of the program. If
this is omitted, then the beginning of the program is used as the
starting address.

In order for the starting address to be effective, the object file
would be changed to an implicit command file under MDOS (type
gC-gF).

EQU Equate

The EQU pseudo-op simply equates the label associated with it to the
value of the operands.

g218 TEN EQU 10
8824 TWENTY EQU 2*19

The above code would cause the label TEN to have the value 18, and
TWENTY to have the value 24.

REQ Request value

The REQ pseudo-op is similar to the EQU pseudo-op, only instead of
an explicit value being specified, the system console is prompted
for the value. The prompt is specified as the operand. For

example,
8914 TEST REQ 'Input:'
Would cause the message

Input:

to be displayed on the console during pass 1 of the assembly. The
operator must then type the value to be assoclated with the label.
For example, if the operator had typed '56H' in response to the
prompt, then TEST would have a value of 56 hex.

PRT Print

The PRT pseudo-op allows information to be displayed on the console
during pass 2. If operands are present, they are displayed,

otherwise, just a carriage return/linefeed is printed. For
example,

4-69 Rev. 8.1 2/5/79



9219 TEST EQU T7000H
ga29 PRT 'This is a test ',TEST

would cause

This is a test 76860

to be printed on the console during pass 2.

TAB Tab settings

The TAB pseudo-op changes the tab settings for the assembly listing.
Normally, they are at positions 15, 22, and 36. If it is desired to
change them, then the TAB pseudo-op is used. It expects three
operands, one for each tab setting. 1If a particular operand is
zero, then that position is set to the default. The three settings

represent the location of the opcode, operand, and comment fields
respectively.

NLIST No list

The NLIST pseudo-op will cause code following it not to be listed.
Note that this overrides any options which may have been specified
in the command string; 1If the E option was used, nothing will be
listed (errors or not) after a NLIST.

LIST List

The LIST pseudo-op cancels the effect of the NLIST pseudo-op. If
there has been no NLIST, then this has no effect.

FORM Form feed

The FORM pseudo~-op produces a formfeed in the listing when
encountered.

IFF If false - conditional assembly

The block of code following the IFF pseudo-op will be assembled only
if the operand evaluates to d.

IFT If true - conditional assembly

The block of code following the IFT pseudo-op will be assembled only

if the operand evaluates to anything other than 4.

ENDIP End of IF block

Rev, 8.1 2/5/79 4-61



The ENDIF pseudo-op is used to mark the end of an IFT or IFF block.

DB Define byte
The DB pseudo-op assigns its operands to successive memory
locations. Either numeric or ASCII operands may be present, but

either one must evaluate to only 8 bits. This means that only one
ASCII character may be included per operand. For example,

g@19 LOCATION DB 1,2¢H,118B,'D',TEST,14
would put each operand into a successive memory location.

'2Z' is a special case of the DB pseudo-op, and it is eguivalent to
DB 8. For example,

galeg XXX 4 and
2018 XXX DB ]

are equivalent.

Dw Define word

The DW pseudo=-op is basically similar to DB, only it defines two
bytes at a time, rather than 1. Also, the two bytes are in Intel
standard low/high format.

DD Define data

The DD pseudo-op is exactly like DW, only the two bytes are put in
high/low format.

DT Define text

The DT pseudo-op allows ASCII text to be put into memory. The
desired text must be enclosed by single quotes. For example,

gel@ TEST DT 'ABCDEF!

would produce the following object code: 41 42 43 44 45 46 (hex).

DTH Define text terminated high

The DTH pseudo=-op is like DT, only the last character is ORed with
88H before it is written out. 1In the above example, the last byte
would be Cé& hex.

DTZ Define text terminated with zero

The DTZ pseudo-op is like DT also, only it causes a byte of 88 to be

4-62 Rev, 8.1 2/5/79



appended to the text string. Thus the example would be 41 42 43 44
45 46 0@@.

DS Define storage

The DS pseudo-op causes the assembler to skip over the number of
bytes specified by the operand. Since the object file is scatter
loaded, the area skipped over will remain undisturbed.

FILL £ill storage

The FILL pseudo-op is similar to DS, only it fills the area with a
constant, rather that skipping over it. The constant to £ill with
is specified with the second operand. For example,

p219 FILL 5,3

would produce the output

83 93 93 83 23.

4.5.3 ASSEMBLY ERRORS

There are ten assembly errors. Note that an error doesn't
necessarily cause the program to assemble wrong, particularly if the
error is a syntax error in something like a TAB statement.
Nevertheless, all errors should be avoided.

The errors are as follows.

A Argument error -~ This is caused by an invalid character in an
operand field, or an ASCII constant which is out of range.

D Duplicate label error - This indicates that a symbolic name
was used more than once as a label. The first value will be used.

J Jump error - This indicates a relative jump (JR, JRZ, JRNZ,
JRC, JRNC, DJINZ) to a label which is out of range. The relative
jump should be replaced with an absolute one.

L Label error - This is caused by a label which contains invalid
characters.

M Missing label error =~ This indicates that an EQU or REQ
pseudo-op was encountered, but there was no label on the line.
Obviously, a label is necessary for either of these.

(o] Opcode error - This is caused by an illegal or missing
opcode.
R Register error - This indicates that an illegal value was

found where a register was expected.

Rev, 8.1 2/5/79 4~-63



s Syntax error - This is caused by missing operands or improper
use of operators.

U Undefined symbol error - This indicates that a symbol was
used, but that the symbol has not been defined.

\'4 Value error - This indicates that the value computed is out of

range for the operation being used, specifically a two-byte
instruction, or a DB.

4.5.4 INSTRUCTION SET

ZSM supports the complete Z-88 instruction set, using the TDL-style
mnemonics. These mnemonics represent the Z-8¢ instruction set as a
logical superset of the 8080 mnemonics. The reason that these
'superset’' mnemonics were chosen over the Zilog mnemonics is for
ease of use. All 80889 programs will run unmcdified on 2ZSM, but they
wouldn't on a Zilog-mnemonic assembler. In addition, someone
familiar with 8088 mnemonics will find the superset easy to learn,
since they are a logical extension of 8#89 mnemonics.

One thing that is important to grasp is how indexing is handled.
Under Zilog mnemonics, an operand might appear as (IX+d) where d is
the offset and IX is the index register. Under ZSM, it would be
d(X). Thus instead of

gg1e LD HL, (IX+12)
the following notation is used:
g01lo LXI H,12(X)

The same is true of 1Y, only it would appear as (Y) instead of . (X).
In addition, an offset of zero may be omitted entirely. That is,
(IX+9) needn't be written as #(X), it can simply be (X).

The next sections outline the instruction set. It is not meant as a
tutorial on the Z-89, but rather a guide to the specific mnemonics
used. Following that is a test program. If you have a Mostek or
Zilog Z-88 Programming Manual, notice that in the back is an
alphabetic list of all possible instructions. That list is in Zilog
mnemonics. The test program herein is an exact duplicate of that
list, only in the superset mnemonics. You are not expected to enter

and assemble this program, but to use it as reference for the
mnemomics.

In the following section, certain general conventions are used.
They are as follows:

n an 8 bit value

nn a 16 bit value

d an 8 bit value, specifically a displacement

r register, such as A, B, ¢, D, E, H, L, M, d(X), 4d(¥)

I one of the index registers, IX or IY (abbreviated X or Y)
rp register pair, such as B, D, H, SP, PSW, IX, IY

4-64 Rev. 8.1 2/5/79



Rev. 8.1

a bit,

2/5/79

value @ - 7

4-65

&



8 bit load group

Instructicn
MoV r,r
MOV r,M
MOV r,d(1)
MOV M,r
MOV d(1),r
MVI r,n
MVI M.,n
MVI  d(I),n
LDA nn
STA nn
LDAX rp
STAX rp
LDAI
LDAR
LDIA
LDRA

16 bit load group

Instruction

LXI

LBCD
SBCD
LDED
SDED
LHLD
SHLD
LSPD
SSPD
LIXD
SIXD
LIYD
SIYD

SPHL
SPIX
SP1Y

PUSH
PQP

rp,nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

rp
rp

Zilog equivalent

LD
LD
LD
LD
LD

LD
LD
LD

LD
LD

LD
LD

LD
LD
LD
LD

Zilog equivalent

LD

LD

LD
LD
LD
LD

LD
LD
LD

LD

LD

PUSH
POP

r,r
r,(HL)
r,{I+d)
(8L),r
(1+d),r

r,n
(HL},n
{I+4d),n

A,(nn)
(nn),a

rp,nn

BC,(nn)
(nn},BC
DE, (nn)
(nn),DE
HL, (on)
{(nn),HL
SP,{(nn)
(nn),SP
IX,(nn)
(nn},IX
1Y, {(nn)
{nn) ,IY

SP,HL
Sp,1X
sSp,IY

rp
rp

4-66

Rev, 8.1 2/5/79



Exchange, block transfer, and search group

Instruction Zilog equivalent
XCHG EX DE ,HL
EXAF EX AF ,AF!
EXX EXX
XTHL EX (sP),HL
XTIX EX (SP),IX
XTIY £X (sp),IY
LDl LDI
LDIR LDIR
LDD LDD
LDDR LDDR
CcCI CPI
CCIR CPIR
Cceo CPD
CCDR CPDR

Input / Output group

Instruction " Zilog equivalent
IN n IN A,n
QuT n ouT n,A
INP r IN r,(C)
QUTP r T  (C),r
INI INI

INIR INIR

IND IKD

INDR INDR

QuUTI OUTI

OUTIR OTIR

QUTD oUTD

CUTDR OTDR

9

Rev. 8.1 2/5/79 467



8 bit airthmetic/logical group

Instruction Zilog equivalent
ADD r ADD A,r
ADD M ADD A, {HL)
ADD  d(1) ADD  4,(I+d)
AD1 n ADD A,n
ADC r ADC A,r
ACI n ADC  A,n

(references to M and 4(I) are like ADD)

SUB r : SUB A,r
sSU1 n SUB . A,n
SBB r SBC  A,r
SBI1 n SBC A,n
ANA r AND A,r
ARI n AND A,n
ORA r OR A,r
OR1 n OR A,n
XRA r XOR A,r
XR1 n ' XO0R A,n
CMP r cp A,r
CP1 n cp A.,n
INR r INC r

DCR r DEC r

b bit arithmetic group

Inscruction Zilog equivalent
DAD rp ADD HL,rp
DADC rp ADC HL,rp
DSBC rp SBC HL,rp
DADX rp ADD IX,rp
DADY rp . ADD IX,rp
INX rp INC rp
DCX ryp DFC rp

4-67A Rev. 8.1 2/5/79

g



General purpose arithmetic and control group

Instruction Zilog equivalent
DAA DAA
CMA cPL
NEG NEG
CMC CCF
STC SCF
NOP NOP
HLT YALT
D1 DI
EIl EL
IM0 IM 0
IM1 IM 1
M2 IM

Rev. 8.1 2/5/79 4-67B

Y



Rotate and shift group

Instruction Zilog equivalent

RLC RLCA

RAL RLA

RRC RRCA

RAR RRA

RLCR r RLC r

RLCR M RLC (HL)

RLCR d(I) RLC (I+d) ,

{references to M and d(I) are like RLCR)

RALR r RL r

RRCR r RRC r

RARR r RR r

SLAR r SLA r

SRAR r SRA r

SRLR r SRL r

RLD : RLD

RRD ' h RRD

Bit manipulation group

Instruction Zilog equivalent
BIT b,r BIT b,r
BIT b,M BIT b,(HL)
BIT b,d(I) BIT b,(I+d)
RES b,r RES Db,r
{references to M and d(1) are like BIT)
SET b,r SET b,r

4-67C Rev. 8.1 2/5/79



Rev,

Jump, call, and return group

Instruction

JMP
J2
JINZ
JC
JNC
JPO
JPE
JM
JP

JR
JRZ
JRNZ
JRC
JANC

DJNZ

PCHL
PCIX
PCIY

CALL
cZ
CNZ
cc
CNC
CPO
CPE
CH
cp

RET
RZ
RNZ
RC
RNC
RPO
RPE
RM
RP

RET1
RETN

RST

8.1

nn
nn
nn
nn
nn
nn

‘nn

nn
nn

onn
nn
nn
nn
nn

nn

nn
nn

nn
nn
nn
nn
nn

(or JNO)
{or J0O)

(or JMPR)

{or CNO)

(or CO)

{or RNO)
{or RO)

2/5/79

Zilog equivalent

Jp
Jp
JP
JP
Jp
JP
JP
JP
JP

JR
JR
JR
JR
JR

DJNZ
JP
JP
JP

CALL
CALL

CALL

CALL
CALL
CALL
CALL
CALL
CALL

RET
RET
RET
RET
RET
RET
RET
RET
RET

RETI
RETN

R3T

nn
Z,nn
NZ,nn
C,nn
NC,nn
PC,nn
PE,nn
M,nn
P,an

d
Z,d
NZ,d
c,d
NC,d

d

(HL)
(IX)
(I1)

nn
Z,nn
NZ,nn
C,nn
NC,nn
PO,nn
PE,nn
M,nn
P,nn

NZ

NC
PO
PE

m (m=8%n)

4-67 D



d L9-¥

'AGH

1°8

6L/S/C

Addr

0000
0000
0000
0000
0000
0000
0000
0001
0004
0007
0008
0009
000A
0008
00GC
obop
000E
0010
0012
0014
0016
0018
0018
0019
001c
001F
0020
0021
0022
0023
0024
0025
0026
0028
0029
0024
0028
002C
002E
0030
0032
0034
0036
0038
0034
003C
003¢
003D
0040
0043
0044
0045
0046
0047
0048
0049

B1

8E
DD
FD
8F
88
89
6a

ac
8p
CE
ED
ED
ED
ED

B2 B3 BA E Line Label

8E 05
8E 05

20
ba
54
64
Tk

86 05
86 05

20

09
19
29
39
09
19
29
39

A6 05
Ab 05

0001
0002

0003 ;

0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

' 0018

0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
04031
0032
0033
0034
0035
0036
0037
0038
0039
0040
oo
0042
0043
0044
0als
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056

s
P
.
i
]
.
i
.
i
.
i

A

-

- 2

Oped

Test file for ZISM
by Neale Brassell

Operand

This uses all instructions

.0000

.0018

.003C

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ACI
DADC
DADC
DADC
DADC

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADL
DAD
DAD
DAD
DAD
DADX
DADX
DADX
DADX
DADY
DADY
DaDY
DADY

ANA
ANA
ANA
ANA
ANA
ANA
ANA
ANA
ANA
ANA

TN OTRET O ENMND O

H
IND{X)
IND(Y)

mopECImOOD >

©

=

IND(X)

g
=
o
o~
[
-

o

IND(X)
IND(Y)

T mo O

Page 1

Addr

00UA
004C
004C
OGUE
0052
0056
0058
0054
005¢C
Q0SB
0060
0062
0064
0064
0066
0064
006E
oo70
0072
0074
0076
0078
0074
007C
007C
007E
0082
0086
0088
008a
008C
008E
0090
0092
0094
0094
0096
009A
009E
00A0
00a2
00AY
0046
00A8
00AA
00AC
00AC
Q0AE
00B2
00B6
ooBé
00BA
00BC
0OBE
00co
00c2

B1
E6

CB
bD
FD
cB
cB
CB
Ch
CBb
CB
cB

CB
bb
FD
cb
B
CcB
CB
CB
CB
B

4]
DD
FD
cB

cB
CB
CB
CB
CB
CcB

CB
bb
FD
B
CB
CB
cb
B
CB
CB

CB
DD
FD

CB
CB
CB
B
cB
CB
CchB

B2 B3
20

46
CB 05
CB 05
47
40
41
b2
43
4y
LE

4E
CB 05
CB 05
hF
48
g
ha
L1:]
4C
4D

56
CB 05
CB 05
57
50
51
52
53
54
55

5E
CB 05
CB 05
SF
58
59
5A
5B
5C
5D

66
cB 05
CB 05
67
60
61
62
63
64
65

B4 E Line Label

46
46

4E
4E

56
56

5E
5E

66
66

0057

0058 ;
0059 A.004C

0060
0061
0062
0063
0064
0065
0066
0067
0068

0069 ;

0070
0071
0072
0073
0074
0075
0076
0077
0078

0079
0080
0081
o082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
o111
0112

-

-

Oped
ANI

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

[PXEPLRVTRULEDERVURWEL VARtV

g N N N N LA

Operand

N

D(X)
D(Y)

DOOCOO0OOOLOO
- -

CI M OOw ™ 3

D(X)
DY)

@ w

B N N Sty SIS O

. e e e w owow oW W w

CIm T O WD

D(X)
o(Y)

- 4

- w oo omeow oW ow w

RNRRNNRDNNDN R

D(X}
D(Y)

- w W oW omow W owm w

p{X}
oY)

o

MmO W T

P T

Page 2



*ADY

6L/8/T 1°8

Jd L9~}

Addr

00CH
H0CH
00Ct
00ca
DOCE
0000
00p2
00DY
00D6
oocs
00DA
oonc
oonc
Q0bE
00E2
00E6
00ES
QOEA
00EC
OQEE
00F0
00F2
00FY
00Fk
00F6
O00FA
00FE
0100
0102
0104
0106
0108
0104
010C
o10C
010F
01z
0115
0118
(R}
O11E
0121
0124
0127
0127
0128
0128
0129
01z¢
012F
0130
01N
0132
133

't

81

[%:]
DD
FD
cB
CB
CB
cB
Cch
cB
CB

cB
Y
FD
CB
ch
c3
c3
cB
CB
CcB

cB
DD
Fb
CB

(%}
CB

a2

6E
cB
cB
6F
68
69
6a
68
6C
6D

76
cB
ca
17
70
T
T2
13
74
15

TE
cB
CB
TF
78
79

CB 7A

CB
CB
CB

ne
FC
Dy
Cb
ch
]
EC

7B
7€
70

88
88
a8
88
88
L1
88
88
&8

BE
BE

B3

05
05

05
05

05
05

05
05
05
a5
05
05
05
05
05

05
05

By

6E
6E

76
76

TE
TE

I vire Lapel

0113
0314
0115
0116
0117
0318
0119
0129
0121
0122
0123
o124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
o143
[ L1
0145
o146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0150
0161
0162
0163
010H
Ules
tioe
Ole”
0ios

«
)

i
A.

610C

Opecd

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
B1T
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

ce
CH
CNC
CALL
CHZ
ce
CPE
CPO
ci

CMC

CcMp
CMP
CHP
cHe
cup
CMP
CHP
cHp
CHp
CHP

wperand

-

D(X)
{1}

-

PO D e b e T
-

> -

-

- o . o =

pX)
D{Y)

(3K <08 < R o W =% - e (L« A = 8 WM W AN W i an
-
*x X

MO T e b T

- owm oW W o om W W

D(X)
DY}

?‘E:?ﬁ‘:?ﬁiﬂ?-‘u‘u?:

Q3 S ] ey e md d

= aw
> T

NN
NN -
NN
NN
NN
NN

IND(X)
IND(Y)

EmD O W

rage 3

Addr

0135
0138
0138
0134
013¢C
013E
0140
0140
o151
0141
o142
0142
0143
0146
o149
014A
014p
014C
014D
O14E
O14F
0150
0151
0152
0154
0156
0157
0158
0158
0159
0159
0158
0158
015¢C
015¢C
015D
015F
0161
0162
0163
0164
0164
0165
0165
0167
0169
0168
0168
016D
01oF
0171
uIT3
0175
0177
M9

178

B1
FE

ED
ED
ED
ED

2F
27

35
DD
FD
3b
05

op
15
1B
1w
25
28
bD
FD
2D
38

F3

FB

£3
bp
FD
08
EB
D3y

76

ED
ED
ED

ED
DB
ED
ED
ED
ED
ED
ED

B2 E3 BH £ Line

20

A9
B3
Al
B1

2B
2B

28

£3
£3

46
5E

8
20
49
43
50
58
60
o8

05
05

0169
3170
0171
0172
0173
0174
0175
0176
0177
0176
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
u217
0218
0219
0220
0221
0222
0223
0224

L abel

P

L0138

A.0140
;

A.0141
£.0142

Oped
CPI

cep
CCDR
cCl
CCIR

CHA
DAA

DCR
DCR
DCR
DCR
bCR
Dex
DCR
DCR
10} ¢
DCR
DCR
DCX
DCx
DCX
DCR
DCX

DI
DJINZ
EI

XTHL
ATIX
XTIy
EXAF
XCHG
EXX

HLT
IHO
Mz
Inp
1Np
Ing
Inp
Inp

Inp
INP

Gperand.

N

IND(X)
IND{(Y)

MmN IEWMU L OD W >

L4 -

$+D1S

rEmo O x>



9.9~y

s ADY

T°8

6L/S/T

Addr

0178
017¢
017F
0182
0183
0184
0185
0186
0187
0188
0189
0184
0188
018D
018F
0190
0191
0191
0193
0195
0197
0199
0199
0194
019¢C
019E
o
O1Al
01a7
01AA
014D
0180
0183
0186
0189
0189
0188
018D
01BF
01C1
01C3
01C3
o1cH
01C5
01ch
01c7
o1cé
01c9
01Ca
01cB
s1ce
01CE
a1
01D4
0107
u1Ds

B1

34
i
FD
3C
04
03
oc
14
13
ic
24
23
bD
FD
2C
33

ED
ED

ED
ED

EY
H 1)
FD
DA
FA
D2
c3
ca
F2
EA
B2
CA

38
18
30
20
28

o2
12
77
70
n
12
73
Th
75
36
DD
DD
oD

oD ?
bD 7

B2 B3 B4 E Line Label

34
3N

23
23

Ak
BA
A2
B2

E9
E9
88
a8
88
a8
88
a8
88
a8
88

2E
2E
2E
2E
2E

05
a5

05

05
05
05
05
05
05
05

05

05
05
0%

0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0211
0242
0243
ozh4
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
02712
0273
0274
0275
0276
027"
027y
02749
02840

A.M7B

A.0191

i
A.0199

QOped

INR
INR
INR
INR
INR
INX
INR
INR
INK
INR
INR
INX
INX
INX
INR
INX

IND
INDR

INI
INIR

PCHL
PCIX
PCIY
Jc
JH
JNC
JMP
JNZ
Je
JPE
JEO
J2

JRC
JR
JRNC
JRNZ
JRZ

STAX
STAX
MOV
MOV
MOY
MOV
MOV
MOV
MOV
MVl
MOV
MOV
MOV
MOV

Operand

M
IND(X)
IND(Y)

e T O e

NN
NN
NR
NN
NN
NN
NN
HN
NN

$+DIS
$+DIS

. $4DIS

$+DIS
§+D15

TXIIXTITIITTOW
T moOE»

INp(x),B

wn{x),C

IND(X),D

LED(X) E
2

!

Addr

01DD
01E0
01E3
D1g?
01E7
01EA
01ED
01F0
01F3
G1Fb
01F9
01FC
0200
0200
0203
0207
0208
020E
0212
0216
0214
021A
0218
021C
021D
0220
0223
0226
0227
0228
0229
0224
0228
g22c
022E
022F
0231
02313
0233
0234
0237
0234
0238
023C
023D
0238
023F
o240
o241
0243
0243
0247
024A
024
0248
024k

£ED

4K
DD
Y

B2

L]
75
36

71
70
A
72
73
TA
75
36

88
43
53
88
22
22
73

1€
7E
88

57
20

46
45

20
iB
88

L1
UE

05
05
05

05
05
e5
05
05
05
05
05

05
88
88
a5
88
88
88

05
05
05

05
05

)

05
[t

B4 E Line

20

20
05
05
05

05
05

05

0281
0282
0233
02814
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300

0301 ;

0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
6327
0323
0329
0330
0331
0332
0133
0334
335
336

Label

-

LO1E7

.
1]

A.0200

A.021A

3.0233

i.02h3

i
A. 0244

STA

SBCD
SDED
SHLD
SIXD
SIYD
3SPD

LDAX
LDAX
HoV
MOV
MoV
LDA
MOV
MOV
HOV
MOY
MOV
MOV
LDAI
MOV
MVI
LDAR

MOV
HOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MVI

LBCD
LXl

MoV

MOV

Operand

THD(X),H
IND(X),L
IND(X) N

IND(Y), 4
IND(Y),B
IND(Y),C
IND(Y),D
IND(Y),E
IND(Y) 8
IND(Y),L
IND(Y),N

HN
KN

x

ND(X)
ND(Y)

P e
» ow ow ow e ow e w oW
EE O OW b b

bdhond
- -
e

-

X OOW > ke X

D(X)
D(Y)

-4

W oWwE WD

- e e e W oW e ow W W

=
-

=]
=
x

ND(X)
ND(Y)

leNe el
Pt b T

Page b



* ADY

I°8

6L/5/2

HLO9-}

Addr

0251
0252
06253
0254
0255
0256
0257
0258
0254
0254
Q258
025E
0261
0262
0263
0264
0265
0266
0267
0268
0264
0264
026E
0271
0271
0272
0215
0278
0279
0274
0278
027¢
021D
027E
027F
0281
0281
0282
0285
0288
0289
0284
0288
028¢C
028D
028E
028F
0291
0291
0294
0297
0297
0299
0299

.

B1

4F
48
49
4a
4B
L1ns
4D
OE

56
Db
FD
57
50
51
52
53
54
55
16

ED
n

5E
D
FD
5F
58
59
54
5B
5C
5D
£

66
DD
FD
67
60
61
62

b4
65
26

24
21

ED

DD
DD

B2 B3 B4 Z Line Label

56
56

20

5B
88

SE
SE

20

66
66

05
05

88 05
05

05
05

05
05

05
05

48 c%
88 03

0337

0333

0339

0340
0341

0342
0343
0344

0345
0346

0347
0348
0349
0350
0351

0352
0353
0354
0355
0366
0357
0358
0359
0360
0361

0362
0363
0364
0365
0366
01367
0368
0369
6370
0371

0372
0373
0374
0375
0376
0377
0378
0374
0330
0381
0382
0383
0384
038%
0386
038
0383
036y
0390
0391
03y2

i
A.0254

o e

i
A

'
A

A

P ™

L0264

021

L0281

L0291

L0297

L0299

Oped

MOV
MOV
MOV
MOY
MOV
MOV
MOV
MVl

MOV
MOY
MOV
MOV
MOV
MOV
MOV
MOV
MO¥
MOV
KVI

LDED
LXI

MOV
HOV
MOV
MOV
MOV
MY
MOV
MOV
MOV
MOV
MY1

Moy
MOV
MOV
MOV
MOV
MOV
MOV
MoV
MOV
MOV
MVI

LBLD
LXI

LDIA

LIXD
LX1

rage 7

Operand

[rEeRrRrNoNeRoN S
RTTIm T

D{x}
D{¥}

MO O M
==z

TOOUOTOUODUToOoODO

- o o om e owm o

mm mj”:h:ﬂ!ﬁ:ﬂ
ot bl U ZC UMD O >

=X
oo
Ptphy
-
ot

- e e o=

-

Tz
- om -
I OOGT >

=
-4

H,NN

HN
X, NN

Addr

02A1
0245
0249
G249
02AA
024D
0280
021
0282
0283
0284
0285
0286
02B7
0289
0289
0288
028B
02BF
02Co
02C2
02CH
02C7
02C7
02¢9
o2ca
02Cb
02CF
02CF
02p1
gz201
02Dz
02p2
0203
0206
0209
02DA
0208
020C
02DD
02DE
02DF
G02E0
02E2
02E2
0264
02€6
02E6
02EB
O2EA
Hakc
02EK
02F0
02F2
BRI
Fo

-

B

FD
FD

68
bD
FD
6F
68

1Y)
68
6C
3]
2E

F9
DD
FD
N

ED
ED
ED

ED
00
B6

FD
B?
BO
81
B2
B3
BY
BS
Fb

Ep
ED

ED
ED
ED
ED
£D
£D
£D
b3

B2 E3 B4 E Line Label

24 86 95
21 85 05

6E 05
6E 05

20

4F

78 86 05

F9
a8
A8

A0
BO

B6
B6

20

BB
B3

19
41
49
51
53

oy
20

05

0393 4.02M

0394
0395
0396
0397
0398
0399
0400
oh01
0402
0403
0424
0405
0406
0407
0408
0409
0410
ok

o412
0413

Ok 14

0415

o416
o417
0418
0419
0420
o421
0422
o423
ouzy
0425
0426
0427
0428
029
0430
0431
0432
0433
043k
0435

0436 ;

0437
0438
0439
0440
Oig1
L2
04ﬂ3
Shadd
T Y
Jido
tay?
O4h3

i
A

B e Omome

L0249

L0289

.02BB

.02C7

.02CF
.02Dp1

.02p2

.02E2

.02E0

Oped

LIYD
LxI

MOV
MOV
MOV
HOV
MOV
MOV
MOV
MOV
MOV
MO¥
MYl

LDRA

L3PD
SPHL

SPIX
SPIY

LXI

Lbp
LDDR
LDI
LDIR

NEG
NOP

OR&
GRA
ORA
OR4
ORA
ORA
ORA
ORA
ORA
ORA
QORI

QUTDR
QUTIR

QUTP
ouTe
QuTP
QUTP
ouTe
ouTe
QUTP
out

Page d

Operand

Ll ol ol ol ol ol ol
-
=

== =

- m W W W oW e wow w

T T O e e L

KR

SP,NN

IRD(X)
IND(Y)

ECEMmUOT M

A al - AR N o B



IL9-%

*ADY

°8

6L/S/T

Addr

32¢f6
02F8
02F4A
O2FA
02FB
02FC
02vD
02FE
0300
0302
0303
0304
0305
0306
0308
0304
0304
03o0C
0310
0314
0316
0318
0314
031C
031
0320
0322
0322
0324
0328
632¢C
0328
0330
0332
0334
0336
0338
0334
033A
033C
0340
WELT
0346
0348
03u4A
034C
034E
6350
0352
0352
n354
0358
035¢C
035€E
0360
0362

B1

ED
ED

F1
(]
D1
E1
DD
FD
F5
C5
D5
E5
DD
FD

cB
Db
FD
cB8
cB
cB

CB
cB

ce
cB

cB
DD
FD
cB
CB
cB
CB
CB
cB
cB

cB
bp
FD
cB
B
cB
cB
cB
CcB
cB

CB
ob
FD
Cb
cB
cp
cs

bz B3 B4 £ Line Label

AB
A3

El
El

ES
E5

86
CB
cB

80
81
82
83
8y
85

8€
CB
cB
8F
88
89
8a
8s
8¢
8p

96
cB
CB
97
90
91
92
93
9k
95

9E
CB
CB
9F
98
93
94

05
05

05
05

05
05

g5
0s

86
86

8E
8E

96
96

9E
9E

(I D]
0450
0451
0452
0453
0454
0uss
0456
0ous7
045y
0459
0460
oué1
0462
0463
oubl
oués
oubé
0467
ou68
0469
0470
o471
oy72
0473
ouTY
olrs
0476
0477
0478
0479
0480
0481
0482
o483
ousdy
0u8s
0486
0487
0488
0489
0490
091
0492
0493
o494
0495
HERTS
GH9”
0498
0449
0500
0501
0502
9513
U504

A.O2Fb

A.02FA

A.0304

Oped

OUTD
CUTI

POP
POP
POP
POP
POP
POP
pust
PUSH
PUSH
PUSH
PUSH
PUSH

HES
RES
RES
RES
RES
RES
RES
HES
RES
RES

RES
RES
RES
RES
RES
RES
RES

RE3
RES

RES

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RES
HES
RES
RES
RES
RES
RES

.
COoOLLOLOOO

MN RN N N

Operana

PSW

D(X)
D(Y)

= =

CXmO O D T

. W W oW W e w e

1,M

1,IND(X)
1, INDCY)
1

- ok
- -
b d

MR

mnmoOw

D(X)
D(Y)

= =

. e e W o W e e v oW

MmO W Y

NDEXY
NiXY?Y

Fage 9

Addr

0364
0366
01368
0364
n36A
036C
4370
0374
0376
0378
037A
037C

- 037€

0380
0382
0382
0384
0388
038¢C
038€E
01330
0392
0394
0396
0398
0394
039A
039c
03A0
03ak
0346
038
034
03aC
03AE
0380
03B2
0382
0384
0388
038C
0 3BE
03cao
03C2
03CH
03c6
03C8
03CA
03CA
0jce
a3cc
nicp
O3CE
03CF
03p0
03D

81

ca

cB
CcB

CcB
DD
FD
cB
cB
cB
CB
cBe
cB
cB

ce
bp
FD
cB
B
ca
cB
CB
cB
cB

CB
bp
FD
CcB
cB
cB
cB
cB
cg
cB

CB
DD
FD
CB
cB
cB
CB
4]
cB
cB

c9
D8
Fo

co
ro
Ed
EO

B
;]
87
BO
B1
B2
B3
B4
BS

BE
CcB
cB
BF
B8
B9
BA
BB
BC
BD

05
a5

05
05

05
05

05
05

24 £ ipe Label

Ab
Ab

AE
AE

B
B6

BE

€205
0596
0507

0508 ;

0509
0510
051
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
[T
0555
[T
08457
LT
035y
0500

i
A.03CA

Oped

RES
RES
RES

RES
RES

RES
RES
RES
RES
RES
RES
RES

RES
RES
RES
RES
RES
RES
HES
RES
RES
RES

RES

RES
RES
RES
RES
RES
RES
RES
RES

AES
RES
RES
RES
RES
RES
RES
RES
RES
RES

RET
RC
RM
RNC
RNZ
kP
RPE
HPO

Operand

A i) W)
- m

D(x)
b(y)

s EEEE R
[~ B NI B 4

- m W oW e w e ow e w

D{X)
o(Y)

b4

IO O e e T

- W w W ow W owm oW ow w

D(X}
p(Y)

[ - e S o AR R Y- AR ) [ERE RN R RN R R E RN N N ]
=z

R OO D e e X

- ow W W om ow ow o ow ow ow

p{x)
D{Y}

-

P IR R R e |

- % e ow e oW ow W w w

I MT O ke e

Page 10



s aBY

1€

6L/S/2

rio-v

Addr

03p2
03p3
03p3
03p5
03n7
03n7
03Dy
03pp
O3E1
03E3
03E5
03e7
03E9
03EB
03ED
O3EF
03EF
03F0
03F0
03F2
03F6
03FA
03FC
O3FE
0400
o402
0404
0406
o408
0408
0409
0409
o4oB
0408
040D
LR

o415
o417
0419
0418
041D
041F
0421

0423
0423
0424

o424y

ou26

424
QU42E
04306

o432
0434
0u36

o

B1
ca

ED
ED

cB
Db
FD
cB
c8
Ch
cB
c8
CcB
cB

cB
bD
FD
cB
[%:}
cB
CB
cB
o]
cB

07
ED

cB
bD
FD
cB
B
B
cB
cB
B
cep

cB
bD
Fb
B
cB
CB
B
(4]
]

b2 B3 B4 E Line

0561

0562
4D 0563
45 0564

0565
16 0566
CB 05 16 0567
CB 05 16 0568
17 0569
10 0570
11 511
12 0572
13 0513
14 0574
15 0575

0576

0577

0578
06 0579
CB 05 06 0580
CB 05 06 0581
a7 0582
00 0583
[1}] 0584
02 0585
03 0586
0y 0587
05 0588

0589

0590

0591
6F 0592

0593
1E 0594
CB 05 1E 0595
CB 05 1E 0596
1F 0597
18 0598
19 0599
1A 0600
1B 0601
ic 0602
1D 0603

0604

0605

0606
0E 0607
CB 05 OE 0608
CB 05 OE 0009
OF 0b10
08 Oo11
09 do12
0A 0013
0B btk
oc 2015
op 061p

Label

A.03D3

i
£.03D7

Oped
RZ

ReTI
RETH

RALR
RALR
RALR
RALR
RALR
RALR
RALR
BALR
RALR
HALR

RAL

RLCR
RLCR
RLCR
RLCR
RLCR
RLCR
RLCR
RLCR
RLCR
BLCR

RLC
RLD

RARR
RARR
RARR
RARR
RARR
RARR
RARR
RARR
RARR
RARR

RAR

RRCR
RRCR
RRCR
RRCR
RRCR
RRCR
RRCR
RRCR
RHCR
HECR

rage 11

Operani

IND{X)
IND(Y)

MmO -

IND(X)
IND(Y)

CEmOOT »

IND(X)
IND(Y)

™ ITm OO

IND(X)
IND(YS

Lol <R I oI - B

Addr

o43C
043c
043D
043D
TR
ou3F
0440
o441

oui2
0443
o444

0445
o446
ou47
ouhT
o448
o44B
QYU
OUYF
0450
0451

o452
0453
054
0155
0457
0457
0459
o458
045D
oUsF
O45F
0460
0460
au62
0466
0u6A
oL6C
OU6E
0470
0472
0474
o416
0478
o478
auTa
O47E
0482
ouBy
0486
0438
048a
ou8c
o4k
0490
0490

B1 B2 B3 ks E Line Label

GF
£ED

c7
CF
07
DF
£7
EF
F7
FF

9E
oD
FD
9F
98
99
94
98
9C
90
DE

ED
ED
ED
ED

37

cB
DD
FD
cB
cB
CB
cB
CB
cB
CB

cB
DD
FD
cB
B
cB

&7

9E

05

9E 05

42
52
62
72

cb
CB
cB
c7
co
c1
c2
€3
cH
€5

CE
cB

CB
CF

c8
Y

CB. Ca

cB
B
cB

cB

cp
cC
CD

1]

05 c6
as cé

05 CE
05 CE

0617
0618
0619
0620
0621
ab22
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
064y
0645
0b4b
0647
0648
0643
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0oobH
166"
LYY ]
Joby
ALRd
0071
Qu?2

i
A.043C

»
A.043D

A.043F

A.0847

A.0457

i
A.QU5F
H
A.0460

Oped

RRC
RRD

RST
RST
RST
RST
KSY
R3T
RST
RST

SBB
SBB
sBB
5BB
SBB
388
SBB
SBB
SBB
$BB
SBI

DSBC
DSBC
pssc
DSBC

STC

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

Page 12

Gperand

- O MG e D

IND(X)
IND(Y)

nixow mrmm oW

[al-8 R - Nel - L 4

D(X)
D{Y)

oo

LOoODLOOODOO O

- - e e . wm w o

DX}
D(Y)

— - — ) -
MR
o

CX MmO e b T

o
x



A.9-%

T1°8 °“Aa3d

6L/S/T

Addr

0492
0496
0uUgA
049C
0U49E
0U4A0
04a2
O4aY
0lLAb
0UA8
0uA8
0lAA
ONAE
04B2
ousy
04B6
o4ps
04BA
04BC
OUBE
ouco
04co
oucz
04C6
ouca
oucc
O4CE
04D0
04Dp2
ouph
04D6
oup8
04p8
OHDA
O4DE
OUE2
O4EY
OUED
O4ES
O4EA
OllEC
OY4EE
04FO0
OUFo
OUF2
04F6
OUFA
04FC
OU4FE
0500
0502
0504
0406
0508
0508
0504

B1

DD

CcB
CB
cB
cB
CB
CcB
cB

CB
DD
FD
cB
cB
cB
CcB
cB
CB
cs

cB
DD
FD
[%:]
cB
cB
cB
cB
cB
cB

cB
DD
FD
cB
CB
cB
CcB
CB
cB
CB

cB
DD
FD
cB
cB
CcB
cB
uB
cB
ci

cB
DD

B2 83 B84 E Lire Label

CB 05 Db
CB 05 Db
D7
Do
D1
D2
D3
DY
D5

DE
CB 05 DE
CB 05 DE
DF
D8
D9
DA
DB
DC
DD

Eb6
CB 05 Eb
CB 05 Eb
E7
EQ
E1
E2
E3
EY4
ES5

EE
CB 05 EE
CB 05 EE
EF
E8
E9
EA
EB
EC
ED

Fb6
CB 05 Fb
CB 05 Fb
F7
FO
F1
F2
F3
Fi
F5

FE
CB 05 FE

0673
0674
0675
0676
0677
0478
0679
0680
€581
0682
0683
06814
0685
0686
0687
0648
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
o711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0723
0727
0728

-

Oped

SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET

rage 13

CEM@MOOTD®™MMHTX

D(X)
D(Y)

ER N QN N g ¥ ¥ ¥ W Wi wiwww ww
z 2

CEMRMOOD®»HMHTX

D(X)
D(Y)

moOwo»~HX
z x

(S G, I, IS, E R I RN, RS, IS )
=

—

ND(X)
ND(Y)

ooocoooconoconOVON

CfFEmocO@W®» ~ M-I

Addr

050E
0512
0514
0516
0518
0514
051C
051E
0520
0520
0522
0526
0524
052C
052
0530
0532
0534
0536
0538
0538
0534
053E
0542
0544
0546
0548
054
054C
0S4E
0550
0550
0552
0556
0554
055C
055E
0560
0562
0564
0566
0568
0568
0569
056C
056F
0570
0571
0572
0573
0574
0575
0576
0578
0578
0579

B2 B3 E4 E Line Label

CB 05 FE
Fi
F8
F9
FA
FB
FC
FD

26
CB 05 26
CB 05 26
27
20
21
22
23
24
25

2E
CB 05 2E
CB 05 2E
2F
28
29
2R
2B
2C
2D

3E
CB 05 3E
CB 05 3E
3F
38
39
3A
3B
3C
3b

96 05
96 05

20

0729

07340

0731

0732

0733

0734

0735

0736

0737

0738 A.0520
0739

0740

0741

0742

0743

0744

o745

0746

o747

o748 ;

0749 A.0538
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770 ;

0771 A.0568
0772

0773

0774

0775

0776

0777

0778

0'7'79

0760

0731

0732 ;

0733 A.0573
0734

o e

.0550

Oped

SET
SET
SET
SET
SET
SET
SET
SET

SLAK
SLAR
SLAR
SLAR
SLAR
SLAR
SLAR
SLAR
SLAR
SLAR

SRAR
SRAR
SRAR
SHAR
SRAR
SRAR
SRAR
SRAR
SRAR
SRAR

SRLR
SRLR
SHLR
SRLR
SHLR
SRLR
SRLR
SHLR
SRLR
SHRLR

SUB
SuB
SUB
SUB
suB
SuB
SuB
SuB
SUB
SUB
sul

XRA
XRA

Page 14

x

IND(X)
IND(Y)

T IMmMOUDOT >

IND(X)



Addr BY B2 B3 B4 E Line Label Oped Operand

057C FD AE 05 0785 XRA IND(Y)
O057F AF 0786 XRA A
0580 A8 0787 _ XRA B
0581 A9 0788 IRA c
0582 AA 0789 XRA D
0583 AB 0790 IRA E
0584 AC 0791 XRA H
0585 AD 0792 IRA L
0586 EE 20 0793 XRI N
0588 o794 ;

0588 0795 ; Now for the definitions
0588 0796 ;

0588 0020 = 0797 N EQU 20H
0588 00 00 0798 NN DW 0
0584 0005 = 0799 IND EQU 5
0584 0030 = 0800 DIs EQU 30H
0584 ' 0801 ;

0584 0802 A.058a END

’

Rev. 8.1 2/5/79 4-67L



4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table left in memory immediately after an
assembly. This equate batch is stored as an editor source file -and can
be edited by the line editor and assembled by the assembler. The program
is invoked from the MDOS executive by typing SYMSAVE followed by an ASCII
filename parameter enclosed in double quotes and an optional ASCII mask
string enclosed in double quotes.

[unit:]SYMSAVE "<filename>" ["<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE  OPERAND
peop 1800 ORG 40PPH
4009 C3 29 49 209@ START JMP $

4883 M 3p2@ DATAT DB 21

4994 92 4303 DATAZ DR 92

4005 B3 5099 DATA3 0B 23

4996 6009 FINISH  END START

Immediately after the above program is assembled, the symbol table is still
resident in memory. To create a disk file of symbols from the above assembly
type:

SYMSAVE "TEST"

The file TEST that SYMSAVE creates is an editor compatible source file
which looks as follows:

9201 START Equ 4000H
ppg2 DATAY EQU 4003H
pp@3 DATAZ EQU 4004H
2024 DATA3 EQU 4P@5SH

PPP5 FINISH EQU 4906H

If only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE "TEST1" "DATA"

The file TEST1 looks as follows:

goR1 DATA1 EQU 40P3H
pRo2 DATA2 EQU 49044
PPP3 DATA3 EQU 40@5H

This file contains only the symbols which start with the string DATA.

Rev. 7 3/78 4-68



A symbol equate file can be used in other programs by using the assembler
LINK pseudo-op. 4

Example:

ADDR B1 82 B3 E LINE LABEL *0PCODE OPERAND
2000 1900 LINK 'TEST!
2099 2090 ORG FINISH
4006 3E M 3993 BEGIN MVI A,DATA1
49088 32 93 49 4000 STA DATAZ2
4998 C3 29 49 5000 JMP START
409¢E 6000 END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file, it uses

all available memory after the end of the program as a buffer. To invoke
the program from the MDOS executive type FILECOPY followed by a filename
enclosed in double quotes and an optional newfilename enclosed in double
quotes or a unit number by itself if the copied file is to have the same
name as the original.”

{unit:JFILECOPY "<[unit:]filename>" “"<[unit:]newfilename>"

or

Cunit:]JFILECOPY “<[unit:]filename>" <unit number>

FILECOPY exits to the MDOS executive when it is done or if it encounters

an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.3 DISKCOPY UTILITY

DISKCORY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MDOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the faster the copying process. On average it takes about two
minutes to copy and verify all 315k bytes of a MOD II disk. To invoke the
utility from the MDOS executive, type:

DISKCOPY
A sign-on message is'output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
EPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE

4-69
Rev. 7 3(78



DISKCOPY waits until the unit number is entered. When a number between
@ and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until ..e unit number (@ to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
1f your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write
destination cycles by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISXCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT P
TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit @ is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOoD COPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM I1/0 ERROR ON DESTINATION DISKETTE

or

PERM I/0 ERROR ON SOURCE DISKETTE

indicating where the error occurred.

Rev. 7 3/78 4-70



It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator 1ight goes out, remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator 1ight comes on type a control S again. When the select
indicator light goes out again, the data from the source disk has been
written to the destination disk and one complete cycle is finished. This
process is repeated, swaping the source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GOOD COPY or
output an error message as discussed above. At this point the copy is
complete.

4.9 ERROR MESSAGES

This section is a summary of the error messages generated by the MDOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the:
error message output routines to generate the proper error message.

Example:
A file is created by the following BASIC program:

19 DIM A$(248)

2@ Z3=CHARS(13):REM CARRIAGE RET

3@ OPEN 1 "N:TEXTFILE":REM NEW FILE

49 INPUT AS$:REM GET A LINE OF TEXT FROM CONSOLE

50 IF A$="EXIT" THEN 8@:REM END INPUT BY TYPING EXIT
6@ PUT 1 A$+Z%:REM CONCATENATE CARR RTN AT END

79 GOTO 49:REM LOOP TILL EXIT

8@ CLOSE 1

99 END

This BASIC program writes one text 1ine per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly lanquage routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" loads and executes the program.

4-71

Rev. 7 3/78



pape
pe19
pp2p

B3P START

pRap
pasy
2060
2279
ppsy
9999
2199
p11p
g129
p130
2149
p159
p169
g17p
p13p
9199
P29
p219

P22p NEXTCHR

p23p
9249
9259
226p
p27p
p28p
p299
P390
g31p EXIT
p32p
9330
p34p
p35p

Note the handling of the errors in lines

319-349.

Rev. 8 9/78

JC
MoV
ANI
ORA
MVI
JNZ
MVI
CALL
JC
MOV
MOV
CP1

cz.

CALL
JMP
CPI
JZ
STC
JMP
END

'sysqQu!
'sysp2'
@APROGRAM
@CCRLF
@NASCPAR
A

@ERRORMES
C,p
@TRANSFILENAME
B,
@DRIVEND
C,A
H,@FILEBUFFERP
@OPENFILE
@DISKERROR
@RFILEINF
@DISKERROR
A,B

@FCH

A

A17
@DISKERROR
B,
@BRFINXPOSI
EXIT

B,C

A,B

@0H

QCCRLF
eCOoUT
NEXTCHR

2
@CLOSEFILE

@DISKERROR
START

4-72

;MDOS EQUATE BATCH

sMDOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURMN LINEFEED
;NUMBER OF ASCIT PARAMETERS
;IF ZERO

;ERROR

;@ASCBUFFP

yMOVE INTO @ASCIIBUFFER
;FILE NUMBER

;UNIT NUMBER

;INTO C FOR OPEN

;USE SYSTEM BUFFER P
;OPEN THE FILE

;IF ERROR CODE IN A
;CHECK THE FILE TYPE

;IF ERROR CODE IN A

;FILE TYPE

;TYPE NOT ATTRIBUTES
;BASIC DATA FILES=D
;WRONG FILE TYPE MESSAGE
;ERROR

;FILE NUMBER

;READ FILE BYTE AT A TIME
;END? OR ERROR?
;CHARACTER FOR QUTPUT
;INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF

;OTHER CHR JUST OUTPUT
;LOOP TILL END-FILE
;END-FILE?

;CLOSE AMD RETURN TO MDOS
;ERROR

;ERROR MESSAGE IN A

62, 14p, 168, 219, 248, and



The error codes are summarized below.

the error messages.

CODE# MESSAGE

? SYNTAX ERROR

1 PERM 1/0 ERR

2 END-FILE

3 DISK FULL

4 FILE NOT FOUND

5 DUPLICATE NAME

6 PARM ERR

7 DRIVE NOT UP

8 PERM FILE

9 WRITE PROTECT

19 FILE NOT OPEN

1 COMMAND NOT FOUND
12 BAD FILE #

13 FILE OPEN

14 READ ONLY FILE

15 BAD RECORD #

16 CANCELLED

17 WRONG FILE TYPE
18 INDEX PAST EOR

19 LOAD ADDRESS ERROR

Rev. 8 9/78

4-73

See appendix D for definitions of



4.19 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MDOS type COPYFILE
followed by a filename:

[unit:] COPYFILE "<[unit:] filename>"
The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE §
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MDOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE @
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MDOS. The COPYFILE program
creates a file on the destination disk with the same name and filetype as
the source file. It then writes the file from memory onto the destination
diskette.

If the files is longer than can be held in memory at one time the COPYFILE
program will prompt: ‘

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The same procedure as above must be repeated until the whole file has been
copied. When the copy is complete the COPYFILE program returns to MDOS
which prompts:

>

If the COPYFILE program encounters any errors it displays the proper error
message and returns to MDOS.

COPYFILE can copy any type or length file. This includes BASIC data and
program files.

4-74 Rev. 8 9/78



4.11 DEBUG - THE PDS 8048#/3885 PROGRAM DEBUGGER

Micropolis DEBUG is a utility program which facilitates checkout and
debugging of B8088/8885 machine language programs. It provides an
environment in which the performance of a program can be monitored by
starting and stopping program execution at user-specified points and by
examining and/or changing the contents of relevant machine registers and

memory locations. DEBUG cannot be used with non-808 188 code.

DEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executable version must be obtained that
uses a 4K block of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

BEBUG is invoked from the MDOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility {see Section 4.12).
Example: :

>DEBUG-78
MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978

DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution contral and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive. -

The program may be executed one instruction at a time (referred to as
"single-stepping") with the machine state displayed after each step.
Alternatively, the results of a program segment may be examined by placing
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer is then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a command with the character '#',

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminated by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1) . When DEL or BACKSPACE is pressed the next previously typed

character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

Rev. 8.3-A 7/1/79 4-75



2) Holding down the control key and typing X (CHTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:
NAME [<hex> <hex>...<hex>]

The NAME in an executive statement is the name of one of the DEBUG commands.
Command names are uppercase only and must not be preceded by any spaces.

If the command name is not recognized by DEBUG a SYNTAX error message is
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. A1l parameters must be separated from each other by at least
one space. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from @ to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will result in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MDOS executive (see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
ilTustrated with the aid of the following notation:

[ ] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item described.

4.11.2.1 THE DUMP COMMAND

DUMP <«start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block
of memory. Sequential memory locations are shown 16 to a line with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

* DUMP 5029 5p11
50090 50 CPp 27 77 A4F 33 4F CD 7D 9E 93 PP 6A FD 82 90
5019 77 2B

Notice that memory bytes are printed out in groups of four so that addresses
inside the line may be more easily computed. The grouping follows the address.

* DUMP 5¢p2 S@1F
50@2 27 77 4F 33 4F CD 7D 9E 98 pp 6A FD 82 9¢
5019 77 2B 54 56 F4 3E 23 2A 34 871930 21 2C2A 28

Rev. 8 9/78 4-76



4.11.2.2 THE ENTR COMMAND

ENTR «<start addr.>

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*ENTR 7009
*78 89
6F/

Three bytes were entered starting at location 799D hex. These were 78
at 70@@, 89 at 79@1, and 6F at location 7992.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The Tast value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

*FILL 7900 8009 9

Each byte of memory in the block from 7998 to 8@P9 is changed to a 99
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source biock. Example:

* MOVE 3009 4009 7009

Each byte in the memory block from 3299 to 4909 is copied into the
corresponding position in the memory block from 7898 to 3090.

Rev. 8 9/78 - 4-77



4.11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

* SEAR 3009 3p2@ 9F
3904 9F
3p18 9F

The block of memory from 3980 to 3020 is searched for all occurrences of
a 9F. Location 3984 and location 3P18 both contain 9F. No other
locations in the block contain 9F.

4.11.2.6 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

* SEARN 3099 3p91p 67
3pP2 @9 67
3096 76 67

The block of memory from 3009 to 3912 is searched for all non-matches
with the mask 67. Location 3002 contained a 9 rather than a 67, and
3086 contained a 76 rather than a 67.

4.11.2.7 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

* COMP 50908 SP@F 5@19
5p@4 91 p9 5214

The block of memory from 53008 to S5@PF is compared with the block of memory
from 5919 to 5@1F. One location fails to compare. Location 5804 contains
P1 while the corresponding location, 5@14, in the second block contains 29.

4.11.2.8 THE LIST COMMAND

LIST <«start addr.> <end addr.>

The LIST command displays the 8p8@/8985 mmemonic form of the bytes contained
in the specified memory block.

* DUMP 3092 3098
3g@@ CA p2 37 B7 C3 1A 37 (B

Rev. 8.1 9/78 4-78



*LIST 3908 3008
@9 JZ 37p2
39903 ORA A
3994 JMP  371A
3pgp8 CB *

The memory block from 3@9@ to 3p@7 contains three 3@88/8885 instructions.
The byte following the third instruction is not a valid 8989/8@85 instruction.
This is indicated by the '*' following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUG's
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to display and/or
alter the state of the 8p89/8@85 registers and flags as they are relative
to the last instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND
DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs (e.g. at the address .
contained in BC) along with the word on the top of the stack are displayed.
Example: '

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

2@ ZCMEH 9000 0000 Q2D 1234 PO 09 39 2009
pepPd LXI SP,1234

The second line of the display indicates the processor state. The columns
@B, @D, @H and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence

of any character indicates the opposite condition on the same flag.

The third 1ine displays the address and mnemonic of the next instruction

to be executed. The address of the instruction corresponds to the current
value of the 8883 program counter (PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by

using a command such as the CONT or RET commands. Note that the state of

the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8.1 8/78 4-79



4.11.3.2 REGISTER SETTING COMMANDS

REGISTERNAME <hex number>

The register setting commands allow the contents of the 8@89/3985 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a register
setting command is a register name followed by a hex data value.

The following register names may be used:

A°B C D EH L
BC DE HL SP PC @sP

The first 1ine shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. @SP designates the 16 bit word on
top of the machine stack.

The following examples would change the program counter value to 6@F3, the
A register value to 7, and the value at the top of the stack to €172.

*PC  6pF3
*A 7
*@SP C172

4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 8@82/8885 processor flags
to be set or reset prior to the execution ¢f next instruction in the program
being monitored. The commands set the flag state according to the mnemonic
form used in assembly lanquage. The commands are:

FZ FNZ FC FNC FP FM FPE  FPO FH FNH

The FZ and FNZ commands set the state of the ZERO fla% to zero or non-zero.
The FC and FNC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPO commands set the state of the PARITY flag to even or odd.
The FH and FNH commands set the state of the HALF-CARRY flag to half-carry
or no half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry.

Rev. 8 9/78 4-80



4.11.4 DEBUG MISCELLANEOUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays the sum and difference. The MATH
command is useful for length and address calculations. Example:

*MATH 4 5
ppps FFFF

4+5 equals 9 and 4-5 equals FFFF.
4.11.4.2 THE RST COMMAND

RST <vector number>

DEBUG normally uses the 'RST 6' restart vector of the 8p8f or 8885 processor
as its mechanism for implementing breakpoints (see Section 4.11.5.1). Some
computers and/or a particular program may already be using 'RST 6' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB, CLR, EXEC and REPT. There is a temporary breakpoint facility

used in conjunction with the commands CONT and RET. The single-step mode is
controlled with the space bar. The trace mode is a form of continuous single-
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPOINT MODE

Breakpoints provide a means to stop program execution at a dgiven point. When
program execution reaches that point control of the processor is transferred

to DEBUG. Once in DEBUG, the results of the program section which was executed
may be examined or modified.

Rev. 8 9/78 4-81



In the breakpoint mode DEBUG replaces the instruction at a given address

with one of the 'RST' instructions of the 8@8p/8085 (see 4.11.4.2 the RST
command). Then DEBUG replaces the three bytes of code at the corresponding
'RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then loads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
When the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the processor to 'CALL' the RST vector
location which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the 'user program registers' and replaces
the original contents of both the breakpointed instruction and the RST

vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at least one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be .,available when the breakpoint is encountered.

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST'
instruction cannot be patched into the code.

When a breakpoint is encountered during program execution, DEBUG will display
the contents of the program registers in the following format:

A FLAGS BC DE SP @B @D @H @SP
13 2009 2000 ﬁﬂﬂﬂ §1A2 p@ 99 9P 14FE

Refer to the DISR command section for a detailed description of this display.

4.11.5.2 PERMANENT BREAKPGINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent
breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not leave a 'RST' instruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

The SET command derines a permanent breakpoint. The breakpoint # and the

hex address at which the breakpoint will be set are entered with the command.
More than one breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint #'s may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).
Rev. 8 9/78 4-82



4,11.5.4 THE DISB COMMAND

DISB

The DISB command displays all currently SET breakpoints.
Example:

DISB
21 2354
#3 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). Breakpoints number
2 and 4 are not SET.

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint #>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered, then all SET breakpoints will be cleared. If a breakpoint
number is entered but is not currently SET, the message SYNTAX ERROR will be
displayed.

Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:
*eXEC 3914
A FLAGS BC DE HL SP 6B @D @H @sSP

#0 Z C 0012 9341 3674 9195 09 09 09 3054
3587 JMP 3643
*

Program execution was started at location 3014 (hex). A breakpoint was
encountered at location 3587 returning control back to DEBUG.

Rev. 8 9/78 4-83



4.11.5.7 THE REPT COMMAND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count specifies the number
of times it must be hit before control is transferred back to DEBUG. If any
breakpoint other than the one being repeated is encountered, control will be
transferred back to DEBUG and the repeat operation is cancelled. If the
breakpoint # specified in the REPT command is not set, a SYNTAX error is displayed.
Example: '

*SET 1 3¢9
*P¢ E 2000 P00 9003 9000 20 20 29 00PP
3009 DCR B

*09 1FPQ 0000 0000 0POP @0 00 60 00D
3001 JMP 3090
*REPT 1 8
A FLAGS BC DE HL SP @B @D @H @SP
*Bﬁ E 1800 2000 0000 B1AD 29 29 39 00QP

The breakpoint at location 3P@@ (hex) is allowed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed. B

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by using the CONT or RET commands. When
control of the processor returns to DEBUG, the breakpoints are cleared.
Temporary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CONT COMMAND

CONT [<break 1> [<break 2> [<break 3> [<break 4>]]1]

The CONT command continues execution of the user's program at the current

PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified, then control will never return to DEBUG unliess an
already specified permanent breakpoint is encountered. Example:

*CONT  356F

A FLAGS BC DE HL SP ©B @D @H @SP
09 Mo 9120 9341 3674 9195 00 00 9P 3p54
3597 DCR A
*

Program exécutian is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F {hex) is encountered, which returns control back to DEBUG.

Rev. 8 9/78 4-84



©4.11.5.10 THE RET COMMAND

RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@SP). This allows the user to 'RETURN' from a subroutine which was
"CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction

has been executed or when the top of the stack contains a known return

address. Qtherwise a breakpoint might be piaced at an address which is not

a part of the program. (e.g. the last instruction was a 'PUSH' and therefore

Ehe t?p of the stack contains a data word instead of a return address)
xample: .

*DISR
AFLAGS BC DE H. SP @B @D @H @SP
99 Z 2000 0000 9000 2000 90 09 09 0099
2AB@ LXI  SP,3p00
*09 Z 2000 2000 @000 3049 29 @9 AP 3243
2AP3 CALL 2809 ~
*09 Z 2000 0090 2090 2FFE PO 00 99 2AP6 -
28pP STC )
*RET
AFLAGS BC DE HL SP @B @D @H @SP
g9 zC 0909 9000 0000 39P0 20 9P 9P 3243

After the second instruction single-step, the RET command causes a temporary
breakpoint to be set at location 28P6 (which is the return address on the top
of stack) and program execution is resumed. When the program reaches 2A@6
control of the processor is returned to DEBUG and the processor state is
displayed.

Excepfion Note: The following program fragment illustrates a special
programming construct with which the RET command can not be used.

Call MESSAGE
TEXT DTH 'SIGNON'
RET

MESSAGE  XTHL
CALL GLINEOUT
INX H
RET

[f an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that location. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 8 9/78 4-85



4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a cetailed inspection
of what the program is doing on an instruction by instruction basi:  E:xcf
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays

the contents of the processor registers.

Example:
*DISR

A FLAGS BC DE HL SP @B @D @H @SP
13 pO93 2000 2000 Q1A2 20 20 29 14FE
2AP@ STC
*13 C 020 P00D 9900 DI1A2 00 00 @9 14FE
291 XRA A

*00 ZE  PPPD D00 PODD B1A2 PP PP 9@ T4FE
2Ap2 STA 345F

At the '*' prompt the user typed a space which caused DEBUG to single-step

an instruction and print the resulting register contents on the same line.

In the single-step mode of operation, DEBUG makes a local copy of the instruction
to be executed in its own buffers. DEBUG then executes the instruction in its
buffers and stores the results. The single-step mode does not need to modify

the program in any way which allows programs in ROM may be stepped through
without .problem.

4.11.5.12 THE TRACE MODE COMMAND
TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's program. During a TRACE the
Control S / Control functions provide pause and break control.

Example:

*TRACE

e E 1800 2000 2000 D1AD 9P 09 0D POAD
3921 JMP 300D

@0 E 1800 2000 009@ B1AD 00 0D 99 POND
3000 DCR B

g0 E 1720 200G 2000 B1AD 99 PO 99 00Q
3001 JMP 30p9

g0 E 1790 0009 000 P1AD 9D 90 99 POOP
3¢@p DCR B

20 1600 2000 2900 B1AD 09 P9 P9 PPPR
3081 JMP 3990

*

The program was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after 5 instructions had been executed. :

Rev. 8 9/78 4-86



Exception Note: The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accomplished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MDOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction. '

4.11.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the MDOS executive. DEBUG is then invoked from the MDQS executive

by typing the name of a confiqured DEBUG version as created by DEBUG-GEN
(see Section 4.12). The version invoked should not use any memory space
that is required by the program to be monitored. Example:

>LOAD "TEST PROGRAM"

>DEBUG

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
+*

DEBUG signs on and displays its executive prompt. Monitoring of program
execution is now controlled from the DEBUG executive.

. If the program to be monitored is one which runs in the MDOS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MDOS Executive statement, then the way to
initiate program execution control is by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and

ghen EXECuting the MDOS Executive at the warmstart address which is 4E7H.
xample:

*SET 1 2Bp@

*EXEC 4E7

MICROPOLIS MDOS V.S. X.X - COPYRIGHT 1978
>APP "ASCIIPARM" 12

A FLAGS 8C DE HL SP @B @D @H @SP

2BP@ LXI SP, @1A8

Permanent breakpoint number 1 is set at the program entry point 2B@@ hex
and execution is begun at the system warmstart address. The MDOS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the program in the application area and to pass

one ASCII and one numeric parameter. The breakpoint is then encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands.

Rev. 8 9/78 4-87



If the program to be monitored is one which can be executed directly without
requiring any parameters from the MDOS executive, then the simplest way

to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 3000
*Sp 1A9 .
*CONT 3929

The program counter is set to 3@@P hex and the stack is set at 1A@ hex. A
temporary breakpoint is set at 3P2@ hex and program execution is begun at
the PC value, 309@ hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXITING DEBUG

The user may exit DEBUG in one of two ways. First, the user may simply
transfer control of the processor to the program permanently. This is done
by clearing all permanent breakpoints with the CLR command and then using
the CONT command without setting any temporary breakpoints. Second, the
user may simply return to the MDOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This warmstarts the MDOS executive and leaves the program without any
breakpoints set. =

4.11.3 RE-ENTERING DEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by executing the first address of the 1K boundary on which
DEBUG is running. This ‘warmstart' procedure will cause any breakpoints
which were set in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However, the program entered a loop which had a bug such that
the loop was never exited. This caused the system to lock up. The only
way to get control back to DEBUG is by restarting DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program being DEBUGged is listed in 4.71.9.1.
Assume that the program and DEBUG are on disk unit @ along with an MDOS
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-88



4.11.9.1 SAMPLE PROGRAM LISTING

3909 16 09 2000 MVI D,?
30092 21 80 92 9319 LXI H,28@H
3995 CD 3¢ 9920 LOOP: CALL  SuB
3908 25 2030 DCR H
3009 C2 95 33 (949 . JNZ LOOP
3ppC 70 pasP MOV A,L
390D @F pP6Q RRC

3PPE 6F 20979 MOV L,A
30pF D2 95 3@ 0989 JNC LOOP
3p12 C9 2990 RET

3913 F5 P19p SUB: PUSH  PSW
3914 7C 2119 MOV A,H
3p15 BS P129 ORA L
3816 F1 p13p POP PSW
3917 C9 2149 RET

4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugging session listing which
follows.

The first three lines show the test program being loaded into memory along
with the load and execution of the DEBUG. Once DEBUG is loaded and running
it signs on and displays its executive prompt '*'. At that point the PC

and SP registers are initialized so that the program can be tested. A
permanent breakpoint is set at the final RET instruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stepped leaving the program inside the subroutine. The subroutine
is RETurned from and execution is allowed to proceed to location 3@@C using
the CONT command. Then the TRACE command is used to let execution proceed.
The TRACE is cancelled at location 3@@5. A permanent breakpoint is SET and
the REPT command used to allow the inner loop (the CALL, DCR H and JNZ) to
execute twice. After two loops control returns to DEBUG. The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MDOS is warmstarted.

MICROPOLIS MDOS V.S. 4.p - COPYRIGHT 1978

>LOAD "TEST" load program into memory
>DEBUG-79 run debug (7p@@ hex)

MICROPOLIS DEBUG V.S. 4.9 - COPYRIGHT 1978

*SP 1A2 set up a stack
*PC 3009 set up PC

Rev. 8 9/78 4-89



*DISR

A FLAGS BC DE HL SP @B
80 ZC £ PPGQ POOD POAD B1AD C3
3009 MVI D.90
*SET 1 3@12
*DISB

p1 3912

D @H @sP
3

8
C3 C3 5845

set breakpoint on final RET

*8p ZC E 0000 p20D 9009 P1A@ C3 C3 C3 5845 single-step

3992 LXT  H,p28p

*80 ZC E 0000 000D 9289 P1A@ C3 C3 11 5845 single-step

3085 CALL 3213

*8p ZCE  000¢ PO@D P28p B1SE C3 C3 11 3998 single-step

3913 PUSH H

*RET
A FLAGS BC DE HL SP @B
p2 M 0pe0 PAAP 9280 B1AP C3
3008 DCR H

*CONT  300C
A FLAGS BC DE HL SP @B
@1 Z E 0090 PPP0 9P8H B1AD C3
3ppC MOV A,L

*TRACE
80 Z E (pppa 2900 0089 P1AP C3
308D RRC
40 Z E DPPOD 0002 PRSP P1AR C3
300E MOV L,A ‘
40 7 E 000D PPOP PPAR B1AQ C3

- 3P@F JINC 3905
40 7 E 00D 0003 PR4D PI1AD C3
3985 CALL 3013

*SET 2 3p@C

*REPT 2 2
A FLAGS BC DE HL SP @B
20 7 E 0000 9300 0920 1A C3
3ppC MOV A,L

*CLR 2

*DISB
g1 3912

*CONT
A FLAGS BC DE HL SP @B
89 ZC E 0n0P 9929 0980 P1AD C3
3912 RET

*CLR

*EXEC 4E7

return from SUB call
@D @H BSP
C3 11 5845

set temporary break and go
@D @H BSP
C3 PA 5845

trace execution
€3 PA 5845

C3 PA 5845
C3 PA 5845

C3 @A 5845

Control C hit here

set permanent break
execute inner loop twice
@D @H BSP

C3 PA 5845

clear breakpoint 2
display breakpoints

complete program
@0 @H WQSP
C3 PA 5845

clear all breakpoints
warmstart MDOS

- MICROPOLIS MDOS Vv.S. 4.9 - COPYRIGHT 1978

Rev. 8 9/73

4-90



4.11.10 USING DEBUG WITH BASIC

DEBUG is designed so that it is independent of the MDOS executive. The
only part of PDS on which DEBUG relies is the console and printer I/0
logic contained in the RES module. This independence makes it possible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines that BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MDOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DEBUG being used.
When these conditions are met DEBUG can be accessed from the BASIC monitor
by using the statement LINK "DEBUG-XX". Example:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY
LOAD "BASICPGM"
READY

LIST

19 DEF FAA=16R7219
20 A=FAA (1)

3@ PRINT A

49 END

READY

MEMEND 16R7089
READY

LOAD “MROUTINE"
READY

LINK “DEBUG-74"

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978

*SET 1 7219
*EXEC 4E7

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

RUN

A FLAGS ....

............ DEBUG Register display
78712 PUSH H

*

Rev. 8 9/78 4-91



From the BASIC monitor the file "BASICPGM" is loaded and listed. It is a
program that accesses a machine languace routine beginning at address 7910
hex. BASIC's end of memory is set to 7899 hex and the machine routine
"MROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 7489 hex is then linked to. In DEBUG a permanent breakpoint

is set at 7918 hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex and BASIC signs on
again. A RUN command starts execution of the BASIC program, which accesses
the machine routine when line 2§ is executed. The DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be stepped through or
otherwise debugged as required.

4,12 THE DEBUG-GEM UTILITY

The Micropolis DEBUG program is supplied in a non-configured form embedded
within the DEBUG-GEN utility program. Before DEBUG can be used an executable
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiguous memory address space which may start on any
1K boundary above the beginning of the MDOS anpnlications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space.

From the MDOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG~GEM like an executive statement (see Section 4.1.2) or by entering
the command LOAD "DEBUG-GEN" followed by the command APP.

The program signs on with the message
DEBUG GENERATIOM PROGRAM VS. X.X.

and prompts for the memory address at which the DEBUG will run with the
message

ENTER PAGE ADDRESS (2C-Fp) ?

Type a two digit hexadecimal number that corresponds to the high-order byte
of the start address where the DEBUG will run. This address may only be on

a 1K boundary. The program will ignore the lowest 2 bits of the response.

DEBUG-GEN creates a type 14 file on disk unit @ and fills it with the
relocated DEBUG system. The file name is "DEBUG-XX" where XX (hex) is the
- page address entered by the user.

Rev. 8 9/78 4-92



Example:

. MICROPOLIS MDOS V.S. 4.0 - COPYRIGHT 1978
>DEBUG~GEN

DEBUG GENERATION PROGRAM V.S. X.X

ENTER PAGE ADDRESS (2C-Fp) 2 78

RUN FILE NAMED DEBUG~79

>

In this example a program file named "DEBUG-79" is created on disk unit @.
This file is a running DEBUG package which will use the memory space from
70@0@K to 7FFFH.

Rev. 8 9/78 4.93



Y MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MDOS) and Micropolis Disk Extended Basic. Both
systems are supplied on a MASTER diskette included with each Micropolis disk
subsystem. The auto-load bootstrap brings MDOS, which is the first system on
the diskette, into memory. Control is transferred from MDOS to BASIC by

typing the filename BASIC to the MDOS executive. It is also possible to create
a BASIC only diskette so that BASIC may be directly loaded by the bootstrap
system.. See Chapter II, Section 2. This chapter describes the Micropolis
BASIC interpreter and its associated BASIC programming language.

The Micropolis BASIC Interpreter is a special 8080 machine language program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program lines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the appropriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original 8ASIC programming language was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; Micropolis
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs. The details of these language elements and the rules for com-
bining them are described in sections following.

5.1 ENTERING LINES TO THE BASIC INTERPRETER

The BASIC Interpreter is loaded into the main computer memory from MDOS

or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a line to be input.

A 1ine consists of not more than 250 characters typed in sequence.. The
entry of a line is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will output
the message INPUT OVERFLOW and cancel the entire line.

During the entry of a 1ine each character that is typed is echoed by the
Interpreter on the terminal display. If the character typed is not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the line entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

5-1
Rev. 7 3/78



the count exceeds the width of the display device. This combination is not
included in the line count.

Two control features may be used when entering a line.

1) when DEL or RUBOUT key is depressed the next previously
typed character will be deleted from the 1ine. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the Tine count.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return
Tine feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new line.

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program line by the presence
of a leading Tine number. A BASIC program is entered one program line at
a time using the normal Tine entry procedures. The message READY is not
displayed after the entry of a program Tine. This permits consecutive
program lines to be entered conveniently. As each program Tine is entered
the Interpreter stores it in a program buffer which it maintains in the
computer system's main memory.

Each line of a BASIC program is composed of a line number followed by one
or more statements (see Section 5.20) which are separated from each other
by a colon (:). The length of a program line may not exceed 250 charactérs
including the digits in the 1ine number. Each Tine number must be within
the range 0 - 65529. Spaces preceding the first digit of a 1ine number
are ignored. Spaces embedded in a 1ine number are not legal. All other
spaces in a program line are preserved as entered..

Program lines are stored in the program buffer in numeric order by 1ine
number. The lines in the buffer at any given time constitute the current
program. This program may be modified in three ways.

To insert a new program line, type in the new 1ine including the line
number. The interpreter will automatically place the new line in the
program buffer in proper sequence.

To modify an existing program line enter the line number and the new
statement or statements. The new line will automatically replace the
old 1ine in the program buffer that has the same 1ine number.

To delete an existing program line type the line number followed by carriage
return. The corresponding line will be eliminated from the program buffer.
Mote that multiple lines may also be eliminated by using the DELETE command
as described in 5.4.

Rev., 8.1 2/%/79 5-2



5.3 IMMEDIATELY EXECUTED LIMES

Whenever a line is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a 1ine number and the line
is treated as a program line. (see Section 5.2). If the first non blank
character is not a digit then the line is interpreted for immediate
execution.

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, DEF FA, and DATA statements which are only
functional within a program. Multiple statements may be included in an
immediate line by separating them with colons (:). BASIC statements are
covered in Section 5.20.

Another form of immediate line is the command. Commands are operations

which generally make sense only in immediate mode. Most of the commands

in BASIC system relate to the program buffer and to the manipulation and

execution of BASIC programs. The available commands are described in the
- following sections.

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

S.3.1 THE BASIC EDIT COMMAND
EDIT linenumber

A specified 1ine in the BASIC program buffer can be changed without retyping
the entire line by using the EDIT command. EDIT linenumber is the form of
this command. If the specified linenumber is not found in the current program
buffer, the message STMT # NOT FOUND is displayed. BASIC processes an EDIT
command by copying the specified line into a special editing buffer and
setting an invisible pointer to point to the first digit of the 1inenumber
that begins the text l1ine. BASIC is then in the EDIT command mode. A
separate set of single key commands is available for editing a line in the
special edit buffer. The whole 1ine including the 1inenumber can be edited.

5.3.1.1 ADVANCING THE BASIC EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

5.3.1.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
c¢an be changed by typing a ¢ or €, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

Rev. 8 9/78 . 5a3



5.3.1.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the consoie enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3.1.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by

typing an i or I followed by the characters to be inserted. The

insertion begins immediately before the character pointed to by the

edit pointer. Characters are inserted in sequence as typed until the
insert mode is terminated by depressing the ESC key. The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The.insert mode may also be terminated by pressing the return key.
This also terminates the EDIT command and replaces the line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the 1ine may be displayed by typing an

1 or L. The characters are displayed on the console followed by a carriage
return-line feed. The edit pointer is reset to the beginning position.
This command is useful to see what the line Tooks 1ike before editing is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the line about to
be edited without exiting the editing mode.

5.3.1.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
occurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
line then the entire line is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position

up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (/). If the search
argument does not exist in the edit line, then all the characters from the
edit pointer to the end of the line are deleted. The edit pointer is left
pointing at the search character or at the end of the line.

Rev. 8.3-a 7/1/79



5.3.1.8 QUITTING THE BASIC EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the 1ine in the current
text file by typing a q or Q. The partially edited Tine in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The 1ine in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EDIT
command mode. If the line number of the 1ine in the special edit buffer
matches a line number in the current program buffer, then the edited 1ine
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no 1ine in the current program buffer with the same
1ine number as the line in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the line number during the edit.

5.3.2 THE RENUM COMMAND

RENUM

RENUM (starting-number)

RENUM (starting-number, increment)

RENUM (starting-number, increment, first-1ine-to-change)

Some or all of the lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
1ine numbers, and line number references that follow branch statements.

These statements are GOTO, GOSUB, ON...GOTO, ON...GOSUB, THEN, RESTORE. The
ERROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), REMUM (starting-
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the 1ine number of the first-line-to-change and sets it equal to

the starting-number. The 1ine number of each 1ine after the first-1ine-to-change
is then set to the value of the preceding new 1ine number plus the increment
value. If no first-line-to-change is specified, the first 1ine in the program
buffer is assumed. If no increment value is specified, the value 19 is used.

If no starting-number is specified, the value 19 is used. Typing RENUM alone
will produce a program numbered from 19 by 19's. Examples:

Assume that the current program buffer contains the following program:

9 REM RENUM EXAMPLE PROGRAM

25 INPUT "VALUE";A

3@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
45 GOTO 25

The command RENUM (5@,38,39) would produce the following:
9 REM RENUM EXAMPLE PROGRAM
25 INPUT “VALUE";A

5@ PRINT "THE SQUARE ROOT OF";A;"1S";SQR(A)
89 GOTO 25

Rev. 8 9/78 5-4.1



The command RENUM would produce the following:

18 REM RENUM EXAMPLE PROGRAM

20 INPUT “VALUE";A

3@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
49 GOTO 29

The command RENUM (1@@) would produce the following:

190 REM RENUM EXAMPLE PROGRAM

119 INPUT "VALUE";A

12@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
139 GOTO 119

The command RENUM (1909,198) would produce the following:

1808 REM RENUM EXAMPLE PROGRAM

1188 INPUT "VALUE";A

1298 PRINT “THE SQUARE ROOT OF";A;"IS";SQR(A)
1399 GOTO 1109

Several error conditions are checked before any renumbering is done. This

is to safeqguard the program against possible damage. As errors are detected
error messages are printed along with the lines where the error occurred. No
changes are made to the program if any errors are encountered and no
renumbering can be successfully carried out until the errors are corrected.

Entering a RENUM command may result in the message NUMBER QUT OF RANGE
followed by the line where the error occurred. This is an indication that
the renumbering attempt lead to a l1ine number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a Tine number greater than 65529.

Entering a RENUM command may result in the message MEMORY OVERFLOW. This
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumberead.

Entering a RENUM command may result in the message STMT # NOT FOUND without
printing the offending line. This occurs when the specified
first-1ine-to-change does not exist in the program. No change is made.
Example; if the program is:

18 PRINT “TEST"
2@ GOTO 19

The command RENUM (199,10,38) would cause a STMT # NOT FOUND error because
there is no line 3@ at which to start renumbering.

Entering a RENUM command may result in the message STMT # NOT FOUND followed
by the line where the error occurred. This indicates that a branch statement
(GOT0,GOSUB, etc.) contained a reference to a line number that does not exist
in the program. If this is intentional a stub line should be placed in the
nrogram to allow the RENUM to operate. This can be done by typing the line
number with a REM statement as a place holder.

Rev. 8 9/78 5-4.2



Entering a RENUM command may result in the message SYNTAX ERROR. This can
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or parentheses the SYNTAX ERROR message is displayed, or
if renumbering would cause a sequence error in the Tine numbering (e.q. the
lines were numbered 10,20,38,4P and you typed RENUM (19,19,38). This would
result in numbers 19,29,10,20 which is not allowed.). '

The RENUM command does not change 1ine numbers following LIST, or DELETE.
If these statements are used within a program they must be changed manuaily.

RENUM will not renumber line number references in scientific notation (1E3}),
or expressions (GOTO 90*8+3). Such references must be changed manually.

If computed GOTO's, GOSUB's or RESTORE's are used in the program they will
more than likely be incorrect after renumbering unless extreme care is
taken in selecting the renumbering parameters.

Example; if the program is:

19 DATA THIS,IS,A,TEST

2P DATA MORE,TEST,HERE,EMD

3@ INPUT "WHICH DATA,T1 or 2",A
49 RESTORE (19*A)

5@ READ A$,B$,C$,D$

The command RENUM (108,19,38) would renumber the executable part of the
program while leaving the DATA statements unchanged.

19 DATA THIS,IS,A,TEST

2@ DATA MORE,TEST,HERE,END

199 INPUT "WHICH DATA,1 OR 2",A
119 RESTORE (19*A)

129 READ A$,3%$,C$,08

The computed RESTORE on line 118 would still function after the program is
renumbered. However, if lines 10 and 2@ had been renumbered, then the
program would not perform as intended.

The RENUM command can cause a line to expand to a length greater than 258
characters. Such a long line can only be created by RENUM and could not be
entered from the keyboard because the input buffer is only 25@ characters
long. The Basic EDIT command uses the 258 character input buffer during
ed1t1ng If renumber1ng causes a line longer than 258 characters and that
1ine is later edited using the Basic EDIT command the line will be truncated
at 25@ characters by the editor.

5.3.3 THE MERGE COMMAND

MERGE "unit#:filename"

The MERGE command allows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the
command is MERGE "unit#:filename". The unit# is a number from P to three
followed by a colon. If no unit number is specified, unit zero is assumed.

Rev. 8 9/78 5-4.3



Lines are merged one at a time from the merge file into the current program
buffer, starting with the first line in the merge file. If the 1ine number
in the merge file is the same as a line number presently in the program
buffer, then the line from the file replaces the line in the buffer. If the
line number in the merge file does not match any line number in the program
buffer, then the l1ine from the file is inserted in the current program
buffer in proper line number order. When all lines from the merge file have
been placed in the program buffer the MERGE is complete.

The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the merge program must be less than the space currently available to BASIC,
otherwise a LOAD OVERRUN message is output and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. If there is not enough room the message MEMORY QVERFLOW is output
and the merge does not take place.

Large programs are often developed as modules. Each module is written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and talleys the vote.
This module is allocated line numbers from 1800 to 20@@. The data has been
allocated lines 1@ to 199 and the printer output module is allocated lines
5008 to 6098.

The program under test uses lines 1§-3@ as test data, and lines 5@@@-5010
prints the test resuylts. The program looks as follows in the program buffer:

19 REM LIVE DATA SUPPLIED BY OTHER PART OF PROGRAM-

20 REM TEST DATA.

3@ DATA 1,1,2,2,3,3,4,4,0,1,4,1,99

1993 REM PROCESS SURVEY MODULE.

1919 T=1 :REM INIT TOTAL COUNTER

192@ REM VALID DATA IS @=NO OPINION,1=YES,2=NO,99=END OF DATA.
1925 READ C

1839 IF C=@ THEM T1=T1+]

1948 IF C=1 THEN T2=T2+]

1959 IF C=3 THEN T3=T3+]

1969 IF C=99 THEN T=T-1:GOTO 5p@p

1979 IF C<@ OR C>2 AND C<>99 THEN PRINT "ITEM";T;"NOT VALID"
1989 T=T+1

1999 GOTO 1p25

5@@@ REM TEST PRINT OUT ROUTINE

5919 PRINT "NO OPINION=";T1;" YES=";T2;" NO=";T3;" TOTAL=";T

This process module with the temporary test data and print logic can be
separately tested,debugged and then saved on disk with the command SAVE "PART1".

The real print module can then be developed as follows:

DELETE

5@#@ REM PRINT MODULE

Sp1p OPEM 1 “*P" ERROR 5299

5@2p A$="779":B$="VZ3"

5P3p PI=T1/T:P2=T2/T:P3=T3/T

5@4Q IF P1+P2+P3<>19@ THEN PRINT"PERCENT ERROR":STOP
5@5@ PUT 1 TAB(6@);"NO"

~

Rev. 8 9/78 5-4.4



5068 PUT 1 TAB(1@);"RESPONSES";TAB(25);"YES %";TAB(46)"NO %“;

5979 PUT 1 TAB(6@)"OPINION %"

5@8p PUT 1 REPEATS$("=",72)

5@9@9 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(3@);FMT(P1,BS);
5199 PUT 1 TAB{45);FMT(T2,A$);TAB(5 ) FMT(P2,BS);TAB(6@);FMT (T3 A$):
5119 PUT 1 TAB(69);FMT(P3,B$)

5129 PUT 1 REPEATS$("-",72)
5139 CLOSE 1: STOP
5209 PRINT ERRS:INPUT"CONTINUE",C$:GOTO 5p2¢

When the real print module is debugged the command SAVE "PART2" saves it on
the disk.

To test the system PART1 and PARTZ are combined by typing the commands

LOAD "PART1" and a carriage return, and then the command MERGE "PART2" and
a carriage return. The combined programs are RUN using the test data. When
these parts are debugged they are saved on disk by typing the command SAVE
"PROGRAM" and a carriage return.

The data is entered into a separate file as follows: o

DELETE

1@ REM LIVE DATA

2@ DATA 1,1,1,2,2,1,8,1,2,1
3p DATA 9,2,2,2,1,2,2,1,1,1
4@ DATA 1,1,1,2,2,1,2,1,8,9
59 DATA 99

And then saved by typing the command SAVE "DATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD "PROGRAM" and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

1@ REM LIVE DATA

20 DATA 1,1,1,2,2,1,0
3p DATA 2,2,2,2,1,2,2
49 DATA 1,1,1,2,2,1,2
5@ DATA 99

19@@ REM PROCESS SERVEY MODULE.

1819 T=1 :REM INIT TOTAL COUNTER

1929 REM VALID DATA IS §=NO OPINION,1=YES,2=NO,99=END QF DATA.
1825 READ C

1932 IF C=@ THEN T1=T1+

1049 IF C=1 THEN T2=T2+1

1959 IF C=3 THEN T3=T3+

1969 IF C=99 THEN T=T-1:G0TO 5299

1079 IF C<p OR C>2 AND C<>99 THEM PRINT "ITEM";T;"NOT VALID"
1980 T=T+1

199¢ GOTO 1@25

»1,2,1
»1,1,1
»1,2,1,8,0

¥y

Rev. 8 9/78 5-4.5



5@@@ REM PRINT MODULE

5319 OPEN 1 "*P" ERROR 5200

5029 A$="779":B$="vz9"

5@3p P1=T1/T:P2=T2/T:P3=T3/T

5049 IF P1+P2+P3<>1@P THEM PRINT"PERCENT ERROR":STOP

559 PUT 1 TAB(6@);"NO"

506 PUT 1 TAB(1@);"RESPONSES";TAB(25);"YES %":;TAB(46)"NO %";
5379 PUT 1 TAB(6@)"OPINION %"

5083 PUT 1 REPEATS("=",72)

5@9@ PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(3Q);FMT(P?,BS);
5183 PUT 1 TAB(45);FMT(T2,A$);TAB(51);FMT(P2,B$);TAB(6@);FMT(T3,AS);
5119 PUT 1 TAB(69);FMT(P3,8%)

512@ PUT 1 REPEAT$("-",72)

513@ CLOSE1: STOP

52@@ PRINT ERR$:IMPUT"CONTINUE",C$:GOTO 5p20

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-Y to eliminate the lines numbered X through Y. Line number

Y must be greater than Tine number X. If either line X or line Y or both

are not in the current program buffer a LINE NOT FOUND message will be displayed
and nothing will be deleted.

Type DELETE X- to eliminate 1ine X through the last line in the current
orogram buffer. If line X is not in the buffer a LINE NOT FOUND messaqe
will be displayed and nothing will be deleted.

Type DELETE -Y to eliminate the first line through line Y in the current
program buffer. If 1ine Y is not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eliminate the entire contents of the current program buffer.
The buffer will be set to empty and a new program may be entered.

5.5 THE LIST COMMAND

A11 or part of the program in the current program buffer can be listed
on the terminal display device by using the LIST Command. There are four
forms of this command.

Type LIST X-Y to display the lines numbered X through Y. Line number Y must
be greater than 1ine number X. If either line X or Y are not in the current
program buffer the first present line number greater than X or Y will be used
instead.

Type LIST X- to display the lines from line X through the last line in the
current program buffer. If Tine X is not in the current program buffer the
first present line number greater than X will be used instead.

Rev. 8 9/78 5-4.6



Type LIST -Y to display the first 1ine through line number Y in the current
program buffer. If line Y is not in the current program buffer the first
present line number greater than Y will be used instead.

Type LIST to display the entire content of the current program buffer.

5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command.

SAVE "N: unit number: name of file" is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 18 characters long. The characters

T

Rev. 8 9/78 5-4.7



which are legal in a file name are the letters A through Z, the digits @
through 9, and ten special characters including comma (,), dash (-},
period (.), slash (/), semi-colon (;), less than (), equal (=), greater
than (), question mark (?) and at sign (@),

The N: is optional. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten
and replaced by the program in the program buffer., If no such file exists
the message FILE NOT FOUND will be output.  However, if the N: is included
in the SAVE command then a new file will be created with the designated
name on the designated ynit. If N: is used and the file already exists

on the specified unit the message DUPLICATE NAME will be output.

The unit number: is also optional. When present it consists of a single
digit from ¢ to 3 followed by the colon (:). It represents the address
of the disk unit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit § is assumed.

5.7 THE LOAD COMMAND

A previously stored program can be retrieved from disk and placed in the
current program buffer by using the LOAD command.

LOAD "unit number: name of file' is the general form of the command,

The word LOAD and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 14 characters and may use the
letters A-Z, the digits §~9 and the special characters (,), (-), (.}, (/),
(;): (<)s (’); (?)’(@))(>)‘

The unit number: is optional, If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of

the disk unit on which the specified file is to be found. If no unit number
is specified, unit @ is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost, If

the filename specified in the LOAD command is a data file (see section 5.21)
which cannot be properly placed in the program buffer, the message NOT A
LOAD FILE will be output.

5,8 THE DISPLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette. This special file is known as the
diskette directory and its name is always DIR. The names currently recorded
in a diskette directory can be output to the terminal diSplay by using the
DISPLAY command.

DISPLAY '"unit number: DIR" 1is the general form of the command.

5-5
Rev. 2 5/77



The word DISPLAY and the quotation marks and the name DIR must be rresent,.

The unit number: is optional. 1If it is not present unit @ is assumed. If

it is used it must consist of a single digit from @ to 3 followed by a colon (:)
It designates the address of the disk unit whose directory is to be displayed.

The DISPLAY command ocutputs the filenames five to a line. The first name
shown should always be DIR. On disks where it is present the second name
shown should always be BASIC,

If the diskette in the specified unit does not contain a valid directory file
a PERM T/OERR message will result because the disk cannot be accessed by
the BASIC system.

5.9 THE SCRATCH COMMAND

A file that is stored on disk may be eliminated by using the SCRATCH command.
SCRATCH '"unit number: name of file" is the general form of the command.

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to 1@ characters, including
the letters A-Z, the digits ¢~-9 and the special characters (,), (-), (.),

(s Gy (O, (D, (D, (D, (©.

The unit number: is optional. If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no

unit number is specified, unit @ will be assumed. If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be

output.

When a file is SCRATCHed the storage space uygptused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be accomplished by typing in the
program from the input terminal or by using the LOAD command, Once a
program is in the current program buff er it may be executed by using the
RUN command.

RUN is the form of the command.
When the RUN command is entered, the interpreter resets all disk files to
"closed', and frees all memory space previously allocated to variables from

the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

Rev, 2 5/77 3-6



ascending order of line number. This sequence 1is altered only when
particular program statements deliberately change the sequence by trans-
ferring control. Each program line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution is halted when an END or SIOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence, At this point the interpreter
displays the message READY and waits for a line to be entered,

5.11 INTERRUPTING A RUNNING PROGRAM

The execution of a program may be interrupted prior to completion by
holding down the CONTROL key and typing C at the input terminal. The
interpreter will respond by displaying the message INTERRUPT followed
by the message READY,

The interruption generally occurs after the end of whatever program line
was being executed when the CONTROL C was entered. In the case of the
input statement and yhenever characters are being output, the interrupt
will occur immediately. Under these circumstances the remainder of the
input or output will be lost if a continue is attempted (see section 5.12).

When program execution is interrupted, the value of all program variables
remain as last assigned. Any open disk files remain open with file pointers
current. Variables may be examined by using immediate PRINT statements and
may be altered with immediate assignment statements. These are frequently
used aids in debugging programs. However, if the program in the current
program buffer is modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued.

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROL C procedure
and no changes have been made to the current program buffer, then the
execution of the program may be continued by using the CONT command.

CONT 1is the form of the command.

When the CONT command is entered program execution is resumed at the point
in the execution control sequence following the last program line executed.
If continuation is not possible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TO RETURN TO will be displayed, ’

5-7
Rev. 2 5/77



5.13 PROGRAM TRACING COMMANDS

Often, when developing a new nrogram, it is useful to be able to follow
the execution on a line by line basis. This capability is provided in .
the Micropolis BASIC system through the use of the FLOW and NOFLOW commands.

FLOW is the form of the command which enables this program line tracing
capability, When the FLOW trace capability is enabled and the RUN command
is entered the interpreter displays each vrogram line immediately before
it is executed. The FLOW trace remains enabled after the end of a program
execution. It must be specifically disabled. ’

NOFLOW is the form of the command which disables the program line tracing
capability.

5.14 BASIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an immediate line
which has just been entered or the next program line during program
execution, it is possible that an error condition may arise. If this
occurs the interpreter tries to indicate the problem by displaying an
appropriate error message at the terminal.

If the line in error is an immediate line then the error message will
be directly followed by the message READY. All or part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message, All or part of the erroneous program line may not have been
executed. Program execution is not continuable after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes,

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT 0 (5F HEX)
backspace character and the RUB OUT (7F HEX) character. However, lower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal, hexadecimal and octal values of the
corresponding ASCII codes are listed in table 5.1.

Rev. 8 9/78 5-8



5,16 BASIC DATA

BASIC programs operate on two types of data: Numeric and String. Numeric data
includes integers and real (floating point) numbers, Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks, A data item
may be a constant which has an unchanging value, or a variable which may assume
different values during the execution of a program., A variable may be either
simple or grouped with other variables of 1like data type into a structure
called an array, and referenced as a member of the array.

5.16.1 CONSTANTS

A constant is an unvarying value., It is expressed as its actual value. A
constant may be a numeric value, or a character string value.

5.16.1.1 NUMERIC CONSTANTS

Numeric constants may be integers or real numbers.

An integer is a positive or negative whole number which may be defined
as a decimal number or in any number base (radix) up to 36. The format
of an integer may be:

Integer format: -mm....n Example: -93784
Radix format: -xxRnn....n Example: -16R7B2

Where (-) 1is an optional sign, xx is the number base, R indicates radix
format, and na....n is the number expressed with the digits 9-9 and the
letters A-Z (for radix format). The range of an integer specified in
decimal format is 1-3E (2%#ISIZE) to S5E (2%ISIZE)., See SIZES statement
for definition of ISIZE., The maximum value of an integer specified in
radix format is 65535. A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix specified,

A real number is a positive or negative number which includes a decimal
point and fractional part or a number expressed in scientific notation.
The formats of a real number may be:

Real format: -nn....0.0n0... Example: -2.677

Scientific format: -nn...nE-xx Example: 257E-4
-nn,,.n.on...B-xx  Example: ~12.231E1l4

Where no...n.nn... represents the number expressed using the digits -9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent; E specifies scientific notation and xx rerresents the
exponent expressed with the digits #-9.

The range of a real number is iE-Gl to (lE62)-1.

5-9
Rev. 2 5/77



BASIC CHARACTER SET IN COLLATING SEQURNCE

CHAR DECIMAL HEX OCTAL

(space) 32
33
34
35
36
4
32
39
40
a1
42

43
44

45
46
47
43
£9
5Q
81
52
83
Ba
55
56
57
82
59
50
51
62
63

I % # o~ a0 AR R 8-

WOV A s QD ST DADUANNEO NS

Rev, 1 5/77

20
21
22
23
24
25
26

Table 5.1 Standard Collating Sequence

040
041
042
043
Oa4
045
046
047
050
051
052
053
054
055
058
og?
060
031
062
063
064
065
068
087
070
071
72
o3
074
o075
v
o7

CIAR DECIMAL HEIX OCTAL

$ 0 el W A G d O RR BN G e I G ] b O b b ()

64
85
€6
&7
€8
2]
70
71
72
3
74
75
76
77
8
79
30
a1
82
a3
34
85
86
37
38
29
90
91
92
93
94
85

40
41
42
43
44
45
4s
47
a2

49
44
43
4C
4T

i

4%

£F
50
51
52
53
5¢
55
56
87
=]
=
54
88
5C
5D
5E
SF

5-9.1

100
101
102
103
104
105
105
107
110
111
112
113
114
1135
113
117
120
121
122
122
12¢
122
1z2¢
127
130
131
132
133
134
135
136
137



5.16.1.2 STRING CONSTANTS

A character string is a sequence of valid BASIC characters. Entered

as a constant, a string must be enclosed in quotes ("). Quotes

within a string must be doubled (the constant " is entered as " * " " ),
The length of a string is the number of characters. The maximum

length of all character strings within a program is set by the SIZES
statement,

5.16.2 VARIABLES

Variables may be integer, real, or string. The amount of memory used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program. 718IZE defines the memory space for
integers; RSIZE for real variables; and SSIZE for character strings.

5.16.2.1 INTEGER VARIABLES

Integer variables are designated by any letter followed by a percent
sign (%),

The range of an integer is from 1-5E(2%*ISIZE) to S5E(2*ISIZE).

The internal format is 2 BCD digits per byte stored in tens complement.
If an attempt is made to store a number that exceeds the range a
CONVERSION error occurs,

5.16.2.2 REAL VARIABLES

Real variables are indicated by any letter (not enclosed in quotes)
or a letter followed by a digit. The range of a real is lE-6l to
(1E62)-1. The precision or level of accuracy is 2(RSIZE-1) decimal
digits.

The Internal Storage Format Is:

Byte 1: 1 bit sign and 7 bit exponent (excess 64)

Byte 2 thru RSIZE: 2 BCD digits per byte.

5.16.2.3 STRING VARTIABLES

A string variable is designated by a letter followed by a dollar

sign ($). String variables may have a length of un to 258 characters,
The default value of maximum string length is defined by the SSIZE
parameter of the SIZES statement., The maximum SIZE of any particular
string may be declared in a DIM statement, which surercedes the

SIZES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on the right.

The internal format of a string variable is:

Rev. 2 5/77 5-10



Byte 1: Maximum string length

Byte 2: Current string length

Byte 3 thry N: Any character, 1 character per byte
(N= 2+ Maximum string length found in Byte 1)

5.16,2.4 CONVERSIONS

Automatic conversion between integer and real data types 1is pro-
vided which allows mixed-mode arithmetic, A real value is con-

verted to an integer by truncating the fractiomal part while
preserving the sign of the number.

Conversion between string and numeric data types is provided by
the STRS, VAL, FMT, CHARS, and ASC functions., See section 5,18.1.2
for description of these functions.

5.16.2.5 ARRAYS

Numeric and character string data may be stored in memory as
arrays. An array is a set of variables of one data type (numeric
or character) identified by a single variable name. A numeric
array is denoted by a single letter or a single letter followed
by a percent sign (%) and may have 1 to 4 dimensions. A string
array is denoted by a single letter followed by a dollar sign ($)
and may have 1 to 3 dimensions. Both types of array are zero
indexed., An array must be declared in a DIM statement which
defines the number of dimensions and the index range in each
dimension. An array indexing error occurs if an attempt is made
to reference an element of an array which has not been defined in
a DIM statement,

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory. For
example, an array A which has a dimension of 4 is stored:

(9
(1)
(2)
(3)
(4)

>

An element of a one dimensional array is referenced by the array
name and by the index of the element within the array, enclosed in
parentheses, The 4th element of array A in the above example is

A (3). The index may be specified by a constant, as in this
example, a numeric wvariable, or a numeric expression.

5~11
Rev, 2 5/77



A two dimensional array is conceptualized as a table organized
by rows and columns. An array B dimensioned as B (3,2) would
be represented as:

KOO
O 0
RO O

ROW ¢

ROW 1 Array B(3,2)
Y/

ROW 2

ROW 3

An element of a 2 dimensional array is referenced by the array
name and the row and column indices, The shaded element in the
above illustration 1is referred to as B(2,2), where the first
index is the row index and the second is the column index,

The elements of a 2 dimensional array are stored sequentially in
memory in column major order, that is column by column. The
elements of the array B would be stored:

(8,8)
(1,9)
(2,8)
(3,8
(8,1)
(1,1)
(2,1)
(3,1)
(,2)
(1,2)
(2,2)
(3,2)

ot e

As with one-dimensional arrays, the row and column indices may be
specified by a constant, a numeric variable or a numeric expression.

3 and 4 dimensional arrays are extensions of the two dimensional
concept. An element of one of those arrays is referenced by the
array name and the appropriate number of indices,

5.16.3 OQUIPUT FORMATS

A numeric data item is converted to a string when it is output to

Rev. 1 5/77 5-12



the terminal. Unless the output format is explicitly specified

by use

of the FMT function, a numeric value will be output in

one of three default formats according to the following rules:

1)
2)
3
&)

3)

6)
7

The negative sign (if present) precedes the number

A space is output in place of a positive sign

A space is output following the number.

A number is either a whole number or a decimal

number. A whole number is a number without a
fractional part. A decimal number is a number

with a whole and a fractional part.

The output formats are: Whole, Decimal and Scientific,

Whole: (- ) sexxxxxxi
Decimal : (~)xxex ... x.xxx¥
Scientific: (=)n.xxxxx E(-) TT¥

() = minus sign if negative, blank if positive
x = digit position
n = one non-zero digit
E = signifles exponent
TT = exponent
" B = blank

The value of an integer variable is output in whole format.
A constant or the value of a real variable is output as
follows:
a) If the constant or value is a whole number
having less than or equal the number of digits
gpec ified by RSIZE, then whole format is used.

b) If the constant or value is a decimal number greater
than or equal to .1 and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

c) Otherwise, scientific format is used,.

String data is output without modification.

The maximum output line length is 25¢ characters. 1If an attempt
is made to output a line longer than the maximum length, i,e,,by
trying to output 2 strings of 25@ characters with the same nrint
statement. The characters in excess of 25@ are truncated and
the message "WARNING-~~-TRUNCATED OUTPUT" is output.

Rev. 2

5-13

5/77



3.17 BASIC QPERATORS

Operators are symbols which specify operations to be performed upon data
items. BASIC recognizes 4 classes of operations:

Numeric(arithmetic); String; Relational; and Logical.

5.17.1 Numeric Operators

Numeric operators specify arithmetic operations to be performed

upon numeric data items and numeric function references. A numeric
data item may be a constant, a simple numeric variable or a numeric
array element. Numeric operators are classified as binary operators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operators are listed below:

Symbol Operation
$ Exponentiation i
/ Division '
* Multiplication
~\ Integer Division (X\Y = Int(X/Y))
- Subtraction
+ Addition

The unary operators are listed below:

Symbol Operation
- Negation
No effect

The "+" symbol is recognized as a unary operator to allow constructs
such as A= +7 and 4= +B to be syntactically correct although the "+"
has no effect.

5.17.2 String Operators

One operator is recognized for string data items: concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference.

Sngol Operation
+ Concatenation

Rev. 2 3/77 5-14



The "+" operator yields a string composed of the characters in the
string data item to the left of the operator followed by the char-
acters in the string data item to the right of the operator.

EXAMPLE: If A$ = "ABCD" and B$ = "EFGH" the operation A$ + B$
yields the string "ABCDEFGH"

5.17.3 Relational Operators

Relational operators allow the comparison of the values of numeric
or string data items.

The relational operators are listed below:

Symbol Meaning

< Less Than

7 Greater Than

= Equal to
4= Less than or equal to
7= Greater than or equal to
<0 Not equal to

A relational operator is used im an expression of the form (Data Item 1
operator Data Item 2) which yields a single value as follows: The
values of the two data items are compared. Based upon this comparison
if the expression is true, the value "true'” (1) is returned. If the
expression is false, the value "false" (@) is returned.

EXAMPLE: If A=1 and B=2 then

A{B Yields a value of 1
A=B Yields a value of §

The data items compared must both be the same data type (numeric or
string) or a type error results,

String comparison is performed as follows: Starting from the leftmost
character, two strings are compared character-by-character until there
is a mis-match or the end of one of the strings is reached. If there
is a8 mis-match, the string containing the character which is higher in
the collating sequence is considered 'greater™ than the other string.
If the end of one of the strings is reached without a mis-match and
the strings are not of the same length then the longer string is
"greater". If the end of one string is reached and the strings are

of the same length then the strings are "equal”.

5«15

Rev. 2 5/77

s ;\



5.17.4 Logical Operators

The relational operators as described in section 3.17.3 return a
value of "true' or '"false'. This type of value is referred to as

a boolean value and is rerresented in Micropolis BASIC as an integer,
Truth or falsity is determined by converting the integer to a 16 bit
binary number. If the least significant bit of the binary number is
@ then the value is false, else the value is true. Logical operators
specify operations to be performed with boolean values as described

below:
Binarv Logical QOperators
Operator Expression Truth Table
AND VAL 1 AND VAL 2 VAL 1 VAL 2 RESULT
True True True
True False False
False True False
Fa'se False False
Operator Exvression Truth Table
OR VAL 1 OR VAL 2 VAL 1 VAL 2 RESULT
True True True
True False True
False True True
False False False
Unary Logical Operators
Operator Expression Truth Table
NoT NOT VAL VAL RESULT

True False
False True

The primary function of the logical operators is to allow the
formation of comrlex exnressions which evaluate to a single value of
"true” or ﬂfa 1se".

EXAMPLE: A<=B AND C=§

Rev. 2 5/77 5-16



A secondary function is nrovided by the 16 bit implementation of
Boolean values. The logical overators perform the above defined
funct ons across the full 1€ bits. This allows you to perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 8§80 instructions, The utility of this feature is illus-
trated in the following examrle which is a serial I1/0 handler for
an IMSAI SIO board.

80@0@ REM INPUT ROUTINE - RETURNS CHAR IN A

8198 A = IN (3) AND 2: IF A @ GOTO 8160 :! WAIT INPUT READY
8208 A = IN (2) AND 16R7F: RETURN:! MASK PARITY AND RETURN
830@ REM OUTPUT CHARACTER IN A

8490 B= IN (3) ANDl: IF B~ GOTO 8400 :! WAIT OUTPUT READY
85@8 O0OUT(2) = A: RETURN :! OUTPUT AND RETURN

NOTE: This example will not work for I/0 to the terminal device.
The BASIC interpreter checks for input from the terminal
between execution of BASIC statements and will gobble any
character received unless it is a CTL/C.

5.18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas.

A function returns a single value,

BASIC recognizes two types of functions: Intrinsic functions which are
built into BASIC; and user defined functions.

5.18.1 1Intrinsic Functions

Intrinsic functions may be classified as numeric, string, special
and file. The functions relating to files are discussed in the file
1/0 section-

5.18.1,1 Numeric Functions

The numeric functions provide most of the commonly used trigonometric

and math functions. The math package computes these functions with up

to 29 digits of precision, which requires RSIZE to be set less than or
equal to 1f, Attemrting to use the math functions with RSIZE greater

than 1@ will cause a PRECISION ERROR. The numeric functions are detailed
in table 5.2.

Rev, 8 9/78 5-17



Table 5.2 NUMERIC FUNCTIONS

Function
Reference

Value

ABS(x)

The absolute value of x, where x is a
numeric expression.

ATN(x)

The arctangent of x, where x is a
numeric expression. Returns value in the
range -T11/2 to /2,

e

CoS(x)

The cosine of x, where x is a numeric
ex~ression in radians.

EXP(x)

The value of e raised to the power x,
where x is a numeric exnressiomn.

FIX(x)

The whole number part of x with any frac-
tional part truncated and the sign preserved|
where x is a numeric expression.

FRAC (x)

The fractional part of x with the sign
preserved, where x is a numeric expression.

INT(x)

The greatest integer not greater than x,
where X is a numeric expression.

LN

The logarithm of x to the base e, where
X is a numeric expression with a value
greater than .

LOG (%)

The logarithm of x-"to base 1@, where x
is a2 numeric expression with a value

_greater than §.

MAX(x,¥)

The greater value, X or y, where both x
and v are numeric expressions.

MIN{x,y)

The lesser value, x or y, where both x
and y are numeric expressions.

MOD(x,y)

x modulo y which is equal to x-(y*INT(x/y)).
Both X and vy must be numeric exrressions.

Rev. 2 5/77

3-18



Table 5.2

(cont)

Function
Reference

Value

RND (x)

Generates a nseudo random number between

® and 1. The argument X is a numeric
expression which controls the number generated
as follows:

If x is non zero, RND generates a number

using x as the seed. If x=@, the last

random number generated is used as the seed.
Reneatedly calling RND with x=f§ generates

a sequence of rseudo random numbers.

SGN(x)

+1 if the sign of x is positive, -1 if the
sign of x is negative, @ if x is @.

SIN(x)

The sine of x where x is a numeric exn-
ression in radians.

SQR (%)

The positive square root of x, where x is
a positive numeric expression.

TAN(x)

The tangent of x, where X is a numeric
expression in radians.

Rev, 2 5/77

5-19




5.18.1.2 String Functions

String functions are provided to compare strings, manirulate substrings
and to convert between numeric and string data types. The string functions
are detailed in table 5, 3.

Table 5. 3. STRING FUNCTIONS

Function
Reference Value

ASC(s$) The ASCII code of the first character
in string s$. Returns a numeric value

CHARS (x) Returns the character whose ASCII code
is x

Returns a string consisting of the value
% formatted by the picture contaired in
string y$. The argument y$ can be any
expression evaluating to a string. Each
character in the string (except a V)
represents one character in the result
string. The following characters are

K FMT(x,y$) used to format the digits of a number:

9-- A digit position of the number
leading zeroes are output as "@'"

Z-- A digit position. Leading zeroes
are replaced by blanks.

Ve~ Decimal point alignment. If V is
not specified, the decimal point
is assumed to be at the far right
resulting in truncation of the
fractional part of the number.

§~- A digit position. If more than 1
§ appears in the string then the
digit rosition closest to the leading]
non-zero digit of the numbercontain#
a "§" and the leading zeroces are
blanked.

*-- A digit prosition. Leading zeroes
are replaced by asterisks.

,~= A comma appearing before the leading
digit is remlaced with a blank,
asterisk or dollar sign according to
the context.

All other characters are output unchangd
If the number is too large to fit in thé
format srecified, the entire string is
filled with question marks (2).

Rev, 2 5/77 5-20



Table 5.3

{(continued)

Function
Reference

Value

INDEX (x$, y$)

The position in string x$ of the first occurrence
of string y$. If string y$ is not a substring of
x$, then @ is returned.

LEFT$ (x$, n)

e e s = e o e+ w1 a2 o g oo

Returns n leftmost characters of x$.

LEN (x$)

Returns length of x$.

MID$ (X$ :n,Y)

Returns y characters from string =x$ starting with
character n.

MAX (x$,y$) The greater, string x$ or string y$. See the
collating sequence in Table 5.1.
MIN (x$,y$) The lesser, string x$ or string y$. See the

collating sequence in Table 5.1.

REPEATS (x$, n)

i

The character string with string x§ repeated
n number of times.

fgxsnrs (x$, n)

The n rightmost characters of string x$,.

§STR$ (n)

Converts the number n to a string.

iVAL (x%)

i

Converts the string x$ to a number. The contents
of %x$ may be numeric digits or & numeric expressionl
EXAMPLE: If A$ = "2+2", then VAL (AS)=4

{VERTFY (x$, v$)

Verifies that all characters in string x$ are.also
in y$. Returns the position of the first character
in x$ which is not found in y$. If all characters
in x$ are in y$ returns @.

Rev, 2 5/77

5-21



5.18.1.3 Special Functions

Micropolis BASIC provides several other functions which rertain
neither to numbers nor strings. These special functions are
detailed in Table 5.4.

Table 5.4 SPECTAL FUNCTIONS
Function
Reference Value
IN(x) Inputs a value from I/0 port x. The
value of x must be greater than @ and
less than 236.
PEEK (%) Returns the contents of memory
location x. The value of x must be
greater than @ and less than 65536.
Returns the size of the program
PGMSIZE currently occupying the program buffer
in bytes.
SPACELEFT .| Returns the amount of space left in
the program buffer in bytes.

5.18.2 User Defined Functions

Micropolis BASIC provides the ability to define two tyves of functions:
BASIC functions and assembly language functions.

5.18.2.1 User Defined BASIC Functions

BASIC allows the user to define functions which consist of BASIC
expressions and which are referenced in the same manner as the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(letter) (parameter) = expression
Function Optional Expression which provides
Name Parameter the value of the function

Rev, 2 5/77 5-22



The characteristics of a function definition are:

1) Function Name--consists of the characters "FN" and one of
the letters A-Z yielding up to 26 user-defined BASIC functions.

2) Parameter--a function may optionally include a parameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a "dummy
parameter”, For example, consider the function defined by:

16 DEF FNZ(X) = x}34xf2+a+B

The parameter X is a "dummy" in the sense that when the function
is referenced, the value nassed in the function reference is
used in the place of "X". The narameter is only used in the
definition to indicate the form of the expression. However, the
variables A and B are actual variable names.When the function is
referenced, the current values of A and B are used in evaluating
the expression.

3) Expression~-a function may be defined as either a string function
or a numeric function by the form of the expression. The ex-
pression may be any BASIC expression which yields a single value
of the appropriate data type, )

A function reference consists of the 3 character function name
and the parameter (enclosed in parentheses) if a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants. A small program using the above
defined function is given below as an example:

10 DEF FNA(X)=x}3+4xd2+a+2
20 INPUT A,B,C
30 PRINT FNA(C)
40 GOTO 20
READY
RUN
7 2,3,1
7

70,1,2
13
,

INTERRUPT
READY .

5-23
Rev. 6 9/77



Below is an example of a string function.

5 SIZES(5,4,80)

10 DEF FNB(S$)=REPEATS(S§,N)

20 INPUT A$,N

30 B$=FNB(A$)+"ISN'T THIS REFETITIVE?"
40 PRINT B$

READY

RUN

7 "AGAIN AND ",4

AGAIN AND AGAIN AND AGAIN AND AGAIN AND ISN'T THIS REPETITIVE?

READY

See the "DEF FN" statement for more detailed information.

5.18.2.2 Assembly Language Functions

Micropelis BASIC allows the user to define Assembly Language
"Functious' which provide linkage to assembly language subroutines.
The linkage allows a BASIC program to pass from 1 to 4 arguments

to an assembly language subroutine and provides for a result to be
passed back to the basic program when the assembly language sub-
routine returns control.

An Assembly Language Function is defined as follows:

DEF FA (letter)= expression
The function name consists of the characters "FA'" and one of the
letters A-Z yielding up to 26 assembly language functions. The
expression is a numeric exrression which specifies the memory address

of the subroutine entry point.

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in narentheses,

Examples:

188 A = FAA
200 A$ = FAB (BS, C$)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the veliue of the function reference.

Rev, 7 3/78 5-24



The arguments and result are passed through the following locations
which define the subroutine linkage:

LOCATION LABEL DESCRIPTION
P48CH ARG1 Pointer to the first argument
@4BEH ARG2 Pointer to the second arqument
P4CQH ARG3 Pointer to the third argument
P4aCc2H ARG4 Pointer to the fourth argument
P4C4AH NARGS Number of arguments passed
P4C5H RSIZE Values of RSIZE, ISIZE
P4aCEH ISIZE and SSIZE as described
PAC7H SSIZE in Section 5.2p.26

P1APH RESULT 250 byte result buffer

When an assembly language subroutine is referenced, the basic interpreter

sets the pointers in the linkage tablie to point to the values of the

arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the interpreter expects to find

the value returned by the subroutine, if any, in the result buffer.

The format of the arguments pointed to by ARG1-4 and of the result returned

is:

BYTE # - Type Indicator

1 = Real
2 - Integer
3 - String
BYTE 1-N- Refer to Section 5.16.2 "Variables" far the

internal storage format for each variable type.
The length of each variable type is specified
by RSIZE, ISIZE and SSIZE.

The general procedure for using assembly language subroutines is as follows:

1) Load BASIC from MDOS or directly from a BASIC only SYSTEM DISK.

2) Set the memory space used by BASIC using the MEMEND statement

to reserve space above BASIC for your subroutine.

3) Load the subroutine using the LOAD command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
DEF FA Statement. The subroutine may ncw be used.

5-25

Rev. 7 3/78



The assembly language program example on the following pages demonstrates
most of the principles involved in passing arguments and returning results.
[t was created by using the assembly language development tool's of the

MDOS system. The source program was entered with LINEEDIT and then assembled
with ASSM to produce an object file named CONCAT which can be loaded by

BASIC.

The CONCAT subroutine expects two string arguments to be passed and returns

a string which is composed of the second argument concatenated with the first
argument. If only one argument is passed, the result string is "argument
error'. If both arguments are not strings, the string returned is "type
error’,

Note: This example is not complete - a proper subroutine of this type
would have to handle the special cases of null strings and checking to see
if the maximum string length has been exceeded, etc.

i

Rev. 7 3/78 5-26



2482 ot e s ok o o deofobalook ook o R R ek b St ded e
20¢8 * *
2202 ® ASSTMBLY LANGUARE =
3342 % QURBRRAUTINE LINKAGE =
c2eg * TEMC 1978 =
¢Z2¢ | 3 *
42372 S ek e o T o Fedle b A ak vkl e e ok e e Yok A e e sk ekl
220 *

022 *

e *

22¢2 21A2 RESULT EQU 1A34

2cd 24EC ARG1 pIM 4RCH

9222 J4EE LRGZ ECT AFG1l+2
g2ed 24C2 ARGE %7 ARGl+4
Geee 24Cz ARG4 EQT ARG1+8
43¢ 3 24C4 NARGS 100 ARG1l-3
02e? 24CE RSIZE EQT AFG1+9
220 2el6 ISIZk iU ARG1l+12
3232 24acv SSIZE EQU ARG1+11

edeZ

2272 e

2647 CRG 5242H

6242 *

6242 #* THIS TEMC ACCEPTS TW(Q ARGUMENTS

cl4d % WHICP ARE STRINGS AND RETUTENS

85242 % ARG1 CONCATIEINATED WITH ARGZ.

RZ4C *

&4l "

ocel ZA 04 F4 NERCK ifa NARGS yCHZC0K FCR TwWO

£¢43 YR @z CPI 2 ;AP“UVENT:.

5345 C2 8T €5 IJNZ N3E®:zR yIF NCT TWC -~ ERECE,

8724z 2A 2C 24 TYPCK Ll ARG1 s AL2E, CEECZK TYPE CF

S4B 73 oV AM yARZ1. IT MUST

2447 FE 22 c21 X ; 7EE A STRING.

&l&t T2 87 €2 JNZ TYPEPR ;IF NCT -~ ERPOR,

5281 Z2A BE 24 LELD ARGZ yELSE, CEECY ARG?E

ELB4 TE MOV AN sIT ALSC MUST

5258 FE 23 CpPI & yBE A STRING.

5257 C2 87 €¢ INZ TYPERR yIP NCT - ERRCE.

454 *

SZEA * Z3CTH APGUMENTS ARE VALID STRINGS

fZER w

elBA 11 A2 41 LXI D,RESULT SETUP EETUEN

828T 3k @2 LA A2 t PARAMITER AR A

5257 12 STaX D iSTRING TYPE.

gZ€2 12 INX D ;SXIP QVEER

62€1 12 INX D ;y LENGTH FCR

EB2EZ 13 INY - s NOW

ELE3 AT b 4:%:1 A yZ2ERC LENGTH

6Z64 47 MOV B,A 1 COUNTER.

6262 zA BC @4 LELD ARG1 yMCVE FIRST

€2€a8 CD 7% €9 ~ETP CALL MOVE  ARGUNMENT TO RESULT

SC6BR 2A BE 24 LHLD APG?2 s “0OVE SECOND

6EEE CU 72 €0 CALL MEVE : AGPUNMENT TO EESULT

€271 78 vov AR JGET LENGTE COUNT

6e72 22 Al €1 STA RESULT+1 PUT COUNT INTO

6273 32 A2 21 €Ta FESTGLT+2 FRESULT.

8378 CG RET ;DONE, RETURN TO BASIC
§-27

Rev. 7 3/78



6279
€379
687%
EC7S
6279
€279
6279
62374
€373
8¢7C
6¢7D
€EL7E
627%
€eRe
62¢el
B6eez
6CS3
6ZEE
6287
5287
8287
60EA
€280
&2al
€2 o
5263
63S5
62¢S
8257
6298
68229
6494
€2¢3

6¢9E
€2Ck
6¢CE
62A1
6444
G2AT
6042
EJAE
5243
6ZAL
62B1
6234
S2B7
€62BA
6¢RC
€33BC

ee
54
45
g2
82

2e
41
85
4z
432
4F

Rev. 7 3/78

7D

9%
ge
AR

A2
a3

€8

€4
6d

€2
el

€2

LR 5 N

MOVE

MOVEL

%
*
TYPERR

L

NBRER
EMSG

*
* ERRCOR
%

TYPMSG

#
NBRMSG

MCVE ARGUMENTS TO RESULT.

BEL REGISTERS HAS ARGUMENT ADDRESS.
DE REGISTERS EAS POSITICON IN RESULT.
B REGISTER IS COUNT

INX B iSKIP TYPE
INX B ySKIP MAX LENGTH
MOV C.,M yGET LENGTE CF STRING
INX B
MOV AM iGET CHARACTER
STAX D yPUT IT INTO RESULT
INX D i} NEXT
INX H
INE B i COUNT +1
DCR ¢ i LENGTE ~1
JNZ MOVEL ; LOCP TILL DONE
RET 1 DONE
LI H,TYPMSG
JVP EMSG
LXI H.NBRMSG
LXI D,RESULT ;PUT MESSAGE IN RESULT
MVI 4,3 iSTRING TYPE
STAX D
INX D
INX D
INX D
XRA A 7 ZERC CCUNT
MCYy B,A
JMP MSTR t¥OVE TO RESULT
MESSAGES
D3 2.9,12
DT “TYPE ERROR”
DB 2,2,14
DT “ARGUMENT ERROR’
END NBRCX
5.28



Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

READY

LIsT

190 DIM A43%(258),B%/250),0%(250)
22 MEMEND 16RSFFF

30 LOAD "CONCAT

42 DEF FTAA=16RE604¢C

50 INPUT &%

B2 INPUT BS

72 C&=FAA{AS,BS)

&2 PRINT C¢

92z GOTO 52

READY

RUN

? 12345

7 67892 A
123456726¢ A
7 NOW IS THE TIME

? FOR ALL GOGD MEN

NOW IS THE TIMEFOR ALL GCOD MEN
q

INTERRUPT

€3 INPUT BS

READY .
PRINT FAA{AY)

ARGUMENT ERROER

REATY

PRINT FAA(A,B)

TYPE ERROR

READY .

PRINT FAA( 12345 ,"673¢2")
1234567690

REIADY

Rev. 7 3/78 5-29



Pages 5-30 through 5-32 left blank intentionally.

Rev. 7 3/73 5-30



5.19 BASIC EXPRESSIONS

A BASIC expression is a combination of data items and function references
connected by operators. An expression specifies an operation or series of
operations that yields a single value, which is referred to as the value of
the expression.
elements.

Rev. 2

5.19.1

Data items may be constants, simple variables, or array
Operators may be arithmetic, string, relational, and logical.

Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

1)

2)

3

4)

Operator Precedence -~ Omerators encountered in an
expression are performed in the following order:

1) Function references

2) Unary operators

3) Arithmetic & string onerators
4) Relational operators

5) lLogical omerators

Operators which have the same level of precedence are
performed in the order in which they are encountered
in scanning the expression from left to right.

The normal rules of precedence & order of evaluation

may be overridlenby the use of parentheses to partition
an expression into subexpressions. Nesting of sub-
expressions is limited by the overall complexity of the
expression. If an expression is too complex it may cause
a STACK OVERFLOW error. In this case, the expression
should be broken into two expressions.

Expressions containing subexpressions are evaluated

from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation

apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators,

Operations are performed in the following order:

5/77

and numeric data items and evaluates to a numeric result,

5-33



1) Function references

2) Unary + dnd -

3) Exponentiation

4) Division and Multiplication
5) Integer division

6) Addition and Subtraction

Parentheses may be used to force evaluation in the exact order desired.
EXAMPLES:
1. 2%347%4
This expression is evaluated as follows: (V(x) indicates the value
of x)
1) 2%3 yields 6
2) 7%4 yields 28
3) v(2%3) + V(7*4) yields 34
2. 2%(3+7) *4
This expression is evaluated as follows:
1) 347 yields 19
2) 2% v(3+47) yields 2@
3) V(2%V¥(3+7)) *4 yields 80

5.19.3 String Expressions

A string expression consists of string function references, string
operators, and string data items and evaluates to a string result.
Operations are performed in the following order:

1) Function references
2) Concatenation

EXAMPLE: Let B$ = "The number is"
B$+STRS(134)
This expression is évalua:ed as follows:
1) STR$(134) yields " 134 "

2) V (STRS$(134)) is concatenated with the current
value of B$ which yields "The number is 134 "

5-34

Rev, 2 5/77



5.19.4 Logical Expressions

A logical expression consists of numeric and string expressions

combined

with relational and logical operators. The value of a

logical expression is a Boolean value. Operations are performed
as follows:

1)
2)
3)
4)
5)
6)
7)

EXAMPLE .
A+24=3

Function references are performed,.

The NOT operation is performed.

Numeric and string exrressions are evaluated.

Relational operations are performed

The AND onerations are performed

The OR operations are performed

Parentheses may be used to force evaluation in the exact order
desired

AND B+3¢(5  OR NOT (BS="A")

This expression is evaluated as follows:

1)

2)
3)
4)
3)

6)

7)
8)

The value of BS is compared with "A'" (Note: if narentheses
had not been used, BASIC would have tried to rerform NOT
B¢ which would have given an error) Temporary result Tl is
set =1 1if B§="A" else is set =P

Tl is complemented

A+2 is evaluated

B+3 is evaluated

The value of A+2 is compared with 3 and a temporary result
T2 is set = if A+2)3 or 1 otherwise.

The value of B+3 is compared with 5 and T3 is set =¢

if B+3 is greater than or equal to 5 else is set =1,

T2 is ANDed with T3 yielding T4

The value of the expression is obtained by OR'ing T4

with T1

Note: The NOT operator complements the 16 bit representation of
Boolean values so the final value of this expression is
65535 if true and 65534 if false.

Rev., 2 5/77

5-35



5,20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program, and
describe the data and operating environment of the nrogram.

Every BASIC statement consists of a keyword followed by a list of zero or
more expressions which specifies the operation to be performed by the
statement.

Multiple statements may be included in the same program line separated by
the colon (:) (see section 5.2 ).

The statements included in the BASIC language are listed alphabetically
and described in detail in the following pages. Conventions of notation
used are:

1Yra
[B:} Indicates a choice of one of the items enclosed.
C

2y [1] Indicates optional items.

3) Parentheses {( ) used in definitions must be included as
illustrated,.

5.20.1 DATA { numeric cons tant} {nnmer ic cons tant}
string constant s string constant § ,

158 DATA 25, "APRIL 1, 19777, 26E-3 t

The DATA statement is used to define a list of data internal
to a BASIC rrogram which may be accessed with the READ state~
ment. When a BASIC program is started, the DATA rointer is
initialized to point to the firstdata item in the first DATA
statement in the program. When a READ statement is executed,
one value is read from the list for each variable specified
and the rointer is advanced to voint to the next ddta item,
When the data items in a DATA statement are depleted, the
pointer is set to noint to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con-
tiguous list. The RESTORE statement can be used to re-position
the DATA pointer to point to the firstdata item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

5-36
Rev, 2 5/77



5.20.2 DEF FN letter [(function parameter name)] = grnression

14 DEF FNA = X4Y+Z
108 DEF  FNL(A)= (4%3,1415%4)/3
15@ DEF  FNR(MS$)= REPEATS (MS$,S)

The DEF FN statement is used to defipne a function.
The name of the function defined is "FN'" followed

by one of the letters A-Z. Each function name may be
defined only once in a given program.

For example, if the statement 110 DEF FNN= 3,1415%R2
were uysed in a program, 260 DEF FNN (M$)=REPEAT(MS,3)
could not be used because the function names are
identical. The statement 260 DEF FNM (M$)=REPEAT(MS,S3)
would be legal.

A function rarameter is optional. If rresent, it is a
dummy =~arameter and its name may be any simrle variable
name. A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN-statement is non-executable and may appear
anywhere in a program.

5.20.3 DEF FA letter = numeric expression
99 DEF FAA = 16R7000

The DEF FA statement is used to define a functiom which
provides linkage to an assembly language subroutine.

The funcrion name consists of the letters "FA" and one

of the letters A-Z. The expression contains the starting
address of the assembly language subroutine. See section
5.18.2.2 “Assembly Language Functions™ for details of
linkage and passing arguments.

Rev. 2 5/77 5-37



5.20.4 DIM letter [%]) (I1, I2, ... I4)
DIM letter $(length)
DIM letter $(I1, ... I3,length)

14 DIM A (2,4)
26 DIM B%(2,3,4,5)
38 DIM AS(4®)
49 DIM AS(2,3,40)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensions and
index ranges for arrays.

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A-Z, An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen-
sions as defined by the number of parameters (I). The value
of each I defines the maximum value of the index for that
dimension,

The second form is used to set the maximum length of a
string variable, The name of the variable is one of the
letters A-Z followed by the dollar sign ($). The length
specified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement,

The third form is used to define a string array., The array
name consists of one of the letters A-Z followed by the dollar
sign ($). A string array may have 1 to 3 dimensions as
defined by the number of parameters (I) specified. The value
of each I defines the max{mum value of the index for that
dimension., The last parameter specified in the parameter

list is the maximum length of each string element,

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions,

5,20,5 END
19994 END

The END statement is optional in BASIC. Execution will
terminate when the END statement is executed and may not
be continued with the CONT command, It is recommended
that an END statement be the last statement of a program
to serve as a listing aid., Its presence ensures that the
listing is complete,

5-38
Rev. 2 S5/77



5.20.6 EXBEC string expression
180 EXEC A4S

The EXEC statement is a feature unique to Micropolis BASIC.
The EXEC statement causes the string expression to be passed
to the BASIC Interpreter and to be executed as a statement.
The expression may consist of one or more BASIC statements
separated by colons(:). The expression passed is checked for
syntax errors and then executéd if valid. The following
program is given as an example of the power inherent in this
statement. The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk calculator.

LIST

10 INPUT AS: EXEC "PRINT "+A$: GOTO 10
READY

RUN
? 242
4
? SIN(3.14159/4)

.70710595
?

5.20.7 FLOW
14 FLOW o

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs. The program trace will out-
put to the terminal the program line of each statement which
is executed. The program line will be output again if the
THEN portion of an IF . . . THEN statement is executed. The
program trace is turned off by the NOFLOW statement,

5-39
Rev. 2 5/77



5,20.8 TFOR numeric = numeric TO numeric [%TEP numeric :}
n

variable expression expression expressio
39 FORX =1 TO 3¢
49 FOR Y = 38 to § STEP -1
5¢ FOR X =4 to B

The FOR statement initiates the repeated execution of a set

of statements following it. The set begins with the statement
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the

FOR statement. The numeric variable controls the number of
times the set of statements is to be executed and is called the
loop variable. The set of statements to be executed is
referred to as a FOR . . NEXT loop.

The expressions specify the initial value of the loop
variable, the terminal value of the loop variable, and the
value to be added to the loop variable after each pass
through the loop (step). The step parameter is optional;
when not specified, a default value of +1 is used.

The statements within the FOR . . . NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal values.

The STEP value can be negative, as in:

20 FOR I = 108 to ¢ STEP -18
This statement would cause the ipitial value of the loon
variable I to be set at 1f@, subtract 1@ from the loow
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
value §.

The statement 15 FOR J = # TO @ would cause the FOR loop

to be executed one time. That is, the statements between
the FOR J. . . . and the NEXT J statements would be executed
once before the loop variable of f + 1 would be compared to
the limit value of #. At this point the loop variable limit
would have been exceeded and program execution would fall
through to the next line number,

A set of FOR , . .TO. . .NEXT statements may be nested within
one or more sets of FOR, . .TO. . .NEXT statements. For
example:

16/ FORK =1 TO 90
2¢ FORL =1 TO 15
34 PRINT K,L

49 NEXT L

50 NEXT K

Rev., 2 5/77 5-40



When nesting FOR. . .TO. . .NEXT statements it is imperative
that the inside loop (in this case the L loop) be comnletely
enclosed within the outer loop.

If the above statements had been entered incorrectly as follows:

1§ FORK =1 T0 99
2¢ FORL =1 TO 15
3¢ PRINT X,L

49 NEXT K

58 NEXT L

The error message '"MISSING FOR" would occur when the "NEXT L"
statement is encountered.

If a GOTO or IF, . .THEN statement is executed from within a
loop, the program execution will continue in a normal manner.
BASIC will continue the loop from the current value of the

loop variable if the loop is re-entered at some later point.

Rev. 2 5/77 5«41



5.20.9 GOSUB } linenumber
numer ic expression

219 GOSUB 1499

The GOSUB statement causes a set of statements to be executed as
a subroutine.

When a GOSUB statement is executed, control is transferred to the
first statement whose line number {s specified in the GOSUB
statement, The referenced line number and all statements following
it will be executed until a RETURN statement is encountered.
Control is then returned to the statement following the GOSUB.
Consider the following:

150 GOSUB 21¢: FRINT A + B
16¢' END

210 INPUT X,2

2264 =X+ 1: B =2-18
238 RETURN

When line number 15f# is executed, control is transferred to line
number 21¢. Line 21@ and 229 are executed, then 23@, the RETURN
statement. The RETURN causes control to be transferred to the
statement immediately following the GOSUB. Therefore, the sum
of A + B will be printed before the program ends.

GOSUB statements can be nested. That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed. The message SIMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the line number. I£

this is done, care must be taken to insure that the value of

the expression is a positive real number. The fractional part

of the number will be truncated in forming the line number.

A NUMBER OUT OF RANGE error will occur if the number is invalid.

Rev. 2 5§5/77 Sei2



numeric expression

5.20.10 GOTO ,{11ne number }

5.20.11

Rev, 2

186 GOTO 50¢¢
209 GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line, A GOTO statement may
reference any line in a program, including its own line. The

line number may be specified as a constant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value. The fractiomal part of the number will be
truncated in forming a line nuwber. If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur.

IF logical expression [ _I_'!i_Eﬁ] STATEMENT [:STATEHENT]
THEN  line number
19 IF A B THEN PRINT "¢
2§ IF, A =2 GOTO 1p¢
3 IF A =4 THEN 199
49 IF A =2 ANDC =3 THEN D = 2: GOTO 10¢¢

The first form of the TF statement provides conditional execution
of one or more statements based upon the value of a logical
expression,

The statements subject to conditional execution must all reside
within the same program line as the IF statement, If the logical
expression evaluates to "true'’, then the statements are executed.
If the expression evaluates to 'false', then all remaining state-
ments within the line are ignored. The keyword THEN is optional
in this form.

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.

If the expression evaluates to 'true”, control is transferred
to the first statement in the specified program line. 1If the
expression evaluates to '"false", program execution continues

at the next sequential program line, The line number muist be
specified as a constant. If the line number specified does not
exist in the program, a STMT # NOT FOUND error occurs.

5/77 5-43



5.20.12

5.20.13

Rev. 6 9/77

INPUT [“prompstring"{f}] variable list
19 INPUT A,A$
2@ INPUT "ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
terminal and waits for the user to enter the data. If a
prompt string followed by a semicolon (;) is included, the
string is output, followed by a question mark (?) before
waiting. If a prompt string followed by a conma (,) is
included, the string is output and then the questicn mark
is output on the next line before waiting for entry. If

no prompt string is included, a question mark is output

to the next terminal 1ine before waiting for input.

One value must be entered for each variable in the variable
list. Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant is
erroneously entered in place of a numeric constant, a

TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable list
should be entered again in proper order. The last value
entered is delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT is output to the terminal and
the statement waits for more input to satisfy the variable
list. If too many values are entered, EXTRA INPUT [GNORED

is output to the terminal and the program continues execution.

fLET] variable = expression

19 LETA =25
29 A$ = “FAT HIPPQ"

The LET statement causes the expression to be evaluated and
assigns the resulting value to the variable. The data type
of the expression and the variable must be the same type or
a "TYPE ERROR" results. The LET keyword is optional.

5-44



5.20.14

5.20.15

5.20.16

5.20.17

MEMEND numeric expression
19 MEMEND 16R79¢0

The MEMEND statement is used to define the upper limit of the
memory Space used by BASIC. One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

NEXT numeric variable
14 NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. While the
loop is being executed, each time control reaches the NEXT
statement, the loop variable is incremented by the SIEP
value, or by 1 if a STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution

of a FOR statement naming the same loop variable, a MISSING
FOR error occurs.

NOFLOW
508  NOFLOW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

ON numeric expression GOTO line number list

100 ON K+5 GOTO 20¢, 309, 409
208 ON J GOTO A+30, 49¢,B

The ON...GOTO statement causes control to be transferred to

the line number whose positiomal value in the line number list
is equal to the expression, If the expression is zero or
greater than the number of lines in the list, coatrol is

passed to the next statement. If the expression is fractiomal,
the fraction is truncated prior to the GOTO being executed.

If the expression is negative a NUMBER OUT OF RANGE error
occurs. The line numbers in the line number list may be
numeric constants or numeric expressions. If a line number

in the list does not exist a STMT # NOT FOUND error occurs.

5-45

Rev., 2 5/77



5.20,18

5.20.19

5,20.20

Rev, 2 5/77

ON numeric expression GOSUB line uumber list

188 ON X GOSUB 594, 600, 700, 8¢d
268 ON 2+2 GOSUB B,C, 660

The ON,..GOSUB statement causes execution of the subroutine
beginning at the line number whose positional value in

the line number list is equal to the value of the numeric
expression,

If the expression is zero or greater than the number of
lines in the list, control is passed to the next statement,
If the expression is fractiomal, the fraction is truncated
prior to the GOSUB being executed. If the expression is
negative a NUMBER OUT OF RANGE error occurs,

The line numbers in the line number list may be numeric
constants or numeric expressions. If a line number in the
list does not exist a 3STMT # NOT FOUND errvor occurs.

When a RETURN statement is encountered in the subroutine,
control returns to the statement followng the ON.,.GOSUB
statement.

OUT (numer ic expression 1) = numeric expression 2
148 OUT (16R1d) = 28

The OUT statement causes the value of expression 2 to be
output to the I/0 port specified by exrression l. Both
expressions must be numeric expressions with values in the
range 9 to 255 or a NUMBER OUT OF RANGE error occurs.

POKE (numeric expression 1) = numeric expression 2

108 POKE (16R64@E) = 204@
200 POKE (4A) =B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex-
pression 1 must be in the range § to 65535 and expreseion 2
must be in the range ¢ to 255, If the value for either
axpression is outside of the specified range, a NUMBER QUT
OF RANGE error occurs. Care must be exercised to ensure
that the location POKE'd does not cause BASIC to crash.

5-46



5.20.21

.

PRINT expression {;} [TAB(numeric expressioq}. ..
188 PRINT A;B;C
20¢ PRINT TAB(1¢); "THE ANSWER IS'"; FMT(A,"2229V.99")

The PRINT statement causes the value of the exnressions in
the expression list to be output to the terminal Exrressions
are output in the formats described in section 5.16.3.
"Output Formats',

An output line consists of up to 250 characters and is
partitioned into 16 character print fields. Print rosition
within an output line is controlled as follows:

1) An expression is output starting at the current
print position. Each expression must be separated
from the next expression by a comma {,) or a
semicolon ().

2) If the expression is followed by a semicolon,
the print position is set to the next position
following the last character output for the
expression. If the expression is the last
% .expression of the PRINT statement then output
#r generated by subsequent PRINT statements will
“f start at this position on this line of the output
on the terminal.
3) 1If the expression is followed by a comma, the ¥
print position will be set to the beginning of
the next 16 character print fieid after out~-
putting the expression. If the expression is
the last expression of the PRINT statement then
output from subsequent PRINT statements will
begin at this position on this lire of output
T on the terminal.

4) 1If the last expression of the PRINT statement is
not terminated by a comma or semicolon then the
print position is set to the first character of
the next line after outputting the value of the
exnression.

5) The print rosition may be explicitly set by including
references to the tab function which cperates only
in PRINT or PUT statements. TAB moves the »rint
rosition to the position snecified by the value of
the tab function parameter. If the position is
already beyond the specified value when the print

5-47

Rev, 6 5/77



statement is executed then the specified value is
simply ignored.

BASIC contains a parameter which specifies the length of a
physical output line on the terminal. 1If a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary.

Rev, 2 5/77 5-48‘



5.20.22

5.20.23

5.20.24

5.20.25

READ variable list
1% READ 4,B,C$S

The READ statement reads values from the BASIC programs

. internal data list which is created by including data

statements within the program. One value is read from

the data list for each variable appearing in the variable
list, If there is insufficient dataz in the data list to
satisfy the variable list then RAN OUT OF DATA will be
output., If a string value is read for a numeric variable
then a TYPE ERROR will occur. Values are read sequentially
from the data list unless the pointer which points to the
next value to be read is repositioned by use of the RESTORE
statement,

REM remark text
1@ REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

The REM statement is used to include comment text. The
character (.) may also be used to include comments in a
program line. The REM statement and any characters fol-
lowing a (!) character in a program line are non-executable
and are ignored,

RESTORE . { numeric eXpressioA]

1§ RESTGCRE
2¢ RESTORE 25

The RESTORE statement is used to position the data list
pointer which allows control of the sequence in which

data items are read from the program's internal data list,
The pointer will be set to the first data item of the data
statement whose line number is specified by the numeric
expression. If an expression is not specified, the pointer
will be set to the first item in the first data statemeat
appearing in the program.

RETURN
168 RETURN

The RETURN statement transfers control to the statement
immediately following the last GOSUB statement executed.

If a RETURN statement is encountered prior to the execution
of a GOSUB statement the error message NOTHING TO RETURN
TO 1is output to the terminal.

5-49

Rev, 2 5/77



5.20.26 SIZES { numeric numeric numeric numeric
constant 1, constant 2, constant 3, | constant 4

20 SIZES 55,4,8ﬂ)

30 SIZES (6,5,49,3099)
The SIZES statement is used to specify the number of bytes
of storage to be used for real variables (RSIZE), integer
variables (ISIZE) and string variables (SSIZE), and the
maximum program size when using chained program segments
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and less than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and less than 3@. The value of constant 3 specifies
SSIZE which must be greater than ® and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for program
size, after which variable space allocation begins.

%f no S§ZES statement is executed, the default SIZES are
5,3,49).

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

§.20.27 STOP :
100 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT command.

5.20.28 STRING string expression
19 STRING *;"

The STRING statement defines the current string delimiter
used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either
the end of the record or the first occurence of the string
delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

Rev. 6 9/77 5-50



5.21

BASIC DISK FILE 1/0

A file is a data structure which mey be accessed as a named entity and consists
of a collection of data grouped intoc elementary units called records. The file
structure is generally used for storing data on mass storage devices such as a

disk.

Disk Extended BASIC provides the ability to create and access files stored

on the disk. Common maintenance operations such as renaming or deleting a file
are included,

Rev,

5.21.1 Disk Files

Each file stored on a diskette is identified by a file name, which may be

from 1 to 1@ characters long. The characters may be letters, digits
0-9, or the special characters period (.), slash (/), or hyphen (-).

The minimum amount of space required to store a file is one track. When a
Ynew" file is opened, a complete track is allocated. This track and any
other track assigned by the BASIC file system to this file remain una¥ail-
able to any other file unti]l released by the user. The maximum number of
files that can be stored on a disk is a function of the number of tracks
available on the disk., The Med I disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks per diskette. One track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track consists of 16 sectors of 256 bytes per sector. A
file is accessed sector by sector; therefore a 'record" is 1 sector.

Actual placement of files is maintained by the BASIC file system, One
track is allocated for each 'new” file opened. When 16 records have been
written to a particular file, another track is allocated. The file
appears contiguous to the program, even if it is not stored on contiguous
tracks, It is not possible to store one file on more than one disk; that
is, a file may not span disks.

Files may be stored in 3 formats: Program, Object and Data.

1) Program Files - A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6, The data consists
of the BASIC program text as it resided in the program buffer with
keyword compression. A LOAD command will load the data from a
program file into the BASIC program buffer.

2) Object Files - An object file is an image of a block of memory
which was saved using the memory range option of the SAVE commsnd.
A 1.0AD command will read the data back into the memory locations
from which it was saved. This is the format in which assembly
language programs may be stored on the disk.

5-51
2 5/77



Rew.

3) Data Files - Data

files contain data created by and are

accessible to BASIC programs by use of the PUT and

GET statements,

Each execution of a PUT statement

stores 1 record in the file. Data within each record

is represented as

Each record is a

ASCII characters,

25¢ character string. A data file

may not be loaded using the LOAD command. Micropolis
BASIC provides the ability to access the records of a
data file either sequentially or directly. (commonly
referred to as random access)

In addition to the format, a file may also have Write
Protect and Permanent attributes.

1) Write Protect ~ A file which is Write

Protected cannot be re-written but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided
by a Write Protect tab installed on a
diskette. If a physical Write Protect
tab is installed on a diskette, all
operations which attempt to modify a

file or

the directory will yield a

WRITE PROTECT error.

2) Permanent - A Permanent f£ile may be re-
written but may not deleted by a SCRATCH command.

A file may be both Permsnent and Write Protected.

Several “eywords are provided to manipulate disk files as described

below;

5.21.2 Disk File Commands

~~-mands are provided to load and save program or object files, delete

ile, and to display a 1

ist of the files which reside on a diskette.

Although commands may appear in a BASIC nrogram, commands will generally
be executed in Immediate mode. 411 disk commands reference the directory

oi the desired diskette.

Tf the diskette is not loaded or a malfuncticn

exists in the disk drive which causes it to return a not ready status

the message DRIVE NOT UP
is executed. If the drive

will be output to the terminal when a command
is unable to read or write on the diskette

properly then a PERM I/0 ERROR will result.

2 5/77

5-52



Rev,

5.21.2,1 DISPLAY string expression

DISPLAY '"1: DIR"
DISPLAY AS

The DISPLAY command will output the directory of the diskette loaded
into the drive specified by the string expression. The value of the
string expression must be of the form:

" [unit '.] DIR™ where unit is the drive

unit address in the range of @ to 3. If omitted, drive # is assumed.
If the string is a constant it must be enclosed in quotes (). If

a directory does not exist on the diskette a ‘FILE NOT FOUND error
results.

5.21.2.2 LOAD string expression
LOAD "2:DEMOPGM"

The LOAD command loads a program or object file intoc memory. The
file is specified by the string expression which must evaluate to
the following form:

" [}nit:] filename" where unit is the

unit address in the range ® to 3. If omitted, unit @ is assumed:

The file name may be any valid filename, 1If the string is a constant
it must be enclosed in quotes (). If the desired file doas not
reside on the diskette a FILE NOT FOUND error results. If the

file is a data format file, a NOT A LOAD FILE error results.

5.21.2.3 PLOADG string expression
PLOADG "@:NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file pamed in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. All variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the first line of the new program.

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. This is accomnlished by using
a PLOADG statement as the last executed statement of each vrogram
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no nrogram variables
or open files are retained from one program or segment to the next,

3 6/77 5-53



Rev,

3

The string expression in the PLOADG statement must evaluate Lo the
following form:

" [Pnitil filename"

where unit is the unit address in the range # to 3. If omitted,
unit @ is assumed. The file name may be any valid filename. If
the string is a constant, it must be enclosed in quotes ('), If
the desired file does not reside on the diskette a FILE NOT FOUND
error results, If the file is a data format file, a NOT A LOAD
FILE error results., If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing with the
statement after the PLOADG statement.

5.21.2.4 SAVE string expression [&emory address rang%]

SAVE '"N:1:NEWPRG"
SAVE '"™:LOADER" 16R7¢¢9, 16RTDFF

The SAVE command stores program format or object format files on the
diskette, The file is specified by the string expression which must
evaluate to the following form:

" [N:} [ﬁnit:]filename"

If the file to be saved does not already exist on the diskette, the
"N:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette. The unit is the drive unit
address in the range #-~3. If omitted, unit @ is assumed. If the
string is a constant it must be enclosed in quotes ().

The filename may be any valid filename,

If the memory range option is not included, the contents of the

BASIC program buffer will be stored in the desired file in ~rogram

format.

If the memory range option is specified it must be of the form:
numeric expression 1, numeric expression 2

The numeric expressions mist evaluate to positive real values in

the range @ - 65535. Fractional parts will be truncated. The

contents of memory from expression 1 to exXpression 2 will be
stored in the desired file in object format.

6/77 5-54



5.21.2.5

"5.21.2.6

Rev. 6 9/77

If "N:" is not specified for a new file, a FILE NOT FOUND
error results. If a file has a Write Protect attribute,

it cannot be overwritten and a WRITE PROTECT error will
occur if an attempt is made to save it. If a file specified
as new already exists a DUPLICATE NAME error occurs.

SCRATCH string expression
SCRATCH "1:JUNKFILE"

The SCRATCH command deletes a file from the diskette directory
and releases the tracks allocated to the file for use by other
files. The file to be scratched is specified by the expression
which must evaluate to the form:

"[unit:] filename" where the unit is

the drive unit address in the range § - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). If the unit address is
omitted, unit P is assumed.

If the specified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PERM FILE error occurs.

CHAIN string expression
999 CHAIN "NEXTPART"

The CHAIN statement loads the BASIC program file specified

in the string expression into -the current program buffer and
then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the last program segment.
These preserved values are passed to the newly loaded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC
functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are implicitly
closed. This means that the filenumber is disassociated

from the filename and made free for reuse; but the directory
is not updated and therefore any changes in the length of

the file are not recorded. In general, all open files should
be properly CLOSEd before executing a CHAIN statement.

5-54.1



The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available

system memory would otherwise permit.

It makes it passible

to. transfer data and control from section to section of a
very large program that has been divided into separately

loadable segments.

To use the CHAIN statement effectively

certain rules must be observed.

Rev. 6 9/77

1)

2)

3)

The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If

this condition does occur a LOAD OVERRUN error
will be reported. A procedure for avoiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each
segment can be determined by LOADing it and using
the PGMSIZE function (see section 5.18.1.3).
Assuming a set of three program files named

SEG1, SEG2, SEG3, the following example illustrates
the procedure:

LOAD "SEG1"
READY

PRINT PGMSIZE
472

READY

LOAD "SEG2"
PRINT PGMSIZE
526

READY

LOAD "SEG3"
PRINT PGMSIZE
126

READY

in this example the largest PGMSIZE is 526. If
SEG] were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES (5,3,48,526) would be included

as the first statement of SEGI.

A1l files should be closed before executing a
CHAIN statement.

A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this {s done only
the current value of the loop index variable will
be preserved across the CHAIN.

5-54.2



4) A CHAIN statement should not normally be executed from within
a subroutine. 1If this is done the RETURN information for that
subroutine is lost across the CHAIN.

5) A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables have been allocated. The only excep-
tion is the case of the SIZES statement used to set the maximum
program size. A special internal test allows such a statement
to be chained back to as necessary.

5.21.2.7 LINK string expression

LINK "MDOS"
LINK "DISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overilay
files such as MDOS and DISKCOPY. These files completely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file is not found or the
disk unit is not ready, control will return to BASIC where the error will

be reported. .If an unrecoverable disk error occurs during the LINKing
process, the system will execute a soft halt. This is done because BASIC
has already been partially destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
language program file that runs in high memory above the end of BASIC

(see MEMEND statement). It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK 1/0 STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to.and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/0 statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78



1) Disk I/0 statements refer to files through a program
"File Number'. An OPEN statement must be executed to
associate a file on the diskette with a nrogram file
number. '

2) When all I/0 operations on a file are complete, a file
must be closed by executing a CLOSE statement. Closing
a file consists of updating the directory to reflect all
operations which have been performed since the file was
opened, and disassociating the file from the program
file number. CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost.

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands. If the diskette is not

loaded or a malfunction exists which prevents the drive from

per forming operations theh a DRIVE NOT UP error results. If the
disk is unable to perform the specified read/write operation properly,
a PERM I/0 ERROR results.

A& program file number may be in the range § to 9. As many as 18
filesmay be open at once within a program. If an 1/0 statement
attempts to access a file which has not been opened by an QPEN
statement then a TFILE NOT OPEN error results.

If an I/0 statement specifies a file number outside the range #
to 9 then a 'NOT A FILE# error occurs.

5.21.3.1 OPEN file number étring expression options

14 OPEN 1 "N: NEWFILE"
290 OPEN 2 "JOE" END 1009 ERROR 5800

The OPEN statement opens the srecified file for access by disk
I/0 statements. The file is selected by the string expression
which must evaluate to the form:

"EN:] Einit :] filename"

If the file to be opened does not exist on the diskette, the characters
"N:" must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file, The
unit specifies the drive unit address which must be in the range §-9.
The filename may be any valid filename. If the string is a constant,
it must be enclosed in quotes ("), If the unit address is omitted,
unit @ is assumed. If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs. If a file
specified as new already exists, a DUPLICATE NAME error occurs.

5-55
Rev, 8 9/78



The filenumber must be a numeric expression with a value of # -~ 9.
The filename specified will be associated with this file number

until the file is closed and all file I/0 directed to the file number
will be performed using this file.

Each open file has two associated pointers which roint to the next
record to be accegsed in a sequential PUT or GET statement. When
a file is opened, the sequential GET pointer is initialized to
point to the first record. The sequential PUT pointer is initialized
to point to the record following the last record. The last record in
the file is considered the end of the file for GET statements. The
last record +1 is considered the end of file for PUT statements.
For example a 5 record file would have pointers initialized as follows:
rEOF for a GET (Read)
e ¥—EQOF for a PUT (Write)

RECORD L1 21 3] & ! 5 l 6 !
Sequential Sequential
GET pointer PUT pointer

An open file may be read from and written to both sequentially and
directly by record.

The open statement includes several options which are listed below:

1) CLEAR ~ The CLEAR option overrides the normal initialization
of the sequential GET & PUT pointers. The pointers are
initialized so that the file is empty. A subsequent GET
will encounter an end-of-file., A PUT will write into
record 1. This option is generally used to initialize the
pointers for re-writing a file sequentially.

2) END numeric expression

The END option specifies the line number to GOTO when the
end-of-file is encountered during a read operation. The
numeric expression must evaluate to a positive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. If the line does
not exist, g STMT # NOT FOUMD error occurs. This option
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not specified, the normal end-file handling is to abort
the program with an END-FILE error.

Rev. 2 5/77 5=-36



3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk I/0 error occurs. The numeric expression must
evaluate to a positive real number which is a valid
program line within the program when the fractiomal part,
if any, is truncated., If the line does not exist, a
‘STMT # NOT FOUND error occurs. This option allows

a BASIC program to handle disk I/0 errors without being
aborted., If the error option is not included, a disk
1/0 error will cause the appropriate error message to

be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3.2 PUT filenumber RECORD record number expression List

168 PUT 1 A;B;C
28@¢ PUT 1 A;AS$+","; B
3¢@ PUT 1 RECORD 3 A;B;C

The PUT statement causes the values of the expressions in the ex-
pression 1ist to be written onto a record of the file specified by
the filenumber expression. The filenumber must be a numeric ex-
pression having a value of the digits § - 9 when the fractional
part, if any, is- truncated.

Each execution of a PUT statement writes one record into the file.

Each disk record is composed of a 258 character string and is, in
fact, a print line. Each expression in the expression list is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that orint lines
are built. The rules for building the string are as follows:

1) The record string is partitioned into 16 character fields.
A pointer which is initialized to point to the first char~
acter in the string keeps track of the next posi