U N I X
PROGRAMMER’S MANUAL

Reference Guide

Printed by the USENIX Association as a service to the UNIX Communi-
ty. This material is copyrighted by The Regents of the University of
California and/or Bell Telephone Laboratories, and is reprinted by per-
mission. Permission for the publication or other use of these materials
may be granted only by the Licensors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

First Printing July 1984
Second Printing December 1984
Third Printing September 1985

Fourth Printing March 1986

UNIX PROGRAMMER’S MANUAL

Reference Guide

4.2 Berkeley Software Distribution
Virtual VAX—11 Version

March, 1984

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

PREFACE

This manual is part of a five volume set intended for use with the 4.2 Berkeley Software Distribution for
the VAX-11 computer. While the five volumes together contain virtually the same material presented in
the four volume UNIX Programmer’s Manual distributed with 4.2BSD, the manuals reflect a revised
organization necessitated by the large quantity of information. The documentation is divided into three
logically distinct manuals:

® UNIX User’s Manual,
® UNIX Programmer’s Manual, and
@ UNIX System Manager’s Manual.

Each of the User and Programmer manuals are two volumes: a Reference Guide, containing relevant sec-
tions from Volume 1 of the old UNIX Programmer’s Manual, and a volume of Supplementary Docu-
ments, containing pertinent material from Volume 2 of the old UNIX Programmer’s Manual. The Sys-
tem Manager’s manual consists of a single volume containing information from both Volumes 1 and 2.
We acknowledge those who have assisted us in putting together these manuals. In particular, we thank
Tom Ferrin for pursuing the printing particulars.

M. J. Karels
S. J. Leffler

Preface to the 4.2 Berkeley distribution

This update to the 4.1 distribution of June 1981 provides support for the VAX 11/730, full networking
and interprocess communication support, an entirely new file system, and many other new features. It is
certainly the most ambitious release of software ever prepared here and represents many man-years of
work. Bill Shannon (both at DEC and at Sun Microsystems) and Robert Elz of the University of Mel-
bourne contributed greatly to this distribution through new device drivers and painful debugging episodes.
Rob Gurwitz of BBN wrote the initial version of the code upon which the current networking support is
based. Eric Allman of Britton-Lee donated countliess hours to the mail system. Bill Croft (both at SRI
and Sun Microsystems) aided in the debugging and development of the networking facilities. Dennis
Ritchie of Bell Laboratories also contributed greatly to this distribution, providing valuable advise and
guidance. Helge Skrivervik worked on the device drivers which enabled the distribution to be delivered
with a TUS58 console cassette and RX01 console flopppy disk, and rewrote major portions of the stan-
dalone i/0 system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release, while
many groups of people on campus suffered patiently through the low spots of development. As always,
we are grateful to the UNIX user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully ack-
nowledged.

S. J. Leffler
W. N. Joy
M. K. McKusick

INTRO (2) UNIX Programmer’s Manual INTRO (2)

NAME
intro — introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always —1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable errno,
which is not cleared on successful calls. Thus errno should be tested only after an error has
occurred.

The following is a complete list of the errors and their names as given in <errno.h>.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO 1/0 error
Some physical 1/0 error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
170 on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when, for example, an illegal tape drive unit number is
selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a.out(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

4th Berkeley Distribution 12 February 1983 1

INTRO (2) UNIX Programmer’s Manual INTRO (2)

11 EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any more
processes.

12 ENOMEM Not enough core
During an execve or break, a program asks for more core or swap space than the system
is able to supply. A lack of swap space is normally a temporary condition, however a
lack of core is not a temporary condition; the maximum size of the text, data, and stack
segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current direc-
tory, mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown
signal in signal, reading or writing a file for which seek has generated a negative pointer.
Also set by math functions, see intro(3).
23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted.
24 EMFILE Too many open files
Customary configuration limit is 20 per process.
25 ENOTTY Not a typewriter
The file mentioned in an joct/ is not a terminal or one of the other devices to which this
call applies.
26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing.
Also an attempt to open for writing a pure-procedure program that is being executed.

4th Berkeley Distribution 12 February 1983 2

INTRO(2) UNIX Programmer’s Manual INTRO(2)

27 EFBIG File too large
The size of a file exceeded the maximum (about 10° bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe. This error may also be issued for other non-seekable
devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This condi-
tion normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within machine
precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non-
blocking mode (see ioct/ (2)).

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2)) was
attempted on a non-blocking object (see ioct! (2)).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

4th Berkeley Distribution 12 February 1983 3

INTRO (2) UNIX Programmer’s Manual INTRO (2)

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no imple-
mentation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for
it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn’t necessarily expect to be able to use PUP Internet addresses with ARPA Inter-
net protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset

The host you were connected to crashed and rebooted.
53 ECONNABORTED Software caused connection abort

A connection abort was caused internal to your host machine.
54 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally results from the peer exe-
cuting a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendfo or sendmsg
request on a connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown (2) call.

59 unused
60 ETIMEDOUT Connection timed out

A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usu-
ally results from trying to connect to a service which is inactive on the foreign host.

4th Berkeley Distribution 12 February 1983 4

INTRO(2) UNIX Programmer’s Manual INTRO (2)

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.
66 ENOTEMPTY Directory not empty
A directory with entries other than
rename call.
69 EDQUOT Disc quota exceeded
A file creation or write operation failed because the hard limit for that resource had
been reached.

R3]

and ‘“..”” was supplied to a remove directory or

DEFINITIONS
Process ID
Each active process in the system is uniquely identified by a positive integer called a pro-
cess ID. The range of this ID is from 0 to {PROC_MAX].

Parent process ID
A new process is created by a currently active process; see fork(2). The parent process ID
of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping
permits the signalling of related processes (see killpg(2)) and the job control mechanisms
of esh(l).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between multiple jobs
contending for the same terminal; see csh(1), and #y(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process’s real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID or
set-group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID’s used only in determining resource
accessibility. Access checks are performed as described below in “‘File Access Permis-
sions”’.

4th Berkeley Distribution 12 February 1983 5

INTRO (2) UNIX Programmer’s Manual INTRO(2)

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Special Processes
The processes with a process ID’s of 0, 1, and 2 are special. Process 0 is the scheduler.
Process 1 is the initialization process init, and is the ancestor of every other process in the
system. It is used to control the process structure. Process 2 is the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open(2), dup(2), or pipe(2)
or a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access
path to that file or socket from a given process or any of its children.

File Name
Names consisting of up to {FILENAME_MAX] characters may be used to name an ordi-
nary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null)
and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, ?, [or] as part of file names because of the spe-
cial meaning attached to these characters by the shell.

Path Name
A path name is a null-terminated character string starting with an optional slash (/), fol-
lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME_MAX] charac-
ters.

If a path name begins with a slash, the path search begins at the root directory. Other-
wise, the search begins from the current working directory. A slash by itself names the
root directory. A null pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to other
files. Directory entries are called links. By convention, a directory contains at least two
links, . and .., referred to as dot and dot-dot respectively. Dot refers to the directory itself
and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process’s root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used
in determining whether a process may perform a requested operation on the file (such as
opening a file for writing). Access permissions are established at the time a file is created.
They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file’s group, anyone else. Every
file has an independent set of access permissions for each of these classes. When an
access check is made, the system decides if permission should be granted by checking the
access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

4th Berkeley Distribution 12 February 1983 6

INTRO (2) UNIX Programmer’s Manual INTRO(2)

The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and
either the process’s effective group ID matches the group ID of the file, or the group ID
of the file is in the process’s group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for ‘“‘other
users’’ allow access.

Otherwise, permission is denied.
Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2)
for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

SEE ALSO
intro(3), perror(3)

4th Berkeley Distribution 12 February 1983 7

ACCEPT (2) UNIX Programmer’s Manual ACCEPT (2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr *addr;

int *addrlen;

DESCRIPTION

The argument sis a socket which has been created with socke#(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Acceptextracts the first connection on
the queue of pending connections, creates a new socket with the same properties of sand allo-
cates a new file descriptor, ns, for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending connections are present on the
queue, accept returns an error as described below. The accepted socket, ns, may not be used to
accept more connections. The original socket sremains open.

The argument addr is a result parameter which is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is deter-
mined by the domain in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr, on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection-
based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns —1 on error. If it succeeds it returns a non-negative integer which is a descrip-
tor for the accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address space.
[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.
SEE ALSO

bind(2), connect(2), listen(2), select(2), socket(2)

4th Berkeley Distribution 7 July 1983 1

ACCESS (2) UNIX Programmer’s Manual ACCESS (2)

NAME
access — determine accessibility of file

SYNOPSIS
#tinclude <sys/file.h>

#define R_OK 4 /= test for read permission */

#define W_ OK 2 /= test for write permission ¢/

#define X_OK 1 /* test for execute (search) permission ¢/
#define F_OK 0 /= test for presence of file #/

accessible = access(path, mode)
int accessible;
char #path;
int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or of
the bits R_OK, W_OK and X_OK. Specifying mode as F_OK (i.e. 0) tests whether the direc-
tories leading to the file can be searched and the file exists.
The real user ID and the group access list (including the real group ID) are used in verifying
permission, so this call is useful to set-UID programs.
Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing wili fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE)
If path cannot be found or if any of the desired access modes would not be granted, then a —1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The argument path name was too long.

[ENOENT] Read, write, or execute (search) permission is requested for a null path name
or the named file does not exist.

[EPERM] The argument contains a byte with the high-order bit set.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.)

[EACCES] Permission bits of the file mode do not permit the requested access; or search

permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the ‘‘owner” read, write, and execute
mode bits, members of the file’s group other than the owner have permission
checked with respect to the ‘‘group’” mode bits, and all others have permis-
sions checked with respect to the ‘‘other’’ mode bits.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat(2)

4th Berkeley Distribution - 18 July 1983 1

ACCT (2) UNIX Programmer’s Manual ACCT (2)

NAME
acct — turn accounting on or off

SYNOPSIS
acct(file)
char «file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a null-terminated string naming an existing file as argument, turns on account-
ing; records for each terminating process are appended to file. An argument of 0 causes
accounting to be turned off.
The accounting file format is given in acct(5).
This call is permitted only to the super-user.

NOTES
Accounting is automatically disabled when the file system the accounting file resides on runs
out of space; it is enabled when space once again becomes available.

RETURN VALUE
On error —1 is returned. The file must exist and the call may be exercised only by the super-
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acctwill fail if one of the following is true:
[EPERM] The caller is not the super-user.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[EFAULT] File points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] The file is a character or block special file.
SEE ALSO

acct(5), sa(8)

BUGS
No accounting is produced for programs running when a crash occurs. In particular nonter-
minating programs are never accounted for.

4th Berkeley Distribution 13 February 1983 1

BIND (2) UNIX Programmer’s Manual "BIND (2)

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
bind (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in
a name space (address family) but has no name assigned. Bind requests the name, be assigned
to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system which must be deleted
by the caller when it is no longer needed (using unlink(2)). The file created is a side-effect of
the current implementation, and will not be created in future versions of the UNIX ipc domain.
The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of —1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:

[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL)
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.
[EACCESS] The requested address is protected, and the current user has inadequate
permission to access it.
[EFAULT] The name parameter is not in a valid part of the user address space.
SEE ALSO

connect(2), listen(2), socket(2), getsockname (2)

4th Berkeley Distribution 27 July 1983 1

BRK (2) UNIX Programmer’s Manual BRK (2)

NAME

brk, sbrk — change data segment size

SYNOPSIS

caddr_t brk(addr)
caddr_t addr;

caddr_t sbrk (incr)
int incr;

DESCRIPTION

Brk sets the system’s idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system’s page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause a
memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned from
a call to gerrlimit, e.g. *‘etext + rlp—rlim_max.” (See end(3) for the definition of efext.)

RETURN VALUE

Zero is returned if the brkcould be set, —1 if the program requests more memory than the sys-
tem limit. Sbrkreturns —1 if the break could not be set.

ERRORS

Sbrk will fail and no additional memory will be allocated if one of the following are true:
[ENOMEM] The limit, as set by serrlimit(2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded.

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin-
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimit.

4th Berkeley Distribution 27 July 1983 1

CHDIR (2) UNIX Programmer’s Manual CHDIR (2)

NAME
chdir — change current working directory

SYNOPSIS
chdir(path)
char #path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with /.
In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the follow-
ing are true:

[ENOTDIR] A component of the pathname is not a directory.
[ENOENT] The named directory does not exist.
[ENOENT] The argument path name was too long.

[EPERM] The argument contains a byte with the high-order bit set.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chroot(2)

4th Berkeley Distribution 2 July 1983 1

CHMOD (2) UNIX Programmer’s Manual CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
chmod (path, mode)
char *path;
int mode;

fchmod (fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by pathor referenced by the descriptor fd has its mode changed to
mode. Modes are constructed by or’ing together some combination of the following:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set,up.for sharing (this is the default) then mode 1000 prevents the sys-
tem from abandoning the swap-space image of the program-text portion of the file when its last
user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.
Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compati-
bility.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errnois set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if:
[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The pathname was too long.
[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULTI] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchmod will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] Fdrefers to a socket, not to a file.

4th Berkeley Distribution 2 July 1983 1

CHMOD (2) UNIX Programmer’s Manual CHMOD (2)

[EROFS] The file resides on a read-only file system.

SEE ALSO
open(2), chown(2)

4th Berkeley Distribution 2 July 1983 2

CHOWN (2) UNIX Programmer’s Manual CHOWN (2)

NAME
chown — change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char =path;
int owner, group;

fchown (fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call, because if users were able to give files
away, they could defeat the file-space accounting procedures.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
fock(2)).

Only one of the owner and group id’s may be set by specifying the other as —1.

RETURN VALUE
Zero is returned if the operation was successful; —1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

[EINVAL] The argument path does not refer to a file.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The argument pathname is too long.

[EPERM] The argument contains a byte with the high-order bit set.
[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.
[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
Fchown will fail if:
[EBADF] Fddoes not refer to a valid descriptor.
[EINVAL] Fdrefers to a socket, not a file.
SEE ALSO

chmod(2), flock(2)

4th Berkeley Distribution 27 July 1983 1

CHROOT (2) UNIX Programmer’s Manual CHROOT (2)

NAME
chroot — change root directory

SYNOPSIS
chroot (dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot causes
this directory to become the root directory, the starting point for path names beginning with
.
In order for a directory to become the root directory a process must have execute (search)
access to the directory.
This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:
[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The pathname was too long.

[EPERM] The argument contains a byte with the high-order bit set.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[ELQOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chdir(2)

4th Berkeley Distribution 2 July 1983 1

CLOSE (2) UNIX Programmer’s Manual CLOSE (2)

NAME

close — delete a descriptor

SYNOPSIS

close(d)
int d;

DESCRIPTION

The close call deletes a descriptor from the per-process object reference table. If this is the last
reference to the underlying object, then it will be deactivated. For example, on the last close of
a file the current seek pointer associated with the file is lost; on the last close of a socker(2)
associated naming information and queued data are discarded; on the last close of a file holding
an advisory lock the lock is released; see further fock(2).

A close of all of a process’s descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to be
closed if the execve succeeds. For this reason, the call “fentl(d, F_SETFD, 1)’ is provided
which arranges that a descriptor will be closed after a successful execve; the call *“‘fenti(d,
F_SETFD, 0) restores the default, which is to not close the descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
the global integer variable errnois set to indicate the error.

ERRORS

Close will fail if:
[EBADF] Dis not an active descriptor.

SEE ALSO

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve (2), fentl(2)

4th Berkeley Distribution 27 July 1983 1

CONNECT (2) UNIX Programmer’s Manual CONNECT (2)

connect — initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;

struct sockaddr *name;

int namelen;

DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent; if it is of type SOCK_STREAM, then this
call attempts to make a connection to another socket. The other socket is specified by name
which is an address in the communications space of the socket. Each communications space
interprets the name parameter in its own way.

RETURN VYALUE

If the connection or binding succeeds, then 0 is returned. Otherwise a —1 is returned, and a
more specific error code is stored in errno.

ERRORS

The call fails if:

[EBADF] Sis not a valid descriptor.
[ENOTSOCK] S is a descriptor for a file, not a socket.
[EADDRNOTAVAIL]

The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.
[EISCONN] The socket is already connected.
[ETIMEDOUT] Connection establishment timed out without establishing a connection.
[ECONNREFUSED] The attempt to connect was forcefully rejected.
[ENETUNREACH] The network isn’t reachable from this host.
[EADDRINUSE] The address is already in use.
[EFAULT] The name parameter specifies an area outside the process address space.

[EWOULDBLOCK!] The socket is non-blocking and the and the connection cannot be com-
pleted immediately. It is possible to select(2) the socket while it is con-
necting by selecting it for writing.

SEE ALSO

accept(2), select(2), socket(2), getsockname (2)

4th Berkeley Distribution 7 July 1983 1

CREAT (2)

NAME

UNIX Programmer’s Manual CREAT (2)

creat — create a new file

SYNOPSIS

creat(name, mode)

char *name;

DESCRIPTION

This interface is obsoleted by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process’s mode mask (see umask(2)). Also see chmod(2) for the construction of the mode

argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned.

NOTES

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL
open mode, or flock(2) facilitity.

RETURN VALUE

The value —1 is returned if an error occurs. Otherwise, the call returns a non-negative descrip-
tor which only permits writing.

ERRORS

Creat will fail and the file will not be created or truncated if one of the following occur:

[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[EACCES] A needed directory does not have search permission.

[EACCES] The file does not exist and the directory in which it is to be created is not writ-
able.

[EACCES] The file exists, but it is unwritable.

[EISDIR] The file is a directory.

[EMFILE] There are already too many files open.

[EROFS] The named file resides on a read-only file system.

[ENXIO] The file is a character special or block special file, and the associated device
does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EFAULT] Name points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO

open(2), write(2), close(2), chmod(2), umask(2)

4th Berkeley Distribution 2 July 1983 1

DUP(2) UNIX Programmer’s Manual DUP(2)

NAME
dup, dup2 — duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
int newd, oldd;

dup2 (oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table,
which is returned by getdiablesize(2). The new descriptor mewd returned by the call is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd and
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and Iseek(2) calls all move a single pointer into the file. If a separate pointer into the
file is desired, a different object reference to the file must be obtained by issuing an additional
open(2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a close(2) call had been done first.

RETURN VALUE

The value —1 is returned if an error occurs in either call. The external variable errno indicates
the cause of the error.

ERRORS
Dup and dup? fail if:
[EBADF] Oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

SEE ALSO

accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

4th Berkeley Distribution 12 February 1983 1

EXECVE (2) UNIX Programmer’s Manual EXECVE (2)

execve — execute a file

SYNOPSIS

execve(name, argv, envp)
char *name, *argvll, *envpll;

DESCRIPTION

Execve transforms the calling process into a new process. The new process is constructed from
an ordinary file called the new process file. This file is either an executable object file, or a file
of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (text) and initialized data pages. Additional
pages may be specified by the header to be initialize with zero data. See a.out(5).

An interpreter file begins with a line of the form ‘‘#! interpreter’; When an interpreter file is
execve’d, the system execve’s the specified interpreter, giving it the name of the originally
exec’d file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argvis an array of character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention, at
least one argument must be present in this array, and the first element of this array should be
the name of the executed program (i.e. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command,
see environ(7).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set; see close(2). Descriptors which remain open are unaffected
by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined; see sigvec(2) for more information.

Each process has real user and group IDs and a effective user and group IDs. The real ID
identifies the person using the system; the effective ID determines his access privileges. Execve
changes the effective user and group ID to the owner of the executed file if the file has the
‘“‘set-user-ID” or ‘‘set-group-ID’’ modes. The realuser ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID
parent process ID
process group ID
access groups
working directory
root directory
control terminal
resource usages
interval timers
resource limits
file mode mask
signal mask

see getpid(2)
see getppid(2)
see getpgrp(2)
see getgroups(2)
see chdir(2)
see chroot(2)
see tty(4)

see getrusage (2)
see getitimer (2)
see getrlimit(2)
see umask(2)
see sigvec(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution

27 July 1983 1

EXECVE (2) UNIX Programmer’s Manual EXECVE (2)

main (argc, argv, envp)

int argc;

char =*argv, **envp;
where argcis the number of elements in argv (the ‘‘arg count’’) and argvis the array of charac-
ter pointers to the arguments themselves.

Envp s a pointer to an array of strings that constitute the environment of the process. A pointer
to this array is also stored in the global variable ‘‘environ’’. Each string consists of a name, an
‘““="_and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(1) passes an environment entry for each global shell variable defined when the pro-
gram is called. See environ(7) for some conventionally used names.

RETURN VALUE
If execve returns to the calling process an error has occurred; the return value will be —1 and
the global variable errno will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the follovgag are true:

[ENOENT] One or more components of the new process file’s path name do not exist.

[ENOTDIR] A component of the new process file is not a directory.

[EACCES] Search permission is denied for a directory listed in the new process file’s path
prefix.

[EACCES] The new process file is not an ordinary file.
[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but has an invalid
magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the imposed
maximum (getrlimit(2)).

[E2BIG] The number of bytes in the new process’s argument list is larger than the
system-imposed limit of {ARG_MAX] bytes.
[EFAULT] The new process file is not as long as indicated by the size values in its header.

[EFAULT] Path, argv, or envppoint to an illegal address.

CAVEATS
If a program is setvidto a non-super-user, but is executed when the real widis ‘‘root’, then the
program has the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)

4th Berkeley Distribution 27 July 1983 2

EXIT (2) UNIX Programmer’s Manual EXIT (2)

NAME

_exit — terminate a process
SYNOPSIS

_exit(status)

int status;

DESCRIPTION
_exitterminates a process with the following consequences:
All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD
signal, then it is notified of the calling process’s termination and the low-order eight bits of
status are made available to it; see wait(2).

The parent process ID of all of the calling process’s existing child processes are also set to 1.
This means that the initialization process (see intro(2)) inherits each of these processes as well.
Most C programs call the library routine exit(3) which performs cleanup actions in the standard
i/o library before calling _exir.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit(3)

4th Berkeley Distribution 27 July 1983 1

FCNTL (2)

NAME

UNIX Programmer’s Manual FCNTL (2)

fentl — file control

SYNOPSIS

#include <fcntl.h>
res = fcntl(fd, cmd, arg)

int res;

int fd, cmd, arg;

DESCRIPTION

Fentl provides for control over descriptors. The argument fd is a descriptor to be operated on
by cmd as follows:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL
F_GETOWN

F_SETOWN

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execv(2) system calls.

Get the close-on-exec flag associated with the file descriptor fd. If the low-
order bit is 0, the file will remain open across exec, otherwise the file will be
closed upon execution of exec.

Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1
as above).

Get descriptor status flags, as described below.
Set descriptor status flags.

Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG signals; pro-
cess groups are specified by supplying arg as negative, otherwise arg is inter-
preted as a process ID.

The flags for the F_ GETFL and F_SETFL flags are as follows:

FNDELAY

FAPPEND

FASYNC

RETURN VALUE

Non-blocking I/0; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

Force each write to append at the end of file; corresponds to the O_APPEND
flag of open(2).

Enable the SIGIO signal to be sent to the process group when I/0 is possible,
e.g. upon availability of data to be read.

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_GETFL

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.

F_GETOWN Value of file descriptor owner.

4th Berkeley Distribution 18 July 1983 1

FCNTL (2) UNIX Programmer’s Manual FCNTL (2)

other Value other than —1.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Fentl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] Cmd is F_DUPFD and the maximum allowed number of file descriptors are
currently open.
[EINVAL) Cmd is F_DUPFD and arg is negative or greater the maximum allowable
number (see getdiablesize(2)).

SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

BUGS
The asynchronous 1/0 facilities of FNDELAY and FASYNC are currently available only for tty
operations. No SIGIO signal is sent upon draining of output sufficiently for non-blocking writes
to occur.

4th Berkeley Distribution 18 July 1983 2

FLOCK (2) UNIX Programmer’s Manual FLOCK (2)

NAME

flock — apply or remove an advisory lock on an open file

SYNOPSIS

#include <sys/file.h>

#defineLOCK_SH 1 /+ shared lock s/

#define LOCK_EX 2 /+ exclusive lock ¢/
#defineLOCK_NB 4 /+ don’t block when locking =/
#defineLOCK_UN 8 /+ unlock */

flock (fd, operation)
int fd, operation;

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (i.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap-
pen; instead the call will fail and the error EWOQOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

‘RETURN VALUE

Zero is returned if the operation was successful; on an error a —1 is returned and an error code
is left in the global location errno.

ERRORS

The flock call fails if:
[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

[EBADF] The argument fd is an invalid descriptor.
[EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)

4th Berkeley Distribution 27 July 1983 1

FORK (2) UNIX Programmer’s Manual FORK (2)

NAME
fork — create a new process
SYNOPSIS
pid = forkQ
int pid;
DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro-
cess).

The child process has its own copy of the parent’s descriptors. These descriptors refer-
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that a Iseek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is also
used by the shell to establish standard input and output for newly created processes as
well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro-
cess ID of the child process to the parent process. Otherwise, a value of —1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.
ERRORS
Fork will fail and no child process will be created if one or more of the following are true:
[EAGAIN] The system-imposed limit {PROC_MAX] on the total number of processes
under execution would be exceeded.
[EAGAIN] The system-imposed limit {(KID_MAX) on the total number of processes
under execution by a single user would be exceeded.

SEE ALSO
execve(2), wait(2)

4th Berkeley Distribution 12 February 1983 1

FSYNC(2) UNIX Programmer’s Manual FSYNC(2)

NAME
fsync — synchronize a file’s in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;

DESCRIPTION
Fsync causes all modified data and attributes of f@ to be moved to a permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be writ-
ten to a disk.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A —1 value indicates an error.

ERRORS
The fiync fails if:
[EBADF] Fd is not a valid descriptor.
[EINVAL] Fd refers to a socket, not to a file.
SEE ALSO
sync(2), sync(8), update(8)
BUGS

The current implementation of this call is expensive for large files.

4th Berkeley Distribution 12 February 1983 1

GETDTABLESIZE (2) UNIX Programmer’s Manual GETDTABLESIZE (2)

NAME

getdtablesize — get descriptor table size
SYNOPSIS

nds = getdtablesize()

int nds;
DESCRIPTION

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at 0. The call getdia-
blesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2)

4th Berkeley Distribution 12 February 1983 1

\NJ

GETGID (2) UNIX Programmer’s Manual GETGID (2)

NAME
getgid, getegid — get group identity

SYNOPSIS
gid = getgid)
int gid;

egid = getegid)
int egid;

DESCRIPTION
Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a ‘‘set-group-ID”* process, and it is for such processes that gergid is most useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

4th Berkeley Distribution 12 February 1983 1

GETGROUPS (2) UNIX Programmer’s Manual GETGROUPS (2)

NAME

getgroups — get group access list
SYNOPSIS

#include <sys/param.h>

ngroups = getgroups (gidsetlen, gidset)
int ngroups, gidsetlen, sgidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array gidset.
The parameter gidsetlen indicates the number of entries which may be placed in gidset. Get-
groups returns the actual number of groups returned in gidset. No more than NGROUPS, as
defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A value of —1 indicates that
an error occurred, and the error code is stored in the global variable errno.

ERRORS
The possible errors for getgroup are:
[EINVAL] The argument gidsetlen is smaller than the number of groups in the group set.
[EFAULT] The argument gidset specifies an invalid address.

SEE ALSO

setgroups(2), initgroups(3X)

4th Berkeley Distribution 8 February 1984 1

GETHOSTID (2) UNIX Programmer’s Manual GETHOSTID (2)

NAME
gethostid, sethostid — get/set unique identifier of current host
SYNOPSIS
hostid = gethostid)
int hostid;
sethostid (hostid)
int hostid;
DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor which is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.
Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

BUGS
32 bits for the identifier is too small.

4th Berkeley Distribution 12 February 1983 1

GETHOSTNAME (2) UNIX Programmer’s Manual GETHOSTNAME (2)

NAME

gethostname, sethostname — get/set name of current host
SYNOPSIS

gethostname (name, namelen)

char *name;

int namelen;

sethostname (name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.
Sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of —1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:
[EFAULT] The name or namelen parameter gave an invalid address.
[EPERM] The caller was not the super-user.
SEE ALSO
gethostid (2)
BUGS

Host names are limited to 255 characters.

4th Berkeley Distribution 12 February 1983 1

GETITIMER (2) UNIX Programmer’s Manual GETITIMER (2)

NAME
getitimer, setitimer — get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

##define ITTIMER_REAL 0 /¢ real time intervals ¢/
#tdefine ITIMER_VIRTUAL 1 /e virtual time intervals +/
##define ITTIMER_PROF 2 /¢ user and system virtual time «/

getitimer (which, value)
int which;
struct itimerval svalue;

setitimer (which, value, ovalue)
int which;
struct itimerval evalue, sovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sysftime.h>. The
getitimer call returns the current value for the timer specified in which in the structure at value.
The setitimer call sets a timer to the specified value (returning the previous value of the timer if
ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /+ timer interval «/
struct timeval it_value; /= current value +/
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-
zero, it specifies a value to be used in reloading it value when the timer expires. Setting
it_value to 0 disables a timer. Setting it_interval to O causes a timer to be disabled after its next
expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10 milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the pro-
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIG-
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values (beware that > = and <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value —1 is returned, and
a more precise error code is placed in the global variable errno.

4th Berkeley Distribution 27 July 1983 1

GETITIMER (2) UNIX Programmer’s Manual GETITIMER (2)

ERRORS
The possible errors are:

[EFAULT] The value structure specified a bad address.
[EINVAL] A value structure specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4th Berkeley Distribution 27 July 1983 2

GETPAGESIZE (2) UNIX Programmer’s Manual GETPAGESIZE (2)

NAME
getpagesize — get system page size
SYNOPSIS
pagesize = getpagesize()
int pagesize;
DESCRIPTION
Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk (2), pagesize(1)

4th Berkeley Distribution 18 July 1983 1

GETPEERNAME (2) UNIX Programmer’s Manual GETPEERNAME (2)

NAME

getpeername — get name of connected peer
SYNOPSIS

getpeername (s, name, namelen)

int s;

struct sockaddr *name;
int enamelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.
SEE ALSO
bind(2), socket(2), getsockname (2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero
length name.

4th Berkeley Distribution 21 July 1983 1

GETPGRP (2) UNIX Programmer’s Manual GETPGRP (2)

NAME
getpgrp — get process group
SYNOPSIS
perp = getpgrp(pid)
int prgp;
int pid;
DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes which have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(1) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4th Berkeley Distribution 2 July 1983 1

GETPID (2) UNIX Programmer’s Manual GETPID (2)

NAME
getpid, getppid — get process identification

SYNOPSIS
pid = getpid 0
long pid;

ppid = getppid 0
long ppid;

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used with the host
identifier gethostid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

4th Berkeley Distribution 12 February 1983 1

GETPRIORITY (2) UNIX Programmer’s Manual GETPRIORITY (2)

NAME

getpriority, setpriority — get/set program scheduling priority
SYNOPSIS

#include <sys/resource.h>

#define PRIO_PROCESS 0 /+ process */
#tdefine PRIO_PGRP 1 /+ process group */
#tdefine PRIO_USER 2 /+ user id ¢/

prio = getpriority (which, who)
int prio, which, who;
setpriority (which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the getpriority call and set with the setpriority call. Which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID
for PRIO_USER). Prio is a value in the range —20 to 20. The default priority is 0; lower
priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to the
specified value. Only the super-user may lower priorities.

RETURN VALUE
Since getpriority can legitimately return the value —1, it is necessary to clear the external vari-
able errno prior to the call, then check it afterward to determine if a —1 is an error or a legiti-
mate value. The setpriority call returns 0 if there is no error, or —1 if there is.

ERRORS
Gerpriority and setpriority may return one of the following errors:

[ESRCH] No process(es) were located using the which and who values specified.
[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.
In addition to the errors indicated above, setpriority may fail with one of the following errors

returned:
[EACCES] A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.
[EACCES] A non super-user attempted to change a process priority to a negative value.
SEE ALSO

nice (1), fork(2), renice(8)

4th Berkeley Distribution 18 July 1983 1

GETRLIMIT (2) UNIX Programmer’s Manual GETRLIMIT (2)

NAME
getrlimit, setrlimit — control maximum system resource consumption

SYNOPSIS
##include <sys/time.h>
#tinclude <sys/resource.h>

getrlimit (resource, rlp)
int resource;
struct rlimit erlp;

setrlimit (resource, rlp)
int resource;
struct rlimit #rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by each pro-
cess.

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program’s stack segment may be extended, either automatically by
the system, or explicitly by a user with the sbrk(2) system call.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

RLIMIT_RSS the maximum size, in bytes, a process’s resident set size may grow to. This
imposes a limit on the amount of physical memory to be given to a process;
if memory is tight, the system will prefer to take memory from processes
which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit
structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int rlim_cur; /+ current (soft) limit =/
int rlim_max; /» hard limit +/
I3
Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An “infinite” value for a limit is defined as RLIMIT_INFINITY (Ox7fffffff).
Because this information is stored in the per-process information, this system call must be exe-

cuted directly by the shell if it is to affect all future processes created by the shell; /imit is thus a
built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached, or the process is killed when the’
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

4th Berkeley Distribution 7 July 1983 1

GETRLIMIT (2) UNIX Programmer’s Manual GETRLIMIT (2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A
return value of —1 indicates that an error occurred, and an error code is stored in the global
location errno.

ERRORS
The possible errors are:

[EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.
SEE ALSO
csh(1), quota(2)
BUGS
There should be limit and unlimit commands in sh(1) as well as in csh.

4th Berkeley Distribution 7 July 1983 2

GETRUSAGE (2) UNIX Programmer’s Manual GETRUSAGE (2)

NAME
getrusage — get information about resource utilization

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0 /» calling process ¢/
#define RUSAGE_CHILDREN -1 /¢ terminated child processes ¢/

getrusage(who, rusage)
int who;

struct rusage orusage;
DESCRIPTION
Getrusage returns information describing the resources utilized by the current process, or all its
terminated child processes. The who parameter is one of RUSAGE_SELF and
RUSAGE_CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with the
following structure:
struct rusage {

struct timeval ru_utime; /+ user time used ¢/

struct timeval ru_stime; /» system time used «/

int ru_maxrss;

int ru_ixrss; /» integral shared memory size »/
int ru_idrss; /+ integral unshared data size */
int ru_isrss; /» integral unshared stack size +/
int ru_minflt; /+ page reclaims ¢/

int ru_majfit; /+ page faults »/

int ru_nswap; /+ swaps ¢/

int ru_inblock; /+ block input operations «/

int ru_oublock; /+ block output operations +/

int ru_msgsnd; /» messages sent s/

int ru_msgrcv; /+ messages received */

int ru_nsignals; /+ signals received «/

int ru_nvcsw; /+ voluntary context switches «/
int ru_nivcsw; /+ involuntary context switches «/

)
The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode.

ru_stime the total amount of time spent in the system executing on behalf of the
process(es).

ru_maxrss the maximum resident set size utilized (in kilobytes).

ru_ixrss an “‘integral’’ value indicating the amount of memory used which was also

shared among other processes. This value is expressed in units of kilobytes »
seconds-of-execution and is calculated by summing the number of shared
memory pages in use each time the internal system clock ticks and then
averaging over 1 second intervals.

ru_idrss an integral value of the amount of unshared memory residing in the data seg-
ment of a process (expressed in units of kilobytes » seconds-of-execution).

ru_isrss an integral value of the amount of unshared memory residing in the stack seg-
ment of a process (expressed in units of kilobytes » seconds-of-execution).

ru_minflt the number of page faults serviced without any i/o activity; here i/o activity is

4th Berkeley Distribution 18 July 1983 1

GETRUSAGE (2)

ru_majflt
ru_nswap
ru_inblock
ru_outblock
ru_msgsnd
Tu_msgrev
ru_nsignals
ru_nvesw

ru_nivesw

NOTES

UNIX Programmer’s Manual GETRUSAGE (2)

avoided by ‘‘reclaiming” a page frame from the list of pages awaiting realloca-
tion.

the number of page faults serviced which required i/o activity.

the number of times a process was ‘‘swapped’’ out of main memory.
the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messages sent.

the number of ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily giv-
ing up the processor before its time slice was completed (usually to await avai-
lability of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real i/o; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO

gettimeofday (2), wait(2)

BUGS

There is no way to obtain information about a child process which has not yet terminated.

4th Berkeley Distribution 18 July 1983 2

GETSOCKNAME (2) UNIX Programmer’s Manual GETSOCKNAME (2)

NAME
getsockname — get socket name
SYNOPSIS
getsockname(s, name, namelen)
int s;

struct sockaddr *name;
int enamelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter should

be initialized to indicate the amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

DIAGNOSTICS

A 0 is returned if the call succeeds, —1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument sis a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.
SEE ALSO
bind(2), socket(2)
BUGS

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

4th Berkeley Distribution 1 April 1983 1

GETSOCKOPT (2) UNIX Programmer’s Manual GETSOCKOPT (2)

NAME
getsockopt, setsockopt — get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt (s, level, optname, optval, optlen)
int s, level, optname;

char eoptval;

int eoptlen;

setsockopt (s, level, optname, optval, optlen)
int s, level, optname;

char #optval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at mul-
tiple protocol levels; they are always present at the uppermost *‘socket’ level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the ‘‘socket’ level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropri-
ate protocol controlling the option is supplied. For example, to indicate an option is to be
interpreted by the TCP protocol, level should be set to the protocol number of TCP; see
getprotoent(3N).

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt
they identify a buffer in which the value for the requested option(s) are to be returned. For
getsockopt, optlen is a value-result parameter, initially containing the size of the buffer pointed
to by optval, and modified on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file <sys/socket.h> contains definitions for ‘‘socket’ level
options; see socket(2). Options at other protocol levels vary in format and name, consult the
appropriate entries in (4P).

RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EFAULT] The options are not in a valid part of the process address space.
SEE ALSO

socket(2), getprotoent(3N)

4th Berkeley Distribution 7 July 1983 1

GETTIMEOFDAY (2) UNIX Programmer’s Manual GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday — get/set date and time

SYNOPSIS
ftinclude <sys/time.h>

gettimeofday (tp, tzp)
struct timeval tp;
struct timezone otzp;

settimeofday (tp, tzp)
struct timeval tp;
struct timezone »tzp;

DESCRIPTION
Gettimeofday returns the system’s notion of the current Greenwich time and the current time
zone. Time returned is expressed relative in seconds and microseconds since midnight January
1, 1970.

The structures pointed to by #p and tzp are defined in <sys/time.h> as:

struct timeval {
u_long tv_sec; /# seconds since Jan. 1, 1970 ¢/
long tv_usec; /+ and microseconds +/

|5

struct timezone {
int tz_minuteswest;/+ of Greenwich =/
int tz_dsttime; /+ type of dst correction to apply */
|5
The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

Only the super-user may set the time of day.

RETURN
A 0 return value indicates that the call succeeded. A —1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:
[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.
SEE ALSO

date(1), ctime(3)

BUGS
Time is never correct enough to believe the microsecond values. There should a mechanism
by which, at least, local clusters of systems might synchronize their clocks to millisecond granu-
larity.

4th Berkeley Distribution 27 July 1983 1

GETUID (2) UNIX Programmer’s Manual GETUID (2)

NAME
getuid, geteuid — get user identity
SYNOPSIS
uid = getuid()
int uid;
euld = geteuid()
int euid;
DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.
The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of ‘‘set-user-ID’’ mode processes, which use getuid to
determine the real-user-id of the process which invoked them.

SEE ALSO
getgid(2), setreuid(2)

4th Berkeley Distribution 12 February 1983 1

IOCTL (2) UNIX Programmer’s Manual IOCTL (2)

NAME
ioctl — control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl(d, request, argp)
int d, request;
char »argp;

DESCRIPTION
Toctl performs a variety of functions on open descriptors. In particular, many operating charac-
teristics of character special files (e.g. terminals) may be controlled with ioct/ requests. The
writeups of various devices in section 4 discuss how Joct/ applies to them.

An ioctl request has encoded in it whether the argument is an “‘in>> parameter or ‘‘out’’ param-
eter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file <sysfioctlh>.

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Toctl will fail if one or more of the following are true:
[EBADF] D is not a valid descriptor.
[ENOTTY] D is not associated with a character special device.
[ENOTTY] The specified request does not apply to the kind of object which the descriptor
d references.
[EINVAL] Request or argp is not valid.
SEE ALSO

execve(2), fentl(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution 7 July 1983 1

KILL (2) UNIX Programmer’s Manual KILL (2)

NAME
kill — send signal to a process

SYNOPSIS
kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.
The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT which may always be
sent to any child or grandchild of the current process.
If the process number is 0, the signal is sent to all other processes in the sender’s process
group; this is a variant of killpg(2).
If the process number is —1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.
[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.

SEE ALSO
getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution 27 July 1983 1

KILLPG (2) UNIX Programmer’s Manual KILLPG (2)

NAME
killpg — send signal to a process group

SYNOPSIS
killpg (pgrp, sig)
int pgrp, sig;

DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.
The sending process and members of the process group must have the same effective user ID,
otherwise this call is restricted to the super-user. As a single special case the continue signal
SIGCONT may be sent to any process which is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Killpg will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.
[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

SEE ALSO
kill(2), getpgrp(2), sigvec(2)

4th Berkeley Distribution 27 July 1983 1

LINK (2) UNIX Programmer’s Manual LINK (2)

NAME
link — make a hard link to a file

SYNOPSIS
link (namel, name2)
char *namel, *name2;

DESCRIPTION
A hard link to namel is created; the link has the name name2. Namel must exist.
With hard links, both namel and name2 must be in the same file system. Unless the caller is
the super-user, namel must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:
[EPERM] Either pathname contains a byte with the high-order bit set.

[ENOENT] Either pathname was too long.
[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name2 does exist.

[EPERM] The file named by namel is a directory and the effective user ID is not super-
user.

[EXDEV] The link named by name2 and the file named by namel are on different file
systems.

[EACCES] The requested link requires writing in a directory with a mode that denies write
permission.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] One of the pathnames specified is outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO

symlink(2), unlink(2)

4th Berkeley Distribution 12 February 1983 1

LISTEN (2) UNIX Programmer’s Manual LISTEN (2)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for incoming connec-
tions is specified with listen(2) and then the connections are accepted with accept(2). The listen
call applies only to sockets of type SOCK_STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client will receive an error with

an indication of ECONNREFUSED.
RETURN VALUE

A 0 return value indicates success; —1 indicates an error.
ERRORS

The call fails if:

[EBADF)] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation listen.
SEE ALSO

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

4th Berkeley Distribution 12 February 1983 1

LSEEK (2) UNIX Programmer’s Manual LSEEK (2)

NAME
Iseek — move read/write pointer

SYNOPSIS
##define L SET 0 /e set the seek pointer ¢/
##define L INCR 1 /= increment the seek pointer »/
#tdefine L_XTND 2 /= extend the file size ¢/

pos = lIseek (d, offset, whence)
int pos;
int d, offset, whence;
DESCRIPTION
The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offSet bytes.
If whence is L_INCR, the pointer is set to its current location plus offse.
If whence is L_XTND, the pointer is set to the size of the file plus offser.

Upon successful completion, the resulting pointer location as measured in bytes from beginning
of the file is returned. Some devices are incapable of seeking. The value of the pointer associ-
ated with such a device is undefined.

NOTES
Seeking far beyond the end of a file, then writing, creates a gap or ‘‘hole’’, which occupies no

physical space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:
[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or a socket.

[EINVAL] Whence is not a proper value.
[EINVAL] The resulting file pointer would be negative.

SEE ALSO
dup(2), open(2)

BUGS
This document’s use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution 7 July 1983 1

MKDIR (2) UNIX Programmer’s Manual MKDIR (2)

NAME
mkdir — make a directory file

SYNOPSIS
mkdir (path, mode)
char #path;
int mode;

DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process’s mode mask; see
umask(2)).
The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is
set to that of the parent directory in which it is created.
The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits set
in the process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A —1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:
[EPERM] The process’s effective user ID is not super-user.
[EPERM] The path argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.
[EEXIST] The named file exists.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EIO] An 1/0 error occured while writing to the file system.
SEE ALSO

chmod(2), stat(2), umask(2)

4th Berkeley Distribution 27 July 1983 1

MKNOD (2) UNIX Programmer’s Manual MKNOD (2)

NAME
mknod — make a special file

SYNOPSIS
mknod (path, mode, dev)
char spath;
int mode, dev;

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process’s
mode mask; see umask(2)). The first block pointer of the i-node is initialized from dev and is
used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent specification
of a character or block I/0 device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Mknod will fail and the file mode will be unchanged if:
[EPERM] The process’s effective user ID is not super-user.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO
chmod(2), stat(2), umask(2)

4th Berkeley Distribution 2 July 1983 1

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)

NAME
mount, umount — mount or remove file system

SYNOPSIS
mount (special, name, rwilag)
char sspecial, *name;
int rwflag;

umount (special)
char especial;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Specia/ and name are pointers to null-terminated strings con-
taining the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while the
file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys-
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

RETURN VALUE
Mount returns 0 if the action occurred, —1 if special is inaccessible or not an appropriate file, if
name does not exist, if special is already mounted, if name is in use, or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred; —1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ERRORS

Mount will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.

[ENOTBLK] Special is not a block device.

[ENXI0] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in name is not a directory.

[EROFS] Name resides on a read-only file system.

[EBUSY] Name is not a directory, or another process currently holds a reference to it.

[EBUSY] No space remains in the mount table.

[EBUSY] The super block for the file system had a bad magic number or an out of range
block size.

[EBUSY] Not enough memory was available to read the cylinder group information for
the file system.

[EBUSY] An i/o error occurred while reading the super block or cylinder group informa-
tion,

4th Berkeley Distribution 27 July 1983 1

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)

Umount may fail with one of the following errors:
[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.
[ENOTBLK] Specialis not a block device.
[ENXIO] The major device number of special is out of range (this indicates no device

driver exists for the associated hardware).
[EINVAL] The requested device is not in the mount table.
[EBUSY] A process is holding a reference to a file located on the file system.

SEE ALSO
mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

4th Berkeley Distribution 27 July 1983 2

OPEN (2) UNIX Programmer’s Manual OPEN (2)

NAME
open — open a file for reading or writing, or create a new file

SYNOPSIS
#include <sys/file.h>

open (path, flags, mode)
char epath;
int flags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process’ umask value (see
umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or’ing the following values

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing
O_NDELAY do not block on open
O_APPEND append on each write
O_CREAT create file if it does not exist
O_TRUNC truncate size to 0

O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with O_CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the O_NDELAY flag is specified
and the open call would result in the process being blocked for some reason (e.g. waiting for
carrier on a dialup line), the open returns immediately. The first time the process attempts to
perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close(2).
No process may have more than {OPEN_MAX] file descriptors open simultaneously.

ERRORS
The named file is opened unless one or more of the following are true:
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] The required permissions (for reading and/or writing) are denied for the
named flag.

[EISDIR] The named file is a directory, and the arguments specify it is to be opened for
writting.

[EROFS] The named file resides on a read-only file system, and the file is to be
modified.

4th Berkeley Distribution 2 July 1983 1

OPEN (2) UNIX Programmer’s Manual OPEN (2)

[EMFILE] {OPEN_MAX] file descriptors are currently open.

[ENXIO] The named file is a character special or block special file, and the device associ-
ated with this special file does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EEXIST] O_EXCL was specified and the file exists.

[ENXI0] The O_NDELAY flag is given, and the file is a communications device on
which their is no carrier present.

[EOPNOTSUPP]

An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)

4th Berkeley Distribution 2 July 1983 2

PIPE (2) UNIX Programmer’s Manual PIPE (2)

NAME
pipe — create an interprocess communication channel

SYNOPSIS
pipe(fildes)
int fildesl2];

DESCRIPTION
The pipe system call creates an I/0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fildes[1] up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptor fildes[0] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in

the system.

A signal is generated if a write on a pipe with only one end is attempted.
'RETURN VALUE

The function value zero is returned if the pipe was created; —1 if an error occurred.
ERRORS

The pipe call will fail if:

[EMFILE] Too many descriptors are active.

[EFAULT] The fildes buffer is in an invalid area of the process’s address space.
SEE ALSO

sh(1), read(2), write(2), fork(2), socketpair(2)
BUGS

Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will

occur.

4th Berkeley Distribution 12 February 1983 1

PROFIL (2) UNIX Programmer’s Manual PROFIL (2)

NAME
profil — execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char =buff;
int bufsiz, offset, scale;

DESCRIPTION
Buyff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (10 milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff; that word is incremented.
The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0x10000 gives a 1-1 mapping of pc’s to words in buff; 0x8000 maps each pair of instruction
words together. 0x2 maps all instructions onto the beginning of buff’ (producing a non-
interrupting core clock).
Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an execve is executed, but remains on in child and parent both
after a fork. Profiling is turned off if an update in byffwould cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof (1), setitimer(2), monitor(3)

4th Berkeley Distribution 12 February 1983 1

PTRACE (2) UNIX Programmer’s Manual PTRACE (2)

NAME
ptrace — process trace

SYNOPSIS
#include <signal.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break-
point debugging. There are four arguments whose interpretation depends on a request argu-
ment. Generally, pidis the process ID of the traced process, which must be a child (no more
distant descendant) of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally generated like ‘‘illegal instruction’’ or externally gen-
erated like “‘interrupt”. See sigvec(2) for the list. Then the traced process enters a stopped
state and its parent is notified via wait(2). When the child is in the stopped state, its core
image can be examined and modified using ptrace. If desired, another ptrace request can then
cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the requestargument determines the precise action of the call:

0 This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. Addr must
be even. The child must be stopped. The input data is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to the wuser structure in the system.

4,5 The given data is written at the word in the process’s address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request
4 indicates I space, 5 D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process’s system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 The dataargument is taken as a signal number and the child’s execution continues at loca-
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process’s image indicating which signal caused the stop. If addris (int #)1 then execu-
tion continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7, however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the VAX-11 the T-bit is used and just one instruction is executed.) This is
part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The waitcall is used to determine when a process stops; in such a case the ‘‘termina-
tion’’ status returned by wait has the value 0177 to indicate stoppage rather than genuine termi-
nation.

4th Berkeley Distribution 2 July 1983 1

PTRACE (2) UNIX Programmer’s Manual PTRACE (2)

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse-

quent execve(2) calls. If a traced process calls execve, it will stop before executing the first

instruction of the new image showing signal SIGTRAP.

On a VAX-11, “‘word”’ also means a 32-bit integer, but the ‘‘even’’ restriction does not apply.
RETURN VALUE

A 0 value is returned if the call succeeds. If the call fails then a —1 is returned and the global

variable errno is set to indicate the error.

ERRORS
[EINVAL] The request code is invalid.

[EINVAL] The specified process does not exist.
[EINVAL] The given signal number is invalid.
[EFAULT] The specified address is out of bounds.
[EPERM] The specified process cannot be traced.

SEE ALSO
wait(2), sigvec(2), adb(1)

BUGS
Prrace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ioct/(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request O call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use “‘ille-
gal instruction” signals at a very high rate) could be efficiently debugged.

The error indication, —1, is a legitimate function value; errno, see intro(2), can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

4th Berkeley Distribution 2 July 1983 2

QUOTA (2) UNIX Programmer’s Manual QUOTA (2)

NAME
quota — manipulate disk quotas

SYNOPSIS
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg;
caddr_t addr;

DESCRIPTION
The quota call manipulates disk quotas for file systems which have had quotas enabled with set-
quota(2). The cmd parameter indicates a command to be applied to the user ID uid. Argis a
command specific argument and addr is the address of an optional, command specific, data
structure which is copied in or out of the system. The interpretation of arg and addr is given
with each command below.

Q_SETDLIM
Set disc quota limits and current usage for the user with ID wid. Argis a major-minor
device indicating a particular file system. Addris a pointer to a struct dgblk structure
(defined in < sysfquota.h>). This call is restricted to the super-user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID wid. The remaining
parameters are as for Q_ SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID wid Argis a major-minor device indicating a
particular file system. Addr is a pointer to a struct dqusage structure (defined in
< sys/quota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. The uwid, arg, and addr parameters are
ignored.

Q_SETUID
Change the calling process’s quota limits to those of the user with ID wid. The arg and
addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID wid. Argis a major-minor dev-
ice indicating a particular file system. Addris a pointer to a struct dqwarn structure
(defined in < sysfquota.h>). This call is restricted to the super-user.

Q_DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the system
to check its current disc usage information and print a message on the terminal of the
caller for each file system on which the user is over quota. If the arg parameter is
specified as NODEV, all file systems which have disc quotas will be checked. Other-
wise, arg indicates a specific major-minor device to be checked. This call is restricted to
the super-user.

RETURN VALUE
A successful call returns 0 and, possibly, more information specific to the cmd performed; when
an error occurs, the value —1 is returned and errno is set to indicate the reason.

ERRORS
A quota call will fail when one of the following occurs:

[EINVAL] Cmdis invalid.

4th Berkeley Distribution 7 July 1983 1

QUOTA (2) UNIX Programmer’s Manual QUOTA (2)

[ESRCH] No disc quota is found for the indicated user.
[EPERM] The call is priviledged and the caller was not the super-user.
[EINVAL] The arg parameter is being interpreted as a major-minor device and it indicates

an unmounted file system.

[EFAULT] An invalid addr is supplied; the associated structure could not be copied in or
out of the kernel.
[EUSERS] The quota table is full.
SEE ALSO
setquota(2), quotaon(8), quotacheck (8)

BUGS
There should be someway to integrate this call with the resource limit interface provided by
setrlimit(2) and getrlimit(2).

The Australian spelling of disk is used throughout the quota facilities in honor of the imple-
mentors.

4th Berkeley Distribution 7 July 1983 2

READ (2) UNIX Programmer’s Manual READ (2)

read, readv — read input

SYNOPSIS

cc = read(d, buf, nbytes)
int cc, d;

char *buf;

int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovent)
int cc, d;

struct iovec *iov;

int iovent;

DESCRIPTION

Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf Readvperforms the same action, but scatters the input data into the
iovent buffers specified by the members of the iovec array: iov[0], iov[1], ..., iovliovent — 1].

For readv, the iovec structure is defined as

struct iovec (
caddr_t iov_base;
int iov_len;
IR
Each iovec entry specifies the base address and length of an area in memory where data should
be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated with
d, see Iseek(2). Upon return from read, the pointer is incremented by the number of bytes
actually read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, readand readvreturn the number of bytes actually read and placed
in the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE

If successful, the number of bytes actually read is returned. Otherwise, a —1 is returned and
the global variable errnois set to indicate the error.

ERRORS

Readand readv will fail if one or more of the following are true:

[EBADF] Fildes s not a valid file descriptor open for reading.

[EFAULT] Bufpoints outside the allocated address space.

[EINTR] A read from a slow device was interrupted before any data arrived by the

delivery of a signal.
In addition, readv may return one of the following errors:
[EINVAL] Iovent was less than or equal to 0, or greater than 16.
[EINVAL] One of the iov_len values in the iovarray was negative.

4th Berkeley Distribution 27 July 1983 1

READ (2) UNIX Programmer’s Manual READ (2)

[EINVAL] The sum of the iov_len values in the iovarray overflowed a 32-bit integer.

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

4th Berkeley Distribution 27 July 1983 2

READLINK (2) UNIX Programmer’s Manual READLINK (2)

NAME

readlink — read value of a symbolic link
SYNOPSIS

cc = readlink (path, buf, bufsiz)

int cc;

char *path, *buf;
int bufsiz;
DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer bufwhich has size bufsiz.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a —1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Readlink will fail and the file mode will be unchanged if:
[EPERM] The pathargument contained a byte with the high-order bit set.

[ENOENT] The pathname was too long.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

[ENXIO] The named file is not a symbolic link.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective

user ID is not the super-user.
[EINVAL] The named file is not a symbolic link.

[EFAULT] Bufextends outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

stat(2), Istat(2), symlink(2)

4th Berkeley Distribution 2 July 1983 1

REBOOT (2) UNIX Programmer’s Manual REBOOT (2)

NAME
reboot — reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

reboot (howto)
int howto;

DESCRIPTION

Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call interface
permits only RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap pro-
cedures. When none of these options (e.g. RB_AUTOBOOT) is given, the system is rebooted
from file ““vmunix” in the root file system of unit 0 of a disk chosen in a processor specific
way. An automatic consistency check of the disks is then normally performed.

The bits of howto are:
RB_HALT

the processor is simply halted; no reboot takes place. RB_HALT should be used with
caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should
be booted. Normally, the system is booted from the file “xx(0,0)vmunix’ without
asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply
booting the system with a single-user shell on the console. RB_SINGLE is interpreted
by the init(8) program in the newly booted system. This switch is not available from
the system call interface.

Only the super-user may reboota machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a —1 is returned and an error is returned in
the global variable errno.

ERRORS

[EPERM] The caller is not the super-user.
SEE ALSO

crash(8), halt(8), init(8), reboot(8)
BUGS

The notion of ‘‘console medium”, among other things, is specific to the VAX.

4th Berkeley Distribution 18 July 1983 1

RECV (2) UNIX Programmer’s Manual RECV (2)

NAME
recv, recvfrom, recvmsg — receive a message from a socket

SYNOPSIS
#include <sys/types.h>
##include <sys/socket.h>

cc = recv (s, buf, len, flags)
int cc, s;

char ¢buf;

int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char *buf;

int len, flags;

struct sockaddr ¢from;

int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgll;
int flags;
DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2)), while recyfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in cc.
If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioct/(2)) in which case a cc of —1 is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The Aagsargument to a send call is formed by or’ing one or more of the values,

#defineMSG_PEEK 0x1 /+ peek at incoming message */
#defineMSG_OOB 0x2 /= process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame-
ters. This structure has the following form, as defined in < sys/socket.h> :

struct msghdr {

caddr_t msg_name; /+ optional address */

int msg_namelen; /* size of address */

struct iov *msg_iov; /+ scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /= access rights sent/received */
int msg_accrightslen;

4th Berkeley Distribution 7 July 1983 1

RECV (2) UNIX Programmer’s Manual RECV (2)

Here msg_name and msg_namelen specify the destination address if the socket is unconnected,
msg_name may be given as a null pointer if no names are desired or required. The msg_iovand
msg_iovlen describe the scatter gather locations, as described in read(2). Access rights to be
sent along with the message are specified in msg_accrights, which has length msg_accrightslen.
RETURN VALUE
These calls return the number of bytes received, or —1 if an error occurred.
ERRORS
The calls fail if:

[EBADF] The argument sis an invalid descriptor.

[ENOTSOCK] The argument sis not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR] The receive was interrupted by delivery of a signal before any data was

available for the receive.

[EFAULT] The data was specified to be received into a non-existent or protected
part of the process address space.
SEE ALSO
read(2), send(2), socket(2)

4th Berkeley Distribution 7 July 1983 2

RENAME (2) UNIX Programmer’s Manual RENAME (2)

" NAME
rename — change the name of a file

SYNOPSIS
rename (from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If to exists, then it is first removed.
Both from and o must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of fo will always exist, even if the system should crash in
the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the form
of an entry in directory ‘‘a’’, say ‘‘a/foo’’, being a hard link to directory ‘‘b’’, and an entry in
directory ‘‘b”’, say ‘‘b/bar’’, being a hard link to directory ‘‘a’’. When such a loop exists and
two separate processes attempt to perform ‘‘rename a/foo b/bar’’ and ‘‘rename b/bar a/foo”,
respectively, the system may deadlock attempting to lock both directories for modification.
Hard links to directories should be replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returns —1 and the global
variable errno indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by from does not exist.

[EPERM] The file named by from is a directory and the effective user ID is not super-
user.

[EXDEV] The link named by to and the file named by from are on different logical dev-

ices (file systems). Note that this error code will not be returned if the imple-
mentation permits cross-device links.

[EACCES] The requested link requires writing in a directory with a mode that denies write
permission.
[EROFS] The requested link requires writing in a directory on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[EINVAL] Fromis a parent directory of fo.
SEE ALSO
open(2)

4th Berkeley Distribution 12 February 1983 1

RMDIR (2) UNIX Programmer’s Manual RMDIR (2)

NAME
rmdir — remove a directory file

SYNOPSIS
rmdir (path)
char *path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than ‘.’ and “..”".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a —1 is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]
The named directory contains files other than ‘“.”” and *“..”” in it.

[EPERM] The pathname contains a character with the high-order bit set.
[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] Write permission is denied on the directory containing the link to be removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EROFS] The directory entry to be removed resides on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO

mkdir(2), unlink (2)

4th Berkeley Distribution 2 July 1983 1

SELECT (2) UNIX Programmer’s Manual SELECT (2)

NAME
select — synchronous i/o0 multiplexing

SYNOPSIS
#include <sys/time.h>

nfound = select (nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, sreadfds, swritefds, sexecptfds;
struct timeval timeout;

DESCRIPTION

Select examines the i/o descriptors specified by the bit masks readfds, writefds, and execpifds to
see if they are ready for reading, writing, or have an exceptional condition pending, respec-
tively. File descriptor fis represented by the bit ‘1< <f*’ in the mask. Nfds desciptors are
checked, i.e. the bits from 0 through nfds-1 in the masks are examined. Select returns, in place,
a mask of those descriptors which are ready. The total number of ready descriptors is returned
in nfound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of readfds, writefds, and execptfds may be given as 0 if no descriptors are of interest.

RETURN VALUE
Select returns the number of descriptors which are contained in the bit masks, or —1 if an error
occurred. If the time limit expires then select returns 0.

ERRORS
An error return from select indicates:
[EBADF] One of the bit masks specified an invalid descriptor.
[EINTR] An signal was delivered before any of the selected for events occurred or the
time limit expired.
SEE ALSO

accept(2), connect(2), read(2), write(2), recv(2), send(2)

BUGS
The descriptor masks are always modified on return, even if the call returns as the result of the
timeout.

4th Berkeley Distribution 2 July 1983 1

SEND (2) UNIX Programmer’s Manual SEND (2)

NAME
send, sendto, sendmsg — send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send (s, msg, len, flags)
int cc, s;

char *msg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char smsg;

int len, flags;

struct sockaddr «to;

int tolen;

cc = sendmsg (s, msg, flags)
int cc, s;
struct msghdr msgll;
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be used
only when the socket is in a connected state, while sendto and sendmsg may be used at any time.
The address of the target is given by fo with tolen specifying its size. The length of the message
is given by len. If the message is too long to pass atomically through the underlying protocol,
then the error EMSGSIZE is returned, and the message is not transmitted.
No indication of failure to deliver is implicit in a send. Return values of —1 indicate some
locally detected errors.
If no messages space is available at the socket to hold the message to be transmitted, then send
normally blocks, unless the socket has been placed in non-blocking i/o mode. The select(2) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send ‘‘out-of-band” data on sockets which
support this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or —1 if an error occurred.

ERRORS
[EBADF] An invalid descriptor was specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT] An invalid user space address was specified for a parameter.
[EMSGSIZE] The socket requires that message be sent atomically, and the size of the

message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

SEE ALSO
recv(2), socket(2)

4th Berkeley Distribution 20 September 1983 1

SETGROUPS (2) UNIX Programmer’s Manual SETGROUPS (2)

NAME
setgroups — set group access list
SYNOPSIS
#include <sys/param.h>
setgroups (ngroups, gidset)
int ngroups, *gidset;
DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than
NGRPS, as defined in < sysjparam.h>.
Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, —1 on error, with a error code stored in errno.

ERRORS

The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidsetis outside the process address space.
SEE ALSO

getgroups(2), initgroups(3X)

4th Berkeley Distribution 7 July 1983 1

SETPGRP (2) UNIX Programmer’s Manual SETPGRP (2)

NAME
setpgrp — set process group
SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;
DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pidis zero,
then the call applies to the current process.
If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.
RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, —1 is returned and the
global variable errno indicates the reason.
ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] The requested process does not exist.
[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.
SEE ALSO
getpgrp(2)

4th Berkeley Distribution 12 February 1983 1

SETQUOTA (2) UNIX Programmer’s Manual SETQUOTA (2)

NAME
setquota — enable/disable quotas on a file system

SYNOPSIS
setquota (special, file)
char #special, *file;

DESCRIPTION
Disc quotas are enabled or disabled with the setguota call. Special indicates a block special dev-
ice on which a mounted file system exists. If fileis nonzero, it specifies a file in that file system
from which to take the quotas. If file is 0, then quotas are disabled on the file system. The
quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.
SEE ALSO
quota(2), quotacheck (8), quotaon(8)

RETURN VALUE
A 0 return value indicates a successful call. A value of —1 is returned when an error occurs
and errno is set to indicate the reason for failure.

ERRORS
Setquota will fail when one of the following occurs:
[NODEV] The caller is not the super-user.
[NODEV] Special does not exist.
[ENOTBLK] Specialis not a block device.
[ENX10] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).
[EPERM] The pathname contains a character with the high-order bit set.
[ENOTDIR] A component of the path prefix in fileis not a directory.
[EROFS] File resides on a read-only file system.

[EACCES] File resides on a file system different from special.
[EACCES] Fileis not a plain file.

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

4th Berkeley Distribution 7 July 1983 1

SETREGID (2) UNIX Programmer’s Manual SETREGID (2)

NAME
setregid — set real and effective group ID

SYNOPSIS
setregid (rgid, egid)
int rgid, egid;

DESCRIPTION
The real and effective group ID’s of the current process are set to the arguments. Unprivileged
users may change the real group ID to the effective group ID and vice-versa; only the super-
user may make other changes.

Supplying a value of —1 for either the real or effective group ID forces the system to substitute
the current ID in place of the —1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the
effective group-id to the real group-id was specified.
SEE ALSO

getgid (2), setreuid(2), setgid(3)

4th Berkeley Distribution 12 February 1983 1

SETREUID (2) UNIX Programmer’s Manual SETREUID (2)

NAME
setreuid — set real and effective user ID’s

SYNOPSIS
setreuid (ruid, euid)
int ruid, euid;

DESCRIPTION
The real and effective user ID’s of the current process are set according to the arguments. If
ruid or euid is —1, the current uid is filled in by the system. Unprivileged users may change
the real user ID to the effective user ID and vice-versa;, only the super-user may make other
changes.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the
effective user-id to the real user-id was specified.
SEE ALSO

getuid(2), setregid(2), setuid(3)

4th Berkeley Distribution 12 February 1983 1

SHUTDOWN (2) UNIX Programmer’s Manual SHUTDOWN (2)

NAME
shutdown — shut down part of a full-duplex connection

SYNOPSIS
shutdown (s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with s
to be shut down. If howis 0, then further receives will be disallowed. If howis 1, then further
sends will be disallowed. If howis 2, then further sends and receives will be disallowed.

DIAGNOSTICS

A 0 is returned if the call succeeds, —1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] S'is not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket.
[ENOTCONNI] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

4th Berkeley Distribution 27 July 1983 1

SIGBLOCK (2) UNIX Programmer’s Manual SIGBLOCK (2)

NAME

sigblock — block signals
SYNOPSIS

sigblock (mask) ;

int mask;

DESCRIPTION
Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signal iis blocked if the ith bit in maskis a 1.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT;, this restriction is silently
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask (2),

4th Berkeley Distribution 15 June 1983 1

SIGPAUSE (2) UNIX Programmer’s Manual SIGPAUSE (2)

NAME
sigpause — atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause (sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually O to indicate that no signals are
now to be blocked. Sigpause always terminates by being interrupted, returning EINTR.
In normal usage, a signal is blocked using sighlock(2), to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using sigpause with the mask returned by sig-
block.

SEE ALSO
sigblock (2), sigvec(2)

4th Berkeley Distribution 7 July 1983 1

SIGSETMASK (2) UNIX Programmer’s Manual SIGSETMASK (2)

NAME

sigsetmask — set current signal mask
SYNOPSIS

sigsetmask (mask) ;

int mask;
DESCRIPTION

Sigsetmask sets the current signal mask (those signals which are blocked from delivery). Signal
iis blocked if the ~th bit in maskis a 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

4th Berkeley Distribution 7 July 1983 1

\NJ

SIGSTACK (2) UNIX Programmer’s Manual SIGSTACK (2)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS
#include <signal.h>

struct sigstack {
caddr_t ss_sp;
int ss_onstack;
};
sigstack (ss, oss);
struct sigstack ¢ss, *oss;

DESCRIPTION
Sigstack allows users to define an alternate stack on which signals are to be processed. If ssis
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the process
is currently executing on that stack. When a signal’s action indicates its handler should execute
on the signal stack (specified with a sigvec(2) call), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stack,
the system arranges a switch to the signal stack for the duration of the signal handler’s execu-
tion. If ossis non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not ‘‘grown’’ automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULT] Either ss or oss points to memory which is not a valid part of the process
address space.

SEE ALSO
sigvec(2), setimp(3)

4th Berkeley Distribution 15 June 1983 1

SIGVEC(2) UNIX Programmer’s Manual SIGVEC (2)

NAME

sigvec — software signal facilities

SYNOPSIS

##include <signal.h>

struct sigvec {
int (ssv_handler) 0;
int sv_mask;
int sv_onstack;

.
9

sigvec(sig, vec, ovec)
int sig;
struct sigvec svec, sovec;

DESCRIPTION

The system defines a set of signals that may be delivered to a process. Signal delivery resem-
bles the occurence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per-
handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation biocked, but other signals may yet occur. A global signal mask defines the set of sig-
nals currently blocked from delivery to a process. The signal mask for a process is initilized
from that of its parent (normally 0). It may be changed with a sighlock(2) or sigsetmask(2) call,
or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the pro-
cess. When a signal is delivered, the current state of the process is saved, a new signal mask is
calculated (as described below), and the signal handler is invoked. The call to the handler is
arranged so that if the signal handling routine returns normally the process will resume execu-
tion in the context from before the signal’s delivery. If the process wishes to resume in a
different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the
process’ signal handler (or until a sighlock or sigsetmask call is made). This mask is formed by
taking the current signal mask, adding the signal to be delivered, and or’ing in the signal mask
associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handier routine
and mask to be used when delivering the specified signal. Further, if sv_onstack is 1, the sys-
tem will deliver the signal to the process on a signal stack, specified with sigstack(2). If ovec is
non-zero, the previous handling information for the signal is returned to the user.

The following is a list of all signals with names as in the include file <signalh>:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3s quit

SIGILL 4+ illegal instruction
SIGTRAP 5¢ trace trap

SIGIOT 6+ IOT instruction
SIGEMT 7+ EMT instruction
SIGFPE 8« floating point exception

4th Berkeley Distribution 7 July 1983 1

SIGVEC(2) UNIX Programmer’s Manual SIGVEC (2)

SIGKILL 9 kill (cannot be caught, blocked, or ignored)

SIGBUS 10« bus error

SIGSEGV 11+ segmentation violation

SIGSYS 12+ bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket

SIGSTOP 17t stop (cannot be caught, blocked, or ignored)

SIGTSTP 18t stop signal generated from keyboard

SIGCONT 19e continue after stop (cannot be blocked)

SIGCHLD 20e child status has changed

SIGTTIN 21t background read attempted from control terminal

SIGTTOU 22t background write attempted to control terminal

SIGIO 23e i/o is possible on a descriptor (see fenti(2))

SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))

SIGXFSZ 25 file size limit exceeded (see setrlimit(2))

SIGVTALRM 26 virtual time alarm (see setitimer(2))

SIGPROF 27 profiling timer alarm (see setitimer(2))

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
execve(2) is performed. The default action for a signal may be reinstated by setting sv_handler
to SIG_DFL; this default is termination (with a core image for starred signals) except for sig-
nals marked with ® or t. Signals marked with ® are discarded if the action is SIG_DFL; signals
marked with t cause the process to stop. If sv_handler is SIG_IGN the signal is subsequently
ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is aytomatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal stack.

Execve(2) resets all caught signals to default action; ignored signals remain ignored; the signal
mask remains the same; the signal stack state is reset.

NOTES
The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

RETURN VALUE
A 0 value indicated that the call succeeded. A —1 return value indicates an error occured and
errno is set to indicated the reason.

ERRORS
Sigvec will fail and no new signal handler will be installed if one of the following occurs:

[EFAULTI] Either vec or ovec points to memory which is not a valid part of the process
address space.

[EINVAL] Sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2) sigstack(2), sigvec(2),
setjmp(3), tty(4)

4th Berkeley Distribution 7 July 1983 2

SIGVEC (2)

NOTES (VAX-11)

BUGS

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

UNIX Programmer’s Manual

SIGVEC(2)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from the
other SIGILL traps by having PSL_CM set in the psl). Scp is a pointer to the sigcontext struc-

ture (defined in <signal.h>), used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these symbols

are defined in <signalh>:
Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap

Floating/decimal division by zero

Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault
Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

This manual page is confusing.

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

7 July 1983

Code

FPE_INTOVF_TRAP
FPE_INTDIV_TRAP
FPE_FLTOVF_TRAP
FPE_FLTDIV_TRAP
FPE_FLTUND_TRAP
FPE_DECOVF_TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF_FAULT
FPE_FLTDIV_FAULT
FPE_FLTUND_FAULT

ILL_RESAD_FAULT
ILL_PRIVIN_FAULT
ILL_RESOP_FAULT

hardware supplied code

SOCKET (2) UNIX Programmer’s Manual SOCKET (2)

NAME
socket — create an endpoint for communication

SYNOPSIS
##include <sys/types.h>
#include <sys/socket.h>
s = socket(af, type, protocol)
int s, af, type, protocol;
DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The afparameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defmed in the include file
< sys/socket.h>. The currently understood formats are

AF_UNIX (UNIX path names),
AF_INET (ARPA Internet addresses),
AF PUP (Xerox PUP-I Internet addresses), and

AF:IMPLINK (IMP ‘“‘host at IMP”’ addresses).

The socket has the indicated #ype which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports
datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length).
SOCK_RAW sockets provide access to internal network interfaces. The types SOCK_RAW,
which is available only to the super-user, and SOCK_SEQPACKET and SOCK_RDM, which
are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However, it is
possible that many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the ‘‘communication domain’’ in
which communication is to take place; see services(3N) and protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connection
to another socket is created with a connect(2) call. Once connected, data may be transferred
using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a ses-
sion has been completed a close(2) may be performed. Out-of-band data may also be transmit-
ted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be suc-
cessfully transmitted within a reasonable length of time, then the connection is considered bro-
ken and calls will indicate an error with —1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally keep sockets ‘“‘warm’ by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated
if no response can be elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes naive

4th Berkeley Distribution 18 July 1983 1

SOCKET (2) UNIX Programmer’s Manual SOCKET (2)

processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

An fentl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the
file < sys/socket.h> and explained below.- Setsockopt and getsockopt(2) are used to set and get
options, respectively.

SO_DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse

SO_KEEPALIVE keep connections alive

SO_DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present

SO_DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi-
cates the rules used in validating addresses supplied in a bind(2) call should allow reuse of local
addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection is con-
sidered broken and processes using the socket are notified via a SIGPIPE signal
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facili-
ties. Instead, messages are directed to the appropriate network interface according to the net-
work portion of the destination address. SO_LINGER and SO_DONTLINGER control the
actions taken when unsent messags are queued on socket and a close(2) is performed. If the
socket promises reliable delivery of data and SO_LINGER is set, the system will block the pro-
cess on the close attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified in the set-
sockopt call when SO_LINGER is requested). If SO_DONTLINGER is specified and a close is
issued, the system will process the close in a manner which allows the process to continue as
quickly as possible.

RETURN VALUE
A —1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this version of the sys-

tem.
[ESOCKTNOSUPPORT!
The specified socket type is not supported in this address family.
[EPROTONOSUPPORT!]
The specified protocol is not supported.
[EMFILE] The per-process descriptor table is full.
[ENOBUFS] No buffer space is available. The socket cannot be created.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2),
select(2), send(2), shutdown(2), socketpair(2)
““A 4.2BSD Interprocess Communication Primer.

4th Berkeley Distribution 18 July 1983 2

SOCKET (2) UNIX Programmer’s Manual SOCKET (2)

BUGS
The use of keepalives is a questionable feature for this layer.

4th Berkeley Distribution 18 July 1983 3

SOCKETPAIR (2) UNIX Programmer’s Manual SOCKETPAIR (2)

NAME

socketpair — create a pair of connected sockets
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d, of
the specified type, and using the optionally specified protocol. The descriptors used in referenc-
ing the new sockets are returned in sv[0] and sv[1]. The two sockets are indistinguishable.

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.
[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULT] The address svdoes not specify a valid part of the process address space.
SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

4th Berkeley Distribution 27 July 1983 1

STAT (2)

UNIX Programmer’s Manual

stat, Istat, fstat — get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

STAT (2)

stat(path, buf)
char *path;
struct stat ¢buf;
Istat(path, buf)
char #path;
struct stat *buf;
fstat(fd, buf)
int fd;

struct stat *buf;

DESCRIPTION

Stat obtains information about the file path. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be reach-

able.

Lstat is like stat except in the case where the named file is a symbolic link, in which case /star
returns information about the link, while statreturns information about the file the link refer-

ences.

Fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

Bufis a pointer to a stat structure into which information is placed concerning the file. The
contents of the structure pointed to by buf

struct stat {

dev_t st_dev; /+ device inode resides on */
ino_t st_ino; /+ this inode’s number */
u_short st mode; /= protection */
short st_nlink; /+ number or hard links to the file «/
short st_uid; /+ user-id of owner */
short st_gid; /+ group-id of owner */
dev_t st_rdev; /+ the device type, for inode that is device */
off t st_size; /= total size of file «/
time_t st_atime; /+ file last access time */
int st_sparel;
time_t st_mtime; /= file last modify time */
int st_spare2;
time_t st_ctime; /= file last status change time */
int st_spare3;
long st_blksize; - /+ optimal blocksize for file system i/o ops */
long st_blocks; /« actual number of blocks allocated */
3 long st_spare4|[2];
st_atime Time when file data was last read or modified. Changed by the following system

calls: mknod(2), utimes(2), read(2), and write(2). For reasons of efficiency,
st_atime is not set when a directory is searched, although this would be more logi-

cal.

4th Berkeley Distribution

27 July 1983 1

STAT (2)

st_mtime

UNIX Programmer’s Manual

STAT (2)

Time when data was last modified. It is not set by changes of owner, group, link

count, or mode. Changed by the following system calls: mknod(2), utimes(2),

write(2).
st_ctime

Time when file status was last changed. It is set both both by writing and chang-

ing the i-node. Changed by the following system calls: chmod(2) chown(2),
link(2), mknod(2), unlink(2), utimes(2), write(2).

The status information word st_mode has bits:

#define S_IFMT 0170000
#define S_IFDIR 0040000
#define S_IFCHR 0020000
#define S_IFBLK 0060000
#define S_IFREG 0100000
#define S_IFLNK 0120000
#define S_IFSOCK 0140000
#define S_ISUID 0004000
#define S_ISGID 0002000
#define S_ISVTX 0001000
#define S_IREAD 0000400
#define S_IWRITE 0000200
#define S_IEXEC 0000100

/+ type of file ¢/

/= directory */

/+ character special */

/+ block special */

/+ regular s/

/+ symbolic link */

/+ socket ¢/

/+ set user id on execution */

/+ set group id on execution */

/+ save swapped text even after use */
/+ read permission, owner */

/+ write permission, owner */

/+ execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When fd is associated with a pipe, fstat reports an ordinary file with an i-node number, res-
tricted permissions, and a not necessarily meaningful length.

RETURN YALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and

errnois set to indicate the error.
ERRORS

Statand Istar will fail if one or more of the following are true:

A component of the path prefix is not a directory.
The pathname contains a character with the high-order bit set.

Search permission is denied for a component of the path prefix.

[ENOTDIR]

[EPERM]

[ENOENT] The pathname was too long.

[ENOENT] The named file does not exist.
[EACCES]

[EFAULT] Bufor name points to an invalid address.

Fstarwill fail if one or both of the following are true:

Too many symbolic links were encountered in translating the pathname.

[EBADF] Fildes is not a valid open file descriptor.
[EFAULT] Bufpoints to an invalid address.
[ELOOP]

CAVEAT

The fields in the stat structure currently marked st_sparel, st_spare2, and st_spare3 are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain
programs which depend on the time stamps being contiguous (in calls to utimes(2)).

SEE ALSO
chmod(2), chown(2), utimes(2)

4th Berkeley Distribution

27 July 1983 2

STAT (2) UNIX Programmer’s Manual STAT (2)

BUGS
Applying fstatto a socket returns a zero'd buffer.

The list of calls which modify the various fields should be carefully checked with reality.

4th Berkeley Distribution 27 July 1983 3

SWAPON (2) UNIX Programmer’s Manual SWAPON (2)

NAME
swapon — add a swap device for interleaved paging/swapping

SYNOPSIS
swapon (special)
char especial;

DESCRIPTION
Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

SEE ALSO
swapon (8), config(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

4th Berkeley Distribution 27 July 1983 1

SYMLINK (2) UNIX Programmer’s Manual SYMLINK (2)

NAME
symlink — make symbolic link to a file

SYNOPSIS
symlink (namel, name2)
char *namel, *name2;

DESCRIPTION
A symbolic link name? is created to namel (name2 is the name of the file created, namel is the
string used in creating the symbolic link). Either name may be an arbitrary path name; the files
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a —1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:
[EPERM] Either namel or name2 contains a character with the high-order bit set.

[ENOENT] One of the pathnames specified was too long.
[ENOTDIR] A component of the name2 prefix is not a directory.

[EEXIST] Name? already exists.

[EACCES] A component of the name2 path prefix denies search permission.

[EROFS] The file name2 would reside on a read-only file system.

[EFAULT] Namel or name2 points outside the process’s allocated address space.

[ELOOP] Too may symbolic links were encountered in translating the pathname.
SEE ALSO

link(2), In(1), unlink(2)

4th Berkeley Distribution 27 July 1983 1

SYNC(2) UNIX Programmer’s Manual SYNC(2)

NAME
sync — update super-block
SYNOPSIS
sync()
DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 1/0.

Sync should be used by programs which examine a file system, for example fsck, df; etc. Syncis
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution 12 February 1983 1

SYSCALL (2) UNIX Programmer’s Manual SYSCALL (2)

NAME
syscall — indirect system call

SYNOPSIS
syscall (number, arg, ...) (VAX-11)

DESCRIPTION
Syscall performs the system call whose assembly language interface has the specified number,
register arguments r0 and r/ and further arguments arg.

The r0 value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns —1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register r1.

4th Berkeley Distribution 12 February 1983 1

TRUNCATE (2) UNIX Programmer’s Manual TRUNCATE (2)

NAME
truncate — truncate a file to a specified length

SYNOPSIS
truncate (path, length)
char spath;
int length;

ftruncate(fd, length)
int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With firun-
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a —1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:
[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix of path is not a directory.
[ENOENT] The named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.
[EFAULT] Name points outside the process’s allocated address space.
Ftruncate succeeds unless:
[EBADF] The fd is not a valid descriptor.
[EINVAL] The fd references a socket, not a file.
SEE ALSO
open(2)

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

4th Berkeley Distribution 7 July 1983 1

UMASK (2) UNIX Programmer’s Manual UMASK (2)

NAME
umask — set file creation mode mask

SYNOPSIS
oumask = umask (numask)
int oumask, numask;

DESCRIPTION
Umask sets the process’s file mode creation mask to numask and returns the previous value of

the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict
the default access to his files.
The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

4th Berkeley Distribution 12 February 1983

UNLINK (2) UNIX Programmer’s Manual UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
unlink (path)
char spath;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
The unlink succeeds unless:
[EPERM] The path contains a character with the high-order bit set.

[ENOENT] The path name is too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be removed.

[EPERM] The named file is a directory and the effective user ID of the process is not the
super-user.
[EBUSY] The entry to be unlinked is the mount point for a mounted file system.
[EROFS] The named file resides on a read-only file system.
[EFAULTI Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

close(2), link(2), rmdir(2)

4th Berkeley Distribution 2 July 1983 1

UTIMES (2)

NAME

UNIX Programmer’s Manual UTIMES (2)

utimes — set file times

SYNOPSIS

#include <sys/time.h>
utimes (file, tvp)

char efile;

struct timeval «tvpl2];

DESCRIPTION

The utimes call uses the “‘accessed” and ‘‘updated” times in that order from the np vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The ‘‘inode-changed” time of the
file is set to the current time.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS

Utime will fail if one or more of the following are true:

[EPERM]
[ENOENT!]
[ENOENT]
[ENOTDIR]
[EACCES]
[EPERM]
[EACCES]

[EROFS]
[EFAULT]
[ELOOP]

SEE ALSO
stat(2)

The pathname contained a character with the high-order bit set.
The pathname was too long.

The named file does not exist.

A component of the path prefix is not a directory.

A component of the path prefix denies search permission.

The process is not super-user and not the owner of the file.

The effective user ID is not super-user and not the owner of the file and times
is NULL and write access is denied.

The file system containing the file is mounted read-only.
Tvp points outside the process’s allocated address space.
Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983 1

VFORK (2) UNIX Programmer’s Manual VFORK (2)

NAME

vfork — spawn new process in a virtual memory efficient way

SYNOPSIS

pid = vfork ()
int pid;

DESCRIPTION

Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur-
pose of fork(2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent’s memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is suspended
while the child is using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the childs context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather than
exit if you can’t execve, since exit will flush and close standard 1/0 channels, and thereby mess
up the parent processes standard 1/0 data structures. (Even with fork it is wrong to call exit
since buffered data would then be flushed twice.)

SEE ALSO

fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioct/ls are allowed and input
attempts result in an end-of-file indication.

4th Berkeley Distribution 2 July 1983 1

VHANGUP (2) UNIX Programmer’s Manual VHANGUP (2)

NAME
vhangup — virtually ‘“‘hangup’’ the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION

Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given ‘‘clean’” terminals at login, by revoking access of the previous users’ processes to the
terminal. To effect this, vhangup searches the system tables for references to the control termi-
nal of the invoking process, revoking access permissions on each instance of the terminal which
it finds. Further attempts to access the terminal by the affected processes will yield i/o errors
(EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the control ter-
minal.

SEE ALSO
init (8)
BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

4th Berkeley Distribution 12 Febuary 1983 1

WAIT (2) UNIX Programmer’s Manual WAIT (2)

NAME
wait, wait3 — wait for process to terminate

SYNOPSIS
#include <sys/wait.h>

pid = wait (status)
int pid;
union wait estatus;

pid = wait(0)
int pid;

#include <sys/time.h>
#tinclude <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;

union wait sstatus;

int options;

struct rusage srusage;

DESCRIPTION
Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit
status of one of the terminated children. If there are no children, return is immediate with the
value —1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status contains the
low byte of the argument to exit supplied by the child process; the low byte of status contains
the termination status of the process. A more precise definition of the status word is given in
<sysiwait.h>.

Wait3 provides an alternate interface for programs which must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes which wish to report status
(WNOHANG), and/or that children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should also have their status reported
(WUNTRACED). If rusage is non-zero, a summary of the resources used by the terminated
process and all its children is returned (this information is currently not available for stopped
processes).
When the WNOHANG option is specified and no processes wish to report status, wait3 returns
a pid of 0. The WNOHANG and WUNTRACED options may be combined by or’ing the two
values.

NOTES
See sigvec(2) for a list of termination statuses (signals); O status indicates normal termination.
A special status (0177) is returned for a stopped process which has not terminated and can be
restarted; see prrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.
If the parent process terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting termi-
nation of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of —1 is returned and errno is set to

4th Berkeley Distribution 27 July 1983 1

WAIT (2) UNIX Programmer’s Manual

indicate the error.

Wait3 returns —1 if there are no children not previously waited - for;
WNOHANG is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

WAIT (2)

0 is returned if

[ECHILD] The calling process has no existing unwaited-for child processes.
[EFAULT] The status or rusage arguments point to an illegal address.

SEE ALSO
exit(2)

4th Berkeley Distribution 27 July 1983

WRITE (2) UNIX Programmer’s Manual WRITE (2)

NAME

write, writev — write on a file
SYNOPSIS

write(d, buf, nbytes)

int d;

char ebuf;
int nbytes;

#tinclude <sys/types.h>
#include <sys/uio.h>

writev(d, iov, ioveclen)
int d;

struct iovec *iov;

int ioveclen;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor 4 from the
buffer pointed to by buf. Writev performs the same action, but gathers the output data from
the iovien buffers specified by the members of the iovec array: iov[0], iov[1], etc.

On objects capable of seeking, the write starts at a position given by the pointer associated with
d, see Iseek(2). Upon return from write, the pointer is incremented by the number of bytes
actually written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who ‘‘captures” a writable set-user-id file
owned by the super-user.

RETURN VALUE

Upon successful completion the number of bytes actually writen is returned. Otherwise a —1 is
returned and errno is set to indicate the error.

ERRORS

Write will fail and the file pointer will remain unchanged if one or more of the following are

true:

[EBADF] D is not a valid descriptor open for writing.

[EPIPE] An attempt is made to write to a pipe that is not open for reading by any pro-
cess.

[EPIPE] An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket.

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or

the maximum file size.

[EFAULT] Part of iov or data to be written to the file points outside the process’s allocated
address space.

SEE ALSO
Iseek(2), open(2), pipe(2)

4th Berkeley Distribution 27 July 1983 1

N

INTRO (3)

NAME

UNIX Programmer’s Manual INTRO(3)

intro — introduction to library functions

DESCRIPTION

This section describes functions that may be found in various libraries. The library functions
are those other than the functions which directly invoke UNIX system primitives, described in
section 2. This section has the libraries physically grouped together. This is a departure from
older versions of the UNIX Programmer’s Reference Manual, which did not group functions by
library. The functions described in this section are grouped into various libraries:

(3) and (38)

The straight ‘3"’ functions are the standard C library functions. The C library also
includes all the functions described in section 2. The 3S functions comprise the standard
1/0 library. Together with the (3N), (3X), and (3C) routines, these functions constitute
library /ibc, which is automatically loaded by the C compiler cc(1), the Pascal compiler
pc(1), and the Fortran compiler f77(1). The link editor /d(1) searches this library under
the ‘—Ic’ option. Declarations for some of these functions may be obtained from
include files indicated on the appropriate pages.

(3F) The 3F functions are all functions callable from FORTRAN. These functions perform
the same jobs as do the straight ““3”’ functions.

(3M) These functions constitute the math library, libm. They are automatically loaded as
needed by the Pascal compiler pc(1) and the Fortran compiler f77(1). The link editor
searches this library under the ‘—Im’ option. Declarations for these functions may be
obtained from the include file <math.h>.

(3N) These functions constitute the internet network library,

(3S) These functions constitute the ‘standard 1/0 package’, see intro(3S). These functions
are in the library libc already mentioned. Declarations for these functions may be
obtained from the include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

(3C) Routines included for compatibility with other systems. In particular, a number of sys-
tem call interfaces provided in previous releases of 4BSD have been included for source
code compatibility. The manual page entry for each compatibility routine indicates the
proper interface to use.

FILES

/lib/libc.a

/usr/lib/libm.a

/usr/lib/libc_p.a

/usr/lib/libm_p.a

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(1), 1d(1), cc(1), £77(1), intro(2)
DIAGNOSTICS

Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM (domain error) or ERANGE
(range error). The values of EDOM and ERANGE are defined in the include file <math.h>.

LIST OF FUNCTIONS

Name

abort
abort

Appears on Page Description
abort.3 generate a fault
abort.3f terminate abruptly with memory image

4th Berkeley Distribution 2 April 1983 1

INTRO (3)

abs
access
acos
alarm
alarm
alloca
arc
asctime
asin
assert
atan
atan2
atof
atoi
atol
bcmp
beopy
bessel
bit
bzero
cabs
calloc
ceil
chdir
chmod
circle
clearerr
closedir
closelog
closepl
cont
cos
cosh
crypt
ctime
ctime
curses
dbminit
delete
dffrac
dflmax
dflmax
dflmin
dfimin
drand
dtime
ecvt
edata
encrypt
end
endfsent
endgrent

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO (3)

abs.3
access.3f
sin.3m
alarm.3c
alarm.3f
malloc.3
plot.3x
ctime.3
sin.3m
assert.3x
sin.3m
sin.3m
atof.3
atof .3
atof.3
bstring.3
bstring.3
bessel.3f
bit.3f
bstring.3
hypot.3m
malloc.3
floor.3m
chdir.3f
chmod.3f
plot.3x
ferror.3s
directory.3
syslog.3
plot.3x
plot.3x
sin.3m
sinh.3m
crypt.3
ctime.3
time.3f
curses.3x
dbm.3x
dbm.3x
flmin.3f
flmin.3f
range.3f
flmin.3f
range.3f
rand.3f
etime.3f
ecvt.3
end.3
crypt.3
end.3
getfsent.3x
getgrent.3

integer absolute value

determine accessability of a file
trigonometric functions

schedule signal after specified time
execute a subroutine after a specified time
memory allocator

graphics interface

convert date and time to ASCII
trigonometric functions

program verification

trigonometric functions
trigonometric functions

convert ASCII to numbers
convert ASCII to numbers
convert ASCI1 to numbers

bit and byte string operations

bit and byte string operations

of two kinds for integer orders
and, or, xor, not, rshift, Ishift bitwise functions
bit and byte string operations
Euclidean distance

memory allocator

absolute value, floor, ceiling functions
change default directory

change mode of a file

graphics interface

stream status inquiries

directory operations

control system log

graphics interface

graphics interface

trigonometric functions

hyperbolic functions

DES encryption

convert date and time to ASCII
return system time

screen functions with ‘‘optimal’® cursor motion
data base subroutines

data base subroutines

return extreme values

return extreme values

return extreme values

return extreme values

return extreme values

return random values

return elapsed execution time
output conversion

last locations in program

DES encryption

last locations in program

get file system descriptor file entry
get group file entry

2 April 1983 2

INTRO (3)

endhostent
endnetent
endprotoent
endpwent
endservent
environ
erase
etext
etime
exec
exece
execl
execle
execlp
exect
execv
execvp
exit
exit

exp
fabs
fclose
fevt
fdate
feof
ferror
fetch
fflush
ffrac

ffs
fgetc
fgetc
fgets
fileno
firstkey
flmax
flmax
flmin
flmin
floor
flush
fopen
fork
fpecnt
fprintf
fputc
fputc
fputs
fread
free
frexp
fscanf

4th Berkeley Distribution

UNIX Programmer’s Manual

gethostent.3n
getnetent.3n
getprotoent.3n
getpwent.3
getservent.3n
execl.3
plot.3x
end.3
etime.3f
execl.3
execl.3
execl.3
execl.3
execl.3
execl.3
execl.3
execl.3
exit.3
exit.3f
exp.3m
floor.3m
fclose.3s
ecvt.3
fdate.3f
ferror.3s
ferror.3s
dbm.3x
fclose.3s
flmin.3f
bstring.3
getc.3f
getc.3s
gets.3s
ferror.3s
dbm.3x
flmin.3f
range.3f
flmin.3f
range.3f
floor.3m
flush.3f
fopen.3s
fork.3f
trpfpe.3f
printf.3s
putc.3f
putc.3s
puts.3s
fread.3s
malloc.3
frexp.3
scanf.3s

INTRO (3)

get network host entry

get network entry

get protocol entry

get password file entry

get service entry

execute a file

graphics interface

last locations in program

return elapsed execution time
execute a file

execute a file

execute a file

execute a file

execute a file

execute a file

execute a file

execute a file

terminate a process after flushing any pending output
terminate process with status
exponential, logarithm, power, square root
absolute value, floor, ceiling functions
close or flush a stream

output conversion

return date and time in an ASCII string
stream status inquiries

stream status inquiries

data base subroutines

close or flush a stream

return extreme values

bit and byte string operations

get a character from a logical unit

get character or word from stream

get a string from a stream

stream status inquiries

data base subroutines

return extreme values

return extreme values

return extreme values

return extreme values

absolute value, floor, ceiling functions
flush output to a logical unit

open a stream

create a copy of this process

trap and repair floating point faults
formatted output conversion

write a character to a fortran logical unit
put character or word on a stream

put a string on a stream

buffered binary input/output

memory allocator

split into mantissa and exponent
formatted input conversion

2 April 1983 3

INTRO (3)

fseek

fseek

fstat

ftell

ftell

ftime

fwrite

gamma

gevt

gerror

getarg

getc

getc

getchar
getcwd
getdiskbyname
getenv

getenv
getfsent
getfsfile
getfsspec
getfstype
getgid
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlog
getlogin
getnetbyaddr
getnetbyname
getnetent
getpass

getpid
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid

gets
getservbyname
getservbyport
getservent
getuid

getw

getwd
gmtime
gmtime

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO (3)
fseek.3f reposition a file on a logical unit
fseek.3s reposition a stream
stat.3f get file status
fseek.3f reposition a file on a logical unit
fseek.3s reposition a stream
time.3c get date and time
fread.3s buffered binary input/output
gamma.3m log gamma function
ecvt.3 output conversion
perror.3f get system error messages
getarg.3f return command line arguments
getc.3f get a character from a logical unit
getc.3s get character or word from stream
getc.3s get character or word from stream
getcwd.3f get pathname of current working directory
getdisk.3x get disk description by its name
getenv.3 value for environment name
getenv.3f get value of environment variables
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getuid.3f get user or group ID of the caller
getgrent.3 get group file entry
getgrent.3 get group file entry
getgrent.3 get group file entry
gethostent.3n get network host entry
gethostent.3n get network host entry
gethostent.3n get network host entry
getlog.3f get user’s login name
getlogin.3 get login name
getnetent.3n get network entry
getnetent.3n get network entry
getnetent.3n get network entry
getpass.3 read a password
getpid.3f get process id
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getpw.3 get name from uid
getpwent.3 get password file entry
getpwent.3 get password file entry
getpwent.3 get password file entry
gets.3s get a string from a stream
getservent.3n get service entry
getservent.3n - get service entry
getservent.3n get service entry
getuid.3f get user or group ID of the caller
getc.3s get character or word from stream
getwd.3 get current working directory pathname
ctime.3 convert date and time to ASCII
time.3f return system time

2 April 1983 4

INTRO (3)

gtty
hostnm
htonl
htons
hypot
iargc
idate
ierrno
index
index
inet_addr
inet_lnaof
inet_makeaddr
inet_netof
inet_network
initgroups
initstate
inmax
inmax
insque
ioinit
irand
isalnum
isalpha
isascii
isatty
isatty
iscntrl
isdigit
islower
isprint
ispunct
isspace
isupper
itime

jo

jl

jn

kill

label
Idexp

len
1ib2648
line
linemod
link
Inblnk
loc
localtime
log

logl0
long

4th Berkeley Distribution

UNIX Programmer’s Manual

stty.3c
hostnm.3f
byteorder.3n
byteorder.3n
hypot.3m
getarg.3f
idate.3f
perror.3f
index.3f
string.3
inet.3n
inet.3n
inet.3n
inet.3n
inet.3n
initgroups.3x
random.3
flmin.3f
range.3f
insque.3
ioinit.3f
rand.3f
ctype.3
ctype.3
ctype.3
ttynam.3f
ttyname.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
idate.3f
j0.3m
j0.3m
j0.3m
kill.3f
plot.3x
frexp.3
index.3f
1ib2648.3x
plot.3x
plot.3x
link.3f
index.3f
loc.3f
ctime.3
exp.3m
exp.3m
long.3f

INTRO (3)

set and get terminal state (defunct)
get name of current host

convert values between host and network byte order
convert values between host and network byte order
Euclidean distance

return command line arguments
return date or time in numerical form
get system error messages

tell about character objects

string operations

Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
initialize group access list

better random number generator
return extreme values

return extreme values

insert/remove element from a queue
change 77 1/0 initialization

return random values

character classification macros
character classification macros
character classification macros

find name of a terminal port

find name of a terminal

character classification macros
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros

return date or time in numerical form
bessel functions

bessel functions

bessel functions

send a signal to a process

graphics interface

split into mantissa and exponent

tell about character objects
subroutines for the HP 2648 graphics terminal
graphics interface

graphics interface

make a link to an existing file

tell about character objects

return the address of an object
convert date and time to ASCII
exponential, logarithm, power, square root
exponential, logarithm, power, square root
integer object conversion

2 April 1983 S

INTRO (3)

longjmp
Istat
Itime
malloc
mktemp
modf
moncontrol
monitor
monstartup
move
nextkey
nice
nlist
ntohl
ntohs
opendir
openlog
openpl
pause
pclose
perror
perror
point
popen
pow
printf
psignal
putc
putc
putchar
puts
putw
gsort
gsort
rand
rand
random
remd
re_comp
re_exec
readdir
realloc
remque
rename
rewind
rewinddir
rexec
rindex
rindex
rresvport
ruserok
scandir

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO (3)
setjmp.3 non-local goto
stat.3f get file status
time. 3f return system time
malloc.3 memory allocator
mktemp.3 make a unique file name
frexp.3 split into mantissa and exponent
monitor.3 prepare execution profile
monitor.3 prepare execution profile
monitor.3 prepare execution profile
plot.3x graphics interface
dbm.3x data base subroutines
nice.3c set program priority
nlist.3 get entries from name list
byteorder.3n convert values between host and network byte order
byteorder.3n convert values between host and network byte order
directory.3 directory operations
syslog.3 control system log
plot.3x graphics interface
pause.3c stop until signal
popen.3 initiate I/0 to/from a process
perror.3 system error messages
perror.3f get system error messages
plot.3x graphics interface
popen.3 initiate I/0 to/from a process
exp.3m exponential, logarithm, power, square root
printf.3s formatted output conversion
psignal.3 system signal messages
putc.3f write a character to a fortran logical unit
putc.3s put character or word on a stream
putc.3s put character or word on a stream
puts.3s put a string on a stream
putc.3s put character or word on a stream
gsort.3 quicker sort
gsort.3f quick sort
rand.3c random number generator
rand.3f return random values
random.3 better random number generator
remd.3x routines for returning a stream to a remote command
regex.3 regular expression handler
regex.3 regular expression handler
directory.3 directory operations
malloc.3 memory allocator
insque.3 insert/remove element from a queue
rename.3f rename a file
fseek.3s reposition a stream
directory.3 directory operations
rexec.3x return stream to a remote command
index.3f tell about character objects
string.3 string operations
remd.3x routines for returning a stream to a remote command
remd. 3x routines for returning a stream to a remote command
scandir.3 scan a directory

2 April 1983 6

INTRO (3)

scanf
seekdir
setbuf
setbuffer
setegid
seteuid
setfsent
setgid
setgrent
sethostent
setjmp
setkey
setlinebuf
setnetent
setprotoent
setpwent
setrgid
setruid
setservent
setstate
setuid
short
signal
signal

sin

sinh

sleep
sleep
space
sprintf
sqrt

srand
srandom
sscanf
stat

stdio
store
strcat
stremp
strcpy
strlen
strncat
strncmp
strncpy
stty

swab
sys_errlist
sys_nerr
sys_siglist
syslog
system
system

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO (3)

scanf.3s
directory.3
setbuf.3s
setbuf.3s
setuid.3
setuid.3
getfsent.3x
setuid.3
getgrent.3
gethostent.3n
setjmp.3
crypt.3
setbuf.3s
getnetent.3n
getprotoent.3n
getpwent.3
setuid.3
setuid.3
getservent.3n
random.3
setuid.3
long.3f
signal.3
signal.3f
sin.3m
sinh.3m
sleep.3
sleep.3f
plot.3x
printf.3s
exp.3m
rand.3c
random.3
scanf.3s
stat.3f
intro.3s
dbm.3x
string.3
string.3
string.3
string.3
string.3
string.3
string.3
stty.3c
swab.3
perror.3
perror.3
psignal.3
syslog.3
system.3
system.3f

formatted-input conversion
directory operations

assign buffering to a stream
assign buffering to a stream

set user and group ID

set user and group ID

get file system descriptor file entry
set user and group ID

get group file entry

get network host entry

non-local goto

DES encryption

assign buffering to a stream

get network entry

get protocol entry

get password file entry

set user and group ID

set user and group ID

get service entry

better random number generator
set user and group ID

integer object conversion
simplified software signal facilities
change the action for a signal
trigonometric functions
hyperbolic functions

suspend execution for interval
suspend execution for an interval
graphics interface

formatted output conversion
exponential, logarithm, power, square root
random number generator

better random number generator
formatted input conversion

get file status

standard buffered input/output package
data base subroutines

string operations

string operations

string operations

string operations

string operations

string operations

string operations

set and get terminal state (defunct)
swap bytes

system error messages

system error messages

system signal messages

control system log

issue a shell command

execute a UNIX command

2 April 1983 7

INTRO (3)

tan
tanh
tclose
telldir
tgetent
tgetflag
tgetnum
tgetstr
tgoto
time
time
times
timezone
topen
tputs
traper
trapov
tread
trewin
trpfpe
tskipf
tstate
ttynam
ttyname
ttyslot
twrite
ungetc
unlink
utime
valloc
varargs
vlimit
vtimes
wait

y0

yl

yn

4th Berkeley Distribution

UNIX Programmer’s Manual

sin.3m
sinh.3m
topen.3f
directory.3
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
time.3c
time.3f
times.3c
ctime.3
topen.3f
termcap.3x
traper.3f
trapov.3f
topen.3f
topen.3f
trpfpe.3f
topen.3f
topen.3f
ttynam.3f
ttyname.3
ttyname.3
topen.3f
ungetc.3s
unlink.3f
utime.3c
valloc.3
varargs.3
vlimit.3c
vtimes.3c
wait.3f
j0.3m
j0.3m
j0.3m

INTRO (3)

trigonometric functions

hyperbolic functions

£77 tape 1/0

directory operations

terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
get date and time

return system time

get process times

convert date and time to ASCII

77 tape 1/0

terminal independent operation routines
trap arithmetic errors

trap and repair floating point overflow
77 tape 1/0

77 tape I/0

trap and repair floating point faults

f77 tape 1I/0

77 tape 1I/0

find name of a terminal port

find name of a terminal

find name of a terminal

77 tape I/0

push character back into input stream
remove a directory entry

set file times

aligned memory allocator

variable argument list

control maximum system resource consumption
get information about resource utilization
wait for a process to terminate

bessel functions

bessel functions

bessel functions

2 April 1983 8

ABORT (3) UNIX Programmer’s Manual ABORT (3)

NAME
" abort — generate a fault
DESCRIPTION
Abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(1), sigvec(2), exit(2)

DIAGNOSTICS
Usually ‘IOT trap — core dumped’ from the shell.

BUGS
The abort() function does not flush standard I/0 buffers. Use fush (3S).

Tth Edition 18 January 1983 1

ABS (3) UNIX Programmer’s Manual ABS (3)

NAME
abs — integer absolute value

SYNOPSIS
abs (1)
int {;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M) for fabs

BUGS
Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(0x80000000)
returns 0x80000000 as a result.

Tth Edition 18 January 1983 1

ATOF (3) UNIX Programmer’s Manual ATOF (3)

NAME
atof, atoi, atol — convert ASCII to numbers
SYNOPSIS
double atof(nptr)
char enptr;
atol (nptr)
char enptr;
long atol (nptr)
char enptr;
DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.
Atof recognizes an optional string of spaces, then an optional sign, then a string of digits option-
ally containing a decimal point, then an optional ‘e’ or ‘E’ followed by an optionally signed
integer.
Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.
SEE ALSO
scanf(3S)
BUGS
There are no provisions for overflow.

7th Edition 19 January 1983 1

BSTRING (3) UNIX Programmer’s Manual

NAME

beopy, bemp, bzero, ffs — bit and byte string operations

SYNOPSIS

beopy (b1, b2, length)
char «bl, «b2;

int length;

bemp (b1, b2, length)
char b1, «b2;

int length;

bzero (b, length)
char =b;

int length;

fis (i)

int i;

DESCRIPTION
The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do not

BUGS

check for null bytes as the routines in string(3) do.
Bcopy copies length bytes from string b1 to the string 52.

BSTRING (3)

Bemp compares byte string b1 against byte string b2, returning zero if they are identical, non-

zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string b1.

Ffs find the first bit set in the argument passed it and returns the index of that bit. Bits are

numbered starting at 1. A return value of —1 indicates the value passed is zero.

The bcmp and beopy routines take parameters backwards from strcmp and strcpy.

4th Berkeley Distribution 4 March 1983

CRYPT (3) UNIX Programmer’s Manual CRYPT (3)

NAME

crypt, setkey, encrypt — DES encryption

SYNOPSIS

char scrypt(key, salt)
char ekey, *sait;

setkey (key)

char skey;

encrypt (block, edfiag)
char sblock;

DESCRIPTION

Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user’s typed password. The second is a 2-character
string chosen from the set [a-zA-Z0-9./]. The salt string is used to perturb the DES algorithm
in one of 4096 different ways, after which the password is used as the key to encrypt repeatedly
a constant string. The returned value points to the encrypted password, in the same alphabet as
the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing 0’s and
1's. The argument array is modified in place to a similar array representing the bits of the argu-
ment after having been subjected to the DES algorithm using the key set by setkey. If edflag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

passwd(1), passwd(5), login(1), getpass(3)

The return value points to static data whose content is overwritten by each call.

7th Edition 25 February 1983 1

CTIME (3) UNIX Programmer’s Manual CTIME (3)

NAME

ctime, localtime, gmtime, asctime, timezone — convert date and time to ASCII

SYNOPSIS

char sctime (clock)
long #clock;

#include <sys/time.h>

struct tm «localtime (clock)
long *clock;

struct tm sgmtime (clock)
long sclock;

char =asctime (tm)
struct tm etm;

char timezone(zone, dst)

DESCRIPTION

Ctime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time UNIX uses. Asctime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon,;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

)
These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11),
day of week (Sunday = 0), year — 1900, day of year (0-365), and a flag that is nonzero if day-
light saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the U.S.A., Australian, Eastern European, Middle European, or Western European
daylight saving time adjustment is appropriate. The program knows about various peculiarities
in time conversion over the past 10-20 years; if necessary, this understanding can be extended.

Timezone returns the name of the time zone associated with its first argument, which is meas-
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g. in Afghanistan timezone(-
(60«4+30), 0) is appropriate because it is 4:30 ahead of GMT and the string GMT +4:30 is
produced.

4th Berkeley Distribution 26 June 1983 1

CTIME (3) UNIX Programmer’s Manual CTIME (3)

SEE ALSO
gettimeofday (2), time (3)

BUGS
The return values point to static data whose content is overwritten by each call.

4th Berkeley Distribution 26 June 1983 2

CTYPE (3) UNIX Programmer’s Manual CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii — character
classification macros

SYNOPSIS
#include <ctype.h>

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate return-
ing nonzero for true, zero for false. Isascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (see stdio(35)).

isalpha cis a letter
isupper ¢ is an upper case letter
islower cis a lower case letter
isdigit ¢ is a digit
isalnum ¢ is an alphanumeric character
isspace ¢ is a space, tab, carriage return, newline, or formfeed
ispunct c is a punctuation character (neither control nor alphanumeric)
isprint c is a printing character, code 040(8) (space) through 0176 (tilde)
iscntrl cis a delete character (0177) or ordinary control character (less than 040).
isascii c is an ASCII character, code less than 0200
SEE ALSO
ascii(7)

7th Edition 25 February 1983 1

DIRECTORY (3) UNIX Programmer’s Manual DIRECTORY (3)

NAME

opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations
SYNOPSIS

#include <sys/dir.h>

DIR sopendir (fllename)
char efilename;

struct direct ereaddir(dirp)
DIR edirp;
long telldir (dirp)
DIR edirp;
seekdir (dirp, loc)
DIR «dirp;
long loc;
rewinddir (dirp)
DIR edirp;
closedir (dirp)
DIR sdirp;
DESCRIPTION
Opendir opens the directory named by filename and associates a directory stream with it. Opendir
returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, or if it cannot malloc(3) enough
memory to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end
of the directory or detecting an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new position
reverts to the one associated with the directory stream when the telldir operation was performed.
Values returned by telldir are good only for the lifetime of the DIR pointer from which they are
derived. If the directory is closed and then reopened, the telldir value may be invalidated due
to undetected directory compaction. It is safe to use a previous felidir value immediately after a
call to opendir and before any calls to readdir.
Rewinddir resets the position of the named directory stream to the beginning of the directory.
Closedir closes the named directory stream and frees the structure associated with the DIR
pointer,
Sample code which searchs a directory for entry ‘“‘name”’ is:
len = strien(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))
if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(dirp);
return FOUND,

)
closedir(dirp);
return NOT_FOUND;

SEE ALSO
open(2), close(2), read(2), Iseek(2), dir(5)

4th Berkeley Distribution 25 February 1983 1

ECVT (3) UNIX Programmer’s Manual ECVT (3)

NAME
ecvt, fcvt, gcvt — output conversion

SYNOPSIS
char cecvt(value, ndigit, decpt, sign)
double value;
int ndigit, sdecpt, *sign;
char efcvt(value, ndigit, decpt, sign)
double value;
int ndigit, edecpt, esign;
char sgevt(value, ndigit, buf)
double value;
char sbuf;

DESCRIPTION

Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Feve is identical to ecvt, except that the correct digit has been rounded for Fortran F-format out-
put of the number of digits specified by ndigits.

Gcvt converts the value to a null-terminated ASCII string in byf and returns a pointer to byf. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

END (3) UNIX Programmer’s Manual END(3)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.
When execution begins, the program break coincides with end, but it is reset by the routines
brk(2), malloc(3), standard input/output (stdio(3)), the profile (—p) option of cc(1), etc. The
current value of the program break is reliably returned by ‘sbrk(0)’, see brk(2).

SEE ALSO
brk(2), malloc(3)

7th Edition 19 January 1983 1

EXECL (3) UNIX Programmer’s Manual EXECL (3)

NAME
execl, execv, execle, execlp, execvp, exec, exece, exect, environ — execute a file

SYNOPSIS
execl (name, arg0, argl, ..., argn, 0)
char *name, #arg0, «argl, ..., *argn;

execv(name, argv)
char sname, =argvll;

execle(name, arg0, argl, ..., argn, 0, envp)
char sname, #arg0, eargl, ..., *argn, *envpll;

exect (name, argv, envp)
char sname, =argvll, *envpll;

extern char s+environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0],
argll] ... address null-terminated strings. Conventionally arg[0] is the name of the file.

Two interfaces are available. execl is useful when a known file with known arguments is being
called; the arguments to execl are the character strings constituting the file and the arguments;
the first argument is conventionally the same as the file name (or its last component). A 0
argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ptrace(2). The pro-
gram is forced to single step a single instruction giving the parent an opportunity to manipulate
its state. On the VAX-11 this is done by setting the trace bit in the process status longword.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char s+argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argv[argc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an ‘“‘="", and a null-terminated value. The array of pointers is ter-
minated by a null pointer. The shell sh(1) passes an environment entry for each global shell
variable defined when the program is called. See environ(7) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ, which
is used by execv and exec! to pass the environment to any subprograms executed by the current
program.

4th Berkeley Distribution 1 April 1981 1

EXECL (3) UNIX Programmer’s Manual EXECL (3)

Execlp and execvp are called with the same arguments as exec/ and execv, but duplicate the
shell’s actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

FILES
/bin/sh shell, invoked if command file found by execip or execvp

SEE ALSO
execve(2), fork(2), environ(7), csh(1)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5)), if maximum memory is exceeded, or if the arguments require too much space,
a return constitutes the diagnostic; the return value is —1. Even for the super-user, at least
one of the execute-permission bits must be set for a file to be executed.

BUGS
If execwp is called to execute a file that turns out to be a shell command file, and if it is impossi-
ble to execute the shell, the values of argv/0] and argv/— 1] will be modified before return.

4th Berkeley Distribution 1 April 1981 2

EXIT (3) UNIX Programmer’s Manual EXIT (3)

NAME
exit — terminate a process after flushing any pending output

SYNOPSIS
exit(status)
int status;
DESCRIPTION
Exit terminates a process after calling the Standard 1/0 library function _cleanup to flush any
buffered output. Exit never returns.

SEE ALSO
exit(2), intro(3S)

4th Berkeley Distribution 1 April 1983 1

FREXP (3) UNIX Programmer’s Manual FREXP (3)

NAME

frexp, Idexp, modf — split into mantissa and exponent
SYNOPSIS

double frexp(value, eptr)

double value;

int eeptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value = x» 2" indirectly through eptr.

Ldexp returns the quantity values 2P,

Modf returns the positive fractional part of value and stores the integer part indirectly through
iptr.

7th Edition 19 January 1983 1

GETENV (3) UNIX Programmer’s Manual GETENV (3)

NAME
getenv — value for environment name
SYNOPSIS
char sgetenv(name)
char sname;
DESCRIPTION
Getenv searches the environment list (see environ(7)) for a string of the form name= value and
returns a pointer to the string value if such a string is present, otherwise getenv returns the
value 0 (NULL).
SEE ALSO
environ(7), execve(2)

7th Edition 19 January 1983 1

GETGRENT (3) UNIX Programmer’s Manual GETGRENT (3)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry

SYNOPSIS

#include <grp.h>
struct group egetgrent()

struct group egetgrgid (gid)
int gid;

struct group egetgrnam (name)
char *name;

setgrent()
endgrent)

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

struct group { /¢ see getgrent(3) o/
char egr_name;
char gr_passwd;
int 8r_gid;
char esgr mem,;
k
struct group egetgrent(), «getgrgid(), »getgrnam();
The members of this structure are:

gr_name The name of the group.

gr_passwd The encrypted password of the group.

gr_gid The numerical group-ID.

gr_mem Null-terminated vector of pointers to the individual member names.

Gergrent simply reads the next line while getgrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave off
80 successive calls may be used to search the entire file.

A call to sezgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

/etc/group

SEE ALSO

getlogin(3), getpwent(3), group(5)

DIAGNOSTICS

BUGS

A null pointer (0) is returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983 1

GETLOGIN (3) UNIX Programmer’s Manual GETLOGIN (3)

NAME

getlogin — get login name
SYNOPSIS

char egetlogin 0
DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc-
tion with getpwnam to locate the correct password file entry when the same userid is shared by
several login names.
If getlogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call getlogin and if it fails, to call
getpw(getuid()).

FILES
/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(5), getpw(3)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

GETPASS (3) UNIX Programmer’s Manual GETPASS (3)

NAME
getpass — read a password

SYNOPSIS
char egetpass (prompt)
char eprompt;

DESCRIPTION
Getpass reads a password from the file /dev/tty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer
is returned to a null-terminated string of at most 8 characters.

FILES
/dev/tty
SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

GETPWENT (3) UNIX Programmer’s Manual GETPWENT (3)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent — get password file entry

SYNOPSIS

#include <pwd.h>
struct passwd sgetpwent(

struct passwd sgetpwuid (uid)
int uid;

struct passwd sgetpwnam (name)
char *name;

int setpwent()
int endpwent ()

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the password file.

struct passwd { /« see getpwent(3) «/
char spw_name;
char epw_passwd;

int pw_uid;
int pw_gid;
int pW_quota;

char spw_comment;
char spw_gecos;
char «pw_dir;

char epw_shell;

5
struct passwd sgetpwent(), sgetpwuid(), *getpwnam();

The fields pw quota and pw_comment are unused; the others have meanings described in
passwd(5).

Getpwent reads the next line (opening the file if necessary); sepwent rewinds the file; endpwent
closes it.

Getpwuid and getpwnam search from the beginning until a matching wid or name is found (or
until EOF is encountered).

/etc/passwd

SEE ALSO

getlogin(3), getgrent(3), passwd(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.

Tth Edition 19 January 1983 1

GETWD (3) UNIX Programmer’s Manual GETWD (3)

NAME
getwd — get current working directory pathname
SYNOPSIS
char *getwd (pathname)
char spathname;
DESCRIPTION
Gerwd copies the absolute pathname of the current working directory to pathname and returns a
pointer to the result.

LIMITATIONS
Maximum pathname length is MAXPATHLEN characters (1024).

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

4th Berkeley Distribution 25 February 1983 1

INSQUE (3) UNIX Programmer’s Manual INSQUE (3)

NAME
insque, remque — insert/remove element from a queue

SYNOPSIS
struct gelem {
struct gelem oq_forw;
struct gelem *q_back;
char q_datall;

’
insque(elem, pred)
struct gelem ¢elem, *pred;
remque (elem)
struct gelem eelem;
DESCRIPTION
Insque and remque manipulate queues built from doubly linked lists. Each element in the
queue must in the form of “‘struct gelem’. Insque inserts elem in a queue imediately after
pred, remque removes an entry elem from a queue.

SEE ALSO
“VAX Architecture Handbook”’, pp. 228-235.

4th Berkeley Distribution 18 July 1983 1

MALLOC (3) UNIX Programmer’s Manual MALLOC (3)

NAME

malloc, free, realloc, calloc, alloca — memory allocator

SYNOPSIS

char emalloc(size)
unsigned size;

free (ptr)

char »ptr;

char srealloc(ptr, size)
char #ptr;

unsigned size;

char ecalloc(nelem, elsize)
unsigned nelem, elsize;

char #alloca (size)
int size;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Malloc maintains multiple lists of free blocks according to size, allocating space from the
appropriate list. It calls sbrk (see brk(2)) to get more memory from the system when there is
no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes.

In order to be compatible with older versions, realloc also works if ptr points to a block freed
since the last call of malloc, realloc or calloc; sequences of free, malloc and realloc were previ-
ously used to attempt storage compaction. This procedure is no longer recommended.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
Zeros.

Alloca allocates size bytes of space in the stack frame of the caller. This temporary space is
automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. Malloc may be
recompiled to check the arena very stringently on every transaction; those sites with a source
code license may check the source code to see how this can be done.

When realloc returns 0, the block pointed to by ptr may be destroyed.
Alloca is machine dependent; it’s use is discouraged.

4th Berkeley Distribution 19 January 1983 1

MKTEMP (3) UNIX Programmer’s Manual MKTEMP (3)

NAME
mktemp — make a unique file name

SYNOPSIS
char emktemp (template)
char template;

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address of the template. The
template should look like a file name with six trailing X’s, which will be replaced with the
current process id and a unique letter.

SEE ALSO
getpid(2)

7th Edition 19 January 1983 1

MONITOR (3) UNIX Programmer’s Manual MONITOR (3)

NAME
monitor, monstartup, moncontrol — prepare execution profile

SYNOPSIS
monitor (lowpe, highpe, buffer, bufsize, nfunc)
int (slowpe) O, (shighpe) O;
short buffer(l;

monstartup (lowpe, highpc)
int (slowpe) O, (shighpe) O;

moncontrol (mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc—p...
automatically includes calls for the prof(1) monitor and includes an initial call to its start-up

routine monstartup with default parameters; monitor need not be called explicitly except to gain
fine control over profil buffer allocation. An executable program created by:

cc—pg...
automatically includes calls for the gprof(1) monitor.

Monstartup is a high level interface to profil(2). Lowpc and highpc specify the address range that
is to be sampled; the lowest address sampled is that of /owpc and the highest is just below
highpc. Monstartup allocates space using sbrk(2) and passes it to monitor (see below) to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer-
tain functions, in the buffer. Only calls of functions compiled with the profiling option —p of
cc(1) are recorded.

To profile the entire program, it is sufficient to use
extern etext();

.n'io'nstartup((int) 2, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use
monitor(0);

then prof(1) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either
prof(1) or gprof(1) type profiling. When the program starts, profiling begins. To stop the col-
lection of histogram ticks and call counts use moncontrol(0); to resume the collection of histo-
gram ticks and call counts use moncontrol(1). This allows the cost of particular operations to be
measured. Note that an output file will be produced upon program exit irregardless of the state
of moncontrol.

Monitor is a low level interface to profil(2). Lowpc and highpe are the addresses of two func-
tions; byffer is the address of a (user supplied) array of bufsize short integers. At most nfunc
call counts can be kept. For the results to be significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more than a few times smaller than
the range of locations sampled. Monitor divides the buffer into space to record the histogram of
program counter samples over the range lowpc to highpc, and space to record call counts of
functions compiled with the —p option to cc(1).

4th Berkeley Distribution 19 January 1983 1

MONITOR (3) UNIX Programmer’s Manual

To profile the entire program, it is sufficient to use
extern etext();

monitor((int) 2, etext, buf, bufsize, nfunc);

FILES
mon.out

SEE ALSO
cc(1), prof(1), gprof(1), profil(2), sbrk(2)

4th Berkeley Distribution 19 January 1983

MONITOR (3)

NLIST (3) UNIX Programmer’s Manual NLIST (3)

NAME
nlist — get entries from name list

SYNOPSIS
##include <nlist.h>

nlist(filename, nl)
char efilename;
struct nlist nlll;

DESCRIPTION
NMlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /vmunix. In this
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

4th Berkeley Distribution 19 January 1983 1

PERROR (3) UNIX Programmer’s Manual PERROR (3)

NAME
perror, sys_errlist, sys_nerr — system error messages

SYNOPSIS
perror (s)
char »s;

int sys_nerr;
char esys_errlistl];

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string is
the name of the program which incurred the error. The error number is taken from the exter-
nal variable errno (see intro(2)), which is set when errors occur but not cleared when non-
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided,
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2), psignal (3)

4th Berkeley Distribution 19 January 1983 1

POPEN (3) UNIX Programmer’s Manual POPEN (3)

NAME

popen, pclose — initiate 1/0 to/from a process

SYNOPSIS

#include <stdio.h>

FILE ¢popen (command, type)
char ecommand, stype;

pclose (stream)
FILE estream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an I/0 mode, either "r" for reading or "w" for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a type
"w" as an output filter.

SEE ALSO

pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(1)

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or the shell cannot be
accessed.

Pclose returns —1 if stream is not associated with a ‘popened’ command.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer flush-
ing, for instance, with ffush, see fclose(3S).

Popen always calls sh, never calls csh.

7th Edition 18 July 1983 1

PSIGNAL (3) UNIX Programmer’s Manual PSIGNAL (3)

NAME

psignal, sys_siglist — system signal messages
SYNOPSIS

psignal (sig, s)

unsigned sig;

char +s;

char ssys_siglistl];

DESCRIPTION
Psignal produces a short message on the standard error file describing the indicated signal. First
the argument string s is printed, then a colon, then the name of the signal and a new-line.
Most usefully, the argument string is the name of the program which incurred the signal. The
signal number should be from among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys_siglist is pro-
vided; the signal number can be used as an index in this table to get the signal name without
the newline. The define NSIG defined in <signal. h> is the number of messages provided for
in the table; it should be checked because new signals may be added to the system before they
are added to the table.

SEE ALSO
sigvec(2), perror(3)

4th Berkeley Distribution 25 February 1983 1

QSORT (3) UNIX Programmer’s Manual QSORT (3)

NAME
gsort — quicker sort

SYNOPSIS
gsort (base, nel, width, compar)
char «base;
int (scompar) O;

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sort(1)

4th Berkeley Distribution 19 January 1983 1

RANDOM (3) UNIX Programmer’s Manual RANDOM (3)

NAME
random, srandom, initstate, setstate — better random number generator; routines for changing
generators

SYNOPSIS
long random ()

srandom (seed)
int seed;

char sinitstate(seed, state, n)
unsigned seed;

char estate;

int n;

char esetstate(state)
char sstate;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range from 0

to 23;l—l. The period of this random number generator is very large, approximately
16«2 —1).

Random/srandom have (almost) the same calling sequence and initialization properties as
rand/srand. The difference is that rand(3) produces a much less random sequence -- in fact, the
low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random
are usable. For example, ‘“‘random()&01”> will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of
state information used is much more than a single word. (Two other routines are provided to
deal with restarting/changing random number generators). Like rand(3), however, random will
by default produce a sequence of numbers that can be duplicated by calling srandom with 1 as
the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future
use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a ran-
dom number generator it should use -- the more state, the better the random numbers will be.
(Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256
bytes; other amounts will be rounded down to the nearest known amount. Using less than 8
bytes will cause an error). The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point) is also an argu-
ment. Initstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching between
states. Setstate returns a pointer to the argument state array is used for further random number
generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by calling
initstate (with the desired seed, the state array, and its size) or by calling both serstate (with the
state array) and srandom (with the desired seed). The advantage of calling both setstate and
srandom is that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than
269, which should be sufficient for most purposes.

AUTHOR
Earl T. Cohen

4th Berkeley Distribution 19 January 1983 1

RANDOM (3) UNIX Programmer’s Manual RANDOM (3)

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand(3)

BUGS
About 2/3 the speed of rand(3C).

4th Berkeley Distribution 19 January 1983 2

REGEX (3) UNIX Programmer’s Manual REGEX (3)

NAME
re_comp, re_exec — regular expression handler

SYNOPSIS
char ere_comp(s)
char es;
re_exec(s)
char s;

DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern matching. Re_exec checks
the argument string against the last string passed to re_comp.
Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an er-
ror message is returned. If re_comp is passed 0 or a null string, it returns without changing the
currently compiled regular expression. '
Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s
failed to match the last compiled regular expression, and —1 if the compiled regular expression
was invalid (indicating an internal error).
The strings passed to both re_comp and re_exec may have trailing or embedded newline charac-
ters; they are terminated by nulls. The regular expressions recognized are described in the
manual entry for ed(1), given the above difference.

SEE ALSO
ed(1), ex(1), egrep(1), fgrep(1), grep(1)

DIAGNOSTICS

Re_exec returns —1 for an internal error.
Re_comp returns ‘one of the following strings if an error occurs:
No previous regular expression,
Regular expression too long,
unmatched \ (,
missing],
too many \(\) pairs,
unmatched \).

4th Berkeley Distribution 29 February 1980 1

SCANDIR (3) UNIX Programmer’s Manual SCANDIR (3)

NAME
scandir — scan a directory
SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

scandir (dirname, namelist, select, compar)
char edirname;
struct direct *(snamelist(]);
int (eselect) 0;
int (scompar) 0;
alphasort (d1, d2)
struct direct eedl, o+d2;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries using
malloc(3). It returns the number of entries in the array and a pointer to the array through
namelist.
The select parameter is a pointer to a user supplied subroutine which is called by scandir to
select which entries are to be included in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory entry is to be included in the
array. If select is null, then all the directory entries will be includéd.

The compar parameter is a pointer to a user supplied subroutine which is passed to gsort(3) to
sort the completed array. If this pointer is null, the array is not sorted. Alphasort is a routine
which can be used for the compar parameter to sort the array alphabetically.
The memory allocated for the array can be deallocated with free (see malloc(3)) by freeing each
pointer in the array and the array itself.

SEE ALSO
directory(3), malloc(3), gsort(3), dir(5)

DIAGNOSTICS
Returns —1 if the directory cannot be opened for reading or if malloc(3) cannot allocate
enough memory to hold all the data structures.

4th Berkeley Distribution 19 January 1983 1

SETIMP (3) UNIX Programmer’s Manual SETIMP (3)

NAME

setjmp, longjmp — non-local goto

SYNOPSIS

#include <setjmp.h>
setjmp (env)

jmp_buf env;
longjmp(env, val)
jmp_buf env;
_setjmp(env)

jmp_buf env;

_longjmp (env, val)
jmp_buf env;

DESCRIPTION

These routines are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setjmp saves its stack environment in env for later use by longjimp. It returns value 0.

Longjmp restores the environment saved by the last call of segimp. It then returns in such a way
that execution continues as if the call of segimp had just returned the value val to the function
that invoked seyimp, which must not itself have returned in the interim. All accessible data
have values as of the time longjmp was called.

Setjmp and longimp save and restore the signal mask sigmask(2), while _setimp and _longimp
manipulate only the C stack and registers.

SEE ALSO

BUGS

sigvec(2), sigstack(2), signal(3)

Setimp does not save current notion of whether the process is executing on the signal stack.
The result is that a longjmp to some place on the signal stack leaves the signal stack state in-
correct.

4th Berkeley Distribution 19 January 1983 1

SETUID (3) UNIX Programmer’s Manual SETUID (3)

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid — set user and group ID

SYNOPSIS
setuid (uid)
seteuid (euid)
setruid (ruid)
setgid (gid)
setegid (egid)
setrgid (rgid)
DESCRIPTION
Setuid (setgid) sets both the real and effective user ID (group ID) of the current process to as
specified.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.
Setruid (setruid) sets the real user ID (group ID) of the current process.
These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid (2), setregid(2), getuid(2), getgid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; —1 is returned otherwise.

4th Berkeley Distribution 1 April 1983 1

SLEEP (3) UNIX Programmer’s Manual SLEEP (3)

NAME
sleep — suspend execution for interval

SYNOPSIS
sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be up to 1 second less than that requested, because
scheduled wakeups occur at fixed 1-second intervals, and an arbitrary amount longer because of
other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs. The previ-
ous state of this timer is saved and restored. If the sleep time exceeds the time to the expira-
tion of the previous timer, the process sleeps only until the signal would have occurred, and the
signal is sent 1 second later.

SEE ALSO
setitimer (2), sigpause (2)

BUGS
An interface with finer resolution is needed.

4th Berkeley Distribution 19 January 1983 1

STRING (3) UNIX Programmer’s Manual STRING (3)

NAME

strcat, strncat, stremp, strncmp, strcpy, strncpy, strlen, index, rindex — string operations

SYNOPSIS

##include <strings.h>

char sstrcat(s1, s2)
char »sl1, s2;

char sstrncat(sl, s2, n)
char esl, »s2;
stremp(sl, s2)

char esl, »s2;

strncmp(sl, s2, n)
char esl, s2;

char estrepy(sl, s2)

char »s1, os2;

char sstrncpy(sl, s2, n)
char esl, s2; "
strlen(s)

char »s;

char +index(s, ¢)

char »s, c;

char srindex(s, ¢)
char s, c;

DESCRIPTION

These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Strcat appends a copy of string s2 to the end of string sI. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as s/ is lexicographically greater than, equal to, or less than s2. Strncmp makes the
same comparison but looks at at most n characters.

Strepy copies string s2 to sl, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if the
length of 52 is n or more. Both return si.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character c in string s, or zero if
¢ does not occur in the string.

4th Berkeley Distribution 19 January 1983 1

SWAB(3) UNIX Programmer’s Manual SWAB (3)

NAME
swab — swap bytes

SYNOPSIS
swab(from, to, nbytes)
char sfrom, ¢to;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adja-
cent even and odd bytes. It is useful for carrying binary data between PDP11’s and other
machines. Nbytes should be even.

4th Berkeley Distribution 19 January 1983 1

SYSLOG (3) UNIX Programmer’s Manual SYSLOG (3)

NAME

syslog, openlog, closelog — control system log
SYNOPSIS

#include <syslog.h>

openlog (ident, logstat)

char eident;

syslog (priority, message, parameters ...)
char *message;
closelog)

DESCRIPTION
Syslog arranges to write the message onto the system log maintained by syslog(8). The message
is tagged with priority. The message looks like a printf(3) string except that %m is replaced by
the current error message (collected from errno). A trailing newline is added if needed. This
message will be read by syslog(8) and output to the system console or files as appropriate.
If special processing is needed, openlog can be called to initialize the log file. Parameters are
ident which is prepended to every message, and logstat which is a bit field indicating special
status; current values are:
LOG_PID log the process id with each message: useful for identifying instantiations of dae-

mons.

Openlog returns zero on success. If it cannot open the file /dev/log, it writes on /deviconsole
instead and returns —1.

Closelog can be used to close the log file.
EXAMPLES
syslog (LOG_SALERT, "who: internal error 23");
openlog ("serverftp", LOG_PID);
syslog (LOG_INFO, "Connection from host %d", CallingHost);

SEE ALSO
syslog(8)

7th Edition 14 November 1982 1

SYSTEM (3) UNIX Programmer’s Manual SYSTEM (3)

NAME
system — issue a shell command

SYNOPSIS
system (string)
char estring;

DESCRIPTION
System causes the string to be given to sh(1) as input as if the string had been typed as a com-
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn’t be executed.

7th Edition 19 January 1983 1

TTYNAME (3) UNIX Programmer’s Manual TTYNAME (3)

NAME
ttyname, isatty, ttyslot — find name of a terminal

SYNOPSIS
char sttyname(filedes)
isatty (filedes)

ttyslot Q)

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor filedes (this is a system file descriptor and has nothing to do with the stan-
dard 1/0 FILE typedef).
Isatty returns 1 if filedes is associated with a terminal device, 0 otherwise.
Ttyslot returns the number of the entry in the ttys(5) file for the control terminal of the current
process.

FILES
/dev/«
/etc/ttys

SEE ALSO
ioctl(2), ttys(5)

DIAGNOSTICS
Ttyname returns a null pointer (0) if filedes does not describe a terminal device in directory
‘/dev’.
Tuyslot returns 0 if ‘/etc/ttys’ is inaccessible or if it cannot determine the control terminal.

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

VALLOC (3) UNIX Programmer’s Manual VALLOC (3)

NAME
valloc — aligned memory allocator

SYNOPSIS
char evalloc(size)
unsigned size;

DESCRIPTION
Valloc allocates size bytes aligned on a page boundary. It is implemented by calling malloc(3)
with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.

DIAGNOSTICS
Valloc returns a null pointer (0) if there is no available memory or if the arena has been detect-
ably corrupted by storing outside the bounds of a block.

BUGS
Vfree isn’t implemented.

3rd Berkeley Distribution 19 January 1983 1

VARARGS (3) UNIX Programmer’s Manual VARARGS (3)

NAME
varargs — variable argument list

SYNOPSIS
#include <varargs.h>

Junction(va_alist)
va_dcl
va_list pvar,
va_start(pvar);
f = va_arg(pvar, type);
va_end(pvar);
DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argu-
ment lists. Routines having variable argument lists (such as printf(3)) that do not use varargs
are inherently nonportable, since different machines use different argument passing conven-
tions.
va_alist is used in a function header to declare a variable argument list.
va_dcl is a declaration for va_alist. Note that there is no semicolon after va_dcl.

va_list is a type which can be used for the variable pvar, which is used to traverse the list. One
such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_arg(pvar, type) will return the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Different types can be mixed, but it is up to the routine to
know what type of argument is expected, since it cannot be determined at runtime.

va_end(pvar) is used to finish up.
Multiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE
#include <varargs.h>
execl(va_alist)
Ia__dcl
va_list ap;
char +file;
char »args[100];
int argno = 0;

va_start(ap);
file = va_arg(ap, char ¢);
while (argslargno+ +] = va_arg(ap, char ¢))

va_end(ap);
return execv (file, args);

}

BUGS
It is up to the calling routine to determine how many arguments there are, since it is not possi-
ble to determine this from the stack frame. For example, exec/ passes a 0 to signal the end of
the list. Printfcan tell how many arguments are supposed to be there by the format.

7th Edition 19 January 1983 1

INTRO (3F) UNIX Programmer’s Manual INTRO (3F)

NAME
intro — introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FORTRAN run time library. The func-
tions listed here provide an interface from f77 programs to the system in the same manner as
the C library does for C programs. They are automatically loaded as needed by the Fortran
compiler f77(1).
Most of these functions are in libU77.a. Some are in libF77.a or 1ibI77.a. A few intrinsic func-
tions are described for the sake of completeness.
For efficiency, the SCCS ID strings are not normally included in the a.out file. To include them,
simply declare

external f77lid

in any /77 module.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort.3f terminate abruptly with memory image

access access.3f determine accessability of a file

alarm alarm.3f execute a subroutine after a specified time
bessel bessel.3f of two kinds for integer orders

bit bit.3f and, or, xor, not, rshift, Ishift bitwise functions

chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
ctime time.3f return system time
dffrac fimin.3f return extreme values
dflmax flmin.3f return extreme values
dfimin flmin.3f return extreme values

drand rand.3f return random values

dtime etime.3f return elapsed execution time

etime etime.3f return elapsed execution time

exit exit.3f terminate process with status

fdate fdate.3f return date and time in an ASCII string
ffrac flmin.3f return extreme values

fgetc getc.3f get a character from a logical unit
fimax flmin.3f return extreme values

flmin flmin.3f return extreme values

flush flush.3f flush output to a logical unit

fork fork.3f create a copy of this process

fpecnt trpfpe.3f trap and repair floating point faults
fputc putc.3f write a character to a fortran logical unit
fseek fseek.3f reposition a file on a logical unit

fstat stat.3f get file status

ftell fseek.3f reposition a file on a logical unit

gerror perror.3f get system error messages

getarg getarg.3f return command line arguments

getc getc.3f get a character from a logical unit

getcwd getcwd.3f get pathname of current working directory
getenv getenv.3f get value of environment variables

getgid getuid.3f get user or group ID of the caller

getlog getlog.3f get user’s login name

4th Berkeley Distribution 26 July 1983 1

INTRO (3F) UNIX Programmer’s Manual INTRO (3F)

getpid getpid.3f get process id
getuid getuid.3f get user or group ID of the caller

gmtime time.3f return system time

hostnom hostnm.3f get name of current host

iargc getarg.3f return command line arguments

idate idate.3f return date or time in numerical form

ierrno perror.3f get system error messages

index index.3f tell about character objects

inmax fimin.3f return extreme values

intro intro.3f introduction to FORTRAN library functions

ioinit ioinit.3f change 77 I/0 initialization

irand rand.3f return random values

isatty ttynam.3f find name of a terminal port

itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a process

len index.3f tell about character objects

link link.3f make a link to an existing file

Inblnk index.3f tell about character objects

loc loc.3f return the address of an object

long long.3f integer object conversion

Istat stat.3f get file status

Itime time.3f return system time

perror perror.3f get system error messages

putc putc.3f write a character to a fortran logical unit
gsort gsort.3f quick sort

rand rand.3f return random values

rename rename.3f rename a file
rindex index.3f tell about character objects

short long.3f integer object conversion

signal signal.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
stat stat.3f get file status

system system.3f execute a UNIX command

tclose topen.3f f77 tape I/0

time time.3f return system time

topen topen.3f 77 tape 1/0

traper traper.3f trap arithmetic errors

trapov trapov.3f trap and repair floating point overflow
tread topen.3f 77 tape 1/0

trewin topen.3f £77 tape 1/0

trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f 77 tape I/0

tstate topen.3f f77 tape 1/0

ttynam ttynam.3f find name of a terminal port
twrite topen.3f f77 tape 1/0

unlink unlink.3f remove a directory entry

wait wait.3f wait for a process to terminate

4th Berkeley Distribution 26 July 1983 2

ABORT (3F) UNIX Programmer’s Manual ABORT (3F)

NAME
abort — terminate abruptly with memory image
SYNOPSIS
subroutine abort (string)
charactere(+) string
DESCRIPTION
Abort cleans up the I/0 buffers and then aborts producing a core file in the current directory. If
string is given, it is written to logical unit 0 preceeded by ‘‘abort:”’.
FILES
/usr/lib/1ibF77.a
SEE ALSO
abort(3)
BUGS
String is ignored on the PDP11.

4th Berkeley Distribution 18 July 1983 1

ACCESS (3F) UNIX Programmer’s Manual ACCESS (3F)

NAME
access — determine accessability of a file

SYNOPSIS
integer function access (name, mode)
characters(¢) name, mode

DESCRIPTION

Access checks the given file, name, for accessability with respect to the caller according to mode.
Mode may include in any order and in any combination one or more of:

r test for read permission

w test for write permission

x test for execute permission
(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of
the specified modes. 0 is returned if the specified access would be successful.

FILES
/usr/lib/1ibU77.a

SEE ALSO
access(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 26 July 1983 1

ALARM (3F) UNIX Programmer’s Manual ALARM (3F)

NAME
alarm — execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc
DESCRIPTION
This routine arranges for subroutine proc to be called after time seconds. If time is 0", the
alarm is turned off and no routine will be called. The returned value will be the time remaining
on the last alarm.
FILES
/usr/1ib/1ibU77.a
SEE ALSO
alarm(3C), sleep(3F), signal (3F)
BUGS
Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the remaining alarm time or the sleep time.

4th Berkeley Distribution 18 July 1983 1

BESSEL (3F) UNIX Programmer’s Manual BESSEL (3F)

NAME
bessel functions — of two kinds for integer orders

SYNOPSIS
function besj0 (x)

function besj1 (x)
function besjn (n, x)
function besy0 (x)
function besyl (x)
function besyn (n, x)

double precision function dbesj0 (x)
double precision x

double precision function dbesj1 (x)
double precision x

double precision function dbesjn (n, x)
double precision x

double precision function dbesy0 (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyn (n, x)
double precision x

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause besy0, besyl, and besyn to return a huge negative value. The system
error code will be set to EDOM (33).

FILES
/usr/lib/1ibF77.a

SEE ALSO
jO(3M), perror (3F)

4th Berkeley Distribution 18 July 1983 1

BIT (3F) UNIX Programmer’s Manual BIT (3F)

NAME
bit — and, or, xor, not, rshift, Ishift bitwise functions

SYNOPSIS
(intrinsic) function and (word1, word2)

(intrinsic) function or (word1, word2)
(intrinsic) function xor (word1, word2)
(intrinsic) function not (word)
(intrinsic) function rshift (word, nbits)

(intrinsic) function Ishift (word, nbits)

DESCRIPTION
These bitwise functions are built into the compiler and return the data type of their
argument(s). It is recommended that their arguments be integer values; inappropriate manipu-
lation of real objects may cause unexpected results.
The bitwise combinatorial functions return the bitwise ‘““and’’ (and), “‘or”’ (or), or “‘exclusive
or” (xor) of two operands. Not returns the bitwise complement of its operand.
Lshift, or rshift with a negative nbits, is a logical left shift with no end around carry. Rshift, or
Ishift with a negative nbits, is an arithmatic right shift with sign extension. No test is made for a
reasonable value of nbits.

FILES
These functions are generated in-line by the f77 compiler.

4th Berkeley Distribution 13 June 1983 1

CHDIR (3F) UNIX Programmer’s Manual CHDIR (3F)

NAME
chdir — change default directory

SYNOPSIS
integer function chdir (dirname)
characters (¢) dirname

DESCRIPTION
The default directory for creating and locating files will be changed to dirname. Zero is returned
if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
chdir(2), cd(1), perror (3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sysjparam.h>.

Use of this function may cause inquire by unit to fail.

4th Berkeley Distribution 18 July 1983 1

CHMOD (3F) UNIX Programmer’s Manual CHMOD (3F)

NAME
chmod — change mode of a file

SYNOPSIS
integer function chmod (name, mode)
characters(¢) name, mode

DESCRIPTION
This function changes the filesystem mode of file name. Mode can be any specification recog-
nized by chmod(1). Name must be a single pathname.

The normal returned value is 0. Any other value will be a system error number.

FILES
/usr/lib/1ibU77.a
/bin/chmod exec’ed to change the mode.

SEE ALSO
chmod(1)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983 1

ETIME (3F) UNIX Programmer’s Manual ETIME (3F)

NAME _
etime, dtime — return elapsed execution time

SYNOPSIS
function etime (tarray)
real tarray(2)

function dtime (tarray)
real tarray(2)

DESCRIPTION
These two routines return elapsed runtime in seconds for the calling process. Dfime returns the
elapsed time since the last call to dfime, or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second ele-
ment. The function value is the sum of user and system time.

The resolution of all timing is 1/HZ sec. where HZ is currently 60.

FILES
/usr/lib/1ibU77.a

SEE ALSO
times(2)

4th Berkeley Distribution 26 July 1983 1

EXIT (3F) UNIX Programmer’s Manual EXIT (3F)

NAME
exit — terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESCRIPTION
Exit flushes and closes all the process’s files, and notifies the parent process if it is executing a

wait. The low-order 8 bits of status are available to the parent process. (Therefore status
should be in the range 0 — 255)

This call will never return.
The C function exit may cause cleanup actions before the final ‘sys exit’.

FILES
/usr/lib/1ibF77.a

SEE ALSO
exit(2), fork(2), fork (3F), wait(2), wait(3F)

4th Berkeley Distribution 18 July 1983

FDATE (3F) UNIX Programmer’s Manual FDATE (3F)

NAME
fdate — return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
characters(s) string

character=(s) function fdate()

DESCRIPTION
Fdate returns the current date and time as a 24 character string in the format describeq under
ctime(3). Neither *newline’ nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called-as a function, the calling
routine must define its type and length. For example:

character+24 fdate
external fdate

write(s,+) fdate()

FILES
/usr/lib/1ibU77.a

SEE ALSO
ctime(3), time (3F), itime (3F), idate (3F), ltime (3F)

4th Berkeley Distribution 13 June 1983 1

FLMIN (3F) UNIX Programmer’s Manual FLMIN (3F)

NAME
flmin, fimax, ffrac, dflmin, dfimax, dffrac, inmax — return extreme values

SYNOPSIS
function fimin O

function fimax ()

function ffrac()

double precision function dfimin()
double precision function dfimax()
double precision function dffrac()

function inmax()

DESCRIPTION
Functions fimin and fimax return the minimum and maximum positive floating point values
respectively. Functions qfimin and qfimax return the minimum and maximum positive double
precision floating point values. Function inmax returns the maximum positive integer value.
The functions ffrac and dffrac return the fractional accuracy of single and double precision float-
ing point numbers respectively. These are the smallest numbers that can be added to 1.0
without being lost.
These functions c¢an be used by programs that must scale algorithms to the numerical range of
the processor.

FILES
/usr/1ib/1ibF77.a

4th Berkeley Distribution 13 June 1983 1

FLUSH (3F) UNIX Programmer’s Manual FLUSH (3F)

NAME
flush — flush output to a logical unit

SYNOPSIS
subroutine flush (lunit)

DESCRIPTION
Flush causes the contents of the buffer for logical unit /unit to be flushed to the associated file.
This is most useful for logical units 0 and 6 when they are both associated with the control ter-
minal.

FILES
/usr/lib/1ibI77.a

SEE ALSO
fclose (3S)

4th Berkeley Distribution 18 July 1983 1

FORK (3F) UNIX Programmer’s Manual FORK (3F)

NAME .
fork — create a copy of this process

SYNOPSIS
integer function fork ()

DESCRIPTION
Fork creates a copy of the calling process. The only distinction between the 2 processes is that
the value returned to one of them (referred to as the ’parent’ process) will be the process id if
the copy. The copy is usually referred to as the ’child’ process. The value returned to the
*child’ process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the con-
tents of I/0 buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be per-
formed using system(3F).

FILES
/usr/lib/1ibU77.a

SEE ALSO
fork(2), wait(3F), kill(3F), system(3F), perror (3F)

4th Berkeley Distribution 13 June 1983 1

L)

FSEEK (3F) UNIX Programmer’s Manual FSEEK (3F)

NAME
fseek, ftell — reposition a file on a logical unit
SYNOPSIS
integer function fseek (lunit, offset, from)
integer offset, from

integer function ftell (lunit)

DESCRIPTION
lunit must refer to an open logical unit. offer is an offset in bytes relative to the position
specified by from. Valid values for from are:

0 meaning ’beginning of the file’
1 meaning ’the current position’
2 meaning ’the end of the file’

The value returned by fseek will be 0 if successful, a system error code otherwise. (See
perror(3F))

Frell returns the current position of the file associated with the specified logical unit. The value
is an offset, in bytes, from the beginning of the file. If the value returned is negative, it indi-
cates an error and will be the negation of the system error code. (See perror(3F))

FILES
/usr/lib/1ibU77.a

SEE ALSO
fseek(3S), perror (3F)

4th Berkeley Distribution 18 July 1983 1

GETARG (3F) UNIX Programmer’s Manual GETARG (3F)

NAME
getarg, iargc — return command line arguments

SYNOPSIS
subroutine getarg (k, arg)
charactere(s) arg

function iarge ()

DESCRIPTION
A call to getarg will return the kth command line argument in character string arg. The Oth

argument is the command name.
largc returns the index of the last command line argument.

FILES
/usr/1ib/1ibU77.a

SEE ALSO
getenv(3F), execve(2)

4th Berkeley Distribution 18 July 1983 1

GETC (3F) UNIX Programmer’s Manual GETC (3F)

NAME
getc, fgetc — get a character from a logical unit

SYNOPSIS
integer function getc (char)
character char

integer function fgetc (lunit, char)
character char

DESCRIPTION
These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran 1/0. Gerc reads from logical unit 5, normally connected to the control
terminal input. '

The value of each function is a system status code. Zero indicates no error occured on the read;
—1 indicates end of file was detected. A positive value will be either a UNIX system error
code or an {77 1/0 error code. See perror(3F).

FILES
/usr/lib/1ibU77.a

SEE ALSO
getc(3S), intro(2), perror (3F)

4th Berkeley Distribution 13 June 1983 1

GETCWD (3F) UNIX Programmer’s Manual GETCWD (3F)

NAME
getcwd — get pathname of current working directory
SYNOPSIS
integer function getcwd (dirname)
characters(+) dirname
DESCRIPTION
The pathname of the default directory for creating and locating files will be returned in dirname.
The value of the function will be zero if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
chdir(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sysjparam.h>.

4th Berkeley Distribution 18 July 1983 1

GETENV (3F) UNIX Programmer’s Manual GETENV (3F)

NAME
getenv — get value of environment variables
SYNOPSIS
subroutine getenv (ename, evalue)
characters(+) ename, evalue
DESCRIPTION
Getenv searches the environment list (see environ(7)) for a string of the form ename=value and
returns value in evalue if such a string is present, otherwise fills evalue with blanks.
FILES
/usr/1ib/1ibU77.a
SEE ALSO
environ(7), execve(2)

4th Berkeley Distribution 18 July 1983 1

GETLOG (3F) UNIX Programmer’s Manual GETLOG (3F)

NAME
getlog — get user’s login name

SYNOPSIS
subroutine getlog (name)
characters(+) name

characters(s) function getlog()

DESCRIPTION
Getlog will return the user’s login name or all blanks if the process is running detached from a
terminal.

FILES
/usr/lib/1ibU77.a

SEE ALSO
getlogin(3)

4th Berkeley Distribution 13 June 1983 1

GETPID (3F) UNIX Programmer’s Manual

NAME

getpid — get process id
SYNOPSIS

integer function getpid)

DESCRIPTION

Getpid returns the process ID number of the current process.

FILES
/usr/1ib/1ibU77.a

SEE ALSO
getpid (2)

4th Berkeley Distribution 13 June 1983

GETPID (3F)

GETUID (3F) UNIX Programmer’s Manual

NAME
getuid, getgid — get user or group ID of the caller

SYNOPSIS
integer function getuid)

integer function getgid)
DESCRIPTION

These functions return the real user or group ID of the user of the process.

FILES
/usr/lib/1ibU77.a

SEE ALSO
getuid (2)

4th Berkeley Distribution 13 June 1983

GETUID (3F)

HOSTNM (3F) UNIX Programmer’s Manual HOSTNM (3F)

NAME
hostnm — get name of current host
SYNOPSIS
integer function hostnm (name)
characters(+) name
DESCRIPTION
This function puts the name of the current host into character string name. The return value
should be 0; any other value indicates an error.

FILES
/usr/lib/1ibU77.a

SEE ALSO
gethostname(2)

4th Berkeley Distribution 13 June 1983 1

IDATE (3F) UNIX Programmer’s Manual IDATE (3F)

NAME
idate, itime — return date or time in numerical form

SYNOPSIS
subroutine idate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION
Idate returns the current date in iarray. The order is: day, mon, year. Month will be in the

range 1-12. Year will be > 1969.
Itime returns the current time in iarray. The order is: hour, minute, second.

FILES
/usr/lib/1ibU77.a

SEE ALSO
ctime (3F), fdate (3F)

4th Berkeley Distribution 13 June 1983 1

INDEX (3F) UNIX Programmer’s Manual INDEX (3F)

NAME
index, rindex, Inblnk, len — tell about character objects
SYNOPSIS
(intrinsic) function index (string, substr)
characters(¢) string, substr

integer function rindex (string, substr)
characters (+) string, substr

function Inblnk (string)
characters(s) string

(intrinsic) function len (string)
characters(+) string

DESCRIPTION
Index (rindex) returns the index of the first (last) occurrence of the substring substr in string, or
zero if it does not occur. Index is an f77 intrinsic function; rindex is a library routine.

Lnbink returns the index of the last non-blank character in string. This is useful since all f77
character objects are fixed length, blank padded. Intrinsic function len returns the size of the
character object argument.

FILES
/usr/lib/1ibF77.a

4th Berkeley Distribution 13 June 1983 1

IOINIT (3F) UNIX Programmer’s Manual IOINIT (3F)

NAME
ioinit — change 77 1/0 initialization
SYNOPSIS
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cctl, bzro, apnd, vrbose
characters(s) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 1/0 system, and attach externally
defined files to logical units at run time. The effect of the flag arguments applies to logical
units opened after joinit is called. The exception is the preassigned units, 5 and 6, to which cct/
and bzro will apply at any time. Joinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cct! is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then
such blanks will be treated as zero’s. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is some-
times necessary or convenient to open at the END-OF-FILE so that a write will append to the
existing data. If apnd is .true. then files opened subsequently on any logical unit will be posi-
tioned at their end upon opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when
a program is run. There is no such automatic association in f77. However, if the argument
prefix is a non-blank string, then names of the form prefixXNN will be sought in the program
environment. The value associated with each such name found will be used to open logical unit
NN for formatted sequential access. For example, if f77 program myprogram included the call

call ioinit (.true., .false., .false., 'FORT’, false.)
then when the following sequence

% setenv FORTO1 mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresults.
Both files would be positioned at their beginning. Any formatted output would have column 1
removed and interpreted as carriage control. Embedded and trailing blanks would be ignored
on input.

If the argument vrbose is .true. then ioinit will report on its activity.
The effect of

call ioinit (.true., .true., .false., ", .false.)
can be achieved without the actual call by including ‘“—1166"" on the f77 command line. This

gives carriage control on all logical units except 0, causes files to be opened at their beginning,
and causes blanks to be interpreted as zero’s.

The internal flags are stored in a labeled common block with the following definition:

integers2 ieof, ictl, ibzr

4th Berkeley Distribution 13 June 1983 1

IOINIT (3F) UNIX Programmer’s Manual IOINIT (3F)

common /ioiflg/ ieof, ictl, ibzr

FILES
/usr/lib/libl77.a 77 1/0 library
/usr/lib/1ibl66.a sets older fortran I/0 modes

SEE ALSO
getarg 3F), getenv(3F), “Introduction to the f77 1/0 Library”

BUGS
Prefix can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The ““+’ carriage control does not work.

4th Berkeley Distribution 13 June 1983 2

KILL (3F) UNIX Programmer’s Manual KILL (3F)

NAME
kill — send a signal to a process
SYNOPSIS
function kill (pid, signum)
integer pid, signum
DESCRIPTION
Pid must be the process id of one of the user’s processes. Signum must be a valid signal
number (see sigvec(2)). The returned value will be 0 if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
kill(2), sigvec(2), signal(3F), fork (3F), perror(3F)

4th Berkeley Distribution 18 July 1983 1

LINK (3F) UNIX Programmer’s Manual LINK (3F)

NAME
link — make a link to an existing file

SYNOPSIS
function link (namel, name2)
characters(+) namel, name2

integer function symink (namel, name2)
characters (+) namel, name2

DESCRIPTION)
Namel must be the pathname of an existing file. Name2 is a pathname to be linked to file
namel. Name2 must not already exist. The returned value will be 0 if successful; a system
error code otherwise.

Symink creates a symbolic link to namel.

FILES
/usr/1ib/1ibU77.a

SEE ALSO
link (2), symlink (2), perror (3F), unlink (3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/jparam.h>.

4th Berkeley Distribution 18 July 1983 1

LOC (3F) UNIX Programmer’s Manual
NAME
loc — return the address of an object
SYNOPSIS
function loc (arg)
DESCRIPTION

The returned value will be the address of arg.

FILES
/usr/1ib/1ibU77.a

4th Berkeley Distribution 13 June 1983

LOC (3F)

LONG (3F) UNIX Programmer’s Manual LONG (3F)

NAME
long, short — integer object conversion
SYNOPSIS

integere¢4 function long (int2)
integere2 int2

integers2 function short (int4)
integere4 int4

DESCRIPTION
These functions provide conversion between short and long integer objects. Long is useful
when constants are used in calls to library routines and the code is to be compiled with ““-i2”’.
Short is useful in similar context when an otherwise long object must be passed as a short
integer.

FILES
/usr/lib/1ibF77.a

4th Berkeley Distribution 26 July 1983 1

PERROR (3F) UNIX Programmer’s Manual PERROR (3F)

NAME
perror, gerror, ierrno — get system error messages

SYNOPSIS
subroutine perror (string)
characters(s) string

subroutine gerror (string)
characters(s) string

characters(+) function gerror()

function ierrno()

DESCRIPTION
Perror will write a message to fortran logical unit 0 appropriate to the last detected system error.
String will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called either
as a subroutine or as a function.

lerrno will return the error number of the last detected system error. This number is updated
only when an error actually occurs. Most routines and I/O statements that might generate such
errors return an error code after the call; that value is a more reliable indicator of what caused
the error condition.

FILES
/usr/lib/1ibU77.a

SEE ALSO
intro(2), perror(3)
D. L. Wasley, Introduction to the f77 I/O Library

BUGS
String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

NOTES
UNIX system error codes are described in intro(2). The 77 1/0 error codes and their mean-
ings are:

100 “error in format”’

101 “‘illegal unit number”’

102 “formatted io not allowed”
103 “‘unformatted io not allowed”
104 “‘direct io not allowed”’

105 ‘‘sequential io not allowed”
106 ““can’t backspace file”’

107 “‘off beginning of record”
108 “‘can’t stat file”’

109 “‘no = after repeat count”
110 “‘off end of record”

111 “‘truncation failed”’

112 ““incomprehensible list input”’
113 “out of free space”

114 “‘unit not connected”’

115 ‘“‘read unexpected character’

4th Berkeley Distribution 13 June 1983 1

PERROR (3F) UNIX Programmer’s Manual PERROR (3F)

116 ‘‘blank logical input field”
117 ‘“’new’ file exists”

118 ‘“‘can’t find ’old’ file”

119 ‘“‘unknown system error’’
120 “‘requires seek ability”’

121 ‘‘illegal argument”’

122 ‘‘negative repeat count”’
123 “‘illegal operation for unit”

4th Berkeley Distribution 13 June 1983 2

PUTC (3F) UNIX Programmer’s Manual PUTC (3F)

NAME

putc, fputc — write a character to a fortran logical unit
SYNOPSIS

integer function putc (char)

character char

Integer function fputc (lunit, char)
character char

DESCRIPTION '
These funtions write a character to the file associated with a fortran logical unit bypassing nor-
mal fortran 1/0. Putc writes to logical unit 6, normally connected to the control terminal out-
put. i
The value of each function will be zero unless some error occurred; a system error code other-
wise. See perror(3F). :

FILES
/usr/lib/1ibU77.a

SEE ALSO
putc(3S), intro(2), perror 3F)

4th Berkeley Distribution 13 June 1983 1

QSORT (3F) UNIX Programmer’s Manual QSORT (3F)

NAME
gsort — quick sort

SYNOPSIS
subroutine gsort (array, len, isize, compar)
external compar
integers2 compar

DESCRIPTION
One dimensional array contains the elements to be sorted. len is the number of elements in the
array. isize is the size of an element, typically -

4 for integer and real

8 for double precision or complex

16 for double complex

(length of character object) for character arrays

CaJ

Compar is the name of a user supplied integer«2 function that will determine the sorting order.
This function will be called with 2 arguments that will be elements of array. The function must
return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

FILES
/usr/lib/1ibU77.a

SEE ALSO
gsort(3)

4th Berkeley Distribution 13 June 1983 1

RAND (3F) UNIX Programmer’s Manual RAND (3F)

NAME
rand, drand, irand — return random values

SYNOPSIS
function irand (iflag)

function rand (iflag)

double precision function drand (iflag)

DESCRIPTION
These functions use rand(3C) to generate sequences of random numbers. If flag is ’1’, the
generator is restarted and the first random value is returned. If jflag is otherwise non-zero, it is
used as a new seed for the random number generator, and the first new random value is re-
turned.

Irand returns positive integers in the range 0 through 2147483647. Rand and drand return
values in the range 0. through 1.0 .

FILES
/usr/lib/1ibF77.a

SEE ALSO
rand(3C)

BUGS
The algorithm returns a 15 bit quantity on the PDP11; a 31 bit quantity on the VAX. Irand on
the PDP11 calls rand(3C) twice to form a 31 bit quantity, but bit 15 will always be 0.

4th Berkeley Distribution 18 July 1983 1

RANGE (3F) UNIX Programmer’s Manual RANGE (3F)

NAME
fimin, fimax, dfimin, dflmax, inmax — return extreme values

SYNOPSIS
function flmin O

function fimax(
double precision function dfimin 0
double precision function dfimax(

function inmax 0

DESCRIPTION
Functions fimin and flmax return the minimum and maximum positive floating point values
respectively. Functions dfimin and dfimax return the minimum and maximum positive double
precision floating point values. Function inmax returns the maximum positive integer value.
These functions can be used by programs that must scale algorithms to the numerical range of
the processor.

FILES
/usr/1ib/1ibF77.a

7th Edition 19 January 1983 1

RENAME (3F) UNIX Programmer’s Manual RENAME (3F)

NAME
rename — rename a file

SYNOPSIS
integer function rename (from, to)
characters(+) from, to

DESCRIPTION
From must be the pathname of an existing file. 7o will become the new pathname for the file.
If to exists, then both from and fo must be the same type of file, and must reside on the same
filesystem. If to exists, it will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
rename(2), perror (3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983 1

SIGNAL (3F) UNIX Programmer’s Manual SIGNAL (3F)

NAME

signal — change the action for a signal

SYNOPSIS

integer function signal(signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signa/(3C)) the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to signal is
the way this alternate action is specified to the system.

Signum is the signal number (see signal/(3C)). If flag is negative, then proc must be the name
of the user signal handling routine. If flag is zero or positive, then proc is ignored and the
value of flag is passed to the system as the signal action definition. In particular, this is how
previously saved signal actions can be restored. Two possible values for flag have specific
meanings: 0 means "use the default action" (See NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the ad-
dress of a routine that was to have been called on occurrence of the given signal. The returned
value can be used in subsequent calls to signal in order to restore a previous action definition.
A negative returned value is the negation of a system error code. (See perror(3F))

/usr/lib/1ibU77.a

SEE ALSO

NOTES

signal (3C), kill(3F), kill(1)

f77 arranges to trap certain signals when a process is started. The only way to restore the de-
fault £77 action is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

4th Berkeley Distribution 18 July 1983 1

SLEEP (3F) UNIX Programmer’s Manual SLEEP (3F)

NAME
sleep — suspend execution for an interval

SYNOPSIS
subroutine sleep (itime)

DESCRIPTION
Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to
1 second less than itime due to granularity in system timekeeping.

FILES
/usr/lib/1ibU77.a

SEE ALSO
sleep(3)

4th Berkeley Distribution 13 June 1983 1

STAT (3F) UNIX Programmer’s Manual STAT (3F)

NAME
stat, Istat, fstat — get file status

SYNOPSIS
integer function stat (name, stath)
characters () name
integer statb(12)

integer function Istat (name, statb)
characters(¢) name
integer statb(12)

integer function fstat (lunit, statb)
integer statb(12)

DESCRIPTION
These routines return detailed information about a file. Stat and Istat return information about
file name; fstat returns information about the file associated with fortran logical unit /unit. The
order and meaning of the information returned in array stath is as described for the structure
stat under star(2). The “‘spare” values are not included.

The value of either function will be zero if successful; an error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
stat(2), access(3F), perror (3F), time(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983 1

SYSTEM (3F) UNIX Programmer’s Manual SYSTEM (3F)

NAME
system — execute a UNIX command

SYNOPSIS
integer function system (string)
charactere(s) string

DESCRIPTION
System causes string to be given to your shell as input as if the string had been typed as a com-
mand. If environment variable SHELL is found, its value will be used as the command inter-
preter (shell); otherwise sh(1) is used.
The current process waits until the command terminates. The returned value will be the exit
status of the shell. See wait(2) for an explanation of this value.

FILES
/usr/lib/1ibU77.a

SEE ALSO
exec(2), wait(2), system(3)

BUGS
String can not be longer than NCARGS — 50 characters, as defined in < sys/jparam.h>.

4th Berkeley Distribution 18 July 1983 1

TIME (3F) UNIX Programmer’s Manual TIME (3F)

NAME
time, ctime, Itime, gmtime — return system time

SYNOPSIS
integer function time()

characters (+) function ctime (stime)
integer stime

subroutine Itime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the
value of the UNIX system clock.

Ctime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No ’newline’ or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as
GMT. The order and meaning of each element returned in tarray is described under ctime(3).

FILES
/usr/lib/1ibU77.a

SEE ALSO
ctime(3), itime (3F), idate (3F), fdate (3F)

4th Berkeley Distribution 13 June 1983 1

TOPEN (3F) UNIX Programmer’s Manual TOPEN (3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate — f77 tape 1/0

SYNOPSIS
integer function topen (tlu, devnam, label)
integer tlu
charactere(») devnam
logical label

integer func-lon tclose (tlu)
integer tlu

integer function tread (tlu, buffer)
integer tlu
characters (+) buffer

integer function twrite (tlu, buffer)
integer tlu
characters(») buffer

integer function trewin (tlu)
integer tiu

integer function tskipf (tlu, nfiles, nrecs)
integer tlu, nfiles, nrecs

integer function tstate (tlu, fileno, recno, errf, eoff, eotf, tcsr)
integer tlu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between f77 and magnetic tape devices. A ‘“‘tape
logical unit™, #u, is ‘‘topen’’ed in much the same way as a normal f77 logical unit is ‘“‘open’’ed.
All other operations are performed via the t/u. The tlu has no relationship at all to any normal
77 logical unit.

Topen associates a device name with a #iu. Tlu must be in the range 0 to 3. The logical argu-
ment label should indicate whether the tape includes a tape label. This is used by trewin below.
Topen does not move the tape. The normal returned value is 0. If the value of the function is
negative, an error has occured. See perror(3F) for details.

Tclose closes the tape device channel and removes its association with #u. The normal returned
value is 0. A negative value indicates an error.

Tread reads the next physical record from tape to byffer. Buffer must be of type character.
The size of byffer should be large enough to hold the largest physical record to be read. The
actual number of bytes read will be returned as the value of the function. If the value is 0, the
end-of-file has been detected. A negative value indicates an error.

Twrite writes a physical record to tape from byffer. The physical record length will be the size
of buyffer. Byffer must be of type character. The number of bytes written will be returned. A
value of 0 or negative indicates an error.

Trewin rewinds the tape associated with #/u to the beginning of the first data file. If the tape is a
labelled tape (see fopen above) then the label is skipped over after rewinding. The normal
returned value is 0. A negative value indicates an error.

4th Berkeley Distribution 18 July 1983 1

TOPEN (3F) UNIX Programmer’s Manual TOPEN (3F)

Tskipf allows the user to skip over files and/or records. First, nfiles end-of-file marks are
skipped. If the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to
reset the EOF status for a tlu.) Next, nrecs physical records are skipped over. The normal
returned value is 0. A negative value indicates an error.

Finally, tstate allows the user to determine the logical state of the tape 1/0 channel and to see
the tape drive control status register. The values of fileno and recno will be returned and indi-
cate the current file and record number. The logical values errf, eoff, and eotf indicate an error
has occurred, the current file is at EOF, or the tape has reached logical end-of-tape. End-of-
tape (EOT) is indicated by an empty file, often referred to as a double EOF mark. It is not
allowed to read past EOT although it is allowed to write. The value of fcsr will reflect the tape
drive control status register. See hr(4) for details.

FILES
/usr/1ib/1ibU77.a

SEE ALSO
ht(4), perror(3F), rewind(1)

4th Berkeley Distribution 18 July 1983 2

TRAPER (3F) UNIX Programmer’s Manual TRAPER (3F)

NAME
traper — trap arithmetic errors

SYNOPSIS
integer function traper (mask)

DESCRIPTION
NOTE: This routine applies only to the vAX. It is ignored on the PDP11.

Integer overflow and floating point underflow are not normally trapped during execution. This
routine enables these traps by setting status bits in the process status word. These bits are reset
on entry to a subprogram, and the previous state is restored on return. Therefore, this routine
must be called inside each subprogram in which these conditions should be trapped. If the con-
dition occurs and trapping is enabled, signal SIGFPE is sent to the process. (See signal/(3C))

The argument has the following meaning:

value meaning
0 do not trap either condition
1 trap integer overflow only
2 trap floating underflow only
3 trap both the above

The previous value of these bits is returned.

FILES
/ust/lib/1ibF77.a

SEE ALSO
signal (3C), signal (3F)

4th Berkeley Distribution 18 July 1983 1

LaJ

TRAPOV (3F) UNIX Programmer’s Manual TRAPOV (3F)

NAME

trapov — trap and repair floating point overflow

SYNOPSIS

subroutine trapov (numesg, rtnval)
double precision rtnval

DESCRIPTION

FILES

NOTE: This routine applies only to the older VAX 11/780’s. VAX computers made or
upgraded since spring 1983 handle errors differently. See trpfpe(3F) for the newer error
handler. This routine has always been ineffective on the VAX 11/750. It is a null routine on
the PDP11.

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal operands.
Trapping arithmetic exceptions allows the user’s program to proceed from instances of floating
point overflow or divide by zero. The result of such operations will be an illegal floating point
value. The subsequent use of the illegal operand will be trapped and the operand replaced by
the specified value.

The first numesg occurrences of a floating point arithmetic error will cause a message to be writ-
ten to the standard error file. If the resulting value is used, the value given for rinval will
replace the illegal operand generated by the arithmetic error. Rtnval must be a double precision
value. For example, “0d0”’ or ‘‘dflmax()”.

/usr/1ib/1ibF77.a

SEE ALSO

BUGS

trpfpe (3F), signal (3F), range (3F)

Other arithmetic exceptions can be trapped but not repaired.

There is no way to distinguish between an integer value of 32768 and the illegal floating point
form. Therefore such an integer value may get replaced while repairing the use of an illegal
operand.

4th Berkeley Distribution 18 July 1983 1

TRPFPE (3F) UNIX Programmer’s Manual TRPFPE (3F)

NAME

trpfpe, fpecnt — trap and repair floating point faults

SYNOPSIS

subroutine trpfpe (numesg, rtnval)
double precision rtnval

integer function fpecnt O

common /fpefit/ fperr
logical fperr

DESCRIPTION

FILES

NOTE: This routine applies only to Vax computers. It is a null routine on the PDP11.

Trpfpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a float-
ing point arithmetic fault, the result of the operation is replaced with the rtnval specified.
Rinval must be a double precision value. For example, ‘‘0d0” or ‘‘dflmax()”.

The first numesg occurrences of a floating point arithmetic error will cause a message to be writ-
ten to the standard error file. Any exception that can’t be repaired will result in the default
action, typically an abort with core image.

Fpecnt returns the number of faults since the last call to rpfpe.

The logical value in the common block labelled sfpefit will be set to .true. each time a fault
occurs.

/usr/lib/1ibF77.a

SEE ALSO

BUGS

signal (3F), range (3F)

This routine works only for faults, not traps. This is primarily due to the Vax architecture.

If the operation involves changing the stack pointer, it can’t be repaired. This seldom should
be a problem with the f77 compiler, but such an operation might be produced by the optimizer.

The POLY and EMOD opcodes are not dealt with.

4th Berkeley Distribution 26 July 1983 1

TTYNAM (3F) UNIX Programmer’s Manual TTYNAM (3F)

NAME
ttynam, isatty — find name of a terminal port

SYNOPSIS
characters(+) function ttynam (lunit)

logical function isatty (lunit)
DESCRIPTION
Ttynam returns a blank padded path name of the terminal device associated with logical unit
lunit.
Isatty returns .true. if lunit is associated with a terminal device, .false. otherwise.
FILES

/dev/+
/usr/lib/1ibU77.a

DIAGNOSTICS]
Ttynam returns an empty string (all blanks) if funit is not associated with a terminal device in

directory ‘/dev’.

4th Berkeley Distribution 13 June 1983 1

UNLINK (3F) UNIX Programmer’s Manual UNLINK (3F)

NAME
unlink — remove a directory entry

SYNOPSIS
integer function unlink (name)
characters(+) name

DESCRIPTION
Unlink causes the directory entry specified by pathname name to be removed. If this was the
last link to the file, the contents of the file are lost. The returned value will be zero if success-
ful; a system error code otherwise.

FILES
/usr/lib/1ibU77.a

SEE ALSO
unlink(2), link (3F), filsys(5), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983 1

WAIT (3F) UNIX Programmer’s Manual WAIT (3F)

NAME
wait — wait for a process to terminate

SYNOPSIS
integer function wait (status)
integer status

DESCRIPTION
Wait causes its caller to be suspended until a signal is received or one of its child processes ter-
minates. If any child has terminated since the last wait, return is immediate; if there are no
children, return is immediate with an error code.
If the returned value is positive, it is the process ID of the child and starus is its termination
status (see wair(2)). If the returned value is negative, it is the negation of a system error code.

FILES
/ust/lib/1ibU77.a

SEE ALSO
wait(2), signal 3F), kill (3F), perror (3F)

4th Berkeley Distribution 13 June 1983 1

INTRO (3M) UNIX Programmer’s Manual INTRO (3M)

NAME
intro — introduction to mathematical library functions

DESCRIPTION
These functions constitute the math library, libm. They are automatically loaded as needed by
the Fortran compiler f77(1). The link editor searches this library under the ‘‘—Ilm” option.
Declarations for these functions may be obtained from the include file <math.h>.

LIST OF FUNCTIONS
Name Appears on Page Description

acos sin.3m trigonometric functions

asin sin.3m trigonometric functions

atan sin.3m trigonometric functions

atan?2 sin.3m trigonometric functions

cabs hypot.3m Euclidean distance

ceil floor.3m absolute value, floor, ceiling functions
cos sin.3m trigonometric functions

cosh sinh.3m hyperbolic functions

exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
floor floor.3m absolute value, floor, ceiling functions

gamma gamma.3m log gamma function
hypot hypot.3m Euclidean distance

jo j0.3m bessel functions

jl j0.3m bessel functions

jn j0.3m bessel functions

log exp.3m exponential, logarithm, power, square root
logl0 exp.3m exponential, logarithm, power, square root
pow exp.3m exponential, logarithm, power, square root
sin sin.3m trigonometric functions

sinh sinh.3m hyperbolic functions

sqrt exp.3m exponential, logarithm, power, square root
tan sin.3m trigonometric functions

tanh sinh.3m hyperbolic functions

y0 j0.3m bessel functions

yl j0.3m bessel functions

yn j0.3m bessel functions

4th Berkeley Distribution 8 July 1983 1

EXP (3M) UNIX Programmer’s Manual EXP (3M)

NAME
exp, log, logl0, pow, sqrt — exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; logl0 returns the base 10 logarithm.
Pow returns x”.
Sgrt returns the square root of x.

SEE ALSO
hypot(3M), sinh(3M), intro(3M)

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow; errno is set to
ERANGE. Pow returns 0 and sets errno to EDOM when the first argument is negative and the
second is non-integral or when first argument is 0 and the second is less than or equal to 0.

Log returns 0 when x is zero or negative; errno is set to EDOM.
Sgrt returns 0 when x is negative; errno is set to EDOM.

7th Edition 18 July 1983 1

FLOOR (3M) UNIX Programmer’s Manual
NAME

fabs, floor, ceil — absolute value, floor, ceiling functions
SYNOPSIS

#include <math.h>

double floor(x)

double x;

double ceil(x)

double x;

double fabs(x)

double x;
DESCRIPTION

Fabs returns the absolute value |x|
Floor returns the largest integer not greater than x.
Ceil returns the smallest integer not less than x.

SEE ALSO
abs(3)

7th Edition 19 January 1983

FLOOR (3M)

GAMMA (3M) UNIX Programmer’s Manual GAMMA (3M)

NAME
gamma — log gamma function
SYNOPSIS
#include <math.h>
double gamma (x)
double x;
DESCRIPTION
Gamma returns In |T'(|x])|. The sign of I'(|x]) is returned in the external integer signgam.
The following C program might be used to calculate I':
y = gamma(x);
if (y > 88.0)
error();
y = exp(y);
if (signgam)
y= -y
DIAGNOSTICS
A huge value is returned for negative integer arguments.

BUGS
There should be a positive indication of error.

7th Edition 19 January 1983 1

HYPOT (3M) UNIX Programmer’s Manual
NAME

hypot, cabs — Euclidean distance
SYNOPSIS

#include <math.h>

double hypot (x, y)
double x, y;

double cabs(z)
struct { double x, y;) z;

DESCRIPTION
Hypot and cabs return

sqrt(xex + yey),
taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for sqrt

7th Edition 19 January 1983

HYPOT (3M)

JO(3M) UNIX Programmer’s Manual JO(3M)

NAME

j0, j1, jn, y0, y1, yn — bessel functions
SYNOPSIS

#include <math.h>

double jO(x)
double x;

double j1(x)
double x;

double jn(n, x)
double x;

double y0(x)
double x;

double y1(x)
double x;

double yn(n, x)
double x;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause y0, yI, and yn to return a huge negative value and set errno to
EDOM.

7th Edition 19 January 1983 1

SIN (3M) UNIX Programmer’s Manual SIN (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos(x)
double x;

double asin(x)
doubie x;

double acos(x)
double x;

double atan(x)
double x;

double atani(x, y)
double x, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the ar-
gument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range —m/2 to w/2.

Acos returns the arc cosine in the range 0 to 7.

Atan returns the arc tangent of x in the range —#/2 to 7/2.
Atan2 returns the arc tangent of x/y in the range —= to .

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set to
EDOM. The value of ran at its singular points is a huge number, and errno is set to ERANGE.

BUGS
The value of tan for arguments greater than about 231 is garbage.

7th Edition 19 January 1983 1

SINH (3M) UNIX Programmer’s Manual SINH (3M)

NAME
sinh, cosh, tanh — hyperbolic functions

SYNOPSIS
#include <math.h>
double sinh(x)

double cosh (x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition 19 January 1983 1

INTRO (3N)

NAME

UNIX Programmer’s Manual

INTRO (3N)

intro — introduction to network library functions

DESCRIPTION

This section describes functions that are applicable to the DARPA Internet network.

LIST OF FUNCTIONS

Name Appears on Page
endhostent gethostent.3n
endnetent getnetent.3n
endprotoent getprotoent.3n
endservent getservent.3n
gethostbyaddr gethostent.3n
gethostbyname gethostent.3n
gethostent gethostent.3n
getnetbyaddr getnetent.3n
getnetbyname getnetent.3n
getnetent getnetent.3n
getprotobyname getprotoent.3n
getprotobynumber getprotoent.3n
getprotoent getprotoent.3n
getservbyname getservent.3n
getservbyport getservent.3n
getservent getservent.3n
htonl byteorder.3n
htons byteorder.3n
inet_addr inet.3n
inet_Inaof inet.3n
inet_makeaddr inet.3n
inet_netof inet.3n
inet_network inet.3n

ntohl byteorder.3n
ntohs byteorder.3n
sethostent gethostent.3n
setnetent getnetent.3n
setprotoent getprotoent.3n
setservent getservent.3n

4th Berkeley Distribution

Description

get network host entry

get network entry

get protocol entry

get service entry

get network host entry

get network host entry

get network host entry

get network entry

get network entry

get network entry

get protocol entry

get protocol entry

get protocol entry

get service entry

get service entry

get service entry

convert values between host and network byte order
convert values between host and network byte order
Internet address manipulation routines

Internet address manipulation routines

Internet address manipulation routines

Internet address manipulation routines

Internet address manipulation routines

convert values between host and network byte order
convert values between host and network byte order
get network host entry

get network entry

get protocol entry

get service entry

10 February 1983 1

BYTEORDER (3N) UNIX Programmer’s Manual BYTEORDER (3N)

NAME
htonl, htons, ntohl, ntohs — convert values between host and network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong) ;
u_long netlong, hostlong;
netshort = htons(hostshort);
u_short netshort, hostshort;
hostlong = ntohl(netlong);
u_long hostlong, netlong;
hostshort = ntohs (netshort);
u_short hostshort, netshort;
DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as the SUN these routines are defined as null macros in the include
file < netinetlin.h>.

These routines are most often used in conjunction with Internet addresses and ports as returned
by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

BUGS
The VAX handles bytes backwards from most everyone else in the world. This is not expected
to be fixed in the near future.

4th Berkeley Distribution 4 March 1983 1

GETHOSTENT (3N) UNIX Programmer’s Manual GETHOSTENT (3N)

NAME

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent — get network host entry

SYNOPSIS

#include <netdb.h>
struct hostent sgethostent()

struct hostent sgethostbyname (name)
char *name;

struct hostent egethostbyaddr(addr, len, type)
char eaddr; int len, type;

sethostent (stayopen)
int stayopen

endhostent ()

DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the follow-
ing structure containing the broken-out fields of a line in the network host data base, /etc/hosts.

struct hostent {

char sh_name; /¢ official name of host +/
char e+h_aliases; /» alias list «/

int h_addrtype; /e address type »/

int h_length; /+ length of address */
char «h_addr; /# address */

k
The members of this structure are:
h_name Official name of the host.
h_aliases A zero terminated array of alternate names for the host.
h_addrtype The type of address being returned; currently always AF_INET.
h_length The length, in bytes, of the address.

h_addr A pointer to the network address for the host. Host addresses are returned in net-
work byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will
not be closed after each call to gethostent (either directly, or indirectly through one of the other
“‘gethost” calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until a
matching host name or host address is found, or until EOF is encountered. Host addresses are
supplied in network order.

/etc/hosts

SEE ALSO

hosts(5)

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

4th Berkeley Distribution 9 February 1983 1

GETHOSTENT (3N) UNIX Programmer’s Manual GETHOSTENT (3N)

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet address format is currently understood.

4th Berkeley Distribution 9 February 1983 2

GETNETENT (3N) UNIX Programmer’s Manual GETNETENT (3N)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get network entry

SYNOPSIS

#include <netdb.h>
struct netent sgetnetent ()

struct netent sgetnetbyname (name)
char sname;

struct netent getnetbyaddr(net)
long net;

setnetent (stayopen)
int stayopen

endnetent ()

DESCRIPTION

FILES

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network data base, /fetc/networks.

struct netent {
char en_name; /+ official name of net */
char «en_aliases; /+ alias list «/
int n_addrtype; /* net number type =/
long n_net; /+ net number »/

L
The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the network.
n_addrtype The type of the network number returned; currently only AF_INET.
n_net The network number. Network numbers are returned in machine byte order.
Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getnetent (either directly, or indirectly through one of the other
‘“‘getnet” calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a match-
ing net name or net address is found, or until EOF is encountered. Network numbers are sup-
plied in host order.

/etc/networks

SEE ALSO

networks(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only Inter-
net network numbers are currently understood. Expecting network numbers to fit in no more
than 32 bits is probably naive.

4th Berkeley Distribution 9 February 1983 1

GETPROTOENT (3N) UNIX Programmer’s Manual GETPROTOENT (3N)

NAME

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent — get protocol entry

SYNOPSIS

#include <netdb.h>
struct protoent sgetprotoent()

struct protoent sgetprotobyname (name)
char ename;

struct protoent sgetprotobynumber (proto)
int proto;

setprotoent (stayopen)
int stayopen

endprotoent ()

DESCRIPTION

FILES

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network protoco! data base,
letciprotocols.

struct protoent {

char ep_name; /= official name of protocol #/
char eep_aliases; /e alias list =/
long p_proto; /+ protocol number ¢/

15
The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero terminated list of alternate names for the protocol.
p_proto The protocol number.
Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getprotoent (either directly, or indirectly through one of the other
“‘getproto”” calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until EOF is encountered.

/etc/protocols

SEE ALSO

protocols(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

4th Berkeley Distribution 9 February 1983 1

GETSERVENT (3N) UNIX Programmer’s Manual GETSERVENT (3N)

NAME

getservent, getservbyport, getservbyname, setservent, endservent — get service entry

SYNOPSIS

#include <netdb.h>
struct servent egetservent()

struct servent sgetservbyname (name, proto)
char *name, eproto;

struct servent sgetservbyport(port, proto)
int port; char eproto;

setservent (stayopen)
int stayopen

endservent ()

DESCRIPTION

FILES

Getservent, getservbyname, and getservbyport each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network services data base,
letc/services.

struct servent {

char »s_name; /+ official name of service */
char »s_aliases; /e alias list «/

long s_port; /» port service resides at =/
char es_proto; /# protocol to use =/

};
The members of this structure are:
s_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in network
byte order.

s_proto The name of the protocol to use when contacting the service.
Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getservent (either directly, or indirectly through one of the other
‘“‘getserv’’ calls).

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a match-
ing protocol name or port number is found, or until EOF is encountered. If a protocol name is
also supplied (non-NULL), searches must also match the protocol.

/etc/services

SEE ALSO

getprotoent (3N), services(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Expecting
port numbers to fit in a 32 bit quantity is probably naive.

4th Berkeley Distribution 9 February 1983 1

INET (3N) UNIX Programmer’s Manual INET (3N)

NAME

inet_addr, inet_network, inet ntoa, inet_makeaddr, inet Inaof, inet_netof — Internet address
manipulation routines

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_addr(cp)
char ecp;

int inet_network (cp)
char =cp;

char =inet_ntoa (in)
struct in_addr in;

struct in_addr inet_makeaddr (net, Ina)
int net, Ina;

int inet_Inaof (in)
struct in_addr in;

int inet_netof (in)
struct in_addr in;

DESCRIPTION

The routines inet_addr and inet_network each interpret character strings representing numbers
expressed in the Internet standard ‘“.”’ notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The routine inet_ntoa takes an Internet
address and returns an ASCII string representing the address in ‘“.”’ notation. The routine
inet_makeaddr takes an Internet network number and a local network address and constructs an
Internet address from it. The routines inet_netof and inet_Inaof break apart Internet host
addresses, returning the network number and local network address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right). All net-
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES

Values specified using the ‘.’ notation take one of the following forms:

a.b.c.d

a.b.c

a.b

a
When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed as
a 32-bit integer quantity on the VAX the bytes referred to above appear as ‘‘d.c.b.a”. That is,
VAX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed
in the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as ‘‘128.net.host”’.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as ‘‘net.host”’.

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

4th Berkeley Distribution 18 July 1983 1

INET (3N) UNIX Programmer’s Manual INET (3N)

All numbers supplied as ‘‘parts’’ in a ‘“.”’ notation may be decimal, octal, or hexadecimal, as
specified in the C language (i.e. a leading Ox or 0X implies hexadecimal; otherwise, a leading 0
implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO

gethostent (3N), getnetent(3N), hosts(5), networks(5),
DIAGNOSTICS

The value —1 is returned by inet_addr and inet_network for malformed requests.
BUGS

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is
needed. The string returned by inet_ntoa resides in a static memory area.

4th Berkeley Distribution 18 July 1983 2

INTRO (3S) UNIX Programmer’s Manual INTRO (3S)

NAME

stdio — standard buffered input/output package

SYNOPSIS

#include <stdio.h>

FILE estdin;
FILE »stdout;
FILE sstderr;

DESCRIPTION

The functions described in section 3S constitute a user-level buffering scheme. The in-line
macros gefc and putc(3S) handle characters quickly. The higher level routines gets, fgets, scanf,
Sscanf, fread, puts, fputs, printf, fprintf, fwrite all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant ‘pointer” NULL (0) designates no stream at all.

An integer constant EOF (—1) is returned upon end of file or error by integer functions that
deal with streams.

Any routine that uses the standard input/output package must include the header file
<stdio.h> of pertinent macro definitions. The functions and constants mentioned in sections
labeled 3S are declared in the include file and need no further declaration. The constants, and
the following ‘functions’ are implemented as macros; redeclaration of these names is perilous:
getc, getchar, putc, putchar, feof, ferror, fileno.

SEE ALSO

open(2), close(2), read(2), write(2), fread(3S), fseek(3S), f*(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line
buffer output to a terminal by default and attempts to do this transparently by flushing the out-
put whenever a read(2) from the standard input is necessary. This is almost always tran-
sparent, but may cause confusion or malfunctioning of programs which use standard i/o rou-
tines but use read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an output
terminal, it is necessary to fflush(3S) the standard output before going off and computing so
that the output will appear.

The standard buffered functions do not interact well with certain other library and system func-
tions, especially vfork and abort.

LIST OF FUNCTIONS

Name Appears on Page Description
clearerr ferror.3s stream status inquiries
fclose fclose.3s close or flush a stream

4th Berkeley Distribution 18 July 1983 1

INTRO (3S)

feof
ferror
filush
fgetc
fgets
fileno
fprintf
fputc
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
rewind
scanf
setbuf
setbuffer
setlinebuf
sprintf
sscanf
ungetc

ferror.3s
ferror.3s
fclose.3s
getc.3s
gets.3s
ferror.3s
printf.3s
putc.3s
puts.3s
fread.3s
scanf.3s
fseek.3s
fseek.3s
fread.3s
getc.3s
getc.3s
gets.3s
getc.3s
printf.3s
putc.3s
putc.3s
puts.3s
putc.3s
fseek.3s
scanf.3s
setbuf.3s
setbuf.3s
setbuf.3s
printf.3s
scanf.3s
ungetc.3s

4th Berkeley Distribution

UNIX Programmer’s Manual

stream status inquiries

stream status inquiries

close or flush a stream

get character or word from stream
get a string from a stream

stream status inquiries

formatted output conversion

put character or word on a stream
put a string on a stream

buffered binary input/output
formatted input conversion
reposition a stream

reposition a stream

buffered binary input/output

get character or word from stream
get character or word from stream
get a string from a stream

get character or word from stream
formatted output conversion

put character or word on a stream
put character or word on a stream
put a string on a stream

put character or word on a stream
reposition a stream

formatted input conversion

assign buffering to a stream
assign buffering to a stream
assign buffering to a stream
formatted output conversion
formatted input conversion

push character back into input stream

18 July 1983

INTRO (38)

FCLOSE (3S) UNIX Programmer’s Manual FCLOSE (3S)

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
#include <stdio.h>

fclose (stream)
FILE sstream;
fllush (stream)
FILE estream;
DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.
Fclose is performed automatically upon calling exit(3).
Fflush causes any buffered data for the named output stream to be written to that file. The
stream remains open.
SEE ALSO
close(2), fopen(38), setbuf(3S)
DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file.

Tth Edition 19 January 1983 1

FERROR (38) UNIX Programmer’s Manual FERROR (3S)

NAME
ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS
#include <stdio.h>

feof (stream)
FILE estream;

ferror (stream)
FILE estream

clearerr (stream)
FILE estream

fileno (stream)
FILE estream;

DESCRIPTION
Feof returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other-
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.
Fileno returns the integer file descriptor associated with the stream, see open(2).
These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

4th Berkeley Distribution 19 January 1983 1

FOPEN (3S) UNIX Programmer’s Manual FOPEN (3S)

NAME

fopen, freopen, fdopen — open a stream
SYNOPSIS

##include <stdio.h>

FILE sfopen (filename, type)
char «filename, stype;
FILE efreopen (filename, type, stream)
char efilename, stype;
FILE estream;
FILE +fdopen (fildes, type)
char stype;
DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.
Type is a character string having one of the following values:

" open for reading
"w" create for writing
"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a *+’ to have the file opened for reading and writing.
"r+" positions the stream at the beginning of the file, "w+" creates or truncates it, and "a+"
positions it at the end. Both reads and writes may be used on read/write streams, with the limi-
tation that an fSeek, rewind, or reading an end-of-file must be used between a read and a write
or vice-versa.
Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed.
Freopen is typically used to attach the preopened constant names, stdin, stdout, stderr, to
specified files.
Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be accessed.

BUGS
Fdopen is not portable to systems other than UNIX.
The read/write types do not exist on all systems. Those systems without read/write modes will
probably treat the fype as if the *+’ was not present. These are unreliable in any event.

4th Berkeley Distribution 1 April 1981 1

o

FREAD (3S) UNIX Programmer’s Manual FREAD (3S)

NAME
fread, fwrite — buffered binary input/output

SYNOPSIS
#include <stdio.h>
fread (ptr, sizeof (sptr), nitems, stream)
FILE estream;
fwrite(ptr, sizeof (sptr), nitems, stream)
FILE estream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of #ptr from the named
input stream. It returns the number of items actually read.

If stream is stdin and the standard output is line buffered, then any partial output line will be
flushed before any call to read(2) to satisfy the fread.

Fwrite appends at most nitems of data of the type of eptr beginning at ptr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

4th Berkeley Distribution 19 January 1983 1

FSEEK (3S) UNIX Programmer’s Manual FSEEK (3S)

NAME
fseek, ftell, rewind — reposition a stream

SYNOPSIS
#include <stdio.h>

fseek (stream, offset, ptrname)
FILE sstream;
long offset;
long ftell (stream)
FILE sstream;
rewind (stream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance qffset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.
Fseek undoes any effects of ungetc(3S).
Frell returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic
cookie, and the only foolproof way to obtain an qffset for fseek.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

SEE ALSO
Iseek (2), fopen(3S)

DIAGNOSTICS
Fseek returns —1 for improper seeks.

7th Edition 19 January 1983 1

GETC(3S) UNIX Programmer’s Manual GETC (3S)

NAME

getc, getchar, fgetc, getw — get character or word from stream

SYNOPSIS

#include <stdio.h>

int getc(stream)
FILE estream;

int getcharQ

int fgetc(stream)
FILE estream;

int getw (stream)
FILE sstream;

DESCRIPTION

Gerc returns the next character from the named input stream.

Getchar() is identical to gerc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object
text.

Gerw returns the next word (in a 32-bit integer on a VAX-11) from the named input stream. It
returns the constant EOF upon end of file or error, but since that is a good integer value, feof
and ferror(3S) should be used to check the success of getw. Gerw assumes no special alignment
in the file.

SEE ALSO

fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file or upon read error.

A stop with message, ‘Reading bad file’, means an attempt has been made to read from a
stream that has not been opened for reading by fopen.

The end-of-file return from getchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly.
In particular, ‘getc(+f+ +);’ doesn’t work sensibly.

7th Edition 19 January 1983 1

GETS (3S) UNIX Programmer’s Manual GETS (3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char egets(s)
char es;
char «fgets(s, n, stream)
char »s;
FILE estream;
DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The string is terminated by a
newline character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n—1 characters, or up to a newline character, whichever comes first, from the
stream into the string s. The last character read into s is followed by a null character. Fgets
returns its first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gets and fgets return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, fgets keeps it, all in the name of backward compatibility.

7th Edition 19 January 1983 1

PRINTF (3S)

NAME

UNIX Programmer’s Manual PRINTF (3S)

printf, fprintf, sprintf — formatted output conversion

SYNOPSIS

#include <stdio.h>

printf(format [, arg] ...)
char ¢format;

fprintf(stream, format [, arg] ...)
FILE »stream;
char <format;

sprintf(s, format [, arg] ...)
char es, format;

#include <varargs.h>
_doprnt (format, args, stream)
char «format;

va_list »args;

FILE estream;

DESCRIPTION

Printf places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprintf places ‘output’ in the string s, followed by the character ‘\0’. All of
these routines work by calling the internal routine _doprnt, using the variable-length argument
facilities of varargs(3).

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg printf.

Each conversion specification is introduced by the character %. Following the %, there may be

7th Edition

an optional minus sign ‘—’ which specifies left adjustment of the converted value in.the
indicated field;

an optional digit string specifying a field width; if the converted value has fewer charac-
ters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

an optional period ‘.” which serves to separate the field width from the next digit string;

an optional digit string specifying a precision which specifies the number of digits to
appear after the decimal point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

an optional ‘#’ character specifying that the value should be converted to an ‘‘alternate
form”. For ¢, d, s, and u, conversions, this option has no effect. For o conversions,
the precision of the number is increased to force the first character of the output string
to a zero. For x(X) conversion, a non-zero result has the string 0x(0X) prepended to
it. For e, E, f, g, and G, conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point only appears in the results
of those conversions if a digit follows the decimal point). For g and G conversions,
trailing zeros are not removed from the result as they would otherwise be.

the character 1 specifying that a following d, o, x, or u corresponds to a long integer
arg.

a character which indicates the type of conversion to be applied.

1 April 1981 1

PRINTF (3S) UNIX Programmer’s Manual PRINTF (3S)

A field width or precision may be ‘s’ instead of a digit string. In this case an integer arg sup-
plies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style ‘[=]ddd.ddd’
where the number of d’s after the decimal point is equal to the precision specification

for the argument. If the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style ‘[—]d.ddde+dd’ where there is one
digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever gives full
precision in minimum space.

[The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from the string are printed

until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-11 and
65535 on a PDP-11).

% Print a ‘%’; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by printf
are printed by putc(3S).

Examples :
To print a date and time in the form ‘Sunday, July 3, 10:02°, where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);
To print = to 5 decimals:
printf("pi = %.5f", 4«atan(1.0));

SEE ALSO
putc(3S), scanf(3S), ecvt(3)

BUGS
Very wide fields (>128 characters) fail.

7th Edition 1 April 1981 2

PUTC(3S) UNIX Programmer’s Manual PUTC(3S)

NAME

putc, putchar, fputc, putw — put character or word on a stream

SYNOPSIS

#include <stdio.h>

int putc(c, stream)
char c;

FILE estream;
putchar(c)
fputc(c, stream)
FILE estream;

putw (w, stream)
FILE estream;

DESCRIPTION

Putc appends the character ¢ to the named output stream. It returns the character written.
Putchar(c) is defined as purc(c, stdout).
Fputc behaves like putc, but is a genuine function rather than a macro.

Putw appends word (that is, int) w to the output stream. It returns the word written. Putw nei-
ther assumes nor causes special alignment in the file.

SEE ALSO

fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, ferror(3S)
should be used to detect putw errors.

Because it is implemented as a macro, putc treats a stream argument with side effects improper-
ly. In particular

putc(c, of ++);
doesn’t work sensibly.
Errors can occur long after the call to putc.

Tth Edition 19 January 1983 1

PUTS (35) UNIX Programmer’s Manual PUTS (38)

NAME

puts, fputs — put a string on a stream
SYNOPSIS

#include <stdio.h>

puts(s)

char »s;

fputs(s, stream)
char es;
FILE estream;
DESCRIPTION
Puts copies the null-terminated string s to the standard output stream stdout and appends a
newline character.

Fputs copies the null-terminated string s to the named output stream.
Neither routine copies the terminal null character.

SEE ALSO
fopen(3S), gets(3S), putc(3S), printf(3S), ferror(3S)
fread(3S) for fwrite

BUGS
Puts appends a newline, fputs does not, all in the name of backward compatibility.

7th Edition 19 January 1983 : 1

SCANF (3S) UNIX Programmer’s Manual SCANF (3S)

NAME

scanf, fscanf, sscanf — formatted input conversion
SYNOPSIS

#include <stdio.h>

scanf(format [, pointer] ...)

char sformat;

fscanf(stream, format [, pointer] . ..)
FILE estream;
char sformat;

sscanf(s, format [, pointer] ...)
char es, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them ac-
cording to a format, and stores the results in its arguments. Each expects as arguments a con-
trol string format, described below, and a set of pointer arguments indicating where the convert-
ed input should be stored.

The control string usually contains conversion specifications, which are used to direct interpre-
tation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.
2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character =, an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi-
cated by . An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are

legal:

% asingle ‘%’ is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer

pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating ‘\0’,
which will be added. The input field is terminated by a space character or a newline.

¢ a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try ‘%l1s’. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to a float. The input for-
mat for floating point numbers is an optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field consisting of an E or e followed by

7th Edition 19 January 1983 1

SCANF (38) UNIX Programmer’s Manual SCANF (38)

an optionally signed integer.

[indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex ("), the input field
is all characters until the first character not in the set between the brackets; if the first char-
acter after the left bracket is “, the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, o and x may be capitalized or preceded by 1 to indicate that a
pointer to long rather than to int is in the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by 1 to indicate a pointer to double rather than to float. The
conversion characters d, 0 and x may be preceded by h to indicate a pointer to short rather than
to int.

The scanf functions return the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. The constant EOF is returned upon
end of input; note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line
25 54.32E—1 thompson
will assign to i the value 25, x the value 5.432, and name will contain ‘thompson\0’. Or,
int i; float x; char name[50];
scanf("%2d%{%=d%[1234567890]", &i, &x, name);
with input
56789 0123 56a72
will assign 56 to i, 789.0 to x, skip ‘0123’, and place the string ‘56\0’ in name. The next call to
getchar will return ‘a’.
SEE ALSO
atof(3), getc(3S), printf(38)

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short count for missing or illegal data
items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

7th Edition 19 January 1983 2

SETBUF (38) UNIX Programmer’s Manual SETBUF (3S)

NAME

setbuf, setbuffer, setlinebuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>

setbuf (stream, buf)

FILE estream;

char ebuf;

setbuffer (stream, buf, size)
FILE estream;

char ¢buf;

int size;

setlinebuf (stream)

FILE estream;

DESCRIPTION

The three types of buffering available are unbuffered, block buffered, and line buffered. When
an output stream is unbuffered, information appears on the destination file or terminal as soon
as written; when it is block buffered many characters are saved up and written as a block; when
it is line buffered characters are saved up until a newline is encountered or input is read from
stdin. Fflush (see fclose(3S)) may be used to force the block out early. Normally all files are
block buffered. A buffer is obtained from malloc(3) upon the first getc or putc(3S) on the file.
If the standard stream stdout refers to a terminal it is line buffered. The standard stream stderr
is always unbuffered.

Setbyf is used after a stream has been opened but before it is read or written. The character ar-
ray bufis used instead of an automatically allocated buffer. If byfis the constant pointer NULL,
input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big an array
is needed:

char buf[BUFSIZ];

Setbyffer, an alternate form of setbyf, is used after a stream has been opened but before it is
read or written. The character array byf whose size is determined by the size argument is used
instead of an automatically allocated buffer. If byfis the constant pointer NULL, input/output
will be completely unbuffered.

Setlinebyf is used to change stdout or stderr from block buffered or unbuffered to line buffered.
Unlike setbyfand setbyffer it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using freopen (see
Jopen(3S)). A file can be changed from block buffered or line buffered to unbuffered by using
Jfreopen followed by setbyf with a buffer argument of NULL.

SEE ALSO

BUGS

fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

The standard error stream should be line buffered by default.
The setbyffer and setlinebyf functions are not portable to non 4.2 BSD versions of UNIX.

4th Berkeley Distribution 19 January 1983 1

UNGETC (38) UNIX Programmer’s Manual UNGETC (3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>
ungetc(c, stream)
FILE estream;

DESCRIPTION
Ungetc pushes the character ¢ back on an input stream. That character will be returned by the

next gerc call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can’t push a character back.

7th Edition 19 January 1983 1

INTRO (3X) UNIX Programmer’s Manual

NAME

intro — introduction to miscellaneous library functions

DESCRIPTION

These functions constitute minor libraries and other miscellaneous run-time facilities. Most are
available only when programming in C. The list below includes libraries which provide device
terminal independent screen management routines for two
terminals, functions for managing data bases with inverted
indexes, and sundry routines used in executing commands on remote machines. The routines
getdiskbyname, rcmd, rresvport, ruserok, and rexec reside in the standard C run-time library
““—1c”. All other functions are located in separate libraries indicated in each manual entry.

independent plotting functions,
dimensional non-bitmap display

FILES
/lib/libc.a
/usr/lib/libdbm.a
/usr/lib/libtermcap.a
/usr/lib/libcurses.a
/usr/lib/1ib2648.a
/usr/lib/libplot.a

LIST OF FUNCTIONS
Name Appears on Page
arc plot.3x
assert assert.3x
circle plot.3x
closepl plot.3x
cont plot.3x
curses curses.3x
dbminit dbm.3x
delete dbm.3x
endfsent getfsent.3x
erase plot.3x
fetch dbm.3x
firstkey dbm.3x
getdiskbyname getdisk.3x
getfsent getfsent.3x
getfsfile getfsent.3x
getfsspec getfsent.3x
getfstype getfsent.3x
initgroups initgroups.3x
label plot.3x
1ib2648 1ib2648.3x
line plot.3x
linemod plot.3x
move plot.3x
nextkey dbm.3x
plot: openpl plot.3x
point plot.3x
rcmd remd. 3x
rexec rexec.3x
rresvport rcmd.3x
ruserok remd. 3x
setfsent getfsent.3x
space plot.3x

4th Berkeley Distribution

Description

graphics interface

program verification

graphics interface

graphics interface

graphics interface

screen functions with ‘‘optimal®® cursor motion
data base subroutines

data base subroutines

get file system descriptor file entry

graphics interface

data base subroutines

data base subroutines

get disk description by its name

get file system descriptor file entry

get file system descriptor file entry

get file system descriptor file entry

get file system descriptor file entry

initialize group access list

graphics interface

subroutines for the HP 2648 graphics terminal
graphics interface

graphics interface

graphics interface

data base subroutines

graphics interface

graphics interface

routines for returning a stream to a remote command
return stream to a remote command

routines for returning a stream to a remote command
routines for returning a stream to a remote command
get file system descriptor file entry

graphics interface

8 July 1983

INTRO (3X)

INTRO (3X)

store
tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

4th Berkeley Distribution

UNIX Programmer’s Manual

dbm.3x

termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x

data base subroutines

terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines

8 July 1983

INTRO (3X)

ASSERT (3X) UNIX Programmer’s Manual ASSERT (3X)

NAME
assert — program verification

SYNOPSIS
#tinclude <assert.h>
assert (expression)

DESCRIPTION
Assert is & macro that indicates expression is expected to be true at this point in the program. It
causes an exit(2) with a diagnostic comment on the standard output when expression is false (0).
Compiling with the cc(1) option ~DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
‘Assertion failed: file fline n.’ F is the source file and n the source line number of the assert

statement.

7th Edition 19 January 1983 1

CURSES (3X)

NAME

UNIX Programmer’s Manual

CURSES (3X)

curses — screen functions with ‘‘optimal’’ cursor motion

SYNOPSIS

ec [flags] files —Icurses —Itermeap [libraries]

DESCRIPTION

These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. Then the
refresh () tells the routines to make the current screen look like the new one. In order to initial-
ize the routines, the routine initscr() must be called before any of the other routines that deal
with windows and screens are used. The routine endwin() should be called before exiting.

SEE ALSO

Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,

ioctl(2), getenv(3), tty(4), termcap(5)

AUTHOR
Ken Arnold

FUNCTIONS
addch(ch)
addstr (str)
box(win,vert,hor)
crmode()
clear()
clearok (scr,boolf)
clrtobot()
cirtoeol ()
delch()
deleteln()
delwin (win)
echo()
endwin()
erase()
getch()
getcap(name)
getstr(str)
gettmode ()
getyx(win,y,x)
inch()
initscr ()
insch(c)
insertin()
leaveok (win,boolf)
longname (termbuf,name)
move(y,x)
mvcur (lasty, lastx,newy,newx)
newwin (lines,cols,begin_y,begin_x)
nl()
nocrmode()
noecho()
nonlt()
noraw()
overlay(winl,win2)
overwrite (winl,win2)

4th Berkeley Distribution

add a character to stdscr

add a string to stdscr

draw a box around a window
set cbreak mode

clear stdscr

set clear flag for scr

clear to bottom on stdscr
clear to end of line on stdscr
delete a character

delete a line

delete win

set echo mode

end window modes

erase stdscr

get a char through stdscr

get terminal capability name
get a string through stdscr
get tty modes

get (y,x) co-ordinates

get char at current (y,x) co-ordinates
initialize screens

insert a char

insert a line

set leave flag for win

get long name from termbyf
move to (y,x) on stdscr
actually move cursor

create a new window

set newline mapping

unset cbreak mode

unset echo mode

unset newline mapping
unset raw mode

overlay winl on win2
overwrite winl on top of win2

19 January 1983 1

CURSES (3X)

printw(fmt,arg1,arg2,...)
raw()

refresh()

resetty ()

savetty()
scanw(fmt,argl,arg2,...)
scroll(win)

scrollok (win,boolf)
setterm(name)
standend()

standout()

subwin(win, lines,cols,begin_y,begin_x)
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)

wclrtoeol (win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertin(win)

wmove (win,y,x)
wprintw(win,fmt,argl,arg2,...)
wrefresh(win)
wscanw(win,fmt,argl,arg2,...)
wstandend (win)
wstandout (win)

BUGS

4th Berkeley Distribution

UNIX Programmer’s Manual

19 January 1983

CURSES (3X)

printf on stdscr

set raw mode

make current screen look like stdscr
reset tty flags to stored value
stored current tty flags

scanf through stdscr

scroll wir one line

set scroll flag

set term variables for name
end standout mode

start standout mode

create a subwindow
“‘change’’ all of win
printable version of ch

add char to win

add string to win

clear win

clear to bottom of win

clear to end of line on win
delete char from win

delete line from win

erase win

get a char through win

get a string through win

get char at current (y,x) in win
insert char into win

insert line into win

set current (y,x) co-ordinates on win
printf on win

make screen look like win
scanf through win

end standout mode on win
start standout mode on win

DBM (3X) UNIX Programmer’s Manual DBM (3X)

NAME

dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines

SYNOPSIS

typedef struct {
char «dptr;
int dsize;

} datum;

dbminit (file)

char ofile;

datum fetch (key)

datum key;

store(key, content)

datum key, content;

delete(key)

datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION

These functions maintain key/content pairs in a data base. The functions will handle very large
(a billion blocks) databases and will access a keyed item in one or two file system accesses. The
functions are obtained with the loader option —ldbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data
base is stored in two files. One file is a directory containing a bit map and has ‘.dir’ as its suffix.
The second file contains all data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files file.dir and file.pag must exist. (An empty database is created by creating zero-length
‘.dir’ and ‘.pag’ files.)

Once open, the data stored under a key is accessed by ferch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in
a database may be made, in an (apparently) random order, by use of firstkey and nextkey. First-
key will return the first key in the database. With any key nextkey will return the next key in
the database. This code will traverse the data base:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key))

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates ok.
Routines that return a datum indicate errors with a null (0) dptr.

The ‘.pag’ file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files can-
not be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subse-
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on a single block.

4th Berkeley Distribution 19 January 1983 1

DBM (3X) UNIX Programmer’s Manual DBM (3X)

Store will return an error in the event that a disk block fills with inseparable data.
Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function, not on any-
thing interesting.

4th Berkeley Distribution 19 January 1983 2

GETDISKBYNAME (3X) UNIX Programmer’s Manual GETDISKBYNAME (3X)

NAME
getdiskbyname — get disk description by its name
SYNOPSIS
#include <disktab.h>
struct disktab ¢
getdiskbyname (name)
char ename;
DESCRIPTION
Getdiskbyname takes a disk name (e.g. rm03) and returns a structure describing its geometry
information and the standard disk partition tables. All information obtained from the disk-
tab(5) file.
<disktab.h> has the following form:

/e @ (#)disktab.h 4.2 (Berkeley) 3/6/83 «/

/e
= Disk description table, see disktab(5)
o/
##defineDISKTAB "/etc/disktab"
struct disktab {
char »d_name; /#+ drive name s/
char «d_type; /+ drive type +/
int d_secsize; /= sector size in bytes +/
int d_ntracks; /+ # tracks/cylinder +/
int d_nsectors; /+ # sectors/track =/
int d_ncylinders; /* # cylinders */
int d_rpm; /+ revolutions/minute +/
struct partition {
int p_size; /# #tsectors in partition =/

short p_bsize;/+ block size in bytes «/
short p_fsize; /+ frag size in bytes *+/
} d_partitions[8];
)

struct disktab *getdiskbyname();

SEE ALSO
disktab(5)

BUGS
This information should be obtained from the system for locally ivailable disks (in particular,
the disk partition tables).

4th Berkeley Distribution 4 March 1983 1

GETFSENT (3X) UNIX Programmer’s Manual GETFSENT (3X)

NAME

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent — get file system descriptor file entry

SYNOPSIS

#include <fstab.h>
struct fstab getfsent()

struct fstab »getfsspec(spec)
char sspec;

struct fstab sgetfsfile (file)
char «file;

struct fstab sgetfstype(type)
char etype;

int setfsent()
int endfsent ()

DESCRIPTION

FILES

Getfsent, getfsspec, getfstype, and getfifile each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file,
<fstab.h>.

struct fstab{
char «fs_spec;
char «fs_file;
char »fs_type;
int fs_freq;
int fs_passno;
|5
The fields have meanings described in fstab(5).
Getfsent reads the next line of the file, opening the file if necessary.
Setfsent opens and rewinds the file.
Endfsent closes the file.

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getfstype does like-
wise, matching on the file system type field.

/etc/fstab

SEE ALSO

fstab(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.

4th Berkeley Distribution 19 January 1983 1

INITGROUPS (3X) UNIX Programmer’s Manual INITGROUPS (3X)

NAME
initgroups — initialize group access list
SYNOPSIS
initgroups(name, basegid)
char *name;
int basegid;
DESCRIPTION
Initgroups reads through the group file and sets up, using the setgroups(2) call, the group access
list for the user specified in name. The basegid is automatically included in the groups list.
Typically this value is given as the group number from the password file.
FILES
/etc/group
SEE ALSO
setgroups(2)
DIAGNOSTICS
Initgroups returns —1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these
routines, the group structure will be overwritten in the call to initgroups.

Noone seems to keep /etc/group up to date.

4th Berkeley Distribution 25 February 1983 1

LIB2648 (3X) UNIX Programmer’s Manual LIB2648 (3X)

NAME
1ib2648 — subroutines for the HP 2648 graphics terminal

SYNOPSIS
#include <stdio.h>

typedef char bitmat;
FILE etrace;

cc file.c —12648

DESCRIPTION
Lib2648 is a general purpose library of subroutines useful for interactive graphics on the
Hewlett-Packard 2648 graphics terminal. To use it you must call the routine #yinit() at the
beginning of execution, and done() at the end of execution. All terminal input and output
must go through the routines rawchar, readline, outchar, and outstr.

Lib2648 does the necessary "E/"F handshaking if getenv(“TERM’) returns ““hp2648°°, as it will
if set by tset(1). Any other value, including for example *“2648”°, will disable handshaking.

Bit matrix routines are provided to model the graphics memory of the 2648. These routines are
generally useful, but are specifically useful for the update function which efficiently changes
what is on the screen to what is supposed to be on the screen. The primative bit matrix rou-
tines are newmat, mat, and setmat.

The file frace, if non-null, is expected to be a file descriptor as returned by fopen. If so, lib2648
will trace the progress of the output by writing onto this file. It is provided to make debugging
output feasible for graphics programs without messing up the screen or the escape sequences
being sent. Typical use of trace will include:
switch (argvi11[1]) {
case ‘T
trace = fopen("trace”, "w");
brezk;

if (trace)
fprintf(trace, "x is %d, y is %s\n", x, y);

dumpmat("before update”, xmat);

ROUTINES
agoto(x, y)
Move the alphanumeric cursor to position (x, y), measured from the upper left corner
of the screen.

a0ff0 Turn the alphanumeric display off.
aon() Turn the alphanumeric display on.

areaclear (rmin, emin, rmax, cmax)
Clear the area on the graphics screen bordered by the four arguments. In normal mode
the area is set to all black, in inverse video mode it is set to all white.

beep(O Ring the bell on the terminal.

bitcopy (dest, src, rows, cols) bitmat dest,
Copy a rows by cols bit matrix from src to (user provided) dest:.

cleara()
Clear the alphanumeric display.

clearg()

4th Berkeley Distribution 1 March 1980 1

LIB2648 (3X) UNIX Programmer’s Manual LIB2648 (3X)

Clear the graphics display. Note that the 2648 will only clear the part of the screen that
is visible if zoomed in.

curoff ()
Turn the graphics cursor off.

curon ()
Turn the graphics cursor on.

dispmsg (str, x, y, maxlen) char estr;
Display the message str in graphics text at position (x,). The maximum message
length is given by maxlen, and is needed to for dispmsg to know how big an area to
clear before drawing the message. The lower left corner of the first character is at (x,
»).

done() Should be called before the program exits. Restores the tty to normal, turns off graph-
ics screen, turns on alphanumeric screen, flushes the standard output, etc.

draw(x, y)
Draw a line from the pen location to (x, y). As with all graphics coordinates, (x, y) is
measured from the bottom left corner of the screen. (x, y) coordinates represent the
first quadrant of the usual Cartesian system.

drawbox (r, ¢, color, rows, cols)
Draw a rectangular box on the graphics screen. The lower left corner is at location (7,
¢). The box is rows rows high and cols columns wide. The box is drawn if color is 1,
erased if coloris 0. (r, ¢c) absolute coordinates represent row and column on the screen,
with the origin at the lower left. They are equivalent to (x, y) except for being reversed
in order.

dumpmat (msg, m, rows, cols) char *msg; bitmat m;
If trace is non-null, write a readable ASCII representation of the matrix m on trace. Msg
is a label to identify the output.

emptyrow (m, rows, cols, r) bitmat m;
Returns 1 if row r of matrix m is all zero, else returns 0. This routine is provided
because it can be implemented more efficiently with a knowledge of the internal
representation than a series of calls to mar.

error(msg) char *msg;
Default error handler. Calls message(msg) and returns. This is called by certain rou-
tines in /ib2648. It is also suitable for calling by the user program. It is probably a
good idea for a fancy graphics program to supply its own error procedure which uses
setjmp(3) to restart the program.

gdefault()
Set the terminal to the default graphics modes.

goff() Turn the graphics display off.
gon() Turn the graphics display on.
koff() Turn the keypad off.

kon() Turn the keypad on. This means that most special keys on the terminal (such as the
alphanumeric arrow keys) will transmit an escape sequence instead of doing their func-
tion locally.

line(x1, y1, x2, y2)
Draw a line in the current mode from (xI, yI) to (x2, y2). This is equivalent to
move(x1, y1); draw(x2, y2); except that a bug in the terminal involving repeated lines
from the same point is compensated for.

4th Berkeley Distribution 1 March 1980 2

LIB2648 (3X) UNIX Programmer’s Manual LIB2648 (3X)

lowleft)
Move the alphanumeric cursor to the lower left (home down) position.

mat(m, rows, cols, r, ¢) bitmat m;
Used to retrieve an element from a bit matrix. Returns 1 or 0 as the value of the [r, ¢/
element of the rows by cols matrix m. Bit matrices are numbered (, ¢) from the upper
left corner of the matrix, beginning at (0, 0). R represents the row, and c represents
the column.

message(str) char estr;
Display the text message str at the bottom of the graphics screen.

minmax(g, rows, cols, rmin, cmin, rmax, cmax) bitmat g;

int srmin, scmin, *rmax, *cmax;
Find the smallest rectangle that contains all the 1 (on) elements in the bit matrix g.
The coordinates are returned in the variables pointed to by rmin, cmin, rmax, cmax.

move(x, y)
Move the pen to location (x, y). Such motion is internal and will not cause output until
a subsequent sync().

movecurs (x, y)
Move the graphics cursor to location (x, y).

bitmat newmat (rows, cols)
Create (with malloc(3)) a new bit matrix of size rows by cols. The value created (e.g. a
pointer to the first location) is returned. A bit matrix can be freed directly with free.

outchar(c) char c;
Print the character ¢ on the standard output. All output to the terminal should go
through this routine or outstr.

outstr(str) char estr;
Print the string str on the standard output by repeated calls to outchar.

printg)
Print the graphics display on the printer. The printer must be configured as device 6
(the default) on the HPIB.

char rawchar()
Read one character from the terminal and return it. This routine or readline should be
used to get all input, rather than getchar(3).

rboff() Turn the rubber band line off.
rbon() Turn the rubber band line on.

char erdchar(c) char c;
Return a readable representation of the character c. If c is a printing character it returns
itself, if a control character it is shown in the "X notation, if negative an apostrophe is
prepended. Space returns *', rubout returns "?.
NOTE: A pointer to a static place is returned. For this reason, it will not work to pass
rdchar twice to the same fprintf/ sprintfcall. You must instead save one of the values in
your own buffer with strcpy.

readline (prompt, msg, maxlen) char sprompt, *msg;
Display prompt on the bottom line of the graphics display and read one line of text from
the user, terminated by a newline. The line is placed in the buffer msg, which has size
maxlen characters. Backspace processing is supported.

setclear()

4th Berkeley Distribution 1 March 1980 3

LIB2648 (3X) UNIX Programmer’s Manual LIB2648 (3X)

Set the display to draw lines in erase mode. (This is reversed by inverse video mode.)

setmat(m, rows, cols, r, ¢, val) bitmat m;
The basic operation to store a value in an element of a bit matrix. The [r, ¢/ element
of m is set to val, which should be either 0 or 1.

setset O
Set the display to draw lines in normal (solid) mode. (This is reversed by inverse video
mode.)

setxor(Q
Set the display to draw lines in exclusive or mode.

sync(Q Force all accumulated output to be displayed on the screen. This should be followed by
fllush(stdout). The cursor is not affected by this function. Note that it is normally
never necessary to call sync, since rawchar and readline call sync() and ffush(stdout)
automatically.

togvid O
Toggle the state of video. If in normal mode, go into inverse video mode, and vice
versa. The screen is reversed as well as the internal state of the library.

ttyinitQ
Set up the terminal for processing. This routine should be called at the beginning of
execution. It places the terminal in CBREAK mode, turns off echo, sets the proper
modes in the terminal, and initializes the library.

update (mold, mnew, rows, cols, baser, basec) bitmat mold, mnew;
Make whatever changes are needed to make a window on the screen look like mnew.
Mold is what the window on the screen currently looks like. The window has size rows
by cols, and the lower left corner on the screen of the window is [baser, basec]. Note:
update was not intended to be used for the entire screen. It would work but be very
slow and take 64K bytes of memory just for mold and mnew. It was intended for 100
by 100 windows with objects in the center of them, and is quite fast for such windows.

vidinv(Q
Set inverse video mode.

vidnorm Q)
Set normal video mode.
zermat (m, rows, cols) bitmat m;
Set the bit matrix m to all zeros.
zoomn (size)
Set the hardware zoom to value size, which can range from 1 to 15.

zoomoff()
Turn zoom off. This forces the screen to zoom level 1 without affecting the current
internal zoom number.

zoomon ()
Turn zoom on. This restores the screen to the previously specified zoom size.

DIAGNOSTICS
The routine error is called when an error is detected. The only error currently detected is
overflow of the buffer provided to readline.

Subscripts out of bounds to sefmat return without setting anything.

FILES
/ust/lib/1ib2648.a

4th Berkeley Distribution 1 March 1980 4

LIB2648 (3X) UNIX Programmer’s Manual LIB2648 (3X)

SEE ALSO
fed(1)
AUTHOR
Mark Horton
BUGS
This library is not supported. It makes no attempt to use all of the features of the terminal,
only those needed by fed. Contributions from users will be accepted for addition to the library.

The HP 2648 terminal is somewhat unreliable at speeds over 2400 baud, even with the "E/"F
handshaking. In an effort to improve reliability, handshaking is done every 32 characters. (The
manual claims it is only necessary every 80 characters.) Nonetheless, I/0 errors sometimes still
occur.

There is no way to control the amount of debugging output generated on trace without modify-
ing the source to the library.

4th Berkeley Distribution 1 March 1980 5

PLOT (3X) UNIX Programmer’s Manual PLOT (3X)

NAME
plot: openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl — graph-
ics interface

SYNOPSIS
openpl)
erase()

label (s)
char sll;

line(x1, y1, x2, y2)
circle(x, y, r)

arc(x, y, x0, y0, x1, y1)
move(x, y)

cont(x, y)

point(x, y)

linemod (s)
char sll;

space(x0, y0, x1, y1)
closepl 0
DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See

plot(5) for a description of their effect. Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

String arguments to /abel and linemod are null-terminated, and do not contain newlines.
Various flavors of these functions exist for different output devices. They are obtained by the
following /d(1) options:

—Iplot device-independent graphics stream on standard output for plor(1) filters
=1300 GSI 300 terminal

=1300s GSI 300S terminal

—1450 DASI 450 terminal

—14014 Tektronix 4014 terminal

SEE ALSO
plot(5), plot(1G), graph(1G)

7th Edition 19 January 1983 1

RCMD (3X) UNIX Programmer’s Manual RCMD (3X)

NAME

remd, rresvport, ruserok — routines for returning a stream to a remote command

SYNOPSIS

rem = rcmd (ahost, inport, locuser, remuser, cmd, fd2p);
char #eahost;

u_short inport;

char +locuser, sremuser, *cmd;

int «fd2p;

s = rresvport(port);
int port;

ruserok (rhost, superuser, ruser, luser);
char srhost;

int superuser;

char sruser, *luser;

DESCRIPTION

Rcmd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space. Ruserok is a routine used by
servers to authenticate clients requesting service with rcmd. All three functions are present in
the same file and are used by the rshd(8C) server (among others).

Rcemd looks up the host =ahost using gethostbyname (3N), returning —1 if the host does not ex-
ist. Otherwise *ahost is set to the standard name of the host and a connection is established to
a server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdin and stdout. If fd2p is non-zero, then an auxiliary channel to a con-
trol process will be set up, and a descriptor for it will be placed in */d2p. The control process
will return diagnostic output from the command (unit 2) on this channel, and will also accept
bytes on this channel as being UNIX signal numbers, to be forwarded to the process group of
the command. If fd2p is 0, then the stderr (unit 2 of the remote command) will be made the
same as the stdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This sock-
et is suitable for use by rcmd and sevral other routines. Privileged addresses consist of a port in
the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a socket.

Ruserok takes a remote host’s name, as returned by a gethostent(3N) routine, two user names
and a flag indicating if the local user’s name is the super-user. It then checks the files
letc/hosts.equiv and, possibly, .rhosts in the current working directory (normally the local user’s
home directory) to see if the request for service is allowed. A 1 is returned if the machine
name is listed in the ‘‘hosts.equiv” file, or the host and remote user name are found in the
‘“rhosts” file; otherwise ruserok returns 0. If the superuser flag is 1, the checking of the
“‘host.equiv’’ file is bypassed.

SEE ALSO

BUGS

rlogin(1C), rsh(1C), rexec(3X), rexecd(8C), rlogind(8C), rshd(8C)

There is no way to specify options to the socket call which rcmd makes.

4th Berkeley Distribution 17 March 1982 1

REXEC (3X) UNIX Programmer’s Manual REXEC (3X)

NAME

rexec — return stream to a remote command

SYNOPSIS

rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char =+ahost;

u_short inport;

char suser, *passwd, scmd;

int fd2p;

DESCRIPTION

Rexec looks up the host *ahost using gethostbyname(3N), returning —1 if the host does not ex-
ist. Otherwise *ahost is set to the standard name of the host. If a username and password are
both specified, then these are used to authenticate to the foreign host; otherwise the environ-
ment and then the user’s .netrc file in his home directory are searched for appropriate informa-
tion. If all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection; it
will normally be the value returned from the call ‘‘getservbyname("exec”, "tcp")”’ (see
getservent(3N)). The protocol for connection is described in detail in rexecd(8C).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdin and stdout. If f42p is non-zero, then a auxiliary channel to a control
process will be setup, and a descriptor for it will be placed in +fd2p. The control process will re-
turn diagnostic output from the command (unit 2) on this channel, and will also accept bytes
on this channel as being UNIX signal numbers, to be forwarded to the process group of the
command. If fd2pis 0, then the stderr (unit 2 of the remote command) will be made the same
as the stdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

SEE ALSO

BUGS

remd(3X), rexecd(8C)

There is no way to specify options to the socket cali which rexec makes.

3rd Berkeley Distribution 17 March 1982 1

TERMCAP (3X) UNIX Programmer’s Manual TERMCAP (3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — terminal independent operation routines

SYNOPSIS
char PC;
char *BC;
char «UP;
short ospeed;

tgetent (bp, name)
char *bp, ename;

tgetnum (id)
char »id;

tgetflag (id)

char eid;

char ¢
tgetstr(id, area)
char eid, searea;

char
tgoto(cm, destcol, destline)
char ecm;

tputs(cp, affent, oute)
register char scp;

int affent;

int (soutc) 0;

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base termcap(5).
These are low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal mame into the buffer at bp. Bp should be a character
buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tgetflag, and
tgetstr. Tgetent returns —1 if it cannot open the fermcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well. It will look in the environment for a TERMCAP vari-
able. If found, and the value does not begin with a slash, and the terminal type mame is the
same as the environment string TERM, the TERMCAP string is used instead of reading the
termcap file. If it does begin with a slash, the string is used as a path name rather than
letc/termcap. This can speed up entry into programs that call igetent, as well as to help debug
new terminal descriptions or to make one for your terminal if you can’t write the file
letcltermeap.

Tgetnum gets the numeric value of capability id, returning —1 if is not given for the terminal.
Tgetflag returns 1 if the specified capability is present in the terminal’s entry, 0 if it is not.
Tgetstr gets the string value of capability id, placing it in the buffer at area, advancing the area
pointer. It decodes the abbreviations for this field described in termcap(5), except for cursor
addressing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line destline.
It uses the external variables UP (from the up capability) and BC (if be is given rather than bs)
if necessary to avoid placing \n, "D or “@ in the returned string. (Programs which call tgoto
should be sure to turn off the XTABS bit(s), since fgofo may now output a tab. Note that pro-
grams using termcap should in general turn off XTABS anyway since some terminals use con-
trol I for other functions, such as nondestructive space.) If a % sequence is given which is not
understood, then fgoto returns “OO0PS”’.

4th Berkeley Distribution 9 February 1983 1

TERMCAP (3X) UNIX Programmer’s Manual TERMCAP (3X)

Tputs decodes the leading padding information of the string cp; qffcnt gives the number of lines
affected by the operation, or 1 if this is not applicable, outc is a routine which is called with
each character in turn. The external variable ospeed should contain the output speed of the ter-
minal as encoded by stty(3). The external variable PC should contain a pad character to be
used (from the pe capability) if a null (*@) is inappropriate.

FILES
/usr/lib/libtermcap.a —Itermcap library
/etc/termcap data base
SEE ALSO
ex(1), curses(3X), termcap(5)
AUTHOR
William Joy

4th Berkeley Distribution 9 February 1983

INTRO (3C) UNIX Programmer’s Manual INTRO (3C)

NAME
intro — introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion of libc. They are automatically
loaded as needed by the C compiler cc(1). The link editor searches this library under the
““—Ic”” option. Use of these routines should, for the most part, be avoided. Manual entries for
the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Name Appears on Page Description

alarm alarm.3c schedule signal after specified time

ftime time.3c get date and time

getpw getpw.3c get name from uid

gtty stty.3c set and get terminal state (defunct)
nice nice.3c set program priority

pause pause.3c stop until signal

rand rand.3c random number generator

signal signal.3c simplified software signal facilities
srand rand.3c random number generator

stty stty.3c set and get terminal state (defunct)
time time.3c get date and time

times times.3c get process times

utime utime.3c set file times

vlimit vlimit.3¢c control maximum system resource consumption

vtimes vtimes.3c get information about resource utilization

4th Berkeley Distribution 18 July 1983 1

ALARM (3C) UNIX Programmer’s Manual ALARM (3C)

NAME

alarm — schedule signal after specified time
SYNOPSIS

alarm (seconds)

unsigned seconds;
DESCRIPTION

This interface is obsoleted by setitimer(2).

Alarm causes signal SIGALRM, see signal(3C), to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is canceled. Because of scheduling delays, resumption of execution of when the
signal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3C), sleep(3)

7th Edition 18 July 1983 1

GETPW (3C) UNIX Programmer’s Manual GETPW (3C)

NAME
getpw — get name from uid

SYNOPSIS
getpw (uid, buf)
char sbuf;

DESCRIPTION
Getpw is obsoleted by getpwuid (3).
Getpw searches the password file for the (numerical) wid, and fills in byf with the corresponding
line; it returns non-zero if wid could not be found. The line is null-terminated.
FILES
/etc/passwd
SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

7th Edition 19 January 1983 1

NICE (3C) UNIX Programmer’s Manual NICE (3C)

NAME
nice — set program priority

SYNOPSIS
nice(incr)

DESCRIPTION
This interface is obsoleted by setpriority(2).
The scheduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration.
Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range —20 (most urgent) to 20 (least).
The priority of a process is passed to a child process by fork(2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with argu-
ments —40 (goes to priority —20 because of truncation), 20 (to get to 0), then 0 (to maintain
compatibility with previous versions of this call).

SEE ALSO
nice (1), setpriority (2), fork(2), renice(8)

4th Berkeley Distribution 1 April 1983 1

PAUSE (3C) UNIX Programmer’s Manual PAUSE (3C)

NAME
pause — stop until signal

SYNOPSIS
pause()

DESCRIPTION
Pause never returns normally. It is used to give up control while waiting for a signal from
kill(2) or an interval timer, see setitimer(2). Upon termination of a signal handler started dur-
ing a pause, the pause call will return.

RETURN VALUE
Always returns —1.

ERRORS

Pause always returns:

[EINTR] The call was interrupted.
SEE ALSO

kill(2), select(2), sigpause(2)

4th Berkeley Distribution 18 July 1983 1

RAND (3C) UNIX Programmer’s Manual RAND (3C)

NAME
rand, srand — random number generator

SYNOPSIS
srand (seed)
int seed;

rand

DESCRIPTION
The newer random (3) should be used in new applications; rand remains for compatibilty.

Rand uses a multiplicative congruential random number g}enerator with period 2*? to return suc-
cessive pseudo-random numbers in the range from 0 to 2 -1

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

SEE ALSO
random (3)

Tth Edition 19 January 1983 1

SIGNAL (3C) UNIX Programmer’s Manual SIGNAL (3C)

signal — simplified software signal facilities

SYNOPSIS

#include <signal.h>

(eaignal(sig, func)) 0
void (sfunc) Q;

DESCRIPTION

Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt,
stop), by a program error (bus error, etc.), by request of another program (kill), or when a pro-
cess is stopped because it wishes to access its control terminal while in the background (see
ny(4)). Signals are optionally generated when a process resumes after being stopped, when the
status of child processes changes, or when input is ready at the control terminal. Most signals
cause termination of the receiving process if no action is taken; some signals instead cause the
process receiving them to be stopped, or are simply discarded if the process has not requested
otherwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows signals either to
be ignored or to cause an interrupt to a specified location. The following is a list of all signals
with names as in the include file <signal.h>:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3« quit

SIGILL 4+ illegal instruction

SIGTRAP Se trace trap

SIGIOT 6+ IOT instruction

SIGEMT T« EMT instruction

SIGFPE 8+ floating point exception

SIGKILL 9 kill (cannot be caught or ignored)

SIGBUS 10+ bus error

SIGSEGV 11+ segmentation violation

SIGSYS 12+ bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16® urgent condition present on socket
SIGSTOP 17¢ stop (cannot be caught or ignored)
SIGTSTP 18¢ stop signal generated from keyboard
SIGCONT 19@ continue after stop

SIGCHLD 20@ child status has changed

SIGTTIN 211 background read attempted from control terminal
SIGTTOU 22% background write attempted to control terminal
SIGIO 23e i/o is possible on a descriptor (see fentk(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination
(with a core image for starred signals) except for signals marked with ® or t. Signals marked
with @ are discarded if the action is SIG_DFL; signals marked with t cause the process to stop.
If func is SIG_IGN the signal is subsequently ignored and pending instances of the signal are

4th Berkeley Distribution 15 June 1983 1

SIGNAL (3C) UNIX Programmer’s Manual SIGNAL (3C)

discarded. Otherwise, when the signal occurs further occurences of the signal are automatically
blocked and func is called.

A return from the function unblocks the handled signal and continues the process at the point
it was interrupted. Unlike previous signal facilities, the handler finc remains installed after
a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) value of finc for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. Execve(2) resets all caught signals to
the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, —1 is returned and errno is set
to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

[EINVAL) Sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2),
setjmp(3), tty(4)

NOTES (VAX-i1)
The handler routine can be declared:

handler (sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility
mode faults, the code provided by the hardware. Scp is a pointer to the struct sigcontext used by
the system to restore the process context from before the signal. Compatibility mode faults are
distinguished from the other SIGILL traps by having PSL_CM set in the psl.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in <signal.h>:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow SIGFPE FPE_INTOVF_TRAP
Integer division by zero SIGFPE FPE_INTDIV_TRAP
Floating overflow trap SIGFPE FPE_FLTOVF_TRAP
Floating/decimal division by zero SIGFPE FPE_FLTDIV_TRAP
Floating underflow trap SIGFPE FPE_FLTUND_TRAP
Decimal overflow trap SIGFPE FPE_DECOVF_TRAP
Subscript-range SIGFPE FPE_SUBRNG_TRAP
Floating overflow fault SIGFPE FPE_FLTOVF_FAULT
Floating divide by zero fault SIGFPE FPE_FLTDIV_FAULT
Floating underflow fault SIGFPE FPE_FLTUND_FAULT

Length access control SIGSEGV

Protection violation SIGBUS

4th Berkeley Distribution 15 June 1983 2

SIGNAL (3C)

Reserved instruction

Customer-reserved instr.

Reserved operand
Reserved addressing
Trace pending

Bpt instruction
Compatibility-mode
Chme

Chms

Chmu

4th Berkeley Distribution

UNIX Programmer’s

SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

15 June 1983

Manual SIGNAL (3C)

ILL_RESAD_FAULT

ILL_PRIVIN_FAULT
ILL_RESOP_FAULT

hardware supplied code

STTY (3C) UNIX Programmer’s Manual STTY (3C)

NAME
stty, gtty — set and get terminal state (defunct)

SYNOPSIS
#include <sgtty.h>

stty (fd, buf)
int fd;
struct sgttyb ebuf;

gtty (fd, buf)
int fd;
struct sgttyb buf;
DESCRIPTION
This interface is obsoleted by ioctl(2).
Sty sets the state of the terminal associated with fd. Gty retrieves the state of the terminal
associated with fd. To set the state of a terminal the call must have write permission.
The sty call is actually ‘‘iocti(fd, TIOCSETP, buf)’’, while the gmy call is ‘‘ioctl(fd,
TIOCGETP, buf)”. See ioct!(2) and tty(4) for an explanation.
DIAGNOSTICS
If the call is successful 0 is returned, otherwise —1 is returned and the global variable errno
contains the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

4th Berkeley Distribution 1 April 1983 1

TIME (3C) UNIX Programmer’s Manual TIME (3C)

NAME
time, ftime — get date and time
SYNOPSIS
long time(0)
long time(tloc)
long stloc;
##include <sys/types.h>
#include <sys/timeb.h>
ftime (tp)
struct timeb tp;

DESCRIPTION
These interfaces are obsoleted by gettimeofday(2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which toc points.

The ftime entry fills in a structure pointed to by its argument, as defined by < sys/timeb.h>:
/+ timeb.h 6.183/07/29+/

/*

« Structure returned by ftime system call
./

struct timeb

time_t time;

unsigned short millitm;

short timezone;

short dstflag;
|5
The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), ctime(3)

4th Berkeley Distribution 1 April 1983 1

CaJ

TIMES (3C) UNIX Programmer’s Manual TIMES (3C)

NAME
times — get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

times (buffer)
struct tms sbuffer;

DESCRIPTION

This interface is obsoleted by getrusage(2).

Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/HZ seconds, where HZ is 60.

This is the structure returned by times:
/* times.h 6.1 83/07/29

/*

= Structure returned by times()

+/

struct tms {
time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;

} time_t tms_cstime;

b

«/

/+ user time =/

/* system time */

/+ user time, children +/
/+ system time, children =/

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO

time (1), getrusage(2), wait3(2), time(3)

4th Berkeley Distribution

1 April 1983

UTIME (3C) UNIX Programmer’s Manual UTIME (3C)

NAME
utime — set file times

SYNOPSIS
#include <sys/types.h>

utime(file, timep)
char efile;
time_t timepl2];
DESCRIPTION
This interface is obsoleted by utimes(2).
The utime call uses the ‘accessed’ and ‘updated’ times in that order from the timep vector to set
the corresponding recorded times for file.
The caller must be the owner of the file or the super-user. The ‘inode-changed’ time of the file
is set to the current time.

SEE ALSO
utimes(2), stat(2)

4th Berkeley Distribution 1 April 1983 1

VLIMIT (3C) UNIX Programmer’s Manual VLIMIT (3C)

NAME

vlimit — control maximum system resource consumption

SYNOPSIS

#include <sys/vlimit.h>
vlimit (resource, value)

DESCRIPTION

This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. If value is specified as —1, then the current limit is
returned and the limit is unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the
super-user may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process
LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of
the program text

LIM_STACK the maximum size of the automatically-extended stack region
LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the
program. If memory is tight, the system will prefer to take memory from
processes which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be exe-
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process
the signal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO

BUGS

csh(1)

If LIM_NORAISE is set, then no grace should be given when the cpu time limit is exceeded.
There should be limit and unlimit commands in s#(1) as well as in csh.

This call is peculiar to this version of UNIX. The options and specifications of this system call
and even the call itself are subject to change. It may be extended or replaced by other facilities
in future versions of the system.

4th Berkeley Distribution 18 July 1983 1

VTIMES (3C) UNIX Programmer’s Manual VTIMES (3C)

NAME
vtimes — get information about resource utilization
SYNOPSIS
vtimes(par_vim, ch_vm)
struct viimes *par_vm, »ch_vm;
DESCRIPTION
This facility is superseded by getrusage(2).
Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either par_vm or ch_vm or both may be 0, in which case only
the information for the pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file

fusrlincludelsysivtimes.h:

struct vtimes {
int vm_utime; /= user time (+HZ) */
int vm_stime; /+ system time (¢HZ) ¢/
/= divide next two by utime-+stime to get averages «/
unsigned vm_idsrss; /+ integral of d+s rss ¢/
unsigned vm_ixrss; /+ integral of text rss +/
int VIN_Maxrss; /+ maximum rss */
int vm_maijfit; /+ major page faults «/
int vm_minflt; /+ minor page faults «/
int vm_nswap; /= number of swaps +/
int vm_inblk; /= block reads «/
int vm_oublk; /= block writes +/

I3

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a
second (or 50ths if that is the frequency of wall current in your locality.) The vm_idrss and
vm_ixrss measure memory usage. They are computed by integrating the number of memory
pages in use each over cpu time. They are reported as though computed discretely, adding the
current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5 core
pages over 1 cpu-second for its data and stack, then vm_idsrss would have the value 5+60, where
vm_utime +vm_stime would be the 60. Vim_idsrss integrates data and stack segment usage, while
vm_ixrss integrates text segment usage. Vm_maxrss reports the maximum instantaneous sum of
the text+ data-+stack core-resident page count.

The vm_majfit field gives the number of page faults which resulted in disk activity; the
vm_minflt field gives the number of page faults incurred in simulation of reference bits;
vm_nswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm_inblk and vm_oublk These numbers account only for real i/o; data
supplied by the caching mechanism is charged only to the first process to read or write the data.

SEE ALSO
time(2), wait3(2)

BUGS
This call is peculiar to this version of UNIX. The options and specifications of this system call
are subject to change. It may be extended to include additiona! information in future versions
of the system.

4th Berkeley Distribution 13 June 1983 1

INTRO (4) UNIX Programmer’s Manual INTRO (4)

NAME
intro — introduction to special files and hardware support

DESCRIPTION
This section describes the special files, related driver functions, and networking support avail-
able in the system. In this part of the manual, the SYNOPSIS section of each configurable dev-
ice gives a sample specification for use in constructing a system description for the config(8)
program. The DIAGNOSTICS section lists messages which may appear on the console and in
the system error log /usr/adm/messages due to errors in device operation.

This section contains both devices which may be configured into the system, ‘‘4”’ entries, and
network related information, ‘““4N”, “4P”, and ‘‘4F”’ entries; The networking support is intro-
duced in intro(4N).

VAX DEVICE SUPPORT
This section describes the hardware supported on the DEC VAX-11. Software support for
these devices comes in two forms. A hardware device may be supported with a character or
block device driver, or it may be used within the networking subsystem and have a network inter-
face driver. Block and character devices are accessed through files in the file system of a special
type; c.f. mknod(8). Network interfaces are indirectly accessed through the interprocess com-
munication facilities provided by the system; see socker(2).

A hardware device is identified to the system at configuration time and the appropriate device
or network interface driver is then compiled into the system. When the resultant system is
booted, the autoconfiguration facilities in the system probe for the device on either the
UNIBUS or MASSBUS and, if found, enable the software support for it. If a UNIBUS device
does not respond at autoconfiguration time it is not accessible at any time afterwards. To
enable a UNIBUS device which did not autoconfigure, the system will have to be rebooted. If a
MASSBUS device comes ‘“‘on-line’’ after the autoconfiguration sequence it will be dynamically
autoconfigured into the running system.

The autoconfiguration system is described in autoconf(4). VAX specific device support is
described in “‘4V”’ entries. A list of the supported devices is given below.

SEE ALSO
intro(4), intro(4N), autoconf(4), config(8)

LIST OF DEVICES
The devices listed below are supported in this incarnation of the system. Devices are indicated
by their functional interface. If second vendor products provide functionally identical interfaces
they should be usable with the supplied software. (Beware however that we promise the
software works ONLY with the hardware indicated on the appropriate manual page.)

acc ACC LH/DH IMP communications interface
ad Data transiation A/D interface

css DEC IMP-11A communications interface

ct C/A/T phototypesetter

dh DH-11 emulators, terminal multiplexor

dme DEC DMC-11/DMR-11 point-to-point communications device
dmf DEC DMF-32 terminal multiplexor

dn DEC DN-11 autodialer interface

dz DZ-11 terminal muitiplexor

ec 3Com 10Mb/s Ethernet controlier

en Xerox 3Mb/s Ethernet controller (obsolete)
kg KL-11/DL-11W line clock

il VAX-11/780 console floppy interface

hk RK6-11/RK06 and RK07 moving head disk

4th Berkeley Distribution 27 July 1983 1

INTRO (4) UNIX Programmer’s Manual
hp MASSBUS disk interface (with RP06, RM03, RMO0S, etc.)
ht TMO03 MASSBUS tape drive interface (with TE-16, TU-45, TU-77)
hy DR-11B or GI-13 interface to an NSC Hyperchannel
ik Ikonas frame buffer graphics device interface
il Interlan 10Mb/s Ethernet controller
Ip LP-11 parallel line printer interface
mt TM78 MASSBUS tape drive interface
pel DEC PCL-11 communications interface
ps Evans and Sutherland Picture System 2 graphics interface
rx DEC RXO02 floppy interface
tm TM-11/TE-10 tape drive interface
ts TS-11 tape drive interface
tu VAX-11/730 TUS8 console cassette interface
uda DEC UDA-50 disk controller
un DR-11W interface to Ungermann-Bass
up Emulex SC-21V UNIBUS disk controller
ut UNIBUS TU-45 tape drive interface
uu TUS8 dual cassette drive interface (DL11)
va Benson-Varian printer/plotter interface
vp Versatec printer/plotter interface
vv Proteon proNET 10Mb/s ring network interface

4th Berkeley Distribution 27 July 1983

INTRO (4)

INTRO (4N) UNIX Programmer’s Manual INTRO (4N)

NAME
networking — introduction to networking facilities

SYNOPSIS
#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

DESCRIPTION
This section briefly describes the networking facilities available in the system. Documentation
in this part of section 4 is broken up into three areas: protocol-families, protocols, and network
interfaces. Entries describing a protocol-family are marked ‘‘4F’’, while entries describing pro-
tocol use are marked ‘“4P’’. Hardware support for network interfaces are found among the
standard “‘4”’ entries.

All network protocols are associated with a specific protocol-family. A protocol-family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. A protocol-family may support multiple methods of addressing,
though the current protocol implementations do not. A protocol-family is normally comprised
of a number of protocols, one per socket(2) type. It is not required that a protocol-family sup-
port all socket types. A protocol-family may contain multiple protocols supporting the same
socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol
may be accessed either by creating a socket of the appropriate type and protocol-family, or by
requesting the protocol explicitly when creating a socket. Protocols normally accept only one
type of address format, usually determined by the addressing structure inherent in the design of
the protocol-family/network architecture. Certain semantics of the basic socket abstractions are
protocol specific. All protocols are expected to support the basic model for their particular
socket type, but may, in addition, provide non-standard facilities or extensions to a mechanism.
For example, a protocol supporting the SOCK_STREAM abstraction may allow more than one
byte of out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise the lowest
layer of the networking subsystem, interacting with the actual transport hardware. An interface
may support one or more protocol families, and/or address formats. The SYNOPSIS section of
each network interface entry gives a sample specification of the related drivers for use in pro-
viding a system description to the config(8) program. The DIAGNOSTICS section lists mes-
sages which may appear on the console and in the system error log /usr/adm/messages due to
errors in device operation.

PROTOCOLS
The system currently supports only the DARPA Internet protocols fully. Raw socket interfaces
are provided to IP protocol layer of the DARPA Internet, to the IMP link layer (1822), and to
Xerox PUP-1 layer operating on top of 3Mb/s Ethernet interfaces. Consult the appropriate
manual pages in this section for more information regarding the support for each protocol fam-
ily.

ADDRESSING
Associated with each protocol family is an address format. The following address formats are
used by the system:

/+ local to host (pipes, portals) */
/= internetwork: UDP, TCP, etc. */
/+ arpanet imp addresses ¢/

/+ pup protocols: e.g. BSP »/

#define AF_UNIX
#define AF_INET
#define AF_IMPLINK
#define AF_PUP

o B =

4th Berkeley Distribution 7 July 1983 1

-

INTRO (4N) UNIX Programmer’s Manual INTRO (4N)

ROUTING

The network facilities provided limited packet routing. A simple set of data structures comprise
a ‘“‘routing table’’ used in selecting the appropriate network interface when transmitting packets.
This table contains a single entry for each route to a specific network or host. A user process,
the routing daemon, maintains this data base with the aid of two socket specific ioct/(2) com-
mands, SIOCADDRT and SIOCDELRT. The commands allow the addition and deletion of a
single routing table entry, respectively. Routing table manipulations may only be carried out by
super-user.

A routing table entry has the following form, as defined in < net/route.h>;
struct rtentry {

u_long rt_hash;
struct sockaddr rt_dst;

struct sockaddr rt_gateway;
short rt_flags;

short rt_refent;

u_long rt_use;

struct ifnet ort_ifp;

)
with r¢_flags defined from,

#define RTF_UP Ox1 /= route usable ¢/
#define RTF_GATEWAY 0x2 /e destination is a gateway /
#define RTF_HOST 0x4 /e host entry (net otherwise) */

Routing table entries come in three flavors: for a specific host, for all hosts on a specific net-
work, for any destination not matched by entries of the first two types (a wildcard route). When
the system is booted, each network interface autoconfigured installs a routing table entry when
it wishes to have packets sent through it. Normally the interface specifies the route through it
is a ‘‘direct” connection to the destination host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, the interface may be requested to address the packet to an entity different
from the eventual recipient (i.e. the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use,
or interface fields; these are filled in by the routing routines. If a route is in use when it is
deleted (rt_refent is non-zero), the resources associated with it will not be reclaimed until
further references to it are released.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if
requested to delete a non-existant entry, or ENOBUFS if insufficient resources were available to
install a new route.

User processes read the routing tables through the /dev/kmem device.

The rt_use field contains the number of packets sent along the route. This value is used to
select among multiple routes to the same destination. When multiple routes to the same desti-
nation exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are
used only when the system fails to find a route to the destination host and network. The com-
bination of wildcard routes and routing redirects can provide an economical mechanism for
routing traffic.

4th Berkeley Distribution 7 July 1983 2

INTRO (4N) UNIX Programmer’s Manual INTRO (4N)

INTERFACES
Each network interface in a system corresponds to a path through which messages may be sent
and received. A network interface usually has a hardware device associated with it, though cer-
tain interfaces such as the loopback interface, /o(4), do not.

At boot time each interface which has underlying hardware support makes itself known to the
system during the autoconfiguration process. Once the interface has acquired its address it is
expected to install a routing table entry so that messages may be routed through it. Most inter-
faces require some part of their address specified with an SIOCSIFADDR ioctl before they will
allow traffic to flow through them. On interfaces where the network-link layer address mapping
is static, only the network number is taken from the ioctl; the remainder is found in a hardware
specific manner. On interfaces which provide dynamic network-link layer address mapping
facilities (e.g. 10Mb/s Ethernets), the entire address specified in the ioctl is used.

The following ioct/ calls may be used to manipulate network interfaces. Unless specified other-
wise, the request takes an frequest structure as its parameter. This structure has the form

struct ifreq {
char ifr_name[16]; /+ name of interface (e.g. "ec0") +/
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
short ifru_flags;

} ifr_ifru;
#defineifr_addrifr_ifru.ifru_addr /+ address s/
#defineifr_dstaddr ifr_ifru.ifru_dstaddr /e other end of p-to-p link ¢/
#defineifr_flagsifr_ifru.ifru_flags /¢ flags »/
SIOCSIFADDR

Set interface address. Following the address assignment, the ‘‘initialization’’ routine
for the interface is called.
SIOCGIFADDR
Get interface address.
SIOCSIFDSTADDR
Set point to point address for interface.

SIOCGIFDSTADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently rout-
ing packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf structure (see below) as a
value-result parameter. The jfc_len field should be initially set to the size of the buffer
pointed to by ifc_byf. On return it will contain the length, in bytes, of the configuration
list.

/e

» Structure used in SIOCGIFCONF request.

» Used to retrieve interface configuration

» for machine (useful for programs which

4th Berkeley Distribution 7 July 1983 3

INTRO (4N) UNIX Programmer’s Manual

« must know all networks accessible).
/
struct ifconf {
int ifc_len; /e size of associated buffer «/
union {
caddr_t ifcu_buf;
struct ifreq sifcu_req;
} ifc_ifcu;
#defineifc_buf ifc_ifcu.ifcu_buf /¢ buffer address ¢/
#defineifc_req ifc_ifcu.ifcu_req/e array of structures returned »/

’

SEE ALSO
socket(2), ioctl(2), intro(4), config(8), routed(8C)

4th Berkeley Distribution 7 July 1983

INTRO (4N)

ACC (4) UNIX Programmer’s Manual ACC (4)

NAME

acc — ACC LH/DH IMP interface

SYNOPSIS

pseudo-device imp
device accO at uba0 csr 167600 vector accrint accxint

DESCRIPTION

The acc device provides a Local Host/Distant Host interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device must also be included.

DIAGNOSTICS

acc%d: not alive. The initialization routine was entered even though the device did not
autoconfigure. This indicates a system problem.

acc%d: can’t initialize. Insufficient UNIBUS resources existed to initialize the device. This is
likely to occur when the device is run on a buffered data path on an 11/750 and other network
interfaces are also configured to use buffered data paths, or when it is configured to use
buffered data paths on an 11/730 (which has none).

acc%d: imp doesn’t respond, icsr=%b. The driver attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling.

acc%d: stray xmit interrupt, csr=%b. An interrupt occurred when no output had previously
been started.

acc%d: output error, ocsr=%b, icsr=%b. The device indicated a problem sending data on out-
put.

acc%d: input error, csr=%b. The device indicated a problem receiving data on input.

acc%d: bad length=%d. An input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). This should never
happen as the maximum size of a host-IMP message is 1008 bytes.

4th Berkeley Distribution 27 July 1983 1

AD (4) UNIX Programmer’s Manual AD (4)

NAME
ad — Data Translation A/D converter

SYNOPSIS
device ad0 at uba0 csr 0170400 vector adintr

DESCRIPTION
Ad provides the interface to the Data Translation A/D converter. This is not a real-time driver,
but merely allows the user process to sample the board’s channels one at a time. Each minor
device selects a different A/D board.

The driver communicates to a user process by means of ioctls. The AD_CHAN ioctl selects
which channel of the board to read. For example,

chan = §; ioctl(fd, AD_CHAN, &chan);
selects channel 5. The AD_READ ioctl actually reads the data and returns it to the user pro-
cess. An example is

ioctl(fd, AD_READ, &data);

FILES
/dev/ad

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983 1

ARP (4P) UNIX Programmer’s Manual ARP (4P)

NAME
arp — Address Resolution Protocol

SYNOPSIS
pseudo-device ether

DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and 10Mb/s Ethernet
addresses on a local area network. It is used by all the 10Mb/s Ethernet interface drivers and is
not directly accessible to users.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an
address not in the cache, ARP queues the message which requires the mapping and broadcasts
a message on the associated network requesting the address mapping. If a response is provided,
the new mapping is cached and any pending messages are transmitted. ARP itself is not Inter-
net or Ethernet specific; this implementation, however, is. ARP will queue at most one packet
while waiting for a mapping request to be responded to; only the most recently ‘‘transmitted”’
packet is kept.

ARP watches passively for hosts impersonating the local host (i.e. a host which responds to an
ARP mapping request for the local host’s address) and will, optionally, pericdically probe a net-
work looking for impostors.

DIAGNOSTICS
duplicate IP address!! sent from ethernet address: %x %x %x %x %x %x . ARP has
discovered another host on the local network which responds to mapping requests for its own
Internet address.

SEE ALSO
ec(4), il(4)

4th Berkeley Distribution 18 July 1983 1

N

AUTOCONF (4) UNIX Programmer’s Manual AUTOCONF (4)

NAME .
autoconf — diagnostics from the autoconfiguration code

DESCRIPTION
When UNIX bootstraps it probes the innards of the machine it is running on and locates con-
trollers, drives, and other devices, printing out what it finds on the console. This procedure is
driven by a system configuration table which is processed by config(8) and compiled into each
kernel.

Devices in NEXUS slots are normally noted, thus memory controllers, UNIBUS and MASSBUS
adaptors. Devices which are not supported which are found in NEXUS slots are noted also.

MASSBUS devices are located by a very deterministic procedure since MASSBUS space is com-
pletely probe-able. If devices exist which are not configured they will be silently ignored; if
devices exist of unsupported type they will be noted.

UNIBUS devices are located by probing to see if their control-status registers respond. If not,
they are silently ignored. If the control status register responds but the device cannot be made
to interrupt, a diagnostic warning will be printed on the console and the device will not be
available to the system.

A generic system may be built which picks its root device at boot time as t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>