
U N I X
PROGRAMMER'S MANUAL

Reference Guide

Printed by the USENIX Association as a service to the UNIX Communi­
ty. This material is copyrighted by The Regents of the University of
California and/or Bell Telephone Laboratories, and is reprinted by per­
mission. Permission for the publication or other use of these materials
may be granted only by the Licensors and copyright holders.

Cover design by John Lassetter, Lucasfilm , Ltd.

First Printing
Second Printing
Third Printing
Fourth Printing

July 1984
December 1984
September 1985
March 1986

UNIX PROGRAMMER'S MANUAL
Reference Guide

4.2 Berkeley Software Distribution
Virtual VAX -11 Version

March. 1984

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

PREFACE

This manual is part of a five volume set intended for use with the 4.2 Berkeley Software Distribution for
the VAX-ll computer. While the five volumes together contain virtually the same material presented in
the four volume UNIX Programmer's Manual distributed with 4.2BSD, the manuals rellect a revised
organization necessitated by the large quantity of information. The documentation is divided into three
logically distinct manuals:

• UNIX User's Manual,

• UNIX Programmer's Manual, and

• UNIX System Manager's Manual.

Each of the User and Programmer manuals are two volumes: a Reference Guide, containing relevant sec­
tions from Volume 1 of the old UNIX Programmer's Manual, and a volume of Supplementary Docu­
ments, containing pertinent material from Volume 2 of the old UNIX Programmer's Manual. The Sys­
tem Manager's manual consists of a single volume containing information from both Volumes 1 and 2.
We acknowledge those who have assisted us in putting together these manuals. In particular, we thank
Tom Ferrin for pursuing the printing particulars.

M. J. Karels
S. J. Leffler

Pre/ace to the 4.2 Berkeley distribution

This update to the 4.1 distribution of June 1981 provides support for the VAX 111730, full networking
and interprocess communication support, an entirely new file system, and many other new features. It is
certainly the most ambitious release of software ever prepared here and represents many man-years of
work. Bill Shannon (both at DEC and at Sun Microsystems) and Robert Elz of the University of Mel­
bourne contributed greatly to this distribution through new device drivers and painful debugging episodes.
Rob Gurwitz of BBN wrote the initial version of the code upon which the current networking support is
based. Eric Allman of Britton-Lee donated countless hours to the mail system. Bill Croft (both at SRI
and Sun Microsystems) aided in the debugging and development of the networking facilities. Dennis
Ritchie of Bell Laboratories also contributed greatly to this distribution, providing valuable advise and
guidance. Helge Skrivervik worked on the device drivers which enabled the distribution to be delivered
with a TUS8 console cassette and RXOI console Ilopppy disk, and rewrote major portions of the stan­
dalone ilo system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release, while
many groups of people on campus suffered patiently through the low spots of development. As always,
we are grateful to the UNIX user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully ack­
nowledged.

S. J. Leffler
W. N. Joy
M. K. McKusick

INTRO(2) UNIX Programmer's Manual INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#Include <erroo.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always -1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable ermo,
which is not cleared on successful calls. Thus ermo should be tested only after an error has
occurred.

The following is a complete list of the errors and their names as given in < ermo.h >.
o Error 0

Unused.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when, for example, an illegal tape drive unit number is
selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a. out (5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a fi1.e which is open only for writing (resp. reading).

10 ECIDLD No children
Wait and the process has no living or unwaited-for children.

4th Berkeley Distribution 12 February 1983

INTRO (2) UNIX Programmer's Manual INTRO (2)

11 EAGAIN No more processes
In a fork, the system's process table is full or the user is not allowed to create any more
processes.

12 ENOMEM Not enough core
During an exeeve or break, a program asks for more core or swap space than the system
is able to supply. A lack of swap space is normally a temporary condition, however a
lack of core is not a temporary condition; the maximum size of the text, data, and stack
segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EF A UL T Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

IS ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current direc­
tory, mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown
signal in signa!, reading or writing a file for which seek has generated a negative pointer.
Also set by math functions, see intro (3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTfY Not a typewriter
The file mentioned in an ioel! is not a terminal or one of the other devices to which this
call applies.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing.
Also an attempt to open for writing a pure-procedure program that is being executed.

4th Berkeley Distribution 12 February 1983 2

INTRO(2) UNIX Programmer's Manual INTRO(2)

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An [seek was issued to a pipe. This error may also be issued for other non-seekable
devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This condi­
tion normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package OM) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within machine
precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non­
blocking mode (see jocli (2».

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2» was
attempted on a non-blocking object (see ioell (2».

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not suppolied
The protocol has not been configured into the system or no implementation for it
exists.

4th Berkeley Distribution 12 February 1983 3

INTRO(2) UNIX Programmer's Manual INTRO (2)

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no imple­
mentation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for
it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP Internet addresses with ARPA Inter­
net protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

SO ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer exe­
cuting a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown (2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usu­
ally results from trying to connect to a service which is inactive on the foreign host.

4th Berkeley Distribution 12 February 1983 4

INTRO (2) UNIX Programmer's Manual INTRO(2)

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY DirectorY not empty
A directory with entries other than"." and" .. " was supplied to a remove directory or
rename call.

69 EDQUOT Disc quota exceeded
A file creation or write operation failed because the hard limit for that resource had
been reache.d.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer called a pro­
cess ID. The range of this ID is from 0 to {PROC_MAX).

Paren t process ID
A new process is created by a currently active process; see !ork(2). The parent process ID
of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping
permits the signalling of related processes (see killpg(2) and the job control mechanisms
of csh(l).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between mUltiple jobs
contending for the same terminal; see csh(l), and t(y(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id, Effective Group ld, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID or
set-groupoID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID's used only in determining resource
accessibility. Access checks are performed as described below in "File Access Permis­
sions".

4th Berkeley Distribution 12 FebmafY 1983 5

INTRa (2) UNIX Programmer's Manual INTRa (2)

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is O.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler.
Process 1 is the initialization process init, and is the ancestor of every other process in the
system. It is used to control the process structure. Process 2 is the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open (2), dup (2), or pipe (2)
or a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access
path to that file or socket from a given process or any of its children.

File Name
Names consisting of up to {FILENAME_MAXI characters may be used to name an ordi­
nary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null)
and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use., ?, [or 1 as part of file names because of the spe­
cial meaning attached to these characters by the shell.

Path Name
A' path name is a null-terminated character string starting with an optional slash (I), fol­
lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME_MAXI charac­
ters.

If a path name begins with a slash, the path search begins at the root directory. Other­
wise, the search begins from the current working directory. A slash by itself names the
root directory. A null pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to other
files. Directory entries are called links. By convention, a directory contains at least two
links, . and .. , referred to as dot and dot-dot respectively. Dot refers to the directory itself
and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process's root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used
in determining whether a process may perform a requested operation on the file (such as
opening a file for writing). Access permissions are established at the time a file is created.
They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file's group, anyone else. Every
file has an independent set of access permissions for each of these classes. When an
access check is made, the system decides if permission should be granted by checking the
access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

4th Berkeley Distribution 12 February 1983 6

INTRO(2) UNIX Programmer's Manual INTRO(2)

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process's effective user ID does not match the user ID of the owner of the file, and
either the process's effective group ID matches the group ID of the file, or the group ID
of the file is in the process's group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for "other
users" allow access.

Otherwise, permission is denied.

Sockets and Address Families

SEE ALSO

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2)
for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

intro(3), perror(3)

4th Berkeley Distribution 12 February 1983 7

ACCEPT (2) UNIX Programmer's Manual ACCEPT (2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#lacJude < sys/types.b>
#lncJude < sys/soeket.b>

as - accept(s, adelr, .ddrlen)
lat ns, S;
struct soekaddr •• ddr;
Int •• ddrlen;

DESCRIPTION
The argument s is a socket which has been created with soclcet(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Acceptextracts the first connection on
the queue of pending connections, creates a new socket with the same properties of s and allo­
cates a new file descriptor, ns, for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending connections are present on the
queue, accept returns an error as described below. The accepted socket, ns, may not be used to
accept more connections. The original socket s remains open.

The argument addr is a result parameter which is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is deter­
mined by the domain in which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by addr, on return it will
contain the actual length On bytes) of the address returned. This call is used with connection­
based socket types; currently with SOCK_STREAM.

It is possible to selecr(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -Ion error. If it succeeds it returns a non-negative integer which is a descrip­
tor for the accepted socket.

ERRORS
The acceptwill fail if:

[EBADF) The descriptor is invalid.

[ENOTSOCK) The descriptor references a file, not a socket.

!EOPNOTSUPP) The referenced socket is not of type SOCK_STRE;AM.

[EFAULT) The addrparameter is not in a writable part of the user address space.

[EWOULDBLOCK) The socket is marked non-blocking and no connections are present to be
accepted.

SEE ALSO
bind(2), connect (2) , Iisten(2), select (2) , socket(2)

4th Berkeley Distribution 7 July 1983

ACCESS (2) UNIX Programmer's Manual ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
#include < sys/file.h>

#define R_OK 4 ;. test for read permission -/
/. test for write permission ./ #deflne W _OK 2

#define X OK 1 /- test for execute (search) permission ./
/. test for presence of file· / #define F~OK 0

accessible = access(path,mode)
int accessible;
char ·path;
int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or of
the bits R OK, W OK and X OK. Specifying mode as F OK (j.e. 0) tests whether the direc­
tories leading to the file can be-searched and the file exists.-

The real user ID and the group access list (including the real group ID) are used in verifying
permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following afe true:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EPERM]

[ELOOP]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

SEE ALSO

A component of the path prefix is not a directory.

The argument path name was too long.

Read, write, or execute (search) permission is requested for a null path name
or the named file does not exist.

The argument contains a byte with the high-order bit set.

Too many symbolic links were encountered in translating the pathname.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being
executed.

Permission bits of the file mode do not permit the requested access; or search
permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the "owner" read, write, and execute
mode bits, members of the file's group other than the owner have permission
checked with respect to the "group" mode bits, and all others have permis­
sions checked with respect to the "other" mode bits.

Path points outside the process's allocated address space.

chmod (2), stat (2)

4th Berkeley Distribution 18 July 1983

ACero) UNIX Programmer's Manual ACer(2)

NAME
acct - turn accounting on or oft"

SYNOPSIS
acet(flle)
char -file;

DESCRIPTION

NOTES

The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a null-terminated string naming an existing file as argument, turns on account­
ing; records for each terminating process are appended to file. An argument of 0 causes
accounting to be turned oft".

The accounting file format is given in accrtS).

This call is permitted only to the super-user.

Aceounting is automatically disabled when the file system the accounting file resides on rllns
out of space; it is enabled when space once again becomes available.

RETURN VALUE
On error -1 is returned. The file must exist and the call may be exercised only by the super­
user. It is erroneous to try to turn on accounting when it is already on.

EIlRORS
Acctwill fail if one of the following is true:

(EPERM) The caller is not the super-user.

(EPERM)

[ENOTDIR)

(ENOENT)

[EISDlR)

(EROFS)

(EFAULT)

(ELOOP)

(EACCES)

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is a directory.

The named file resides on a read-only file system.

File points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

The file is a character or block special file.

SEE ALSO

BUGS

acct(S), sa(8)

No accounting is produced for programs running when a crash oc:eurs. In particular nonter­
minating programs are never accounted for.

4th Berkeley Distribution 13 February 1983

BIND (2) UNIX Programmer's Manual BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#Include <sys/types.h>
#include <sys/soc:ket.h>

blnd(s, name, namelen)
int I;
.truct socksddr -name;
Int nSlDelen;

DESCRIPTION

NOTES

Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in
it name space (address family) but has no name assigned. Bind requests the name, be assigned
to the socket.

Binding a name in the UNIX domain creates a socket in the file system which must be deleted
by the caller when it is no longer needed (using unlink(2». The file created is a side-effect of
the current implementation, and will not be created in future versions of the UNIX ipc domain.

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which
is further specified in the global erma.

ERRORS
The bind call will fail if:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL)

[EADDRINUSE]

[EINVAL)

[EACCESS]

[EFAULT]

SEE ALSO

The specified address is not available from the local machine.

The specified address is already in use.

The socket is already bound to an address.

The requested address is protected, and the current user has inadequate
permission to access it.

The name parameter is not in a valid part of the user address space.

connect(2), Iisten(2), socket(2), getsockname(2)

4th Berkeley Distribution 27 July 1983

BRK (2) UNIX Programmer's Manual BRK (2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
caddr_t brk(addr)
caddr _ t addr;

caddf_t sbrk{jncr}
int Incr;

DESCRIPTION
B,k sets the system's idea of the lowest data segment location not used by the program (called
the break) to add, (rounded up to the next multiple of the system's page size). Locations
greater than add, and below the stack pointer are not in the address space and will thus cause a
memory violation if accessed.

In the alternate function sb,k, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sb,k.

The gerrlimit(2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the ,lim max value returned from
a call to gelrlimit, e.g. "etext + rlp-rlim_max." (See end(3) for the definition of etext.}

RETURN VALUE
Zero is returned if the brk could be set; -} if the program requests more memory than the sys­
tem limit. Sbrk returns -1 if the break could not be set.

ERRORS
Sbrkwill fail and no additional memory will be allocated if one of the following are true:

[ENOMEMl The limit, as set by setrlimit(2), was exceeded.

{ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded.

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin­
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getr/imit.

4th Berkeley Distribution 27 July 1983

CHOIR (2) UNIX Programmer's Manual

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char ·path;

DESCRIPTION

CHOIR (2)

Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with "I".

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the follow­
ing are true:

[ENOTOIR]

[ENOENT]

[ENOENT]

[EPERM]

[EACCES]

[EFAULT]

[ELOOP]

SEE ALSO
chroot(2)

A component of the path name is not a directory.

The named directory does not exist.

The argument path name was too long.

The argument contains a byte with the high-order bit set.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983

CHMOD(2) UNIX Programmer's Manual CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
chmod(path, mode)
char .path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by pathor referenced by the descriptor fdhas its mode changed to
mode. Modes are constructed by or'ing together some combination of the following:

04000 set user 10 on execution
02000 set group 10 on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set.up for sharing (this is the default) then mode 1000 prevents the sys­
tem from abandoning the swap-space image of the program-text portion of the file when its last
user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compati­
bility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -.1 is returned and
errno is set to indicate the error.

ERRORS
Chmodwill fail and the file mode will be unchanged if:

[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDlR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The pathname was too long.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user 10 does not match the owner of the file and the effective
user 10 is not the super-user.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchmodwill fail if:

IEBADF]

[EINVAL]

The descriptor is not valid.

Fdrefers to a socket, not to a file.

4th Berkeley Distribution 2 July 1983

CHMOD (2) UNIX Programmer's Manual CHMOD (2)

[EROFS] The file resides on a read-only file system.

SEE ALSO
open (2), chown (2)

4th Berkeley Distribution 2 July 1983 2

CHOWN (2) UNIX Programmer's Manual CHOWN (2)

NAME
chown - change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char 'path;
int owner, group;

fchown<rd, owner, group)
int fd. owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call, because if users were able to give files
away, they could defeat the file-space accounting procedures.

On some systems, chown clears the set-user-id and set-groupoid bits on the file to prevent
accidental creation of set-user-id and set-groupoid programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
./fock(2)).

Only one of the owner and group id's may be set by specifying the other as -1.

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable erma

ERRORS
Chown will fail and the file will be unchanged if:

[EINV ALl The argument path does not refer to a file.

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

A component of the path prefix is not a directory.

The argument pathname is too long.

The argument contains a byte with the high-order bit set.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file resides on a read-only file system.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchown will fail if:

[EBADFl

[EINVAL]

Fd does not refer to a valid descriptor.

Fd refers to a socket, not a file.

SEE ALSO
chmod (2), flock (2)

4th Berkeley Distribution 27 July 1983

CHROOT (2) UNIX Programmer's Manual CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
chroot (dlrname)
char odirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chrootcauses
this directory to become the root directory, the starting point for path names beginning with
"/".

In order for a directory to become the root directory a process must have execute (search)
access to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EFAULT]

[EL90P]

SEE ALSO
chdir(2)

A component of the path name is not a directory.

The pathname was too long.

The argument contains a byte with the high-order bit set.

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983

CLOSE (2) UNIX Programmer's Manual CLOSE (2)

NAME
close - delete a descriptor

SYNOPSIS
c!ose(d)
int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the last
reference to the underlying object, then it will be deactivated. For example, on the last close of
a file the current seek pointer associated with the file is lost; on the last close of a socket(2)
associated naming information and queued data are discarded; on the last close of a file holding
an advisory lock the lock is released; see further jlock(2).

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with many
descriptors.

When a process forks (see lork(2», all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to be
closed if the execve succeeds. For this reason, the call "fcntHd, F SETFD, 1)" is provided
which arranges that a descriptor will be closed after a successful execve; the call "fcntl(d,
F _SETFD, 0)" restores the default, which is to not close the descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I is returned and
the global integer variable errno is set to indicate the error.

ERRORS
Closewill fail if:

[EBADF] D is not an active descriptor.

SEE ALSO
accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntI(2)

4th Berkeley Distribution 27 July 1983

CONNECT (2) UNIX Programmer's Manual CONNECT (2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include < sys/types.h>
#Include < sys/socket.h>

connect(s, name, namelen)
Int s;
struct sockaddr oname;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent; if it is of type SOCK_STREAM, then this
call attempts to make a connection to another socket. The other socket is specified by name
which is an address in the communications space of the socket. Each communications space
interprets the name parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a
more specific error code is stored in ermo.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is a descriptor for a file, not a socket.

[EADDRNOT A V AIL]
The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

[EISCONN]

[ETIMEDOUT]

The socket is already connected.

Connection establishment timed out without establishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn't reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the process address space.

[EWOULDBLOCK] The socket is non-blocking and the and the connection cannot be com-

SEE ALSO

pleted immediately. It is possible to select(2) the socket while it is con­
necting by selecting it for writing.

accept (2), select (2), socket (2), getsockname (2)

4th Berkeley Distribution 7 July 1983

CREAT(2) UNIX Programmer's Manual CREAT(2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
cbar 0name;

DESCRIPTION

NOTES

Tbis interface is obsoleted by open (2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist, it is given mode mode, as modified by the
process's mode mask (see umask(2». Also see chmod(2) for the construction of the mode
argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL
open mode, or flock(2) facilitity.

RETURN VALUE
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descrip­
tor which only permits writing.

ERRORS
Creatwill fail and the file will not be created or truncated if one of the following occur:

(EPE,RM]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCESl

[EISDIR]

[EM FILE]

[EROFS]

[ENXIO]

[ETXTBSY!

[EFAULT!

[ELOOP]

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

A needed directory does not have search permission.

The file does not exist and the directory in which it is to be created is not writ­
able.

The file exists, but it is unwritable.

The file is a directory.

There are already too many files open.

The named file resides on a read-only file system.

The file is a character special or block special file, and the associated device
does nol exist.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

!EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO
open(2), write (2) , c!ose(2), chmod(2), umask(2)

4th Berkeley Distribution 2 July 1983

DUP(2) UNIX Programmer's Manual DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd - dup(oldd)
Int newd, oldd;

dnp2 (oldd, newd)
Int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table,
which is returned by getdUlblesize (2). The new descriptor /l£wd returned by the caJl is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd and
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2) ,
write(2) and !seek(2) calls all move a single pointer into the file. If a separate pointer into the
file is desired, a different object reference to the file must be obtained by issuing an additional
open (2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a close (2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indicates
the cause of the error.

ERRORS
Dup and dup2 fail if:

[EBADF] Oldd or newd is not a valid active descriptor

[EMFILE) Too many descriptors are active.

SEE ALSO
accept (2) , open(2), close (2) , pipe(2). socket(2). socketpair(2), getdtablesize(2)

4th Berkeley Distribution 12 February 1983

EXECVE(2) UNIX Programmer's Manual EXECVE (2)

NAME
execve - execu te a file

SYNOPSIS
execve(name, argv, envp)
char ·name, "argvll, oenvpll;

DESCRIPTION
Execve transforms the calling process into a new process. The new process is constructed from
an ordinary file called the new process file. This file is either an executable object file, or a file
of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (tex!) and initialized data pages. Additional
pages may be specified by the header to be initialize with zero data. See o.our(5).

An interpreter file begins with a line of the form "#! interpreter'; When an interpreter file is
execve'd, the system execve's the specified interpreter, giving it the name of the originally
exec'd file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument orgy is an array of character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention, at
least one argument must be present in this array, and the first element of this array should be
the name of the executed program (j.e. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command,
see environ(7).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set; see c/ose(2). Descriptors which remain open are unaffected
by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined; see sigvec(2) for more information.

Each process has real user and group IDs and a dfective user and group IDs. The realiD
identifies the person using the system; the effective ID determines his access privileges. Execve
changes the effective user and group ID to the owner of the executed file if the file has the
"set-user-ID" or "set-group-ID" modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process 1D see getpid(2)
parent process ID see getppid(2)
process group ID see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)
root directory see chroot(2)
control terminal see try(4)
resource usages see getrusage(2)
interval timers see getitimer(2)
resource limits see getrlimit(2)
file mode mask see umask(2)
signal mask see sigvec(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution 27 July 1983

EXECVE(2) UNIX Programmer's Manual EXECVE(2)

main(argc, argv, envp)
int argc;
char ooargv, "envp;

where argc is the number of elements in argv (the "arg count") and argv is the array of charac­
ter pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A pointer
to this array is also stored in the global variable "environ". Each string consists of a name, an
"-", and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell shU) passes an environment entry for each global shell variable defined when the pro­
gram is called. See environ(7) for some conventionally used names.

RETURN VALUE
If execve returns to the calling process an error has occurred; the return value will be -1 and
the global variable erTnO will contain an error code.

ERRORS
Execvewill fail and return to the calling process if one or more of the follo'·,:1g are true:

[ENOENT] One or more components of the new process file's path name do not exist.

!ENOTDIR] A component of the new process file is not a directory.

!EACCES] Search permission is denied for a directory listed in the new process file's path
prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

!ENOEXEC] The new process file has the appropriate access permission, but has an invalid
magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

!ENOMEM] The new process requires more virtual memory than is allowed by the imposed
maximum (getrlimit(2».

[E2BIO] The number of bytes in the new process's argument list is larger than the
system-imposed limit of IARO_MAX) bytes.

[EFAULT] The new process file is not as long as indicated by the size values in its header.

[EFAULT] Path, argv, or envppoint to an illegal address.

CAVEATS
If a program is setuidto a non-super-user, but is executed when the real uidis "root", then the
program has the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), exec((3), environ(7)

4th Berkeley Distribution 27 Iuly 1983 2

EXIT(2) UNIX Programmer's Manual EXIT (2)

NAME
_exit - terminate a process

SYNOPSIS
_exit (status)
lot status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a waitor is interested in the SIGCHLD
signal, then it is notified of the calling process's termination and the low-order eight bits of
status are made available to it; see wait(2).

The parent process ID of all of the calling process's existing child processes are also set to I.
This means that the initialization process (see intro(2» inherits each of these processes as well.

Most C programs call the library routine exitO) which performs cleanup actions in the standard
i/o library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit(3)

4th Berkeley Distribution 27 July 1983

FCNTL(2) UNIX Proarammer's Manual FCNTL(2)

NAME
fentl - fUe control

SYNOPSIS
#lndue <fentl.h>

res - fentHfd, emd, Ill)
Int resj
Int fd, cnad, IlIj

DESCRIPTION
Fentl provides for control over descriptors. The lU1ument fd is a descriptor to be operated on
by emd IS follows:

F _DUPFD Return a new descriptor IS follows:

Lowest numbered available descriptor greater than or equal to argo

Same object references IS the original descriptor.

New descriptor shares the same fUe pointer if the object wu a fUe.

Same access mode (read, write or read/write).

Same fUe status flags (i.e., both fUe descriptors share the same fUe status flags).

The close-on-exec flag usociated with the new file descriptor is set to remain
open across I!X'eCv(2) system calls.

Oet the close-on-exec flag usociated with the file descriptor fd. If the low­
order bit is 0, the file will remain open across 1!X'eC, otherwise the fUe will be
closed upon execution of exee.
Set the close-on-exec flag usociated with fd to the low order bit of arg (0 or I
IS above).

Get descriptor status flags, IS described below.

Set descriptor status flags.

F_OETOWN Get the process 10 or process group currently receivina SIGIO and SIOURO
signals; process groups are returned IS negative values.

F _SETOWN Set the process or process group to receive SIGIO and SIOURO signals; pro­
cess groups are specified by supplying arg IS negative, otherwise arg is inter­
preted IS a process 10.

The flags for the F_OETFL and F_SETFL flags are IS follows:

FNDELA Y Non-blockina 1/0; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

FAPPEND Force each write to append at the end of fUe; corresponds to the O_APPEND
tla& of open (2) .

FASYNC Enable the S1010 signal to be sent to the process group when I/O is possible,
e.g. upon availability of data to be read.

UTURNVALUE
Upon successful completion, the value returned depends on emd IS follows:

F DUPFD
F-OETFD
F-OETFL
F:OETOWN

4th Berkeley Distribution

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.
Value of fUe descriptor owner.

18 July 1983

FCNTL (2) UNIX Programmer's Manual FCNTL(2)

other Value other than -1.

Otherwise, a value of -1 is returned and e"no is set to indicate the error.

ERRORS
Fentl will fail if one or more of the followina sre true:

IEBADF] Fildes is not a valid open file descriptor.

(EMFILE]

(EINVAL]

CmII is F _DUPFD and the maximum allowed number of file descriptors are
currently open.

CmII is F _DUPFD and arg is neptive or areater the maximum allowable
number (see getdtablesize(2».

SEE ALSO

BUGS
close(2), execve(2), aetdtablesize(2), open(2), siavec(2)

The asynchronous 110 facilities of FNDELAY and FASYNC are currently available only for tty
operations. No SIGIO sianal is sent upon drainina of output sufficiently for non-blockina writes
to occur.

4th Berkeley Distribution 18 July 1983 2

FLOCK (2) UNIX Programmer's Manual FLOCK (2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#Include <sys/lile.h>

#delineLOCK SH 1
#delineLOCK-EX :z
#delineLOCK-NB 4
#delineLOCK:UN 8

liock (rd, operation)
Int rd, operation;

/. shared lock ./
/. exclnslve lock ./
/. don't block when locking ./
/. unlock ./

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (j.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked
until the lock may be acquired. If LOCK NB is included in operation, then this will not hap­
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent wiII lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned if the operation was successful; on an error a -1 is returned and an error code
is left in the global location ermo.

ERRORS
The jfock call fails if:

[EWOULDBLOCK) The file is locked and the LOCK_NB option was specified.

[EBADF) The argument fd is an invalid descriptor.

[EINVAL) The argument fd refers to an object other than a file.

SEE ALSO
open(2), c1ose(2), dup(2), execve(2), fork(2)

4th Berkeley Distribution 27 July 1983 1

FORK (2) UNIX Propammer's Manual FORK (2)

NAME
fork - create I new process

SYNOPSIS
,.. - forkO

ta''''i
DISCUPTION

Forlc causes creation of I new process. The new process (child process) is an exact copy of the
ca.Ilin& process except for the followina:

The child process bas I unique process 10.

The child process bas I dift"erent parent process 10 (i.e., the process 10 of the parent pr0-
cess).

The child process bas its own copy of the parent's descriptors. These descriptors refer­
ence the same underlyilll objects, so that, for Instance, file pointers in file objects are
shared between the child and the parent, so that I I.reek(2) on I descriptor in the cbild
process can aJl"ect I subsequent IWld or wrl~ by the parent. This descriptor copfilll is also
used by the shell to estsblisb standard input and output for newly created processes IS
well IS to set up pipes.

The child processes resource utilizations are set to 0; see setrlimlt(2).

RETURN V ALUI
Upon successf"u1 completion, forlc returns I value of 0 to the cbild process and returns the pro­
cess 1D of the child process to the parent process. Otherwise, I value of -1 is returned to the
parent process, no child process is created, and the aIobai variable tmIO is set to indicate the
error.

DIlORS
Fork will fail and no child process will be created if one or more of the followina are true:
[BAOAlN) The system-imposed limit (PROC_MAX) on the total number of processes

under execution would be exceeded.

[BAOAlN) The sYstem-imposed limit (KID_MAX) on the total number of processes
under execution by I sinaIe user would be exceeded.

SIIALSO
execve (2), wait (2)

4th Berkeley Distribution 12 February 1983

FSYNC (2) UNIX Programmer's Manual

NAME
(sync - synchronize a file's in-core state with that on disk

SYNOPSIS
flyne(fd)
wt fll;

DESCIUPTION

FSYNC(2)

Fsync causes all modified data and attributes of fd to be moved to II permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be writ­
ten to II disk.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

lI.ETUltN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
The fsync fails if:

[EBADF] Fdis not a valid descriptor.

IEINV ALl Fd refers to a socket, not to II file.

SEE ALSO
sync (2) , sync(8), update(8)

BUGS
The current implementation of this call is expensive for large files.

4th Berkeley Distribution 12 February 1983

GETDTABLESIZE(2) UNIX Programmer's Manual

NAME
getdtablesize - get descriptor table size

SYNOPSIS
Dds - letdtableslzeO
lnt Dds;

DESCIUPTION

GETDT ABLESIZE (2)

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at O. The call getdta­
b/esize returns the size of this table.

SEE ALSO
c1ose(2), dup(2), open(2)

4th Berkeley Distribution 12 February 1983

OETGID(2) UNIX Programmer's Manual

NAME
letlid, leteaid - let &rOUp identity

SYNOPSIS
pd -letpdO
IDt pd;

eald - leteald 0
IDt eald;

DESCUPTION

OETGID(2)

Gefgid returns the real &rOUp ID of the current process, getegid the effective &roup ID.

The real &rOUp ID is specified at 1000n time.

The effective &roup ID is more transient, and determines additional icccss permission durinl
execution of a "set-&roup-ID" process, and it is for such processes that gefgid is most useful.

SEE ALSO
letuid (2), setreaid (2), setlid (3)

4th Berkeley Distribution 12 February 1983

GETGROUPS (2) UNIX Programmer's Manual

NAME
getgroups - get group access list

SYNOPSIS
,include <sys/param.b>

Dgroups - ptgroups(p.set1ea, Ii'set)
int Dgroups, Ii'setlea, .Ii'set;

DESCRIPTION

GETGROUPS (2)

Getgroups gets the current group access list of the user process and stores it in the srray gidset.
The parsmeter gidsetlen indicates the number of entries which may be placed in gidset. Get­
groups returns the actual number of groups returned in githet. No more than NGROUPS, IS

defined in <sys/param.h> , will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A value of -1 indicates that
an error occurred, and the error code is stored in the global variable e"no.

ERRORS
The possible errors for getgroup are:

(ElNV ALl The argument gidsetlen is smaller than the number of groups in the group set.

(EFAULTl The argument githet specifies an invalid address.

SEE ALSO
setgroups(2). initgroups(3X)

4th Berkeley Distribution 8 February 1984 1

GETHOSTID (2) UNIX Programmer's Manual

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostld - lethostldO
lnt hostldi

sethostid (hostld)
lnt hostldi

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor which is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid (l), gethostname (2)

BUGS
32 bits for the identifier is too small.

4th Berkeley Distribution 12 February 1983

GETHOSTNAME (2) UNIX Programmer's Manual

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
Ilethostname(name, namelen)
char -name;
int namelen;

sethostname(name, namelen)
char -name;
Int namelen;

DESCRIPTION

GETHOSTNAME (2)

Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter name/en specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length name/en. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid address.

[EPERM] The caller was not the super-user.

SEE ALSO
gethostid (2)

BUGS
Host names are limited to 255 characters.

4th Berkeley Distribution 12 February 1983

GETITIMER (2) UNIX Programmer's Manual GETITIMER (2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
Nlnclude <Iys/tlme.h>

Ndebe ITlMER REAL 0
Ndebe ITlMER-VIRTUAL 1
Ndebe ITlMER:PROF Z

letltlmerh,hleh, value)
Int wbleh;
struet ltlmerval .value;

setltlmer(wbleh, niue, ovalue)
lnt whleh;
struet Itlmerval .value, .ovalue;

/. real time Intervals ./
/. Tlrtual time Intervals ./
/. user and system Tlrtual time ./

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which in the structure at value.
The setitimer eaJl sets a timer to the specified value (returning the previous value of the timer if
ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval (

);

struct timeval it_interval;
struct timeval it_value;

/. timer interval ./
/. current value ./

If it value is non-zero, it indicates the time to the next timer expiration. If it interval is non­
zero~ it specifies a value to be used in reloading it_value when the timer expires. Setting
icvalue to 0 disables a timer. Setting iUnterval to 0 causes a timer to be disabled after its next
expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10 milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The mMER_ VIRTUAL timer decrements in process virtual time. It runs only when the pro­
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER]ROF timer expires, the SIG­
PROF signal is delivered. Because this signal may interrupt in-progress system eaJls, programs
using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values (beware that > - and < - do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and
a more precise error code is placed in the global variable errno.

4th Berkeley Distribution 27 July 1983

GETlTlMER (2) UNIX Programmer's Manual GETITIMER (2)

EIlIlOIlS
The possible errors are:

(EFAULT) The IIQ/ue structure specified a bad address.

(EINVAL) A IIQlue structure specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4th Berkeley Distribution 27 July 1983 2

GETPAGESIZE (2) UNIX Programmer's Manual

NAME
getpagesize - get system page size

SYNOPSIS
pagesize ... lletpallesizeO
lot pageslze;

DESCRIPTION

GETPAGESIZE (2)

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk (2), pagesize (I)

4th Berkeley Distribution 18 July 1983

GETPEERNAME (2) UNIX Programmer's Manual GETPEERNAME (2)

NAME
getpeername - get name of connected peer

SYNOPSIS
letpeername(s, name, namelen)
Int 5;
struct sockaddr aname;
int anamelen;

DESCRIPTION
Gelpeername returns the name of the peer connected to socket s. The nameien parameter
should be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -I if it fails.

ERRORS
The call succeeds unless:

(EBADF] The argument s is not a valid descriptor.

[ENOTSOCK) The argument s is a file, not a socket.

[ENOTCONN) The socket is not connected.

[ENOBUFS)

[EFAULT)

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

bind (2), socket (2), getsockname (2)

Names bound to sockets in the UNIX domain are inaccessible; gelpeername returns a zero
length name.

4th Berkeley Distribution 21 July 1983

GETPGRP (2) UNIX Programmer's Manual GETPGRP(2)

NAME
getpgrp - get process group

SYNOPSIS
pgrp .. getpgrp (pid)
int prgp;
lnt pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes which have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(l) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in 1/)'(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4th Berkeley Distribution 2 July 1983

GETPID(2) UNIX Programmer's Manual

NAME
tletpid, getppid - tlet process identification

SYNOPSIS
pld - aetpld 0
Ionl pld;

ppld - letppld 0
Ionl ppld;

DESCtiPTION

GETPID(2)

Getpid returns the process ID of the current process. Most often it is used with the host
identifier gethostid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid (2)

4th Berkeley Distribution 12 February 1983

GETPRIORITY (2) UNIX Programmer's Manual GETPRIORITY (2)

NAME
getpriority, setpriority - getlset program scheduling priority

SYNOPSIS
#include < sys/resource.h >
#define PRIO PROCESS
#define PRIO-PGRP
#define PRIO = USER

prio = getpriority(which, who}
Int prio, which, who;

setpriority (which, who, prio)
Int which, who, prlo;

DESCRIPTION

o
1
2

I. process .1
I. process group .1
I. user id .1

The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the get priority call and set with the set priority call. Which is one of
PRIO]ROCESS, PRIO]GRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO PROCESS, process group identifier for PRIO PGRP, and a user ID
for PRIO _USER). Prio is -a value in the range - 20 to 20. The defaiiit priority is 0; lower
priorities cause more favorable scheduling.

The get priority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The set priority call sets the priorities of all of the specified processes to the
specified value. Only the super-user may lower priorities.

RETURN VALUE
Since get priority can legitimately return the value -1, it is necessary to clear the external vari­
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti­
mate value. The set priority call returns 0 if there is no error, or -1 if there is.

ERRORS
Getpriority and set priority may return one of the following errors:

[ESRCH) No process(es) were located using the which and who values specified.

[EINVAL) Which was not one of PRIO]ROCESS, PRIO]GRP, or PRIO_USER.

In addition to the errors indicated above, set priority may fail with one of the following errors
returned:

[EACCES)

[EACCES)

SEE ALSO

A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.

A non super-user attempted to change a process priority to a negative value.

nice(l), fork (2) , renice(8)

4th Berkeley Distribution 18 July 1983

GETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#Include < sys/time.h >
#include < sys/resource.h >
getrlimit (resource, rip)
int resource;
struct rlimlt -rip;

setrlimlt (resource, rip)
int resource;
struct rlimlt -rip;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

the maximum amount of cpu time (in milliseconds) to be used by each pro­
cess.

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program's stack segment may be extended, either automatically by
the system, or explicitly by a user with the sbrk(2) system call.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

the maximum size, in bytes, a process's resident set size may grow to. This
imposes a limit on the amount of physical memory to be given to a process;
if memory is tight, the system will prefer to take memory from processes
which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit
structure is used to specify the hard and soft limits on a resource,

struct rlimit (
int
int

);

rlim_cur;
rlim_max;

/. current (soft) limit .f
f. hard limit .f

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to cshU).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal1).

4th Berkeley Distribution 7 July 1983

GETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A
return value of -1 indicates that an error occurred, and an error code is stored in the global
location ermo.

ERRORS
The possible errors are:

[EFAULT! The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
cahO), quota(2)

BUGS
There should be limit and unlimit commands in sh(l) as well as in csh.

4th Berkeley Distribution 7 July 1983 2

GETRUSAOE (2) UNIX Programmer', Manual OETRUSAGE (2)

NAME
ptrusqe - lOt information about resoUl'l:e utilization

SYNOPSIS
#bad ... <l}'IItIale.h>
#bad_ <.,./lI!IOIU'ee.h>
MetlDe .USAGE_SELF •
MetlDe .USAGE_CHILDREN -I

1* eaJJlDl procell -I
I. termlDated clllW proceIHIJ *1

ptnalllehrho, l'1lllle)
lat who;
Itract nal. Ol'1lllle;

DESCRIPTION
Getna/lgf! returns information describing the resOurces utilized by the current process, or all its
terminated ehild processes. The who parameter is one of RUSAGE_SELF and
RUSAGE_ClflLDREN. If f'USIlge is non-zero, the buffer it points to will be Med In with the
followinJ structure:

struet rusage {

I;

atruct timeval ru_utime;
strue! timeval ru stime;
Int ru_maxrsS;
Int rujxrss;
Int ruJdrss;
Int rujsrss;
Int ru mintlt·
Int ru:maJfit{
Int ru_nswap;
Int ru_lnblock;
Int ru_oub\ock;
Int ru_msgsnd;
Int ru_rnsgrcv;
Int ru_nsignals;
Int ru_nvcsw;
Int ru_nivcsw;

/. user time used'/
/- system time used ./

/- integral shared memory size ./
I. integral unshared data size ./
/. Integral unshared stack size ./
/. PIlle reclaims -/
/. PIlle faults ./
/. swaps ./
/. block input operations ./
I. block output operations ./
/. messages sent • /
I. messages received ./
/- signals received ./
/. voluntary context switches ./
/. Involuntary context switches ./

The fields are interpreted as follows:

ru_rnsxrss

rujxrss

rujdrss

ru_isrss

the total amount of time spent executina in user mode.

the total amount of time spent in the system executina on behalf of the
process (ea) .

the maximum resident set size utilized (in kilobytes).

an "integral" value indicatina the amount of memory used which was also
shared among other processes. This value is expressed in units of kilobytes •
seconds-of-execution and is calculated by sUllUJlini the number of shared
memory PIIIes in use each time the internal system clock ticks and then
averasins over 1 second Intervals.

an integral value of the amount of unshared memory residina In the data seg­
ment of a process (expressed in units of kilobytes. seconds-or-execution).

an integral value of the amount of unshared memory residing in the stack seg­
ment of a process (expressed In units of kilobytes • seconds-of -execution).

the number of PIlle faults serviced without any 110 activity; here ilo activity is

4th Berkeley Distribution 18 July 1983

OETRUSAOE (2) UNIX Programmer's Manual OETRUSAOE(2)

NOTES

ru_~f1t

ru_nswap

ru)nblock

ru_outblock

ru_msgsnd

ru_msgrcv

ru_nsignals

ru_nvcsw

avoided by "reclaiming" a PIle frame from the list of PlIes awaitiJla realloca­
tion.

the number of PIle faults serviced which required i/o activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messaaes sent.

the number of ipc messaaes received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily liv­
ing up the processor before its time slice was completed (uaually to await avai­
lability of a resource).

the number of times a context switch resulted due to a hiaher priority process
becoming runnable or becauae the current process exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real i/o; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process which has not yet terminated.

4th Berkeley Distribution 18 1uly 1983 2

GETSOCKNAME (2) UNIX Programmer's Manual GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen)
int S;
struct sockaddr -name;
int -namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

(EBADF] The argument s is not a valid descriptor.

(ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS]

IEFAULT)

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

bind (2), socket (2)

Names bound to sockets in the UNIX domain are inaccessible; gelSockname returns a zero
length name.

4th Berkeley Distribution 1 April 1983

GETSOCKOPT (2) UNIX Programmer's Manual GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include < sys/types.b >
#include <sys/socket.b>

lIetsockopt(s, level, optname, optvlIl, optlen)
int s, level, optname;
char ooptval;
lnt .optlen;

setsockopt<s, level, optname, optval, optlen)
int s, level, optname;
char .optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at mul·
tiple protocol levels; they are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the "socket" level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropri·
ate protocol controlling the option is supplied. For example, to indicate an option is to be
interpreted by the TCP protocol, level sflOuld be set to the protocol number of TCP; see
getprotoent(3N) .

The parameters optval and optlen are used to access option values for setsockopt. For gelsockopl
they identify a buffer in which the value for the requested option (s) are to be returned. For
gelsockopl, opt/en is a value-result parameter, initially containing the size of the buffer pointed
to by optvai, and modified on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be supplied as O.

Oplname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file <sys/sockel.h> contains definitions for "socket" level
options; see socket(2). Options at other protocol levels vary in format and name, consult the
appropriate entries in (4P).

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EFAULT] The options are not in a valid part of the process address space.

SEE ALSO
socket (2), getprotoent (3N)

4th Berkeley Distribution 7 July 1983

GEITIMEOFDA Y (2) UNIX Programmer's Manual GEITIMEOFDA Y (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include < sys/llme.b >
geUlmeofday(tp, tzp)
stmct limen I -tp;
simct timezone -tzp;

settimeofday (tp, tzp)
struct timeVllI otp;
strue! tlmezone otzp;

DESCRIPTION
Gettimeojday returns the system's notion of the current Greenwich time and the current time
zone. Time returned is expressed relative in seconds and microseconds since midnight January
1, 1970.

The structures pointed to by tp and tzp are defined in < sys/time. h> as:

struet time val {
uJong tv_sec;
long tv_usee;

};

/. seconds since Jan. 1, 1970./
/- and microseconds ./

struct timezone (
int tz minuteswestJ. of Greenwich ./
int tz=dsttime; /. type of dst correction to apply -/

};

The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

Only the super-user may set the time of day.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

(EPERM] A user other than the super-user attempted to set the time.

SEE ALSO

BUGS

date (I) , ctime(3)

Time is never correct enough to believe the microsecond values. There should a mechanism
by which, at least, local clusters of systems might synchronize their clocks to millisecond granu­
larity.

4th Berkeley Distribution 27 July 1983

GETUID(2) UNIX Programmer's Manual

NAME
getuid, geteuid - get user identity

SYNOPSIS
aid - Ketuld 0
Int uld;

euld - leteuldO
lnt euld;

DESCRIPTION

GETUID(2)

Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of "set-user-ID" mode processes, which use getuid to
determine the real-user-id of the process which invoked them.

SEE ALSO
getgid (2), setreuid (2)

4th Berkeley Distribution 12 February 1983

IOCTL (2) UNIX Programmer's Manual IOCTL (2)

NAME
ioctl - control device

SYNOPSIS
#include < sys/ioctl.h >
loctHd, request, argp)
Int d, request;
char oargp;

DESCRIPTION
loctl performs a variety of functions on open descriptors. In particular, many operating charac­
teristics of character special files (e.g. terminals) may be controlled with ioctl requests. The
writeups of various devices in section 4 discuss how ioetl applies to them.

An ioetl request has encoded in it whether the argument is an "in" parameter or "out"param­
eter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file < sys/ioctl. h> .

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS
loctl will fail if one or more of the following are true:

[EBADF]

[ENOTTY]

[ENOTTY]

[EINVAL]

SEE ALSO

D is not a valid descriptor.

D is not associated with a character special device.

The specified request does not apply to the kind of object which the descriptor
d references.

Request or argp is not valid.

execve(2), fcntl(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution 7 July 1983

KILL(2) UNIX Programmer's Manual KILL (2)

NAME
kill - send signal to a process

SYNOPSIS
kill (pld, sig)
Int pld, slg;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCOm which may always be
sent to any child or grandchild of the current process.

If the process number is 0, the signal is sent to all other processes in the sender's process
group; this is a variant of killpg(2).

If the process number is -1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
erma is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

[EINV ALl Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM]

SEE ALSO

The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.

getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution 27 July 1983

KILLPG(2) UNIX Programmer's Manual KILLPG (2)

NAME
killpg - send signal to a process group

SYNOPSIS
killPl (Plrp, siC)
lnt PIfP, siC;

DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
otherwise this call is restricted to the super-user. As a single special case the continue signal
SIGCONT may be sent to any process which is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
the global variable erma is set to indicate the error.

ERRORS
Kil/pg will fail and no signal will be sent if any of the following occur:

[EINV ALI Sig is not a valid signal number.

[ESRCHI No process can be found corresponding to that specified by pid.

[EPERMI

SEE ALSO

The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

kilI(2), getpgrp (2), sigvec (2)

4th Berkeley Distribution 27 July 1983

LINK (2) UNIX Programmer's Manual LINK (2)

NAME
link - make a hard link to a file

SYNOPSIS
Iink(name1, name2)
char .namel, .name2;

DESCRIPTION
A hard link to name] is created; the link has the name name2. Name] must exist.

With hard links, both name} and name2 must be in the same file system. Unless the caller is
the super-user, name] must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

Either pathname contains a byte with the high-order bit set.

Either pathname was too long.

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by name] does not exist.

The link named by name2 does exist.

The file named by name1 is a directory and the effective user 1D is not super­
user.

The link named by name2 and the file named by name} are on different file
systems.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

One of the pathnames specified is outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

symlink(2), unlink(2)

4th Berkeley Distribution 12 February 1983

LISTEN (2) UNIX Programmer's Manual

NAME
listen - listen for connections on a socket

SYNOPSIS
Usten (s, backlog)
lnt s, backlog;

DESCIUPTION

LISTEN (2)

To accept connections, a socket is first created with socket(2), a backlog for incoming connec­
tions is specified with Iisten(2) and then the connections are accepted with accept(2). The listen
call applies only to sockets of type SOCK_STREAM or SOCK]KTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If 8 connection request arrives with the queue full the client will receive an error with
an indication of ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

[EBADF)

[ENOTSOCK)

[EOPNOTSUPP)

SEE ALSO

The argument s is not a valid descriptor.

The argument s is not 8 socket.

The socket is not of a type that supports the operation listen.

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

4th Berkeley Distribution 12 February 1983

LSEEK (2) UNIX Programmer's Manual LSEEK (2)

NAME
!seek - move read/write pointer

SYNOPSIS
#define L SET 0 I. set the seek polnter.1
#define L - INCR 1 I. Increment the seek pointer .1
#define L=XTND I I. extend the file size .1

pos - lseek (d, otJset, whence)
Int POS;
Int d, otJset, whence;

DESCRIPTION

NOTES

The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offset bytes.

If whence is L_INCR, the pointer is set to its current location plus offset.

If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from beginning
of the file is returned. Some devices are incapable of seeking. The value of the pointer associ­
ated with such a device is undefined.

Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies no
physical space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE]

[EINVAL]

[EINVAL]

Fildes is associated with a pipe or a socket.

Whence is not a proper value.

The resulting file pointer would be negative.

SEE ALSO
dup(2),open(2)

BUGS
This document's use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution 7 July 1983

MKDIR(2) UNIX Programmer's Manual MKDIR (2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(pllth, mode)
dlar -path;
Int mode;

DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process's mode mask; see
umask(2».

The directory's owner ID is set to the process's effective user ID. The directory's group ID is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set
in the process's file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is
stored in ermo.

ERRORS
Mkdir will fail and no directory will be created if:

[EPERM] The process's effective user ID is not super-user.

[EPERM] The path argument contains a byte with the high-order bit set.

[ENOTDIR]

[ENOENT]

[EROFSl

[EEXIST]

(EFAULT]

[ELOOP)

[EIO]

SEE AI,SO

A component of the path prefix is not a directory.

A cOmponent of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

An I/O error occured while writing to the file system.

chmod(2), sta((2), umask(2)

4th Berkeley Distribution 27 July 1983

MKNOD(2) UNIX Programmer's Manual MKNOD(2)

NAME
mknod - make a special file

SYNOPSIS
mkood(path, mode, dey}
char .path;
lot mode, dey;

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode, (The protection part of the mode is modified by the process's
mode mask; see umask(2». The first block pointer of the i-node is initialized from dev and is
used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent specification
of a character or block I/O device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mknod will fail and the file mode will be unchanged if:

[EPERM] The process's effective user ID is not super-user.

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

SEE ALSO

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

chmod(2), stal(2), umask(2)

4th Berkeley Distribution 2 July 1983

MOUNT (2) UNIX Programmer's Manual MOUNT (2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(speclal, name, nrfIag)
ebar *speclal, *name;
Int ",flag;

umount(speclaO
ebar *speclal;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block­
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings con­
taining the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while the
file system is mounted.

The rwjfag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys­
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

RETURN VALUE
Mount returns 0 if the action occurred, -I if special is inaccessible or not an appropriate file, if
name does not exist, if special is already mounted, if name is in use, or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred; -1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ERRORS
Mount will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV]

[ENOTBLK]

[ENXIO]

[EPERM]

[ENOTDIR]

[EROFS]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

Special does not exist.

Special is not a block device.

The llllIior device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in name is not a directory.

Name resides on a read-only file system.

Name is not a directory, or another process currently holds a reference to it.

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size.

Not enough memory was available to read the cylinder group information for
the file system.

An i/o error occurred while reading the super block or cylinder group informa­
tion,

4th Berkeley Distribution 27 Iuly 1983

MOUNT (2) UNIX Programmer's Manual MOUNT (2)

Umount may fail with one of the following errors:

[NODEV] The caller is not the super-user.

[NODEV]

(ENOTBLK]

(ENXIO]

(EINVALl

(EBUSY]

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The requested device is not in the mount table.

A process is holding a reference to a file located on the file system.

SEE ALSO
mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

4th Berkeley Distribution 27 July 1983 2

OPEN (2) UNIX Programmer's Manual OPEN(2)

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#Inc:lude <sys/8Ie.h>

open(path, 8ags, mode)
char .path;
Int flags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the 0 CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process' umask value (see
umask(2».

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or'ing the following values

o RDONL Y open for reading only
O-WRONLY open for writing only
O-RDWR open for reading and writing
O=NDELAY do not block on open
o APPEND append on each write
0-CREA T create file if it does not exist
o -TRUNC truncate size to 0
O=EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with O_CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the 0 NDELA Y flag is specified
and the open call would result in the process being blocked for some reason (e.g. waiting for
carrier on a dialup line), the open returns immediately. The first time the process attempts to
perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close(2).

No process may have more than {OPEN_MAXI file descriptors open simultaneously.

ERRORS
The named file is opened unless one or more of the following are true:

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

A component of the path prefix is not a directory.

0_ CREA T is not set and the named file does not exist.

A component of the path prefix denies search permission.

The required permissions (for reading and/or writing) are denied for the
named flag.

The named file is a directory, and the arguments specify it is to be opened for
writting.

The named file resides on a read-only file system, and the file is to be
modified.

4th Berkeley Distribution 2 July 1983

OPEN (2)

[EMFILE]

[ENXIO]

[ETXTBSY]

[EFAULT]

[ELOOP]

[EEXIST]

[ENXIO]

[EOPNOTSUPP]

SEE ALSO

UNIX Programmer's Manual OPEN(2)

{OPEN_MAX} file descriptors are currently open.

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist.

The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the path name.

O_EXCL was specified and the file exists.

The O_NDELAY flag is given, and the file is a communications device on
which their is no carrier present.

An attempt was made to open a socket (not currently implemented).

chmod(2) , close(2), dup(2), Iseek(2), read (2) , write(2), umask(2)

4th Berkeley Distribution 2 July 1983 2

PIPE (2) UNIX Programmer's Manual PIPE (2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
plpeW.es)
btt lI1.esI11;

DESCRIPTION
The pipe system call creates an 110 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written USilll the descriptor ./iltksl1l up
to 4096 bytes of data are buffered before the writina process is suspended. A read usina the
descriptor ./iltks(O) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpoir(2) call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe with only one end is attempted.

~IlETUIN VALUE
The function value zero is returned if the pipe was created; -1 if an error occurred.

ERIlOIlS
The pipe call will fail if:

(EMFlLE) Too many descriptors are active.

(EFAULT) The./iltks buffer is in an invalid area of the process's address space.

SEE ALSO

BUGS
sh(l), read(2), write(2), fork(2), soc:ketpair(2)

Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

4th Berkeley Distribution 12 February 1983

PROFIL (2) UNIX Programmer's Manual PROFIL (2)

NAME
profil - execution time profile

SYNOPSIS
proflHbuff, bufsiz, offset, scale)
char -buff;
Int burs!z, offset, scale;

DESCRIPTION
Bl{{fpoints to an area of core whose length Gn bytes) is given by bufsiz. After this call, the
user's program counter (pc) is examined each clock tick (10 milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside bWf, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
OxlOOOO gives a 1-1 mapping of pc's to words in bWf,· Ox8000 maps each pair of instruction
words together. Ox2 maps all instructions onto the beginning of bl{{f (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or I. It is rendered ineffective by giving a bufsiz of
O. Profiling is turned off when an execve is executed, but remains on in child and parent both
after 8 fork. Profiling is turned off if an update in b/{/.'fwould cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(J}, setitimer(2), monitor(3)

4th Berkeley Distribution 12 February 1983

PTRACE(2) UNIX Programmer's Manual PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include < signal.h>

ptraceCrequest, pld, addr, data)
Int request, pid, .addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break­
point debugging. There are four arguments whose interpretation depends on a request argu­
ment. Generally, pldis the process 10 of the traced process, which must be a child (no more
distant descendant> of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally IIlnerated like "illegal instruction" or externally gen­
erated like "interrupt". See sigvec(2) for the list. Then the traced process enters a stopped
state and its parent is notified via wait(2). When the child is in the stopped state, its core
image can be examined and modified using ptrace. If desired, another ptrace request can then
cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

o This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and 0 space are
separated (e.g. historicallY on a pdp-10, request I indicates I space, 2 0 space. Addr must
be even. The child must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space corresponding to addr.
which must be even. No useful value is returned. If I and 0 space are separated, request
4 indicates I space, 5 0 space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer­
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at loca­
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process's image indicating which signal caused the stop. If addr is Hnt .)J then execu­
tion continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the V AX-II the T -bit is used and just one instruction is executed.) This is
part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the "termina­
tion" status returned by wait has the value 0177 to indicate stoppage rather than genuine termi­
nation.

4th Berkeley Distribution 2 July 1983

PTRACE(2) UNIX Programmer's Manual PTRACE(2)

To forestall possible fraud, ptrace inhibits the set-user-id and set-groupoid facilities on subse­
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

On a VAX-IJ, "word" also means a 32-bit integer, but the "even" restriction does not apply.

RETURN VALUE
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable ermo is set to indicate the error.

ERRORS
[EINVAL) The request code is invalid.

[EINVAL)

[EINVAL)

[EFAULT)

[EPERM)

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

wait(2), sigvec(2), adb(I)

Ptrace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ioct/(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use "ille­
gal instruction" signals at a very high rate) could be efficiently debugged.

The error indication, -I, is a legitimate function value; errno, see intro(2) , can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

4th Berkeley Distribution 2 July 1983 2

QUOTA (2) UNIX Programmer's Manual QUOTA (2)

NAME
quota - manipulate disk quotas

SYNOPSIS
#include < sys/quota.b>

quota(cmd. uid. argo addr)
int cmd. uid. arg;
caddr_t addr;

DESCRIPTION
The quota call manipulates disk quotas for file systems which have had quotas enabled with set­
quota(2). The cmd parameter indicates a command to be applied to the user ID uid. Arg isa
command specific argument and addr is the address of an optional, command specific, data
structure which is copied in or out of the system. The interpretation of arg and addr is given
with each command below.

Q_SETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqblk structure
(defined in < syslquota.h». This call is restricted to the super-user.

Q GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remaining
parameters are as for Q_SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID uid. Arg is a major-minor device indicating a
particular file system. Addr is a pointer to a struct dqusage structure (defined in
< syslquota.h». This call is restricted to the super-user.

Q SYNC
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are
ignored.

Q SETUID
Change the calling process's quota limits to those of the user with ID uid. The arg and
addr parameters are ignored. This call is restricted to the super-user.

Q SETWARN
Alter the disc usage warning limits for the user with ID uid. Argis a major-minor dev­
ice indicating a particular file system. Addr is a pointer to a struct dqwarn structure
(defined in < syslquota.h». This call is restricted to the super-user.

Q DOWARN
Warn the user with user ID uidabout excessive disc usage. This call causes the system
to check its current disc usage information and print a message on the terminal of the
caller for each file system on which the user is over quota. If the arg parameter is
specified as NODEV, all file systems which have disc quotas will be checked. Other­
wise, arg indicates a specific major-minor device to be checked. This call is restricted to
the super-user.

RETURN VALUE
A successful call returns 0 and, possibly, more information specific to the cmdperformed; when
an error occurs, the value -1 is returned and errno is set to indicate the reason.

ERRORS
A quota call will fail when one of the following occurs:

[EINvAL] Cmdis invalid.

4th Berkeley Distribution 7 July 1983

QUOTA (2) UNIX Programmer's Manual QUOTA (2)

[ESRCH]

[EPERM]

[EINVALl

[EFAULT]

[EUSERS]

No disc quota is found for the indicated user.

The call is priviledged and the caller was not the super-user.

The arg parameter is being interpreted as a major-minor device and it indicates
an unmounted file system.

An invalid addr is supplied; the associated structure could not be copied in or
out of the kernel.

The quota table is full.

SEE ALSO

BUGS

setquota (2), quotaon (8), quotacheck (8)

There should be someway to integrate this call with the resource limit interface provided by
setrlimil(2) and getrlimit(2).

The Australian spelling of disk is used throughout the quota facilities in honor of the imple­
mentors.

4th Berkeley Distribution 7 July 1983 2

READ (2) UNIX Programmer's Manual READ (2)

NAME
read, readv - read input

SYNOPSIS
ce .. read (d, bur, nbytes)
Inl ce, d;
ehar *buf;
Int nbytes;

#lncJude < sys/types.h>
#inelude < sys/uio.h>

ce .. readY (d, iov, iovent>
int ce, d;
struet iovec *iov;
int lovent;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buj Readv performs the same action, but scatters the input data into the
ioventbuffers specified by the members of the iovecarray: iov[O], iov[Il, ... , iov[iovcnt-1].

For readv, the iovee structure is defined as

struct iovec (
caddr _ t iov _base;
int iovJen;

);

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated with
d, see lseek(2). Upon return from read, the pointer is incremented by the number of bytes
actually read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, read and ready return the number of bytes actually read and placed
in the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable ermo is set to indicate the error.

ERRORS
Readand readvwill fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT]

[EINTR]

Bujpoints outside the allocated address space.

A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

In addition, ready may return one of the following errors:

[EINVAL]

[EINVALl

loventwas less than or equal to 0, or greater than 16.

One of the iov_len values in the iovarray was negative.

4th Berkeley Distribution 27 July 1983

READ (2) UNIX Programmer's Manual READ (2)

[EINVAL] The sum of the iov_len values in the iovarray overflowed a 32-bit integer.

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

4th Berkeley Distribution 27 July 1983 2

READ LINK (2) UNIX Programmer's Manual READ LINK (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = read link (path, bur, bufsiz)
in! cc;
char "path, "bur;
int bursiz;

DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer bufwhich has size bufsiz.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable ermo.

ERRORS
Readlinkwill fail and the file mode will be unchanged if:

[EPERM) The path argument contained a byte with the high-order bit set.

[ENOENT]

[ENOTDIR]

[ENOENT)

[ENXIO)

[EACCES)

[EPERM)

[EINVAL]

[EFAULT]

[ELooP]

SEE ALSO

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is not a symbolic link.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file is not a symbolic link.

Bufextends outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

stat (2), Ista! (2), symlink (2)

4th Berkeley Distribution 2 July 1983

REBOOT (2) UNIX Programmer's Manual REBOOT (2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#lnclude < sys/reboot.h>

reboot (howto)
Int howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call interface
permits only RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap pro­
cedures. When none of these options (e.g. RB AUTOBOOT) is given, the system is rebooted
from file "vmunix" in the rool file system of unit 0 of a disk chosen in a processor specific
way. An automatic consistency check of the disks is then normally performed.

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place. RB _HALT should be used with
caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, Gausing it to inquire as to what file should
be booted, Normally, the system is booted from the file "xx(O,Olvmunix" without
asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply
booting the system with a single-user shell on the console. RB SINGLE is interpreted
by the init(8) program in the newly booted system. This switch is not available from
the system call interface.

Only the super-user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in
the global variable ermo.

ERRORS
[EPERM] The caller is not the super-user.

SEE ALSO
crash (8), halt (S), init (8), reboot (8)

BUGS
The notion of "console medium", among other things, is specific to the VAX.

4th Berkeley Distribution 18 July 1983

RECV (2) UNIX Programmer's Manual RECV (2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

cc - reel' (s, buf, len. flags)
Int ce, s;
char -bur;
int len, flags;

ce "" recl'rrom(s, buf, len, flags, from, Cromlen)
Int ce, S;
char obuf;
lnt len, flags;
struct sockaddr -from;
Int .rromlen;

ce = recl'msg (s, msg, Hags)
in! ce, S;
struct msghdr msgll;
inl flags;

DESCRIPTION
Recv, recv/rom, and recvmsg are used to receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2» , while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If /rom is non-zero, the source address of the message is filled in. From/en is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in cc.
If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is non blocking (see ioct/(2» in which case a cc of -1 is returned with the external
variable errno set to EWOULDBLOCK.

The se/ect(2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the values,

#defineMSG PEEK Oxl /0 peek at incoming message ./
#defineMSG=OOB Ox2 /- process out-of-band data -/

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame­
ters. This structure has the following form, as defined in < syslsocket.h> :

struct msghdr (
caddr_t msg_name;
int msg_namelen;
slmct iov omsgjov;
int msgjovlen;
caddr_t msg_accrights;

/. optional address ./
/. size of address ./
/- scatter/gather array ./
/- # elements in msg iov ./
/. access rights sent/received 0/

int msg_accrightslen;
l;

4th Berkeley Distribution 7 July 1983

RECV (2) UNIX Programmer's Manual RECV (2)

Here msg_name and msg_namelen specify the destination address if the socket is unconnected;
msg name may be given as a null pointer if no names are desired or required. The msg iovand
msg- iovlen describe the scatter gather locations, as described in read(2). Access rights to be
sentalong with the message are specified in msg_accrights, which has length msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

[EBADF]

[ENOTSOCK]

The argument s is an invalid descriptor.

The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR]

[EFAULT]

SEE ALSO

The receive was interrupted by delivery of a signal before any data was
available for the receive.

The data was specified to be received into a non-existent or protected
part of the process address space.

read (2), send (2), socket (2)

4th Berkeley Distribution 7 July 1983 2

RENAME (2) UNIX Programmer's Manual RENAME (2)

NAME
rename - change the name of a file

SYNOPSIS
rename (from, to)
char -from, -to;

DESCRIPTION
Rename causes the link named from to be renamed as 10. If 10 exists, then it is first removed.
Both from and 10 must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of 10 will always exist, even if the system should crash in
the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the form
of an entry in directory "a", say "a/foo", being a hard link to directory "b", and an entry in
directory "b", say "b/bar", being a hard link to directory "a". When such a loop exists and
two separate processes attempt to perform "rename a/foo b/bar" and "rename blbar alfoo",
respectively, the system may deadlock attempting to lock both directories for modification.
Hard links to directories should be replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global
variable errno indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

(ENOTDlR]

(ENOENT]

(EACCES]

(ENOENT]

(EPERM]

(EXDEV]

(EACCES]

[EROFS]

(EFAULT]

(EINVAL]

SEE ALSO
open (2)

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by from is a directory and the effective user 10 is not super­
user.

The link named by 10 and the file named by from are on different logical dev­
ices (file systems). Note that this error code will not be returned if the imple­
mentation permits cross-device links.

The requested link requires writing in a directory with a mode that i:lenies write
permission.

The requested link requires writing in a directory on a read-only file system.

Path points outside the process's allocated address space.

From is a parent directory of 10.

4th Berkeley Distribution 12 February 1983

RMDIR (2) UNIX Programmer's Manual

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char ·path;

DESCRIPTION

RMDIR (2)

Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than"." and" .. ".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -I is returned and an error code is stored
in the global location ermo.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The named directory contains files other than"." and" .. " in it.

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

mkdir(2), unlink (2)

4th Berkeley Distribution 2 July 1983

SELECT (2) UNIX Programmer's Manual SELECf(2)

NAME
select - II)'llchronous ilo multiplexing

SYNOPSIS
#lDdude <sy./time.h>

alOliod - select(ofds, readfds, writefds, ueeptfds, timeout)
Int ofouod, aids, ereadfds, -writerd!, *execptfds;
Itruct timen! -timeout;

DESCllIPTION
Select examines the i/o descriptors specified by the bit masks reacU'ds, write/ds, and execpt/ds to
see if they are ready for reading, writing, or have an exceptional condition pending, respec­
tively. File descriptor / is represented by the bit "1 < <r' in the mask. Nfds desciptors are
checked, i.e. the bits from 0 through r/lds-l in the masks are examined. Select returns, in place,
a mask of those descriptors which are ready. The total number of ready descriptors is returned
in rifound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of reacU'ds, write/ds, and execpt/ds may be given as 0 if no descriptors are of interest.

RETURN VALUE
Select returns the number of descriptors which are contained in the bit masks, or -1 if an error
occurred. If the time limit expires then select returns O.

ERRORS
An error return from select indicates:

[EBADF]

[EINTR]

One of the bit masks specified an invalid descriptor.

An signal was delivered before any of the selected for events occurred or the
time limit expired.

SEE ALSO

BUGS

accept(2), connect(2), read(2), write(2), recv(2), send(2)

The descriptor masks are always modified on return, even if the call returns as the result of the
timeout.

4th Berkeley Distribution 2 July 1983

SEND (2) UNIX Programmer's Manual SEND (2)

NAME
send, send to, sendrnsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include < sys/socket.h >

ce - send(s, mSI, len, flags)
lnt ce, S;
char -mSI;
lnt len, flags;

ce - sendto (s, mSI, len, flals, to, tolen)
lnt ce, S;
char -mSI;
lnt len, flals;
struct sockaddr -to;
lnt tolen;

ce - sendmsl(s, mSI, flals)
lnt ce, 5;
struct mSlhdr mSIIl;
int flals;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be used
only when the socket is in a connected state, while sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of the message
is given by len. If the message is too long to pass atomically through the underlying protocol,
then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then send
normally blocks, unless the socket has been placed in non-blocking i/o mode. The select(2) call
may be used to determine when it is possible to send more data.

The .flags parameter may be set to MSG OOB to send "out-of-band" data on sockets which
support this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

ERRORS
[EBADF]

[ENOTSOCK]

[EFAULT]

[EMSGSIZE]

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was specified for a parameter.

The socket requires that message be sent atomically, and the size of the
message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

SEE ALSO
recv(2), socket(2)

4th Berkeley Distribution 20 September 1983

SETGROUPS (2) UNIX Programmer's Manual

NAME
setgroups - set group access list

SYNOPSIS
#include < sys!param.h>

setgroups (ngroups, gidset)
int ngroups, ogidset;

DESCRIPTION

SETGROUPS (2)

Setgroups sets the group access list of the current user process according to the array gidset. The
parameter ngroups indicates the number of entries in the array and must be no more than
NGRPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
A 0 value is returned on success, - 1 on error, with a error code stored in errna

ERRORS
The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidselis outside the process address space.

SEE ALSO
getgroups (2), initgroups(3X)

4th Berkeley Distribution 7 July 1983

SETPGRP (2)

NAME
setpgrp - set process group

SYNOPSIS
setpgrp(pld, pgrp)
Int pid, pgrp;

DESCRIPTION

UNIX Programmer's Manual SETPGRP (2)

Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and the
global variable ermo indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH]

[EPERM]

SEE ALSO
getpgrp(2)

The requested process does not exist.

The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.

4th Berkeley Distribution 12 February 1983

SETQUOTA (2) UNIX Programmer's Manual SETQUOT A (2)

NAME
setquota - enablefdisable quotas on a file system

SYNOPSIS
setquota (special, file)
char ·special, -file;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Specialindicates a block special dev­
ice on which a mounted file system exists. If file is nonzero, it specifies a file in that file system
from which to take the quotas. If file is 0, then quotas are disabled on the file system. The
quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota (2) , quotacheck(8), quotaon(8)

RETURN VALUE
A 0 return value indicates a successful call. A value of -I is returned when an error occurs
and ermo is set to indicate the reason for failure.

ERRORS

BUGS

Setquota will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV]

[ENOTBLK]

[ENXIOI

[EPERM}

[ENOTDIR]

[EROFS]

[EACCES]

[EACCES]

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in file is not a directory.

File resides on a read-only file system.

File resides on a file system different from special.

File is not a plain file.

The error codes are in a state of disarray; too many errors appear to the caller as one value.

4th Berkeley Distribution 7 July 1983

SETREGID (2) UNIX Programmer's Manual SETREGID (2)

NAME
setregid - set real and effective group ID

SYNOPSIS
setregld (qid, egld)
lnt qid, egld;

DESCRIPTION
The real and effective group ID's of the current process are set to the arguments. Unprivileged
users may change the real group ID to the effective group ID and vice-versa; only the super­
user may make other changes.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing the
effective group-id to the real group-id was specified.

getgid(2), setreuid(2), setgid(3)

4th Berkeley Distribution 12 February 1983

SETREUID (2) UNIX Programmer's Manual SETREUID (2)

NAME
setreuid - set real and effective user ID's

SYNOPSIS
setreuid <ruld, euid)
Int ruld, euld;

DESCRIPTION
The real and effective user ID's of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Unprivileged users may change
the real user ID to the effective user ID and vice-versa; only the super-user may make other
changes.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing the
effective user-id to the real user-id was specified.

getuid(2), setregid(2), setuid(3)

4th Berkeley Distribution 12 February 1983

SHUTDOWN (2) UNIX Programmer's Manual

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
lnt s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a full-duplex connection on the socket associated with s
to be shut down. If how is 0, then further receives will be disallowed. If how is I, then further
sends will be disallowed. If how is 2, then further sends and receives will be disallowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -I if it fails.

ERRORS
The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect (2), socket (2)

4th Berkeley Distribution 27 July 1983

SIGBLOCK (2)

NAME
sigblock - block signals

SYNOPSIS
sigblock (mask);
int mask;

DESCRIPTION

UNIX Programmer's Manual SIGBLOCK (2)

Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signal i is blocked if the i-th bit in mask is a I.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill (2), sigvec(2), sigsetmask (2),

4th Berkeley Distribution 15 June 1983

SIGPAUSE(2) UNIX Programmer's Manual SIGPAUSE(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
sillpause(sigmask)
Int sillmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually 0 to indicate that no signals are
now to be blocked. Sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2) , to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using sigpause with the mask returned by sig­
block.

SEE ALSO
sigblock (2), sigvec(2)

4th Berkeley Distribution 7 July 1983

SIGSETMASK (2) UNIX Programmer's Manual

NAME
sigsetmask - set current signal mask

SYNOPSIS
silsetmask (mask);
Int mask;

DESCRIPTION

SIGSETMASK (2)

Sigsetmask sets the current signal mask (those signals which are blocked from delivery). Signal
iis blocked if the i-th bit in mask is a I.

The system Quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

4th Berkeley Distribution 7 July 1983

SIGST ACK (2) UNIX Programmer's Manual SIGST ACK (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include < signal.h>

struct slgstack {
caddf_t ss_sp;
Int ss_onstack;

j;

sigslack (5S, 05S);

slmet sigstack '55, *OS5;

DESCRIPTION

NOTES

Sigstack allows users to define an alternate stack on which signals are to be processed. If ss is
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the process
is currently executing on that stack. When a signal's action indicates its handler should execute
on the signal stack (specified with a sigvec(2) calI), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stack,
the system arranges a switch to the signal stack for the duration of the signal handler's execu­
tion. If oss is non-zero, the current signal stack state is returned.

Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULT]

SEE ALSO

Either ss or oss points to memory which is not a valid part of the process
address space.

sigvec(2), setjmp(3)

4th Berkeley Distribution 15 June 1983

SIOVEC(2) SIOVEC(2)

NAME
IiJycc - IIOftware siBnal f!icllltie!!

SYNOPSIS
i#incl_ <lIlanal.h>
fil'IId a1pec {

blt
bit
bit

(-IIY _haniler) 0;
IIV_IWIllk;
1111'_ outKk.;

liree(IIi1, vee. one)
bit iii;
IIItnaet IIlavec -'ftc. "CI'fee;

DESCilIPTION
The system define!! Ii set of signals that may be delivered to II process. Signal delivery reaem·
hies the oocurence of 1\ bard'llV!lfe interrupt: the sillll8l is blocked from further occurrence, the
current process context is Mved, and a new one is built. A process may specify II handler to
which II sillll8l is delivered, or specify that II signal is to be blocked or Ignored. A process may
also apecify that II default action is to be taken by the system when II siIIIl8l occurs. Normally,
sillll8l handlers execute on the current stack of the proceM. This may be chanaed. on II per­
handler basis, $0 that signals are taken on II special signal stack.

All signals have the HmO priority. Signal routines execute with the siIIIl8l that caused their
invocation blocked, but other signals may yet occur. A Jlobal signal mask defines the set of sig­
nals currently blocked (rom delivery to I process. The signal mask for I proceM is initilized
from that of its parent (normally 0). It may be changed with a illgblock(2) or sJgsetm4sk(2) caI1,
or when a signal is delivered to the process.

When II siIIIl8l condition arises for a process, the signal is added to I set of signa.Is pending for
the process. If the signal is not currently blocked by the process then it is delivered to the pro­
ceM. When Ii signal is delivered, the current state of the prOceM is Mved, a new siIIIl8l mask is
calculated (as described below), and the signal handler is invoked. The call to the handler is
arranged so that if the siIIIl8l handlini routine returns normally the process will resume execu­
tion in the context from before the signal's delivery. If the process wishes to resume in a
different context, then it must arrange to restore the previous context itself.

When II sillll8l is delivered to II process II new signal mask is inatalled for the duration of the
prOceM' signal handler (or until II sighlock or sigsetm4sk caI1 is made). This mask is formed by
taItinII the current signal mask, adding the signal to be delivered, and or'ing in the signal mask
associated with the handler to be invoked.

SIgvec assigns a handler for a specific signal. If we is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if sv_onstack is I, the sys­
tem will deliver the signal to the procellS on II. signal stack, specified with slgstack(2). If owe is
non-zero, the previous handling information for the signal is returned to the user.

The following is II list of all sillll8ls with names as in the include file < signal. h > :
SIGHUP 1 hangup
SIOINT 2 interrupt
SIOQUIT 3* quit
SIOlLL 4. illegal inatruction
SIGTRAP 5- trace trap
SIGIOT 6- lOT inatruction
SIOEMT 7. EMT inatrnction
SIOFPE 8. flosting point exception

4th Berkeley Distribution 7 July 1983

SIOVEC(2) UNIX Proarammer's Manual SIOVEC(2)

NOTES

SIOICILL 9 Idll (cannot be cauaht, blocked, or ianored)
SIOBUS U). bus error ~
SIOSEOV 11. seamentation violation
SIOSYS 12. bed lUJument to system call
SIOPIPE 13 write on a pipe with no one to read it
SIOALRM 14 aIsrrn clock
SIOTERM IS software termination signal
SIOURO 16- uraent condition present on socket
SIOSTOP 17t atop (cannot be cauaht, blocked, or ianored)
SIOTSTP 1St atop signalaenerated from keyboard
SIOCONT 19- continue after stop (cannot be blocked)
SIOCHLD 20- child status has chanaed
SIOrnN 21 t bacJcaround read attempted from control terminal
SIOTIOU 22t bacJcaround write attempted to control terminal
SIOIO 23- i/o is possible on a descriptor (see /cntt(2»
SIOXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIOXFSZ 2S file size limit exceeded (see setrlimit(2»
SIOVT ALRM 26 virtual time alarm (see setitimer(2»
SIOPROF 27 profilina timer alarm (see setltimer(2»

The starred signals in the list above cause a core imqe if not cauaht or ianorcd.

Once a signal handler is installed, it remains installed until another s/gvec call is made, or an
execl'e(2) is performed. The default action for a sianal may be reinstated by settina IJlIjltlndler
to SIO_DFL; this default is termination (with a core imqe for starred signals) except for sig­
nals marked with - or t. Sianals marked with - are discarded if the action is SIO_DFL; sianals
marked with t cause the process to stop. If lJlI_handler is SIO_ION the sianal is subsequently
ianored, and pendina instances of the signal are discarded.

If a cauaht signal occurs durina certain system calls, causina the call to terminate prematurely,
the call is automatically restarted. In particular this can occur durina a Tt!fld or write(2) on a
slow device (such u a terminal; but not a file) and durina a wait(2).

After a jOrk(2) or IIjOrk(2) the child inherits all signals, the sianal muk, and the signal stack.

Execve(2) resets all caught signals to default action; ianored signals remain ianored; the signal
muk remains the same; the sianal stack state is reset.

The muk specified in Pee is not sllowed to block SIOICILL, SIOSTOP, or SIOCONT. This is
done silently by the system.

UTUINVALUE
A 0 value indicated that the call sucoecdcd. A -1 return value indicates an error occurcd and
e"no is set to indicated the reuon.

ERRORS
S/gvec will fail and no new signal handler will be installed if one of the following occurs:
[EFAULT) Either M!'C or OM!'C points to memory which is not a valid part of the process

address space.

(EINVAL)

[EINVAL)

[EINVAL)

SEE ALSO

Sig is not a valid sianal number.

An attempt is made to ianore or supply a handler for SIOICILL or SIOSTOP.

An attempt is made to ianore SIOCONT (by default SIGCONT is ignored).

killW, ptrace(2) , 1dll(2) , sigblock(2) , sigselrnuk(2), sigPluse(2) sigstack(2) , sigvec(2) ,
se~mp(3), tty(4)

4th Berkeley Distribution 7 July 1983 2

SIGVEC(2) UNIX Programmer's Manual SIGVEC(2)

NOTES (VAX·U)

BUGS

The handler routine can be declared:

hmdler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here slg is the signal number, into which the hsrdware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from the
other SIGILL traps by having PSL_CM set in the psI). Scp is a pointer to the sigcontext struc­
ture (defined in <slgnai.h», used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in <slgnal.h>:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow SIGFPE FPE INTOVF TRAP
Integer division by zero SIGFPE FPE -INTDIV -TRAP
Floating overflow trap SIGFPE FPE-FLTOvF TRAP
Floating/decimal division by zero SIGFPE FPE-FLTDIV-TRAP
Floating underflow trap SIGFPE FPE - FL TUNI5 TRAP
Decimal overflow trap SIGFPE FPE-DECOVF-TRAP
Subscript-range SIGFPE FPE - SUBRNG -TRAP
l<1oating overflow fault SIGFPE FPE-FLTOVF -FAULT
Floating divide by zero fault SIGFPE FPE-FLTDIV-FAtJLT
Floating underflow f BUIt SIGFPE FPE=FLTUNI5_FAULT

Length access control SIGSEGV
Protection violation SIGBUS
Reserved instruction SIGILL ILL_RESAD1AULT
Customer-reserved instr. SIGEMT
Reserved operand SIGILL ILL PRIVlN FAULT
Reserved addressing SIGILL ILL=RESOP }'AULT
Trace pending SIGTRAP
Bpt instruction SIGTRAP
Compatibility-mode SIGILL hsrdware supplied code
Chme SIGSEGV
Chms SIGSEGV
Chmu SIGSEGV

This manual page is confusing.

4th Berkeley Distribution 7 July 1983 3

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

s = socket(af, type, protocol)
Int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The a/parameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include file
< syslsocket. h>. The currently understood formats are

AF UNIX (UNIX path names),
AF INET (ARPA Internet addresses),
AF=PUP (Xerox PUP-I Internet addresses), and
AF _IMPLINK (IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication. Currently
defined types are:

SOCK STREAM
SOCK-DGRAM
SOCK-RAW
SOCK -SEQP ACKET
SOCK=RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCK DGRAM socket supports
datagrams (connectionless, unreliable messages of a fixed (typically small) maximum length).
SOCK_RAW sockets provide access to internal network interfaces. The types SOCK_RAW,
which is available only to the super· user, and SOCK_SEQPACKET and SOCK_RDM, which
are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However, it is
possible that many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the "communication domain" in
which communication is to take place; see services(3N) and protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connection
to another socket is created with a connect(2) call. Once connected, data may be transferred
using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a ses­
sion has been completed a c!ose(2) may be performed. Out-of-band data may also be transmit­
ted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer prot~ol has buffer space cannot be suc­
cessfully transmitted within a reasonable length of time, then the connection is considered bro­
ken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally keep sockets "warm" by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated
if no response can be elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes naive

4th BerkeleY Distribution 18 July 1983

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

processes, which do not handle the signal, to exit.

SOCK DGRAM and SOCK RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

An !cntl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the
file < syslsocket.h> and explained below. SelSOckopt and getsockopt(2) are used to set and get
options, respectively.

SO DEBUG turn on recording of debugging information
SO - REUSEADDR allow local address reuse
SO-KEEP ALIVE keep connections alive
SO=DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present
SO_DONTLINGER do not linger on close

SO DEBUG enables debugging in the underlying protocol modules. SO REUSEADDR indi­
cates the rules used in validating addresses supplied in a bind(2) call should allow reuse of local
addresses. SO KEEP ALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection is con­
sidered broken and processes using the socket are notified via a SIGPIPE signaL
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facili­
ties. Instead, messages are directed to the appropriate network interface according to the net­
work portion of the destination address. SO LINGER and SO DONTLINGER control the
actions taken when unsent messags are queued on socket and a ~/ose(2) is performed. If the
socket promises reliable delivery of data and SO LINGER is set, the system will block the pro­
cess on the close attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified in the set­
sockopt call when SO LINGER is requested). If SO DONTLINGER is specified and a close is
issued, the system will process the close in a manner which allows the process to continue as
quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this version of the sys­
tem.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]

[EM FILE]

[ENOBUFS]

SEE ALSO

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

accept (2), bind (2), connect(2), getsockname(2), getsockopt (2), ioctI(2), listen (2), recv (2),
select(2), send (2), shutdown (2), socketpair(2)
.. A 4.2BSD Interprocess Communication Primer".

4th Berkeley Distribution 18 July 1983 2

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

BUGS
The use of keepalives is a questionable feature for this layer.

4th Berkeley Distribution 18 July 1983 3

SOCKETP AIR (2) UNIX Programmer's Manual SOCKETP AIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
Int sv(21;

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d, of
the specified type, and using the optionally specified protocol. The descriptors used in referenc­
ing the new sockets are returned in sv(O] and svlI). The two sockets are indistinguishable.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

(EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The speCified protocol does not support creation of socket pairs.

[EFAULT) The address sv does not specify a valid part of the process address space.

SEE ALSO
read(2), write (2), pipe (2)

BUGS
This call is currently implemented only for the UNIX domain.

4th Berkeley Distribution 27 July 1983

STAT (2) UNIX Programmer's Manual STAT (2)

NAME
stat, lsta!, fstat - get file status

SYNOPSIS
#Include < sys/types.h>
#Include < sys/stat.b>

stat (path, bur)
char -path;
struet stat -bur;

Istat(path, bur)
char .path;
stroet stat • buf;

fstat(ld, buO
Int rd;
strud stat -bul;

DESCRIPTION
Sltllobtains information about the file path. Read, write or execute permission of the named
file is not required, but aU directories listed in the path name leading to the file must be reach­
able.

Lsltlt is like sltlt except in the case where the named file is a symbolic link, in which case Isltll
returns information about the link, while stat returns information about the file the link refer­
ences.

Fsltlt obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

Bufis a pointer to a sltll structure into which information is placed concerning the file. The
contents of the structure pointed to by buf

struct stat (

};

dev_t
ino_t
u_short
short
short
short
dey t

01'(1
time_t
int
time_t
int
time_t
int
long
long
long

51_dev;
sUno;
5t_mode;
st_nlink;
st_uid;
sU~id;
stJdev;
st_size;
sl_atime;
st_spare! ;

/- device inode resides on -/
/- this inode's number -/
/- protection ./
/- number or hard links to the file .J
/- user-id of owner '1
I· group-id of owner -/
I. the device type, for in ode that is device '1
I. total size of file -/
I. file last access time .1

st_mtime; /* file last modify time ./
st_spare2;
st ctime; I. file last status change time ·1
st=spare3;
st blksize; . /. optimal blocksize for file system if oops -/
st-blocks; I· actual number of blocks allocated -I
s(spare4[21;

Time when file data was last read or modified. Changed by the following system
calls: mknod(2) , utimes(2) , read(2), and write(2). For reasons of efficiency,
st_atime is not set when a directory is searched, although this would be more logi­
cal.

4th Berkeley Distribution 27 July 1983

STAT (2) UNIX Programmer's Manual STAT (2)

st_mtime Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mlcnod(2) , Illlmes(2) ,
wrile(2).

st_ctime Time when file status was last changed. It is set both both by writing and chang­
ing the i-node. Changed by the following system calls: chmod(2) chown(2) ,
link(2), mknod(2) , IInlink(2), IItimes(2) , wrlle(2).

The status information word sl mode has bits:
#define S IFMT '0170000 /. type of file ./
#define -S IFDlR 004000O /. directory ./
#define S-IFCHR 0020000 /. character special ./
#define S-IFBLK 0060000 /. block special ./
#define S-IFREG 0100000 /. regular ./
#define S-IFLNK 0120000 /. symbolic link ./
#define S-IFSOCK 0140000 /. socket ./
#define S ISUID 0004000 /. set user id on execution ./
#define S-ISGID 0002000 /. set group id on execution ./
#define S-ISVTX 0001000 /. save swapped text even after use ./
#define S-IREAD 000040O /. read permission, owner ./
#define S-IWRITE 0000200 /. write permission, owner ./
#define S)EXEC 0000100 /. execute/search permission, owner ./

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2».

When Id is associated with a pipe, /sllli reports an ordinary file with an i-node number, res­
tricted permissions, and a not necessarily meaningful length.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -I is returned and
errno is set to indicate the error.

ERRORS
SlIlland ISlIltwill fail if one or more of the following are true:

[ENOTDlR) A component of the path prefix is not a directory.

[EPERM)

(ENOENT)

[ENOENT)

[EACCES]

(EFAULT]

The pathname contains a character with the high-order bit set.

The pathname was too long.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Blifor ntlme points to an invalid address.

Fsllltwill fail if one or both of the following are true:

(EBADF) Fildes is not a valid open file descriptor.

(EFAULT]

(ELOOP)

CAVEAT

Blifpoints to an invalid address.

Too many symbolic links were encountered in translating the pathname.

The fields in the stat structure currently marked Slsporel, Slspore2, and slsporeJ are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain
programs which depend on the time stamps being contiguous (in c:alls to ullmes(2».

SEE ALSO
chmod(2), chown(2), utimes(2)

4th Berkeley Distribution 27 July 1983 2

STAT (2) UNIX Programmer's Manual STAT(2)

BUGS
Applying ISlalto a socket returns a zero'd buffer.

The list of calls which modify the various fields should be carefullY checked with reality.

4th Berkeley Distribution 27 July 1983 3

SWAPON(2) UNIX Programmer's Manual

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
sw.pon (special)
char ospeclal;

DESCRIPTION

SWAPON(2)

Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

SEE ALSO
swapon(8), config(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

4th Berkeley Distribution 27 July 1983

SYMLINK(2) UNIX Programmer's Manual SYMLINK(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
symllnk (namel, namel)
char enamel, enamel;

DESCRIPTION
A symbolic link name} is created to namel {name} is the name of the file created, namel is the
string used in creating the symbolic link). Either name may be an arbitrary path name; the files
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in ermo and a -1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

Either namel or name} contains a character with the high-order bit set.

One of the pathnames specified was too long.

A component of the name} prefix is not a directory.

Name} already exists.

A component of the name} path prefix denies search permission.

The file name} would reside on a read-only file system.

Namel or name} points outside the process's allocated address space.

Too may symbolic links were encountered in translating the pathname.

Iink(2), In(1), unlink(2)

4th Berkeley Distribution 27 July 1983

SYNC (2) UNIX Programmer's Manual SYNC (2)

NAME
sync - update super-block

SYNOPSIS
syncO

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 110.

Sync should be used by programs which examine a file system, for example ftck. tif, etc. Sync is
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution 12 February 1983

SYSCALL (2)

NAME
syscall - indirect system call

SYNOPSIS

UNIX PrOIlrammer's Manual

syscalHnumber, arg, ...) (V AX·ll)

DESCRIPTION

SYSCALL(2)

Syscall performs the system call whose assembly language interface has the specified number.
register arguments rO and r1 and further arguments argo

The rO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, sysca/l returns -1 and sets the external variable erma (see intro(2».

BUGS
There is no way to simulate system calls such as pipe (2) , which return values in register r1.

4th Berkeley Distribution 12 February 1983

TRUNCATE (2) UNIX Programmer's Manual TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

SYNOPSIS
trunCllte(path, length)
char .path;
int length;

ftruncate (rd, length)
int rd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun­
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global
variable erma specifies the error.

ERRORS
Truncate succeeds unless:

[EPERM) The pathname contains a character with the high-order bit set.

[ENOENT)

[ENOTDIR)

[ENOENT)

[EACCES)

[EISDIR)

[EROFS)

[ETXTBSY)

[EFAULT]

The pathname was too long.

A component of the path prefix of path is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADF)

[EINVAL]

SEE ALSO

The fd is not a valid descriptor.

The fd references a socket, not a file.

BUGS

open (2)

Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

4th Berkeley Distribution 7 July 1983

UMASK(2) UNIX Prosrammer'. Manual UMASK(2)

NAME
umuk - let file creation mode mask

SYNOPSIS
8IIIIIUk - lUIlUk (n1UllUt>
lat _uk, D1UIIUk;

DESCaInION
UmtUk lets the process's file mode creation mask to numask and returns the previous value of
the mask. The low-order 9 bits of numtUk are used whenever a file is created, clearina
corresponclina bits in the file mode (see ciunod(2». This clearina allows each Uller to restrict
the default .a:eas to his flies.

The value is initially 022 (write .a:eas for owner only). The mask is inherited by child
processes.

JlITURN V ALtIE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), ~od(2), open(2)

4th Berkeley Distribution 12 February 1983

UNLINK (2) UNIX Proarammer's MlIJlual UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
IIDUnk (path)
char .,ath;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, IIJld no process bas the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in IIJlY process, the actual resource reclamation is
delayed until it is closed, even thoup the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I is returned IIJld
e"no is set to indicate the error.

ERRORS
The unlink succeeds unless:

[EPERM] The path contains a character with the hip-order bit set.

[ENOENT) The path name is too long.

(ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

(EACCES] Search permission is denied for a component of the path prefix.

(EACCES] Write permission is denied on the directory containing the Iin1c to be removed.

(EPERM] The named file is a directory IIJld the effective user ID of the process is not the
super-user.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[EROFS] The named file resides on a read-only file system.

(EFAULT] Path points outside the process's allocated address space.

(ELOOP] Too mIIJly symbolic linles were encountered in trllJlSlating the pathname.

SEE ALSO
close(2), link(2), rrndir(2)

4th Berkeley Distribution 2 July 1983

UTIMES(2) UNIX Programmer's Manual UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#include <IYl/tilDe.h>

IItimes (IDe, tTp)
ehu eIDe;
.tract tilDen] otvpl21;

DESCIlIPTION
The utimes call uses the "accessed" and "updated" times in that order from the tvp vector to
set the correspondina recorded times for jile.

The cal.Ier must be the owner of the file or the super-user. The "inode-changed" time of the
file is set to the current time.

HTURNVALUE
Upon successful completion, II VIIlue of 0 is returned. Otherwise, II VII.lue of -1 is returned and
effno is set to indicate the error.

ERRORS
Ulime will filii if one or more of the following life true:

[EPERM] The PIIthname contllined Ii chilfacter with the high-order bit set.

(ENOENT)

(ENOENT]

(ENOTDIR]

[EACCES!

[EPERM!

[EACCES!

[EROFS]

[EFAULT]

[ELooP]

SEE ALSO
sIIIt(2)

The PIIthnllfne wss too long.

The named file does not exist.

A component of the PIIth prefix is not a directory.

A component of the PIIth prefix denies 5e11fch permission.

The process is not super-user and not the owner of the file.

The effective user ID is not super-user and not the owner of the file and times
is NULL and write access is denied.

The file system contllining the file is mounted read-only.

Tvp points outside the process's allocated address space.

Too many symbolic links were encountered in translating the PIIthname.

4th Berkeley Distribution 2 July 1983

VFORK(2) UN1X Programmer's Manual VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pld = vCorkO
int pld;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur­
pose of fork(2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent's memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is suspended
while the child is using its resources. .

Vfork returns 0 in the child's context and (later) the pid of the child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the childs context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call Jxit rather than
exit if you can't execve, since exit will flush and close standard I/O channels, and thereby mess
up the parent processes standard I/O data structures. (Even with fork it is wrong to call exit
since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2}, sigvec(2}, wait(2},

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTIOU or SIGTIIN signals; rather, output or ioetls are allowed and input
attempts result in an end-of-file indication.

4th Berkeley Distribution 2 July 1983

VHANGUP(2) UNIX Programmer's Manual VHANGUP(2)

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vhangupO

DESCIlIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given "clean'" terminals at login, by revoking access of the previous users' processes to the
terminal. To effect this, vhangup searches the system tables for references to the control termi­
nal of the invoking process, revoking access permissions on each instance of the terminal which
it finds. Further attempts to access the terminal by the affected processes will yield i/o errors
(EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the control ter­
minal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

4th Berkeley Distribution 12 Febuary 1983

WAIT(2) UNIX Programmer's Manual WAIT (2)

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#Include < sys/wait.h >
pid .. wllit(stlltus)
int pid;
union wait *status:

pld == wait (0)
Int pid:

#include < sys/time.h >
#lnclude <sys/resource.h>

pid = wait3 (status, options, rusage)
Int pid;
union wllit ostatus:
Int options;
struct rusage orusage;

DESCRIPTION

NOTES

Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit
status of one of the terminated children. If there are no children, return is immediate with the
value -1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status contains the
low byte of the argument to exit supplied by the child process; the low byte of status contains
the termination status of the process. A more precise definition of the status word is given in
< sys/wait.h >.
Wait3 provides an alternate interface for programs which must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes which wish to report status
(WNOHANG), andlor that children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should also have their status reported
(WUNTRACED). If rusage is non-zero, a summary of the resources used by the terminated
process and all its children is returned (this information is currently not available for stopped
processes) .

When the WNOHANG option is specified and no processes wish to report status, wait3 returns
a pid of O. The WNOHANG and WUNTRACED options may be combined by or'ing the two
values.

See sigvec (2) for a list of termination statuses (signals); 0 status indicates normal termination.
A special status (0177) is returned for a stopped process which has not terminated and can be
restarted; see ptrace (2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro­
cess ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting termi­
nation of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to

4th Berkeley Distribution 27 July 1983

WAIT (2) UNIX Programmer's Manual WAIT (2)

indicate the error.

Wait3 returns -1 if there are no children not previously waited' for; 0 is returned if
WNOHANG is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD)

[EFAULT)

SEE ALSO
exit(2)

The calling process has no existing unwaited-for child processes.

The status or rusage arguments point to an illegal address.

4th Berkeley Distribution 27 July 1983 2

WRITE (2) UNIX Programmer's Manual WRITE (2)

NAME
write, writev - write on a file

SYNOPSIS
1'I'rite(d, buf, nbytes)
Int d;
char obuf;
Int nbytes;

#Include < sys/types.h >
#include <sys/ulo.h>

writey (d, loy, loyeclen)
Int d;
struet loyec oloy;
Int loyeclen;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by bl{[. Write v performs the same action, but gathers the output data from
the iovlen buffers specified by the members of the iovec array: iov[Ol, iovll), etc.

On objects capable of seeking, the write starts at a position given by the pointer associated with
d, see lseek(2). Upon return from write, the pointer is incremented by the number of bytes
actually written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
owned by the super-user.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a -1 is
returned and ermo is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are
true:

[EBADF)

[EPIPE)

[EPIPE)

[EFBIG)

[EFAULT)

SEE ALSO

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any pro­
cess.

An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size limit or
the maximum file size.

Part of iovor data to be written to the file points outside the process's allocated
address space.

Iseek(2), open(2), pipe(2)

4th Berkeley Distribution 27 July 1983

INTRO (3) UNIX Programmer's Manual INTRO (3)

NAME
intro - introduction to library functions

DESCRIPTION

FILES

This section describes functions that may be found in various libraries. The library functions
are those other than the functions which directly invoke UNIX system primitives, described in
section 2. This section has the libraries physically grouped together. This is a departure from
older versions of the UNIX Programmer's Reference Manual, which did not group functions by
library. The functions described in this section are grouped into various libraries:

(3) and OS)
The straight "3" functions lire the standard C library functions. The C library also
includes al! the functions described in section 2. The 3S functions comprise the standard
I/O library. Together with the (3N), (3X), and (3C) routines, these functions constitute
library libc, which is automatically loaded by the C compiler ceO), the Pascal compiler
pe(l), and the Fortran compiler 177(1). The link editor IdO) searches this library under
the '-!c' option. Declarations for some of these functions may be obtained from
include files indicated on the appropriate pages.

OF) The 3F functions are all functions callable from FORTRAN. These functions perform
the same jobs as do the straight "3" functions.

OM) These functions constitute the math library, libm. They are automatically loaded as
needed by the Pascal compiler pe(J) and the Fortran compiler 177(0. The link editor
searches this library under the '-1m' option. Declarations for these functions may be
obtained from the include file <math.h>.

(3N) These functions constitute the internet network library,

OS) These functions constitute the 'standard I/O package', see intro(3S). These functions
are in the library libe already mentioned. Declarations for these functions may be
obtained from the include file < stdio. h > .

OX) Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

(3C) Routines included for compatibility with other systems. In particular, a number of sys­
tem call interfaces provided in previous releases of 4BSD have been included for source
code compatibility. The manual page entry for each compatibility routine indicates the
proper interface to use.

llib/Hbc.a
/usr/lib/libm.a
lusr llibllibc y.a
lusr/libl!ibmy.a

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(I), Id(1), cc(l), n7(l), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable ermo (see intro(2» is set to the value EooM (domain error) or ERANGE
(range error). The values of EDOM and ERANGE are defined in the include file <math.h>.

LIST OF FUNCTIONS
Name

abort
abort

4th Berkeley Distribution

Appears on Page

abort. 3
abort.3f

Description

generate a fault
terminate abruptly with memory image

2 April 1983

I

INTRO (3) UNIX Programmer's Manual INTRO (3)

abs abs.3 integer absolute value
access access.3f determine accessability of a file
acos sin.3m trigonometric functions
alarm alarm.3c schedule signal after specified time
alarm alarm.3f execute a subroutine after a specified time
alloca malloc.3 memory allocator
arc plot.3x graphics interface
asctime ctime.3 convert date and time to ASCII
asin sin. 3m trigonometric functions

I
assert assert.3x program verification
atan sin.3m trigonometric functions
atan2 sin. 3m trigonometric functions
atof atof.3 convert ASCII to numbers
atoi atof.3 oonvert ASCII to numbers
atol atof.3 convert ASCI1 to numbers
bcmp bstring.3 bit and byte string operations
bcopy bstring.3 bit and byte string operations
bessel bessel.3f of two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, Ishift bitwise functions
bzero bstring.3 bit and byte string operations
cabs hypot.3m Euclidean distance
calloc malloc.3 memory allocator
ceil floor.3m absolute value, floor, ceiling functions
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
circle plot.3x graphics interface
c1earerr ferror.3s stream status inquiries
c10sedir directory. 3 directory operations
c1oselog syslog.3 control system log
c10sepl plot.3x graphics interface
cont plot.3x graphics interface
cos sin. 3m trigonometric functions
cosh sinh. 3m hyperbolic functions
crypt crypt.3 DES encryption
ctime ctime.3 convert date and time to ASCII
ctime time.3f return system time
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x data base subroutines
delete dbm.3x data base subroutines
dffrac flmin.3f return extreme values
dflmax flmin.3f return extreme values
dflmax range.3f return extreme values
dflmin flmin.3f return extreme values
dflmin range.3f return extreme values
drand rand.3f return random values
dtime etime.3f return elapsed execution time
ecvt ecvt.3 output conversion
edata end.3 last locations in program
encrypt crypt.3 DES encryption
end end.3 last locations in program
endfsent getfsent.3x get file system descriptor file entry
endgrent getgrent.3 get group file entry

4th Berkeley Distribution 2 April 1983 2

INTRO (3)

endhostent
endnetent
endprotoent
endpwent
endservent
environ
erase
etext
etime
exec
exece
execl
execle
execlp
exect
execv
execvp
exit
exit
exp
fabs
fclose
fcvt
fdate
feof
ferror
fetch
mush
ffrac
ffs
fgetc
fgete
fgets
fileno
firstkey
f1max
f1max
Hmin
Hmin
floor
flush
fopen
fork
fpeent
fprintf
fpute
fputc
fputs
fread
free
frexp
fscanf

4th Berkeley Distribution

UNIX Programmer's Manual INTRO (3)

gethostent.3n
getnetent.3n
getprotoent.3n
getpwent.3
getservent.3n
exec1.3
plot.3x
end.3
etime.3f
exec1.3
exec1.3
exee1.3
exec1.3
exec1.3
execl.3
exec1.3
exec1.3
exit.3
exit.3f
exp.3m
floor. 3m
fclose.3s
ecvt.3
fdate.3f
ferror.3s
ferror.3s
dbm.3x
fclose.3s
f1min.3f
bstring.3
getc.3f
getc.3s
gets.3s
ferror.3s
dbm.3x
f1min.3f
range.3f
f1min.3f
range.3f
floor.3m
flush.3f
fopen.3s
fork.3f
trpfpe.3f
printf.3s
putc.3f
putc.3s
puts.3s
fread.3s
malloc.3
frexp.3
scanf.3s

get network host entry
get network entry
get protocol entry
get password file entry
get service entry
execute a file
graphics interface
last locations in program
return elapsed execution time
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
terminate a process after flushing any pending output
terminate process with status
exponential, logarithm, power, square root
absolute value, floor, ceiling functions
close or flush a stream
output conversion
return date and time in an ASCII string
stream status inquiries
stream status inquiries
data base subroutines
close or flush a stream
return extreme values
bit and byte string operations
get a character from a logical unit
get character or word from stream
get a string from a stream
stream status inquiries
data base subroutines
return extreme values
return extreme values
return extreme values
return extreme values
absolute value, floor, ceiling functions
flush output to a logical unit
open a stream
create a copy of this process
trap and repair floating point faults
formatted output conversion
write a character to a fortran logic.al unit
put character or word on a stream
put a string on a stream
buffered binary input/output
memory allocator
split into mantissa and exponent
formatted input conversion

2 April 1983 3

I

INTRO(3) UNIX Programmer's Manual INTRO(3)

fseek fseek.3f reposition a file on a logical unit
fseek fseek.3s reposition a stream
fstat stat.3f get file status
ftell fseek.3f reposition a file on a logical unit
ftell fseek.3s reposition a stream
ftime time.3c get date and time
fwrite fread.3s buffered binary input! output
gamma gamma. 3m log gamma function
gcvt ecvt.3 output conversion

I
gerror perror.3f get system error messages
getarg getarg.3f return command line arguments
getc getc.3f get a character from a logical unit
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
getcwd getcwd.3f get pathname of current working directory
getdiskbyname getdisk.3x get disk description by its name
getenv getenv.3 value for environment name
getenv getenv.3f get value of environment variables
getfsent getfsent.3x get file system descriptor file entry
getfsfile getfsent.3x get file system descriptor file entry
getfsspec getfsent.3x get file system descriptor file entry
getfstype getfsent.3x get file system descriptor file entry
getgid getuid.3f get user or group ID of the caller
getgrent getgrent.3 get group file entry
getgrgid getgrent.3 get group file entry
getgrnam getgrent.3 get group file entry
gethostbyaddr gethostent.3n get network host entry
gethostbyname gethostent.3n get network host entry
gethostent gethostent.3n get network host entry
getlog getiog.3f get user's login name
getiogin getiogin.3 get login name
getnetbyaddr getnetent.3n get network entry
getnetbyname getnetent.3n get network entry
getnetent getnetent.3n get network entry
getpass getpass.3 read a password
getpid getpid.3f get process id
getprotobyname getprotoent.3n get protocol entry
getprotobynumber getprotoent.3n get protocol entry
getprotoent getprotoent.3n get protocol entry
getpw getpw.3 get name from uid
getpwent getpwent.3 get password file entry
getpwnam getpwent.3 get password file entry
getpwuid getpwent.3 get password file entry
gets gets.3s get a string from a stream
getservbyname getservent.3n get service entry
getservbyport getservent.3n get service entry
getservent getservent.3n get service entry
getuid getuid.3f get user or group ID of the caller
get", getc.3s get character or word from stream
getwd getwd.3 get current working directory pathname
gmtime ctime.3 convert date and time to ASCII
gmtime time.3f return system time

4th Berkeley Distribution 2 April 1983 4

INTRO (3) UNIX Programmer's Manual INTRO (3)

gtty stty.3c set and get terminal state (defunct)
hostnm hostnm.3f get name of current host
htonl byteorder.3n convert values between host and network byte order
htons byteorder .3n convert values between host and network byte order
hypot hypot.3m Euclidean distance
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
ierrno perror.3f get system error messages
index index.3f tell about character objects
index string.3 string operations

I
inet_addr inet.3n Internet address manipulation routines
ineUnaof inet.3n Internet address manipulation routines
inet_ makeaddr inet.3n Internet address manipulation routines
inet_netof inet.3n Internet address manipulation· routines
inet_network inet.3n Internet address manipulation routines
initgroups initgroups.3x initialize group access list
initstate random.3 better random number generator
inmax flmin.3f return extreme values
inmax range.3f return extreme values
insque insque.3 insert/remove element from a queue
ioinit ioinit.3f change f77 I/O initialization
irand rand.3f return random values
isalnum ctype.3 character classification macros
isalpha ctype.3 character classification macros
isascii ctype.3 character classification macros
isatty ttynam.3f find name of a terminal port
isatty ttyname.3 find name of a terminal
iscntrl ctype.3 character classification macros
isdigit ctype.3 character classification macros
islower ctype.3 character classification macros
isprint ctype.3 character classification macros
ispunct ctype.3 character classification macros
isspace ctype.3 character classification macros
isupper ctype.3 character classification macros
itime idate.3f return date or time in numerical form
jO jO.3m bessel functions
jl jO.3m bessel functions
jn jO.3m bessel functions
kill kill.3f send a signal to a process
label plot.3x graphics interface
Idexp frexp.3 split into mantissa and exponent
len index.3f tell about character objects
Iib2648 Iib2648.3x subroutines for the HP 2648 graphics terminal
line plot.3x graphics interface
linemod plot.3x graphics interface
link Iink.3f make a link to an existing file
Inblrtk index.3f tell about character objects
loe loc.3f return the address of an object
locaJtime ctime.3 convert date and time to ASCII
log exp.3m exponential, logarithm, power, square root
loglO exp.3m exponential, logarithm, power, square root
long long.3f integer object conversion

4th Berkeley Distribution 2 April 1983 5

INTRO(3)

longjmp
Istat
ltime
malloc
mktemp
modf
moncontrol
monitor
monstartup

I
move
nextkey
nice
nlist
ntohl
ntohs
opendir
openlog
openpl
pause
pelose
perror
perror
point
popen
pow
printf
psignal
putc
putc
putchar
puts
putw
qsort
qsort
rand
rand
random
rcmd
re_comp
re_exec
readdir
realloc
remque
rename
rewind
rewinddir
rexec
rindex
rindex
rresvport
ruserok
scandir

4th Berkeley Distribution

UNIX Programmer's Manual INTRO(3)

segmp.3
stat.3f
time.3f
malloc.3
mktemp.3
frexp.3
monitor. 3
monitor. 3
monitor.3
plot.3x
dbm.3x
nice.3c
nlist,3
byteorder.3n
byteorder.3n
directory.3
syslog.3
plot,3x
pause.3c
popen.3
perror.3
perror.3f
plot.3x
popen.3
exp.3m
printf.3s
psignal.3
putc.3f
putc.3s
putc.3s
puts.3s
putc.3s
qsort.3
qsort.3f
rand.3c
rand.3f
random. 3
rcmd.3x
regex.3
regex.3
directory.3
maUoc.3
insque.3
rename.3f
fseek.3s
directory.3
rexec.3x
index.3f
string.3
rcmd.3x
rcmd.3x
scandir.3

non-local goto
get file status
return system time
memory allocator
make a unique file name
split into mantissa and exponent
prepare execution profile
prepare execution profile
prepare execution profile
graphics interface
data base subroutines
set program priority
get entries from name list
convert values between host and network byte order
convert values between host and network byte order
directory operations
control system log
graphics interface
stop until signal
initiate I/O to/from a process
system error messages
get system error messages
graphics interface
initiate I/O to/from a process
exponential, logarithm, power, square root
formatted output conversion
system signal messages
Write a character to a fortran logical unit
put character or word on a stream
put character or word on a stream
put a string on a stream
put character or word on a stream
quicker sort
quick sort
random number generator
return random values
better random number generator
routines for returning a stream to a remote command
regular expression handler
regular expression handler
directory operations
memory allocator
insert/remove element from a queue
rename a file
reposition a stream
directory operations
return stream to a remote command
teU about character objects
string operations
routines for returning a stream to a remote command
routines for returning a stream to a remote command __________ _
scan a directory

2 April 1983 6

INTRO(3) UNIX Programmer's Manual INTRO(3)

scanf scanf.3s formatted' input conversion
seekdir directory.3 directory operations
setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID
seteuid setuid.3 set user and group ID
setfsent getfsent.3x get file system descriptor file entry
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry

I
setjmp setjmp.3 non-local goto
setkey crypt.3 DES encryption
setlinebuf setbuf.3s assign buffering to a stream
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
setstate random.3 better random number generator
setuid setuid.3 set user and group ID
short long.3f integer object conversion
signal signal.3 simplified software signal facilities
signal signal.3f change the action for a signal
sin sin. 3m trigonometric functions
sinh sinh.3m hyperbolic functions
sleep sleep.3 suspend execution for interval
sleep sleep.3f suspend execution for an interval
space plot.3x graphics interface
sprintf printf.3s formatted output conversion
sqrt exp.3m exponential, logarithm, power, square root
srand rand.3c random number generator
srandom random.3 better random number generator
sscanf scanf.3s formatted input conversion
stat stat.3f get file status
stdio intro.3s standard buffered input/output package
store dbm.3x data base subroutines
strcat string. 3 string operations
strcmp string.3 string operations
strcpy string.3 string operations
strlen string.3 string operations
stmcat string.3 string operations
stmcmp string.3 string operations
strncpy string.3 string operations
stty stty.3c set and get terminal state (defunct)
swab swab.3 swap bytes
sys_errlist perror.3 system error messages
sys nerr perror.3 system error messages
sys _ sigiist psignal.3 system signal messages
syslog syslog.3 control system log
system system. 3 issue a shell command
system system.3f execute a UNIX command

4th Berkeley Distribution 2 April 1983 7

INTRO(3) UNIX Programmer's Manual INTRO(3)

tan sin. 3m trigonometric functions
tanh sinh. 3m hyperbolic functions
tclose topen.3f f77 tape I/O
telldir directory. 3 directory operations
tgetent termcap.3x terminal independent operation routines
tgetflag termcap.3x terminal independent operation routines
tgetnum termcap.3x terminal independent operation routines
tgetstr termcap.3x terminal independent operation routines
tgoto termcap.3x terminal independent operation routines

I
time time.3c get date and time
time time.3f return system time
times times.3c get process times
timezone ctime.3 convert date and time to ASel!
topen topen.3f f77 tape 1/0
tputs termcap.3x terminal independent operation routines
traper traper.3f trap arithmetic errors
trapov trapov.3f trap and repair floating point overflow
tread topen.3f f77 tape I/O
trewin topen.3f f77 tape I/O
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f f77 tape 1/0
tstate topen.3f f77 tape I/O
ttynam ttynam.3f find name of a terminal port
ttyname ttyname.3 find name of a terminal
ttyslot ttyname.3 find name of a terminal
twrite topen.3f f77 tape I/Q
ungetc ungetc.3s push character back into input stream
unlink unlink.3f remove a directory entry
utime utime.3c set file times
valloc valloc.3 aligned memory allocator
varargs varargs.3 variable argument list
vlimit vlimit.3c control maximum system resource consumption
vtimes vtimes.3c get information about resource utilization
wait wait.3f wait for a process to terminate
yO jO.3m bessel functions
yl jO.3m bessel functions
yn jO.3m bessel functions

4th Berkeley Distribution 2 April 1983 8

ABORT (3) UNIX Proarammer's Manual ABORT (3)

NAME
abort - aenerate a fault

DESCRIPTION
Abort executes an instruction which is illepl in user mode. This causes a slpaI that normally
terminates the process with a core dump, which may be used for debuuina.

SII ALSO
adb(I), siJvec(2), exit(2)

DIAGNOSTICS
Usually 'lOT trap - core dumped' from the shell.

BUGS
The abortO function does not Oush standard I/O buff era. Use.Dfush(3S).

7th Edition 18 January 1983

I

ABS (3)

NAME
abs - integer absolute value

SYNOPSIS
.baU)
lilt Ij

DESCIlIPTION

UNIX Programmer's Manual

Abs returns the absolute value of its integer operand.

SEE ALSO
f!oor(3M) for Jabs

BUGS

ADS (3)

Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result.

7th Edition 18 January 1983

ATOF(3) UNIX Programmer's Manual ATOF(3)

NAME
atof, atoi, stol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char -nptr;

atoHnptr)
char onptr;

1001 atol(nptr)
char ooptf;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Ato/recognizes an optional string of spaces, then an optional sign, then a string of digits option­
ally containing a decimal point, then an optional 'e' or 'E' followed by an optionally signed
integer.

Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.

SEE ALSO
scanf(3S)

BUGS
There are no provisions for overflow.

7th Edition 19 January 1983

I

BSTRING (3) UNIX Programmer's Manual BSTRING (3)

NAME
bcopy, bcmp, bzero, ffs - bit and byte string operations

SYNOPSIS
bcopy(bI, b2, length)
char obI, ob2;
Int length;

bcmp(bl, b2, length)
char obI, ob2;
Int length;

bzero (b, length)
char ob;
Int length;

ffs (I)
Int i;

DESCRIPTION

BUGS

The functions heopy, hemp, and bzero operate on variable length strings of bytes. They do not
check for null bytes as the routines in string(3) do.

Bcopy copies length bytes from string bl to the string b2.

Bcmp compares byte string bi against byte string b2, returning zero if they are identical, non­
zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string bi.

Fft find the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at I. A return value of -1 indicates the value passed is zero.

The hemp and heopy routines take parameters backwards from strcmp and strcpy.

4th Berkeley Distribution 4 March 1983

CRYPT (3) UNIX Prosrammer's Manual CRYPT (3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
ehu *CI'JPt (key. ..It)
ehu.lley t;
lletkey(key)
ehu.key;

eaerypt(bloek. edlq)
ehu .block;

DESCJUPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard.
with variations intended (amoog other thinas) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a 2-chancter
string chosen from the set la-zA-ZO-9.!l. The lIl/t string is used to perturb the DES a1aorithm
in one of 4096 different ways, after which the password is used as the key to eacrypt repeatedly
a constant striog. The returned value points to the encrypted password, in the same alphabet as
the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES a1aorithm. The arsument
of selkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored.
leading to a S6-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of leogth 64 containing 0'5 and
1'5. The arsument array is modified in place to a similar array representiog the bits of the arsu­
ment after haviog been subjected to the DES algorithm usina the key set by set!rq. If e4/fIIg is
0, the arsument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(l), passwd(S), login(l), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 2S February 1983

CTIME (3) UNIX Programmer's Manual CTIME (3)

NAME
ctime, Iocaltime, gmtime, IISCtime, timezone - convert date and time to ASCII

SYNOPSIS
char oclime (clock)
long .clock;

#include <sys/time.h>

struct tm olocaltime(clockl
long oclock;

struct tm ogmtime(c!ocld
long .clock;

char oasctlme (tm)
struct tm -tm;

char .timezone (zone, list}

DESCRIPTION
Crime converts a time pointed to by clock such as returned by time(2) into ASCII and returns a
pointer to a 26-character string in the following form. All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

Loca/lime and gmlime return pointers to structures containing the broken-down time. Loca/lime
corrects for the time zone and possible daylight savings time; gmtime converts directly to GMT,
which is the time UNIX uses. Asclime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm (
int tm_sec;
int
int
int
int
int
int
int
int

);

tm_min;
tm_hour;
tm_mday;
tm_mon;
tmyear;
tm_wday;
tmyday;
tmjsdst;

These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-11),
day of week (Sunday = 0), year - 1900, day of year (0-365), and a flag that is nonzero if day­
light saving time is in effect.

When local time is called for, the program consults the system to determine the time zone and
whether the U.S.A., Australian, Eastern European, Middle European, or Western European
daylight saving time adjustment is appropriate. The program knows about various peculiarities
in time conversion over the past 10-20 years; if necessary, this understanding can be extended.

Timezone returns the name of the time zone associated with its first argument, which is meas­
ured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Saving version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; e.g. in Afghanistan limezone(­
(60.4+30), 0) is appropriate because it is 4:30 ahead of GMT and the string GMT+4:30 is
produced.

4th Berkeley Distribution 26 June 1983

CfIME(3) UNIX Programmer's Manual CfIME(3)

SEE ALSO
gettimeofday(2), time(3)

BUGS
The return values point to static data whose content is overwritten by each call.

4th Berkeley Distribution 26 June 1983 2

CTYPE(3) UNIX Progr!!mmer's Manual CTYPE(3)

isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscmrl, iSllscii - character
clllSSification macros

SYNOPSIS
_Include <ctype.h>
iaalpha(c)

DESCRIPTION
These macros clllSSify ASCII-coded integer values by table lookup. Each is II predicate return­
ing nonzero for true, zero for false. Ist/scii is defined on all integer values; the rest are defined
only where isasciiis true and on the single non-ASCII value BOP (see stdio(3S».

isalpha

isupper

islower

isdigit

isa!num

isspace

ispunct

is print

iscntrl

isascii

SEE ALSO
ascii (7)

7th Edition

c is a letter

c is an upper case letter

c is Ii lower case letter

c is a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor alphanumeric)

c is II printing character, code 040(8) (space) through 0176 (tilde)

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

25 February 1983

DIRECTORY (3) UNIX Programmer's Manual DIRECTORY (3)

NAME
opendir, readdir. telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <sys/dir.h>

DIll -opendlr(fllename)
chu oBlename;

stmet direct *readdir(dlrp)
DIll odirp;

long telldlr(dlrp)
DHt*dlrp;

seekdir (dirp, 10C>
mil. odirp;
lonllloc;

rewinddir(dlrp)
mIt .dlrp;

closedlr (dlrp)
DlIt odlrp;

DESCRIPTION
Opendir opens the directory named by filename and associates a directory stream with it. Opendir
returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, or if it cannot malJoc(3) enough
memory to hold the whole thins.
Readdir returns a pointer to the next directory entry. It returns NULL upon reachinl the end
of the directory or detectina an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readd/r operation on the directory stream. The new position
reverts to the one associated with the directory stream when the telldir operation was performed.
Values returned by telldiT are good only for the lifetime of the DIR pointer from which they are
derived. If the directory is closed and then reopened, the telldir value may be invalidated due
to undetected directory compaction. It is safe to use a previous te/ldir value immediately after a
call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginnina of the directory.

Closedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry "name" is:

len - strlen(name);

SEE ALSO

dirp ... opendir(" ..);
for (dp - readdir(dirp); dp !- NULL; dp - readdir(dirp»

if (dp->d_narn1en - - len &:.& !strcmp(dp->d_name, name» {
closedir (dirp);

I
closedir(dirp);

return FOUND;

return NOT]OUND;

open(2), c!ose(2), read (2) , lseek(2), dir(S)

4th Berkeley Distribution 2S February 1983

I

ECVT(3) UNIX Programmer's Manual ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char -ent(value, Ddillt, deqlt, lilD)
double valuej
Int ndllit, odeqlt, osilDj

char ofmbalue, Ddillt, decpt, IIlln)
double value;
Int Ddlalt, odeqlt, osilDj

char Olc:l't(value, Ddlgit, but)
double value;
char obuf;

DESCIUPTION
Ecw converts the value to a null-terminated string of ndigit ASCn digits and returns II pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through deept (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Few is identical to ecvt, except that the correct digit has been rounded for Fortran F-format out­
put of the number of digits specified by ndigits.

Gcvt converts the value to a null-terminated ASCn string in /nifand returns a pointer to b£if, It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
ready for printin~. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983

END (3) UNIX Programmer's Manual END (3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern dext;
extern .ata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edam above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the routines
brk(2), malloc(3), standard input/output (stdio(3», the profile (-p) option of cc(l), etc. The
current value of the program break is reliably returned by 'sbrk:(O)', see brk(2).

SEE ALSO
brk:(2), malloc(3)

7th Edition 191anuary 1983

I

I

EXECL(3) UNIX Programmer's Manual EXECL(3)

NAME
execl, execv, execle, execlp, execvp, exec, exece, exect, environ - execute a file

SYNOPSIS
execI(name, argO, argl, ... , argn, 0)
char oname, oargO, oargl, ... , oargn;

execy(name, argv)
char oname, oargvll;

execle(name, argO, argl, ••• , argn, 0, envp)
char oname, oargO, 0l1l'i1, ••• , oargn, oenvpll;

exect(name, argv, envp)
char oname, oargvll, oenvpll;

extern char .. environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers arg[Ol,
arg[J]... address null-terminated strings. Conventionally arg[O] is the name of the file.

Two interfaces are available. exec/ is useful when a known file with known arguments is being
called; the arguments to exec/ are the character'strings constituting the file and the arguments;
the first argument is conventionally the same as the file name (or its last component). A 0
argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu­
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ptrace(2). The pro­
gram is forced to single step a single instruction giving the parent an opportunity to manipulate
its state. On the VAX -11 this is done by setting the trace bit in the process status longword.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char •• argv, •• envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argv[argc] is O.

Envp is a pointer to an array of strings that constitute the environment of the process. Each
string consists of a name, an "-", and a null-terminated value. The array of pointers is ter­
minated by a null pointer. The shell shO) passes an environment entry for each global shell
variable defined when the program is called. See environ(7) for some conventionally used
names. The C run-time start-off routine places a copy of envp in the global cell environ, which
is used by execv and exec/ to pass the environment to any subprograms executed by the current
program.

4th Berkeley Distribution 1 April 1981

EXECL(3) UNIX Programmer's Manual EXECL(3)

FILES

Execlp and execvp are called with the same arguments as exec! and execv, but duplicate the
shell's actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

Ibin/sh shell, invoked if command file found by exec!p or execvp

SEE ALSO
execve(2), fork(2), environ(7), csh(l)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5», if maximum memory is exceeded, or if the arguments require too much space,
a return constitutes the diagnostic; the return value is -1. Even for the super-user, at least
one of the execute-permission bits must be set for a file to be executed.

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossi­
ble to execute the shell, the values of argv[O] and argv[- J] will be modified before return.

4th Berkeley Distribution 1 April 1981 2

I

I

EXIT (3) UNIX Proarammer's Manual

NAME
exit - terminate a process after Oushill8 any pendina output

SYNOPSIS
ult (status)
IDt Itatul;

DESCRIPTION

EXIT (3)

Exit terminates I process after CIllina the Standard I/O library function _ckanup to Oush any
buft'ered output. Exit never returns.

SEE ALSO
exlt(2), intro(3S)

4th Berkeley Distribution 1 April 1983

FREXP(3) UNIX Programmer's Manual FREXP(3)

. NAME
frexp, Idexp, modf - split into mantissa and exponent

SYNOPSIS
_lIle f1'exp(nlae, eptr)
_lIlenlae;
IDt -eptr;

doaille Idexp(nlae, exp)
_lIlenlae;

doaille modf(nlae, Iptr)
doaille nlae, .Iptr;

DESCRIPTION
Frexp returns the mantissa of a double WJ/ue as a double quantity, x. of rnqnitude less than 1
and stores an integer n such that WJlue - X. 2n indirectly through eptr.

Ldexp returns the quantity WJ/ue.:fXP.

MOt((returns the positive fractional part of WJlue and stores the integer part indirectly through
iptr.

7th Edition 191anuary 1983

I

I

OETENV(3) UNIX Programmer's Manual

NAME
lIetenv - value for environment name

SYNOPSIS
diu *lIeteD1'(uame)
diu eDame;

DESCRIPTION

OETENV(3)

Getenv searches the environment list (see environ(7» for a string of the form name- value and
returns a pointer to the string value if such a string is present, otherwise getenv returns the
value 0 (NULL).

SEE ALSO
environ (7), execve (2)

7th Edition 19 January 1983

OETGRENT (3) UNIX Proaramrner's Manual OETORENT (3)

NAME
aetgrent, aetgrgid, aetgmam, setarent, endarent - aet aroup file entry

SYNOPSIS
.lnclude <arp.h>
atrvet poup .ptareatO

atraet 1J'01iP oaetarald (aid)
Int aid;

atrvet POUP -ptaruam (uame)
char -Dame;

aetareDtO
endareDtO

DESCUmON

flLES

Getgrenl, getgrgid and getgrnam each return pointers to an object with the followina structure
containing the broken-out fields of a line in the aroup file.

struct aroup { 10 see aetarent(3) 01
char oar_name;
char oar JIlISSwd;
int ar.,Jid;
char ooar_mem;

};

struct aroup ogetarent O. ogetgrgid O •• getarnamO;

The members of this structure are:

ar_name The name of the aroup.
arJlllSSwd The encrypted password of the aroup.
ar....aid The numerical aroup-ID.
ar_mem Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or
name is found (or until £OF is encountered). Each routine picks up where the others leave off
so successive calls may be used to search the entire file.

A call to setgrenl has the effect of rewinding the aroup file to allow repeated searches. Ent/grenl
may be called to close the aroup file when processing is complete.

letclaroup

SEE ALSO
aetlogin(3), aetpwent(3), aroup(S)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983

I

GETLOGIN (3) UNIX Programmer's Manual GETLOGIN (3)

NAME
getJogin - get login name

SYNOPSIS
char .. et1oaln 0

DESCIlIPTION
Getlogin returns a pointer to the login name as found in letclutmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same userid is shared by
several login names.

FILES

If get/agin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call get/agin and if it fails, to call
getpw(getuidO) .

letc/utmp

SEE ALSO
gelpwent(3), getgrent(3), utmp(S), getpw(3)

DIAGNOSTICS
Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983

OETPASS(3)

NAME
getpass - read a password

SYNOPSIS
char -getps.s (prompt)
char -prompt;

DESCRIPTION

UNIX Proarammer's Manual OETPASS(3)

Getpass reads a password from the file Idev/tty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer
is returned to a null-terminated string of at most g characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 191anuary 1983

I

I

GETPWENT (3) UNIX Programmer's Manual GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
*lnclude <pwd.h>

.truet passwd 0cetpwentO

struct passwd 0cetpwllld (uld)
Int uld;

struct passwd ocetpwnam (name)
char oname;

Int setpwentO

Int endpwentO

DESCRIPTION

nLES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the password file.

struct passwd { 1* see getpwent(3) .1
char .pw_name;
char .pw yasswd;
int pw_uid;
int pWJid;
int pw_quota;
char *pw_cornment;
char 0pw Jecos;
char .pw_dir;
char .pw_shell;

};

struct passwd ogetpwentO, ogetpwuidO. *getpwnamO;

The fields pw quota and pw comment are unused; the others have meanings described in
passwd(5). - -

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent
closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or
until EOP is encountered).

letc/passwd

SEE ALSO
geHogin(3), getgrent(3), passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOP or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983

GETWD(3) UNIX Programmer's Manual

NAME
getwd - get current working directory pathname

SYNOPSIS
char o.etwd (path name)
char .pathname;

DESCRIPTION

GETWD(3)

Getwd copies the absolute pathname of the current working directory to pathname and returns a
pointer to the result.

LIMITATIONS
Maximum pathname length is MAXPATHLEN characters (1024).

DIAGNOSTICS
Getwd returns zero and places a message in path name if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

4th Berkeley Distribution 25 February 1983

I

I

INSQUE(3) UNIX Programmer's Manual

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
struct qelem {

};

siruct qelem 0lLrorn';
struct qelem *lLbllck;
char ILdatllll;

insque(elem, pred)
struct qelem oelem •• pled;

remque(elem)
struct qelem oelem;

DESCRIPTION

INSQUE(3)

lnsque and remque manipulate queues built from doubly linked lists. Each element in the
queue must in the form of "struct qelem". lnsque inserts elem in a queue imediately after
pred; remque removes an entry elem from a queue.

SEE ALSO
"VAX Architecture Handbook", pp. 228-235.

4th Berkeley Distribution 18 July 1983

MALLOC(3) UNIX Programmer's Manual MALLOC(3)

NAME
malloc, free, realloc, calloc, alloca - memory allocator

SYNOPSIS
char omalloC<size)
unsigned size;

free (ptr)
char ·ptr;

char orealloc (ptr, size)
char optr;
unsigned size;

char ocalloC<nelem, elsize)
unsigned nelem, elsize;

char oallocR (size)
int size;

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Mal/oc maintains multiple lists of free blocks according to size, allocating space from the
appropriate list. It calls sbrk (see brk(2» to get more memory from the system when there is
no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes.

In order to be compatible with older versions, realloc also works if ptr points to a block freed
since the last call of malloc, realloc or cal/oc; sequences of free, malloc and realloc were previ­
ously used to attempt storage compaction. This procedure is no longer recommended.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros.

AI/oca allocates size bytes of space in the stack frame of the caller. This temporary space is
automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

Mal/oc, realloc and calloc return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block. Ma/loc may be
recompiled to check the arena very stringently on every transaction; those sites with a source
code license may check the source code to see how this can be done.

When realloc returns 0, the block pointed to by ptr may be destroyed.

AI/oca is machine dependent; it's use is discouraged.

4th Berkeley Distribution 19 January 1983

I

I

MKTEMP(3) UNIX Programmer's Manual

NAME
mktemp - make a unique file name

SYNOPSIS
char emktemp(template)
char -template;

DESClUPTION

MKTEMP(3)

Mktemp replaces template by a unique file name, and returns the address of the template. The
template should look like a file name with six trailing X's, which will be replaced with the
current process id and a unique letter.

SEE ALSO
getpid(2)

7th Edition 19 January 1983

MONITOR 0) UNIX Programmer's Manual MONITOR (3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
monitor (Iowpc, hlghpc, buffer, bufslze, nlund
int (olowpc)O, (*hlghpc)O;
short bufferl!;

monstlirtup(JOWPC, high pc)
Int (o\owpc)O, (ohlghpc)O;

moncontrol (mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc -p ...

automatically includes calls for the proj(l) monitor and includes an initial call to its start-up
routine monstartup with default parameters; monitor need not be called explicitly except to gain
fine control over profil buffer allocation. An executable program created by:

cc -pg ...

automatically includes calls for the gproj(l) monitor.

Manstartup is a high level interface to projil(2). Lawpc and highpc specify the address range that
is to be sampled; the lowest address sampled is that of lowpc and the highest is just below
highpc. Manstartup allocates space using sbrk(2) and passes it to monitor (see below) to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer­
tain functions, in the buffer. Only calls of functions compiled with the profiling option -p of
ccO) are recorded.

To profile the entire program, it is sufficient to use

extern etext 0;

monstartup((int) 2, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file man. aut, use

monitor(O);

then proj(1) can be used to examine the results.

Moncantrol is used to selectively control profiling within a program. This works with either
proj(I) or gproj(I) type profiling. When the program starts, profiling begins. To stop the col­
lection of histogram ticks and call counts use mancanlrol(O); to resume the collection of histo­
gram ticks and call counts use mancantrot(l). This allows the cost of particular operations to be
measured. Note that an output file will be produced upon program exit irregardless of the state
of moncontrol.

Monitor is a low level interface to projil(2). Lowpc and highpc are the addresses of two func­
tions; bliffer is the address of a (user supplied) array of bujsize short integers. At most nfunc
call counts can be kept. For the results to be significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more than a few times smaller than
the range of locahons sampled. Monitor divides the buffer into space to record the histogram of
program counter samples over the range lowpc to highpc, and space to record call counts of
functions compiled with the -p option to ceO).

4th Berkeley Distribution 19 January 1983

I

I

MONITOR (3) UNIX Programmer's Manual

To profile the entire program, it is sufficient to use

extern etextO;

monitor((int) 2, etext, buf, bufsize, nfunc);

FILES
mon.out

SEE ALSO
cc(I), proW), gprof(I), profiJ(2), sbrk(2)

4th Berkeley Distribution 19 January 1983

MONITOR (3)

2

NLIST (3) UNIX Programmer's Manual NLIST (3)

NAME
nlist - get entries from name list

SYNOPSIS
#Include < nllst.b >
nllst(Olename, nJ)
cbar -Olename;
strue! nllst nlll;

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to O. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file Ivmunlx. In this
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

4th Berkeley Distribution 19 January 1983

I

I

PERROR(3) UNIX Programmer's Manual PERROR(3)

NAME
perror, sys_errlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char -S;

lot sys_oerr;
char -sys_errllstll;

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string is
the name of the program which incurred the error. The error number is taken from the exter­
nal variable errna (see intra (2» , which is set when errors occur but not cleared when non­
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided;
errna can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2), psignaI(3)

4th Berkeley Distribution 19 January 1983

POPEN(3) UNIX Programmer's Manual POPEN(3)

NAME
popen, pclose - initiate 110 tolfrom a process

SYNOPSIS
#incJude < stdio.b >
FILE opopen (command, type)
char ocommand, otype;

pc:lose(stream)
FILE ostream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respectively a shell
command line and an 110 mode, either "r" for reading or "w" for writing. It creates a pipe
between the calling process and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input of the command or read
from its standard output.

A stream opened by popen should be closed by pc/ose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a type
"w" as an output filter.

SEE ALSO
pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(I)

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or the shell cannot be
accessed.

Pclose returns -1 if stream is not associated with a 'popened' command.

Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer flush­
ing, for instance, with fffush. see fi:lose (3S).

Popen always calls sh, never calls csh.

7th Edition 18 July 1983

I

I

PSIGNAL (3) UNIX Programmer's Manual PSIGNAL (3)

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
pslgnal (slg, s)
unsllned sil;
char -S;

char -sys_sigllst();

DESCRIPTION
Psignal produces a short message on the standard error file describing the indicated signal. First
the argument string s is printed, then a colon, then the name of the signal and a new-line.
Most usefully, the argument string is the name of the program which .incurred the signa\. The
signal number should be from among those found in < signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys_siglist is pro­
vided; the signal number can be used as an index in this table to get the signal name without
the newline. The define NSIG defined in <signal.h> is the number of messages provided for
in the table; it should be checked because new signals may be added to the system before they
are added to the table.

SEE ALSO
sigvec(2), perror(3)

4th Berkeley Distribution 25 February 1983

QSORT(J) UNIX Programmer's Manual QSORT(J)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base. Del, width, oompar)
char .base;
lot (.oompar)O;

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sort 0)

4th Berkeley Distribution 19 January 1983

I

I

RANDOM (3) UNIX Programmer's Manual RANDOM (3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing
generators

SYNOPSIS
long random ()

srandom (seed)
lnt seed;

dlar oinitstate(seed, state, n)
unsigned seed;
diu ostate;
int n;

char .setstate (state)
char ostate;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range from 0
to 231 _1. The period of this random number generator is very large, approximately
16.(23\- 1).

Randomlsrandom have (almost) the same calling sequence and initialization properties as
rand/srand. The difference is that rand(3) produces a much less random sequence -- in fact, the
low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random
are usable. For example, "randomO&OI" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of
state information used is much more than a single word. (Two other routines are provided to
deal with restarting/changing random number generators). Like randO), however, random will
by default produce a sequence of numbers that can be duplicated by calling srandom with 1 as
the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future
use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a ran­
dom number generator it should use -- the more state, the better the random numbers will be.
(Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256
bytes; other amounts will be rounded down to the nearest known amount. Using less than 8
bytes will cause an error). The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point) is also an argu­
ment. lnitstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching between
states. Setstate returns a pointer to the argument state array is used for further random number
generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by calling
initstate (with the desired seed, the state array, and its size) or by calling both setstate (with the
state array) and srandom (with the desired seed). The advantage of calling both setstate and
srandom is that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than
269, which should be sufficient for most purposes.

AUTHOR
Earl T. Cohen

4th Berkeley Distribution 19 January 1983

RANDOM (3) UNIX Programmer's Manual RANDOM (3)

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand (3)

BUGS
About 213 the speed of rand(3C).

4th Berkeley Distribution 19 January 1983 2

REGEX(3) UNIX Prosrammer's Manual REGEX(3)

NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char *fe_eom,(s)
dau *Ij

fe_ueefs)
dau *Sj

DESC1UPTION
Re_comp compiles a string into an internal form suitable for pattern matchina. Re_exec checks
the argument string against the last string passed to Fe_comp.

Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an er­
ror message is returned. IT Fe_comp is passed 0 or a null string, it returns without changing the
currently compiled regular expression.

Re exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s
faiied to match the last compiled regular expression, and -1 if the compiled regular expression
was invalid (indicating an internal error).

The strings passed to both Fe_comp and Fe_exec may have trailing or embedded newline charac­
ters; they are terminated by nulls. The regular expressions recognized are described in the
manual entry for ed(l), given the above difference.

SEE ALSO
ed(l). ex(l), egrep(l), fgrep(l), grep(l)

DIAGNOSTICS
Re_exec returns -1 for an internal error.

Re_comp returns 'one of the following strings if an error occurs:

No previous regular expreSSion,
Regular expression too long,
unmatched \ (,
miSSing l,
too many \ N pairs,
unmatched\).

4th Berkeley Distribution 29 February 1980

SCANDIR(3) UNIX Prognunmer's Manual SCANDIR(3)

NAME
IICIIlldir - IICIIll a directory

SYNOPSIS
finclude <sys/types.h>
finclucle < sys/cllr.h >
IIeaI1clir (dlm.me, namellst, Rlect, compar)
ebar .climame;
.truct direct .(.namellstlJ);
Int (.select) 0 ;
Int (~mpar)O;

aiph.sorHdl, 112)
Itrud cllrect "dl, .. d2j

DESClllPTION
Scandi! reads the directory dlrnanle and builds an array of pointers to directory entries using
mal/oc(3). It returns the number of entries in the array and a pointer to the array through
IIlImelist.

The select parameter is a pointer to a user supplied subroutine which is called by scandir to
select which entries are to be included in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory entry is to be included in the
array. If select is null, then all the directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine which is passed to qsort(3) to
sort the completed array. If this pointer is null, the array is not sorted. Alphasort is a routine
which can be used for the compar parameter to sort the array alphabetically.

The memory allocated for the array can be deallocated with.free (see malloc(3» by freeing each
pointer in the array and the array itself.

SEE ALSO
directory(3), malloc(3), qsort(3), dir(5)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if mal/oc(3) cannot allocate
enough memory to hold all the data structures.

4th Berkeley Distribution 19January 1983

SETIMP(3) UNIX Programmer's Manual SETJMP(3)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.b>

setjmp(env)
Jmp_buf env;

lonllmp(env, val)
Jmp_buf env;

_setjmp(env)
Jmp_buf env;

lonllmp(env, val)
Jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub­
routine of a program.

Se(jmp saves its stack environment in env for later use by Iongjmp. It returns value O.

Longjmp restores the environment saved by the last call of se(jmp. It then retums in such a way
that execution continues as if the call of se(jmp had just returned the value val to the function
that invoked se(jmp. which must not itself have returned in tbe interim. All accessible data
have values as of the time longjmp was called.

Se(jmp and longjmp save and restore the signal mask sigmask(2), while _se(jmp and _Iongjmp
manipulate only the C stack and registers.

SEE ALSO

BUGS

sigvec(2), sigstack(2), signal(3)

Se(jmp does not save current notion of whether the process is executing on the signal stack.
The result is that a longjmp to some place on the signal stack leaves the signal stack state in­
correct.

4th Berkeley Distribution 19 January 1983

SETUID (3) UNIX Programmer's Manual

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
setuld (uld)
seteuld (euld)
setruld (mId)

setgld (gld)
setegld (egld)
setrgld (raid)

DESCRIPTION

SETUID(3)

Setuid (setgid) sets both the real and effective user ID (group ID) of the current process to as
specified.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.

Setruid (selruid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is tbe real or effective ID.

SEE ALSO
setreuid (2), setregid (2), getuid (2), getgid (2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; -1 is returned otherwise.

4th Berkeley Distribution 1 April 1983

SLEEP (3) UNIX Programmer's Manual SLEEP (3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep (seconds)
unsIgned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be up to I second less than that requested, because
scheduled wakeups occur at fixed I-second intervals, and an arbitrary amount longer because of
other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs. The previ­
ous state of this timer is saved and restored. If the sleep time exceeds the time to the expira­
tion of the previous timer, the process sleeps only until the signal would have occurred, and the
signal is sent 1 second later.

SEE ALSO
setitimer(2), sigpause(2)

BUGS
An interface with finer resolution is needed.

4th Berkeley Distribution 19 January 1983

STRING (3) UNlX Programmer's Manual STRING (3)

NAME
strcst, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations

SYNOPSIS
#include < strings.b >
c:bar ostrcat(sl, 52)
cbar 051, 052;

cbar ostmcat<sl, 52, n)
cbar osl, os2;

strcmp(sl, 52)
cbar osl, 052;

stmcmp(sl, 52, DJ
char osl, 052;

char 05trcpy(sl, 52)
char osl, os2;

cbar ostmcpy (51, 52, n)
char osl, 052;

strlen(s)
cbar os;

char olDdex (5, c)
char os, c;

cbar orindex (5, c)
char os, c;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string s2 to the end of string sl. Strneat copies at most n characters.
Both return a pointer to the null-terminated result.

Siremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as sl is lexicographically greater than, equal to, or less than s2. Sirncmp makes the
same comparison but looks at at most n characters.

Slrcpy copies string s2 to sl, stopping after the null character has been moved. Strncpy copies
exactly n characters, truncating or null-padding s2; the target may not be null-terminated if the
length of s2 is n or more. Both return sl.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character e in string s, or zero if
c does not occur in the string.

4th Berkeley Distribution 19 January 1983

SWAB (3)

NAME
swab - swap bytes

SYNOPSIS
swab (from, to, nbytes)
cbar .from, oto;

DESCRIPTION

UNIX Programmer's Manual SWAB (3)

Swab copies nbytes bytes pointed to by /rom to the position pointed to by to, exchanging adja­
cent even and odd bytes. It is useful for carrying binary data between PDPll's and other
machines. Nbytes should be even.

4th Berkeley Distribution 19 January 1983

SYSLOG(3) UNIX Proarammer's ManUal SYSLOG(3)

NAME
sysIOI, OpenlOl, closelOl - control system 101

SYNOPSIS
.... dude <IJSlec.h>

openIOIOdent,l.aO
diu -Ident;

IJSIOI(prlortty, meuqe, parameters •••)
daar-mes .. ;

eloselOIO
DESCRIPTION

Syslog arrsnges to write the message onto the system 101 maintsined bY ""sIog(S). The messqe
is taged with priority. The message looks like a prlnrf(3) strina except that ~m Is replaced by
the current error message (collected from errno). A trailina newline is added if needed. This
message will be read by ""s/og(S) and output to the system console or mes as appropriate.

If special processina is needed, openiog can be called to initialize the 101 me. Parameters are
!dent which is prepended to every message; and Iogstat which is a bit field iIldicatilll speeiaI
status; current values are:

LOG_PIO 101 the process id with each message: useful for identifying instantiations of dae-
mons.

Open/og returns zero on success. If it cannot open the me ldevllog. it writes on ldevlconsole
instesd and returns -1.

Close/og can be used to close the 101 me.

EXAMPLES
sysIOI(LOG_SALERT, "who: internal error 23");

openIOl("serverftp", LOG_PIO);
syslog(LOG_INFO, "Connection from host %d", CallingHost>;

SEE ALSO
syslOl(S)

7th Edition 14 November 19S2

I

I

SYSTEM (3) UNIX Programmer's Manual

NAME
system - issue a shell command

SYNOPSIS
.,.tem (strlna)
char •• trlnl;

DESCtiPTION

SYSTEM (3)

System causes the string to be given to shO) as input as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen (3S), execve(2), wait (2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

7th Edition 19 January 1983

ITYNAME(3) UNIX Programmer's Manual TIYNAME(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char .ttyname(llledes)

laatty(ftledes)

ttyslotO

DESClUPTION

FILES

Ttyname returns a pointer to the null-terminated path name of the terminal device associated
with file descriptor JUedes (this is a system file descriptor and has nothing to do with the slan­
dard I/O FILE typedeO.

/satty returns 1 if JUedes is associated with a terminal device, 0 otherwise.

Ttys[ot returns the number of the entry in the ttys(S) file for the control terminal of the current
process.

Idev/·
lete/ttys

SEE ALSO
ioctI(2), ttys(S)

DIAGNOSTICS

BUGS

Ttyname returns a null pointer (0) if JUedes does not describe a terminal device in directory
'/dev'.

Ttyslot returns 0 if '/ete/ttys' is inaccessible or if it cannot determine the control terminal.

The return value points to static data whose content is overwritten by each call.

7th Edition 19 January 1983

I

I

VALLOC(3) UNIX Programmer's Manual

NAME
valloc - aligned memory allocator

SYNOPSIS
char enllodslze)
unsl&ned size;

DESCR.IPTION

VALLOC(3)

Valloc allocates size bytes aligned on a page boundary. It is implemented by calling malloc(3)
with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.

DIAGNOSTICS
Valloc returns a null pointer (0) if there is no available memory or if the arena has been detect­
ably corrupted by storing outside the bounds of a block.

BUGS
Vfree isn't implemented.

3rd Berkeley Distribution 19 January 1983

VARARGS (3) UNIX Programmer's Manual VARARGS (3)

NAME
varargs - variable argument list

SYNOPSIS
#include <VArucs.b>

junction(va a1lst)
VA_del -
VA_Ust pvar;
VA_start(pvar);
f - VA_uc(pvar, type);
VA_end(pvar);

DESCRIPTION
This set of macros provides a means of writing portable procedures 'that accept variable argu­
ment lists. Routines having variable argument lists (such as prinift3» that do not use varargs
are inherently nonportable, since different machines use ditrerent argument passing conven­
tions.

VA_aUst is used in a function header to declare a variable argument list.

VA_clcl is a declaration for VA_aUSt. Note that there is no semicolon after YI_dcl.

YI_Ust is a type which can be used for the variable pvar, which is used to traverse the list. One
such variable must always be declared.

YI_start(pvar) is called to initialize pvar to the beginning of the list.

YI_uc(pvar, type) will return the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Ditrerent types can be mixed, but it is up to the routine to
know what type of argument is expected, since it cannot be determined at runtime.

YI_end(pvar) is used to finish up.

Multiple traversals, each bracketed by YI_start ... YI_end, are possible.

EXAMPLE

BUGS

itlnclude < varargs.h >
execl(va aUst)
vaclcl-
I -

VA Ust ap;
ch;r ofile;
ehar oargs[lOOI;
int argno - 0;

YI_start(ap);
file - va_uc(ap, char e);
while (ucslucno++] - va_uc(ap, char.»

;
va_end(ap);
retlU'l1 execv (ftle, ucs);

It is up to the calling routine to determine how many arguments there are, since it is not possi­
ble to determine this from the stack frame. For example, execl passes a 0 to signal the end of
the list. Prin(fcan tell how many arguments are supposed to be there by the format.

7th Edition 191anuary 1983

I

INTRO(3F) UNIX Programmer's Manual INTRO(3F)

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FORTRAN run time library. The func­
tions listed here provide an interface from 177 programs to the system in the same manner as
the C library does for C programs. They are automatically loaded as needed by the Fortran
compiler 177(1).

Most of these functions are in libU77.a. Some are in libF77.a or libI77.a. A few intrinsic func­
tions are described for the sake of completeness.

For efficiency, the sees ID strings are not normally included in the a.outfile. To include them,
simply declare

external f771id

in any .177 module.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort.3f terminate abruptly with memory image
access access.3f determine accessability of a file
alarm alarm.3f execute a subroutine after a specified time
bessel bessel.3f of two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, Ishift bitwise functions
chdir chdir.3f change default directory
chmod chlllDd.3f change mode of a file
ctime time.3f return system time
dlfrac ftmin.3f return extreme values
dtlmax ftmin.3f return extreme values
dflmin ftmin.3f return extreme values
drand rand.3f return random values
dtime elime.3f return elapsed execution time
etime etime.3f return elapsed execution time
exit exit.3f terminate process with status
fdate fdate.3f return date and time in an ASCII string
ffrac ftmin.3f return extreme values
fgetc getc.3f get a character from a logical unit
fimax ftmin.3f return extreme values
ftmin ftmin.3f return extreme values
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
fputc putc.3f write a character to a fortran logical unit
fseek fseek.3f reposition a file on a logical unit
fstat stat.3f get file status .
ftell fseek.3f reposition a file on a logical unit
gerror perror.3f get system error messages
getarg getarg.3f return command line arguments
getc getc.3f get a character from a logical unit
getcwd getcwd.3f get pathname of current working directory
getenv getenv.3f get value of environment variables
getgid getuid.3f get user or group ID of the caller
getJog getJog.3f get user's login name

4th Berkeley Distribution 26 July 1983

I

INTRO(3F) UNIX Programmer's Manual INTRO(3F)

getpid getpid.3f get process id
getuid getuid.3f get user or group ID of the caller
gmtime time.3f return system time
hostnm hostnm.3f get name of current host
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
ierrno perror.3f get system error messages
index index.3f tell about character objects
inmax: flmin.3f return extreme values

I
intro intro.3f introduction to FORTRAN library functions
ioinit ioinit.3f change n7 1/0 initialization
irand rand.3f return random values
isatty ttynam.3f find name of a terminal port
itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a process
len index.3f tell about character objects
link link.3f make a link to an existing file
Inblnk index.3f tell about character objects
loc loc.3f return the address of an object
long long.3f integer object conversion
Istat stat.3f get file status
ltime time.3f return system time
perror perror.3f get system error messages
putc pule.3f write a character to a fortran logical unit
qsort qsort.3f quick sort
rand rand.3f return random values
rename rename.3f rename a file
rindex index.3f tell about character objects
short long.3f integer object conversion
signal signal.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
stat stat.3f get file status
system system.3f execute a UNIX command
tclose topen.3f n7 tape I/O
time time.3f return system time
topen topen.3f n7 tape I/O
traper traper.3f trap arithmetic errors
trapov trapov.3f trap and repair floating point overflow
tread topen.3f n7 tape I/O
trewin topen.3f n7 tape I/O
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f n7 tape 110
tstate topen.3f n7 tape 110
ttynam ttynam.3f find name of a terminal port
!write topen.3f n7 tape I/O
unlink unlink.3f remove a directory entry
wait wait.3f wait for a process to terminate

4th Berkeley Distribution 26 July 1983 2

ABORT(3F) UNIX Programmer's Manual

NAME
abort - terminate abruptly with memory image

SYNOPSIS
subroutine abort (string)
eharactep(.) string

DESCRIPTION

ABORT(3F)

A hort deans up the I/O buffers and then aborts producing a core file in the current directory. If
string is given, it is written to logical unit 0 preceeded by "abort:".

FILES
lusr/lib/libF77.a

SEE ALSO
abort(3)

BUGS
String is ignored on the PDPIl.

4th Berkeley Distribution 18 July 1983

I

I

ACCESS (3F) UNIX Programmer's Manual

NAME
access - determine accessability of a file

SYNOPSIS
integer function access (name, mode)
character.(.) name, mode

DESCRIPTION

ACCESS (3F)

Access checks the given file, name, for accessability with respect to the caller according to mode.
Mode may include in any order and in any combination one or more of:

r
19'

x
(blank)

test for read permission
test for write permission
test for execute permission
test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of
the specified modes. 0 is returned if the specified access would be successful.

FILES
lusrllib/libU77.a

SEE ALSO
access(2), perror(3F)

BUGS
Pathnarnes can be no longer than MAXPATHLEN as defined in <sysiparam.h>.

4th Berkeley Distribution 26 July 1983

ALARM OF) UNIX Programmer's Manual

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
Integer function alarm (time, proc:)
Integer time
external proc

DESCRIPTION

ALARM(3F)

This routine arranges for subroutine proe to be called after time seconds. If time is "0", the
alarm is turned olf and no routine will be called. The returned value will be the time remaining
on the last alarm.

FILES
lusr/lib/libU77 .8

SEE ALSO
a1arm(3C), sleep(3F), signaI(3F)

BUGS
A.larm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the remaining alarm time or the sleep time.

4th Berkeley Distribution 18 July 1983

I

I

BESSEL OF) UNIX Programmer's Manual

NAME
bessel functions - of two kinds for integer orders

SYNOPSIS
function besjO (x)

function besjl (x)

function besjn (n, x)

function besyO (x)

function besyl (x)

function besyn (n, xl

double precision function dbesjO (x)
double precision x

double precision function dbesjl (x)
double precision x

double precision function dbesjn (n, x)
double precision x

double precision function dbesyO (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyn (n, x)
double precision x

DESCRIPTION

BESSEL (3F)

These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause besyO, besyl, and besyn to return a huge negative value. The system
error code will be set to EDOM (33).

FILES
lusr/lib/libF77.a

SEE ALSO
jO(3M), perror(3F)

4th Berkeley Distribution 18 July 1983

BIT(3F) UNIX Programmer's Manual BIT(3F)

NAME
bit - and, or, xor, not, rshift, Ishift bitwise functions

SYNOPSIS
(Intrinsic) function and <'frordl, word2)

(intrinsic) function or (wordt, word2)

(intrinsiC> Cunction xor (wordt, word2)

(Intrinsic) Cunctlon not (word)

(intrinsiC> function rshift (word, nbits)

(intrinsiC> function Ishlft (word, nbits)

DESCRIPTION

FILES

These bitwise functions are built into the compiler and return the data type of their
argument(s). It is recommended that their arguments be integer values; inappropriate manipu­
lation of real objects may cause unexpected results.

The bitwise combinatorial functions return the bitwise "and" (and), "or" (or), or "exclusive
or" (xor) of two operands. Not returns the bitwise complement of its operand.

Lshifl, or rshifl with a negative nbils, is a logical left shift with no end around carry. Rshifl, or
Ishifl with a negative nbils, is an arithmatic right shift with sign extension. No test is made for a
reasonable value of nbits.

These functions are generated in-line by the n7 compiler.

4th Berkeley Distribution 13 June 1983

I

I

CHDlR(3F) UNIX Programmer's Manual

NAME
eMir - change default directory

SYNOPSIS
integer function ehdir (dlmame)
cbaracter.(o) dirname

DESCRIPTION

CHDIR(3F)

The default directory for creating and locating files will be changed to dirname. Zero is returned
if successful; an error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
chdir(2), ed(U, perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <syslparam.h>.

Use of this function may cause inquire by unit to fail.

4th Berkeley Distribution 18 July 1983

CHMOD(3F) UNIX Programmer's Manual

NAME
chmod - change mode of a file

SYNOPSIS
Integer function chmod (name, mode)
character. (.) name, mode

DESCRIPTION

CHMOD(3F)

This function changes the filesystem mode of file name. Mode can be any specification recog­
nized by chmod(I). Name must be a single pathname.

The normal returned value is O. Any other value will be a system error number.

FILES
lusr/lib/libU77.a
Ibin/chmod

SEE ALSO
chmod(I)

BUGS

exec'ed to change the mode.

Pathnames can be no longer than MAXPATHLEN as defined in < sys/param.h >.

4th Berkeley Distribution 18 July 1983

I

I

ETIME(3F) UNIX Programmer's Manual

NAME
etime, dtime - return elapsed execution"time

SYNOPSIS
function etime (luray)
real turay (2)

function dtlme (turay)
real turay (2)

DESCRIPTION

ETIME(3F)

These two routines return elapsed runtime in seconds for the calling process. Dtime returns the
elapsed time since the last call to dtime. or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second ele­
ment. The function value is the sum of user and system time.

The resolution of all timing is 11HZ sec. where HZ is currently 60.

FILES
lusr/lib/libU77.a

SEE ALSO
times (2)

4th Berkeley Distribution 261uly 1983

EXIT(3F) UNIX Programmer's Manual

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESCRIPTION

EXIT OF)

Exit flushes and closes all the process's files, and notifies the parent process if it is executing a
wait. The low-order 8 bits of status are available to the parent process. (Therefore status
should be in the range 0 - 255)

This cail will never return.

The C function exit may cause cleanup actions before the final 'sys exW.

FILES
lusr Ilib/libF77.a

SEE ALSO
exit(2), fork(2), fork(3F), wait(2), wait(3F)

4th Berkeley Distribution 18 July 1983

I

I

FDATE(3F) UNIX Programmer's Manual

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
charactero (0) string

charactero (0) function fdate ()

DESCRIPTION

FDATE(3F)

Fdate returns the current date and time as a 24 character string in the format describe~ under
ctime(3). Neither 'newline' nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called·as a function, the calling
routine must define its type and length. For example:

character.24 fdate
external fdate

write(.,.) fdateO

FILES
lusr llib/libU77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), Itime(3F)

4th Berkeley Distribution 13 June 1983

FLMIN (3F) UNIX Programmer's Manual FLMIN(3F)

NAME
t1min, flmax, trrac, dflrnin, dflrnax, dtrrac, inmax - return extreme values

SYNOPSIS
function flmln 0

function flmax 0

function ffrac 0

double precision function dflmin 0

double precision function dflmaxO

double precision function dffrac 0

function inmaxO

DESCRIPTION

FILES

Functions jfmin and jfmax return the minimum and maximum positive floating point values
respectively. Functions 4f/min and 4f/max return the minimum and maximum positive double
precision floating point values. Function inmax returns the maximum positive integer value.

The functions ffiae and 4/frae return the fractional accuracy of single and double precision float­
ing point numbers respectively. These are the smallest numbers that can be added to 1.0
without being lost.

These functions can be used by programs that must scale algorithms to the numerical range of
the processor.

lusr/lib/JibF77.a

4th Berkeley Distribution 13 June 1983

I

FLUSH(3F) UNIX Programmer's Manual

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (Iunit)

DESCRIPTION

FLUSH(3F)

Flush causes the contents of the buffer for logical unit lunit to be flushed to the associated file.
This is most useful for logical units 0 and 6 when they are both associated with the control ter­
minal.

FILES
lusr/lib/libI77 .a

SEE ALSO
fclose(3S)

4th Berkeley Distribution 18 July 1983

FORK(3F) UNIX Programmer's Manual FORK{3F)

NAME
fork - create a copy of this process

SYNOPSIS
integer function fork 0

DESCRIPTION

FILES

Fork creates a copy of the ca1lingprocess. The only distinction between the 2 processes is that
the value returned to one of them (referred to as the 'parent' process) will be the process id if
the copy. The copy is usually referred to as the 'child' process. The value returned to the
'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the con­
tents of I/O buffers in the external file (s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be per­
formed using system(3F).

lusr Ilib/libU77.a

SEE ALSO
fork(2), wait(3F), kill (3F), system (3F), perror(3F)

4th Berkeley Distribution 13 June 1983

I

I

FSEEK (3F) UNIX Programmer's Manual

NAME
fseck, ftell - reposition a file on a 1000icai unit

SYNOPSIS
IDtl!ler function fseek Qunit, offset, from)
IDtl!ler otrset, from

IDtl!ler function fteD Qunlt)

DESCRIPTION

FSEEK(3F)

/unit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by from. Valid values for from arc:

FILES

o meaning 'beginning of the file'
1 meaning 'the current position'
2 meaning 'the end of the file'

The value returned by ,/Seek will be 0 if successful, a system error code otherwise. (See
perror(3F))

Ftell returns the current position of the file associated with the specified logical unit. The value
is an offset, in bytes, from the beginning of the file. If the value returned is negative, it indi­
cates an error and will be the negation of the system error code. (See perror(3F»

lusr/lib/libU77.a

SEE ALSO
fseck(3S), perror(3F)

4th Berkeley Distribution 18 July 1983

GETARG (3F) UNIX Programmer's Manual GETARG(3F)

NAME
getarg, iargc - return command line arguments

SYNOPSIS
lubroutlDe let (t, >
ebaracte ... (.)

fuDctloD t e 0
DESCRIPTION

A call to getorg will return the tth command line argument in character string argo The Oth
argument is the command name.

Jarge returns the index of the last command line argument.

FILES
lusrlIib/libU77.8

SEE ALSO
getenv(3F), execve(2)

4th Berkeley Distribution 18 July 1983

I

I

GETC(3F) UNIX Programmer's Manual

NAME
getc, fgetc - get a character from a logical unit

SYNOPSIS
Integer function letc (cbar)
cbaracter cbar

Integer function fletc (IunU, cbar>
cbaracter cbar

DESCRIPTION

GETC(3F)

These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran 110. Gelc reads from logical unit 5, normally connected to the control
terminal input.

The value of each function is II system status code. Zero indicates no error occured on the read;
-I indicates end of file was detected. A positive value will be either a UNIX system error
code or an n7 I/O error code. See perror(3F).

FILES
lusr/lib/libU77 .a

SEE ALSO
getc(3S), intro(2), perror(3F)

4th Berkeley Distribution I3 June 1983

GETCWD(JF) UNIX Programmer's Manual

NAME
getcwd - get pathname of current working directory

SYNOPSIS
Integer function &etcwd (dlm,me)
character.(.) dlrname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in dirname.
The value of the function will be zero if successful; an error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
chdir(3F), perror(JF)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <SYs/JXlram.h>.

4th Berkeley Distribution 18 July 1983

GETENV(3F) UNIX Programmer's Manual

NAME
getenv - get value of environment variables

SYNOPSIS
subroutine getenv (ename, evalue)
character- (-) ename, evalue

DESCRIPTION

GETENV OF)

Getenv searches the environment list (see environ(7» for a string of the form ename-value and
returns value in evalue if such a string is present, otherwise fills evalue with blanks.

FILES
lusr/lib/libU77.a

SEE ALSO
environ(7), execve(2)

4th Berkeley Distribution 18 July 1983

GETLOO(3F) UNIX Programmer's Manual

NAME
getJog - get user's login name

SYNOPSIS
subroutine lIetlog (name)
dlaracter- (-) name

dlaradef-(.) fnndion getlog ()

DESCRIPTION

GETLOO (3F)

Getlog will return the user's login name or all blanks if the process is running detached from a
terminal.

FILES
lusr/lib/libU77.R

SEE ALSO
getiogin (3)

4th Berkeley Distribution 13 June 1983

GETPID(3F)

NAME
getpid - get process id

SYNOPSIS
integer function getpid 0

DESCRIPTION

UNIX Programmer's Manual

Getpid returns the process ID number of the current process.

FILES
lusr/lib/libU77.a

SEE ALSO
getpid(2)

4th Berkeley Distribution 13 June 1983

GETPID(3F)

GETUID(3F) UNIX Programmer's Manual

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
integer function getuid 0

Integer function getgid 0

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
lusr/lib/libU77.a

SEE ALSO
getuid(2)

4th Berkeley Distribution 13 June 1983

GETUID(3F)

HOSTNM(3F) UNIX Programmer's Manual

NAME
hostnm - get name of current host

SYNOPSIS
Integer function hostnm (name)
character- (.) name

DESCRIPTION

HOSTNM (3F)

This function puts the name of the current host into character string name. The return value
should be 0; any other value indicates an error.

FILES
lusr/lib/libU77.a

SEE ALSO
gethostnarne (2)

4th Berkeley Distribution 13 June 1983

IDATE(3F) UNIX Programmer's Manual

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
subroutine ldate Ouray)
Integer larray(3)

subroutine itime Ouray)
Integer iarray(3)

DESCR.IPTION

IDATE(3F)

foote returns the current date in iarray. The order is: day, mon, year. Month will be in the
range 1-12. Year will be ;;. 1969.

ftime returns the current time in iarray. The order is: hour, minute, second.

FILES
lusr/lib/libU77.a

SEE ALSO
ctime(3F), fdate(3F)

4th Berkeley Distribution 13 June 1983

INDEX(3F) UNIX Programmer's Manual INDEX(3F)

NAME
index, rindex, Inblnk, len - tell about character objects

SYNOPSIS
(intrinsic) function Index: (string. substr)
cbaracter.(.) string, substr

Integer function rindex: (string, substr>
cbaracter.(.) string, substr

function Inblnk (string)
character. (.) string

(intrinsic) function len (string)
character· (.) string

DESCRIPTION

FILES

Index (rindex) returns the index of the first (Jast) occurrence of the substring substr in string, or
zero if it does not occur. Index is an f77 intrinsic function; rindex is a library routine.

Lnblnk returns the index of the last non-blank character in string. This is useful since all f77
character objects are fixed length, blank padded. Intrinsic function len returns the size of the
character object argument.

lusr/lib/libF77.a

4th Berkeley Distribution 13 June 1983

IOINIT(3F) UNIX Programmer's Manual IOOOT OF)

NAME
ioinit - change f77 I/O initialization

SYNOPSIS
logical function !oinll (cdl, buo, apnd, prefix, nbose)
logical cdl, bZfO, apnd, noose
character- (.) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 I/O system, and attach externally
defined files to logical units at run time. The effect of the flag arguments applies to logical
units opened after ioinit is called. The exception is the preassigned units, 5 and 6, to which cetl
and bzro will apply at any time. /oinit is ""Titten in Fortran-77.

By default, CIllTiage control is not recognized on any logical unit. If cctl is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then
such blanks will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is some­
times necessary or convenient to open at the END-OF-FILE so that a write will append to the
existing data. If apnd is .true. then files opened subsequently on any logical unit will be posi­
tioned at their end upon opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when
a program is run. There is no such automatic association in f77. However, if the argument
prefix is a non-blank string, then names of the form prefixNN will be sought in the program
environment. The value associated with each such name found will be used to open logical unit
NN for formatted sequential access. For example, if f77 program my program included the call

call ioinit (.true., .false., .false., 'FORT', .false.)

then when the following sequence

% setenv FORTOI mydata
% setenv FORTl2 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresufts.
Both files would be positioned at their beginning. Any formatted output would have column 1
removed and interpreted as carriage control. Embedded and trailing blanks would be ignored
on input.

If the argument vrbose is .true. then ioinit will report on its activity.

The effect of

call ioinit (,true., .true., .false., ", .false.)

can be achieved without the actual call by including" -1166" on the fl7 command line. This
gives carriage control on all logical units except 0, causes files to be opened at their beginning,
and causes blanks to be interpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

integer.2 ieof, iet!, Ibzr

4th Berkeley Distribution 13 June 1983

I

I

10INIT(3F) UNIX Programmer's Manual

common lioiflg/ ieof, ict!, ibzr

FILES
lusr/lib/libI77.a
/usr/lib/libI66.a

SEE ALSO

n7 110 library
sets older fortran I/O modes

getarg(3F), getenv(3F), "Introduction to the n7 110 Library"

BUGS

IOINIT(3F)

Prefix can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The "+" carriage control does not work.

4th Berkeley Distribution 13 June 1983 2

KILL(3F) UNIX Programmer's Manual

NAME
kill - send a signal to a process

SYNOPSIS
function kill (pld, signum)
integer pld, signum

DESCRIPTION

KILL OF)

Pid must be the process id of one of the user's processes. Signum must be a valid signal
number (see sigvec(2». The returned value will be 0 if successful; an error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
kill(2), sigvec(2), signaI(3F), fork(3F), perror(3F)

4th Berkeley Distribution 18 July 1983

I

I

LINK OF) UNIX Programmer's Manual

NAME
link - make a link to an existing file

SYNOPSIS
function link (namel, narne2)
charac:ter.{.) narnel, narne2

Integer function syrnlnk (narnel, narne2)
character. (.) narnel, narne2

DESCRIPTION

LINK (3F)

Namel must be the pathname of an existing file. Name2 is a pathname to be linked to file
namel. Name2 must not already exist. The returned value will be 0 if successful; a system
error code otherwise.

Symlnk creates a symbolic link to name1.

FILES
lusr/lib/libU77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sysiparam.h>.

4th Berkeley Distribution 18 July 1983

LOC (3F) UNIX Programmer's Manual

NAME
loe - return the address of an object

SYNOPSIS
function lac (al1l)

DESCRIPTION
The returned value will be the address of argo

FILES
lusr/lib/libU77.a

4th Berkeley Distribution 13 June 1983

LOC OF)

I

I

LONG(3F) UNIX Programmer's Manual

NAME
long, short - integer object conversion

SYNOPSIS
integer-" function long (lntZ)
integeroZ IntZ

integeroZ function short (lnt4)
integer." Int4

DESCRIPTION

LONG (3F)

These functions provide conversion between short and long integer objects. Long is useful
when constants are used in calls to library routines and the code is to be compiled with "·i2".
Short is useful in similar context when an otherwise long object must be passed as a short
integer.

FILES
lusr llib/libF77.8

4th Berkeley Distribution 26 July 1983

PERROR(3F) UNIX Programmer's Manual PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
character- (.) string

subroutine gerror (string)
character- (.) string

character- (.) function gerror ()

function lerrno ()

DESCRIPTION

FILES

Perror will write a message to fortran logical unit 0 appropriate to the last detected system error.
String will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called either
as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated
only when an error actually occurs. Most routines and 1/0 statements that might generate such
errors return an error code after the call; that value is a more reliable indicator of what caused
the error condition.

lusr/lib/libU77.a

SEE ALSO

BUGS

NOTES

intro(2), perror(3)
D. L. Wasley, Introduction to thej77 liD Library

String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

UNIX system error codes are described in intro (2). The D7 1/0 error codes and their mean­
ings are:

100 "error in format"
10\ "illegal unit number"
102 "formatted io not allowed"
103 "unformatted io not allowed"
104 "direct io not allowed"
105 "sequential io not allowed"
106 "can't backspace file"
107 "off beginning of record"
108 "can't stat file"
109 "no. after repeat count"
110 "off end of record"
III "truncation failed"
112 "incomprehensible list input"
113 "out of free space"
114 "unit not connected"
115 "read unexpected character"

4th Berkeley Distribution 13 June 1983

I

PERROR(3F) UNIX Programmer's Manual PERROR(3F)

116 "blank logical input field"
117 "'new' file exists"
118 "can't find 'old' file"
119 "unknown system error"
120 "requires seek ability"
121 "illegal argument"
122 "negative repeat count"
123 "illegal operation for unit"

I

4th Berkeley Distribution 13 June 1983 2

PUTC(3F) UNIX Proarammer's Manual

NAME
pule, fpule - write a character to a fortran loaical unit

SYNOPSIS
IIltepr fuctloD pute (chad
cbaracter char

IIltepr ftmctiOD fpatc 01lllit, char)
cbancter char

DESCRIPTION

PUTC(3F)

These funtions write a clwacter to the file asaociated with a fortran loaical unit bypassina nor­
mal fortran 110. Putc writea to loaical unit 6, nol'Ql8lly connected to the control terminal out­
put.

The value of each function wiU be zero unless some error occurred; a system error code other­
wise. See perror(3F).

nLES
/usr/lib/libU77.a

SEE ALSO
pule(3S). intro(2). perror(3F)

4th Berkeley Distribution 13 June 1983

I

I

QSORT(3F) UNIX Programmer's Manual

NAME
qsort - quick sort

SYNOPSIS
subroutine qsort (array, len, islze, compar)
external compar
integero2 compar

DESCRIPTION

QSORT (3F)

One dimensional array contains the elements to be sorted. len is the number of elements in the
array. isize is the size of an element, typically -

FILES

4 for integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer.2 function that will determine the sorting order.
This function will be called with 2 arguments that will be elements of array. The function must
return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

lusr IlibllibU77.a

SEE ALSO
qsort(3)

4th Berkeley Distribution 13 June 1983

RAND (3F) UNIX Programmer's Manual RAND(3F)

NAME
rand, drand, irand - return random values

SYNOPSIS
function band (1181)

function rand 01lag)

double precision functIon draod (11181)

DESCRIPTION

FILES

These functions use rand(3C) to generate sequences of random numbers. If i/lag is '1', the
generator is restarted and the first random value is returned. If i/lag is otherwise non-zero, it is
used as a new seed for the random number generator, and the first new random value is re­
turned.

Irand returns positive integers in the range 0 through 2147483647. Rand and drand return
values in the range O. through 1.0 .

lusr/lib/libF77.a

SEE ALSO

BUGS

rand (3C)

The algorithm returns a 15 bit quantity on the POPll; a 31 bit quantity on the VAX. frand on
the POPll calls rand(3C) twice to form a 31 bit quantity, but bit 15 win always be O.

4th Berkeley Distribution 18 July 1983

I

I

RANGE(3F) UNIX Programmer's Manual RANGE (3F)

NAME
fimin, ftmax, dtlmin, d1lmax, inmax - return extreme values

SYNOPSIS
laDdioD BmID 0

laDdioD 8mnO

"uille predSIOD laDdioD .amtn 0

.ouille preclsloD laDdleD damnO

faadlOD iDmn 0
DESCRIPTION

nLES

Functions jlmin md jlmax return the minimum md maximum positive ilOitina point values
respectively. Functions 4flmin md 4flmax return the minimum md maximum positive double
precision ilOitina point values. Function inmax returns the maximum positive inteler value.

lbcsc functions can be used by proarams that must scale allorithms to the numerical rIIIlIe of
the processor.

lusr/lib/libF77.a

7th Edition 19 Jmuary 1983

RENAME(3F) UNIX Programmer's Manual

NAME
rename - rename a file

SYNOPSIS
integer function rename (from, to)
character- (-) from, to

DESCRIPTION

RENAME(3F)

From must be the pathname of an existing file. To will become the new pathname for the file.
If 10 exists, then both from and to must be the same type of file, and must reside on the same
filesystem. If to exists, it will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in < sysiparam:h >.

4th Berkeley Distribution 18 July 1983

I

I

SIGNAL(3F) UNIX Programmer's Manual SIGNAL (3F)

NAME
signal - change the action for II signal

SYNOPSIS
Integer fUllctioll slgllal (signum, proc, flag)
wteger signum, flail:
enemal proc

DESCRIPTION

FILES

When a process incurs a signal (see siglUll(3C» the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to signal is
the way this alternate action is specified to the system.

Signum is the signal number (see signal(3C». If flag is negative, then proc must be the name
of the user signal handling routine. If flag is zero or positive, tlien proc is ignored and the
value of flag is passed to the system as the signal action definition. In particular, this is how
previously saved signal actions can be restored. Two possible values for flag have specific
meanings: 0 means 'use the default action" (See NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the ad­
dress of II routine that was to have been called on occurrence of the given signal. The returned
value can be used in subsequent calls to signal in order to restore a previous action definition.
A negative returned value is the negation of a system error code. (See perror(3F»

lusr/lib/libU77 .a

SEE ALSO

NOTES

signal (3C), Idll (3F) , kilHI)

f17 arranges to tfap certain signals when II process is started. The only way to restore the de­
fault fn action is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

4th Berkeley Distribution 18 July 1983

SLEEP(3F) UNIX Programmer's Manual

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (ltlme)

DESCRIPTION

SLEEP (3F)

Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to
1 second less than itime due to granularity in system timekeeping.

FILES
lusr/lib/libU77.a

SEE ALSO
sleep(3)

4th Berkeley Distribution 13 June 1983

I

I

STAT(3F) UNIX Programmer's Manual

NAME
stat, Istal, fstal - gel file stalus

SYNOPSIS
lnteaer function stat (name, statb)
character- (-) name
lnteaer statb (12)

Inteaer function Istat (name, statb)
character-(-) name
Inteaer statb (12)

Inteaer function fstat Hunit, statb)
Inteaer statb(12)

DESCRIPTION

STAT(3F)

These routines return detailed information about a file. Stat and Istat return information about
file name; /stat returns information about the file associated with fortran logical unit lunit. The
order and meaning of the information returned in array statb is as described for the structure
stat under stat(2). The "spare" values are not included.

The value of either function will be zero if successful; an error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
stat (2) , access (3F) , perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983

SYSTEM (3F) UNIX Programmer's Manual

NAME
system - execute a UNIX command

SYNOPSIS
Inteaer function system (string)
eII.racter-(-) string

DESCRIPTION

SYSTEM (3F)

System causes string to be given to your shell as input as if the string had been typed as a com­
mand. If environment variable SHELL is found, its value will be used as the command inter­
preter (shell); otherwise sh (l) is used.

FILES

The current process waits until the command terminates. The returned value will be the exit
status of the shell. See wait(2) for an explanation of this value.

lusr/lib/libU77.a

SEE ALSO
exec(2), wait(2), system(3)

BUGS
String can not be longer than NCARGS-SO characters, as defined in <syslparam.h>.

4th Berkeley Distribution 18 July 1983

I

I

TIME (3F) UNIX Programmer's Manual

NAME
time, clime, Itime, gmtime - return system time

SYNOPSIS
integer function tlmeO

character- (.) function ctime (stime)
integer stime

subroutine ltime (stime, tarray)
Integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION

TIME(3F)

Time returns the time since 00:00:00 GMT, Jan. I, 1970, measured in seconds. This is the
value of the UNIX system clock.

FILES

Ctime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No 'newline' or NULL will be included.

Ltime and gmtime disect a tJNIX time into month, day, etc., either for the local time zone or as
GMT. The order and meaning of each element returned in tarray is described under ctime(3).

/usr/lib/libU77.a

SEE ALSO
ctime(3), itime(3F), idate (3 F) , fdate(3F)

4th Berkeley Distribution 13 June 1983

TOPEN(3F) UNIX Programmer's Manual TOPEN(3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate - n7 tape I/O

SYNOPSIS
integer function topen (tlu, devnam, label)
Integer tIu
character.(o) devnam
logical label

integer funt· :on tclose (tlu)
Integer tlu

integer function tread (tlu, buffer)
integer tlu
character.(o) buffer

integer function twrite (tlu, buffer)
integer tlu
character-(.} buffer

integer function trewin (tIu)
integer tIu

Integer function tsklpf (tlu, nftles, nrecs)
integer tlu, nilles, nrees

integer function tstate (tlu, fileno, reeno, errf, eoff, eotf, tcsr)
integer tlu, fileno, reeno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between n7 and magnetic tape devices. A "tape
logical unit". tlu, is "topen"ed in much the same way as a normal n7 logical unit is "open"ed.
All other operations are performed via the flu. The tlu has no relationship at an to any normal
n7 logical unit.

Topen associates a device name with a flu. TZu must be in the range 0 to 3. The logical argu­
ment label should indicate whether the tape includes a tape label. This is used by trewin below.
Topen does not move the tape. The normal returned value is O. If the value of the function is
negative, an error has occured. See perror(3F) for details.

Tclose closes the tape device channel and removes its association with tlu. The normal returned
value is O. A negative value indicates an error.

Tread reads the next physical record from tape to br.iffer. Br.iffer must be of type character.
The size of br.iffer should be large enough to hold the largest physical record to be read. The
actual number of bytes read will be returned as the value of the function. If the value is 0, the
end-of-file has been detected. A negative value indicates an error.

Twrite writes a physical record to tape from br.iffer. The physical record length will be the size
of br.iffer. Br.iffer must be of type character. The number of bytes written will be returned. A
value of 0 or negative indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape is a
labelled tape (see topen above) then the label is skipped over after rewinding. The normal
returned value is O. A negative value indicates an error.

4th Berkeley Distribution 18 July 1983

I

I

TOPEN(3F) UNIX Programmer's Manual TOPEN(3F)

FILES

Tskipf allows the user to skip over files and/or records. First, rl/iles end-or-file marks are
skipped. If the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to
reset the EOF status for a tlu.) Next, nTees physical records are skipped over. The normal
returned value is O. A negative value indicates an error.

Fmally, (State allows the user to determine the logical state of the tape I/O charmel and to see
the tape drive control status register. The values of /ileno and Teeno will be returned and indi­
cate the current file and record number. The logical values err/, eoff, and eoifindicate an error
has occurred, the current file is at EOF, or the tape has reached logical end-of-tape. End-of­
tape (EOT) is indicated by an empty file, often referred to as a double EOF mark. It is not
allowed to read past EOT although it is allowed to write. The value of teST will reflect the tape
drive control status register. See ht(4) for details.

/usr/Jib/JibU77.a

SEE ALSO
ht(4), perror(3F), rewind(1)

4th Berkeley Distribution 18 July 1983 2

TRAPER(3F) UNIX Programmer's Manual

NAME
traper - trap arithmetic errors

SYNOPSIS
Integer function traper (mask)

DESCRIPTION
NOTE: This routine applies only to the VAX. It is ignored on the PDPll.

TRAPER(3F)

Integer overflow and floating point underflow are not normally trapped during execution. This
routine enables these traps by setting status bits in the process status word. These bits are reset
on entry to a subprogram, and the previous state is restored on return. Therefore, this routine
must be called inside each subprogram in which these conditions should be trapped. If the con­
dition occurs and trapping is enabled, signal SIGFPE is sent to the process. (See signal{3C»

The argument has the following meaning:

value meaning
o do not trap either condition
1 trap integer overflow only
2 trap floating underflow only
3 trap both the above

The previous value of these bits is returned.

FILES
lusr llib/libF77.a

SEE ALSO
signal (3C), signal(3F)

4th Berkeley Distribution 18 July 1983

I

I

TRAPOV(3F) UNIX Programmer's Manual TRAPOV(3F)

NAME
trapov - trap and repair floating point overflow

SYNOPSIS
subroutine trapol' (numesl, rtnuI)
double precision rtnul

DESCRIPTION

FILES

NOTE: This routine applies only to the older V AX 111780's. V AX computers made or
uPiraded since sprlnl 1983 handle errors differently. See trpjpe(3F) for the newer error
handler. This routine has always been ineffective on the VAX 111750. It is a null routine on
the PDPll.

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal operands.
Trapping arithmetic exceptions allows the user's program to proceed from instances of floating
point overflow or divide by zero. The result of such operations will be an illegal floating point
value. The subsequent use of the illegal operand will be trapped and the operand replaced by
the specified value.

The first numesg occurrences of a floating point arithmetic error will cause a message to be writ­
ten to the standard error file. If the resulting value is used, the value given for rtnval will
replace the illegal operand generated by the arithmetic error. Rtnvalmust be a double precision
value. For example, "OdO" or "dflmaxO".

lusr Ilib/libF77.a

SEE ALSO

BUGS

trpfpe(3F), signaI(3F), range(3F)

Other arithmetic exceptions can be trapped but not repaired.

There is no way to distinguish between an integer value of 32768 and the illegal floating point
form. Therefore such an integer value may get replaced while repairing the use of an illegal
operand.

4th Berkeley Distribution 18 July 1983

TRPFPE(3F) UNIX Programmer's Manual TRPFPE(3F)

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (numesg, rtnnI)
double precision rtnnl

integer function fpeent 0

common Ifpefltl {pen
logical fpen

DESCRIPTION

FILES

NOTE: This routine applies only to Vax computers. It is a null routine on the PDPl!.

rrpjjJe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a float­
ing point arithmetic fault, the result of the operation is replaced with the rtnval specified.
Rtnval must be a double precision value. For example, "OdO" or "dflmaxO".

The first numesg occurrences of a floating point arithmetic error will cause a message to be writ­
ten to the standard error file. Any exception that can't be repaired will result in the default
action, typicaily an abort with core image.

Fpecnt returns the number of faults since the last cail to trpjjJe.

The logical value in the common block labelled .fpeflt will be set to .true. each time a fault
occurs.

lusr/lib/libF77.a

SEE ALSO

BUGS

signaI{3F), range(3F)

This routine works only for faults, not traps. This is primarily due to the Vax architecture.

If the operation involves changing the stack pointer, it can't be repaired. This seldom should
be a problem with the n7 compiler, but such an operation might be produced by the optimizer.

The POLY and EMOD opcodes are not dealt with.

4th Berkeley Distribution 261uly 1983

I

I

TIYNAM (3F) UNIX Programmer's Manual

NAME
ttynam, isatty - find name of a terminal port

SYNOPSIS
character.(.) function ttynam (Iunit)

logical function isatty (lunit)

DESCRIPTION

TIYNAM(3F)

Ttynam returns a blank padded path name of the terminal device associated with logical unit
/unit.

/salty returns .true. if {unit is associated with a terminal device, .fllise. otherwise.

FILES
Idev/-
luST lIib/libU77.a

DIAGNOSTICS
Ttynam returns an empty string (all blanks) if {unit is not associated with a terminal device in
directory 'I dev' .

4th Berkeley Distribution 13 June 1983

UNLINK(3F) UNIX Programmer's Manual UNLINK(3F)

NAME
unlink - remove a directory entry

SYNOPSIS
integer fuuction unlink (name)
cltaracter. (.) name

DESCRIPTION
Unlink causes the directory entry specified by pathname name to be removed. If this was the
last link to the file, the contents of the file are lost. The returned value will be zero if success­
ful; a system error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
unlink(2), link (3F) , filsys(5), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983

WAlT (3F) UNIX Programmer's Manual

NAME
wait - wait for a process to terminate

SYNOPSIS
iDteaer function walt (status)
iDteaer Itatus

DESCRIPTION

WAlT(3F)

Wait causes its caller to be suspended until a signal is received or one of its child processes ter­
minates. If any child has terminated since the last wait, return is immediate; if there are no
children, return is immediate with an error code.

If the returned value is positive, it is the process ID of the child and status is its termination
status (see wait(2». If the returned value is negative, it is the negation of a system error code.

nLES
lusr/lib/libU77.a

SEE ALSO
wait(2), signal(3F), kill(3F), perror(3F)

4th Berkeley Distribution 13 June 1983

INTRO(3M) UNIX Programmer's Manual INTRO(3M)

NAME
intro - introduction to mathematical library functions

DESCRIPTION
These functions constitute the math library, !ibm. They are automatically loaded as needed by
the Fortran compiler [77(1). The link editor searches this library under the "-1m" option.
Declarations for these functions may be obtained from the include file <math.h>.

LIST OF FUNCTIONS
Name Appears on Page Description

acos sin.3m trigonometric functions
asin sin.3m trigonometric functions
atan sin.3m trigonometric functions
atan2 sin. 3m trigonometric functions
cabs hypot.3m Euclidean distance
ceil floor.3m absolute value, floor, ceiling functions
cos sin.3m trigonometric functions
cosh sinh. 3m hyperbolic functions
exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
floor floor. 3m absolute value, floor, ceiling functions
gamma gamma.3m log gamma function
hypot hypot.3m Euclidean distance
jO jO.3m bessel functions
jl jO.3m bessel functions
jn jO.3m bessel functions
log exp.3m exponential, logarithm, power, square root
log10 exp.3m exponential, logarithm, power, square root
pow exp.3m exponential, logarithm, power, square root
sin sin.3m trigonometric functions
sinh sinh.3m hyperbolic functions
sqrt exp.3m exponential, logarithm, power, square root
tan sin.3m trigonometric functions
tanh sinh.3m hyperbolic functions
yO jO.3m bessel functions
yl jO.3m bessel functions
yn jO.3m bessel functions

4th Berkeley Distribution 8 July 1983

EXP(3M) UNIX Programmer's Manual

NAME
exp, log, logl0, pow, sqrt - exponential, logarithm, power, SQuare root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, Y;

double sqrt(x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; [ogIO returns the base 10 logarithm.

Pow returns K.
Sqrt returns the square root of x.

SEE ALSO
hypot(3M), sinh(3M), intro(3M)

DIAGNOSTICS

EXP(3M)

Exp and pow return a huge value when the correct value would overflow; ermo is set to
ERANGE. Pow returns 0 and sets ermo to EDOM when the first argument is negative and the
second is non-integral or when first argument is 0 and the second is less than or equal to O.

Log returns 0 when x is zero or negative; ermo is set to EDOM.

Sqrt returns 0 when x is negative; ermo is set to EDOM.

7th Edition 18 July 1983

FLOOR(3M) UNIX Programmer's Manual

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#include <math.h>

tlouble 8oor(x)
double X;

double celI(x)
double X;

tlollble fabs (x)
tlouble X;

DESCltIPTION
Fabs returns the absolute value Ix~

Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

SEE ALSO
abs(3)

7th Edition 19 January 1983

FLOOR(3M)

I

GAMMA(3M) UNIX Programmer's Manual

NAME
JI!I11IIlB - log JI!I11IIlB function

SYNOPSIS
#include <math.h:>

double &amma (x)
double Xi

DESCRIPTION

GAMMA(3M)

Gamma returns In Ir(jxj) I. The sign of nix!) is returned in the external integer signgam.
The following C program might be used to calculate r:

DIAGNOSTICS

y - gamma (x);
if (y :> 88.0)

errorO;
y - exp(y);
if(signgam)

y - -y;

A huge value is returned for negative integer arguments.

BUGS
There should be a positive indication of error.

7th Edition 19 January 1983

HYPOT(3M) UNIX Programmer's Manual

NAME
hypot, cabs - Euclidean distance

SYNOPSIS
*include <math.h>

doable hJPOtlx, 7)
"able x, 7;

doable eabs(z)
stract (doable x, 7;)';

DESCIUPTION
Hypot and cabs return

sqrt(xox + y·y),

taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for sqrt

7th Edition 19 January 1983

HYPOT(3M)

I

JO(3M) UNIX Programmer's Manual

NAME
jO, jl, jn, yO, yl, yo - bessel functions

SYNOPSIS
#lDc:lade <math.h>

doable JOb)
doable X;

doable Jl (x)
doable X;

doable Ja<n, x)
doable X;

doable yO(x)
doable X;

doable yUx)
doable X;

doable yo <n, x)
doable X;

DESCRIPTION

JO (3M)

. These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return a huge negative value and set errno to
EDOM.

7th Edition 19 January 1983

SIN(3M) UNIX Programmer's Manual

NAME
sin, cos, tan, llSin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
*inclilde <mlilth.h>

double sill (x)
double X;
double cos(x)
double X;

double uln b:)
double X;

double KOS (x)
double X;

double Iltan Cd
double X;

double atanlbt, y)
double:l[, y;

DESCRIPTION

SIN(3M)

Sin, cos nnd tan return trigonometric functions of radian arguments. The magnitude of the ar­
gument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range --rr12 to -rr12.

A cos returns the arc cosine in the range 0 to -rr.

Aran returns the arc tangent of x in the range -'lf12 to rrl2.

Alan} returns the arc tangent of xJy in the range -'fT to 'fT.

DIAGNOSTICS

BUGS

Arguments of magnitude greater than 1 cause asin and acos to return value 0; ermo is set to
EDOM. The value of Ian at its singular points is a huge number, and e"no is set to ERANGE.

The value of Ian for arguments greater than about 2 .. 31 is garbage.

7th Edition 19 January 1983

I

I

SINH (3M) UNIX Proarammer's Manual

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#iDclude <math.h>

.... ble IlDh b:)

double COIh b:)
doable x;

.... ble tanh b:)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real lIIJuments.

DIAGNOSTICS

SINH (3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition 19 January 1983

INTRO{3N) UNIX Programmer's Manual INTRO(3N)

NAME
intro - introduction to network library functions

DESCllIPTION
This section describes functions that are applicable to the DARPA Internet network.

LIST or rUNCfIONS
Name Appears on Page Description

endhostent sethostent.3n set network host entry
endnetent setnetent.3n set network entry
endprotoent setprotoent.3n set protocol entry I
endservent setservent.3n set service entry
sethostbyaddr sethostent.3n set network host entry
sethostbyname sethostent.3n set network host entry
sethostent sethostent.3n set network host entry
setnetbyaddr setnetent.3n set network entry
setnetbyname setnetent.3n set network entry
setnetent setnetent.3n set network entry
setprotobyname setprotoent.3n set protocol entry
setprotobynumber setprotoent.3n set protocol entry
setprotoent setprotoent.3n set protocol entry
setservbyname setservent.3n set service entry
setservbyport setservent.3n set service entry
setservent setservent.3n set service entry
hton! byteorder.3n convert values between host and network byte order
htons byteorder.3n convert values between host and network byte order
inet addr inet.3n Internet address manipulation routines
ine'-lnaof inet.3n Internet address manipulation routines
inet-makeaddr inet.3n Internet address manipulation routines
inet-netof· inet.3n Internet address manipulation routines
ine(network inet.3n Internet address manipulation routines
ntohl byteorder.3n convert values between host and network byte order
ntohs byteorder.3n convert values between host and network byte order
sethostent sethostent.3n set network host entry
setnetent setnetent.3n set network entry
setprotoent setprotoent.3n set protocol entry
setservent setservent.3n set service entry

4th Berkeley Distribution 10 February 1983

I

BYTEORDER (3N) UNIX Programmer's Manual BYTEORDER (3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#iuclude < sys/types.h >
#Include <netlnet/ln.h>

netlonll ... htonHhostlong);
u_long netiong. hostloug;

netshort ... hlons (hostshort) ;
u_short Iletshort, hostshort;

hostlollll ... utohl(netlong);
u_lonl hostlollg. uetlollg;

hostshort .. ntohs (netshort) ;
u_short liostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as the SUN these routines are defined as null macros in the include
file < netinellin.h >.
These routines are most often used in conjunction with Internet addresses and ports as returned
by gelhostent(3N) and gelservent(3N).

SEE ALSO

BUGS

gethostent(3N), getservent(3N)

The V AX handles bytes backwards from most everyone else in the world. This is not expected
to be fixed in the near future.

4th Berkeley Distribution 4 March 1983

GETHOSTENT (3N) UNIX Programmer's Manual GETHOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNOPSIS
~lnclude <netdb.h>

strnet hostent "gethostent 0
strnet hostent 0sethostbyname(name)
char .name;

Itrnet hostent 0aethostbyaddr(addr, len, type)
char oaddr; Int len, type;

sethostent (stayopen)
int stayopen

endhostent 0
DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyadd, each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network host data base, fetefhosts.

struct hostent (
char oh_name;
char ooh_aliases;
int h addrtype;
int h=length;
char oh_addr;

);

The members of this structure are:

h_name Official name of the host.

/. official name of host ./
/0 alias list 0/
/. address type • I
I. length of address .1
/. address • I

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AF _INET.

The length, in bytes, of the address.

A pointer to the network address for the host. Host addresses are returned in net­
work byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will
not be closed after each call to gethostent (either directly, or indirectly through one of the other
"gethost" calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until a
matching host name or host address is found, or until EOF is encountered. Host addresses are
supplied in network order.

letc/hosts

SEE ALSO
hosts(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

4th Berkeley Distribution 9 February 1983

I

I

GETHOSTENT (3N) UNIX Prosrammer's Manual GETHOSTENT (3N)

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet addresa format is currently understood.

4th Berkeley Distribution 9 February 1983 2

GETNETENT (3N) UNIX Proarammer's Manual GETNETENT ON)

NAME
letnetent, letnetbyaddr, getnetbyname, setnetent, endnetent - let network entry

SYNOPSIS
#iDclude <netdb.b>

.tract netent "letnetentO

.tract netent "letDetbyname(name)
char "name;

.tract netent "Ietnetbyaddr(ned
ionl neti

aetnetent (Itayopen)
lnt ItayopeD

endnetentO

DESCIlIPTION

nLIS

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network data base, /etdnetworks.

struct netent {
char
char
int
long

);

.n name;
•• n_a1iases;
n_addrtype;
n_net;

The members of this structure are:

/. official name of net ./
/. alias list ./
/. net number type ./
/. net number ./

n_name The official name of the network.

n_a1iases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF JNET.

n_net The network number. Network numbers are returned in machine byte order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stllyopen flag is non-zero, the net data base will not
be closed after each call to getnetent (either directly, or indirectly through one of the other
"Ietnet" calls).

Endnetent closes the file.

Getnetbyname and getnetbyoddr sequentially search from the beginning of the file until a match­
ing net name or net address is foi1lld, or until EOF is encountered. Network numbers are sup­
plied in host order.

/etc/networks

SEE ALSO
nelworks(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only Inter­
net network numbers are currently understood. Expecting network numbers to fit in no more
than 32 bits is probably naive.

4th Berkeley Distribution 9 February 1983

I

I

GETPROTOENT (3N) UNIX Programmer's Manua! GETPROTOENT (3N)

NAME
lIetprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
iHndllde <netdb.h:>

.true! protoena eletprotoentO

IItruet protGent "Ictprotobyname(nl!me)
dul.!' oname;

IItroet protoent "Ietprotobynllmiler(proto)
Int proto;

setprotoent (Itlllyopen)
int stlllyopen

enciprotoentO

DESCRIPTION

FILES

Getprotoent, getprotobYllome, and getprotobYllumber each return II pointer to an object with the
following structure containing the broken-out fields of Ii line in the network protocol dats base,
fetc/protocols .

struct protoent I
char .p_name;
char "p _aliases;
long p yroto;

);

The members of this structure are:

/. official name of protocol ./
/- alias list .1
I. protocol number ./

p _name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

P"pfoto The protocol number.

Getprotoellt reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the slayopen flag is non-zero, the net dllts base will
not be closed after each call to getprotoent (either directly, or indirectly through one of the other
"getproto" calls).

Endprotoent closes the file.

Getprotobyname end gelprotobynumber sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until EOF is encountered.

lete/protocols

SEE AI,SO
protocols (5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOP or error.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

4th Berkeley Distribution 9 February 1983

GETSERVENT(3N) UNIX Programmer's Manual GETSERVENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
Ninclude <:neldb.b>

atruet servent 0llletservent 0
Itruet servent ogetservbynllme(lIl1me, proto)
char onllme, .proto;

IItmet servent olletservbyport (port, proto)
int port; chllr 'proto;

setservent (5tayopen)
Int stayopen

endserventO

DESCllIPTION

FILES

Getservent, getservDyname, IIl1d getserv!;yport each return 8 pointer to an object with the following
structure contllining the broken-out fields of 8 line in the network services data base,
letdservices.

struct servent (
char os_name;
char .. s_aliases;
long sJ)Ort;
char 08-"roto;

);

/. official name of service 0/
/. alias list ./
/. port service resides at ./
/. protocol to use -/

The members of this structure are:

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

sJ)Ort The port number at which the service resides. Port numbers are returned in network
byte order.

8-"roto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservenl opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not
be closed after each call to getservenl (either directly, or indirectly through one of the other
"getserv" calls).

Endservellt closes the file.

Getservbyname and getservbyporl sequentially search from the beginning of the file until a match­
ing protocol name or port number is found, or until EOF is encountered. If a protocol name is
also supplied (non-NULL), searches must also match the protocol.

I etc! services

SEE ALSO
getprotoent (3N), services(5)

DIAGNOSTICS

BUGS

Null pointer (0) returned on BOF or error.

AI! information is contllined in a static area so it must be copied if it is to be saved. Expecting
porI numbers to fit in a 32 bit quantity is probably naive.

4th Berkeley Distribution 9 February 1983

I

I

INET(3N) UNIX Programmer's Manual INET(3N)

NAME
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof - Internet address
manipulation routines

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in addr inet addr(ep)
char -cp; -

int inet _network (cp)
char -cp;

char -Inet ntoa On)
struct In_addr in;

struct in addr inet makeaddr(net, Ina)
int net, iDa; -

int inet InaofOn)
struct i; _ addr in;

int inet netofOn)
struct i;_addr in;

DESCRIPTION
The routines inet addr and inet network each interpret character strings representing numbers
expressed in the Internet standard "." notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The routine ineLntoa takes an Internet
address and returns an ASCII string representing the address in "." notation. The routine
inet makeaddr takes an Internet network number and a local network address and constructs an
Internet address from it. The routines inet_netoj and ineUnaoj break apart Internet host
addresses, returning the network number and local network address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right). All net­
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed as
a 32-bit integer quantity on the V AX the bytes referred to above appear as "d.c.b.a". That is,
V AX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed
in the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as "128.net.host".

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

4th Berkeley Distribution 18 July 1983

INET(3N) UNIX Programmer's Manual INET(3N)

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal, as
specified in the C language (i.e. a leading Ox or OX implies hexadecimal; otherwise, a leading 0
implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostent (3N), getnetent (3N), hosts (5) , networks(S),

DIAGNOSTICS

BUGS

The value -1 is returned by inet_addr and ineLnetwork for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is
needed. The string returned by inet_ntoa resides in a static memory area.

4th Berkeley Distribution 18 July 1983 2

I

INTRO (3S) UNIX Programmer's Manual INTRO (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >
FILE ostdin;
FILE .sldout;
FILE ostderr;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering scheme. The in-line
macros gete and putc(3S) handle characters quickly. The higher level routines gets, fgets, scan/,
!sean/, fread, puts, jj;Uls, prinif, fprinif, fwrite all use getc and pUlc; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined
type FILE. Fopen (3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdln standard input file
sldout standard output file
stderr standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions that
deal with streams.

Any routine that uses the standard input/output package must include the header file
< stdio. h > of pertinent macro definitions. The functions and constants mentioned in sections
labeled 3S are declared in the include file and need no further declaration. The constants, and
the following 'functions' are implemented as macros; redec1aration of these names is perilous:
getc, getchar, pule, putchar, feof, ferror, fileno.

SEE ALSO
open(2), c!ose(2), read(2) , write(2), fread(3S), fseek(3S), [-(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with fopen, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line
buffer output to a terminal by default and attempts to do this transparently by flushing the out­
put whenever a read(2) from the standard input is necessary. This is almost always tran­
sparent, but may cause confusion or malfunctioning of programs which use standard i/o rou­
tines but use read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an output
terminal, it is necessary to jJlush(3S) the standard output before going off and computing so
that the output will appear.

The standard buffered functions do not interact well with certain other library and system func­
tions, especially vfork and abort.

LIST OF FUNCTIONS
Name

clearerr
[close

Appears on Page Description

ferror.3s stream status inquiries
fclose.3s close or flush a stream

4th Berkeley Distribution 18 July 1983

I

INTRO Os) UNIX Programmer's Manual INTRO OS)

feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
mush fclose.3s close or flush a stream
fgetc getc.3s get character or word from stream
fgets gels.3s get a string from a stream
fileno ferror.3s stream status inquiries
fprintf printf.3s formatted output conversion
fpute putc.3s put character or word on a stream
fputs puts.3s put a string on a stream

I
fread fread.3s buffered binary input/output
fseanf scanf.3s formatted input conversion
fseek fseek.3s reposition a stream
ftell fseek.3s reposition a stream
fwrite fread.3s buffered binary input/output
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
gets gets.3s get a string from a stream
getw getc.3s get character or word from stream
printf printf.3s formatted output conversion
pute putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream
putw putc.3s put character or word on a stream
rewind fseek.3s reposition a stream
scanf scanf.3s formatted input conversion
setbuf setbuf.3s assign buffering to a stream
setbulfer setbuf.3s assign buffering to a stream
setlinebuf setbuf.3s assign buffering to a stream
sprintf printf.3s formatted output conversion
sscanf scanf.3s formatted input conversion
ungetc ungetc.3s push character back into input stream

4th Berkeley Distribution 18 July 1983 2

FCLOSE(3S) UNIX Programmer's Manual FCLOSE(3S)

NAME
(close, mush - close or flush a stream

SYNOPSIS
#incluCe <.tdlo.h>
fclue (Itream)
FILE •• tream;

Blush (stream)
FILE .Itream;

DESCRIPTION
Fcfose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Fclose is performed automatically upon calling exit(3).

Fjfush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
close (2) , fopen(3S), setbuf(3S)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file.

7th Edition 19 January 1983

I

I

FER.ROR (3S) UNIX Programmer's Mwual

NAME
(error, Ceof, ciearerr, fileno - stream status inquiries

SYNOPSIS
#1Dclmle <ltdio.b>

feof(atream)
FILE .stream;

ferror <stream)
FILE -stream

clearerr(ltream)
FILE .strum
tlleno(stream)
FILE .stream;

DESCRIPTION

FERROR(3S)

Feo/returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other­
wise zero. Unless cleared by ckarerr, the error indication Ia.,ts until the stream is closed.

Clre" resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open (2) .

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S),open(2)

4th Berkeley Distribution 19 January 1983

FOPEN(3S) UNIX Programmer's Manual FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#iDclude <stdlo.h>

FILE .fopeD (8leDame, type)
char .8leDame, .type;

FILE .freopeD (8JeDame, type, stream)
char .fileDame, .type;
FILE .stream;

FILE .fdopeD (8ldes, type)
char .type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

ow" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a '+' to have the file opened for reading and writing.
"r+" positions the stream at the beginning of the file, "w+" creates or truncates it, and "a+"
positions it at the end. Both reads and writes may be used on read/write streams, with the limi­
tation that an /seek. reWind. or reading an end-of-file must be used between a read and a write
or vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdla, Itdoot, Itderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open. (/uP. creal. or pipe(2). The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS

BUGS

Fopen and jteopen return the pointer NULL if filename cannot be accessed.

Fdopen is not portable to sYstems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes will
probably treat the type as if the '+' was not present. These are unreliable in any event.

4th Berkeley Distribution 1 April 1981

I

I

FREAD (3S) UNIX Programmer's Manual FREAD (3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdlo.h>

fread <ptr, sizeof(.ptd, nltems, stream)
FILE .stream;

fwrite(ptr, slzeof(*ptr), nitems, stream)
FILE .stream;

DESCRIPTION
Fread reads, into a block beginning lit plr, nitems of data of the type of .ptr from the named
input stream. It returns the number of items actually read.

If stream is stdln and the standard output is line buffered, then any partial output line will be
flushed before any call to read(2) to satisfy the /read.

Fwrile appends at most nilems of data of the type of .ptr beginning at plr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)

DIAGNOSTICS
Fread and /write return 0 upon end of file or error.

4th Berkeley Distribution 19 January 1983

FSEEK(3S) UNIX Programmer's Manual FSEEK (3S)

NAME
rseek, nell, rewind - reposition a stream

SYNOPSIS
#inclllde < Itdio.h >
fIeek(stream, offset, ptmame)
nLE *stream;
loBI offlet;

lonl ftell(stream)
nLE *stream;

rewind (Itream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is
It the signed distance offset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3S).

Frell returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic
cookie, and the only foolproof way to obtain an offset for /seek.

Rewind(stream) is equivalent to /seek (stream , OL, 0).

SEE ALSO
lseek(2), fopen(3S)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

7th Edition 191anuary 1983

I

I

OETC(3S) UNIX Programmer's Manual OETC(3S)

NAME
lete, letcw, flete, letw - let character or word from stream

SYNOPSIS
"Delude <.tdlo.h>
!at lelc(atream)
nLl: •• tream;

!at letchuO

!at fleld.tream)
FILE -.tream;

!at letw <atream)
FILE -stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object
text.

Gerwreturns the next word (in a 32-bit integer on a VAX-II) from the named input stream. It
returns the constant EOF. upon end of file or error, but since that is a good integer value, leol
and lerror(3S) should be used to check the success of gerw. Gerw assumes no special alignment
in the file.

SEE ALSO
fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungete(3S)

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file or upon read error.

A stop with message, 'Reading bad file', means an attempt has been made to read from a
stream that has not been opened for reading by /open.

The end-of-file return from getchor is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly.
In particular, 'getc(of++);' doesn't work sensibly.

7th Edition 19 January 1983

GETS (3S) UNIX Programmer's Manual

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#Include <stdlo.h>
dlar -lets (s)
dlar -I;

char -fgets (s, n, stream)
dlar -I;
FILE -stream;

DESCRIPTION

GETS (3S)

Gets reads a string into s from the standard input stream .tdln. The string is terminated by a
newline character, which is replaced in s by a null character. Gels returns its argument.

Fgels reads n -1 characters, or up to a newline character, whichever comes first, from the
stream into the string s. The last character read into s is followed by a null character. Fgets
returns its first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gets and hets return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, /gets keeps it, all in the name of backward compatibility.

7th Edition 19 January 1983

I

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include < stdio.h >
prlntf(formal [, arg 1 ...
char -formal;

fprintf(stream, format [, arg J ...
FILE -stream;
char -format;

sprlntC(s, format [, arg 1 ...
char .S, format;

#inclnde <varargs.b>
_doprnt(format, args, stream)
char .format;
va_list oargs;
FILE .stream;

DESCRIPTION
Print! places output on the standard output stream sldont. Fprint! places output on the named
output stream. Sprint! places 'output' in the string s, followed by the character '\0'. All of
these routines work by calling the internal routine _dopmt, using the variable-length argument
facilities of varargs(3).

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg printj.

Each conversion specification is introduced by the character %. Following the %, there may be

•
«I

•
•

•

•
•

7th Edition

an optional minus sign '-' which specifies left atVustmenl of the converted value in the
indicated field;

an optional digit string specifying a fteld width; if the converted value has fewer charac­
ters than the field width it will be blank-padded on the left (or right, if the left­
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

an optional period'.' which serves to separate the field width from the next digit string;

an optional digit string specifying a precision which specifies the number of digits to
appear after the decimal point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

an optional '#' character specifying that the value should be converted to an "alternate
form". For c, d, s, and u, conversions, this option has no effect. For 0 conversions,
the precision of the number is increased to force the first character of the output string
to a zero. For x(X) conversion, a non-zero result has the string Ox(OX) prepended to
it. For e, E, f, 1\, and G, conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point only appears in the results
of those conversions if a digit follows the decimal point). For g and G conversions,
trailing zeros are not removed from the result as they would otherwise be.

the character I specifying that a following d, 0, x, or 11 corresponds to a long integer
argo

a character which indicates the type of conversion to be applied.

1 April 1981

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

A field width or precision may be '.' instead of a digit string. In this case an integer arg sup­
plies the field width or precision.

The conversion characters and their meanings are

lIox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style '[-Jddd.ddd'
where the number of d's after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e

c

The float or double arg is converted in the style '[-]d.ddde±dd' where there is one
digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.

The float or double arg is printed in style II, in style f, or in style e, whichever gives full
precision in minimum space.

The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-ll and
65535 on a PDP-II).

% Print a '%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by prinif
are printed by pule (3 S) .

Examples
To print a date and time in the form 'Sunday, July 3, 10:02', where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 'IT to 5 decimals:

printf("pi - %.sr, 4'atan(1.0);

SEE ALSO
putc(3S), scanf(3S), ecvt(3)

BUGS
Very wide fields (> 128 characters) fail.

7th Edition 1 April 1981 2

I

I

PUTC(3S) UNIX Prosrammer's Manual PUTC(3S)

NAME
pute, putehar, fpute, putw - put character or word on a stream

SYNOPSIS
#bid .. <atdlo.h>
Int pute (c, stream)
charc:;
nLE -stream;
pvtc:har(e)

fpate<e, stream)
mE -stream;
putw(w, Itream)
nLE -stream;

DESCIlPTION
Pule appends the character e to the named output stream. It returns the character written.

Putcluzr(e) is defined as putc(e, ItIloaO.

Fputc behaves like pule, but is a aenuine function rather than a macro.

Putw appends word (that is, InO w to the output stream. It returns the word written. Putw nei­
ther usumes nor causes special alignment in the file.

SEE ALSO
fopen(3S), fclose(3S), gete(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

These functions return the constant EOr upon error. Since this is a good integer, /error(3S)
should be used to detect putw errors.

Because it is implemented as a macro, pule treats a stream argument with side effects improper­
ly. In particular

pute(c, ef + +);
doesn't work sensibly.

Errors can occur long after the call to pule.

7th Edition 19 January 1983

PUTS(3S) UNIX Proarammer's Manual

NAME
pUIll, fpulll - put a string on a stream

SYNOPSIS
#incllHle < stdlo.h >
puts(s)
eIlar *s;

Iputs (s, stream)
eIlar os;
FILE -stream;

DESCIlIPTION

PUTS (3S)

Puts copies the null-terminated string s to the standard output stream mIout and appends a
newline character.

Fputs copies the null· terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

fopen(3S), gelll(3S), putc(3S), printf(3S), ferror(3S)
fread(3S) for !write

Puts appends a newline, /puts does not, all in the name of backward compatibility.

7th Edition 191anuary 1983

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#lnclude <stdlo.h>

scanf(format [, pointer I ...
char .format;

fscanf(stream, format [, pointer I ...
FILE .stream;
char .format;

sscanf(s, format [, pointer I ...
char .s, .format;

DESCR.IPTION
Scatifreads from the standard input stream stdln. Fscatifreads from the named input stream.
Sscatif reads from the character string s. Each {unction rellds char/lcters, interprets them ac­
cording to a format, and stores the results in its arguments. Each expects as arguments a con­
trol string format, described below, and a set of pointer arguments indicating where the convert­
ed input should be stored.

The control string usually contains conversion specifications, which are used to direct interpre­
tation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character ., an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi­
cated by.. An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal:

% a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

I a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating '\0',
which will be added. The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try '%ls'. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to a float. The input for­

mat for floating point numbers is an optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field consisting of an E or e followed by

7th Edition 19 January 1983

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex ('), the input field
is all characters until the first character not in the set between the brackets; if the first char­
acter after the left bracket is " the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, 0 and x may be capitalized or preceded by I to indicate that a
pointer to lonl rather than to Int is in the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by I to indicate a pointer to doable rather than to float. The
conversion characters d, 0 and x may be preceded by h to indicate a pointer to sbort rather than
to lot.

The scallffunctions return the number of successfully matcbed IDiflSSigned input items. This
can be used to decide how many input items were found. The constant lOr is returned upon
end of input; note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to i the value 25, x the value 5.432, and name will contain 'thotnpSO",-O'. Or,

int i; float x; char name[50];
scanf("%2d%f%od%[l234567890]", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56\0' in name. The next call to
getchar will return 'a'.

SEE ALSO
ato((3), getc(3S), printf(3S)

DIAGNOSTICS
The seallf functions return Eor on end of input, and a short count for missing or illegal data
items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

7th Edition 19 January 1983 2

SETBUF(3S) UNIX Programmer's Manual SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS
#inclatle <stdio.h>

setbuf(stJeam, ban
'ILE ostream;
char -bal;

setbufter (stJeam, buf, size)
FILE -stream;
char -baf;
Int size;

setllnebaf(stJeam)
FILE .stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When
an output stream is unbuffered, information appears on the destination file or terminal as soon
as written; when it is block buffered many characters are saved up and written as a block; when
it is line buffered characters are saved up until a newline is encountered or input is read from
stdin. F/fush (see fi:lose(3S» may be used to force the block out early. Normally all files are
block buffered. A buffer is obtained from mal/oc(3) upon the first getc or putc(3S) on the file.
If the standard stream stdout refers to a terminal it is line buffered. The standard stream slderr
is always unbuffered.

Setbufis used after a stream has been opened but before it is read or written. The character ar­
ray bufis used instead of an automatically allocated buffer. If bufis the constant pointer NULL,
input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big an array
is needed:

char buf[BUFSIZ);

Setbr4fer, an alternate form of setbu.{, is used after a stream has been opened but before it is
read or written. The character array bufwhose size is determined by the size argument is used
instead of an automatically allocated buffer. If bufis the constant pointer NULL, input/output
will be completely unbuffered.

Setlinebufis used to change stdout or stderr from block buffered or unbuffered to line buffered.
Unlike setbufand setbr4fer it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using /reopen (see
!open(3S». A file can be changed from block buffered or line buffered to unbuffered by using
/reopen followed by setbufwith a buffer argument of NULL.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

BUGS
The standard error stream should be line buffered by default.

The setbr4fer and setlinebuffunctions are not portable to non 4.2 BSD versions of UNIX.

4th Berkeley Distribution 19 January 1983

UNGETC(3S) UNIX Prosrammcr's Manual

NAME
unaetc - push character back into input stream

SYNOPSIS
#ludade <atdlo.b>
optc(c, atreun)
JILE .abeam;

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the
next getc CIIlI on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something bas been read from the stream
and the stream is actually buft'ered. Attempts to push BOF are rejected.

F_k(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

7th Edition 19 January 1983

INTRO(3X) UNIX Programmer's Manual INTRO(3X)

NAME
intro - introduction to miscellaneous library functions

DESCRIPTION

FILES

These functions constitute minor libraries and other miscellaneous run-time facilities. Most are
available only when programming in C. The list below includes libraries which provide device
independent plotting functions, terminal independent screen management routines for two
dimensional non-bitmap display terminals, functions for managing data bases with inverted
indexes, and sundry routines used in executing commands on remote machines. The routines
getdiskbyname, rcmd, rresvport, ruserok, and rexec reside in the standard C run-time library
"-lc". All other functions are located in separate libraries indicated in each manual entry.

llib/libc.a
lusr/lib/libdbm.a
lusr/lib/libtermcap.a
lusr/lib/libcurses.a
lusr/lib/lib2648.a
lusr/lib/libplot.a

LIST OF FUNCTIONS
Name

arc
assert
circle
closepl
cont
curses
dbminit
delete
endfsent
erase
fetch
firstkey
getdiskbyname
getfsent
getfsfile
getfsspec
getfstype
initgroups
label
lib2648
line
linemod
move
nextkey
plot: openpl
point
rcmd
rexec
rresvport
ruserok
setfsent
space

Appears on Page

plot.3x
assert.3x
plot.3x
plot.3x
plot.3x
curses.3x
dbm.3x
dbm.3x
getfsent.3x
plot.3x
dbm.3x
dbm.3x
getdisk.3x
getfsent.3x
getfsent.3x
getfsent.3x
getfsent.3x
initgroups.3x
plot.3x
Iib2648.3x
plot.3x
plot.3x
plot.3x
dbm.3x
plot.3x
plot.3x
rcmd.3x
rexec.3x
rcmd.3x
rcmd.3x
getfsent.3x
plot.3x

4th Berkeley Distribution

Description

graphics interface
program verification
graphics interface
graphics interface
graphics interface
screen functions with "optimal" cursor motion
data base subroutines
data base subroutines
get file system' descriptor file entry
graphics interface
data base subroutines
data base subroutines
get disk description by its name
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
initialize group access list
graphics interface
subroutines for the HP 2648 graphics terminal
graphics interface
graphics interface
graphics interface
data base subroutines
graphics interface
graphics interface
routines for returning a stream to a remote command
return stream to a remote command
routines for returning a stream to a remote command
routines for returning a stream to a remote command
get file system descriptor file entry
graphics interface

81uly 1983

INTRO{3X)

store
tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

4th Berkeley Distribution

UNIX Programmer's Manual

dbm.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x

data base subroutines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines

8 July 1983

INTRO(3X)

2

ASSERT(3X)

NAME
assert - program verification

SYNOPSIS
#inclulie <ulM!rt.h>

assen (expression)

DESCRIPTION

UNIX Programmer's Manual ASSERT (3X)

Assert is a macro that indicates expression is expected 10 be true at this point in the program. It
causes an exit(2) with a diagnostic comment on the standard output when expression is false (0).
Compiling with the cc(l) option -DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
'Assertion failed: file f line n.· F is the source file and n the source Hne number of the assert
statement.

7th Edition 19 January 1983

I

I

CURSES (3X) UN1X Programmer's Manual CURSES(3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
ec [flags J files -!curses - Itermcap [libraries 1

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. Then the
rejreshO tells the routines to make the current screen look like the new one. In order to initial­
ize the routines, the routine initscr() must be called before any of the other routines that deal
with windows and screens are used. The routine endwinO should be called before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,
ioctJ(2), getenv(3), tty (4) , terrncap(5)

AUTHOR.
Ken Arnold

FUNCTIONS
addch(ch)
addstr(str)
box (win, vert,hor)
crrnodeO
clear 0
c1earok (seT, boolf)
clrtobotO
c1rtoeolO
delchO
deletelnO
del win (win)
eehoO
endwinO
erase 0
getchO
getcap(name)
gets!r (str)
gettmodeO
getyx(win,y,x)
inchO
initscrO
insch(c)
insertinO
leaveok (win ,boolf)
longname(termbuf,name)
move(y,x)
mvcur(Iasty ,Iastx,newy ,newx)
newwin Oines,cols, begin y , begin_x)
nlO
nocrrnodeO
noechoO
nonlO
norawO
overlay (win I, win2)
overwrite(winl,win2)

4th Berkeley Distribution

add a character to stdscr
add a string to stdscr
draw a box around II window
set cbreak mode
clear stdser
set clear flag for ser
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase sldscr
get a char through stdscr
get terminal capability name
get II string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
ini tialize screens
insert a char
insert a line
set leave flag for win
get long name from termbtif
move to (y,x) on stdscr
actually move cursor
create II new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay winI on win2
overwrite winI on top of win2

19 January 1983

CURSES(3X) UNIX Programmer's Manual CURSES (3X)

BUGS

printw(fmt.lIIlll.arg2 •.. .)
raw 0
refresh 0
resettyO
savettyO
scanw(fmt.argl.arg2 •...)
scroll (win)
scrollok(win.boolO
setterm (name)
standendO
standout 0
subwin(win.lines.cols.beginJ.begin_x)
touchwin(win)
unctrl(ch)
waddcb(win.ch)
waddstr (win.str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win.c)
wdeleteln(win)
werase(win)
wgetcb(win)
wgetstr(win.str)
wincb(win)
winscb(win.c)
winsertln (win)
wmove(win.y.x)
wprintw(win.fmt.argl.1IIll2 •.. .)
wrefresb(win)
wscanw(win.fmt.argl.arg2 •...)
wstandend (win)
wstandout(win)

printf on stdscr
set raw mode
make current screen look like stdscr
reset tty Dags to stored value
stored current tty flags
scartf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
let a slrina through win
get char at current (y .x) in win
insert char into win
insert line into win
set current (y .x) co-ordinate,s on win
printf on win
make screen look like win
scartf through win
end standout mode on win
start standout mode on win

4th Berkeley Distribution 191anuary 1983 2

I

I

DBM(3X) UNIX Programmer's Manual DBM(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS
typecIef atruct (

char .dptr;
Int ds1ze;

I datum;

dbmlnit (file)
char .flle;

datum fetchOr.ey)
datum key;

store(key, contend
datum key, content;

delete (key)
datum key;

datum fintkeyO

datum nelrtkey(key)
datum key;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very large
(a billion blocks) databases and will access II keyed item in one or two file system accesses. The
functions are obtained with the loader option -Idbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data
base is stored in two files. One file is 1\ directory containing Ii bit map and has '.dic' as its suffix.
The second file contains all data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the
files jile.dJ.r and jile.pag must exist. (An empty database is created by creating zero-length
'.dir' and '.pag' files,)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by
store. A key (and its associated contents) is deleted by delete. A linear pass through all keys in
a database may be made, in an (apparently) random order, by use of jirstkey and nextkey. First­
key will return the first key in the database. With any key nextkey will return the next key in
the database. This code will traverse the data base:

for (key - firstkeyO; key.dptr !- NULL; key - nextkey(key»

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates ok.
Routines that return Ii datum indicate errors with a null (0) dptr.

The '.pag' file will contain holes so that its apparent size is about four times its actual content.
Older UNIX systems may create real file blocks for these holes when touched. These files can­
not be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subse­
quent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently
1024 bytes). Moreover all key/content pairs that hash together must fit on II single block.

4th Berkeley Distribution 19 1anuary 1983

DBM(3X) UNIX Programmer's Manual DBM(3X)

Store will return an error in the event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it available for reuse.
The order of keys presented by firstkey and nextkey depends on a hashing function, not on any­
thing interesting.

4th Berkeley Distribution 19 January 1983 2

I

I

GETDISKBYNAME (3X) UNIX Programmer's Manual

NAME
getdiskbyname - get disk description by its name

SYNOPSIS
#include <dlsktab.h>
stmct disktlllb •
lIetdlskbynllme(nllDle)
char Ol!lllDle;

DESCRIPTION

GETDISKBYNAME (3X)

Getdiskbyname takes a disk name (e.g. rm03) and returns II structure describing its geometry
information and the standard disk partition tables. All information obtained from the disk­
tabeS) file.

<disktab.h> has the following form:

/. @(#)disktab.h 4.2 (Berkeley) 3/6/83 ./

; .
• Disk description table, see disktab (5)
./

#defineDISKTAB "'etc/disktab"

struct disktab (
char od_name; ;- drive name .;
char od_type; ;. drive type -/
int d_secsize; /- sector size in bytes ./
in! d_ntracks; /* # tracks/cylinder ./
int d_nsectors; /- # sectors/track ./
in! d_ncylinders; I. # cylinders -/
int d_rpm; /- revolutions/minute -/
struc! partition I

int p size; I. #sectors in partition ./
short p - bsize;!. block size in bytes -/
short p)size; /- frag size in bytes .f

I d.Jlartitions[SJ;
I;

struct disktab ogetdiskbyname 0;
SEE ALSO

BUGS
disktab(5)

This information should be obtained from the system for I~all} lvailable disks (in particular,
the disk partition tables).

4th Berkeley Distribution 4 March 1983

GETFSENT (3X) UNIX Programmer's Manual GETFSENT (3X)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsen! - get file system descriptor file entry

SYNOPSIS
#include <fstllll.n>

struct lstllb *gcifsent 0
struct fdab *getfsspec(spec)
cilllr .spec;

strucl fstab *lletfsfile(!lIe)
char *file;

s!ruct fstab 0getfslype (type)
char .type;

int setfsent 0
int endfsent 0

DESCRIPTION

FILES

Getjsent, getjsspec, getjstype, and get/sfife each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file,
<fstab.h>.

strue! fstab!
char

);

char
char
int
int

.fs_spec;
>fs_file;
.fs_type;
fsJreq;
fsyassno;

The fields have meanings described in ftlab(5).

Getjsent reads the next line of the file, opening the file if necessary.

Setjsent opens and rewinds the file.

Endftent closes the file.

Getjsspec and geifsfiie sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getjstype does like­
wise, matching on the file system type field.

letc/fstab

SEE ALSO
fstab(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

4th Berkeley Distribution 19 January 1983

I

I

INITGROUPS OX) UNIX Programmer's Manual

NAME
initgroups - initialize group access list

SYNOPSIS
inltgroups(name, basegid)
char -name;
in t basegld;

DESCRIPTION

INITGROUPS (3X)

lnitgroups reads through the group file and sets up, using the setgroups(2) call, the group access
list for the user specified in name. The basegid is automatically included in the groups list.
Typically this value is given as the group number from the password file.

FILES
letc/group

SEE ALSO
setgroups (2)

DIAGNOSTICS
lnitgroups returns -1 if it was not invoked by the super-user.

BUGS
lnitgroups uses the routines based on getgrent(3). If the invoking program uses any of these
routines, the group structure will be overwritten in the call to initgroups.

Noone seems to keep lete/group up to date.

4th Berkeley Distribution 25 February 1983

LIB2648 (3X) UNIX Programmer's Manual LIB2648 OX)

NAME
Iib2648 - subroutines for the HP 2648 graphics terminal

SYNOPSIS
~cluile <sWo.h>

typedef char .lIltmBt;
FILE -trace;

cc file.c -12648

DISCUPTION I Llb2648 is a general purpose library of subroutines useful for interactive graphics on the
Hewlett·Packard 2648 graphics terminal. To use it you must call the routine ttyin/tO at the
beginning of execution, and doneO at the end of execution. All terminal input and output
must go through the routines rawchar, read/ine, outchar, and outstr.

Lib2648 does the necessary 'ErF handshaking if getenv("TERM") returns "hp2648", as it will
if set by tset(l). Any other value, including for example "2648". will disable handshaking.

Bit matrix routines are provided to model the graphics memory of the 2648. These routines are
generally useful, but are specifically useful for the update function which efficiently changes
what is on the screen to what is supposed to be on the screen. The primative bit matrix rou­
tines are newmat, mat, and setmat.

The file trace, if non-null, is expected to be a file descriptor as returned by lOpen. If so, lib2648
will trace the progress of the output by writing onto this file. It is provided to make debugging
output feasible for graphics programs without messing up the screen or the escape sequences
being sent. Typieal use of trace will include:

switch (argv!lJ[lJ) {
ease'T':

trace - fopen ("trace", "w");
llreak;

if (trace)
fprintf(trace, ·x is %d, y is %s\n", x, y);

dumpmat("before update", xmat);

ROUTINES
lIIoto<X, y)

Move the alphanumeric curser to position (x, y), measured from the upper left comer
of the screen.

IIOffO Turn the alphanumeric display off.

lIOn 0 Tum the alphanumeric display on.

lUeacleu(rmln, emJn, rmu, emu)
Clear thf' area on the graphics screen bordered by the four arguments. In normal mode
the area is set to all black, in inverse video mode it is set to all white.

hepO Ring the bell on the terminal.

IIltcopy (dest, ere, cows, cols) bUm.! deat,
Copy II rows by cols bit matrix from SFC to (user provided) dest.

clearaO
Clear the alphanumeric display.

c:luflO

4th Berkeley Distribution 1 March 1980

I

Lm2648 (3X) UNIX Programmer's Manual LIB2648 OX)

Clear the graphics display. Note that the 2648 will only clear the part of the screen that
is visible if zoomed in.

Turn the graphics cursor off.

euronO
Tum the graphics cursor on.

disllmslI(str, x, y, mulen) dull' ostr;
Display the message str in graphics text at position (x, y). The maximum message
length is given by max/en, and is needed to for dispmsg to know how big an area to
clear before drawing the message. Tne lower left comer of the first character is at (x,
y).

cioneO Should be cIIlled before the program exits. Restores the tty to normal, turns off graph­
ics screen, turns on alphanumeric screen, flushes the standard output, etc.

draw (x, y)
Draw Ii line from the pen location to (x, y). As with all graphics coordinates, (x, y) is
measured from the bottom left comer of the screen. (x, y) coordinates represent the
first quadrant of the usual Cartesian system.

cirllWbox (r, c, color. rows, cobl)
Draw Ii rectangular box on the graphics screen. The lower 'Ieft comer is at location (r,
C). The box is rows rows high and eols columns wide. The box is drawn if color is 1,
erased if color is O. fr, c) absolute coordinates represent row and column on the screen,
with the origin at the lower left. They are equivalent to (x, y) except for being reversed
in order.

lillmllmaHmsg, m, rows, cols) chlu Oms!!; bUrna! 11:1;
If trace is non-null, write II readable ASCn representation of the matrix m on trace. Msg
is Ii label to identify the output.

emlltyrow(m, rows, cois, r} bUma! ill;
Returns 1 if row r of matrix m is all zero, else returns O. This routine is provided
because it can be implemented more efficiently with a knowledge of the internal
representation than !I series of cIIlls to mat.

error(msg) chllr omsg;
Default error handler. Calls message(msg) and returns. This is cIIlled by certain rou­
tines in Iib2648. It is also suitable for calling by the user program. It is probably II

good idea for II fancy graphics program to supply its own error procedure which uses
seijmp(3) to restart the program.

slfef.IIUO
Set the terminal to the default graphics modes.

10ffO Tum the graphics display off.

Ion 0 Tum the graphics display on.

birO Tum the keypad off.

kon 0 Turn the keypad on. This means that most special keys on the terminal (such as the
alphanumeric arrow keys) will transmit an escape sequence instead of doing their func­
tion locally.

line(d, yl, x2, y2)
Draw II line in the current mode from (xl, ylJ to (x2, y2). This is equivalent to
move(xl, ylJ; draw(x2, y2); except that a bug in the terminal involving repeated lines
from the same point is compensated for.

4th Berkeley Distribution 1 March 1980 2

Lffi2648 (3X) UNIX Programmer's Manual Lffi2648 (3X)

lowleftO
Move the alphanumeric cursor to the lower left (home down) position.

mat(m, rows, ools, r, c:) bltmat mi
Used to retrieve an element from a bit matrix. Returns 1 or 0 as the value of the fr. cl
element of the rows by eols matrix m. Bit matrices are numbered (r. c) from the upper
left comer of the matrix, beginning at (0, 0). R represents the row, and c represents
the column.

messqe(str) char estr;
Display the text message str at the bottom of the graphics screen.

mlnmu(a, rows, ools, rmin, cmin, rmax, emu) bltmat II;
Int ermin, -cmln, eemax, -cmu;

Find the smallest rectangle that contains all the 1 (on) elements in the bit matrix g.
The coordinates are returned in the variables pointed to by rmin, cmin, rrnax, cmax.

mon(x, y)
Move the pen to location (x. y). Such motion is internal and will not cause output until
a subsequent sync().

movecurs (I, y)
Move the graphics cursor to location (x. y).

bltmat newmat (rows, ools)
Create (with ma/loc(3» a new bit matrix of size rows by eols. The value created (e.g. a
pointer to the first location) is returned. A bit matrix can be freed directly with free.

outchar(c) char C;
Print the character c on the standard ou.tput. All output to the terminal should go
through this routine or outstr.

oatstr (str) char estr;

printllO

Print the string str on the standard output by repeated calls to outehor.

Print the graphics display on the printer. The printer must be configured as device 6
(the default) on the HPIB.

char rawcbarO
Read one character from the terminal and return it. This routine or readllne should be
used to get all input, rather than getchor(3).

rboffO Tum the rubber band line off.

rbonO Tum the rubber band line on.

char .nlchar(c) char C;
Return II readable representation of the character e. If c is a printing character it returns
itself, if a control character it is shown in the ·X notation, if negative an apostrophe is
prepended. Space returns .', rubout returns ·1.

NOTE: A pointer to a static place is returned. For this reason, it will not work to pass
rdchar twice to the same fprintjl sprintj call. You must instead save one of the values in
your own buffer with stcepy.

readllne(prompt, mSII, maIlen) char .prompt, emSII;
Display prompt on the bottom line of the graphics display and read one line of text from
the user, terminated by a newline. The line is placed in the buffer mag, which has size
max/en characters. Backspace processing is supported.

IletclearO

4th Berkeley Distribution 1 March 1980 3

I

I

LIB2648 OX) UNIX Programmer's Manual LIB2648 OX)

Set the display to draw lines in erase mode. (This is reversed by inverse video mode.)

tetmat<m, 1'0'11'1, co)s, r, 1:, nn Itltmat m;

RtsetO

The bssic operation to store a value in an element of a bit matrix. The [r, cJ element
of m is set to vol, which should be either 0 or I.

Set the display to draw lines in normal (solid) mode. (This is reversed by inverse video
mode.)

RtsorO
Set the display to draw lines in exclusive or mode.

lyncO Force all accumuillted output to be displayed on the screen. This should be followed by
ffiush(stdout). The cursor is not affected by this function. Note that it is normally
never necessary to call sync, since rawchar and readline call syncO and lfIush(stdout}
automatically.

toevltlO
Tosgle the state of video. If in normal mode, go into inverse video mode, and vice
versa. The screen is reversed as well as the internal state of the library.

ttyinitO
Set up the terminal for processing. This routine should be called lit the beginning of
execution. It places the terminal in CBREAK mode, turns off echo, sets the proper
modes in the terminal, and initializes the library.

lIpdate(molcl, mne'll', rows, cols, baser, basec) bltma. mold, mnew;
Make whatever changes are needed to make a window on the screen look like mnew.
Mold is what the window on the screen currently looks like. The window has size rows
by cois, and the lower left comer on the screen of the window is [baser, basecl. Note:
update was not intended to be used for the entire screen. It would work but be very
slow and take MK bytes of memory just for mold and mnew. It was intended for 100
by 100 windows with objects in the center of them, and is quite fast for such windows.

vidhnO
Set inverse video mode.

TldnormO
Set normal video mode.

zermllt(m, rows, co15) bilmat m;
Set the bit matrix m to all zeros.

_mn(s!ze)
Set the hardware zoom to value size, which can range from 1 to 15.

_motrO
Tum zoom off. This forces the screen to zoom level 1 without affecting the current
internal zoom number.

_monO
Tum zoom on. This restores the screen to the previously specified zoom size.

DIAGNOSTICS

FILES

The routine error is called when an error is detected. The only error currently detected is
overflow of the buffer provided to readline.

Subscripts out of bounds to selmat return without setting anything.

lusr/lib/lib2648.B

4th Berkeley Distribution 1 March 1980 4

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

SEE ALSO
fOO(I)

AUTHOR

BUGS

Mark Horton

This library is not supported. It makes no attempt to use all of the features of the terminal,
only those needed by fed. Contributions from users will be accepted for addition to the library.

The HP 2648 terminal is somewhat unreliable at speeds over 2400 baud, even with the 'ErF
handshaking. In an effort to improve reliability, handshaking is done every 32 characters. (The
manual claims it is only necessary every 80 characters.) Nonetheless, I/O errors sometimes still
occur.

There is no way to control the amount of debugging output generated on trace without modify­
ing the source to the library.

4th Berkeley Distribution 1 March 1980 5

I

PLOT(3X) UNIX Programmer's Manual PLOT(3X)

NAME
plot: openp!, erllSt'l, label, line, circle, w:e, move, cont, point, linemod, space, closepl - graph­
ics interface

SYNOPSIS
IIpeDll10

erase 0
leMHI)
chIlI 1111;

llneb:l, yl, d, y2)

clrcle(x, Y. r)

1Il'C(x, y, IO, yO, :d, yU

moveb:, y)

cont(x, y)

pomt(x, y)

Unemod(s)
char zil;

IlIace(xO, yO, :11:1, yH
clo8eIlIO

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See
plottS) for II description of their effect. Openpi must be used before any of the others to open
the device for writing. Closepillushes the output.

String w:guments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the
following /dO) options:

-llIlot device-independent graphics stream on standard output for plotO) filters
-1300 OS! 300 terminal
-1300s OSI 300S terminal
-10450 DASI 450 terminal
-104014 Tektronix 4014 terminal

SEE ALSO
plot(5), p!ot(lG), graph(1G)

7th Edition 19 January 1983

RCMD(3X) UNIX Programmer's Manual RCMD (3X)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rem - rcmd(ahost, lnport. locuser. remuser. cmd. fd2p);
char ••• host;
u_short lnport;
char .locuser •• remuser •• cmd;
lnt .fd2p;

s - rresTport (port) ;
Int .port;

ruserok (rhost, superuser. ruser. luser>;
char .rhost;
lnt superuser;
char .ruser •• luser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space. Ruserok is a routine used by
servers to authenticate clients requesting service with rcmd. All three functions are present in
the same file and are used by the rshd(8C) server (among others).

Rcmd looks up the host oahost using gethostbyname(3N), returning -1 if the host does not ex­
ist. Otherwise oahost is set to the standard name of the host and a connection is established to
a server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK STREAM is returned to the caller, and given to the
remote command as stdin and stdout. If flt2p is non-zero, then an auxiliary channel to a con­
trol process will be set uP. and a descriptor for it will be placed in o/d2p. The control process
will return diagnostic output from the command (unit 2) on this channel. and will also accept
bytes on this channel as being UNIX signal numbers, to be forwarded to the process group of
the command. If /d2p is 0, then the stderr (unit 2 of the remote command) will be made the
same as the stdout and no provision is made for sending arbitrary signals to the remote process.
although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This sock­
et is suitable for use by rcmd and sevral other routines. Privileged addresses consist of a port in
the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a socket.

Ruserok takes a remote host's name, as returned by a gethostent(3N) routine. two user names
and a flag indicating if the local user's name is the super-user. It then checks the files
letclhosts.equivand, possibly, .rhosts in the current working directory (normally the local user's
home directory) to see if the request for service is allowed. A 1 is returned if the machine
name is listed in the "hosts.equiv" file, or the host and remote user name are found in the
".rhosts" file; otherwise ruserok returns O. If the superuser flag is 1. the checking of the
"host.equiv" file is bypassed.

SEE ALSO
rlogin(lC). rsh(lC), rexec(3X), rexecd(8C). rlogind(8C), rshd(8C)

BUGS
There is no way to specify options to the socket call which rcmd makes.

4th Berkeley Distribution 17 March 1982

I

I

REXEC(3X) UNIX Programmer's Manual REXEC(3X)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem'" rexedahost, inport, user, passwd, cmd, fd2p);
char ... host;
u_short lnport;
char -user, opassw!!, *cmd;
Int .rd2p;

DESCRIPTION
Rexec looks up the host -ahost using gethostbyname(3N), returning -1 if the host does not ex­
ist. Otherwise -ahost is set to the standard name of the host. If a username and password are
both specified, then these are used to authenticate to the foreign host~ otherwise the environ­
ment and then the user's .netrc file in his home directory are searched for appropriate informa­
tion. If all this fails, the user is prompted for the information.

The port inporl specifies which well-known DARPA Internet port to use for the connection; it
will normally be the value returned from the call "getservbyname("exec', "tcp')" (see
getservent(3N». The protocol for connection is described in detail in rexecd(8C).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdln and stdon!. If jd2p is non-zero, then a auxiliary channel to a control
process will be setup, and a descriptor for it will be pJaced in .jd2p. The control process will re­
turn diagnostic output from the command (unit 2) on this channel, and will also accept bytes
on this channel as being UNIX signal numbers, to be forwarded to the process group of the
command. If jd2p is 0, then the stderr (unit 2 of the remote command) will be made the same
as the stdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-or-band data.

SEE ALSO
rcmd(3X), rexecd(8C)

BUGS
There is no way to specify options to the socket cal! which rexec makes.

3rd Berkeley Distribution 17 March 1982

TERMCAP (3X) UNIX Programmer's Manual TERMCAP (3X)

lIetent, lIetnum, lIeillllg, Igetstr, lIoto, tputs - terminal independent operation routines

SYNOPSIS
marPCj
mill' eBC;
mar -UP;
ahort OIpeed;

t&etent(bp, Dllme)
dlar ob" "name;
tletnum (Id)
diu old;

tletflqijd)
char -id;

dlar·
¢letstr (lII, uell)
diu old, O$uea;

ehu-
qoto(tm, desteol. clestllne)
mU_i
tpntll(Cp, dent, ootd
nlIister chill' "qI;
tint dent;
mt (.ollte) 0;

DESCRIPTION
These functions extract and use capabilities from the terminal capability data bale lermcap(5).
These are low level routines; see curses(3X) for a higher level package.

Tgele,,! extracts the entry for terminal name into the buffer at bp. Bp should be a character
buffer of size 1024 and must be retained through all subsequent calis to tgetnum, !geifiag, and
!getstr. Tgetent returns -1 if it cannot open the termcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well. It will look in the environment for Ii TERMCAP vari­
able. If found, and the value does not begin with Ii slash, and the terminal type name is the
same as the environment string TERM, the TERMCAP string is nsed instead of reading the
termcap file. If it does begin with Ii slash, the string is used as a path name rather than
letcitermcap. This can speed up enlry into programs that cal! tgetent, as well as to help debug
new terminal descriptions or to make one for your terminal if you can't write the file
letcitermcap.

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the terminal.
1'geifiag returns 1 if the specified capability is present in the terminal's entry, 0 if it is not.
Tgetstr gets the string value of capability id. placing it in the buffer at area, advancing the area
pointer. It decodes the abbreviations for this field described in termcap(5), except for cursor
IIddressing and padding information.

TgOlo returns II cursor addressing string decoded from em to go to column destcol in line destline.
It uses the external variables UP (from the liP capability) and BC (if be is given father than bs)
if necessary to avoid placing \n, "D or ". in the returned string. (Programs which call tgoto
should be sure to tum off the XTABS bit(s), since !golo may now output 1\ tab. Note that pro­
grams \!Sing termcap should in general turn off XTABS anyway since some terminals use con­
trol I for other functions, such as nondestructive space.) If a % sequence is given which is not
understood, then Igoto returns "OOPS".

4th Berkeley Di§tribution 9 Febmary 1983

I

I

TERMCAP(3X) UNIX Programmer's Manual TERMCAP OX)

FILES

Tputs decodes the leading padding information of the string cp; qfJi:nt gives the number of lines
affected by the operation, or I if this is not applicable, outc is a routine which is called with
each character in tum. The external variable ospeed should contain the output speed of the ter­
minal as encoded by stty(3). The external variable PC should contain a pad character to be
used (from the pc capability) if a null re) is inappropriate.

lusr/lib/libtermcap.a -Itermcap library
letc/termcap data base

SEE ALSO
ex(I), curses(3X), termcap(5)

AUTHOR
William Joy

4th Berkeley Distribution 9 February 1983 2

INTRO(3C) UNIX Programmer's Manual INTRO(3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion of libc. They are automatically
loaded as needed by the C compiler cC(O. The link editor searches this library under the
"-Ie" option. Use of these routines should, for the most part, be avoided. Manual entries for
the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Name

alarm
ftime
getpw
gtty
nice
pause
rand
signal
srand
stty
time
times
utime
vlimit
vtimes

Appears on Page Description

alarm.3c schedule signal after specified time
time.3c get date and time
getpw.3c get name from uid
stty.3c set and get terminal state (defunct)
nice.3c set program priority
pause.3c stop until signal
rand.3c random number generator
signa1.3c simplified software signal facilities
rand.3c random number generator
stty.3c set and get terminal state (defunct)
time.3c get date and time
times.3c get process times
utime.3c set file times
vlimit.3c control maximum system resource consumption
vtimes.3c get information about resource utilization

4th Berkeley Distribution 18 July 1983

I

I

ALARM (3C) UNIX Programmer's Manual ALARM (3C)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm (seconds)
unsllned seconds;

DESCRIPTION
This Interface Is obsoleted by setltlmer(2).

A.larm causes signal SIGALRM, see signal(3C), to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is canceled. Because of scheduling delays, resumption of execution of when the
signal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3C), sleep(3)

7th Edition 18 July 1983

GETPW(3C)

NAME
getpw - get name from uid

SYNOPSIS
letpw(uld, buO
char -bur;

DESCRIPTION

UNIX Programmer's Manual

Getpw is obsoleted by ICtpwuld(3).

GETPW(3C)

Getpw searches the password file for the (numerical) uid, and fills in /nifwith the corresponding
line; it returns non-zero if uid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
getpwent (3), passwd (5)

DIAGNOSTICS
Non-zero return on error.

7th Edition 19 January 1983

I

I

NICE(3C) UNIX Programmer's Manual NICE (3C)

NAME
nice - set program priority

SYNOPSIS
nice (lDer)

DESCRIPTION
This Interface is obsoleted by setpriority (2).

The scheduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range - 20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by!ork(2). For· a privileged process to
return to normal priority from an unknown state, nice should be called sucCessively with argu­
ments -40 (goes to priority -20 because of truncation), 20 (to get to 0), then 0 (to maintain
compatibility with previous versions of this calI).

SEE ALSO
nice(1), setpriority(2), fork(2), renice(8)

4th Berkeley Distribution 1 April 1983

PAUSE(3C)

NAME
pause - stop until signal

SYNOPSIS
PlluseO

DESCRIPTION

UNIX Programmer's Manual PAUSE(3C)

Pause never returns normally. It is used to give up control while waiting for a signal from
kill(2) or an interval timer, see setitimer(2). Upon termination of a signal handler started dur­
ing a pause, the pause call will return.

RETURN VALUE
Always returns -1.

ERRORS
Pause always returns:

[EINTR] The call was interrupted.

SEE ALSO
kill(2), select(2), sigpause(2)

4th Berkeley Distribution 18 July 1983

I

I

RAND (3C) UNIX Programmer's Manual

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
lnt seed;

rand 0
DESCIUl>TION

RAND (3C)

The newer random(3) should be used in new applications; rand remains for compatlbllty.

Rand uses a multiplicative congruential random number ~enerator with period 232 to return suc­
cessive pseudo-random numbers in the range from 0 to 2 1_1.

The generator is reinitialized by calling srand with 1 as argument. I\ can be set to a random
starting point by calling sTand with whatever you like as argument.

SEE ALSO
random (3)

7th Edition 19 January 1983

SIONAL(lC) UNIX Proarammer's Manual SIONALOC)

NAME
IlanaI - limplifled software liana! facilities

SYNOPSIS
.... eha4Ie <.lpal.h>
(•• lpalula, fuc))O
yoN (-tuc)O;

DESCUmON
S/gMI is IlimpHfted interface to the more leneral s/gIoec(2) faci1ity.

A liana! is lenerated by some IbnOrmal event, lnitilted by I uaer It I tenninll (quit, interrupt,
stop), by I proaram error (bus error, etc.), by request of another proaram (kiD), or when I pro­
cess is stopped bec:auae it wishes to access its control tenninll wbiJe in the bacqround (see
tty(4». Sianais are optionally lenerated wben I process resumes after belna stopped, wben the
status or cbild processes cbanges, or wben input is ready It the control tenninll. Most IianaIs
cauae termination of the receivina process if no action is taken; some lianaJs Instead cauae the
process receivina them to be stopped, or are limply discarded if the process bas not requested
otherwise. Except ror tbe SIGKILL and SIGSTOP sianaJs, the !/gM1 call allows IianaJs either to
be ipored or to cauae an interrupt to I specified location. The followina is I list or all IianaIs
with names IS in the include file <!lgnaLh>:

SIGHUP 1 banaup
SIOINT 2 interrupt
SIOQUIT 3- quit
SIOILL 4. Ulep1lnstruction
SIOTRAP S. trace trap
SIOIOT 6. lOT instruction
SIOEMT 7. EMT Instruction
SIOFPE 8. flOltlna point exception
SIOKILL 9 kID (cannot be caught or ipored)
SIOBUS 10. bus error
SIOSEOV n. seamentation violation
SIOSYS 12. bad III'JUment to system call
SIOPlPE 13 write on I pipe with no one to read it
SIOALRM 14 alarm clock
SIOTERM IS software terrnlnstlon sipal
SIOURO 16- uraent condition present on socket
SIOSTOP 17t stop (cannot be caught or ipored)
SIOTSTP 18t stop lipalsenerated from keyboard
SIGCONT 19- continue after stop
SIGCHLD 20- cbild status bas chansed
SIOTTIN 21 t bacqround read attempted from control tenninI1
SIOTTOU 22t bacqround write Ittempted to control tenninll
SIOIO 23- i/o is possible on a descriptor (see jCntl(2»
SIOXCPU 24 cpu time limit exceeded (see setTllmlt(2»
SIOXFSZ 2S file size Hmit exceeded (see setTllmlt(2»
SIOVTALRM 26 virtual time alarm (see setltlme,(2»
SIOPROF 27 proftHns timer alarm (see setltlme,(2»

The starred lianaJs in the list above cause a core Imqe if not caught or !pored.

Ir jUne is SIO _DFL, the default action ror sianal IIg is reinstated; tbis default is termination
(with I core imaae ror starred lianaJs) except for lianaJs marked with - or t. Sianais marked
with - are discarded if the action is SIO_DFL; lianaJs marked with t cause the process to stop.
Ir fune is SIG_ION the sipal is subsequently ipored and pendins Instances of the IianaI are

4th Berkeley Distribution IS June 1983

SIGNAL(3C) UNIX Programmer'! Manual SIGNAL (3C)

discarded. Otherwise, when the signal occurs further occurences of the signal are automatically
blocked and fune is called.

A return from the function unblocks the handled signal and continues the process at the point
it was interrupted. Unlike prevlolls signal facilities, tbe bmdler fune remains installed after
• Dlanal bas been delivered.

If a caught signal occurs during certain system calls, causing the call to terminllte prematurely,
the call is automlltically restarted. In particular this can occur during 8 read or write(2) on a
slow device (such as a terminal; but not 8 file) and during 1\ lMit(2).

The value of signal is the previous (or initial) value of fune for the particular signal.

After 8 !ork(2) or v!ork(2) the child inherits all signals. Execve(2) resets all caught signals to
the default action; ignored signals remain ignored.

HTURN VALUE
The previous action is returned on II successful call. Otherwise, -1 is returned and erma is set
to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

[EINV ALI Sig is not a valid signal number.

[EINV ALJ An attempt is made to ignore or supply II handler for SIGKlLL or SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill (1) , ptrace(2), kill(2), sillvec(2), sigblock(2}, sigsetmask(2), sigpause(2) , sigstack(2) ,
setjmp(3), tty(4)

NOTES (VAX-llJ
The handler routine can be declared:

handler(sig. code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either II constsnt as given below or, for compatibility
mode faults, the code provided by the hardware. Scp is a pointer to the struct sigcontext used by
the system to restore the process context from before the signal. Compatibility mode faults are
distinguished from the other SIGlLL traps by having PSL_CM set in the psI.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS

15 June 1983

Code

FPE INTOVF TRAP
FPE-INTDIV -TRAP
FPE - FL TOW TRAP
FPE=FLTDIV'=-TRAP
FPE FL TUND TRAP
FPE - DECOVF -TRAP
FPE -SUBRNG -TRAP
FPE=FLTOVF j'AULT
FPE FLTDIV FAULT
FPE=FLTUNDjAULT

2

SIGNAL(3C)

Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

4th Berkeley Distribution

UNIX Programmer's Manual

SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

15 June 1983

ILL_RESAD1AULT

ILL PRIVIN FAULT
ILL:RESOP j •. AUL T

hardware supplied code

SIGNAL(3C)

3

STIY (3C) UNIX Programmer's Manual

NAME
stty, gtty - set and get terminal state (defunct)

SYNOPSIS
#lnclude <sgtty.h>

stty (fd, bur)
Int fd;
struct sgttyb .buf;

gtty (fd, bur)
lot fd;
struct sgttyb obuf;

DESCRIPTION
This loterface is obsoleted by ioctJ(2)'

STIY(3C)

Stty sets the state of the terminal associated with fd. Gtty retrieves the state of the terminal
associated with fd. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)", while the gtty call is "ioctI(fd,
TIOCGETP, buf)". See ioctl(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -I is returned and the global variable errno
contains the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

4th Berkeley Distribution 1 April 1983

TIME(3C) UNIX Programmer's Manual TIME(3C)

NAME
time, ftime - get date and time

SYNOPSIS
loog time (0)

loog time (tIDe)
loog otloc;

#ioclude <sys/types.h>
#ioclude <sys/timeb.h>
ftlme(tp)
struct tlmeb Olp;

DESCRIPTION
These ioterfaces are obsoleted by gettlmeofday (2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

The flime entry fills in a structure pointed to by its argument, as defined by < sysitimeb. h > :
I. timeb.h 6.183/07129.1

/ .
• Structure returned by ftime system call
./

struct timeb
{

};

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more­
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date(l), gettimeofday(2), settimeofday(2), ctime(3)

4th Berkeley Distribution 1 April 1983

TIMES (3C)

NAME
times - get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

times (buffer)
struet tms .buffer;

DESCRIPTION

UNIX Programmer's Manual

This interflce is obsoleted by getruslge (2).

TIMES (3C)

Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 11HZ seconds, where HZ is 60.

This is the structure returned by times:

/. times.h 6.1 83/07/29

/ .
• Structure returned by times 0
./

struct tms (

);

time_t tms_utime;
time_t tms_stime;
tirne_t tms_cutime;
time_t tms_cstime;

./

/. user time ./
/. system time ./
/. user time, children ./
/. system time, children ./

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(I), getrusage(2), wait3(2), tirne(3)

4th Berkeley Distribution 1 April 1983

UTIME(3C) UNIX Programmer's Manual UTIME(3C)

NAME
utime - set file times

SYNOPSIS
#include <sys/types.h>

utime(ftle, timep)
char -lile;
time_t timep[2J;

DESCRIPTION
This Interface Is obsoleted by utlmes (2).

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set
the corresponding recorded times for ./ile.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file
is set to the current time.

SEE ALSO
utimes(2), stat(2)

4th Berkeley Distribution 1 April 1983

VLIMIT(3C) UNIX Programmer's Manual VUMlT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#inclilde <sysIvUmlt.h>

vllmit(resollft'e, vallie)

DESCRIPTION
This fllcillty is superseded by getrlimlt(Z).

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. If value is specified !IS -1, then the current limit is
returned and the limit is unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may no! be raised. Only the
super-user may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process

LIM]SIZE the largest single file which can be created

LIM_DATA the maximum growth of the data + stack region via sbrk(2) beyond the end of
the program text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the !l.ffiount of physical memory (ill bytes) to be given to the
program. If memory is tight, the system will prefer to take mem.ory from
processes which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh(D.

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the slack cannot be extended, there is no way to send II signa!!).

A file i/o operation which would create a file which is too large will cause !l signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process
the signal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS
If LIM_NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in sh(l) !IS well as in csh.

This ca!l is peculiar to this version of UNIX. The options and specifications of this system call
and even the call itself are subject to change. It may be extended or replaced by other facilities
in future versions of the system.

4th Berkeley Distribution III July 1983

vrIMES(3C) UNIX Programmer's Manual vrIMES(3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
vtbues(par_vm, db_TID)
lItnIet Ttbnes .par_TlD, ~_TlD;

DESCRIPTION
ThIs facllity Is superseded by letJusqe(2).

Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either JIOr_vm or ch_vm or both may be 0, in which case only
the information for the pointers which are non-zero is returned. I
After the call, each buffer contains information as defined by the contents of the include file
/usrlincludelsys/vtimes. h:

struet vtimes (
int vm_utime; /. user time (.HZ) ./
int vm stime; /. system time (·HZ) ./
/. divide next two by utime+stime to get averages ./
unsigned vmjdsrss; /. integral of d+s rss ./
unsigned vmjxrss; /. integral of text rss ./
int vm_maxrss; /. maximum rss ./
int vm 1lIl\iflt; /. major page faults ./
int vm=minflt; /. minor page faults ./
int vm nswap; /. number of swaps ./
int vm=inblk; /. block reads ./
int vm_oublk; /. block writes ./

);

The vm utime and vm slime fields give the user and system time respectively in 60ths of a
second (or 50tbs if t1i8.t is the frequency of wall current in your locality,) The vm_idrss and
vm_ixrss measure memory usage. They are computed by integrating the number of memory
pages in use each over cpu time. They are reported as though computed discretely, adding the
current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5 core
pages over 1 cpu-second for its data and stack, then vm_idsrsswould have the value 5.60, where
vm_utime+vm_slime would be the 60. Vm_idsrss integrates data and stack segment usage, while
vm_ixrss integrates text segment usage. Vm_maxrss reports the maximum instantaneous sum of
the text+data+stack core-resident page count.

The vm mqjfIl field gives the number of page faults which resulted in disk activity; the
vm_mi,Jit field gives the number of page faults incurred in simulation of reference bits;
vm_nswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm inblk and vm oublk These numbers account only for real i/o; data
supplied by the caching mechanism is cIWged only to the first process to read or write the data.

SEE ALSO

BUGS
time(2), wait3(2)

This call is peculiar to this version of UNIX. The options and specifications of this system call
are subject to change. It may be extended to include additional information in future versions
of the system.

4th Berkeley Distribution 13 June 1983

INTRO (4) UNIX Programmer's Manual INTRO(4)

NAME
intro - introduction to special files and hlll'dwlIl'e support

DESCRIPTION
This section describes the special files, related driver functions, and networlci1ll! support IIvllil­
able in the system. In this part of the manual, tbe SYNOPSIS section of each configurable dev­
ice gives II sample specification for use in constructing II system description for the cof!fig(S)
progrlll'!!. The DIAGNOS'TICS section lists messages which may appear on the console and in
the system error log iusrladmJmessag/!s due to errors in device operation.

This section contains both devices which may be configured into the system, "4" entries, and
network related information, "4N". "41''', and "4F" entries; The networki1ll! support is intro­
duced in intro(4N).

VAX DEVICE SUPPORT
This section describes the hlll'dwlIl'tl supported on the DEC VAX-H. SoftwlIl'e support for
these devices comes in two forms. A hIIl'dwlIl'e device may be supported with a chlll'acter or
block device driver, or it may be used within the networki1ll! subsystem and have a network inter­
face driver. Block and chlll'acter devices IIl'C accessed through files in the file system of Il specilll
type; c.r. mknod(S). Network interfaces are indirectly accessed· through the interprocess com·
munication facilities provided by the system; see sockel(2).

A hardware device is identified to the system a! configuration time and the appropriate device
or network interface driver is then compiled into tbe syste,m. When the resultant system ill
booted, the autoconfiguration facililies in the system probe for the device on either the
UNIBUS or MASSBUS and, if found, enabie the softwlIl'e support for it. If II UNIBUS device
does not respond at auroconftguflltion time it is not accessible lit any time afterwlll'ds. To
enable II UNIBUS device which did not autoconfigure, the system will have to be rebooted. If a
MASSBUS device comes "on-line" after the autoconfiguration sequence it will be dynrunically
autoconfigured into the running system.

The autoconfiguration system is described in autocollj(4). V AX specific device support is
described in "4V" entries. A list of the supported devices is given below.

SEE ALSO
intro(4), intro(4N}, au!oconf(4), config(S)

LIST OF DEVICES
The devices listed below are supported in thi~ inClll'nation of the system. Devices are indiceted
by their functional interface. If second vendor products provide functionally identical interfaces
they should be USIlble with lhe supplied softw!l.l'I'J. (BeWIml! hOWI!V€!f that Will promil!e the
softwue works ONLY with the bllriware hllUcillttad 011 tlie llppmprillte manlilli Jlqe.)

ace
ad
Cl!S

ct
db
elmc
dmf
dn
dz
ec
en
kg
n
hi!:

ACC LH/DH IMP communications interface
Data translation AID interface
DEC IMp·ItA communicetions interface
CI AlT phototypesetter
DH·ll emulators, terminal multiplexor
DEC DMC-Il1DMR·l1 point·ta-point !:ommunications device
DEC DMF-32 terminal multiplexor
DEC DN· 11 autodialer interface
DZ-ll terminal multiplexor
3Com lOMb/s Ethernet controller
Xerox 3Mb/s Ethernet controller (obsolete)
KL·ll/DL·llW line clock
VAX· 111780 console floppy interface
RK6-11/RK06 and RK07 mavins head disk

4th Berkeley Distribution 27 July 1983

I

I

INTRO(4)

hp
ht
hy
ik
it
Ip
mt
pel
PI
rx
tm
ts
tu
uda
un
up
ut
uu
va
vp
vv

UNIX PrOgrammer's Manual

MASSBUS disk interface (with RP06, RM03, RMOS, etc.)
TM03 MASSBUS tape drive interface (with TE·16, TU·4S, TU·77)
DR·llB or 01·13 interface to an NSC Hyperchannel
Ikonas frame buffer &r8phics device interface
interlan lOMb/s Ethernet controller
LP·ll parallel line printer interface
TM78 MASSBUS tape drive interface
DEC PeL· 1 1 communications interface
Evans and Sutherland Picture System 2 graphics interface
DEC RX02 floppy interface
TM·lllTE·lO tape drive interface
TS·ll tape drive interface
VAX·1l1730 TUS8 console cassette interface
DEC UDA·SO disk controller
DR·llW interface to Ungermann·Bass
Emulex SC·2lV UNIBUS disk controller
UNIBUS TU·4S tape drive interface
TUS8 dual cassette drive interface (DLll)
Benson· Varian printer/plotter interface
Versatec printer/plotter interface
Protean proNET lOMb/. ring network interface

4th Berkeley Distribution 27 July 1983

INTRO(4)

2

INTRO(4N) UNIX Programmer's MlUlual INTRO(4N)

NAME
networltiIll - introduction to networki.rlg facilities

SYNOPSIS
#include <sys/!IGI:ket.h>
#include <net/route.h>
#include <net/H.i!>

DESClUPTION
This section briefly describes the networking facilities available in the system. Documentation
in this part of section .. is broken liP into three areas: protocol-families, protocols, IUld network
interfaces. Entries describing a protocol-family are marked "4F", while entries describing pro­
tocol use are marked "41'''. Hardware support for network interfaces are found amOIll the
standard "4" entries.

All network protocols are lWociated with Ii specific protocol-jaml!y. A protocol-family provides
basic services to the protocol implementation to allow it to function within II specific network
environment. These services may include packet fragmentation IUld reassembly, routing,
addressing, IUld basic tfil1lsport. A protocol-family may support multiple methods of addressiIll,
though the current protocol implementations do not. A protocol-family is normally comprised
of II number of protocols, one per socket(2) type. It is not required that a protocol-family sup- I
port all socket types. A protocol-family may contain multiple protocols supporting the same
socket abstraction.

A protocol supports one of the socket abstcllctioIlJl detailed in socket(2). A specilk protocol
may be accessed either by creating II socket of the appropriate type IUld protocol-family, or by
requestilli the protocol explicitly when creating a socket. Protocols normally accept only one
type of address format, usually determined by the addressing structure inherent in the desian of
the protocol-family/network architecture. Certain semlUltics of the basic socket abstractions are
protocol specific. All protocols Ire expected to support the basic model for their particular
socket type, but may, in addition, provide non-stlUldard facilities or extensions to a mechanism.
For eXIIIDpie, II protocol supporting the SOCK_STREAM abstraction may allow more thII1l one
byte of out-of-blUld data to be transmitted per out-of-bIUld messase.

A network interface ill similar to a device interface. Network interfaces comprise the lowest
layer of the networki.rlg subsystem, interacting with the actual transport hardware. An interface
may support one or more protocol families, IUld/or address formats. The SYNOPSIS section of
each network Interface entry gives a sample specification of the related drivers for use in pro­
vidiIll Ii system description to the coll!ig(lI) proar8ffi. The DIAGNOSTICS section lists mea­
S8Iell which may appear on the coIlJlole lUlU in the system error log fUM/adm/messages due to
errors in device operation.

PROTOCOLS
The system currently supports only the DARPA Internet protocols fully. Raw socket interfaces
are provided to IP protocol layer of the DARPA Internet, to the IMP link layer (1822), IUld to
Xerox pup.} layer operating on top of 3Mb/s Ethernet interfaces. Consult the appropriate
IDII1lual pages in this section for more information reaardinll the support for each protocol fam­
ily.

ADDRESSING
Associated with each protocol fllmily is an address format. The following address formats are
used by the system:

#deflne AF UNIX
#deflnc .~ -!NET
#deflne ,AF-IMPLINK.
#deflne AF =PUP

4th Berkeley Distribution

1
2
3
4

/. local to host (pipes, portals) ./
/. internetwork: UDP, TCP, etc .• /
/. arpIUlet imp addresses -/
/. pup protocols: e.ll. SSP ./

7 Iuly 1983

I

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

ROUTING
The network facilities provided limited packet routing. A simple set of data structures comprise
II "routing table" used in seiectins the appropriate network interface when transmitting packets.
This table contains 1\ single entry for each route to II specific network or host. A user process,
the routing daemon, maintains this data base with the aid of two socket specific ;octl(2) com­
mands, SIOCADDRT and SIOCDELRT. The commanda allow the addition and deletion of II
single routing table entry, respectively. Routing table manipulations may only be carried out by
super-user.

A routin&; table entry has the following form, as defined in <netlroute.h>;

strue! rtentry I
uJong
struct
struct
short
short
uJong
struc!

I;

rt_hash;
sockaddr rt_dst;
sockaddr rt.JIllteway;
rtJlap;
rt_refcnt;
rt use'
nnet .'rt np;

with rt..flags defined from,

#define RTF UP Oxl
#define RTF-OATEWAY Ox2
#define RTF=HOST Ox4

/. route usable .1
/. destinlltion is II gateway ./
/. host entry (net otherwise) ./

Routing table entries come in three flavors: for a specific host, for all hosts on II specific net­
work, for any destination not matched by entries of the flfS! two types (a wildcard route). When
the system is booted, each network interface auloconfigured installs II. routing table entry when
it wishes to have packets sent through it. Normally the interface specifies the route through it
is II. "direct" connection to the destination host or network. If the route is direct, the transport
layer of II protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, the interface may be requested to address the packet to an entity different
from the eventual recipient (i.e. the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use,
or interface fields; these are filled in by the routing routines. If a route is in use when it is
deleted (rt refi:nt is non-zero), the resources associated with it will not be reclaimed until
further references to it are released.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if
requested to delete a non-existant entry, or ENOBUFS if insufficient resources were available to
install a new route.

User processes read the routing tables through the ldevlkmem device.

The rt use field contains the number of packets sent along the route. This value is used to
select among multiple routes to the same destination. When multiple routes to the same desti­
nation exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are
used only when the system fails to find a route to the destination host and network. The com­
binlltion of wildcard routes and routing redirects can provide an economical mechanism for
routing traffic.

4th Berkeley Distribution 7 July 1983

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

INTERFACES
Each network interface in 8 system corresponds to II path through which messages may be sent
and received. A network interface usually has a hardware device associated with it, though cer­
tain interfaces such as the loopback interface, 10(4), do not.

At boot time each interface which has underlying hardware support makes itself known to the
system during the autoconfiguration process. Once the interface has acquired its address it is
expected to install a routing table entry so that messages may be routed through it. Most inter­
faces require some part of their address specified with an SIOCSIFADDR ioctl before they will
allow traffic to flow through them. On interfaces where the network-link layer address mapping
is static, onIy the network number is taken from the ioctl; the remalnder is found in a hardware
specific manner. On interfaces which provide dynamic network-link layer address mapping
facilities (e.g. 10Mb/s Ethernets), the entire address specified in the ioctl is used.

The following ioetl calls may be used to manIpulate network interfaces. Unless specified other­
wise, the request takes an ifrequesl structure as its parameter. This structure has the form

struct ifreq {
char ifr_name[l6]; /. name of interface (e.g. "ecO") ./
union I

struct
struct
short

sockaddr if ru _ addr;
sockaddr if ru dstaddr;
ifru_flags; -

I iff ifru;
#defineifr addrifr ifru.ifru addr /. address ./
#defineifr=dstaddr- ifrj'fru.ifru_dstaddr /. other end of p-to-p link ./
#defineifr_flagsifr_ifru.ifru_flags /. flags ./
};

SIOCSIFADDR
Set interface address. Following the address assignment, the "initialization" routine
for the interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDST ADDR
Set point to point address for interface.

S[OCGIFDSTADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently rout­
ing packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an /fco/lf structure (see below) as a
value-result parameter. The /fe_len field should be inItially set to the size of the buffer
pointed to by ifc_lnif. On return it will contain the length, in bytes, of the configuration
list.

/.
• Strul.1ure used in SIOCGIFCONF request.
• Used to retrieve interface configuration
• for machine (useful for programs which

4th Berkeley Distribution 7 July 1983 3

I

I

INTRO(4N) UNIX Programmer's Manual

• must know all networks accessible),
.f

strue! ifconf {
int ife len; /. size of associated buffer ./
union { -

caddr_t ifeu_buf;
struet ifreq .ifcu req;

} irc_ifeu; -
#defineifc buf ife ifeu.ifcu buf t. buffer address -/
#defineife=req ifc)feu,ifcu=req/. array of structures returned ./
};

SEE ALSO
socket(2), ioctl(2), intro(4), conflg(8), routed(8C)

4th Berkeley Distribution 1 July 1983

INTRO(4N}

4

ACC(4) UNIX Programmer's Manual ACC (4)

NAME
acc - ACC LH/DH IMP interface

SYNOPSIS
pseudo-device Imp
device actO at ubaO csr 167600 vector aeerint aecxlnt

DESCRIPTION
The ace device provides a Local Host/Distant Host interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device must also be included.

DIAGNOSTICS
acc%d: not alive. The initialization routine was entered even though the device did not
autoconfigure. This indicates a system problem.

Ilcco/.d: can't Initialize. Insufficient UNIBUS resources existed to initialize the device. This is
likely to occur when the device is run on a buffered data path on an 111750 and other network
interfaces are also configured to use buffered data paths, or when it is configured to use
buffered data paths on an 111730 (which has none).

acc'lod: imp doesn't respond, lcsr=%b. The driver attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling.

Rcc%d: stray xmlt Interrupt, csr==%b. An interrupt occurred when no output had previously
been started.

ace%d: output error, ocsr=%b, icsr=%b. The device indicated a problem sending data on out­
put.

acc%d: input error, esr-%b. The device indicated a problem receiving data on input.

aec'/ed: bad lengtb==o/ed. An input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). Tbis should never
happen as the maximum size of a host-IMP message is 1008 bytes.

4th Berkeley Distribution 27 July 1983

I

I

AD(4) UNIX Programmer's Manual AD(4)

NAME
ad - Data Translation AID converter

SYNOPSIS
device adO at ubaO csr 0170400 vector adintr

DESCRIPTION

FILES

Ad provides the interface to the Data Translation AID converter. This is not a real-time driver,
but merely allows the user process to sample the board's channels one at a time. Each minor
device selects a different AID board.

The driver communicates to a user process by means of ioctis. The AD_CHAN ioctl selects
which channel of the board to read. For example,

chan - 5; ioctI(fd, AD_CHAN, &chall);
selects channel 5. The AD_READ ioctl actually reads the data and returns it to the user pro­
cess. An example is

iocti(fd, AD_READ, &data);

Idevlad

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983

ARP(4P) UNIX Programmer's Manual ARP(4P)

NAME
arp - Address Resolution Protocol

SYNOPSIS
pseudo-device ether

DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and 10Mb/s Ethernet
addresses on a local area network. It is used by all the lOMb/s Ethernet interface drivers and is
not directly accessible to users.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an
address not in the cache, ARP queues the message which requires the mapping and broadcasts
a message on the associated network requesting the address mapping. If a response is provided,
the new mapping is cached and any pending messages are transmitted. ARP itself is not Inter­
net or Ethernet specific; this implementation, however, is. ARP will queue at most one packet
while waiting for a mapping request to be responded to; only the most recently "transmitted"
packet is kept.

ARP watches passively for hosts impersonating the local host (i.e. a host which responds to an
ARP mapping request for the local host's address) and will, optionally, periodically probe a net­
work looking for impostors.

DIAGNOSTICS
duplicate IP address!! sent from ethernet address: "lox "lox %x 'lox 'lox 'lox . ARP has
discovered another host on the local network which responds to mapping requests for its own
Internet address.

SEE ALSO
ec(4), iI(4)

4th Berkeley Distribution 18 July 1983

I

I

AUTOCONF (4) UNIX Programmer's Manual AUTOCONF (4)

NAME
autoconf - diagnostics from the autoconfiguration code

DESCRIPTION
When UNIX bootstraps it probes the innards of the machine it is running on and locates con­
trollers, drives, and other devices, printing out what it finds on the console. This procedure is
driven by a system configuration table which is processed by col!fig(8) and compiled into each
kernel.

Devices in NEXUS slots are normally noted, thus memory controllers, UNIBUS and MASSBUS
adaptors. Devices which are not supported which are found in NEXUS slots are noted also.

MASSBUS devices are located by a very deterministic procedure since MASSBUS space is com­
pletely probe-able. If devices exist which are not configured they will be silently ignored; if
devices exist of unsupported type they will be noted.

UNIBUS devices are located by probing to see if their control-status registers respond. If not,
they are silently ignored. If the control status register responds but the device cannot be made
to interrupt, a diagnostic warning will be printed on the console and the device will not be
available to the system.

A generic system may be built which picks its root device at boot time as the "best" available
device (MASSBUS disks are better than SMD UNIBUS disks are better than RK07's; the dev­
ice must be drive 0 to be considered.) If such a system is booted with the RB_ASKNAME
option of (see reboot(2», then the name of the root device is read from the console terminal at
boot time, and any available device may be used.

SEE ALSO
intro(4), config(8)

DIAGNOSTICS
epu type 'led not configured. You tried to boot UNIX on a cpu type which it doesn't (or at least
this compiled version of UNIX doesn't) understand.

mba%d at tr'lod. A MASSBUS adapter was found in tr%d (the NEXUS slot number). UNIX
will call it mba%<!.

%d mba's not configured. More MASSBUS adapters were found on the machine than were
declared in the machine configuration; the excess MASSBUS adapters will not be accessible.

uba'led at tr%d. A UNIBUS adapter was found in tr%d (the NEXUS slot number). UNIX will
call it uba%d.

dr32 unsupported (at tr %d). A DR32 interface was found in a NEXUS, for which UNIX does
not have a driver.

mer%d at tr%d. A memory controller was found in tr%d (the NEXUS slot number). UNIX
will call it mcr%d.

5 mer's unsupported. UNIX supports only 4 memory controllers per cpu.

mpm unsupported (at tr%d). Multi-port memory is unsupported in the sense that UNIX does
not know how to poll it for ECC errors.

'Ios'led at mba%d drive %d. A tape formatter or a disk was found on the MASSBUS; for disks
%s%d will look like "hpO", for tape formatters like "htl". The drive number comes from the
unit plug on the drive or in the TM formatter (not on the tape drive; see below).

'Ios%d at "Ios"lod slave "Iod. (For MASSBUS devices). Which would look like "tuO at htO slav!'
0", where tuO is the name for the tape device and btO is the name for the formatter. A tape
slave was found on the tape formatter at the indicated drive number (on the front of the tape
drive). UNIX will call the device, e.g., tuO.

4th Berkeley Distribution 27 July 1983

AUTOCONF(4) UNIX Programmer's Manual AUTOCONF (4)

%s%d at uba%d esr %0 vee %0 ipl %x. The device %s%d, e.g. dzO was found on uba%d at
control-status register address %0 and with device vector %0. The device interrupted at priority
level %x.

%s%d at uba%d esr %0 zero veetor. The device did not present a valid interrupt vector, rather
presented 0 (a passive release condition) to the adapter.

%s%d at uba%d esr %0 didn't Interrupt. The device did not interrupt, likely because it is bro­
ken, hung, or not the kind of device it is advertised to be.

%s%d at %s%d slave %d. (For UNIBUS devices). Which would look like "upO at seO slave
0", where upO is the name of a disk drive and scO is the name of the controller. Analogous to
MASS BUS case.

4th Berkeley Distribution 27 July 1983 2

I

I

BK(4) UNIX Programmer's Manual BK (4)

NAME
bk - line discipline for machine-machine communication (obsolete)

SYNOPSIS
pseudo-dev!ce Ilk

DESCRIPTION
This line discipline provides II replacement for the old and new tty drivers described in tty(4)
when high speed output to and especially input from another machine is to be transmitted over
a asynchronous communications line. The discipline was designed for use by the Berkeley net­
work. It may be suitable for uploading of data fwm microprocessors into the system. If you
are going to send data over asynchronous communications lines at high speed into the system,
you must use this discipline, as the system otherwise may detect high input data rates on termi­
nal lines and disables the lines; in any case the processing of such data when normal terminal
mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#include <sgtty.h>
int Idise '"" NETLDISC,
lodHll1des, TIOCSETD,

A typical application program then reads a sequence of lines from the terminal port, checking
header and sequencing information on each line and acknowledging receipt of each line to the
sender, who then transmits another line of data. Typically several hundred bytes of data and a
smaller amount of control information will be received on each handshake.

The old standard teletype discipline can be restored by aoing:

Idlsc ,;" OTTYDISC;
ioct!(fiIdes, TIOCSETD, &Idisd;

While in networked mode, normal teletype output functions take place. Tnus, if an 8 bit out­
put data path is desired, it is necessary to prepare the output line by putting it into RAW mode
using ioctl(2). This must be done before changing the discipline with nOCSETD, as most
ioctl(2) calls are disabled while in network line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the
input path is only 7 bits wide, with newline the only recognized character, terminating an input
record. Each input record must be read and acknowledged before the next input is read as the
system refuses to accept any new data when there is a record in the buffer. The buffer is lim­
ited in length, but the system guarantees to always be wiliing to accept input resulting in 512
data characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee
accurate data transfer.

SEE ALSO
tty (4)

DIAGNOSTICS
None.

BUGS
The Purdue uploading line discipline, which provides 8 bits and uses timeout's to terminate
uploading should be incorporated into the standard system, as it is much more suitable for
microprocessor connections.

4th Berkeley Distribution I September 1981

CONS (4) UNIX Programmer's Manual CONS (4)

NAME
cons - V AX-11 console interface

DESCRIPTION

FILES

The console is available to the processor through the console registers. It acts like a normal
terminal, except that when the local functions are not disabled, control-P puts the console in
local console mode (where the prompt is "»>"). The operation of the console in this
mode varies slightly per-processor.

On an 11/780 you can return to the conversational mode using the command "set t p" (set ter­
minal program) if the processor is still running or "continue" if it is halted. The latter com­
mand may be abbreviated "c". If you hit the break key on the console, then the console will
go into ODT (console debugger mode). Hit a "P" (upper-case letter p) to get out of this
mode.

On an 111750 or an 111730 the processor is halted whenever the console is not in conversa­
tional mode, and typing "C" returns to conversational mode. When in console mode on an
111750 which has a remote diagnosis module, a AD will put you in remote diagnosis mode,
where the prompt will be "RDM>". The command "ret" will return from remote diagnosis
mode to local console mode.

With the above proviso's the console works like any other UNIX terminal.

/dev/console

SEE ALSO
tty(4), reboot(S)
V AX Hardware Handbook

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983

I

I

CSS(4) UNIX Programmer's Manual CSS (4)

NAME
CSS - DEC IMP-llA LH/DH IMP interface

SYNOPSIS
pseudo-device imp
device essO at ubaO CST Hi7600 fiags 10 vector cssrint cssxlnt

DESCRIPTION
The css device provides a Local Host/Distant Hos! interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device is also included.

DIAGNOSTICS
css%d: not alive. The initialization routine was entered even though the device did not
autoconfigure. This is indicates a system problem.

css%d: can't initialize. Insufficient UNIBUS resources existed to initialize the device. This is
likely to occur when the device is run on a buffered data path on an 11/750 and other network
interfaces are also configured to use buffered oat? paths, or when it is configured to use
buffered data paths on an 111730 (which has none).

css%d: Imp doesn't resp!lmi, icsr=%b. The driver attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling.

css%d: stray output interrupt csr = 'lob. An interrupt occurred when no output had previously
been started.

css%d: output error, ocsr=%b icsr=%b. The device indicated a problem sending data on out­
put.

css%d: reel' error, csr=%b. The device indicated a problem receiving data on input.

css%d: bad length =%d. Ail. input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). This should never
happen as the maximum size of a host-IMP message is 1008 bytes.

4th Berkeley Distribution 27 July 1983

CT(4) UNIX Programmer's Manual

NAME
ct - phototypesetter interface

SYNOPSIS
device ctO at ubaO csr 0167760 vector ctlntr

DESCRIPTION

CT(4)

This provides an interface to a Graphic Systems C/ AIT phototypesetter. Bytes written on the
file specify font, size, and other control information as well as the characters to be flashed. The
coding is not described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff(l)
Phototypesetter interface specification

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983

I

I

DH(4) UNIX Programmer's Manual DH(4)

NAME
dh - DH-ll/DM-ll communications multiplexer

SYNOPSIS
deylce dhO at ubaO csr 0160020 vector dhrlnt dhxlnt
deylce dmO at ubaO csr 0170500 vector dmlntr

DESCRIPTION

FILES

A dh-ll provides 16 communication lines; dm-ll's may be optionally paired with dh-ll's to
provide modem control for the lines.

Each line attached to the DH-11 communications multiplexer behaves as described in tty(4).
Input and output for each line may independently be set to run at any of 16 speeds; see tty(4)
for the encoding.

Bit i of flags may be specified for a dh to say that a line is not properly connected, and that the
line should be treated as hard-wired with carrier always present. Thus specifying "flags
Oxoo04" in the specification of dhO would cause line ttyh2 to be treated in this way.

The dh driver normally uses input silos and polls for input at each clock tick (10 milliseconds)
rather than taking an interrupt on each input character.

Idev/tty[hi] [O-9a-fl
Idev/ttyd[O-9a-fl

SEE ALSO
tty (4)

DIAGNOSTICS
db'led: NXM. No response from UNIBUS on a dma transfer within a timeout period. This is
often followed by a UNIBUS adapter error. This occurs most frequently when the UNIBUS is
heavily loaded and when devices which hog the bus (such as rk07's) are present. It is not seri­
ous.

db'led: silo oyerflow. The character input silo overflowed before it could be serviced. This can
happen if a hard error occurs when the CPU is running with elevated priority, as the system
will then print a message on the console with interrupts disabled. If the Berknet is running on
a dh line at high speed (e.g. 9600 baud), there is only 1/15th of a second of buffering capacity
in the silo, and overrun is possible. This may cause a few input characters to be lost to users
and a network packet is likely to be corrupted, but the network will recover. It is not serious.

4th Berkeley Distribution 27 July 1983

DMC (4) UNIX Programmer's Manual DMC(4)

NAME
dmc - DEC DMC-JlIDMR-ll point-lo-point communications device

SYNOPSIS
device dmcO at ubaO csr 167600 vector dmcrint dmcxlnt

DESCRIPTION
The dmc interface provides access to a point-to-point communications device which runs at
either 1 Mb/s Of 56 Kb/s. DMC-ll's communicate using the DEC DDCMP link layer proto­
col.

The dmc interface driver also supports a DEC DMR-ll providing point-to-point communication
running at data rates from 2.4 Kb/s to 1 Mb/s. DMR-ll's are a more recent design and thus
are preferred over DMC-ll '5.

The host's address must be specified with an SIOCSIFADDR ioctl before the interface will
transmit or recive any packets.

DIAGNOSTICS
dmc%d: bad control %0. A bad parameter was passed to the dmcload routine.

dmc%d: unknown address type %d. An input packet was received which contained a type of
address unknown to the driver.

DMC FATAL ERROR 0%0.

DMC SOFT ERROR 0%0.

dmc%d: af'Y.d not supported. The interface was handed a message which has addresses format­
ted in an unsuitable address family.

SEE ALSO

BUGS

intro(4N), inet(4F)

Should allow multiple outstanding DMA requests, but due to the design of the current
UNIBUS support routines this is very difficult.

4th Berkeley Distribution 27 July 1983

I

DMF(4) UNIX Programmer's Manual DMF(4)

NAME
dmf - DMF-32, terminal multiplexor

SYNOPSIS
device dmro at uba? csr 0170000

vector dmfsrlnt dmfsxlnt dmfdalnt dmfdbint dmfrlnt dmfxint dmfllnt

DESCRIPTION

FILES

The dm/ device provides 8 lines of asynchronous serial line support with full modem control
(the DMF-32 provides other services, but these are not supported by the driver).

Each line attached to a DMF-32 serial line port behaves as described in Ity(4). Input and out­
put for each line may independently be set to run at any of 16 speeds; see Ity(4) for the encod­
ing.

Bit i of flags may be specified for a drrifto to say that a line is not properly connected, and that
the line should be treated as hard-wired with carrier always present. Thus specifying "flags
Ox0004" in the specification of dmfO would cause line ttyh2 to be treated in this way.

The drrifdriver normally uses input silos and polls for input at each clock tick (10 milliseconds).

Idev/tty[hi] [O-9a-fl
I dev Ittyd [O-9a-fl

SEE ALSO
tty (4)

DIAGNOSTICS
dmf%d: NXM line %d. No response from UNIBUS on a dma transfer within a timeout period.
This is often followed by a UNIBUS adapter error. This occurs most frequently when the
UNIBUS is heavily loaded and when devices which hog the bus (such as rk07's) are present. It
is not serious.

dmf%d: silo overfto1l'. The character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the system
will then print a message on the console with interrupts disabled. If the Berknet is running on
a dh line at high speed (e.g. 9600 baud), there is only 1115th of a second of buffering capacity
in the silo, and overrun is possible. This may cause a few input characters to be lost to users
and a network packet is likely to be corrupted, but the network will recover. It is not serious.

dmfsrint.
dmfsxlnt.
dmfdaint.
dmfdbint.
dmftint.
One of the unsupported parts of the dmf interrupted; something is amiss, check your interrupt
vectors for a conflict with another device.

4th Berkeley Distribution 27 July 1983

DN(4) UNIX Programmer's Manual DN(4)

NAME
dn - DN-Il autocall unit interface

SYNOPSIS
device doO at uba? csr 0160020 vector dolntr

DESCRIPTION

FILES

The dn device provides an interface through a DEC DN-ll (or equivalent such as the Able
QuadracalO to an auto-call unit (ACU). To place an outgoing call one forks a sub-process
which opens the appropriate call unit file, /devlcua? and writes the phone number on it. The
parent process then opens the corresponding modem line /dev/cul? When the connection has
been established, the open on the modem line, /dev/cul? will return and the process will be con­
nected. A timer is normally used to timeout the opening of the modem line.

The codes for the phone numbers are:

0-9 dial 0-9
dial. (':' is a synonym)

dial # (';' is a synonym)
delay 20 milliseconds

< end-of-number ('e' is a synonym)
delay for a second dial tone ('w' is a synonym)

f force a hang up of any existing connection

The entire telephone number must be presented in a single write system call.

By convention, even numbered call units are for 300 baud modem lines, while odd numbered
units are for 1200 baud lines. For example, /devlcuaO is associated with a 300 baud modem
line, /devlcu/O, while /dev/cual is associated with a 1200 baud modem line, /devlcull. For dev­
ices such as the Quadracall which simulate multiple DN-ll units, the minor device indicates
which outgoing modem to use.

/dev/eua?
Idev/cul?

call units
associated modem lines

SEE ALSO
tip(IC)

DIAGNOSTICS
Two error numbers are of interest at open time.

[EBUSY] The dialer is in use.

[ENXIO] The device doesn't exist, or there's no power to it.

4th Berkeley Distribution 27 July 1983

I

I

DRUM (4) UNIX Programmer's Manual DRUM (4)

NAME
drum - paging device

DESCRIPTION

FiLES

BUGS

This file refers to the paging device in use by the system. This may actually be a sul· ievice of
one of the disk drivers, but in a system with paging interleaved across multiple disk drives it
provides an indirect driver for the multiple drives.

/dev/drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only
occur every .5Mbytes or so, and since the system never allocates blocks across the boundary,
this is usually not a problem.

4th Berkeley Distribution 10 May 1981

DZ(4) UNIX Programmer's Manual DZ(4)

NAME
dz - DZ·ll communications multiplexer

SYNOPSIS
device dzO at ubaO c:sr 0160100 vector dzrlnt dzdnl

DESCRIPTION

FILES

A dz·ll provides 8 communication lines with partial modem control, adequate for UNIX dialup
use. Each line attached to the DZ-l1 communications multiplexer behaves as described in
tty(4) and may be set to run at any of 16 speeds; see tty(4) for the encoding.

Bit i of flags may be specified for a dz to say that a line is not properly connected, and that the
line should be treated as hard·wired with carrier always present. Thus specifying "flags 0x04"
in the specification of dzO would cause line tty02 to be treated in this way.

The dz driver normally uses its input silos and polls for input at each clock tick (10 mil·
Iiseconds) rather than taking an interrupt on each input character.

Idev/tty[0-9) [0-9)
Idev/ttyd[0-9a·f] dialups

SEE ALSO
tty (4)

DIAGNOSTICS
d~: 8110 overfloW'. The 64 character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the system
will then print a message on the console with interrupts disabled. 1f the Bermet is running on
a dz line at high speed (e.g. 9600 baud), there is only 1/15th of a second of buffering capacity
in the silo, and overrun is possible. This may cause a few input characters to be lost to users
and a network packet is likely to be corrupted, but the network will recover. It is not serious.

4th Berkeley Distribution 27 July 1983

I

I

Ee (4) UNIX Programmer'§ Manual EC(4)

NAME
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS
d.evlce ec:O Ilt llbae car 161000 vector ecrint eccoHiil.e ecxint

DESCRIPTION
The ec interface provides access to II 10 Mb/s Ethernet network through a 3eorn controller.

The hardware has 32 kilobytes of dual-ported memory on the UNIBUS. This memory is used
for internal buffering by the board, and the interface code reads the buffer contents directly
through the UNIBUS.

The host's Internet address is specified lit boot time with an SIOCSIFADDR ioetl. The ec
interface employs the address resolution protocol described in arp(4P) to dynamically map
between Internet and Ethernet addresses on the local network.

The interface software implements an exponential hackoff algorithm when notified of a collision
on the cable. Tnis algorithm utilizes a 16-hit mask and the VA.X-ll's interval timer in calculat­
ing a series of random hackoff values. The IIlgorithm is as follows:

1. Initialize the mask to be aliI's.

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backolf by masldng the interval timer with the
mask (this is actually the two's compiement of the value).

4. Use the value Clliculated in step 3 to delay before retransmitting the packet. The delay is
done in a software busy loop.

The interface normally tries to use 1.1 "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on 1\ per-inte!face basis, by setting the IFF _NOTRAILERS
flag with an SIOCSIFFLAGS ioet!.

DIAGNOSTICS
ec%4: send. error. After 16 retransmissions using the exponential backoff algorithm described
above, the packet was dropped.

ec%4: Input error (otrset'"'%4). The hardWl!l'e indiCllted an error in reading II packet off the
cahle or an illegally sized packet. The buffer offset value is printed for debugging purposes.

ec%4: can't handle~. The interface Wlill handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F), arp(4P)

The PUP protocol family should be added.

The hardware is not capable of talking to itself. The ooftware implements local sending and
hroadcast hy sending such packets to the loop interface. This is II kludge.

Backoff delays are done in a software busy loop. This can degrade the system if the network
experiences frequent collisions.

4th Berkeley Distribution 27 July 1983

EN (4) UNIX Programmer's Mllllull1 EN(4)

en - Xerox 3 Mb/s Ethemet interface

SYNOPSIS
dnic:e en6 lit ull.O csr 161000 vector ellrlnt enldnt encollide

DESCRIPTION
The en interface provides access to a :3 Mb/~ Ethernet network. Due to limitations in the
hardware, DMA transfers to and from the network must take place in the lower 64K bytes of
the UNIBUS address space.

The network number is specified with 1\ SIOCSIFADDR ioetl; the host's address is discovered
by probing the on-board Ethernet address register. No packets will be sent or =pted until a
network number is supplied.

The interface software implements an cxponentiai baCKOtf Il1goriilim when notified of a collision
on the cable. Thillll1gorithm utilizes II 16-bit mllSk and the VAX-U's intervll1 timer in cslculat­
ing 1\ series of random backotf values. The aigorithm is lIS follows:

1. Initialize the ml!llk to be ail l's,

2. If the ml!llK is zero, 16 retries have been made and we give up,

3. Shift the mrulk left one bit and formulate a backotf by masking the interval timer with the
muk (this is actually the two's complement of the value).

4. Use the value calculated in step .3 to delay before retrllllllmitting the packet.

The interface handies ooth Internet and PUP protocol families, with the interface IIddre.'iS main­
tained in Internet format. PUP addresses Ill'C converted to Internet addresses by subsituting
PUP network and bost values for Internet network and local part values.

The interfl!Ce normally tries to use a "trailer" enCilpsullltion to minimize copying data 011 input
and output. This may be disabled, on a per-interface bll8is, by setting the IFF_NOTRAILERS
Ila& with !ill SIOCSIFFLAGS ioet!.

DIAGNOSTICS
en%d: output error. The hardware indiClited IUl error on the previous transmission.

eo%d: send error. After 16 retr!!.!1llmissioIDl usini the exponential backotf algorithm described
above, the packet W!l.~ dropped.

en%d: Inpat errol. The hardware indicated IIl1 error in reading !l packet off the cable.

en%d: can't !ludlc~. The interface '011118 hmded a message with addresses formatted in an
unsuitable address family; the packet wss dropped.

SEE ALSO

BUGS
intro(4N), inet(4F)

The device hl!ll insufficient buffering to handle back to back packets. This makes use in a pro­
duction environment painful.

The hardWIl1'e does word at II time DMA without byte swappini. To compensate, byte swappinl
of user data must either 00 done by the user or by the system. A kludge to byte swap only IP
packets is provided if the ENF JiW ABIPS Ilag is defined in the driver and set at boot time with
an SIOCSIFFLAGS ioctl.

4th Berkeley Distribution 27 July 1983

I

I

FL (4) UNIX Proarammer's Manual FL(4)

NAME
fl - console floppy interface

DESCRIPTION

FILES

This is a simple interface to the DEC RXOI floppy disk unit, which is part of the console LSI·
11 subsytem for V AX·111780's. Access is given to the entire floppy consisti11& of 77 tracks of
26 sectors of 128 bytes.

All i/o is raw; the seek addresses in raw transfers should be a multiple of 128 bytes and a mul·
tiple of 128 bytes should be transferred, as in other "raw" disk interfaces.

Idev/floppy

SEE ALSO
arfi'(8V)

DIAGNOSTICS
None.

BUGS
Multiple console floppies are not supported.

If a write is given with a count not II multiple of 128 bytes then the traili11& portion of the last
sector will be zeroed.

4th Berkeley Distribution 27 July 1983

HK(4) UNIX Proarammer's Manual HK(4)

NAME
hie - RK6·11/RK06 and RK07 movins head disk

SYNOPSIS
controller hkO at aba? ear 0177 Tector rklntr
dilk rltO at hkO drln 0

DESCRIPTION
Files with minor device numbers 0 throuah 7 refer to various portions of drive 0; minor dev·
ices 8 throuah 15 refer to drive I, etc. The standard device names begin with "hie" followed
by the drive number and then a letter a·h for partitions 0-7 respectively. The character ? stands
here for a drive number in the r8llle 0-7.

The block mes access the disk vii the system's normal bufferina mechanism and may be read
and written without regard to physical disk records. There is also I 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A sinale read
or write call results in exactly one 1/0 operation and therefore raw 110 is considerably more
efficient when many words are transmitted. The names of the raw mes conventionally begin
with an extra 'r.'

In raw 110 counts should be I multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISI: SUPPORT

fiLES

The origin and size (in sec:tors) of the pseudo-disks on each drive are IS follows:

RK07 partitions:
disk
hk?a
hIe?b
hIe?c
hie?

RK06 partitions
disk
hIe?a
hIe?b
hIe?c

start
o
15906
o
26004

start
o
15906
o

lenath
IS884
10032
53790
27786

lenath
15884
11154
27126

cyl
0-240
241·392
0-814
393·813

cyl
0-240
241·409
0-410

On a dual RK-07 system partition hIe?a is used for the root for one drive and partition hie? for
the lusr file system. If larae jobs are to be run usina hIe?b on both drives IS swap area provides
a IOMbyte pagina area. Otherwise partition hIe?c on the other drive is used IS a sinale larae me
system.

Idev/hle[O-7) [a·h)
Idev/rhle[O· 7J[a·h)

block fUes
raw mes

SEE ALSO
hp(4), uda(4), up(4)

DIAGNOSTICS
rk~: hanl error .D~ cl1-~b "-~b er-,",. An unrecoverable error occurred durina
transfer of the specified sector of the specified disk partition. The contents of the cs2, ds and
er resisters are printed in octal and symbolically with bits decoded. The error was either unre·
coverable, or a Iarae number of retry attempts (includina offset positionina and drive recalibra·
tion) could not recover the error.

4th Berkeley Distribution 27 July 1983

I

I

HK(4)

BUGS

UNIX Programmer's Manual HK(4)

rk%d: write locked. The write protect switch was set on the drive when a write was attempted.
The write operation is not recoverable.

rk%d: not relldy. The drive was spun down or off line when it was accessed. The ilo operation
is not recoverable.

rk%d: not relldy (came bllut). The drive was not ready, but after printing the message about
being not ready (which takes a fraction of a second) was ready. The operation is recovered if
no further errors occur.

rk'IW%c: soft ecc sn%d. A recoverable ECC error occurred on the specified sector in the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

hk%d: lost Interropt. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This indicates II hardware or software failure.
There is currently II hardware/software problem with spinning down drives while they are being
accessed which causes this error to occur. The error causes a UNIBUS reset, and retry of the
pending operations. If the controller continues to lose interrupts, this error will recur a few
seconds later.

In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete bloclc!i. Thus, in programs thllt are likely to access raw devices,
read, write and lseek(2) should always deal in S12-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read off of each pack, as they are never quite
what any single installation would prefer, and this would make paclc!i more portable.

4th Berkeley Distribution 27 July 1983 2

HP(4) UNIX Programmer's Manual HP(4)

NAME
!:Ill - MASSBUS disk interface

SYNOPSIS
iUsk hpl} It rub.1) drive I)

DESCIUPTION
Files with minor device numbers (I through 7 refer to various portions of drive 0; minor dev­
ices [j thrOIlJh is refer to drive 1, etc. The standard device names begin with "hI''' followed
by the drive number and then II letter a-h for partitions 0-7 respectively. The character? stands
here for Ii drive number in the range 0-7.

The block file's access the disk via the system's normal buffering mechanism and may be read
and written 1Irithout regard to physical disk records. There is also a 'raw' interface which pro­
vides for dirllCt transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one I/O operation and therefore raw 110 is considerably more
efficient when many words life transmitted. The names of the raw files conventionally begin
with an extra 'r.'

:In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPOJ.T I
This driver handles both stsndllfd DEC controllers and Emulex SC7S0 and SC780 controllers.
Standard DEC drive types life recognized according to the MASSBUS drive type register. For '
the Emule:!!: controller the drive type register should be configured to indicate the drive is an
RM02. When this is encountered, the driver checks the holding resister to find out the disk
geometry and, bruIed on thi~ information, decides what the drive type is. The following disks
!IfC supported: RM03, RM05, R.P06, RM80, RP05, RP07, MLllA, MLlIB, CDC 9775, CDC
9730, }\Ji.U'EX Capricorn (32 sectom/track), FUJITSU Eagie (48 sectors/track), and AMPEX
9300. The origin and size (in sectors) of the pseudo-disks on each drive IIl'C as follows:

RM03 PIIl'titions
disk stlll't length cyls
hp?1I 0 15884 0-99
hp?b 16000 33440 100-309
hp?c 0 lJ16/10 0-822
np?d 49600 15884 309-408
hp?e 65440 55936 409-758
hp?f 121440 100110 759·822
hp?a 49600 82080 309·822

RM05 partitions
disk stlll't length cyls
hp?a 0 15S84 0-26
hp?b 16416 33440 27-81
np?c 0 500384 0-822
lip?!! 341696 15884 562-588
hp?e 351m2 55936 589·680
np?f 4140411 116176 681-822
hp?g 341696 1585211 562-822
lip'll! 491156 291346 82-561

RP06 partitioWl
disli: stlll't length cyls
np?!! 0 15884 0-37
hp?b 15884 33440 38-117

4th Berkeley Distribution 27 July 19113

HP (4) UNIX Programmer's Manual HP(4)

hp?c 0 340670 0-814
hp?d 49324 15884 118-155
hp?e 65208 55936 156-289
hp?f 121220 219296 290-814
hp?1I 49324 291192 118·814

RM80 partitions
disk start length eyls
hp?a 0 15884 0-36
hp?b 16058 33440 37-114
hp?c 0 242606 0-558
hp?d 49910 15884 115-151
hp?e 68096 55936 152-280
hp?f 125888 120466 281·558
hp?g 49910 192510 115-558

RP05 partitions
disk start length cyls
hp?a 0 15884 0-37

I
hp?b 15884 33440 38-117
hp?c 0 171798 0-410
hp?d 2242 15884 118·155
hp?e 65208 55936 156·289
hp'!f 121220 50424 290·410
hp?g 2242 122320 us-·no

RP07 partitions
disk start length cyls
hp?a 0 15884 0-9
hp?b 16000 66880 10-51
hp?c 0 1008000 0-629
hp?d 376000 15884 235·244
hp?e 392000 307200 245-436
hp?f 699200 308600 437-629
hp?g 376000 631800 235-629
hp?h 83200 291346 52-234

CDC 9775 partitions
disk start length eyts
hp?a 0 15884 0-12
hp?b 16640 66880 13·65
hp?c 0 1079040 0-842
hp?d 376320 15884 294-306
hp?e 392960 307200 307-546
hp?f 700160 378720 547-842
hp?g 376320 702560 294-842
hp?h 84480 291346 66-293

CDC 9730 partitions
disk start length eyls
hp?a 0 15884 0-49
hp?b 16000 33440 50-154
hp?c 0 263360 0-822
hp?d 49600 15884 155-204
hp?e 65600 55936 205-379
hp?f 121600 141600 380-822

4th Berkeley Distribution 27 July 1983 2

HP(4)

FILES

UNIX Proarammer's Manual HP(4)

hp?a 49600 213600 155-822
AMPEX Capricorn partitiollS

disk start lenath cyls
hp?a 0 15884 0-31
hp?b 16384 33440 32-97
hp?c 0 524288 0-1023
hp?d 342016 15884 668-699
hp?e 358400 55936 700-809
hp?f 414720 109408 810-1023
hp?a 342016 182112 668-1023
hp?h 50176 291346 98-667

FUJITSU Eaa1e partitiollS
disk start lenath cyts
hp?a 0 15884 0-16
hp?b 16320 66880 17-86
hp?c 0 808320 0-841
hp?d 375360 15884 391-407
hp?e 391680 55936 408-727
hp?f 698880 109248 728-841
hp?a 375360 432768 391-841
hp?h 83520 291346 87-390

AMPEX 9300 partitiollS
disk start lenath cyl
hp?a 0 15884 0-26
hp?b 16416 33440 27-81
hp?c 0 495520 0-814
hp?d 341696 15884 562-588
hp?e 358112 55936 589-680
hp?f 414048 81312 681-814
hp?a 341696 153664 562-814
hp?h 49856 291346 82-561

It is unwise for all of these Illes to be present in one installation, since there is overlap in
addresses and protection becomes a sticky matter. The hp?a partition is normally used for the
root lIIe system, the hp?b partition as a paainl area, and the hp?c partition for pack-pack copy­
ina (it maps the entire disk). On disks laraer than about 20S Mepbytes, the hp?h partition is
inserted prior to the hp?d or hp?a partition; the hp?8 partition then maps the remainder of the
pack. All disk partition tables are calculated usina the dlskpart(8) proaram.

Idev/hp[0-7] [a-h]
Idev/rhp[0-7][a-h]

block files
raw files

SEE ALSO
hk(4), uda(4), up(4)

DIAGNOSTICS
h""~: bani error IID~ mbsr-%b erl-%b er2-%b. An unrecoverable error occurred dur­
ina tra1lSfer of the specified sector of the specified disk partition. The MASSBUS status reaister
is printed in hexadecimal and with the error bits decoded if any error bits other than MBEXC
and DT ABT are set. In any case the contents of the two error reaisters are also printed in octal
and symbolically with bits decoded. (Note that er2 is what old rp06 manuals would call er3; the
terrninololY is that of the rm disks). The error was either unrecoverable, or a larae number of
retry attempts (includina offset positionina and drive recalibration) could not recover the error.

4th Jnrkeley Distribution 27 July 1983 3

I

I

HP(4)

BUGS

UNIX Proamnmer's Manual HP(4)

h~: write leeklll. The write protect switch was set on the drive when a write was attempted.
The write operation is not recoverable.

h~: not ready. The drive was spun down or off line when it was accessed. The i/o opera­
tion is not recoverable.

hp~~: soft ICC In~. A recoverable ECC error oc:curred on the specit1ed sector of the
specit1ed disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurrina should be checked to see if certain
cylinders on the pack, spots on the carrille of the drive or hesds are indicated.

Durin. autoconfisuration one of the followiq me es may appear on the console indicatins
the appropriate drive type was recosnized. The last messqe indicates the drive is of a unk­
nown type.

h~: 9775 (direct).
h~: 9730 (direct).
hp~: 9300.
hp~: 9761.
h~: capricorn.
hp~: easle.
h~: ntrlekl~, nsectora~: unknown deTlc:..

In raw I/O read and wrlte(2) truncate me offsets to S12-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in prosrarns that are likely to access raw devices,
read, write and Iseek(2) should always deal in S 12-byte multiples.

DEC-standard error louins should be supported.

A prosram to analyze the loned error information (even in its present reduced form) is
needed.

The partition tables for the me systems should be resd off of each pack, as they are never quite
what any sinsle installation would prefer, and this would make packs more portable.

4th Berkeley Distribution 27 July 1983

HT(4) UNIX Programmer's Manual HT(4)

NAME
ht - TM-031TE-16,TU-45,TU-77 MASSBUS maatape interface

SYNOPSIS
muter htG It mba? drift ?
tlpe tuO It btl .llft 0

DESCllIPTION
The tm-03/tr1DSpOrt combination provides I standard tape drive interface IS delJcribed in
mtlo(4). All drives provide both 800 and 1600 bpi; the TE-16 runs It 45 Ips, the TU-45 It 75
ips, while the TU-77 runs at 125 Ips and autoloads tapes.

SEE ALSO
mt(l), w(1), tp(1), mtio(4), tm(4), ts(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

tu~: DO write rIDa. An attempt was made to write on the tape drive wben no write rina was
present; this messaae Is written on the terminal of the user who tried to acc:eaa the tape.

~: Dot oDUDe. An attempt was made to acc:eaa the tape while It was oftUne; this m Is
written on the terminal of the user who tried to acc:eaa the tape.

tu~: cu't ,witch Itr ID mi'-tape. An Ittempt was made to write on I tape at a different
density than Is already recorded on the tape. This meassae Is written on the terminal of the
user who tried to switcb the density.

tu~: bani error bD~ m"r-~b er-~b "-~b. A tape error oc:curred It block bn; the bt
error register and drive status register are printed in oc:ta1 with the bits symboUcaIly decoded.
Any error Is fltal on non-raw tape; when possible the driver will have retried the operation
which failed several times before reportina the error.

If any non-data error Is encountered on non-raw tape, it refuses to do anytbina more until
closed.

4th Berkeley Distribution 27 July 1983

I

I

HY(4) UNIX Programmer's Manual HY(4)

NAME
hy - Network Systems Hyperchannei interface

SYNOPSIS
device hyO at ubaO csr 0172410 vector hylnl

DESCRIPTION
The hy interface provides access to a Network Systems Corporation Hyperchannel Adapter.

The network to which the interface is attached is specified at boot time with an SIOCSIFADDR
ioet!. The host's address is discovered by reading the adapter status register. The interface will
not transmit or receive packets until the network number is known.

DIAGNOSTICS
by%d: unit number Ox%x port %d type O/OX microcooe level Ox%x. Identifies the device during
autoeonfiguration.

by%d: can't bandle afo/.d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

by%d: can't initialize. The interface was unable to allocate UNIBUS resources. This is usually
due to having too many network devices on an 111750 where there are only 3 buffered data
paths.

by%d: NEX - Non Existent Memory. Non existent memory error returned from hardware.

by%d: BAR overfl.ow. Bus address register overflow error returned from hardware.

by"lod: Power Off bit set, trying to reset. Adapter has lost power, driver will reset the bit and
see if power is still out in the adapter.

hy%d: Power Off Error, network shutdown. Power was really off in the adapter, network con­
nections are dropped. Software does not shut down the network unless power has been off for
a while.

hy"lod: RECVD MP > MPSIZE (%d). A message proper was received that is too big. Prob­
able a driver bug. Shouldn't happen.

by%d: xmit error - len> by_olen I%d > %cll. Probable driver error. Shouldn't happen.

hy%d: DRIVER BUG - INVALID STATE %d. The driver state machine reached a non­
existent state. Definite driver bug.

hy%d: watchdog timer expired. A command in the adapter has taken too long to complete.
Driver will abort and retry the command.

hy%d: adapter power restored. Software was able to reset the power off bit, indicating that the
power has been restored.

SEE ALSO

BUGS

intro(4N), inet(4F)

If the adapter does not respond to the status command issued during autoconfigure, the adapter
is assumed down. A reboot is required to recognize it.

The adapter power fail interrupt seems to occur sporadically when power has, in fact, not failed.
The driver will believe that power has failed only if it can not reset the power fail latch after a
"reasonable" time interval. These seem to appear about 2-4 times a day on some machines.
There seems to be no correlation with adapter rev level, number of ports used etc. and whether
a machine will get these "bogus powerfails". They don't seem to cause any real problems so
they have been ignored.

4th Berkeley Distribution 27 July 1983

IK(4) UNIX Proarammer's Manual IK(4)

NAME
ik - Ikonas frame buffer. JI'Ilphics device interface

SYNOPSIS
denee 1k0 at ulta? csr 017l46O "ector UdDtr

DESCRIPTION

nLIS

lk provides an interface to an Ikonas frame buffer JI'IlPhics device. Each minor device is a
different frame buffer interface board. When the device is opened. Its interface resisters are
mapped. via virtual memory. into the user processes address space. This allows the user pro­
cess very hi&h bandwidth to the frame buffer with no system call overhead.

Bytes written or read from the device are DMA'ed from or to the interface. The frame buffer
XY address. its addressina mode. etc. must be set up by the user process before callina write or
read.

Other communication with the driver is via ioct1s. The IK OETADDR loct1retums tbe virtual
address where the user process can find the interface -resisters. The IK_ W AlTINT ioct1
suspends the user process until the ikonas device has interrupted (for whatever reason - the
user process has to set the interrupt enables).

/dev/ik

DIAGNOSTICS
None.

BUGS
An invalid access (e lonaword) to a mapped interface resister can cause the system to crash
with a machine check. A user process could possibly cause infinite interrupts hence brinsinI
thinp to a crawl.

4th Berkeley Distribution 27 July 1983

I

I

IL (4) UNIX Proarammer's Manual IL (4)

NAME
i1 - Interlan 10 Mb/s Ethernet interface

SYNOPSIS
lienee UO at ubaO car 161000 Tector Ilrint UdDt

DESCIJPTION
The ilinterface provides access to a 10 Mb/s Ethernet network through an Interlan controller.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl. The ec
interface employs the address resolution protocol described in arp(4P) to dynamically map
between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS
t1aa with an SIOCSIFFLAGS ioctl.

DIAGNOSTICS
U~: Input error. The hardware indicated an error in readinl a packet oft'the cable or an ille­
plly sized packet.

U~: can't handle.nw. The interface was handed a messqe with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO
intro(4N), inet(4F), arp(4P)

BUGS
The PUP protocol family should be added.

4th Berkeley Distribution 27 July 1983

IMP (4) UNIX Programmer's Manual IMP(4)

NAME
imp - IP22 network interface

SYNOPSIS
pseudo-devlce Imp

DESCRIPTION
The imp interface, as described in BBN Report 1822, provides access to an intelligent message
processor normally used when participating in the Department of Defense ARPA network. The
network interface communicates through a device controller, usually an ACC LHIDH or DEC
IMP-llA, with the IMP. The interface is "reliable" and "flow-controlled" by the host-IMP
protocol.

To configure IMP support, one of acc(4) and c33(4) must be included. The network number on
which the interface resides is specified at boot time using the SIOCSIFADDR iocll. The host
number is discovered through receipt of NOOP messages from the IMP.

The network interface is always in one of four states: up, down, initializing, or going down.
When the system is booted, the interface is marked down. If the hardware controller is suc­
cessfully probed, the interface enters the initializing state and transmits three NOOP messages
to the IMP. It then waits for the IMP to respond with two or more NOOP messages in reply.
When it receives these messages it enters the up state. The going down state is entered only
when notified by the IMP of an impending shutdown. Packets may be sent through the inter­
face only while it is in the up state. Packets received in any other stale are dropped with the
error ENETDOWN returned to the caller.

DIAGNOSTICS
imp~: leader error. The IMP reported an error in a leader (1822 message header). This
causes the interface to be reset and any packets queued up for transmission to be purged.

Imp%ll: lIoml down In 30 !IeCtInds.
im~: loiul down for hardwue PM.
Imp%ll: loiul down for reload software.
im~: 110m. down for emellency reset. The Network Control Center (NCC) is manipulating
the IMP. By convention these messages are reported to all hosts on an IMP.

Imp~: reset (host %II/Imp %II). The host has received a NOOP message which caused it to
reset its notion of its current address. This normally occurs at boot time, though it may also
occur while the system is running (for example, if the IMP-controller cable is disconnected,
then reconnected).

im~: host dead. The IMP has noted a host, to which a prior packet was sent, is not up.

lmp%ll: host unreachable. The IMP has discovered a host, to which a prior packet was sent, is
not accessible.

Imp~: dllta error. The IMP noted an error in data transmitted. The host-IMP interface is
reset and the host enters the inil state (awaiting NOOP messsges).

Imp%d: interface reset. The reset process has been completed.

imp%ll: mllUki!d down. After receivinl a "going down in 30 seconds" message, and waiting 30
seconds, the host has marked the IMP unavailable. Before packets may be sent to the IMP
again, the IMP must notify the host, through a series of NOOP messsges, that it is back up.

imp~: can't handle af%d. The interface was handed a message with addresses formatting in
an unsuitable address family; the packet was dropped.

SEE ALSO
intro(4N), inet(4F), acc(4), css(4)

4th Berkeley Distribution 27 July 1983

I

IMP (4P) UNIX Programmer's Manual IMP (4P)

NAME
imp - IMP raw socket interface

SYNOPSIS
#include <sys/socket.h>
#include <netlnet/In.h>
#include <netlmp/U_lmp.h>

5 - socket(AF_IMPLINK, SOCK_RAW, IMPLINK_IP};

DESCRIPTION
The raw imp socket provides direct access to the imp(4) network interface. Users send packets
through the interface using the send(2) calls, and receive packets with the recv(2), calls. All
outgoing packets must have space for an 1822 96-bit leader on the front. Likewise, packets
received by the user will have this leader on the front. The 1822 leader and the legal values for
the various fieldS are defined in the include file <netimplifJmp.h>.

The raw imp interface automatically installs the length and destination address in the 1822
leader of all outgoing packets; these need not be filled in by the user.

DIAGNOSTICS
An operation on a socket may fail with one of the following errors:

[EISCONN] when trying to establish a connection on a socket which already has one, or
whc:n trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

SEE ALSO
intro(4N), inet(4F), imp(4)

4th Berkeley Distribution 26 March 1982

INET(4F) UNIX Programmer's Manual INET(4F)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <netlnetlln.h>

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the Internet Protocol (IP)
transport layer, and utilizing the Internet address format. The Internet family provides protocol
support for the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the
SOCK_RAW interface provides access to the IP protocol.

ADDRESSING
Internet addresses are four byte quantities, stored in network standard format (on the VAX
these are word and byte reversed). The include file <netinetlin.h> defines this address as a
discriminated union.

Sockets bound to the Internet protocol family utilize the following addressing structure,

struct sockaddr in {
short - sinJamily;
u:...short sin:...port;
struct in addr sin addr;
char sin_zero[S(

};

Sockets may be created with the address INADDR_ANY to effect "wildcard" matching on
incoming messages.

PROTOCOLS
The Internet protocol family is comprised of the IP transport protocol, Internet Control Mes­
sage Protocol (ICMP) , Transmission Control Protocol (TCP) , and User Datagram Protocol
(UDP). TCP is used to support the SOCK STREAM abstraction while UDP is used to support
the SOCK DGRAM abstraction. A raw interface to IP is available by creating an Internet
socket of type SOCK_RAW. The ICMP message protocol is not directly accessible.

SEE ALSO
tcp(4P), udp(4P), ip(4P)

CAVEAT
The Internet protocol support is subject to change as the Internet protocols develop. Users
should not depend on details of the current implementation, but rather the services exported.

4th Berkeley Distribution 19 March 1982

I

I

IP (4P) UNIX Programmer's Manual II' (4P)

NAME
ip - Internet Protocol

SYNOPSIS
*Include <sys!socket.h>
#include <netmet/ln.b>

8 .. 8ocket(AF_INET, SOCK_RAW, 0);

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family. It may be ~
through a "raw socket" when developing new protocols, or special purpose applications. IP
sockets are ccnnectionless, and are normally used with the !lendto and recvjrom calls, though the
connect(2) call may also be used to fix the destination for future packets (in which case the
read(2) or recv(2) and write(2) or send(2) system calls may be used).

Outgoing packets automatically have IIl.l IF header prepended to them (based on the destination
address IIl.ld the protocol number the socket is created with). Likewise, incoming packets have
their IP header stripped before being sent to the user.

DIAGNOSTICS
A socket operation may fail with one of the following errol'S returned:

[EISCONN] when trying to establish a connection on II socket which already has one, or
when trying to send a datagram with the destination IIddress 9pecified IIl.ld the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

!ENOBUFS] when the system rona out of memory for an internal data structure;

[EADDRNOTAV AIL]
when an attempt is made to create II socket with II network addreSlj for w!..,icn
no network interface exists.

SEE ALSO

BUGS

send(2), recv(2), intro(4N), inet(4F)

One should be able to send and receive ip options.

The protocol should be seltable after socket creation.

4th Berkeley Distribution 25 March 1982

KG(4) UNIX Programmer's Manual KG(4)

NAME
kg - KL·llIDL-llW line clock

SYNOPSIS
devlee taO lit ubaO C:Sl 0176500 vector killock

DESCRIPTION
A Id·ll or dl·llw can be used as an alternate realtime clock source. When con1!sured, certain
system statistics and, optionally, system profilinl work will be collected each time the clock
interrupts. For optimum accuracy in profiling, the dJ-11w should be confillured to interrupt at
the biahest possible priority level. The kg device driver automatically calibrates itself to the line
clock frequency.

SEl ALSO
kgmon(8), con1!s(8)

4th Berkeley Distribution 27 luly 1983

I

I

LO(4) UNIX Prolll'amrncr's Manual LO(4)

NAME
10 - software loopback network interface

SYNOPSIS
pseudo-deTlc:e loop

DESCRIPTION
The loop interface is a software loopback mechanism which may be used for performance
analysis, software testina, and/or local communication. By default, the loopback interface is
accessible at address 127.0.0.1 (non-standard); this address may be changed with the SIOCSI­
FADDRioctl.

DIAGNOSTICS
lo~: can't handle af!W. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F)

It should handle all address and protocol families. An approved network address should be
reserved for this interface.

4th Berkeley Distribution 26 March 1982

LP(4) UNIX Programmer's Manual LP(4)

NAME
Ip - line printer

SYNOPSIS
device lpO lit uhllO ell 0177514 yector Iplntr

DESCRIPTION

FILES

Lp provides the interface to any of the standard DEC line printers on an LP·ll parallel inter­
face. When it is opened or closed, a suitable number of page ejects is generated. Bytes written
are prin ted.

The unit number of the printer is specified by the minor device after removing the low 3 bits,
which act 8S per-device parameters. Currently only the lowest of the low three bita is inter­
preted: if it is set, the device is treated as having a 64-character set, rather than a full 96-
character set. In the resulting half-ASCn mode, lower case letters arc turned into upper case
and certain characters are escaped according to the following table:

{ (
)) . .
I +

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. Lines longer
than the maximum page width are truncated. The default page width is 132 columns. This
may be overridden by specifying, for example, "flags 256" .

Idev/lp

SEE ALSO
Ipr(1)

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983

I

MEM(4) UNIX Programmer's Manual MEM(4)

NAME
mem, kmem - main memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the main memory of the computer. It may be used, for
example, to examine (and even to patch) the system.

Byte addresses in mem are interpreted as physical memory addresses. References to non­
existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

On PDPll's, the I/O page begins at location 0160000 of kmem and per-process data for the
current process begins at 0140000. On VAX 111780 the I/O space begins at physical address
20000000(16); on an 111750 I/O space addresses are of the form [xxxxx(l6); on all VAX'en
per-process data for the current process is at virtual 7ffffOOO(16).

/dev/mem
Idev/kffiem

On PDPll's and V AX's, memory files are accessed one byte at a time, an inappropriate
method for some device registers.

4th Berkeley Distribution 9 February 1983

MT(4) UNIX Prosrammer's Manual MT(4)

NAME
mt - TM78/TU-78 MASSBUS IlllI8tape interface

SYNOPSIS
muter mtO at mba? clrln ?
tape muO at mtO sian 0

DESCItIPTION
The tm78/tu-78 combination provides a standard tape drive interface as described in mtlo(4).
Only 1600 and 6250 bpi are supported; the TV-78 runs at 125 ips and autoloads tapes.

SEE ALSO
mt(t), tar(l), tp(l), mtio(4), tm(4), ts(4), ut(4)

DIAGNOSTICS

BUGS

mu~: DO write rlDI. An attempt was made to write on the tape drive when no write rinI was
present; this messaae is written on the terminal of the user who tried to access the tape.

mu~: DOt onUDe. An attempt was made to access the tape while it was oftline; this messaae is
written on the terminal of the user who tried to access the tape.

mu~: can't switch deDslty ID mid-tape. An attempt was made to write on a tape at a
different density than is already recorded on the tape. This messaae is written on the terminal
of the user who tried to switch the density.

mu~: hard error bD~ mbar-~b er-~J: d.-~b. A tape error occurred at block btl; the mt
error register and drive status register are printed in octal with the bits symbolically decoded.
Any error is fatal on non-raw tape; when possible the driver will hive retried the operation
which failed several times before reportina the error.

mu~: blank tape. An attempt was made to read a blank tape (a tape without even end-of-ft1e
marks).

mu~: otBine. During an i/o operation the device was set oftline. If a non-raw tape was used
in the access it is closed.

If any non-data error is encountered on non-raw tape, it refuses to do anythina more until
closed.

4th Berkeley Distribution 27 July 1983

I

I

MTIO(4) UNIX Programmer's Manual MTIO (4)

NAME
mtio - UNIX magtape interface

DESCRIPTION
The files mtO, ... , mtlS refer to the UNIX magtape drives, which may be on the MASSBUS
using the TM03 formatter ht(4}, or TM711 formatter, mt(4), or on the UNIBUS using either
the TMIl or TSll formatters tm(4), TU45 compatible formatters, ut(4), or (s(4). The follow­
ing description applies to any of the transport/controller pairs. The files mtO, ... , mt7 are
800bpi, mfS, ... , mtlS are 1600bpi, and mtl6, ... , mIll are 6250bpi. (But note that only 1600
bpi is available with the TSll.) The files mlO, ... , mtl, mtS, ... , mtll, and mt16, ... , mtl9 are
rewound when closed; the others are not. When a file open for writing is closed, two end-of­
files are written. If the tape is not to be rewound it is positioned with the head between the two
tapemarks.

A standard tape consists of a series of 1024 byte records terminated by an end-of-file. To the
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.

The ml files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the 'raw' interface is appropriate. The associated files are named
rmtO, ... , rmtll, but the same minor-device considerations as for the regular files still apply. A
number of other ioct! operations are available on raw magnetic tape. The following definitions
are from <syslmtio.h>:

/-
• Structures and definitiollll for mag tape io control commands
0/

/- structure for MTIOCTOP - mag tape op command .f
struct mtop I

short mt_op;
daddr_t mt_count;

);

/. operations -/
#define MTWEOF
#define MTFSF
#define MTBSF
#define MTFSR
#define MTBSR
#define MTREW
#define MTOFFL
#define MTNOP

o
1
2
3
4
5
6
7

/. operations defined below ./
/- how many of them -/

/. write an end-of-file record ./
/. forward space file ./
/. backward space file ./
/- forward space record ./
/. backward space record ./
/. rewind ./
/. rewind and put the drive offline .1
/. no operation, sets status only ./

/. structure for MTIOCGET - mag tape get status command ./

struct mtget {
short mt_type; /. type of magtape device ./

/- the following two registers are grossly device dependent -/
short mt dsreg; /. "drive status" register ./
short mCerreg; I. "error" register .1

/. end device-dependent registers ./
short mtJesid; /. residual count .1

4th Berkeley Distribution 27 July 1983

MTIO(4) UNIX Programmer's Manual MTIO(4)

FILES

/. the following two are not yet implemented ./
daddr t mt fileno; ;. file number of current position ./
daddr-t mt-blkno; /- block number of current position ./

/. end not yetimpiemented ./
};

/ .
• Constants for mt type byte
-/ -

#defineMT ISTS OxOl
#defineMT-ISHT Ox02
#defineMT-ISTM Ox03
#defineMT -ISMT Ox04
#defineMT -ISUT Ox05
#defineMT -ISCPC Ox06
#defineMT)SAR Ox07

/. mag tape io control commands ./
#defineMTIOCTOP _IOW(m, 1, struct mtop)
#defineMTIOCGET _IOR(m, 2, struet mtget)

#ifndef KER~r:L
#defineDEFTAPE
#endif

" Idev/rmt12"

/. do a mag tape op ./
/. get tape status .1

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buffer given. During a read, the record size is passed back as the
number of bytes read, provided it is no grealer than the buffer size; if the record is long, an
error is indicated. In raw tape I/O seeks are ignored. A zero byte count is returned when a
tape mark is read, but another read will fetch the first record of the new tape file.

Idev/mt?
Idev/rmt?

SEE ALSO
mt(l), tarm, (pO), ht(4), tm(4) , ts(4), mt(4), ut(4)

BUGS
The status should be returned in a device independent format.

4th Berkeley Distribution 27 July 1983 2

I

NULL (4) UNIX Programmer's Manual NULL (4)

NAME
null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

I

7th Edition 9 February 1983

PCL(4) UNIX Programmer's Manual PCL(4)

NAME
pel - DEC CSS PCL-ll B Network Interface

SYNOPSIS
device pclO at uba? csr 164200 vector pclxlnt pclrlnt

DESCRIPTION
The pel device provides an IP-only interface to the DEC CSS PCL-II time division multiplexed
network bus. The controller itself is not accessible to users.

The hosts's address is specified with the SIOCSIFADDR ioctl. The interface will not transmit
or receive any data before its address is defined.

As the PCL-11 hardware is only capable of having 15 interfaces per network, a single-byte
host-on-network number is used, with range [t .. IS) to match the TDM bus addresses of the
interfaces.

The interface currently only supports the Internet protocol family and only provides "natural"
(header) encapsulation.

DIAGNOSTICS
pcl%d: CAn't lult. Insufficient UNIBUS resources existed to initialize the device. This is likely
to occur when the device is run on II buffered data path on an 111750 and other network inter­
faces are also configured to use buffered data paths, or when it is configured to use buffered
data paths on an 111730 (which has none).

pcl%d: can't bandle aI%d. The interface was handed II message with addresses formatted in an
unsuitable address family; the packet was dropped.

pcl%d: stray xmlt Interrupt An interrupt occured when no output had previously been
started.

pcl%d: master. The TOM bus had no station providing "bus master" timing sisnals, so this
interface has assumed the "master" role. This message should only appear at most once per
UNIBUS INIT on a single system. Unless there is a hardware failure, only one station may be
master at at time.

pcl%d: send error, tu-%b, tsr-%b. The device indicated a problem sending data on output.
If a "receiver oftline" error is detected, it is not normally logged unless the option
PCL_TESTING has been selected, as this causes a lot of console chatter when sending to a
down machine. However, this option is quite useful when debugging problema with the PCL
interfaces.

pcl%d: I'C'l' error, rcr-%b rsr"%II. The device indicated a problem receiving data on input.

pcl%d: bad len-%d. An input operation resulted in a data transfer of less than 0 or more than
1008 bytes of data into memory (according to the word count register). This should never hap­
pen as the maximum size of a PCL message has been agreed upon to be 1008 bytes (same as
ArpaNet message).

SEE ALSO
intro(4N), inet(4F)

4th Berkeley Distribution 27 July 1983

I

I

PS (4) UNIX Programmer's Manual PS (4)

NAME
ps - Evans and Sutherland Picture System 2 graphics device interface

SYNOPSIS
device psO at uba? csr 0172460 vector psintr

DESCRIPTION
The ps driver provides access to an Evans and Sutherland Picture System 2 graphics device.
Each minor device is a new PS2. When the device is opened, its interface registers are
mapped, via virtual memory, into a user process's address space. This allows the user process
very high bandwidth to the device with no system call overhead.

DMA to and from the PS2 is not supported. All read and write system calls will fail. All data is
moved to and from the PS2 via programmed I/O 'using the device's interface registers.

Commands are fed to and from the driver using the following ioctls:

PSIOGETADDR
Returns the virtual address through which the user process can access the device's
interface registers.

PSIOAUTOREFRESH
Start auto refreshing the screen. The argument is an address in user space where the
following data resides. The first longword is a count of the number of static refresh
buffers. The next count longwords are the addresses in refresh memory where the
refresh buffers lie. The driver will cycle thru these refresh buffers displaying them one
by one on the screen.

PSIOAUTOMAP,
Start automatically passing the display file thru the matrix processor and into the refresh
buffer. The argument is an address in user memory where the following data resides.
The first longword is a count of the number of display files to operate on. The next
count longwords are the address of these display files, The final longword is the address
in refresh buffer memory where transformed coordinates are to be placed if the driver
is not in double buffer mode (see below).

PSIODOUBLEBUFFER
Cause the driver to double buffer the output from the map that is going to the refresh
buffer, The argument is again a user space address where the real arguments are
stored, The first argument is the starting address of refresh memory where the two
double buffers are located, The second argument is the length of each double buffer.
The refresh mechanism displays the current double buffer, in addition to its static
refresh lists, when in double buffer mode,

PSIOSINGLEREFRESH
Single step the refresh process, That is, the driver does not continually refresh the
screen,

PSIOSINGLEMAP
Single step the matrix process, The driver does not automatically feed display files thru
the matrix unit.

PSIOSINGLEBUFFER
Tum off double buffering.

PSIOTIMEREFRESH
The argument is a count of the number of refresh interrupts to take before turning off
the screen, This is used to do time exposures.

PSIOW AITREFRESH
Suspend the user process until a refresh interrupt has occurred. If in TIMEREFRESH

4th Berkeley Distribution 27 July 1983

PS (4) UNIX Programmer's Manual PS (4)

mode, suspend until count refreshes have occurred.

PSIOSTOPREFRESI-'
Wait for the next refresh, stop all refreshes, and then return to user process.

PSIOW AlTMAP
Wait until a map done intenupt has occurred.

PSIOSTOPMAP
Wait for a map done interrupt, do not restart the map, and then return to the user.

FILES
/dev/ps

DIAGNOSTICS

BUGS

ps device intr.
ps dma intf. An interrupt was received from the device. This shouldn't happen, check your
device configuration for overlapping interrupt vectors.

An invalid access (e.g., longword) to a mapped interface register can cause the system to crash
with a machine check. A user process could possibly cause infinite interrupts hence bringing
things to a crawl.

4th Berkeley Distribution 27 July 1983 2

I

I

PTY(4) UNIX Programmer's Manual PTY(4)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-cievice pty

DESCRIPTION
The pty driver provides support for a device-pair termed Ii pseudo terminal. A pseudo terminal
is a pair of character devices, a master device and II slave device. The slave device provides
processes an interface identical to that described in tty (4) . However, whereas all other devices
which provide the interface described in tty(4) have a hardware device of some sort behind
them, the slave device has, instead, another process manipulating it through the master half of
the pseudo terminal. That is, anything written on the master device is given to the slave device
as input and anything written on the slave device is presented as input on the master device.

In configuring, if no optional "count" is given in the specification, 16 pseudo terminal pairs are
configured.

The following ioetl calls apply only to pseudo terminals:

TIOCSTOP
Stops output to a terminal (e.g. like typing -S). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing AS). Takes no parameter.

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) Ii

nonzero parameter and disabled by spCcifying (by reference) II zero parameter. When
applied to the master side of II pseudo terminal, each subsequent read from the termin!ll
will return data written on the slave part of the pseudo terminal preceded by II zero byte
(symbolically defined as TIOCPKT DATA), or II single byte reflecting control status
information. In the latter case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT FLUSHWRITE
whenever the write queue for the temlinal is flushed.

TIOCPKT STOP
whenever output to the terminal is stopped 1\ ill AS.

TIOCPKT START
whenever output to the terminal is restarted.

TIOCPKT DOSTOP
whenever I_stope is AS and cstartc is -Q.

TIOCPKT NOSTOP
whenever the start and stop characters are not -srQ.

This mode is used by rlogin(1C) and rlogind(8C) to implement a remote-echoed, locally
'srQ flow-controlled remote login with proper back-flushing of output; it can be used
by other similar programs.

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of TIOCPKT. This
mode cauSes input to the pseudo terminal to be flow controlled and not input edited
(regardless of the terminal mode). Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage, a write of data is like
the data typed as II line on the terminal; II write of 0 bytes is like typing an end-of-file

4th Berkeley Distribution 7 July 1983

PTY(4) UNIX Propammer's Manual PTY(4)

cbaracter. TIOCREMOTE can be used when doina remote line editlna in a window
1DIIIIqe1", or whenever flow controned input is required.

fiLlS
Idev/pty(p-r][O-9a·t1 muter pseudo terminals
Idev/tty(p-r](O-9a·t1 slave pseudo terminals

DIAGNOSTICS
None.

BUGS
It is not possible to send an BOT.

4th Berkeley Distribution 7 July 1983 2

I

I

PUP (4F) UNIX Programmer's Manual PUP (4F)

NAME
pup - Xerox PUP-I protocol family

SYNOPSIS
#include <sys/types.b:>
#include <netpup/pup.h:>

DESCRIPTION
The PUP-! protocol family is a collection of protocols layered atop the PUP LeveJ-O packet for­
mat, and utilizing the PUP Internet address format. The PUP family is currently supported
only by a raw interface.

ADDRESSING
PUP addresses are composed of network, host, and port portions. The include file
< nerpup/pup. h:> defines this address as,

struc! pupport {
u char pup_net;
u -char pup_host;
u=char pup_socket [4J;

};

Sockets bound to the PUP protocol family utilize the following addressing structure,

struct sockaddryup (
short spup Jamily;
short spup_zerol;
u_char spup_net;
u char spup host;
u=char spup=sock[4!;
char spuIU1:er02[4];

);

HEADERS
The current PUP support provides only raw access to the 3Mb/s Ethernet. Packets sent
through this interface must have space for the following packet header present at the front of
the message,

struct pup header (
u_short pupJength;
u char pup tcontrol;
u -char pup-type;
u)ong pup=id;
u_char pup_dnet;
u char pup dhost;
u=char pup=dsocl<!4];
u char pup_snet;
u -char pup shost;
u=char pup=ssock[4];

);

/. transport control ./
/. protocol type ./
/. used by protocols ./
/- destination ./

/. source ./

The sender should fill in the PUP_Icontrol, pup_type, and pup_id fields. The remaining fields are
filled in by the system. The system checks the message to insure its size is valid and, calulates
a checksum for the message. If no checksum should be calculated, the checksum field (the last
16·bit word in the message) should be set to PUP _NOCKSUM.

4th Berkeley Distribution 7 July 1983

PUP (4F) UNIX Programmer's Manual PUP (4F)

The pup tcontrol field is restricted to be 0 or PUP TRACE; PUP TRACE indicates packet trac-
ing should be performed. The pup_type field may not be O. -

On input, the entire packet, including header, is provided the user. No checksum validation is
performed.

SEE ALSO

BUGS

intro(4N), pup(4P), en(4)

The only interface which currently supports use of pup's is the Xerox 3 Mb/s en(4) interface.

With the release of the second generation, PUP-II, protocols it is not clear what future PUP·!
has. Consequently, there has been little motivation to provide extensive kernel support.

4th Berkeley Distribution 7 July 1983 2

I

I

PUP (4P) UNIX Programmer's Manual PUP (4P)

NAME
pup - raw PUP socket interface

SYNOPSIS
#include < sys/socket.h>
#include < netpup/pup.h>

socket(AF]UP, SOCK_RAW, PUPPROTO_BSP);

DESCRIPTION
A raw pup socket provides PUP-I access to an Ethernet network. Users send packets using the
sendlo call, and receive packets with the recvfrom call. All outgoing packets must have space
present at the front of the packet to allow the PUP header to be filled in. The header format is
described in pup(4F). Likewise, packets received by the user will have the PUP header on the
front. The PUP header and legal values for the various fields are defined in the include file
< netpuplpup.h>.

The raw pup interface automatically installs the length and source and destination addresses in
the PUP header of all outgoing packets; these need not be filled in by the user. The only con­
trol bit that may be set in the Icontrol field of outgoing packets is the "trace" bit. A checksum
is calculated unless the sender sets the checksum field to PUP _NOCKSUM.

DIAGNOSTICS
A socket operation may fail and one of the following will be returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOT A V AIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

A sendto operation may fail if one of the following is true:

[EINV All Insufficient space was left by the user for the PUP header.

[EINVAL] The pup_ type field was 0 or the pup_lcontro! field had a bit other than
PUP_TRACE set.

[EMSGSIZE] The message was not an even number of bytes, smaller than MINPUPSIZ, Of

large than MAXPUPSIZ.

[ENETUNREACH]
The destination address was on a network which was not directly reachable
(the raw interface provides no routing support).

SEE ALSO
send(2), recv(2), intro(4N), pup(4F)

BUGS
The interface is untested against other PUP implementations.

4th Berkeley Distribution 7 July 1983

RX(4) UNIX Programmer's Manual RX(4)

NAME
rx - DEC RX02 floppy disk interface

SYNOPSIS
controller h:O at llllaO CST 0177170 vector rxintr
disk nO at fxO drive Il
disk rxl at fxO drive 1

DESCRIPTION

NOTES

The rx device provides access to a DEC RX02 floppy disk unit with M8256 interface module
(RX211 configuration). The RX02 uses 8-inch, single-sided, soft-sectored floppy disks (with
pre-formatted industry-standard headers) in either single or double density.

Floppy disks handled by the RX02 contain 77 tracks, each with 26 sectors (for a total of 2,002
sectors). The sector size is 128 bytes for single density, 256 bytes for double density. Single
density disks are compatible with the RXOI floppy disk unit and with IBM 3740 Series Diskette
1 systems.

In addition to normal ('block' and 'raw') if 0, the driver suppcrts formatting of disks for either
density and the ability to invoke a 2 for 1 interleaved sector mapping compatible with the DEC
operating system RT-l1.

The minor device number is interpreted as follows:

Bit Description
o Sector interleaving (l disables interleaving)
1 Logical sector 1 is on track 1 (0 no, 1 yes)
2 Not used, reserved
Other Drive number

The two drives in a single RX02 unit are treated as two disks attached to a single controller.
Thus, if there are two RX02's on a system, the drives on the first RX02 are "rxO" and "rxl".
while the drives on the second are "rxl" and "rx3".

When the device is opened, the density of the disk currently in the drive is automatically deter­
mined. If there is no floppy in the device, open will fail.

The interleaving parameters are represented in raw device names by the letters 'a' through 'd'.
Thus, unit 0, drive 0 is called by one of the following names:

MliIlPing Device llllme Starting track
interleaved IdevlrrxOa ()
direct Idev/rrxOb 0
interleaved Idev/rrxOc 1
direct Idev/rrxOd 1

The mapping used on the 'c' device is compatible with the DEC operating system RT-ll. The
'b' device accesses the sectors of the disk in strictly sequential order. The 'a' device is the most
efficient for disk-Io-disk copying. This mapping is always used by the block device.

I/O requests must start on a sector boundary, involve an integral number of complete sectors,
and not go off the end of the disk.

Even though the storage capacity on a floppy disk is quite small, it is possible to make filesys­
tems on double density disks. For example, the command

% mkfs {dev/TxO 1001 13 1 409651232 () 4
makes a file system on the double density disk in rxO with 436 kbytes available for file storage.
Using tar(l) gives a more efficient utilization of the available space for file storage. Single den­
sity diskettes do not provide sufficient storage capacity to hold file systems.

4th Berkeley Distribution 27 July 1983

I

I

RX(4) UNIX Programmer's Manual

A number of ioctl(2) calls apply to the rx devices, and have the form
#include < vaxuba/rxreg.h >
ioctI(fildes, code, arg)
lnt oarg;

The applicable codes are:

RX(4)

RXIOC_FORMAT Format the diskette. The density to use is specified by the arg argument,
zero gives single density while non-zero gives double density.

RXIOC GETDENS
- Return the density of the diskette (zero or non-zero as above).

RXIOC_ WDDMK On the next write, include a deleted data address mark in the header of the
first sector.

RXIOC_RDDMK Return non-zero if the last sector read contained a deleted data address mark
in its header, otherwise return O.

ERRORS

FILES

The following errors may be returned by the driver:

[ENODEV] Drive not ready; usually because no disk is in the drive or the drive door is open.

[ENXIO]

[EIOI

[EBUSY]

[EBADF]

Nonexistent drive (on open); offset is too large or not on a sector boundary or
byte count is not a multiple of the sector size (on read or write); or bad
(undefined) ioctl code.

A physical error other than "not ready", probably bad media or unknown format.

Drive has been opened for exclusive access.

No write access (on format), or wrong density; the latter can only happen if the
disk is changed without closing the device (i.e., calling close(2)).

Idev/rx?
Idev/rrx? [a-d]

SEE ALSO
rxformat(8V), newfs(8), mkfs(8) , tarO), arff(8V)

DIAGNOSTICS

BUGS

rx%d: hard error, trk %d psec %d cs=%b, db=%b, err=%x, 'lox, '/ox, '/ox. An unrecoverable
error was encountered. The track and physical sector numbers, the device registers and the
extended error status are displayed.

rx%d: state %d (reset). The driver entered a bogus state. This should not happen.

A floppy may not be formatted if the header info on sector 1, track 0 has been damaged.
Hence, it is not possible to format completely degaussed disks or disks with other formats than
the two known by the hardware.

If the drive subsystem is powered down when the machine is booted, the controller won't inter­
rupt.

4th Berkeley Distribution 27 July 1983 2

TCP (4P) UNIX Programmer's Manual TCP (4P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#include < sys/socket.h>
#include < netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a byte­
stream protocol used to support the SOCK STREAM abstraction. TCP uses the standard Inter­
net address format and, in addition, provides a per-host collection of "port addresses". Thus,
each address is composed of an Internet address specifying the host and network, with a specific
TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets initiate con­
nections to passive sockets. By default TCP sockets are created active; to create a passive
socket the Iisten(2) system call must be used after binding the socket with the bind(2) system
call. Only passive sockets may use the accept(2) call to accept incoming connections. Only
active sockets may use the connect(2) call to initiate connections.

Passive sockets may "underspecify" their location to match incoming connection requests from
multiple networks. This technique, termed "wildcard addressing", allows a single server to
provide service to clients on multiple networks. To create a socket which listens on all net­
works, the Internet address INADDR ANY must be bound. The TCP port may still be
specified at this time; if the port is not Si>ecified the system will assign one. Once a connection
has been established the socket's address is fixed by the peer entity's location. The address
assigned the socket is the address associated with the network interface through which packets
are being transmitted and received. NormaUy this address corresponds to the peer entity's net­
work.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN]

[ENOBUFS]

[ETIMEDOUT]

[ECONNRESET]

when trying to establish a connection on a socket which already has one;

when the system runs out of memory for an internal data structure;

when a connection was dropped due to excessive retransmissions;

when the remote peer forces the connection to be closed;

[ECONNREFUSED] when the remote peer actively refuses connection establishment (usually
because no process is listening to the port);

[EADDRINUSE] when an attempt is made to create a socket with a port which has already
been allocated;

[EADDRNOT AV AILJ
when an attempt is made to create a socket with a network address for
which no network interface exists.

SEE ALSO

BUGS

intro(4N), inet(4F)

It should be possible to send and receive TCP options. The system always tries to negotiates
the maximum TCP segment size to be 1024 bytes. This can result in poor performance if an
intervening network performs excessive fragmentation.

4th Berkeley Distribution 7 July 1983

I

I

TM(4) UNIX Programmer's Manual TM(4)

NAME
tm - TM-ll/TE-IO magtape interface

SYNOPSIS
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0

DESCRIPTION
The tm-Il/te-IO combination provides a standard tape drive interface as described in mtio(4).
Hardware implementing this on the V AX is typified by the Emulex Te-II controller operating
with a Kennedy model 9300 tape transport, providing 800 and 1600 bpi operation at 125 ips.

SEE ALSO
mt(J), tarO), tp(J), mtio(4), ht(4), ts(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

te%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

te%d: not online. An attempt was made to access the tape while it was offline; this message is
written on the terminal of the user who tried to access the tape.

te%d: can't switch density in mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

te%d: hard error bn%d er=%b. A tape error occurred at block bIT, the tm error register is
printed in octal with the bits symbolically decoded. Any error is fatal on non-raw tape; when
possible the driver will have retried the operation which failed several times before reporting
the error.

te%d: lost interrupt A tape operation did not complete within a reasonable time, most likely
because the tape was taken off-line during rewind or lost vacuum. The controller should, but
does not, give an interrupt in these cases. The device will be made available again after this
message, but any current open reference to the device will return an error as the operation in
progress aborts.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution 27 July 1983

TS(4) UNIX Programmer's Manual TS(4)

NAME
IS - TS-ll magtape interface

SYNOPSIS
controlier zsO at uba? csr 0172520 vector Isintr
tape IsO at zsO drive 0

DESCRIPTION
The ts-ll combination provides a standard tape drive interface as described in mtio(4). The Is-
11 operates only at 1600 bpi, and only one transport is possible per controller.

SEE ALSO
ml(l), tar(!), tpO), mtio(4), ht(4), tm(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

ts%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

ts%d: not online. An attempt was made to access the tape while it was omine; this message is
written on the terminal of the user who tried to access the tape.

ts%d: hard error bn%d xsO=%b. A hard error occurred on the tape at block brr, status register
o is printed in octal and symbolically decoded as bits.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

The device lives at the same address as a tm-ll tm(4); as it is very difficult to get this device to
interrupt, a generic system assumes that a Is is present whenever no tm-ll exists but the csr
responds and a Is-II is configured. This does no harm as long as a non-existent ts-l1 is not
accessed.

4th Berkeley Distribution 27 July 1983

I

I

TrY (4) UNIX Programmer's Manual ITY(4)

NAME
tty - general terminal interface

SYNOPSIS
#include <sgtty.li>

DESCRIPTION
This section describes both a particular special file /dev/ttyand the terminal drivers used for
conversational computing.

Line disciplines.

The system provides different line disciplines for controlling communications lines. In this ver­
sion of the system there are three disciplines I\vailable:

old The old (standard) terminal driver. This is used when using the standard shell sh(l)
and for compatibility with other standard version 7 UNIX systems.

new A newer terminal driver, with features for job control; this must be used when using
csh(l).

net A line discipline used for networking and loading data into the system over communi­
cations lines. It allows high speed input at very low overhead, and is described in
bk(4).

Line discipline switching is accomplished with the TIOCSETD ioetl:

int Idisc = LDISC; ioctJ(filedes, TIOCSETD, &ldisC>;

where LDISC is OITYDISC for the standard tty driver, NTTYDISC for the new driver and
NETLDlSC for the networking discipline. The standard (currently old) tty driver is discipline 0
by convention. The current line discipline can be obtained with the TIOCGETD ioctl. Pending
input is discarded when the line discipline is changed.

All of the low-speed asynchronous communications ports can use any of the available line dis­
ciplines, no matter what hardware is involved. The remainder of this section discusses the
"old" and "new" disciplines.

The control terminal.

When a terminal file is opened, it causes the process to wait until a connection is established.
In practice, user programs seldom open these files; they are opened by init(8) and become a
user's standard input and output file.

If a process which has no control terminal opens a terminal file, then that terminal file becomes
the control terminal for that process. The control terminal is thereafter inherited by a child
process during a !ork(2), even if the control terminal is closed.

The file /dev/tty is, in each process, a synonym for a control terminal associated with that pro­
cess. It is useful for programs that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used for programs that demand a file
name for output, when typed output is desired and it is tiresome to find out which terminal is
currently in use.

Process groups.

Command processors such as csh(l) can arbitrate the terminal between different jobs by placing
related jobs in a single process group and associating this process group with the terminal. A
terminals associated process group may be set using the TIOCSPGRP ioctl(2):

ioctHfildes, TIOCSPGRP, &pgrp)

4th Berkeley Distribution 9 February 1983

ITY (4) UNIX Programmer's Manual ITY (4)

or examined using TIOCGPGRP rather than TIOCSPGRP, returning the current process group
in pgrp. The new terminal driver aids in this arbitration by restricting access to (he terminal by
processes which are not in the current process group; see Job access control below.

Modes.

The terminal drivers have three major modes, characterized by the amount of processing on the
input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is
done. The edited line is made available when it is completed by a newline or when
an EOT (control-D, hereafter 'D) is entered. A carriage return is usually made
synonymous with newline in this mode, and replaced with a newline whenever it is
typed. All driver functions (input editing, interrupt generation, output processing
such as delay generation and tab expansion, etc.) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making
the input character available to the user program as it is typed. Flow control,
literal-next and interrupt processing are still done in this mode. Output processing is
done.

RAW This mode eliminates all input processing and makes all input characters available as
they are typed; no output processing is done either.'

The style of input processing can also be very different when the terminal is put in non­
blocking i/o mode; see !cnt/(2). In this case a read(2) from the control terminal will never
block, but rather return an error indication (EWOULDBLOCK) if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is present. To enable this
mode the F ASYNC flag should be set using !cntl(2).

Input editing.

A UNIX terminal ordinarily operates in full-duplex mode. Characters may be typed at any
time, even while output is occurring, and are only lost when the system's character input
buffers become completely choked, which is rare, or when the user has accumulated the max­
imum allowed number of input characters that have no! yet been read by some program.
Currently this limit is 256 characters. In the old terminal driver all the saved characters are
thrown away when the limit is reached, without notice; the new driver simply refuses to accept
any further input, and rings the terminal bell.

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped off before the character is given to the program. By clearing either the EVEN or ODD
bit in the flags word it is possible to have input characters with that parity discarded (see the
Summary below.)

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioctl,
which takes, as its third argument, the address of a character. The system pretends that this
character was typed on the argument terminal, which must be the control terminal except for
the super-user (this call is not in standard version 7 UNIX).

Input characters are normally echoed by putting them in an output queue as they arrive. This
may be disabled by clearing the ECHO bit in the flags word using the 511y(3) call or the
TIOCSETN or TIOCSETP ioctls (see the Summary below).

In cooked mode, terminal input is processed in units of lines. A program attempting to read
will normally be suspended until an entire line has been received (but see the description of
SIGTTIN in Modes above and FIONREAD in Summary below.) No matter how many charac­
ters are requested in the read call, at most one line will be returned. It is not, however, neces­
sary to read a whole line at once; any number of characters may be requested in a read, even
one, without losing information.

4th Berkeley Distribution 9 February J 983 2

I

I

TrY (4) UNIX Programmer's Manual TTY (4)

During input, line editing is normally done, with the character '#' logically erasing the last
character typed and the character'@' logically erasing the entire current input line. These are
often reset on crt's, with 'H replacing #, and 'u replacing @. These characters never erase
beyond the beginning of the current input line or an 'D. These chaiacters may be entered
literally by preceding them with '\'; in the old teletype driver both the '\' and the character
entered literally will appear on the screen; in the new driver the '\ ' will normally disappear.

The drivers normally treat either a carriage return or a newline character as terminating an
input line, replacing the return with a newline and echoing a return and a line feed. If the
CRMOD bit is cleared in the local mode word then the processing for carriage return is dis­
abled, and it is simply echoed as a return, and does not terminate cooked mode input.

In the new driver there is a literal-next character 'V which can be typed in both cooked and
CBREAK mode preceding any character to prevent its special meaning. This is to be preferred
to the use of '\ ' escaping erase and kill characters, but '\ ' is (at least temporarily) retained with
its old function in the new driver for historical reasons.

The new terminal driver also provides two other editing characters in normal mode. The
word-erase character, normally 'W, erases the preceding word, but not any spaces before it.
For the purposes of 'W, a word is defined as a sequence of non-blank characters, with tabs
counted as blanks. Finally, the reprint character, normally 'R, retypes the pending input begin­
ning on a new line. Retyping occurs automatically in cooked mode if characters which would
normally be erased from the screen are fouled by program output.

Input echoing and redisplay

In the old terminal driver, nothing special occurs when an erase character is typed; the erase
character is simply echoed. When a kill character is typed it is echoed followed by a new-line
(even if the character is not killing the line, because it was preceded by a '\ '!')

The new terminal driver has several modes for handling the echoing of terminal input, con­
trolled by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA bit is normally set in
the local mode word. Characters which are logically erased are then printed out backwards pre­
ceded by '\' and followed by 'I' in this mode.

Crt terminals. When a crt terminal is in use, the LCRTBS bit is normally set in the local mode
word. The terminal driver then echoes the proper number of erase characters when input is
erased; in the normal case where the erase character is a 'H this causes the cursor of the termi­
nal to back up to where it was before the logically erased character was typed. If the input has
become fouled due to interspersed asynchronous output, the input is automatically retyped.

EraSing characters from a crt. When a crt terminal is in use, the LCRTERA bit may be set to
cause input to be erased from the screen with a "backspace-space-backspace" sequence when
character or word deleting sequences are used. A LCRTKIL bit may be set as well, causing the
input to be erased in this manner on line kill sequences as well.

Echoing of control characters. If the LCTLECH bit is set in the local state word, then non­
printing (control) characters are normally echoed as 'X (for some X) rather than being echoed
unmodified; delete is echoed as '?

The normal modes for using the new terminal driver on crt terminals are speed dependent. At
speeds less than 1200 baud, the LCRTERA and LCRTKILL processing is painfully slow, so
stryO) normally just sets LCRTBS and LCTLECH; at speeds of J200 baud or greater all of
these bits are normally set. StryO) summarizes these option settings and the use of the new
terminal driver as "newcrt."

4th Berkeley Distribution 9 February 1983 3

TIY(4) UNIX Programmer's Manual TIY (4)

Output processing.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. (As noted above, input characters are
normally echoed by putting them in the output queue as they arrive.) When a process produces
characters more rapidly than they can be typed, it will be suspended when its output queue
exceeds some limit. When the queue has drained down to some threshold the program is
resumed. Even parity is normally generated on output. The EOT character is not transmitted
in cooked mode to prevent terminals that respond to it from hanging up; programs using raw or
cbreak mode should be careful.

The terminal drivers provide necessary processing for cooked and CBREAK mode output
including delay generation for certain special characters and parity generation. Delays are
available after backspaces "H, form feeds "L, carriage returns "M, tabs "I and newlines T The
driver will also optionally expand tabs into spaces, where the tab stops are assumed to be set
every eight columns. These functions are controlled by bits in the tty flags word; see Summary
below.

The terminal drivers provide for mapping between upper and lower case on terminals lacking
lower case, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is a output flush character, normally "0, which sets
the LFLUSHO bit in the local mode word, causing subsequent output to be flushed until it is
cleared by a program or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any pending input. An iocll
to flush the characters in the input and output queues TIOCFLUSH, is also available.

Upper case terminals and Hazeltines

If the LeASE bit .is set in the tty flags, then all upper-case leiters are mapped into the
corresponding lower·case letter. The upper-case letter may be generated by preceding it by '\'.
If the new terminal driver is being used, then upper case letters are preceded by a '\' when
output. In addition, the following escape sequences can be generated on oulput and accepted
on input:

for I (1
use \. \! \- \(\)
To deal with Hazeltine terminals, which do not understand that - has been made into an ASCII
character, the LTILDE bit may be set in the local mode word when using the new terminal
driver; in this case the character - will be replaced with the character' on output.

Flow control.

There are two characters (the stop character, normally 'S, and the start character, normally "Q)
which cause output to be suspended and resumed respectively. Extra stop characters typed
when output is already stopped have no effect, unless the start and stop characters are made the
same, in which case output resumes.

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the
system produces a stop character (default OS) when the input queue is in danger of overflowing,
and a start character (default "Q) when the input has drained sufficiently. This mode is useful
when the terminal is actually another machine that obeys the conventions.

Line control and breaks.

There are several iocli calls available to control the state of the terminal line. The T10CSBRK
ioctI will set the break bit in the hardware interface causing a break condition (0 exist; this can
be cleared (usually after a delay with s/eepO» by TlOCCBRK. Break conditions in the input
are reflected as a nul! character in RAW mode or as the interrupt character in cooked or
CBREAK mode. The TIOCCDTR ioctl will clear the data terminal ready condition; it can be

4th Berkeley Distribution 9 February 1983 4

I

I

ITY(4) UNIX Programmer's Manual ITY(4)

set again by TJOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up his termi­
nail a SIGHUP hangup signal is sent to the processes in the distinguished process group of the
terminal; this usually causes them to terminate (the SIGH UP can be suppressed by setting the
LNOHANG bit in the local state word of the driver.) Access to the terminal by other processes
is then normally revoked, so any further reads will fail, and programs that read a terminal and
test for end-of-file on their input will terminate appropriately.

When using an ACU it is possible to ask that the phone line be hung up on the last close with
the TIOCHPCL iocti; this is normally done on the outgoing line.

Interrupt characters.

There are several characters that generate interrupts in cooked and CBREAK mode; all are sent
the processes in the control group of the terminal, as if a TIOCGPGRP ioctl were done to get
the process group and then a killpg(2) system call were done, except that these characters also
flush pending input and output when typed at a terminal (li 'Ia TIOCFLUSHl. The characters
shown here are the defaults; the field names in the structures (given below) are also shown.
The characters may be changed, although this is not often done.

'? t_inlrc (Delete) generates a SIGINT signal. This is the normal way to stop a process
which is no longer interesting, or to regain control in an interactive program.

"\ t quite (FS) generates a SIGQUIT signal. This is used to cause a program to terminate
a-;;d produce a core image, if possible, in the file core in the current directory.

"Z t_suspc (EM) generates a SIGTSTP signal, which is used to suspend the current pro­
cess group.

"Y t dsuspc (SUB) generates a SIGTSTP signal as ·Z does, but the signal is sent when a
p-;:ogram attempts to read the -Y, rather than when it is typed.

Job access control.

When using the new terminal driver, if a process which is not in the distinguished process
group of its control terminal attempts to read from that terminal its process group is sent a
SIGITIN signal. This signal normally causes the members of that process group to stop. If,
however, the process is ignoring SIGTTIN, has SIGTTIN blocked, is an orphan process, or is in
the middle of process creation using vfork(2», it is instead returned an end-of-file. (An orphan
process is a process whose parent has exited and has been inherited by the init(8) process.}
Under older UNIX systems these processes would typically have had their input files reset to
Idev/null. so this is a compatible change.

When using the new terminal driver with the LTOSTOP bit set in the local modes, a process is
prohibited from writing on its control terminal if it is not in the distinguished process group for
that terminal. Processes which are holding or ignoring SIGITOU signals, which are orphans, or
which are in the middle of a vfork(2) are excepted and allowed to produce output.

Summary of modes.

Unfortunately, due to the evolution of the terminal driver, there are 4 different structures
which contain various portions of the driver data. The first of these (sgttyb) contains that part
of the information largely common between version 6 and version 7 UNIX systems. The
second contains additional control characters added in version 7. The third is a word of local
state peculiar to the new terminal driver, and the fourth is another structure of special charac­
ters added for the new driver. In the future a single structure may be made available to pro­
grams which need to access all thi~. information; most programs need not concern themselves
with all this state.

4th Berkeley Distribution 9 February 1983 5

TIY(4) UNIX Programmer's Manual

Basic modes: sgtly.

The basic ioclls use the structure defined in < sglty.h> :

struct sgttyb I

);

char slUspeecl;
char sg_ospeecl;
char
char
short

sg_erase;
slLkill ;
slLllags;

TIY(4)

The sg_ispeedand sg_ospeedfields describe the input and output speeds of the device according
to the following table, which corresponds to the DEC DH-ll interface. If other hardware is
used, impossible speed changes are ignored. Symbolic values in the table are as defined in
<sglty.h> .

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud

BIIO 3 110 baud I B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 II 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 External A
EXTB 15 External B

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 2741's 034.5 baud) must be imple­
mented by the user's program. The half-duplex line discipline required for the 202 dataset
(1200 baud) is not supplied; full-duplex 212 datasets work fine.

The SK.-erase and sg_kill fields of the argument structure specify the erase and kill characters
respectively. (Defaults are # and @.)

The sgJlags field of the argument structure contains several bits that determine the system's
treatment of the terminal:

ALLDELA Y 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays (not implemented):
BSO 0
BSI 0100000
VTDELA Y 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFI 0100000
CRDELA Y 0030000 Select carriage-return delays:
CRO 0
CRI 0010000
CR2 0020000
CR3 0030000

4th Berkeley Distribution 9 February 1983 6

I

TIY (4)

TBDELAY
TABO
TABI
TAB2
XTABS
NLDELAY
NLO
NLI
NL2
NLJ
EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

UNIX Programmer's Manual

0006000 Select tab delays:
o
0001000
0004000
0006000
0001400 Select new-line delays:
o
0000400
0001000
0001400
0000200 Even parity allowed on input (most terminals)
0000100 Odd parity allowed on input
0000040 Raw mode: wake up on all characters, 8-bit interface
0000020 Map CR into LF; echo LF or CR as CR-LF
0000010 Echo (full duplex)
0000004 Map upper case to lower on input
0000002 Return each character as soon as typed
0000001 Automatic flow control

TTY(4)

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but might be used for Terminet 300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Termine! 300. Delay
type 2 lasts about .16 seconds and is suitable for the VTOS and the TI 700. Delay type 3 is suit­
able for the concept-100 and pads lines to be at least <) characters at 9600 baud.

New-line delay type I is dependent on the current column and is tuned for Teletype model
37's. Type 2 is useful for the VT05 and is about .I 0 seconds. Type 3 is unimplemented and is
O.

Tab delay type I is dependent on the amount of movement and is tuned to the Teletype model
37. Type 3, called XT ABS, is not a delay at all but causes tabs to be replaced by the appropri­
ate number of spaces on output.

Input characters with the wrong parity, as determined by bits 200 and 100, are ignored in
cooked and CBREAK mode.

RA W disables all processing save output flushing with LFLUSHO; full 8 bits of input are given
as soon as it is available; all 8 bits are passed on output. A break condition in the input is
reported as a null character. If the input queue overflows in raw mode it is djscarded; this
applies to both new and old drivers.

CRMOD causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (for terminals with a new-line function).

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a full line; all processing is done except the input editing: character
and word erase and line kill, input reprint, and the special treatment of \ or EOT are disabled.

TANDEM mode causes the system to produce a stop character (default AS) whenever the input
queue is in danger of overflowing, and a start character (default AQ) when the input queue has
drained sufficiently. It is useful for flow control when the 'terminal' is really another computer
which understands the conventions.

4th Berkeley Distribution 9 February 1983 7

TrY (4) UNIX Programmer's Manual TrY(4)

Basic ioctls

In addition to the TIOCSETD and TIOCGETD disciplines discussed in Line disciplines above,
a large number of other ioct{(2) calls apply to terminals, and have the general form:

#include < sgtty.h>

loetHfildes, code, arg)
struet sgttyb 0arg;

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the
pointed-to sgttyb structure.

TIOCSETP Set the parameters according to the pointed-to sgttyb structure. The interface
delays until output is quiescent, then throws away any unread characters,
before changing the modes.

TIOCSETN Set the parameters like TIOCSETP but do not delay or flush input. Input is
not preserved, however, when changing to or from RAW.

With the following codes the arg is ignored.

TIOCEXCL Set "exclusive-use" mode: no further opens are permitted until the file has
been closed.

TIOCNXCL Turn olf "exclusive-use" mode.

TIOCHPCL When the file is closed for the last time, hang up the terminal. This is useful
when the line is associated with an ACU used to place outgoing calls.

TIOCFLUSH All characters waiting in input or output queues are flushed.

The remaining calls are not available in vanilla version 7 UNIX. In cases where arguments are
required, they are described; arg should otherwise be given as O.

TIOCSTI the argument is the address of a character which the system pretends was typed
on the terminal.

TIOCSBRK the break bit is set in the terminal.

TIOCCBRK the break bit is cleared.

TIOCSDTR data terminal ready is set.

TIOCCDTR data terminal ready is cleared.

TIOCGPGRP arg is the address of a word into which is placed the process group number of
the control terminal.

TIOCSPGRP arg is a word <typically a process id) which becomes the process group for the
control terminal.

FIONREAD returns in the long integer whose address is arg the number of immediately
readable characters from the argument unit. This works for files, pipes, and
terminals, but not (yet) for multiplexed channels.

The second structure associated with each terminal specifies characters that are special in both
the old and new terminal interfaces: The following structure is defined in < syslioctl.h> , which
is automatically included in < sgtty.h> :

struct tchars (
char t_lntrc;
char t_qulte;

4th Berkeley Distribution

/0 interrupt 0/
/0 quit 0/

9 February 1983 8

I

I

TTY (4) UNIX Programmer's Manual TTY (4)

);

char
char
char
char

t_startc;
t_stope;
Ulofc;
t_llrkc;

/- start output -/
t. stop output of

f· end-of-file • f
f· input delimiter <like nil • f

The default values for these characters are A?, A\, 'Q, AS, AD, and -1. A character value of
-I eliminates the effect of that character. The Lhrkc character, by default -1, acts like a
new-line in that it terminates a 'line,' is echoed, and is passed to the program. The 'stop' and
'start' characters may be the same, to produce a toggle effect. It is probably counterproductive
to make other special characters (including erase and kill) identical. The applicable iOC11 calls
are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode

The third structure associated with each terminal is a local mode word; except for the
LNOHANG bit, this word is interpreted only when the new driver is in use. The bits of the
local mode word are:

LCRTBS
LPRTERA
LCRTERA
LTILDE
LMDMBUF
LLITOUT
LTOSTOI'
LFLUSHO
LNOHANG
LETXACK
LCRTKIL
LlNTRUP
LCTLECH
LPENDIN
LDECCTQ

000001 Backspace on erase rather than echoing erase
000002 Printing terminal erase mode
000004 Erase character echoes as backspace-space-backspace
000010 Convert - to ' on output (for Hazeltine terminals)
000020 Stop/start output when carrier drops
000040 Suppress output translations
000100 Send SIGITOU for background output
000200 Output is being flushed
000400 Don '(send hang up when carrier drops
001000 Diablo style buffer hacking (unimplemented)
002000 BS-space-BS erase entire line on line kill
004000 Generate interrupt SIGTINT when input ready to read
010000 Echo input control chars as 'X, delete as -?
020000 Retype pending input al next read or input character
040000 Only 'Q restarts output after AS, like DEC systems

The applicable ioct/functions are:

TIOCLBIS arg is the address of a mask which is the bits to be set in the local mode word.

TIOCLBIC

TIOCLSET

TIOCLGET

arg is the address of a mask of bits to be cleared in the local mode word.

arg is the address of a mask to be placed in the local mode word.

arg is the address of a word into which the current mask is placed.

Local special chars

The final structure associated with each terminal is the ftchars structure which defines interrupt
characters for the new terminal driver. Its structure is:

slruc! ltclllUS !
char
char
char
char

t_suspe;
'_dsuspc;
'_rpmtc;
Cflushc;

4th Berkeley Distribution

;- slop process signal ./
/. delayed stop process signal .;
f· reprint line 0/
f. flush output (toggles) 0;

9 February 1983 9

TTY(4} UNIX Programmer's Manual TTY(4}

FILES

};

char
char

t_werasc;
t_lnextc;

/. word erase. /
/. literal next character· /

The default values for these characters are 'Z, 'Y, 'R, '0, 'W, and 'V. A value of -1 disables
the character.

The applicable ioctl functions are:

TIOCSLTC args is the address of a Itchars structure which defines the new local special charac­
ters.

TIOCGLTC args is the address of a Ilchars structure into which is placed the current set of
local special characters.

/dev/tty
/dev/tty·
/dev/console

SEE ALSO
csh(1}, stty(1}, ioctI(2}, sigvec(2}, stty(3C}, getty(S), init(8)

BUGS
Half-duplex terminals are not supported.

4th Berkeley Distribution 9 February 1983 10

I

I

TU(4) UNIX Programmer's Manual TU (4)

NAME
tu - VAX-l 1/730 and VAX-ll/750 TU58 console cassette interface

SYNOPSIS
options MRSP (for VAX-1117S0's with an MRSP prom)

DESCRIPTION

FILES

The tu interface provides access to the VAX 111730 and 111750 TU5S console cassette
drive(s).

The interface supports only block i/o to the TUS8 cassettes. The devices arc normally manipu­
lated with the aTjf(8V) program using the "r' and "m" options.

The device driver is automatically included when a system is configured to run on an 111730 or
111750.

The TUSS on an 111750 uses the Radial Serial Protocol (RSP) to communicate with the cpu
over a serial line. This protocol is inherently unreliable as it has no flow control measures buH!
in. On an 111730 the Modified Radial Serial Protocol is used. This protocol incorporates flow
control measures which insure reliable data transfer between the cpu and the device. Certain
11/750'5 have been modified to use the MRSP prom used in the 11/730. To reliably use the
console TU58 on an 11/750 under UNIX, the MRSP prom is required. For those 111750'5
without an MRSP prom, an unreliable hut often useable interface has been developed. This
interface uses an assembly language "pseudo-dma" routine to minimize the receiver interrupt
service latency. To include this code in the system, the configuration must lIot specify the sys­
tem will run on an 111730 or use an MRSP prom. This unfortunately makes it impossible to
configure a single system which will properly handle TUS8's on both an 111750 and an 11/730
(unless both machines have MRSP proms).

Idev/tuO
Idev/tul (only on a VAX-l 11730)

SEE ALSO
arff(8V)

DIAGNOSTICS

BUGS

tu%d: no bp, active "Iod. A transmission complete interrupt was received with no outstanding
i/o request. This indicates a hardware problem.

tu%d protocol error, state=%s, op=%x, cnt=%d, block=%u. The driver entered an illegal
state. The information printed indicates the illegal state, operation currently being executed,
the ilo count, and the block number on the cassette.

tu%d receive state error, state=%s, byte=%x. The driver entered an illegal stale in the
receiver finite state machine. The state is shown along with the control byte of the received
packet.

tu%d: read stalled. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This usually indicates that one or more receiver
interrupts were lost and the transfer is restarted (111750 only).

tu%d: hard error bn%d, pk_mod %0. The device returned a status code indicating a hard error.
The actual error code is shown in octal. No retries are attempted by the driver.

The VAX-1lI7S0 console interface without MRSP prom is unuseable while the system is
multi-user; it should be used only with the system running single-user and, even then, with
caution.

4th Berkeley Distribution 27 July 1983

UDA (4) UNIX Programmer's Manual UDA (4)

NAME
uda - UDA-50 disk controller interface

SYNOPSIS
controller udaO at uhaO CSf 0172150 vector udintr
disk raO at udaO drive 0

DESCRIPTION
This is a driver for the DEC UDA-50 disk controller. The UDA-50 communicates with the
host through a packet oriented protocol termed the Mass Storage Control Protocol (MSCP).
Consult the file < vax/mscp.h> for a detailed description of this protocol.

Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1, etc. The standard device names begin with "ra" followed by
the drive number and then a letter a-h for partitions 0-7 respectively. The character? stands
here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one liD operation and therefore raw 110 is considerablY more
efficient when many words are transmitted. The names of the raw files conventionally begin
with an extra 'r.'

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPORT
This driver handles all drives which may be connected to the UDA-50. Drive types per se are
not recognized, but rather the variable length partitions are defined as having an "infinite"
length and the controller is relied on to return an error when an inaccessible block is requested.
For constructing file systems, however the partitions sizes are required. The origin and size (in
sectors) of the pseudo-disks on each drive are shown below. Partitions are not rounded to
cylinder boundaries, as on other drives, because the type of drive attached to the controller is
discovered too late in the autoconfiguration process to maintain separate partition tables for
each drive. (The lack of proper drive type recognition would be more easily dealt with if the
partition tables were read off the drive.)

RA60 partitions
disk start length
ra?a 0 15884
ra?b 15884 33440
ra?c 0 400176
ra?g 49324 82080
ra?h 131404 268772

RA80 partitions
disk. start length
ra'!a 0 15884
ra?b 15884 33440
ra?c 0 242606
ra?g 49324 82080
ra?h 131404 111202

RA8l partitions
disk start length
ra?a 0 15884
ra?b 15884 33440

4th Berk.eley Distribution 27 July 1983

I

I

UDA (4) UNIX Programmer's Manual UDA (4)

FILES

ra?c
ra?d
ra?e
ra?f
ra?g
ra?h

o
340670
356554
412490
49324
131404

891072
15884
55936
478582
82080
759668

The ra?a partition is normally used for the root file system, the ra?b partition as a paging area,
and the ra?c partition for pack-pack copying (it maps the entire disk).

/dev/raI0-9J la-fl
/dev/rralO-9J la-fl

DIAGNOSTICS

BUGS

uda: ubinfo 'lox. (VAX 111750 only.) When allocating UNIBUS resources, the driver found it
already had resources previously allocated. This indicates a bug in the driver.

udasa %0, state 'Iod. (Additional status information given after a hard i/o error.) The values of
the UDA-50 status register and the internal driver state are printed.

uda'lod: random interrupt ignored. An unexpected interrupt was received (e.g. when no if 0

was pending). The interrupt is ignored.

uda'lod: interrupt in unknown state 'Iod ignored. An interrupt was received when the driver
was in an unknown internal state. Indicates a hardware problem or a driver bug.

uda%d: fatal error (%0). The UDA-50 indicated a "fatal error" in the status returned to the
host. The contents of the status register are displayed.

OFFLINE. (Additional status information given after a hard if 0 error.) A hard i/o error
occurred because the drive was not on-line.

status '100. (Additional status information given after a hard i/o error.) The status information
returned from the UD A-50 is tacked onto the end of the hard error message printed on the
console.

uda: unknown packet. An MSCP packet of unknown type was received from the UDA-50.
Check the cabling to the controller.

The following errors are interpretations of MSCP error messages returned by the UDA-50 to
the host.

uda"lod: "los error, controller error, event 0%0.

uda'lod: 'los error, host memory access error, event 0%0, addr 0%0.

uda%d: O/OS error, disk transfer error, unit %d.

uda'lod: 'los error, SDI error, unit %d, event 0'100.

uda%d: 'los error, small disk error, unit %d, event 00/00, cyl 'Iod.

uda'lod: 'los error, unknown error, unit 'Iod, format 0%0, event 00/00.

The partition tables are so poorly laid out that they almost certainly force each site to tailor
them to their individual needs. The problem is even worse when a site has a mixed collection
of drives. The best solution would be to read the partition tables off the drive.

4th Berkeley Distribution 27 July 1983 2

UDP(4P) UNIX Programmer's Manual UDP (4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
#include < sys/socket.h>
#include < netinet/in.h>

s - socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support the SOCK DGRAM
abstraction for the Internet protocol family. UDP sockets are connectionless, and are normally
used with the sendto and recvfrom calls, though the connect(2) call may also be used to fix the
destination for future packets (in which case the recv(2) or read(2) and send(2) or write(2) sys­
tem calls may be used).

UDP address formats are identical to those used by TCP. In particular UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port space is
separate from the TCP port space (i.e. a UDP port may not be "connected" to a TCP port). In
addition broadcast packets may be sent (assuming the underlying network supports this) by
using a reserved "broadcast address"; this address is network interface dependent.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRINUSE]
when an attempt is made to create a socket with a port which has already been
allocated;

[EADDRNOT A V AIL]

SEE ALSO

when an attempt is made to create a socket with a network address for which
no network interface exists.

send(2), recv(2), intro(4N), inet(4F)

4th Berkeley Distribution 25 March 1982

I

I

UN(4) UNIX Programmer's Manual UN (4)

NAME
un - Ungermann-Bass interface

SYNOPSIS
device unO at ubaO csr 0160210 vector unintr

DESCRIPTION
The un interface provides access to a 4 Mb/s baseband network. The hardware uses a standard
DEC DRll-W DMA interface in communicating with the host. The Ungermann-Bass
hardware incorporates substantial protocol software in the network device in an attempt to
offload protocol processing from the host.

The network number on which the interface resides must be specified at boot time with an
SIOCSIFADDR ioct!. The host's address is discovered by communicating with the interface.
The interface will not transmit or receive any packets before the network number has been
defined.

DIAGNOSTICS
un%d: can't initialize. Insufficient UNIBUS resources existed for the device to complete ini­
tialization. Usually caused by having multiple network interfaces configured using buffered data
paths on a data path poor machine such as the 111750.

un"lod: unexpected reset The controller indicated a reset when none had been requested.
Check the hardware (but see the bugs section below).

un%d: stray interrupt. An unexpected interrupt was received. The interrupt was ignored.

un%d: input error csr=%b. The controller indicated an error on moving data from the device
to host memory.

un%d: bad packet type %d. A packet was received with an unknown packet type. The packet
is discarded.

un%d: output error csr=%b. The device indicated an error on moving data from the host to
device memory.

un%d: invalid state "Iod csr=%b. The driver found itself in an invalid internal state. The
state is reset to a base state.

un'lod: can't handle af%d. A request was made to send a message with an address format
which the driver does not understand. The message is discarded and an error is returned to the
user.

un%d: error limit exceeded. Too many errors were encountered in normal operation. The
driver will attempt to reset the device, desist from attempting any if 0 for approximately 60
seconds, then reset itself to a base state in hopes of resyncing itself up with the hardware.

un%d: restarting. After exceeding its error limit and resetting the device, the driver is restart­
ing operation.

SEE ALSO

BUGS

intro(4N), inet(4F)

The device does not reset itself properly resulting in the interface getting hung up in a state
from which the only recourse is to reboot the system.

4th Berkeley Distribution 27 July 1983

UP(4) UNIX Programmer's Manual UP(4)

NAME
up - unibus storage module controller! drives

SYNOPSIS
controller seO at uba? csr 0176700 vector IIpinlr
disk IIPO at scO drive 0

DESCRIPTION
This is a generic UNIBUS storage module disk driver. It is specifically designed to work with
the Emulex SC-21 controller. It can be easily adapted to other controllers (although bootstrap­
ping will not necessarily be directly possible.)

Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1, etc. The standard device names begin with "up" followed
by the drive number and then a letter a-h for partitions 0- 7 respectively. The character? stands
here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write cal! results in exactly one 1/0 operation and therefore raw 1/0 is considerably more
efficient when many words are transmitted. The names of the raw files conventionallY begin
with an extra 'r.'

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPORT
The driver interrogates the controller's holding register to determine the type of drive attached.
The driver recognizes four different drives: AMPEX 9300, CDC 9766, AMPEX Capricorn, and
FUJITSU 160. The origin and size of the pseudo-disks on each drive are as follows:

CDC 9766 300M drive partitions:
disk start length
up?a 0 15884
up?b 16416 33440
up?c 0 500384
up?d 341696 15884
up?e 358112 55936
up?f 414048 861760
up?g 341696 158528
up?h 49856 291346

AMPEX 9300 300M drive partitions:
disk star! length
up?a 0 15884
up?b 16416 33440
IIp?c 0 495520
up?d 341696 15884
up?e 358112 55936
up?f 414048 81312
up?g 341696 153664
up?h 49856 291346

cyl
0-26
27-81
0-822
562-588
589-680
681-822
562-822
82-561

cyl
0-26
27-81
0-814
562·588
589-680
681-814
562-814
82-561

AMPEX Capricorn 330M drive partitions:
disk start length cyl
hp?a 0 15884 0-31
hp?b 16384 33440 32-97

4th Berkeley Distribution 27 July 1983

I

I

UP(4)

FILES

UNIX Programmer's Manual UP(4)

hp?c 0 524288 0-1023
hp?d 3420]6 15884 668-699
hp?e 358400 55936 700-809
hp?f 414720 109408 810-1023
hp?g 342016 182112 668-1023
hp?h 50176 291346 98-667

FUJITSU 160M drive partitions:
disk start length cyl
up?a 0 15884 0-49
up?b 16000 33440 50-154
up?c 0 263360 0-822
up?d 49600 15884 155-204
up?e 65600 55936 205-379
up?f 121600 141600 380-822
up?g 49600 213600 155-822

It is unwise for all of these files to be present in one installation, since there is overlap in
addresses and protection becomes a sticky matter. The up?a partition is normally used for the
root file system, the up?b partition as a paging area, and the up?c partition for pack-pack copy­
ing (it maps the entire disk), On 160M drives the up?g partition maps the rest of the pack. On
other drives both up?g and up?h are used to map the remaining cylinders.

/dev/up[0-7J [a-hI
/dev/rup[0-7J [a-hI

block files
raw files

SEE ALSO
hk(4), hp(4), uda(4)

DIAGNOSTICS
up%d%c: hard error sn"iod cs2=%b erl =%b er2=%b. An unrecoverable error occurred during
transfer of the specified sector in the specified disk partition. The contents of the cs2, erl and
er2 registers are printed in octal and symbolically with bits decoded. The error was either unre­
coverable, or a large number of retry attempts (including offset positioning and drive recalibra­
lion) could not recover the error.

up%d: write locked. The write protect switch was set on the drive when a write was attempted.
The write operation is not recoverable.

up%d: not ready. The drive was spun down or off line when it was accessed. The i/o operation
is not recoverable.

up%d: not ready (flakey). The drive was not ready, but after printing the message about being
not ready (which takes a fraction of a second) was ready. The operation is recovered if no
further errors occur.

up%d%c: soft ecc sn%d. A recoverable ECC error occurred on the specified sector of the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

sc%d: lost interrupt. A timer watching the controller detecting no interrupt for an extended
period while an operation was outstanding. This indicates a hardware or software failure.
There is currently a hardware/software problem with spinning down drives while they are being
accessed which causes this error to occur. The error causes a UNIBUS reset, and retry of the
pending operations. If the controller continues to lose interrupts, this error will recur a few
seconds later.

4th Berkeley Distribution 27 July 1983 2

UP(4)

BUGS

UNIX Programmer's Manual UP(4)

In raw lIO read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and Iseek(2) should always deal in 512-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read off of each pack, as they are never quite
what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution 27 July J 983 3

I

UT(4) UNIX Programmer's Manual UT(4)

NAME
ut - UNIBUS TU45 tri-density tape drive interface

SYNOPSIS
controller utO at ubaO CST 0172440 vector utintr
tape tjO at utO drive 0

DESCRIPTION
The UI interface provides access to a standard tape drive interface as describe in mlio(4).
Hardware implementing this on the V AX is typified by the System Industries SI 9700 tape sub­
system. Tapes may be read Of written at 800, J 600, and 6250 bpi.

SEE ALSO
mt(I), mtio(4)

DIAGNOSTICS

BUGS

tj%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

tj%d: not online. An attempt was made to access the tape while it was offline; this message is
written on (he terminal of the user who tried (0 access the tape.

tj%d: call', change density ill mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

ut%d: soft error 1111%11 cs1 =%h er=%b cs2=%b ds=%b. The formatter indicated a corrected
error at a densily other than 800bpi. The data transferred is assumed to be correct.

ut%d: hard error !m%d cs1=%b er=%b cs2=%b ds=%b. A tape error occurred at block bll.
Any error is fatal on non-raw tape; when possible the driver will have retried the operation
which failed several times before reporting the error.

tj%d: !osl interrupt. A tape operation did not complete within a reasonable time, most likely
because the tape was taken off-line during rewind or lost vacuum. The controller should, but
does nol, give an interrupt in these cases. The device will be made available again after this
message, bllt any current open reference to the device will return an error as the operation in
progress aborts.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution 27 July 1983

UU (4) UNIX Programmer's Manual UU (4)

NAME
uu - ruS8/DEClape II UNIBUS cassette interface

SYNOPSIS
options UUDMA
device uuO at ubaO csr 0176500 vector uurintr uuxintr

DESCRIPTION

NOTES

The uu device provides access to dual DEC TU58 tape cartridge drives connected to the
UNIBUS via a DLll-W interface module.

The interface supports only block i/o to the TU58 cassettes. The drives are normally manipu­
lated with the ar.O(8V) program using the "m" and "f' options.

The driver provides for an optional write and verify (read after write) mode that is activated by
specifying the "a" device.

The TU58 is treated as a single device by the system even though it has two separate drives,
"uuO" and "uul". If there is more than one TU58 unit on a system, the extra drives are
named "uu2", "uu3" etc.

Assembly language code to assist the driver in handling the receipt of data (using a pseudo-dma
approach) should be included when using this driver; specify "options UUDMA" in the
configuration file.

ERRORS

FILES

The following errors may be returned:

[ENXIO} Nonexistent drive (on open); offset is too large or bad (undefined) ioctl code.

[EIO] Open failed, the device could not be reset.

[EBUSY}

Idev/uu?
Idev/uu?a

Drive in use.

SEE ALSO
tu(4), arff(8V)

DIAGNOSTICS
uu%d: no bp, active %d. A transmission complete interrupt was received with no outstanding
i/o request. This indicates a hardware problem.

uu%d protocol error, state-%s, op=%x, cnt=%d, block=%d. The driver entered an illegal
state. The information printed indicates the illegal state, the operation currently being exe­
cuted, the i/o count, and the block number on the cassette.

uu%d: break received, transfer restarted. The TU58 was sending a continuous break signal
and had to be reset. This may indicate a hardware problem, but the driver will attempt to
recover from the error.

uu',i,d receive state error, state=%s, byte=%x. The driver entered an illegal state in the
receiver finite state machine. The state is shown along with the control byte of the received
packet.

uu%d: read stalled. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This usually indicates that one or more receiver
interrupts were lost and the transfer is restarted.

4th Berkeley Distribution 27 July 1983

I

I

UU(4) UNIX Programmer's Manual UU(4)

uu"d: bard error bn"d. pk_mod ~ The device returned a status code indicating a hard
error. The actual error code is shown in octal. No retries are attempted by the driver.

4th Berkeley Distribution 27 July 1983 2

VA(4) UNIX Programmer's Manual VA (4)

NAME
va - Benson-Varian interface

SYNOPSIS
controller vaO at ubaO CSf 0164000 vector ninll
disk vzO at vall drive 0

DESCRIPTION

FILES

(NOTE: the confignration description, while counter-intuitive, is actually as shown above.)

The Benson-Varian printer/plotter in normally used with the programs vprO), vprint(J) or
vtrojf(I). This description is designed for those who wish to drive the Benson-Varian directly.

In print mode, the Benson-Varian uses a modified ASCII character set. Most control characters
print various non-ASCII graphics such as daggers, sigmas, copyright symbols, etc. Only LF and
FF are used as format effectors. LF acts as a newline, advancing to the beginning of the next
line, and FF advances to the top of the next page.

In plot mode, the Benson-Varian prints one raster line at a time. An entire raster line of bits
(2il2 bits = 264 bytes) is sent, and then the Benson-Varian advances to the next raster line.

Note: The Benson-Varian must be sent an even number of bytes. If an odd number is sent,
the last byte will be lost. Nulls can be used in print mode to pad to an even number of bytes.

To use the Benson-Varian yourself, you must realize that you can no! open the device, IdevlvaO
if there is a daemon active. You can see if there is an active daemon by doing a tpq(l) and
seeing if there are any files being printed.

To set the Benson-Varian into piot mode include the file < syslvcmd.h> and use the following
ioctl(2) call

jocll (fileno (va), VSETST ATE, plotmd);

where plotmd is defined to be

int plotmd[] = (VPLOT, 0, 0 l;
and va is the result of a call to Jopen on stdio. When you finish using the Benson-Varian in plot
mode you should advance to a new page by sending it a FF after putting it back into print
mode, i.e. by

in! prtmd[] = (VPRINT, 0,0 l;

fflush (va);
ioctl (fileno (va), VSETST ATE, prtmd);
write{fileno(va), "\1\0", 2);

N.B.: If you use the standard I/O library with the Benson-Varian you must do

setbuf{ vp, vpbuf);

where vpbuJis declared

char vpbuf[BUFSIZ];

otherwise the standard lIO library, thinking that the Benson-Varian is a terminal (since it is a
character special file) will not adequately buffer the data you are sending to the Benson-Varian.
This will cause it to run extremely slowly and tend to grind the system to a halt.

Idev/vaO

SEE ALSO
vfont(5), IprO), Ipd(8), vtroff(J), vp(4)

4th Berkeley Distribution 27 March i 983

I

I

VA(4) UNIX Programmer's Manual VA (4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO) The device is already in use.

[ElO) The device is omine.

The following message may be printed on the console.

va'lod: npr timeout The device was not able to get data from the UNIBUS within the timeout
period, most likely because some other device was hogging the bus. (But see BUGS below).

The I's (one's) and l's (lower-case el's) in the Benson-Varian's standard character set look very
similar; caution is advised.

The interface hardware is rumored to have problems which can play havoc with the UNIBUS.
We have intermittent minor problems on the UNIBUS where our va lives, but haven't ever
been able to pin them down completely.

4th Berkeley Distribution 27 March 1983 2

VP(4) UNIX Programmer's Manual VP(4)

NAME
vp - Versatec interface

SYNOPSIS
device vpO at ubaO csr 0177510 vector vpintr vplntr

DESCRIPTION

FILES

The Versatec printer/plotter is normally used with the programs vprO), vprint(!) or Vlro.uO).
This description is designed for those who wish to drive the Versatec directly.

To use the Versatec yourself, you must realize that you cannot open the device, /devlvpO if
there is a daemon active. You can see if there is a daemon active by doing a tpq(!), and seeing
if there are any files being sen t.

To set the Versatec into plot mode you should include < syslvcmd.h> and use the ioet/(2) call

ioctl(fileno(vp), VSETSTATE, plotmd);

where plotmdis defined to be

int plotmd[) = (VPLOT, 0, 0 I;
and vp is the result of a call to jopen on stdio. When you finish using the Versatec in plot mode
you should eject paper by sending it a EOT after putting it back into print mode, i.e. by

int prtmd[) = (VPRINT, 0, 0 I;

fflush(vp);
ioct](fileno(vp), VSETSTATE, prtmd);
write (fileno(vp), "\04", 1);

N.B.: If you use the standard I/O library with the Versatec you must do

setbuf(vp, vpbuf);

where vpbujis declared

char vpbuf!BUFSIZ];

otherwise the standard I/O library, thinking that the Versatec is a terminal (since it is a charac­
ter special file) will not adequately buffer the data you are sending to the Versatec. This will
cause it to run extremely slowly and tends to grind the system to a halt.

/dev/vpO

SEE ALSO
vfont(5), Ipr(I), Ipd(8), vtroff(J), va(4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is offline.

The configuration part of the driver assumes that the device is set up to vector print mode
through 0174 and plot mode through 0200. As the configuration program can't be sure which
vector interrupted at boot time, we specify that it has two interrupt vectors, and if an interrupt
comes through 0200 it is reset to 0174. This is safe for devices with one or two vectors at
these two addresses. Other configurations with 2 vectors may require changes in the driver.

4th Berkeley Distribution 27 July 1983

I

I

VV(4) UNIX Programmer's Manual VV(4)

NAME
vv - Proteon proNET 10 Megabit ring

SYNOPSIS
device vvO lit ubliD CST 161000 vector vvrint vvxint

DESCRIPTION
The vv interface provides access to a 10 Mb/s Proteon proNET ring network.

The network number to which the interface is attached must be specified with an SIOCSI­
FADDR ioctl before data can be transmitted or received. The host's address is discovered by
putting the interface in digital loop back mode (not joining the ring) and sending a broadcast
packet from which the source address is extracted. the Internet address of the interface would
be 128.3.0.24. .

The interface software implements error-rate limiting on the input side. This provides a
defense against situations where other hosts or interface hardware failures cause a machine to
be inundated with garbage packets. The scheme involves an exponential backoff where the
input side of the interface is disabled for longer and longer periods. In the limiting case, the
interface is turned on every two minutes or so to see if operation can resume.

If the installation is running CTL boards which use the old broadcast address of 0 instead of the
new address of Oxff, the define OLD _BROADCAST should be specified in the driver.

If the installation has a Wirecenter, the define WIRECENTER should be specified in the driver.
N.B.: Incorrect definition of WIRECENTER can cause hardware damage.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF NOTRAILERS
flag with an SIOCSIFFLAGS ioct!. -

DIAGNOSTICS
vv%d: host %d. The software announces the host address discovered during autoconfiguration.

vv%d: can't initialize. The software was unable to discover the address of this interface, so it
deemed "dead" will not be enabled.

vv%d: error vvocsr = 'lob. The hardware indicated an error on the previous transmission.

vv%d: output timeout. The token timer has fired and the token will be recreated.

vv%d: error vvicsr=%b. The hardware indicated an error in reading a packet off the ring.

en%d: can't handle af"lod. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

vv%d: vs_olen =%d. The ring output routine has been handed a message with a preposterous
length. This results in an immediate panic: vs_olen.

SEE ALSO
intro(4N), inet(4F)

4th Berkeley Distribution 27 July 1983

A.OUT(5) UNIX Programmer's Manual A.OUT (5)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
A.out is the output file of the assembler as(l) and the link editor Id(1). Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor­
mation as given in the include file for the V AX·ll is:

f·
• Header prepended to each a.out file . . /

struct exec {

};

long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

a_magic;
a_text;
a_data;
a_bss;
a_syms;
a_entry;
a_trsize;
a_drsize;

#define OMAGIC 0407
#define NMAGIC0410
#define ZMAGIC 0413

/.

/- magic number .f
I. size of text segment ./
/. size of initialized data ./
/. size of uninitialized data ./
/. size of symbol table ./
/- entry point ./
/. size of text relocation ./
/. size of data relocation .1

/. old impure format .f
f. read-only text ./
f. demand load format .f

o Macros which take exec structures as arguments and tell whether
• the file has a reasonable magic number or offsets to text I symbols I strings . . /

#define N BADMAG(x) \
«(x:).a_magic)!=OMAGIC && «x).a_magic)!=NMAGIC && «x).a_magic)!-ZMAGIC)

#define N TXTOFF(x) \
«i).a magic--ZMAGIC? 1024: sizeof (struct exec»

#define N SYMOFF(x) \
(N TXTOFF(x) + (x).a text+(x).a data + (x).a trsize+(x).a drsize)

#define N STROFF(x) \ - - - -
(I~'_SYMOFF(x) + (x).a_syms)

The file has five sections: a header, the program text and data, relocation information, a symbol
table and a string table (in that order). The last three may be omitted if the program was
loaded with the '-s' option of Id or if the symbols and relocation have been removed by
strip(l).

In the header the sizes of each section are given in bytes. The size of the header is not
included in any of the other sizes.

When an a.out file is executed, three logical segments are set up: the text segment, the data
segment (with uninitialized data, which starts off as all 0, following initialized), and a stack.
The text segment begins at 0 in the core image; the header is not loaded. If the magic number
in the header is OMAGIC (0407), it indicates that the text segment is not to be write-protected
and shared, so the data segment is immediately contiguous with the text segment. This is the

4th Berkeley Distribution 25 February 1983

A.OUT(5) UNIX Programmer's Manual A.OUT(5)

oldest kind of executable program and is rarely used. If the magic number is NMAGIC (0410)
or ZMAGIC (0413), the data segment begins at the first 0 mod 1024 byte boundary following
the text segment, and the text segment is not writable by the program; if other processes are
executing the same file, they will share the text segment. For ZMAGIC format, the text seg­
ment begins at a 0 mod 1024 byte boundary in the a.out file, the remaining bytes after the
header in the first block are reserved and should be zero. In this case the text and data sizes
must both be multiples of 1024 bytes, and the pages of the file will be brought into the running
image as needed, and not pre-loaded as with the other formats. This is especially suitable for
very large programs and is the default format produced by IdO).

The stack will occupy the highest possible locations in the core image: growing downwards from
Ox7ffffOOO. The stack is automatically extended as required. The data segment is only
extended as requested by brk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table
and string table in that order. The text begins at the byte 1024 in the file for ZMAGIC format
or just after the header for the other formats. The N_TXTOFF macro returns this absolute file
position when given the name of an exec structure as argument. The data segment is contigu­
ous with the text and immediately followed by the text relocation and then the data relocation
information. The symbol table follows all this; its position is computed by the N_SYMOFF
macro. Finally, the string table immediately follows the symbol table at a position which can be
gotten easily using N_STROFF. The first 4 bytes of the string table are not used for string
storage, but rather contain the size of the string table; this size INCLUDES the 4 bytes, the
minimum string table size is thus 4."

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include file as follows:

/ .
• Format of a symbol table entry . . /

struct nlist (
union (

char
long

) n_un;

.n name; /. for use when in-core ./
n_strx; /. index into file string table ./

unsigned char n_type; /. type flag, i.e. N_TEXT etc; see below ./
char n other;
short n - desc; /. see <stab.h> ./
unsigned n=value; /. value of this symbol (or offset) ./

n_desc /. used internaIly by Id ./

/ .
• Simple values for n type . . / -

#define N UNDF
#define N - ADS
#define N -TEXT
#define N-DATA
#define N - DSS
#define N - COMM
#define N=FN

4th Berkeley Distribution

OxO
Ox2
Ox4
Ox6
Ox8
Ox12
Oxlf

01

/. undefined ./
/. absolute ./
/. text ./
/. data·/
/. bss ./
/. common (internal to Id) ./
/. file name symbol ./

/. external bit, or'ed in ./

25 February 1983 2

A.OUT(S) UNIX Programmer's Manual A.OUT(S)

Oxle /. mask for all the type bits ./

/ .
• Other permanent symbol table entries have some of the N_STAB bits set.
• These are given in <stab.h>
./

#define N_STAB OxeO /. if any of these bits set, don't discard./

/ .
• Format for namelist values . . /

#define N_FORMAT "%(l8x"

In the a.oUI file a symbol's n_un.n_strx field gives an index into the string table. A n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The field
n un.n name can be used to refer to the symbol name only if the program sets this up using
n:strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter­
preted by the loader Id as the name of a common region whose size is indicated by the value of
the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If
a byte in the text or data involves a reference to an undefined external symbol, as indicated by
the relocation information, then the value stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the
following structure:

/.
• Format of a relocation datum . . /

struct relocation info I
int - r_address;

};

unsigned r_symbolnum:24,
r...,pcrel:l,
rJength:2,
r_extern:l,
:4;

/. address which is relocated ./
/. local symbol ordinal ./
/. was relocated pc relative already ./
/. O-byte, I-word, 2-long ./
/. does not include value of sym referenced ./
/. nothing, yet ./

There is no relocation information if a trsize+a drsize- -0. If r extern is 0, then
r_symbolnum is actually a n_type for the relOCation (i.e. N_TEXT meaning relative to segment
text origin.)

SEE ALSO

BUGS
adbO), ssO), IdO), nmO), dbx(l), stab(S), stripm

Not havins the size of the strins table in the header is a loss, but expanding the header size
would have meant stripped executable file incompatibility, and we couldn't hack this just now.

4th Berkeley Distribution 2S February 1983 3

ACCT(5) UNIX Programmer's Manual

NAME
acct - execution accounting file

SYNOPSIS
#Include <sys/llcct.h>

DESCRIPTION

ACCT(5)

The acct(2) system call makes entries in an accounting file for each process that terminates.
The accounting file is a sequence of entries whose layout, as defined by the include file is:

I· acct.h 4.5 82/10110-/

/.
• Accounting structures;
• these use a comp_t type which is a 3 bits base 8
• exponent, 13 bit fraction "floating point" number.
·1

typedef u_short comp_t;

struct acct
(

char ac_comm11 Ol;
comp_t ac_utime;
comp_t ae_slime;
comp_t ae_elime;
time_t ac_btime;
short ac_uid;
short ac~id;
short ac_mem;
comp_t acJo~
dev_t ac_tty;
char ac_flag;

};

#defineAFORK 0001
#defineASU 0002
#defineACOMPAT 0004
#defineACORE 0010
#defineAXSIG 0020

#defineACCTLO 30
#defineACCTm 100

#ifdef KERNEL
struct acct
struct inode
#endif

acctbuf;
oacctp;

I. Accounting command name .1
I. Accounting user time .1
I. Accounting system time ./
/. Accounting elapsed time .j
I. Beginning time 0/
/- Accounting user ID ./
/. Accounting group ID .1
/. average memory usage -I
/. number of disk 10 blocks -/
/. control typewriter ./
/. Accounting flag .1

/. has executed fork, but no exec .1
I. used super-user privileges of
/. used compatibility mode .f
I. dumped core .1
f. killed by a signal -/

/- acctg off when space < this -/
/- acctg resumes at this level -/

If the process does an execve(2), the first 10 characters of the filename appear in aCJomm. The
accounting flag contains bits indicating whether execve(2) was ever accomplished, and whether
the process ever had super-user privileges.

SEE ALSO
acct(2), execve(2), sa(8)

7th Edition 15 January 1983

ALIASES (5) UNIX Programmer's Manual ALIASES (5)

NAME
aliases - aliases file for sendmail

SYNOPSIS
lusr/llb/aUases

DESCRIPTION
This file describes user id aliases used by /usrlliblsendmail. It is formatted as a series of lines of
the form

name: name_I, name2, name_3, ...
The name is the name to alias, and the name_n are the aliases for that name. Lines beginning
with white space are continuation lines. Lines beginning with' # ' are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any
person more than once.

After aliasing has been done, local and valid recipients who have a ".forward" file in their
home directory have messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format in
the files lusrllib/a/iases.dir and /usr/lib/aliases.pag using the program newaliases(I}. A newaliases
command should be executed each time the aliases file is changed for the change to take effect.

SEE ALSO

BUGS

newaliases(l), dbm(3X), sendmaiI(8)
SENDMAIL Installation and Operation Guide.
SEND MAIL An Internetwork Mail Router.

Because of restrictions in dbm OX) a single alias cannot contain more than about 1000 bytes of
information. You can get longer aliases by "chaining"; that is, make the last name in the alias
be a dummy name which is a continuation alias.

7th Edition 15 January 1983

AR (5) UNIX Programmer's Manual AR (5)

NAME
ar - archive (library) file format

SYNOPSIS
#Include < ar.h >

DESCR.IPTION
The archive command ar combines several files into one. Archives are used mainly as libraries
to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number and header layout as described in the include file
are:

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "\n"

struct ar_hdr (
char
char
char
char
char
char
char

);

ar_name[I6];
ar_date[12];
ar uid[6];
ar~id[61;
ar_mode[S];
ar_size[IO);
arJmag[21;

The name is a blank-padded string. The arJmag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar_mode, which is octal. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files,
the archive itself is printable.

SEE ALSO

BUGS

ar(1), Id(l), nm(J)

File names lose trailing blanks. Most software dealing with archives takes even an included
blank as a name terminator.

7th Edition 15 January 1983

CORE (5) UNIX Programmer's Manual CORE (5)

NAME
core - format of memory image file

SYNOPSIS
#include < machine/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various
errors occur. See sigvec(2) for the list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user·generated quit signals. The memory image is called
'core' and is written in the process's working directory (provided it can be; normal access con·
trois apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger than the
limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UP AGES manifest
in the < machinelparam.h> file. The u. area starts with a user structure as given in
< sysiuser. h>. The remainder of the core file consists first of the data pages and then the stack
pages of the process image. The amount of data space image in the core file is given (in pages)
by the variable u dsize in the u. area. The amount of stack image in the core file is given (in
pages) by the variable u_ssize in the u. area.

In general the debugger adb(l) is sufficient to deal with core images.

SEE ALSO
adb(I), dbx(!), sigvec(2), setrlimit(2)

7th Edition 27 July 1983

DIR (5)

NAME
dir - format of directories

SYNOPSIS
#lllclude <: sya/types.h:>
#Indude <sys/dlr.h:>

DESCRIPTION

UN1X Programmer's Manual DIR(S)

A directory behaves exactly like an ordinary file, save that no user may write into II directory.
The fact that a file is a directory is indicated by II bit in the flag word of its i-node entry; see
/$(5). The structure of II directory entry as given in the include file is:

/.
• A directory consists of some number of blocks of DIRBLKSIZ
• bytes, where DIRBLKSIZ is chosen such that it can be tr!lllsferred
• to disk in II single lItomi.c operation (e.g. 512 bytes on most machines).

• Each DIRBLKSIZ byte block contains some number of directory entry
• structures, which are of variable length. Each directory entry has
• II slrllet direct at the front of it, containing its inode number,
• the length of the entry, !IIld the length of the name contained in
• the entry. The§e are followed by the name padded to a 4 byte boundary
• with null bytes. All names are guaranteed null terminated.
• The maximum length of a name in a directory is MAXN;\.MLEN.

• The macro DIRSIZ(dp) gives the amount of space required to represent
• a directory entry. Free space in a directory is represented by
• entries which have dp->d Teden > DIRSIZ(dp). All DIRBLKSIZ bytes
• in Ii directory block life claimed by the directory entries. This
• usually results in the last entry in a directory having a large
• dp- > d Jeclen. When entries are deleted from a directory, the
• space is returned to the previolls entry in the same directory
• block by increasing its dp->dJeclen. If the first entry of
• a directory block is free, then its dp-:>d ino is set to O.
• Entries other than the first in II directory do not normally have
• dp->d ina set to O . . / -

#ifdef KERNEL
#define DIRBLKSIZ DEV _BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

/.
• The DIRSIZ macro gives the minimum record length which will hold
• the directory entry. This requires the amount of space in strllet direct
• without the d name field, plus enough space for the name with a terminating
• null byte (dp->d namlen+l), rounded up to a 4 byte boundary . . / -

#undef DIRSIZ
#define DIRSIZ(dp} \

«sizeof (struct direct) - (MAXNAMLEN+l)) + «(dp)->d_namlen+l + 3) &- 3»

4th Berkeley Distribution 15 J!IIluary 1983

DIR (5) UNIX Programmer's Manual

struct direct {
uJong djno;
short d_reclen;
short d _ namlen;
char d_name[MAXNAMLEN + 1l;
/. typically shorter 0/

};

struct _ dirdesc {
int
long
long
char

};

dd fd;
dd=loc;
dd size;
dd = buf(DIRBLKSIZ];

DIR(5)

By convention, the first two entries in each directory are for'.' and ' . .'. The first is an entry for
the directory itself. The second is for the parent directory. The meaning of ',,' is modified for
the root directory of the master file system (" /"), where' . .' has the same meaning as '.'.

SEE ALSO
fs(S)

4th Berkeley Distribution IS January 1983 2

DISKTAB (5) UNIX Programmer's Manual

NAME
disktab - disk description file

SYNOPSIS
#Include <dlsktab.h>

DESCRIPTION

DISKTAB(S)

Disktab is a simple date base which describes disk geometries and disk partition characteristics.
The format is patterned after the termcap(5) terminal data base. Entries in disktab consist of a
number of ':' separated fields. The first entry for each disk gives the names which are known
for the disk, separated by 'r characters. The last name given should be a long name fully iden­
tifying the disk.

The following list indicates the normal values stored for each disk entry.

Name Type Description
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
ba num Block size for partition 'a' (bytes)
bd num Block size for partition 'd' (bytes)
be num Block size for partition 'e' (bytes)
bf num Block size for partition 'r (bytes)
bg num Block size for partition 'g' (bytes)
bh num Block size for partition 'h' (bytes)
fa num Fragment size for partition 'a' (bytes)
fd num Fragment size for partition 'd' (bytes)
fe num Fragment size for partition 'e' (bytes)
ff num Fragment size for partition 'r (bytes)
fg num Fragment size for partition 'g' (bytes)
fh num Fragment size for partition 'h' (bytes)
pa num Size of partition 'a' in sectors
pb num Size of partition 'b' in sectors
pc num Size of partition 'c' in sectors
pd num Size of partition 'd' in sectors
pe num Size of partition 'e' in sectors
pf num Size of partition 'r in sectors
pg num Size of partition 'g' in sectors
ph num Size of partition 'h' in sectors
se num Sector size in bytes
ty str Type of disk (e.g. removable, winchester)

Disktab entries may be automatically generated with the disk part program.

FILES
/ etc/ disktab

SEE ALSO
newfs(8), diskpart(8)

BUGS
This file shouldn't exist, the information should be stored on each disk pack.

4th Berkeley Distribution 2 March 1983

DUMP (5) UNIX Programmer's Manual

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#include < sys!types.h>
#include < sys/lnooe.h>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dump and restore(8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP(5)

The format of the header record and of the first record of each description as given in the
include file < dumprestor.h> is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS TAPE 1
#define TS -INODE 2
#define TS -BITS 3
#define TS-ADDR 4
#define TS-END 5
#define TS-CLRI 6
#define MAGIC (jnt) 60011
#define CHECKSUM (jnt> 84446

struct spcl (
int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t cJnumber;
int c_magic;
int c_checksum;
struet dinode e_dinode;
int c_count;
char c _ addrlBSIZE);

} spcl;

struet idates (
char id_name[!6);
char idJneno;
time_t id_ddate;

};

#define DUMPOUTFMT "%·16s %c %s"

#defineDUMPINFMT "%16s %e %£"\n)\n"

f· for printf ·f
fo name, incno, ctime(date) ·f
f· inverse for scanf ·f

4th Berkeley Distribution 18 July 1983

DUMP (5) UNIX Programmer's Manual DUMP(5)

FILES

NTREC is the number of 1024 byte records in a physical tape block. MLEN is the number of
bits in a bit map word. MSIZ is the number of bit map words.

The TS entries are used in the c type field to indicate what sort of header this is. The types
and their meanings are as follows: -

TS TAPE Tape volume label
TS_INODE A file or directory follows. The c_dinode field is a copy of the disk inode and

TS BITS
TS=ADDR
TS END
TS CLRI

contains bits telling what sort of file this is.
A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord of a file description. See c_addr below.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes that were
empty on the file system when dumped.

MAGIC All header records have this n\.lmber in c_magic.
CHECKSUM Header records checksum to this value.

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume
c_tapea
cjnumber
c_magic
c_checksum
c_dinode
c_count
c addr

The type of the header.
The date the dump was taken.
The date the file system was dumped from.
The current volume number of the dump.
The current number of this (1024-byte) record.
The number of the inode being dumped if this is of type TSJNODE.
This contains the value MAGIC above, truncated as needed.
This contains whatever value is needed to make the record sum to CHECKSUM.
This is a copy of the inode as it appears on the file system; see js(5).
The count of characters in c addr.
An array of characters describing the blocks of the dumped file. A character is
zero if the block associated with that character was not present on the file sys-
tem, otherwise the character is non-zero. If the block was not present on the file
system, no block was dumped; the block will be restored as a hole in the file. If
there is not sufficient space in this record to describe all of the blocks in a file,
TS ADDR records will be scattered through the file, each one picking up where
the-last left off.

Each volume except the last ends with a tape mark (read as an end of file). The last volume
ends with a TS_END record and then the tapemark.

The structure idates describes an entry in the file letddumpdates where dump history is kept.
The fields of the structure are:

id name
id inc no
id_ddate

The dumped file system is '/devl id nam'.
The level number of the dump tap~; see dump(8).
The date of the incremental dump in system format see types(5).

letc/dumpdates

SEE ALSO
dump (8), restore (8), fs (5), types(5)

4th Berkeley Distribution 18 July 1983 2

FS (5) UNIX Programmer's Manual FS (5)

NAME
fs, inode - format of file system volume

SYNOPSIS
#include <sys/types.h>
#lnclude < sys/fs.h >
#include <sys/lnode.h>

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has a common format for
certain vital information. Every such volume is divided into a certain number of blocks. The
block size is a parameter of the file system. Sectors 0 to 15 on a file system are used to contain
primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the super block !Ill

defined by the include file < syslfs. h > is:

#defineFS MAGIC Ox01l954
struet fs r

struct fs ofB_link; /. linked list of file systems -/
struct fs ofs rlink; /. used for incore super blocks -/
daddr t fs sbikno; /. addr of super-block in filesys ./
daddr -t fs-cblkno; /- offset of cyl-block in filesys ./
daddr -t fS-iblkno; /. offset of inode-blocks in filesys ./
daddr=t fs=dblkno; /. offset of first data after cg -/
long fs_cgolfset; I· cylinder group offset in cylinder -/
long fs_cgmask; f. used to calc mod fs nteak'/
time_t fs_time; /. last time written .,-
long fs_size; /. number of blocks in fs .l
long fs dsize; /- number of data blocks in fs ./
long fs=ncg; /. number of cylinder groups ./
long fs_bsize; /. size of basic blocks in fs ./
long fs fsize; /. size of frag blocks in fs ./
long fs)rag; /. number of frags in a block in fs -f

f. these are configuration parameters .f
long fs rninfree; /. minimum percentage of free blocks -/
long fs-rotdeiay; f. num of ms for optimal next block -/
long fs=rps; f. disk revolutions per second .f

/- these fields can be computed from the others ./
long fs_bmask; /. "blkoff" calc of bile offsets ./
long fsJmask; /. "fragoft"" calc of frag offsets ./
long fs_bshift; /. "Iblkno" calc of logical blkno -/
long fsJshift; /. "numfrags" calc number of frags -/

/. these are configuration parameters ./
long fs_maxcontig; f. max number of contiguous blks ./
long fs_maxbpg; f. max number of blks per cyl group ./

/. these fields can be computed from the others ./
long fsJragshift; /. block to frag shift .f
long fs fsbtodb; /. fsbtodb and dbtofsb shift constant ./
long fs=sbsize; f. actual size of super block .f
long fs csmask; /- csum block offset ./
long fs=csshift; /. csum block number -/
long fs_nindir; /0 value of NINDIR .f
long fsJnopb; /. value of INOPB ./
long fs_nspf; f. value of NSPF -;

4th Berkeley Distribution 18 July 1983

FS (5) UNIX Programmer's Manual FS (5)

long fs_sparecon(6); /. reserved for future constants ./
/. sizes determined by number of cylinder groups and their sizes ./

daddr t fs csaddr; /- blk addr of cyl grp summary area .;
long - fs=cssize; /. size of cyt grp sununary area ./
long fs_cgsize; /- cylinder group size ./

/. these fields should be derived from the hardware .;
long fs_ntrak; /. tracks per cylinder ./
long fs_nsect; /- sectors per track .;
long fs_spc; /- sectors per cylinder -/

/- this comes from the disk driver partitioning ./
long fs_ncyl; /. cylinders in file system .;

/. these fields can be computed from the others ./
long fs_cpg; /. cylinders per group ./
long fs ipg; /. inodes per group ./
long fs-fpg; /. blocks per group' fs frag ./

/. this data must be fe-computed after crashes ./ -
struc! csum fs_cstotal;!. cylinder summary information ./

/- these fields are cleared at mount time .;
char fsJmod; /. super block modified flag .1
char fs_c1ean; I. file system is clean flag ./
char fSJonly; /. mounted read-only flag ./
char fs_flags; /. currently unused flag ./
char fsJsmnt[MAXMNTLENJ; /. name mounted on ./

/. these fields retain the current block allocation info ./
long fs_cgrotor; /- last ell searched -/
struct csum ors csp[MAXCSBUFS];/. list of fs cs info buffers ./
long fs_cpc; - /. cyl per cycle in paslbl -/
short fsyostbl[MAXCPG] [NRPOS];/. head of blocks for each rotation -/
long fs_magic; /- magic number -/
u_char fs_rotbl[I]; /- list of blocks for each rotation ./

I- actually longer -/
J;
Each disk drive contains some number of file systems. A file system consists of II number of
cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in tum describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system blocks
of at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is
addressable; these pieces may be DEV _BSIZE, or some multiple of II DEV _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a small file is allocated as only as many fragments of Ii large block as are neces­
sary. The file system format retains only a single pointer to such a fragment, which is a piece
of a single large block that has been divided. The size of such II fragment is determinable from
information in the inode, using the "blksize(fs, ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

4th Berkeley Distribution 18 July 1983 2

FS(S) UNIX Programmer's Manual FS (5)

The root inode is the root of the file system. Inode 0 can't be used for normal purposes and
historically bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer
used for this purpose, however numerous dump tapes make this assumption, so we are stuck
with it). The Iost+/ound directory is given the next available inode when it is initially created
by mk/S.
ft_mirifree gives the minimum acceptable percentage of file system blocks which may be free. If
the freelis! drops below this level only the super-user may continue to allocate blocks. This may
be set to 0 if no reserve of free blocks is deemed necessary, however severe performance
degradations will be observed if the file system is run at greater than 90% full; thus the default
value of ft_mirifree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a load­
ing of 90% comes with a fragmentation of 4, thus the default fragment size is a fourth of the
block size.

Cylinder group reloted limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. With NRPOS 8 the reso­
lution of the summary information is 2ma for a typical 3600 rpm drive.

ftJotdeloy gives the minimum number of milliseconda to initiate another disk transfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within a
file; the default value for ftJotdeloy is 2ma.

Each file system has II statically allocated number of inodes. An inode is allocated for each
NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the
structure simpler by having the only II single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With II MINBSIZE of 4096 it is possible to
create files of size 2'32 with only two levels of indirection. MlNBSlZE must be big enough to
hold a cylinder group block, thus changes to (strue! eg) must keep its size within MINBSlZE.
MAXCPG is limited only to dimension an array in (struc! eg); it can be made larger as long as
that structure's size remains within the bounds dictated by MINBSIZE. Note that super blocks
are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in /sJsmnt. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the
amount of summary information per file system is defined by MAXCSBUFS. It is currently
parameterized for 1\ mllXimum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's
data blocks. These blocks are read in from /s_csaddr (size ft_cssize) in addition to the super
block.

N.B.: size of (struc! csum) must be II power of two in order for the "fs_cs" macro to work.

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is lim­
ited by the fact that the super block is of size SBSIZE. The size of these tables is Inversely
proportional to the block size of the file system. The size of the tables is increased when sector
sizes are not powers of two, as this increases the number of cylinders included before the rota­
tional pattern repeats (ft_cpc). The size of the rotational layout tables is derived from the
number of bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact
that cylinder groups are at most one block. ·The size of the free block table is derived from the
size of blocks and the number of remaining bytes in the cylinder group structure (struet cg).

4th Berkeley Distribution 18 July 1983 3

FS (5) UNIX Programmer's Manual FS (5)

[node: The inode is the focus of all file activity in the UNIX file system. There is a unique
inode allocated for each active file, each current directory, each mounted-on file, text file, and
the root. An inode is 'named' by its device/i-number pair. For further information, see the
include file < :ryslinode. h >.

4th Berkeley Distribution 18 July 1983 4

FSTAB (5) UNIX Programmer's MllIluai FSTAB (5)

NAME
fstab - static information about the filesystemll

SYNOPSIS
#include <blall.n>

DESCRIPTION

FILES

The file letc/fstab contains descriptive infom1lilion about the various file systems. letc/fstab is
only read by programll, llIla not written; it is the duty of the system administrator to properly
create and maintain this file. The order of records in letc/fstab is important because ftck, mount,
IlIld umount sequentially iterate through lelc/fslab doing their thing.

The special file name is the block special file name, IlIld not the character special file name. If a
program needs the character special file nllIl1e, the progrllIl1 must create it by appending a "r"
after the 1!1l1! "/" in the special file name.

If Is_type is "rw" or "ro" then the file system whose name is given in the ftJile field is nor­
mally mounted read-write or read-only on the specified special file. If Is type is "rq", then the
file system is normally mounted read-write with disk quow enabled. The ftJreq field is used
for these file syslemll by the dump(ll) commllIld to determine which file systen1l! need to be
dumped. The ftyassno field is used by the Isck(8) program to determine the order in which
file system checks are done at reboot time. The root file system should be specified with a
fsyassno of 1, and other file systems should have larger numbers. File systems within Ii drive
should have distinct numbers, but file systems on different drives ellIl be checked on the same
pass to utilize parallelism available in the hardware.

If ft_type is "sw" then the special file is made available as II piece of swap space by the
swapon(8) commlll'ld at the end of the system reboot procedure. The fields other thllIl ft_spec
IlIld ft_type are not used in this case.

If Is_type is "rq" then at boot time the file system is automatically processed by the quota­
check(8) command and disk quotas are then enabled with quo/aan (8). File system quotas are
maintained in a file "quotas", which is located at the root of the !IlIsociated file system.

If ft_type is specified as "xx" the entry is ignored. This is useful to show disk partitions which
are currently not used.

#defineFSTAB RW 'rw'
#defineFSTAB - RO 'w"
#defineFSTAI(RQ 'rq"
#def.neFSTAB SW "sw'
#define FST Ai(XX "xx"

slrue! fstab (

/- read-write device ./
/- read-only device 0;
,'. read-write with quotas ./
/. swap device oj
/. ignore totally ./

char ofs spec; /- block special device name ./
char .fs=file; /- file system path prefix -/
cha, ors_type; /. fW,ro,SW or xx -/
int fs [req; /. dump frequency, in days ./
int fSJ,assno; /- P!lllS number on parallel dump -/

);

The proper way to read records from letc/fstab is to use the routines getfsentO, getfsspecO,
getfstypeO, IlIld getfsfileO.

letc/fstab

4th Berkeley Distribution 26 June 1983

FSTAB (5)

SEE ALSO
lletfsent(3X)

4th Berkeley Distribution

UNIX Prollrarnrner's Manual FSTAB (5)

26 June 1983 2

GETIYTAB(5) UNIX Programmer's Manual GE1TYT AB (5)

NAME
gettytab - terminal confiauration data base

SYNOPSIS
letc/gettytab

DESCRIPTION
Getty tab is a simplified version of the termcap(S) data base used to describe terminal lines. The
initial terminal login process getty(8) accesses the getty tab file each time it starts, allowing
simpler reconfiguration of terminal characteristics. Each entry in the data base is used to
describe one class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other classes.
(That is, the de/ault entry is read, then the entry for the class required is used to override par­
ticular settings.)

CAP ABILITIES
Refer to termcap(S) for a description of the file layout. The dtifault column below lists defaults
obtained if there is no entry in the table obtained, nor one in the special default table.

Name Type Default Description
ap bool false terminal uses any parity
bd num-O backspace delay
bk sir 0377 alternate end of line character (input break:)
cb bool false use crt backspace mode
cd num 0 csrriage-retum delay
ce bool false use crt erase algorithm
ck bool false use crt kill algorithm
cl str NULL screen clear sequence
co bool faIse console - add \n after login prompt
ds str -y delayed suspend character
ec boot false leave echo OFF
ep bool false terminal uses even parity
er str -1 erase character
et sir "0 end of text (EOP) character
ev sIr NULL initial enviroment
ro num unused tty mode flags to write messaaes
fl num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
fl sir -0 output flush character
hc bool faIse do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht boot false terminal has real tabs
ig bool false ignore garbage characters in login name
im str NULL initial (banner) messaae
in str -C interrupt character
is num unused input speed
kI str "U kill character
Ie bool false terminal has lower case
1m sir login: login prompt
In str -V "literal next" character
10 str Ibinllogin program to exec when name obtained
nd num 0 newline (\ine-feed) delay

4th Berkeley Distribution 18 July 1983

GETIYTAB(S) UNIX Programmer's Manual GETIYTAB(S)

nl bool false terminal has (or might have) a newline character
nx str default next table (for auto speed selection)
op bool false terminal uses odd parity
os num unused output speed
pc str \0 pad character
pe bool false use printer (hard copy) erase algorithm
ps bool false line connected to a MICOM port selector
qu str "\ quit character
rp str "R line retype character
rw bool false do NOT use raw for input, use cbreak
sp num unused line speed (input and output)
su str "Z suspend character
tc str none table continuation
to num 0 timeout (seconds)
tt str NULL terminal type (for enviroment)
ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case only
we str "W word erase character
xc bool false do NOT echo control chars as "X
xf str "S XOFF (stop output) character
xn str "Q XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is
entered. Specifying an input or output speed will override line speed for stated direction only.

Terminal modes to be used for the output of the message, for input of the login name, and to
leave the terminal set as upon completion, are derived from the boolean flags specified. If the
derivation should prove inadequate, any (or alI) of these three may be overriden with one of
the 10, fl, or fl numeric specifications, which can be used to specify (usually in octal, with a
leading '0') the exact values of the flags. Local (new tty) flags are set in the top 16 bits of this
(32 bit) value.

Should getty receive a null character (presumed to indicate a line break) it will restart using the
table indicated by the n:I entry. If there is none, it will re-use its original table.

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be
used. Should greater certainty be desired, delays with values 0, 1, 2, and 3 are interpreted as
choosing that particular delay algorithm from the driver.

The c1 screen clear string may be preceded by a (decimal) number of milliseconds of delay
required (a la termcap). This delay is simulated by repeated use of the pad character pc.

The initial message, and login message, 1m and 1m may include the character sequence %h to
obtain the hostname. (%% obtains a single '%' character.) The hostname is normally obtained
from the system, but may be set by the hn table entry. In either case it may be edited with he.
The he string is a sequence of characters, each character that is neither '@' nor '#' is copied
into the final hostname. A '@' in the he string, causes one character from the real hostname
to be copied to the final hostname. A' #' in the he string, cause~ the next character of the real
hostname to be skipped. Surplus '@' and '#' characters are ignored.

When getty execs the login process, given in the 10 string (usually "/bin/login"), it will have set
the enviroment to include the terminal type, as indicated by the tt string (if it exists). The eT

string, can be used to enter additional data into the environment. It is a list of comma
separated strings,. each of which will presumably be of the form name-value.

If a non-zero timeout is specified, with to, then getty will exit within the indicated number of
seconds, either having received a login name and passed control to login, or having received an

4th Berkeley Distribution 18 July 1983 2

GETIYTAB(S) UNIX Programmer's Manual GETIYTAB(S)

alarm signal, and exited. This may be useful to hangup dial in lines.

Output from getty is even parity unless op is specified. Op may be specified with ap to allow
any parity on input, but generate odd parity output. Note: this only applies while getty is being
run, terminal driver limitations prevent a more complete implementation. Getty does not check
parity of input characters in RA W mode.

SEE ALSO

BUGS

termcap(5), getty(8).

Some ignorant peasants insist on changing the default special characters, so it is wise to always
specify (at least) the erase, kill, and interrupt characters in the default table. In all cases, '#'
or "H' typed in a login name will be treated as an erase character, and '@' will be trested as a
kill character.

The delay stuff is a real crock. Apart form its general lack of flexibility, some of the delay algo­
rithms are not implemented. The terminal driver should support sane delay settings.

Currently log/nO) stomps on the environment, so there is no point setting it in getty tab.

The be capability is stupid.

Termcap format is horrid, something more rational should have been chosen.

4th Berkeley Distribution 18 July 1983 3

GROUP (5) UNIX Programmer's Manual GROUP (5)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

FILES

This file resides in directory letc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical group ID's to names.

letclgroup

SEE ALSO
setgroups(2), initgroups(3X), crypt(3), passwd(l), passwd(5)

BUGS
The passwd(l) command won't change the passwords.

7th Edition 15 January 1983

HOSTS (5) UNIX Programmer's Manual HOSTS (5)

NAME
hosts - host name data base

DESCRIPTION

FILES

The hoses file contains information regarding the known hosts on the DARPA Internet. For
each host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official host data base maintained at
the Network Information Control Center (mC), though local changes may be required to bring
it up to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional "." notation using the inel addrO routine
from the Internet address manipulation library, inet(3N). Host names may contain any print­
able character other than a field delimiter, newline, or comment character.

letc/hosts

SEE ALSO
gethostent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

7th Edition 15 January 1983

MTAB(S) UNIX Programmer's Manual MTAB(S)

NAME
mtab - mounted file system table

SYNOPSIS
#include <fstab.h>
#include -<mtab.h>

DESCRIPTION

FILES

Mtab resides in directory letc and contains a table of devices mounted by the mount command.
Umount removes entries.

The table is a series of mtab structures, as defined in < mtab.h > . Each entry contains the
null-padded name of the place where the special file is mounted, the null-padded name of the
special file, and a type field, one of those defined in <fstab.h>. The special file has all its
directories stripped away; that is, everything through the last '/' is thrown away. The type field
indicates if the file system is mounted read-only, read-write, or read-write with disk quotas
enabled.

This table is present only so people can look at it. It does not matter to mount if there are
duplicated entries nor to umount if a name cannot be found.

letc/mtab

SEE ALSO
mount(8)

4th Berkeley Distribution 26 June 1983

NETWORKS (5) UNIX Programmer's Manual NETWORKS (5)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should be present with the following informa­
tion:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official network data base main­
tained at the Network Information Control Center (NIC) , though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional "." notation using the inet networkO
routine from the Internet address manipulation library, inet(3N). Network names m-;iy contain
any printable character other than a field delimiter, newline, or comment character.

/etc/networks

SEE ALSO

BUGS

getnetent (3N)

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

4th Berkeley Distribution 15 January 1983

PASSWD (5) UNIX Programmer's Manual PASSWD(5)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID
user's real name, office, extension, home phone.
initial working directory
program to use as Shell

The name may contain '&', meaning insert the login name. This information is set by the
c/ifn(I) command and used by the jinger(l) command.

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, then Ibinlsh is used.

This file resides in directory letc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID's to names.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a
text editor; v,pw(8) does the necessary locking.

letclpasswd

SEE ALSO

BUGS

getpwent(3), 10gin(I), crypt(3), passwd(1), gioup(S), chfn(l), finger(l), vipw(8), adduser(8)

A binary indexed file format should be available for fast access.

User information (name, office, etc.) should be stored elsewhere.

7th Edition 15 January 1983

PHONES (5) UNIX Programmer's Manual PHONES (5)

NAME
phones - remote host phone number data base

DESClUPTION

FILES

The file /etc/phones contains the system-wide private phone numbers for the tip{lC) program.
This file is norma1ly unreadable, and so may contain privileged information. The format of the
file is a series of lines of the form: <system-name>[\t).<phone-number>. The system
name is one of those defined in the remote(5) file and the phone number is constructed from
(0123456789--0%). The "-" and characters are indicators to the auto call units to pause
and wait for a second dial tone (when going through an exchange). The" -" is required by
the DF02-AC and the is required by the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one line in the file con­
tains the same system name tip{lC) will attempt to dial each one in tum, until it establishes a
connection.

/etc/phonea

SEE ALSO
tip (I C), remote (5)

4th Berkeley Distribution 15 January 1983

PLOT (5) UNIX Programmer's Manual PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X), and are interpreted for vari­
ous devices by commands described in plot(l G) . A graphics file is a stream of plotting instruc­
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary informa­
tion. The instructions are executed in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. The last designated point in an I, m, D, or p
instruction becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in
plot(3X).

m move: The next four bytes give a new current point.

D cant: Draw a line from the current point to the point given by the next four bytes. See
plot(IG).

p point: Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the point given by the fol­
lowing four bytes.

label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

• arc: The first four bytes give the center, the next four give the starting point, and the last
four give the end point of a circular arc. The least significant coordinate of the end point is
used only to determine the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f Iinemod: Take the following string, up to a newline, as the style for drawing further lines.
The styles are 'dotted,' 'solid,' 'Iongdashed,' 'shortdashed,' and 'dotdashed.' Effective only
in plot 4014 and plot ver.

I space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as
closely as possible.

SEE ALSO

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plot(lG). The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points outside may be displayable on dev­
ices whose face isn't square.

4014 space(O, 0, 3120, 3120);
ver space(O, 0, 2048, 2048);
300, 3005 space(O, 0, 4096, 4096);
450 space(O, 0, 4096, 4096);

plot(lG), plot(3X), graph (I G)

7th Edition 15 January 1983

PRINTCAP (5) UNIX Programmer's Manual PRINTCAP (5)

NAME
printcap - printer capability data base

SYNOPSIS
/etc/printcap

DESCRIPTION
Printcap is a simplified version of the termcap(5) data base used to describe line printers. The
spooling system accesses the printcap file every time it is used, allowing dynamic addition and
deletion of printers. Each entry in the data base is used to describe one printer. This data base
may not be substituted for, as is possible for termcap, because it may allow accounting to be
bypassed.

The default printer is normally /p, though the environment variable PRINTER may be used to
override this. Each spooling utility supports an option, - P printer, to allow explicit naming of a
destination printer.

Refer to the 4.2BSD Line Printer Spooler Manual for a complete discussion on how setup the
database for a given printer.

CAPABILITIES
Refer to termcap for a description of the file layout.

Name Type Default Description
af str NULL name of accounting file
br num none if Ip is a tty, set the baud rate Oocll call)
cf str NULL cifplot data filter
df str NULL tex data filter (DVI format)
fc num 0 if !p is a tty, clear flag bits (sglty.h)
If str ",[" string to send for a form feed
fo bool false print a form feed when device is opened
fs num 0 like 'fe' but set bits
sf str NULL graph data filter (plot (3X) format)
ic bool false driver supports (non standard) ioctl to indent printout
if str NULL name of text filter which does accounting
If str "/ dev / console" error logging file name
10 str "lock" name of lock file
Ip str "/dev/lp" device name to open for output
mx num 1000 maximum file size (in BUFSIZ blocks), zero - unlimited
nd sIr NULL next directory for list of queues (unimplemented)
nf str NULL ditrolf data filter (device independent trolf)
of str NULL name of output filtering program
pI num 66 page length (in lines)
pw num 132 page width (in characters)
px num 0 page width in pixels (horizontal)
py num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files
rm str NULL machine name for remote printer
rp str "lp" remote printer name argument
rs bool false restrict remote users to those with local accounts
rw bool false open the printer device for reading and writing
sb bool false short banner (one line only)
sc bool false suppress multiple copies
sd str "/usr/spool/lpd" spool directory
sf bool false suppress form feeds
sh bool false suppress printing of burst page header

4th Berkeley Distribution 18 July 1983

PRINTCAP (5)

5t str
tf str
tr str
vf str
xc num
xs num

"status"
NULL
NULL
NULL
0
0

UNIX Programmer's Manual

status file name
troft'data filter (cat phototypesetter)
trailer strinll to print when queue empties
raster imalle filter
if lp is a tty, clear local mode bits (tty (4»
like 'xc' but set bits

PRINTCAP (5)

Error messalles sent to the console have a carrialle return and a line feed appended to them,
rather than just a line feed.

If the local line printer driver supports indentation, the daemon must understand how to invoke
it.

SEE ALSO
termcap(5), Ipc(8), Ipd(8), pad8), Ipr(I), Ipq(I), Iprm(I)
4.2BSD Line Printer Spooler Manual

4th Berkeley Distribution 18 July 1983 2

PROTOCOLS (5) UNIX Programmer's Manual PROTOCOLS (5)

NAME
protocols - protocol name data base

DESCRIPTION

FILES

The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

/etc/protocols

SEE ALSO
getprotoent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

7th Edition 15 January 1983

REMOTE(S) UNIX Proarammer's Manual REMOTE(S)

NAME
remote - remote host description rue

DESCRIPTION
The systems known by 1,p(IC) and their attributes are stored in an ASCn file which is struc­
tured somewhat like the termcap(S) rue. Each line in the rue provides a description for a sinaIe
system. Fields are separated by a colon (":"). Lines endina in a \ character with an immedi­
ately followina newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a system,
the names are separated by vertical bars. After the name of the system comes the fields of the
description. A field name followed by an '-' sisn indicates a string value follows. A field
name followed by a '#' sisn indicates a followina numeric value.

Entries named "tip'" and "cu'" are used u default entries by lip, and the cu interface to tip,
u follows. When lip is invoked with only a phone number, it looks for an entry of the form
"tip300", where 300 is the baud rate with which the connection is to be made. When the cu
interface is used, entries of the form "cu300" are used.

CAPABILITIES
Capabilities are either strinas (str), numbers (num), or boolean flap (boo!). A string capability
is specified by capability-value; e.l. "dv-/dev/harrls". A numeric capability is specified by
capability#va/ue; e.l. "xa#99". A boolean capability is specified by simply listing the capabil­
ity.

at (str) Auto call unit type.

br (num) The baud rate used in establishinl a connection to the remote host. This is a
decimal number. The default baud rate is 300 baud.

tm (str) An initial connection messqe to be sent to the remote host. For example, if a
host is reached throup port selector, this mipt be set to the appropriate sequence
required to switch to the host.

til (str) Call unit if makina a phone call. Default is the same u the 'dv' field.

dl (str) Disconnect messBle sent to the host when a disconnect is requested by the user.

du (boo!) This host is on a dial-up line.

d. (str) UNIX device(s) to open to establish a connection. If this file refers to a terminal
line, tip(IC) attempts to perform an exclusive open on the device to insure only one
user at a time hu access to the port.

el (str) Characters markinl an end-of-line. The default is NULL. ,-, escapes are only
recolnized by lip after one of the characters in 'el', or after a carriqe-retum.

fa (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (boo!) The host uses half-duplex communication, local echo should be performed.

Ie (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferrinB a file,
this strinl is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of
"!'ven", "odd", "none", "zero" (always set bit 8 to zero), "one" (always set bit 8 to
1). The default is even parity.

pn (str) Telephone number(s) for this host. If the telephone number field contains an @
sisn, lip searches the file leldphones file for a list of telephone numbers; c.f. phones(S).

tt (str) Indicates that the list of capabilities is continued in the named description. This is

4th Berkeley Distribution I March 1983

REMOTE (5) UNIX Programmer's Manual REMOTE(S)

FILES

used primarily to share common capability information.

Here is a short example showing the use of the capability continuation feature:

UNIX-I 200:\
:dv-/dev/cauO:el-"D"U"C'S"Q"O@:du:at-ventel:ie-#S%:oe-'D:br#1200:

arpavaxJu:\
:pn-7654321%:tc-UNIX-1200

letc/remote

SEE ALSO
tip (1 C) , phones(5)

4th Berkeley Distribution 1 March 1983 2

SERVICES (5) UNIX Programmer's Manual SERVICES (5)

NAME
services - service name data base

DESCRIPTION

FILES

The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and pro·
tocol name are considered a single item; a "/" is used to separate the port and protocol (e.g.
"512/tcp"). A "#" indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or
comment character.

letc/services

SEE ALSO
getservent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

4th Berkeley Distribution 15 January 1983

STAB (5) UNIX Programmer's Manual STAB(S)

NAME
stab - symbol table types

SYNOPSIS
#Indude <stab.h>

DESCRIPTION
Stab.h defines some values of the n type field of the symbol table of a.out files. These are the
types for permanent symbols (i.e. not local labels, etc.) used by the old debugger sdb and the
Berkeley Pascal compiler pc(l). Symbol table entries can be produced by the .stabs assembler
directive. This allows one to specify a double-quote delimited name, a symbol type, one char
and one short of information about the symbol, and an unsigned long (usually an address). To
avoid having to produce an explicit label for the address field, the .staM directive can be used
to implicitly address the current location. If no name is needed, symbol table entries can be
generated using the .stabn directive. The loader promises to preserve the order of symbol table
entries produced by .stab directives. As described in a.out(5), an element of the symbol table
consists of the following structure:

/-
• Format of II symbol table entry.
-/

struct nlist (
union (

char on name; f. for use when in-core ./
long n_slrx; I. index into file string table ./

) nun;
unSigned char n_type;
char n_other;
short n_desc;
unsigned n_ value;

I;

/. type flag .J
f. unused .f
f. see struct desc, below .f
/- address or offset or line ./

The low bits of the n type field are used to place a symbol into at most one segment, according
to the following maskS, defined in <a.out.h>. A symbol can be in none of these segments by
having none of these segment bits set.

I-
• Simple values for n_type . . /

#define N UNDF OxO /. undefined .f
#define N -ASS Ox2 /0 absolute ./
#define N -TEXT Ox4 I- text ./
#define N-DATA Ox6 f. data.J
#define N=BSS Ox8 f. bss ./

#define N_EXT 01 I. external bit, or'ed in .f

The n value field of a symbol is relocated by the linker, Id(1) as an address within the appropri­
ate segment. N value fields of symbols not in any segment are unchanged by the linker. In
addition, the linker will discard certain symbols, according to rules of its own, unless the n_type
field has one of the following bits set:

/.
o Other permanent symbol table entries have some of the N_STAB bits set.
• These are given in <stab.h>
./

#define N_STAB OxeO/- if any of these bits set, don't discard./

4th Berkeley Distribution 1 April 1983

STAB(S) UNIX Programmer's Manual STAB(S)

This allows up to 112 (7 0 16) symbol types, split between the various segments. Some of
these have already been claim'ld. The old symbolic debugger, sdb, uses the following n_type
values:

#define N_GSYM Ox20 /0 global symbol: name"O,type,O 0/
#define N]NAME Ox22 /0 procedure name (f77 kludge): name"O 0/
#define N_FUN Ox24 /0 procedure: name"O,linenumber,address 0/
#define N_STSYM Ox26 /0 static symbol: name;,O,type,address 0/
#define N_LCSYM Ox28 /0 .lcomm symbol: name"O,type,address 0/
#define N_RSYM Ox40 /0 register sym: name"O,type,register 0/
#define N_SLlNE Ox44 /0 src line: O"O,linenumber,address 0/
#define N_SSYM Ox60 /0 structure elt: name"O,type,struct_oifset 0/
#define N_SO Ox64 /0 source file name: name"O,O,address 0/
#define N_LSYM Ox80 /0 local sym: name"O,type,oifset ./
#define N SOL Ox84 /0 #included file name: name"O,O,address 0/
#define N=PSYM OxaO /0 parameter: name"O,type,oifset 0/
#define N ENTRY Oxa4 /. alternate entry: name,linenumber,address 0/
#define N=LBRAC OxcO /0 left bracket: O"O,nesting level,address 0/
#define N_RBRAC OxeO /0 right bracket: O"O,nesting level,address 0/
#define N_BCOMMOxe2 /0 begin common: name" 0/
#define N_ECOMMOxe4 /. end common: name" 0/
#define N ECOML Oxe8 /. end common (local name): "address 0/
#define N=LENG Oxfe /. second stab entry with length information 0/

where the comments give sdb conventional use for .stabs and the n_name, n_other, n_desc, and
n_value fields of the given n_type. Sdb uses the n_desc field to hold a type specifier in the form
used by the Portable C Compiler, ceO), in which a base type is qualified in the following struc­
ture:

struct desc (

);

short qp:2,
qS:2,
q4:2,
q3:2,
q2:2,
ql:2,
basic:4;

There are four qualifications, with ql the most significant and q6 the least significant: ° none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows: ° undefined
1 function argument
2 character
3 short
4 int
S long
6 float
7 double
8 structure
9 union

4th Berkeley Distribution 1 April 1983 2

STAB (5) UNIX Programmer's Manual STAB (5)

10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
15 unsigned long

The Berkeley Pascal compiler, pe(1), uses the following n_type value:

#defineN]C Ox30 t. global pascal symbol: name"O,subtype,line .t
and uses the following subtypes to do type checking across separately compiled files:

1 source file name
2 included file name
3 global label
4 global constant
5 global type
6 global variable
7 global function
8 global procedure
9 external function
10 external procedure
11 library variable
12 library routine

SEE ALSO

BUGS

asO), Id(1), dbx(l) , a.out(5)

Sdb assumes that a symbol of type N_GSYM with name name is located at address _ name.

More basic types are needed.

4th Berkeley Distribution 1 April 1983 3

TAR(S) UNIX Programmer's Manual TAR(S)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for tran­
sportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is
represented by a header block which describes the file, followed by zero or more blocks which
give the contents of the file. At the end of the tape are two blocks filled with binary zeros, as
an end-of-file indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n is set by
the b keyletter on the tarO) command line - default is 20 blocks) is written with a single sys­
tem call; on nine-track tapes, the result of this write is a single tape record. The last group is
always written at the full size, so blocks after the two zero blocks contain random data. On
reading, the specified or default group size is used for the first read, but if that read returns less
than a full tape block, the reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy[TBLOCK];
struct header {

} dbuf;

char name[NAMSIZ);
char modelS]:
char uid[8]; ,
char gid[8];
char size (12);
char mtime[J21;
char chksum[8];
char linkflag;
char linkname[NAMSIZ);

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII. Each
field (of width w) contains w-2 digits, a space, and a null, except size and mtime, which do not
contain the trailing null. Name is the name of the file, as specified on the tar command line.
Files dumped because they were in a directory which was named in the command line have the
directory name as prefix and /filename as suffix. Mode is the file mode, with the top bit masked
off. Uid and gid are the user and group numbers which own the file. Size is the size of the file
in bytes. Links and symbolic links are dumped with this field specified as zero. Mtime is the
modification time of the file at the time it was dumped. Chksum is a decimal ASCII value
which represents the sum of all the bytes in the header block. When calculating the checksum,
the chksum field is treated as if it were all blanks. Lin/ifiag is ASCII '0' if the file is "normal"
or a special file, ASCII '1' if it is an hard link, and ASCII '2' if it is a symbolic link. The name
linked-to, if any, is in linkname. with a trailing null. Unused fields of the header are binary
zeros (and are included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second and
subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved,
but not the file it was linked to, an error message is printed and the tape must be manually re­
scanned to retrieve the linked-to file.

7th Edition 15 January 1983

TAR (5) UNIX Programmer's Manual

The encoding of the header is designed to be portable across machines.

SEE ALSO
tarm

BUGS

TAR(s)

Names or Iinknames longer than NAMSIZ produce error reports and cannot be dumped.

7th Edition 15 January 1983 2

TERMCAP (5) UNIX Programmer's Manual TERMCAP (5)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by viC!) and curses(3X). Terminals are
described in termcap by giving a set of capabilities which they have, and by describing how
operations are performed. Padding requirements and initialization sequences are included in
term cap.

Entries in termcap consist of a number of ';' separated fields. The first entry for each terminal
gives the names which are known for the terminal, separated by 'I' characters. The first name is
always 2 characters long and is used by older version 6 systems which store the terminal type in
a 16 bit word in a systemwide data base. The second name given is the most common abbrevi­
ation for the terminal, and the last name given should be a long name fully identifying the ter­
minal. The second name should contain no blanks; the last name may well contain blanks for
readability.

CAPABILITIES
(P) indicates padding may be specified
(P-) indicates that padding may be based on no. lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (p.) Add new blank line
am boo] Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (p.) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like em but horizontal motion only, line stays same
cl str (p.) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (p.) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
de str (p.) Delete character
dF num Number of millisec of ff delay needed
dl str (p.) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode

3rd Berkeley Distribution 10 May 1980

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

ei str End insert mode; give ":ei-:" if Ie
eo str Can erase overstrikes with a blank
tT str (p.) Hardcopy terminal page eject (default "L)
hc bool Hardcopy terminal
hd str Half-line down (forward 112 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 112 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing Is
im boo1 Insert mode (enter); give ":im-:" if ie
in bool Insert mode distinguishes nulls on display
ip str (p.) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
Ii num Number of lines on screen or page
II str Last line, first column (if no em)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str MemoTY lock on above cursor.
ms bool Safe to move while in standout and underline mode
mu str MemoTY unlock (turn otT memory lock).
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (p.) Newline character (default \0)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
se sIr End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than "lor with padding)
te str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue

3rd Berkeley Distribution 10 May 1980 2

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

ul bool Terminal underlines even though it doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
xb bool Beehive (n-escape, f2 -ctrl C)
xn bool A newline is ignored after a wrap (Concept)
xr bool Return acts like ce \r \n (Delta Data)
xs bool Standout not erased by writing over it (HP 264?)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-1OO, is among the more complex entries in
the termcap file as of this writing. (This particular concept entry is outdated, and is used as an
example only.)

cllclOOlconceptlOO:is-\EU\Ef\E7\E5\ES\El\ENH\EK\E\200\Eo&\200:\
:al-30\EAR:am:bs:cd-160\EAC:ce-16\EAS:cl-20AL:cm-\Ea%+ %+ :co#SO:\
:dc -16\EA A:dl- 30\EAB:ei - \E\200:eo:im - \EAP:in:ip -160:li#24:mi:nd - \E -:\
:se - \Ed\Ee:so - \ED\EE:ta - 8\t:ul:up-\E; :vb - \Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and that
empty fields may be included for readability (here between the last field on a line and the first
field on the next). Capabilities in termcap are of three types: Boolean capabilities which indicate
that the terminal has some particular feature, numeric capabilities giving the size of the termi­
nal or the size of particular delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has "automatic
margins" (i.e. an automatic return and linefeed when the end of a line is reached) is indicated
by the capability am. Hence the description of the Concept includes am. Numeric capabilities
are followed by the character '#' and then the value. Thus co which indicates the number of
columns the terminal has gives the value 'SO' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by the
two character code, an '-', and then a string ending at the next following ':'. A delay in mil­
liseconds may appear after the '-' in such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to provide this delay. The delay can be
either a integer, e.g. '20', or an integer followed by an '0', i.e. '30'. A '0' indicates that the
padding required is proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a '0' is specified, it is sometimes
useful to give a delay of the form '3.5' specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding
of characters there. A \E maps to an ESCAPE character, 'x maps to a control-x for any
appropriate x, and the sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a \, and the characters'
and \ may be given as \. and \ \. If it is necessary to place a : in a capability it must be escaped
in octal as \072. If it is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with· termcap use C strings, arid strip the high bits of
the output very late so that a \200 comes out as a \000 would.

3rd Berkeley Distribution 10 May 19S0 3

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in termcap and to build
up a description gradually, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ex. To easily test a new terminal description you can set the environment
variable TERMCAP to a pathname of a file containing the description you are working on and
the editor will look there rather than in /etcltermcap. TERMCAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor. (This only works on version 7
systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the Ii capability. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, then this is given by
the cl string capability. If the terminal can backspace, then it should have the bs capability,
unless a backspace is accomplished by a character other than AH (ugh) in which case you
should give this character as the be string capability. If it overstrikes (rather than clearing a
position when a character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in termcap are undefined
at the left and top edges of a CRT terminal. The editor will never attempt to backspace around
the left edge,' nor will it attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the am capability tells
whether the cursor sticks at the right edge of the screen. If the terminal has switch selectable
automatic margins, the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33
teletype is described as

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as

clladm3p;si adm3:am:bs:cl ='Z:Ii#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a em string capability, with prinif(3S) like
escapes 'lox in it. These substitute to encodings of the current line or column position, while
other characters are passed through unchanged. If the em string is thought of as being a func­
tion, then its arguments are the line and then the column to which motion is desired, and the
% encodings have the following meanings:

%d as in print/, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds xto value, then %.
%>xy if value> x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2S00)
%B BCD (16'(x/l0)) + (x%IO), no output.
%D Reverse coding (x-2'(x%16), no output. (Delta Data).

3rd Berkeley Distribution 10 May 1980 4

I

TERMCAP(5) UNIX Programmer's Manual TERMCAP(S)

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its em capability is
"em = 6\E&%r%2c%2Y". The Microterm ACT-IV needs the current row and column sent pre­
ceded by a AT, with the row and column simply encoded in binary, "cm=AT%.%.". Terminals
which use "%." need to be able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary because it is not always safe to
transmit \1, \n An and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cm=\E=%+ %+ ".

Cursor motions

If the terminal can move the cursor one posltlOn to the right, leaving the character at the
current position unchanged, then this sequence should be given as nd (non-destructive space).
If it can move the cursor up a line on the screen in the same column, this should be given as
up. If the terminal has no cursor addressing capability, but can home the cursor (to very upper
left corner of screen) then this can be given as 110; similarly a fast way of getting to the lower
left hand corner can be given as II; this may involve going up with up from the home position,
but the editor will never do this itself (unless II does) because it makes no assumption about
the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ceo If the terminal can clear from the current position to
the end of the display, then this should be given as cd. The editor only uses cd from the first
column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as al; this is done only from the first position of a line. The cursor must then appear on
the newly blank line. If the terminal can delete the line which the cursor is on, then this
should be given as dl; this is done only from the first position on the line to be deleted. If the
terminal can scroll the screen backwards, then this can be given as sb, but just al suffices. If
the terminal can retain display memory above then the da capability should be given; if display
memory can be retained below then db should be given. These let the editor understand that
deleting a line on the screen may bring non-blank lines up from below or that scrolling back
with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using termcap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other ter­
minals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type "abc der' using local cursor motions (not spaces) between the "abc" and the
"der'. Then position the cursor before the "abc" and put the terminal in insert mode. If typ­
ing characters causes the rest of the line to shift rigidly and characters to fall off the end, then
your terminal does not distinguish between blanks and untyped positions. If the "abc" shifts
over to the "deP' which then move together around the end of the current line and onto the
next as you insert, you have the second type of terminal, and should give the capability in,
which stands for "insert null". If your terminal does something different and unusual then you

3rd Berkeley Distribution 10 May 1980 5

TERMCAP (5) UNIX Programmer's Manual TERMCAP(S)

may have to modify the editor to get it to use the insert mode your terminal defines. We have
seen no terminals which have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as 1m the sequence to get
into insert mode, or give it an empty value if your terminal uses a sequence to insert a blank
position. Give as el the sequence to leave insert mode (give this, with an empty value also if
you gave 1m so). Now give as ic any sequence needed to be sent just before sending the char­
acter to be inserted. Most terminals with a true insert mode will not give ie, terminals which
send a sequence to open a screen position should give it here. (Insert mode is preferable to the
sequence to open a position on the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also be given in Ip.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g. if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability ml to speed up inserting in this case. Omitting
m! will affect only speed. Some terminals (notably Datamedia's) must not have ml because of
the way their insert mode works.

Finally, you can specify delete mode by giving dm and cd to enter and exit delete mode, and de
to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se
respectively. If there are several flavors of standout mode (such as inverse video, blinking, or
underlining - half bright is not usually an acceptable "standout" mode unless the terminal is
in inverse video mode constantly) the preferred mode is inverse video by itself. If the code to
change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and lie respectively. If the
terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be given as vs and ve, sent at the
start and end of these modes respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cur­
sor, the codes to enter and exit this mode can be given as ti and teo This arises, for example,
from terminals like the Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

3rd Berkeley Distribution 10 May 1980 6

TERMCAP(S) UNIX Programmer's Manual TERMCAP(5)

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to
always transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kl, kr, ku, kd, and kh respectively. If there are function keys such
as fO, fl, ... , f9, the codes they send can be given as kO, kl, """' k9. If these keys have labels
other than the default fO through f9, the labels can be given as 10, 11, .""' 19. If there are other
keys that transmit the same code as the terminal expects for the corresponding function, such
as clear screen, the termcap 2 letter codes can be given in the ko capability, for example,
":ko=c1,ll,sf,sb:", which says that the terminal has clear, home down, scroll down, and scroll
up keys that transmit the same thing as the cl, 11, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomput­
ers due to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists
of groups of two characters. In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are h for kl, j for kd, k
for ku, I for kr, and H for kh. For example, the mime would be :ma=AKrZkAXI: indicating
arrow keys left cm, down CK), up CZ), and right eX). (There is no home key on the
mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than AI to tab,
then this can be given as tao

Hazeltine terminals, which don't allow'·' characters to be printed should indicate hz.
Datamedia terminals, which echo carriage-return linefeed for carriage return and then ignore a
following linefeed should indicate nco Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate XD. If an erase-eo I is required to get rid of stan­
dout (instead of merely writing on top of it), xs should be given. Teleray terminals, where tabs
turn all characters moved over to blanks, should indicate xl. Other specific terminal problems
may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both are given, is will be printed
before if. This is useful where if is lusrllibltabsetlstd but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with cer­
tain exceptions. The string capability Ie can be given with the name of the similar terminal.
This capability must be last and the combined length of the two entries must not exceed 1024.
Since termlib routines search the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left override the ones in the similar ter­
minal. A capability can be canceled with xx@ where xx is the capability. For example, the
entry

hn 12621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

3rd Berkeley Distribution 10 May 1980 7

TERMCAP(S) UNIX Programmer's Manual

FILES
/etc/termcap file containing terminal descriptions

SEE ALSO
ex(l), curses(3X), termcap(3X), tset(l), vi(l), u!(l), more(I)

AUTHOR
William Joy
Mark Horton added underlining and keypad support

BUGS

TERMCAP(5)

Ex allows only 256 characters for string capabilities, and the routines in termcap(3X) do not
check for overflow of this buffer. The total length of a single entry (excluding only escaped
newlines) may not exceed 1024.

The rna, YS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

3rd Berkeley Distribution 10 May 1980 8

TP (5) UNIX Programmer's Manual TP(5)

NAME
tp - DEC/mag tape formats

DESCRIPTION
Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes are
the same except that mag tapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (J through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

strue! {

};

char
unsigned short
char
char
char
char
long
unsigned short
char
unsigned short

pathname[32];
mode;
uid;
gid;
unusedl;
size[3!;
modtime;
tapeaddr;
unused21161;
checksum;

The path name entry is the path name of the file when put on the tape. If the pathname starts
with Ii zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte.
Mode, uid, gid, size and time modified are thr & one as described under i-nodes (see file system
/s(5». The tape address is the tape block number of the start of the contents of the file.
Every file starts on a block boundary. The tile occupies (size+'Sll)/512 blocks of continuous
tape. The checksum entry has a value such that the sum of the 32 words of the directory entry
is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has II size of zero.

SEE ALSO
fs(5), tpc,

BUGS
The pathname, uid, gid, and size fields are too small.

7th Edition 15 January 1983

TTYS(S) UNIX Programmer's Manual TTYS(S)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the init program and specifies which terminal special files are to have a
process created for them so that people can log in. There is one line in the ttys file per special
file.

The first character of a line in the ttys file is either '0' or '1'. If the first character on the line is
a '0', the init program ignores that line. If the first character on the line is a '1', the init pro­
gram creates a login process for that line. The second character on each line is used as an argu­
ment to getty(8), which performs such tasks as baud-rate recognition, reading the login name,
and calling login. For normal lines, the character is '0'; other characters can be used, for exam­
ple, with hard-wired terminals where speed recognition is unnecessary or which have special
characteristics. (Getty will have to be fixed in such cases.) The remainder of the line is the
terminal's entry in the device directory, /dev.

/etc/ttys

SEE ALSO
gettytab(5), init(S), getty(8), 10gin(I)

7th Edition IS July 1983

ITYTYPE(5) UNIX Programmer's Manual

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION

TIYfYPE(5)

Tty type is a database containing, for each tty port on the system, the kind of terminal that is
attached to it. There is one line per port, containing the terminal kind (as a name listed in
termcap (5», a space, and the name of the tty, minus /dev/.

This information is read by tset(I) and by login(1) to initialize the TERM variable at login time.

SEE ALSO
tset (I), login (I)

BUGS
Some lines are merely known as "dialup" or "plugboard".

7th Edition 25 October 1979

TYPES (5) UNIX Programmer's Manual TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#indude < sys/types.h >

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

I· types.h 6.1 83/07129-1

/ .
• Basic system types and major/minor device constructing/busting macros.
·1

I· major part of a device .1
#define major(x) «(jnt)(«unsigned)(x) > > 8)&0377))

I· minor part of a device ·1
#define minor(x) ((jnt)((x)&0377))

I· make a device number .1
#define makedev(x,y) «dev_t)«(x) < <8) I (y)))

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u_char;
u_short;
uJnt;
u long;
ushort;l. sys 1II compat .1

#ifdef vax
typedef struct
typedef struct

} label t;
#endir

int

typedef struct
typedef long
lypedef char •
typedef u _long
typedef long
lypedef int
typedef int
typedef short
typedef int

typedef struct

yhysadr (int rll); } 'physadr;
label t {
val[I4];

_quad (long vaI(2); } quad;
daddU;
caddr_t;
ino_l;
swblk_t;
she_t;
time_t;
dev t;
offj;

The form daddr_t is used for disk addresses except in an i-node on disk, see ft(5). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation·dependent. Offsets
are measured in bytes from the beginning of a file. The labeU variables are used to save the
processor state while another process is running.

4th Berkeley Distribution 1 April 1983

TYPES (5) UNIX Programmer's Manual TYPES (5)

SEE ALSO
[s(5), time(3), Iseek(2), adb(l)

4th Berkeley Distribution 1 April 1983 2

UTMP(5) UNIX Programmer's Manual UTMP(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION

FILES

The ulmp file records information about who is currently using the system. The file is a
sequence of entries with the following structure declared in the include file:

/. utmp.h 4.2 83/05122 -/

/ .
• Structure of utmp and wtmp files .

• Assuming the number 8 is unwise.
-/

struet utmp {
char
char
char
long

};

ut line[S];
utname[8];
ut=hostI16];
uUime;

I. tty name .1
/. user id ./
I. host name, if remote ./
/. time on .1

This structure gives the name of the special file associated with the user's terminal, the user's
login name, and the time of the login in the form of time(3C).

The wimp file records all logins and \ogouts. A null user name indicates Ii logout on the associ­
ated terminal. Furthermore, the terminal name ,-, indicates that the system was rebooted at
the indicated time; the adjacent pair of entries with terminal names 'I' and 'I' indicate the
system-maintained time just before and just after a date command has changed the system's
idea of the time.

Wimp is maintained by login(l) and inil(8). Neither of these programs creates the file, so if it
is removed record-keeping is turned olf. It is summarized by ac(S).

lete/utmp
lusr/adm/wtmp

SEE ALSO
login (1) , init(S), who(l), ac(S)

4th Berkeley Distribution 26 July 1983

UUENCODE (5) UNIX Programmer's Manual UUENCODE(5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(JC) consist of a header line, followed by a number of body lines, and
a trailer line. Uudecode(Je) will ignore any lines preceding the header or following the trailer.
Lines preceding a header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters "begin". The word begin is
followed by a mode (in octal), and a string which names the remote file. A space separates the
three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing
newline). These consist of a character count, followed by encoded characters, followed by a
newline. The character count is a single printing character, and represents an integer, the
number of bytes the rest of the line represents. Such integers are always in the range from 0 to
63 and can be determined by subtracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to
make the characters printing. The last line may be shorter than the normal 45 bytes. If the
size is not a multiple of 3, this fact can be determined by the value of the count on the last
line. Extra garbage will be included to make the character count a multiple of 4. The body is
terminated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of "end" on a line by itself.

SEE ALSO
uuencode (l C), uudecode (1 C), uusend (l C), uucp (l C), mail (1)

7th Edition I June 1980

VFONT(5) UNIX Programmer's Manual VFONT(5)

NAME
vfont - font formats for the Benson-Varian or Versatec

SYNOPSIS
lusr 11Ib/vfont/.

DESCRIPTION

FILES

The fonts for the printer/plotters have the following format. Each file contains a header, an
array of 256 character description structures, and then the bit maps for the characters them­
selves. The header has the following format:

struct header (
short

l header;

unsigned short
short
short
short

magic;
size;
maxx;
maxy;
xtnd;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the current
time. Maxx and maxy are intended to be the maximum horizontal and vertical size of any
glyph in the font, in raster lines. The size is the size of the bit maps for the characters in bytes.
Before the maps for the characters is an array of 256 structures for each of the possible charac­
ters in the font. Each element of the array has the form:

struct dispatch (
unsigned short
short
char
char
char
char
short

addr;
nbytes;
up;
down;
left;
right;
width;

The nbytes field is nonzero for characters which actually exist. For such characters, the add,
field is an offset into the rest of the file where the data for that character begins. There are
up+down rows of data for each character, each of which has left + right bits, rounded up to a
number of bytes. The width field is not used by vcat, although it is to make width tables for
troff. It represents the logical width of the glyph, in raster lines, and shows where the base
point of the next glyph would be.

/usr/lib/vfont/'

SEE ALSO
troff(l), pti(l), vpr(l), vtroff(l), vfontinfoOl

7th Edition 26 February 1979

VGRINDEFS(5) UNIX Programmer's Manual VGRINDEFS (5)

NAME
vgrindefs - vgrind's language definition data base

SYNOPSIS
lusr/llb/vlrlndefs

DESCR.IPTION

FIELDS

Vgrindejs contains all language definitions for vgrind. The data base is very similar to
termcap (5) .

The following table names and describes each field.

N .me Type Descrlvtlon
pb str regular expression for start of a procedure
bb str regular expression for start of a lexical block
be str regular expression for the end of a lexical block
cb str regular expression for the start of a comment
ce str regular expression for the end of a comment
sb str regular expression for the start of a string
se str regular expression for the end of a string
lb str regular expression for the start of a character constant
Ie str regular expression for the end of a character constant
tI bool present means procedures are only defined at the top

lexical level .
oc bool present means upper and lower case are equivalent
kw str a list of keywords separated by spaces

Example

The following entry, which describes the C language, is typical of a language entry.

Qc: :pb-·\d?o?\d?\p\d??) :bb-{:be-j:cb- /o:ce- o/:sb-":se-\e":\
:lb-':le-\e':t1:\
:kw-asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned while #define\
#else #endif #if #ifdef #ifndef #include #undef # define else endil\
if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C language
could be specified to vgrind(1) as "c' or "C'.

Entries may continue onto multiple lines by giving a \ as the last character of a line. Capabili­
ties in vgrinde!s are of two types: Boolean capabilities which indicate that the language has some
particular feature and string capabilities which give a regular expression or keyword list.

REGULAR EXPRESSIONS

Vgrindejs uses regular expression which are very similar to those of ex(1) and lex(1). The char­
acters '.', '$', ':' and '\' are reserved characters and must be "quoted" with a preceding \ if they
are to be included as normal characters. The metasymbols and their meanings are:

$ the end of a line

the beginning of a line

\d a delimiter (space, tab, newline, start of line)

\a matches any string of symbols (like .0 in lex)

\p matches any alphanumeric name. In a procedure definition (pb) the string that matches

4th Berkeley Distribution 11 February 1981

VGRINDEFS (5) UNIX Programmer's Manual VGRINDEFS (5)

FiLES

this symbol is used as the procedure name.

o grouping

I alternation

last item is optional

\e preceding any string means that the string will not match an input string if the input
string is preceded by an escape character (\). This is typically used for languages (like
C) which can include the string delimiter in a string b escaping it.

Unlike other regular expressions in the system, these match words and not characters. Hence
something like " (tramPlsteamer)flies?" would match "tramp', "steamer", "trampflies", or
"steamerflies".

KEYWORD LIST

The keyword list is just a list of keywords in the language separated by spaces. If the HOC'

boolean is specified, indicating that upper and lower case are equivalent, then all the keywords
should be specified in lower case.

lusr/lib/vgrindefs

SEE ALSO

file containing terminal descriptions

vgrind (J), troff(1)

AUTHOR
Dave Presotto

BUGS

4th Berkeley Distribution 11 February 1981 2

